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Abstract

Efficient techniques for photo-realistic rendering are in high demand across a wide array of 
industries. Notable applications include visual effects for film, entertainment and virtual real­
ity. Less direct applications such as visualisation for architecture, lighting design and product 
development also rely on the synthesis of realistic and physically based illumination. Such ap­
plications assert ever increasing demands on light transport algorithms, requiring the compu­
tation of photo-realistic effects while handling complex geometry, light scattering models and 
illumination. Techniques based on Monte Carlo integration handle such scenarios elegantly 
and robustly, but despite seeing decades of focused research and wide commercial support, 
these methods and their derivatives still exhibit undesirable side effects that are yet to be re­
solved. In this thesis, Monte Carlo path tracing techniques are improved upon by utilizing path 
vertex data and intermediate radiance contributions readily available during rendering. This 
permits the development of novel progressive algorithms that render low noise global illumi­
nation while striving to maintain the desirable accuracy and convergence properties of unbiased 
methods.

The thesis starts by presenting a discussion into optical phenomenon, physically based ren­
dering and achieving photo realistic image synthesis. This is followed by in-depth discussion of 
the published theoretical and practical research in this field, with a focus on stochastic methods 
and modem rendering methodologies. This provides insight into the issues surrounding Monte 
Carlo integration both in the general and rendering specific contexts, along with an appreci­
ation for the complexities of solving global light transport. Alternative methods that aim to 
address these issues are discussed, providing an insight into modem rendering paradigms and 
their characteristics. Thus, an understanding of the key aspects is obtained, that is necessary 
to build up and discuss the novel research and contributions to the field developed throughout 
this thesis.

First, a path space filtering strategy is proposed that allows the path-based space of light 
transport to be classified into distinct subsets. This permits the novel combination of robust 
path tracing and recent progressive photon mapping algorithms to handle each subset based 
on the characteristics of the light transport in that space. This produces a hybrid progressive 
rendering technique that utilises the strengths of existing state of the art Monte Carlo and 
photon mapping methods to provide efficient and consistent rendering of complex scenes with 
vanishing bias.

The second original contribution is a probabilistic image-based filtering and sample clus­
tering framework that provides high quality previews of global illumination whilst remaining 
aware of high frequency detail and features in geometry, materials and the incident illumina­



tion. As will be seen, the challenges of edge-aware noise reduction are numerous and long 
standing, particularly when identifying high frequency features in noisy illumination signals. 
Discontinuities such as hard shadows and glossy reflections are commonly overlooked by pro­
gressive filtering techniques, however by dividing path space into multiple layers, once again 
based on utilising path vertex data, the overlapping illumination of varying intensities, colours 
and frequencies is more effectively handled. Thus noise is removed from each layer indepen­
dent of features present in the remaining path space, effectively preserving such features.
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Chapter 1

Introduction

Contents______________________________________________________________
1.1 Demands for realistic rendering..........................................................................  1

1.2 Objectives and research h y p o th esis .................................................................... 3

1.3 Thesis organisation.................................................................................................  4
1.4 Achieving realism in rendering ..........................................................................  5

1.4.1 Physically-based light tran sp ort..........................................................  5

1.4.2 Models of l i g h t ........................................................................................  6

1.4.3 Realism vs Photo-realism.......................................................................  9

1.5 Radiometry and Photometry................................................................................. 10

1.5.1 Photom etry............................................................................................... 11

1.6 C onclusion...............................................................................................................  12

1.1 Demands for realistic rendering

Efficient techniques for photo-realistic rendering are in high demand across a wide array of 
industries. As global illumination research has matured, these demands and the areas of appli­
cation for such methods have increased dramatically. Computer generated imagery and visual 
effects for the film industry are commonplace [MHH+ 12], and have reached such a level that 
they can go unnoticed when composited with real life footage; the ultimate aim of photo­
realistic rendering. Additionally, the expectations for accurate light transport in animated films 
are ever increasing, restricted by the computational requirements to provide practical frame 
rates for production, and far less so by their accuracy. Global illumination is now a common 
and viable option for secondary markets such as advertising, product development and design, 
where image synthesis is a tool rather than an end product. Computer Aided Design (CAD) 
used in architecture, lighting design and product development requires highly accurate light 
transport simulation and material models to allow artists and designers to accelerate the time 
from concept to final product, which can remove the need to conduct tests in the physical world, 
and useful for accelerated marketing and focus groups. Physically-based simulations in virtual
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1. Introduction

environments can be relied upon instead to provide accurate visual and numerical data without 
the costs and time involved in creation and procurement of the physical resources. Global illu­
mination is finding increased interest from the data visualisation community due to recent per­
formance improvements, especially for scientific and medical visualisation [GBP08, JKRY12]. 
Global lighting models provide improvements in depth perception and spatial-acuity, and illu­
mination for volumetric data in the form of subsurface scattering, exceeding what is possible 
with conventional surface shaders and aligning well with the widespread use of volume ray 
casting [BB07]. Even in the realms of real-time, frame rate critical applications such as video 
games, global illumination is looking to be a feasible alternative to the rasterisation pipeline 
used extensively today [Bikl3].

