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Abstract

Smoothed Particle Hydrodynamics (SPH) is a relatively new, simple and effective 
numerical method that can be used to solve a variety of difficult problems in compu­
tational mechanics. It is a fully Lagrangian meshless method ideal for solving large 
deformation problems such as complex free surface fluid flows.

This research was carried out with the support of BAE Systems and falls into two 
distinct areas. Firstly to investigate new methods for treating fixed boundaries and 
secondly to investigate refinement algorithms which allow for both sparsely and 
densely populated regions of particles within the same computational domain.

Much work has been done in the modelling of particle-boundary interactions in SPH 
since the governing equations do not naturally incorporate essential boundary con­
ditions. In this research a new technique for calculating boundary contact forces is 
developed. The forces are obtained from a variational principle and as such conserve 
both the linear and angular momentum of the system. The boundaries are explicitly 
defined using this new approach and so the need for additional boundary particles 
is removed.

In the past most SPH derivations have been based on a uniform distribution of 
particles of equal mass. This leads to large simulations with many particles and 
long run times. In other mesh based schemes it has become common place to use 
mesh adaptivity to improve numerical results and reduce computation times. With 
a corresponding refinement strategy SPH can gain these same advantages.

In this research a refinement strategy based upon particle splitting is developed. 
Candidate particles are split into several ‘daughter’ particles according to a given 
refinement pattern centred about the original particle position. Through the so­
lution of a non-linear minimisation problem the optimal mass distribution for the 
daughter particles is obtained so as to reduce the errors introduced into the under­
lying density field. This procedure necessarily conserves the mass of the system. 
The unique daughter particle velocity configuration that conserves the linear and 
angular momentum of the system is also identified.

The conclusion of the research was the successful implementation of these improve­
ments into the existing SPH framework. As a result the capability and flexibility 
of the code is greatly increased and the computational expense needed for running 
large simulations has been reduced.
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N  om enclat ur e
The symbols most frequently used in the text are given below.

Any other notation introduced will be defined when required.

• Scalars and scalar functions are written in regular italic typeface ( /, m, p)

• Vector and tensor quantities are written in bold typeface (v,M , T )

•  Subscripts a, 6 , . . .  denote evaluation at a given particle (raa, pa, x a)

• Indices i, j ,  k, . . .  denote components of the cartesian coordinate system (x l , , <ru )

The Einstein summation convention is adopted for repeated cartesian indices.

Operations:

Gradient: V /  =  /•*
Divergence: V • v  =  v1,1

Scalar product of vectors: u • v =  ulv%
Norm of vector: ||v|| =  (v • v )5
Trace of tensor: tr  (cr) = a11

Double contraction of tensors: u : v =  u%̂vli
Tensor product: u 0  v =  a%b?

Hessian: H f  =  V (V /)

SPH  operations:

( /  (x)) Reproducing kernel approximation of scalar function /  (x)
fh (x) Summation approximation of ( /  (x))

Scalar quantities:

h Smoothing length
V  Volume
m  Mass
p Density (and po is the material density)
P  Pressure
p; Viscosity
i  Von Mises equivalent strain rate
e Internal energy
c Speed of sound
Po Artificial isothermal bulk modulus
t Time (and A t is the timestep)
S (x — xf)  Dirac delta function based at
Wb (x, hb) Kernel function based at Xb (Wb (x, hb) = w (x — Xb, hb))
Nb (x) SPH shape function (JV& (x) =  VbWb (x, hb))
Wb (x, hb) Corrected kernel function (constant or linear)
a  (x) Constant kernel correction term



Scalar q u an titie s  (cont.):

E  ( /, x) Error introduced by the reproducing kernel approximation of /  at x
Eh ( /, x) Error introduced by the summation approximation of /  at x
tpyisc Viscous potential per unit volume
7r Internal energy per unit mass
K  (v) Total kinetic energy of the system
Ilext (x) Total external energy of the system
IIjnt (x) Total internal energy of the system
Ilvisc (x) Total viscous dissipation of the system
7  (xft, hb) Gamma function based at x& with smoothing length hb
(e, a) Refinement parameter (separation parameter e, smoothing ratio a)
S  [e, a] (A) Density refinement error for given mass distribution A
E* [e, a] Minimum density refinement error for refinement pattern (e, a)

V ector and tensor quantities:

x  Position vector
v  Velocity vector
a  Acceleration vector
n Normal vector
I Identity tensor
cr Stress tensor (and a'  deviatoric stress tensor)
d Rate of deformation tensor (d =  \  (Vv +  V vT))
d; Deviatoric rate of deformation tensor (d; =  d — |  (V • v) I)
F External force
T  Internal force
T F Pressure force
T dev Deviatoric component of internal force
T s  Boundary contact force
T a& Interaction force between particle a and particle b
f,3 (x) Linear kernel correction term
W  (r) Vector function satisfying V • W  = w
Vwb (x, hb) Gradient of the kernel function based at x& with smoothing length hb
VNb (x) Gradient SPH shape function (iV& (x) =  VbVwb (x, hb))
Vwb (xa, hb) Corrected gradient of kernel function (constant or linear)
Vu)b (xa, hb) Corrected gradient of constant corrected kernel function
£a Constant gradient correction term evaluated at x a
La Linear/mixed gradient correction term evaluated at xa
'Hwb (xa, hb) Corrected kernel Hessian
B a Matrix correction term for the kernel Hessian evaluated at x a
Aa  Tensor correction term for the kernel Hessian evaluated at xa

Vwb (xa, hb) Corrected and stabilised gradient of the kernel function 

V f h (xa) Corrected and stabilised gradient of scalar function /  (x)

x



Chapter 1

Introduction

Free surface fluid flows arise in a wide variety of circumstances and represent a 

challenging class of problems that scientists and engineers are seeking to better un­

derstand. The sloshing of fuel tanks, the wake surrounding a ship, the impact of 

solid objects into water, the flow over hydrofoils and the flow through turbines and 

propellers are all examples of large scale complex free surface fluid flows.

With the sea level predicted to rise by as much as 50cm over the next 100 years1 

the risk of flooding is increasing all over the world and the numerical simulation of 

free surface fluid flows will be essential to help predict flood damage and to aid the 

design of effective flood defense structures. Methods to efficiently and accurately 

model the behaviour of these complex systems is of great economic, environmental 

and human interest.

Grid based numerical approaches such as the finite difference method and finite 

element method have fast developed into extremely powerful and flexible tools for 

the solution of many important problems in the field of computational continuum 

mechanics. However, these methods require expensive re-meshing algorithms for 

problems which exhibit large deformations and typically free surfaces are difficult 

to follow with any degree of accuracy.

This thesis presents a ‘meshless’ numerical technique particularly suited to the sim­

ulation of free surface fluid flows with several advantages over traditional finite 

element approaches.

1 wikipedia.org: h t tp : / / e n . w ik ip ed ia . org/wiki/Global_Warming

1
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Case Study: The Asian tsunam i

On the 26th of December 2004 at 7:58am local time an earthquake in the middle 

of the Indian ocean measuring 9.15 on the Richter scale occurred along a 1200km 

stretch of the subduction zone between the Australian and Eurasian tectonic plates2.

The earthquake (the second largest ever recorded) and the subsequent tsunami killed 

more than 200,000 people who inhabited the coastline of 13 neighbouring countries 

including Indonesia, Sri Lanka, South India and Thailand; making it one of the most 

deadly disasters in modern history.

Over a period of several minutes the plates slipped roughly 15m causing the seabed 

to rise by as much as a few metres, displacing an estimated 30km3 of water. In order 

to regain its equilibrium this disturbed mass of water collapsed under the influence 

of gravity resulting in the destructive tsunami waves that claimed so many lives. 

The area affected was greatly increased because of the large region of subduction 

which caused the waves to spread outwards along the entire length of the faultline.

Deceptively, the power of tsunamis are not evident in deep regions of ocean where 

the waves are largely harmless and often pass by unnoticed. For the Asian tsunami 

the maximum recorded height of the waves in the Indian ocean was only 2ft. It was 

only as the waves approached the shallower water of the coastlines that they became 

a significant threat.

As the Asian tsunami reached the shallower water the waves slowed from upwards 

of 500kmh_1 to lOOOkmh- 1  down to tens of kilometres per hour; forming large 

destructive waves that were capable of traveling as far as 2km inland. In the region 

of Aceh in Indonesia it has been proposed that the waves reached heights of up to 

24m, rising to 30m further inland. The Tsunami Society3 estimate that the total 

energy of the resulting waves was approximately 2 x 1016 joules equivalent to 5 

megatons of TNT. The destructive power of the tsunami wave at Aceh can clearly 

be seen in Figure 1 .1 .

2 NewScientist.com: h t tp : //www .n e w sc ie n t is t . com /popuparticle .ns?id=in51
3 The Tsunami Society: h ttp ://w vw .sth jou rn a l.org /soc.h tm
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January 10, 2003 December 29, 2004

Figure 1.1: Aceh, Sumatra, Indonesia

Tsunami waves hit coastlines with tremendous force generated by the increased 

weight and pressure of the ocean behind them, surging inland with enough energy 

to destroy almost anything in its path. The resulting debris including any vehicles, 

ships or boulders in its path are carried by the currents further increasing the wave’s 

destructive force and eroding coastal areas down to the bedrock.

The human, economic and environmental costs of such a disaster are impossible to 

measure. Exact figures are still unknown but it is likely that more than 200,000 

people lost their lives in the floods (a third of whom were women and children) and 

in total over 500,000 people were injured in the disaster.

The affected areas will feel the economic impact for many years to come. Millions lost 

their homes, livelihoods and access to food and clean water. Local infrastructures 

were seriously damaged with water supplies and farm land contaminated by salt 

water for the foreseeable future.

The Asian tsunami hit the poorest people in the region the hardest where the local 

economies are largely driven by tourism, farming and the fishing industry. Much 

of the fishing community was left at a standstill after the floods due to the loss of 

fishing boats and equipment. In Sri Lanka alone the fishing industry accounted for 

the employment of over 250,000 people.
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Tsunamis can have far reaching consequences and should be a global concern. The 

affect of the Asian tsunami was felt as far away as Struisbaai in South Africa some 

8,500km away from the epicentre, where sixteen hours later it caused high tides of 

1.5m.

Unfortunately, it is impossible to accurately predict when or where future tsunamis 

will occur. A great deal of effort is being put into the development of early warning 

systems and coastal defences in vulnerable regions. However, tsunami detection 

in deep water is a difficult task due to the low amplitude of the waves in relation 

to the surrounding ocean. Such systems require many interconnected sensors to 

be effective at great cost. Consequently, the initial earthquake remains the best 

means for the detection of imminent tsunamis but in poor areas even issuing timely 

tsunami warnings can be a difficult task due to the lack of sufficient communication 

infrastructures.

Case Study: Flooding in the UK

Closer to home it is speculated that the Bristol channel floods of the 30th of Jan­

uary 1607 may have been caused by a tsunami originating off the Irish coast. The 

floods claimed an estimated 2 ,0 0 0  lives and caused widespread damage to farmland, 

livestock and villages along the channel including the town of Cardiff in Wales.

The floods had long been considered a result of a combination of high tides and 

other meteorological factors. However, eyewitness accounts from the time tell of 

1huge and mighty hills of water; advancing at speeds faster than a greyhound can 

run’ that only receded ten days later4. This has lead scientists to investigate alter­

native causes.

The possibility that an earthquake off the coast of the United Kingdom and Ireland 

may have triggered a tsunami is not as unlikely as it may seem. In fact on the 8 th 

of February 1980 in that region an earthquake measuring 4.5 on the Richter scale5 

was recorded confirming the fault remains active.

4 Burnham-On-Sea website: http://www.burnham-on-sea.com/1607-flood.shtml
5 BBC News: http://www.news.bbc.co.Uk/2/hi/uk_news/wales/4397679.stm
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The Thames barrier has been forced to close 90 times to prevent serious flooding 

since it was completed in 1983, averaging four times a year6. However, the au­

thorities anticipate this to increase to up to 30 times per year by 2030 due to the 

predicted rise sea levels and increased number of violent storms caused by global 

warming7.

The Thames estuary is home to over one million people, 500,000 properties, 38 

underground stations and the city airport8. A large scale flood across this region 

would cause millions of pounds worth of damage to infrastructure, residences and 

businesses; not to mention the potential for loss of life. This is clearly seen in Fig­

ure 1.2 which shows the flood plain around the city of London.

M

\ v .

/A

Figure 1.2: City of London flood plain

6 The Environment Agency: h ttp ://w w .e n v ir o n m e n t-a g e n c y .g o v .u k
7 NBC News: h ttp ://m sn b c.m sn .com /id /6241449
8 The Thames Estuary Partnership: h ttp ://w w .th am esw eb .com
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Changing weather patterns and rising sea levels caused by global warming mean 

that the risk of flooding is increasing all over the world. It remains the job of flood 

defences to help reduce the potential damage and danger caused by flood waters.

In Japan extensive walls up to 4.5m high have been erected to protect populated 

coastal regions and in other parts of the world channels and flood gates have been 

built in an attem pt to redirect potential flood waters (as shown in Figure 1.3).

Figure 1.3: Tsunami wall at Tsu-Shi, Japan and the Thames barrier, London

The use of computer simulations is playing an increasing role in helping to predict 

and assess the impact of future flood scenarios. Numerical modelling is also essential 

in the design and testing of flood defences where, due to the scale and complexity 

of the engineering problems involved, building full scale models is impossible and 

laboratory experiments prohibitively expensive. However, the situations illustrated 

above are examples of large, complex fluid flow problems which have traditionally 

been difficult to model using well established numerical techniques.

This thesis presents the ‘meshless’ numerical method known as Smoothed Particle 

Hydrodynamics (SPH) which is particularly suited to the solution and modelling of 

large scale, complex free surface fluid flows such as those discussed in this introduc­

tion. In addition SPH can be easily be extended to simulate the related problems 

of rock and debris flows with only simple modifications to the constitutive model.
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The remainder of this chapter proceeds as follows:

• The next section presents a brief introduction to meshless methods. Although 

short it should provide the reader with an understanding of the historical con­

text and motivation behind the development of meshless numerical methods.

• A detailed description of the development of the state of art Smoothed Par­

ticle Hydrodynamic method is given. This includes numerous references to 

literature.

•  The aims and scope of the thesis are presented along with an up to date 

literature review of the relevant topics in SPH.

• The layout of the remainder of the thesis is given and the contents of each 

chapter is described.

1.1 M eshless m ethods

In recent years traditional grid based numerical methods such as the finite difference 

method and the finite element method have fast become the standard tools for the 

solution of a wide range of engineering problems in the areas of computational fluid 

and solid mechanics.

In approaches such as these the spatial domain over which the governing partial dif­

ferential equations are to be solved is discretized using a set of interconnected nodes 

defined by an underlying grid or mesh. For a given mesh, the governing equations 

are approximated by a set of algebraic equations which can then be assembled and 

solved.

However, grid based numerical methods are not without their limitations:

• Mesh generation is an essential but time consuming process. The creation of 

regular meshes for complex or irregular geometries is both an intellectually 

and mathematically challenging task in its own right.

• In Eulerian formulations it is very difficult and computationally expensive to 

accurately resolve free surfaces and track moving interfaces and boundaries as 

the problem evolves over the fixed mesh.
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• In Lagrangian formulations large deformations often lead to excessive element 

distortion. This can severely reduce the accuracy of the method and reduce 

the maximum stable timestep. Regular re-meshing can help to circumvent 

these problems but often introduces additional diffusion to the simulation and 

as a result material can no longer be accurately tracked.

Meshless numerical methods are those which attem pt to solve these long standing 

problems of traditional mesh based approaches by providing a framework in which 

general partial differential equations can be solved without the need for any under­

lying regular mesh or nodal connectivity.

W ith no explicit mesh to generate the initial preprocessing time is reduced and the 

need for subsequent re-meshing is totally eliminated since mesh entanglement no 

longer occurs. W ithout a mesh the motion of the nodes are no longer constrained so 

material and free surfaces can be accurately tracked. Consequently, meshless meth­

ods can easily simulate problems involving large deformation and fragmentation.

In grid based schemes mesh adaptivity has been used to improve numerical results 

and reduce computation times. In this respect meshless methods show a great deal 

of promise. Adaptivity is easily implemented since nodes can be added or removed 

at will without the implications of mesh regeneration.

Over the last twenty-five years research into the next generation of meshless numer­

ical methods has gained considerable momentum and several different approaches 

have been developed. A number of good review papers and books are currently avail­

able which cover many of the recent developments in this field [10,47,75,76,127].

Two notable early meshless techniques are known as the Marker And Cell (MAC) 

and Particle In Cell (PIC) methods which were developed in 1960’s by Harlow [50-52] 

at the Los Alamos laboratory, California.

Although these formulations still use a Eulerian mesh and the finite difference 

method for the solution of the Navier-Stokes equations they were the first to incor­

porate a set of Lagrangian ‘marker’ particles which move with the fluid. The main 

disadvantage of both these methods is the continual mapping of variables between 

the particles and the Eulerian mesh which introduces large amounts of dissipation.



Chapter 1: Introduction 9

The MAC method was originally developed to model confined, viscous, incompress­

ible fluid flows [51,52]. In later applications to low viscosity flows the MAC method 

was found to be unstable and poorly capture free surfaces [25]. This was attributed 

to both the simplified implementation of the boundary conditions and the method 

used to extrapolate the particle velocities from the Eulerian mesh. Later variations 

of the MAC method [2,25] improved its accuracy and extended the boundary con­

ditions to include curved and moving boundaries [124].

Similarly, the PIC method models the fluid as a set of Lagrangian particles moving 

through a fixed grid of cells [23,50]. In the original PIC formulation each particle is 

defined only by its position and mass. All other cell properties are calculated and 

updated by the transition of particles moving from one cell to another. It was found 

later that numerical dissipation could be reduced if the particles were assigned all 

fluid properties such as momentum and energy. With these improvements the PIC 

method has been successfully adapted to solve a variety of solid mechanics prob­

lems [119-121].

Smoothed Particle Hydrodynamics (SPH) is the earliest of the truly meshless meth­

ods. SPH is a fully Lagrangian particle method based upon a smoothing interpo­

lation technique known as the reproducing kernel approximation. By introducing 

kernel functions with compact supports this approach allows any function to be ap­

proximated by a weighted average of its values over a finite set of disordered points.

In this way the continuum is described by a large set of Lagrangian points, known 

as particles, which move with the material. Kernel functions are centred at each 

particle which in conjunction with the discretized governing equations determine 

the particle interactions and the motion of the continuum.

First published in 1977 by Lucy [8 6 ] and Gingold [95] the SPH method was initially 

used to model large scale astrophysical problems such as the formation of binary 

star formations and galaxies in the early universe. Since then SPH has established 

itself as a flexible method for the solution of both fluid and solid mechanics problems 

and is particularly suited to the solution of large deformation problems and complex 

free surface flows.
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Since this thesis is concerned with the SPH method an in depth overview of its 

development is given in Section 1.2.

Another formulation derived using the reproducing kernel approximation is known 

as the Reproducing Kernel Particle Method (RKPM) [77,81]. It was proposed by 

Liu in an effort to enforce consistency and improve accuracy of meshless methods 

in the vicinity of boundaries. The difference between the RKPM and SPH comes 

from the addition of a boundary correction terms introduced to the kernel. Liu later 

modified this method to incorporate a moving least square interpolation technique 

to generate the kernel corrections [82,115]. The resulting formulation is nth-order 

consistent and became known as the Moving Least Square Reproducing Kernel Par­

ticle Method (MLSRKPM).

The moving least squares approximation is also used in the Element-Free Galerkin 

Method (EFGM) [1 1 ] developed by Belytschko. Based upon the Diffuse Element 

method (DEM) [65,104] the EFGM uses moving least square interpolants to con­

struct the trial and test functions of the Galerkin weak form and improves the 

previous boundary implementation with the use of Lagrange multipliers to enforce 

the boundary conditions.

Both the DEM and EFGM require a background mesh in order to evaluate integral 

terms that appear in the final system of equations and as such are not considered 

to be truly meshless methods. The EFGM has been applied successfully to a wide 

range of problems including heat transfer, elasticity and fracture [60,85].

For completeness several other meshless methods should be mentioned in this sum­

mary. These are the h-p cloud method [40,74], the natural element method [118], 

the moving particle semi-implicit method [63], the meshless local boundary integral 

equation method [4], the meshless local Petrov-Galerkin method [4] and most re­

cently the meshless finite element method [58].

As these methods become more established the amount of research into the devel­

opment and improvement of meshless methods increases. With the attention of 

numerous researchers it is hard to predict how this field will develop but it seems 

that the future of meshless numerical methods is assured.
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1.2 The development of Smoothed Particle 

Hydro dynamics

Since the initial development of SPH by Lucy, Gingold and Monaghan [8 6 ,95] in 

1977 many initial weaknesses have been identified and resolved.

Currently there is a great deal of research taking place into SPH. The longest running 

groups being those of Monaghan [88-100] at Monash University and Cleary [28-33] 

at CSIRO, both based in Australia.

For a number of years the Civil and Computational Engineering Centre at the Uni­

versity of Wales Swansea has been investigating reproducing kernel based particle 

methods. The papers of Bonet [13-21], Kulasegaram [66-69] et al [44,84,111] cover 

a wide range of topics including a variational derivation of the SPH equations, the 

development of kernel consistency corrections (CSPH), a shallow water formulation, 

variable smoothing length simulations and a new boundary implementation.

In 2003 the first book devoted to SPH was written by Liu [76] and SPH also fea­

tures in the first book to deal exclusively with meshless methods, entitled ‘Mesh 

Free Methods’ [75] also written by Liu. In addition to these books several good 

SPH review papers exist in the literature [33,108,125].

Two early reviews by Monaghan [89,92] provide a good background to the early de­

velopment of SPH. These papers cover the derivation of the classical SPH governing 

equations and details the first improvements made to the method. These include the 

formulation utilising smoothed particle velocities (known as XSPH) which help to 

keep particles equally spaced [90] and artificial viscosity terms that were used to help 

resolve shocks in the absence of a physical viscosity [97]. These papers also contain 

references to many of the earlier SPH applications to astrophysical problems.

Soon after Libersky extended the SPH formulation to include the full stress tensor 

in order to simulate problems with material strength [72,73,98]. The introduction of 

more sophisticated material models highlighted one of the main weaknesses of SPH 

known as tensile instability which can result in unphysical clustering of particles 

and numerical fracture.
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Tensile instability was first studied in detail by Swegle [1 2 2 ]. It was found that this 

numerical instability was caused by the kernel interpolation procedure. From a Von 

Neumann stability analysis the stability criterion is found to be w"cr > 0 where 

w" is the second derivative of the kernel function and cr is the stress (negative in 

compression) [5]. Consequently, this criterion may not be satisfied by materials in 

either tension or compression. However, in most cases the particle separation is such 

that the instability only manifests itself in regions of tension.

Various methods to prevent or reduce the effects of tensile instability have been 

proposed. Monaghan showed that tensile instability can be removed with the in­

troduction of artificial stresses [93]. Dyka and Randles introduced the concept of 

separate stress points in SPH [41,109]. In this approach the particle stresses are 

not evaluated at particles rather at surrounding stress points, similar to quadra­

ture points used in the finite element method. This approach has been successful 

modified for two dimensional problems by Vignjevic [126]. Hicks proved that tensile 

instabilities could not be removed by artificial viscosities and developed the conser­

vative smoothing method [55-57] which adds stabilizing dissipation terms that can 

be applied to SPH simulations as well as other numerical methods. Most recently, 

Bonet has proved that tensile instability is a property of the continuum mechanics 

equation for elastic fluids [15] and not necessarily a defect of the SPH formulation. 

This source of instability is then shown to be eliminated by using a total Lagrangian 

formulation where all derivatives of the kernel functions are taken with respect to a 

fixed reference configuration [1 2 ].

Zero-energy modes are another weakness found to be present in the SPH method. 

Not unique to particle methods, these spurious modes are generated by nodal under­

integration caused from evaluating the function derivatives at the same point at 

which the function values are sought. If not identified such modes can grow and 

eventually dominate the solution. Spurious modes have been addressed by introduc­

ing stabilization potentials [13,14,16] and by computing derivatives at neighbouring 

stress points [126] rather than at the particles themselves, where the derivative of 

the kernels will always be zero.

Belytschko [9] showed that the traditional SPH method lacked even zeroth order 

consistency. Improvements in the consistency and accuracy of the standard SPH
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equations have come via the introduction of kernel correction methods which enforce 

the discrete consistency conditions. The normalised kernel SPH method [59,109] and 

the corrected SPH method (CSPH) [13,16,18] are two such methods which enforce 

first order consistency. Several other meshless methods have been developed in the 

process, such as the element-free Galerkin method [1 1 ], reproducing kernel particle 

method [81] and moving least-square particle hydrodynamics method [38,39] which 

can enforce consistency upto any order. It has been proved by Kulasegaram [67] that 

the kernel correction methods are identical to those of the RKPM and MLSRKPM.

The convergence of meshless methods is still not very well understood. Early results 

from Moussa have proven the convergence of the SPH method for scalar, non-linear, 

conservation laws [102,103]. These constitute the first rigourous convergence results 

for meshless methods.

Formulations based upon combining particle based methods, such as SPH, with tra­

ditional mesh based approaches have the potential to utilise the best properties of 

both methods. Mixed formulations for coupling SPH to the finite element method 

have already been proposed by several authors [8,43,64] as a way to enforce essential 

boundary conditions and for modelling fluid-structure interactions.

In the paper by Fernadez-Mendez [44] SPH particles are introduced locally into re­

gions where previously mesh degradation and element distortion had prevented the 

finite element method from converging. The coupling of SPH with the discrete ele­

ment method has been used to model particulate flows where a viscous fluid contains 

solid particles [32,107]. Such formulations show great promise for the biological and 

environmental sciences where blood clots in arteries, or landslides and lava flows 

could be more accurately modelled.

Over the last 25 years SPH has developed into a simple and reliable meshless method 

which is capable of modelling complex physics and has been applied to a remark­

able variety of problems, across many different disciplines. These problems include 

free surface flows [91], multiphase flows [110], viscoelastic flows [42], gas dynamics 

and explosions [78,79], fragmentation and penetration [48,71], heat conduction [28], 

material strength [73] and casting [29,30],
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1.3 Scope of the thesis

This thesis presents several developments and improvements to the smoothed par­

ticle hydrodynamics (SPH) method. The scope of the work can be broadly divided 

across four main objectives:

• To present a detailed study of the state of the art SPH method for the simu­

lation of incompressible free surface fluid flows.

• To investigate new methods for treating fixed boundaries in SPH that avoid 

the need for uniformly spaced boundary particles.

• To develop a variable resolution formulation of the SPH method and investi­

gate various particle refinement algorithms. The main aim being to implement 

a  general particle splitting routine that both improves the accuracy and re­

duces the computation expense required for large scale SPH simulations.

• To combine these developments into a single, flexible, variable resolution SPH 

code incorporating the new dynamic particle refinement algorithms.

The remainder of this section constitutes a survey of the existing SPH research 

concerned with the topics of incompressible free surface flow simulations and the 

current adaptivity implementations in SPH.

1.3.1 Incompressible free surface flow simulations in SPH

Monaghan [91] was the first to apply the SPH method to the simulation of incom­

pressible free surface flows. Rather than working directly with the incompressibility 

constraint he noted that in reality fluids such as water are compressible, but have 

a sound speed that is considerably faster than the speed of the bulk flow. In this 

way an incompressible flow can be simulated by a fluid which is more compressible 

than a real fluid. To ensure the relative density fluctuations are only of the order 

of 1% the Mach number of the flow must be sufficiently small. It should be noted 

that by reducing the Mach number, the speed of sound of the fluid will increase and 

the stable timestep can be significantly restricted by the Courant condition. How­

ever, since this method is explicit and comparative methods often require several 

iterations to converge this is not a great penalty to pay. Monaghan successfully
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modelled the breaking dam experiment of Martin [87], the formation of a bore and 

the propagation of waves up a sloped incline in two dimensions. These problems 

have since become the standard benchmarks for free surface simulations using SPH.

This artificial compressibility formulation of SPH is adopted and used as the basis 

for the work contained in this thesis. A detailed description and several applications 

of this formulation can be found in subsequent chapters.

With the same approach Morris [101] used SPH to simulate low Reynolds number 

incompressible flows. Morris introduces an extra dynamic pressure term to the hy­

drostatic pressure in order to more accurately evaluate the pressure gradients of the 

flows. He also suggests an alternative expression for artificial viscosity. The method 

accurately simulated Poiseuille flows, Couette flows and the flow around a cylinder 

with results in good agreement with the analytical solutions and comparative finite 

element solutions. Sigalotti [117] and Takeda [123] later used the same formulation 

to model the related 3D Hagen-Poiseuille flow in a capillary tube of circular cross- 

section.

The fluid-structure interaction problem consisting of a rigid box sinking vertically 

under its own weight into a tank of water has also been investigated by Mon­

aghan [99]. The motion of the box and the resulting solitary wave generated by 

the displaced fluid are simulated using the SPH method. Particles were used to 

describe both the fixed boundary of the tank and the moving boundary of the box, 

as well as the fluid. The acceleration of the box was determined by the total force 

acting on the box from the surrounding fluid particles. The fluid cavity formed 

in the vicinity of the box as it drops and the height of the resulting wave were in 

satisfactory agreement with the experimental data.

Problems involving interfaces between fluids of varying densities have also been sim­

ulated using SPH. Monaghan [94] modelled the flow of a fluid of one density under 

the influence of gravity into a stratified tank consisting of two layers of fluid of 

different densities. The simulations exhibited larger variations in density than the 

experiments but the numerical results were still encouraging. The thickness and 

velocity of the head of the gravity current were accurately predicted and the ampli­
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tude of the waves generated were in good agreement with the experimental data.

This approach was later refined by Colagrossi [34] to more accurately resolve inter­

faces between two fluids. The resulting SPH formulation remains stable even when 

the density ratio between the fluids is small. This allows simulations of air-fluid 

flows with interface breaking and air-entrapment. It has been successfully used to 

model bubbles of fluid rising through another fluid with a density ratio of only 0 .0 0 1  

and a two-phase collapsing dam problem which incorporates the surrounding air and 

accurately models the air entrapment as the wave breaks.

Shao and Lo [83,114] have implemented a predictor-corrector fractional step method 

to enforce incompressibility in SPH simulations which is based on the SPH Projec­

tion method of Cummins [37]. The first step is an explicit integration in time which 

generates intermediate particle positions and velocities without enforcing incom­

pressibility. The second, corrective, step is then applied to adjust the particle densi­

ties back to the initial constant values prior to the prediction step. The compromise 

with this approach is that the pressure is no longer an explicit thermodynamic vari­

able, rather it is obtained through the solution of a pressure Poisson equation which 

needs to be solved using a preconditioned conjugate gradient method. This approach 

has successfully modelled the breaking dam problem, mud flows, the Rayleigh-Taylor 

instability, and solitary waves breaking against a vertical wall and running up a plane 

slope.
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1.3.2 A d a p tiv ity  and variable reso lu tion  S P H  sim u lations

As previously mentioned one of the most promising features of meshless methods, 

such as SPH, is the relative ease with which adaptivity and variable particle resolu­

tions can be introduced into simulations.

