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Abstract

Smoothed Particle Hydrodynamics (SPH) is a relatively new, simple and effective
numerical method that can be used to solve a variety of difficult problems in compu-
tational mechanics. It is a fully Lagrangian meshless method ideal for solving large
deformation problems such as complex free surface fluid flows.

This research was carried out with the support of BAE Systems and falls into two
distinct areas. Firstly to investigate new methods for treating fixed boundaries and
secondly to investigate refinement algorithms which allow for both sparsely and
densely populated regions of particles within the same computational domain.

Much work has been done in the modelling of particle-boundary interactions in SPH
since the governing equations do net naturally incorporate essential boundary con-
ditions. In this research a new technique for calculating boundary contact forces is
developed. The forces are obtained from a variational principle and as such conserve
both the linear and angular momentum of the system. The boundaries are explicitly
defined using this new approach and so the need for additional boundary particles
is removed.

In the past most SPH derivations have been based on a uniform distribution of
particles of equal mass. This leads to large simulations with many particles and
long run times. In other mesh based schemes it has become common place to use
mesh adaptivity to improve numerical results and reduce computation times. With
a corresponding refinement strategy SPH can gain these same advantages.

In this research a refinement strategy based upon particle splitting is developed.
Candidate particles are split into several ‘daughter’ particles according to a given
refinement pattern centred about the original particle position. Through the so-
lution of a non-linear minimisation problem the optimal mass distribution for the
daughter particles is obtained so as to reduce the errors introduced into the under-
lying density field. This procedure necessarily conserves the mass of the system.
The unique daughter particle velocity configuration that conserves the linear and
angular momentum of the system is also identified.

The conclusion of the research was the successful implementation of these improve-
ments into the existing SPH framework. As a result the capability and flexibility
of the code is greatly increased and the computational expense needed for running
large simulations has been reduced.
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Nomenclature

The symbols most frequently used in the texrt are given below.

Any other notation introduced will be defined when required.

o Scalars and scalar functions are written in regular italic typeface (f,m,p)
¢ Vector and tensor quantities are written in bold typeface (v,M,T)
e Subscripts a, b, ... denote evaluation at a given particle (Ma), PasXa)
e Indices i, j, k, ... denote components of the cartesian coordinate system (z*, 7, 0%)

The Einstein summation convention is adopted for repeated cartesian indices.

Operations:
Gradient: Vf = f*

Divergence: V -v = bt
Scalar product of vectors: u-v = u'v*
Norm of vector: ||v|| = (v- v)%
Trace of tensor: tr(o) = o®
Double contraction of tensors: u:v = u¥y¥
Tensor product: u® v = a't’
Hessian: Hf =V (Vf)

SPH operations:

(f (x)) Reproducing kernel approximation of scalar function f (x)
fr (%) Summation approximation of (f (z))

Scalar quantities:

Smoothing length

Volume

Mass

Density (and pg is the material density)
Pressure

Viscosity

Von Mises equivalent strain rate

Internal energy

Speed of sound

Artificial isothermal bulk modulus

Time (and At is the timestep)

0 (x —xp) Dirac delta function based at x,

wp (X, hp) Kernel function based at x; (wp (X, hy) = w (X — X3, hp))
N (x) SPH shape function (N, (x) = Vyws (X, hs))
Wy (X, hp) Corrected kernel function (constant or linear)
a(x) Constant kernel correction term
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Scalar quantities (cont.):

E(f,x)
Eh (f’ X)

wvisc
T

K (v)

1_Iext (X)
Hint (X)
I-Ivisc (X)

8 (xb7 hb)
(€,0)

Ele, o] (A)
E* e, ql

Error introduced by the reproducing kernel approximation of f at x
Error introduced by the summation approximation of f at x
Viscous potential per unit volume

Internal energy per unit mass

Total kinetic energy of the system

Total external energy of the system

Total internal energy of the system

Total viscous dissipation of the system

Gamma function based at x, with smoothing length h,
Refinement parameter (separation parameter €, smoothing ratio )
Density refinement error for given mass distribution A

Minimum density refinement error for refinement pattern (g, a)

Vector and tensor quantities:

B (x)

W (r)

Vuwy (%, hp)
VNb (X)
v'wb (xa: hb)
v11}17 (Xa: h’b)
£a

L,
’Hwb (Xa, hb)
B,

A,

Vil (Xa, hy)
6fh (Xa)

Position vector

Velocity vector

Acceleration vector

Normal vector

Identity tensor

Stress tensor (and o' deviatoric stress tensor)

Rate of deformation tensor (d = 3 (Vv + Vv7))

Deviatoric rate of deformation tensor (d'=d — 3 (V- v)I)
External force

Internal force

Pressure force

Deviatoric component of internal force

Boundary contact force

Interaction force between particle a and particle b

Linear kernel correction term

Vector function satisfying V- W = w

Gradient of the kernel function based at x; with smoothing length h;
Gradient SPH shape function (N, (x) = V,Vwy (%, hs))
Corrected gradient of kernel function (constant or linear)
Corrected gradient of constant corrected kernel function
Constant gradient correction term evaluated at x,
Linear/mixed gradient correction term evaluated at x,
Corrected kernel Hessian

Matrix correction term for the kernel Hessian evaluated at x,
Tensor correction term for the kernel Hessian evaluated at x,

Corrected and stabilised gradient of the kernel function

Corrected and stabilised gradient of scalar function f (x)



Chapter 1

Introduction

Free surface fluid flows arise in a wide variety of circumstances and represent a
challenging class of problems that scientists and engineers are seeking to better un-
derstand. The sloshing of fuel tanks, the wake surrounding a ship, the impact of
solid objects into water, the flow over hydrofoils and the flow through turbines and

propellers are all examples of large scale complex free surface fluid flows.

With the sea level predicted to rise by as much as 50cm over the next 100 years?
the risk of flooding is increasing all over the world and the numerical simulation of
free surface fluid flows will be essential to help predict flood damage and to aid the
design of effective flood defense structures. Methods to efficiently and accurately
model the behaviour of these complex systems is of great economic, environmental

and human interest.

Grid based numerical approaches such as the finite difference method and finite
element method have fast developed into extremely powerful and flexible tools for
the solution of many important problems in the field of computational continuum
mechanics. However, these methods require expensive re-meshing algorithms for
problems which exhibit large deformations and typically free surfaces are difficult

to follow with any degree of accuracy.

This thesis presents a ‘meshless’ numerical technique particularly suited to the sim-
ulation of free surface fluid flows with several advantages over traditional finite

element approaches.

! wikipedia.org: http://en.wikipedia.org/wiki/Global Warming

1



Chapter 1: Introduction

Case Study: The Asian tsunami

On the 26" of December 2004 at 7:58am local time an earthquake in the middle
of the Indian ocean measuring 9.15 on the Richter scale occurred along a 1200km

stretch of the subduction zone between the Australian and Eurasian tectonic plates?.

The earthquake (the second largest ever recorded) and the subsequent tsunami killed
more than 200,000 people who inhabited the coastline of 13 neighbouring countries
including Indonesia, Sri Lanka, South India and Thailand; making it one of the most

deadly disasters in modern history.

Over a period of several minutes the plates slipped roughly 15m causing the seabed
to rise by as much as a few metres, displacing an estimated 30km?® of water. In order
to regain its equilibrium this disturbed mass of water collapsed under the influence
of gravity resulting in the destructive tsunami waves that claimed so many lives.
The area affected was greatly increased because of the large region of subduction

which caused the waves to spread outwards along the entire length of the faultline.

Deceptively, the power of tsunamis are not evident in deep regions of ocean where
the waves are largely harmless and often pass by unnoticed. For the Asian tsunami
the maximum recorded height of the waves in the Indian ocean was only 2ft. It was
only as the waves approached the shallower water of the coastlines that they became

a significant threat.

As the Asian tsunami reached the shallower water the waves slowed from upwards
of 500kmh~! to 1000kmh~! down to tens of kilometres per hour; forming large
destructive waves that were capable of traveling as far as 2km inland. In the region
of Aceh in Indonesia it has been proposed that the waves reached heights of up to
24m, rising to 30m further inland. The Tsunami Society® estimate that the total
energy of the resulting waves was approximately 2 x 10'¢ joules equivalent to 5
megatons of TNT. The destructive power of the tsunami wave at Aceh can clearly

be seen in Figure 1.1.

2 NewScientist.com: http://www.newscientist.com/popuparticle.ns7id=in51
3 The Tsunami Society: http://www.sthjournal.org/soc.htm
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January 10, 2003 December 29, 2004

Figure 1.1: Aceh, Sumatra, Indonesia

Tsunami waves hit coastlines with tremendous force generated by the increased
weight and pressure of the ocean behind them, surging inland with enough energy
to destroy almost anything in its path. The resulting debris including any vehicles,
ships or boulders in its path are carried by the currents further increasing the wave’s

destructive force and eroding coastal areas down to the bedrock.

The human, economic and environmental costs of such a disaster are impossible to
measure. Exact figures are still unknown but it is likely that more than 200,000
people lost their lives in the floods (a third of whom were women and children) and

in total over 500,000 people were injured in the disaster.

The affected areas will feel the economic impact for many years to come. Millions lost
their homes, livelihoods and access to food and clean water. Local infrastructures
were seriously damaged with water supplies and farm land contaminated by salt

water for the foreseeable future.

The Asian tsunami hit the poorest people in the region the hardest where the local
economies are largely driven by tourism, farming and the fishing industry. Much
of the fishing community was left at a standstill after the floods due to the loss of
fishing boats and equipment. In Sri Lanka alone the fishing industry accounted for

the employment of over 250,000 people.
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Tsunamis can have far reaching consequences and should be a global concern. The
affect of the Asian tsunami was felt as far away as Struisbaai in South Africa some
8,500km away from the epicentre, where sixteen hours later it caused high tides of
1.5m.

Unfortunately, it is impossible to accurately predict when or where future tsunamis
will occur. A great deal of effort is being put into the development of early warning
systems and coastal defences in vulnerable regions. However, tsunami detection
in deep water is a difficult task due to the low amplitude of the waves in relation
to the surrounding ocean. Such systems require many interconnected sensors to
be effective at great cost. Consequently, the initial earthquake remains the best
means for the detection of imminent tsunamis but in poor areas even issuing timely
tsunami warnings can be a difficult task due to the lack of sufficient communication

infrastructures.

Case Study: Flooding in the UK

Closer to home it is speculated that the Bristol channel floods of the 30" of Jan-
uary 1607 may have been caused by a tsunami originating off the Irish coast. The
floods claimed an estimated 2,000 lives and caused widespread damage to farmland,

livestock and villages along the channel including the town of Cardiff in Wales.

The floods had long been considered a result of a combination of high tides and
other meteorological factors. However, eyewitness accounts from the time tell of
‘huge and mighty hills of water’ advancing at speeds ‘faster than a greyhound can
run’ that only receded ten days later?. This has lead scientists to investigate alter-

native causes.

The possibility that an earthquake off the coast of the United Kingdom and Ireland
may have triggered a tsunami is not as unlikely as it may seem. In fact on the 8%
of February 1980 in that region an earthquake measuring 4.5 on the Richter scale®

was recorded confirming the fault remains active.

4 Burnham-On-Sea website: http://www.burnham-on-sea.com/1607-f1lood.shtml
5 BBC News: http://www.news.bbc.co.uk/2/hi/uk news/wales/4397679.stm
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The Thames barrier has been forced to close 90 times to prevent serious flooding
since it was completed in 1983, averaging four times a year6. However, the au-
thorities anticipate this to increase to up to 30 times per year by 2030 due to the
predicted rise sea levels and increased number of violent storms caused by global

warming7.

The Thames estuary is home to over one million people, 500,000 properties, 38
underground stations and the city airport8. A large scale flood across this region
would cause millions of pounds worth of damage to infrastructure, residences and
businesses; not to mention the potential for loss of life. This is clearly seen in Fig-

ure 1.2 which shows the flood plain around the city of London.

M

/A

Figure 1.2: City of London flood plain

6 The Environment Agency: http://ww.environment-agency.gov.uk
7 NBC News: http:/msnbc.msn.com/id/6241449
8 The Thames Estuary Partnership: http://ww.thamesweb.com
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Changing weather patterns and rising sea levels caused by global warming mean
that the risk of flooding is increasing all over the world. It remains the job of flood

defences to help reduce the potential damage and danger caused by flood waters.

In Japan extensive walls up to 4.5m high have been erected to protect populated
coastal regions and in other parts of the world channels and flood gates have been

built in an attempt to redirect potential flood waters (as shown in Figure 1.3).

Figure 1.3: Tsunami wall at Tsu-Shi, Japan and the Thames barrier, London

The use of computer simulations is playing an increasing role in helping to predict
and assess the impact of future flood scenarios. Numerical modelling is also essential
in the design and testing of flood defences where, due to the scale and complexity
of the engineering problems involved, building full scale models is impossible and
laboratory experiments prohibitively expensive. However, the situations illustrated
above are examples of large, complex fluid flow problems which have traditionally

been difficult to model using well established numerical techniques.

This thesis presents the ‘meshless’ numerical method known as Smoothed Particle
Hydrodynamics (SPH) which is particularly suited to the solution and modelling of
large scale, complex free surface fluid flows such as those discussed in this introduc-
tion. In addition SPH can be easily be extended to simulate the related problems

of rock and debris flows with only simple modifications to the constitutive model.
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The remainder of this chapter proceeds as follows:

e The next section presents a brief introduction to meshless methods. Although
short it should provide the reader with an understanding of the historical con-

text and motivation behind the development of meshless numerical methods.

e A detailed description of the development of the state of art Smoothed Par-
ticle Hydrodynamic method is given. This includes numerous references to

literature.

e The aims and scope of the thesis are presented along with an up to date

literature review of the relevant topics in SPH.

e The layout of the remainder of the thesis is given and the contents of each

chapter is described.

1.1 Meshless methods

In recent years traditional grid based numerical methods such as the finite difference
method and the finite element method have fast become the standard tools for the
solution of a wide range of engineering problems in the areas of computational fluid

and solid mechanics.

In approaches such as these the spatial domain over which the governing partial dif-
ferential equations are to be solved is discretized using a set of interconnected nodes
defined by an underlying grid or mesh. For a given mesh, the governing equations
are approximated by a set of algebraic equations which can then be assembled and

solved.

However, grid based numerical methods are not without their limitations:

e Mesh generation is an essential but time consuming process. The creation of
regular meshes for complex or irregular geometries is both an intellectually

and mathematically challenging task in its own right.

e In Eulerian formulations it is very difficult and computationally expensive to
accurately resolve free surfaces and track moving interfaces and boundaries as

the problem evolves over the fixed mesh.
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e In Lagrangian formulations large deformations often lead to excessive element
distortion. This can severely reduce the accuracy of the method and reduce
the maximum stable timestep. Regular re-meshing can help to circumvent
these problems but often introduces additional diffusion to the simulation and

as a result material can no longer be accurately tracked.

Meshless numerical methods are those which attempt to solve these long standing
problems of traditional mesh based approaches by providing a framework in which
general partial differential equations can be solved without the need for any under-

lying regular mesh or nodal connectivity.

With no explicit mesh to generate the initial preprocessing time is reduced and the
need for subsequent re-meshing is totally eliminated since mesh entanglement no
longer occurs. Without a mesh the motion of the nodes are no longer constrained so
material and free surfaces can be accurately tracked. Consequently, meshless meth-

ods can easily simulate problems involving large deformation and fragmentation.

In grid based schemes mesh adaptivity has been used to improve numerical results
and reduce computation times. In this respect meshless methods show a great deal
of promise. Adaptivity is easily implemented since nodes can be added or removed

at will without the implications of mesh regeneration.

Over the last twenty-five years research into the next generation of meshless numer-
ical methods has gained considerable momentum and several different approaches
have been developed. A number of good review papers and books are currently avail-

able which cover many of the recent developments in this field [10,47,75,76,127].

Two notable early meshless techniques are known as the Marker And Cell (MAC)
and Particle In Cell (PIC) methods which were developed in 1960’s by Harlow [50-52]

at the Los Alamos laboratory, California.

Although these formulations still use a Eulerian mesh and the finite difference
method for the solution of the Navier-Stokes equations they were the first to incor-
porate a set of Lagrangian ‘marker’ particles which move with the fluid. The main
disadvantage of both these methods is the continual mapping of variables between

the particles and the Eulerian mesh which introduces large amounts of dissipation.
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The MAC method was originally developed to model confined, viscous, incompress-
ible fluid flows [51,52]. In later applications to low viscosity flows the MAC method
was found to be unstable and poorly capture free surfaces [25]. This was attributed
to both the simplified implementation of the boundary conditions and the method
used to extrapolate the particle velocities from the Fulerian mesh. Later variations
of the MAC method [2,25] improved its accuracy and extended the boundary con-

ditions to include curved and moving boundaries [124].

Similarly, the PIC method models the fluid as a set of Lagrangian particles moving
through a fixed grid of cells [23,50]. In the original PIC formulation each particle is
defined only by its position and mass. All other cell properties are calculated and
updated by the transition of particles moving from one cell to another. It was found
later that numerical dissipation could be reduced if the particles were assigned all
fluid properties such as momentum and energy. With these improvements the PIC
method has been successfully adapted to solve a variety of solid mechanics prob-
lems [119-121].

Smoothed Particle Hydrodynamics (SPH) is the earliest of the truly meshless meth-
ods. SPH is a fully Lagrangian particle method based upon a smoothing interpo-
lation technique known as the reproducing kernel approximation. By introducing
kernel functions with compact supports this approach allows any function to be ap-

proximated by a weighted average of its values over a finite set of disordered points.

In this way the continuum is described by a large set of Lagrangian points, known
as particles, which move with the material. Kernel functions are centred at each
particle which in conjunction with the discretized governing equations determine

the particle interactions and the motion of the continuum.

First published in 1977 by Lucy [86] and Gingold [95] the SPH method was initially
used to model large scale astrophysical problems such as the formation of binary
star formations and galaxies in the early universe. Since then SPH has established
itself as a flexible method for the solution of both fluid and solid mechanics problems
and is particularly suited to the solution of large deformation problems and complex

free surface flows.
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Since this thesis is concerned with the SPH method an in depth overview of its

development is given in Section 1.2.

Another formulation derived using the reproducing kernel approximation is known
as the Reproducing Kernel Particle Method (RKPM) [77,81]. It was proposed by
Liu in an effort to enforce consistency and improve accuracy of meshless methods
in the vicinity of boundaries. The difference between the RKPM and SPH comes
from the addition of a boundary correction terms introduced to the kernel. Liu later
modified this method to incorporate a moving least square interpolation technique
to generate the kernel corrections [82,115]. The resulting formulation is n*f-order
consistent and became known as the Moving Least Square Reproducing Kernel Par-
ticle Method (MLSRKPM).

The moving least squares approximation is also used in the Element-Free Galerkin
Method (EFGM) [11] developed by Belytschko. Based upon the Diffuse Element
method (DEM) [65,104] the EFGM uses moving least square interpolants to con-
struct the trial and test functions of the Galerkin weak form and improves the
previous boundary implementation with the use of Lagrange multipliers to enforce

the boundary conditions.

Both the DEM and EFGM require a background mesh in order to evaluate integral
terms that appear in the final system of equations and as such are not considered
to be truly meshless methods. The EFGM has been applied successfully to a wide

range of problems including heat transfer, elasticity and fracture [60,85].

For completeness several other meshless methods should be mentioned in this sum-
mary. These are the h-p cloud method [40, 74], the natural element method [118],
the moving particle semi-implicit method [63], the meshless local boundary integral
equation method [4], the meshless local Petrov-Galerkin method [4] and most re-

cently the meshless finite element method [58].

As these methods become more established the amount of research into the devel-
opment and improvement of meshless methods increases. With the attention of
numerous researchers it is hard to predict how this field will develop but it seems

that the future of meshless numerical methods is assured.
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1.2 The development of Smoothed Particle
Hydrodynamics

Since the initial development of SPH by Lucy, Gingold and Monaghan [86,95] in

1977 many initial weaknesses have been identified and resolved.

Currently there is a great deal of research taking place into SPH. The longest running
groups being those of Monaghan [88-100] at Monash University and Cleary [28-33]
at CSIRO, both based in Australia.

For a number of years the Civil and Computational Engineering Centre at the Uni-
versity of Wales Swansea has been investigating reproducing kernel based particle
methods. The papers of Bonet [13-21], Kulasegaram [66-69] et al [44,84,111] cover
a wide range of topics including a variational derivation of the SPH equations, the
development of kernel consistency corrections (CSPH), a shallow water formulation,

variable smoothing length simulations and a new boundary implementation.

In 2003 the first book devoted to SPH was written by Liu [76] and SPH also fea-
tures in the first book to deal exclusively with meshless methods, entitled ‘Mesh
Free Methods’ [75] also written by Liu. In addition to these books several good
SPH review papers exist in the literature [33,108,125].

