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Introduction
The purpose of this thesis is to investigate weighted actions of the circle group U( 1) 

on known quantum spaces. By introducing suitable weights we are able to construct new 
unexplored quantum spaces which contain the known quantum spaces in the unweighted 
case. Once we are able to describe the algebraic structure of these new quantum spaces 
we investigate their quantum geometry.

This thesis is split into two main parts with an outlook of open problems attached; the 
first consists of introductory material, motivation and an overview of quantum groups and 
their non-commutative geometry. The second part contains the results from research into 
quantum weighted projective spaces, in particular describes quantum weighted projective 
spaces, quantum weighted real projective spaces and quantum weighted Heegaard spaces; 
see [5], [6] and [7]. Finally, some open problems are discussed, firstly the existence of a 
differential calculus over the quantum weighted projective spaces. Secondly, the descrip­
tion of higher dimensional quantum weighted projective spaces. One possible approach 
for interpreting these spaces on the C*-algebra level is by graph algebra theory; the ideas 
are discussed briefly in the appendices of this thesis. An outline of each chapter is given 
as follows.

Part I An overview of quantum groups and non-commutative geometry.
Chapter 1 Essentially quantum groups are non-commutative (Hopf) algebraic struc­

tures, hence the purpose of this chapter to describe algebraic structures with an emphasis 
on the theory used to developed quantum groups in later chapters. The main focus is on 
comodule algebras over Hopf algebras and C*-algebras over C and their A-theory.

Chapter 2 Motivation for quantum groups and non-commutative geometry are de­
scribed and well known examples are given, namely, both even and odd dimensional 
quantum spheres and Podles quantum 2-spheres. Next our attention is turned to non- 
commutative geometry, motivated by classical geometry, definitions for non-commutative 
principal and associated bundles are set out. Non-commutative principal bundles are iden­
tified with principal comodule algebras and the geometrical importance of Hopf-Galois 
extensions in made. The constructions of Fredholm modules and the Chern character 
over an algebra are described. The differential calculi for an algebra are mentioned. Fi­
nally, the definition of a connection is given and it is shown that a strong connection is 
equivalent to the principality of a comodule algebra, providing a highly useful tool when 
performing calculations.

Part II The main results of the research into weighted circle actions on quantum algebras.
Chapter 3 Firstly, quantum weighted projective spaces 0 (W F g(lo, ...,/n)) are intro­

duced, for coprime weights Z0, ..., /n, as the subalgebra of coinvariant elements of quantum 
spheres via a suitable t/( l)  action, or equivalently a G(U(l))-coaction. We concentrate on 
the quantum weighted projective lines, i.e. on the case n — 1. For a pair of coprime posi­
tive integers Iq =  k,l\ =  /, we give the presentation of 0(W F q(k, /)) in terms of generators 
and relations and classify all irreducible representations of 0(W F q(k, I)) (up to unitary 
equivalence). We prove that all infinite dimensional irreducible representations are faith­
ful. We then proceed to analyse the structure of 0(W Pg(/c, /)) as coinvariant subalgebras.
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We prove that 0 ( S q) is a Hopf-Galois C[u, u*]-extension of 0 (W P q(k, I)) or 0 ( S q) is a 
principal C [u,u*}~ comodule algebra with coaction q̂ i if and only if k = I = 1. This is in 
perfect agreement with the classical situation where it is known that the teardrop man­
ifolds are not global quotients of the 3-sphere by a free action. On the other hand, we 
prove that in the case k = 1, 0 ( WPg(l,/)) is a coinvariant subalgebra (or a base) of a 
principal C[u, u*]-comodule algebra that can be identified with the coordinate algebra of 
the quantum lens space 0 ( L q{l\ 1, /)). We explicitly construct a suitable strong connec­
tion on G(Lq(l\ 1,1)) and show that 0 ( L q(l\ 1,1)) is not a cleft principal C[u, u*]-comodule 
algebra. Quantum weighted projectives spaces are classified as generalised Weyl algebras 
and it is shown that their global dimension is one when k =  1 and infinite otherwise, 
reinforcing the importance of this special case.

Next construction of Fredholm modules and associated cyclic cycles or Chern charac­
ters rs on 0 (W F q(k, I)) are presented. Using the explicit description of strong connections 
in 0 ( L q(l; 1, /)) we calculate a part of the Chern-Galois character. Finally we evaluate rs at 

: the computed part of the Chern-Galois character and show that the results are different
; from zero. From this we conclude that the finitely generated projective 0(W P9(1,/))-

module £[1] (associated to 0 ( L q{l\ 1,1))) is not free, thus the principal C[w, ?x*]-comodule 
I algebra 0 { L q(l\ 1, /)) is not cleft.

Finally, we construct C*-algebras C(WFq(k, I)) of continuous functions on the quan- 
I turn weighted projective lines and identify them as direct sums of compact operators on

(separable) Hilbert spaces with adjoined identity. Through this identification we imme- 
| diately deduce the K -groups of C(WFq(k, I)).
| Chapter 4 The ideas used in the teardrop case are extended to prolonged quantum 
i spheres C(£g). In this case we get quantum real weighted projective spaces; the results
j  here differ significantly from the teardrop case. Quantum real projective spaces split into
| two unidentical cases, depending on whether I is a even positive integer, 0 ( R ¥ q(l\ —)), or I
j  an odd positive integer, 0(R Pg(Z; +)), each analysed in detail. The algebras 0 (R P9(Z; ±))
I are identified in [10] as fixed points of weighted circle actions on the coordinate algebra

O (Eq) of a non-orient able quantum Seifert manifold described in [12] . As in the quan­
tum weighted projectives case, we fully describe the algebraic structures of 0(MFq(l] ±)) 
and classify all infinite dimensional representations. Furthermore, we construct quantum 
U(l)-principal bundles over the corresponding quantum spaces 0(MFq(l] ±)) and describe 
associated line bundles. We show that the principal comodule algebra over 0(MPq(l\ —)) 
is non-trivial while over 0(MFq(l\+)) turns out to be trivial (this means that all asso­
ciated bundles are trivial, hence we do not mention them in the text). We also prove 
0(MFq(l;±))  can be also understood as quotients of 0 ( E q) by almost free ^-actions. 
Next we classify C?(RPg(Z; +)) as a generalised Weyl algebra and comment that the neg­
ative case do not appear to fit this picture. Finally, we construct Fredholm modules and 
associated Chern characters.

Chapter 5 In this chapter quantum Heegaard spaces are considered from a weight­
ing perspective. Like quantum real weighted projective spaces the quantum weighted 
Heegaard spaces split into two cases, however there are similiarities when considering 
quantum principal bundles. Firstly, we equip the coordinate algebra of the Heegaard 
3-sphere 0(S^q9) with 2-gradings determined for a pair of coprime integers k, I, by set-

ii

!
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ting deg(a) = k , deg(b) = /, where a and b are generators of the *-algebra O(Spq0), or, 
equivalently, with the weighted coaction of 0(U(  1)), and study the zero degree algebras 
0 ( S pq(k,l)). These split into two cases, one in which both k and I are positive, and one 
in which k is positive and I is negative. We use the notation G(Spq(k,l±)) to distinguish 
these cases. We list bounded irreducible ^-representations of these algebras and identify 
0 ( S pq(k,l±)) as the generalised Weyl algebras.

The subalgebras of O(Spq0) which admit principal 0(C/(l))-coactions that fix 0 (S pq(k) /±)) 
are identified. In the case k = |/| =  1 these coincide with 0 ( S pqd). Furthermore it is shown 
that these principal comodule algebras are non-trivial and strong connections on them are 
constructed. It is shown that 0 (S pq(k,l±)) are generalised Weyl algebras. Next we deal 
with the noncommutative geometric aspects of G(Spq(k, /±)). More concretely, we con­
struct Fredholm modules over 0 (S pq{k, /*)) and calculate Chern numbers of line bundles 
associated to principal comodule algebras constructed. Finally, we study algebras of con­
tinuous functions on quantum weighted Heegaard spheres, identify them with pullbacks 
of Toeplitz algebras and calculate their K-groups.

Outlook
Chapter 6 An approach for describing a covariant differential calculus over the quan­

tum teardrop space 0 (W F q(kJ))  is described. It is not clear yet whether such a space 
exists due to the singularity in the classical case. However, we noted moving into the 
quantum setting the singularity is resolved in the case k =  1. The approach taken 
here involves restricting the well known covariant calculus on 0 ( S q) to the generators of
0 (W P ,(M )) C <D(S*q).

Chapter 7 Higher dimensional quantum weighted projective spaces are briefly con­
sidered along with the inherent problem of managing these spaces given the large number 
of generators on the algebraic level. One possible approach for understanding these spaces 
on the C*-algebra level is through graph algebras; the details are described in the next 
appendix.

Chapter 8 The central ideas in relation to graph C*-algebras are introduced and basic 
examples described. The graph C*-algebras of the continous functions on the quantum 
spheres and lens spaces are described in detail since these are the key spaces used in 
the analysis though this thesis. Finally, a possible connection between higher dimension 
quantum weighted projective spaces and graph algebras is made.
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Chapter 1 

Prelim inaries

The aim of this chapter is to set out the relevant theory associated to algebraic structures. 
The content contained here will be the algebraic framework in which we work throughout. 
Firstly the concept of an algebra over a field is defined by introducing a concept of 
multiplication over a vector space satisfying certain properties. This developes to the 
notion of a coalgebra and next a Hopf algebra. Actions and coactions are then discussed 
giving rise to module and comodule algebras. Next C*-algebras and basic properties are 
set-out and this leads nicely into algebraic A-theory. Basic examples are introduced to 
clarify these ideas. The material contained in this section can be found in; [33], [9], [17], 
[39].

1.1 Types of algebraic structures w ith basic proper­
ties

The most basic types of structures are algebras over a field and their dual coalgebras.

1.1.1 Algebra and coalgebra structures
Definition 1.1.1. (An algebra) Given a vector space A  over a field k, then we say A is 
an algebra  if there exists a map ttia  : A <S> A —> A  given by 771,4 (0 1  <8> 0,2 ) =  <21^2 and an 
element 1a G A such that

(i) A is associative, i.e., 0 1 (0 2 0 3 ) =  (0 1 0 2 )0 3  for all 0 1 , 0 2 ,0 3  E A, and

(ii) A is unital, i.e. l^a  =  al^  = a  for all a £ A.

Since multiplication and the unit can be thought of as maps, an algebraic structure 
can be expressed in terms of commutative diagrams. Let 1a : k -* A be the fc-linear map 
defined by 1 ,4 (a) = ocIa, now 1a ( 1 ) o  = a l^ (l)  =  a  which implies 1^(1) is the unit element 
in A. Now the associativity and unital conditions are equivalent to the commutativity of 
the following diagrams,

13



14 CHAPTER 1. PRELIMINARIES

A  8> A  8> A id<S>mA

A ®  A
m A

A ®  A
mA

A,

A = k ® A = A ®  k idA^A

1 A<S>tdA
( 1.1)

TTIA

and reversing the direction of each of the arrows leads to the definition of the dual concept.

Definition 1.1.2. (Coalgebra) Given a vector space C  over a field k, then we say that C is 
a coalgebra if there exists maps Ac : C —>■ C and ec : C —> k, called comultiplication 
and counit rendering the following commutative diagrams

C Ac

Ac
c ® c idc®Ac

c ® c
A c®«dc

C ® C 8> c ,

c ® c

c ® c

( 1.2)

tc®idc

The commutativity of the diagram on the left, namely (Ac® idc)°  A c  — (idc® Ac)  ° 
Ac is known as the coassociativity property and on the right, namely (ec 8> idc) ° Ac = 
(idc <8> ec) ° A c  = idc} the counital property.

Notation In order to assist in performing calculations with the comultiplication map 
we need some notation. We use the Heyneman and Sweedler shorthand notation, for 
c G C we write

Ac(c) = C(!) ® C(2) =  0 2  ® C(2) = ® C(2)’
t=l

hence omit summation and indices.

1.1.2 H opf algebras
A Hopf algebra over a field k contains an algebra and a coalgebra structure which are 
compatible with each other, furthermore there exist a map called the antipode which 
behaves in a similar way to the inverse function for a group. Firstly bialgebras are 
defined.

Definition 1.1.3. (Bialgebra) A vector space H is called a bialgebra if

(i) H  is an algebra with multiplication m# and unit 1#,

(ii) H  is a coalgebra with comultiplication Ah  and counit e#, and

(iii) Ah  and e# and algebra maps, i.e., An{ab) = A H(a)AH(b) = a(i)fyi) ® fl(2)&(2) where 
H<8>H is viewed as an algebra with multiplication given by (hi ®h2)(gi <8 )^2) =  ®h2g2 
and e#(a&) =  e//(a)e#(6) and e#(l) =  1.
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| Within the bialgebra set-up the compatibility of the algebra and coalgebra structure
I is contained in the sense that the comultiplication map Ah and the counit map e# are
I algebra maps. In fact, this property is equivalent to m# and 1 h being coalgebra maps.

! Definition 1.1.4. (Hopf algebra) A Hopf algebra H  is a bialgebra with a map S  : H  —» H
I called the antipode, satisfying

m,H o (id ® S) o (AH(h)) = m,H o (S <g> id) o (AH(h)) = eH(h)\H.
i

The antipode can be expressed using the Sweedler notation as h^)S(h^2)) =  *S'(^(i))^(2) =
I e//(^ ) l//5 hence we can see that the map S  behaves in a similar way to an inverse function
: on H. The properties of H are summarised in the following proposition.

| Proposition 1.1.5. Let H be a Hopf algebra with antipode S  : H  —> H. The following
properties hold:

S(gh) = S(h)S(g) for each g,h  G H  and S(1h) = 1#, and (1.3a)

AH(S(h)) = S (h(2)) ® S(h(i)) for each h € H  and en(S(h)) = e# (/i). (1.3b)

Equation (1.3a) tells us the antipode is an anti-algebra map, and Equation (1.3b) tells 
us the antipode is an anti-coalgebra map.

Definition 1.1.6. A Hopf algebra is commutative if it is commutative as an algebra. It 
is cocommutative if it cocommutative as a coalgebra, i.e. if to  A = A (the arrow-reversal 
version of commutativity), where r  is the map which flips the tensor product.

The most simple types of Hopf algebras are as follows.

Group Hopf Algebra

Let G be a group. The group Hopf algebra H  = kG (k any field) is the vector space with 
basis G with the following Hopf algebra structure on basis elements,

j
' multiplication: mn(gi $ £ 2) =  9 i92 (group product), unit: 1# =  (group identity),

comultiplication: An{g) = 9  ®  9 , counit: en(g) =  1 h , antipode: S h {9 )  =  9 ~ l ,

and extended to the whole of H = kG in a linear way. Multiplication in H  is derived 
from the group hence associativity and the unit property follows. Coassociativity follows 
for the whole of kG since it follows trivially for the basis elements, similarly for the counit 
property. The maps Ah and e# are multiplication maps since:

AH{gh) = gh ® gh = (g ® g)(h ® h) =  A H(g)AH(h),

and
CH(gh) = 1 = eH(g)eH{h).

i  Note that if G is non-commutative then so is kG and that kG is always cocommutative 
using this structure.
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1.2 M odule and comodule algebras
The next type of algebraic structures that we are interested in are module algebras and 
their dual comodule algebras. These play important roles in non-commutative geometry 
when constructing algebraic objects equivalent to topological bundles. Firstly we consider 
actions of algebras on vector spaces then go on to identify their dual coactions by reversing 
the direction of the arrows in the commutative diagrams describing the algebraic proper­
ties of actions. We then built on this concept by incorporating the algebraic structures 
identified in the previous section, to describe actions of Hopf algebras on algebras. Again 
the dual concepts within this setting are considered.

1.2.1 Actions and coactions of algebras on vector spaces
Definition 1.2.1. (Left action) Let V  be a vector space and A an algebra. A left A 
action on V  is a linear map I> : A<8>V —» V  which satisfies the following properties

(i) associativity, ( a ^ )  > ^ =  ai > (a2 > v) for all ai,a2 € A ,v  e V , and

(ii) identity, I a  > v  =  v  for all v G V.

These properties can be written as commutative diagrams as,

1,4 <8)idyA ® A ® V  mA®idv > A  <8 V V = k ®  V
id-A® >

A<g>U V,

A ® V (1.4)

Using the arrow-reversing notion it is clear that a coaction is defined in the following way.

Definition 1.2.2. (Right coaction) Let W be a vector space and C a coalgebra with 
comultiplication and counit ec. A right C coaction is a linear map p : W  —» W  ® C 
which satisfies the following properties

(i) coassociativity, (idw ® Ac) o p = (p® idc) ° P, and

(ii) coidentity, (idw ® £c)°P  = idw-

These properties can be expressed as commutative diagrams in the following form,

P TX /  pV
p

w®c

w®c
p ® id c

w®c
iawQec

(1.5)

-——~w®c®c,zav^® A c

Right actions and left coactions are defined in a similar way. Since we are using a coalgebra 
structure we require notation that is consistent with the Sweedler notation for the coaction
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to assist when performing calculations. We use the shorthand p(w) = itf(0)®itJ(i), where the 
summation and index are implicit, this is consistent with the Sweedier notation discussed 
above.

1.2.2 Comodule algebras over Hopf algebras

We have seen how an algebra acts on a vector space, next we extend this idea to a Hopf 
algebra acting on an algebra.

Definition 1.2.3. (Left //-module algebra) Let A be an algebra and H  a Hopf algebra. 
A is said to be a left H-module algebra if there is a linear map > : H  <g> A —► A called the 
left action of H on A such that,

(i) H  acts on A as a vector space (see Definition 1.2.1).

(ii) rriA commutes with the action >, that is, h> (ab) = ( h ^  > a ) ( h > b).

(iii) the unit 1a commutes with the action >, that is, h> 1a =  e(h)lA-

Definition 1.2.4. (Right //-comodule algebra) Let B  be an algebra and H a Hopf Alge­
bra. B  is said to be a right H-comodule algebra if there is a linear map pB : B  -* B <S> H  
called the right H-coaction on B , such that

(i) H coacts on B as a vector space (see Definition 1.2.2).

(ii) pB commutes with the multiplicative structure, that is,

pB o m s = (rriB ® id) o {id ®id(& mn) ° {id®r<& id) o (pB <g> pB).

Written in Sweedler notation this comes out as (bb')(0) ® (bb')(i) =  (fyo) b[o)) ® (fyi)fr(i))-

(iii) pB commutes with the unital structure, that is, p b { 1 b ) = 1b ® 1b*

Definition 1.2.5. (Left //-comodule algebra) Let B  be an algebra and H  a Hopf Alge­
bra. B  is said to be a left H-comodule algebra if there is a linear map Bp : B H  <g> B  
called the left //-coaction on B , such that

(i) H coacts on B  as a vector space (see Definition 1.2.2).

(ii) Bp commutes with the multiplicative and unital structure.
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1.3 C*-algebras and their representations
This section sets out the essentials when dealing with C*-algebras. Basic definitions 
are introduced along with well known properties. Building C*-algebras from polynomial 
algebras using representation spaces is discussed. This is a particularly important process 
since a large number of spaces we deal with arise as polynomial algebras.

1.3.1 C^-algebras
Definition 1.3.1. (*-algebra) An algebra A over C is called a *-algebra if there exist an 
operation * : A —> A, a a* which satisfies the following conditions, for all a, b £ A, 
A, fi £ C,

(i) (Aa +  fib)* = A a +  Jib, (ii) (a*)* = a, (iii) (ab)* =  b*a*.

The operation * is known as a ^-operation or an algebra involution.

Definition 1.3.2. (C*-algebra) A is called a C*-algebra if A is an algebra over C with 
norm ||.|| : A —> C, a ||a||, and involution * : A —» A, a a*, such that A  is complete 
with respect to the norm, with the properties that

(i) ||a&|| < IMUHI, for all a, b £ A,

(ii) ||a*a|| =  ||a||2, for all a £ A.

Firstly note that ||a|| =  ||a*||, in this case we say the involution is isometric, this can be 
seen by combining the properties in the definition of a C*-algebra. Observe that ||a*a|| = 
IHIIMI < lla*lllla ll implying that ||a|| < ||a*||. Therefore ||a|| < ||a*|| < ||(a*)*|| =  ||a||, 
showing ||a|| =  ||a*|| for all a £ A.

Definition 1.3.3. (Sub-C*-algebra) A non-empty subset B  C A is called a sub-C*-algebra 
of A if it is a C*-algebra with the operations given on A. Namely, it is norm closed and 
closed under the operations: addition, multiplication, involution and scalar multiplication.

Suppose A is a C'*-algebra and F C A. The sub-C*-algebra of A generated by F, writ­
ten C*(F), is the smallest sub-C*-algebra of A that contains F. C*(F) can be expressed 
as follows. For each n £ N put

Wn — {x\X2 ...xn : Xj £ F  U F*, for j  = 1,..., n} (words of length n)

where F* = {x* : x £ F} and put W  = U^Li Wn- The set W  is the set of all words in 
FUF*. Using W  =  W* and W  is closed under multiplication, we see that the linear span 
of W  is a sub-*-algebra of A, hence completing the space we arrive at C*(F) =  span(kF).

Example 1.3.4. Let B(H) be the set of all bounded linear operators on a Hilbert space
H. B(H) is a C*-algebra with addition and multiplication taken in the standard way for 
function spaces. If 5, T  £ Bili)  and A £ C, then S+ T,  AS  and S T  are bounded operators 
hence contained in B{H). The norm is defined by ||5|| = sup{||S'(a;)|| : ||z|| =  1} and S* 
is defined as the operator such that (x, S(y)) = (S*(x),y) for all x ,y  £ TL.
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Example 1.3.5. The Toeplitz algebra T  is the C*-algebra generated by the unilateral 
shift U acting on a separable Hilbert space TL with orthonormal basis {en}nĜ  by Uen = 
en+1. The operator U* is given by U*en =  en_! for n  > 1 and U*(e0) = 0 .

From commutative C*-algebras to non-commutative geometry. The GNS-theorem 
says a commutative C*-algebra A is isomorphic to the algebra of continuous functions on 
a compact Hausdorff topological space, say X.  Within the theory of non-commutative
geometry we extend this concept to non-commutative (7*-algebras. A non-commutative
C*-algebra A  is viewed as the algebra of continuous functions on an object say X q, called 
a quantum space. We find that many of the properties of the classical space X  can be 
carried over in a natural way to the quantum space X q in the theory of non-commutative 
geometry. This is discussed in detail in chapters 2 and 3.

| A corollary to the GNS-theorem is the Galfand-Naimark theorem which states: For 
| each C*-algebra A there exists a Hilbert space H and an isometric ^-homomorphism
I 4> : A —» 13(H). In other words, every C*-algebra is isomorphic to a sub-C*-algebra of

13(H). This result is used when we classify representations of a C*-algebra.

1.3.2 Representations of C*-algebras
Given a *-algebra A we would like to extend this to a (7*-algebra where A is a dense 
subalgebra of the C*-algebra. In order to perform this extension we would need to define 
a norm on A. This is done in the context of representation theory whereby A is represented 
as a subalgebra of the algebra of bounded operators on a Hilbert space; see Example 1.3.4.

Suppose V  is a Hilbert space then the space End (I/) = { / : V —> V  : /  linear} is an 
algebra with multiplication given by composition and unit given by the identity map on 
V. Suppose that V  is a left A-module with action > : A x V —> V, now we can define the 
map

7T : A —> End(V), n(a)(v)  = a > v .

We see that n is an algebra map since 7 r ( l >i)(v) =  Ia>v  =  v hence 7 r ( l a) is the identity 
map and

j
I 7r (ab)(v) =  ( ab) > v  =  a > (b >  v)
\ =  a >  (n(b)(v))  =  (7r(a)7r(b))(v)  = >  n(ab)  =  7 r(a )7 r( f r ) .

! Furthermore, if we have an algebra map n : A —> End(Vr) then we can view V  as a
I left A-module with action given by • :  A x V —> V, a • v = ir(a)(v). V  is called the

representation space of A and the map n is called a representation of A in V. V  being a 
representation space of A is equivalent to V  being a left A-module.

Within non-commutative geometry ^-algebraic structures are typically described as 
polynominal algebras with a collection of relations between the generators. The general 
strategy to extend the ^-algebraic structure to a C*-algebra involves classifying all rep- 

I resentations. The process of determining the representations of an algebra is determined
by the relations of the polynominal algebra. The representations allow us to view the ele- 

| ments of the algebra as operators over some Hilbert space. Now the C*-algebra extension
| is defined as the completion of the *-algebra with respect to the representations.
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Example 1.3.6. Consider the group algebra A = CZ of the integers Z over the complex 
numbers. This algebra is generated by a unitary element u, meaning u*u = uu* = 1. 
Hence A  contains polynomials in u and u* with complex coefficients. Suppose tt : A —> 
End(K) is a representation of A  with representation space V. Since uu* =  1 we require 
tt{u)tt{u*) = I  where I  is the identity operator on V. One possible representation tt of A 
takes the form tt(u)en =  en+i and 7r(u*)en = en_i, for V  a Hilbert space with orthonormal 
basis {en}£l0. In fact, any unitary operator will give a representation for A.

1.4 if-theory
Given a C*-algebra A  then we associate to this a pair of Abelian groups which we denote 
by K 0(A) and Ki(A)  called the AT-groups. These A'-groups contain information about 
C*-algebras, hence knowing the AT-groups provides an insight to the algebraic structure. 
The A'-groups are defined in terms of the Grothendieck construction of Abelian groups.

Grothendieck constructions

Given an Abelian semigroup (S, +) we can associate to this an Abelian group. Define 
the equivalence relation on 5  x 5 by {xi,yi) (#2 ) 2/2) if there exists z £ S  such that 
£ 1  +  2/2 +  z =  X2 +  yi +  2 . Now the Grothendieck group associated to 5, written G(S), is 
given by the quotient

G(S) = 5  x S / ~  = { [ (x ,y)\ : ( ^ 2/ ) G 5 x 5 }.

The Abelian group (G(S),+) has addition [(xi,2/i)] + [(£2 , 2/2)] =  [(zi +  £2 , 2/1 +  2/2)], 
neutral element [(£,£)] and inverse elements given by — [(x,y)] = [(y,x)]. The Abelian 
group axoims are easily verified. For any y G S  the map 75 : S  —>• G(S), 7s(x) = [(x+y , x)] 
is called the Grothendieck map. The map is additive and independent of the choice of y, 
furthermore can be used to describe the Grothendieck group as

G(S) = {7s(x) -  75 (2/) : x, y G S}.

1.4.1 The i^o-group
The ATo-group is constructed by considering projections in the matrix algebra of a given 
C*-algebra. Suppose A is a C*-algebra, then any element p € A  is called a projection if 
p2 =  p = p*. We write V(A) for the set of projections in A.

Now define Vn(A) = V(Mn(A)) the set of projections in the n x n  matrix algebra with 
entries in A, and write Voo{A) = U^Li We can define an equivalence relation on
Voo written ~ 0 as follows. Suppose p £ Vn{A), q £ Vm{A) then p ~ 0q  if 3v £ Mmn̂(A) 
with p = v*v and q = vv*. Furthermore, we have an addition on Voo (A) as follows

© : Vqo (A) x Vqo(A) -> Voo(A), P © ( 7 = ^ q  q^j ^  ^m+n(A),

making Vqo(A) a semigroup.
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Given a C*-algebra A , then we can construct an Abelian semigroup T>(A) = Voo{A)/~0 
with elements [p]x> for each p  E Poo (A), and addition \p]z> + [q]v = [p ® q]v-

Definition 1.4.1. (A0-group for unital C*-algebras) Let A be a unital C*-algebra, and 
let (P(A), +) be the Abelian semigroup obtained from taking the quotient of Voo(A) by 
the equivalence relation ~ 0- The A0-group of A is defined to be the Grothendieck group 
of V(A),

K Q(A) = G(V(A)),

with Grothendieck map

7  : V(A) A0(A), j(\p]v) =  \p\o-

Hence ve can describe the group as

I Ko(A) = {[p]0 -  Ho ’P,q£Voo(A)}
I = {[p]o -  Ho : P, q e Vn{A), n E N},!

where addition is defined by [p]0 + Ho =  [p® ?]o with neutral element 0 = [Qa]o, 0^ being 
the zero projection in A.
Remark 1.4.2. Given a finitely generated projective module, we can associate to this a 

j class in the K q group as follows. Let A be a ring and recall P  is called a finitely generated 
projective left A-module if

1) X = {aq,..., xn} C P is a free generating set of P. That is, for any p E 
P, 3 ri,...,rn E R  such that p = r\Xi +  ... +  rnxn and for any linear combination 
SiXi -f ... +  snxn = 0 there is only one solution Si =  ... =  sn = 0.

2) R 1 = P  © Q for some module Q.

Every finitely generated projective P-module arises from an idempotent element e E 
Mn{R), i.e. e 2 = e E Mn(R). We find the image e(Rn) produces P, the kernel produces 
the module Q and by taking the direct sum of these modules we obtain Rn. This set-up 

i allows us to associate to a finitely generated projective module P  a class in the Ao-group 
using e.

i
| Exam ple 1.4.3. The A0-group of the algebra C is given by the Abelian group Z, that 
| is, A0(€) = Z.