Several different formulations have been proposed which implement adaptivity of 

one form or another into SPH simulations. These fall broadly into two categories:

• Adaptive smoothing length methods -  whereby the smoothing length h and 

the shape of the support of the kernel functions w can dynamically adapt 

according to the relative motion of the particles.

• Particle refinement methods -  whereby particles can be removed, added or 

relocated in regions that satisfying given refinement criteria or error measures.

A dap tive  sm ooth ing  len g th  m eth o d s

In SPH the particle smoothing length h, determines the resolution of simulations and 

controls the number of neighbouring particles which contribute to the evaluation of 

the material properties at any given point (see Figure 1.4).

Figure 1.4: Spherical kernel with varying smoothing lengths

Early implementations of SPH used spherical kernel functions with a constant, global 

smoothing length. For large deformation problems it was soon noticed that in regions 

of expansion particles would end up with too few neighbour particles; while in 

regions of contraction particles would end up with an excessive number of neighbour 

particles. This lead to unbalanced and unstable simulations.
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In general, particle smoothing lengths can be a function of space, time and the 

relative motion of neighbouring particles. By adjusting the smoothing length intel­

ligently the accuracy and efficiency of the SPH method can be improved.

A review of the early applications using adaptive smoothing lengths can be found 

in the paper of Monaghan [92]. In the initial investigations, rather than being a 

constant global value, the particle smoothing lengths varied in time but remained 

constant in space. The value of the smoothing length was adjusted in proportion 

to the inverse of the average density of the simulation, h oc p~x!d where d is the 

dimension of the simulation. This resulted in a global smoothing length which grew 

and contracted with the average density of the simulation.

Soon after, formulations where the particle smoothing lengths were evolved as a 

function of both space and time were developed. In the simplest case smoothing 

lengths were adjusted to ensure that the number of neighbours remained roughly 

constant for each particle throughout the duration of the simulation. When each 

particle has its own individual smoothing length momentum is no longer conserved 

since the interactions between particle pairs are not necessarily symmetric. There­

fore, conservation of momentum was enforced by generating a symmetric kernel for 

each pair of particles by using the average of the two individual kernel functions 

Wab = I  {wa +  wb).

When the smoothing length is a function of space the spatial derivative of the kernel 

function should include a term coming from the spatial derivative of the smooth­

ing length [1,92]. This introduces additional terms to the governing equations but 

these have often been neglected since, in many cases, they have a negligible effect 

on simulations. However, without these terms the equations of motion are no longer 

conservative. By defining a functional form for the smoothing length, the spatial 

derivative can be calculated explicitly and the terms included in the formulation. 

It has been shown the inclusion of these terms has no detrimental effect to the 

standard SPH method but can significantly improve energy conservation in certain 

situations [105].

Bonet has recently introduced variable smoothing lengths into a variational formu­

lation of SPH [21]. The addition of variable smoothing lengths introduces extra 

terms into the governing equations and results in a non-linear expression for the



Chapter 1: Introduction 19

SPH equation for density. This equation for the density is solved by a Newton- 

Raphson iteration procedure at each timestep. Despite this being computationally 

more expensive than non-iterative techniques the new formulation was found to be 

more accurate and required fewer particles than a standard SPH formulation. This 

method has been successfully applied to simulations using the Lagrangian shallow- 

water equations to model the collapse of a circular dam and flows over various 

terrains [1 1 2 ].

In many problems the motion of particles can generate non-uniform distributions 

where there are a greater number of particles in one direction than there are in 

another. The occurrence of these anisotropic particle distributions has lead to the 

development of several approaches which deform the support of the kernel functions 

in order to adapt to the local particle distribution and the motion of particles (see 

Figure 1.5).
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Figure 1.5: Anisotropic kernels with neighbour particles

In the thesis of Schick [113] and the papers of Shapiro and Owen [106,116] the 

scalar-valued smoothing lengths h that characterise symmetric kernel functions are 

replaced by an anisotropic smoothing tensor 7 i  that dynamically adjusts the shape 

of the kernel function according to the motion and distribution of the surrounding 

particles. These formulations have been successfully tested using shock tube prob­

lems in one and two dimensions [113]. More recently anisotropic kernels have been 

used in impact and material strength simulations [76] and in astrophysics to help 

model large scale gravitational collapse problems [106,116].
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Particle refinement m ethods

An alternative approach to adaptivity in meshless methods is by particle refinement 

algorithms. In the absence of any nodal connectivity particles are free to be added 

or removed without any of the implications of re-meshing. Throughout a simulation 

particles can be dynamically added in regions where higher accuracy is required or 

removed in regions of less interest.

Dynamic particle refinement is incorporated into the framework of meshless methods 

in two stages:

• The first stage is the derivation of suitable refinement criteria with which to 

identify candidate particles (or regions) for refinement.

• The second stage is the procedure by which the particles or nodes are added 

into the simulation, ensuring that in the process the basic properties of the 

simulation are conserved.

Particle refinement has been successfully introduced into the Element-Free-Galerkin 

method (EFGM) [53] and the Reproducing Kernel Particle method (RKPM) [80]. 

In both these examples regions of high gradients are identified and used to specify 

the areas at which nodes should undergo refinement. However, their refinement 

criteria are quite different. Haussler-Combe [53] uses an a posteriori error estimate 

based upon the interpolation error of the EFGM, whereas Liu [80] uses the theory 

of wavelets to decompose the RKPM solution and identify regions for refinement.

In SPH particle refinement methods have been considered to be the more compli­

cated of the two refinement approaches. Consequently, only a comparatively small 

amount of research exists in the literature.

Once a SPH particle has been identified as a candidate for refinement there are sev­

eral factors which need to be taken into account while devising a general procedure 

for particle refinement:

• The distribution of the new particles needs to be chosen and any necessary 

particle properties need to be assigned (eg- velocity, temperature).

• The mass of the original particle needs to be distributed between the new 

particles in such a way that conservation of mass is ensured.
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• The addition of new particles will change the local density and velocity fields 

in the region surrounding the original particle. Any such change should be 

minimised by the refinement procedure.

• The smoothing lengths of the new particles should be assigned (reduced) to 

correspond to the new particle distribution.

• Regions where fine and coarse distributions of particles interact will be a con­

sequence of the refinement process. Any refinement procedure needs to cope 

with such regions.

• Where possible the global properties of kinetic energy and the linear and angu­

lar momentum of the system should be conserved by the refinement procedure.

Lastiwka [70] has developed a simple strategy for adaptively inserting and removing 

SPH particles in one dimension. Using a refinement criterion based on the veloc­

ity gradient, particles are added in regions where the velocity gradient is high and 

removed were the velocity gradients are low. The new particle positions are then 

iteratively adjusted to ensure an even particle spacing. Corrected kernels are used 

to interpolate the necessary particle properties at the new locations and the particle 

smoothing lengths and masses are adjusted according to the updated particle dis­

tribution.

This refinement algorithm was applied to the Riemann shock tube problem in one 

dimension which showed some improvement with adaptivity over the standard SPH 

method using a comparable number of particles. However, this approach has only 

been implemented in one dimension and the refined distribution was found to be 

unstable when applied without the addition of kernel consistency corrections.

Kitsionas [61] has also applied a particle splitting algorithm in SPH, this time 

in three dimensions, to solve problems in astrophysics concerned with the self- 

gravitating collapse of a region of gas. The refinement criterion used is based on 

satisfying a physical requirement of the problem known as the ‘Jeans Condition’ 

which ensures that the resolution of the particle distribution is sufficient to capture 

the known physics of the problem.

When refined, particles are replaced by thirteen child particles each positioned on 

the nodes of a hexagonal lattice centred on the parent particle. The smoothing
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length of the child particles are fixed in proportion to parent particle and the mass 

of the parent particle is equally distributed between each of the child particles. All 

that remains is to calculate the optimal particle separation for the child particles 

and Kitsionas [62] obtained values for this parameter in one of two ways.

The first approach was to use the particle separation which minimised the local 

difference in density resulting from the refinement of a single particle. While the 

second approach was to study the affect particle refinement had on a large collection 

of particles. This was achieved by taking a large number of particles of very uniform 

density and simultaneously refining them. The optimal particle separation was then 

obtained as the one which corresponded to the refined distribution which took the 

least amount of time to resettle back to a uniform density. The results obtained 

from both these methods were inconclusive. It was found that the particle separa­

tion obtained from the second set of experiments helped lessen the global effect of 

the particle refinement and as such these parameters were used in the subsequent 

simulations.

Conclusion

While the above examples have made some progress towards understanding particle 

refinement in SPH it is the author’s opinion that current research does not satis­

factorily address all of the necessary considerations that have been discussed at the 

start of this section. In particular there has been no quantitative study into the er­

rors introduced due to the refinement of particles and consequently, there has been 

no reliable way to assess the relative performance of a given refinement algorithm.

It is the aim of this thesis is provide a rigourous framework for the analysis of general 

particle refinement strategies and to answer the important question of whether it is 

possible to derive a fully conservative refinement algorithm for SPH simulations.
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1.4 Layout of the thesis

The remainder of the thesis is divided into the following chapters:

C hapter 2: SPH  for fluid dynam ics problems

This first chapter presents the fundamentals of the SPH method as applied to fluid 

dynamics. Properties of the integral and summation approximations of a function 

are derived and the concept of consistency is introduced in relation to the discrete 

SPH equations. The various traditional forms of the discrete SPH equations for 

Newtonian fluids are then derived. To complete the chapter the required equation 

of state, timestepping schemes and nearest neighbour search algorithms are given.

Chapter 3: Corrected SPH  and stabilization

The concept of kernel and gradient correction is introduced in Chapter 2 . Constant 

and linear consistency of the discrete SPH equations is enforced with the addition 

of correction terms to both the kernel and its gradient. Hessian stabilization is 

presented as a method to add higher order terms into the expression for the gradient 

of functions and will be used later in Chapter 7. Finally, it is shown that with kernel 

corrections the SPH method conserves both linear and angular momentum without 

the restriction of uniform particle smoothing lengths.

Chapter 4: Variational formulation o f SPH

In order to implement particle refinement into the SPH framework the underlying 

formulation must be able to cope with non-uniform particle masses and smoothing 

lengths. In this chapter such a formulation is derived from variational principles. A 

boundary contact force term is introduced in the process which will be developed 

and implemented Chapter 5. The resulting expressions for the internal forces are 

found to take the same form as those derived in Chapter 2. Finally, this variational 

formulation is shown to conserve both the linear and angular momentum of the 

system.
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Chapter 5: Boundary m ethods

In the past various different approaches have been used to implement boundary con­

ditions into the SPH formulation. In the first section of this chapter four commonly 

used approaches are described and discussed: the bounce back method, image par­

ticles, penalty methods and Lennard-Jones potentials. In the remaining sections a 

novel method for exactly calculating the variational boundary contact force derived 

in Chapter 4 is presented. Several examples utilising this new contact force are given 

and the accuracy of this new approach is verified.

Chapter 6: A daptivity

The general principles of adaptivity in SPH are introduced in this chapter forming 

the basis of a variable resolution SPH formulation. A simple refinement strategy 

based upon particle splitting is developed and the concepts of density and velocity 

refinement errors are defined. The density refinement error is then minimised with 

the appropriate choice for the refined particle masses via the solution of a model 

problem. This solution is shown to be independent of the initial unrefined particle 

mass and smoothing length. Conservation properties of the refinement process in 

SPH simulations are discussed and it is proved that there is only one fully conser­

vative velocity configuration that the refined particles can take.

Chapter 7: Refinem ent sim ulations

In this chapter all the essential ingredients are brought together and incorporated 

into a single, flexible variable resolution SPH code including dynamic particle re­

finement. Four two dimensional fluid flows are then used to validate the refinement 

procedure and the new boundary contact force implementation. The accuracy of the 

refinement procedure is first investigated using the Couette and Poiseuille flows for 

which analytic solutions are available. The second set of simulations consist of two 

more complex flows; the first example models the flow separation through a funnel 

while the second models an emptying tank with two small outlets on its side.

Chapter 8: Conclusions and future research

To conclude, the implementation of dynamic refinement into the existing SPH frame­

work is assessed and summarised, including recommendations for future research.
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SPH  for fluid dynamics problems

2.1 Introduction to SPH

Developed over twenty years ago, Smoothed Particle Hydrodynamics (SPH) is one 

of the most established meshless methods. SPH is a simple and robust numerical 

method which has been used to solve a remarkable variety of problems in the field 

of computational fluid dynamics.

This chapter provides an introduction to the fundamentals of the SPH method and 

describes the procedure for the discretization and solution of general partial differ­

ential equations using the SPH formulation.

Thfe reproducing kernel approximation of a function, from which the discrete SPH 

approximations are derived, is introduced as the basis of the SPH method. Im­

portant properties of the kernel functions are presented. In particular, the kernel 

consistency conditions which ensure the consistency of the integral approximations 

are emphasised.

By directly applying the integral and summation approximations, the traditional 

discrete SPH forms for the continuity, momentum and energy equations for Newto­

nian fluids are derived.

The chapter concludes by presenting the required equation of state, timestepping 

schemes and nearest neighbour search algorithms necessary for the simulation of 

incompressible fluid flows using SPH.

25
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2.2 Integral approxim ation

Smoothed Particle Hydrodynamics (SPH) is based on the simple integral identity

/  (x ) =  /  /  V ) 6  (x -  x )  dx!

f , ( 2- 1 )\ DC X  =  X
where d (x — x ) =  < (Dirac delta function).

[ 0 x ^  x '

By approximating the delta function by a suitable kernel function the reproducing 

kernel approximation of an arbitrary function /  is obtained as

</ (x )> =  J  f  (x ) w  (x  ~  x > h ) d x ' (2.2)
n

where (•) denotes the reproduced function approximation, w (x — x ',h )  is the ker­

nel function and h is the smoothing length (or dilation parameter) that defines the 

domain of influence of the kernel (see Figure 2.1). Kernel functions play a vital role 

in the SPH method and so will be discussed in greater detail in Section 2.4.

(x - x \ h )

*  2h •

Figure 2.1: Reproducing kernel approximation of /  over the whole domain

In general ( /  (x)) f  (x) since an error term will be introduced due to the substi­

tution of the kernel function w in place of the Dirac delta function.

( /  (x)> =  /  (x) + E ( f ,  x) (2.3)

where E ( f , x)  is the error introduced in the approximation of /  at the point x.



Chapter 2: SPH for fluid dynamics problems 27

It will be shown that if the kernel function is even, normalised, and has compact 

support then the reproducing kernel approximation is second order with respect to 

h [45,92]. That is, for some small bounded constant ek,

|£ ( / ,x ) |  ^  ekh2. (2.4)

In teg ra l ap p ro x im a tio n  o f th e  g rad ien t of a  fu n c tio n

By applying the definition of the reproducing kernel approximation to the gradient 

of scalar function /  and by invoking Gauss’s theorem yields

(V /(x ))  =  J  Vx/ /  (x') w (x — x', h) dx' (2.5)

= J  f  (x') w (x — x', h) n  dS — J  f  (x') Vx/«; (x — x', h ) dx'. (2 .6 )
d£l O

Assuming that the kernel w has a compact support then the above integrals are 

taken only over the region where w ^  0. If x is sufficiently far away from any 

boundaries so that the support of w is entirely contained in the contribution from 

the surface integral is zero and

(V / (x)) =  -  J  f  (x') Vx/in (x -  x', h) dx'. (2.7)
n

It can be seen that the integral approximation has transferred the gradient op­

eration from the function onto the kernel. In addition, if w is an even function 

w (x — x', h) = w (x' — x, h) then (x — x', h) =  —V xw (x — x', h) and the ex­

pression for the integral approximation for the gradient can be simplified to

(V / (x)) =  V x ( J  f  (x') w (x -  x ', h) d x 'j  =  V ( /  (x)>. (2 .8 )

Integral approxim ation o f the divergence o f a function

The reproducing kernel approximation of the divergence of a vector function F  can 

be derived by applying the Divergence theorem to the vector identity
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V • (aF) =  a (V • F) +  F • Va to give

(V • F  (x)> =  J  [V* • F  (x')] w (x -  x', ft) dx' (2.9)
o

= J  F (x') w (x — x', /i) • n dS — J  F (x') • [Vx/w (x — x', h)\ dx'
dCl £1

= — J  F  (x') • [Vx>w (x — x', h)] dx.'. (2 .1 0 )
n

As before the expression for the integral approximation for the divergence can be 

simplified if the kernel function is even to give

(V • F  (x)) =  V* • J  F  (x') w (x -  x ', ft) dx' =  V • (F (x)>.. (2 .1 1 )
n

Integration approxim ation of a product o f functions

Finally, using equation (2.3), the product of reproducing kernel approximations 

( /)  (g) is given by

( f ) { 9 )  =  ( /  + E  ( /»  (g +  E  (g))

= f g  +  g E  (/) + J E  (g) +  E ( f )  E  (g)

=  ( fg)  -  E  ( fg)  +  g E  (/> + f E  (g) +  E ( f ) E  ( g ) . (2.12)

In other words to within the order of accuracy of the method the product of repro­

ducing kernel approximations is equal to the reproducing kernel approximation of 

the product.
( fg)  =  ( f )  (g) ■ (2-13)

In summary, the reproducing kernel approximation operator (•) is linear (and com­

mutative) and as such it satisfies the following properties

(fi  +  h )  =  (fi ) +  ( h ) , (2.14a)

( f i h )  = (/i></2>, (2.14b)

(c/i) =  c(/ i>,  (2.14c)

(V /) =  V ( /> ,  (2.14d)

( V -F )  =  V • ( F ) . (2.14e)
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2.3 Sum m ation approxim ation

In order to develop a practical numerical scheme equation (2.2) is discretized to give 

( / ( x ) ) ~ A ( x )  =  ^  Vbf  (x6) w ( x -  x b, hb)
beM x

=  Vhf  (x&) wb (x, hb) (2.15)
be Mx

where Vb is a volume associated to the point b and wb (x, hb) := w (x — x^, /q>) is the 

kernel based at point b with corresponding smoothing length /i&.

Here Mx is the set of neighbouring points that contribute to the summation. Choos­

ing a kernel with a compact support means that Mx will be finite and the summation 

will be over a small number of neighbouring points only, as shown in Figure 2.2.

X -  X

Figure 2.2: Summation approximation of /  at point x

In particular the interpolation of the density p (x) of a continuum is given by

ph (x) =  ^  m bwb (x, hb), m b =  Vbp (x6) . (2.16)
beMx

An expression for the volume derived from Monte-Carlo theory [95] is given by

F " 1 =  w (xo “  Xfe, hb). (2.17)
beM a

Due to the Lagrangian nature of SPH these interpolation points can be interpreted

as discrete particles moving with the continuum in question. The material response

can therefore be visualised by tracking these moving interpolation points.
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With this interpretation a given point (or particle) has an associated mass density 

p (xa) and the volume Va associated with particle a can be expressed as

Vn =
m r

(2.18)
P (Xa) '

Writing (2.15) in terms of shape functions gives

fh (x) =  ^ 2  f  (x &) Nb (x )> Nb (x) =  Vbwb (x, hb) . (2.19)
6G My

The gradient of fh is now obtained from the point values of the function in terms of 

the gradient of the SPH shape functions

V A  (x) =  £  /  (xb) V N b (x), V N b (x) =  VbV w b (x, hb) . (2.20)
beMx

Unlike their finite element counterparts SPH shape functions do not possess the in­

terpolation property given by Nb (xa) =  Sab. Consequently, SPH approximations do 

not exactly interpolate the solution at particle points fh (x*,) f  (xb) and Dirichlet 

type boundary conditions are not naturally incorporated in SPH formulations (see 

Figure 2.3).

)
) f d x )

Figure 2.3: SPH interpolation of a function /

In general fh (x) ( f  (x)) since another error term has been introduced by the 

pointwise approximation of the integration in equation (2.15)

.fh (x) =  ( /  (x)) +  E h (/, x) (2.21)

where Eh (/, x) is the error introduced in the approximation of ( /)  at the point x.
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When convenient the summation notation will be simplified from

£ ( ■ • • )  to £ ( ~ . )  (2 .2 2 )
b e M x  b

with the understanding that the summation over b is over all contributing interpo­

lation points in the vicinity of x.

2.4 Kernel functions

In the previous sections some results depended on the assumption that the kernel w 

was an even function with a compact support. Theoretically there is no restriction 

to the choice of kernel function used in SPH. However, in normal practice there is a 

minimum set of requirements that need to be met [46].

A wide variety of kernel functions have been used in SPH. The most common kernels 

being spline or Gaussian based functions. The choice of kernel function can be 

likened to the choice of discretization in finite difference methods and the smoothing 

length can be interpreted as varying the element size in finite element methods.

• Com pact support

All kernel functions in this thesis are assumed to have compact supports defined by

w(r,h) = 0 when r = ||x — x'|| ^  K h  (2.23)

where K  is a constant. It is common to take K  = 2 and the smoothing length 

h — a  x rj where a  «  1.2 — 2.0 and 77 is the average initial particle separation. The 

importance of the smoothing length will be discussed further in Section 2.4.3.

Consequently, due to the compact support of the kernel function the whole domain 

Q in equation (2 .2 ) can be replaced by the support of the kernel function based at 

the point x  denoted by B  (x, Kh)  (typically, a ball of radius K h  centred about the 

point x)

< / ( x ) ) =  J  / ( x > ( x - x ' , f t ) d x ' .  (2.24)
B(x,Kh)

This has the effect of reducing the integral approximation from a global approxima­

tion to a local approximation.
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Gaussian based kernels do not have a compact support so in theory all particles 

contribute to the summation approximation of a function. In practice Gaussian 

kernels are truncated since they satisfy w (r) —> 0  as r —> oo and contributions from 

particles sufficiently far away can be ignored without consequence.

• Even

An even kernel ensures that all equally spaced particles with identical smoothing 

lengths will interact symmetrically. This property has already been used to simplify 

the integral approximations and where possible it will be used to simplify the discrete 

governing equations under the assumption of uniform smoothing lengths.

• P ositive  an d  m onoton ically  decreasing

The kernel function should be a strictly positive-valued and monotonically decreas­

ing function. Positivity of the kernel function ensures that the summation approxi­

mation of a function is formed from an average of positively weighted point values 

which results in a physically meaningful numerical method. While a monotonically 

decreasing kernel function ensures that the strength of interaction between particle 

pairs decreases as the particle separation increases.

•  D e lta  function  lim it

To ensure the reproducing kernel approximation approaches the desired function as 

the smoothing length is reduced

lim ( /  (x)> =  /  (x)h—►U (2.25)

it is essential for the kernel function to approach the Dirac delta function as the 

smoothing length is reduced (see Figure 2.4)

lim w (x  — x ', h) = S (x — x ' ) .
h—* 0

(2.26)



Chapter 2: SPH for fluid dynamics problems 33

4

3

2

1

Figure 2.4: ID Quintic Spline Kernel for h = 1.0, 0.5, 0.25 

• C onsistency

In order for the reproducing kernel approximation to exactly approximate constant 

functions the following zero order consistency condition must hold

(1) =  J  1 • w (x — x', h) dx' = 1. (2.27)
ci

If the integral of the kernel over the domain is normalised such that it is equal to 1 

then the kernel is said to satisfy zero order consistency

J  w (x — x', h) dx' =  1. (2.28)
ci

Higher order consistency can be satisfied with a careful choice of kernel function. 

For example in the 1-D case a Taylor series expansion about x  yields
1

/  O') = /  0) + O' -  x ) /' 0) + \  0' -  x)2 /" 0) 4—  •
Substituting the above expression into equation (2.2) gives

( /  0 ) )  =  /  0 )  J  w (x — x') dx' — f  0 )  J  0  — x ') w 0  — x ') dx ' +
n ci

If the following consistency conditions are satisfied

ci

J  x^w (x ) dx = 0 for 0 < j  ^  k

(2.29)

(2.30)

(2.31a)

(2.31b)

then the reproducing kernel approximation is said to be of
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In this case ( /  (x)) = f  (a:) for any polynomial function of degree less than or equal 

to k and the reproducing kernel approximation satisfies

( /  (*)) =  / ( * )  +  ^ y / (W1) (*) O (hM ) . (2.32)

When the point integration is applied to the reproducing kernel approximation as 

in equation (2.15) any consistency conditions the kernel may have possessed will no 

longer be satisfied exactly by the discrete summation approximations. In Chapter 3 

simple and effective methods for improving the accuracy and consistency of the 

discrete SPH equations are presented.

2.4.1 Evaluating the gradient of the kernel function

In general kernel functions are written in the form

w (r ’ h) = (r )> r =  Hx “  x/H G t°» K h \ (2’33)

where scales the kernel function to enforce the zero order consistency condition 

and d is the number of dimensions.

Wb (x, h) := w (x — xt, h) =  Wb (r) where r 2 =  (x — x&) • (x — x&). (2.34)

The gradient of the kernel function in terms of r  is calculated from

VtUb (r) = ^y^-Vr 
dr

where V r is obtained from the identity V (r2) =  2rV r =  2 (x — x&)

The final expression for the gradient is obtained as

_  . x 1 dw ,
V w b (r) =  ( x - Xb) .

r  ar

2.4.2 Example kernel functions

The Gaussian and quintic kernel functions with their corresponding normalising 

coefficients ad for one, two and three dimensions are given below. Graphs of these 

kernels and their derivatives are plotted in Figure 2.5.

(2.35)

(2.36)
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Gaussian kernel Quintic kernel

Figure 2.5: ID kernel functions with h =  1 (derivatives shown in blue.) 

Gaussian kernel function

The Gaussian has been a popular choice for kernel function since it is infinity differ­

entiable and the derivatives share the same exponential form. However, it doesn’t 

have a compact support so in practice the kernel domain is truncated.

w (r, h) =  a d e“ (fc)

dw , . v /  2r (2.37)

where o l \ d  =
y/irh h2ir / l 37T 2

Quintic kernel function

The quintic kernel function is a fifth order spline based kernel function and is used 

in all of the simulations presented in the later chapters of this thesis.

'  ( 2 - £ ) 5- 1 6 ( l - £ ) 5 0 < r ^ h
( 2  -  £ ) 5 h < r <  2h ,

0  r > 2h

w (r, h) = a d <

dw
dr

(r, h) = a d <
- i ( 2 - 0 4 + f  ( l - s ) 4 0

- ! ( 2 - £ ) 4 h < r ^ 2 h
0  r > 2h

(2.38)

where a\D =
16h ’ 16/i27T , &3D = 40/l37T
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2.4.3 Sm oothing length

The ability to have smoothing lengths that vary in both space and time is one of 

the attractive properties of SPH. The kernel functions in SPH provides a means 

to transform the point mass description of the continuum into a continuous repre­

sentation. The smoothing length h governs the support of the kernel function and 

consequently the amount of smoothing that is applied to the SPH particles.

It is common to choose the initial smoothing length to be proportional to the mean 

inter-particle distance h oc 77. In two and three dimensions this is given by

[ J
h = afj where fj = y  — in 2D or fj =

where a  is a constant typically a & 1.2 — 2.0, N  is the total number of particles in 

the simulation and A  (or V) is the initial area (or volume) of the problem domain.

In problems where a large amount of compression or expansion occur the number 

of neighbours of a given particle may change as the problem evolves. In such cases 

it is necessary for a particles smoothing length to evolve as required. A particle 

under compression may have an excessively large number of neighbours making the 

method computational inefficient, therefore a reduced smoothing length would be 

desirable. While a particle with too few neighbours would benefit from an increased 

smoothing length in order to keep the solution to within the desired accuracy.

A simple way to evolve the smoothing length of a particle in space and time is to 

adjust ha according to its current density.

ha = ho ( f f l )  d (2.40)

where ho is the initial smoothing length of the particle, po is the material density 

of the particle, pa is the current density of particle a, and d is the dimension of the 

problem.

An inconsistency arises here since the particle density pa is itself a function of the 

smoothing length and is therefore highly non-linear. A solution to this problem is 

to calculate the density and then update the smoothing length, repeating this until 

the values converge [111]. This may take several iterations per particle to occur and 

so can be inefficient to implement.

3 t VVn3D (2.39)
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Generally, a small smoothing length relative to the particle spacing results in ir­

regular oscillatory interpolation, while a large smoothing length results in excessive 

smoothing of the interpolation. This can be seen in Figure *2.6 which shows the 

resulting interpolated density for several different values for the smoothing length. 

The theoretical continuous density distribution should be constant p = 1.

0.8

0.6 0.6

0.4 0.4

0.2 0.2

-1 0 -1 010

0.6

0.4

0.2

Figure 2.6: Density profiles for different values of smoothing length (h = 1.0, 2.0, 5.0)
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2.5 Discrete SPH equations for fluids

Discrete SPH equations are not unique and different forms can derived using a va­

riety of different approaches. In this section the three governing equations of fluid 

dynamics are discretized by directly applying the integral and summation approxi­

mations as defined in this chapter.

In Chapter 4 it will be shown that the same discrete equations can be derived by 

following a corresponding variational approach.

2.5.1 Continuity equation

The density can be calculated in two ways. The first and most simple method is to 

directly apply the summation approximation to the density field. While the second 

method calculates the derivative of the density using the continuity equation.

Direct density evaluation

Applying the summation approximation directly to the density field yields

Vbpbwb (3^ , hb) ,
b

Pa ~  Y m bwb (xQ, hb) (2.41)
b

where wb (xa, hb) =  w (xa — ~x.b, hb) and hb is the smoothing length associated with 

particle b.

From now on the «  and (•) symbols will be dropped and replaced by =  with the un­

derstanding that the discrete SPH equations only approximate the governing partial 

differential equations.

Continuity m ethod

Two different forms for the rate of change of density can be derived from the conti­

nuity equation which in continuum form is given by
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When the divergence of velocity term in the continuity equation is discretized using

the SPH approximation pa «  —pa (V • v a) the first discrete SPH equation for p is

obtained as

Pa =  ~ P a  ^ 2  VbWb ' V W b  (X a ’ h b >- ( 2 -4 2 )
b

An additional velocity difference can be introduced into the above equation for p 

by noting that to within the order of accuracy of the approximation the following 

summation vanishes

j  1 x Vw (x — x', h))dx' ~  ^ 2  VbVwb (x, hf) «  0. (2.43)
n b

By adding this zero term, pav a ■ ^  VbVwb (xa, hb) to equation (2.42) gives a second
b

form for p

Pa =  P a ^ 2  Vb (Vfl ”  Vfc) ' V W b  (X a ’ hb ) '  ( 2 -4 4 )
b

It will be shown in Chapter 3 that if the kernel function w has been corrected then 

equation (2.43) will be exactly zero and these two discretizations of the continuity 

equation are identical.