Two early reviews by Monaghan [89,92] provide a good background to the early de-
velopment of SPH. These papers cover the derivation of the classical SPH governing
equations and details the first improvements made to the method. These include the
formulation utilising smoothed particle velocities (known as XSPH) which help to
keep particles equally spaced [90] and artificial viscosity terms that were used to help
resolve shocks in the absence of a physical viscosity [97]. These papers also contain

references to many of the earlier SPH applications to astrophysical problems.

Soon after Libersky extended the SPH formulation to include the full stress tensor
in order to simulate problems with material strength [72,73,98]. The introduction of
more sophisticated material models highlighted one of the main weaknesses of SPH
known as tensile instability which can result in unphysical clustering of particles

and numerical fracture.



Chapter 1: Introduction 12

Tensile instability was first studied in detail by Swegle [122]. It was found that this
numerical instability was caused by the kernel interpolation procedure. From a Von
Neumann stability analysis the stability criterion is found to be w”o > 0 where
w" is the second derivative of the kernel function and o is the stress (negative in
compression) [5]. Consequently, this criterion may not be satisfied by materials in
either tension or compression. However, in most cases the particle separation is such

that the instability only manifests itself in regions of tension.

Various methods to prevent or reduce the effects of tensile instability have been
proposed. Monaghan showed that tensile instability can be removed with the in-
troduction of artificial stresses [93]. Dyka and Randles introduced the concept of
separate stress points in SPH [41,109]. In this approach the particle stresses are
not evaluated at particles rather at surrounding stress points, similar to quadra-
ture points used in the finite element method. This approach has been successful
modified for two dimensional problems by Vignjevic [126]. Hicks proved that tensile
instabilities could not be removed by artificial viscosities and developed the conser-
vative smoothing method [55-57] which adds stabilizing dissipation terms that can
be applied to SPH simulations as well as other numerical methods. Most recently,
Bonet has proved that tensile instability is a property of the continuum mechanics
equation for elastic fluids [15] and not necessarily a defect of the SPH formulation.
This source of instability is then shown to be eliminated by using a total Lagrangian
formulation where all derivatives of the kernel functions are taken with respect to a

fixed reference configuration [12].

Zero-energy modes are another weakness found to be present in the SPH method.
Not unique to particle methods, these spurious modes are generated by nodal under-
integration caused from evaluating the function derivatives at the same point at
which the function values are sought. If not identified such modes can grow and
eventually dominate the solution. Spurious modes have been addressed by introduc-
ing stabilization potentials [13,14,16] and by computing derivatives at neighbouring
stress points [126] rather than at the particles themselves, where the derivative of

the kernels will always be zero.

Belytschko [9] showed that the traditional SPH method lacked even zeroth order

consistency. Improvements in the consistency and accuracy of the standard SPH
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equations have come via the introduction of kernel correction methods which enforce
the discrete consistency conditions. The normalised kernel SPH method [59, 169] and
the corrected SPH method (CSPH) [13,16, 18] are two such methods which enforce
first order consistency. Several other meshless methods have been developed in the
process, such as the element-free Galerkin method [11], reproducing kernel particle
method [81] and moving least-square particle hydrodynamics method [38,39] which
can enforce consistency upto any order. It has been proved by Kulasegaram [67] that
the kernel correction methods are identical to those of the RKPM and MLSRKPM.

The convergence of meshless methods is still not very well understood. Early results
from Moussa have proven the convergence of the SPH method for scalar, non-linear,
conservation laws [102,103]. These constitute the first rigourous convergence results

for meshless methods.

Formulations based upon combining particle based methods, such as SPH, with tra-
ditional mesh based approaches have the potential to utilise the best properties of
both methods. Mixed formulations for coupling SPH to the finite element method
have already been proposed by several authors [8,43,64] as a way to enforce essential

boundary conditions and for modelling fluid-structure interactions.

In the paper by Fernddez-Méndez [44] SPH particles are introduced locally into re-
gions where previously mesh degradation and element distortion had prevented the
finite element method from converging. The coupling of SPH with the discrete ele-
ment method has been used to model particulate flows where a viscous fluid contains
solid particles [32,107]. Such formulations show great promise for the biological and
environmental sciences where blood clots in arteries, or landslides and lava flows

could be more accurately modelled.

Over the last 25 years SPH has developed into a simple and reliable meshless method
which is capable of modelling complex physics and has been applied to a remark-
able variety of problems, across many different disciplines. These problems include
free surface flows [91], multiphase flows [110], viscoelastic flows [42], gas dynamics
and explosions [78,79], fragmentation and penetration [48,71], heat conduction [28],

material strength [73] and casting [29, 30].
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1.3 Scope of the thesis

This thesis presents several developments and improvements to the smoothed par-
ticle hydrodynamics (SPH) method. The scope of the work can be broadly divided

across four main objectives:

e To present a detailed study of the state of the art SPH method for the simu-

lation of incompressible free surface fluid flows.

e To investigate new methods for treating fixed boundaries in SPH that avoid

the need for uniformly spaced boundafy particles.

e To develop a variable resolution formulation of the SPH method and investi-
gate various particle refinement algorithms. The main aim being to implement
a general particle splitting routine that both improves the accuracy and re-

duces the computation expense required for large scale SPH simulations.

e To combine these developments into a single, flexible, variable resolution SPH

code incorporating the new dynamic particle refinement algorithms.

The remainder of this section constitutes a survey of the existing SPH research
concerned with the topics of incompressible free surface flow simulations and the

current adaptivity implementations in SPH.

1.3.1 Incompressible free surface flow simulations in SPH

Monaghan [91] was the first to apply the SPH method to the simulation of incom-
pressible free surface flows. Rather than working directly with the incompressibility
constraint he noted that in reality fluids such as water are compressible, but have
a sound speed that is considerably faster than the speed of the bulk flow. In this
way an incompressible flow can be simulated by a fluid which is more compressible
than a real fluid. To ensure the relative density fluctuations are only of the order
of 1% the Mach number of the flow must be sufficiently small. It should be notéd
that by reducing the Mach number, the speed of sound of the fluid will increase and
the stable timestep can be significantly restricted by the Courant condition. How-
ever, since this method is explicit and comparative methods often require several

iterations to converge this is not a great penalty to pay. Monaghan successfully
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modelled the breaking dam experiment of Martin [87], the formation of a bore and
the propagation of waves up a sloped incline in two dimensions. These problems

have since become the standard benchmarks for free surface simulations using SPH.

This artificial compressibility formulation of SPH is adopted and used as the basis
for the work contained in this thesis. A detailed description and several applications

of this formulation can be found in subsequent chapters.

With the same approach Morris [101] used SPH to simulate low Reynolds number
incompressible flows. Morris introduces an extra dynamic pressure term to the hy-
drostatic pressure in order to more accurately evaluate the pressure gradients of the
flows. He also suggests an alternative expression for artificial viscosity. The method
accurately simulated Poiseuille flows, Couette flows and the flow around a cylinder
with results in good agreement with the analytical solutions and comparative finite
element solutions. Sigalotti [117] and Takeda [123] later used the same formulation
to model the related 3D Hagen-Poiseuille flow in a capillary tube of circular cross-

section.

The fluid-structure interaction problem consisting of a rigid box sinking vertically
under its own weight into a tank of water has also been investigated by Mon-
aghan [99]. The motion of the box and the resulting solitary wave generated by
the displaced fluid are simulated using the SPH method. Particles were used to
describe both the fixed boundary of the tank and the moving boundary of the box,
as well as the fluid. The acceleration of the box was determined by the total force
acting on the box from the surrounding fluid particles. The fluid cavity formed
in the vicinity of the box as it drops and the height of the resulting wave were in

satisfactory agreement with the experimental data.

Problems involving interfaces between fluids of varying densities have also been sim-
ulated using SPH. Monaghan [94] modelled the flow of a fluid of one density under
the influence of gravity into a stratified tank consisting of two layers of fluid of
different densities. The simulations exhibited larger variations in density than the
experiments but the numerical results were still encouraging. The thickness and

velocity of the head of the gravity current were accurately predicted and the ampli-
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tude of the waves generated were in good agreement with the experimental data.

This approach was later refined by Colagrossi [34] to more accurately resolve inter-
faces between two fluids. The resulting SPH formulation remains stable even when
the density ratio between the fluids is small. This allows simulations of air-fluid
flows with interface breaking and air-entrapment. It has been successfully used to
model bubbles of fluid rising through another fluid with a density ratio of only 0.001
and a two-phase collapsing dam problem which incorporates the surrounding air and

accurately models the air entrapment as the wave breaks.

Shao and Lo [83,114] have implemented a predictor-corrector fractional step method
to enforce incompressibility in SPH simulations which is based on the SPH Projec-
tion method of Cummins [37]. The first step is an explicit integration in time which
generates intermediate particle positions and velocities without enforcing incom-
pressibility. The second, corrective, step is then applied to adjust the particle densi-
ties back to the initial constant values prior to the prediction step. The compromise
with this approach is that the pressure is no longer an explicit thermodynamic vari-
able, rather it is obtained through the solution of a pressure Poisson equation which
needs to be solved using a preconditioned conjugate gradient method. This approach
has successfully modelled the breaking dam problem, mud flows, the Rayleigh-Taylor
instability, and solitary waves breaking against a vertical wall and running up a plane

slope.
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1.3.2 Adaptivity and variable resolution SPH simulations

As previously mentioned one of the most promising features of meshless methods,
such as SPH, is the relative ease with which adaptivity and variable particle resolu-

tions can be introduced into simulations.

Several different formulations have been proposed which implement adaptivity of

one form or another into SPH simulations. These fall broadly into two categories:

* Adaptive smoothing length methods - whereby the smoothing length % and
the shape of the support of the kernel functions w can dynamically adapt

according to the relative motion of the particles.

* Particle refinement methods - whereby particles can be removed, added or

relocated in regions that satisfying given refinement criteria or error measures.

Adaptive smoothing length methods

In SPH the particle smoothing length 4 determines the resolution of simulations and
controls the number of neighbouring particles which contribute to the evaluation of

the material properties at any given point (see Figure 1.4).

Figure 1.4: Spherical kernel with varying smoothing lengths

Early implementations of SPH used spherical kernel functions with a constant, global
smoothing length. For large deformation problems it was soon noticed that in regions
of expansion particles would end up with too few neighbour particles; while in
regions of contraction particles would end up with an excessive number of neighbour

particles. This lead to unbalanced and unstable simulations.
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In general, particle smoothing lengths can be a function of space, time and the
relative motion of neighbouring particles. By adjusting the smoothing length intel-

ligently the accuracy and efficiency of the SPH method can be improved.

A review of the early applications using adaptive smoothing lengths can be found
in the paper of Monaghan [92]. In the initial investigations, rather than being a
constant global value, the particle smoothing lengths varied in time but remained
constant in space. The value of the smoothing length was adjusted in proportion
to the inverse of the average density of the simulation, A < 5~Y/¢ where d is the
dimension of the simulation. This resulted in a global smoothing length which grew

and contracted with the average density of the simulation.

Soon after, formulations where the particle smoothing lengths were evolved as a
function of both space and time were developed. In the simplest case smoothing
lengths were adjusted to ensure that the number of neighbours remained roughly
constant for each particle throughout the duration of the simulation. When each
particle has its own individual smoothihg length momentum is no longer conserved
since the interactions between particle pairs are not necessarily symmetric. There-
fore, conservation of momentum was enforced by generating a symmetric kernel for
each pair of particles by using the average of the two individual kernel functions

Wep = % (wq + wp).

When tfxe smoothing length is a function of space the spatial derivative of the kernel
function should include a term coming from the spatial derivative of the smooth-
ing length [1,92]. This introduces additional terms to the governing equations but
these have often been neglected since, in many cases, they have a negligible effect
on simulations. However, without these terms the equations of motion are no longer
conservative. By defining a functional form for the smoothing length, the spatial
derivative can be calculated explicitly and the terms included in the formulation.
It has been shown the inclusion of these terms has no detrimental effect to the
standard SPH method but can significantly improve energy conservation in certain

situations [105].

Bonet has recently introduced variable smoothing lengths into a variational formu-
lation of SPH [21]. The addition of variable smoothing lengths introduces extra

terms into the governing equations and results in a non-linear expression for the
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SPH equation for density. This equation for the density is solved by a Newton-
Raphson iteration procedure at each timestep. Despite this being computationally
more expensive than non-iterative techniques the new formulation was found to be
more accurate and required fewer particles than a standard SPH formulation. This
method has been successfully applied to simulations using the Lagrangian shallow-
water equations to model the collapse of a circular dam and flows over various
terrains [112].

In many problems the motion of particles can generate non-uniform distributions
where there are a greater number of particles in one direction than there are in
another. The occurrence of these anisotropic particle distributions has lead to the
development of several approaches which deform the support of the kernel functions
in order to adapt to the local particle distribution and the motion of particles (see
Figure 1.5).

Figure 1.5: Anisotropic kernels with neighbour particles

In the thesis of Schick [113] and the papers of Shapiro and Owen [106, 116] the
scalar-valued smoothing lengths h that characterise symmetric kernel functions are
replaced by an anisotropic smoothing tensor 7 that dynamically adjusts the shape
of the kernel function according to the motion and distribution of the surrounding
particles. These formulations have been successfully tested using shock tube prob-
lems in one and two dimensions [113]. More recently anisotropic kernels have been
used in impact and material sfrength simulations [76] and in astrophysics to help

model large scale gravitational collapse problems [106,116].
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Particle refinement methods

An alternative approach to adaptivity in meshless methods is by particle refinement
algorithms. In the absence of any nodal connectivity particles are free to be added
or removed without any of the implications of re-meshing. Throughout a simulation
particles can be dynamically added in regions where higher accuracy is required or

removed in regions of less interest.

Dynamic particle refinement is incorporated into the framework of meshless methods

in two stages:

e The first stage is the derivation of suitable refinement criteria with which to

identify candidate particles (or regions) for refinement.

e The second stage is the procedure by which the particles or nodes are added
into the simulation, ensuring that in the process the basic properties of the

simulation are conserved.

Particle refinement has been successfully introduced into the Element-Free-Galerkin
method (EFGM) [53] and the Reproducing Kernel Particle method (RKPM) [80].
In both these examples regions of high gradients are identified and used to specify
the areas at which nodes should undergo refinement. However, their refinement
criteria are quite different. Haussler-Combe [53] uses an a posteriori error estimate
based upon the interpolation error of the EFGM, whereas Liu [80] uses the theory

of wavelets to decompose the RKPM solution and identify regions for refinement.

In SPH particle refinement methods have been considered to be the more compli-
cated of the two refinement approaches. Consequently, only a comparatively small

amount of research exists in the literature.

Once a SPH particle has been identified as a candidate for refinement there are sev-
eral factors which need to be taken into account while devising a general procedure

for particle refinement:

e The distribution of the new particles needs to be chosen and any necessary

particle properties need to be assigned (eg— velocity, temperature).

e The mass of the original particle needs to be distributed between the new

particles in such a way that conservation of mass is ensured.
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e The addition of new particles will change the local density and velocity fields
in the region surrounding the original particle. Any such change should be

minimised by the refinement procedure.

e The smoothing lengths of the new particles should be assigned (reduced) to

correspond to the new particle distribution.

e Regions where fine and coarse distributions of particles interact will be a con-
sequence of the refinement process. Any refinement procedure needs to cope

with such regions.

e Where possible the global properties of kinetic energy and the linear and angu-

lar momentum of the system should be conserved by the refinement procedure.

Lastiwka [70] has developed a simple strategy for adaptively inserting and femoving
SPH particles in one dimension. Using a refinement criterion based on the veloc-
ity gradient, particles are added in regions where the velocity gradient is high and
removed were the velocity gradients are low. The new particle positions are then
iteratively adjusted to ensure an even particle spacing. Corrected kernels are used
to interpolate the necessary particle properties at the new locations and the particle
smoothing lengths and masses are adjusted according to the updated particle dis-

tribution.

This refinement algorithm was applied to the Riemann shock tube problem in one
dimension which showed some improvement with adaptivity over the standard SPH
method using a comparable number of particles. However, this approach has only
been implemented in one dimension and the refined distribution was found to be

unstable when applied without the addition of kernel consistency corrections.

Kitsionas [61] has also applied a particle splitting algorithm in SPH, this time
in three dimensions, to solve problems in astrophysics concerned with the self-
gravitating collapse of a region of gas. The refinement criterion used is based on
satisfying a physical requirement of the problem known as the ‘Jeans Condition’
which ensures that the resolution of the particle distribution is sufficient to capture

the known physics of the problem.

When refined, particles are replaced by thirteen child particles each positioned on

the nodes of a hexagonal lattice centred on the parent particle. The smoothing
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length of the child particles are fixed in proportion to parent particle and the mass
of the parent particle is equally distributed between each of the child particles. All
that remains is to calculate the optimal particle separation for the child particles

and Kitsionas [62] obtained values for this parameter in one of two ways.

The first approach was to use the particle separation which minimised the local
difference in density resulting from the refinement of a single particle. While the
second approach was to study the affect particle refinement had on a large collection
of particles. This was achieved by taking a large number of particles of very uniform
density and simultaneously refining them. The optimal particle separation was then
obtained as the one which corresponded to the refined distribution which took the
least amount of time to resettle back to a uniform density. The results obtained
from both these methods were inconclusive. It was found that the particle separa-
tion obtained from the second set of experiments helped lessen the global effect of
the particle refinement and as such these parameters were used in the subsequent

simulations.

Conclusion

While the above examples have made some progress towards understanding particle
refinement in SPH it is the author’s opinion that current research does not satis-
factorily address all of the necessary considerations that have been discussed at the
start of this section. In particular there has been no quantitative study into the er-
rors introduced due to the refinement of particles and consequently, there has been

no reliable way to assess the relative performance of a given refinement algorithm.

It is the aim of this thesis is provide a rigourous framework for the analysis of general
particle refinement strategies and to answer the important question of whether it is

possible to derive a fully conservative refinement algorithm for SPH simulations.
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1.4 Layout of the thesis

The remainder of the thesis is divided into the following chapters:

Chapter 2: SPH for fluid dynamics problems
This first chapter presents the fundamentals of the SPH method as applied to fluid
dynamics. Properties of the integral and summation approximations of a function
are derived and the concept of consistency is introduced in relation to the discrete
SPH equations. The various traditional forms of the discrete SPH equations for
Newtonian fluids are then derived. To complete the chapter the required equation

of state, timestepping schemes and nearest neighbour search algorithms are given.

Chapter 3: Corrected SPH and stabilization
The concept of kernel and gradient correction is introduced in Chapter 2. Constant
and linear consistency of the discrete SPH equations is enforced with the addition
of correction terms to both the kernel and its gradient. Hessian stabilization is
presented as a method to add higher order terms into the expression for the gradient
of functions and will be used later in Chapter 7. Finally, it is shown that with kernel
corrections the SPH method conserves both linear and angular momentum without

the restriction of uniform particle smoothing lengths.

Chapter 4: Variational formulation of SPH
In order to implement particle refinement into the SPH framework the underlying -
formulation must be able to cope with non-uniform particle masses and smoothing
lengths. In this chapter such a formulation is derived from variational principles. A
boundary contact force term is introduced in the process which will be developed
and implemented Chapter 5. The resulting expressions for the internal forces are
found to take the same form as those derived in Chapter 2. Finally, this variational
formulation is shown to conserve both the linear and angular momentum of the

system.
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Chapter 5: Boundary methods
In the past various different approaches have been used to implement boundary con-
ditions into the SPH formulation. In the first section of this chapter four commonly
used approaches are described and discussed: the bounce back method, image par-
ticles, penalty methods and Lennard-Jones potentials. In the remaining sections a
novel method for exactly calculating the variational boundary contact force derived
in Chapter 4 is presented. Several examples utilising this new contact force are given

and the accuracy of this new approach is verified.

Chapter 6: Adaptivity
The general principles of adaptivity in SPH are introduced in this chapter forming
the basis of a variable resolution SPH formulation. A simple refinement strategy
based upon particle splitting is developed and the concepts of density and velocity
refinement errors are defined. The density refinement error is then minimised with
the appropriate choice for the refined particle masses via the solution of a model
problem. This solution is shown to be independent of the initial unrefined particle
mass and smoothing length. Conservation properties of the refinement process in
SPH simulations are discussed and it is proved that there is only one fully conser-

vative velocity configuration that the refined particles can take.

Chapter 7: Refinement simulations
In this chapter all the essential ingredients are brought together and incorporated
into a single, flexible variable resolution SPH code including dynamic particle re-
finement. Four two dimensional fluid flows are then used to validate the refinement
procedure and the new boundary contact force implementation. The accuracy of the
refinement procedure is first investigated using the Couette and Poiseuille flows for
which analytic solutions are available. The second set of simulations consist of two
more complex flows; the first example models the flow separation through a funnel

while the second models an emptying tank with two small outlets on its side.

Chapter 8: Conclusions and future research
To conclude, the implementation of dynamic refinement into the existing SPH frame-

work is assessed and summarised, including recommendations for future research.
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SPH for fluid dynamics problems

2.1 Introduction to SPH

Developed over twenty years ago, Smoothed Particle Hydrodynamics (SPH) is one
of the most established meshless methods. SPH is a simple and robust numerical
method which has been used to solve a remarkable variety of problems in the field

of computational fluid dynamics.