Proof. Firstly we calculate P(C) = Poo(C)/~0 ) to do this we need to consider the 
trace map

( <*11 . . .  OCln \  n

...................... = X > i r

Cin i . . .  Oinn J  j —l

Now suppose p , q  E Poo(C), say p  E Vn and q E Vm. As described above p~o<7 => E
Mmin(Q such that p  =  v * v  and q =  vv * .  Using the basic properties of the trace map, this
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means that Tr(p) =  Tr(uT) =  Tr(tw*) = Tr(^), i.e., p and q have the same trace, which 
further means the ranks of p and q have the same dimension. The matrix p E Mm{C)

can be represented by 

can be represented by

Ia 0
0

b
0 

0 1
0

o

€ Mm(C) where a = rank p. Similarly, q E Mn(C) 

€ Mn(C) where /3 =  rank q. Suppose p and q have the

same rank then a  =  {3 , so m  =  n  and Tr(p) =  Tr(g). In fact, p  and q represent the 
same linear transformation under different bases and can be written as p  = A ' xqA with 
A  being the changes of basis matrix. Since we can express q = AA* and p  = A*A we find 
p  ~o Q- Hence V(C) contains the classes of projections where each class consists of all the 
projections with equal dimension. So, V(C) = Z+ = {0,1,2,...} with the usual addition.

To calculate the Ao-group we need the property: if (H , +) is an Abelian group and 
S C  H  is a non-empty subset closed under addition then (5, +) is an Abelian semigroup 
where G(S) = {x — y : x, y E S}. We see (Z+, 4-) is an Abelian semigroup as a subset of 
the Abelian group (Z, +). So, K 0(C) = G(V{C)) =  G(Z+) = {x — y : x, y E Z+} =  Z. □

Example 1.4.4. The AVgroup of the algebra Mn(C) is given by Z, that is, K 0(Mn(C)) = 
Z.

Proof. Let p E P00(Mn(C)), say p E Pm(Mn(C)), so p E Mmn(C) such that
p2 = p = p*. Using a similar argument to Example 1.4.3, we find p ~o Q <=> rank(p) =
rank(<?) in Poo(Mn(C)). Hence /D(Mn(C)) contains the classes of projections where each 
class contains projections with the same dimension, giving T>(Mn(C)) = Z+. Now, 
K0(Mn(C)) = G(V(Mn(C)) = G(Z+) = Z. □

Exam ple 1.4.5. Other well known examples without proof are

K0(B(H))=0,  K0(/C(H)) =  0, K0(T) = Z,

where B(H) are the bounded linear operators on a Hilbert space H, JC(H) the compact
operators on H  and T  the Toeplitz algebra.

1.4.2 The K i-group
The A^-group is constructed by considering unitary elements in the matrix algebra of 
a given C*-algebra. Suppose A is a C*-algebra, we say an element u E A is unitary if
uu* = u*u = 1. We write U{A) for the set of all unitary elements in A. Similar to above
we also write Un(A) =  U(Mn(A)) and U ^ A )  = U^=i^n(^)«

We have an addition on ^ ( A ) ,  for u E Un{A) v E Um(A), given by

® : Uoo(A) x Uoo(A) —¥ Uoo(A), u @ v = ^ ^ ’

making Uoo(A) a semigroup.
We can define an equivalence relation on Uoo(A) written ~ i defined as u~±v if there 

exists a natual number k > max{m, n} such that (u ® lfc_n)~h(?; ® lk-m) where l r is the 
unit in Mr(A) and ~ h is the homotopy equivalence relation on Uk{A) defined as a~hb if 
there exists a continuous path from a to 6, t »->- v(t) for t E [0,1].
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Definition 1.4.6. (K\-group for unital C*-algebras) Let A be a unital C*-algebra then 
the /("i-group of A is defined as the quotient

K M )  = Woo(A)/-! = (M i : u € U ^ A )} ,

with addition [u]i + [t>]i = [u@v]i, zero element 0  =  [ln]i and inverse elements — [u]i =  
M i-

Example 1.4.7. K ^ C )  = C)) =  0 , K t (B(H)) =  0 , and K X{T) =  0-
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I Chapter 2
i

Quantum groups and 
non-com m utative geom etry

The aim of this chapter is to first describe the motivation behind quantum groups. The 
idea is to build non-commutative spaces with an inherent underlying geometry in the 
classical sense, which can be generalised to the whole of the non-commutative space. 
Naturally, the starting point is to recollect basic geometric ideas, in particular topological 
bundles, such as fibre bundles, vector bundles and principal bundles (we begin with a 
review of [2] where these concepts are discussed). By considering the space of functions 
from a topological space into C we can build commutative algebraic spaces. In order to 
describe truly quantum spaces, by which we mean non-commutative spaces, we need to 
continue building on this idea. It turns out non-commutativity is achieved by considering 
the algebra of polynomial functions on an affine algebraic variety, where the generators are 
the coordinate functions from the topological space into C. Now the non-commutativity is 
attained through the relations of the generators of the algebra of coordinate functions. We 

; refer to the non-commutative algebras as g-deformations of the classical space where q is a 
' parameter, usual a real number in the interval (0,1) which controls the non-commutativity 
i of the space. Typically, each value of q gives a different algebra and at the limit q —> 1 
I we recover the classical space. With the formulation of quantum groups in mind, we turn 

our attention to their geometry. The construction of quantum groups involves replacing 
classical spaces with spaces of functions, naturally their geometry is viewed in a similar 
way. By taking topological and geometrical concepts and replacing classical spaces by 
quantum spaces, or non-commutative algebras of coordinate functions, we are able to 
develop a very natual concept of geometry in the algebraic sense. The main focus in this 
thesis will be on the quantum version of principal bundles, known as quantum principal 
bundles. Finally, given constructions for quantum groups and non-commutative geometry 
we consider their differential calculi. This incorporates the concepts of connections and 
connection forms in the quantum setting. The application of these ideas will follow in 
Part II where new examples of quantum spaces are identified.

25
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2.1 Geometric consideration: topological aspects of 
bundles

We begin by recalling some classical geometry, namely topological bundles; see [2].

2.1.1 Fibre bundles

Definition 2.1.1. A fibre bundle is a quadruple (E, tt, M, F) where E ,M ,F  are topo­
logical spaces, 7T : E  —Y M  is a continuous surjective map satisfying the local triviality 
condition.

The local triviality condition is satisfied if for each x € F , there is an open neighour- 
hood U C M  of 7t(jc) such that 7r-1(£/) is homeomorphic to the product space U x F, 
in such a way that 7r carries over to the projection onto the first factor. That is, the 
following diagram commutes,

tr ^ U )    » U x  F
7T

u.
The map pi is the natural projection U x F U and <j> : 7r—1 (C/) —>• U x F  is a 
homeomorphism. It follows that the fibres 7r_1(m) are homeomorphic to F  for each 
m e M

Example 2.1.2. An example of a fibre bundle which is non-trivial is the Mobius strip. 
It has a circle that runs lengthwise through the centre of the strip as a base B  and a line 
segment running vertically for the fibre F. The line segments are in fact copies of the real 
line, hence each 7r_1(m) is homeomorphic to R hence the Mobius strip is a fibre bundle.

2.1.2 Free actions and the principal map

Let A be a topological space which is compact and satisfies the Hausdorff property and 
G a compact topological group. Suppose there is a right action of G on A  given by, 
<: X  x G —> X ,x < g  — xg.

Definition 2.1.3. An action of G on X  is said to be free if xg = x for any x € X  implies 
that g — e, the group identity.

With an eye on algebraic formulations of freeness, the principal map F G : X  x G —v 
A x A is defined as (x,g) »-> (x,xg). Hence it takes an element (x,g) and produces the 
action of g on x in the second component and records x in the first.

Proposition 2.1.4. G acts freely on X  if and only if F G is injective.
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ii
! Proof. “<£=” Suppose the action is free, hence xg =  x implies that g = e. If 
| (x ,xg ) = (x',x'gf) then x = x' and xg = xg'. Applying the action of g'~l to both sides of

xg =  xg' we get x(gg'~l) = x, which implies gg'~l = e so g = g' by the freeness property, 
hence F G is injective as required.

“= > ” Suppose F °  is injective, so F°(x,g) = FG{x',g') or (x,xg) =  (x',x'g ') implies 
x = x' and g = g'. Since x = xe from the properties of the action, if x =  xg then g =  e 
from the injectivity property. □

i Since G acts on X  we can define a quotient space X /G  which we label Y. This space 
is defined to be,

| Y  = X /G  := {[x] : x E A}, where [x] =  xG = {xg : g E G}.

| The sets xG are called the orbits of the points x. They are defined as the set of elements 
in A to which x can be moved by the action of elements of G. The set of orbits of A 
under the action of G forms a partition of A, hence we can define an equivalence relation 
on A as,

x rsj y <!==> 3g £ G such that xg = y.

The equivalence relation is the same as saying x and y are in the same orbit, i.e., xG =  yG. 
Given any quotient space, then there is a canonical surjective map defined as,

7T: A F  = X/G, x ^ x G = [ x ] ,

which maps elements in A to their orbits. We define the pull-back along this map 7r to 
be the set,

A Xy A := {(x, y) € A x A : tt(x) =  7r(y)}.

As described above, the image of the principal map F G contains elements of A  in the 
first leg and the action of g E G on x in the second leg. To put it another way, the image 
records elements of x E A in the first leg and all the elements in the same orbit as this x 

! in the second leg. Hence we can identify the image of the canonical map as the pull back 
| along 7r, namely A XyA. This is formally proved as a part of the following proposition.

I P roposition  2.1.5. G acts freely on X  if and only if the map defined by,

F% : X  x G -> A x y A, (x, g) ( x , xg),

is bijective.

Proof. First note that the map is well-defined since the elements x and xg are in the 
same orbit hence map to the same equivalence class under 7r. Using Proposition 2.1.4 we 
can deduce that the injectivity of FG is equivalent to the freeness of the action. Hence 
if we can show that F G is surjective the proof is complete. Take (x ,y ) G A X y  A, this 
means 7r(x) =  n(y) which implies x and y are in the same equivalence class, which in 
turn means they are in the same orbit. We can therefore deduce that y =  xg for some 
g G G. So, (x, y) =  (x,xg) =  FG(x,g) implies (x,y) G ImF^. Hence ImF^ =  A  x Y X  
completing the proof. □
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2.1.3 Principal bundles
Principal bundles are bundles which arise from principal actions.

Definition 2.1.6. An action of G on X  is said to be principal if the map F °  is both 
injective and proper, i.e. it is injective, continuous and such that an inverse image of a 
compact subset is compact.

Since the injectivity and freeness condition are equivalent we can interpret principal 
actions as both free and proper actions. We can also deduce that these types of actions 
give rise to homeomorphisms F G from X  x G onto the space X  x x /g X .  Principal actions 
lead to the concept of topological principal bundles.

Definition 2.1.7. A principal bundle is a quadruple (A, 7r, M, G) such that
(i) (A, 7t,M ,G)  is a fibre bundle and G is a topological group acting continuously on A 
with action < : A x G —> X , x < g = xg ;
(ii) the action < is principal;
(iii) 7r(x) =  7r(y) -<=>• 3g E G such that y =  xg\ and
(iv) the induced map X /G  —> M  is a homeomorphism.

The first two properties tell us that principal bundles are bundles in which there 
is a group G action on the total space A which is a principal action, i.e., principal 
bundles correspond to principal actions. By Definition 2.1.6, principal actions occur 
when the principal map is both injective and proper, or equivalently, when the action is 
free and proper. The third property ensures that the fibres of the bundle correspond to
the orbits coming from the action and the final property implies that the quotient space
can topologically be viewed as the base space on the bundle.

Example 2.1.8. Suppose A is a topoplogical space and G a topological group which 
acts on A from the right. The triple (A, ir,X/G) where X /G  is the orbit space and 7r 
the natural projection is a bundle. A principal action of G on A makes the quadruple 
(A, 7r, X/G , G) a principal bundle.

We describe a principal bundle (A, 7r, Y, G) as a G-principal bundle over (A, 7r, Y), or 
A as a G-principal bundle over Y.

2.1.4 Vector bundles
Definition 2.1.9. A vector bundle is a bundle (E,ir,M)  where each fibre 7r-1(m) is 
endowed with a vector space structure such that addition and scalar multiplication are 
continuous maps.

Any vector bundle can be understood as a bundle associated to a principal bundle in 
the following way. Consider a G-principal bundle (A, 7r, Y, G) and let V  be a representation 
space of G, i.e. a (topological) vector space with a (continuous) left linear G-action > : 
G x V —y V, (g, v) g > v. Then G acts from the right on A x V  by

(x, v) < g := {xg, g~l > v), for all x G A, v G V  and g G G.
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We can define E  =  (X xV )/G ,  and a surjective (continuous map) tte : E —> Y, (x, v)<G h-» 
7r(x), and thus have a fibre bundle (E , 7r#, T, V).

i Definition 2.1.10. A section of a bundle (E, 1r#, Y) is a continuous map s : Y  -3 E  such
I that, for all y G Y,

nE{s{y)) = y,

i.e. a section is simply a section of the morphism 7r£. The set of sections of E  is denoted 
by T(E).

[
I P roposition  2 .1 .1 1 . Sections in a fibre bundle (E,7Te ,Y ,V ) associated to a principal
! G-bundle X  are in bijective correspondence with (continuous) maps f  : X  —> V such that

f ( x9) = 9~1> f(x )- 

All such G-equivariant maps are denoted by Hom ^X, V)

Proof. Remember that Y  = X /G . Given a map /  G Homc(X, V), define the section 
Sf : Y  -3 E  , xG *-3 (x, f(x))  < G.

Conversely, given s E r (£ ) ,  define f s : X  -» V  by assigning to x G X  a unique v G V  
such that s(xG) — (x,v) < G. Note that v is unique, since if (x,w) = (x,v) < g, then 
xg = x and w = g~l [> v. Freeness implies that g = e, hence w = v. The map f 3 has the 
required equivariance property, since the element of (X  x V )/G  corresponding to xg is 
g~l > v. □

2.2 Quantum groups
In the spirit of non-commutative geometry we would like to construct non-commutative 
algebras using topological spaces.

2.2.1 The algebra of functions on a topological space
I The starting point of translating these geometric ideas into algebraic structures involves 
| considering the space of functions from affine varieties into the complex plane. Let X  be 
| an affine variety and G an affine variety with a group structure which acts on X  from the 
; right. Also, write Y  = X /G  for the quotient of X  by this action. Now O(X) — { /  : X  —>
! C : /  regular function} is a complex algebra with multiplication given pointwise, that is 

i f9 )(x ) =  f i x )9(x ) f°r f i9  € and unit 1 : X  -* C ,x i-» 1; similarly for G(G) and
I 0 (Y ) .  It is convenient to write A =  O(X) and H  =  G(G) and note the identification 

G(G x G) = 0(G) <g> 0(G). Through this identification we have the following.

I Proposition 2.2.1. H = 0(G) is a Hopf algebra with comultiplication 0(G) 3 f  »->■
| (A /) G 0(G) 0  0(G), (Af)(g,h) = f(gh), counit e : G(G) -3 <C, e(f) =  /(e) where 
' e  G G is the neutral element, and the antipode S : H - 3  H, (Sf)(g) = f (g -1).
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Proof. Firstly, the associativity and the unital property of the algebraic structure; 
since the codomain of functions in 0(G)  is C, associativity and unital properties follow 
trivially. Now the coassociativity and counital property of the coalgebra structure are 
confirmed. Coassociativity, let /  E G(G),

(A 0  id)(A/)(a:, y, z) = (Af)(xy,  z) = (xy)z = x(yz)
= (Af )(x,  yz) = ((id 0  A) o A /)(x, y, z).

Counital property,

(id 0  e)(A f)(g) = (id 0  e)(A f )(g  0  1G) =  (A f )(g  0  e) = f(g),  

showing (id 0  e) o A =  id\ similarly for the other case. Next the antipode property,

(m o (S 0  id) o A)f(g)  = m(S  0  id)(Af)(g) = m( (S f { 0  fy)))(g)
= (Sfd))(g)f(2)(g) = f{\)(g~l )f{2)(g)
= (Af)(g~l ,g) = S(g~lg) = /(e) = e(f).

This shows (m o (S 0  id) o A) =  e and again the other case is shown in a similar way. □

Using the fact that G acts on X  we can construct a right coaction of H  on A = O(X)
by qa : A —> A  0  H, gA(a)(x,g) = a(xg). This coaction is an algebra map due to the 
commutativity of the coordinate functions involved.

Proposition 2.2.2. A = O(X) is a right H = 0(G)-comodule with coaction given

qa : A -3 A 0 id, QA(a)(x,g) = a(xg),  

where we use the identification 0 ( X )  0  0(G) = 0 ( X  x G).

Proof. The coassociativity and the counital properties are checked first. Let 
a G A — 0 (G ), x £ X  and g,h G G, then

((id 0  A) o gA)(a)(x, g, h) = gA(a)(x, gh) =  a(x(gh))
= a((xg)h) = gA(a)(xg,h)
=  ((gA 0 id) o gA)(a)(x,  g, h),

showing the coassociativity. Similarly,

((id 0  e) o gA)(a)(x) = (id 0  e)(gA(a))(x) = (id 0  e)(a(0) 0  «(i))(^)
=  ( a (o)c(a(i)))(®) =  (a (o )a(i) (e )) (x )

= a(0)(x)a(i)(e) =  gA(a)(x, e) = a(xe) = a(x),

showing the counital property. Lastly, gA is an algebra map since,

gA(ab)(x,g) = (ab)(xg) = a(xg)b(xg)
= gA(a)(x,g)gA(b)(x,g) = (gA(a)gA(b))(x, g). QED.
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We have considered the spaces of functions on X  and G , next we consider the space 
of functions on Y  and write B = 0 (Y )  where Y  = X /G .  We can see B  is a subalgebra 
of A by considering the map

I

| 7r* : B  —y A, b h* b o it,
I
j where n is the canonical surjection X  3 x i-» [x] G X/G. The map 7r* is injective, since 

b 7  ̂ b' in 0(X /G )  means there exists at least one orbit xG =  [x] such that fc([x]) 7  ̂b'([x]), 
but ir(x) = [x], so &(7r(x)) 7  ̂ 6'(7t(x)) which implies n*(b) 7  ̂ n*(b'). Therefore, we can 
identify B  with it*(B). Furthermore, a G 7t*(B) if and only if

a(xg) = a(x),

for all x e X , g € G. This is the same as

gA(a)(x,g) =  (a® l)(x,flf),

for all x e X , g G G, where 1 : G -» C is the unit function 1 (#) =  1 (the unit of H ). 
Thus we can identify B with the coinvariants

B = AcoH := {a G A \ gA(a) = a ® 1}.

Since B  is a subalgebra of A, it acts on A via the inclusion map (ab)(x) =  a(x)b(7r(x)), 
(ba)(x) = b(7r(x))a(x). We can identify 0 ( X  X y  X )  with 0 {X )  ®o(Y) 0 {X )  =  A A , 
by the map

0(a a!)(x, y) =  a(x)a'(y), with n(x) = 7r(y).

Note that 6 is well defined because n(x) = 7r(y). Proposition 2.1.5 immediately yields.

P roposition  2.2.3. The action of G on X  is free if and only if F§* : G{X x Y X ) —> 
G (X  x G ) , / 4 / o F j  is bijective.

In view of the definition of the coaction of H  on A, we can identify F%* with the 
| canonical map
! can : a <S>b d  1-* [(x, g) ^  a(x)a'(x.g)] = agA(a').|
: Thus the action of G on X  is free if and only if this purely algebraic map is bijective.
i

2.2.2 The q-deformations of the classical spheres
We now put these ideas into practice and describe some well known quantum groups.

T he quantum  3-sphere Take the classical 3-sphere S 3 =  {(u,v) G C2 : \u\2 +  |t; | 2 = 
1 }. To describe the quantum version of S 3 we first note the isomorphism S3 = SU(2 ), 
where _

SU(2) =  { (  “  )  € M2 (C) : H 2 +  |/3| 2 =  1 }.
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We view the matrix entries of elements of SU(2) as functions from SU(2 ) into C. Take 
the functions on SU(2 )

d ,0  : SU(2) ->C,

* (?  ! ? ) - • * ( ?  ' / ) - * ■
we see these functions preserve the structure of SU(2 ) in that d a  + (3/3 = 1 where 1 : 

SU( 2) —» C, 1 ^ ^  ^ =  1. The algebra of functions generated by d, (3 satisfying aa+

(3/3 = 1 , written G(SU(2)), is clearly commutative; as described in the introduction this 
type of construction will always be commutative. In general, to build non-commutative 
spaces we consider polynomial algebras with generators given by the functions on SU(2 ) 
and the non-commutativity comes from the relations between these generators. This 
process is known as a g-deformation of an algebra where q G (0,1) is a parameter. The idea 
is that for each q G (0,1) we have a different algebraic structure, each non-commutative
and by considering the limit q —> 1 we recover the classical space, in this case SU(2). We
denote this space by 0(SU q(2)).

Exam ple 2.2.4. The quantum group G(SUq(2 )) =  O(S^) is described as the polynomial 
algebra generated by a, (3,7 , S satisfying the relations

a0  = q(3a, cry =  9 7 a, 0 7  =  7 /?, (36 = q6(3, 7 6 = q6~f,

6a — q~l(37  =  1 , a6 — <707 = 1 .

We have a ^-structure given by a* = 6, (3* = —<7 7 , 7 * = — <7-10, (5* =  a, hence we can 
describe the space as the *-algebra generated by a and /3 satisfying the relations,

a(3 = q(3a, a(3* = q(3*a, (3(3* = (3* (3, (2 .2 )

aa* =  a*a +  (q~ 2 -  1)00*, aa* +  00* =  1 . (2.3)

The coalgebra structure is given by

A(a) =  a  ® a  +  0 0  7 , A(0) = a  0  0 + 0 <g> <5, (2.4)

A (t) =  7  0  a  +  6 0  7 , A(£) = 6 (g> <5 +  7  <g> 0, (2.5)

and e(a) =  e(5) =  1, e(0) =  6 (7 ) =  0. These are extended to the whole of 0(SU q(2 )) as 
algebra maps. On the *-structure, this comes out as !

A(a*) =  a* ® a* — q(3* ® 0, A(0*) = a* <g> 0* +  0* ® a, (2.6) ]

and e(a*) = 1 , e(0*) =  0 . Finally, the antipode is given by S(a) = 6, 5(0) =  —g_10,
5(7) = — 0 7 , 5(<$) =  a. We see that by setting 5 = 1 we get a commutative Hopf algebra 
which is isomorphic to the the algebra of functions on SU(2) = S 3.
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I The quan tum  2-sphere Classically, the 2 -sphere can be described as the homoge- 
i neous space of the Lie group SU(2 ). In order to move into the quantum setting we first 
| need to define the quantum version of homogeneous spaces. An algebra is called a quan- 
; turn homogeneous space of a Hopf algebra A provided it is isomorphic to a subalgebra 

B C A such that A (£) C A ® B. Furthermore, A is required to be right faithfully flat as 
j a module over B\ see [36]. Now putting A = O(S^) and using the comultiplication map 
I described in Example 2.2.4 we have a description of the quantum 2-sphere B = C (S2).

: P roposition  2.2.5. The algeb ra of polynomial functions on the quantum 2-sphere, known 
! as the standard quantum 2-sphere denoted 0 ( S 2), is generated by elements x and z satis-
\ fying

x* = x, zx = q2xz, zz* = q2x(l — q2x), z*z = x(l — x), (2.7)

where x =  7 7 *, 2  = cry* and z* = ya* in O(Sg).

By setting q — 1 we notice that G(S2=1) is a commutative algebra. By defining self- 
adjoint elements £ =  1 — 2x, g =  2  -t- z* and £ = i(z — z*) and using relations 2.7 we arrive 
at £ 2 +  rj2 +  £ 2 =  1. This means that 0 ( S 2=l) is the polynominal algebra of functions on 
S 2.

H igher dim ensional quantum  spheres Building on these structures, odd dimen­
sional quantum spheres are defined as follows; see [44].

D efinition 2 .2 .6 . The algebra 0 ( S 2n+l) of coordinate functions on the quantum sphere 
is the unital complex *-algebra with generators zo ,z i,. . .  ,zn subject to the following 
relations,

ZiZj = qzjZi for i < j, z{z] =  qz*z{ for i ±  j ,
n n

ZiZ* =  Z*Zi +  (q ~ 2 -  1) ^ 2  z m z ^ 2  ZmZm  =

m = i +1 m=0

where q is a real number, q 6  (0 , 1 ).

Even dimensional quantum spheres 0 ( S 2n) are obtained by taking 0 ( S 2n+1) and set­
ting z* = zn.

|

| 2.2.3 Podles quantum 2-spheres 0 ( S j j s)

We have seen in Example 2.2.5 a quantum deformation of the standard S 2. For each
q G (0,1) we get non-isomorphic structures, however there exist further non-isomorphic
<7-deformed spheres, parameterised by s G [0,1].

P roposition  2.2. 7. For s G [0,1], in O(S^) let,

! x = (1  — s2) 7 7 * +  s(ya +  a* 7 ),

z =  (1  — s2)ay* +  s(qy*2 — a 2),

z* = (1  — s2)ya* — s(qy2 — a*2).
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The elements x ,z ,z*  satisfy the relations

x* = x, zx = q2xz, zz* = (s2 +  q2x){\ — q2x), z*z = (s2 +  x)(l  — x),

and for each value of s, the polynominal algebra with generators x, z and the above relations 
is a quantum homogeneous space of O(S^) known as the quantum 2-sphere and denoted 
0 ( S 2s). Furthermore 0 ( S 2s) are not isomorphic for different values of s; see [32].

2.3 Non-com m utative principal and associated bun­
dles

2.3.1 Principal com odule algebras
Using Proposition 2.2.3, by replacing the topological spaces with the algebra of functions 
we can describe an algebraically equivalent definition of freeness. In fact, we are not 
restricted to commutative algebraic spaces, in full generality this leads to the following.

Definition 2.3.1. (Hopf-Galois Extensions) Let H  be a Hopf algebra and A a right 
H-comodule algebra with coaction given by q a  : A  —> A (g> H. Define B  := {b € A  : 
gA(b) =  6 ® 1}. We say that B C A is a Hopf-Galois extension if the left A-module, right 
H-comodule map

can : A <S>b A —► A <g> H, a (S>b d  i-» agA(a')

is an isomorphism.

Proposition 2.2.3 tells us that when viewing bundles from an algebraic perspective, 
the freeness condition is equivalent to the Hopf-Galois extension property. Hence, the 
Hopf-Galois extension condition is a necessary condition to ensure a bundle is principal. 
Not all information about a topological space is encoded in a coordinate algebra, so to 
make a fuller reflection of the richness of the classical notion of a principal bundle we need 
to require conditions additional to the Hopf-Galois property.

Definition 2.3.2. Let H  be a Hopf algebra with bijective antipode and let A be a right 
.H-comodule algebra with coaction gA : A —> A  <g> H. Let B  denote the coinvariant 
subalgebra of A. We say that A is a principal H-comodule algebra if:

(a) B  C  A is a Hopf-Galois extension;
(b) the multiplication map B  <g) A —>> A, b (8 ) a i-> 6a, splits as a left H-module and 

right H-comodule map (the equivariant projectivity).

As indicated already in [40], [13] or [24], principal comodule algebras should be un­
derstood as principal bundles in non-commutative geometry. In particular, if H is an 
algebra of coordinate functions on a quantum group [47], then the existence of the Haar 
measure together with the results of [40] mean that the freeness of the coaction implies 
its principality.
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Example 2.3.3. (Cleft comodule algebras) Suppose B  is an algebra and H  a Hopf alge­
bra. Let A = B  0  H  and consider it as a right H-comodule with coaction

pA : A ^  A ®  H, p A =  ids 0> A # , pA(b ®  h) =  b ®  0 fy2).

I (A,pA) is a 5-comodule algebra with coinvariant elements

AcoH = {b <g> h € B ® H : pA(b 0  h) = b 0  h 0  1//} =  { 6  0  1# : 6 G 5} =  B.
\

Furthermore, the canonical map

can : (B 0  H) 0 # (5  0  H) -» 5  0  H  0  FT, can(6  0  0  /i) =  6 0  /i'/i(i) 0  /i(2),

is an isomorphism with inverse given by

can_ 1 (6 0  h! 0  h) = b 0  h'Sfyi) 0  /i(2).

Therefore, A = 5 0 5  is a Hopf-Galois extension of B. In this case we refer to A as a cleft 
extension or a cleft comodule algebra. Cleft comodule algebras are examples of principal 
comodule algebras; see Example 2.4.16 for the proof.

Let A be a right H-comodule algebra. A is cleft if there exists a right H-colinear map 
j  : H A that has an inverse in the convolution algebra Horn(H,A) and is normalised 
so that j (  1) =  1. The convolution algebra is given by Hom(5, A) =  { /  : H —> A : 
f  is an algebra map} with multiplication ( /  * g)(h) = f{h)g(h) and unit 1(h) =  1^. The 
map j  is called a cleaving map or a normalised total integral. In particular, if j  : H  -» A 
is an H-colinear algebra map, then it is automatically convolution invertible j~ l = j  o S  
and normalised. A comodule algebra A admitting such a map is termed a trivial principal 
comodule algebra.