The second derivation uses the identity p = —p V-v =  — (V • (pv) — v  ■ (Vp)) which 

results in the SPH approximation pa «  v a • (Vpa) — (V • (pav a)) for the continuity 

equation and the following discrete form is obtained

Pa =  v a • ^ 2  VbPb̂ Wb (Xa> hb) ~ ^ 2 Vb (Pb^b) * Vw6 (xa, hb) 
b b

= ^ 2  m b (va — V5) • Vvjb (xa, hb). (2.45)
b

The sm oothing property of the continuity equation

As particles approach each other their relative velocities and Vwb (xa, hb) will be 

negative and as such will add positive contributions to pa. If in total pa > 0 the 

particle’s density will increase. This will lead to an increase in pressure through the 

equation of state which in turn pushes the particles apart.

It is this interplay between velocity and density/pressure that ensures an approxi­

mately uniform density field and that particles remain on average equally spaced.
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E quivalence of co n tin u ity  an d  d ire c t d en sity  fo rm ulations

It was noted by Vila [127] that the two density discretizations given by equation 

(2.41) and equation (2.45) are equivalent. Writing both as functions of the current 

time t gives
=  2 2 m bw{rab (t)), (2.46)

b

W =  ] C  mb W -  v 6 (t)) • Vw; {rab (t)) (2.47)
b

where rab (t ) G [0, Kh] and r \b (t ) =  (xa (t) -  xb (t)) • (xa (t) -  x b (t)).

Differentiating equation (2.46) with respect to time gives

P a  ( t )  =  |  ( * )  =  £  m 4 t  [W (Tab (<))1 =  E  ( 2 4 8 )
6 b

This can be shown to be equal to equation (2.47) by substituting
drab = (x„ (t) -  x> (t)) • (vQ (t) -  v6 (t)) .
dt rab

and

Vw (rab) = (Xa -  x b) (2.50)
dr ab

into equation (2.48).

More precisely, it has be shown that for any constant K  G R

F  = m bw (rab (t)) +  i f
b where F  = f .  (2.51)

/ = - Y 2  m b (Vb W “ Vfl W) * ( Tab W)
b

By the fundamental theorem of calculus
t

f  (s) ds = F (t)  -  F  (t0) = m bw (rab (t)) ~  Y 2  mbW (Tab (*°))' (2'52)
to

Therefore,

Pa (t ) -  pa (to) = Y 2  mbW (Tab W) “  (2-53)
b

Thus, the two formulations will coincide when the initial density distribution is 

chosen to be

Pa (to) = E  wtyw (^ab (to)) for each a. (2.54)
b

In practice due to the explicit time integration of the ordinary differential equations 

one should expect to obtain different numerical results from each formulation.

t

/
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2.5.2 M om entum equation

This section will derive the discrete SPH forms of the momentum equation which in 

continuum form is given by

(2-55>
When the momentum equation is directly approximated by v a «  ^  (V • cra) the 

following discrete SPH equation is obtained

v a =  — y 2 v b(rbV w b(xa,h b). (2.56)
Pa  V

Using equation (2.43) the equation can be symmetrized by adding the zero term 

^  VhV w h (xa, hb) to give
Pa

Va =  — 5 2  Vi (<7-„ +  (Ti.) (2.57)
P a  V

Another form for the discrete momentum equation can be derived using the vector 

identity

v  =  - V ' ( T  =  V - f - < r j + ^ r c r  (V p) . (2.58)
P \ P  )  P2

Applying the SPH approximations to the gradients terms gives

* - - ( v { i ’ - ) ) * ? . ' ’ ' ™  (2 5 9 )

and the final form of the momentum equation is obtained as

Va =  V  V P - V v *  (Xa, M  +  VbPbV w b (Xa, hb)
b Pb P ° b

= Y ,  m - j V v i b  (Xa, hb) +  V  m b- ^ V w b (X a, hb)
b Pb V  Pi

v„ = ^  V w b{xa,h b). (2.60)
t V Pa Pt> /

2.5.3 Discrete stress tensor for N ew tonian fluids

In order to apply the SPH momentum equations the particle stresses also need to be 

formulated in the discrete SPH framework. In this section the discrete SPH equation 

for the stress of a Newtonian fluid is derived.
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In this case the stress tensor can be decomposed into

(T = —P I  (jr (2.61)

where P  is the isotropic pressure and cr' is the deviatoric stress.

For Newtonian fluids the deviatoric stress is proportional to the deviatoric rate of 

deformation tensor d ' via the dynamic viscosity p

a ’ = 2 /xd'. (2.62)

The deviatoric rate of deformation tensor d ' is defined by

d ' =  d  — ^ (V • v) I where d  =  ^ (V v +  V vT) . (2.63)
o z

Applying summation approximation to each gradient term in equation (2.63) gives 

2d'a = Vbv b ® V w b (xa, hb) +  ^ 2  (xa, hb) ® v b
b b

2 / \ (2:64)
- -  ( ^ 2  VbVb *v Wb (x °j hbn  1

By subtracting multiples of the zero term given in equation (2.43) from equation 

(2.64) we arrive at an SPH formulation for the deviatoric rate of deformation tensor 

written in terms of the velocity differences v ba = v b — v a given by

2d'a = Y 2  Vb^ba ® (xo, hb) +  ^ 2  (xa, hb) <S> v 6a
b b

2  /  \  (2'65)
-  2  ( ^  VbVba • (xa, hb) J  I.

The evaluation of the |  (V • v) I term can be simplified by noting that V • v =  tr (d)

which can be calculated directly from the SPH approximation of d.

Therefore, with these formula for the particle stresses the momentum equations for 

a Newtonian fluid can be written in full as

Vfl = - ^ - ^ 2  Vb { < 7 a + <?b) (xa, hb)

where a  = —P I  +  2pd'. (2.66)
Pa b

V a =  ( 7  +  ^ )  V ^ f X a . M
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2.5.4 Energy equation for Newtonian fluids

This section will derive the discrete SPH forms of the energy equation which in 

continuum form is given by
De 1 „  .
—  =  -  <r : Vv. (2.67)

In the case of Newtonian fluids equation (2.67) may be rewritten in terms of the

deviatoric rate of deformation tensor by noting that d ' : V v =  d ' : d ' to give

De P _  2p ,
—  =  V • v +  —  d ' : Vv
Dt p p

=  ^  d ' : d ' -  - V  • v. (2.68)
P P

The first term of equation (2.68) can be approximated with the previously derived 

SPH equation for d'.

The second term of equation (2.68) can be approximated by using either one of the 

discrete SPH equations for the continuity equation by noting that

P  _  P  . P  Dp . ,
“ v  ' v =  7  (~ p v  ' v) = 72 d I '  ( }

C o n tin u ity  m eth o d  I

Using equation (2.44) for p gives

- — v  ■va = — Y \ V b{ya -  v„) • V w b (Xa, hi). (2.70)
Pa Pa ^

While noting that

V • V =  -  (v • V P  -  V • (Pv)) (2.71)
P P

gives an alternate discretization of the form

-  — V • v„ =  —  ( v a • S '  VbPbV w b (Xa, hb) - V 1 4  (Pbv b) ■ V w b (Xa, hb) ]
Pa V b V  }

= - y \ V bPb {va - v b) - V w b(xa,h b)- (2.72)
P* b

Taking an average of equation (2.70) and equation (2.72) gives a symmetric formula 

for the pressure work given by

V • v 0 =  - i -  Y V f, (P„ +  Pb) Wai ■ V w b (X o, hb) (2.73)
Pa 2pa “

where v ab =  va -  v6.
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C o n tin u ity  m e th o d  II

Using equation (2.45) for p gives

V • va =  ^  Y ]  m b (va -  v b) • V w b (xa, hb). (2.74)
Pa P i  b

While noting that

-7V v - v V(f ) -v ( r )  (275)
gives an alternate discretization of the form

-  — v  • v a =  v «  • V  k 4 - v » t (X „ , i!S) -  V  H  ( - n ) • (X „ , /!t )
Pa b Pb b ' Pb '

 ^  p

= V m i , 4 ( v a - v i ) ' V t U ( , ( x 0 ,/it ). (2.76)
b h

Taking an average of equation (2.74) and equation (2.76) gives a symmetric formula

for the pressure work given by

- — V • v a =  i  Y ]  m b ( ^ f  +  v ab • V w b (xa, hb) (2.77)
Pa  2 ^  V P  P  J

where v ab = v a -  v 6.

In this way two symmetric forms for the evolution of the total internal energy are 

given by

2 ^  =  ^  d ' :d'a + f - J 2 v b(Pa + A ) v a6 • V w b (-Ka,hb) (2.78a)
Dt pa 2pa ^b

Dea
Dt —  d a : d a +  \  m b  +  Vab ’ V W b  (X° ’ ^  ( 2 -7 8 b )

Pa 2  V P  P /
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2.5.5 Equation of state

The final element is an equation of state which relates the pressure to the density 

of the fluid and closes the above system of equations.

In order to apply explicit time integration schemes in SPH it is necessary to assume 

that the fluid is slightly compressible. This is a reasonable assumption since all real 

fluids are compressible to some degree with a sound speed much faster than the bulk 

flow of the fluid. This is measured by the Mach number which is defined as

M  =  (2.79)
c

where || v^uik || is the bulk flow speed and c is the speed of sound. Values of M  < 0.1 

imply a mostly incompressible flow behaviour.

It has been argued by Monaghan [91] that in order for relative density fluctuations 

to be less than 1% the Mach number should be between 0.1 & 0.001 which for a 

fluid flow with maximum velocity v max results in a sound speed ranging between

c =  M _1  ||vmax[I =  1 0  ||vmax|| <— ► 1 0 0 0  ||vmax| | . (2.80)

The equation of state used in this thesis is the same as given by Batchelor [7], but 

modified for fluid flow simulations in SPH

« - * ( ( 5 ) ’ - )  <2S1>
where Pa is the pressure of particle a, p0 is the material density and pa is the density 

of particle a. 7  is the fictitious ratio of principle specific heats (taken as 7 for water), 

and Po is an artificial isothermal bulk modulus.

The speed of sound for a fluid with an equation of state given by equation (2.81) is 

given by

<2 82)
Combining equations (2.80) & (2.82) gives a simple equation for Po which will ensure 

only small variations in density

p0 =  (M ~x l h w l l ) 2p (2_83)
7
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2.6 Tim estepping schemes

Timesteppirig schemes both explicit and implicit can be implemented into SPH 

codes. The superscripts denote the timestep at which the variable in question is 

evaluated and time is updated by the relation tn+1 = tn +  A tn+1.

Continuity Equation

If the continuity approach is used to evaluate the material density the time derivative 

can be calculated by the forwards difference approximation to pa

„n+ 1 — pH

Pi *  • (2-84)

In conjunction with equation (2.45) this gives

p: +1 =  Pl + A t" +1 ( ^ 2  *n* W  -  v?) ■ Vt»» (x", A»)j . (2.85)

Alternatively, noting that the solution to the linear ordinary differential equation 

x( t )  = Ax( t )  with initial condition a: (to) =  £o has the solution x( t )  = XoeA^~to\  

In conjunction with equation (2.44) the density can be updated by

, r l  =  p > A,"+1? l't(v:- V?)-V”6(x2'',6). (2 .8 6 ) 

M om entum  Equation

In this thesis a simple leap-frog scheme has been implemented to update the particles 

position and velocity as shown in Figure 2.7.
n_f.i

The intermediate velocity of particle a of the current timestep denoted by v a 2 is 

estimated by

= v " ^  +  Ata£ (2.87)

where A t  = \  (Atn +  A tn+1) is the average of the current and previous timesteps 

and a£ is the current acceleration. The scheme is initialised by first calculating
i

Va =  1At1 a®. This estimate for the velocity at the midpoint of the timestep is

then used to update the position of particle a by

x"+1 =  x™ +  Ain+1v"+t  (2.88)
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Timestep: ( « - l ) th

Figure 2.7: Leapfrog time integration scheme

The leap-frog scheme is O (A t3) and computationally very efficient since it avoids
n + 1

the need to calculate particle accelerations aa 2 at the midpoint of each timestep.

T im estep  C alcu lation

The length of the timesteps are calculated in accordance to the Courant-Fredreichs- 

Lewy stability condition [35]. This states that the computational domain of depen­

dence of the numerical scheme should include the physical domain of dependence. 

In other words the maximum speed of numerical propagation must exceed the max­

imum speed of physical propagation.

In SPH applications this results in the timestep being proportional to the smallest 

particle smoothing length hmin and the timestep is calculated by

A t = CFL----- - 4 = - — ttt" (2.89)
max (ca +  11 v a 11)

where CFL E (0,1] is a constant, typically CFL w 0.1 — 0.2. ca is the sound speed 

of particle a given by equation (2.82).

It should be noted that increasing the speed of sound by reducing the Mach number 

M  will significantly restrict the maximum stable timestep.
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2.7 Nearest neighbour search algorithms

For grid based numerical methods the relative position and connectivity of the nodes 

remains fixed throughout a simulation. In SPH this is not the case. Neighbouring 

particles within the support of a kernel function will generally change as the problem 

evolves. These are known as nearest neighbour particles and need to be calculated 

for each particle at every timestep.

All particle interactions can be found by simply looping over all other particles 

and checking if the distance between them is smaller than the smoothing length of 

the particle. However, the complexity of this approach is O (n2) which for large 

simulations consisting of thousands of particles is prohibitively slow.

In this section two efficient methods commonly used to calculate nearest neighbour 

particles are described.

Grid based searching

The complexity of the nearest neighbour particle search can be reduced to O (n ) 

with the introduction of an underlying search grid and associated linked-list data 

structure.

An underlying grid covers the computational domain and is sufficiently large to 

contain all simulation particles. The cells of the grid are at least 2 h in diameter and 

are identified by a unique cell number. In this way each particle need only check 

its neighbouring cells in order to identify all nearest neighbour particles as shown in 

Figure 2.8. The cell number for each particle is assigned and most efficiently stored 

in a linked-list structure with particles contained in the same cell chained together 

to minimise storage.

The efficiency can be increased further if a constant smoothing length is used since 

all particle interactions will be symmetric so particle pairs need only be checked 

once and the relevant contributions calculated and added to both particles. Under 

this assumption only five out of the nine cells need to be checked in two dimensions 

and 14 out of the 27 cells in three dimensions (see Figure 2.8).
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Figure 2.8: Search grids in 2D. Full grid (left), reduced symmetric grid (right)

Consequently, the grid method is particularly effective for simulations using a con­

stant smoothing length. However, its efficiency will be reduced for simulations with 

variable smoothing lengths since the required cell width will not be optimal for all 

particles.

T ree based  searching

The second method for nearest neighbour particle searching is to use ordered tree 

based data structures to store particle positions and to efficiently search the compu­

tational domain for neighbouring particles [20,54,76]. These approaches are better 

suited for large problems with variable smoothing lengths and can reduce the com­

plexity of the nearest neighbour particle search to O (nlog (n)).

Tree methods recursively bisect the problem domain into smaller subregions with 

particles inserted into the tree according to the subregion in which they reside. In 

this thesis the alternating digital tree (ADT) method [20] is implemented using a 

binary tree. Each node of the binary tree contains a single particle and has an 

associated left and right link. These links can either be empty or link to a node 

on the next hierarchy level of the tree structure. In this way each node of the tree 

can link to at most two other nodes. Consequently, this bisection process is easily 

represented by a binary tree as shown in Figure 2.9.
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Figure 2.9: The binary tree bisection process in 2D

The root of the binary tree represents the entire computational domain. In two 

dimensions, bisecting the domain in the vertical direction results in two subregions; 

these left and right regions are assigned to the left and right links respectively. Each 

of these subregions can then be bisected in the horizontal direction and the resulting 

subregions assigned to the corresponding links at the next hierarchy level. In general 

N  dimensional space the process continues indefinitely by choosing the bisection di­

rections x i ,x 2r  "  , %n  in cyclic order.

Each particle is systematically added to the tree and lies inside the region corre­

sponding to the node where it is stored. In this way the tree is built by first placing 

a particle at the root of the tree. Then subsequent particles are added by following 

the tree downwards until an empty node is reached; taking left or right branches 

according to whether the particle lies in the corresponding left or right subregion.

It is this geometric structure of the binary tree that reduces the cost of searching 

a region of the computational domain for particles. If the associated region of a 

given node k fails to intersect the search region then the complete set of particles 

contained within the entire subtree with root at node k can be disregarded from the 

search.

In this way the tree structure can be systematically searched as follows. First the 

coordinates of the particle in the current node are checked to see if they are inside 

the search region. Then, if the left link is not empty and its corresponding region 

intersects the search region the left subtree is checked. Similarly, if the right link is 

not empty and its corresponding region intersects the search region then the right 

subtree is checked.
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2.8 Concluding remarks

This chapter has introduced all the theory required to produce a simple, fully func­

tional SPH code for the solution of incompressible free surface fluid flows. The 

various stages of a typical SPH implementation are shown in Figure 2.10 with ref­

erences to the relevant equations given in this chapter.

The only notable omission in the discussion has been the various methods which 

can be used to implement boundary conditions in SPH simulations. This has been 

deferred to Chapter 5 where a number of different approaches will be presented in 

detail.

In the next chapter several techniques will be introduced which improves the accu­

racy and stability of the basic SPH equations while maintaining their simple form. 

W ith these corrections it will be shown that the discrete SPH equations conserve 

both the linear and angular momentum of the system.

• Initialise particle properties.

B egin  tim e ste p  :

•  Calculate timestep At (eq. 2.89)

• Identify particle neighbours (sec. 2.7)

• Update densities pa (eq. 2.85 or eq. 2.86)

•  Update volumes Va (eq. 2.18)

•  Update pressures Pa (eq. 2.81)

•  Calculate deviatoric stress tensors er'a = 2fj,d'a (eq. 2.65)

• Calculate body forces (eg. gravity g)

• Calculate boundary forces (ch. 5)

•  Calculate particle accelerations aa (eq. 2 .6 6 )

•  Update particle velocities and positions va, x a (eq. 2.87 k  eq. 2.88)

•  Update current time t =  t +  At

•  Output particle data

End tim estep

• if (t < tstop) then continue next timestep

• if (t >  tgtop) then STOP

Figure 2.10: Numerical algorithm of a standard SPH code
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Corrected SPH  and stabilization

3.1 Introduction

In this chapter several methods which improve the accuracy and stability of the 

traditional SPH equations are introduced.

Correction terms are added to the kernel function in order to enforce consistency 

of the discrete summation approximations. First order correction terms ensure that 

any linear or constant function will be exactly reproduced by the summation ap­

proximation.

Unfortunately, the expression for the gradient of the corrected kernel is complicated 

and computationally expensive to evaluate. Instead, the gradient of the kernel is 

directly corrected to ensure first order consistency of the gradient of a function.

In Chapter 7 it will be necessary to introduce additional higher order terms into 

the expression for the corrected gradient of a function. This is achieved with the 

introduction of an extra Hessian term in the gradient of the kernel function and 

results in a fully corrected and stabilized SPH formulation.

Finally, it is proved that with first order kernel corrections the SPH method con­

serves both linear and angular momentum for simulations with variable smoothing 

lengths.

52
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3.2 Kernel correction

Recall, the reproducing kernel approximation (•) of a function is said to be order k 

accurate if any polynomial up to the kth order is exactly reproduced.

In one dimension this implies that if

9 {x) = go +  9\x  +  g2x 2 H h gkx k (3.1)

is an arbitrary kth order polynomial with constant coefficients then

(9 (x)) = g ( x ) .  (3.2)

Replacing the reproducing kernel approximation with the discrete SPH approxima­

tion gives

gh (x) =  Vbg (x b) wb (x , hb) = g0 +  g\x  +  g2x 2 +  h gkx k. (3.3)
b

The discrete consistency conditions are obtained by setting gj =  1 and all other 

constants equal to zero, for each 0  < j  ^  k.

In particular, the constant consistency condition, frequently referred to as a partition 

of unity is given by

1 =  y ^ V bwb (x ,h b), (3.4)
b

while the kth order consistency condition is given by

X k =  Vbxbwb (x, hb). (3.5)
b

Any consistency the kernel function may have possessed is not enough to ensure 

that the discrete consistency conditions will be satisfied. This loss of consistency is 

a consequence of the approximate pointwise integration. However, with the addition 

of simple kernel correction terms this discrepancy can be eliminated.

The simplest means to guarantee a certain degree of consistency in SPH is to in­

troduce a polynomial correction term into the definition of the kernel function as 

proposed by Liu [77,81]

wb (x, hb) = [a (x) +  f3 (x) • (x -  x 6) +  (x — xb) • V (x) (x -  x 6) H ] wb (x, hb)

where a  (x), (3 (x), T  (x) are scalar, vector, and second order tensor correction terms 

respectively.
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In theory, consistency of any order can be enforced using the above correction 

method. However, only first order correction is considered in this thesis and the 

corrected kernel function is given by

wb (x, hb) = a (x) [1 +  (3 (x) • (x -  x b)] wb (x, hb) . (3.6)

Introducing the corrected kernel into equation (3.3) for the SPH approximation gives

gh (x) =  ^ 2  yb9 M  m  (x, hb). (3.7)
b

where a (x) and /3 (x) are the kernel correction terms. Expressions for a (x) and 

(3 (x) will be derived in the following sections.

3.2.1 Linear kernel correction

In this case an arbitrary linear function g (x) =  A q +  A i • x  should be exactly 

interpolated

A, +  A i • x =  ^ 2  y b (A0 +  A i • x 6) wb (x, hb). (3.8)
b

Setting A i =  0 in the above is equivalent to the zero order consistency condition 

given by equation (3.4) for the corrected kernel at the point x

l  =  y > m ( x , h b). (3.9)
b

Substituting the corrected kernel into the above gives

1 =  a  (x) ^ 2  Vb [1 +  P  (x ) • (x  “  Kb)] wb (x, hb) (3.10)
b

and the constant correction term a  (x) is obtained as

a  (X) =  H  [1 +  /3 (x ) • (x  — Xb)] Wb (x, hi,) ■ (3'n )
b

Similarly, if Ao = 0 then equation (3.8) becomes

A i • x  =  A i • ^ 2  Vb^btib (x, hb) (3.12)
b

and x  can be written as

x = £  VbXbWb (x, hb). (3.13)
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Using the zero order consistency condition given by equation (3.9) gives

x ^ 2  v btib (x, hb) = Vb^btib (x, hb) (3.14)
b b

and the first order consistency condition for the corrected kernel at point x is ob­

tained as

' ^ 2  Vb (x -  Xb)  wb (x, hb) = 0. (3.15)
b

Substituting the corrected kernel into the above and noting that a  (x) is independent 

of particle positions x& gives

^ 2  vb (x -  x &) [1 +  P  (x ) ' (x -  x f>)] rn  (x , hb) =  0 . (3.16)
b

Finally, by rearranging the above equation the vector correction term (3 (x) is found 

to be

T -| - i
0(x) = Vbwb (x, hb) [(x -  x b) ® (x -  xt)] ^ 2  yb (Xfc ~  x)w b (x, hb). (3.17)

W ith these expressions for a  (x) and (3 (x) the Corrected SPH approximation en­

sures that linear functions are exactly interpolated and that their gradients exactly 

obtained when differentiated with respect to x.

It has been proved by Kulasegaram [67] that these correction terms are in fact equiv­

alent to the corrections introduced in the RKPM and MLSRKPM methods.

Unfortunately, calculating the gradient of the linearly corrected kernel is complicated 

and computationally expensive for large simulations since both a  (x) and /3 (x) are 

functions of x  and the resulting expressions would have to be computed for each 

particle at every timestep.
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3.2.2 Constant kernel correction

In an effort to increase computational speed a compromise is to use only constant

kernel correction. This is equivalent to setting (3 (x) =  0 and results in simplified

equations for the corrected kernel and its gradient. In this case the kernel is given 

by
wb (x, hb) =  ol (x) wb (x , hb) where a  (x) =  = —----- -— —  . (3.18)

/ ; Vb'Wb (X, hb) 
b

This leads to a simplified expression for the gradient of a function.

Vgh (x) =  ^ 2  vb9 (x &) (x, hb) (3.19)
b

where Vwb (x, hb) is the gradient of the constant corrected kernel function given by

V w b (x, hb) =  ol (x) V w b (x, hb) +  wb (x, hb) V a  (x ) . (3.20)

In order to evaluate V a (x) take the gradient of the zero order consistency condition 

given by equation (3.9) to give

0  =  Vb (a (x) Wwb (x, hb) +  Wb (x, hb) V a  (x)). (3.21)
b

Rearranging the above gives V a as a function of x

- a  (x) Y  VbVwb (x, hb)
V a (x) = --------  *  . (3.22)

Y  VbWb (x, hb)
b

After simple algebra the gradient of the constant corrected kernel is obtained as

T7 ,f, f-v h \  Vwj, (x, hb) -  wb (x, hb) 7  (x)\ w b (x, hb) . . (3.23)
Vbwb (x, hb)

b

where 7  (x) is given by
Y  VhV w h (x, hh)

7  (x) =  - ^ 7 ---- — 7 -r-  . (3.24)
Y  VbWb (x, hb)
b

This correction is easier to implement than the full linear correction. However, in 

general the gradient will fail to satisfy linear consistency exactly. Nevertheless this 

procedure markedly improves the interpolation of SPH computations.
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3.3 Kernel gradient correction

Alternatively, another simple way to ensure linear consistency of the gradient is to 

directly correct the gradient expression itself,

V gh (x) =  ^ 2  Vb9 (*&) Vwb (x, hb) (3.25)
b

where S7wb (x, hb) is the corrected gradient of the kernel function.

3.3.1 Constant gradient correction

In this case the SPH approximation should exactly interpolate the gradient of a 

constant function. Substituting g (x) = C  into equation (3.25) gives the following 

constant consistency condition for V w b (x, /i&),

0 =  ^  VbV w b (xa, hb) for each x a. (3.26)
b

This can be satisfied by defining V w b (xa, hb) as

V w b (xa, hb) =  Vwb (xa, hb) +  £ (xa) 5ab . (3.27)

and substituting V w b (xa, hb) into equation (3.26) to give

°  =  ^ V W M X a A )  +  U € (x a). (3.28)
b

The correction term £ (xa) is then obtained as

-  E  VjjVwi, (x„, hb)
Z W  =  — *------v ------------- • (3.29)

*a

Substituting this expression for £ (xa) back into equation (3.25) gives

Vgh (xa) = Y ^ V b[g (xft) -  g (xa)] V w b (xa, hb) (3.30)
b

and results in a formulation that ensures that the gradient of a constant function is 

correctly evaluated.
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3.3.2 Linear gradient correction

A similar consistency condition can be obtained to ensure linear completeness of

This would be automatically satisfied if the linearly corrected kernel function Wb (x, hb) 

had been used in the calculation of the gradient. However, it is possible to ensure 

linear completeness of the gradient without having to differentiate the linearly cor­

rected kernel.

By introducing a correction matrix La into the equation for the constant corrected 

gradient (3.30) gives

the gradient. In this case the gradient of a linear function g (x) =  A • x should be 

correctly obtained as Vg  (x) =  A and

A =  ^ 2  Vb (A • Xft) V w b (x0, hb)
b

> VbVw b ( Xa,  hh) <g> Xf, A. (3.31)

Therefore, V w b (xa, hb) needs to satisfy the following linear consistency condition

I =  ^ 2  (xa, hb) <8 x 6 for each x a . (3.32)
b

Vgh (xo) = ^ 2 v b\g (xb) -  g (xa)] L aV w b (xa, hb). (3.33)
b

To obtain an expression for the correction matrix La substitute g (x) =  A  • x  into 

the above equation and set V gb (xa) =  A to obtain

(3.34)
b

from which the correction matrix La is given by

La =  ^ 2  HVn/b (xa, hb) (8  ( ^  -  x a) (3.35)

This method results in linear consistency of the gradient and is much simpler to 

implement than directly calculating the gradient of a function using the linearly 

corrected kernel function.
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3.4 M ixed kernel and gradient correction

A simple and effective correction technique is to combine constant kernel correction 

with linear gradient correction. Although this method will not be as accurate as full 

linear correction it is computationally cheap and the simplest way to achieve first 

order consistency of the derivative.

In this case the interpolation of the function g (x) is given by

gh (x) =  Vbg (xft) wb (x, hb) where wb (x, hb) = (x> fy) (3  3 5 )
“  E  VbW (x, hb)

b

As in the previous section a correction matrix La is introduced and the gradient is 

given by

V gh (xa) =  ^ 2  Vb9 (Xa> hb) =  X ! Vh9 (Xfc) L ^ w b (xa, hb) (3.37)
b b

where now V w b (xa, hb) is the corrected gradient of the constant corrected kernel 

function, and V w b (xa, hb) is the gradient of constant corrected kernel function given 

by equations (3.23) and (3.24).

As before the matrix La is determined by enforcing the linear gradient consistency 

condition by setting g (x) =  A  • x  so that

A =  ^ 2  Vb (A • Xb) L aV w b (xa, hb)
b

T J V ,Vwb (xa, hb) (8 ) x 6 

L b
= La

Finally, the expression for La is given as

1 - 1

Lq = VbV w b (xa, hb) ® X(,

A  . (3.38)

(3.39)

This correction scheme will be used throughout the remainder of the thesis. It has 

been found that it offers the best compromise between simplicity of implementation 

and improved accuracy for simulations.
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3.5 Hessian stabilization

In Chapter 7 it will be necessary to introduce higher order terms into the equations 

for the corrected gradient of a function g (x) with the introduction of an extra 

Hessian term. This corrected and stabilized gradient is given by

V gh (xa) =  ^ 2  Vbg (xfe) V w b (xa, hb) +  ^gTCg (xa) d (3.40)
b

where Tig (x) := V (V p(x )) is the Hessian of p(x), rj is an arbitrary positive 

constant and d  =  [dx,dy\ is a given direction. Commonly, dx = dy = h where 

h is the smoothing length.

Written in terms of the corrected kernel function Tig (x) is then given by

Tig (x) =  V (V# (x)) =  Vbg (x6) Tiwb (x, hb), (3.41)
b

where Tiwb (x, hb) =  V (Vw b (x, hb)) is the Hessian of the corrected kernel function.

Using the linearly corrected kernel function ensures that the Hessian of constant 

and linear functions are correctly evaluated. However, calculating V (Vwb(x ,h b)) 

directly is computationally expensive and so instead the Hessian of the uncorrected 

kernel V (V w b (x, hb)) is calculated and then corrected as in the previous sections.