This chapter provides an introduction to the fundamentals of the SPH method and
describes the procedure for the discretization and solution of general partial differ-

ential equations using the SPH formulation.

The reproducing kernel approximation of a function, from which the discrete SPH
approximations are derived, is introduced as the basis of the SPH method. Im-
portant properties of the kernel functions are presented. In particular, the kernel
consistency conditions which ensure the consistency of the integral approximations

are emphasised.

By directly applying the integral and summation approximations, the traditional
discrete SPH forms for the continuity, momentum and energy equations for Newto-

nian fluids are derived.

The chapter concludes by presenting the required equation of state, timestepping
schemes and nearest neighbour search algorithms necessary for the simulation of

incompressible fluid flows using SPH.

25
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2.2 Integral approximation

Smoothed Particle Hydrodynamics (SPH) is based on the simple integral identity
/ x)y=//V)6 (x- x) dx!

DC X = X’ (2-1)

\
where d (x —x ) = < (Dirac delta function).
/[ 0 x/~x

By approximating the delta function by a suitable kernel function the reproducing

kernel approximation of an arbitrary function / is obtained as

</(x)>=Jf x)w X ~X>n)ax' 2.2)

n
where (¢) denotes the reproduced function approximation, w (x —x', /) is the ker-
nel function and % is the smoothing length (or dilation parameter) that defines the
domain of influence of the kernel (see Figure 2.1). Kernel functions play a vital role

in the SPH method and so will be discussed in greater detail in Section 2.4.

(x-x\h)

* 2h .

Figure 2.1: Reproducing kernel approximation of / over the whole domain

In general (/ (x)) f (x) since an error term will be introduced due to the substi-

tution of the kernel function w in place of the Dirac delta function.

(/ x)>=/7 (&) +E(f x) (2.3)

where E (f,x) is the error introduced in the approximation of / at the point x.
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It will be shown that if the kernel function is even, normalised, and has compact
support then the reproducing kernel approximation is second order with respect to

h [45,92]. That is, for some small bounded constant ey,
|E(f,x)| < exh®. (2.4)

Integral approximation of the gradient of a function

By applying the definition of the reproducing kernel approximation to the gradient

of scalar function f and by invoking Gauss’s theorem yields

(Vf (%)) / Vo f () w (x — X', b) dx’ (25)
9]

/ f)w(x—x,h)ndS - / f (¥') Veew (x — X', h) dx'. (2.6)
on Q

Assuming that the kernel w has a compact support then the above integrals are
taken only over the region where w # 0. If x is sufficiently far away from any
boundaries so that the support of w is entirely contained in £2 the contribution from

the surface integral is zero and
(Vf(x)) /f (x') Vew (x — X', h) dx’ (2.7)

It can be seen that the integral approximation has transferred the gradient op-
eration from the function onto the kernel. In addition, if w is an even function
w(x—x',h) = w(x'—x,h) then Vyw (x —x',h) = —Vyw (x — x/, h) and the ex-

pression for the integral approximation for the gradient can be simplified to

(Vf (x /f wx—x,h)dx' | = V(fx). (2.8)

Integral approximation of the divergence of a function

The reproducing kernel approximation of the divergence of a vector function F can

be derived by applying the Divergence theorem to the vector identity
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V- -(aF)=a(V-F)+F-Va to give

V-F(x) = / (Vo - F ()] 0 (x — %, h) dx’ (2.9)
Q
- /F(x’)w (x— k) n dS — /F(x’)  [Vw (x — %, B)] dx’
N Q
= — /F (x’) [Vyww (x = X', h)] dx. (2.10)
Q

As before the expression for the integral approximation for the divergence can be

simplified if the kernel function is even to give

(V-F(x)) = Vy - /F(x’)w(x—x’,h) X =V (Fx).  (211)
Q

Integration approximation of a product of functions

Finally, using equation (2.3), the product of reproducing kernel approximations

(f){g) is given by

(f){9)

(f+E(f)(g+E(g))
= fg+9E(f)+fE(9)+E(f)E{(g)
(fg) —E{fg)+gE(f)+ fE(g9)+ E(f) E(g). (2.12)

In other words to within the order of accuracy of the method the product of repro-
ducing kernel approximations is equal to the reproducing kernel approximation of

the product.
(Fg)=(f){q)- (2.13)

In summary, the reproducing kernel approximation operator {-) is linear (and com-

mutative) and as such it satisfies the following properties

(it o) = (f)+{f), (2.14a)
(fufa) = (f){fa), (2.14b)
{cfi) = c(f), (2.14c)

(Vi) = V{H, (2.14d)
(V.-F) = V.(F). (2.14e)
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2.3 Summation approximation

In order to develop a practical numerical scheme equation (2.2) is discretized to give

(/(x))~A(x) = "~ VY xOw (x- xbhb
beMx
= vif (X&) wb(x, hb) (2.15)
be Mx

where Vbis a volume associated to the point b and wb(x, hb) = w (x —x*, /p) is the

kernel based at point b with corresponding smoothing length /i&

Here Mx is the set of neighbouring points that contribute to the summation. Choos-
ing a kernel with a compact support means that Mx will be finite and the summation

will be over a small number of neighbouring points only, as shown in Figure 2.2.

Figure 2.2: Summation approximation of / at point x

In particular the interpolation of the density p (x) of a continuum is given by

ph(x) = ~ mbwb(x, hb), mb= Vip (x6). (2.16)

beMx

An expression for the volume derived from Monte-Carlo theory [95] is given by

F'l= w (x0 “ X hb). (2.17)

beMa
Due to the Lagrangian nature of SPH these interpolation points can be interpreted
as discrete particles moving with the continuum in question. The material response

can therefore be visualised by tracking these moving interpolation points.
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With this interpretation a given point (or particle) has an associated mass density

p (xa) and the volume Va associated with particle @ can be expressed as

vao (2.18)
P(Xa) '
Writing (2.15) in terms of shape functions gives
fh(x) = "2 f xX&Nb(xP Nb(x)= Vbwb(x, hb). (2.19)
6GMy

The gradient of fi is now obtained from the point values of the function in terms of

the gradient of the SPH shape functions

VA (x)= £ / (xBVNb(X), VNb(x)= VbVwb(x, hb). (2.20)
belM

Unlike their finite element counterparts SPH shape functions do not possess the in-
terpolation property given by Nb(xa) = Sab. Consequently, SPH approximations do
not exactly interpolate the solution at particle points f4 (x*) f (xb) and Dirichlet
type boundary conditions are not naturally incorporated in SPH formulations (see

Figure 2.3).

fdx)

Figure 2.3: SPH interpolation of a function /

In general fh (x) (f (x)) since another error term has been introduced by the

pointwise approximation of the integration in equation (2.15)

M) = (/ X))+ Eh(/,x) (2.21)

where Eh (/, x) is the error introduced in the approximation of (/) at the point x.
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When convenient the summation notation will be simplified from

Z(...) to Z(...) (2.22)

be Mx b

with the understanding that the summation over b is over all contributing interpo-

lation points in the vicinity of x.

2.4 Kernel functions

In the previous sections some results depended on the assumption that the kernel w
was an even function with a compact support. Theoretically there is no restriction
to the choice of kernel function used in SPH. However, in normal practice there is a

minimum set of requirements that need to be met [46].

A wide variety of kernel functions have been used in SPH. The most common kernels
being spline or Gaussian based functions. The choice of kernel function can be
likened to the choice of discretization in finite difference methods and the smoothing

length can be interpreted as varying the element size in finite element methods.

e Compact support

All kernel functions in this thesis are assumed to have compact supports defined by
w(r,h) =0 when r=|x—x'|| > Kh (2.23)

where K is a constant. It is common to take K = 2 and the smoothing length
h = a x n where a = 1.2 — 2.0 and 7 is the average initial particle separation. The

importance of the smoothing length will be discussed further in Section 2.4.3.

Consequently, due to the compact support of the kernel function the whole domain
2 in equation (2.2) can be replaced by the support of the kernel function based at
the point x denoted by B (x, Kh) (typically, a ball of radius Kh centred about the
point x) '
(f (%)) = / F(x)w(x — X, b) dx'. (2.24)
B(x,Kh)
This has the effect of reducing the integral approximation from a global approxima-

tion to a local approximation.



Chapter 2: SPH for fluid dynamics problems 32

Gaussian based kernels do not have a compact support so in theory all particles
contribute to the summation approximation of a function. In practice Gaussian
kernels are truncated since they satisfy w (r) — 0 as r — oo and contributions from

particles sufficiently far away can be ignored without consequence.

e Even

An even kernel ensures that all equally spaced particles with identical smoothing
lengths will interact symmetrically. This property has already been used to simplify
the integral approximations and where possible it will be used to simplify the discrete

governing equations under the assumption of uniform smoothing lengths.

e Positive and monotonically decreasing

The kernel function should be a strictly positive-valued and monotonically decreas-
ing function. Positivity of the kernel function ensures that the summation approxi-
mation of a function is formed from an average of positively weighted point values
which results in a physically meaningful numerical method. While a monotonically
decreasing kernel function ensures that the strength of interaction between particle

pairs decreases as the particle separation increases.

e Delta function limit

To ensure the reproducing kernel approximation approaches the desired function as

the smoothing length is reduced

lim (f (x)) = £ (x) (2.25)

it is essential for the kernel function to approach the Dirac delta function as the

smoothing length is reduced (see Figure 2.4)

’llirr(l)w (x—x,h)=0(x—x). (2.26)
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Figure 2.4: ID Quintic Spline Kernel for # = 1.0, 0.5, 0.25

* Consistency

In order for the reproducing kernel approximation to exactly approximate constant
functions the following zero order consistency condition must hold
(1) = J lew(x —x', h)dx' = L (2.27)

a
If the integral of the kernel over the domain is normalised such that it is equal to 1

then the kernel is said to satisfy zero order consistency
J w(x —x', h)dx'= 1 (2.28)
a

Higher order consistency can be satisfied with a careful choice of kernel function.

For example in the 1-D case a Taylor series expansion about x yields

JO)=/0)+O-.,/'0)+ 0 -x2"0)4— + (229
Substituting the above expression into equation (2.2) gives
(/70)) =/0) J w((x —x')dx'—f 0) J 0 —x)w0 —x")dx'+ (2.30)

n a
If the following consistency conditions are satisfied

(2.31a)
d

J x™W (x)dx =0 for 0<j "k (2.31b)

then the reproducing kernel approximation is said to be of
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In this case (f (z)) = f (z) for any polynomial function of degree less than or equal
to k and the reproducing kernel approximation satisfies
1

(@) =F @)+ 5

FED () O (RFH). (2.32)

When the point integration is applied to the reproducing kernel approximation as
in equation (2.15) any consistency conditions the kernel may have possessed will no
longer be satisfied exactly by the discrete summation approximations. In Chapter 3
simple and effective methods for improving the accuracy and consistency of the

discrete SPH equations are presented.

2.4.1 Evaluating the gradient of the kernel function

In general kernel functions are written in the form
w(r,h) = —f(r), r=|x—x'|| € [0, Kh] (2.33)

where a4 scales the kernel function to enforce the zero order consistency condition

and d is the number of dimensions.
wy (X, k) :=w (X —Xp,h) = wy (r) where 7%= (x—x)-(x—x%). (2.34)

The gradient of the kernel function in terms of r is calculated from

Vs (r) = %Q%Vr (2.35)

where Vr is obtained from the identity V (r2) = 2rVr = 2 (x — x3).
The final expression for the gradient is obtained as

Vay (r) = %%;ﬁ (% — x3). (2.36)

2.4.2 Example kernel functions

The Gaussian and quintic kernel functions with their corresponding normalising
coeflicients a4 for one, two and three dimensions are given below. Graphs of these

kernels and their derivatives are plotted in Figure 2.5.
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Gaussian kernel : Quintic kernel

Figure 2.5: 1D kernel functions with A = 1 (derivatives shown in blue.)

Gaussian kernel function

The Gaussian has been a popular choice for kernel function since it is infinity differ-
entiable and the derivatives share the same exponential form. However, it doesn’t
have a compact support so in practice the kernel domain is truncated.
~\2
w(r,h) = ag e~ (%) r 20,
2.37)
dw _(z\? (
a—;(r,h)=ad <_E5€ (%) ) r =0,

1
where aip=— Qop = —5— Qsp = .
VTh '’ her ' h3rs

Quintic kernel function

The quintic kernel function is a fifth order spline based kernel function and is used

in all of the simulations presented in the later chapters of this thesis.

[((2-1)°-16(1-%)° o0<r<h

w(r,h) = aq < (2—%)5 h<r<2h,
\ 0 r > 2h
( \ \ (2.38)
. 2e-peR0-p' o<r<h
Lem=ad  Ee-p'  h<r<om.
| 0 r > 2h
1 3 7

h = — = —— = —_———
Where  onp = 7Jep 0 @20 T qgpay 0 N80T yapan
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2.4.3 Smoothing length

The ability to have smoothing lengths that vary in both space and time is one of
the attractive properties of SPH. The kernel functions in SPH provides a means
to transform the point mass description of the continuum into a continuous repre-
sentation. The smoothing length h governs the support of the kernel function and

consequently the amount of smoothing that is applied to the SPH particles.

It is common to choose the initial smoothing length to be proportional to the mean

inter-particle distance h o 7. In two and three dimensions this is given by

h=af where 7= \/% in2D or 7= \3/% in 3D (2.39)

where « is a constant typically a ~ 1.2 — 2.0, N is the total number of particles in

the simulation and A (or V) is the initial area (or volume) of the problem domain.

In problems where a large amount of compression or expansion occur the number
of neighbours of a given particle may change as the problem evolves. In such cases
it is necessary for a particles smoothing length to evolve as required. A particle
under compression may have an excessively large number of neighbours making the
method computational inefficient, therefore a reduced smoothing length would be
desirable. While a particle with too few neighbours would benefit from an increased

smoothing length in order to keep the solution to within the desired accuracy.

A simple way to evolve the smoothing length of a particle in space and time is to

adjust h, according to its current density.

1
d
ha = ho (?) (2.40)

where hg is the initial smoothing length of the particle, po is the material density
of the particle, p, is the current density of particle a, and d is the dimension of the

problem.

An inconsistency arises here since the particle density p, is itself a function of the
smoothing length and is therefore highly non-linear. A solution to this problem is
to calculate the density and then update the smoothing length, repeating this until
the values converge [111]. This may take several iterations per particle to occur and

so can be inefficient to implement.
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Generally, a small smoothing length relative to the particle spacing results in ir-
regular oscillatory interpolation, while a large smoothing length results in excessive
smoothing of the interpolation. This can be seen in Figure *26 which shows the
resulting interpolated density for several different values for the smoothing length.

The theoretical continuous density distribution should be constant p = 1.

0.8

0.6 0.6
0.4 0.4
0.2 0.2

0.6
0.4

0.2

Figure 2.6: Density profiles for different values of smoothing length (& = 1.0, 2.0, 5.0)
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2.5 Discrete SPH equations for fluids

Discrete SPH equations are not unique and different forms can derived using a va-
riety of different approaches. In this section the three governing equations of fluid
dynamics are discretized by directly applying the integral and summation approxi-

mations as defined in this chapter.

In Chapter 4 it will be shown that the same discrete equations can be derived by

following a corresponding variational approach.

2.5.1 Continuity equation

The density can be calculated in two ways. The first and most simple method is to
directly apply the summation approximation to the density field. While the second

method calculates the derivative of the density using the continuity equation.

Direct density evaluation

Applying the summation approximation directly to the density field yields
(p(xa)) = > Vipsws (Xa, ho),
b

Z MpWp (Xa, hp) (2.41)
b

Q

Pa

where wy, (Xq, bp) = w (Xq — X, hp) and hy is the smoothing length associated with

particle b.

From now on the = and (-) symbols will be dropped and replaced by = with the un-
derstanding that the discrete SPH equations only approximate the governing partial

differential equations.

Continuity method

Two different forms for the rate of change of density can be derived from the conti-

nuity equation which in continuum form is given by
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When the divergence of velocity term in the continuity equation is discretized using
the SPH approximation p, = —p, (V - v,) the first discrete SPH equation for p is

obtained as
Pa=—pa ) Vevs~ Yy (Xa, ). (2.42)
b

An additional velocity difference can be introduced into the above equation for p
by noting that to within the order of accuracy of the approximation the following

summation vanishes

(V1) = / 1x Y (x — X, B)dx ~ 3 ViV (x,hg) # 0. (2.43)
o b
By adding this zero term, povq - > Vo Vs (Xq, kb)) to equation (2.42) gives a second
b
form for p
= Pa Z Vi (Va — Vo) - Vs (Xa, hs). (2.44)

It will be shown in Chapter 3 that if the kernel function w has been corrected then
equation (2.43) will be exactly zero and these two discretizations of the continuity

equation are identical.

The second derivation uses the identity p = —p V-v = — (V - (pv) — v - (Vp)) which
results in the SPH approximation g, = v, - (Vp,) — (V - (pov,)) for the continuity

equation and the following discrete form is obtained
pa = Vg Z prbVwb (Xay hy) — Z Vs (06V) - Vs (Xa, ho)

= Z mb — Vb Vwb (Xa, hb) (245)

The smoothing property of the continuity equation

As particles approach each other their relative velocities and Vwj (%4, hy) will be
negative and as such will add positive contributions to g,. If in total p, > 0 the
particle’s density will increase. This will lead to an increase in pressure through the

equation of state which in turn pushes the particles apart.

It is this interplay between velocity and density/pressure that ensures an approxi-

mately uniform density field and that particles remain on average equally spaced.
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Equivalence of continuity and direct density formulations

It was noted by Vila [127] that the two density discretizations given by equation

(2.41) and equation (2.45) are equivalent. Writing both as functions of the current

time t gives

pal) = S (e (1),
b
Pa(t) = Z my (Va (1) = v (8)) - Vo (ras ()

where rg, (t) € [0, Kh] and 72, (t) = (X4 (£) — %5 (£)) - (x4 (£) — %5 (2))-

Differentiating equation (2.46) with respect to time gives

d drey dw

po(t) = 5 () = ;mb% 0w )] = S m 2t

This can be shown to be equal to equation (2.47) by substituting

dray _ (%o (t) =% () - (Va () — v (2))
dt Tab

and
1 dw
Vw (rep) = ;{; T

(Xa — Xb)

into equation (2.48).

More precisely, it has be shown that for any constant K € R

F = myw (Tap (t)) + K .
Z v where F = f.

b
fo= = my(ve(t) = va(t): Vo (ras (t))
b

By the fundamental theorem of calculus

| / F($)ds = F(t) = F(to) = 3 mutw (ras (8) — S matw (rap (t0))-
; b b

Therefore,
o (t) = pa (to) = 3 ma (s (8) — %
b

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

Thus, the two formulations will coincide when the initial density distribution is

chosen to be
Pa (to) = Z myw (Te (t0))  for each a.
b

(2.54)

In practice due to the explicit time integration of the ordinary differential equations

one should expect to obtain different numerical results from each formulation.
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2.5.2 Momentum equation

This section will derive the discrete SPH forms of the momentum equation which in
continuum form is given by

%% _ % V.o. (2.55)
When the momentum equation is directly approximated by v, = pia (V-0o,) the

following discrete SPH equation is obtained
1
Va = p— Z VbcrbVwb (Xa, hb) (2.56)

Using equation (2.43) the equation can be symmetrized by adding the zero term
o2 Y- VsVw, (Xa, he) to give
b

) 1
Vo= > Vi (00 + 0b) Vy (Xa, hy). (2.57)
)
Another form for the discrete momentum equation can be derived using the vector
identity
v=1v.o=v (1 a)+1 o (Vo) (2.58)
=-V.-e=V.|- — . .
p p p?

Applying the SPH approximations to the gradients terms gives

Vo= <v- (i a)> + = 0u(V) (2.59)

a a

and the final form of the momentum equation is obtained as
. Oy O,
Vo = ) Vbszb (Xa, ho) + el > Ve Vup (%a, o)
b a p

o O,
= Z mb—gbVwb (Xa, hb) + Z mb—2Vwb (Xa, hb)

Vo = Som ("—; + "—2") Vwy (Xa, o). (2.60)
b Pa Py

2.5.3 Discrete stress tensor for Newtonian fluids

In order to apply the SPH momentum equations the particle stresses also need to be
formulated in the discrete SPH framework. In this section the discrete SPH equation

for the stress of a Newtonian fluid is derived.
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In this case the stress tensor can be decomposed into
o=-PI+o (2.61)

where P is the isotropic pressure and o’ is the deviatoric stress.