2.3.2 M odules associated to  principal com odule algebras

; Having described non-commutative principal bundles, we can look at the associated vector 
| bundles. First we look at the classical case and try to understand it purely algebraically.
| Start with a vector bundle (E, irE, Y, V) associated to a principal G-bundle X .  Since V  is a 
I vector representation space of G , also the set Home (A, V) is a vector space. Consequently 
I r (E) is a vector space. Furthermore, Homc^A", V) is a left module of B = 0 (Y )  with 
the action (bf ) ( x)  = b(nE(x) ) f (x) .  To understand better the way in which the 5-module 
T(E) is associated to the principal comodule algebra O(X)  we recall

Definition 2.3.4. Given a Hopf algebra H, right 5-comodule A with coaction gA and 
left 5-comodule V  with coaction vp, the cotensor product is defined as an equaliser:

A n HV  * A 0  V  = g- ^ T d 0 f f 0 V .
id®^
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If A is an 5-comodule algebra, and B = AcoH, then AOHV  is a left 5-module with 
the action b(aOv) =■ baOv. In particular, in the case of a principal G-bundle X  over 
Y  = X /G , for any left 0(G )-comodule V  the cotensor product 0 (X )U 0 Ĝ/V  is a left 
0 (y)-module.

Assume that V  is finite dimensional. Then the dual vector space V* is a left 0(G)- 
comodule with the coaction v *g v(-i) ® v(o) (summation implicit) determined by
£ « ( -o ( s H ) )  =  g~l > v-

Proposition 2.3.5. The left 0(Y)-module of sections P(E) is isomorphic to the left 
(D(Y)-module O (X )0 0(G)V.

Proof. First identify P(E) with Hom ^A, V). Let {vi € V*, v% G V} be a (finite) 
dual basis. Take /  G Hom ^A, V), and define 9 : Hom ^A, V) -» 0(X)Oo(G)V by
#(/) = Y j i vi °  f  ® yi-

In the converse direction, define a left (^(TJ-module map

9~l : 0 ( X ) n 0(G)V -* Homc(A, V), aUv a(—)v.

One easily checks that the constructed maps are mutual inverses. □

Moving away from commutative algebras of functions on topological spaces one uses 
Proposition 2.3.5 as the motivation for the following

Definition 2.3.6. Let A be a principal 5-comodule algebra. Set 5  =  AcoH and let V  
be a left 5-comodule. The left 5-module T =  AOHV  is called a module associated to the 
principal comodule algebra A.

r  is a projective left 5-module, and if V  is a finite dimensional vector space, then T is 
a finitely generated projective left 5-module. In this case it has the meaning of a module 
of sections over a non-commutative vector bundle. Furthermore, its class gives an element 
in the 5 0-group of 5 . If A is a cleft principal comodule algebra, then every associated 
module is free, since A =  5  0  5  as a left 5-module and right 5-comodule, so that

r = AUh V  =  (5 0 5) UHV  =  50 (HUhV) ^  5 0 V.

2.4 Differential calculus
The process we have followed so far is to start with geometric objects and move into a 
quantum setting by performing q-deformations on polynomial algebras with generators 
viewed as functions and relations, furthermore by setting the q-parameter to one we 
recover the classical geometric case. Combining the algebraic theory set out in Sections 
1.1 -1.4 and the classical geometry set out in Sections 2 .1  - 2.3, we were able to discuss the 
geometric side of these quantum spaces. Next, it is natural to ask whether it is possible 
to describe a concept of calculus in the quantum setting.
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2.4.1 Differential graded algebras
Definition 2.4.1. Let A be an algebra. A first order differential calculus is a pair (flM, d) 
where

(i) Ft1 A is an A-bimodule,
i

i (ii) d : A -» FlYA is a linear map which satisfies d(ab) = (da)b +  adb for all a,b G A,

| ( i i i )  Ft1 A  =  s p a n  {adb : a,b G A}.

The first condition says the first order differential calculus can be multiplied by el­
ements of A , which can be thought of as functions, from both the left and right. The 
second condition is known as Leibniz’s rule, the map d is known as the exterior derivative 
and the third condition gives a description of the space in terms of the exterior derivative. 
This definition can be extended to higher forms in the following way.

Definition 2.4.2. A differential graded algebra is an No-graded algebra
oo

fM = 0 OM,
71=0

equipped with a system of operations

dn : SYM -> fin+M, n =  0 , l , 2 ,...

satisfying the properties

(i) dn+i o dn — 0 ,

(ii) dn+m(ujuj') = dn+rn(u)uj' +  (—l)nudn+m{u') for all u  G Ft71 A and c*/ G FlmA.

The zero-graded elements of the differential graded algebra, namely Fl°A, is an algebra 
which we simply denote by A. FlnA are referred to as the n-forms. The first property 
says that d gives A the structure of a cochain complex and the second condition is known 
as the graded Leibniz rule as mentioned above.

[
J Universal construction

! Differential graded algebras can be constructed by taking an algebra A = (A, tua, 1 a) and 
i  defining a first order calculus as,

! DM := ker(m,A) =  a 0  a' G A <g> A : tuaC ^, a ® a>) = 0}>

along with the operation

d : A —> Ft1 A, d(a) =  1a  ® cl — a <S> 1a -
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The left and right A-actions, making CPA into an A-bimodule, are given in the obvious 
way a > (a' 0  a") < a"' = aa' <8 a"a'". The higher orders are obtained by defining

CTA := On~lA ®A Cl1 A C  A®(n+1>, for n G N0,

which produces CPA = Cl1 A  <8 a CPA... <8 a CPA (n-times). The differential d is defined on 
higher forms by

d : CPA -» Ctn+1A ,
n+l

d(a0 ® ai <8 ... <8 an) =  ^ ( - l ) * a 0 <8 ax 0  ... (8 ) <8 1 (8  a* <8 ... (8 ) an.
i=o

The multiplication between n-forms and m-forms is given by,

(a0 ® ... ® an)(b0 (8  ... <8 > bm) = (a0 ® ... <8 > anbQ <8 ... <8 > bm).

This differential graded algebra (CIA, d) is called the universal differential envelope of A. 
(QM, d) is called the universal differential calculus over the algebra A.

2.4.2 Covariant differential calculi
Since we are in an algebraic setting it is natural to introduce module or comodule struc­
tures and incorporate this into the differential graded algebras setting.

Definition 2.4.3. Let (A, pA) be a right //-comodule algebra where H  is a bialgebra. 
Then we say that the first order differential calculus (Cl1 A, d) is a (right) covariant differ­
ential calculus on A if CP A is a right H-comodule by a coaction gQlA : Q1 A —> Cl1 A <8 H  
such that gnlA(adb) =  a(o)dfyo) ® G(i)fyi) an<̂  that ^ : ^  is a right //-comodule
map.

Equivalently, the left covariant differential calculus can be defined. When A is both a left 
and right //-comodule algebra and the differential is both a left and right //-comodule 
map with commuting coactions, the covariant calculus is called bicovariant.

Proposition 2.4.4. For (A,pA) a right H-comodule algebra where H is a bialgebra, the 
space of universal one-forms Cl1 A is a right H-comodule with coaction given by

pnlA : Cl1 A  —>• CPA (8  H , a<8 a; H  a(o) <8 > U(0) <8 >

furthermore the differential d : A Cl1 A is a right H-comodule map, thus making it a
right covariant calculus.

Proof. This is a straightforward exercise using Sweedler notation. □

As set-out in Woronowicz’s paper [48], within this set-up the right covariant differen­
tial calculus on a Hopf algebra A  viewed as a right A-comodule via the comultiplication 
map can be fully described by the elements Ui G Cl1 A such that pQ,lA(oji) =  a;* <8 1 (we 
say that each cu* is right-invariant under the coaction pQlA) that freely generate f2M  as a 
right A-module. Hence all elements x G can be expressed by x — where
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{u>i,..., wn} are the right invariant elements and each a< € A.

T he th ree  dimensional first order covariant calculus on 0 ( S Z). In [48] Woronowicz 
gives a description of a three dimensional covariant calculus on the quantum three sphere; 
a detailed account is given as follows. We know that A = C(Sq) is a Hopf algebra with 
structure fully described in Example 2.2.4.

The first order differential calculus is generated by three left-invariant one-forms 
satisfying the ^4-bimodule relations,

u>oa = q~2auo, uq0 =  q2/3uj0, w07  =  9 _27 ^o, =  q28 Wo, (2.8a)

uj+a = q~lau+, u +(3 = q(3oj+, u+7  = q~lryuj+, oj+8  = q6u+, (2 .8 b)
u)-a = q~1au?-., = q(3u)_, uj-.'y = q~1'yuj-, uj-8 = q5uj_. (2 .8 c)

The exterior differential is given on generators by,

d(a) = aujQ — qptu+, d(0) = —q20ujo+aoj-, d( 7 ) =  7 0 j0 — qSu+, d(8) = —q26 ujQ+'yuj-,

Since Q(SZ) is a Hopf algebra, we can view it as a left 0(5^)-comodule with coaction 
given by the comultiplication map A : O(Sjj) —> O(Sjj) 8  0 (S q), A (a) =  8  a(2) using
the Sweedler notation. This extends to a coaction on the one-forms

AL : Sl\0{SD ) -> A ®  n \ G { S zq))
AL(adb) = a(i)6(i) (8) a(2)db(2)-

It is now possible to calculate the u's in the form AdB to perform calculations using A L. 
We start by considering

A i{da) =  Q!(i) <8 dot(2) = ol 8  da +  0 (8  d7 ,

hence
Q(i) 8  doi{2) =  a  8  (auJo -  q/3u+) + 0 8  (7 ^ 0  -  qSu+).

Now applying m o (S 8  id) to both sides gives

S ( a ( i ) ) d a i ( 2) =  8au0 -  qS0oj+ -  q~ P' ju q  +  08uj+

=  (8a -  q~l 0i)ujQ
=  UJq

In the same way cu+ =  —5(7(i))d7(2) and = S(0{\))d0{2) which gives,

uj0 =  8(da) — q_1 P(d'y), u j - =  8(da) — q~l 0(d  7 ), u + =  q'y(da) — a(d'y).

Lastly, since we have a ^-structure on 0 ( S Z) we can deduce the ^-structure on Q1((9(5^)) 
using the fact that the exterior derivative should commute with this structure. This means

d(a*) =  —q28ujQ 4- 7  =  — ujq8 +  7 ,

is the same as
(da)* =  (au;0 -  q(3uj+)* = u/Jd +  q2w*+l ,  

giving rise to wj = — ujq and uj+ =



40 CHAPTER 2. QUANTUM GROUPS AND NON-COMMUTATIVE GEOMETRY

2.4.3 Strong connections
Horizontal forms and connections in Hopf-Galois extensions. Classically, given 
a principal G-bundle X  over M, a connection is a map II : T*X —> T*X  which projects 
elements of the cotangent space T*X  onto the horizontal one-forms. The horizontal one- 
forms being the one-forms excluding the tangent vectors to the fibres of X .  With this is 
mind we can turn our attention to the quantum setting.

Definition 2.4.5. Let (A ,pA) be a right LT-comodule algebra, where H  is a bialgebra 
and set B  =  AcoH. The A-subbimodule Dlh(yrA  of Q M  generated by all d(b), b G B, is 
called a module of horizontal one-forms. This is written explicitly as

DlhorA =  A(Q1B)A = {di 0  bid'i -  aA  0  a' : a*, a- e A,b{ e B },

i.e., the horizontal one-forms in a Hopf-Galois extension is the 4-bimodule generated by 
the one-forms restricted to the coinvariant elements.

An equivalent definition can be made using the following short exact sequence.

0  UA<g>A-^A<g>B A  ^0, (2.9)

where 7r : A 0  A —>• A 0 # A is the canonical projection defining A 0 # A and i : f ^ orA —> 
A (8 ) A is the natural embedding of the subset into the bigger set.

We have seen that for a right H-comodule algebra A, where H  is a Hopf algebra, the 
canonical map is defined by can : A 0 # A >■ A 0  H, a <8> a' i—> d d ^  0  a '^ , where 
B  =  AcoH.

Definition 2.4.6. We call the map can the lifted cdnonicdl map, defined as,

can : A 0  A —> A <g> H, a 0  d' i-> dd^  0  a j^ .

The restriction of the lifted canonical map to the first order differential calculus D*A C  

A 0  A is called the vertical map, which is written explicitly as,

ver: UllA  —> A 0  H +, a 0  d' i-» aa(0) 0  aj^,

where H + =  kere#. The map is well-defined since applying (id 0  ch) to the image gives 
aaj0^e(a^) 0  1 =  ao! 0  1 =  0 .

Proposition 2.4.7. A 0  H + is a right H-comodule with codction given by

pA®H+ . ^  ^  ^-+ ^  g  h , a 0 / iK  a(0) 0  h(2) 0  G(i)(*5'^(i))^(3))

w/iere is viewed as a right H-comodule vio the ddjoint coaction,

Ad H ^  —̂ H~̂  0  H , h i—̂ ^(2) 0  (*̂ ,̂ '(i)) '̂(3) •

Furthermore, ver : fi1 A —» A 0  H + is a right H-comodule map.
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Proof. A 0  H + is a right //-comodule. Firstly check coassociativity,

{pA®H+ 0  id) o pA®H+(a <8>h) = a(0)(o) ® \ 2)(2) ® a(o)(i)(^(2)(i))/i(2)(3) ® a(i)(Sfyi))fy3)
=  0(0) 0  /l(3) ®  0 ( i ) ( S 7 i ( 2))/i(4) ®  a ( 2) (S 7 i( i ) ) / i (5 ) ,

the first equality follows from the definition of the coaction and the second a re-labelling 
of indices.

{id 0  A h ) o  p A®H+ {a <g> h) = a(0) 0  fy2) 0> a(i)(i)(5,/i(i))(i)/i(3)(i) 0  a(i)(2)(-^^(l))(2)^(3)(2)
= fl(o) <8) h{2) 0 fl(i)(i)(5'/i(i)(2))/i(3)(1) 0> a(i)(2)(S7i(i)(i))fy3)(2) 

=  O(0) ® /i(3) ® ^(i)(5/i(2))/i(4) 0> 0(2)(57i(i))/l(5),

the second equality uses the antihomomorphism property of the antipode and the third 
is a relabelling. Next the counit property is checked,

{ i d  0  e) o p A®H+ {a  0  h)  =  a(0) 0  fy2) 0  e(a(i))e(S ,/i(1))e(/i(3))

= a(o)e(o(i)) 0 h(2)e{S{h{i))e{h{3)) 0 1
=  f l ® / l ( i ) f ( / l ( 2 ) ) ® l  

= a 0  h 0  1 .

the second equality uses the fact that the counit is an algebra map and the third uses 
the counital property associated to H. Finally, we show ver is a right //-comodule 
map. fiM  is viewed as a right 77-comodule via the coaction pQlA : QM —> Cl1 A 0  H, 
a 0  a' a(o) 0  0  a^ a j^ .

{pA®H+ o ver) {a 0  a') = pA®H+ (aa(0) 0  a'(1))

=  a (0)(0)a (0)(0) ®  a (i)(2) ®  a (0)(l)a ( 0 ) ( l ) (^ a ( l ) ( l ) ) a (l)(3)>

=  a (0)a (0) ®  a (2) ®  a ( l ) e ( a ( l ) ) a (3)>

— a (o)a [o) ®  a j i )  0  a ( i ) f l ( 2)-

and

(uer 0  id) o pQlA{a 0  a') =  (uer 0  id)(a(o) 0  O(0) 0  0 (i)0 (i))
=  0 (0)0 (0) ® 0 (!) 0  0 (1)0 (2).

□

P roposition  2.4.8. The following statements are equivalent:

(a) B  C  A is a Hopf-Galois extension;

(b) the following sequence is short exact

0 ---- - DlorA fiM  A ®  H +  ^ 0, (2.10)

where i is the inclusion.
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Proof. Firstly, we re-state condition (b) in an equivalent way. The sequence

0 ----   Q}harA - U .  Q}A A 0  H +    0, (2.11)

is exact, if, and only if,

0 ---- - Q ^ A  —U  A ®  A A 0  H -------   0. (2 .1 2 )

“ <= ” We can read straight from (2.12) that her can =  OlhorA , and since the vertical map
is a restriction of can from A  0  A to DM, its kernel is D}horA  C DM. “ => ” Using the 
identities A 0 A = Q M ® A  and A 0  H =  (A 0  H +) 0  A as left A-modules, we see that 
her can =  her cari|nM = ker ver =  DlharA.

Now suppose B  C A is a Hopf-Galois extension, so can : A 0 # A —> A<g>H is bijective. 
Consider the sequence

0 ---- ^ STharA —U  A 0  A A 0  H ------- ^ 0 . (2.13)

recalling can = can o 7t : A 0 A —> A<g> H\ see Definition 2.4.6. Since can is bijective, it is
surjective and n is a projetion hence surjective, we can deduce can is sujective. Also,

ker can = ker (can on) = ker n = D}h(yrA ,

where the penultimate equality follows since can is injective and the final equality by 
Definition 2.4.5, hence the sequence 2.12 is exact.

Now suppose 2.12 is an exact sequence, hence can is surjective. Let {a 0  h) G A 0  H, 
so can (o' 0  a") = a 0  h for some (a' 0  a") G A 0  A since can is surjective. Now,

can(a' 0  a") = (can o n){ar 0  a") =  a 0  = >  a 0  h = can(7r(a/ 0  a")),

so can is also surjective. Suppose (a 0 # a') G A 0 # A such that can(a 0 # a') = 0. 
Since can = can o n, there is an element (c 0  d) G A 0  A such that can(c 0  c') = 0 
and 7r(c 0  c')  = a 0  a'. But from the exactness of the sequence ker can = Q}horA, so 
c 0 c' G OlhorA  and by definition ker n =  ULlhorA, so a 0  a' = 0 and can is injective, showing 
that can is bijective. □

Definition 2.4.9. A connection in a Hopf-Galois extension is a /c-linear map n  : DM —> 
DM such that

(i) n  o n  =  n  (the connection is an idempotent map),

(ii) ker n  =  DJ^A (the kernel corresponds to the horizontal one-forms),

(iii) n {adb) = aH{db), for all a, b G A (n  is a left A-module map),

(iv) (n  0  id) o pQlA =  pQlA o n  (the connection is a right H-comodule map).
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The first property shows that the connection produces a splitting into horizontal and 
vertical parts. This can be seen as follows, for uj G Cl1 A,

uj = id(uj) = (id(uj) — n(u;)) + n(tu) =  ujh 4 - wy,

where c*Jh = (id(u) — n(o;)) and ujy = n(w), and

u (uH) = n(id(w) -  n(w)) = n(w) -  n V )  = o => u H g  n lhorA.

! Hence the connection provides a splitting of Ll'A into horizontal and vertical parts.

| In the classical case connections in a principal bundle are in one-to-one correspondence 
with connections forms. Given a G-principal bundle X  over M, then the connection forms 
are differential forms on X  with values in the Lie algebra of G that are covariant under 
the underlying action of the bundle. In the quantum setting we have the following.

Definition 2.4.10. A connection form in a Hopf-Galois extension B  C A is a fc-linear 
map co : H + —»■ Q} A such that

(i) (p®‘lA o cu) = ( u j  <g> H) o Ad,

(ii) ver o u j  =  l A  ® idH+.

The first property informs us that a connection form should be a right //-comodule
map and the second property that the ver map applied to the connection form gives the
identity.

Theorem 2.4.11. In a Hopf-Galois extension B  C A by a Hopf algebra H, connections 
and connection forms are in one-to-one correspondence.

Proof. Since we are working in a Hopf-Galois extension we know that the sequence
is short exact of left A-module and right Lf-comodules,

0 ---- - - U .  D1 A A ®  H + --------> 0. (2.14)

Suppose n  : ftM  -> DM is a connection, hence there is a splitting of Q1A  into horizontal
part and vertical part which means fiM  = L l^ A  © 4 ®  H + and there is a left A-module 
and right H -comodule map u : A <8> H + —> Ft1 A such that ver o u  = id. The map defined 

j by u  : H + —>• f2M, u(h) — w(l h) is a connection form.
| Now suppose that uj : H+ —> QM is a connection form, and define u  : A ® H + —> UtlA
\ by u(a h) = au(h). The map u) is a left A-module and right H -comodule map and it a 
| splitting of the above exact sequence since,

(ver o u)(a <S> h) =  ver  (a w (h)) =  a(ver o uj)(h) =  a ( l ,4 ®  h) =  a ®  h.

Now the map defined by n  = uj o  v e r : is a connection. □

Strong connections. We have seen connections defined in a Hopf-Galois setting, 
next we consider connections in a module.
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Definition 2.4.12. Let B  be an algebra and T a left B-module. A connection in T is a 
A;-linear map

V ; r  —y U}} B  r ,

such that
V(bx) = d(b) x +  b\7(x),

for all b G B, x G I\

Definition 2.4.13. Let II : f2xA —> fl lA  be a connection in a Hopf-Galois extension 
B  C  A. The right //-comodule map,

D : A —y UtlhorA, D = d — II o d,

is called a covariant derivative corresponding to n. Furthermore, the connection n  is
called a strong connection if D(A) C  ( Ul1B )A .

Now we can state a strong connection n  in a Hopf-Galois extension B  C A induces a 
connection in the left B-module A. The connection is given by the covariant derivative 
D, as stated in above definition. The existence of a strong connection in a Hopf-Galois 
extension is summarised in the following theorem.

Theorem 2.4.14. A strong connection in a Hopf-Galois extension B  C A by a Hopf 
algebra H exists, if, and only if, A is H-equivariantly projective as a left B-module,
i.e., there exists a left B-module, right H-comodule splitting of the multiplication map
m A : B <S> A —> A.

Normally it is not practical to find a splitting of the multiplication map in order to 
prove the existence of a strong connection. Instead we need additional tools which make 
calculations more manageable. This is given in the following theorem.

Proposition 2.4.15. A right H-comodule algebra A with coaction gA : A —> A ® H is 
principal if and only if it admits a strong connection form, that is if there exists a map 
l j  : H  — y A ® A, such that

w(l) =  l ® l ,  (2.15a)

m A o l j  = 1A o e, (2.15b)

( l j  <8> id) o A =  (id ®  g )  o  l j ,  (2.15c)

(S (8 ) w) o A =  (a <8 > id) o (q <g> id) o l j .  (2.15d)

Here m A : A  <8 > A  -» A denotes the multiplication map, l A : C ^y A is the unit map, 
A : H  H ® H is the comultiplication, e : H  —y C counit and S  : H  —» H the (bijective) 
antipode of the Hopf algebra H , and a : A ®  H -̂ y H <g> A is the flip.

Proof. If a strong connection form l j  exists, then the inverse of the canonical map
can (see Definition 2.3.2 (a)) is the composite

A ® H — — -> A ® A ® A mAm > A ®  A  - A ® B A ,
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while the splitting of the multiplication map (see Definition 2.3.2 (b)) is given by

A - ^ A ® H  mj>m >B ® A .

Conversely, if B  C  A is a principal comodule algebra, then lj is the composite

H ^ £ a ® H ^ A ® b A - ^ A ® b B ® A - ^ A ® A ,

i where s is the left H-linear right //-colinear splitting of the multiplication B  ® A —> A. □
i

| Example 2.4.16. Let A be cleft comodule algebra over Hopf algebra H. Hence there 
exists a right //-colinear map j  : H  —» A that has an inverse in the convolution algebra 
Horn(//, A) and is normalised so that j (  1 ) = 1 ; see Example 2.3.3. Writing j - 1  for the 
convolution inverse of j , one easily observes that

w : / / - »  A ® A, h i-» ( j - 1  ® j)(A(/i)),

is a strong connection form. Hence a cleft comodule algebra is an example of a principal 
comodule algebra.

Example 2.4.17. Let H  be a Hopf algebra of a compact quantum group. By the 
Woronowicz theorem [47], H  admits an invariant Haar measure, i.e. a linear map A : 
H —> C such that, for all h E //,

h{1)A(h{2)) = A (h), A(l) = 1.

where A (h) = h(\) <g> h(2) is the Sweedler notation for the comultiplication. Next, assume 
that the lifted canonical map:

can : A ® A -» A <g>//, a ^ a , ^ a g ( a f), (2.16)

is surjective, and write

t : H - > A ® A ,  e(h,) = J 2 e(h)m ® e(h)l2]’

for the C-linear map such that can(/(/?-)) =  1 ® h, for all h G H. Then, by a theorem of 
Schneider [40], A is a principal //-comodule algebra. Explicitly, a strong connection form 
is

u(h) =  A (h(i)£ (A(2)) [11(i)) A {£ (/i(2)) [2\ i)S  (fy3))) £{h(2))[1\ o) (8 ) ^(^(2))[2](o), 

where the coaction is denoted by the Sweedler notation gA(a) =  a(o) <8 > a(i); see [4].

2.5 Fredholm modules and the Chern character
In this section we give the details relating to the construction of Fredholm modules over 
a *-algebra.
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2.5.1 Constructing even Fredholm modules
Definition 2.5.1. An even Fredholm module over a *-algebra A  is a quadruple (53, 7r, F, 7 ), 
where 53 is a Hilbert space of a representation 7r of A  and F  and 7  are operators on 53 
such that F* = F, F 2 =  / , 7 2 = /, 7 F  =  —7 F, and, for all a G A, the commutator 
[F, 7r(a)] is a compact operator.

In general, if A is a bounded operator on a separable Hilbert space H with orthonormal 
basis then we say A is trace class if

T r \ A \ = ^ 2  ({A*A)*ek, ek) <  00 . 
ken

In this case we can define the trace of A by the convergent series

Tr A := Y ^(A ek,ek). 
ken

Definition 2.5.2. A Fredholm module (53, 7r, F, 7 ) over a *-algebra A, is said to be 1- 
summable if the commutator [F, tt(a)] is a trace class operator for all a £ A.

2.5.2 The cyclic homology of an algebra and the Chern charac­
ter

A chain complex (A#, d#) is defined as a sequence of vector spaces ..., A_2, A_ 1, Ao, A1}... 
connected by homomorphisms dn : An —>• An_i such that dn o dn+i =  0 for all n € Z. We 
write this as

dn—l a dn a dn+i
... ■< / i n—i ■+ A n ■<------- /in+1 ••• •

The elements x e An are called the chains and we say x has degree (or dimension) n. 
The maps dm are called the boundary maps (or differential maps). The elements of the 
image of dn are called the boundaries and the elements of the kernel are called the cycles. 
The family of groups H,(A) is called the homology of A, where the nt/l-homology group 
is defined as

Hn(A) =  Ker dn/ I m  dn+1, n G Z .

There are many different types of homologies in the context of non-commutative geometry, 
we are interested in the cyclic homology of an algebra. Firstly we need to define a 
bicomplex.

Definition 2.5.3. A bicomplex A.)# is a family of vector spaces APi9 with two families of 
homomorphisms

d  •  ̂Ap—i(g, d  . Ap̂ q y AP)g_i,

for any p, q G Z, satisfying

d ' &  =  0,  d 'd "  +  d " &  =  0,  d " d "  =  0.
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D efinition 2.5.4. For an algebra A consider the bicomplex CC,(A) given by

a3

A 8  A (8 > A 
02

A ® A + -  

01

>1------

T2

T1

-*3
<8 > j4 ® .4 

~d2 
A ® A + -

n 2

Ni

TO A No

03

i4 0  A 8  A 
02

A ®  A+- 

01

— A*—

T2

T \

-04

i4 8  j4 8 ,4

A ®  A-

-d'x

n2

Nx

TO A N0

with boundary maps

d'n(aQ 8  ai 8  ... 8  an) = ^ P ( - l ) za0 ® ... 8  aiai + 1 8  ... 8  an,
n —1

*=0

and

8 n(a0 ® ^  ® ... <8 an) = c^(a0 8  ai 8  ... 8  an) +  ( - l ) nana0 8  ai 8  

rn(a0 8  a! 8  ... 8  an) = ( - l ) nan 8  a0 8  ai 8  ... 8  an_i,

n

Tn =  /d^® (n+1) Tn , -/Vn =  ^  ^(^ n ) •
2= 1

We refer to CC9 (A) as a cyclic bicomplex. In order to define a homology of the cyclic 
bicomplex, we need to interpret this as a chain complex. This can be done by viewing 
the terms of degree n of a chain complex by

0  CGj(A) = 0 A « +l.
i + j = n , i , j >  0 j = 0

The homology of this chain complex is known as the cyclic homology of A and is denoted 
HC9 (A). The first two groups come out as

HCq(A) = ,4/{Im d\ Im f0}, HC\{A) — Ker <9i/{Im 8 2  +  Im ri}.

We now turn our attention to the Chern character. The Chern character is a homo­
morphism from Ko(A) into the homology group HC2n{A) for some n G N constructed as 
follows. Take a class [P] G KQ(A) where P  is a finitely generated projective ,4-module. 
Suppose P  has dual basis { x \ , ..., xn, 7Ti,..., 7rn} where Xi G P  and 7r* G ^Hom(P, A), so 
any p G P  can be written p = ^ = 1  ^i(p)xi- The matrix E = (Ei;j)”;j=l := (7Tj(^))-j=1 

is an idempotent in M(A). With the idempotent E  we can associate a 2n-cycle in the 
cyclic bicomplex CCm(A). Firstly, define

chn . ^   ̂ Ei1i2 8  E{2i3 8  ... 8  Einil, (2.17)
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and then the 2 n-cycle
11 _

0 ( - l ) i - 1l Tcfcl(fO. (2 -18)
1=0 L2J-

The class of this 2n-cycle does not depend on the choice of P  or E  in [P], hence it defines 
an Abelian group map

chn : K0(A) -> HC2n(A). (2.19)

known as the Chern map.