Kernel Hessian evaluation

The Hessian of the uncorrected kernel function V (Vw b(xa,h b)) is evaluated using 

the following vector identity

V (a (x) /3 (x)) =  a  (x) V/3 (x) +  j3 (x) (Vo (x))T (3.42)

where a  (x) and (3 (x) are scalar and vector functions of x  respectively. Recalling 

the equation for V w b (xa, hb) is given by

V wb (xa, hb) =  i ^ ( x -  x b) (3.43)
r  ar

the kernel Hessian is obtained as

V (V u * (x „ ,hb)) =  V ^ ( x - X i d  . (3.44)
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By setting a  (x) =  and (3 (x) =  (x — x b) in equation (3.42) and noting that

da,
V a  (r (x)) =  -r-V r  and V/3 (x) =  I3x3, (3.45)

ar

the final expression for the kernel Hessian is found to be

V (Vwb (xa, hb)) = a  (x) I3x3  +  ~  a  (x ) )  (x  “  x &) (x “  X&)T

1 dwbT 1 ( d2wb 1 dwb\  , w  nT fo AĈ 
=  r~dr~ x3 H \  dr^ r~dr~/  ~~

3.5.1 Corrected kernel Hessian

The corrected Hessian denoted by 1-Cwb (xa, hb) is given by

i iw b (xa, hb) = H w b (xa, hb) +  8abB a +  Aa,Vwb (xa, hb) (3.47)

where B a and Aa  are second and third order tensor correction terms respectively.

These correction terms are determined by enforcing that the Hessian of a constant 

or linear function should vanish.

In this case, suppose g (x) =  C  where C  is a constant then

0 = Hg ( x )  = Y ;  VbC H w b (x, hb)
b

and the constant Hessian consistency condition is obtained as

0 = Y^Vbnwb{x,hb)- (3.48)
b

Now suppose that g (x) =  A • x  where A ^  0 is an arbitrary vector then

0 =  Tig (x) =  Ti (A • x) =  ^  Vb (A • x) TCwb (x, hb). (3.49)
b

By noting that (a • b) C =  (C ® b) a for any vectors a, b and second order tensor 

C the above can be written as

0 = y :  Vb (H w b (x, hb) ® x b) 
L b

A.

Since this must hold for any vector A,

0 =  (7iw b (x, hb) <8 > x 6) . (3.50)
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Using equation (3.48) and subtracting the zero term H  ('Hwb (x, hb) ® x) gives
b

the linear Hessian consistency condition

0 = '^ T v b (H w b (x, hb) <g> (xb -  x)) . (3.51)
b

By evaluating the consistency conditions (3.48) and (3.51) at each particle a using

the corrected kernel Hessian, the correction parameters B a and A a can be obtained

to enforce constant and linear Hessian consistency at each particle,

o = E  Vb7twb (xa, hb) for each a , (3.52)
b

0 =  y  V b ( i tw b (xa, hb) ® (xb — x a)^ for each a. (3.53)
b

Substituting corrected Hessian into equation (3.52) gives

y :  Vb [Hwb (xa, hb) +  6abBa +  AaVw b (xa, hb)] = 0  (3.54)
b

from which B a is obtained as

B a =  - y  VbH w b (xa, hb) +  y  VbAoS7wb (xa, h ^ j  . (3.55)

Similarly, substituting corrected Hessian into equation (3.53) gives

0 =  y  Vb [.Hwb (xa, hb) +  (5abB a +  AaVwb (xa, hb)\ <g> (xb -  x a). (3.56)
b

Noting that SabB 0 ® (xb -  x a) = 0 gives

Aa y  VbVwh (xa, hb) ® (xb -  Xa) =  -  y  (*a, /i&) ® (x& -  x a) (3.57)

from which *4a is obtained as

- l
A a = - y  (Xa, /ift) ® Xfea

b

where x ba =  x b -  x a.

y  (X a , /ife) ®  x ba (3.58)
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Substituting the corrected Hessian into the equation (3.40) for Vgh (xa) gives 

V9h (x a) =  Vb9 ^  X̂a’ kb) +  \ ^ 9 (Xfl) d
b

=  ^ 2  Vb9 (x6) V w b (xa, hb) +  iry ^  (Xfc) ^ Wb (Xa’ ^  j  d 

=  ^  Vbp (x*) (xa, hfc) +  ^r)'Hwb (xa, h6)

=  '^ 2 v bg (x b)V w b(Kaihb) (3.59)
b

where the corrected and stabilized kernel function V w b (xa, hb) is identified as

V w b (xa, /i6) := Vify, (xa, /ib) +  ^r)i-Cwb (xa, hb) d . (3.60)

Vp/t (xa) will still correctly interpolate the gradient of constant and linear functions 

since the first term of the stabilized kernel is given by V w b (xa, hb) and the additional 

stabilizing term will be identically zero.

3.6 Conservation properties of corrected SPH

In absence of any external forces the traditional SPH method with constant smooth­

ing lengths will conserve the linear momentum and the angular momentum of the 

system (if the stress tensor in question is isotropic [19]).

The conservation properties of the corrected SPH method were studied in greater 

detail in Lok [84]. This section will demonstrate that kernel corrections ensure the 

conservation of linear and angular momentum in SPH simulations with variable 

smoothing lengths.

Linear m om entum

The total linear momentum of a system of N  SPH particles can be written as the 

sum of the linear momentum of each particle

N

M  =  ^  mav Q . (3.61)
a = 1
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Ignoring external forces and using Newton’s 2nd Law, the time rate of change of 

linear momentum may be written as

N  N

M  =  ^ 2  m av a =  -  ^ 2  T a (3.62)
a = 1 a = l

where T a is the internal force acting on particle a. T a is given by the sum of

interaction forces between pairs of particles T ab.

Therefore conservation of linear momentum is ensured by satisfying the following 

discrete condition for any distribution of stress

N

^ T a =  0 .  (3.63)
a=l

From the discretizations of momentum equation found in equation (2.66) two forms 

for the particle interaction forces are given by

T ab =  Va Vb {o’a +  O b)  (xa) or T a& =  m am b f  —y +  (xa) . (3.64)
V Pa Pb J

The condition in equation (3.63) is automatically satisfied if constant smoothing 

lengths are used since V w a (x&, h) =  —V w b (xG, h) and consequently T ab = 

Therefore the sum of all interaction pairs will vanish as required.

Linear momentum can also be conserved when using variable smoothing lengths but 

only if kernel correction is employed. Using equation (2.57) with corrected gradients 

the sum of internal forces can now be written as

£ * -  =  £  VaVbOb\^wa (x{,, ha) ^   ̂VbOb |  ^   ̂V^Vu)a (x{,, ha) j 0 . (3.65)
a a ,b b \  a /

The term in brackets is identically equal to zero since it is the constant consistency 

condition given by equation (3.26). Consequently equation (3.63) is satisfied and 

linear momentum will be conserved as long as the kernel is at least constantly 

corrected.
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A n g u lar m o m en tu m

The angular momentum of a particle a of mass m a with position x a and moving

with constant velocity v a is defined to be the moment of linear momentum about

the origin

A a =  x a x raav a. (3.66)

The total angular momentum of a system of N  SPH particles can be written as the 

sum of the angular momentum of each particle as

N

A =  y^X q x mQv Q. (3.67)
a = l

The rate of change of angular momentum of the particle a is then calculated given

by

A a =  x a x mav a +  x a x m av a

= xa x mav a (since v  x m v =  0 )

=  — (xa x T . ) . (3.68)

Therefore, if the resultant moment about a fixed point of all the forces acting on a 

particle is zero over a timestep, then the angular momentum, A a about that point 

must be constant.

As before ignoring external forces and using Newton’s 2nd Law, the rate of change 

of angular momentum for the system of particles may be written as

N  N

A =  ^ x a x raav a =  - ^ x a x T a . (3.69)
a= 1 a = l

Consequently, if the total moment of the internal forces equals zero for any distri­

bution of stress then angular momentum will be conserved

N

J x . x T ^ O .  (3.70)
a = 1

Rearranging the above equation gives

A =  - ] > >  x T a =  y ^ T a x x a =  : (T a <g>xa) (3.71)
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where e is the alternating tensor (ey’fc =  —1,0,1). Substituting equation (2.57) for 

T a gives A as

A =  ^  £ : ( ^ 2  VaVbVb'VWa (x6, ha) ® x a^

=  Y l Vb£: ^  (Xfc>ha) ® Xa^ • (3-72)

The above product will only vanish if the following condition is satisfied for any

stress distribution

K V 4  (X6 , /ia) ® x 0 =  I .  (3.73)
a

This condition is the linear consistency condition for the kernel gradient given by 

equation (3.32). Consequently, when deviatoric stress tensors are implemented an­

gular momentum will only be preserved if linear correction or the mixed kernel and 

gradient correction scheme is implemented.

3.7 Concluding remarks

This chapter has described several different techniques which can significantly im­

prove the accuracy and stability of the standard SPH equations with minimal com­

putational expense.

Kernel and gradient corrections have been introduced as a way to enforce constant 

and linear consistency of the discrete SPH approximations. Additional higher order 

Hessian correction terms have also been introduced to the kernel gradient to further 

stabilize the method when required.

Conservation of linear and angular momentum can now be established for SPH sim­

ulations without the restriction of uniform particle smoothing lengths when kernel 

and gradient corrections are implemented.

These correction terms are an essential ingredient in the variable resolution SPH 

formulation that will be derived in subsequent chapters and in Chapter 7 the ker­

nel Hessian corrections will provide the necessary stabilization in a number of the 

particle refinement simulations.



Chapter 4

Variational formulation of SPH

4.1 Introduction

In order to implement particle refinement into the SPH framework the underlying 

formulation must first be able to cope with non-uniform particle masses and smooth­

ing lengths. In this chapter such a formulation is derived from variational principles 

and the equivalent internal forces in the continuum are obtained.

The particles represent points in the continuum rather than discrete free particles. 

The derivation depends upon which of the two SPH formulations for the density 

are used. In both cases the resulting expressions for the internal forces are found to 

take the same form as those derived in Section 2.5.

A further correction term 7  is introduced into the direct density variational formu­

lation in order to improve the density evaluation in the vicinity of solid boundaries. 

This term leads to an additional internal force that can be identified as a boundary 

contact force due to the presence of the boundary.

In the final section the conservation properties that were derived in Section 3.6 us­

ing kernel corrections are derived from variational principles. Linear consistency of 

the SPH approximation for the gradient of functions is shown to be essential if the 

method is to preserve angular momentum.

67
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4.2 Variational derivation

The continuum is to be discretized by a large set of particles. Each particle a is 

described by its mass m a, position x a, and velocity v a as shown in Figure 4.1. Let 

v denote the set of all particle velocities and x the set of all particle positions that 

define the state of the continuum.

m

Figure 4.1: Discretized continuum

The total kinetic energy of the system is approximated by the sum of the kinetic 

energy of each particle

K(M) = \ ' £ m a (V a- Va). (4.1)
a

The work done by external forces resulting from a gravitational field g gives the 

total external energy as

next (x) =  -  ^ 2  (Xa * s)- (4-2)
a

The total internal energy of the system depends on the constitutive characteristics

of the continuum. The total internal energy is expressed as the sum of energy

accumulated per unit mass ir multiplied by the particle masses

nint (x) =  ^ 2  ma7r • • *) (4-3)
a

7r will depend on the deformation, density, or any other constitutive parameters of 

the material in question.

From the Euler-Lagrange Equations of Motion the equilibrium equation for the
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system of particles representing the continuum is expressed as

d_ / d C \  dC _ Q
dt \ d v aJ d xa (4  4 )

where C (x, v) =  K  (v) -  IIint (x) -  next (x).

Substituting equations (4.1-4.3) into the above expression leads to the standard 

Newton’s 2nd Law for each particle

^Hext ^Ibnt m rp / a r \m aaa =  — ^ --------^ —  =  Fa -  T a (4.5)
d xa OXa

where aa is the acceleration of particle a and F a is the external force acting on 

particle a. For the simple gravitational case this is given by

F a =  - ^ 5 ^ 1  =  m a g. (4.6)
oxa

T a is the internal force acting on particle a given by

Ta = d- ^  = - k ^ mb^ pb' - ) - (47)b
When the above forces are evaluated in accordance with the above formulation the 

resulting expressions will be consistent with the preservation of linear and angular 

momentum [19] which will be discussed further in Section 4.6.

It should also be noted that the above formulation does not include any dissipative 

terms. Boundary friction and viscous effects can be included with the addition of a 

dissipative potential into the Euler-Lagrange equation

d_ (  dC \  _  dC_= d n dis
dt \ d v aJ d xa ddwa • 1 ' }

Assuming that F a and T a can be calculated at each particle according to equa­

tion (4.6) and equation (4.7) it is simple to obtain the acceleration of each particle

as

a „ =  —  (F a -  T„ -  T f v) (4.9)
m a ’

where T dev is the deviatoric component of the internal force (see Section 4.4). Con­

sequently, particle positions may be updated simply using a leap-frog integration 

scheme as detailed in Section 2.6.

It remains to derive discrete equations for the internal forces T a. To this end equa­

tion (4.3) is linearised at the current position, in the direction of the set of virtual 

velocities 5v as shown in Figure 4.2.
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m

Figure 4.2: Linearised continuum with respect to 8v

The internal and contact forces can now be identified by the differentiation of the 

internal energy equation

d
Dllint [8v] = — n int (xi +  sSv 1, • • • , Xjv +  £8v N)

E ^IIint d . .
, ■%—v- • — (xa +  £dva) 

a=1 d (x a +  £6 v a) de

E l̂dint
1*7

e=0

e=0

a—1

£>nint[5v] = £ t „.<5v0 . (4.10)
a—1

This provides the framework to construct the dynamic equilibrium equations.

Recall, the total internal energy of the continuum described by a set of particles in 

state x is given as

nint (x) =  GO I4-11)
a

where ir (p) is the internal energy per unit mass.

For fluids under reversible, adiabatic conditions the derivative of the internal energy 

is related to the pressure by

%  - j
where it is understood that a negative pressure P  indicates tension.



Chapter 4- Variational formulation of SPH 71

In this case the expression for DU\nt [£v] becomes

£>IIint [5v] = m a ^ - D p a [5v]
aPa

= ^  m a ^ D p a [H -  (4*13)
Pa

From this point, on the expression for the derivative of the density Dpa [£v] will 

depend on which SPH formulation for the density is followed. The continuity method 

and the direct density method will result in different expressions for the rate of 

change of density and consequently different expressions for the internal forces.

4.3 SPH with variable sm oothing length

In this section the different expressions for the linearization of the particle den­

sity, Dpa [<Sv] will be derived. It is assumed throughout that the individual particle 

smoothing lengths are not equal. However, simplifications to the resulting expres­

sions that arise from assuming a uniform smoothing length will be given where 

appropriate.

4.3.1 Continuity density form

In the first case the rate of change of density is related to the divergence of the 

velocity by the continuity equation

^  = - p  V • V . (4.14)

Replacing the actual velocity with a virtual velocity field <5v gives the variation in p

Dp[8v\ = — p V • 6v. (4.15)

Substituting equation (4.15) into equation (4.13) gives

£>nint H  = -  v°P°. (V • <5v 0). (4.16)
a

The divergence of the virtual velocities V • £va are formulated in the SPH framework 

by using the summation approximation for 8v given by

5v  = ^ 2  VbSvhwb (x, hb). (4.17)
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With constant consistency enforced V • 5va is given by

V . * v fl =  $ >  (Svb -  5va) • V w b (xa, hb) (4.18)
b

and Dpa [5v] is obtained as

Dpa [ H  =  pa ^ 2  Vb {Svb -  5va) • V wb (xa, hb). (4.19)
b

Remark

The variational formulation of the time derivative of the density using the continuity 

equation is now obtained by setting 5va =  v a and Svb = v b in equation (4.19) to 

give

Pa =  - P a ( V - V a) =  - P a ^ , V b{vb ~  Va) • V w b{xa,h b)
b

= p a ^2 V b (v a -  V 6) • V w b{-xa,h b). (4.20)
b

It should be noted that the above expression coincides with equation (2.44) from the 

previous chapter. When the corrected kernel is used the above equation simplifies 

to give

Pa =  - p a  VbVb ’ ^ ™ b (Xfl’ hb) ’ (4 ' 2 1 )
b

Internal forces

The internal forces can now be obtained by substituting the expression for V • 8va 

as given by equation (4.18) into equation (4.16)

£>nint [<5v] =  - Y , y a P a Y , Vb(Svl> -Sva) - V w b(Ka,h b)
a b

= VaVbPa^Wb (Xa , hb) • 6vb +  VaVbPaV w b (xa, hb) • Sva-
a,b a,b

Rewriting in terms of Sva gives

L>nint [<5v] =  ^ 2  ^  VaVb (PaVw b (xa, hi) -  PiVw a (xj, K ))  j  • 5v„. (4.22)
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From the above expression the internal pressure force is obtained as

T £ =  Y ,  (p ^ w» (x., K ) -  PbV w a (xt, ha)). (4.23)
b

If all particle smoothing lengths are identical so that ha =  hb = h then the pressure 

force can be rewritten as

t  r = —e  v°v> (p° + ^  V w « (x <»h) -
b

or

t £ =  Y , v*v '>(p ° + p'>)V w <‘ (* " h')
b

and the above equations coincide with the pressure term in the top equation of (2 .6 6 ).

If the corrected kernel is used then the pressure force reduces to its simplest form 

given by

t £  =  -  VaVbPbV w a (xt, ha). (4.24)
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4 .3 .2  D irect d en sity  form

The second approach is to use the classical SPH equation for the density to derive 

the internal forces. In this case the density is given by

p (x) = m bwb (x, hb) . (4.25)

This equation can be reinterpreted as a smoothing of a discrete density approxima­

tion defined by a collection of point masses m & with position

P(x) = (x - (4.26)

where 5 (x — x&) is the Dirac delta function based at the point b (see Figure 4.3).

m

•  • •  •  •

Figure 4.3: Discrete density approximation at point x

Smoothing p (x) with the kernel function w (x) gives

f  p (x') w (x — x', h) dx'
p(x) =

f  w(x,
(4.27)

Therefore, for a given collection of particle masses the discrete density is given by

(xa, hb)
P ( x a ) =

7 (xa, ha)
where 7  (x„, h a ):= J  W(x, h . )  (4.28)
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G am m a function

The gamma function is defined to be

7  (xa, ha) := J  wa (x, ha) dx. (4.29)

The introduction of the correction function 7  (xa,/ia) ensures that the density is 

accurately evaluated in the vicinity of rigid boundaries. Without this term the direct 

density evaluation can lead to poor interpolations adjacent to boundaries since the 

number of neighbour particles reduces as the kernel’s support falls partially outside 

the domain.

It is clear that if the kernel function is normalised to give a unit integral and is based 

sufficiently far from any boundary then 7  (xa, ha) = 1 and equation (4.28) is equal 

to the classical SPH equation for density as given by equation (4.25).

However, when a boundary falls within the compact support (2h -  for the quintic

kernel) of a particle this is not the case and the correction term 7  (xa, ha) ±  1 and 

will contribute to the density evaluation for that particle.

In the vicinity of a straight boundary the gamma function can be evaluated by

considering it as a function of the perpendicular distance between the particle and 

boundary as shown in Figure 4.4.

In this case

7  (xa, ha) = 7  (ea) where ea =  ^  and da = (xa -  x B) • nB (4.30)
I t ' d

where da is the distance of particle a from boundary, x# is any point on the boundary 

with unit inward normal n B- Then the derivative D ^a [<5v] is obtained by linearising 

equation (4.30) to give

D ja [5v] =  7^ 7 ' fo )  • <5va. (4.31)
ha

In Chapter 5 a general method for calculating 7  (xa, ha) and D ja [5v] is given for 

general boundaries in 2-D.
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Figure 4.4: 7  function in the vicinity of a single boundary

Assuming that the gamma function and its derivative can be suitably calculated it 

remains to linearise the following density equation with respect to particle positions

J f m bwb (xa, hb)

\ ( x . A )  ■ (“ 2>

The derivation now depends on whether particle smoothing lengths ha remain con­

stant throughout the simulation ha = h or are allowed to vary as a function of space 

and time ha (x, t) as in [2 1 , 112].

Since the focus of this thesis is on nearly incompressible flows it will be assumed that

the smoothing lengths of the particles are constant. However, with the addition of

particle refinement introduced in Chapter 6 particle smoothing lengths may change 

as the simulation evolves.

Under this assumption equation (4.32) gives

7aD pa  [ H  +  p aP>la [<5v] =  D  m bwb (xa, hb) j  [ 6 \ ] . (4.33)

Linearising the right hand side gives

Y i m bDw„(xa,hb)[SV} = Yi m h- ^ - D r ab[Sv] (4.34)
b b ab

where r\b — (xa -  x 6) • (xa -  x b) and

Drab [5v] =  —  (xa -  x 6) ■ (6va -  6vb). (4.35)
rab
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Finally, Dpa [<5v] is obtained as

Dpa [<Sv] =  — V  m b— ^ ~  (xa -  Xb)  • (6va -  6vb) -  — D ja [£v] 
l a  “  rab drab 7 a

=  — ^ 2 m ^ wb (x a ,hb) • (<5va -  <$v5) -  — D ja [<5v]. (4.36)
la “  7a

Remark

The variational formulation of the time derivative of the density using the direct 

density equation is now obtained by setting <5va =  v a and 8vb = v b in equation (4.36) 

to give

Pa = — ^ 2  m bVwb (Xa, hb) • (va -  wb) -  — D ja [<5v]. (4.37)
l a  b l a

Noting that away from any boundaries i a = 1 and 7  ̂ =  0 the above density equation 

reduces to equation (2.45) found in the previous chapter.

Internal and contact forces

The internal and contact forces can now be obtained by substituting D p a [<5v] given 

by equation (4.36) into equation (4.13)

£>nint [<5v] = V ' m a~% ( —  y '  rnbVwb (xa, hb) ■ (Sva -  Svb) -  — D j a [<5v]) 
a &  V7a b 7“ /

=  Y  Y  ma- ^  ( — mbVwb (xa, hb) ■ (6va -  Svb) )

‘ * P‘ p  (4-38)
- E —

„ P a la

Expanding the first term in equation (4.38)

- p - Vwb (xa, hb) • <5va -  ^ 2  5 7  Pt
a b Palo- a b

and writing in terms of 8va yields,

^ - V w h (xa, hb) ■ 8va -  ^  Pl
a b a b

 ^ j-J  ^
T ,  y  m am b̂ - V w b (x0, hb) • <5va -  ^  m am b^ ^ V w b (xa, hb) • 5vb 

P a lo  n , P a lo

Y  V  mamb-~-Vw b ( Xa ,  hb) • Sva -  V' Y  mbma-^-V w a (x6, ha) ■ Sva 
Aala W  A lb

= Y Y m am b ( -p-Vw6( X a ,h b) -  (xt,h a ) ) • <5v„. (4.39)
a j  Pbl b  J
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From the above equations expressions for the internal pressure force denoted by T f  

and the boundary contact force denoted by T f  are obtained respectively as

T f  =  ^ 2  m *m b ( ~ T - ^ wb (x “> M  “  Vu;a (xft, ha) \ , (4.40)
b \P a 7 a  P b lb  J

t b =  _ ! ! ^ v 7a (4.4!)
Pa7a

and the total internal force is given by the sum of the internal pressure force and 

boundary contact force

T„ = T f + Tf. (4.42)

If all particle smoothing lengths are identical so that ha = hb = h the pressure forces 

are finally obtained as

T f  =  J 2  m i m >> ( f f r  + f n r ) V w >> (x °’h) (4-43)b \Paid Pb'b/

and the above equation coincides with the pressure term in the bottom equation 

of (2 .6 6 ) in the absence of any solid boundary.

It was shown by Lok [84] that it is essential to apply these variational SPH equations 

in a consistent manner. For example, it should be noted that SPH kernel corrections 

cannot be used for updating particle densities when using the direct density method

and that expressions for the particle force and density evaluation from different

derivations should not be mixed.
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4.4 Viscous forces

Thus far, two different formulations for the internal force of a given particle have 

been derived but in both cases only isotropic stress tensors were considered. The 

same approach can be used to obtain the total internal force at a particle for general 

materials with constitutive equations which include a stress tensor with a deviatoric 

component er =  crvoi +  cr'.

For this purpose and in order to remain within a variational framework an additional 

viscous potential Vvis (d) per unit volume is introduced. The viscous potential is 

assumed to be a function of the particle velocities and is written in terms of the 

rate of deformation tensor d defined as the symmetric part of the velocity gradient 

tensor

d =  i  (V v  +  (Vv)T) . (4.44)

As before da is calculated from the expression for V va given by

V va =  5 3  Vfr (v6 -  v a) (8 ) V w b (Xa, hb) (4.45)
b

and the viscous potential, written in terms of the set of particle velocities v, is given

by

n v i> )  =  X > ^ v is ( d a ) .  (4.46)
a

This can be interpreted as the sum of the rate of energy dissipated by viscous forces 

per unit volume for each particle in the continuum. The deviatoric stress tensor is 

then written in terms of the dissipative potential as

<t' =  (4.47)
<9d

The internal viscous forces are obtained by considering the derivative of the viscous 

potential in the direction of a set of virtual velocities 8v give by

DIIvis [5v] =  y y .  (  dVVis d [d„ (V . +  efv)]
„ V 5 [d Jy * e=0

=  (4.48)
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where the derivative of the rate of deformation tensor is given by

Dd  [5v] =  -7 - ( \  V (v +  eSv) +  (V (v +  sSv))T 
as \  2 L

1 d
e=o

=  -  — (Vv +  V vT +  e (5v +  SvT)) 
2  de v v /y

=  \  (V<5v +  (V S v f)  . (4.49)

The gradient of the virtual velocities V 5 va are then obtained with constant consis­

tency using equation (4.45) by

V5va =  Vb (Svb -  Sva) <S> V w b (xa, hb). (4.50)
b

Substituting equations (4.49, 4.50) into equation (4.48) gives 

£>nvis [8v] =  £  V X  : i  (v<5v„ +  (V<5va)T)  =
a

\  ^ 2  V°y*> (a a : (^V*> “  ^v «) ® (x a? hb) +  cr'a : V w b (Xfl, hb) <g> (£vfc -  <Jva))
a,b

and since er'a is symmetric the above equation simplifies to

£>IIvis [Sv] =  E E  VaVbCr'aV w b (X a, /ifc) • (<5V|, -  <5va). (4.51)

Writing the derivative of the viscous potential in terms of 5va gives

£>nvis [<5v] = E  ( E  KVb M  + °») V w ° (Xb’ h°)j ' (4-52)

and the deviatoric components of the internal force is obtained from the above 

equation as

T *"  =  5 3  VaV„ X  +  a i)  V w a (xi, ha). (4.53)
b

When the continuity method is used the volumetric and viscous components of the 

internal force can be added to give

T a = ^ 2  VaVb +  ^  V™a (Xfe’ha)’ <7 =  - P I  +  cr7. (4.54)

If kernel correction is used in the above equation the equation for the total internal 

force reduces to

Ta ^   ̂VaVb&bVWa (Xfc, ha), <7 =  - P l  +  cr'. (4.55)
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4.4.1 Stress tensor for New tonian fluids

For Newtonian fluids the viscous potential t/vis above is a function of the Von Mises

equivalent strain rate i, where e is defined as the second invariant of the deviatoric

rate of deformation tensor d ' given by
#

e2 = ^ d ' : d ' where d ' =  d — | t r  (d) I . (4.56)
o

The deviatoric stress tensor is therefore obtained as

/ d 'lpvis (̂ ) d^P vis .

=  - d d ~  =  ~ W d d • (4-57)

Rewriting equation (4.56) in the form

^  =  5 (d  -  3 t r  d )  : (d  -  3 t r  d )

=  |  [ ( d  : d )  -  I  ( t r  d ) 2 ~  3 ( t r  d ) 2 +  I  ( t r  d ) 2]

=  |  [(d  : d ) -  |  (tr  d )2] (4-58)

and differentiating with respect to the rate of deformation tensor d  gives

„ .de  2  

£dd ~  3
2d — |  (trd) I

S = ! d'
Substituting the above expression into equation (4.57) gives

, =  , ( e)  =  / ,  =  , ( 4 60)
dd \ 3 i  de J ^  v '

where p  is the dynamic viscosity. Its value can be obtained through experimen­

tation. A typical value for water at one atmosphere and at room temperature is 

approximately 0 .0 0 1  lkgm_1s_1.

Note that p and ^Vis are related by

1 d'ipv is ( ^
** = 3 i“9T  • (4-61)

Specifically for a constant viscosity, the viscous potential ^Vis is obtained by inte­

grating equation (4.61) to give

^vis =  ^ 2- (4.62)
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4.5 Internal energy

An expression for the total internal energy of the system of SPH particles can be 

obtained by simply integrating the identity

dw P
T„ -  7  ■ (4M'

This relates the internal energy (per unit mass) with the pressure under reversible, 

adiabatic conditions where the pressure is given by the equation of state

(4.64)

In this case the internal energy of a particle a is given by

(4.65)

Fixing the constant of integration such that 7r (po) = 0 gives

(4.66)

and the total internal energy is found to be
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4.6 Conservation properties of the variational 

formulation

To conclude this chapter the conservation properties of the variational formulation 

are presented. It will be shown that internal forces obtained from a potential func­

tion IIint satisfy the necessary conditions for the preservation of linear and angular 

momentum [19,84].

Linear m om entum

It was shown in Section 3.6 that conservation of linear momentum is ensured by 

satisfying the following discrete condition

N

^ T „  =  0. (4.68)
a=  1

As long as the internal forces are derived from a potential function IIint that is 

invariant with respect to rigid body translations its variation with respect to an 

arbitrary uniform velocity field Vq will vanish [3]. This condition is satisfied by the 

present formulation and consequently .Dllint [£v0] satisfies

0 =  DHint [£v0] =

Since this equations holds for arbitrary Vo equation (4.68) is satisfied and linear 

momentum will be preserved.

Angular m om entum

It was shown in Section 3.6 that conservation of angular momentum is ensured by 

satisfying the following discrete condition

N

^ x , x T ,  =  0. (4.70)
a= 1

If the potential function nint is invariant with respect to rigid body rotations it will 

be shown that angular momentum is preserved [3].

Svr (4.69)
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Given an angular velocity vector <5w, the corresponding rigid body rotation is de­

scribed by the set of velocities defined by 5va = 8w  x x a. In this case the variation 

of nint satisfies

N  f  N  \

0 =  DHmt [£w x x J ^ T a . (Jw x xa) =  S"w • f y  x a x T a j . (4.71)
a = l \ a = 1 J

Since this equations holds for arbitrary 8w  equation (4.70) is satisfied and angular

momentum will be preserved.

It remains to check the invariance of IIjnt with respect to rigid body rotations.

In such cases the stress introduced due to the rotation should vanish. For a Newto­

nian fluid with stress tensor cr (d) this implies that the discrete particle approxima­

tion of d should vanish.