For Newtonian fluids the deviatoric stress is proportional to the deviatoric rate of

deformation tensor d’ via the dynamic viscosity p
o' =2ud'. (2.62)
The deviatoric rate of deformation tensor d’ is defined by

d=d- % (V-v)I where d=z(Vv+VvT). (2.63)

N | =

Applying summation approximation to each gradient term in equation (2.63) gives

2d], = Vivy ® Vg (Xa, b)) + D VoV (Xa, 7o) ® Vi
b b

2
—é- (Z %Vb . Vwb (Xa, hb)) I
b

By subtracting multiples of the zero term given in equation (2.43) from equation

(2:64)

(2.64) we arrive at an SPH formulation for the deviatoric rate of deformation tensor

written in terms of the velocity differences vy, = v, — v, given by

2d, = 3 VoVea ® Vi (Xa, ) + > VoVt (Xa, ) ® Vi
b b

2
-3 (Z ViVea - Vo (Xq, m)) L
b

The evaluation of the 3 (V - v) I term can be simplified by noting that V-v = tr(d)

(2.65)

which can be calculated directly from the SPH approximation of d.

Therefore, with these formula for the particle stresses the momentum equations for

a Newtonian fluid can be written in full as
. 1
Va = - > Vi (00 + 03) Vwy (Xa, hy)
a p

. o, O
V, = Z my (—? + ;;) Vwb (Xa, hb)
b

Pa b

where o = —PI+2ud’.  (2.66)
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2.5.4 Energy equation for Newtonian fluids

This section will derive the discrete SPH forms of the energy equation which in

continuum form is given by

De 1

—=-0:Vv. 2.67
In the case of Newtonian fluids equation (2.67) may be rewritten in terms of the

deviatoric rate of deformation tensor by noting that d’ : Vv =d’: d’ to give

De P 2 .,
—ﬁz = —;Vv+7dVv
2
_ ®a.a-Ly.y (2.68)
p p

The first term of equation (2.68) can be approximated with the previously derived
SPH equation for d'.

The second term of equation (2.68) can be approximated by using either one of the

discrete SPH equations for the continuity equation by noting that

P P P Dp
V. v=—(—pV -v)= ==L . 2.
va p2( pV - v) 7 Di (2.69)
Continuity method I
Using equation (2.44) for p gives
g, Vo = L > Vo (Va = Vs) - Vi (Xa, hp).- (2.70)
Pa Pa
While noting that
—gv v = % (v-VP— V.- (Pv)) | (2.71)
gives an alternate discretization of the form
P, 1
—oVeve = (va Y ViPVwy, (Xa, o) = Y Vi (Pvs) - Vay (Xa, hb))
a a b b
1
= > VP, (Vo — Vi) - Vg (X, hy).- (2.72)
)

Taking an average of equation (2.70) and equation (2.72) gives a symmetric formula

for the pressure work given by

P, 1
_ZV Va5 Xb: Vo (Pa+ Bb) Vab - Vwp (Xa, h) (2.73)

where vy, = Vg — V.
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Continuity method II

Using equation (2.45) for p gives

P, P,
—p—V “Vg = rl Zmb (Vo — vp) - Vo (X4, ). (2.74)
a a

While noting that

‘%V V. T (%) _v. (.1;‘,) (2.75)

gives an alternate discretization of the form

Vv = o VetV (s he) — Y Ve (ﬁvb) -V (%, hy)
a b b b

P,
= Zmbp_g (Va — V3) - Vawy (Xq, hy). (2.76)
b b

Taking an average of equation (2.74) and equation (2.76) gives a symmetric formula

for the pressure work given by

P, 1 P, P
_p—v C Vg = 5 Z my (? + p—g) Vab - VW (Xa, hb) (277)
a b

where v, = v, — V.

In this way two symmetric forms for the evolution of the total internal energy are

given by
De 21 1
Dt = paa d;:d; + 2_;%;‘/”(1% + By) Vab - Vwp (Xa, ) (2.78a)
De, 2q

1.y 1 Pa Pb
b = L (Y (?+?) Vay - Vup (Xarhy)  (278b)
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2.5.5 Equation of state

The final element is an equation of state which relates the pressure to the density

of the fluid and closes the above system of equations.

In order to apply explicit time integration schemes in SPH it is necessary to assume
that the fluid is slightly compressible. This is a reasonable assumption since all real
fluids are compressible to some degree with a sound speed much faster than the bulk

flow of the fluid. This is measured by the Mach number which is defined as

M= ”"bc"‘k” (2.79)

where ||[vpux|| is the bulk flow speed and c is the speed of sound. Values of M < 0.1

imply a mostly incompressible flow behaviour.

It has been argued by Monaghan [91] that in order for relative density fluctuations
to be less than 1% the Mach number should be between 0.1 & 0.001 which for a

fluid flow with maximum velocity vmax results in a sound speed ranging between
c= M ||Vaax|| = 10||Viax|| «— 1000 || Vimax]| - (2.80)

The equation of state used in this thesis is the same as given by Batchelor [7], but

modified for fluid flow simulations in SPH

P, =P ((%)7 - 1) (2.81)

where P, is the pressure of particle a, pg is the material density and p, is the density
of particle a. + is the fictitious ratio of principle specific heats (taken as 7 for water),

and Py is an artificial isothermal bulk modulus.

The speed of sound for a fluid with an equation of state given by equation (2.81) is

_ [
c= o (2.82)

Combining equations (2.80) & (2.82) gives a simple equation for P, which will ensure

given by

only small variations in density

(M Vs )2
Y

Py = (2.83)
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2.6 Timestepping schemes

Timestepping schemes both explicit and implicit can be implemented into SPH
codes. The superscripts denote the timestep at which the variable in question is

evaluated and time is updated by the relation t**! = ™ + Af"*1,

Continuity Equation

If the continuity approach is used to evaluate the material density the time derivative
can be calculated by the forwards difference approximation to p,
741 7

o P —p

In conjunction with equation (2.45) this gives

Pt = o + At (Z my (Vg = v5) - VY (x5, hb)> : (2.85)
b

Alternatively, noting that the solution to the linear ordinary differential equation
& (t) = Az (t) with initial condition z (t,) = o has the solution z (t) = zeeAt~%).

In conjunction with equation (2.44) the density can be updated by

n+1 (3

ATV (vE—VE ) Vws(x3,hs)
pa = pa € b *

(2.86)

Momentum Equation

In this thesis a simple leap-frog scheme has been implemented to update the particles
position and velocity as shown in Figure 2.7.

1
The intermediate velocity of particle a of the current timestep denoted by VZ+2 is

estimated by

n+%

1
vo 2 =vypT? 4 Atay (2.87)

where At = 1 (At™+ At"*1) is the average of the current and previous timesteps

and a? is the current acceleration. The scheme is initialised by first calculating
1

vé = v2+ 1At'al. This estimate for the velocity at the midpoint of the timestep is

then used to update the position of particle a by

1
Xt = X7+ At Hvg T2 (2.88)
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Timestep: («-1)th

Figure 2.7: Leapfrog time integration scheme

The leap-frog scheme is O (4t3) and computationally very efficient since it avoids

n+1
the need to calculate particle accelerations aa 2 at the midpoint of each timestep.

Timestep Calculation

The length of the timesteps are calculated in accordance to the Courant-Fredreichs-
Lewy stability condition [35]. This states that the computational domain of depen-
dence of the numerical scheme should include the physical domain of dependence.
In other words the maximum speed of numerical propagation must exceed the max-

imum speed of physical propagation.

In SPH applications this results in the timestep being proportional to the smallest

particle smoothing length Amin and the timestep is calculated by

At = CFLoe -4 = - — i’ 2.89
max (ca+ lvall) (2.89)

where CFL E (0,1] is a constant, typically CFL w 0.1 —0.2. ca is the sound speed
of particle a given by equation (2.82).

It should be noted that increasing the speed of sound by reducing the Mach number

M will significantly restrict the maximum stable timestep.
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2.7 Nearest neighbour search algorithms

For grid based numerical methods the relative position and connectivity of the nodes
remains fixed throughout a simulation. In SPH this is not the case. Neighbouring
particles within the support of a kernel function will generally change as the problem
evolves. These are known as nearest neighbour particles and need to be calculated

for each particle at every timestep.

All particle interactions can be found by simply looping over all other particles
and checking if the distance between them is smaller than the smoothing length of
the particle. However, the complexity of this approach is O (n?) which for large

simulations consisting of thousands of particles is prohibitively slow.

In this section two efficient methods commonly used to calculate nearest neighbour

particles are described.

Grid based searching

The complexity of the nearest neighbour particle search can be reduced to O (n)
with the introduction of an underlying search grid and associated linked-list data

structure.

An underlying grid covers the computational domain and is sufficiently large to
contain all simulation particles. The cells of the grid are at least 2k in diameter and
are identified by a unique cell number. In this way each particlé need only check
its neighbouring cells in order to identify all nearest neighbour particles as shown in
Figure 2.8. The cell number for each particle is assigned and most efficiently stored
in a linked-list structure with particles contained in the same cell chained together

to minimise storage.

The efficiency can be increased further if a constant smoothing length is used since
all particle interactions will be symmetric so particle pairs need only be checked
once and the relevant contributions calculated and added to both particles. Under
this assumption only five out of the nine cells need to be checked in two dimensions

and 14 out of the 27 cells in three dimensions (see Figure 2.8).
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Figure 2.8: Search grids in 2D. Full grid (left), reduced symmetric grid (right)

Consequently, the grid method is particularly effective for simulations using a con-
stant smoothing length. However, its efficiency will be reduced for simulations with
variable smoothing lengths since the required cell width will not be optimal for all

particles.

Tree based searching

The second method for nearest neighbour particle searching is to use ordered tree
based data structures to store particle positions and to efficiently search the compu-
tational domain for neighbouring particles [20,54,76]. These approaches are better
suited for large problems with variable smoothing lengths and can reduce the com-

plexity of the nearest neighbour particle search to O (nlog (n)).

Tree methods recursively bisect the problem domain into smaller subregions with
particles inserted into the tree according to the subregion in which they reside. In
this thesis the alternating digital tree (ADT) method [20] is implemented using a
binary tree. Each node of the binary tree contains a single particle and has an
associated left and right link. These links can either be empty or link to a node
on the next hierarchy level of the tree structure. In this way each node of the tree
can link to at most two other nodes. Consequently, this bisection process is easily

represented by a binary tree as shown in Figure 2.9.
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Figure 2.9: The binary tree bisection process in 2D

The root of the binary tree represents the entire computational domain. In two
dimensions, bisecting the domain in the vertical direction results in two subregions;
these left and right regions are assigned to the left and right links respectively. Each
of these subregions can then be bisected in the horizontal direction and the resulting
subregions assigned to the corresponding links at the next hierarchy level. In general
N dimensional space the process continues indefinitely by choosing the bisection di-

rections z,,Zs, -+ , Ty in cyclic order.

Each particle is systematically added to the tree and lies inside the region corre-
sponding to the node where it is stored. In this way the tree is built by first placing
a particle at the root of the tree. Then subsequent particles are added by following
the tree downwards until an empty node is reached; taking left or right branches

according to whether the particle lies in the corresponding left or right subregion.

It is this geometric structure of the binary tree that reduces the cost of searching
a region of the computational domain for particles. If the associated region of a
given node k fails to intersect the search region then the complete set of particles
contained within the entire subtree with root at node k¥ can be disregarded from the

search.

In this way the tree structure can be systematically searched as follows. First the
coordinates of the particle in the current node are checked to see if they are inside
the search region. Then, if the left link is not empty and its corresponding region
intersects the search region the left subtree is checked. Similarly, if the right link is
not empty and its corresponding region intersects the search region then the right

subtree is checked.
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2.8 Concluding remarks

This chapter has introduced all the theory required to produce a simple, fully func-
tional SPH code for the solution of incompressible free surface fluid flows. The
various stages of a typical SPH implementation are shown in Figure 2.10 with ref-

erences to the relevant equations given in this chapter.

The only notable omission in the discussion has been the various methods which
can be used to implement boundary conditions in SPH simulations. This has been
deferred to Chapter 5 where a number of different approaches will be presented in
detail.

In the next chapter several techniques will be introduced which improves the accu-
racy and stability of the basic SPH equations while maintaining their simple form.
With these corrections it will be shown that the discrete SPH equations conserve

both the linear and angular momentum of the system.

e [Initialise particle properties.

Begin timestep :

e Calculate timestep At (eq. 2.89)
e Identify particle neighbours (sec. 2.7)
e Update densities p, (eq. 2.85 or eq. 2.86)
e Update volumes V, (eq. 2.18)
e Update pressures P, (eq. 2.81)
e Calculate deviatoric stress tensors o, = 2ud, (eq. 2.65)

e Calculate body forces (eg. gravity g)
e Calculate boundary forces ~ (ch. 5)
e C(Calculate particle accelerations a, (eq. 2.66)
e Update particle velocities and positions v,, x,  (eq. 2.87 & eq. 2.88)
e Update current time ¢ =t + At
e Output particle data
End timestep

o if (t < ts0p) then continue next timestep
o if (t > tstop) then STOP

Figure 2.10: Numerical algorithm of a standard SPH code
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Corrected SPH and stabilization

3.1 Introduction

In this chapter several methods which improve the accuracy and stability of the

traditional SPH equations are introduced.

Correction terms are added to the kernel function in order to enforce consistency
of the discrete summation approximations. First order correction terms ensure that
any linear or constant function will be exactly reproduced by the summation ap-

proximation.

Unfortunately, the expression for the gradient of the corrected kernel is complicated
and computationally expensive to evaluate. Instead, the gradient of the kernel is

directly corrected to ensure first order consistency of the gradient of a function.

In Chapter 7 it will be necessary to introduce additional higher order terms into
the expression for the corrected gradient of a function. This is achieved with the
introduction of an extra Hessian term in the gradient of the kernel function and

results in a fully corrected and stabilized SPH formulation.

Finally, it is proved that with first order kernel corrections the SPH method con-
serves both linear and angular momentum for simulations with variable smoothing

lengths.

52
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3.2 Kernel correction
Recall, the reproducing kernel approximation (-) of a function is said to be order k
accurate if any polynomial up to the k* order is exactly reproduced.

In one dimension this implies that if
9(z) = go+ G127+ g27° + - - + g2* (3.1)
is an arbitrary k** order polynomial with constant coefficients then
(9 (x)) =g(z). (3.2)

Replacing the reproducing kernel approximation with the discrete SPH approxima-

tion gives
gn (&) =D Vog (@) ws (z, ko) = go + 17 + goz® + - - - + gra®. (3.3)
b
The discrete consistency conditions are obtained by setting g; = 1 and all other
constants equal to zero, for each 0 < j < k.

In particular, the constant consistency condition, frequently referred to as a partition
of unity is given by
1= Z ‘/b'wb (51?, hb)a (34)
b

while the k** order consistency condition is given by

z* = ZVbxfwb (z, hy). ' (3.5)
b

Any consistency the kernel function may have possessed is not enough to ensure
that the discrete consistency conditions will be satisfied. This loss of consistency is
a consequence of the approximate pointwise integration. However, with the addition

of simple kernel correction terms this discrepancy can be eliminated.

The simplest means to guarantee a certain degree of consistency in SPH is to in-
troduce a polynomial correction term into the definition of the kernel function as
proposed by Liu [77,81]

W (X, hp) = [ (x) + B (x) - (x = %) + (x —xp) - T' (%) (x —x3) + - - - wp (%, hy)

where a (x), B (x), I’ (x) are scalar, vector, and second order tensor correction terms

respectively.
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In theory, consistency of any order can be enforced using the above correction
method. However, only first order correction is considered in this thesis and the

corrected kernel function is given by
Wp (X, he) = a(x)[1+ B (x) - (x — xp)] wp (X, hp) - (3.6)
Introducing the corrected kernel into equation (3.3) for the SPH approximation gives

gn (%) =D Vag (%) By (X, ). (3.7)
b

where a (x) and B (x) are the kernel correction terms. Expressions for a (x) and

B (x) will be derived in the following sections.

3.2.1 . Linear kernel correction

In this case an arbitrary linear function g(x) = Ag + A; - x should be exactly

interpolated
Ao+ Ar-x=) Vi(Ao+ A1 %) by (X, ha). (3.8)
b

Setting A; = 0 in the above is equivalent to the zero order consistency condition

given by equation (3.4) for the corrected kernel at the point x
1= Vitby (%, hy). (3.9)
b
Substituting the corrected kernel into the above gives

1=a(x)) Vil +8x) - (x—x)]ws (x,hs) (3.10)

and the constant correction term « (x) is obtained as

1

a(x)= . 3.11
X = S+ B0 (= =) ws (5, ) (811)
b
Similarly, if Ap = 0 then equation (3.8) becomes
A1 X = A] . Z ‘/bxb’lf)b (X, hb) (312)
b

and x can be written as
x =Y Vixyiy (X, hy)- (3.13)
b
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Using the zero order consistency condition given by equation (3.9) gives
X Z ‘/b’lfib (X, hb) = Z ‘/I,Xb'lbb (X, hb) (314)
b b

and the first order consistency condition for the corrected kernel at point x is ob-

tained as

Ve (x — xp) thy (%, ) = 0. (3.15)

Substituting the corrected kernel into the above and noting that « (x) is independent

of particle positions x; gives
> Vi (x —xp) [14 B (%) - (x — xb)] wp (x, ) = 0. (3.16)
b

Finally, by rearranging the above equation the vector correction term 3 (x) is found
to be

-1

B(x) = Z Vaws (X, hp) [(X — Xp) ® (X = Xp)] Z Vs (x5 — X)wp (X, hp) . (3.17)
b .

b

With these expressions for o (x) and 3 (x) the Corrected SPH approximation en-
sures that linear functions are exactly interpolated and that their gradients exactly

obtained when differentiated with respect to x.

It has been proved by Kulasegaram [67] that these correction terms are in fact equiv-
alent to the corrections introduced in the RKPM and MLSRKPM methods.

Unfortunately, calculating the gradient of the linearly corrected kernel is complicated
and computationally expensive for large simulations since both a (x) and 3 (x) are
functions of x and the resulting expressions would have to be computed for each

particle at every timestep.
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3.2.2 Constant kernel correction

In an effort to increase computational speed a compromise is to use only constant
kernel correction. This is equivalent to setting 3 (x) = 0 and results in simplified

equations for the corrected kernel and its gradient. In this case the kernel is given

by
1

} hy) = h = . 1
We (X, hp) = a (x) wp (x,hy) where (%) S Vows (. 70) (3.18)
b
This leads to a simplified expression for the gradient of a function.
Von (x) = > Veg (xb) Vibp (x, ) (3.19)
b

where Vb, (x, hp) is the gradient of the constant corrected kernel function given by
Vi (x, hy) = o (x) Vo (X, hp) + wp (X, hp) Va (x) . (3.20)

In order to evaluate Va (x) take the gradient of the zero order consistency condition

given by equation (3.9) to give
0= Vi(a(x) Vawp (%, ko) + ws (x, b)) Ve (). (3.21)
b
Rearranging the above gives Va as a function of x

—a (x) Zb: VoV, (x, hy)

Zb: Viws (X, hs)

Va(x) = (3.22)

After simple algebra the gradient of the constant corrected kernel is obtained as

Vuy (X, hy) — we (X, hy) v (%)
; Vaws (X, he)

Vi (x, hy) = (3.23)

where v (x) is given by
> VsVw, (x, hy)
b

7()() = Xb:%wb (X, hb)

(3.24)

This correction is easier to implement than the full linear correction. However, in
general the gradient will fail to satisfy linear consistency exactly. Nevertheless this

procedure markedly improves the interpolation of SPH computations.
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3.3 Kernel gradient correction

Alternatively, another simple way to ensure linear consistency of the gradient is to

directly correct the gradient expression itself,
Von (x) = Y Vag (%) Vs (%, hy) (3.25)
: b

where Vw, (X, hs) is the corrected gradient of the kernel function.

3.3.1 Constant gradient correction

In this case the SPH approximation should exactly interpolate the gradient of a
constant function. Substituting g (x) = C into equation (3.25) gives the following

constant consistency condition for Vawy (x, hs),

0= Z Vs Vws (Xq, o) for each x,. (3.26)
b

This can be satisfied by defining Vw, (Xa, hp) as
Vwy (Xa, hy) = Vwp (Xa, ) + £ (Xa) 6ap - (3.27)
and substituting Vw, (X4, Bs) into equation (3.26) to give

0= Z V;)vwb (Xa, hb) + Va& (xa) . (328)
b

The correction term £ (x,) is then obtained as

- Z %V?Ub (xa, hb)
b

a) = 2
€ (%a) 7 (3.29)
Substituting this expression for &€ (x,) back into equation (3.25) gives
Vgn (xa) = Y_ Vi 19 (%) — g (Xa)] Vp (Xa, hy) © (3.30)
b

and results in a formulation that ensures that the gradient of a constant function is

correctly evaluated.
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3.3.2 Linear gradient correction

A similar consistency condition can be obtained to ensure linear completeness of
the gradient. In this case the gradient of a linear function g (x) = A - x should be
correctly obtained as Vg (x) = A and

A = ) Vi(A-x5) Vp (Xa, ho)
b
= ZVb@wb(Xa,hb)@Xb A. (3.31)
b

Therefore, Vw, (Xa, hy) needs to satisfy the following linear consistency condition

I= Z ViV (Xa, o) ® x5 for each x, . (3.32)
b

This would be automatically satisfied if the linearly corrected kernel function @, (x, hs)
had been used in the calculation of the gradient. However, it is possible to ensure
linear completeness of the gradient without having to differentiate the linearly cor-

rected kernel.
By introducing a correction matrix L, into the equation for the constant corrected

gradient (3.30) gives

Vor (%a) = D Vo [g (%) — g (Xa)] LaVawp (Xa, s). (3.33)
b

To obtain an expression for the correction matrix L, substitute g (x) = A - x into

the above equation and set Vg (x,) = A to obtain
I=> ViLVw, (%a, h) ® (%, — Xa) (3.34)
b

from which the correction matrix L, is given by

-1

Lo= | ViV, (%o, b)) ® (35 —Xa) | - (3.35)
b

This method results in linear consistency of the gradient and is much simpler to
implement than directly calculating the gradient of a function using the linearly

corrected kernel function.
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3.4 Mixed kernel and gradient correction

A simple and effective correction technique is to combine constant kernel correction
with linear gradient correction. Although this method will not be as accurate as full
linear correction it is computationally cheap and the simplest way to achieve first

order consistency of the derivative.
In this case the interpolation of the function g (x) is given by

. . . _ wp(x, hy)
gn(x) = Zb:ng (xp) Wy (X, hp) where Wy (X, hy) = ; Vzwb (xl: e (3.36)

As in the previous section a correction matrix L, is introduced and the gradient is

given by

Von (Xa) = > Vag (x5) Vidy (Xa, hs) = > _ Vog (%) L Vibp (Xa, 1) (3.37)
b b

where now Vb, (Xa, hp) is the corrected gradient of the constant corrected kernel
function, and Vb, (x,, hp) is the gradient of constant corrected kernel function given
by equations (3.23) and (3.24).