2.5.3 The Chern-Connes pairing
Let A  be a principal comodule algebra with coaction p and coinvariant subalgebra B. In 
this subsection first we follow [34] (see also [29] and [18]), and associate even Fredholm 
modules to the algebra B and use them to construct traces or cycles in the cyclic bicomplex
CCi(B). The latter are then used to calculate the Chern number of a non-commutative
line bundle associated to the quantum principal bundle A  over the subalgebra B.

Line bundles associated to a principal comodule algebra

As explained in [19] any strong connection in A  can be used to construct finitely generated 
projective modules over the coinvariant subalgebra B. To achieve this one needs to take 
any finite dimensional left comodule W  over H  (or a finite dimensional corepresentation of 
H) and then the cotensor product AUHW  is a finitely generated projective left B-module. 
In the case H  =  0(U{ 1)), these projective modules, or projective modules of sections of 
line bundles associated to a principal comodule algebra A , are defined as

C[n] := {x € A  : p(x) = x <S> un}, n € Z.

In other words, C[n] is the degree n component of A  when the latter is viewed as a Z-
graded algebra. An idempotent E[n] for C[n] is given in terms of a strong connection

E[n]ij = w(u’,)[21iw(un)[11j € B, (2.20)
where u)(un) — ^  ® a;(u”)^<.

The Chern-Connes pairing

Suppose (2J, 7r, F, 7 ) is an even Fredholm module over the algebra B . We associate a 
cyclic cycle of B or a Chern character r  by

t (x ) =  Tr (7 7r(:r)), x € B

Now, the traces of powers of each of the E[n] make up a cycle in the cyclic complex
of B , whose corresponding class in homology HC9(B) is known as the Chern character 
of C[n}\ see Section 2.5.2. In particular Tr E[n] can be paired with the Chern character
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!

| associated to a Fredholm module over B to give an integer, which identifies isomorphism
| classes of the E[n\.
| In general, the result of the combined process that to an isomorphism class of a corep- 
| resentation of a Hopf algebra H  assigns the Chern character of the 5-module associated
I to the 5-principal comodule algebra A is known as the Chern-Galois character.

| Using the Chern-Galois character to show non-cleftness
I
| The construction of traces r  provides one with an alternative way of proving that the prin-
| cipal comodule algebra A  is not cleft. This involves evaluating r  at the zero-component

of the Chern-Galois character of the principal 0(C/(l))-comodule algebra A.
The traces of powers of each of the E[n] make up a cycle in the cyclic complex of B. 

In particular, the traces of E[n) form the zero-component of the Chern-Galois character 
of A. Should A  be a cleft principal comodule algebra, then every module C[n] would be 
free. Thus an alternative way of showing that A  is not cleft is to prove that, say, £[1] is 
not a free left 5-module. For this it suffices to show that Tr 5[1] is a non-trivial element 
of HCq(B) by proving that r(Tr 5[1]) ^  0.
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I Chapter 3
t

Quantum teardrops

|

| 3.1 Quantum weighted projective spaces
The motivation for quantum teardrop spaces starts with the well-known Hopf fibration 
whereby classically the 3-sphere S3 and the circle U( 1) are used to describe the 2-sphere 
S 2. In this example, we have an action > : U(l) x S 3 —» S 3 given by u>(z\, 22) = (uzi,uz2) 
where u € U( 1) and (2 1 , 2:2) € S 3 C  C2, so |zi|2 +  |2 2|2 =  1. Now taking the quotient 
of S3 by t/(l) using the usual equivalence relation (2 ^ 2 2) ~  (^ 1 , ^ 2) there exists 
u e U (  1) such that uv> (2 1 , 22) = (ttfi,W2)> we deduce that S 2 =  S 3/U( 1). Moving to the 
quantum setting, the quantum homogeneous space 0 ( S 2) can be described by the fixed 
point space of the action of U( 1) on 0 ( S 3)) see Definition 2.2.4, defined on generators as 
et0>a = e%ea and exd> (3 = e%e(3. This idea can be extended by introducing weights to the 
action > : U(l) x S 3 -* S 3 described in the Hopf fibration, the resulting spaces are called 
weighted projective spaces. This is formally defined as follows.

Definition 3.1.1. (Weighted projective spaces) Given n +  1 pairwise coprime numbers 
/0, ... ln> one can define the action of the group U(l) on S 2n+1 by u • (20, 2 1 , . . . ,  zn) = 
(ul°zo, ullZi, . .. ,uZn2n), where (20, ...,2n) € S2n+1, i.e. SiLol^l2 = now weighted pro- 

| jective spaces are defined as the quotients of S2n+1 by this action,

WP(/0 , / i , . . . , / n) = 5 2n+1/C/(l).

By introducing the weighting to the action the resulting quotients are not necesarily 
manifolds. In fact, weighted projective spaces are examples of orbifolds, that are not global 
quotients of manifolds by finite groups. (Orbifolds are locally modelled as quotients of 
open subsets of Cn by finite groups). For n — 1 , W P(1,1) is the two-sphere S 2 = CP1, 
while W P(1,1) is the teardrop orbifold studied by Thurston [43].

This formulation of weighted projective spaces makes the definition of quantum weight­
ed projective spaces particularly straightforward as it allows one to follow the general 
strategy in which a classical space is replaced by the coordinate algebra of the quantum 
space. Also, the action of the classical group on a space is replaced by the coaction of 
the coordinate algebra of the corresponding quantum group on the coordinate algebra of 
the quantum space; the coordinate algebra of the quantum quotient space then arises as

I
! 5 3

s
if
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the fixed points or coinvariants of this coaction. Recalling the algebra 0(S^n+1) of coor­
dinate functions on the quantum sphere is the unital complex *-algebra with generators 
z0, z i , . . . ,  zn subject to the following relations:

ZiZj = qzjZi for i < j, ziz* = qz*z% for i ± j, (3.1)

n n

ZiZ- = Z- Zi  + (g-2 -  1) ^ 2  zmz'm, ^ 2  zmz‘m =  1, (3.2)
m = i+ 1 77i=0

where q is a real number, q € (0,1); see 2.2.6. For any n +  1 pairwise coprime numbers 
/0, . . . ,  /n, one can define the coaction of the Hopf algebra 0(U( 1)) =  C[u, u*], where u is 
a unitary and grouplike generator, as

Qio,.,in : 0(S*n+1) -* 0 ( S 2qn+1) <g> C[u, u*], zt ^  zt ® ul% i = 0,1 n. (3.3)

This coaction is then extended to the whole of 0(S^n+1) so that 0(S^n+l) is a right 
C[u, u*]-comodule algebra.

Definition 3.1.2. (Quantum weighted projective spaces) The algebra of coordinate func­
tions on the quantum weighted projective space is defined as the subalgebra of 0(Sqn+1) 
containing all elements invariant under the coaction i-e.

O ( W P , ( / 0l h ,  ■ • • ,  In)) =  0 ( 5 , 2"+ 1 ) coC[“ -“ * 1 : =  { x  €  + 1 ) | glo., „ (* )  =  s  ®  1 } .

In the case l0 =  l\ = • • • =  1 one obtains the algebra of functions on the quantum complex 
projective space 0 ( CPJ) [45] (see also [35]).

In the above definition of quantum weighted projective spaces we followed the general 
strategy which requires one to replace actions of groups by coactions of Hopf algebras. 
However, due to the very simple nature of U( 1), the Hopf algebra 0(U( 1)) is isomorphic 
to the group algebra CZ of the Pontrjagin dual Z of 1/(1). Given a group G , a comodule 
algebra of the group algebra CG is the same as a G-graded algebra. Thus to define the 
G(l/(l))-coaction 6i0,...,in (3-3) is the same as to give a suitable Z-grading to 0(S^n+1), 
compatible with the algebra and *- structure of 0(S^n+1). The generators ẑ  of 0{S^n+l) 
are homogeneous elements of degree k (the z* have degree — /*), and (9(WPg(/o, h, • • •, ln)) 
is simply the degree 0 part of such Z-graded 0(S^n+1).

3.2 The coordinate algebra of the quantum teardrop 
and its representations

We concentrate on the quantum weighted projective lines, i.e. on the case n = 1. For a 
pair of coprime positive integers k, /, we give the presentation of 0 (W ¥ q(k) I)) in terms of 
generators and relations and classify all irreducible representations of 0(W F q(kJ)) (up 
to unitary equivalence)
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I
The algebra of coordinate functions on the quantum three-sphere O(Sg) is the same 

\ as the algebra of coordinate functions on the quantum group 0(SU q(2)), i.e. O(S^) =
| 0(SU q(2)); see [47]. The generators of the latter are traditionally denoted by a = z0 and
! P = z\. In terms of a and p relations (4.2) come out as

: aP =  qPa, aP* = qP*a, PP* =  P*P, aa* =  a*a+(q-2-l)PP*, aa*+PP* =  1,

where q G (0,1). Setting k = Z0 and I = Zi, the coaction of C[ii, u*] on O(S^) takes 
the form

a i-> a <g> uk, P i-> P ® u*1 =  P <8> u~l, (3.2)

I and C7(WP9(A:, /)) is the coinvariant subalgebra of O(S^). Equivalently, we can view O(S^)
as a Z-graded *-algebra generated by a of degree k and p of degree —1\ 0 (W ¥ g(k,l)) is 

| the degree zero part of O(S^).
i

! T heorem  3.2.1. (i) The algebra 0 (W ¥ q(k:l)) is the *-subalgebra ofO(S^) generated by
a =  PP* and b = a lPk.

(ii) The elements a and b satisfy the following relations

i-i i
a* =  a, ab = q~2lba, bb* = q2klak (1 — q2ma), b*b =  ah (1 — q~2ma). (3.3)

771=0 771=1

(Hi) 0 (W F q(k,l)) is isomorphic to the *-algebra generated by generators a, b and 
relations (3.3).

Proof, (i) A basis for the space O(S^) consists of all elements of the form apPrP*9 
and a*pPrP*s, p , r , s £  N. Since the coaction is an algebra map,

eKi{aPPrP*S) =  otpprp*s (g> ukp~lr+l\  Qkjl{a*pprp*s) =  a*pprp*s <8> u~kp- lr+ls.

The first of these elements is coinvariant provided kp — Ir +  Is =  0, i.e. kp — l(r — s).
! Since k and I are coprime numbers, p must be divisible by Z, i.e. p = ml for some m  G N.

Therefore, r = mk  +  s and the only coinvariant elements among the apPrP*s are those of 
the form

| amlpmkpsp*s „

By similar arguments, the only coinvariant elements among terms of the form a*pPrP*s 
are scalar multiples of {alPk)*m{PP*)r. We conclude that 0(W P q(k, I)) is a subalgebra of 
O(Sq) generated by a self-adjoint element a =  PP* and by b = alpk.

(ii) An elementary calculation that uses equations (3.1) confirms that (3.3) are indeed 
relations that a and b satisfy.

(iii) Denote by 0(W Fq(k,l)) the unital *-algebra generated by generators a and b 
and relations (3.3). Parts (i) and (ii) establish the existence of the following surjective 
*-algebra map

I e : 0(W wXkJ))  -> 0(W P ,(M )), av+PP*, b*->alPk. (3.4)
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Note that the Diamond Lemma immediately implies that the elements

ambn, amb*n\  m, n e  N, n' e  N \  {0}, (3.5)

form a basis for 0(W F q(k, /)). The map 6 sends these elements to 

(P/3*)m(al/3k)n ~  alnp (/3/3')m(0*ka ,l)n' ~

respectively. As these are linearly independent elements of 0(S?), the map 6 is injective, 
hence an isomorphism of *-algebras as required. □

In the remainder of this section we study representations of C(WPq(k,l)) identified
with the *-algebra 0(W F q(k,l)) generated by a and b subject to relations (3.3). This 
analysis leads to an alternative proof that the map 9 (3.4) is an isomorphism.

P roposition  3.2.2. Up to a unitary equivalence, the following is the list of all bounded 
irreducible *-representations of 0 (W F q(k,l)).

(i) One dimensional representation

7To : a i—y 0, b 0. (3.6)

(ii) Infinite dimensional representations ns : Q(WFq(k, I)) —»• End(Vrs), labelled by s = 
1 ,2, . . . , / .  For each s, the separable Hilbert space Vs ~  /2(N) has orthonormal basis 
eBp, p e N ,  and

ns(a)e; = tt,(&)<$ =  qk^  (l -  e;_u ?rs(b)es0 =  0.
r = 1

(3.7)

Proof. First consider the case when n(a) =  0. The relation b*b = ak n!n=i (1 — q~2ma) 
implies that n(b) = 0 , and this is the one dimensional representation.

Let V denote the irreducible representation space in which 7r(a) ^  0. It is immediate 
from the relation ab = q~2lba that ker(7r(a)) = V  or ker(7r(a)) =  0. Since the first case is 
excluded by assumption n(a) ^  0, we conclude ker(7r(a)) = 0. Suppose that the spectrum 
of 7r(a) is discrete and consists only of 0, g2, q4, ..., q21. If v is an eigenvector of 7r(a) with 
eigenvalue q2\  then the relation ab = q~2lba implies that w — n(b)v is an eigenvector with 
eigenvalue q2l~2\  or w = 0. Consider w = ir(b*)v. Applying ir(&) to both sides gives

i-i
7r{b)w = n(bb*)v = q2k{l+i) (! -  q2{m+i))v.

m = 0

So, if w =  0 then q2k9+l) f ] ^ 0(l — q2(m+l>>) =  0, which cannot be true. Hence w ^  0 
which implies w ^  0. Therefore the spectrum also contains q2t~21, which contradicts the 
assumption that 0,q2,...,q21 are the only elements of the spectrum of 7r(a). Thus there
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must exist A E sp(7r(a)) such that A ^  q2t for i E { 1 , 2 , / } .  This means that there exists 
a sequence (£n)neN of unit vectors in the representation space V such that

lim ||7r(a)£n -  A£n|| =  0. (3.8)
n —>oo

We show that there exists N  E N and C > 0 such that ||7r(6*)£n|| > C, for all n > N, 
using the relation b*b = a * n L i ( l  ~ r 2ma). By the remainder theorem, this relation 
can be expressed in the following format:

i i
6*6 =  ak J J  (1 -  Q~2ma) = (a -  A)p(o) +  Xk J ]  (1 -  q~2mA),

m = l  m = 1

where p(a) is a polynomial in the variable a of degree less than k +  I. The triangle 
inequality and the norm property ||z||||2/|| > \\xy\\ imply that:

\ A a k ) I I  ^  “ q  2m?r(a))^ll -  I I I I  -  9 2m̂ )ll -  IbMMa) -  X I ) £ n \\

m=1

> ||Afc J J  (1 -  j-^A JII -  |b(a)||||(7r(a) -  \I)£ ,

m —1 m = 1

I

m=1

Therefore,

IW ) l l lk (6 )U  > IIA* n  (1 -  ?-2mA)|| -  ||p(a)||||(ir(a) -  A/)£„||,
771 =  1

so that
ll-rfhl-- II HAfc nL =l (! — ?_2”*A)|| l|p(a)ll V n<- II (3 9)
1 1 m j ~  ¥ m \  ¥ M \ lK ( ] ~  )6,11’ ( }

Since ||AfcnL =i U — 9_2m̂ )ll/ll7r(^*)ll positive, the existence of the desired N  and C 
follows from (3.8) above. Hence we conclude that

7r(6)£n
In : =

i kwfn i r
are unit vectors for n > N. Our goal now is to show that

lim ||7r(&)77n -  q~2l\rjn|| =  0,
n —too

which is the same as asserting q~21 A E sp(7r(6)). Assuming n > N, hence ||7r(6)£n|| > C, 
and using the relation ab = q~2lba we obtain
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Hence we have shown that if A G sp(7r(a)) then q~2l\  G sp(7r(a)). So the spectrum 
contains A, q~21 A, q~AlA,.... Since we require this sequence to be bounded there must exist 
an n G N such that q~2nlA = A0, the largest possible eigenvalue, i.e. A = q2nlA0 for some 
n G N. Hence we have shown that sp(7r(a)) C  {^2nZA0 : n G N} U  { 0 } .  The implication of 
this calculation is that there exists a unit vector £ such that 7r(a)f = A0£. We now use 
this fact to calculate directly the representations.

It follows from the relation ab*P = q2lpb*P a that

7r(a)(7r(b*P)0  = q2lpKn(b*P)€,

which shows that n(b*P)£ are eigenvectors of ir(a) which have distinct eigenvalues q2lpAo- 
Thus the vectors:

e =  A V I .  p e N

form an orthonormal system. We now show that the span of the ep is closed under the 
action of the algebra:

n(a)*(b*p)Z wfsWaJf g2lpX07 r ( b ^  
w(a>ep I W 6 * P ) ? I I  l k ( * > * p ) « l l  I W m i  ’

therefore,
7 r ( a ) e p = q2lp\ 0ep.

On the other hand,
■K{b)’K(b*, )i 7r(bb*)7r(b*p~l )£

W p l k ( i * P ) £ l l  h(b*PM  '
Now,

I M O f l l  =
=  ( 7 t ( 6 ) 7 t ( 5 * P ) ^ ,  7 t ( 6 * P _ 1 ) ^ > 2  

I
= {q2klpX%k JJ (1 -  A o 7 2(' (p“ 1 )+ r ))7r(fc*’’_ 1 )^ ,7 r (6 * ’" 1) ^ ) 5

r —1

=  qk,pXko n  ( !  -  A o ? 2(!('’- 1 )+ r ) )^  ||7r(&*P_1K | | .
r = 1

Hence
(b) = * (tyr(Og = g2‘pkX f  n t=1 (1 -  X o g W ' - W M b ' ”-1)

p i k ^ x i i  9,« * A sn U (i - Ao92(‘&’"i)+r))5ik(6,'" , )ir
which simplifies to

7r(b)ep =  glpkX% JJ (1 -  A0?2('(',- 1)+r))»eJ,_1.
r —1
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Reversing the order of multiplication by using the substition r' = I — r we arrive at the 
following result:

7T(b ) ( e p) = qlpkXk0 Ĵ [ (1 -  X0q2{lp~r,)) h p-i.
r'—l

Considering the case when p =  0 we see that tt(b )e0 =  n (b )£  = 0 since n (b )  acts as a 
stepping down operator on the basis elements ep . This implies that

AS I P 1 -  x ° r 2 r ' )  = °>
r ' = 1

| therefore Ao =  0, which corresponds to the one dimensional case, or A0 =  q2s for some
j  s  E { 1 , 2 , / } ,  which relates to the infinite dimensional case. □
|
j P roposition  3.2.3. E a c h  o f  the  r e p resen ta t io n s  irs is  a fa i th fu l  r e p r e s e n ta t io n .

I Proof. We use reasoning similar to that in the proof of [21, Proposition 1]. Consider
! an arbitrary element of G(WPq(k, I)) expressed as a linear combination of the basis (3.5),
I

x  =  h>m^ a mb*n\
m,n mtn'

Mm,n> J'm.n' £ C, and suppose that 7rs(a:) = 0, i.e. 7Ts (x )e p  = 0, for all p  E N. Since
the application of ns (a m bn ) to esp does not increase the index p, while the application of
7rs ( a m b*n') increases p ,  the vanishing condition splits into two cases, which can be dealt 
with separately, and we deal only with the first of them. The condition

y :  Fm,noPbn J esp = 0, for all p  E N,
771,71 /

is equivalent to the system of equations

In

7im,n9nMi(p~(’1~1)/2)+V mWp-")+sl [ p i  -  qWp+‘- r'>)1/2 e;_n = 0, for all p € N,
771,71 r=l

(use (3.3) repetitively). Since this must be true for all n  < p, and the vectors ep_ n are 
linearly independent for different n, we obtain a system of equations, one for each n,

pm,„q2mV{,,~n)+s] = 0, for all p € N. (3.10)
771

There are only finitely many non-zero coefficients fimjn. Let N  be the smallest natural 
number such that pmin =  0, for all m > N. Define



60 CHAPTER 3. QUANTUM TEARDROPS

Then equations (3.10) for pmn̂ take the form

N

y ]  fJvn,n>£n = for a11 P ^ N.

The matrix of coeffcients of the first N  +  1 equations (for p = 0,1, . . . ,  N) has the Van- 
dermonde form, and is invertible since AP)Tl ^  Ap/)n if p ^  p' (remember that q E (0,1)). 
Therefore, pmn̂ =  0 is the only solution to (3.10). Similarly one proves that necessarily 
Vm,n> =  0 and concludes that ir5 is an injective map. □

Finally, we look at the way representations of 0 (W ¥ q(k, /)) are related to representa­
tions of the quantum sphere algebra O(Sq).

Proposition  3.2.4. Let tt : 0 ( S q) -» End(V) denote the representation of 0 (S q) given 
on an oHhonormal basis en, n E  N o fV  by [44]

Therefore, the induced map (f) makes the diagram (3.12) commute as required. 
U

n

7r(a)en =  (l -  q2n) l/2 en_i, 7r(/3)en = qn+len, (3.11)

(see also [49]). Then there exists an algebra isomorphism </> : End(© /g=1 Vs) —)■ End(U) 
rendering commutative the following diagram,

(3.12)

7T

End(©U V.) — 1 End(V)

where 9 is the *-algebra map given by formulae (3.4). 

Proof. Consider the vector space isomorphism,

4>: Vb Vi ep ^  eip+s-i>

and let </>: End(®^=1 V̂ ) —> End(U), /  (fofocj) be the induced algebra isomorphism. 
Using (3.11) one easily finds that

7r{fiP*)en = q2{n+1)en.
r = l

This immediately implies that, for all x E  G ( W F q ( k , / ) ) ,

<j>(irs(x)esp) = t t  (0(z))0(ej).
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3.3 Quantum teardrops and quantum principal bun­
dles

At the limit q —> 1, C?(WPg(/c, /)) becomes a commutative algebra (of polynomials on the 
weighted projective space) but the polynomials on the right hand side of the third (equiv­
alently, fourth) relation in (3.3) have multiple roots at a = 0 and a — 1. The multiplicity 

; of roots indicates that weighted projective lines have singularities, in particular they are
not smooth manifolds unless k — I =  1. On the other hand, in the case k = 1 (which 

! corresponds to the teardrop) and q ^  1 the defining relations (3.3) of 0(W P9(1,/)) have
no repeated roots. This suggests that by moving from the commutative singular mani- 

i fold W P(1,1) to the noncommutative quantum space G(WP9(1,/)) one is able to resolve
| singularities and obtain a smooth quantum manifold, very much in the spirit of noncom-
| mutative crepant resolutions [46]. In this section we show that in the special case where

k = 1 we can in fact construct non-commutative principal bundle over C?(WPg(l, I)), the 
quantum teardrop.

In the first part of this section we prove that only in the case of the quantum 2-sphere 
(i.e. k = I = 1), 0{Sq) is a principal 0([/(l))-comodule algebra over 0(W P q(k, /)). In 
that case we are dealing with the well-known quantum version of the Hopf fibration.

T heorem  3.3.1. The algebra of O(S^) is a principal 0(U(1))~comodule algebra over 
(9(WP9(A:, /)) by the coaction Qk,i if and only if k =  / =  1.

Proof. If k =  Z =  1, then C?(WP9(1,1)) =  O(S^), and it is known that O(S^) is a 
principal comodule algebra that describes the quantum Hopf fibration (over the standard 
Podles sphere); see [13] or [22]. We assume, therefore, that k ^  I (i.e. (k,l) ^  (1,1)), 
and show that 1 8  u is not in the image of the canonical map in that case. We proceed
by identifying a basis for 0(SU q(2)) 0  0(SU q(2)) and applying the canonical map to
observe the form of the image. The ultimate aim is to show that the canonical map is 
not surjective by proving that element 1 which is in the codomain of the canonical 

; map, is not in the image.
I A basis for G(SUq(2)) 8  0(SU q(2)) consists of

i a h(3mp*n (g )  a ' T T / T " ,  a hp mP*n 8  P™P*na*p,

i p mp*na*p 8  o^P^p™, p mp*na*p 8

where h ,m ,n ,h ,m ,f i ,p  G N. Hence, applying the canonical map we conclude that every 
element in the image of can is a linear combination of:

^ h + h  o m + r h  o * n + n  ^  ^k h —l m + ln  o m + f h  o * n + f i ^  u ~ l in + l f i—kp

- - ’ (3.13)
p m + m p * n + n a *p a h ^  u k h - l m + l n  p m + m p * n + n a *p+ p  ^  ^ - I m + l n - k p

where h, m, n, h, m, n, p G N.
To obtain identity in the first leg we must use one of the following relations (3.1) or 

equations which include terms of the form a*na m or ana*m. A straightforward calculation
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gives the following:

n r= i C1 -  92p~2/3£*) when rn = n,
a ma ,n =  { am~n n £ =i (1 -  q2p~2PP') when m > n,

n ” , (1 -  when n > m,

and

a*na m =
' n ;= i (! ~ q~2pP(3*) when m = n,
**n- m n ? = A l - q - 2pPP*) when n > m,

,rip=i (1 — q~2pftP*)oLm~n when n < m.

We see that to obtain identity in the first leg we require the powers of a and a* to be
equal. We now construct all possible elements of the domain which map to 1 <S> u after 
applying the canonical map.

Case 1: Use the second term in (3.13) to obtain a Na*N. In this case: h = p = N, 
n p n  = m p f h  = 0. Since n, n, m, m  £ N we must have n = n — m = m — 0. Also 
—Ifh P in  — kp = 1, which implies that —kp — 1, hence there are no possible terms.

Case 2: Use the third term in (3.13) to obtain a*Na N. In this case h = p = N, 
m = fh = n = h = 0. Also kh — lrh p ln  — 1, which implies that kh = 1, hence k = 1 and 
h = 1. Therefore, the only terms of the form a*NaN are when = 1 and in this case 
k = 1. We now look at the other terms which are of the form (3ft* so that we can use the 
relation a*a + q~2/3/3* =  1. Four possibilities need be considered, one for each of the terms 
in (3.13). In the case of the first of these terms h = h = 0, m + m = 1, n + n = 1 and 
kh — Im p  In = 1, which implies that l(h — ffi) =  1, hence I = 1 and h — m = 1. The only 
solution is: / =  l , n  = m =  0, m = n = l , h  = h = 0. A similar approach can be used 
when considering the remaining terms in (3.13) to conclude that in all four cases one is 
forced to require I — 1. Therefore, it is impossible to obtain a term of the form 1 <Sm when 
both k and I are not simultaneously equal to one. This shows that the canonical map is 
not sujective, hence not an isomorphism, implying that C(WFq(k, I)) C G(SUq(2)) is not 
a Hopf-Galois extension when k and I are not both one. □

Theorem 3.3.1 asserts that the defining action (3.2) of U(l) on the quantum group 
0(SU q(2)) does not make it a total space of a quantum f/(l)-principal bundle over the 
quantum weighted projective space 0(W F q(k, /)), unless k = I = 1 (the case of the 
quantum Hopf fibration). The remainder of this section is devoted to construction of a 
quantum C/(l)-principal bundle over the quantum teardrop 0(W F q(l,l)) with the total 
space provided by the quantum lens space 0{Lq{l\ 1,/)). The coordinate algebra of the 
quantum lens space 0 ( L q(l\\,l))  is defined as follows [30].

D efinition 3.3.2. The coordinate (or group) algebra of the cyclic group Z/, 0(Z/), is a 
Hopf *-algebra generated by a unitary grouplike element w satisfying wl = 1. 0(SUq(2)) 
is a right O(Zi)-comodule *-algebra with the coaction

e : 0{SUq{2)) -> 0{SUq{ 2)) 0  0{  Zz), olvpol® w ,

0 {L q{l\ 1,/)) is defined as the coinvariant subalgebra of 0(SU q(2)) under the coaction g.
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To view 0(SU q(2)) as a comodule algebra of a group algebra of the finite cyclic group 
Zi is the same as equipping 0(SU q{2)) with a Z^grading compatible with multiplication 
and *-involution. From the graded algebra point of view, a has degree 1 and ft has degree 
0. 0 {L q(l\ 1,/)) is the degree zero part of 0(SU q(2)) (all calculations of degrees modulo 
I ) .

P roposition  3.3.3. (i) The algebra 0 (L q(l\ 1,1)) is the *-subalgebra of G(Sq) generated 
by c \= a 1 and d \= (3

(ii) The elements c and d satisfy the following relations

cd = qldc, cd* = qld*c, dd* = d*d, (3.14)

j-i i
cc* =  n t1 -  c*c =  JJ (1 -  q-2mdd*). (3.15)

771 =  0 771=1

(Hi) Universally, 0 ( L q(l\l,l)) can be defined as a *-algebra generated by c and d 
subject to relations (3.14) and (3.15).

Proof. Follow similar arguments to those in Section 3.2 . □

Again, following the same techniques as in Section 3.2 one can classify -  up to unitary 
equivalence -  all irreducible ^-representations of 0 (L q(l\ 1, /)).

P roposition  3.3.4. There is a family of one-dimensional representations 7Tq defined as

7r£(c) = A, n$(d) =  0, A 6 C, |A| =  1.

For every s = 1 ,2 , . . . , / ,  there is a family of infinite-dimensional representations 7^, A G 
C, | A| = 1. The action of nx on an orthonormal basis ex,s, p € N, for its representation 
space V x ~  Z2(N) is given by

= I I  t1 -  ?2(p,+s- m))1/2e ^ 11 7r$(d)ex/  =  A /(+»£^.
771=1

Proof. Use the same arguments as in Section 3.2. □

As for quantum teardrops, there is a vector space isomorphism

i
ex/ ^ e f v+s_x,

S = 1

which embeds the direct sum of representations ttx in the representation 7rA of G(SUq(2)),

7r*(a)e* =  (l -  ?2" )1/2 e (U  A /3 )e xn =  A<f+1e*.