Considering a rigid body rotation defined by w  =  [wx, wy, wz]T. Then the resulting 

velocity field is given by v  (x) =  w  x x and the exact velocity gradient is given by

V v =  W  =

0 — VJZ W y  

wz 0  - w 3

- W y  W X 0

(4.72)

In this case both d =  \  (Vv +  V vT) =  0 and its trace V -v  =  0. Therefore, without 

discretization the potential function IIint would be invariant with respect to rigid 

body rotation. However, in practice the velocity gradient is obtained via the SPH 

approximation

V va =  y ;  Vb (Wx?, -  W x a) ® V w b (Xq, hb)
b

= w y  Vb (xb -  Xa) ® V w b (xa, hb) (4.73)
b

and the correct velocity gradients will be obtained only if

y  Vb {xb — x a) G) V w b (xa, hb) =  I for each particle a. (4.74)
b

This is precisely the linear gradient consistency condition derived in the previous 

chapter.
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Using the linearly corrected gradient of the kernel function V w b (xa, hb) ensures this 

condition is satisfied and the velocity gradient is obtained correctly as

V va =  ^ 2  H W x b ® V w b (xa, hb)
b

= W  Vbx b (g) V w b (xa,

=  W . (4.75)

Consequently, when deviatoric stress tensors are implemented angular momentum 

will only be preserved if linear correction or the mixed kernel and gradient correction 

scheme is implemented.

4.7 Concluding remarks

In this chapter the governing equations for Newtonian fluids have been derived from 

variational principles. The conservation of linear and angular momentum has been 

established with the necessary kernel corrections.

The formulation does not presume particles possess identical masses or smoothing 

lengths. Consequently, it provides the ideal framework for the particle refinement 

algorithm and variable resolution simulations in later chapters. The corresponding 

expressions for the continuity equation and internal forces are found to take the 

same form as the traditional SPH equations derived in Chapter 2.

A boundary correction term has been included in the variational formulation which 

improves the density evaluation in the vicinity solid boundaries and introduces an 

additional boundary contact force to the derivation. Chapter 5 will present a simple 

and accurate method for the evaluation of this boundary force for general boundaries 

in two dimensions.



Chapter 5 

Boundary m ethods

5.1 Introduction

Various different approaches have been used in the past to implement solid bound­

aries in SPH simulations. This chapter presents a new method for calculating bound­

ary contact forces for any general boundary in two dimensions.

In the first part of the chapter the four most commonly used methods; the bounce 

back method, image particles, penalty methods and Lennard-Jones potentials are 

described. A variation of the Lennard-Jones potential that uses boundary particle 

averaging is presented. This new method avoids instabilities that traditionally occur 

when non-uniform boundary particle distributions are used.

In the remaining sections a simple and inexpensive method for exactly calculating 

the variational boundary contact force term derived in Chapter 4 is presented. The 

resulting boundary force for a single straight boundary is compared to the approxi­

mation previously used in the literature.

Finally, several applications using the variational boundary force are presented. The 

accuracy of the new formulation is compared to previous methods with a simple 

breaking dam example. A more complex boundary is used to model a simple flood 

defence problem and a water droplet falling into a curved bowl demonstrates the 

methods ability to model curved boundaries.

86
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5.2 Sum m ary of boundary im plem entations in SPH

5.2.1 B ou n ce back

The bounce back boundary implementation is conceptually the simplest method 

used to enforce boundary conditions within the SPH framework. Particles that are 

identified as having come into contact with a solid boundary are simply reflected 

back into the computational domain according to Newton’s law of restitution (see 

Figure 5.1).

Figure 5.1: Bounce back method

If the interaction between the boundary and the particle is assumed to be perfectly 

elastic (corresponding to a coefficient of restitution equal to one) then the linear 

momentum of the system will be conserved.

5.2.2 Im age particles

The image (or ghost) particle method models a solid boundary by modifying the 

equilibrium and continuity equations for particles in its vicinity by introducing arti­

ficial particles positioned behind the boundary as shown in Figure 5.2. This method 

helps eliminate the problem of poor interpolation of physical quantities at points 

near the boundary by increasing the number of particles that appear in the SPH 

approximations.

Image particles are not stored or evolved during the simulation. They are only used 

to add extra terms into the governing equations. The image particles are generated 

by reflecting a particle’s position across the boundary as shown in Figure 5.2. In this
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Figure 5.2: Image particle generation in the vicinity of a straight boundary

case the image particles have the same volume, density and pressure as the original 

particle but with opposite velocity component normal to the boundary. When a 

particle is in the vicinity of a corner region then three image particles are needed. 

Two being generated from the reflection of the particle across each line segment and 

the third coming from the reflection over the corner point.

Introducing image particles into discrete SPH equation (2.15) of a function /  gives 

/ ( * )  =  5 2  V bf(xb)w b( x ) +  (x). (5.1)
beMx b'eM*

Here is the set of neighbouring image particles that contribute to the summa­

tion. In this way the corresponding governing equations which incorporate the image 

particles are easily derived.

The image particle method can be computationally expensive (especially in three di­

mensions) due to the extra terms in the governing equations but it does improve the 

interpolation on the boundary without needing to use the corrected kernel method, 

slip and non-slip boundaries can also be easily simulated.

5.2 .3  P en a lty  m eth od s

Meshless methods typically encounter difficulties in imposing essential boundary 

conditions. The problem is largely due to the fact that the approximations gener­

ated by reproducing kernel or moving least square methods do not interpolate the 

independent variables at particle points.

For example, when an independent variable such as the velocity v# is specified at
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a boundary particle B  the SPH velocity field in general will result in the inequality 

Vfc (x#) 7  ̂ vg. By introducing a simple penalty treatment on the boundary particles 

essential boundary conditions can be easily implemented in SPH [13,67].

With kernel correction the desired boundary condition is given by

Vh (xB) =  ^2 Vbv bwb (xB) =  v B. (5.2)
bGMs

This condition can be enforced by a penalty boundary potential defined by

Nh»1  bp

nbp =  -ftp ^2 A b  ( v b  -  V/i (xg)) • (vB -  vh (xB))
B = 1

=  v b - E  (xB) J • ( VS -  ^  PbVb̂ b (xB) 1(5.3)
n=i V /  \  beMs /

where A B is the surface area associated to boundary particle B , is a penalty value 

and N Bp are the relevant boundary points.

Differentiating nbp with respect to particle velocities gives

T aP =  =  ^ 2  k p A b  “  V/l (X b ) )  V a™a ( 5 -4 )
a BzM*

By adding this boundary potential force to the internal force as given by equa­

tion (4.7) the total force incorporating the essential boundary condition is obtained 

as

T™  =  T 0 +  t £ p. (5.5)

5.2.4 Lennard—Jones potential

The Lennard-Jones boundary implementation uses boundary particles to exert short 

range repulsive forces on surrounding fluid particles to model solid boundaries. The 

expression for these radial forces are given by a Lennard-Jones potential based on 

the force found between interacting pairs of molecules [49]. A typical interaction 

between fluid and boundary particles can be seen in Figure 5.3.
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Figure 5.3: Lennard-Jones forces

For a particle a , distance r from a boundary particle 6l j  the force per unit mass 

exerted by the boundary particle is given by

where n\ and n2 are integer parameters commonly taken as ni =  4 and n 2 =  2 (or 

77-1 =  12 & 7i 2 =  4), and r =  x a — x&LJ.

the force is set to zero since the Lennard-Jones potential becomes negative in this 

region. This ensures that the boundary force remains purely repulsive. It is impor­

tant to set the value of ro carefully. If it is too large then too many particles will 

feel the influence of the boundary particles in the initial configuration. If it is too 

small then particles will be able to artificially penetrate the boundary.

The coefficient K  has units velocity-squared and governs the strength of the bound­

ary force. This should be chosen in proportion to the maximum internal energy of 

the problem. For example in a simulation where particles are under gravity, and the 

maximum particle height is given as Hmax then K  should be chosen K  bp -^max •

S m oothed  L e n n a rd -Jo n es  p o ten tia l

The above method is reliant on a uniform distribution of boundary particles. Group­

ing many boundary particles in close proximity to each other will result in large 

repulsive boundary forces in that region. Resulting in local instabilities and inac­

curacies. However, in many real-world applications complex boundary geometries

if t <  r 0 

otherwise
(5.6)

The value of ro defines the cutoff distance for the Lennard-Jones force. When r  > ro
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need to be modelled and it is useful to be able to arbitrarily place boundary particles 

to obtain the detail required.

A solution which allows for variable boundary particle spacing is motivated by the 

corrections implemented in the corrected SPH method discussed in Chapter 3 to 

develop a Smoothed Lennard-Jones potential.

The total Lennard-Jones boundary force for a given particle a can be summarised 

as the sum of all the interactions with neighbouring boundary particles. Now sup­

pose that the Lennard-Jones potential function is simplified to be a function of the 

normal distance from the particle to a boundary particle (see Figure 5.4)

T aJ =  f  (r "p) n bP' (5.7)
bp

In this formulation all neighbouring boundary particles will still contribute with 

equal weight to the total boundary force. It is this fact that prevents the use of 

non-uniformly distributed boundary particles.

£

Figure 5.4: Components of Lennard-Jones force

The smoothed version of the above equation is given by

l y  =  f(r£p) HbpV’bpU'bp (x„, (5.8)
bp

where w is the corrected kernel over the boundary particles only

w (x) =  a  (x) w (x) where a (x)
E  VpU-bp (x)

(5.9)

bp
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In this formulation more weight is added to boundary particles that are closer to 

the fluid particle a. Moreover, consider the case in two dimensions where boundary 

particles are distributed on a straight boundary. In this case all the /  (r”p) terms

are equal for all boundary particles (see Figure 5.5) and since the corrected kernel

is used the total boundary force expression simplifies to

T aJ =  /  (r bp) n bp ^bp^bp (Xo, k bp) )

=  / ( r b p ) n bp- (5-10)

So for straight boundaries the smoothed Lennard-Jones formulation ignores the 

distribution of boundary particles and is equivalent to a single boundary particle 

acting on the fluid particle at a distance rn.

T T “1 r

111 i i 1 i 1 io •  •  •  4 •  •  •  o

Figure 5.5: Smoothed Lennard-Jones on a straight boundary

Exam ples using th e  sm oo thed  L e n n a rd -Jo n e s  b o u n d a ry  p a rtic le  

im p lem en ta tio n

A simple test consisting of a small collapsing square of fluid was run as a test example 

for the smoothed Lennard-Jones boundary implementation. The flat boundary is 

defined by a number of stationary boundary particles. On the lefthand side of 

the boundary there is a region of closely spaced boundary particles, as shown in 

Figure 5.6.

The results after a few timesteps are shown in Figure 5.7. Without smoothing the 

dense configuration of boundary particles produces an excessively large contact force 

and the resulting simulation is unstable. However, with the smoothing applied the 

dense configuration is smoothed out as expected and the simulation is stable.
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Figure 5.6: Initial test configuration

Figure 5.7: Results before/after smoothed Lennard-Jones implementation

Finally, the smoothed Lennard-Jones boundary implementation is tested on a larger 

problem with a curved boundary and irregular boundary particle distribution as 

shown in Figure 5.8. In this case there are four times as many boundary particles 

making up the righthand side of the boundary than on the left. However, this does 

not effect the stability of the system and the simulation remains perfectly symmetric.

Figure 5.8: Example of a non-regular boundary using the smoothed Lennard-Jones 
implementation (coarse boundary particle distribution on left/fine distribution on 
right)
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5.3 A variational boundary contact force

The remainder of this chapter is concerned with the calculation and implementation 

of the variational boundary contact force term in two dimensions which was derived 

in Chapter 4 and is given by

T f  =  (5.11)
P a ')a

where m a is the mass, Pa the pressure and pa the density of the fluid particle. The 

7 a and Vya terms come from the additional correction term introduced into the 

variational formulation for the density (see Figure 5.9)

J2^bW b{xaJ ib)
p (x a) =  - — - ---- —   where 7  (xa, ha) := /  wa (x, ha) dx. (5.12)

7  v-Xa? Fla ) J

In order to calculate T f  it is necessary to evaluate ya and Vya for each particle 

at every timestep. To calculate 7  directly using equation (5.12) would be too com­

putationally expensive for large dynamic simulations or for problems with complex 

boundaries.

Figure 5.9: 7  function in the vicinity of a general boundary

5.3.1 A pp roxim ate boundary force eva lu ation  in 2D

In the paper by Kulasegaram [69] the gamma function for a single straight boundary 

in two dimensions was calculated numerically by splitting the contributing region 

into a finite number of points pi each with associated area A  as shown in Figure 5.10.

Then ya is approximated by

7 G «  y^AjW g  (Pi,ha). (5.13)
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Figure 5.10: Discrete approximation to 7  in the vicinity of a single boundary

By calculating these approximations to 7  at various normal distances to the bound­

ary and then fitting this data using curve fitting methods 7  and 7 ' were approximated 

by simple polynomial expressions

7 (5 ) =  1 +  (0.0625 -  0.0531e) (e -  2) 3 , y
where e = — .

7 ' (e) =  (0.2937 -  0.2124e) (e -  2)2 h (514)

Given the normal distance of a particle from the boundary and using the above equa­

tions to calculate values for 7  and 7 ' the boundary contact force in the vicinity of a 

single straight boundary can be calculated using equation (4.31) as

T ?  =  - m aB̂ (5.15)
Palaha

where n# is the unit inward pointing normal to the boundary. This is a very simple 

and accurate way to deal with single straight boundaries in two dimensions.

A pprox im ating  corner regions

However, a method for calculating 7  in the vicinity of corner regions like the one 

shown in Figure 5.9 is required for the majority of practical engineering problems. 

Two approximate methods are presented below.

M eth o d  1

Consider a particle in the vicinity of a corner region as shown in Figure 5.11. Then 

the exact value of 7  is due to the presence of both boundary segments Ti and T2.



Chapter 5: Boundary methods 96

Figure 5.11: Method I: Approximation of 7 in 2D

The first method of approximation is to use a bilinear combination of the correction 

factors from each boundary

7 =  ci +  C271 +  C372 +  C47172 (5.16)

where 71 and 72 are the correction factors coming from boundary segments T1 and 

r 2 respectively. The constant coefficients ci, C2, C3 and C4 are to be calculated for a 

given corner region by enforcing the known values of 7. These are given as

7 =  1 .0  when d\ > 2 h and d2 > 2 h (71 =  1 .0 , 72 =  1 .0 )

7 =  0.5 when d\ = 0 and d2 > 2h (71 =  0.5, 72 =  1.0)

7 =  0.5 when d\ > 2h and d2 = 0 (71 =  1.0, 72 =  0.5)

7 =  6/2tt when d\ = 0 and d2 = 0 (71 =  0.5, 72 =  0.5)

(5.17)

where d\ and d2 are the distances from the particle to each boundary respectively, 

and 6 is the interior angle at the corner.

With this bilinear form for 7 its derivative is then obtained as

D j  [Jv] =  (c2 +  C472) £>71 [<5v ]  +  (c3 +  C 471) £>72 [6v]

By using equation (4.31) and rearranging gives

£>7 [<5vl =  • <5v,
h

where N  =  (c2 +  C472) 7 ^ 1  +  (c3 +  C471) 7 ^ 2  .

(5.18)

(5.19)
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and the boundary contact force is given by

yB Pa.t h =  —m   —— Na a i a •Pal aha
(5.20)

M eth o d  2

The second method of approximation is to replace the boundary intersection with 

a single representative boundary that can be simply handled using equation (5.14) 

and equation (5.15).

Figure 5.12 shows a particle in the vicinity of convex and concave corner sections. 

The points Pi and P-2 are the points of intersection of the boundary of the kernel 

support with each line segment. These points are easily calculated by analytic 

geometry.

Figure 5.12: Method II: Approximation of 7  in 2D

The replacement line segment is then identified as the line connecting these two 

points. Using the particle distance d from the single boundary the correction factor 

7  and the resulting boundary contact force is calculated.

It can be seen from Figure 5.12 that by using the single boundary the area of 

integration is not correctly represented. In the case of a convex corner 7  is under 

evaluated by the shaded area P\OP -2 while for a concave corner 7  is over evaluated 

by the shaded area P1 OP2 .
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In practical applications these discrepancies will be small since the size of the kernel 

support is comparatively small compared to that of the boundary. Since this ap­

proach is conceptually and computationally simpler to implement it is an attractive 

method for dealing with corner regions.

5.3.2 E xact boundary  force eva luation  in 2D

In this section a simple and inexpensive method for evaluating 7  terms exactly for 

any boundary in two dimensions is presented.

With this aim in mind a vector function W  is sought such that

V • W  =  w where W  =  f  (r) and r = h (5.21)

The scalar function /  is to be found and depends on the kernel function used.

Using the Divergence Theorem, the integral of the kernel function in equation (5.12) 

which defines 7  is transformed into the integral of W  • n over the boundary OB

7  (xa, ha) '■= J  wa (x,ha)dx  = J  V • W  dx =  J  W  • n ds (5.22)
B B  d B

where n is the outward normal of the boundary of the kernel support dB  as shown

in Figure 5.13.

/ ( 2) =

Figure 5.13: Calculating 7  by applying the Divergence Theorem
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The gamma function has now been rewritten in terms of the boundary of the kernel 

support that lies inside the problem domain rather than the area of the kernel inside 

the domain. In two dimensions it is now easy to calculate these line integrals and 

so to calculate 7 exactly for any particle in the vicinity of any boundary.

From the definition of W  the function /  satisfies the following differential equation

w = V - W  =  ( V - x ) /  +  V / - x

=  2 /  +  ( V r f )  • x

= 2 / +  i ( x - x ) / '
r

=  2 / +  r f .  (5.23)

Multiplying both sides by r, the function /  is obtained as the general solution

f  — — 2  J  t w dr. (5.24)

The choice of kernel function w appearing in the derivation above is arbitrary. How­

ever, for the remainder of the section the quintic kernel in two dimensions will be 

used.
5 4 a / ̂  •* \ 5

w (r, h) =
16/i27t

(2 - £ ) ’ - 1 6  ( I - * ) '  

(2 -  5 ) #
0

0  ^  r ^  h 

h < r ^  2h 

r > 2 h

(5.25)

After some simple algebra the required function W  is obtained as

3
W  =

16/i27T
f i r ) where

f ( r )  =  <

if 0  < r < 1

(5.26)

8  -  20r2 +  24r 3 -  (35/3) r 4 +  (15/7) r 5 

+ < ? 1  (1/r2)
16 -  (80/3) r +  20r2 -  8 r 3 +  (5/3) r 4 -  (1/7) r 5 

+C 2 ( l / r 2)

In this case the resulting general solution contains two arbitrary constants of inte­

gration Ci and C2. All possible choices for these constants will result in a solution 

function /  that satisfies the differential equation and consequently V • W  =  w. 

However, these constants should be chosen such that the resulting function /  is 

sufficiently smooth in order that the Divergence Theorem may be applied.
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The following computations are simplified greatly by choosing the solution that 

satisfies /  (2) =  0. With this choice W  will vanish on the boundary of the kernel 

support and only the region of the boundary inside will contribute to the calculation 

of 7 . This is shown in Figure 5.13 where only the red region of the boundary 

contributes to 7 ; the blue region is zero and so can be ignored in all computations.

With this in mind the constant C2 is chosen such that /  vanishes on the boundary 

of the kernel and the constant C\ is chosen to enforce continuity of /  at r =  1 . As 

such /  is given by

With this choice for the constants equation (5.27) is found to be discontinuous at 

r  =  0 and so the Divergence Theorem cannot be applied directly. However, this 

singularity can be removed from inside the domain by placing a small ball of radius 

eh about the origin of the kernel function as shown in Figure 5.14.

/ (»• )=<

8 -  20r 2 +  24 r 3 - (3 5 /3 )  r 4 +  (15/7) r 5 

-56 /21  (1 /r2)

16 -  (80/3) r +  20r2 -  8r 3 +  (5/3) r 4 - ( 1 /7 )  r 5 

-64 /21  (1 /r2)

if 0 < r  < 1

(5.27)

Figure 5.14: Removal of singularity

Therefore 7  is given by

(5.28)
8 B eh d B

When a particle is sufficiently far from a boundary 7  should be equal to one. Since 

the second term in the above equation will vanish since /  (2 ) =  0 it remains to check 

that the first term converges to unity as eh —> 0 .
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t =2 i r
3 „ . f  ( eh cos (t) \ ( cos (t) .

7 =  / W  • n  ds =  ——— /  (e) /  I I • I e/i dt
' 16/ i V  W i  I e/isin(t) 1 I sin(t)

d B eh t =0

(e/i)2 /  (e) 2?r3 , - \2

Since

we have as expected

16/i27T

^  b 2f  («)] (5-29)

7 =  77 lim [e2/  (e)l =  77 77 =  1- (5.31)' 16 e->o L ' J 16 21 v '

Therefore, the final expression for 7 in the vicinity of a general boundary in two 

dimensions using the quintic kernel function is given by

7 (xa, ha) = 1 +  f w . n d s .  (5.32)
d V

C alcu la ting  V7

It is also necessary to obtain an expression for the gradient of the gamma function 

in the vicinity of a boundary.

Consider the variation of V7 with respect to a small perturbation dx  from its initial

position x as shown in Figure 5.15. Given this small change in position of the centre

of the kernel function the change in 7 is given by

d'y d'y
D7 [dx] =  —  dx + — dy = V7 • d x  (5.33)dx dy

where
d'y (  dj/dx  ̂
dx

Assuming the perturbation dx  is small, the change in 7 is given by

D'y [dx] = — J  w(s) (dx • n) ds = dx  • ^ —J w ( s ) n d s ^ .  (5.35)

where n  is the outward normal to the boundary.
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Figure 5.15: Evaluating V 7

Equating equations (5.33) and (5.35) the gradient of 7  is given by the integral

V7  =  — n J  w(s)ds.  (5.36)
1

E valuating  7  an d  V7  for single s tra ig h t b o u n d aries

Using the preceding theory 7  and V7  can now be evaluated in the vicinity of a 

single straight line boundary at a distance d from the centre of the kernel. Since the 

kernel function is symmetric the orientation of the boundary is unimportant and 

the boundary is assumed to be parallel to the y-axis as shown in Figure 5.16.

7=i+i6k//(s)(^)-( i )ds=i+ilfc//(s)<is ( 5 - 3 ? )

Since the distance in the x-direction is fixed the above integral can be written in 

terms of y only. Where s (y) = ^ d\~ ~  and

/  2/max \

7 =  1 +  |^2 x d h -  ^  ' 5̂’38^

Integrating /  above with respect to y over T gives a closed form for 7  in the vicinity 

of a single straight boundary, written in terms of the primitive function F (x,y)

7 = 1  +  g | h (F (d ,s,max) - F (d10)). (5.39)
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y  max \

>n

Figure 5.16: Calculating 7  and V7  for a single straight boundary

Similarly, a closed form for V 7  in the vicinity of a single straight boundary is 

calculated by integrating equation (5.36) over T

2/max

V7  =  - 2 n I  w( s ( y ) ) dy  = - 2 n ( G ( d 1 ymax) - G ( d , 0 ) ) .  (5.40)
y=0

The primitive functions F  (x, y) and G (x, y) for the quintic kernel are given in full 

in Appendix B.

Therefore, given the spherical symmetry of the kernel function and knowing the 

minimum distance from the centre of the kernel to the boundary both 7  and V 7  

can be calculated exactly.

The values of 7  and V7  for a single straight line boundary using the primitive 

functions derived above are compared to the approximations of Kulasegaram [69] in 

Figure 5.17 and Figure 5.18.

It can be seen that the approximate 7  function was in good agreement with the 

exact 7  function. However, the approximate V7  function was a less accurate repre­

sentation of the exact V7  function.
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1.2

 Exact
• Approximate
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Distance from boundary (dist/h)

Figure 5.17: Graph of 7  in the vicinity of a single straight boundary

—  Exact 
• Approximate

0.6

0.4

0.2

0.5

Distance from boundary (dist/h)

Figure 5.18: Graph of V 7  in the vicinity of a single straight boundary
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E valuating  7  and  V7  for co rner regions

Corner regions are simply handled by applying the theory developed for single 

straight line boundaries to a general boundary intersection like the corner region 

shown in Figure 5.19.

Contributions from each line segment Ti and T2 are calculated using the particle 

normal distances d\ and d2 from each boundary segment. These are then summed to 

obtained the exact values for 7  and V 7  for any given boundary in two dimensions.

/ ( 2 ) = 0

Corner point

Figure 5.19: Calculating 7  and V7  in the vicinity of a corner

7 = 1 + J  W  • n ds V 7  = — J  w n  ds. (5-41)
riur2 riur2

Using equation (5.41) the boundary contact force for particles in the vicinity of a 

boundary can easily be calculated by

T ?  =  V 7a • (5.42)
P a ')  a

The computed values for 7  and V7  in the vicinity of several example boundaries 

in two dimensions can be found in Figure 5.20. It can be seen that the 7  value is 

correctly obtained at the corner points and the resulting gradients are smooth.
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Figure 5.20: 7  and V 7  plotted in the vicinity of general boundaries in 2D
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E valuating  7  and  V7  for curved  b o u ndaries

It is a simple generalisation to apply the gamma boundary implementation to curved 

boundaries. Assuming that the curvature of the boundary is small in comparison to 

the smoothing length of the particle then the boundary can simply be approximated 

by a straight line segment. As shown in Figure 5.21 this is the line tangent to the 

closest point of the curve a distance d from the particle.

Figure 5.21: 7  evaluation for curved boundary

When the curvature of the boundary is greater, modified approximations to 7  and 

V7  can be calculated which take into account the curved boundary as discussed 

Section 5.3.1. The modified 7  function for positive and negative values of curvature 

can be seen in Figure 5.22.

0.9

—  Zero Curvature
—  Curvature = -1
—  Curvature = +1

0.4

0.3
1.00

Distance from boundary

2.000.00 0.50 1.50

Figure 5.22: 7  function for boundaries with varying curvature
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5.3.3 Incompressibility issues

In the sections above a pressure based, variationally consistent, boundary contact

The vector term Vya is in the inward-normal direction to the boundary and the 

parameters m a, pa and 7 a are strictly positive valued.

In contrast, the pressure Pa can either be positive or negative valued due to the

boundary contact force T  (Pa) acts repulsively when Pa > 0 or attractively when 

Pa < 0 . Consequently, particles in local regions of expansion (where the pressure is 

negative) will be attracted to the boundary rather than repelled.

This is clearly a non-physical property of the current implementation. However, it

contact force itself.

This discrepancy would not occur in a fully-incompressible SPH formulation such 

as in the work of Shao [83,114]. In this case incompressibility is strictly enforced by 

ensuring V • v  =  0 and therefore the pressure field is correctly evaluated throughout 

the entire domain. Thereby, removing any non-physical negative pressures in the 

fluid caused by artificial compression waves.

While remaining within the current compressible SPH formulation several different 

modifications to the above variational contact force have been tested to assess the 

effect these attractive contact forces have on the simulations.

The first modification was to only apply the boundary contact force to particles 

with positive pressure

force T f  =  T  (Pa) has been derived that can be calculated exactly for general 

boundaries in two dimensions.

T (P 0) =  - — V7a (5.43)
Pal a

(5.43)

artificial compressibility imposed by the explicit time integration. In this case the

is a consequence of the artificial compressibility rather than the derivation of the

Pa > 0  

P a ^  0
(5.44)

The second modification was to apply a repulsive boundary contact forces irrespec­

tive of the sign of particle pressure

T ?  =  T ( |P 0|) for all Pa. (5.45)
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In both these cases the attractive contact forces have been removed and only re­

pulsive boundary contact forces are present. However, it was found that both these 

modifications introduced instabilities into the code and the unmodified boundary 

contact force given by

fact that the pressures used in the modified expressions for the boundary contact 

forces are not consistent with those given by the equation of state which are used 

to evaluate the internal forces.

5.4 Variational boundary force examples

This section presents several applications using the variational boundary contact 

force derived in the previous section. A flexible SPH code has been developed for 

free surface fluid problems written in Fortran90. Complete details of the code and 

algorithms implemented can be found in Appendix D.

The boundaries are modelled by line segments and curved segments; no boundary 

particles are required. The contact forces are calculated using the theory developed 

in Section 5.3.2 for particles within 2 h of a boundary.

The motion of the SPH particles are evolved using the equation of motion given by

where the internal and contact forces are calculated using the following expressions

T f  =  T  (F„) for all Pa (5.46)

performed the best in most situations.

The relatively poor performance of these modifications is likely to be due to the

(5.47)

T pa }  m am b -z  b -o—
V  V P a 7 a  P b lb

^ 2  (Xft, ha):

(5.48a)

idev
a (5.48b)

b

(5.48c)

and the only external force present is gravity given by F a =  m a g.
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The accuracy of the variational boundary force is investigated by the simple breaking 

dam benchmark. In the second example a more complex boundary is used to model 

a simple flood defence problem. The final example models a water droplet falling 

into a curved bowl demonstrating the methods ability to model curved boundaries.

5.4 .1  B reaking dam  exam p le

The water column is 0.1m wide and 0.1m tall and initially held in hydrostatic equi­

librium against the solid wall on the left as shown in Figure 5.23. At time t = 0 .0s 

the water is released and allowed to collapse under gravity.

0 . 1m

v

Figure 5.23: Breaking dam initial configuration

In the numerical model the water column is represented by 2500 equally spaced fluid 

particles with material density of po = 1000kgm~3 and viscosity p — 0.5kgm_1s_1. 

The boundary is identified by only three points defining the two straight line seg­

ments; no boundary particles are required. A constant timestep of 10_4s is used 

throughout the simulation.

The artificial bulk modulus in the equation of state is calculated using equation (2.83) 

where v max is determined using the theory of conservation of energy. By considering 

a particle on the top surface of the dam its potential energy will be converted into 

kinetic energy yielding
1 2

mgH = - m  ||vtyp|| (5.49)

and so the typical fluid velocity is given by



Chapter 5: Boundary methods 111

With this value of v typ the artificial bulk modulus is obtained as

F„ = 100 X 2gH  X (5.51)
7

For this example 7  =  7 and the bulk modulus is calculated to be Po = 28028.57 Nm-2.

In order to reflect the gravitational force acting on the water column while in equi­

librium the initial density of the individual particles is calculated by combining the 

equation of state (2.81) with the hydrostatic pressure Pa = pgh to give

f ,  , P o g ( H - y a) \ ^  , c
Pa =  PO (  ~p   ) ( 5>52)

where H  is the initial height of the dam and ya is the distance from the base of the 

dam to particle a.

Using the code developed for this thesis the results of Lok [84] where reproduced 

using the particle bounce-back method and the same simulation was run using the 

gamma function boundary implementation.

Figure 5.24 shows the dam velocities at various stages of collapse. In Figure 5.25 

the surge front velocities obtained using the gamma function boundary implemen­

tation and the particle bounce-back method are compared to those obtained from 

experimental data [87]. For comparison the variables are non-dimensionalised with 

respect to the initial width of the dam, w. The non-dimensional time is given by 

t y /g /w  and the non-dimensional surge front is given by x/w.