As before the matrix L, is determined by enforcing the linear gradient consistency

condition by setting g (x) = A - x so that

A = D Vi (A xp) LoV (Xa, ho)
b

= Lo |)_ ViV (Xa, b)) @35 | A . (3.38)
b
Finally, the expression for L, is given as
-1
Lo = | Y VoV (X, hp) ® X (3.39)
b

This correction scheme will be used throughout the remainder of the thesis. It has
been found that it offers the best compromise between simplicity of implementation

and improved accuracy for simulations.
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3.5 Hessian stabilization

In Chapter 7 it will be necessary to introduce higher order terms into the equations
for the corrected gradient of a function g(x) with the introduction of an extra

Hessian term. This corrected and stabilized gradient is given by
~ ~ 1
Vo (xa) = Y | Vog (xb) Vil (xa, hy) + 57Hg (xa) d (3.40)
b

where Hg (x) = V (Vg (x)) is the Hessian of g(x), n is an arbitrary positive
constant and d = [d,,d,] is a given direction. Commonly, d, = d, = h where

h is the smoothing length.

Written in terms of the corrected kernel function Hg (x) is then given by
Hg (x) =V (Vg (x)) = > Vog (xs) Haby (%, hs). (3.41)
b

where My (X, by) = V (Vb (X, hp)) is the Hessian of the corrected kernel function.

Using the linearly corrected kernel function ensures that the Hessian of constant
and linear functions are correctly evaluated. However, calculating V (Vb (x, hp))
directly is computationally expensive and so instead the Hessian of the uncorrected
kernel V (Vwy (X, hp)) is calculated and then corrected as in the previous sections.

Kernel Hessian evaluation

The Hessian of the uncorrected kernel function V (Vwy (X4, hp)) is evaluated using

the following vector identity
V (¢ (x) B(x)) = o (x) VB (x) + B (x) (Vo (x))" (3.42)

where a (x) and 3 (x) are scalar and vector functions of x respectively. Recalling

the equation for Vwy (X, k) is given by
Vwp (Xq, hp) = ——— (X — Xp) (3.43)
the kernel Hessian is obtained as

Vv (Vwb (Xa, hb)) =V (;W (X - Xb)) . (344)
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By setting o (x) = 29% and 3 (x) = (x — x;) in equation (3.42) and noting that

Va(r(x)) = Z—fVT and V3 (x) = Isxs, (3.45)

the final expression for the kernel Hessian is found to be

V (Vun () = o) Taxa + - (d W, (x)) (x — x3) (x — x3)"

dr?
N 1 dwb 1 d2wb 1 dwb T
= T e + o) ( z 7 ar (x —xp) (x — xp) " -(3.46)

3.5.1 Corrected kernel Hessian
The corrected Hessian denoted by Huw, (Xa, hp) is given by
Huws (Xa, hs) = Huwp (Xa, hy) + 625Ba + Ao Vwy (Xq, hs) (3.47)

where B, and .A, are second and third order tensor correction terms respectively.
These correction terms are determined by enforcing that the Hessian of a constant

or linear function should vanish.

In this case, suppose g (x) = C where C is a constant then
0="Hg(x) =Y ViCHuws(x,h)
b
and the constant Hessian consistency condition is obtained as
0= ViHuw, (x, hs). (3.48)
b
Now suppose that g (x) = A - x where A # 0 is an arbitrary vector then

0="Hg(x)=H(A -x)=> V(A x)Huw,(x, ). (3.49)
b

By noting that (a-b) C = (C ® b)a for any vectors a, b and second order tensor

C the above can be written as
0= | Vi (Huws (x,h) ®xs) | A.
b

Since this must hold for any vector A,

0="> Vi (Huw, (x,hs) ®%s) . (3.50)
b
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Using equation (3.48) and subtracting the zero term > Vi (Hwy (X, hy) ® X) gives
b

the linear Hessian consistency condition
0="> Vb (Huws (X, hs) ® (xp —x)) - (3.51)
b

By evaluating the consistency conditions (3.48) and (3.51) at each particle a using
the corrected kernel Hessian, the correction parameters B, and A, can be obtained

to enforce constant and linear Hessian consistency at each particle,
0 = Z Vo Hws (Xa, hs) for each a , (3.52)
b
0 = Z Vi (’Ftwb (Xq, hp) ® (x5 — xa)) for each a. (3.53)
b
Substituting corrected Hessian into equation (3.52) gives

> Vo [Hwy (Xa, bs) + 0asBa + A Vit (Xa, by)] = 0 (3.54)
b

from which B, is obtained as

B, = —% (; Vit () + 32 Vicka ¥ (s h,,)) . (355)
Similarly, substituting corrected Hessian into equation (3.53) gives
0= Vi [Huw, (Xe, ho) + 6B + A Vap (Xa, 7)] ® (X5 — Xa). (3.56)
b
Noting that 6,B, ® (x5 — X,) = O gives
Ao VoV (Xa, b)) ® (%5 — Xa) = — > ViHuw, (Xa, ) ® (X6 — Xa)  (3.57)
b b

from which A, is obtained as

-1

Aq == |3 ViHuwy (%o, he) © Xoa | | S VoVawy (Xa, hi) © %00 (3.58)
b b

where Xp, = Xp — Xg.
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Substituting the corrected Hessian into the equation (3.40) for Vg (x,) gives

~ ~ 1 -
Von(xa) = Y Vhg(xs) Vi (Xa, ho) + 51 Hg (xa)d
b

= Z Vig (%) Vi (Xq, By) + %77 (Z Vsg (x5) Hws (Xa, hb)) d
b b

= Z Vog (xb) (611% (Xa, h) + %n’f—twb (Xa, ho) d)
b

= Z V;,g (Xb) %’li}b (Xa, hb) (359)
b

where the corrected and stabilized kernel function Vb, (Xq, hp) is identified as
i~ ~ 1 - :
Vi (Xq, hy) := Vb (X, hp) + EnHwb (Xq, hp)d . (3.60)

Van (xq) will still correctly interpolate the gradient of constant and linear functions
since the first term of the stabilized kernel is given by Vb, (Xa, hs) and the additional

stabilizing term will be identically zero.

3.6 Conservation properties of corrected SPH

In absence of any external forces the traditional SPH method with constant smooth-
ing lengths will conserve the linear momentum and the angular momentum of the

system (if the stress tensor in question is isotropic [19]).

The conservation properties of the corrected SPH method were studied in greater
detail in Lok [84]. This section will demonstrate that kernel corrections ensure the
conservation of linear and angular momentum in SPH simulations with variable

smoothing lengths.

Linear momentum

The total linear momentum of a system of N SPH particles can be written as the

sum of the linear momentum of each particle

N
M=) mav,. (3.61)
a=1
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Ignoring external forces and using Newton’s 2°¢ Law, the time rate of change of

linear momentum may be written as

N N
M= mV,=-) T, (3.62)
a=1 a=1

where T, is the internal force acting on particle a. T, is given by the sum of

interaction forces between pairs of particles Tgp.

Therefore conservation of linear momentum is ensured by satisfying the following

discrete condition for any distribution of stress

Y T.=0. (3.63)

From the discretizations of momentum equation found in equation (2.66) two forms

for the particle interaction forces are given by

o, O
Too = VoVo (06 +0b) Vwy (x5) or  Top = mgmy (p_2 + p—;) Vuwp (%) . (3.64)
a b

The condition in equation (3.63) is automatically satisfied if constant smoothing
lengths are used since Vw, (x5, h) = —Vw, (X,, h) and consequently T,p = —Th,.

Therefore the sum of all interaction pairs will vanish as required.

Linear momentum can also be conserved when using variable smoothing lengths but
only if kernel correction is employed. Using equation (2.57) with corrected gradients

the sum of internal forces can now be written as

D To =Y VaViow Vi, (x4, ha) = Y Vioy, (Z Va Vi, (x5, ha)) =0. (3.65)
a b a

a,b

The term in brackets is identically equal to zero since it is the constant consistency
condition given by equation (3.26). Consequently equation (3.63) is satisfied and
linear momentum will be conserved as long as the kernel is at least constantly

corrected.
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Angular momentum

The angular momentum of a particle a of mass m, with position x, and moving
with constant velocity v, is defined to be the moment of linear momentum about
the origin

A, =X, X MgV, (3.66)

The total angular momentum of a system of NV SPH particles can be written as the

sum of the angular momentum of each particle as

N
A= Zxa X MgVg. (3.67)

a=1
The rate of change of angular momentum of the particle a is then calculated given
by

A, = Xg X MgVy+Xy X MgVa
= X, X MgV, (since v x mv = 0)
= —(x,xT,). (3.68)

Therefore, if the resultant moment about a fixed point of all the forces acting on a
particle is zero over a timestep, then the angular momentum, A, about that point

must be constant.

As before ignoring external forces and using Newton’s 2°4 Law, the rate of change

of angular momentum for the system of particles may be written as

N N .
A=) "Xgxme¥a==) x,xT,. (3.69)
a=1 a=1

Consequently, if the total moment of the internal forces equals zero for any distri-

bution of stress then angular momentum will be conserved

N
D % xTg=0. (3.70)
a=1

Rearranging the above equation gives

A=—ZxaxTa=ZTaxxa=Ze:(Ta®xa) (3.71)
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where € is the alternating tensor (¢9% = —1,0,1). Substituting equation (2.57) for

T, gives A as

A = Z €: (Z Vo Voo, Vi (Xp, he) ® xa)
a b

= Z V4E : o (Z V.V, (Xp, ha) ®xa> ) (3.72)
b a

The above product will only vanish if the following condition is satisfied for any

stress distribution
> VaVida (Xb, ha) ®%a =1 . (3.73)

This condition is the linear consistency condition for the kernel gradient given by
equation (3.32). Consequently, when deviatoric stress tensors are implemented an-
gular momentum will only be preserved if linear correction or the mixed kernel and

gradient correction scheme is implemented.

3.7 Concluding remarks

This chapter has described several different techniques which can significantly im-
prove the accuracy and stability of the standard SPH equations with minimal com-

putational expense.

Kernel and gradient corrections have been introduced as a way to enforce constant
and linear consistency of the discrete SPH approximations. Additional higher order
Hessian correction terms have also been introduced to the kernel gradient to further

stabilize the method when required.

Conservation of linear and angular momentum can now be established for SPH sim-
ulations without the restriction of uniform particle smoothing lengths when kernel

and gradient corrections are implemented.

These correction terms are an essential ingredient in the variable resolution SPH
formulation that will be derived in subsequent chapters and in Chapter 7 the ker-
nel Hessian corrections will provide the necessary stabilization in a number of the

particle refinement simulations.
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Variational formulation of SPH

4.1 Introduction

In order to implement particle refinement into the SPH framework the underlying
formulation must first be able to cope with non-uniform particle masses and smooth-
ing lengths. In this chapter such a formulation is derived from variational principles

and the equivalent internal forces in the continuum are obtained.

The particles represent points in the continuum rather than discrete free particles.
The derivation depends upon which of the two SPH formulations for the density
are used. In both cases the resulting expressions for the internal forces are found to

take the same form as those derived in Section 2.5.

A further correction term 7 is introduced into the direct density variational formu-
lation in order to improve the density evaluation in the vicinity of solid boundaries.
This term leads to an additional internal force that can be identified as a boundary

contact force due to the presence of the boundary.

In the final section the conservation properties that were derived in Section 3.6 us-
ing kernel corrections are derived from variational principles. Linear consistency of
the SPH approximation for the gradient of functions is shown to be essential if the

method is to preserve angular momentum.

67
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4.2 Variational derivation

The continuum is to be discretized by a large set of particles. Each particle a is
described by its mass ma, position x,, and velocity v, as shown in Figure 4.1. Let
v denote the set of all particle velocities and x the set of all particle positions that
define the state of the continuum.

A

Figure 4.1: Discretized continuum

The total kinetic energy of the system is approximated by the sum of the kinetic

energy of each particle
1
K(v)= 5 ;ma (Vo * Va). (4.1)

The work done by external forces resulting from a gravitational field g gives the

total external energy as
ey (x) = — Y M (%a - 8). (4.2)

The total internal energy of the system depends on the constitutive characteristics
of the continuum. The total internal energy is expressed as the sum of energy

accumulated per unit mass 7 multiplied by the particle masses
Mige (x) = Y _ Mt (pa, - -.) (4.3)

7 will depend on the deformation, density, or any other constitutive parameters of

the material in question.

From the Euler-Lagrange Equations of Motion the equilibrium equation for the
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system of particles representing the continuum is expressed as

i oL _ oL 0

dt \Ove) O%a (4.4)
where L (x,v) = K (v) — ITip; (X) — eyt (X) .

Substituting equations (4.1-4.3) into the above expression leads to the standard

Newton’s 2" Law for each particle

61_[ext aHint
A, = — _ ~F,—T, 4.5
mea B, o F (4.5)

where a, is the acceleration of particle a and F, is the external force acting on

particle a. For the simple gravitational case this is given by

aHext
F,=—- =MyEg. 4.6
o= = = mag (4.6)
T, is the internal force acting on particle a given by
Ol 0
T, = = I 4.7
. O Eb T (P, - - ) (4.7)

When the above forces are evaluated in accordance with the above formulation the
resulting expressions will be consistent with the preservation of linear and angular

momentum [19] which will be discussed further in Section 4.6.

It should also be noted that the above formulation does not include any dissipative
terms. Boundary friction and viscous effects can be included with the addition of a
dissipative potential into the Euler-Lagrange equation
d (65) oL _ _ Ollgss
dt \ v, O, 00v,

Assuming that F, and T, can be calculated at each particle according to equa-

(4.8)

tion (4.6) and equation (4.7) it is simple to obtain the acceleration of each particle
as
1
a,=— (Fo — To — T3) (4.9)

a

where T is the deviatoric component of the internal force (see Section 4.4). Con-
sequently, particle positions may be updated simply using a leap-frog integration

scheme as detailed in Section 2.6.

It remains to derive discrete equations for the internal forces T,. To this end equa-
tion (4.3) is linearised at the current position, in the direction of the set of virtual

velocities dv as shown in Figure 4.2.
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Figure 4.2: Linearised continuum with respect to év

The internal and contact forces can now be identified by the differentiation of the

internal energy equation

d
D]-_-[int [5V] = EEHint (xl + 56V1, ce XN —+ 55VN)
e=0
a]--Imt d
= 2 Sl rervy) @ e
— Z 6H1nt . 6Va
0%,
a=1
DILiy [0V] = Z Ty v, . (4.10)

This provides the framework to construct the dynamic equilibrium equations.

Recall, the total internal energy of the continuum described by a set of particles in

state x is given as

mt Z MeT ,Da) (411)

where 7 (p) is the internal energy per unit mass.

For fluids under reversible, adiabatic conditions the derivative of the internal energy

is related to the pressure by

dem P
E/; = ﬁ (4.12)

where it is understood that a negative pressure P indicates tension.
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In this case the expression for DIl [0v] becomes

dm
DHint [5V] = Xa: mad—paDpa [(SV]

P,
= > map—gDpa [6v]. (4.13)

From this point, on the expression for the derivative of the density Dp, [dv] will
depend on which SPH formulation for the density is followed. The continuity method
and the direct density method will result in different expressions for the rate of

change of density and consequently different expressions for the internal forces.

4.3 SPH with variable smoothing length

In this section the different expressions for the linearization of the particle den-
sity, Dp, [0v] will be derived. It is assumed throughout that the individual particle
smoothing lengths are not equal. However, simplifications to the resulting expres-
sions that arise from assuming a uniform smoothing length will be given where

appropriate.

4.3.1 Continuity density form

In the first case the rate of change of density is related to the divergence of the

velocity by the continuity equation

Dp
— V.V 4.14
D= PVV (4.14)

Replacing the actual velocity with a virtual velocity field v gives the variation in p
Dplév] = —p V- bv. (4.15)
Substituting equation (4.15) into equation (4.13) gives

DIl [6v] = = Y VaPa (V - 6va). (4.16)

The divergence of the virtual velocities V -év, are formulated in the SPH framework

by using the summation approximation for év given by

ov = Z %(vawb (X, hb) (417)
b



Chapter 4: Variational formulation of SPH 72

With constant consistency enforced V - dv, is given by

V- 6va=)_ Vi (6vs — 6va) - Va, (Xa, s) (4.18)
b

and Dp, [6v] is obtained as

Dpa [6v] = —pa 3 _ V3 (6vh — 6va) - Vawy (Xa, h). (4.19)
b

Remark

The variational formulation of the time derivative of the density using the continuity
equation is now obtained by setting v, = v, and v, = v, in equation (4.19) to

give
fa=—pa(V-Va) = —pa Y Vs(Vs—Va) - Vap (Xa, hy)
b
= pa Z Vo (Va = vp) - Vwp (Xq, o). (4.20)
b
It should be noted that the above expression coincides with equation (2.44) from the
previous chapter. When the corrected kernel is used the above equation simplifies
to give _
fa=—Pa ) _ Vovy - Viby (Xq, hp). (4.21)
b

Internal forces

The internal forces can now be obtained by substituting the expression for V - év,

as given by equation (4.18) into equation (4.16)

DIy [6v] = =) VaPa > Vi (6vy — 6Va) - Vi (Xa, ho)
a b
= =) Vi PaVuy (Xa, he) - 6Vs + Y VaVoPaVwy (Xa, hy) - 6V
a,b a,b

Rewriting in terms of dv, gives

DIl [v] =) (Z VaVs (PyVwy (Xq, hy) — Py Vwg (Xe, ha))> S6ve.  (4.22)

a b
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From the above expression the internal pressure force is obtained as

T7 = VaVh (PaVaws (X, h) — BV, (%3, ha)). (4.23)
b

If all particle smoothing lengths are identical so that h, = h, = h then the pressure

force can be rewritten as

Tf:—Z%%(Pa‘i‘Pb)vwa(xb?h)’
b

or

T = ) VaVh(Pa+ B) YV (Xa, h)
b

and the above equations coincide with the pressure term in the top equation of (2.66).
If the corrected kernel is used then the pressure force reduces to its simplest form
given by
TE = =Y VaWR Vi, (%5, ha). (4.24)
b
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4.3.2 Direct density form

The second approach is to use the classical SPH equation for the density to derive

the internal forces. In this case the density is given by

p(x) = mbwb(x, hb) . (4.25)

This equation can be reinterpreted as a smoothing of a discrete density approxima-

tion defined by a collection of point masses m &with position

Px) = (x - (4.26)

where 5 (x —x&) is the Dirac delta function based at the point b (see Figure 4.3).

Figure 4.3: Discrete density approximation at point x

Smoothing p (x) with the kernel function w (x) gives

fpxYw((x—x', h) dx'
= 4.27
p(x) - (4.27)

Therefore, for a given collection of particle masses the discrete density is given by

(xa, 1)

P(xa) = 7 (xa. ha) where 7 (X, ha)=J W&, h)

(4.28)
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Gamma function

The gamma function is defined to be

Y (Xa, ho) := /wa (x, hq) dx. (4.29)

The introduction of the correction function 7 (Xg,h,) ensures that the density is
accurately evaluated in the vicinity of rigid boundaries. Without this term the direct
density evaluation can lead to poor interpolations adjacent to boundaries since the
number of neighbour particles reduces as the kernel’s support falls partially outside

the domain.

It is clear that if the kernel function is normalised to give a unit integral and is based
sufficiently far from any boundary then 7 (x4, h,) = 1 and equation (4.28) is equal
to the classical SPH equation for density as given by equation (4.25).