Here ex, n G N, is an orthonormal basis for the representation space V x.
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0 (L q(l; 1 ,/)) is a right comodule algebra over the Hopf algebra 0(U(  1)) = C[u,u*]t 
u~l =  u*. The coaction Qi : 0 {L q(l\ 1, /)) —>• 0{L q{l\ 1, Z))®0(f/(1)) is given on generators 
c and d by

Qi : c i-» c ® w, d d®u*.
It is an easy to check that

0 (L q(l-1 , ~  0(W P,(1, /)),

through the identification a =  cd, b = dd*. Equivalently, 0 (L q(l; 1 ,/)) can be viewed as 
a Z-graded *-algebra generated by c of degree 1 and d of degree —1 , and 0(W P 9 (1, /)) is 
the degree zero part of 0 (L q(l; 1, /)) graded in that way.

Theorem  3.3.5. The coordinate algebra of the quantum lens space A  = 0 (L q(l\ 1,1)) is 
a principal H = 0(U(1))~comodule algebra over B  =  C?(WP9 (1, I)).

Proof. Using Proposition 2.4.15 we show that the right 0(C/(l))-comodule G(Lq(l\ 1,1)) 
is principal by constructing a strong connection. A strong connection for 0{L q{l\ 1 , /)) is 
defined recursively as follows. Firstly cj(1) = 1 <g> 1 and then for all n > 0,

u>(un) = c*w(un- 1)c -  (  1 \  cF'd,m~lu)(un~1)d*, (3.16)
m=l ' ' 9-2

u(u~n) = cw(u-"+1)c' -  J ^ ( - l {  1 'j dm- 1d,mw(«-"+1)d, (3.17)
m= 1 V^/qr2

where, for all x  G R, the deformed or q-binomial coefficients are defined by the 
following polynomial equality in an indeterminate t

n ( i + * m- i t ) = £ * m(m" i)/2 U )  tm. (3.i8)
m=1 m —0 V ^ / x

Before we check that uj has the properties of a strong connection; see Proposition 
2.4.15, we observe that since we are dealing with (9([/(l))-comodules, conditions (2.15a) 
and (2.15d) have straightforward meaning in terms of Z-graded algebras. 0(U(  1)) is a Z- 
graded *-algebra generated by u of degree 1. 0 (L q(l\ 1 , 1)) (g> 0 (L q(l\ 1,1)) is a Z-bigraded 
space with x®y  of degree (r, s) for all x G 0 (L q(l; 1,1)) of degree —r  and y G 0 ( L q(it 1,1)) 
of degree s (note the change of sign). Conditions (2.15c) and (2.15d) mean that uj is a left 
and right degree preserving map. By construction, u  has property (2.15a). The remaining 
properties are proven by induction on n. That mA(w(u)) =  e(u) = 1 follows by the second 
of equations (3.15) combined with (3.18). Applying id(g>0 / to the right hand side of (3.16) 
(with n =  1 ), one immediately obtains that (id ®  q i ) ( l j ( u ) )  =  u(u) <8> u, as required for 
(2.15c). Similarly one checks (2.15d).

Now, assume that u(un~l ) satisfies conditions (2.15b)-(2.15d). Then, multiplying the 
right hand side of (3.16) and using m^(cj(un-1)) =  e(un~l ) = 1, we obtain
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by (3.15) and (3.18). Since Qi is an algebra map and (id® Qi)(u(un 1)) = uj(un l )® u n 1 
by inductive assumption, we can compute

! (id <g> Qi){u{un)) =c*(id <8> Qi)(uj(un~l )c) 
i t

-  y y ~ l ) m9- m<m+1) (  1 j cT*rf*m_1 (id ® e,)(u(un-')<f)
771=1 '  '  9 2

m(m+l) ( I A dmd*m_1w(u"-1)d* ® U"
W , - «

=o;(un) <g> un,

as required. The left colinearity of u; (2.15d) is proven in a similar way. The case of 
u(u~n) is treated in the same manner. □

Recall that a principal //-comodule algebra A is said to be cleft if there exists a 
convolution invertible, right if-colinear map j  : H  —> A such that j (  1) =  1. The special 
case of this is when j  is an algebra map (then its convolution inverse is j  o S) and this 
corresponds to the trivial quantum principal bundle. In the case of comodule algebras 
over 0(U(  1)) =  C[it, u-1] the necessary condition for a map j  : 0(U(  1)) —> A  to be 
convolution invertible is that j(u) is an invertible element (unit) of A. Arguing as in [22, 
Appendix] we obtain

Lem m a 3.3.6. The principal 0(U(1))~comodule algebra 0 {L q(l; 1,1)) is not cleft.

Proof. Multiples of 1 are the only invertible elements of 0(SU q(2)); see [22, Ap­
pendix]. Since 0 {L q{l\ 1, /)) is a subalgebra of 0(SU q(2)) the same can be said about 
0 (L q(l] 1, /)). Thus any convolution invertible map j  : 0(U(  1)) —> 0 ( L q(l]l,l)) must 
have the form j(u) = Al, for some A G C*. This, however, violates the right 0(U( 1))- 
colinearity of j  or, equivalently, that j  is a Z-degree preserving map. □

The surjectivity of the canonical map in Definition 2.3.2 corresponds to the freeness 
of the coaction g of H  on A. By Theorem 3.3.1 we know that if ( k j )  ^  (1,1), then the 
coaction gk,i of 0(U(  1)) on 0(SU q(2)) is not free. However, Theorem 3.3.5 implies that 
Qiti is almost free in the following sense.

Definition 3.3.7. Let H  be a Hopf algebra and let A be a right //-comodule algebra 
| with coaction g : A  —>• A ® H. We say that the coaction is almost free if the cokernel of 
| the (lifted) canonical map

can : A <8> A —> A <8> H, a ® a' ag(a'),

' is finitely generated as a left A-module.

Corollary 3.3.8. The coaction g\j is almost free.

Proof. Note that the *-algebra inclusion

l : 0 ( L q(l; 1 ,1)) <-»• 0(5(7,(2)), c ^ c t 1,

=c*w(u"-1)c ® un -  X , ( - l )mg
771=1
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makes the following diagram commute

1,1))------------- ‘-------------  0(SU q( 2))
81 8 1 , 1

0 (L q(l; 1,0) ® 0(U (  1)) Y > 0(SU q(2)) ® 0(U(1)),

where (—)l : u —> ul. The surjectivity of the canonical map 0 (L q(l; 1, l))®0{Lq(l\ 1, /)) —> 
0 (L q(l; 1, /))<£>0 ([/(l))  (proven in Theorem 3.3.5) implies that I0rnm/ € Im(can), m £ Z, 
where can is the (lifted) canonical map corresponding to the coaction This means 
that 0(SUq(2)) <g>C[uz,u _z] C Im(can). Therefore, there is a short exact sequence of left 
O (S Uq (2) )- mo dules

(G(SUq(2)) (8) C[u, u - 1])/((9(5C/g(2)) 0  C[uz, u~1])---   coker(can)----- - 0.

The left 0(SU q(2))-module (0(SUq(2)) 0  C[u, u~1}) /  {0{SUq(2)) 0 C [ul,u~1]) is finitely 
generated, hence so is coker(can). □

3.4 Quantum weighted projective spaces as gener­
alised Weyl algebras

Generalised Weyl algebras are defined in [3] as follows.

Definition 3.4.1. Let V  be a ring, a = (cq,..., <jn) a set of commuting automorphisms 
of V  and a = (ai , ..., an) a set of (non-zero) elements of the centre Z{V) of T> such that 
<7i(aj) =  af for al l i  /  j.  The associated generalised Weyl algebra V(<j,a) of degree n is 
a ring generated by V  and the 2n indeterminates X f , ..., X+, X f ,  •■•,X~ subject to the 
following relations, for all a £ V:

X - X t = 5 i, X + X t ^ a f a ) ,  X f a  =  a f { a ) X f , (3.19)

[X r,Xr]  =  [*•+,x f ]  = [X+,X-] = 0 , Vi ^  j, (3.20)

where [x,y] = xy — yx.

We call a the defining elements and a the defining automorphisms of V(a,d). Note 
that in the degree one case the relations (3.20) are null.

P roposition  3.4.2. The algebras of coordinate functions 0 (W P q(k, /)) are degree one 
generalised Weyl algebras.

Proof. Set V  =  C[a]. In this case X + = b, X~ = b and automorphism a of V  and 
defining elements a are

i
o (a )= q 2la, a = ak J J  (1 — q~2ma).

m= 1
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Now
i i

a{a) = q2kla J J  (1 -  q~2m+2la) =i> a(a) =  q2kla J J  (1 -  q2m'a) = 66* =  X +X~,
m =1 m ' = \

by making the substitution m! =  I — m. The remaining relations can be verified in a 
similar way. □

One of the key theorems associated to generalised Weyl algebras [3, Theorem 1.6] 
provides an insight to the global dimension of such algebras. Since we have shown that 
the coordinate algebra C?(WP9 (/c,/)) of the quantum weighted projective line is a degree 
one generalised Weyl algebra, we can use [3, Theorem 1.6] to conclude that the global 
dimension of 0(W P q(k,l)) is equal to 2 if k = 1 and is infinite otherwise. 1 This can be 
used as an indication that, for the quantum teardrop case k =  1 , the classical singularity 
has been removed (although it is not clear yet, whether G(WP9 (1 ,/)) is a Calabi-Yau 
algebra).

3.5 Fredholm modules and the Chern-Connes pairing 
for quantum teardrops

In this section first we follow associate even Fredholm modules to algebras 0(W P q(k, I)) 
and use them to construct traces or cycles in the cyclic bicomplex CC9(0(W Fq(k, /))). 
The latter are then used to calculate the Chern number of a non-commutative line bun­
dle associated to the quantum principal bundle 0 {L q(l\ 1, /)) over the quantum teardrop 
0(W P 9 (1,/)); see subsection 2.5.3.

P roposition  3.5.1. For every s =  1,2, . . . , / ,  let © Vo, where Vs is the Hilbert
space l2(N) of representation tys and V0 =  ©C ~  /2(N), which we take to be representation 
space of 7T = ©7r0; see Proposition 3.2.2. Define Ws := ns © ir,

- 0  0 '  - 0 - 0 -
Then (2JS, 7fs, F, 7 ) are 1-summable FYedholm modules over 0 (W P q(k,l)). The corre­
sponding Chern characters are

, I i ?2T2mt i f n  =  0 ,  m  ^  0 , .Ts(ambn) = { l~q J > r- ,
10 otherwise.

Here n G Z and, for a positive n, b~n means b*n.

Proof. It is obvious that F* = F, F 2 = ry2 = I  and F 7  +  7 F  =  0. Next, by a 
straightforward calculation, for all x G (D(WPq(k, /)),

=  U ( x )  -* (* )
ir(x) -  7rs(x) 

0

1We axe grateful to Ulrich Krahmer for pointing this out to us.



68 CHAPTER 3. QUANTUM TEARDROPS

Using the formulae in Proposition 3.2.2 one easily finds, for all m, n,p G N

In
7T ( f l m 6 n ) e S =  qnk[lp—(n—l)/2+s]+2m[l(p—n)+s] m -  q 2 ( lp+ s-r )  j l / 2 gS

compare the proof of Proposition 3.2.3. This implies that, for positive m, tts(arnbn) are 
trace class operators, as Tr (7rs(am6n)) = 0 if n ^  0 and

J im s

Tt  (*.(0 ")) = E  92m('P+9) = (3'22)
P

Since 7r0(am6n) =  0, if (m, n) ±  (0,0), and 7r0(l) = 1, we conclude that, for all x € 
0 (W ¥ q(k, I)), tt(x ) — 7rs ( x ) is a trace class operator. Therefore, (%)S,WS, F, 7 ) is a 1- 
summable Fredholm module.

Finally,
rs(x) =  Tr (77fa(x)) = Tr (tts(x) -  1r(rr)), 

and the formula (3.21) follows by equation (3.22). □

Note that the form of the Chern character of (5JS, 7fs, F, 7 ) is independent of k. In the 
case 1 = 1, necessarily s = 1 and T\ coincides with the trace calculated for the quantum
2-sphere in [34]. Similarly to the case studied in [34], the characters rs on 0 (W ¥ q(k,l)) 
factor through the algebra map

Q(W ¥q(k, I)) -> C[a], am>  ^  8n>0am.

On the polynomial algebra C[a] the characters are given by Jackson’s integrals. More 
precisely, define ts by the commutative diagram

G(WFq(k, I))-------- -  -C

C[a]

Then

j _  r  ^
l -  ?2' Jo a

where the Jackson integral is defined by the formula

U f )  =  i ^  /  —  V a-

f  / (a)dga = lim(l -  g ) V  {xqr f(xqr) -  yqr}{yqT) ) ,
Jo y^ °  7 ^

for all x € R and all /  in C[a,a-1].
Next, we show that 0 ( L q{l\ 1,1)) is not a cleft comodule algebra by calculating the

Chern character of the zero-component of the line bundle £[!]; see subsection 2.5.3.
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Lem m a 3.5.2. The zero-component of the Chern character of £[ 1] is the class of

TV E[l) =  1 +  (1 ( l 'j am. (3.23)
m=l \ m / q 2

Proof. First, observe that the formula (3.18) yields the following identity for q- 
binomial coefficients:

=  (  1 V  (3.24)

Next, remember that dd* = a € 0(W P q(l, I)). Having these observations at hand the 
rest is a straightforward calculation:

TV£[1] = c c* -]T (-:L )’V m(m+I)( M  cF"d*m
771=1 '  /  q 2

l~l I , j X
= n ( 1 - ^ ) - E ( - 1) V " - - (- 1) )

771=0 771=1 \ 7 T l y  q2

= 1 +  £ (  _2̂771________ _ qTn(m—1)—277iî  (   ̂ j FA1
7 7 i= i \m  Jq2

=  1 +  ^ ( _ l ) m9m<m- 1> (1 _  q-2ml) (  1 \  a™,
771=1 '  '  9 2

where the first equality follows by (3.16), the second by (3.15) and (3.24), while the third 
equality is a consequence of (3.18). □

Proposition  3.5.3. For all s = 1,2, . . . ,  I, let rs be the cyclic cycle on 0 (W ¥ q(l, /)) con­
structed in Proposition 3.5.1. Then rs(Tr £[1]) =  1. Consequently, the left 0 ( WPg(l, l))- 
module £[1] is not free.

Proof. Use (3.21) and (3.23) to calculate
1 '  1 ' Jim s/  7 \  2

ts(TV£[1]) =  y ''(- l)" y > (’"-1> ( l - g- 2mi) ( ) - i -
m=i 1 _

771=1 X ' 9

I

q2ml

_   ̂ _  ^ ( _ l ) m gm(m-D f  I j q2m (s - l )

771=0 '  /  <J2

I I
= 1 -  (1 -  ^(s-^™ -!)) =  1 -  Y [  (1 -  q2{s- m)) =  1.

771=1 771 =  1

The last equality follows from the observation that since s = 1,2,... ,1, one of the factors 
in the product must vanish. The fourth equality is a consequence of the definition of 
q-binomial coefficients (3.18). □



70 CHAPTER 3. QUANTUM TEARDROPS

3.6 Algebras of continuous functions on quantum teardro] 
and their K-theory

The C*-algebra C(WFq(k, I)) of continuous functions on the quantum weighted projective 
space WPq(k,l) is defined as the subalgebra of bounded operators on the Hilbert space 
© l=i obtained as the completion of ©1=1 tts (0(W Pq(k, I))); see Proposition 3.2.2. In 
this section we show that this C*-algebra is isomorphic to the direct sum of compact 
operators with adjoined identity.

P roposition  3.6.1. Let Ks denote the algebra of all compact operators on the Hilbert 
space Vs. There is a split-exact sequence of C*-algebra maps

0 ---- - ® 's=11C,---- ► C(WP9(A:, 0 ) -----► c -----► 0. (3.25)

Proof. We use a method of proof similar to that of [42] [Proposition 1.2]. Write 
7r® for ©1=17rs. A basis for © u  ;1 Vs consists of eigenvectors ep of 7r0 (a) with distinct 
eigenvalues q 2(lP+s+ l )_ Since, for all s, g2(^+s+1) —>• 0 as p —> oo, 7r0 (a) is a compact 
operator. Similarly, matrix coefficients q lP+3+l  (l — q 2(lP+s ~r ) y ^ 2 0f 7rs(b) tend to 
0 as p tends to infinity, hence also 1r0 (6) is a compact operator; compare the proof of 
Proposition 3.5.1. This proves that the kernel of the projection of C(WPq(k,l)) on the 
identity component C contains only compact operators.

The spectrum of 7re (a) consists of distinct numbers

sp (7r0 (a)) =  {0} U {<?«*+* | 5 = 1, 2, . . .  Z, p  € N};

see the proof of Proposition 3.2.2. By functional calculus, for any s and p there are 
operators / P(S(7T0 (a)) in C(WFq(k,l)) with spectrum given by

f Pt8 : sp (7r0 (a)) -> C, 0 0, q2{ln+t} h* Ss>tSp>n.

Hence C(W¥q(k, I)) contains all orthogonal projections Pf to one-dimensional spaces 
spanned by the ep. More explicitly, these are obtained as limits:

-A- 7t (a) — 0 2(Zr+s)
n  A ^ a,ir ~ s r ~ p ; -  (3.26)

r = 0 ,  r ^ p

Next, noting that 7rs(b) and 7Ts(b*) are shift-by-one operators with non-zero coefficients 
all the remaining generators of JCS (and hence of ® ZS=1 JCS) can be obtained as products 
of the rescaled ns(b) and 7rs(b*). Finally, the first map in the sequence (3.25) is injective 
since all the tcs are faithful representations. □

The following corollaries are straightforward consequences of Proposition 3.6.1.

Corollary 3.6.2. The C*-algebra C(WFq(k , I)) is isomorphic to the direct sum ofl-copies 
of algebras of compact operators with the adjoined identity.
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Classically, in the unweighted case W P(1,1) becomes the 2-sphere S 2, and we know 
C*(S2) corresponds to the compact operators with unit adjoined: this is consistent with 
our findings. In the case I > 1 we have a repeated root at the point a with order I, 
and when we consider the algebra of continuous functions on WP(fc, Z), Corollary 3.6.2 
suggests each root corresponds to a copy of the compact operators. On the quantum level, 
Corollary 3.6.2 implies in particular that C(WFq(k, I)) ^  C(WFq(k, I')) if I ^  I' and that 
C(WPq(k,l)) = C(WPq(k',l)), for all k,k'. This is compatible with the interpretation 
of equations (3.3) as partially resolving singularities of the classical weighted projective 
lines. The persistence of the multiple root at a =  0 indicates the singularity at 0 (of the 
classical weighted projective line) is not resolved, hence on the topological level different 
values of k correspond to the same quantum manifold. The separating of roots at a =  1 
indicates the resolution of singularity (of multiplicity I) at 1; resolutions of singularities 
of different multiplicities might produce non-isomorphic manifolds.

C orollary 3.6.3. The K-groups of C(WFq(k, I)) are:

K 0 (C(WPq(k, I))) = Z/+1, K x (C(WP9(A;, I))) = 0.

Proof. This follows immediately from Proposition 3.6.1 by recalling that K q(K) = 
-Ko(Q =  Z and Ki(IC) =  Ki(C) = 0, where K is the C*-algebra of compact operators on 
a separable Hilbert space; see Examples 1.4.3, 1.4.5 and 1.4.7. □

The first of the Z in Ko (C(WFq(k , /))) corresponds to the rank of free modules, the 
remaining ones are generated by the classes of projections Pq ; see (3.21). The cyclic cycles 
rs constructed in Proposition 3.5.1 (see (3.21)) extend to cycles on C(WFq(k, I). Since, 
for any x that is not a multiple of identity, t s (x ) = Tr (7rs(:r)) we immediately conclude 
that t s(Pq) = 1, and the index pairing between the K-theory and cyclic homology of 
C(WPq(k,l) is given by

([r»]> [-Pq]} =  S.MP&) = s°,‘-
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| Chapter 4 

; Quantum  real projective spaces

In the previous chapter we took odd dimensional quantum spheres 0{S^n+l) and viewed 
them as (9(C/(l))-comodule algebras; by introducing weights to the coaction we described 
complex weighted projective spaces. We now consider a similar process over prolonged 
quantum spheres 0(T,^n+1). These spaces were studied in [10] and are constructed by 
taking the cotensor product of even dimensional quantum spheres 0(S^n), viewed as 
right (9(Z2)-comodules, with the algebra of Laurent polynomials <C[u, u*] viewed as left 
C?(Z2)-comodules. By introducing a suitable weighted 0 (U ( l))-coaction on 0(E^n+1) we 
are able to describe quantum weighted real projective spaces 0(MPq(lo} ln))-

4.1 W eighted circle actions on prolonged spheres
In this section we recall the definitions of algebras we are interested in.

4.1.1 The G (£^n+1) and 0 ( M F q(Iq, ln)) coordinate algebras

Recalling (see Definition 2.2.6 and the following remark), for q be a real number 0 < <7 < 
1, the coordinate algebra 0(Sgn) of the even-dimensional quantum sphere is the unital 
complex *-algebra with generators zq} z\, . . . ,  zn, subject to the following relations:

ZiZj =  qZjZi for i < j,  z{z* =  qz]z{ for i ^  j ,  (4.1a)

n n

Z i Z *  = Z *Zi  +  (q~2 -  1) ^ 2  Z™Zm, ^  ZmZm =  h  Zn =  Zn- (4.1b)
m = i + 1 m = 0

0(Sqn) is a Z2-graded algebra with deg(^) =  1 and so is C [u,u*] (with deg(w) =  1). 
In other words, 0(S^n) is a right CZ2-comodule algebra and C [u,u*] is a left CZ2- 
comodule algebra, hence one can consider the cotensor product algebra, see Definition 
2.3.4, 0(Eqn+1) := 0(Sqn) n CIi2C[u,u*]. It was shown in [10] that, as a unital *-algebra 
(9(£^n+1) has generators ..., Cn and a central unitary £ which are related in the following 
way.

CiCj =  QCjCi for i < h  CiCj = Q(j(i for i ^  h  (4.2a)

73
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n  n

c.c = ere* + (<r2 -  i) E  E  = !. c  = « •  (4.2b)
m =z+l m=0

For any choice of n  + 1 pairwise coprime numbers l0, ...,ln one can define the coaction
of the Hopf algebra 0(U(1)) = C[u, u*] on 0 ( E2n+1) as

p;o„ e » ( S f +1) ^  0 ( S f +1) ®C[u,«*], (4.3)

for i =  0, l,...,n . This coaction is then extended to the whole of Q(E2n+1) so that 
(9(E2n+1) is a right C[tf, ii*]-comodule algebra.

The algebra of coordinate functions on the quantum real weighted projective space is 
now defined as the subalgebra of 0 { E2n+1) containing all coinvariant elements, i.e.,

O ( R P , ( i 0 , . . . .  In)) =  + 1 ) ° ( C,<1»  : =  { x  €  0 ( E f + 1 ) : p lo , „ ( * )  =  *  ®  1 } .

4.1.2 The 2D quantum  real projective space 0(3lP„(A:, I ) ) c  0 ( E ^ ( k .  I)).

To gain a clear understanding of this space the n = 1 case is described in detail. Within 
this set-up k, I are coprime numbers, 0{T,3) is generated by Co, Ci and a central unitary £ 
such that

Cog =  <?CiC0, cocr =  <zcrc0, (4.4a)
C0C0'  =  Co*Co +  ( q -2 ~  l)Ci2e  CoCo* +  Ci2? = 1- Cl* =  Ci€- (4.4b)

The linear basis of 0{  T,3) is

{CoCte, C C t f k . a . e N ,  t e Z } .  (4.5)

On generators the coaction is given by

Co Co ® Uk, C i ^ C i ® ^  )U~2\  (4.6)

and extended to the whole of G(H3) so that the coaction is an algebra map. We denote 
this comodule algebra by Q(T,3(kJ)).

It turns out that the two-dimensional quantum real projective spaces split into two
cases depending not wholly on the parameter k} but instead whether k is either even or
odd, and hence only the cases k = 1 and k = 2 need be considered [12].

The odd case.

For k = 1, (9(RIP2(/; —)) is a polynomial *-algebra generated by a, 6, c_ which satisfy the 
relations:

a = a*, ab =  #-2Z6a, ac_ =  q~AlC-a, b2 = q3lac_, be- = q~2lC-b, (4.7a)

i-1 i
bb‘ = q2‘a Y [ ( l - g 2ma), b'b =  a J J (1  -  q~2ma), (4.7b)
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i i-i

b * ° - = q ~ i n ̂  ~  <?_2ma)6> ° - b * = j h  n ̂  ~q2ma)> (4-7c)
771=1 771=0

21 —\ 21
c .c l  =  J J  (1 -  q2ma) , clc_ =  (1 -  q~2ma). (4.7d)

771 =  0 771=1

The embedding of generators of 0 (R P 2 (Z; —)) into 0 ( E 3) or the isomorphism of (9(RP2 (Z; —)) 
with the coinvariants of 0(Y,3(k,l)) is provided by

a ^  Ci?) b •-> CoCi?) c-  ^  C??- (4-8)
There is a family of one-dimensional representations of 0 (R P 2 (Z; —)) labelled by 0 G 

[0 , 1 ) and given by

710(a) = 0, 710(6 ) =  0, 7tq(c-)  = e2™6. (4.9)

All other irreducible representations are infinite dimensional, labelled by r — 1 , . . . ,  Z, and 
given by

M o - K  = q2[ln+r)ern, M&K = <?'n+r I f  “  q 2« n + r - m ) f 2 ern_v  wr(b)er0 =  0.
771=1

(4.10a)
21

trr (c_)<  =  I I  (x -  g2 ( ,n + r _ m ) ) 1/2 < _ 2, 7rr (c_)e(j =  trr(c.)e\ =  0, (4.10b)
771=1

where e£, n G N, is an orthonormal basis for the representation space 7Zr =  Z2 (N).

The even case.

For k = 2 and Z odd, 0 (R P 2 (Z; +)) is a polynomial *-algebra generated by a, c+ which 
satisfy the relations:

a* =  a, ac+ =  q~2lc+a, (4.11a)
1-1 i

c+c+ =  jQ  (X ”  c+c+ =  I I  ”  q~2ma)• (4.11b)
771=0 771=1

The embedding of generators of (9(RP2 (Z; +)) into 0 ( E 3) or the isomorphism of (9(RP2 (Z; +)) 
with the coinvariants of 0 ( E 3(k, I)) is provided by

a ^  Cfr c+ i-)- (4.12)
There is a family of one-dimensional representations of 0 (R P 2 (Z; +)) labelled by 6 G 

[0 , 1 ) and given by
7Td(a) =  0, 7Te(c+) =  e2m9. (4-13)

All other irreducible representations are infinite dimensional, labelled by r =  1 , . . . ,  Z, and 
given by

,rr (a)<  = q2̂ e n, nr(c+)ern =  I J  (1 -  q2̂ - ^ ) 1' 2 «£_„ 7Tr (c+K  =  0, (4.14)
771=1

where e£, n G N is an orthonormal basis for the representation space PLr = Z2 (N).
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4.2 Quantum weighted real projective spaces and quan­
tum  principal bundles

Our next aim is to construct quantum principal bundles with base spaces given by 
(9(RPg(Z;±)) and fibre structures given by the circle Hopf algebra G(U(1)) =
The question arises which quantum space (i.e. a C[u, u*]-comodule algebra with coin­
variants isomorphic to 0(RP^(/;±))) we should consider as the total space within ;his 
construction. We look first at the coactions of C[w, u*] on 0(Y,q) that define 0(RPg(/c,Z)), 
i.e. at the comodule algebras G(T,q(kJ)).

4.2.1 The (non-)principality of 0(Y?q(k , l ) ) .

Theorem  4.2.1. Let A = 0{YAq{kA)) be the right H  = 0(U(  1)) comodule algebra vith 
coaction pk,i =  p. The subalgebra of coinvariant elements B = 0 ( W >q(ki I)) C 0 (E q(k, I)) 
is not a Hopf-Galois extension when (k,l) ^  (1,1).

Proof. We aim to show that the canonical map is not an isomorphism by shoving 
that the image does not contain 1 <8«, i.e. it cannot be surjective since we know l(8u is in 
the codomain. We begin by identifying a basis for the algebra 0(Y?q(k, I)) <8 (9(£g(/c,Z)); 
observing the relations (4.4a) and (4.4b) it is clear that a basis for 0(Ylq(k, I)) is giver by 
linear combinations of elements of the form,

noting that all powers are non-negative. Hence a basis for 0(YPq{k,l)) <8 0(T,q(kJ)) is 
given by linear combinations of elements of the form,

bi =  bi(pu p2 ,ps) = CoPlC P < f3, b2 = b2(pu p2,p3) = C o 'C fT

h  =  b3(qu q2, q3) = Co^CiT3, bA = bA(qu q2, q3) = Co*%92£

■Pl /-P2 C*PZ

bi®bj, where i , j  G {1,2,3,4}, (4.15)

applying the canonial map gives elements of the form,

can(bi 8  bj) =  bip(bj) =  bfij 8  ude9̂bj\  where i , j  € {1,2,3,4}. (416)

The next stage is to construct all possible elements in A <8 A which map to 1 8  u. To 
obtain the identity in the first leg we must use one of the following relations:

(4.17a)

f n p"Li (! -  9 2pCU) when m = n,
Co*nC  =  < Co*""" n ;= i (1 -  9~2pCi?) when n  >  m, 

lrip= i (1 -  9-2pCi£)Cm-n when n < m .