Both the current SPH simulations using the variational boundary force and the par­

ticle bounce-back method overestimate the surge front velocities when compared to 

the experimental data. This suggests that friction along the horizontal base should 

not be neglected in the computational model. This is corroborated by the fact that 

the bounce-back method which includes a coefficient of restitution term was in closer 

agreement to the experimental data than the new variational boundary force that 

does not include any dissipative term.
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a) t =  0.0s b) t = 0.035s c) t = 0.06s d) t = 0.085s e) t = 0.11s

f) t =  0.135s g) t = 0.16s h) t = 0.185s i) t = 0.21s j) t = 0.235s

Figure 5.24: Breaking dam velocities
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2.5

W

o Experimental Data
 Bounce Back BCs
 Gamma BCs

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

t y f g j w

Figure 5.25: Surge front comparisons
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5.4 .2  F lood  d efense exam p le

The second example applies the variational boundary contact force to a more com­

plicated boundary to model a dam breaking against a flood defence as shown in 

Figure 5.26.

Figure 5.26: Flood defense initial configuration

The numerical discretization of the flood defence problem is identical to dam given 

in Section 5.4.1 except for the solid boundary which is represented by nine straight 

line segments. A constant timestep of 0.25 x 10_4s is used throughout the simula­

tion.

The resulting fluid flow is given in Figures 5.27-5.30 and demonstrate the new 

boundary implementation is capable of accurately modelling complicated straight 

line geometries in two dimensions.

Figures 5.27 and 5.28 show the velocity of the fluid at various instances of the sim­

ulation. They show the void created by the fluid breaking away from boundary as 

it flows down the slope and its subsequent recirculation. The free surface generated 

as the wave breaks over the flood defence is clearly captured by the method.

Figures 5.29 and 5.30 show velocity vector plots of the fluid at various instances of 

the simulation. They clearly show the regions of stagnation and the evolution of the 

eddy generated by the converging flow caused by the breaking wave.
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a) t = 0.0s b) t = 0.062s c) t =  0.124s d) t = 0.186s 

e) t = 0.248s f) t = 0.310s

Figure 5.27: Flood defense velocities
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g) h)

i) j)

k)

g) t = 0.372s h ) t = 0.434s i) t = 0.496s j) t = 0.558s 

k) t = 0.620s 1) t = 0.682s

Figure 5.28: Flood defense velocities (cont.)
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a) t = 0.124s b) t = 0.248s c) t = 0.496s

Figure 5.29: Flood defense velocity vector plot
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Figure 5.30: Flood defense velocity vector plot (cont.)
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5.4 .3  C urved b oun dary exam ple

The final example is of a water droplet falling into a semi-circular basin as shown 

in Figure 5.31. This demonstrates the ability of the new boundary contact force to 

model curved boundaries.

Figure 5.31: Water droplet initial configuration

The numerical model consists of a total of 3194 particles with material density of 

Po = lOOOkgm-3  and viscosity p = 0.5kgm- 1s-1. The radius of the semi-circular 

basin is r  =  0.104m and is filled up to the halfway point with 2390 equally spaced 

fluid particles. The water droplet has radius 0.25r and consists of 804 fluid particles 

positioned in equally spaced concentric circles. A bulk modulus P0 =  25000 Nm-2  is 

used to ensure density variations of less than 1%. A constant timestep of 0.25 x 10-4s 

is used throughout the simulation.

The semi-circular basin is defined by a single curved boundary segment as described 

in Section 5.3.2 and the boundary force is evaluated by approximating the boundary 

with straight line segments (see Figure 5.21).

Figure 5.32 shows the velocity of the water droplet and Figures 5.33 and 5.34 show 

velocity vector plots of the fluid at various instances of the simulation showing the 

new boundary implementation is capable of accurately modelling curved boundary 

segments.
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a) t = 0.0475s b) t = 0.0725s c) t = 0.0975s d) t = 0.1477s

e) t = 0.21s f) t = 0.4225s

Figure 5.32: Water droplet velocities
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Figure 5.33: Water droplet velocity vector plot
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Figure 5.34: Water droplet velocity vector plot (cont.)
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5.5 Concluding remarks

SPH was initially developed to solve problems in astrophysics where the domain of 

the simulations were infinite and notably absent of any solid boundaries. Indeed, 

the derivation for reproducing kernel approximation of the gradient of a function 

explicitly assumes the absence of solid boundaries and the terms coming from the 

boundary are neglected. Consequently, the SPH method does not naturally incor­

porate rigid or moving boundaries.

This chapter has presented several different methods which are commonly used to 

implement solid boundaries in SPH. These were the bounce back method, image 

particles and penalty methods. In addition the Lennard-Jones method has been 

described and a new formulation has been developed to avoid instabilities that have 

traditionally occurred when non-uniform boundary particle distributions are used.

A new expression for boundary contact forces has been developed from variational 

principles in Chapter 4. As such the resulting forces maintain the conservation prop­

erties of the underlying governing equations. A simple and inexpensive method for 

exactly evaluating these boundary forces for general boundaries in two dimensions 

has been presented and compared to the existing approximations.

The accuracy and flexibility of this formulation has been demonstrated by several 

free surface flow simulations. The flood defense and water droplet examples have 

shown the method is capable of modelling complex straight line and curved geome­

tries in two dimensions.

This new variational boundary force implementation has been incorporated into 

the code developed for this thesis and will be used extensively in the refinement 

simulations that follow in Chapter 7.



Chapter 6 

A daptivity

6.1 Introduction to adaptivity in SPH

In the past most SPH derivations have been based on uniform distributions of par­

ticles of equal mass. This leads to large simulations with many particles and long 

run times. In other mesh based schemes it has become common place to use mesh 

adaptivity to improve numerical results and to reduce computation times. With a 

corresponding refinement strategy SPH can gain these same advantages.

In this chapter a refinement strategy based upon particle splitting is developed. 

Candidate particles are split into several ‘daughter’ particles according to a given 

refinement pattern centred about the original particle position. Through the so­

lution of a non-linear minimisation problem the optimal mass distribution for the 

daughter particles is obtained so as to reduce the errors introduced into the under­

lying density field. This procedure necessarily conserves the mass of the system.

The density refinement errors for several daughter particle configurations in one, 

two and three dimensions are calculated and the optimal particle separations and 

smoothing lengths are obtained for each configuration.

Finally, conservation properties of particle splitting algorithms are discussed and it 

is proved that there is only one unique daughter particle velocity configuration that 

conserves both the kinetic energy and momentum of the system.

124



Chapter 6: Adaptivity 125

In order to implement dynamic refinement into a SPH framework two main consid­

erations need to be dealt with:

• Firstly, to identify suitable Criterion for Refinement as a way to efficiently 

identify candidate particles for refinement and those particles for which refine­

ment is not necessary.

• Secondly, to develop a General Refinement Algorithm whereby particles are 

refined into a number of corresponding 1daughter; particles while ensuring that 

the basic properties of the system are conserved and that any errors introduced 

by the procedure are minimised.

Both stages should be applied automatically by an SPH code at runtime with no 

intervention required.

6.2 Criteria for refinement

Candidate particles for refinement could conceivably be identified by many different 

criteria depending on the type of problem to which refinement is being applied. It 

is not the aim of this thesis to study the criteria for refinement in detail, rather 

to develop an accurate and flexible refinement algorithm that is independent of the 

refinement criterion used.

Example refinement criteria

Refinement zones

A refinement zone is a region of a problem domain where particles automatically 

undergo refinement. As a particle passes into such a region the refinement algorithm 

replaces the original particle with its corresponding set of daughter particles. As the 

daughter particles leave the refinement zone they remain unchanged and continue 

to pass though the rest of the domain.

These regions can be placed in areas where more accuracy is desired or in regions 

where there are large differences in scale (see Figure 6.1). For example when water 

in a large tank flows into a narrow pipe refinement would allow a coarse distribu­

tion of particles in the tank with particles being refined as they travel through the
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pipe. This reduces the total number of particles necessary for the simulation while 

maintaining the accuracy needed inside the narrow pipe.

Figure 6.1: Example of a refinement zone through a narrow pipe 

N u m b er of neighbours

The number of neighbour particles is another obvious criterion to use for refinement. 

A particle with few neighbours is a suitable candidate for refinement since the SPH 

interpolation is likely to be poorer in its vicinity.

For example in problems with large dissipation the number of particle neighbours 

can vary considerably throughout the domain. When a given particle a has fewer 

neighbours than a prescribed minimum na < nmm then the particle could undergo 

refinement to maintain the local accuracy of the simulation as the distribution of 

particles thins out.

P ro b lem  specific c rite ria

Other physical quantities have already been used successfully as criterion for adap­

tivity in SPH. In the work of Lastiwka [70] particles are added in regions of high 

velocity gradient and removed in regions of low velocity gradient. In the one dimen­

sional shock tube example they showed some improvement with adaptivity over the 

standard SPH method using a comparable number of particles.

Kitsionas [61,62] has applied a particle splitting algorithm to an astrophysics prob­

lem concerned with the self-gravitating collapse of a region of gas. Here the refine­

ment criterion is based on satisfying a physical requirement known as the ‘Jeans 

Condition’. This ensured that the resolution of the particle distribution was suffi­

cient to capture the physics of the problem.
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6.3 A general refinem ent algorithm

Suppose that particle a with mass m a, position x Q, velocity v a and smoothing length 

ha has been identified as a candidate for refinement as shown in Figure 6.2. It re­

mains to decide in some sense the ‘best way’ to introduce new particles into the 

simulation.

Refinementm

Figure 6.2: Particle refinement

There are several factors that need to be taken into account when devising a refine­

ment algorithm:

• The addition of new particles will alter the local mass distribution and in­

evitably change the local density and velocity fields surrounding the refined 

particle. Any such change should be minimised by the refinement process.

• Regions where fine and coarse particles interact will be a consequence of the 

refinement process. Any proposed method must deal with such regions.

• Refined particles should have a reduced smoothing length corresponding to 

their smaller mass. This retains the local smoothing property of SPH and 

reduces the number of daughter particle neighbours.

• Where possible the refinement process should conserve the global properties 

such as the mass, kinetic energy, linear and angular momentum of the system.
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6.3.1 Conservation

Suppose that the particle a is to be replaced by M  daughter particles. Each daughter 

particle will have individual mass m b, position x*,, velocity v b and smoothing length

hb to assign, where b G {1,

m b

AT}.

(  x l \

XI

U /

vl \
and hi

This results in a total of eight degrees of freedom for each daughter particle in three 

dimensions. Ideally, these need to be chosen in such a way as to preserve the four 

global conservation properties given in Table 6 .1 .

Before Refinement After Refinement
(1 ) -  Mass

(2)- Kinetic Energy

(3)- Linear Momentum

(4)- Angular Momentum

m a 

\maVa • va 

m a\ a 

xa x mav a

Y m b
b

\  Y  m bVb • V6
b
Y m bVb
b

E x t x m bv b 
b

Table 6.1: Global Conservation Properties (l)-(4)

This chapter is concerned with assigning the daughter particles positions, velocities, 

masses, and smoothing lengths in such a way as to conserve the properties in Ta­

ble 6 .1  and to minimise the changes to the density and velocity fields that result 

from the refinement procedure.

It will be shown in Section 6 .6  that there is only one possible refinement solution 

that simultaneously satisfies conservation properties (2)-(4). It is however possible 

to choose a mass distribution that conserves the global mass of the system (1 ) while 

minimising the error introduced to the local density field.

In the next section the positions of the refined daughter particles are given as a set 

of refinement patterns for several one, two and three dimensional cases. Each of 

these refinement patterns introduces an additional separation parameter e > 0  that 

governs the spread of the daughter particles based around the original unrefined 

particle position. Each of these configurations will be studied in the remainder of 

this chapter or can be found in Appendix C.
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In addition to fixing the separation of the daughter particles it is necessary to assume 

that their smoothing lengths are equal and proportional to the original smoothing 

length. This is given by hb = ah  for each particle h where the parameter a  £ (0,1] 

is known as the smoothing ratio.

Collectively the separation parameter e and smoothing ratio a  will be referred to 

as the refinement parameter (s, a) of a given refinement pattern. Adopting these 

two simplifications means the number of degrees of freedom for a given refinement 

pattern are reduced to the choice of refinement parameter (s, a), and the daughter 

particle masses nib (in later analysis the daughter particle velocities Vf, will also be 

considered).

For each of these refinement patterns optimal values for the separation parameter 

€* and daughter particle smoothing ratio a* will be obtained with a corresponding 

set of daughter particle masses raj such that the resulting changes to the density 

and velocity fields are minimised.

6.3.2 Refinement patterns
To proceed it is necessary to fix the positions of the new daughter particle with 

respect to the original particle position. In total five refinement patterns will be 

considered: two ID and two 2D refinement patterns, and one 3D refinement pat­

tern. In each case the separation of the particle configuration is governed by the 

additional separation parameter e > 0 .

Each refinement pattern is shown in Figure 6.3 through to Figure 6.7, the red point 

in each shows the original unrefined particle position. The coordinates of the daugh­

ter particles relative to this point are also included for the case where e = 1 and 

particles are a unit distance apart from their nearest neighbour.

The orientation of the two and three dimensional refinement patterns do not neces­

sarily have to be aligned with the coordinate axis but can be randomly rotated for 

each particle. However, for the current analysis and the simulations in Chapter 7 

the orientation of the refinement patterns will remain fixed.

In the one dimensional cases the separation parameter e denotes the maximum par­

ticle separation of the configuration with the daughter particles resulting from the 

five particle split positioned at distances 0.5s and e from the original particle.
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ID  refinem ent p a tte rn s

£
X

1 0

2 - 1

3 1

Figure 6.3: ID 3-Particle refinement pattern with relative particle positions
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Figure 6.4: ID 5-Particle refinement pattern with relative particle positions 

2 D refinem ent p a tte rn s
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Figure 6.5: 2D triangular refinement pattern with relative particle positions
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Figure 6 .6 : 2D hexagonal refinement pattern with relative particle positions
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3D refinem ent p a t te rn

Figure 6.7: 3D hexagonal refinement pattern

X y Z
1 0 0 0
2 1 0 0
3 -1 0 0
4 1

2 &2 0
5 1

2
v/3
2 0

6 1
2

v/3
2 0

7 1
2

v/3
2 0

8 0 &3 - s / i
9 1

2
v/3 v/3 
3 2 - S i

10 1
2

v/3 ^3 
3 2 -s

11 0 v/3
3 s

12 1
2

v/3 , v/3 
3 2 s

13 1
2

v/3 ,
3 2 s

Table 6.2: Relative particle positions for the 3D hexagonal refinement pattern
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6.4 D en sity  refinem ent error

In this section an error measure is defined from the change in local density field 

due to the refinement procedure. This error is shown to be independent of the 

initial particle mass and smoothing length. The optimum daughter particle masses 

are then calculated for a given distribution through the solution of a constrained 

minimisation problem.

The particles in SPH act as interpolation points for the underlying fields of interest 

and are not simply discrete particles. Any variable can be evaluated at any point 

in the domain (not only at the particle positions).

In particular, consider a collection of N  particles and suppose that the N th particle 

is to be refined into M  daughter particles. Each of these M  daughter particles 

having an as yet unspecified mass denoted by ml := m*Nh where iV6 G {1 , • * * »M}.

Before refinement the expression for the density at any point in the domain is given

by
N

P (X) =  171(1Wa ha) V x E f i .  (6.1)
a

After refinement the local density distribution will inevitably change due to the 

redistribution of particles (see Figure 6 .8 ) and is given by

N - 1 M

p* (x) =  ^ 2  m awa (x, ha) +  ^  m*bwb (x, hb) V  X G Q. (6.2)
a=1 6= 1

Refinement

Figure 6.8: Change in contribution to density at x  due to refinement of particle a
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The local density refinement error at any point x  can now be defined as the change 

in density interpolation due to the introduction of the new particles

M

From the local error the global density refinement error can now be defined as

Any adaptivity algorithm should be defined in such a way as to minimise this global 

density refinement error.

The above definitions for local and global density refinement errors are independent 

of the masses, positions, and smoothing lengths of the new daughter particles and 

so can be applied to any given refinement pattern.

Expanding the expression for S gives

By writing the masses of the daughter particles in terms of scalar parameters Xb > 0 

as mj =  AbiriN for each b the global error is found to be proportional to the mass of 

the particle under refinement

e (x) := p (x) — p* (x) =  m NwN (x, h^)  — ^  m*bwb (x, hb) V x  E fh (6.3)
6=  1

This change in local density field is entirely due to the ability of the refined particles 

to approximate the contribution of the original unrefined particle that they replace.

(6.4)

(x, hjy) — ^  m*bwb (x, hb) dx 
6=1

(6.5)
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Conservation of mass is now enforced with the additional constraint on the pa­

rameters
M

£ >  =  1- (6.7)
6=1

Written more succinctly in vector form equation (6.6) is given by

0  ^ e  = -  2 ATb + (6 .8)

where A is the vector of the unknown Aa terms that determine the daughter particle 

masses by raj =  A^ra^-

The constant term C and components of the vector term b and matrix term A are 

shown diagrammatically in Figure 6.9 and are given by the following expressions

C = I  w 2n  (x, hN) dx , b j  = J  w m  (x, d/v) Wj (x, h3) dx , 
n n

Aij = J  Wi (x, hi) Wj (x, hj) dx.
(6.9)

Figure 6.9: Graphical representation of Ai3 and bj terms

Equation (6.8) shows that the minimum of the global refinement error is independent 

of 777.7V- However, the magnitude of the error is found to be proportional to the 

unrefined mass m 2N.

In the next section it will be shown that the density refinement error can also be 

made independent of the initial smoothing length h^  by writing the integral terms 

C, b and A in non-dimensional forms.
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6.4.1 Derivation of the model problem

SPH kernel functions written in terms of the non-dimensional variable £ are of the 

form

W ®  =  ®  where ^ =  Ji e  ^  6̂' 10^
and d is the dimension of the problem.

Considering the integral expression for Ay

Atj = J Wi{, M ) ^ h j ) d ,  (6.11)
n

and given that the daughter particles smoothing lengths are defined as hj = a h ^  

where a  is the fixed smoothing parameter, a  6  (0 , 1] the expression for Aij can be 

written as

Ai> =  7—7 7̂ x2 f  & (£) f t  ®  dx Where ? = ~T~  ' (6'12)(cAhjj) J a h N

Using the change of variable

d k =  — -—j dx dx =  (ahN)d dx (6.13)
(ahpf)

where dx is now a non-dimensional volume element A y  can be written as

Aii = f fi $ fi (0
fi

(6.14)

where

adhdN
fi

i  = r = r e[  0,2]. (6.15)

Therefore for any h
J  Wi (x, h) Wj (x, h) dx =  ^ J  Wi (x, 1 ) Wj (x, 1 ) dx. (6.16)
fi fi

This has the affect of scaling the integral down to unit smoothing length h = 1 as 

shown in Figure 6.10.
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2 ah2ah

Figure 6.10: Scaling integrals into non-dimensional form

In the same way the bj terms can be written in a non-dimensional form. Substituting 

equation (6 .10) for both kernel functions gives

V h and a  G (0,1]

bj = J w N(x, h) tv,(x, ah) dx =  _ 1_

where = ~r and £2 =h ah
As before a change of variable yields

dx = — dx => dx = hddx 
hd

h h To
where £ 1  = -  r[ = r[ G [0, 2] and £2 = — 77 =  — G [0, 2]. 

h ah a
With these substitutions bt is given by

bj = h Jj? I In (*0u (*0hi±*=h 1 h IfN (*0 fi (4)hid*
n \  o

Therefore for any smoothing length h and smoothing ratio a

J  wn  (x, h) Wj (x, ah) dx  =  ^  I J  (x, 1) Wj (x, a) dx J . 
n \n  /

(6.17)

(6.18)

(6.19)

(6 .20)

Proceeding in this way the global refinement error can written independently of 

both the smoothing length and the mass of the original particle by using the non- 

dimensional form of the integrals

m
0 ^  £  [e, a] (A) =  - f -  (C -  2 A7 b  +  A7 A A)

h i
(6 .21 )
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where the coefficients are now obtained as

C  =  J  w2n  (x, 1 ) dx , bj = J  wn  (x , 1 ) Wj (x, a) dx  ,

i r n 6̂-22)
Aij = —-  /  Wi (x, a) Wj (x, a) dx.

ft

The notation 8  [e, a] (A) emphasises the dependence of 8  on the choice of refinement 

parameter (e,a). In addition, the minimum error obtained from an optimal mass 

distribution A* is independent of the initial mass m n  and smoothing length of

the particle under refinement. However, the magnitude of the error is proportional

to
777̂

8 [e, a] (A) oc . (6.23)
n N

Therefore, the initial mass and smoothing length of the particle under refinement 

can be ignored while minimising the density refinement error and the optimal mass 

distribution can be calculated for any SPH simulation via the solution of the Model 

Problem.

T he m odel p rob lem

Given a particle of unit mass and unit smoothing length and a given 

refinement pattern that splits it into M  daughter particles with refinement 

parameter (e, a) find A] > 0 for j  = 1, • • • , M  such that

yM 

'r-8* [e, a] = m in£ [e, a] (A) =  C — 2  A*Tb +  A*TA A* where  ̂A* =  1 .

The coefficients C, b and A are calculated numerically and the above minimisation 

problem can be solved easily by standard non-linear programming methods. The 

solution to this problem is guaranteed, since 8  can be shown to be a convex function 

due to the fact that A is symmetric positive definite (SPD).

The actual refinement error introduced when a particle of mass m n  with smoothing 

ratio /ijv is refined is then obtained from the model problem solution by
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6.5 D ensity  refinement results

The magnitude of the refinement error £ [s, a] is still dependent upon the separa­

tion of the daughter particles and their smoothing lengths (see Figure 6 .11). Some 

values of (e, a) will result in much smaller refinement errors than others. By solving 

the model problem over a range of these parameters certain pairs can be

identified as admissible choices that result in sufficiently small refinement errors.

The selection of these parameters also has practical implications to SPH simula­

tions. A large value of smoothing ratio means that daughter particles will have 

a large number of neighbour particles at a greater computational expense than if 

the smoothing lengths we chosen more appropriately. Daughter particle separation 

should also be chosen to avoid a clumped or spaced out distribution of daughter 

particles.

" " 7  2or/1

\
I
i

Figure 6.11: 2D refinement examples for given (£,a)

This section presents the results obtained from solving the model problem for den­

sity refinement. For each of the refinement patterns given in Section 6.3.2 the model 

problem is solved for values of smoothing ratio and separation parameter (e, a) rang­

ing from 0.1 —* 0.9. With each choice of (e, a) the solution to the model problem 

results in the optimal daughter particle mass distribution with the corresponding 

minimised density refinement error £* [e, a].
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The results for the one dimensional refinement patterns are presented in detail be­

low. In this case the particle is split into three or five particles respectively, centred 

about the original particle position as shown in Figure 6 .12 . The results for the two 

and three dimensional refinement patterns can be found in Appendix C.

o o

m~
v
m,

Refinement

• -
mA m.

v
m,

Refinement

-%
mc

Figure 6.12: ID refinement into 3 and 5 particles respectively

The pairs (e*,a*) =  (0.4,0.4) and (0.6,0.6) are taken as example values for discus­

sion. Any other pairs could have been picked as examples. (0.4,0.4) was chosen 

simply because it has a moderately large minimum refinement error while (0 .6 , 0 .6 ) 

has a suitably low minimum refinement error. With these values the results can 

easily be analysed (at least in one and two dimensions) by comparing the refined 

particles approximation to the original particle (the model problem particle has unit 

mass and smoothing length: w (x, 1)).

In previous implementations of refinement in SPH the mass of the particle under 

refinement was often uniformly split amongst the daughter particles. However, the 

optimal mass distributions obtained from the solution of the model problem will 

show that often this will not minimise the density refinement error. In general 

non-uniform mass distributions yield the optimal mass distribution. In addition 

the solution to the model problem shows that refinement improves as the particle is 

split into a greater number of daughter particles.

For each choice of refinement parameter (e, a) solving the model problem gives 

the minimum refinement error S* [e, a] with the corresponding mass distribution. 

This is shown in Figure 6.13 and Figure 6.14 where the density refinement errors 

less than 0.05 are plotted against e and a. The example refinement parameters 

(£*,a*) =  (0.4,0.4) and (0.6, 0.6) are identified by crosses.
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0.2 0.3 0 4  0.5 0 6  0 7  0 8  0.9
Separation parameter e

Figure 6.13: Graph of density refinement error less than 0.05 for ID 3-particle 
refinement showing (e, a) =  (0.4, 0.4) and (0.6, 0.6)

Separation parameter e

Figure 6.14: Graph of density refinement error less than 0.05 for ID 5-particle 
refinement showing (e, a) =  (0.4, 0.4) and (0.6, 0.6)
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From these graphs it can be seen that careful choice of refinement parameter (e, a) 

is essential if the minimum density refinement error is to be sufficiently small. The 

benefit of refining a particle into five particles rather than three can be identified 

by the larger choice of refinement parameters (e, a) resulting in sufficiently small 

minimum refinement errors (shown as the blue region in the graphs). Similar graphs 

for all the refinement patterns can be found in Appendix C including plots of the 

log of the refinement errors and the optimal mass distributions.

Tables 6.3 and 6.4 show the refinement errors and the corresponding optimal mass 

distributions calculated in one dimension for the example values of the refinement 

parameter. Immediately it can be seen that the optimal mass distributions are not 

uniform and that refinement into five particles rather than just three gives better 

results. In both these cases the refinement parameter (0.6,0.6) introduces smaller 

refinement errors into the density field compared to (0.4,0.4).

£ a Refinement Error mi m 2 ,m 3

0.4 0.4 0.0223 0.443 0.2785
0 .6 0 .6 0.0088 0.6477 0.17615

Table 6.3: Refinement errors and optimal mass distributions for ID 3-particle 
refinement

£ a Refinement Error mi m 2 ,m 3 7714, m 5
0.4
0 .6

0.4
0 .6

0.02077
0.000273

0.353
0.433

0.078
0.187

0.244
0.095

Table 6.4: Refinement errors and optimal mass distributions for ID 5-particle 
refinement

Figures 6.15-6.18 show the resulting density profiles before and after refinement 

in one dimension. The effect the refinement parameter (e, a) has on the optimal 

solution can be clearly seen. When the original particle is split into five daughter 

particles with refinement parameter (0 .6 , 0 .6 ) there is no significant change in density 

profile after refinement and the replacement daughter particle configuration is best 

able to approximate the contribution of the original unrefined particle.
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Unrefined Kernel 

Approx. £,a =  0.4 
Approx. £ ,C C  =  0.6

0.8

0.6

0.4

0.2

2.5 3.50.5

Figure 6.15: Refined particles approximation to original kernel for ID 3-particle 
refinement

— Approx. e , a  =  0 .6 Approx. £ ,a  = 0.4

0.60.6

0.40.4

0.2

0.5 2.5 3.50.5 2.5 3.5

Figure 6.16: Construction of kernel approximations for ID 3-particle refinement
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Unrefined Kernel 

Approx. £,a =  0.4 
Approx. S ^ C t — 0.6

0.8

0.6

0.4

0.2

2.5 3.50.5

Figure 6.17: Refined particles approximation to original kernel for ID 5-particle 
refinement

-----Approx. e , a  =  0 .6

/ / r  / \ V T v A

0.5 1.5 2 2.5 3 3.5 4

— Approx. e , a  = 0 .4

0.6

0.4

0.2

0.5 2.5 3.5

Figure 6.18: Construction of kernel approximations for ID 5-particle refinement
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6.5.1 G lobal refinem ent resu lts

The importance of the correct choice of refinement parameter (e, a) is highlighted 

when refining a group of particles. In this section groups of particles in one and two 

dimensions are refined and the resulting density profiles and refinement errors are 

compared to the initial particle configuration.

In one dimension the global density profile of a group of seven particles is calculated 

then the central three particles are refined into five corresponding daughter particles 

as shown in Figure 6.19.

-O -O

\7
Ref inement

Figure 6.19: ID global refinement example

While, in two dimensions the global density profile of a group of 11 x 11 particles 

is calculated then the central 5 x 5  region of particles is refined using the hexagonal 

refinement pattern as shown in Figure 6.20.

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

•  •  • •  • •  • o
•  •  • •  • •  • o

o
o o o •  • •  • o
o o o •  • •  • o

•  •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

Figure 6.20: 2D global refinement example

Figure 6.21 and Table 6.5 shows the resulting global density profiles and the global 

refinement errors for the one dimensional example. With refinement parameter 

(0 .6 , 0 .6 ) the refinement procedure does not significantly alter the density field but 

when using (0.4, 0.4) there is a noticeable fluctuation in density profile in the regions 

where the refined and unrefined particles meet.
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Figure 6.22 and Figure 6.23 show the refined particles contribution to the resulting 

global density distribution for both choices of refinement parameter.

0.8

0.6

0.4

0.2  Unrefined Config.

 Refined Config. £,OL =  0 .4

 Refined Config. £,OC = 0 .6

Figure 6.21: Global approximations to original density distribution

£ a Global Refinement Error
0.4
0.6

0.4
0.6

3.7525 x 10- 2 
6.5656 x 10-4

Table 6.5: Global refinement errors for ID 5-particle refinement



Chapter 6: Adaptivity 146

Refined Config. £ , a  = 0.4

0.8

0.6

0.4

0.2

Figure 6 .2 2 : Construction of global approximation for (£,£*) =  (0.4,0.4)

Refined Config. £ , a  = 0 .6

0.8

0.6

0.4

0.2

Figure 6.23: Construction of global approximation for (£,a)  =  (0.6,0.6)



Chapter 6: Adaptivity 147

The refinement errors for the two dimensional example were found to produce similar 

results. These are summarised in Figure 6.24 and Table 6 .6 .

Figure 6.24: Global density refinement errors with 2D hexagonal refinement for 
(£,a) = (0.4, 0.4) and (0.6, 0.6) respectively

£ a Global Refinement Error
0.4 0.4 0.946
0.6 0.6 0.0911

Table 6 .6 : Global refinement errors for 2D hexagonal refinement
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6.6 Particle velocities and conservation

Now that the density refinement errors have been minimised with conservation of 

mass ensured it remains to discuss how to assign the daughter particle velocities. 

It is not clear yet whether it is possible to minimise the error introduced into the 

velocity field while simultaneously conserving the kinetic energy and the linear and 

angular momentum of the system as given by conditions (2)-(4) in Table 6.7.