These numerous applications assert ever increasing demands on rendering algorithms, re­
quiring photo-realistic image synthesis from environments containing complex geometry and 
material models, incorporating a wide range of scattering phenomenon and illumination fea­
tures. Additional pressures come from industry standards such as increased display resolutions, 
reaching pixel counts in excess of 8  million [Dig 12]. Improvements in modem hardware and 
the accessibility of massively parallel computing through GPGPU and OpenCL [Khrl3] have 
opened up new possibilities for global illumination to both individuals and for general use 
outside visual computing centric industries.

Despite its widespread use, performance remains the limiting factor for global illumination 
in the majority of applications. Highly accurate methods require significant computational ef­
fort, in some cases requiring hours (or days) to produce error and noise free results. The major 
bottleneck lies in computing the light transport between surfaces in the virtual environment. 
Just as in the physical world, light is distributed around the scene through emission, scatter­
ing and absorption until detection occurs; for example by a camera sensor. However light 
arriving at a surface location not only comes directly from light sources, but also from light 
scattered from other surfaces visible from that location. In turn, the light arriving from those 
surfaces may also have arrived via scattering, and so forth. The chaotic and incoherent distri­
bution of light makes such simulation difficult, and heightens the complexity of fight transport 
algorithms. Measuring the fight energy that reaches detectors in the scene (our virtual cam­
era) whilst striving for realistic image synthesis comes at high cost, as will become apparent 
throughout this thesis.

To avoid the resultant computation time, approximations are often developed to satisfy the 
trade off between rendering quality and attaining acceptable frame rates. The primary focus 
in fight transport research has thus been to reduce the necessity of this trade off and has seen, 
and continues to see, significant attention from researchers. By relaxing the constraints placed 
upon fight transport algorithms, assumptions can be made to provide approximations to the true 
solution of the fight transport simulation. Broadly speaking, accomplishing this can follow two 
approaches in which algorithms can be:

• Developed with a focus on performance and aim to achieve the highest possible accuracy 
within a required frame rate, or;

• Build upon robust and highly accurate methods, and improve on efficiency using tech­
niques that strive to reduce visible error.

2



1.2. Objectives and research hypothesis

Rasterisation is an extreme example of this first approach, having been used as the industry 
standard for interactive and real-time rendering for decades. At its most basic level, rasterisa­
tion does not account for light source occlusion, hence demanding applications such as modem 
game engines must rely on a multitude of extensions to provide significant improvements in 
quality [Cry 13]. The reliance on rasterisation adds to the complexity of implementation and 
development of algorithms to approximate realistic phenomenon efficiently, as the rendering 
pipeline becomes composed of many complex parts, each requiring attention during the devel­
opment cycle. Using a ray tracing approach to physically-based global illumination provides a 
natural alternative that can elegantly and robustly handle complex effects under a single model, 
whilst alleviating many restrictions that are placed on content creators by non-realistic materi­
als and incomplete light transport models. Inaccurate and restrictive algorithms will therefore 
only become more robust by extension, as permissible by the performance increase provided 
by hardware developments.

When considering the second approach, highly accurate methods exist that are physically 
based (discussed following this introduction) provide superior quality and extensibility. Addi­
tionally, a choice can be made to trade a measure of accuracy or robustness in such methods to 
reduce noise during the early stages of rendering, whilst maintaining an underlying error free 
solution in the limit. Given trends in hardware performance and increasing parallelism over the 
last decade, accurate global illumination methods will inevitably become feasible even without 
additional research effort in the field of light transport. It is this natural evolution of hardware 
architecture that has been largely responsible for the popularity of ray tracing approaches thus 
far, which for which interactive frame rates have been achievable on commodity hardware, 
even without the research of the last decade [WS01]. Coverage of such techniques will be 
provided since they are the underlying motivation behind work in this thesis.

1.2 Objectives and research hypothesis

One side effect of global light transport’s complexity is that a significant quantity of interme­
diate data is calculated pertaining to local light transport, as the scattering of light between 
surfaces is calculated. However, much of this data is computed incoherently throughout the 
rendering process. Since it is typically not of interest after contributing to the value of an im­
age pixel, such data is discarded despite being both large in quantity and accurate with respect 
to the local and global light transport of the simulation. Whilst contributing only in small part 
to the appearance of the final image, together it may be possible to utilise such data to evaluate 
light transport more efficiently, or provide a stronger indication of the illumination over a local 
region. Thus it is the aim of this thesis to:

• Develop novel techniques to both identify and make use of the intermediate data avail­
able during global light transport algorithms,

• Using this data, reduce the visible noise present in rendered images to improve the effi­
ciency of global light transport algorithms.

3



1. Introduction

In addition, the relevance and impact of the contributions of this thesis need to be con­
sidered with respect to the field of research. As discussed, building upon accurate and robust 
algorithms is a highly future orientated paradigm, thus further objectives of this thesis are to:

• Build upon on Monte Carlo path tracing algorithms that are already capable of providing 
unbiased solutions to the light transport problem.