(4.17b)
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i
|

! or
« •  =  e*€ =  i

i
! We see that to obtain an element which has one term with the identity in the first leg we
I require the powers of Co and Co to be equal. We now construct all possible elements of
i  the domain which map to 1 ® u after applying the canonical map.
| Case 1: use the first relation to obtain CcTCo771 (m > 0); this can be done in fours ways;
{ using M M >  bip(bt ), b2p(b3) and M M -  Now,

M M  ~  ® U- fc« +i« - 2‘® =► p, = q, = m ,p2 =  q2 =  0,p3 =  ®s =  0,

; where we use ~  when the elements differ by a complex number. This implies

—kqi +  lq2 — 2lq3 — 1 ===> —mk = 1,

hence no possible terms. A similar calculation for the three other cases shows that 1 ® u 
cannot be obtained as an element of the image of the canonical map in this case.

Case 2 : use the second relation to obtain ConCo (n >  0)> this c a n  ^one *n ôur ways 
hp{bi), b3p(b2), b3p(b2) and b4p(b2). Now,

M M  ~  Co*%P1C P+ ,2 ' f 3+1,3 ®  nkk + 'w -s im  = *  P l =  qi =  „ iP2 =  g2 =  o ,p 3 =  93 =  o

and
nk = 1 => n = 1 and k =  1.

Note that k = 1 is not a problem provided I is not equal to 1. This is reviewed at the
next stage of the proof. The same conclusion is reached in all four cases.

In all possibilities Co” Co appears only when n = 1, in which case the relation simplifies 
to Co Co =  1 — <T2CiC, so the next stage involves constructing elements in the domain 
which map to CiC- There are eight possibilities altogether to be checked: b\p{b\ ), bip(b2), 
bip{b3), b3p(bi), b3p(b2), b3p(b3) and b3p{b4). The first case gives:

M M  ~  CoP ,Cx2p2€ 2ps <S) u fcpi+,p2- 2ip3 = »  2p i =  0, 2p2 =  2, 2p3 =  1,

and

| kpi +  lp2 — 2lp3 = 1 ==> Pi = 0,p2 = l ,p3 has no possible values and 1 = 1.

Hence l(gm cannot be obtained as an element in the image in this case. Similar calculations 
| for the remaining possibilities show that either 1 (g> u is not in the image of the canonical 
i  map, or that if 1 ® u is in the image then k = I = 1.

Case 3: finally, it seems possible that 1 (8> u, using the third relation, could be in the
image of the canonical map. All possible elements in the domain which could poten- 

• tially map to this element are constructed and investigated. There are eight possibilities:
| bi(p(b2), &i0(fr4), b2<p(b\ ), b2<f)(b3), b3<p(b2), &3<£(&4), M(&i) and b4(f)(b3). The first possibility

comes out as

m m  ~  c +pi<r+p2e 3e3 ® ==► P l = ?1 =  o, P 2 = P2 =  o, P 3 = ? 3 =  i.
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Also
k p i  +  l p 2 4- 2 l p 3 =  1 = >  21 =  1,

which implies there are no terms. The same conclusion can be reached for the remaining 
relations.

This concludes that 1 <S> u, which is contained in A 0  if, is not in the image of the 
canonical map, proving that this map is not surjective and ultimately not an isomorphism 
when k and I are both not simultaneously equal to 1, completing the proof that B  c  A 
is not a Hopf-Galois extension in this case. □

Theorem 4.2.1 tells us that if we use G(Eq(k, I)) as our total space, then we are forced 
to put ( k j )  = (1,1) to ensure that the required Hopf-Galois condition does not fail. A 
consequence of this would be the generators Co and (i would have grade 1. This suggests 
that the space 0 ( E q(k,l)) is too restrictive as there is no freedom with the weights k or 
Z, and that we should in fact consider a subalgebra of this space which would offer some 
choice. Theorem 4.2.1 indicates that the desired subalgebra should have generators with 
grades 1 to ensure the Hopf-Galois condition is satisfied. This process is similar to those 
followed in [5], where the bundles over the quantum teardrops WP9(1,Z) have the total 
spaces provided by the quantum lens spaces and structure groups provided by the circle 
group U{ 1). We follow a similar approach in the sense that we view 0 ( E q(k, I)) as a right 
i7-comodule algebra, where H  is the Hopf algebra of a suitable cyclic group.

4.2.2 The k  odd case —)).

The principal (9(C/(l))-comodule algebra over 0 (R ¥ q(l] —)).

Take the group Hopf *-algebra H = OifLi) which is generated by a unitary group-like 
element w and satisfies the relation wl =  1. The algebra 0 (E q) is a right 0(Z/)-comodule 
*-algebra with coaction

0(^q)  ® C(Zi), (O Co ® W ,  Cl ^  Cl ® 1, £ ^  ® I- (4-18)

Note that the Z;-degree of the generator £ is determined by the degree of Ci: The relation 
Ci* =  CiC and that the coaction must to compatible with all relations imply that deg(Ci) = 
deg(Ci) + deg(£). Since Ci has degree zero, £ must also have degree zero.

The next stage of the process is to find the coinvariant elements of 0 (E q) given the 
coaction defined above.

P roposition  4.2.2. The fixed point subalgebra of the above coaction is isomorphic to the 
algebra 0 ( E q(l; —)), generated by x, y and z subject to the following relations

i- i i
y * = y z , xy = qly x , xx* = f j ( l  -  q2py2z), x*x = JJ(1  -  q~2py2z), (4.19)

p= 0  p=  1

and z is a central unitary element The embedding of 0 ( E q(t, —)) into 0 (E q) is given by
x Co, V Ci and m £ .
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Proof. Clearly (i, f , Co and Co* are coinvariant elements of 0(Y?q). Apply the coaction 
to the basis (4.5) to obtain

esc;re* -> a c t e  ® <  ^  cere* ® « rr.

These elements are coinvariant, provided r =  r'l. Hence every coinvariant element is a 
polynomial in Ci5 Co an<̂  Co*- Relations (4.19) are now easily derived from (4.4) and
(4.17). □

The algebra 0 ( E q(l\ —)) is a right C?([/(l))-comodule with coaction defined as,

4>: A —> A 0  C(U(1)), x \ -> x® u ,  y * - t y ® u ,  z \ - ) z ® u ~ 2. (4.20)

The second and third relation in (4.19) tell us that the grade of 2  must be double the 
grade of y* since xx* and x*x have degree zero, and so

deg(y22 ) =  deg(y2)+deg(2 ) =  2 deg(y) +  deg(2 ) =  0 = >  deg(^) =  -2deg(y) =  2deg(y*).

The fixed points of the algebra 0(T,q(l] —)) under the coaction <f> is found by identi­
fying the basis elements of the algebra G(YPq(l\—)) and applying these to the coaction.
The image of the basis elements under this coaction will then provide the coinvariance 
condition.

P roposition  4.2.3. 0{YPq(l\ —)) is a right C(U(1))-comodule algebra with 0(T,q(l\ — ))coC?(Lr(1)) 
being isomorphic to i.e., the subalgebra of invariant elements under the
coaction 4> corresponds to the real weighted projective spaces (the negative case).

Proof. We aim to show that the *-subalgebra of 0 ( E q(l] —)) of elements which 
are invariant under the coaction is generated by x 2z , xyz and y2z. The isomorphism of 
0(T,q(l; —))coC?(|7(1)) with C?((RP9(Z; —)) is obtained by using the embedding of 0 ( E q(l', —)) 
in 0(T,q) described in Proposition 4.2.2, i.e. y2z i-> CiC ^  a > XVZ ^  CoCiC ^  b and 
x 2z i-)- Co*£ c_.

The algebra 0(Y?q{l\—)) is spanned by elements of the type xrysz t , x*ryszt , where 
r, s G N and t G Z. Applying the coaction </> to these basis elements gives xryszt i->- 

; xrysz t (g> ur+s~2t. Hence xryszt is (/(-invariant if and only if 2t = r +  s. If r  is even, then s 
is even and

j xryszl = xrysz ir+s)/2 =  (x2z)r/2{y2z)s/2.

If r is odd, then so is s and

xryszt = xrysz ('r+s^ 2 ~  {x2z)^r~l^ 2{y2z)^s~l^ 2{xyz).

The case of x*Tyszt is dealt with similarly, thus proving that all coinvariants of (f> are 
polynomials in x2z, xyz , y2z and their ^-conjugates. □

The main result of this section is contained in the following

T heorem  4.2.4. 0(TAq(l\ —)) is a non-cleft principal 0(U(I))-comodule algebra over 
0(MFq(l; —)) via the coaction </>.
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Proof. To prove that 0(YPq{l\ —)) is a principal (9(C/(l))-comodule algebra over 
RP9(Z;+)) we employ Proposition 2.4.15 and construct a strong connection form as 

follows.
Define w : C(U( 1)) -> £>(£*(/; - ) )  <8> 0 { Z 3q(l; - ) )  to be,

cj(1) = 1 $01 (4.21a)

u(un) =  x*u(un- 1)x -  (  1 )  y2m̂ 1zmw(un- 1)y (4.21b)
m = l  W r i

ui(u'n) =  XU;(irn+1)x* -  (  1 )  y2m~1zm- lw(u-n+1)yz, (4.21c)
m = l  \ m / , 2

where, for all s G R, the deformed or q-binomial coefficients are defined by the poly­
nomial equality given in 3.18 (indeterminate t). The map u  has been designed such that 
normalisation property (2.15a) is automatically satisfied. Considering property (2.15b), 
multiplying both legs on the right hand side of equation (4.21a) clearly gives 1. To check 
property (2.15b) from equations (4.21b) and (4.21c) take a bit more work. We use proof by 
induction, but first have to derive an identity to assist with the calculation. Set s = q~2, 
t =  —q~2y*y in (3.18) to arrive at,

£ ( _ l ) m 9 m ( m - l )  (  « ' j =  T T  ( 1  +  q-«m- » { - q - y V)) -  1 ,
m=1 Q~2 m=1

which simplifies to,

i
^ ( - l ) ”Y " (m+1)( /N) y'2mzm = T T ( l - ? - 2V ^ ) - l -  (4.22)
m = l  W  m = i

Now to start the induction process we consider the case n — 0; clearly (m o w)(l) = 
1 providing the basis. Next, we assume that the relation holds for n = N, that is 
(m o u j ) ( u n ) = 1, and consider the case n  = N  +  1.

u,(uN+1) = x*ui(uN)x -  ] T ( - l ) ’V m(m+1> (  1 )
771=1 V m /  1

y2m- 1zmu{uN)yi
I

applying the multiplication map to both sides and using the induction hypothesis,

(m o w)(uN+1) = x * x - y ^ ( - l ) mg-m(m+1)( M  y’2m- 1zm
771=1 9 ~ 2

= x*x — (x*x — 1) =  1,

showing property (2.15b) holds for all un G 0(U(  1)), where n G N. To show this property 
holds for each u*n we adopt the same strategy; this is omitted from the proof as it does 
not hold further insight, instead repetition of similar arguments.
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Property (2.15c); again we adopt a strategy of proof by induction. Applying (id 8  <f>) 
to (4.21a) then we obviously get (co 8  id) o A. Next applying u(u) to (4.21b) gives

.2m 1 zm Q y  (g) ux * ® x ® u  — ^ ^ ( —i)m<? m m̂ ^ ^  1 yr*
m = 1 '  9 2

=  y2m~1zm ® y ) ® u
\m /  a*m —l  x ' 9

=  ( j j ( u )  8  u —  (co (8> id) o A(u).

This shows that property (2.15c) holds for equation (4.21b) when n =  1. We now assume 
the property holds for n = N  — 1, hence (id ® </>) o w(uN_1) =  (u 8  id) o A(uN_1) =
^ (u ^ -1) 8  uN_1, and consider the case n =  N .

(id 8  0)(^(uN)) =  (id 8  4>)(x *u j ( u n ~ 1 ) x  — Y ^(—l)™#-77̂ 771-1) ^  ^ y2771-1,?771̂ ^ -1)?/)
m = l \ m Jq-*

=  x * ( ( id  0  0 ) (o ; (u Ar_1)a:)) — V ^ ( —l ) mg -7n 7̂71-1^  M  ?/2m -12:7n((zd  8  (f>)(u(u
m= i 9—2

= (8) tiN_1 — y ^ ( - l ) ^ - ^ - 1) f  y2m~1zmuj(uN~1)y 8  uN~l
m—1 V̂ V a~2m = 1 x ' 9

W\ o  ..W= u;(u ) 8 u  
=  (cj 8  id) o A(uN),

hence property (2.15c) is satisfied for all un G 0(U(  1)) where n € N. The case for u*71 is 
proved in a similar manner, as is property (2.15d). Again, the details are omitted as the 
process is identical. This completes the proof that u  is a strong connection form, hence 
0(Eq(l, —)) is a principal comodule algebra.

To determine whether the constructed comodule algebra is cleft we need to identify 
invertible elements in 0 ( ^ ( 1 , —)). We observe,

<?(£*(/, - ) )  C O(EJ) = O(S2q)0o m O(U(l)) C O(Sq) ® 0(U( 1)).

Since only the non-zero scalar multiples of 1 are invertible elements of the quantum 
sphere, an invertible element of 0(Sq) 8  G(U(\)) must be of the form 1 8  v, where v is an 
invertible element of 0(U(  1)). On the other hand only the non-zero multiples of un are 
invertible in 0(U(  1)). Hence the only invertible elements in the algebraic tensor product 
O(Sq) 8  0(U(  1)) are scalar multiples of 1 8  un for n € N. Now we can conclude that 
the only invertible elements in 0(Sq)U\o{i2)0(U(  1)) are the elements of the form 1 8  un. 
These elements correspond to the elements £n in 0(E^),  which in turn correspond to zn 
in 0(Eg(l, —)).

Suppose j  : H A  is the cleaving map; to ensure the map is convolution invertible 
we are forced to put u zn, since the only invertible elements in A are powers of z. Since 
u has degree 1 in H = G(U(l)) and z has degree —2 in 0 ( ^ ( 1 ,  —)), the map j  fails to
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preserve the degrees hence it is not colinear. Hence 0 ( E q(l, —)) is a non-cleft principal 
comodule algebra. □

Almost freeness of the coaction qij.

At the classical limit, q —> 1, the algebras (9(MPg(/; —)) represent singular manifolds or 
or bifolds. It is known that every orbifold can be obtained as a quotient of a manifold by 
an almost free action. The latter means that the action has finite (rather than trivial as in 
the free case) stabiliser groups. In the algebraic level freeness is encoded in the bijectivity 
of the canonical map can, or, more precisely, in the surjectivity of the lifted canonical 
maps can (2.16). The surjectivity of can means the triviality of the cokernel of can, thus 
the size of the cokernel of can can be treated as a measure of the size of the stabiliser 
groups. This leads to the following notion proposed in [5]

Definition 4.2.5. Let H  be a Hopf algebra and let A be a right i7-comodule algebra 
with coaction gA : A —» A 8  H. We say that the coaction is almost free if the cokernel of 
the (lifted) canonical map

can : A (8> A —» A 8  a <8 a' h-> agA(a'),

is finitely generated as a left A-module.

Although the coaction (p defined in the preceding section is free, at the classical limit 
q —> 1, 0 ( E q(l, —)) represents a singular manifold or an orbifold. On the other hand, 
at the same limit, 0(JPq) corresponds to a genuine manifold, one of the Seifert three- 
dimensional non-orientable manifolds; see [41]. It is therefore natural to ask, whether the 
coaction gij of 0(U(  1)) on 0(T,q) which has 0(MFq(l\ —)) as fixed points is almost free 
in the sense of Definition 4.2.5.

Proposition 4.2.6. The coaction g\^ is almost free.

Proof. Denote by t -  : C?(Eg(Z, —)) c—>■ O(E^), the *-algebra embedding described in 
Proposition 4.2.2. One easily checks that the following diagram

0 ( E J ( Z ,  - ) ) ------------- -- ------ -- -- -- -- -- -  0 (  S J )

61,1

0(£*(J, - ) )  <8> 0(U(  1)) > 0(E») <8 0(17(1)),

where (—)l : u —> ul is commutative. The principality or freeness of (p proven in Theo­
rem 4.2.4 implies that 1 8  uml € Im(can), m  G Z, where can is the (lifted) canonical map 
corresponding to coaction £1 .̂ This means that 0(Y?q) 8 C [u\u~l] C Im(can). Therefore, 
there is a short exact sequence of left (9(Ejj)-modules

( 0 (Ej) 8  C[u, u~1})/ (0{Y?q) 8  C[al, u~1])---- ► coker(can) ^ 0.

The left (9(EjJ)-module (0(E®)) 8  C[u, u~l])/(0(YPq) 8  C[ul,u~1]) is finitely generated, 
hence so is coker(can). □
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!

j Associated modules or sections of line bundles.
i
| One can construct modules associated to the principal comodule algebra 0 ( E 3(l, —))
I following the procedure outlined at the end of Section 2.3; see Definition 2.3.6.

Every one-dimensional comodule of 0{U(  1)) =  C[u, u*] is determined by the grading 
I of the basis element of C, say 1. More precisely, for any integer n, C is a left 0(U(1))-
| comodule with the coaction

I Qn '. C —> C[u, U*] (8) C, 1 l-» un 8  1.
I

Identifying <D(E3(l, —)) 8  C with 0 ( E 3(l, - ) )  we thus obtain, for each coaction gn 

| r[n] := 0(Ej(t, - ) ) n 0(I/U))C a  { /  € E*(J, - )  | 4>{f) =  /  ® «"} C 0{T.%  - ) ) .

In other words, T[n] consists of all elements of 0{T?q(l, —)) of Z-degree n. In particular 
r[0] = 0(R Pg(Z; —)). Each of the V[n] is a finitely generated projective left C?(RP9(Z; —))- 
module, i.e. it represents the module of sections of the non-commutative line bundle over 
RP9(Z; —). The idempotent matrix E[n\ defining r[n] can be computed explicitly from a 
strong connection form lo (see equations (4.21)) in the proof of Theorem 4.2.4) following 
the procedure described in [11]. Write uj(un) = Y l iu;(uTl)^ i  ® oj{un)̂ 2\.  Then

£[n]y =  u{un)W M un)Wj e 0(RP,(i; - ) ) .  (4.23)

For example, for I =  2 and n =  1, using (4.21b) and (4.21a) as well as redistributing 
numerical coefficients we obtain

/ ( I  — a)(l — q2a) +  q~2 b iq~3ba \
iT[l] = I q~l y / \  +  q~2 b* q~2{l +  q~2) a  iq~4\ / l  + q~2 a2 J (4.24)

\  iq~3b* iq~A\J  1 +  q~2 a —q~6a2 J

Although the matrix E[ 1] is not hermitian, the left-hand upper 2 x 2  block is hermitian. 
On the other hand, once d(R Pg(2; —)) is completed to the C*-algebra C(RPg(2;—)) of 
continuous functions on RPg(2; —) (and then identified with the suitable pullback of two 

! algebras of continuous functions over the quantum real projective space; see [12]), then 
a hermitian projector can be produced out of E[ 1] by using the Kaplansky formula; see 
[20, page 88].

The traces of tensor powers of each of the E[n] make up a cycle in the cyclic complex 
of G(RPq(l] —)), whose corresponding class in the cyclic homology HCm((D(MFq(l; —))) is 
known as the Chern character of r[n]. Again, as an illustration we compute the trace of 
E[ 1] for general I.

Lemma 4.2.7. The zero-component of the Chern character of T[l] is the class of

TV £[1] =  1 +  (1 -  g- 2ml) (  1 )  a™. (4.25)
j 771=1 '  '  Q2
\
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Proof. Setting 5 —> s and comparing two sides of the formula (3.18) we obtain:

1 ^ =  P  \  ( 4  2gj
m )s~ ■ W .

Compute

IV £[1] =  X X *  -  (  1 )

m=l ' ' 9-2

P [  (1 -  q2ma) -  ^ ( _ l ) " > g2”>(™-0-m(m+l) f  1 \  ar
m=0 m=1

m=l \ m/  g2

1 +  (1 -  q~2ml) f  1)  am,
m=l \^Vg2

where the first equality follows by (4.21b) and (4.21a), the second by (4.19) and (4.26) 
combined with the identification of a as y2z ) while the third equality is a consequence of
(3.18). □

4.2.3 The k  even case 0(MP9(Z;+)).
The principal C?(C/(l))-comodule algebra over G(MF2(l',+)).

In the same light as the negative case we aim to construct quantum principal bundles 
with base spaces 0(MFq(l\ +)), and proceed by viewing 0 ( E q) as a right //'-comodule 
algebra, where H ' is a Hopf-algebra of functions on a finite cyclic group. The aim is to 
construct the total space 0 ( E q(l, +)) of the bundle over 0(MFq(l; +)) as the coinvariant 
subalgebra of G(Eq). 0 ( E q(l,+)) must contain generators £*£ and £q£ of 0(]RP9(Z; +)). 
Suppose H ' = G(Zm) and : 0 ( E q) -» 0 ( E q) <g> H' is a coaction. We require $  to be 
compatible with the algebraic relations and to give zero Zm-degree to £1 ? and £q£. These 
requirements yield

2deg(£i) +  deg(£) =  0 mod m, Ideg(£0) + deg(£) =  0 mod m.

Bearing in mind that I is odd, the simplest solution to these requirements is provided by 
m = 21, deg(£) =  0, deg(£0) = 2, deg(£i) = I. This yields the coaction

$  : 0 ( E q) 0 ( E q) <g> (9(Z2z), £0 *->■ Co <8> v 2, £1 £1 ® v l, £ *->■ £ <S> 1,

where v, v21 = 1 is the unitary generator of 0 ( Z 2i). $  is extended to the whole of 0 (E q) 
so that $  is an algebra map, making 0 (E q) a right (9(Z2z)-comodule algebra.
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Proposition  4.2.8. The fixed point subalgebra of the coaction is isomorphic to the 
*-algebra 0(T,q(l, +)) generated by x',y' an central unitary z' subject to the following 
relations:

I t  21 I I I I *  21 /* l I I *  4 /*  / t* 1 / 2  ( a \x y  = q  y x  , x y  = q  y x , y y  = q  y y , y = y  z , (4.27a)

i - 1  i

x'x'* = JJ (1  -  q2py'z '), x'*x' =  JJ (1  -  q~2py'z'). (4.27b)
p=0 p=  1

T/ie isomorphism between 0 ( E q(l,+)) and the coinvariant subalgebra of G(T,q) is given 
by x’ Co; v' ^  Ci and z' »-> £.

Proof. Clearly Ci 5 £> Co and Co* are coinvariant elements of 0 ( E q). Apply the coaction 
4> to the basis (4.5) to obtain

s c t f  ^  ® v2r+“, c e r e '  -*• Corc1se‘ ® t'-2r+'s-
These elements are coinvariant, provided 2r + ls = 2ml in the first case or —2r + ls = 2ml 
in the second. Since I is odd, s must be even and then r = r'l, hence the invariant 
elements must be of the form

(c^)r'(Ci2)s/2e‘, (c0*i)r,(c12)s/2f f
as required. Relations (4.27) are now easily derived from (4.4) and (4.17).we seek the 
fixed points with respect to the coaction 4>. □

The algebra G(Eq(l, +)) is a right 0(C/(l))-comodule with coaction defined as,

Q : 0(Ej(Z, +)) -> 0 ( E 3q{l, +)) ® 0(17(1)), of ^  x' ® u, y' ^  y '® u, z' >-> z' <8> tT 1.
(4.28)

The first three relations (4.27a) bear no information on the possible gradings of the 
generators of G(T,q( f  +)), however the final relation of (4.27a) tells us that the grade of 
y'* must have the same grade of z' since,

deg (y**) =  -  deg(y') =  deg(y') +  2deg(^'),

hence,
2 deg(</*) =  2deg(z') or deg(y'*) =  deg(z')-

This is consistent with relations (4.27b) since the left hand sides, x'x'* and x'*x', have 
degree zero, as does the right hand sides since,

deg(y'z') = deg (y') +  deg (y'*) = deg (y') + ( -  deg(y')) =  0. (4.29)

The coaction Ll in 4.28 is defined by giving x' and y' grade 1, and setting the grade of z’ 
as —1 to ensure it’s compatible with the relations of the algebra 0 ( E q(l, +)).

P roposition  4.2.9. The right 0 ( U (1))-comodule algebra G(T,q(l,+)) has G(MFq(l] +)) 
as its subalgebra of coinvariant elements under the coaction UL.
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Proof. The fixed points of the algebra G(Eq(l,+)) under the coaction Ll are found 
using the same method as in the odd k case. A basis for the algebra 0 (E q(l, +)) is given
by xlry'sz't i x '^y^z '1, where r, s G N and f G Z. Since the conjugate of the third and
fourth type of basis element is proportional to either the first or second type, the analysis 
can be focused on first and second type of basis elements.

Applying the coaction Ll to these basis elements gives,

z 'V V * x,ry V * ® ua+b~c.

Hence the invariance of x'ry'szH is equivalent to t = r +  s. Simple substitution and 
re-arranging gives,

x,ry,szn =  x fry/sz'T+s = (x' z')T {y' z ')s.
Hence providing generators x'z' and y'z'. Repeating the process for the second type of 
basis element gives the ^-conjugates of x'z' and y'z'. Using Proposition 4.2.8 we can see 
that a =  =  y'z' and c+ =  Co£ =  x'z ' . □

In contrast to the odd k case, although 0 ( E q(l, +)) is a principal comodule algebra it
yields trivial principal bundle over G(MFq(l; +)).

Proposition 4.2.10. The right G(U(1))-comodule algebra (9(£g(/,+)) is cleft.

Proof. The cleaving map is given by,

j : 0 ( t f ( l ) ) - > O ( E ; ( J , + ) ) ,  j(u) = z',

which is an algebra map since z*' is a central unitary in +)), hence must be
convolution invertible. Also, j  is a right (9(t/(l))-comodule map since,

(Ll o j)(u) =  Q(z*') = z*' = j(u) ® u = ( j ®  id) o A (u),

completing the proof. □
Whether a different nontrivial principal (9(U(l))-comodule algebra over (9(MPg(/; +)) 

can be constructed or whether such a possibility is ruled out by deeper geometric reasons 
remains to be seen.

Almost freeness of the coaction

As was the case for 0(Y.q(l, —)), the principality of 0{Eq(l, +)) can be used to determine 
that the 0([/(l))-coaction g2)i on 0(T,q) that defines 0(EPg(/; +)) is almost free.

Proposition 4.2.11. The coaction q2,i is almost free.

Proof. Denote by i+ : 0 ( E q(l, +)) *-> 0(Y,q), the *-algebra embedding described in 
Proposition 4.2.8. One easily checks that the following diagram

0 ( E » ( / ,  + ) ) ----- - - - - - - - - - - -    0 ( E » )

Q2,l

0 ( E » ( i ,  + ) )  ®  0 ( 1 7 ( 1 ) )  > 0 ( E » )  ®  0(U(  1)),
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where (—)21 : u —> u21 is commutative. By the arguments analogous to those in the proof of 
Proposition 4.2.6 one concludes that there is a short exact sequence of left (9(X!g)-modules

(0 (E q) 8 C[it, u~1})/ {0(Y?q) 8 C [u21, u~21})-----► coker(can) ► 0,

where can is the lifted canonical map corresponding to coaction £2,z- The left 0 ( E q)~ 
module (0 (E q)) 8  C[u, u~1}) /  iO(JPq) 8  C [u2l,u~21]) is finitely generated, hence so is 
coker(can). □

4.3 Quantum real projective spaces as Generalised 
W eyl algebras

In this section we consider quantum real projective spaces from the point of view of 
generalised Weyl algebras (see Definition 3.4.1).

Proposition 4.3.1. The algebra of coordinate functions C?(RPj(/;+ )) is a degree one 
generalised Weyl algebra.

Proof. Set V  = C[a]. In this case X + = c+, X ~  = c \  and automorphism a of V  and 
the defining element a are

i
a (a) =  q2la, a = (1 — q~2ma).

771=1

Now
i i

a (a) = (1 — q~2m+2la) ==> a (a) =  JTJ (1 — q2m'a) = bb* = X +X ~ ,
m = l  m ' = 1

by making the substitution m! =  I — m. The remaining relations can be verified in a 
similar way. □

0(MF2(l; —)) does not appear to be a generalised Weyl algebra. However, 0{Y?q(l\ —)) 
the total space of the quantum principal bundle is a generalised Weyl algebra, as is
0(E2(i;+)).

Proposition 4.3.2. The algebras of coordinate functions 0 ( E q(l]±)) are degree one gen­
eralised Weyl algebras.