However, when a boundary falls within the compact support (2h — for the quintic
kernel) of a particle this is not the case and the correction term <y (x,, hy) # 1 and

will contribute to the density evaluation for that particle.

In the vicinity of a straight boundary the gamma function can be evaluated by
considering it as a function of the perpendicular distance between the particle and

boundary as shown in Figure 4.4.

In this case

vV (Xa, ha) =7 (€,) where g, = % and d, = (X, —Xp) np (4.30)

where d, is the distance of particle a from boundary, xp is any point on the boundary
with unit inward normal np. Then the derivative D, [6v] is obtained by linearising
equation (4.30) to give

DA, [0v] = hi'y’ (€a)np - 6V, (4.31)

In Chapter 5 a general method for calculating v (x4, hs) and D7y, [6v] is given for

general boundaries in 2-D.
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Figure 4.4: 7 function in the vicinity of a single boundary

Assuming that the gamma function and its derivative can be suitably calculated it

remains to linearise the following density equation with respect to particle positions
Jfm bwb(xa, hb)
\(x LA ) [ 2>
The derivation now depends on whether particle smoothing lengths 4a remain con-

stant throughout the simulation ha = & or are allowed to vary as a function of space

and time Aa(x,t) as in [21,112]

Since the focus of this thesis is on nearly incompressible flows it will beassumed that
the smoothing lengths of the particles are constant. However, withthe addition of
particle refinement introduced in Chapter 6 particle smoothing lengths may change

as the simulation evolves.

Under this assumption equation (4.32) gives
7aDpa [H + paP>la [<V] = D mbwb(xa,hb)j [6)]. (4.33)
Linearising the right hand side gives
Ybim bDw,, (xa,hb)[SV} :):lm h- A;bD rab[Sv] (4.34)

where r\b— (xa- x6) *(xa- xb and

Drab[5v] = —d)(xa— x6) m(6va- 6vb). (4.35)
r
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Finally, Dp, [0V] is obtained as

1 dw Pa
Dpa [5V] = — Z rab d’rab — Xb) . (6Va — (st) — '%D’)’a [(SV]
= Z My Vwp (Xa, by) - (§V4 — GVp) — %D% [6v].  (4.36)
a b a

Remark

The variational formulation of the time derivative of the density using the direct
density equation is now obtained by setting §v, = v, and dv, = v in equation (4.36)
to give

) 1 o
pa = -ﬂy_ Z mbvwb (xa,) h’b) : (va - Vb) - :I_D’Ya [6V] ° (4'37)
a7 a

Noting that away from any boundaries v, = 1 and v, = 0 the above density equation

reduces to equation (2.45) found in the previous chapter.

Internal and contact forces

The internal and contact forces can now be obtained by substituting Dp, [6v] given

by equation (4.36) into equation (4.13)
DI [6v] = maig 1 mewb (Xq, Bp) - (6va — 0Vp) — 2 Drye [0v]
a pa 7a 70, i

= ZZ 2 ( sV (Xa, ho) - (6va—6vb)>
-Z

(4.38)

pa'Ya

Expanding the first term in equation (4.38)
Z Z mamb 2 Vwb (Xa, hb (5Va Z Z mamb Vwb (Xa, hb) (5Vb

and writing in terms of dv, yields,

Z Z mamb Vwb (Xay hp) - 6Vg — Z Z mbma%Vwa (Xp, ha) - 6Vq
a b b1
—ZZ%%(

(xaa hb) fb Vwa (Xb, ha)) : 6Va- (439)
Py Yo
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From the above equations expressions for the internal pressure force denoted by TY

and the boundary contact force denoted by T2 are obtained respectively as

P .
Z MMMy ( h’b) Tb-vwa (xb7 ha)) ) (440)
Py
18 = _Mafag (4.41)
PaYa

and the total internal force is given by the sum of the internal pressure force and
boundary contact force

T,=TF + T2 (4.42)
If all particle smoothing lengths are identical so that h, = hy = h the pressure forces
are finally obtained as

Zmamb< Fo | ﬁ) Vws (Xq, ) (4.43)

PV PR

and the above equation coincides with the pressure term in the bottom equation

of (2.66) in the absence of any solid boundary.

It was shown by Lok [84] that it is essential to apply these variational SPH equations
in a consistent manner. For example, it should be noted that SPH kernel corrections
cannot be used for updating particle densities when using the direct density method
and that expressions for the particle force and density evaluation from different

derivations should not be mixed.
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4.4 Viscous forces

Thus far, two different formulations for the internal force of a given particle have
been derived but in both cases only isotropic stress tensors were considered. The
same approach can be used to obtain the total internal force at a particle for general
materials with constitutive equations which include a stress tensor with a deviatoric

component o = oy, + o’

For this purpose and in order to remain within a variational framework an additional
viscous potential ;s (d) per unit volume is introduced. The viscous potential is
assumed to be a function of the particle velocities and is written in terms of the
rate of deformation tensor d defined as the symmetric part of the velocity gradient
tensor

d= % (vv+ (Vv)7). (4.44)

As before d, is calculated from the expression for Vv, given by
Vva = Vi (Vo= Va) ® Vuwy (Xa, by) (4.45)
b

and the viscous potential, written in terms of the set of particle velocities v, is given
by
i (V) = Z Vatbyis (da)- (446)
- ,

This can be interpreted as the sum of the rate of energy dissipated by viscous forces
per unit volume for each particle in the continuum. The deviatoric stress tensor is

then written in terms of the dissipative potential as

r_ 8¢vis (d) ‘
o' = = (4.47)

The internal viscous forces are obtained by considering the derivative of the viscous

potential in the direction of a set of virtual velocities dv give by

vl = Oyis d[da (va+€5v)]ij

a e=0

a")bvis .
Ea:va 5. Dda [6v] (4.48)
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where the derivative of the rate of deformation tensor is given by

Dd[év] = die (% [V (v+edv)+(V(v+ eév))TD

e=0

_ 14 (Vv + Vvl +e(6v+6vTh))

e=0
1 T
= 3 (wv + (Vév) ) . (4.49)
The gradient of the virtual velocities Vév, are then obtained with constant consis-

tency using equation (4.45) by

Vv, = Z Vi (6vy — 6v,) @ Vwy (X4, he)- (4.50)
b

Substituting equations (4.49, 4.50) into equation (4.48) gives

6v] = .1 T\ _
DIL [6v] = zajvaaa 5 (VJva ¥ (Véva) ) _
% Z VoV (0, 1 (6Vy — 0V,) ® Vwy (X4, he) + 0 - Vwy (Xg, he) ® (6vy — 6v,))
a,b

and since o, is symmetric the above equation simplifies to
DLy [6v] = D ) VaVeo, Vay (%a, ) - (6v5 — 6Va). (4.51)
a b

Writing the derivative of the viscous potential in terms of dv, gives

DIl [6v] = Z (Z VaVs (o, + o) Vwg (Xb, ha)> -0V, (4.52)
b

a
and the deviatoric components of the internal force is obtained from the above
equation as
TS = VoV (0, + o) Vwa (Xp, ha). (4.53)
b

When the continuity method is used the volumetric and viscous components of the

internal force can be added to give

To= Y ViVs (04 + o) Ve (%5, ha), o=-Pl+o. (4.54)
b

If kernel correction is used in the above equation the equation for the total internal

force reduces to

To =Y VaVho,Viba (X, ha), o=—-Pl+d'. (4.55)
b
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4.4.1 Stress tensor for Newtonian fluids

For Newtonian fluids the viscous potential 1, above is a function of the Von Mises
equivalent strain rate €, where € is defined as the second invariant of the deviatoric

rate of deformation tensor d’ given by

g2 = %d' :d where d=d-str(d)I. (4.56)

The deviatoric stress tensor is therefore obtained as

o = 6wViS (8) _ 8"/}vis§£
~od  0e od’
Rewriting equation (4.56) in the form

©(4.57)

22

g4 = d—%trd):(d—%trd)

(d:d) -3 (tr d) — 3 (tr )’ + § (tr d)’]

I
Wi wlNwl N
— — ~

(d:d)—1(trd)? | (4.58)

and differentiating with respect to the rate of deformation tensor d gives

od 3

0 2
— =—d. 4.59
od 3éd (4.59)

0 2 2 4,
2%— =2 [2d— §(trd)l] = 3d

Substituting the above expression into equation (4.57) gives

r__ 6"/Jvis (5) _ l_adjvis r_ !
o' =~ =2 (3é—_6é )d = 2ud (4.60)

“where u is the dynamic viscosity. Its value can be obtained through experimen-

tation. A typical value for water at one atmosphere and at room temperature is

approximately 0.0011kgm™'s~L.
Note that p and ;s are related by

_ iazpvis
H=379: -

(4.61)

Specifically for a constant viscosity, the viscous potential ;s is obtained by inte-
grating equation (4.61) to give
3
Puis = S e’ (4.62)
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4.5 Internal energy

An expression for the total internal energy of the system of SPH particles can be

obtained by simply integrating the identity
d P
oz (4.63)
dp  p?

This relates the internal energy (per unit mass) with the pressure under reversible,

adiabatic conditions where the pressure is given by the equation of state

P=pR ((;”3)7 - 1) . (4.64)

In this case the internal energy of a particle a is given by

[r(%-5)
Ty = - =
oy )

7—1 1
-~ P ——“——+—+K>. 4.65
0((7—1)p8 Pa (4.65)

Fixing the constant of integration such that m (pg) = 0 gives

K=-1 (7—1—1> (4.66)

and the total internal energy is found to be

s p (Lo L (T
H“‘t_%: a (pa+po(7—1) <(Po> 7)) (4.67)
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4.6 Conservation properties of the variational

formulation

To conclude this chapter the conservation properties of the variational formulation
are presented. It will be shown that internal forces obtained from a potential func-
tion Il satisfy the necessary conditions for the preservation of linear and angular

momentum [19, 84].

Linear momentum

It was shown in Section 3.6 that conservation of linear momentum is ensured by

satisfying the following discrete condition

> T.=o0. (4.68)

As long as the internal forces are derived from a potential function Il that is
invariant with respect to rigid body translations its variation with respect to an
arbitrary uniform velocity field vo will vanish [3]. This condition is satisfied by the

present formulation and consequently DII;, [6vo] satisfies

N
0 = DIy [6vo] = (Z Ta) 6V . (4.69)

a=1

Since this equations holds for arbitrary v, equation (4.68) is satisfied and linear

momentum will be preserved.

Angular momentum

It was shown in Section 3.6 that conservation of angular momentum is ensured by

satisfying the following discrete condition

N .
D % x Ta=0. (4.70)
a=1

If the potential function Il;y; is invariant with respect to rigid body rotations it will

be shown that angular momentum is preserved [3].
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Given an angular velocity vector dw, the corresponding rigid body rotation is de-
scribed by the set of velocities defined by dv, = dw X x,. In this case the variation

of II;,; satisfies

0 = DIy [oW X x4) —ZT (0W X X,) = 0w - (Zxa x T ) (4.71)

a=1
Since this equations holds for arbitrary dw equation (4.70) is satisfied and angular
momentum will be preserved.

It remains to check the invariance of II;,; with respect to rigid body rotations.

In such cases the stress introduced due to the rotation should vanish. For a Newto-
nian fluid with stress tensor o (d) this implies that the discrete particle approxima-

tion of d should vanish.

Considering a rigid body rotation defined by w = [w, wy, wz]T. Then the resulting

velocity field is given by v (x) = w x x and the exact velocity gradient is given by

0 -w, wy
Vv=W=| yu, 0 —wgl- (4.72)
—wWy, Wy 0

In this case both d = % (Vv + VVT) = 0 and its trace V-v = 0. Therefore, without
discretization the potential function Ili;; would be invariant with respect to rigid
body rotation. However, in practice the velocity gradient is obtained via the SPH

approximation
Ve = > V(Wxy — Wx,) ® Vo (%4, by)
b
= W Z Vi (%6 — X4) ® Vwp (Xq, ho) (4.73)
b
and the correct velocity gradients will be obtained only if

Z Vb (x5 — X4) ® Vwp (Xq, hp) = 1 for each particle a. (4.74)

This is precisely the linear gradient consistency condition derived in the previous

chapter.
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Using the linearly corrected gradient of the kernel function Vb, (Xa, hp) ensures this

condition is satisfied and the velocity gradient is obtained correctly as

Vv, = Z ViWx, ® 6@(1 (xa’ hb)
b

= W (Z ‘/bXb & 611‘% (xm hb))
b

= W. (4.75)

Consequently, when deviatoric stress tensors are implemented angular momentum
will only be preserved if linear correction or the mixed kernel and gradient correction

scheme is implemented.

4.7 Concluding remarks

In this chapter the governing equations for Newtonian fluids have been derived from
variational principles. The conservation of linear and angular momentum has been

established with the necessary kernel corrections.

The formulation does not presume particles possess identical masses or smoothing
lengths. Consequently, it provides the ideal framework for the particle refinement
algorithm and variable resolution simulations in later chapters. The corresponding
expressions for the continuity equation and internal forces are found to take the

same form as the traditional SPH equations derived in Chapter 2.

A boundary correction term has been included in the variational formulation which
improves the density evaluation in the vicinity solid boundaries and introduces an
additional boundary contact force to the derivation. Chapter 5 will present a simple
and accurate method for the evaluation of this boundary force for general boundaries

in two dimensions.



Chapter 5

Boundary methods

5.1 Introduction

Various different approaches have been used in the past to implement solid bound-
aries in SPH simulations. This chapter presents a new method for calculating bound-

ary contact forces for any general boundary in two dimensions.

In the first part of the chapter the four most commonly used methods; the bounce
back method, image particles, penalty methods and Lennard-Jones potentials are
described. A variation of the Lennard—Jones potential that uses boundary particle
averaging is presented. This new method avoids instabilities that traditionally occur

when non-uniform boundary particle distributions are used.

In the remaining sections a simple and inexpensive method for exactly calculating
the variational boundary contact force term derived in Chapter 4 is presented. The
resulting boundary force for a single straight boundary is compared to the approxi-

mation previously used in the literature.

Finally, several applications using the variational boundary force are presented. The
accuracy of the new formulation is compared to previous methods with a simple
breaking dam example. A more complex boundary is used to model a simple flood
defence problem and a water droplet falling into a curved bowl demonstrates the

methods ability to model curved boundaries.

86
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5.2 Summary of boundary implementations in SPH

5.2.1 Bounce back

The bounce back boundary implementation is conceptually the simplest method
used to enforce boundary conditions within the SPH framework. Particles that are
identified as having come into contact with a solid boundary are simply reflected
back into the computational domain according to Newton’s law of restitution (see

Figure 5.1).

Figure 5.1: Bounce back method

If the interaction between the boundary and the particle is assumed to be perfectly
elastic (corresponding to a coefficient of restitution equal to one) then the linear

momentum of the system will be conserved.

5.2.2 Image particles

The image (or ghost) particle method models a solid boundary by modifying the
equilibrium and continuity equations for particles in its vicinity by introducing arti-
ficial particles positioned behind the boundary as shown in Figure 5.2. This method
helps eliminate the problem of poor interpolation of physical quantities at points
near the boundary by increasing the number of particles that appear in the SPH

approximations.

Image particles are not stored or evolved during the simulation. They are only used
to add extra terms into the governing equations. The image particles are generated

by reflecting a particle’s position across the boundary as shown in Figure 5.2. In this
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Figure 5.2: Image particle generation in the vicinity of a straight boundary

case the image particles have the same volume, density and pressure as the original
particle but with opposite velocity component normal to the boundary. When a
particle is in the vicinity of a corner region then three image particles are needed.
Two being generated from the reflection of the particle across each line segment and

the third coming from the reflection over the corner point.

Introducing image particles into discrete SPH equation (2.15) of a function / gives

/[(*) =52 Vbf(xbwbx)+ (x). (5.1)
beMx b'eM*
Here is the set of neighbouring image particles that contribute to the summa-

tion. In this way the corresponding governing equations which incorporate the image

particles are easily derived.

The image particle method can be computationally expensive (especially in three di-
mensions) due to the extra terms in the governing equations but it does improve the
interpolation on the boundary without needing to use the corrected kernel method,

slip and non-slip boundaries can also be easily simulated.

5.2.3 Penalty methods

Meshless methods typically encounter difficulties in imposing essential boundary
conditions. The problem is largely due to the fact that the approximations gener-
ated by reproducing kernel or moving least square methods do not interpolate the

independent variables at particle points.

For example, when an independent variable such as the velocity v# is specified at
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a boundary particle B the SPH velocity field in general will result in the inequality
vy, (xg) # vp. By introducing a simple penalty treatment on the boundary particles

essential boundary conditions can be easily implemented in SPH [13,67].

With kernel correction the desired boundary condition is given by

Vi (XB) = Z ‘/be’Lz)b (XB) = Vpg. (52)
beMp

This condition can be enforced by a penalty boundary potential defined by

NE»
1
Tp = 5rp Y As(ve—va(xp)) - (V& =V (x5))
B=1
1 &
= 5hp)_Ap <v3 = > Vvt (xB)) : (vB =) Ve, (xB))(5.3)
B=1 beMp beMp

where Ap is the surface area associated to boundary particle B, k, is a penalty value

and Ng) are the relevant boundary points.

Differentiating IIy,, with respect to particle velocities gives

TbP = OMlpp _ Z kpAp (VB — Vi (xB)) Vatly (XB). (5.4)
¢  BeMB
By adding this boundary potential force to the internal force as given by equa- -
tion (4.7) the total force incorporating the essential boundary condition is obtained
as |
TR = T, + TP, (5.5)

5.2.4 Lennard—Jones potential

The Lennard—Jones boundary implementation uses boundary particles to exert short
range repulsive forces on surrounding fluid particles to model solid boundaries. The
expression for these radial forces are given by a Lennard-Jones potential based on
the force found between interacting pairs of molecules [49]. A typical interaction

between fluid and boundary particles can be seen in Figure 5.3.
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Figure 5.3: Lennard-Jones forces

For a particle a, distance » from a boundary particle 6lj the force per unit mass

exerted by the boundary particle is given by

if7<ro
(5.6)

otherwise

where n| and n2 are integer parameters commonly taken as ni = 4 and n2 = 2 (or

7 =12 & 12=4), and r = xa—=x&J.

The value of ro defines the cutoff distance for the Lennard-Jones force. When r > ro
the force is set to zero since the Lennard-Jones potential becomes negative in this
region. This ensures that the boundary force remains purely repulsive. It is impor-
tant to set the value of ro carefully. If it is too large then too many particles will
feel the influence of the boundary particles in the initial configuration. If it is too

small then particles will be able to artificially penetrate the boundary.

The coefficient K has units velocity-squared and governs the strength of the bound-
ary force. This should be chosen in proportion to the maximum internal energy of
the problem. For example in a simulation where particles are under gravity, and the

maximum particle height is given as Hmax then K should be chosen K  bp-"maxe

Smoothed Lennard-Jones potential

The above method is reliant on a uniform distribution of boundary particles. Group-
ing many boundary particles in close proximity to each other will result in large
repulsive boundary forces in that region. Resulting in local instabilities and inac-

curacies. However, in many real-world applications complex boundary geometries
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need to be modelled and it is useful to be able to arbitrarily place boundary particles

to obtain the detail required.

A solution which allows for variable boundary particle spacing is motivated by the
corrections implemented in the corrected SPH method discussed in Chapter 3 to

develop a Smoothed Lennard-Jones potential.

The total Lennard-Jones boundary force for a given particle a can be summarised
as the sum of all the interactions with neighbouring boundary particles. Now sup-
pose that the Lennard-Jones potential function is simplified to be a function of the

normal distance from the particle to a boundary particle (see Figure 5.4)
Tal = f (r"p) nbP (5.7)
bp
In this formulation all neighbouring boundary particles will still contribute with

equal weight to the total boundary force. It is this fact that prevents the use of

non-uniformly distributed boundary particles.

Figure 5.4: Components of Lennard-Jones force

The smoothed version of the above equation is given by

ly = Jt£p) HopVbpUbp (x.., (58

bp

where w is the corrected kernel over the boundary particles only

w(x) = a X)w (x) where  a (x) (5.9)
Ep VpU-bp (x)
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In this formulation more weight is added to boundary particles that are closer to
the fluid particle a. Moreover, consider the case in two dimensions where boundary
particles are distributed on a straight boundary. In this case allthe / (r’p) terms
are equal for all boundary particles (see Figure 5.5) and since thecorrected kernel

is used the total boundary force expression simplifies to

TaJ = / (rbp) nbp Abp~bp (Xo, Kkbp))

= /(rbp)nbp (5-10)

So for straight boundaries the smoothed Lennard-Jones formulation ignores the
distribution of boundary particles and is equivalent to a single boundary particle

acting on the fluid particle at a distance rn.

Figure 5.5: Smoothed Lennard-Jones on a straight boundary

Examples using the smoothed Lennard-Jones boundary particle

implementation

A simple test consisting of'a small collapsing square of fluid was run as a test example
for the smoothed Lennard-Jones boundary implementation. The flat boundary is
defined by a number of stationary boundary particles. On the lefthand side of
the boundary there is a region of closely spaced boundary particles, as shown in

Figure 5.6.