Before Refinement After Refinement
(1)- Mass

(2)- Kinetic Energy

(3)- Linear Momentum

(4)- Angular Momentum

m N

• vjv

TUn Vn  

Kn  x m]yvN

b
\ Y , m bVb- Vfe 

b
Y , m bVb
b

J 2 x b X rnbv b
b

Table 6.7: Global Conservation Properties (l)-(4)

A given set of constraints may not even be consistent in the sense that there may only 

be one velocity configuration (or worse still no velocity configuration) that satisfies 

them all simultaneously. Then in both cases attempting to find an optimum solution 

would be in vein since there would be no ‘best’ solution to find.

Traditionally, new particles are given the interpolated velocity from the original 

unrefined particle configuration (see Figure 6.25). Namely,

rriiViWi (xft, hi)
n  =   t - t y  (6-25)l r̂riiWi (xb,hi) 

i

where the summation over i is only taken over the neighbours of particle b from 

the unrefined particle configuration. This has the advantage that the resulting 

interpolated velocities follow that of the underlying flow. However, they will not in 

general preserve the kinetic energy, nor the linear and angular momentum of the 

system.

One such choice of daughter particle velocities that does conserve these properties 

is to assign all daughter particles with the original particle velocity that they 

replace. In other words setting v& =  vjv for each daughter particle b.
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O —► Q " r  0 ' r

©-*■ • — Refinement

Figure 6.25: Interpolated velocity refinement using initial particle distribution

The question remains, is there a way in which a more representative set of velocities 

can be chosen such that these global properties are conserved?

In Section 6.6.1 it is shown that the answer to this question is in fact no and this 

is the unique conservative daughter particle velocity configuration. In Section 6.6.2 

the corresponding velocity refinement errors associated to this velocity configuration 

are calculated.

6.6 .1  In con sisten t v e lo c ity  con stra in ts

In order to see that the daughter particle velocity configuration defined by setting 

v b = v N for each daughter particle b is the unique conservative solution satisfy­

ing (2)-(4) in Table 6.7 it is necessary to consider only the particle equations for 

conservation of kinetic energy and linear momentum given by

m  m

v n -v n = Y :  ^bVb • V6 and v N = ^  ^ v 6- (6.26)
6= 1  6= 1

Here the Aj’s are given from the analysis in previous section which satisfy YlbLi ^  =

1 . Suppose for now that the daughter particles are constrained to move in the same

direction as the original particle but with varying magnitude. In this case

where pi > 0 for each i. (6.27)

Substituting these velocities into equation (6.26) gives two scalar equations in p

M  M

/ (m)  =  ~ 1 and = H Xb/ib~ L (6-28)
6=1 6=1

The first of which defines an ellipsoid in the M-dimensional space /x, while the second

equation defines a plane in the same space as shown in Figure 6.26.
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Figure 6.26: The unique solution /a* satisfying /  (/z) — 0 and g (/z) =  0

As noted above /z* =  [1, • • • , l ]7 satisfies both /  (/z*) =  0 and g (/z*) =  0. However, 

it still needs to be verified that there is in fact more than one solution satisfying the 

constraint equations above.

The normal to the plane is given by np =  [Ai, • • • , Am]7. While the normal to the 

ellipsoid at a point /x is given by

n e =  [grad (/)] (/z) =  j . (6.29)

\  2Am Vm ]

Therefore, at /z* =  [1, • • ■ , l]r  the normal is given by n e =  [2Ai, • • • , 2Am]T and the 

plane is tangential to the ellipsoid at /z*. Consequently, /z* is the unique solution 

satisfying equation (6.28).

What has been shown above is that the only daughter particle velocity configura­

tion (of the form =  /ZjVw) that conserves both kinetic energy and linear momen­

tum is for all the daughter particles to move with the same velocity as the original 

particle =  v N. In addition, when the refinement pattern is symmetric about the 

original particle position the system will also conserve the angular momentum of 

the system.

The above result can now be generalised to prove that this is in fact true when any 

set of daughter particle velocities is considered.

Without loss of generality suppose that in addition to ^  0 that each component 

vlN of v;v is non-zero in other words that vlN ^  0. If this is not the case one (or 

two) components of is equal to zero when written in terms of the original basis
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{ai, a.2, ^3 }. However the choice of basis is arbitrary and it is a simple matter to 

select an alternative basis {bi, b 2 , ba} such that V N  7  ̂ 0  for each i .

With a suitable choice of basis the refined velocities can be defined in terms of the 

original particle velocity v̂ v by

where r, =
Oti 0 0

0 A 0 a i , P i , j i  e  R . (6.30)

0 0 7 *

and ai, Pi, 7 * are now the independent variables controlling the daughter particle 

velocities. As before substituting these terms into the conservation equations of 

kinetic energy and linear momentum gives

M  /  M  \

6= 1

v n v n  =  =  v j  |^ A { , r £ r 6J  v N,

v iv =  ( ^ 2  ^ b ) v n '

(6.31)

.6=1

Equating the coefficients and noting that VT = T  yields the following pair of matrix 

conditions
M  M

I3x3 =  £ v t  and I 3X3 =  ^22 (6.32)
6=1 6=1

Since I 3X3 , r a n d  Tl  terms are symmetric matrices the expressions given above

represent three independent pairs of equations in a, p  and 7  respectively. Each of

these pairs is identical to the pair given in equation (6.28) and so share the same

unique solution.

In conclusion, it has been shown that there is only one possible fully conservative 

velocity refinement strategy and that is to set all the daughter particle velocities 

equal to that of the unrefined particle they replace.

The decision is then between using the interpolated daughter particle velocities and 

so preserving the topological properties of the flow but loosing conservation. Or 

to move all refined particles with the unrefined particle velocity to fully enforce 

conservation, while perhaps loosing some of the topology of the velocity field.
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6.6.2 Velocity refinement error

Using the SPH approximations for linear momentum and density shown respectively 

below

(pav a) =  ^ 2  vb (pf>v b) wb (xa, hb) and (pa) = ^  mbwb (xa, hb) (6.33)
b b

and using the approximation (/)  (g) = (f g ) the SPH form for the velocity is typically 

given by
J 2 m b^bWb (xa,hb)

(va) =  --------? r r -  • (6-34)2^ mbwb (xa, hb) 
b

As before suppose that the N th particle is refined into M  daughter particles and

that their masses m b = XbrriN are assumed to be those obtained from Section 6.4

which minimise the density refinement error.

The velocity field before refinement is given by

N
mav awa (x, ha)

V  (x) =  ^ ----------------------------  (6.35)
J2 mawa (x, ha)
a = 1

and the velocity field after refinement is given by

N - l  M
Y, rnav awa (x, ha) +  J2 mbv bwb (x , hb) 

v* (x) =  ^ ^ --------------------. (6.36)
2  maWa (X, ha) +  £  mbWb (x, hb)
a= 1 6=1

Note that the difference between the denominators of v and v* has already been 

minimised in the previous section when finding the optimal daughter particle mass 

distribution. Therefore, the problem can be simplified by only minimising the dif­

ference between the numerators N  (x) and N* (x) of equations above

N

N  (X) =  X !  moyaWa (x, ha) (6.37)
a = 1

and
N - l  M

N* (x) =  £  mav awa (x, ha) +  ^ 2  mbv bwb (x, hb). (6.38)
a= l 6=1
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The local velocity refinement error at any point x  is then defined to be the function 

L : R3M x R3 -> C

(6.39)

, v M)(x) =  (N(x)  -  N* (x)) • (N (x) -  N* (x))

=  ||N  (x) — N* (x) Vx G fh

From the local velocity error the global velocity refinement error is defined to be the 

function C : R3M —► R+,

0 ^  £  (vi, • • • , v M) =  J  L ( v  i , ---  , v M) (x) dx.
n

Expanding £  (v1? • • • , v M) as before gives

(vjv * vw) J  w2n (x, hN) dx

(6.40)

£(vi , - -  - , vM) = m N
2 ^ 2  ^  (v <* ' v iv) /  twjv (x, /liv) Wa (x, /la) dx 

a=l £
M  f

^ 2  (v « • Vfc) /  ^  (x ’ w  ^  (x ’ m rfx

(6.41)

a,6 -1

where the Aa, AaAj, terms are now constants taken from the solution to the previous 

density refinement calculations and the independent variables are now the velocities 

of the daughter particles.

The global velocity refinement error £  can be written more succinctly in vector 

notation where V  =  [v1} • • • , v M]T is the vector of daughter particle velocities

m N

h%
C  -  2V B +  V t A V (6.42)

The constant term C, and components of vector term B G R3M and matrix term 

A G R3M x R3M have been written in non-dimensional form and are given by
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It should be noted that vector term B and the constant term C  when in this form 

are still written in terms of the initial unrefined particle velocity vjv- In order to 

derive a model problem for minimising the velocity refinement error C it would first 

need to be written independently of the initial unrefined velocity vjy.

However, it is simple to calculate the resulting velocity refinement error for the 

unique conservative velocity configuration calculated in Section 6.6.1. In this case 

Vf> =  Vjv for each daughter particle b and equation (6.41) can be written in non- 

dimensional form as

/  « m  \

C

Written in vector form and in terms of the daughter particle masses A gives

c  =  (vN • vjv) (C -  2  ATb +  At A  A)
hN

= llvw||2 £[e,a](A)

=  I KI I2 £* (6.44)
n N

where S* is the solution of the previous model problem for minimising the density 

refinement error with corresponding refinement parameter (s, a).

Therefore, in the case of the fully conservative velocity distribution the global ve­

locity refinement error can be calculated and is found to be proportional to global 

density refinement error calculated in Section 6.4.

= (VN ' Vjv) m N

hn

/  w% (x, 1) dx -  2 ^  Aa /  wN (x, 1) wa (x, a) dx 
n a=1 n

+  J  Wa x) Wb (*’ x) d*
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6.7 Concluding remarks

In this chapter a general refinement strategy for SPH simulations has been proposed. 

The algorithm is simple to implement in any number of dimensions and can be ap­

plied irrespective of the refinement criteria used to identify the candidate particles.

The global density refinement error has been defined as a measure of the error intro­

duced to the density field caused by the particle refinement. For a given refinement 

pattern the resulting density refinement errors can be studied and minimised over 

a variety of refinement parameters (e, a). This is achieved through the solution of 

the model problem from which the optimal daughter particle masses are obtained. 

In general these optimal mass distributions for refinement are non-uniform and each 

daughter particle has its own distinct mass.

Candidate refinement parameters (e*,a*) that introduce sufficiently small density 

refinement errors can then be identified for use in subsequent SPH simulations. This 

process conserves the mass of the system. The global density refinement errors for 

several one, two and three dimensional refinement patterns have been calculated, 

candidate refinement parameters (e*, a*) identified and the resulting refined density 

profiles plotted. These optimal parameters will be applied to several fluid flow ex­

amples in Chapter 7.

Conservation of kinetic energy and linear and angular momentum are harder to es­

tablish for general refinement algorithms. It has been shown that the unique fully 

conservative velocity distribution for the daughter particles is to move them with 

the velocity of the unrefined particle that they replace. Consequently, in all the ex­

amples in Chapter 7 daughter particles will be assigned the velocity of the particle 

that they replace.

The global velocity refinement error has also been defined as a measure of the error 

introduced to the velocity field caused by the particle refinement. In general this 

has been shown to be dependent upon the velocity of the initial unrefined particle. 

However, this expression simplifies for the unique conservative velocity configuration 

and the global velocity refinement error is found to be proportional to global density 

refinement error obtained from the solution of the model problem.
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Refinement simulations

7.1 Introduction

In this chapter the dynamic particle refinement strategy presented in Chapter 6 is 

successfully implemented into the existing SPH framework.

The essential ingredients of the kernel and gradient corrections from Chapter 3, the 

variational SPH formulation for particles with non-uniform smoothing lengths and 

masses as given in Chapter 4 and the new variational boundary contact force from 

Chapter 5 are all required to create a single flexible SPH code with which to model 

free surface flow problems which incorporate dynamic particle refinement.

In the previous chapter the global density and velocity refinement errors have been 

defined and studied. However, it has not been ascertained whether such measures 

of error can be reliably used as a guide to identify optimal refinement parameters 

which will result in accurate and stable variable resolution simulations in SPH.

In order to validate the refinement procedure and boundary contact force implemen­

tation four simple flow simulations in two dimensions are presented. The hexagonal 

refinement pattern, in a fixed orientation, with the corresponding refinement param­

eter (e, a) is used to distribute the daughter particles in all of the examples.

The accuracy of the refinement procedure is first investigated using the Couette and 

Poiseuille flows for which analytic solutions are available. The simulations are run 

both with and without refinement. In the refined simulations the particles in the 

central region of the flows are refined according to the preceding theory. The ve­

156
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locity profiles of the refined flows are then compared to those of the unrefined flows 

and to their corresponding analytic solutions.

The refined Couette and Poiseuille flows are examples of static refinement tests. 

These are simulations whereby the particles under refinement are either initially 

stationary or moving with a constant velocity. Consequently, no errors are intro­

duced due to velocity refinement and the only error comes from the redistribution 

of particle masses.

It should be noted that the refined Couette and Poiseuille flows are challenging sim­

ulations for a variable resolution SPH code. This is because particles will remain 

on the boundary between the refined and unrefined regions throughout the duration 

of the simulations. Consequently, any errors generated by the refinement procedure 

are more likely to propagate through the domain.

The second set of simulations consist of two more complex flows used to test the 

dynamic refinement implementation in conjunction with the new boundary forces. 

The first example models the flow separation through a funnel while the second 

models an emptying tank with two small outlets on the side wall.

In these examples designated refinement zones are used as the particle refinement 

criteria. Upon entering these regions a particle is replaced with its corresponding set 

of daughter particles. In these dynamic refinement examples the daughter particle 

velocities are chosen to be equal to the velocity of the particle they replace and as 

such the refinement procedure is fully conservative.
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7.2 Static refinement sim ulations

7.2.1 C ou ette  Flow

The Couette flow models the motion of a fluid between two parallel, infinitely long 

horizontal plates. The fluid and plates are initially stationary. Instantaneously the 

top plate is moved with a fixed velocity and the fluid motion is generated.

C om pu ta tional m odel

The problem domain is a rectangular region 0.0005m x 0.001m modelled with 20 x 

40 =  800 fluid particles as shown in Figure 7.1. The upper plate velocity is ||v[/|| — 

2.5 x 10- 5ms' 1 in the horizontal direction corresponding to a Reynolds Number 

of 2.5 x 10-2. The material density is p0 — lOOOkgm"3, the coefficient of kinetic 

viscosity is v — 10-<,m2s-1 and a constant timestep of 10_4s is used throughout the 

simulation.

/ =  0 .0 0 1 m

0.0005m

Figure 7.1: Initial particle configuration for the Couette flow 

The artificial bulk modulus for equation of state (2.81) is given by equation (2.83)
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For a Mach number equal to 0.1, this gives the sound speed for a given particle a as

The essential boundary conditions of the upper and lower plates are enforced by

velocity of the bottom row of particles to zero. These particles are then moved 

with a constant velocity by setting their accelerations to zero at the end of each 

timestep. The remaining particles making up the flow are initially stationary with 

their accelerations calculated as normal.

A nalytic so lution

The series solution to the Couette flow is give by the equation [101]

vx (y , t) is the horizontal velocity at a given distance y across the flow and time t. 

Periodic boundaries

A periodic boundary condition in the direction of the flow is used to model the 

infinitely long channel. Particle neighbours are modified to reflect the periodic 

boundary with particles at one periodic boundary contributing to particles at the 

other periodic boundary as shown in Figure 7.2.

(7.2)

first initialising the velocity of the top row of particles to 2.5 x 10 5ms' 1 and the

Figure 7.2: Neighbour search with periodic boundary
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7.2.2 P o iseu ille  flow

The Poiseuille flow models the motion of a fluid between two stationary infinitely 

long parallel plates. From rest the fluid is subject to a constant driving force F  

(which may be attributed to a pressure difference or simply an external force), and 

the fluid flow between the two plates is generated.

C o m p u ta tio n a l m odel

The geometry of the computational model is exactly the same as for the Couette 

flow except that the essential boundary conditions for the Poiseuille flow dictate 

that the upper and lower rows of particles are stationary as shown in Figure 7.3.

vi; = 0 ms'1

/ =  0 .0 0 1 m

v, = 0 ms
0.0005m

Figure 7.3: Initial particle configuration for the Poiseuille flow

All particles are subject to a constant driving force of F  =  2 x 10~4ms-2 in the 

horizontal direction. This corresponds to a peak velocity of 2.5 x 10_5ms"1 and a 

Reynolds number of 2.5 x 10~2.

A naly tic  solution

The series solution to the Poiseuille flow is given by the equation [101]
F

vx {y,t) = - y ( y - I )  +

E
4 FI2 ■ ( n y  / „  (  ( 2 n + l ) 2 7r2sm y-j- (2n +  1)J exp f - v  — 1

(7.4)

^  vn 3 (2n +  i )3 V / ’) r  ^ F y

vx (?/, t) is the horizontal velocity at a given distance y across the flow and time t.
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7.2.3 Unrefined Couette and Poiseuille results

Figure 7.4 and Figure 7.6 show the velocity of the unrefined Couette and Poiseuille 

flows at several stages of the simulation. Figure 7.5 and Figure 7.7 plot the resulting 

velocity profiles of the unrefined Couette and Poiseuille flows. The solid lines are 

the velocity profiles obtained from the series solutions given by equation (7.3) and 

equation (7.4) respectively. First order consistency of the gradient terms for both 

the Couette and Poiseuille flows were enforced using the mixed kernel and gradient 

corrections. Both flows were also run with the additional higher order Hessian term 

for the gradient of the kernel function as given by equation (3.60). However, in both 

cases the improvement to the velocity profile was found to be negligible.

The unrefined Couette flow results are in good agreement with the analytical solution 

and accurately predict the resulting linear steady state flow. On average the error in 

the steady state velocity profile was less than 1%. However, the Poiseuille flow results 

are not quite as accurate. The early stages of the flow are in good agreement with 

the analytical solution but gradually the flow velocities fall short of the maximum 

steady state velocity of 2.5 x 10_5ms_1 as the simulation progresses. On average the 

error in the steady state velocity profile was 4%.

Several factors can be identified as possible causes for the failure of the Poiseuille flow 

to reach the correct steady state. The boundary conditions implemented were very 

simplistic and no addition image particles were used to improve the interpolation 

in the vicinity of the boundary. The steady state of the Poiseuille flow is parabolic 

and the gradients used were only linearly corrected. The loss of energy in the flow 

is most likely to be due to the artificial compressibility of the formulation and an 

insufficient particle resolution across the flow. In the next section it is shown that 

the Poiseuille flow simulation improves with the addition of more particles across 

the flow.

More accurate results have been obtained for the Poiseuille flow by Morris>[101] and 

Sigalotti [117] who use SPH to model the dynamic pressure Pd — Vt ~ Ph, where 

pt is total pressure and ph hydrostatic pressure. This generates an additional body 

force in the expression for the pressure gradient and can improve the accuracy for 

problems where the local variation in the pressure gradients are small.
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f = 0.01s / = 0.1s / = 1.0s

Figure 7.4: Couette flow velocities without refinement
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Figure 7.5: Velocity profiles of the Couette flow without refinement
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/ = 0.01s / = 0.1s 7 = 1.0s

Figure 7.6: Poiseuille flow velocities without refinement
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Figure 7.7: Velocity profiles of the Poiseuille flow without refinement
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7.2 .4  R efined  C ou ette  and P o iseu ille  resu lts

The two dimensional hexagonal refinement pattern is now used to refine the central 

16 rows of the Couette and Poiseuille flows as shown in Figure 7.8. This results in 

the refinement of 320 particles and a simulation consisting of 2720 particles in total.

'VWWWVWVWWWŴ

mjuuuuuuuuuuuuuuuuui

tfWWYWVWWYWWW'

Figure 7.8: Refined region for the Couette and Poiseuille flows

The Couette and Poiseuille examples are relatively simple flows but with the in­

troduction of the refined central region they become challenging simulation since 

refined particles will remain in the central region of the flow throughout the dura­

tion of the simulation. Therefore, any errors introduced at the boundary between 

the refined and unrefined regions are likely to be able to propagate throughout the 

whole domain.

Both the refined Couette and Poiseuille flows were found to be unstable without the 

additional higher order Hessian correction term in the expression for the gradient of 

the kernel function as derived in Section 3.5.

Three example values for the refinement parameter (e, a) = (0.4, 0.4), (0.4, 0.6) and 

(0.6,0.6) are used to investigate the performance of the refined SPH simulations. 

The corresponding density refinement errors and optimal mass distributions for the 

two dimensional hexagonal refinement pattern are given in Table 7.1.
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£ a Refinement Error 7711 772.2 m 7

0.4 0.4 0.081334 0.139394 0.143434
0.4 0.6 0.078857 0.281854 0.119691
0.6 0.6 0.004180 0.386914 0.102181

Table 7.1: Refinement errors and optimal mass distributions for 2D hexagonal 
refinement

To see the affect of the refinement without Hessian stabilization the refined flows 

were run from their corresponding steady state solutions for a total of 5 timesteps. 

The resulting perturbations to the velocity profiles are plotted in Figure 7.9 and 

Figure 7.10. It can be seen that for both the Couette and Poiseuille flows the re­

finement parameter (s, a) = (0.4,0.6) introduces the smallest perturbations to the 

steady state solution. This is despite the fact that the refinement errors suggest 

that (e, a) =  (0.6,0.6) should perform the best.

The resulting refined Couette and Poiseuille flows with Hessian stabilization using 

the refinement parameter (e,a) = (0.4, 0.6) are given in Figures 7.11-7.14. Fig­

ure 7.11 and Figure 7.13 show the velocity of the refined Couette and Poiseuille 

flows at several stages of the simulation. Figure 7.12 and Figure 7.14 plot the re­

sulting velocity profiles of the refined Couette and Poiseuille flows.

Figure 7.12 shows the velocity profile of the refined Couette flow at several instances 

in the simulation. The velocity in both the refined and unrefined regions are in good 

agreement with the analytic solution. This confirms that with correct choice of re­

finement parameter and the necessary kernel corrections the refinement procedure 

does not adversely affect the accuracy of the refined Couette flow simulation.

Figure 7.14 shows the velocity profile of the refined Poiseuille flow at several in­

stances in the simulation. In this case there is a noticeable improvement in the flow 

when compared to the unrefined simulation given in Figure 7.7. The refined simula­

tion more accurately predicts the maximum steady state velocity and the resulting 

average error in the steady state velocity profile is reduced from 4% to 1.5%. This 

shows that the accuracy of SPH simulations can be improved through careful use of 

particle refinement.
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Figure 7.9: Couette velocity profiles after 5 timesteps from the steady state solution 
without Hessian stabilization
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Figure 7.10: Poiseuille velocity profiles after 5 timesteps from the steady state 
solution without Hessian stabilization
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Figure 7.11: Refined Couette flow velocities with Hessian correction
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Figure 7.12: Velocity profiles of the refined Couette flow with Hessian correction
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Figure 7.13: Refined Poiseuille flow velocities with Hessian correction
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Figure 7.14: Velocity profiles of the refined Poiseuille flow with Hessian correction
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7.3 D ynam ic refinement sim ulations

7.3.1 F low  separation  through  funnel

The tank the fluid flows from is 0.2m wide and the initial height of the fluid is 0.05m. 

At the start of the simulation this fluid is represented by 61 x 15 =  915 unrefined 

particles as shown in Figure 7.15.

Unrefined region 

Refined region

/ \

Figure 7.15: Initial particle configuration for the funnel example

The material density is po = lOOOkgm' 3 and viscosity p = 0.5kgm- 1s_1. The ar­

tificial bulk modulus is taken to be P0 = 15000Nm-2 and a constant timestep of 

0.125 x 10~4s is used throughout the simulation.

The curved boundary of the funnel is represented by five line segments on each side 

of the tank with a further two representing the central wedge. The coordinates of 

which are given in Table 7.2. The boundary contact forces are calculated using the 

variational formulation given in Section 5.3.

As particles flow through the funnel they are refined into their corresponding daugh­

ter particles (when x-coordinate is less than —4.0 x ~2 m). The daughter particle 

velocities are set to be equal to the velocity of the particle they replace and as such 

the refinement procedure is fully conservative.

The refinement parameter used is (e, a) =  (0.4,0.6) which corresponds to the best 

parameter found for the refined Couette and Poiseuille simulations.
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X y
-0.1017 
-0.1017 

-5.79 x 10“2 
-4.11 x 10"2 
-2 .5  x 10~2 

-1.47 x 10“2

0.1
-1 .67 x lO"3 

—6.5x-3 
-1 .3 3 x “2 

-2.82 x 10~2 
-5 .78 x lO”2

X y
-1 .5  x 10“2 

0.0 
1.5 x 10~2

-9 .8  x lO”2 
- 8  x 10~2 

-9 .8  x 10~2

Table 7.2: Coordinates of the left boundary and the central wedge (in metres)

The code was terminated after 0.21 seconds simulation time at which point there 

was a combined total of 3518 refined and unrefined particles.

Figure 7.16 and Figure 7.17 show the resulting flow both with and without refine­

ment. Without refinement the flow becomes fragmented and breaks up into small 

groups of particles. When this occurs the particle neighbours decrease and the 

SPH interpolations become inaccurate. However, with refinement the flow remains 

largely continuous and the number of neighbouring particles remain approximately 

uniform.

Figure 7.16 shows the velocities of the particles in the vicinity of the refinement 

zone clearly showing the transition between unrefined and refined particles. Not 

only are the velocities continuous over this region but the velocity profile is much 

more detailed.

Figure 7.18 plots the particle densities in the vicinity of the central wedge at 

t = 0.21s. Due to the nature of the problem and the artificial incompressibility 

of the formulation the average particle density variation around the central wedge 

was between 2%-5%. The densities across the refinement transition and away from 

the central wedge were largely uniform and within the expected range (< 1%).

This flow separation example has demonstrated that refinement can more accurately 

capture the physical behaviour of a simulation in addition to improving its accuracy.
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Without refinement With refinement

Figure 7.16: Closeup of particle velocities at the funnel refinement zone (at t =  0 .1s, 
0.155s, and 0.21s)
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k — J

/ \  y \

4 . '  S

Without refinement With refinement

Figure 7.17: Particle velocities through funnel (at t = 0.13s and t = 0.21s)
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Figure 7.18: Particle densities through funnel at t = 0 .21s (p =  980 — 1020 kgm'3)
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7.3.2 E m ptying tank

In this final example the tank is 0.01m wide and the initial height of the fluid is 

0.06m. At the start of the simulation this fluid is represented by 21 x 120 =  2520 

unrefined particles as shown in Figure 7.19.

:::::::::
-

< >
0 .0 1 m

Figure 7.19: Initial particle configuration for emptying tank example

In this simulation two values of viscosity are used, a viscous fluid with pi = 0.5kgm_1s-1 

and the case of water with corresponding viscosity p = 0.001 lkgm_1s-1  with ma­

terial density po =  lOOOkgm"3. The artificial bulk modulus is taken to be Pq =  

16741Nm~2 and a constant timestep of 10-5s is used throughout these simulations.

As before the boundary is represented by seven line segments and boundary forces 

are calculated using the variational formulation given in Section 5.3. The outlets 

are w = 0.005m wide and their bases are positioned hi = 0.01m and h2 = 0.035m 

from the bottom of the tank.

The refinement zones are positioned over the outlets and particles inside these re­

gions are refined into their corresponding daughter particles using the refinement 

parameter (e, a) =  (0.4, 0.4). This results in a total of 3336 particles at the end of 

the first timestep. The code was terminated after 0.3 seconds simulation time at 

which point there was a combined total of 13,505 refined and unrefined particles.
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Figure 7.20 plots the change in height of the fluid as the tanks empty both with and 

without particle refinement. The water with viscosity /a = 0.001 lkgm_1s_1 is found 

to flow completely from the tank in approximately 0.25s while the viscous fluid with 

viscosity fi =  0.5kgm_1s_1 takes approximately 0.37s to empty completely. It can be 

seen from the graph that the rate of discharge from the tank has not been affected 

by the particle refinement.
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Figure 7.20: Change in height of the fluid in the tank over time

Figure 7.21 shows the emptying tank velocities for the viscous fluid at various in­

stances of the simulation both with and without particle refinement. As the sim­

ulation progresses and the tank empties the regions of refined particles are seen to 

mix with unrefined particles. Across these regions the velocity and density fields are 

found to be continuous and the variable mass SPH formulation remains accurate 

and stable.
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Figure 7.21: Emptying tank velocities for \i — 0.5 w ith/w ithout refinement
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7.4 Concluding remarks

This chapter has presented several variable resolution SPH simulations utilising the 

dynamic particle refinement strategy developed in Chapter 6.

Static refinement examples

The refined Couette and Poiseuille flows were particularly challenging flows for the 

variable resolution code to simulate and were used to investigate the affect the 

refinement parameter (e, a) has on the accuracy and stability of adaptive SPH sim­

ulations.

In these examples the flow is in the horizontal direction only and as such the refined 

particles remain fixed in their initial hexagonal distributions as the flows evolve. 

The refined and unrefined regions of the flow are well defined and constant in these 

simulations. Therefore, particles will remain on the boundary between these regions 

throughout the duration of the simulations and any errors generated by the refine­

ment procedure at the boundary are more likely to propagate through the domain.

The results from refined Couette and Poiseuille flows demonstrate that the density 

refinement errors do not not necessarily provide a reliable measure with which to 

ascertain whether a given refinement parameter (e, a) will result in accurate or sta­

ble variable resolution simulations.

Additional higher order Hessian correction terms were required to stabilize the re­

fined Couette and Poiseuille simulations for any choice of refinement parameter. 

With this stabilization, the refinement parameter (e,ct) =  (0.4,0.6) produced the 

most accurate results. This is despite the fact that the density refinement error 

suggests that (e, a) =  (0.6,0.6) should perform the best.

Nevertheless, the refined Couette flow has shown that with care and the necessary 

kernel corrections the refinement procedure does not adversely affect the accuracy 

of the SPH method. The refined Poiseuille flow has shown that refinement can also 

be used to improve the accuracy of SPH simulations.
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D ynam ic refinement exam ples

In the more dynamic simulations of the flow separation through a funnel and the 

emptying tank the refined particles could quickly mix and redistribute as they moved 

with the flow and as such the regular lattice formations found in the refined Couette 

and Poiseuille flows were soon smoothed out. The earlier instabilities did not occur 

and the additional Hessian corrections were unnecessary.

These examples have demonstrated that dynamic refinement can help to more ac­

curately capture the physical behaviour of a simulation in addition to improving the 

local accuracy of the method.

The emptying tank example has shown that the variable resolution SPH formula­

tion can easily cope with mixed regions of refined and unrefined particles. In the 

transitional regions the velocity and density fields were found to be continuous and 

the variable resolution SPH formulation remains accurate and stable.



Chapter 8 

Summary and future 

developments

The main objective of this research was to provide a rigourous theoretical framework 

for the analysis of general particle refinement algorithms in SPH.