Proof. Consider OiJPq{l\ —)). Set V  =  C[y,z]. In this case X + =  x*, X ~  = x  and 
automorphism a of V  and the defining element a are

/ - i

v{y) = Q~la, cr{z) = z, a = J J (1  -  q2py2z).
p= o
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Now

i- 1 /-i
a® = IK* ~~ q2p~2l,y 2 z ) =» = n^1 “ Q~2p'y2 z ) =  x *x =

p = 0  p '= 0

by making the substitution p' =  I — p. The remaining relations can be verified in a 
similar way. Similarly for the case 0(Y?q{l\ +)) by defining the ground ring V  = C[y' ,z'\, 
X + — x X -  =  xf, defining automorphisms cr(yf) = q~2ly' and cr(y') = q~2ly' and defining 
element a =  [Ip lU 1 “  Q2py'z')- 1=1

4.4 Algebras of continuous functions on real weighted 
projective spaces and their if-theory

The C*-algebras C(RPg(/; ±)) of continuous functions on the quantum real weighted pro­
jective spaces are defined as the completions of ®J.=17rr ((9(RPg(/; ±))), for representations 
7rr given in equations 4.10a, 4.10b and 4.14.

These spaces (plus their X-groups) were calculated in [12] and turn out to be

C(RFq(l\ +)) =  T  ©<7 T  © a ... ©a T  (I copies),

where T  is the Toeplitz algebra generated by unilateral shift operator U (see Example 
1.3.5) and a : T  —> C(S1) the symbol map cr(U) = u , where u is the unitary generator of 
C iS 1). And

C(M y /;  - ) )  ^  C(MP^) ©* C(RPj) ©* ... ©* C(RF2q) (/ copies),

where C(RPg) is defined in [26] (Theorem 4.8) and can be identified with the C*-algebra 
generated by the shift-by-two operator V. The map cr : C(RP^) —> C(S1) is given by 
V ^ u .

Finally, the X-groups come out as

K0(C(WPg(l; +))) “  Z1, Ki(C(MP9(/; +))) “  0,

and
A-0(C(RP,(/; - ) ) )  “  Z2 © Z', ^ (C C R P,^; - ) ) )  “  0.



Chapter 5 

Quantum  Heegaard spaces

Quantum Heegaard spaces may be considered as a complement to quantum teardrops in 
so much as, on the operator algebraic level, they include the generic Podles two-spheres 
[37] for parameter s ^  0 in Proposition 2.2.7. On the algebraic level, however, they are 
defined through integer gradings on an algebra significantly different from that of the 
coordinate algebra of the quantum SU(2)-group.

The coordinate algebra of the Heegaard quantum 3-sphere 0(S*qe) [14], [1] is defined 
for parametres 0 < p,q,0 < 1, for 0 irrational when non-zero, as the complex *-algebra 
generated by a and b satisfying the relations,

ab = e2nieba, ab* =  e~2m6b*a, (5.1a)

a*a — paa* =  1 — p, b*b — qbb* =  1 — q, (1 — aa*)( 1 — bb*) — 0. (5.1b)

(D (SpqQ) contains two copies of the quantum disc with parametres p and q as *-subalgebras 
and can be interpreted as obtained by glueing of two quantum solid tori [1]. To describe 
the algebraic structure of 0(Spqd) it is convenient to define (self-adjoint) A  := 1 — aa*, 
B  := 1 — bb*. In terms of these elements the relations (5.1b) can be recast as:

A B  = BA  =  0, Aa =  paA, Ba =  aB , Ab = bA, Bb = qbB. (5.2)

A linear basis for 0(Spq9) consists of all Akalbm, A ka*lbm, B kalbm, B ka*lbm and their 
*-conjugates, where k , l ,m  G N; see [1].

Standardly, 0(Spqd) is considered as a Z-graded algebra (compatible with the *- 
structure in the sense that the *-operation changes the grade to its negative) in two 
different ways. First a and b are given an equal grade, say, 1. The degree zero subalgebra 
is generated by polynomials A , B  and ab* and is known as a coordinate algebra of the 
mirror quantum sphere [25]. Second, a and b are given opposite grades, say 1 for a and — 1 
for b. The degree zero subalgebra, generated by A, B  and ab, was introduced in [15], where 
it was shown that its C*-completion is isomorphic to the algebra of continuous functions 
on the generic (or non-standard) Podles quantum sphere; Proposition 2.2.7, s ^  0.

We prefer to interpret Z-gradings geometrically as algebraic coactions of the coordinate 
Hopf algebra 0(U(  1)) of the circle group. 0(U(  1)) can be identified with the *-algebra

89
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C[u,u*] of polynomials in variables u and u* satisying uu* = u*u = 1. The Hopf algebra 
structure is given by

A (w)=u<g)w, e(u) = 1, S(u) = u*.

The two Z-gradings described above correspond to coactions a i-> a® u,  b 6 <g) a, and 
a a (8> u, 6 >-» 6 (g) a*, respectively. It has been shown in [26], [28] that these coactions 
are principal, i.e. they make 0{S* 9) into a principal (9(£/(l))-comodule algebra [11].

5.1 The coordinate algebras of quantum weighted Hee­
gaard spheres

In this section we gather algebraic properties of quantum weighted Heegaard spheres.

5.1.1 The definition of quantum weighted Heegaard spheres
A weighted circle coaction on 0{Spq9) consistent with the algebraic relations (5.1a) and 
(5.16) is defined for k, I coprime integers, by

4 ,i : 0 (S % ) -> 0(5,%) <g> 0{U{ 1)),

ai-*a<g>ufc, 6^6<8>uz, (5.3)
and extended to the whole of 0(Spq9) so that 0(Spq9) is a right (9(£/(l))-comodule al­
gebra. The fixed point subalgebras of 0(Spqd) with respect to coactions 4>k,i are called 
the coordinate algebras of quantum weighted Heegaard spheres. Equipping O(Spq0) with 
coaction (f>kti is equivalent to making it into a Z-graded algebra with grading determined 
by deg(a) =  k , deg(6) =  I. At this stage we need to consider the possible signs for weights 
k and I. It turns out that the fixed point subalgebra splits into two cases depending on 
the signs of the weights k and I. Each case can be described by firstly putting k > 0 and 
I > 0 and secondly k > 0 and I < 0. We write these spaces as,

0 ( S 2pg(k, /*)) := 0(5% )coO<c;(1)) =  {X € 0(5% ) : *w (x) =  * ® 1},

where the -1- sign indicates positive values for I and the negative sign corresponds to 
negative values of I. Before we describe these algebras in detail, we first need some tools 
for calculation purposes. The following lemma can be proven by induction.

Lem m a 5.1.1. For all m, n e  N,

l n - " n n ” m i" - ™ 1’ * < ’  « * >~ P AW  , m <n.

™ ™ =  ~P~i+1A), m >  n
\ n r = 1(1 - p - i+1A)a*"-’™, m < n ,  ^

and similarly with a replaced by b (and hence A by B) and p by q.
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With these at hand we can describe the coordinate algebras of quantum weighted 
Heegaard spheres by generators and relations.

T heorem  5.1.2. The algebra 0(Spq(k,l+)) is the subalgebra of G(Spqd) generated by 
A = 1 — aa*, B = 1 — bb* and C+ = alb*k satifying the relations

A* = A ,  B* = B , AB = BA  = 0, AC+ = plC+A , BC+ =  q~kC+B, (5.5)

I k  I k
^ n n U - ^ H W - ^ ) .  (5.6a)

2=1 j =  1 2=1 j  =  1

alternatively, since AB  =  0, we can express (5.6a) as

I k  I k
c;c+ = XJfi -  pM) + n a  - t f ~ hB )  - 1, c+c; = n (1 -  p ^ 1* )  + IF1 -  -  L

2=1 j  — 1 2=1 j  =  1
(5.6b)

0(Spq(k, /“ )) zs the subalgebra of 0(Spqd) generated by A = 1 — aa*, 5  =  1 — 66* and 
C-  = a*1̂ *^, satifying the relations

A* — A, B* = B, AB = BA  = 0, AC_ =  p*C_A, = q~kC-B,  (5.7)

1*1 f c  | * |  fc
n n a  - p M ) ( l - ^ S ) ,  (5.8a)

2=1 J =  1 2 =  1 j  =  l

alternatively, since AB  — 0, we can express (5.8a) as

1*1 k 1 * 1  k

c : c _ = j j ( i  -  pi+tA ) + n a  -  ~k B ) -  !> c - c - = n a  -  p *a ) + n a -  ^  l
2=1 j —1 2=1 j  — 1

(5.8b)

Proof. The first stage is to identify the fixed point subalgebra with respect to the 
given coaction. A basis for 0(Spqe) is given by Akatibu for k > 0, fi, v E Z and B kaflbl/ for 
k > 0, (i, v £ Z, where, for fi, v < 0, aM = a*^ and bu = 6*^ is a convenient notation; see 
[1]. First note that powers of A and B  are automatically fixed by the weighted coaction 
(j>kJL. Next,

0fc,z(ttM̂ )  =  ® ukfi+lu = a^bv ® 1 kfi +  Iv — 0 (the coinvariance condition).

This means that basis elements of the form a^bu are fixed under the coaction provided 
k/j, = —Iv, which in turn means that k\(—Iv). On the other hand k and I are coprime so
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in fact k\(—v) or ak = —v for some q g Z .  Substituting this back into the coinvariance 
condition gives kp, = l(ak), i.e. n = la and v =  — ka. So,

a W  = alab~ka = (al)a(b*k)a ~  (alb*k)a,

concluding that a!b*k is a generator from the set of coinvariant elements. This gives 
the full description of 0 ( S 2q(k,l+)) as the subalgebra of O(Spq0) generated by A, B  
and C+ = alb*k. Similarly, when I is negative 0 ( S 2q(k,l~)) is generated by A , B  and 
C-  =  a*~lb*k.

Next we determine the relations between the generators for both algebras 0 ( S 2q(k, /*)), 
considering the positive case first. Equations (5.2) immediately imply that A* = A, 
B* = B, AB  =  0, AC+ =  plC+A , and BC+ =  q~kC+B. By Lemma 5.1.1,

l k
C+C*+ = (alb*k)(bka*1) = (ala*l)(b*kbk) =  f j  J J (  1 -  p*-lA)( 1 -

i = l  j = l

and
Z A:

c;c+ = (a‘b'k) '(a ‘b*k) = (a’lal)(bkb'k) = -pM)(l -  q ^ B ) .
i=  1 j = 1

The relations for the negative case are proven by similar arguments. □

5.1.2 Representations of G{Spq{ k , l ± ))

Bounded irreducible ^-representations of coordinate algebras 0 ( S 2q(k, H) are derived and 
classified by standard methods applicable to all algebras of this kind; see for example the 
proofs of [26, Theorem 2.1] or [5, Proposition 2.2].

Proposition  5.1.3. Up to unitary equivalence, the following is the list of all bounded 
irreducible *-representations of 0 ( S 2q(k,l±)). For all m  G N, let 23m = l2(N) be a 
separable Hilbert space with orthonormal basis e™ for p £ N. For s =  0,1,..., |Z| — I, 
t =  0,...,& — 1, the representations 7r* : 0 ( S 2q( k J +)) —> End(23s), n2 : 0 ( S 2q(k, l+)) —* 
End (2J*) and n ^1 : 0 { S 2q{k,l~)) -> End(23s) and : 0 ( S 2pq(k,l~)) -> End (23*) are 
given by

i
■K?{A)e°n =  p’-W+X, < \ B ) e ‘n =  0, ttl(C+)e°n =  J ] ( l  -  Pi+n,+s)1/2C i>  (5.9a)

i= 1

i'i
7r71(C -)en =  I L 1 - P i+("‘ 1)|i|+8)1/2< - 1> (5.9b)

Z=1

(yt)< =  o, (B )<  =  qnk+te l  ^ ( C ±)e‘n =  f [ ( l  -  j ' +(B- ,)fc+*),/a< _ 1. (5.9c)
j - 1

Furthermore, there are one-dimensional representations in each case given by A, B  (->• 
0, C± A where A € C such that |A| =  1, which we denote by 7rJ.
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5.1.3 Quantum Heegaard spaces as generalised W eyl algebras
We now turn our attention to generalised Weyl algebras; see Definition 3.4.1, in relation 
to quantum Heegaard spaces.

P roposition  5.1.4. The algebras of coordinate functions 0(Spq(k,l±)) are degree one 
generalised Weyl algebras.

Proof. Set V  = C[A, B]/(AB, BA). In the positive case Q(Spq(k, l+)), X + = C+ 
and X~ = C+, the automorphism o+ of V  and the defining element a are

l k

<t+(A) =  p‘A, a+(B) = q-kB,  a ^ I l P - ^ K 1 - ^
t = l  j  =  1

In the negative case 0(S^q(k,l~)), X + = C_ and X~ = Cl,  the automorphism <j_ of 
V  and the defining element a are

1*1 k

<t-{A) = p~lA , <?-(B) = qkB, a =  n i D  - p i+iA){l - q j~kB).
i= 1 j = 1

That these satisfy all the axioms of a degree one generalised Weyl algebra can be checked 
by routine calculations. □

In Section 3.4 we have shown that the coordinate algebra 0(W F q(k,l)) of quantum 
weighted projective spaces is a degree one generalised Weyl algebra, and then used [3,
Theorem 1.6] to show the global dimension of 0(W P q(k, I)) is finite if k =  1 and is 
infinite otherwise. Unfortunately, the hypothesis of [3, Theorem 1.6] fails in the quantum 
Heegaard case since the basic ring V  contains zero divisors. On the other hand, one 
should not expect the global dimension of 0(Spq(k, /±)) to be finite: on the classical level 
the relation A B  = 0 implies that there is a singularity at the origin, which persists in the 
quantum case.

5.2 Quantum weighted Heegaard spheres and quan­
tum  principal bundles

We aim to construct (9(£/(l))-principal comodule algebras with coinvariant subalgebra 
0(Spq(k, /*)). These can be understood geometrically as coordinate algebras of principal 
circle bundles over the quantum weighted Heegaard sphere. We follow the general strategy 
(employed previously in [5] and [6]) of defining a cyclic group algebra coaction on 0(Spqd) 
where the space of coinvariant elements with respect to this coaction forms the total space.

5.2.1 Circle bundles over G(Spq( k , l +)) J

Since the fixed point algebra of (0(Spqe), <f>k,i), for positive I, is generated by C+ =  alb*k,
A  and B, we need to define a comodule structure on 0(Spqe) over the cyclic group algebra



94 CHAPTER 5. QUANTUM HEEGAARD SPACES

0 ( Z m) that keeps these generators in the invariant part. In terms of the Zm-grading this 
means

deg(a*6*fc) =  I deg(a) — k deg(b) = 0 mod m.
This equation is satisfied by setting deg(a) = k , deg(b) = I and m  = kl. The grading is 
equivalent to a coaction Ak,i : 0{S^qQ) —> O(Spq0)®O(Zki) given by a a®uk, b h* b®ult 
which is extended in the usual way to make an algebra map and hence (O(SpQ0), Akj) 
a comodule algebra. The fixed point subalgebra is generated by x = a1 ,y = bk, z = A,w = 
B. This can be seen by taking a basis element and applying A* :̂ Axa^bu is coinvariant if 
and only if kp +  Iv = 0 mod kl, hence n = l(j) and v =  kS, for some (f>,6 E Z. This means 
that Axatxbv = Ax(al)^(bk)5 so a1, bk and A are generators. By considering the other basis 
element the final generator B  is identified. The resulting algebra Ak,i = ^(Spqg)co0(iZkl̂  is 
the quotient of C[w,x,y, z] by the relations

xy =  e2nieklyx, x*y = e~2ni0klyx*, (5.10a)
/ I k  k

xx* = Y [ ( i ~ p i~1z),  x*x = Y [ ( 1~ p l z ) ’ y y * = II 1̂ - (f ~ kw)' =
i = l  i = l  i = l  t = 1

(5.10b)
z* = z, w* = w, wz = zw — 0 , xw = wx, yz = zy , yw = q~kwy , xz  =  p~lzx.

(5.10c)
The circle group algebra coacts on Ak,i by

P k , i - A k , i A k , i ® 0 ( U (  1)), w y - > w ® l ,  x ^ x < S ) u ,  y ^ * y ® u ,  z * - > z ® l ,

making (Ak,u Pk,i) & 0(t/(l))-comodule algebra. The fixed points of this comodule algebra
are generated by a = w, (3 =  z, 7  =  xy*, and thus are isomorphic to 0 ( S 2q(k,l+)) via
the map a »->■ B, {3 A, 7  C+.

T heorem  5.2.1. (Ak,i,Pk,i) is a principal 0(U(1))~comodule algebra over 0 ( S 2q(k,l+)).

Proof. To prove principality we construct a strong connection for Ak,i\ see Proposition 
2.4.15. A strong connection is defined by setting cj(I) =  1 ® 1 and then recursively for 
n e  N,

uj(un) = x*uj{un~l )x +  f(z)y*u(un~1)y, (5.11a)
cu(u~n) = xu(u~n+1)x* + f{p - lz)yu)(u-n+1)y*, (5.11b)

where }{z) =  1 -  n != i(l — p%z). That this defined u  satisfies the conditions of a strong 
connection is proven by induction.

Condition (2.15b): Note that, since y*y is a polynomial in w with constant term 1, 
zw = 0 and f (z)  has the zero constant term, f(z)y*y = f(z).  Hence, in the case n = 1,

i
(p o u)(u) = x*x +  f(z)y*y = x*x +  1 -  J J (1 -  p*z) — 1 ,

i= l

by (5.10b). Now assume that (p ou;)(i4n) = 1 and consider

(p o w)(un+1) =  x*(p o w(un))x +  f(z)y*(p o u(un))y =  x*x +  f{z)y*y =  1,
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where the second equality is the inductive assumption. The proof for negative powers of 
u is essentially the same, so the details are omitted.

Condition (2.15c): Consider u  for positive powers of u ; putting n — 1 gives,

((id 8  pkti) o u)(u) = (id 8  Pk,i)(x* +  f{z)y* 8  y)
= x* 8  x 8  u +  f(z)y* 8  y 8  u =  cj(w) 8  w.

This is the basis for the inductive proof. Now assume that

((id 8  pkti) o cj)(un) = ((cj 8  id) o A)(un) =  cj(un) 8  un,

and consider
((id ® pkj) o u)(un+1) = (id 8  pkti)(x*u(un)x +  f(z)y*u{un)y)

= x*uj(un)x 8  Un+1 +  f(z)y*u(un)y 8  un+1 = cu(un+1) 8  un+1,

where the second equality follows from the induction hypothesis and pkt\ being an algebra 
map. The proof for u  taking negative powers of u follows a similar argument.

Condition (2.15d): As in the previous conditions, the proofs for positive and negative 
powers of u are similar, hence only the positive case is displayed. Note that here we need 
to show that

((w 8  id) o (pk>l 8  id) o cj)(un) = ((S 8w ) o A)(un) = u~n 8  w{un), (5.12)

for all n. The case n =  1 follows by the same argument as in the preceding proof. Assume 
that equation (5.12) is true for an n e N, and consider

((w 8  id) o (pk>i 8  id) o u)(un+1) = ({w 8  id) o (pktl 8  id)){x*u{uN)x +  f(z)y*u(un)y)
= u~n~l 8  x*Lu(un)x +  u~n~l 8  f(z)y*uj(un)y = u~^n+1̂  8  u(un+1),

where the second equality follows from the induction hypothesis and pkj being an algebra 
map. This completes the proof of (2.15d) for positive powers of u.

Since (Akfi,pkti) is a comodule algebra admitting a strong connection it is principal; 
see [19], [11].’□

Proposition  5.2.2. The principal 0(U(1))~comodule algebra A k,i is not cleft.
Proof. Since A k)i C 0(Spq9) and, by [23, Theorem 1.10], the only invertible elements 

in 0(Spqd) are multiples of 1, the only invertible elements in A k)i are also the multiples of 
1. The convolution invertible map j  : 0(U(  1)) —> A k)i must take the form j(u) = a l  for 
some a  G C*. However this violates the right (9([/(l))-colinearity of j .  □

5.2.2 Circle bundles over 0 ( S p q( k , l ~))

Following the process in the case I positive, a suitable coaction $ kj : O(Spq0) —> 0(Spqd) 8  
0(Zfc|j|) is arrived at as given by a a 8  uk, b b 8  ul. The fixed point subalgebra is 
generated by x = a^ ,y  = bk, z — A,w = B. This coincides with the algebra A k)~i, hence 
positive and negative values of I give rise to the same total space of the quantum principal 
bundle. The principal coaction of 0(U(  1)) on A k -i that fixes G(Spq(k, l~)) is defined by 
I 4 x 8 « , 2 / 4 j / 8 « * , 2 4 z 8 l  and w 4 « ) 8 l .
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5.3 Fredholm modules and the Chern-Connes pairing 
for 0(S* (M *))

In this section first we associate even Fredholm modules to the algebras 0{S^qe) and use 
them to construct traces or cyclic cycles on O{S^q0). The latter are then used to calculate 
the Chern number of a non-commutative line bundle associated to the quantum principal 
bundle Ak,\i\ over the quantum weighted Heegaard spaces 0{Spq(k,l±)).

5.3.1 Fredholm modules
Representations for Fredholm modules are constructed from irreducible representations 
of 0{Spq(k,l±)) listed in Proposition 5.1.3. In the positive I case we take a cue from 
[25] and, for every s =  0 , 1 , 2 , — 1, £ =  0,1,2, . ..  ,k  — 1, consider the representation 
7Tg)t obtained as a direct sum of representations n] and 7if. The Hilbert space of this 
representation is denoted by %3Syt and we choose its orthonormal basis m E Z as 
follows. For m  positive the correspond to the basis elements esm of the representation 
space of 7rJ, and for negative m, the correspond to the e^ m _ 1 of the Hilbert space of 
7if. In addition to 7rS)t we also consider the integral of one-dimensional representations, 
7rc =  f XeSi 7rJdA. The representation space of 7rc can be identified with so that

tre(A) = nc(B) =  0, ttd C W X  =  ttc( C 7 ) /^  = /^ _ M, (5.13)

for all m £ Z, /x E N.

Proposition  5.3.1. For all s = 0 ,1 ,2 , . . . ,  |/| - 1, t =  0 ,1 ,2 , . . . ,  k — I, (2Tajt©9Js>t, 7fa,t := 
ns,t © TTc, F ,7 ), where

is a 1-summable Fredholm module over G(Spq(k,l+)), while (9JS 0  9^ , 7f“t := 71-7 1 0  

7r f 2 ,F, 7 ) is a 1-summable Fredholm module over 0(SpQ(k,l+)).
The corresponding Chern characters are

t ± ( A xC £ )  =  =  T±(B*c^) = / i ^ *  i/M = 0, A^O,
[ 0  otherwise, ’ 1 0  otherwise.

(5.14)
Here p E Z and, for a positive p, C±M means C± \

Proof. It is obvious that F* =  F, F2 = 7 2 =  I  and F 7  +  7 F = 0. We first deal with 
the positive I case. By a straightforward calculation, for all x E 0(Spq(k,l+)),

K ’ M I - (*> o'" '*’) '

We show that 7ra,t(x ) ~  is trace class for x in the basis {AXC+ : A E N, p E Zj- U 
{B XC+ : A E N, p E Z}. Using the formulae in Proposition 5.1.3 one easily finds, for all



5.3. FREDHOLM MODULES AND THE CHERN-CONNES PAIRING F O RO (S2PQ{K , L± ))97

A,/x € N,

= \  o
p \ ( ( m + f i ) l+ s ) ^ . ^ ( 1  —  p i + s + 7 n Z ^ l / 2 y s , _̂ m >  0,

m =  — 1 , — /x, (5.15a)
m  <  —(i.

and

p \ ( m l + s ) — jr/+s+(m-,u)^i/2

5a,o n £ i i( i  -  9i- (m+1),!+t)1/2/ ^ - , m

m =  0,1 , n — 1
m - M  m  >  / i ,

m  <  0 .

(5.15b)

Set := 7rSyt(AxC+) — ttc(AxC+). Using (5.13) we find

.i+s+ml

i  -  n l v i  -  q i + t —(m+n)l^  1/2 y,

m > 0, 
m  =  —/X,..., —1 

m < —/x.

We need to estimate the two infinite series. For the first series, note that all factors in 
the product are less than one, hence

where each P* is a fixed polynomial of degree i independent of rm. Now summing over 
m > 0, each term is a geometric series, hence the series converges. Similarly for m  < 0, 
using an analogous identity, we find that the sums are convergemt for all /x, so ^ are 
trace-class operators.

Suppose A /  0, then since 7rc(A) = 0 we arrive at,

the inequality following since the product is less than one. Thus implies that (7ra>t — 
ttc)(AxC+) are trace-class operators, for all values of A and /x. By defining = (*■-,« -  
7tc)(J3aC+), in an analogous way it can be shown (tts  ̂ — 7rc)(P AC7+) are also trace class

-  Pi+a+ml)> < l - Y [ { l - p i+s+ml)
i = 1

p8+mlP i M  + P 2le+mi)P2„-i(p) +  ■■■ +  Pl(s+ml)P’iM ,tl+1)(p),

t\ ( (m + n ) i+ s )  r r ^ .i+s+ml

Hence

E  ((x V x t A f ™ ’ /»> = E  pM(m+ii)‘+s) IF1 -  ;pi+s+m,y /2
m=0 m =0 i= 1

,A (s+ifii)
A ((m+n)l+s)
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operators; hence we have shown that © %3s,t, ns,t, F, l )  is a 1-summable Fredholm 
module over G(Spq(k,l+)).

For the negative I case, using Proposition 5.1.3 we arrive at

n\i\
<4 =  I P 1 ~ pi+s+{m~m )1/2C-,<

i= 1 

kfj.
=  0 , n r 2(B x) e l  = «?(<C»)e‘m =  J J ( 1  -

i= 1

With these at hand it is straightforward to check that the operators X := irj1(AxC!t) — 
7t̂ 2(AxC^), := 7t~1(BxC^) — 7r f 2{BxCt), the only non-zero entries of the commu­
tator of F  with 7f“t evaluated at the basis elements of G(Spq(k, /“ )), are trace class.

Finally, we can calculate the Chern characters on the basis elements of 0(S^q(ki T)) 
using t%(x) =  Tr (7 7^ ( 2;)). First, for A ±  0,

r ±  {AXCD  =  TV h f% (A xC^)) =  TV (X ± „ )  =  «5M,0 ^
m =0

where we noted that if p ^  0, then all diagonal entries of are zero. Similarly, by 
considering the traces of X ^  we find that T^t(BxC+) = 5^ for A ^  0. □

5.3.2 The Chern-Connes pairing
The Chern characters associated to line bundles over the comodule Ak,i with coaction pk,i 
are calculated.

Theorem  5.3.2. For all s = 0 ,1 , . . . , /  — 1, t = 0,1, . . . ,  k — 1, let r f t be the cyzlic 
cocycle on 0(Spq(k,l+)) constructed in Proposition 5.3.1. Let E[n] be the idempotent 
determined by u(un) in (5.11). Then r *t(Tr E[n]) = —n. Consequently, for n /  0, the 
left 0(Spq(k,l+))-modules £[n] corresponding to E[n\ are not free.

Proof. We prove the theorem for the positive values of n. The negative n case 
is proven in a similar way. Define f (z )  =  1 — n != i(l — P*z) and no ê that, for all 
s =  0 ,1 , . . . , /  — 1, f{ps~l) = 1.

Lem m a 5.3.3. For positive n,

cj(un) = ^ 2  w{un~iy i\x* <8 xo;(un_1)^ i +  ^ 2 ^J(un~iy ihf(z)y* ® yu)(un~1) ^ i (5.18)
i i

Proof. This is proven by induction. For n = 1, this is simply equation (5.11a) with 
n = 1 . Assume that equation (5.18) is true for any r < n. Then, using (5.11a) and ;he
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inductive assumption, we can compute

cj(un+1) = x*uj{un)x +  f(z)y*u(un)y
= ŝ x * u ( u n~l )̂ l\x *  x u (u n~l )̂ 2\ x

i
+ ^  x*u(un~1) ^ if(z)y* ® yuj(un~l)^jX

i
+ y :  f(z)y*u(un~l )[l\  x* <s> xco'(un~l )[2\'y

i
+ ^ 2  f ( z )y*u (un~l )[l]if(z)y* (8) ^ (u71-1) ^ ^

i
=  ^>(un ) [1]iX*  ®  x c j ( u n ) [2]i  +  ^  c j ( u n ) [11i / ( z ) y !,t (8) ^ ( u 71) ^ ,

i  i

where we indicated grouping of terms over which the definition (5.11a) of the strong 
connection u  is applied. □

Lem m a 5.3.4. For all positive n, Tr E[n] = gn{z) is a polynomial in z independent ofw  
such that

gn+\(z) =  (1 -  /  [p~lz)) 9n (p~lz) + f(z)gn(z). (5.19)

Proof. By (5.18) and the definition of the idempotents E[n],

Tr E[n] = y ^ x u (u n~iy 2\u (u n~iy i\x* + ^ yu>(un~1) ^ iuj(un~i y i\f(z)y*
i i

= rrTr E[n — l].x* +  yTr E[n — 1 ]f(z)y*.

In particular, since Tr £[0] =  1,

Tr E[ 1] =  xx* +  yf(z)y*  =  xx* + yy*f(z) = 1 -  /  (p~lz) +  f{z), (5.20)

where we used (5.10) (expressed in terms of the polynomial /) , in particular the fact that 
z commutes with y , that yy* is a polynomial in w with constant term 1, wz =  0 and /
has the zero constant term. Therefore, Tr E[ 1] is a polynomial in 2  only (not in w), and
it satisfies (5.19) with g0 = 1.