The results after a few timesteps are shown in Figure 5.7. Without smoothing the
dense configuration of boundary particles produces an excessively large contact force
and the resulting simulation is unstable. However, with the smoothing applied the

dense configuration is smoothed out as expected and the simulation is stable.
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Figure 5.6: Initial test configuration

Figure 5.7: Results before/after smoothed Lennard-Jones implementation

Finally, the smoothed Lennard-Jones boundary implementation is tested on a larger
problem with a curved boundary and irregular boundary particle distribution as
shown in Figure 5.8. In this case there are four times as many boundary particles
making up the righthand side of the boundary than on the left. However, this does

not effect the stability ofthe system and the simulation remains perfectly symmetric.

Figure 5.8: Example of a non-regular boundary using the smoothed Lennard-Jones
implementation (coarse boundary particle distribution on left/fine distribution on
right)
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5.3 A variational boundary contact force

The remainder of this chapter is concerned with the calculation and implementation
of the variational boundary contact force term in two dimensions which was derived

in Chapter 4 and is given by

Tf = (5.11)
Pa')a

where ma is the mass, Pa the pressure and pa the density of the fluid particle. The
7a and Vya terms come from the additional correction term introduced into the
variational formulation for the density (see Figure 5.9)

J2"bWb{xalib)
p(xa)= - —-—— where 7 (xa,ha) := / wa (X, ha) dx. (5.12)
J

7 v-Xa? Fla)
In order to calculate T f it is necessary to evaluate ya and Vya for each particle
at every timestep. To calculate 7 directly using equation (5.12) would be too com-
putationally expensive for large dynamic simulations or for problems with complex

boundaries.

Figure 5.9: 7 function in the vicinity of a general boundary

5.3.1 Approximate boundary force evaluation in 2D

In the paper by Kulasegaram [69] the gamma function for a single straight boundary
in two dimensions was calculated numerically by splitting the contributing region

into a finite number of points pi each with associated area A as shown in Figure 5.10.
Then ya is approximated by

7G« y A jWg (Pi,ha). (5.13)
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Figure 5.10: Discrete approximation to 7 in the vicinity of a single boundary

By calculating these approximations to 7 at various normal distances to the bound-
ary and then fitting this data using curve fitting methods 7 and 7' were approximated

by simple polynomial expressions

7(5) = 1+ (0.0625- 0.0531¢) (e - 2)3 y
whnere e = —.

7'(e) = (0.2937 - 0.2124E) (e - 2)2 h (514)
Given the normal distance of a particle from the boundary and using the above equa-
tions to calculate values for 7 and 7' the boundary contact force in the vicinity of a

single straight boundary can be calculated using equation (4.31) as

T? = -m aB (5.15)
Palaha

where n# is the unit inward pointing normal to the boundary. This is a very simple

and accurate way to deal with single straight boundaries in two dimensions.

Approximating corner regions

However, a method for calculating 7 in the vicinity of corner regions like the one
shown in Figure 5.9 is required for the majority of practical engineering problems.

Two approximate methods are presented below.

Method 1

Consider a particle in the vicinity of a corner region as shown in Figure 5.11. Then

the exact value of 7 is due to the presence of both boundary segments Ti and T2.
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Figure 5.11: Method I: Approximation of + in 2D

The first method of approximation is to use a bilinear combination of the correction

factors from each boundary

Y =1+ C2Y1 + C3Y2 + Ca1Y2 (5.16)

where 7v; and 7, are the correction factors coming from boundary segments I'; and
I'; respectively. The constant coefficients ¢;, ¢z, ¢35 and ¢4 are to be calculated for a

given corner region by enforcing the known values of y. These are given as

v=10 whend; >2h and dy >2h (7 =1.0, 7o =1.0)
vy=05 whend; =0 and dy>2h (73 =0.5 v =10)
v=0.5 whend; >2h and dy=0 (7 =10, 72 =0.5)
y=0/2r whend;=0 and do=0 (y,=0.5 v =0.5)

(5.17)

where d; and d; are the distances from the particle to each boundary respectively,

and 0 is the interior angle at the corner.

With this bilinear form for v its derivative is then obtained as
Dy [6v] = (c2 + cay2) D1 [6v] + (c3 + cam1) Dy [6V] . (5.18)

By using equation (4.31) and rearranging gives
Dy [ov] = %N - v,

(5.19)
where N = (c2 + cay2) ¥in1 + (c3 + cam1) Yan2 -
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and the boundary contact force is given by

tff = _m”sz—ZkaN“' (5.20)

Method 2

The second method of approximation is to replace the boundary intersection with
a single representative boundary that can be simply handled using equation (5.14)

and equation (5.15).

Figure 5.12 shows a particle in the vicinity of convex and concave corner sections.
The points Pi and P2 are the points of intersection of the boundary of the kernel
support with each line segment. These points are easily calculated by analytic

geometry.

Figure 5.12: Method II: Approximation of 7 in 2D

The replacement line segment is then identified as the line connecting these two
points. Using the particle distance d from the single boundary the correction factor

7 and the resulting boundary contact force is calculated.

It can be seen from Figure 5.12 that by using the single boundary the area of
integration is not correctly represented. In the case of a convex corner 7 is under
evaluated by the shaded area P\OP-2 while for a concave corner 7 is over evaluated

by the shaded area P:OP:.
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In practical applications these discrepancies will be small since the size of the kernel
support is comparatively small compared to that of the boundary. Since this ap-
proach is conceptually and computationally simpler to implement it is an attractive

method for dealing with corner regions.

5.3.2 Exact boundary force evaluation in 2D

In this section a simple and inexpensive method for evaluating 7 terms exactly for

any boundary in two dimensions is presented.

With this aim in mind a vector function W is sought such that
VW =w where W =f(r and r = h (5.21)

The scalar function / is to be found and depends on the kernel function used.

Using the Divergence Theorem, the integral of the kernel function in equation (5.12)

whichdefines 7 is transformed into the integral of W en over the boundary OB

7o) |’Swarhgdy =) vow x-S wends s

B B dB

where n isthe outward normal of the boundary of the kernel support dBas shown

in Figure 5.13.

/(2)=

Figure 5.13: Calculating 7 by applying the Divergence Theorem
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The gamma function has now been rewritten in terms of the boundary of the kernel
support that lies inside the problem domain rather than the area of the kernel inside
the domain. In two dimensions it is now easy to calculate these line integrals and

so to calculate v exactly for any particle in the vicinity of any boundary.

From the definition of W the function f satisfies the following differential equation

w=V-W = (V-x)f+Vf-x
= 2f+(Vrf)-x
= o+ (xx) S
= 2f+rf. (5.23)

Multiplying both sides by r, the function f is obtained as the general solution

f= l/rw dr. (5.24)

r2
The choice of kernel function w appearing in the derivation above is arbitrary. How-

ever, for the remainder of the section the quintic kernel in two dimensions will be

used.
; (2-12°-16(1-12)° o0<r<h
w(rh) = T (2-1)° h<r<2h . (5.25)
0 r > 2h

After some simple algebra the required function W is obtained as

3 z
W—mf(r)[y] where

[ 8-20r2 4 24r% — (35/3)r* + (15/7) 13 if 0<r<1
T =3 16— (s0/3)r + 2 +201 (1{:2) $_(1)7)r5 (520
—(80/3) T +20r%* — 8r° + (5/3)r* — (1/7) r if 1<r<2
L +C (1/r?)

* In this case the resulting general solution contains two arbitrary constants of inte-

gration C; and Cs. All possible choices for these constants will result in a solution
function f that satisfies the differential equation and consequently V - W = w.
However, these constants should be chosen such that the resulting function f is

sufficiently smooth in order that the Divergence Theorem may be applied.
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The following computations are simplified greatly by choosing the solution that
satisfies / (2) = 0. With this choice w will vanish on the boundary of the kernel
support and only the region of the boundary inside will contribute to the calculation
of 7. This is shown in Figure 5.13 where only the red region of the boundary

contributes to 7 ; the blue region is zero and so can be ignored in all computations.

With this in mind the constant C2 is chosen such that / vanishes on the boundary
of the kernel and the constant C\ is chosen to enforce continuity of / at » = 1. As

such / is given by

8- 20r2+ 24 r3-(35/3) ra+ (15/7) r,sf b<r <1
1 T
-56/21 (1/r2) 527
/ 0o ) =< .
975 - s F+ 2082 - 813+ (5/3)r4-(1/7) 15

-64/21 (1/r2)

With this choice for the constants equation (5.27) is found to be discontinuous at
r = 0 and so the Divergence Theorem cannot be applied directly. However, this
singularity can be removed from inside the domain by placing a small ball of radius

eh about the origin of the kernel function as shown in Figure 5.14.

Figure 5.14: Removal of singularity

Therefore 7 is given by

(5.28)

8Beh dB

When a particle is sufficiently far from a boundary 7 should be equal to one. Since
the second term in the above equation will vanish since / (2) = 0 it remains to check

that the first term converges to unity as es —>0.
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B nds — 3 ) 7 ehcos (t) . cos (t) )
7 ./W d 16h27ff( ) / (ehsin(t)) (sin(t)) o

OBeh t=0
3
6
= T [ezf (e)] (5.29)
Since
lim [f (¢)] = 2 (5.30)
e—0 21
we have as expected
6 9 6 56
1= 16 11_{% [€%f (e)] = T 1. (5.31)

Therefore, the final expression for « in the vicinity of a general boundary in two

dimensions using the quintic kernel function is given by
Y (Xay ha) =1 + /W -n ds. (5.32)
v

Calculating Vv

It is also necessary to obtain an expression for the gradient of the gamma function

in the vicinity of a boundary.

Consider the variation of Vv with respect to a small perturbation dx from its initial
position x as shown in Figure 5.15. Given this small change in position of the centre

of the kernel function the change in =y is given by

Dy[dx] = % dx + g—; dy =Vy-dx (5.33)
where
o (5.34)
ox \ 8v/dy

Assuming the perturbation dx is small, the change in v is given by

ny[dx]=—/w(s)(dx-n)ds=dx- —/w(s)n ds | . (5.35)
1 !

where n is the outward normal to the boundary.
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Figure 5.15: Evaluating V7

Equating equations (5.33) and (5.35) the gradient of 7 is given by the integral

V7 = —HJ w(s)ds. (5.36)
1

Evaluating 7 and V7 for single straight boundaries

Using the preceding theory 7 and V7 can now be evaluated in the vicinity of a
single straight line boundary at a distance d from the centre of the kernel. Since the
kernel function is symmetric the orientation of the boundary is unimportant and

the boundary is assumed to be parallel to the y-axis as shown in Figure 5.16.

T=iH 6K/ /() *)-(i)ds=i+lfe/[9ds .

Since the distance in the x-direction is fixed the above integral can be written in
terms of y only. Where s (y) = " d~~ and

/ 2/max \

7=1+ ["2xdh - A ' 757384

Integrating / above with respect to y over T gives a closed form for 7 in the vicinity

of a single straight boundary, written in terms of the primitive function F (x,y)

7-1 + g |h (F(d,s,max) - F (d10)). (5.39)
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Y max \

>n

Figure 5.16: Calculating 7 and V7 for a single straight boundary

Similarly, a closed form for V7 in the vicinity of a single straight boundary is
calculated by integrating equation (5.36) over T

2/max
V7 =-2n I w(s(y))dy =-2n(G(diymax)-G(d,0)). (5.40)
y=0
The primitive functions F (x,y) and G (x, y) for the quintic kernel are given in full

in Appendix B.

Therefore, given the spherical symmetry of the kernel function and knowing the
minimum distance from the centre of the kernel to the boundary both 7 and V7

can be calculated exactly.

The values of 7 and V7 for a single straight line boundary using the primitive
functions derived above are compared to the approximations of Kulasegaram [69] in

Figure 5.17 and Figure 5.18.

It can be seen that the approximate 7 function was in good agreement with the
exact 7 function. However, the approximate V7 function was a less accurate repre-

sentation of the exact V7 function.
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Figure 5.17: Graph of 7 in the vicinity of a single straight boundary

— Exact
* Approximate
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0.4

0.2

0.5
Distance from boundary (dist/h)

Figure 5.18: Graph of V7 in the vicinity of a single straight boundary
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Evaluating 7 and V7 for corner regions

Corner regions are simply handled by applying the theory developed for single
straight line boundaries to a general boundary intersection like the corner region

shown in Figure 5.19.

Contributions from each line segment Ti and T2 are calculated using the particle
normal distances d| and d: from each boundary segment. These are then summed to

obtained the exact values for 7 and V7 for any given boundary in two dimensions.

/(2)=o0

Corner point

Figure 5.19: Calculating 7 and V7 in the vicinity of a corner

7=1+ J W ends V7 =—J wnds (5-41)
riur2 riur2

Using equation (5.41) the boundary contact force for particles in the vicinity of a

boundary can easily be calculated by
T? = V7a e (5.42)

Pa')a

The computed values for 7 and V7 in the vicinity of several example boundaries
in two dimensions can be found in Figure 5.20. It can be seen that the 7 value is

correctly obtained at the corner points and the resulting gradients are smooth.
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Figure 5.20: 7 and V7 plotted in the vicinity of general boundaries in 2D
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Evaluating 7 and V7 for curved boundaries

It is a simple generalisation to apply the gamma boundary implementation to curved
boundaries. Assuming that the curvature of the boundary is small in comparison to
the smoothing length of the particle then the boundary can simply be approximated
by a straight line segment. As shown in Figure 5.21 this is the line tangent to the

closest point of the curve a distance d from the particle.

Figure 5.21: 7 evaluation for curved boundary

When the curvature of the boundary is greater, modified approximations to 7 and
V7 can be calculated which take into account the curved boundary as discussed
Section 5.3.1. The modified 7 function for positive and negative values of curvature

can be seen in Figure 5.22.

0.9

— Zero Curvature
— Curvature = -1

0.4
— Curvature = +1

03
0.00 0.50 1.00 1.50 2.00

Distance from boundary

Figure 5.22: 7 function for boundaries with varying curvature
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5.3.3 Incompressibility issues

In the sections above a pressure based, variationally consistent, boundary contact
force T2 = T (P,) has been derived that can be calculated exactly for general
boundaries in two dimensions.

meFy

Paa
The vector term V+, is in the inward-normal direction to the boundary and the

T(Pa):_

Ya (5.43)

parameters m,, p, and -y, are strictly positive valued.

In contrast, the pressure P, can either be positive or negative valued due to the
artificial compressibility imposed by the explicit time integration. In this case the
boundary contact force T (P,) acts repulsively when P, > 0 or attractively when
P, < 0. Consequently, particles in local regions of expansion (where the pressure is

negative) will be attracted to the boundary rather than repelled.

This is clearly a non—physical property of the current implementation. However, it
is a consequence of the artificial compressibility rather than the derivation of the

contact force itself.

This discrepancy would not occur in a fully-incompressible SPH formulation such
as in the work of Shao [83,114]. In this case incompressibility is strictly enforced by
ensuring V - v = 0 and therefore the pressure field is correctly evaluated throughout
the entire domain. Thereby, removing any non—physical negative pressures in the

fluid caused by artificial compression waves.

While remaining within the current compressible SPH formulation several different
modifications to the above variational contact force have been tested to assess the

effect these attractive contact forces have on the simulations.

The first modification was to only apply the boundary contact force to particles

with positive pressure

— { T(P,) if P,>0 (5.44)

¢ 0 if P,<O

The second modification was to apply a repulsive boundary contact forces irrespec-

tive of the sign of particle pressure

T2 =T (|R,|) forall P,. (5.45)
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In both these cases the attractive contact forces have been removed and only re-
pulsive boundary contact forces are present. However, it was found that both these
modifications introduced instabilities into the code and the unmodified boundary
contact force given by '

T2 =T (PR,) foral P, (5.46)

performed the best in most situations.

The relatively poor performance of these modifications is likely to be due to the
fact that the pressures used in the modified expressions for the boundary contact
forces are not consistent with those given by the equation of state which are used

to evaluate the internal forces.

5.4 Variational boundary force examples

This section presents several applications using the variational boundary contact
force derived in the previous section. A flexible SPH code has been developed for
free surface fluid problems written in Fortran90. Complete details of the code and

algorithms implemented can be found in Appendix D.

The boundaries are modelled by line segments and curved segments; no boundary

" particles are required. The contact forces are calculated using the theory developed

in Section 5.3.2 for particles within 2h of a boundary.

The motion of the SPH particles are evolved using the equation of motion given by
mea, = Fy — TP — Tdv _ T8 (5.47)

where the internal and contact forces are calculated using the following expressions

P, P,

TP = mem ( 2 +——) Vws (Xq, ho), 5.48a
2,,: "\ o2 b (Xa ho) (5.482)
TS = ) ViVhoyVida (%5, ha), (5.48b)

b

P,

T8 = _Telag,, 5.48¢
o ) (5.48c¢)

and the only external force present is gravity given by F, = m,g.
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The accuracy of the variational boundary force is investigated by the simple breaking
dam benchmark. In the second example a more complex boundary is used to model
a simple flood defence problem. The final example models a water droplet falling

into a curved bowl demonstrating the methods ability to model curved boundaries.

5.4.1 Breaking dam example

The water column is 0.Im wide and 0.1m tall and initially held in hydrostatic equi-
librium against the solid wall on the left as shown in Figure 5.23. At time ¢ = 0.0s

the water is released and allowed to collapse under gravity.

Figure 5.23: Breaking dam initial configuration

In the numerical model the water column is represented by 2500 equally spaced fluid
particles with material density of po = 1000kgm~3 and viscosity p — 0.5kgm_1s 1.
The boundary is identified by only three points defining the two straight line seg-
ments; no boundary particles are required. A constant timestep of 10 4s is used

throughout the simulation.

The artificial bulk modulus in the equation of state is calculated using equation (2.83)
where viex is determined using the theory of conservation of energy. By considering
a particle on the top surface of the dam its potential energy will be converted into
kinetic energy yielding

mgH = -m [viypl” (5.49

and so the typical fluid velocity is given by
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~ With this value of vy, the artificial bulk modulus is obtained as

100 x 2gH x p
S .

Fo

(5.51)

For this example v = 7 and the bulk modulus is calculated to be Py = 28028.57 Nm"2.

In order to reflect the gravitational force acting on the water column while in equi-
librium the initial density of the individual particles is calculated by combining the

equation of state (2.81) with the hydrostatic pressure P, = pgh to give

HTERY o

= 1
Pa = Po ( + 2
where H is the initial height of the dam and y, is the distance from the base of the

dam to particle a.

Using the code developed for this thesis the results of Lok [84] where reproduced
using the particle bounce-back method and the same simulation was run using the

gamma function boundary implementation.

Figure 5.24 shows the dam velocities at various stages of collapse. In Figure 5.25
the surge front velocities obtained using the gamma function boundary implemen-
tation and the particle bounce—back method are compared to those obtained from-
experimental data [87]. For comparison the variables are non—dimensionalised with
respect to the initial width of the dam, w. The non—dimensional time is given by

tv/g/w and the non—dimensional surge front is given by z/w.

Both the current SPH simulations using the variational boundary force and the par-
ticle bounce-back method overestimate the surge front velocities when compared tol
the experimental data. This suggests that friction along the horizontal base should
not be neglected in the computational model. This is corroborated by the fact that
the bounce—back method which includes a coefficient of restitution term was in closer
agreement to the eiperimental data than the new variational boundary force that

does not include any dissipative term.
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a) t=0.0s b) £ =10.035s ¢) ¢t =0.06s d) t =0.085s e) t = 0.11s
f) t=0.135s g)t=0.16s h) t = 0.185s i)t = 0.21s j) t = 0.235s

Figure 5.24: Breaking dam velocities



Chapter 5: Boundary methods

2.5

0.0

0.2

0.4 0.6

Figure 5.25:

113

o Experimental Data
Bounce Back BCs
Gamma BCs

0.8 1.0 1.2 1.4 1.6 1.8

tyfegjw

Surge front comparisons

2.0



Chapter 5: Boundary methods 114

5.4.2 Flood defense example

The second example applies the variational boundary contact force to a more com-
plicated boundary to model a dam breaking against a flood defence as shown in

Figure 5.26.

Figure 5.26: Flood defense initial configuration

The numerical discretization of the flood defence problem is identical to dam given
in Section 5.4.1 except for the solid boundary which is represented by nine straight
line segments. A constant timestep of 0.25 x 10 _4s is used throughout the simula-

tion.

The resulting fluid flow is given in Figures 5.27-5.30 and demonstrate the new
boundary implementation is capable of accurately modelling complicated straight

line geometries in two dimensions.

Figures 5.27 and 5.28 show the velocity of the fluid at various instances of the sim-
ulation. They show the void created by the fluid breaking away from boundary as
it flows down the slope and its subsequent recirculation. The free surface generated

as the wave breaks over the flood defence is clearly captured by the method.

Figures 5.29 and 5.30 show velocity vector plots of the fluid at various instances of
the simulation. They clearly show the regions of stagnation and the evolution of the

eddy generated by the converging flow caused by the breaking wave.