This objective has been successfully accomplished and refinement has been incor­

porated into a new general purpose variable resolution SPH code in the form of 

particle splitting algorithms. The resulting formulation has been applied to several 

examples of incompressible fluid flows and the accuracy of the refinement process 

has been verified by comparison to several analytic solutions.

8.1 General remarks

The thesis started with an introduction to the development of meshless methods 

including a detailed literature review covering the state of the art SPH method, ap­

plications to the simulation of incompressible fluid flows and the current implemen­

tations of adaptivity and variable resolutions in SPH simulations. The weaknesses 

of the previous research on refinement in SPH were identified as the lack of any 

quantitative study into the errors introduced by particle refinement and the need 

to prove whether it is possible to derive a fully conservative refinement algorithm. 

This research has addressed both of these fundamental issues.

In Chapter 2 the formulation of the SPH method was presented for the solution of 

incompressible Newtonian fluid flows. The traditional form for the discrete govern­

180
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ing equations were derived for the continuity, momentum and energy equations in 

conjunction with the corresponding equation of state. These equations were then 

combined with suitable time integration schemes and particle search algorithms to 

obtain a simple and flexible algorithm for the numerical simulation of a wide range 

of fluid dynamics problems.

Several techniques were then introduced in Chapter 3 which considerably improve 

the accuracy and stability of the traditional SPH equations. The addition of kernel 

and gradient corrections enforce constant and linear consistency of the discrete SPH 

expressions. The SPH method was stabilized further by including an extra kernel 

Hessian term in the SPH expression for the gradient of a function. This additional 

higher order term results in the most accurate, linearly consistent and stabilized 

SPH formulation.

The first step towards the implementation of variable resolution SPH simulations 

was the development of a set of governing equations which could cope with parti­

cles of varying mass and varying smoothing length. Such a formulation was derived 

from variational principles in Chapter 4. An additional boundary correction term 

was introduced in this formulation in order to improve the density evaluation in the 

vicinity of solid boundaries. This lead to an additional internal force which can be 

identified as a variationally consistent boundary contact force. In the absence of any 

solid boundaries the resulting expression for the internal forces was found to take 

the same form as those derived using the traditional approach. When kernel and 

gradient corrections were adopted it was shown that the resulting variational SPH 

algorithm conserved linear and angular momentum for general materials described 

by stress tensors with both isotropic and deviatoric components.

Traditionally, it has been difficult to enforce essential boundary conditions in SPH 

simulations. In Chapter 5 several different approaches were described which have 

been developed specifically to model solid or moving boundaries in meshless meth­

ods. In particular a new formulation using Lennard-Jones boundary particles was 

presented. This new approach was motivated by the kernel corrections of Chapter 3 

and avoids the instabilities often found when irregular boundary particle distribu­

tions are used to model complex geometries.
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The remainder of Chapter 5 was concerned with the derivation of a simple and ef­

ficient method to exactly calculate the variational boundary contact force (given in 

Chapter 4) for general boundaries in two dimensions. The resulting contact forces 

were compared to the approximations that had previously been used in the litera­

ture and the accuracy of the new approach was compared to the previous methods 

via the breaking dam example. The flood defense and water droplet examples then 

demonstrated the method was capable of modelling complex straight line and curved 

geometries in two dimensions. In all the simulations in this thesis the boundaries 

are described by straight or curved line segments only and no boundary particles 

are required.

In Chapter 6 a general particle refinement strategy based upon particle splitting was 

developed. Whereby, candidate particles are split into several daughter particles ac­

cording to a given refinement pattern centred about the original particle position. 

The separation and smoothing lengths of the daughter particles are controlled by 

an additional refinement parameter (e, a) consisting of the separation parameter e 

and the smoothing ratio a.

Specific particle refinement criteria were not studied in detail since the resulting re­

finement algorithm can be applied independently of the refinement criteria used. In 

all the refinement simulations in this thesis refinement zones are used as the particle 

refinement criteria. Upon entering these regions particles are replaced with their 

corresponding set of daughter particles.

The global density refinement error was defined as a measure of the error introduced 

to the density field caused by the particle refinement procedure. For a given refine­

ment pattern and refinement parameter (e, a) the refinement error was minimised 

by solving the model problem to obtain the optimal daughter particle mass distri­

bution. In previous literature the mass of the particle under refinement was usually 

split equally between the refined particles. However, in general the daughter parti­

cle masses obtained from the model problem were not necessarily all equal and the 

optimal daughter particle mass distributions were often found to be non-uniform.

It was also proved in Chapter 6 that there is a unique fully conservative daughter 

particle velocity distribution which preserves all the global properties of the system. 

Namely, when all the daughter particles move with the velocity of the unrefined
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particle that they replace then the total kinetic energy and linear and angular mo­

mentum will be conserved. This result had previously been missing from the existing 

literature.

To conclude Chapter 6 the global velocity refinement error was defined as a mea­

sure of the error introduced to the velocity field caused by the particle refinement 

procedure. For the fully conservative velocity configuration this is found to be pro­

portional to the global density refinement error obtained from the solution of the 

model problem.

Chapter 7 combined all the theory developed in the previous chapters and success­

fully implemented dynamic particle refinement into the existing SPH framework. 

The aim was to ascertain whether the global density and velocity refinement errors 

could be used to identify optimal refinement parameters which result in accurate 

variable resolution simulations.

The refined Couette and Poiseuille flows showed that this is not necessarily the case 

and that refinement parameters which generate small refinement errors do not nec­

essarily guarantee stable simulations. However, with care and the addition of extra 

kernel Hessian corrections the refinement procedure was implemented without sac­

rificing the accuracy of the method and in the case of the Poiseuille flow the results 

improved with additional particle refinement.

In the flow separation through a funnel and the emptying tank examples these insta­

bilities did not occur and Hessian corrections were found to be unnecessary. These 

simulations demonstrated that the variable resolution formulation deals naturally 

with mixtures of refined and unrefined particles and that the accuracy and physical 

behaviour of more complex simulations can be improved with the addition of parti­

cle refinement.

The contributions made by this thesis are briefly summarised as follows:

•  A new Lennard-Jones formulation has been developed to avoid instabilities 

which occur with irregularly spaced boundary particle.

•  A simple and efficient method for exactly calculating the variational boundary 

contact force for general boundaries in two dimensions has been derived. This 

approach avoids the need for additional boundary particles and can model
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both straight line and curved geometries.

• Dynamic particle refinement has been successfully incorporated into a new 

general purpose variable resolution SPH code for the simulation of incom­

pressible free surface fluid flows. The accuracy of the formulation has been 

verified by comparisons with analytic solutions.

•  The errors introduced into the density field caused by particle refinement have 

been studied and controlled. It has been shown that the mass distributions 

which minimise these errors are not necessarily uniform and that refined par­

ticles often have differing masses.

•  The unique, fully conservative, daughter particle velocity configuration has 

been identified for refined particles in SPH simulations.

8.2 Future research

There are several topics covered in this thesis which would benefit from further 

research. These are briefly summarised as follows:

• It should be possible to evaluate the variational boundary contact force for 

general boundaries in three dimensions. The equivalent expression for the ex­

act contact force in the vicinity of a single plane has already been derived 

and implemented successfully for simple examples. However, similar expres­

sions for general boundaries in three dimensions have yet to be derived and 

approximations are still needed to model corner regions.

• The refinement examples in Chapter 7 should be extended to three dimensions 

and the relative performance of other refinement patterns should be studied 

in more detail.

•  In the refinement examples in Chapter 7 all the daughter particle smoothing 

lengths were equal and fixed. The choice of daughter particle smoothing length 

was found to affect the stability of the refined Couette and Poiseuille flows. 

The possibility of designing a refinement algorithm which incorporates variable 

daughter particle smoothing lengths may result in smaller density refinement 

errors and more stable simulations.
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• The implementation of multi-resolution algorithms in the SPH code would al­

low even greater variation in the particle distribution across the computational 

domain. With more than one level of refinement even larger problems could 

be modelled without the need for excessive numbers of particles.

•  General particle refinement criteria should be investigated in more detail. In 

this research particle refinement was based simply on geometric considerations. 

In particular, a refinement criterion based on an error measure is required in 

order to locally refine particles in regions identified as having large errors.

•  The implementation of particle amalgamation algorithms in the SPH code will 

be essential to control particle distributions across the computational domain 

and help reduce the number of particles in regions where higher accuracy is 

not required. Such algorithms should gather together refined particles and 

generate coarser distributions of larger amalgamated particles.

•  The maximum stable timestep for simulations with particle refinement should 

be studied in more detail. The timestep will always reduce in simulations 

with particle refinement because of the reduced daughter particle smoothing 

lengths. Simulations with particle refinement should always be implemented 

in such a way that they will be more efficient than the corresponding high 

resolution simulation.
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Appendix A

An introduction to fluid dynamics

Consider a fluid contained in a Volume £1 A point in the fluid x  relative to standard 

Euclidean coordinates is written as x  =  (x ,y ,z).  At to a fluid particle has initial 

position xo.

Write </>(£, x) to denote the trajectory followed by the particle that is at point x at 

time t = 0 where </> is assumed to be suitably smooth.

cpt is used to denote the map x h  </> (t, x) that for fixed time t maps all fluid particles 

from their position at time t = 0 to their position at time t. If V  is a region of fluid 

in SI with boundary S  then Vt := <fit (V) is the deformed region at time t with surface 

St '•= </>t (S ) moving with the fluid.

Suppose each particle of fluid is initially at point x 0 at time t = 0. At time t the 

position of the particle is given by x  =  </> (t, Xo) such that 4> (0, Xq) =  Xo 

and + x0) =  (f) (t, <p (r, x0)) where <p is a bijective.

The velocity of the flow is given by

v ^ ’x ) =  ^  =  ^  (*>*<>)• (A.l)

Let /  (t,x) be any scalar field of interest over the volume Vt . The total ‘amount’ of

property /  in Vt denoted by F  is given by the integral

F = J  f { t , x ) d x .  (A.2)
Vi
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The time rate of change of /  over the fluid volume Vt is simply defined as

f  = l / /(t’x)dx- (A-3)
Vt

The differentiation in equation (A.3) cannot be taken inside the integration since 

the limit Vt is itself function of time.

T h e  tra n sp o r t th eo rem

For any Vt C ft, /  (t, x) a scalar field on ft with sufficiently smooth flow (f> (£, x) then

|  +  V . ( / v )
Vt Vt

dx. (A.4)

P ro o f
d f  d f
— J  f  (t, x) dx =  — J  f  (t, 0  (t, x 0)) J  (t, x 0) dx0 (A.5)

Vt Vo

where J  (t, x) is the Jacobian of (p (t, x) satisfying

J  =
d<p
dxi

d
> 0  noting that — J  (t,x) = J  (t,x )  V • v ( £ , x ) . (A.6)

(Jb

Since V0 is independent of time, the differentiation may be taken inside the integral 

. to give

/  { t t ^   ̂ X° )̂ J  X°̂ + *   ̂ X°̂  ̂ rfXo' Â'7̂
Vo

By writing the integrals back in terms of the deformed volumes the desired result is 

obtained

y s + ( v / ' v + / v ' v ) d x = / ^ + v - ( / v ) dx- (a -s )
Vt Vt

_d
dt

dx = |  +  V ( / v )
Vt Vt

dx. (A.9)
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M ate ria l derivative

The time rate of change of a variable /  as one follows a given fluid particle is named 

the Material Derivative and is given by

: = | / ( i ^ ( i)x 0)) =  g  +  ( V / ) . v .  (A'10)

It is important to note that D f  / Dt and d f  / dt are both numerically and physically 

different, d /d t  is the local rate of change of a variable at a fixed point, while D /D t  

is the rate of change of a variable of a point of fluid moving through the domain. 

(V/)  -v  is known as the convective derivative.

The governing equations of fluid dynamics

C ontinu ity  equ a tio n

Conservation of mass dictates that the amount of fluid in a control volume Vt at 

time t is conserved

| / p J V - 0 .  ( Al l )
Vt

Applying the Transport Theorem to the above conservation equation yields

/ dV = 0. (A.12)

Since this holds for any arbitrary control volume Vt the continuity equation is given 

as

+  v  • (pV) =  o (A.13)

or written in terms of the material derivative as

DP „_  =  - p V .v. (A. 14)

For an incompressible fluid this simplifies to

V • v =  0. (A. 15)
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M om en tum  equ a tio n

Newton’s Second Law states that the sum of the resultant forces on a body is equal 

its rate of change of momentum. The momentum in a control volume Vt at time t 

is given by

J J J  pvdV. (A. 16)
Vt

External forces acting on a, mass of the fluid may be classified as either body forces 

such as gravity or electromagnetic forces, or surface forces, such as pressure or 

viscous stresses. If F  represents the resultant body force per unit mass while P  

represents the resultant surface force per unit area. Then the sum of these forces 

acting over the fluid is given by

j j f w + j f ™ .
vt st

(A.17)

In component form Newton’s 2nd Law applied to equations (A. 16) and (A.17) results 

in the equation

! / / / ^ - / / P f W + / / p , 'K - (A 1 8 )
Vt Vt St

Writing P  =  crn in terms of the stress tensor cr where cr1-7 is the zth component of 

the force per unit area across the surface element perpendicular to the j th direction, 

and n  is the unit normal on surface gives

if/I pv%dV  =  / / /  pFidV + J J  aijnj d S . (A.19)
V t Vt st

Applying the Transport theorem to the left-hand side, and the Divergence Theorem 

to the surface integral gives

/// d
qI if™*) +  v  ' (Pv iv)

Vt

dV = J J J  pFidV  +  / / /  <jij'j dV, (A.20)
vt vt

d_
dt (pvl) +  V • (puV) — pFl — a*3,3 dV = 0. (A.21)

V

Since this holds for any arbitrary control volume Vt the momentum equation can be 

written in component form as

d
— (pvx) +  V • (puV) — pFl — cr1-7’'7 =  0.
C/ L

(A.22)
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Expanding the first two terms of the left-hand side

p { % + w ' v ) +  v* ( § t +  v  ’ (/9v)) ~  pFi ~  a‘j,i = °- (A,23)

The terms in the first bracket represent the material derivative of v% while the term

in the second bracket are the continuity equation and so vanish.

DiA 1 •• •

r f -  =  - a 13'3 +  F*. (A.24)
Dt p K J

Written in vector form the momentum equation is therefore given by

D v  1
—  =  - V  • <7 +  F. (A.25)
Dt p

E nergy  equation

The change in kinetic and internal energy of the fluid is equal to the work done by 

the fluid plus the heat added. Applying this to control volume Vt gives the rate of 

change of energy of the fluid as

i U J p (e + 'v) d V  = w  + (A'26̂

The total energy per unit mass is given by

E  = e +  i v  • v  (A.27)

where e is the internal energy per unit mass and |v  • v  is the kinetic energy per unit

mass. W  is the rate of work done by the surroundings onto Vt and Q is the rate of

heat addition to the fluid.

Let T  be the temperature and k be the thermal conductivity of the fluid. Using 

Fourier’s Law of Heat Conduction the heat conducted across surface dS  in the 

normal direction n  is at the rate
dT

(A.J8)

Therefore rate at which heat is added to Vt across S  by conduction by use of the 

Divergence Theorem is

JJ (kVT) ■ ndS = f j f  V • (fcVT) dV. (A.29)
s  vt



Appendix A: A n introduction to flu id  dynam ics 192

Let q be the rate of heat added to the fluid per unit mass giving Q

Q =  j f j p g  +  y .  (fcVT) dV. (A.30)
Vt

The rate of work done by the body force and surface force is given by

w  =  J J J  p v - F d V  +  J J p v P d S .  (A.31)
Vt St

By the relationship P = ern and use of the Divergence Theorem the rate of work 

done by the fluid is given by

w  =  J J J  pv • F  +  V • (trv) dV. (A.32)
Vt

Applying the Transport Theorem to the left-hand side of equation (A.26) and sub­

stituting equations (A.30) and (A.32) into the right-hand side gives

J J J  j t {PE ) + V - ( p E v )d V  = J J J  [pg +  pv • F  +  V • (kV T) +  V • (o-v)] dV.
Vt Vt

Since this holds for any arbitrary control volume Vt the Energy Equation can be 

written as
r\

— (p E ) +  V • (p£V) =  pg +  pv • F +  V • (kV T )  +  V • (crv). (A.33)

Simplify the above equation by ignoring contributions due to heat conduction and

heat sources. By using the Continuity equation (A. 13) gives

D p  i
—— =  - V  • (crv) +  F  • v. (A.34)
Dt p

Writing the above equation in terms of internal energy and in expanded component 

form allows further simplification

De dv1 £ dv1 \  ^  dv1 i ( dcrtj A
pD-t + v (plF + fnJw ) = a M  + v W  + pf )-  ( A - 3 5 )

The terms in the brackets above are simply the Momentum equation multiplied by 

v  and hence cancel. Giving a simple form of the Energy equation

De 1 . . . .
—- =  -  <t : Vv where A : B := AtJB %3. (A.36)
Dt p v '
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Kernel function prim itives

Quintic kernel primitives
Prim itive equation for gamma in the vicin ity o f a single boundary

•  For 0 < r ^  h :

F  (x, y) =  (33x4yr +  26y3rx 2 + 8y5r  +  15a;6 log (y +  r))

(1/5 y5 +  2/3 x2y3 +  x4y) +  ^  (5x 2yr +  2y3r +  3a:4 log (y +  r)) 

(x2y +  1/3 y3) +  ey +  ^ h 2 tan-1 (y/x)
a;

15 35
a ~ Y : T ’

c =  24, d =  —20, e =  8

/  3 ’ r  =  \ / x 2 +  y2

• For h ^  r  ^  2h :

F  (x, y) =  (33x4yr +  26y3rx 2 +  8y5r +  15x6 log(y +  r))

(1/5 y5 +  2/3 x2y3 +  x4y) +  ^  (5x2yr +  2y3r  +  3x4 log (y +  r)) 

(x2y +  1/3 y3) +  ^  (yr +  x2 log (r +  y)) +  f y  +  | h2 tan-1 (y/x)

=  -  — , r  = \ / x 2 +  y
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Prim itive equation for the gradient of gamma in the vicin ity of a single 
boundary

• For 0 < r  ^  h : 

a
G (x ,y ) = (33x4yr +  26y3rx2 +  8 yhr +  15x6 log (y +  r))

48 hb

(1/5 y5 +  2/3 x Y  +  x*y) +  ^ 3  (5x 2yr +  2y3r +  3x4 log (2/ +  r))

+ +  X/ 3 /̂3) +

a =  15, 6 =  -70 , c =  120, d =  -8 0 , e =  16

r =  \ / x 2 -Vy2

•  For h ^  r  ^  2h :

G(x, y)  = (33x4yr +  26y3rx2 +  8y5r +  15a;6 log (y +  r))
48/1

(1/5 y5 +  2/3 x2?/3 +  z4?/) +  ^  (5a; V  +  2y*r +  3a;4 log{y +  r))

d e
+ — (x2?/ +  1/3 y3) +  —  (yr +  z2 log (r +  y)) +  /y

2/i

a = —1, b — 10, c — —40, d = 80, e =  —80 

/  =  32, r  =  \J x2 + y2



A ppendix  C

D ensity  refinem ent resu lts
Appendix C.l contains the plots of the density refinement results for all the refine­

ment patterns. The refinement errors and corresponding optimal mass distributions 

are given for (e, a) =  (0.4,0.4) and (0.6, 0.6).

In Appendix C.2 the resulting approximations to the original kernel by the refined 

particles are plotted for the 2D case.

C .l D ensity refinem ent error graphs

ID  3 -p artic le  refinem ent erro rs

04 OS 0
Separation parameter

Figure C.l: Graph of density refinement error for ID-3 particle refinement, 
a) logio of error and b) error < 0.05

oo»
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©------  O--------------------------- ®
m2 m x m 3

£ a Refinement Error mi m 2,m 3
0.4 0.4 0.0223 0.443 0.2785
0.6 0.6 0.0088 0.6477 0.17615

Table C.l: Refinement errors and optimal mass distributions for ID 3-particle 
refinement

ID  5 -p a rtic le  refinem ent e rro rs

Figure C.2: Graph of density refinement error for ID-3 particle refinement, 
a) log10 of error and b) error <  0.05

Separation param eter cSeparation pa ram eter«

• ------------• ----------------O----------- • ------------- •
mA m 2 rn} m 3 m 5

£ a Refinement Error mi m2,m 3 m4, m5
0.4
0.6

0.4
0.6

0.02077
0.000273

0.353
0.433

0.078
0.187

0.244
0.095

Table C.2: Refinement errors and optimal mass distributions for ID 5-particle
refinement
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2D T riangu lar refinem ent e rro rs

Figure C.3: Graph of density refinement error for 2D triangular refinement, 
a) log10 of error and b) error < 0.05

Separation param eter *

£ a Refinement Error mi m 2 —> m4
0.4 0.4 0.242399 0.229399 0.256867
0.6 0.6 0.040509 0.451033 0.182989

Table C.3: Refinement errors and optimal mass distributions for 2D triangular 
refinement
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2D H exagonal refinem ent e rro rs

Figure C.4: Graph of density refinement error for 2D hexagonal refinement, 
a) logio of error and b) error < 0.05

Separation parameter e

£ a Refinement Error mi m2 —> 777-7
0.4 0.4 0.081334 0.139394 0.143434
0.6 0.6 0.004180 0.386914 0.102181

Separation param eter c

Table C.4: Refinement errors and optimal mass distributions for 2D hexagonal 
refinement
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3D H exagonal refinem ent e rro rs

04 05  0
Separation parameter

0 4 0 5 o
Separation pa ra m ete r.

Figure C.5: Graph of density refinement error for 2D hexagonal refinement, 
a) logio of error and b) error < 0.05

£ a Refinement Error mi m 2 —> m i3
0.4 0.4 0.223548 0.0 0.08333
0.6 0.6 0.004180 0.200349 0.066638

Table C.5: Refinement errors and optimal mass distributions for 3D hexagonal 
refinement (where mi is the mass of the particle in the initial unrefined position)

C.2 2D kernel approxim ations

U nrefined  2D kernel

Figure C.6 : Unrefined quinic kernel in 2 D (h = 1 )
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R efined approx im ations to  th e  2D kernel

Figure C.7: Refined particles approximation to original kernel for 2D triangular 
refinement ((£,0 ) =  (0.4,0.4) and (0.6,0.6) respectively)

Figure C.8: Refined particles approximation to original kernel for 2D hexagonal 
refinement ((£, a) =  (0.4, 0.4) and (0.6,0.6) respectively)
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SPHere2004 Code

D .l  The corrected SPH algorithm
For clarity the SPH algorithm with variable h and all the equations coming from 
the variational formulation are presented below.

It was shown by Lok [84] that it is essential to apply the variational SPH equations 
in a consistent manner. For example it should be noted that CSPH corrections 
cannot be used in updating particle densities when using the direct density method. 
Particle force equations and density evaluation formulae from different derivations 
should not be mixed.

•  Initialise particle properties : x, v, V, p, P, • • •

Begin Timestepping :

•  Calculate timestep : A t
•  Search for particle neighbours.
•  Calculate kernel correction terms for each particle : a a, 7 a, La

=  ^ 2  VbWb (X°’ hb) ^a = Vb^Wb (xa, hb) La =  ( ^  VbV w b (xa, hb) <g> X6
b Qa b \  b

U’b (Xa, hb) = —  wb (xa, hb) V w b (xa, hb) = —  (Vw6 (xa, hb) -  wb (xa, hb)) 7 a

V w b (xa, hb) = L aV w b (xa, hb)

• Calculate rate of deformation tensor for each particle : d a =  I  (V va +  VvJ)

2da =  Vb ( v b <g> V %  (xa, hb) +  V w b (xa, hb) <g>
b

201
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• Construct deviatoric stress tensor for each particle : cr'a = 2/x (da — | t r  (da)) 

For each particle :

• Update density : 
Continuity Method

Pa =  ~ P a  ^ 2  VbVb * (xa, h b)

„ -At'52VbVb-'Vwb(x.a,hb)
P T  =  f i e  ”

or Direct Density Method

Pa = 'p j rnb (v„ -  vt) • Vw b (xa, hb)

P T 1 = f i e
A t E  m b ( v a -V b ) -V t« b (X a , / l6 )

P b

• Update volume : Va =

• Update pressure : Pa = P0 ~ l )

•  Calculate particle boundary contact forces : T f
• Calculate particle body forces : F a

• Calculate particle forces :

Continuity Method

T a =  VaVbcrbV w a (xfr, ha) or =  - P I  +  a
b

or Direct Density Method

Ta =  Y ]  m am b ( ^ V w b (xa, hb) -  ^ V w a (xfe, ha) ) +  S ']  VaVb^Vwa (x6, ha)
b \ P a  Pb ' b

• Calculate particle accelerations : a.a =  A- (F a — T a +  T®)

• Update particle position and velocity :

• If first timestep : Va =  v° +  ^APa®

• Otherwise update via Explicit Leap-Frog :

Va+2 =  v ” 2 +  Ata™ where A t = ^  (A tn +  A tn+1)

x"+1 =  X  ̂+  A in+1Va+^

• Update problem time : tnew =  t0id +  At

•  Output timestep data.

•  If tnew < tsTOP continue to the next timestep.

• tnew > tsTOP then end simulation.
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D.2 Input file formats
*.in file

File layout:

Title of corresponding problem 
&init_cond

endtime = *******

\  /
ljmag = *******

&end

MAIN PROGRAM CONTROLS

endtime I end time of simulation
outputno I output results after fixed no. of iterations (used if not=0)
outputtime I time interval for result output (used if outputno=0)
tstepfac I timestep scaling factor

SPH CONTROLS

alpha
sphform

bndtype

varh
csph

eta
xsph
engy
integscheme

smoothing parameter
specifies formulation of sph governing equations: 

sphform=l: Continuity Density Form 
sphform=2: Direct Density Form 

specifies which boundary method is to be used 
bndtype=0: No Boundary Method 
bndtype=l: Image Particles 
bndtype=2: Lennard Jones Potential 
bndtype=3: Gamma Function in 2D 
bndtype=4: Bounce Back 

variable smoothing length on/off 
specifies sph corrections: 

csph=0: No CSPH 
csph=l: With CSPH
csph=2: With CSPH and stabilization 

hessian correction constant 
xsph on/off
solve energy equation on/off
specifies which integration scheme is to be used 

integscheme=l: Euler Method 
integscheme=2: Euler-Cromer Method



A ppendix  D: SPH ere2004 Code 204

1 integscheme=3: Explicit Leap-Frog Scheme
period I periodic b.c's on/off for couette flow
refine I specifies refinement method

1 refine=0: No refinement
1 refine=l: Static refinement
1 refine=2: Dynamic refinement

artvisc 1 specifies artificial viscosity method
1 artvisc=0: No Artificial Viscosity
1 artvisc=l: Monaghan formulation
1 artvisc=2: von Neumann-Richtmyer formulation

kerfunc I specifies which kernel is to be used:
1
i

kerfunc=l: Quintic Kernel(2h)
i
1 OUTPUT CONTROLS
ii

log 1 write .log file on/off
xydat I xy.dat output on/off
povout I povray output on/off
vout I output to array-viewer on/off
vdata I specifies variable for output:

1 vdata=l: velocity
1 vdata=2: pressure
1 vdata=3: density
1 vdata=4: iobj
1 vdata=5: gmp
1 vdata=6: icol

outputscreenl
1
output info to screen after fixed no. of interations

OTHER CONTROLS

extcal 1 calculates exterior particles on/off
grav 1 gravity on/off
cfl 1 cfl number
gamma 1 exponent in stiff equation of state
elast 1 coefficent of elasticity
nadt 1 intermittent ADT searching

ii
1 LENNARD-JONES CONTROLS
i

ljcutoff 1 lj-force cutoff parameter
ljmag 1 lj-force magnitude parameter

_i--------------------------------------------------------------------------------------------------------
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*.m at file

File layout:

Title of corresponding problem 
****** nmat

material properties 

material index, itype, density
OPTIONS: itype =0 for fluid; =1 for elastic solid 

ITYPE = 0 : material index, viscosity
ITYPE = 1 : material index, iconstit, ieqstate, bulk modulus, shear modulus

iconstit determines the constituitive eq; ieqstate determines the eq of state 
if iconstit = 1 then read a third line containing plasticity data 

initial yield stress, hardening modulus

1 0 * * * * * *

1 * * * * * *

2 1 * * * * * *

7,----------------------------------------------------

•  Every material is given a density.
•  If the material is a FLUID (itype=0):

- the material is given a viscosity.
•  If the material is a SOLID(itype=l):

- the material is given the corresponding constitutive eq. and e.o.s
- the material is given a bulk modulus and a shear modulus
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*.bnd file

File layout:

7, Title of corresponding problem 
<number of boundary points>
<x-coordinate> <y-coordinate> <interior angle of point>

\  /
<x-coordinate> <y-coordinate> <interior angle of point> 

7. Additional Lennard-Jones Boundary Particles 
<number of additional lj-boundary particles>

1 <x-coordinate> <y-coordinate>

\  /
n <x-coordinate> <y-coordinate>

Boundary line segments only implemented for 2D problems.

The boundary file consists of the number of boundary points, followed by a list of 
their coordinates and the interior angle at the point:

• End points have interior angle =  0.D00.
• File allows for disjoint boundary parts:

- each part begins and ends with an end point with interior angle =  0.D00.
- each part begins and ends at distinct points (ie. no closed boundaries.)
- boundary line segments are described counter-clockwise

Lennard-Jones Boundary Particles

•  2D
Lennard-Jones particles are automatically generated along boundary segments in 
2D. Additional Lennard-Jones particles can be included in the boundary file.

• 3D
Lennard-Jones particles can be used in 3D. All particles need to be listed in the 
boundary file with an additional <z-coordinate> (no particles are automatically 
generated in 3D).
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*.m es file

Header layout:

Title of corresponding problem 
<no. dims>
<no. particles >
<start time>
<start timestep>
<total mass>
<total volume>
<particle separation>
<bulk pressure>
<x lower limit> <x upper limit>
<y lower limit> <y upper limit>
<z lower limit> <z upper limit>
<x boundary condition> <y boundary condition> <z boundary condition>

• The z-coordinate limits and boundary conditions only appear in 3D simulations.
• The upper and lower limits specify the extent of the problem domain.
• The problem domain boundary conditions: 0- none, 1- delete

Main body layout:

If the problem is fully specified then the main body contains one row for each 
particle with 18 columns of data in 2D and 21 columns of data in 3D.

 1

<particle no.> I
<x position> <y position> <z position> I 
<x velocity> <y velocity> <z velocity> I 
<volume> I
<material id> I
<colour id> I
<object id> I
Cmovement id> I
<x normal> <y normal> <z normal> I
Cinitial density> <density> I
Cinitial pressure> <pressure> I
<mass> I
<smoothing length> I

Note:
Output files are numbered *.dat files and are generated in the same format as the 
initial *.mes file. To restart simulations only the name of the file needs to be changed.
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