Assume, inductively, that Tr E[n] = gn(z). Then, again extracting the same informa­
tion from (5.10) as before and, additionally, using the commutation rule between 2  and 
x* we obtain,

gn+i(z) =  xgn{z)x* +  ygn{z)y*f(z) = xx*gn (p~lz) +  ygn(z)y*f(z)
= (1 -  /  (p~lz)) 9n (p~lz) +  f(z)gn{z),

as required. □
With Lemma 5.3.3 and Lemma 5.3.4 at hand we can complete the proof of Theo­

rem 5.3.2. Since z = A, the Chern number

chn := r+(Tr E[n\) = r+t{gn(z)),
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is obtained by evaluating the powers of 2  in polynomial expansion of gn{z) using formulae 
(5.14). We will proceed by induction on n, but first write

1 N

/(z) = E  c™2;m’ 9nw =E  *%zr ■
m —\ r = 0

Note that /(0) = 0, hence in view of (5.20), #o(0) =  1, and, consequently pn(0) = 1, by 
(5.19). Therefore, c/g =  1.

Apply (5.20) and (5.14) to calculate

chi = r+t i g^z) )  =r+t (l - f ( p ~ ‘z )  + /(*))

=  < t  (:I -  E  cm(p',m -  l)z ) = -  E  4p"'m+*m = - f ( p s~l) = -1.
\  m —1 /  m = 1

The last equality follows from the observation that since s =  0 ,1 , . . . , /  — 1, one of the 
factors in the product must vanish. Next, assume that chn =  —n, that is

N

E ^ r &  = -"- (5-21)
r = 1 y

Then, using (5.19)

ciwi = Y  - E E  4.<p-,(m+r,<i(*m+T) + E  E  4.c<i(2’n+r)
7 = 0  m = l  r = 0  m = l  r = 0

N  ^ ( s —/)r  ̂ ^  l (m+r)  i
= V  - V T c l  (f*?—___ZlL("-H-)*

Z ^  r  1 _  „ l r  Z ^  Z _ ^  Cm“ r  ,  _  „ l(m + r)  P  
r = l  771=1 r =0

= E ^ r r ^ - ^ E ^ ' 0*
7 =1 ^  7=0

/  n(s-0 r \  /v-,57

by inductive assumption (5.21). This completes the proof of the theorem. □

5.4 Continuous functions on the quantum weighted 
Heegaard spheres

The C*-algebras C(Spq(k , Z*)) of continuous functions on the quantum weighted Heegaard 
spheres are defined as completions of the direct sum of representations classified in Propo­
sition 5.1.3. In this section we identify these algebras as pullbacks of the Toeplitz algebra 
and calculate their K-groups, closely following the approach of [42] and[27] (see also [12]).
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We think about the Toeplitz algebra T  concretely as the C*-algebra generated by an 
unilateral shift U acting on a separable Hilbert space V with orthonormal basis en by 
Uen = en+i (V could be any of the spaces Vs in Proposition 5.1.3). T  can be thought of 
as the algebra of continuous functions on the quantum unit disc, and the restriction of 
these functions to the boundary circle S 1 yields the symbol map, a : T  —> C (S1), U —» u, 
where u is the unitary generator of C(S1). Given k G N, I G Z, define

T k'1 =  {(xi , .. - ,x k+l) e  T®k+l | a(xi) = .. .  = a(xt) =  a _1(xm ) =  .. .  =  <7_1(:z;fc+/)}
i

for positive I and

T k'1 = {(aq,...  , x k-i) e T®k~l | u(x i) =  . . .  =  cr(xk-i)}, 

for negative I. In this section we prove 

T heorem  5.4.1. For all k £ N, I £ Z,

C(5p2,(fc,(±) ) s r w . (5.22)

Consequently,

K l (C(S2pq(k,l±))) = 0, K0{C{Slq{k,l±))) = Zk+l‘l. (5.23)

Proof. To see that (5.23) follows from (5.22), we observe the exact sequence

0 ---- - K  ^ T - ^ C { S l ) -----  0, (5.24)

that characterises the Toeplitz algebra in terms of compact operators on V, yields the 
exact sequence

0 ---- » /C0fc+I*l ^ T k'1   C(S'1) ---- ^ 0. (5.25)

The sequence (5.25) gives rise to a six-term exact sequence of /Ggroups, which can be 
studied precisely as in [12, Section 4.2] to aid the derivation of the A-groups as stated.

Let J^ , Jq denote the closed *-ideals of C(Spq(k, /*)) obtained by completing of 
ideals of 0(S^q(ki l±)) generated by A  and B , and let : C(S%q(k,l±)) —>

! C(Spq(k, ±̂) ) /(J^  © Jb ) be the canonical surjection. The image of ^  is generated by 
if>(C±). In view of the relations (5.6a) and (5.8a), ip(C±) is a unitary operator, hence 
C(Spq(k,l±)) /(J^  © J^)  =  G(<S'1). Applying 7r01, 7rf2 to  J ^ © J q , one finds that the 

! images contain only compact operators on the corresponding representation spaces 9JS,
On the other hand, these images contain all orthogonal projections onto one-dimensional 
subspaces and all step-by-one operators with non-zero weights, hence their completions 
contain all compact operators. In this way JJ  © Jq can be identified with the direct sum 
Kk+\l\. Since the direct sum of all irreducible representations of a C*-algebra is faithful,

© .
s=o t=o xes1

library
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are faithful representations of C(Spq(k, I±)). In the same way as in [42], 7rJ factor through 
7r? 1» > hence also

n± : = © 7rs±1 ® ® 7rt±2
s= 0  t=0

are faithful. It is clear that the images of ir± are contained in T k + On the other hand, by 
inspecting formulae in Proposition 5.1.3 one easily finds that 7r](C+) — U, — U*,
ir±2(C±) — U* are step-by-one operators with coefficients tending to zero. Therefore, 
they are compact operators and thus are in the kernel of the symbol map. This implies 
that the image of n± is contained in T k'1. Summarizing the above discussion we obtain 
commutative diagram with exact rows

0 ----      C(S2pq(k, /=*=))------   C{Sl ) ---- - 0
p

'TT'k

0 ---- ► £®*+l‘l -----------► T k'1----------- -  C (S1) ------  0.

This implies the isomorphism (5.22). □
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Chapter 6 

Covariant differential calculus on the  
quantum  teardrop space

It would be interesting to see whether there exists a covariant differential calculus, and if 
so, whether there is a distinction between the k parameter. We have seen that moving 
from the classical to the quantum space we have effectively smoothed out the singularity 
in the special case k = 1. It may be the case that only when k — 1 the elements invariant 
under the coaction freely generate the module of one-forms; see Section 2.4.2. We describe 
here the first steps in this direction.

The quantum teardrop spaces were constructed by taking the quantum three sphere 
G(Sq) and viewing this as a C?(£/(l))-comodule algebra using a weighted circle coaction 
denoted pk,i■ Since we have Woronowicz’s description of a first order calculus on 0 (S q) 
there is scope to build a first order calculus on the teardrop spaces since C?(WP9(fc, /)) is 
a subalgebra of G(Sq). The process would involve restricting Woronowicz’s description 
to the generators of 0(W P g(k, /)). It remains to be seen whether this process produces a 
two-dimensional first order differential calculus on 0(WSPq(k, /)).

6.1 The first steps to  finding a first order differential 
calculus on 0 ( W P 9 ( k ,  I ))

Consider 0 ( S q) as a right (9({7(l))-comodule with weighted coaction p^  : a a  <g> 
uk, /?!->■ P 0  u~l see Equation (3.2). We look to extend this coaction to the one-forms 
H1((P(5^)) in such as way that the exterior derivative is a right (9(C/(l))-comodule map, 
meaning that the following diagram should commute,

0{S*q) --------^ ------   G (S3q) <81 0(U(  1))

d d®id
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Since moving clockwise we get

(d 0  id)pk,i(ot) = (auj0 -  q p u + )  0  uk,

so it must be the case that

p n l ( ° ( s * ^ d ( a )  =  p n l ^ s ^ ( a c J o  — q/3u+)  =  ( a ( j 0 ~  q P ^ + )  0> u k.

Hence au0 and /3lj+ have degree k, but since a  has degree k, lj0 must have degree zero. 
Similarly, since (3 has degree —I, lj+ must have degree k + l. In a same manner we require 

to have degree —k — I. This gives the following description of the coaction on the 
one-forms,

pn'(o(sJ)) . Qi(0 (5 3 )) n 1(0 (5 ,3)) <8 > 0(U(  1))

given by
LJq I—y UJo 0  1, I—y LU+ 0  'Uk^ ) I—y UJ_ 0  U k .̂

Proposition  6.1.1. Let B = 0(WF(k,l)). Ql (B) is a B-bimodule generated by

17 = 07 cj_, 17 = al+1pk-1u-i r3 = <^-y+1o;_,
r+ = p 6u+, r + = of~1pk+1u+, rj = V!-1<5i+1w+,

rg = alpkwo, r? = V'i'wo,

with *-structure

rr* = -«2q, r2-  = (-1 )*~Y+2rt, r2 * = 9*(,~1)+1rj, rg* = (-i)*+V‘-*r;.

The relations are given are as follows:
On r°:

org = g_2irgo, ar? = 92,r?a, 6rg = <f-kT°0 b, 6r? = (/-“rgt.

On r+:

ar̂  = g2r+a, arj = <f ̂ "̂ r+a, ar+ = 92<i+1>rga,

b r t  = 5*+1r+(i-a), 6r+ = ?2,r+6, tr+ = (-d -^ V rj (â a*-1 n(i-?2p_2a)).
p =  1

On r~:
alY =  g-4r^a , a I7  =  g_^+2^r2 a, a I7  = g2Z-1r 3 a,

bT- = ^ - fc)rr6, & 17  = <t2*t2-&, &r3 = ( - i ) y - 2AT3&.

Proof. Q1(B) must contain elements with zero grading since B  contains all elements 
in 0 (S q) which are invariant under the coaction pkj. To determine which zero-degree 
elements generate D1(B ) we use the exterior derviative map on the generators of B.
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d(a) = d(00*) =  (dP)P* +  P(d0') = -q{dP)l ~  qPdl
= -q({-Q2l3oJ0 +  au - ) 7  +  PijujQ -  qSu+))
= qp^cuo ~ OL'yu- — qP'yuJo +  q2p5u>+
=  —cry uj- +  q2fi5uj+,

this gives generators a^cu- and PSuj+. Next d(b) =  d(alp k) = (dal)Pk+ a l(dpk), hence 
we need simplified versions of (da1) and (d/3k).

(da1) = (da)al~l + a(dal~l )
= (da)al~l -fi a(da)al~2 +  a 2(dal~2)
= (da)al~l + a(da)al~2 +  a 2(da)a l ~ 3 -1- ... +  a l~1d(a),

using the relation (da)ak =  q~2k(ak+luj0 — qakpu+) for each non-negative integer k,

(da1) =q~2('l~l\ a luJo — qctl~lPu+) +  a(q~2('l~2\ a l~1LUo ~ qal~2/3u+))+
i

... +  al~2q~2a(auo — qP u +) +  a l~1(aco 0 — qpu>+) = q~2̂ l~n\ a lujQ — qal~1pu+16.3)
n=l

=ci(alu o -  qal~lpu+) 

where c j G C  Similarly, using the relations

(dpk) = (dp)pk~l +  p(dp)pk~2 +  ... +  Pk~\dp), (d(3)Pn = qn(apnu _ -  qn+2pn+1uJo)

where n is a non-negative integer, we can deduce

(dpk) = dk(aPk~luj_ -  qk+1p ku 0), dk e  C. (6.4)

Combining equations (6.3) and (6.4),

d(b) = d(alp k) = (dal)Pk +  al(dpk)
= ci(alu o -  qal~lPuj+)pk +  dka l(aPk~lu _ -  qk+1Pku 0) (6.5)
=  ci(q2ka lp ku0 — qk+1al~lp k+1u +) +  dk(q2ka l+1 pk~luj- — qk+1a lpkuJo),

this means a l~1pk+1u +, a l+1Pk_1 and a lPkoj0 are generators. By considering d(b*), 
or alternatively by taking the *-conjugate on these generators, we arrive at the final 
generators. The 13-module structure is obtained using a =  PP* and b = a lp k and the 
relations 2.2, 2.3 and 2.8. □
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Chapter 7 

Higher dim ensional weighted  
projective spaces

The aim of this section is to introduce higher dimensional quantum weighted projective 
spaces and identify any areas of difficulty.

7.1 The three-dimensional quantum weighted pro­
jective space 0 ( W P q ( k ,  l , m ))

In order to deal with the three dimensional quantum weighted projective space we are 
required to work within 0 ( S q). Using Definition 2.2.6 and relabelling the generators to 
keep the notation consistent with the two dimensional case, we see 0 ( S q) is generated by,

z0 = a, zf = (3, z*2 = 7 - (7.1)

These generators satisfy the following relations,

aj3 =  q(3a, cry =  qiot, P i  = qiP, ct(3* = q(3*a, cry* =  qi*a, (7.2a)

Pi* =  qi*P , lot* =  qot*i, lP* =  qP*l, P ol*  =  qa*P, (7.2b)

m '  =  oTa +  (q-2 -  1 ) ( ^ *  +  7 7 *) , /3/3* =  £*/? +  (q -2 -  1 )7 7 *, (7.2c)

11* =  1*1 > oia* +  PP* +  7 7 * =  1. (7.2d)

Now by setting l0 = k, l\ = I and l2 = m  to be positive integers, the coaction pk,i,m of 
C[it, u*] on 0 (S q) takes the form,

a \a<8>uk , p p 0  u~l , 7 4 7 0  u~m, (7.3)

and 0(W Pg(fc, Z, to)) is defined as the incovariant subalgebra of 0 ( S q).

Proposition  7.1.1. The algebra 0(W Pg(fc,/,m)) is the *-subalgebra of Q(Sq) generated 
by

PP*, 7 7 *, alp k, p*m^ \  a m7 fc, a XlPX2 7 , a /? A3 7 *A4, otX5P jXe, (7.4)

/or some A* e N0.
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Proof. O(Sq) has a basis given by

ah /3i2P*i3f 4Y i5, a*jlPj2P*j3Y ^ j\  each inJ n G N0.

Applying the coaction pk,i,m to these we get the coinvariance conditions,

k(i\) +  l{~i2 T 3̂ ) +  m (—i4 + i§) = 0, (7.5a)

k(—ji)  +  l(—j2 +  h )  +  ™(—j 4 P 3 s ) = 0- (7.5b)
Case 1 Using gcd(k,l) = 1. This implies that m  =  Xk +  pi for some A,/z G Z. Since
m ,l ,k  > 0, A, p cannot both be negative. Re-scaling A, p using m = (A + vl)k + (p — vk)l,
v G Z, we can find A > 0 and p < 0 such that m = Xk +  pi. Substituting this into 7.5a 
gives

k(ii -  Az4 + Az5) =  l(i2 -  Z3 +  fa4 ~ pis)- (7.6)
This implies k divides the right hand side hence it divides i2 — 23 + fa* — fas since k and 
I and coprime, i.e.

kO = i2 — z3 + fa4 — fa*> = >  i2 = k6 + i3 — pi4 — pi5, 6 G Z. (7.7)

Similarly, I divides the left hand side of Equation 7.6, hence

W =  i\ — \ i 4 T  A25 - V i\ — 16 — Az4 — AZ5 . (7*8)

Substituting Equations 7.7 and 7.8 into basis element

ah pi2P*i3f ^ * i5 -  {alpk)e{PP*)i3{axP~iX7)<4 (a“^ 7 * ) <8, (7.9)

giving rise to generators
a'/?*, ft?*,

and their ^-conjugates.

Case 2  Using gcd(/,m) =  1 . Following the same process we get the following list of 
generators and their *-conjugates

ft?*, 77*, a /? V S,

for a, E G No. Similarly in the third case; by considering gcd(k,m) =  1 we get the 
generators (and their ^-conjugates)

oT  7*, a ^ r ,  77*. ft?*,

for £,cj G N0. □
As we can see moving from two-dimensional to three-dimensional quantum weighted 

projective spaces we are required to deal with many more generators. This makes the 
process for calculating the relations between generators quite long and not easy. In par­
ticular it becomes difficult to classify the representations of this space. One alternative 
approach to understanding quantum weighted projective spaces in higher dimensions is 
to consider them from a graph algebra point of view.



Chapter 8 

Graph algebras

8.1 Graph C*-algebra approach
The overall aim associated to graph algebras is to represent a C*-algebra in terms of a 
directed graph. A directed graph consists of collections of vertices and edges along with 
two maps, called the range and source, which determine the starting and ending vertices 
of each edge, hence describe the shape of the directed graph. Using the Gelfand-Naimark 
theorem we see that every C*-algebra can be viewd as a collection of operators on some 
Hilbert space. In terms of directed graphs, to each edge, say e, we associate a partial 
isometry written Se and to each vertex v a projection written Pv. Now the composition of 
operators is dependent on the form of the directed graph. C*-algebras constructed in this 
way are called graph algebras and have numerous benefits including giving a description 
of ideal structures ([30] Section 1.3) and determining their A-theory ([30] Section 1 .2 ).

8.1.1 The set-up and basic concepts
Definition 8.1.1. (Directed Graphs) A directed graph E  =  (E°, E 1 ,r, s) consists of two 
countable sets E°, E 1 and two maps r, s : E 1 -> E°. The set E° consists of vertices and 
E 1 consists of edges between these vertices. Each edge e has starting and finishing point 
given by the maps r and s, s(e) being the source of e and r(e) being the range of e.

Definition 8.1.2. Given a directed graph E = (E °,E X,r,s) then p =  p\...pn is called a 
path in E  provided r(pi) =  s(pi+1) for i — 1,..., n — 1. We say p is a path of length n and 
write \p\ = n. We also write E n of the paths of length n and E* = U™=0E n.

It is convenient to write r# and se when dealing with more than one directed graph 
to avoid confusion. We call vertices which do not receive an edge a source and vertices 
which do not emit an edge a sink. A row-finite graph is a directed graph in which all 
vertices receive finitely many edges.

Convention: the convention used when describing graph algebras is of paramount 
importance. There are two main approaches to describing graph algebras, each with there 
own advantages and disadvantages, each approach varying between authors; see [38], [30]. 
We use the convention that partial isometries Se move in the opposite direction to the

111
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edge (as in [30]), hence S * moves along the directed edge. Consequently, we compose 
operators in the graph algebra in the usual way from right to left.
Definition 8.1.3. (Cuntz-Krieger E'-family) Let E  be a row-finite graph and Pi a Hilbert 
Space. A Cuntz-Krieger E-family {-S', P} on H consists of a set {Pv : v G E 0} of mutually 
orthogonal projections and a set {Se : e G E 1} of partial isometries on H , such that

S*Se = Pr(e) for all e G E l \ and (8 .1 )

Pv = ^ 2  ‘̂ e'S'e whenever v is not a sink. (8.2)
e &E1:s(e)=v

Given a directed graph E  then the corresponding algebra, i.e. the Cuntz-Krieger E-
family, is known as the graph algebra associated to E. Graph algebra are C*-algebra
and are written as C*(E) or C*({Se, Pv}). The next proposition tells us how to multiply 
operators in a graph algebra.
P roposition  8.1.4. Suppose E = (EQ,E l ,r,s) is a row finite graph and C*({Se, Pv}) a
graph algebra associated to E, then for e, /  £ E 1

{SeS* : e £ E 1} are mutually orthogonal projections; (8.3a)

s;sf ^  0  = *  e ^ / ;  (8.3b)
SeSf  7̂  0 =>• r(e) = s(/), so e f  is a path; and (8.3c)

SeS} ^  0  r(e) =  r(/) .  (8.3d)
Proof. Part (8.3a), operators of the form SeS* are projections since

(Ses e*)2 =  se(s*se)s* = sepr(e)S‘ =  ses* =  (scs;r,
using (8.1) and the * property for operators. And mutually orthogonal since,

(SeS;)(Sf S}) = (5e5*P5(e))(Ps(f)SfSj) =  0 , if a(e) ±  s(f),

since projections Ps(e) and P3(f) are mutually orthogonal in C*(E). If s(e) = s(f) = v £ 
E° , then using Equation 8.2, Pv is the sum of 5e-5*, S fS j  and other projections. It follows 
SeS* and S fS j  are mutually orthogonal since a projection written as a sum of projections 
must contain mutually orthogonal terms. Part (8.3b), using the partial isometry relation 
S = SS*S  and part (8.3a), for e ^  /  we see that S*Sf = S*(SeS*)(SfSf)Sj = 0 . Part 
(8.3c) follows since SeSf = (SePr(e))(Ps(f)Sf) =  0 whenever r(e) ^  s(f). And similarly 
for part (8.3d), SeSf  =  (SePr(e))(Pr(f)Sf) = 0 whenever r(e) ^  r(/).  □

To a path p = p\...pn £ E n C E* we associate an operator in C*(E) as :=
5Mi5M2 ...-S'Atn and Sv := Pv for v £ E°. Now is a partial isometry. Calculating the 
initial projection:

s;s, = (si...s^)(s;1sn)(sl»...sr j  = (s;n...s*j(s»2...s» j,
since = Pr(Ml) =  Ps{̂ 2) and ^(/x2) ^ 2 =  S^2. Repeating this process we get
S^Sfj, = Pr(n)- Furthermore, P ^ S ^ S *  = S^S*, hence the final projection is a subspace of 
Ps{n)H: Given this description we can describe a graph algebra of a row-finite graph E  as

C*(E) = span{S^S* : p, v £ E \  r(p) = r(v)}. (8.4)
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8.1.2 Examples of graph algebras

Next we calculate graph algebras of basic directed graphs to illistrate the concepts dis­
cussed above.

Exam ple 8.1.5. Take the graph with one vertex v, and one edge e which is a loop at v.

v

The graph algebra is generated by partial isometry Se and projection Pv. The Cuntz- 
Krieger relations state S*Se = Pv and SeS* = Pv, and since there is only one vertex 
Pv = /  (the identity), hence SeS* = S*Se = I. The graph algebra is generated by a 
unitary operator Se hence C*{E) = C(U( 1)).

E xam ple 8.1.6. Consider the directed graph with two vertices v\ and v2, adjointed by 
one edge e.

e
•  * •Vi v2

The graph algebra is generated by partial isometry 5e, and mutually orthogonal pro­
jections PVl and PV2. The Cuntz-Kriger relations state that S*Se =  PV2 and SeS* = PV2. 
Since PVi and PV2 are mutually orthogonal projections we also require PVl +  PV2 = I.

We can try putting PVl =  (Jo)  and PV2 — ( o i )  *n ^ ( C )  then the mutually orthog­
onality condition is obviously satisfied. Now putting Se =  (oJ)> hence S* =  (?§)> the 

| Cuntz-Krieger relations are easily verified; S*Se = (?q) (oo) =  ^va an(l ê'S'e =  (oo)
| (}})  =  P„i, Hence the graph algebra is generated by the two-by-two unit matrices and
j hence corresponds to the algebra M2{C).

E xam ple 8.1.7. Consider the directed graph E  with vertices E° =  {vi,..., vn}> edges 
E 1 = {ei, ...,en_i} and range and source functions given by s(e<) =  and r(ej) =  vi+\ 
for i = 1 ,..., n — 1 ,

t\ e2 en-\
•  * •  *------------- •— ••• •••— •--------------> •

V\ V2 V3 Vn - 1 Vn

Extending the principle used in Example 8.1.6 we find the graph algebra is given by 
C \ E )  “  Mn(C).
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Exam ple 8.1.8. Consider the directed graph E  given by,

Suppose //, v G E*, then using the algebraic properties of partial isometries S^S* = 
SnPr(fj,)S*. Now unless r(fi) = v3 we can apply the Cuntz-Krieger at r(/x), and repeat 
until the path ends at a sink, in this case at v3. Hence,

the other second Cuntz-Krieger relation is PV2 = SfSJ, note that the edge /  ends at v3 , 
and the first Cuntz-Krieger relations are PV2 =  S*Se, Pn  — S jS f  and PV3 =  S*Sg. Now 
using Equation (8.4) the graph algebra can be expressed as

C*(E) = span{S^Sl : //, v G E*, r(v) = r{v) = ^3}
=  span{S^S* : /i, v G {^3 , / ,  9 > e / } } .

Since v$ is a sink, two paths //, 1/ G E* such that r(/T) = r{v) = ^3 cannot satisfy ^ =  fii/
unless n = v. Hence,

Thus {S^S* : G {t>3 , / ,  <7, e/}} is a set of matrix units which spans C*(E) and hence
is isomorphic to M4 (C).

Exam ple 8.1.9. Suppose E  is a finite directed graph with no cycles, and ...,Wk are 
sinks in E. Then for every Cuntz-Krieger E-family {5, P} in which Pv is non-zero we 
have

E> __ Q  C * 1 C  Q* ___ C  P  O* _L C  C*
vi — * 9 g — V2 ^e  '

= s.(sfs})s: + s9s; 
= s., sit + 5A*>

(8.5)

otherwise.
(8.7)

k
C * ( S , P ) a 0 ^ , w | ( q , (8 .8)

where r  l (wi) =  {f i  G E*  : r (/i) =  u;*}.

8.2 Quantum spheres as graph algebras
Recall from Definition 2.2.6 the definition of odd dimensional quantum spheres on the 
algebraic level. As discussed in [31], on the C*-algebra level the space C(S^) of continuous
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functions on the quantum 3-sphere is generated by a, (3 such that

a 'a  + P'P =  / ,  aa* +  q2p*P = /, (8.9a)

a/3 = qPa, a/3* =  qp*a, p*p = /3/3*. (8.9b)

Furthermore, C(S2) are isomorphic as C*-algebras for q € [0,1). This C*-algebra can be
described as a graph algebra where the underlying graph is typically denoted L3 given by

ei.i e2)2

The graph algebra C*(L3) is the universal C*-algebra generated by projections PVl,
PV2 and partial isometries 5ei l , 5Cli2 and Sea,2> subject to the following relations

pn  = =  s n ,ts-nA +  s.„srn i2 (8 .1 0 a)

Pv, = s ;h2s e^  = = sW A V  (8-10b)

P roposition  8.2.1. The C*-algebra isomorphism (f) : C(Sq) —> C*(Ls); for q G (0,1), is
given by

00

a  ^ ( V r r ^ T )  _  y T 3 ^ ) (5ei, +  5ei2)"+1(5*1, +  Se*1|2r ,  (8 .1 1 a)
n —0

oo
p  ^ « ” (5ei,  +  5eii2)"5e2,2( 5 ; , +  Se*12r .  (8.11b)

n=0

and for q = 0,
ot Seitl + Seit2, (3 v-̂  Se2)2- (8.12)

In fact for any n = 1 , 2 ,... the C*-algebra C{Sqn~l ) is isomorphic with C*(L2n-i)- The 
graph Z/2n-i ^as n vertices labelled v\, ...,vn and n(n +  l ) / 2  edges labelled Ur=i{eM ' 3 ~  
i, ...,n} with s(eij) = and r{e^j) — Vj. Also, even dimensional quantum spheres are 
graph algebras too; see [31].

8.3 Quantum lens spaces as graph algebras
Recall from Definition 3.3.2 we defined quantum lens spaces on the algebraic level 0{L q{l\ 1, /)) 
as the fixed point space of the quantum 3-sphere O(S^) under the 0(Zj)-coaction g. On 
the C*-algebra level, quantum lens spaces are defined as follows.
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Definition 8.3.1. Fix an integer p > 2, let m i , ..., mn be n integers relatively prime to p 
and set 0 =  e2™/?. The map

A : C ( S f - 1) -> C(Sln~l), *  .-> (8.13)

for i = 1, ...,n is an automorphism of order p. For q G (0,1) we define the C*- algebra 
C{Lq(p\ m i , m n)) of continuous functions on the quantum lens space as the fixed point 
algebra corresponding to A,

C(L,(p;m „...,m „)) =  C ^ S f-1)* (8.14)

Since we have an interpretation of C(Sqn~1) as a graph algebra, it is possible to 
translate our understanding of C(Lg(p; m i , ..., mn)) in terms on graph algebra theory. Let 
/  : C(Sgn~l) C'*(Z/2n-i) be the C7*-algebra isomorphism and consider the map

A =  /A / - 1 : C*(L2n-\) C*(L2n-i), a (PVi) = PVi, A(Seij) = 6miSeij,

for i , j  G {1, ...,n}, this implies that

C(Lg(p;mi, ...,mn)) =  C*(L2n- i)A- (8.15)

In [30], Hong and Szymanski showed that C{Lq(p\ m i , ..., m n)) is a graph algebra and 
when on to determine the underlying directed graph.

8.4 Quantum weighted projective spaces as possible 
graph algebras

The ideas here do not seem too different to those in the previous section. On the C*- 
algebra level we can view C(WPg(Zo,..., ln)) as the fixed point subspace of C(5^n+1) under 
the action

1 :1/(1) x C(S,2n+1) —> C(52n+1), *  ul‘Zi,

for u G U(l) and i = 0,1,..., n, which means

C(WP,(i„ In)) = C{Sln+1f .  ( 8 .1 6 )

Now by considering the map

£ =  ■ C * ( W i)  -> C *(I2n+i), A(Pt)j) =  PVi, A(Seij) = u liSeij,

for i , j  G {0,1,..., n}, we find that

C(W P,(/o,.... In)) = C‘(L2n+1)«, (8.17)

giving us a description of higher dimensional quantum weighted projective spaces.
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