Chapter 5: Boundary methods 115

a)t =0.0s b)r=0.062s c)t= 0.124s d) t = 0.186s
e) t = 0.248s f) ¢t = 0.310s

Figure 5.27: Flood defense velocities
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g h)
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k)

g) t=0372s h)t=0434s i) ¢ = 0.496s j) t = 0.558s
k) £ = 0.620s 1) ¢ = 0.682s

Figure 5.28: Flood defense velocities (cont.)
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Figure 5.29: Flood defense velocity vector plot
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Figure 5.30: Flood defense velocity vector plot (cont.)
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5.4.3 Curved boundary example

The final example is of a water droplet falling into a semi-circular basin as shown
in Figure 5.31. This demonstrates the ability of the new boundary contact force to

model curved boundaries.

Figure 5.31: Water droplet initial configuration

The numerical model consists of a total of 3194 particles with material density of
Po = 1000kgm-3 and viscosity p = 0.5kgm- 1s-1. The radius of the semi-circular
basin is r = 0.104m and is filled up to the halfway point with 2390 equally spaced
fluid particles. The water droplet has radius 0.25r and consists of 804 fluid particles
positioned in equally spaced concentric circles. A bulk modulus Po = 25000 Nm-2 is
used to ensure density variations of less than 1%. A constant timestep of 0.25 x 10-4s

is used throughout the simulation.

The semi-circular basin is defined by a single curved boundary segment as described
in Section 5.3.2 and the boundary force is evaluated by approximating the boundary

with straight line segments (see Figure 5.21).

Figure 5.32 shows the velocity of the water droplet and Figures 5.33 and 5.34 show
velocity vector plots of the fluid at various instances of the simulation showing the
new boundary implementation is capable of accurately modelling curved boundary

segments.
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a) t = 0.0475s b) t = 0.0725s ¢) t = 0.0975s d) t = 0.1477s
e) t=021s f)t=0.4225s

Figure 5.32: Water droplet velocities
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Figure 5.33: Water droplet velocity vector plot

121



Chapter 5: Boundary methods 122

VAL LA *l]ﬂ%w» VI'sVw.vX'

d)

e)

d) t= 0.1477s e = 021s f) t = 0.4225s

Figure 5.34: Water droplet velocity vector plot (cont.)
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5.5 Concluding remarks

SPH was initially developed to solve problems in astrophysics where the domain of
the simulations were infinite and notably absent of any solid boundaries. Indeed,
the derivation for reproducing kernel approximation of the gradient of a function
explicitly assumes the absence of solid boundaries and the terms coming from the
boundary are neglected. Consequently, the SPH method does not naturally incor-

porate rigid or moving boundaries.

This chapter has presented several different methods which are commonly used to
implement solid boundaries in SPH. These were the bounce back method, image
particles and penalty methods. In addition the Lennard-Jones method has been
described and a new formulation has been developed to avoid instabilities that have

traditionally occurred when non-uniform boundary particle distributions are used.

A new expression for boundary contact forces has been developed from variational
principles in Chapter 4. As such the resulting forces maintain the conservation prop-
erties of the underlying governing equations. A simple and inexpensive method for
exactly evaluating these boundary forces for general boundaries in two dimensions

has been presented and compared to the existing approximations.

The accuracy and flexibility of this formulation has been demonstrated by several
free surface flow simulations. The flood defense and water droplet examples have
shown the method is capable of modelling complex straight line and curved geome-

tries in two dimensions.

This new variational boundary force implementation has been incorporated into
the code developed for this thesis and will be used extensively in the refinement

simulations that follow in Chapter 7.
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Adaptivity

6.1 Introduction to adaptivity in SPH

In the past most SPH derivations have been based on uniform distributions of par-
ticles of equal mass. This leads to large simulations with many particles and long
run times. In other mesh based schemes it has become common place to use mesh
adaptivity to improve numerical results and to reduce computation times. With a

corresponding refinement strategy SPH can gain these same advantages.

In this chapter a refinement strategy based upon particle splitting is developed.
Candidate particles are split into several ‘daughter’ particles according to a given
refinement pattern centred about the original particle position. Through the so-
lution of a non-linear minimisation problem the optimal mass distribution for the
daughter particles is obtained so as to reduce the errors introduced into the under-

lying density field. This procedure necessarily conserves the mass of the system.

The density refinement errors for several daughter particle configurations in one,
two and three dimensions are calculated and the optimal particle separations and

smoothing lengths are obtained for each configuration. -

Finally, conservation properties of particle splitting algorithms are discussed and it
is proved that there is only one unique daughter particle velocity configuration that

conserves both the kinetic energy and momentum of the system.

124
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In order to implement dynamic refinement into a SPH framework two main consid-

erations need to be dealt with:

e Firstly, to identify suitable Criterion for Refinement as a way to efficiently
identify candidate particles for refinement and those particles for which refine-

ment is not necessary.

e Secondly, to develop a General Refinement Algorithm whereby particles are
refined into a number of corresponding ‘daughter’ particles while ensuring that
the basic properties of the system are conserved and that any errors introduced

by the procedure are minimised.

Both stages should be applied automatically by an SPH code at runtime with no

intervention required.

6.2 Criteria for refinement

Candidate particles for refinement could conceivably be identified by many different
criteria depending on the type of problem to which refinement is being applied. It
is not the aim of this thesis to study the criteria for refinement in detail, rather
to develop an accurate and flexible refinement algorithm that is independent of the

refinement criterion used.
Example refinement criteria
Refinement zones

A refinement zone is a region of a problem domain where particles automatically
undergo refinement. As a particle passes into such a region the refinement algorithm
replaces the original particle with its corresponding set of daughter particles. As the
daughter particles leave the refinement zone they remain unchanged and continue

to pass though the rest of the domain.

These regions can be placed in areas where more accuracy is desired or in regions
where there are large differences in scale (see Figure 6.1). For example when water
in a large tank flows into a narrow pipe refinement would allow a coarse distribu-

tion of particles in the tank with particles being refined as they travel through the
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pipe. This reduces the total number of particles necessary for the simulation while

maintaining the accuracy needed inside the narrow pipe.

Figure 6.1: Example of a refinement zone through a narrow pipe

Number of neighbours

The number of neighbour particles is another obvious criterion to use for refinement.
A particle with few neighbours is a suitable candidate for refinement since the SPH

interpolation is likely to be poorer in its vicinity.

For example in problems with large dissipation the number of particle neighbours
can vary considerably throughout the domain. When a given particle a has fewer
neighbours than a prescribed minimum na < nmm then the particle could undergo
refinement to maintain the local accuracy of the simulation as the distribution of

particles thins out.

Problem specific criteria

Other physical quantities have already been used successfully as criterion for adap-
tivity in SPH. In the work of Lastiwka [70] particles are added in regions of high
velocity gradient and removed in regions of low velocity gradient. In the one dimen-
sional shock tube example they showed some improvement with adaptivity over the

standard SPH method using a comparable number of particles.

Kitsionas [61,62] has applied a particle splitting algorithm to an astrophysics prob-
lem concerned with the self-gravitating collapse of a region of gas. Here the refine-
ment criterion is based on satisfying a physical requirement known as the ‘Jeans
Condition’. This ensured that the resolution of the particle distribution was suffi-

cient to capture the physics of the problem.
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6.3 A general refinement algorithm

Suppose that particle a with mass ma, position xQ velocity va and smoothing length
ha has been identified as a candidate for refinement as shown in Figure 6.2. It re-
mains to decide in some sense the ‘best way’ to introduce new particles into the

simulation.

Refinement

Figure 6.2: Particle refinement

There are several factors that need to be taken into account when devising a refine-

ment algorithm:

* The addition of new particles will alter the local mass distribution and in-
evitably change the local density and velocity fields surrounding the refined

particle. Any such change should be minimised by the refinement process.

* Regions where fine and coarse particles interact will be a consequence of the

refinement process. Any proposed method must deal with such regions.

* Refined particles should have a reduced smoothing length corresponding to
their smaller mass. This retains the local smoothing property of SPH and

reduces the number of daughter particle neighbours.

* Where possible the refinement process should conserve the global properties

such as the mass, kinetic energy, linear and angular momentum of the system.
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6.3.1 Conservation

Suppose that the particle a is to be replaced by M daughter particles. Each daughter
particle will have individual mass m;, position X3, velocity v, and smoothing length

hy to assign, where b € {1,--- , M}.

Ty Y
my, | 22 | , | vZ | and hs.
T vp

This results in a total of eight degrees of freedom for each daughter particle in three
dimensions. Ideally, these need to be chosen in such a way as to preserve the four

global conservation properties given in Table 6.1.

| | Before Refinement | After Refinement
(1)- Mass i > omy
(2)- Kinetic Energy %mava -V, % > :nbvb -V
(3)- Linear Momentum MV, bz MV
(4)- Angular Momentum Xq X MaVg Zb:;b X MpVy

Table 6.1: Global Conservation Properties (1)—(4)

This chapter is concerned with assigning the daughter particles positions, velocities,
masses, and smoothing lengths in such a way as to conserve the properties in Ta-
ble 6.1 and to minimise the changes to the density and velocity fields that result

from the refinement procedure.

It will be shown in Section 6.6 that there is only one possible refinement solution
that simultaneously satisfies conservation properties (2)—(4). It is however possible
to choose a mass distribution that conserves the global mass of the system (1) while

minimising the error introduced to the local density field.

In the next section the positions of the refined daughter particles are given as a set
of refinement patterns for several one, two and three dimensional cases. Each of
these refinement patterns introduces an additional separation parameter € > 0 that
governs the spread of the daughter particles based around the original unrefined
particle position. Each of these configurations will be studied in the remainder of

this chapter or can be found in Appendix C.
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In addition to fixing the separation of the daughter particles it is necessary to assume
that their smoothing lengths are equal and proportional to the original smoothing
length. This is given by hy = ah for each particle b where the parameter a € (0, 1]

is known as the smoothing ratio.

Collectively the separation parameter € and smoothing ratio o will be referred to
as the refinement parameter (e,a) of a given refinement pattern. Adopting these
two simplifications means the number of degrees of freedom for a given refinement
pattern are reduced to the choice of refinement parameter (e, @), and the daughter
particle masses m; (in later analysis the daughter particle velocities v, will also be

considered).

For each of these refinement patterns optimal values for the separation parameter
e* and daughter particle smoothing ratio o* will be obtained with a corresponding
set of daughter particle masses m; such that the resulting changes to the density

and velocity fields are minimised.

6.3.2 Refinement patterns

To proceed it is necessary to fix the positions of the new daughter particle with
respect to the original particle position. In total five refinement patterns will be
considered: two 1D and two 2D refinement patterns, and one 3D refinement pat-
tern. In each case the separation of the particle configuration is governed by the

additional separation parameter € > 0.

Each refinement pattern is shown in Figure 6.3 through to Figure 6.7, the red point
in each shows the original unrefined particle position. The coordinates of the daugh-
ter particles relative to this point are also included for the case where e = 1 and

particles are a unit distance apart from their nearest neighbour.

The orientation of the two and three dimensional refinement patterns do not neces-
sarily have to be aligned with the coordinate axis but can be randomly rotated for
each particle. However, for the current analysis and the simulations in Chapter 7

the orientation of the refinement patterns will remain fixed.

In the one dimensional cases the separation parameter € denotes the maximum par-
ticle separation of the configuration with the daughter particles resulting from the

five particle split positioned at distances 0.5¢ and ¢ from the original particle.
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ID refinement patterns
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Figure 6.4: ID 5-Particle refinement pattern with relative particle positions

2D refinement patterns
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Figure 6.5: 2D triangular refinement pattern with relative particle positions
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Figure 6.6: 2D hexagonal refinement pattern with relative particle positions
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3D refinement pattern

Figure 6.7: 3D hexagonal refinement pattern

X y z
10 0 0
21 0 0
30 -1 0 0
4 1 & 0
5 1 V3 0
2 V3
6 1 0
7 35
75 : 0
8 0 [% -s/i
o 1 v
2 3 3 _g;
1 wB ™M
05 3 3 -S

S o =
= o
- - N
NS
nlnn

Table 6.2: Relative particle positions for the 3D hexagonal refinement pattern
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6.4 Density refinement error

In this section an error measure is defined from the change in local density field
due to the refinement procedure. This error is shown to be independent of the
initial particle mass and smoothing length. The optimum daughter particle masses
are then calculated for a given distribution through the solution of a constrained

minimisation problem.

The particles in SPH act as interpolation points for the underlying fields of interest
and are not simply discrete particles. Any variable can be evaluated at any point

in the domain (not only at the particle positions).

In particular, consider a collection of N particles and suppose that the N #h particle
is to be refined into M daughter particles. Each of these M daughter particles

having an as yet unspecified mass denoted by m/ := m*Nh where Vo G {1,***»M}.

Before refinement the expression for the density at any point in the domain is given

by

PX)=  IIa ha) V xE fi. (6.1)

a

After refinement the local density distribution will inevitably change due to the

redistribution of particles (see Figure 6.8) and is given by

N -1 M
p*(x) = "2 mawa (X, ha) + ~ mwbwb(x, hb) vxGQ. (6.2)
a=1 6=1
Refinement

Figure 6.8: Change in contribution to density at x due to refinement of particle a
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The local density refinement error at any point x can now be defined as the change

in density interpolation due to the introduction of the new particles
M
e(x) = p (%) — 0" (x) = mywn (5, h) = S miwy (x,h) VX EQ  (63)

This change in local density field is entirely due to the ability of the refined particles

to approximate the contribution of the original unrefined particle that they replace.

From the local error the global density refinement error can now be defined as

0<&:= /Qez (x) dx. (6.4)

Any adaptivity algorithm should be defined in such a way as to minimise this global

density refinement error.

The above definitions for local and global density refinement errors are independent
of the masses, positions, and smoothing lengths of the new daughter particles and

so can be applied to any given refinement pattern.

Expanding the expression for £ gives

8:/ [meN X, hN Zmbwb X hb:| dX,

8=m%,/w (x,hn)dx — 2mNZmb/wN(x,hN)wb(x,hb)dx
b_
@ & (6.5)
+ Z mam,’;/wa (x, hq) wp (%, hp) dx.

a,b:l Q
By writing the masses of the daughter particles in terms of scalar parameters A, > 0
as m; = \pmy for each b the global error is found to be proportional to the mass of

the particle under refinement

M
/wlzv (x,hn) dx — ZZAb/wN (x, hn) wp (x, hp) dx
=my Iy . (6.6)

+ Z /\a)\b/wa (%, ho) wp (X, hp) dx

a,b=l Q
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Conservation of mass is now enforced with the additional constraint on the  pa-

rameters

£ > =1 (6.7)
&1

Written more succinctly in vector form equation (6.6) is given by
A _

0 e =- 2ATb + (6.8)
where A is the vector of the unknown Aa terms that determine the daughter particle
masses by raj = A’ra’-

The constant term C and components of the vector term b and matrix term A are

shown diagrammatically in Figure 6.9 and are given by the following expressions

C=[wa (x, AN)dx ,  »j =J w m (X,d/V)VW(X,h3)dX,

LA weli ok

(6.9)

Figure 6.9: Graphical representation of 4i3 and 4 terms

Equation (6.8) shows that the minimum ofthe global refinement error is independent
of /M- However, the magnitude of the error is found to be proportional to the

unrefined mass m 2.

In the next section it will be shown that the density refinement error can also be
made independent of the initial smoothing length 2" by writing the integral terms

C, b and A in non-dimensional forms.
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6.4.1 Derivation of the model problem

SPH kernel functions written in terms of the non—dimensional variable £ are of the

form
1
w(§)=5f ()  whee &= €02 (6.10)
and d is the dimension of the problem.
Considering the integral expression for Aj;
Aij = /wi (x, hi) wj (x, hj) dx ‘ (6.11)
Q

and given that the daughter particles smoothing lengths are defined as h; = ahy

where « is the fixed smoothing parameter, a € (0, 1] the expression for A;; can be

written as
1 r
A= ———— [ £:(6) f; () d h - 12
j (adh‘}v)Z/f (&) f;(§)dx  where ¢ e (6.12)
Q
Using the change of variable
= — dx = dx=(ahy)!dk (6.13)
(ahN)

where d% is now a non-dimensional volume element A;; can be written as

Ay = e [ 5(6) 5 (6) e

Q

~ ﬁ / 7.(€) £ (€) (6.19)
Q

where
. h
E=2Ni_rel0,2. (6.15)
ann
Therefore for any h
1
/ w, (%, ) (x, ) dx = 2z / wi (%, 1) w; (%, 1) d&. (6.16)
Q Q

This has the affect of scaling the integral down to unit smoothing length h = 1 as

- shown in Figure 6.10.
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2ah 2ah

Figure 6.10: Scaling integrals into non-dimensional form

In the same way the 4j terms can be written in a non-dimensional form. Substituting

equation (6.10) for both kernel functions gives

Vh and a G (0,1]

b =Jw X, h)x,
(6.17)
where = and £2 = ah
As before a change of variable yields
dx = E{dx = dx = hddx
(6.18)

h h To
where ¢ =- /[ =r[ G[0,2] and #£2= —Z7 = — G0, 2].
h a a

With these substitutions & is given by

phJILNOCVER MO

Therefore for any smoothing length # and smoothing ratio a

J wn . h) Wj (x, ah) dx = " ]J x, )W (x,a)dx J . (6.20)

n \n /

Proceeding in this way the global refinement error can written independently of
both the smoothing length and the mass of the original particle by using the non-

dimensional form of the integrals

07 £[eal (A)= -f- (C- 2 A7b + ATA A) (6.21)
l

ah)
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where the coeflicients are now obtained as
& @ (6.22)

The notation & [g, o (\) emphasises the dependence of £ on the choice of refinement
parameter (¢,c). In addition, the minimum error obtained from an optimal mass
distribution A* is independent of the initial mass my and smoothing length hy of
the particle under refinement. However, the magnitude of the error is proportional

to
mN
hd

Therefore, the initial mass and smoothing length of the pa.rtlcle under refinement

Ele,a] (\) x (6.23)

can be ignored while minimising the density refinement error and the optimal mass
distribution can be calculated for any SPH simulation via the solution of the Model
Problem.

The model problem

Given a particle of unit mass and unit smoothing length and a given
refinement pattern that splits it into M daughter particles with refinement
parameter (¢,a) find \; >0 for j=1,---, M such that
_ _ - M
& e, o] = mlnS[e o] N)=C =2 XTb+ XTA X*  where Z 1)\; =1.
J:
The coefficients C, b and A are calculated numerically and the above minimisation
problem can be solved easily by standard non-linear programming methods. The

solution to this problem is guaranteed since £ can be shown to be a convex function

due to the fact that A is symmetric positive definite (SPD).

The actual refinement error introduced when a particle of mass my with smoothing
ratio hy is refined is then obtained from the model problem solution by
2

£= T}';‘j’ £*. (6.24)
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6.5 Density refinement results

The magnitude of the refinement error £ /s a] is still dependent upon the separa-
tion of the daughter particles and their smoothing lengths (see Figure 6.11). Some
values of (e, a) will result in much smaller refinement errors than others. By solving
the model problem over a range of these parameters certain pairs can be

identified as admissible choices that result in sufficiently small refinement errors.

The selection of these parameters also has practical implications to SPH simula-
tions. A large value of smoothing ratio means that daughter particles will have
a large number of neighbour particles at a greater computational expense than if
the smoothing lengths we chosen more appropriately. Daughter particle separation
should also be chosen to avoid a clumped or spaced out distribution of daughter

particles.

"7 2or/l

Figure 6.11: 2D refinement examples for given (£,a)

This section presents the results obtained from solving the model problem for den-
sity refinement. For each of the refinement patterns given in Section 6.3.2 the model
problem is solved for values of smoothing ratio and separation parameter (e, a) rang-
ing from 0.1 —*0.9. With each choice of (e, a) the solution to the model problem
results in the optimal daughter particle mass distribution with the corresponding

minimised density refinement error £* [e, a].
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The results for the one dimensional refinement patterns are presented in detail be-
low. In this case the particle is split into three or five particles respectively, centred
about the original particle position as shown in Figure 6.12. The results for the two

and three dimensional refinement patterns can be found in Appendix C.

O O

Refinement v Refinement

- m, mA m. m, mc

Figure 6.12: ID refinement into 3 and 5 particles respectively

The pairs (e*a*) = (0.4,0.4) and (0.6,0.6) are taken as example values for discus-
sion. Any other pairs could have been picked as examples. (0.4,0.4) was chosen
simply because it has a moderately large minimum refinement error while (0.6,0.6)
has a suitably low minimum refinement error. With these values the results can
easily be analysed (at least in one and two dimensions) by comparing the refined
particles approximation to the original particle (the model problem particle has unit

mass and smoothing length: w (x, 1)).

In previous implementations of refinement in SPH the mass of the particle under
refinement was often uniformly split amongst the daughter particles. However, the
optimal mass distributions obtained from the solution of the model problem will
show that often this will not minimise the density refinement error. In general
non-uniform mass distributions yield the optimal mass distribution. In addition
the solution to the model problem shows that refinement improves as the particle is

split into a greater number of daughter particles.

For each choice of refinement parameter (e a) solv