• Strive for the development of algorithms that fit into the paradigm of progressive render­
ing, in order to maximise their use and potential impact.

Currently, Monte Carlo methods provide among the strongest approaches for handling re­
alistic models of geometry, light scattering and visual phenomenon. Alongside their relative 
simplicity, it is this high quality and generality that makes them an elegant solution for global 
illumination and hence their wide adoption in rendering systems and for commercial appli­
cations [Lux 13, Jakl3, NVI13] thus far. Following the objectives and hypotheses above, this 
thesis develops techniques to address some of the outstanding issues facing such approaches to 
the light transport problem which will become apparent in the following chapters.

By achieving such objectives, the resulting thesis will have considered the longevity of any 
proposed techniques with respect to future research directions and current trends, going some 
way to ensure the impact of this work in the field is maximised.

1.3 Thesis organisation

The remainder of this chapter introduces and motivates the use of physically based render­
ing for photorealistic rendering and some insight into the complexities of light transport for 
simulating optical phenomenon.

Chapter 2 provides a short introduction to the concepts of a ray-based light transport frame­
work, along with its benefits and drawbacks from a practical perspective. State-of-the-art tech­
niques for accelerating ray tracing are discussed with direction to recent literature, providing 
an appreciation of the performance bottlenecks.

Monte Carlo integration and its properties are discussed in Chapter 3 from a theoretical 
perspective, which forms the backbone of the modem rendering techniques built upon in this 
thesis. The remainder of the chapter discusses existing variance reduction techniques adopted 
for reducing noise during rendering.

An insight into the range of state-of-the-art methodologies and paradigms for global illumi­
nation light transport is presented in Chapter 4 based upon the theory outlined in the previous 
chapters. Implementation and practical details of the well known family of unbiased Monte 
Carlo path tracing algorithms are provided, upon which the contributions in this thesis are 
built, along with some of the more successful extensions that have been proposed to date. The 
remainder of Chapter 4 provides detail of state-of-the-art photon mapping techniques, along 
with alternative popular paradigms and the role and effects of introducing bias in rendering. 
This will provide a sound context and motivation from which the novel work proposed in the 
remaining chapters can be discussed.
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1.4. Achieving realism in rendering

Chapter 5 presents the initial novel contributions to the field, improving upon Monte Carlo 
path tracing methods. This new algorithm proposes a hybrid strategy, partitioning the com­
plex space of light transport during rendering, in order to leverage the strengths of unbiased 
path tracing and progressive density estimation methods which individually experience slow 
convergence and high noise levels under complex lighting conditions. To motivate this work, 
the issues plaguing the state-of-the-art methods in these two paradigms are discussed. Existing 
literature related to path space separation and hybrid approaches is discussed with reference 
to the new work. Details of the algorithm are then delved into, from theoretical and practi­
cal angles, providing a thorough understanding into its operation and decisions for design and 
implementation. The chapter is concluded by providing visual and numerical comparisons to 
related rendering algorithms showing its usefulness and applicability to global illumination.

The second set of novel contributions form the basis for Chapter 6 . An irradiance-based 
filtering framework is proposed, designed around the need to detect image discontinuities and 
edges in both high and low variance sources. This is crucial for reducing bias and artefacts in 
the image when applying noise reduction filters. First, the difficulties in designing image-based 
filtering methods is presented using examples from existing work, and the significance of such 
techniques in realistic rendering is discussed. The main content of the chapter introduces a 
new clustering framework, allowing the compact storage of illumination contributions whilst 
enabling visual discontinuities to be detected. A novel filtering algorithm makes use of such 
clusters to preserve complex surface detail and respects illumination edges via a novel proba­
bilistic approach. A number of visual comparisons are made demonstrating the usefulness of 
the technique for complex materials and textures.

This thesis concludes with a summary of the techniques developed in chapters 5 and 6 , a 
discussion of their impact and potential for future work along with some insight into the still 
open and more general problems prevalent in photo-realistic rendering.

1.4 Achieving realism in rendering

In order to improve the quality of light transport simulation and strive for realism, it is important 
to determine what qualities are essential for tricking the human visual system into believing 
the reality of synthesised images, and those that can easily destroy such perceptions. In this 
section, types of visual phenomenon and cues are discussed that commonly present themselves, 
along with those that are less frequently observed or that our visual systems are less sensitive 
to. This provides an abstract model of light transport that both maximises its potential for 
realism and minimises complexity, making implementation easier.

1.4.1 Physically-based light transport

Techniques in rendering are focussed towards achieving photo-realism (within some constraints), 
but the way in which this is accomplished can vary greatly. Thus to understand the place of this 
thesis in the vast field of rendering, an important distinction must be made. Many algorithms 
such as ambient occlusion techniques [MFS09] attempt to produce photo-realistic effects but 
through the use of arbitrary illumination terms and unit-less quantities. Although they can be 
convincing under certain conditions, this lack of realistic foundations mean they cannot easily
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1. Introduction

achieve photo-realism, requiring considerable parameter tweaking to obtain the desired result 
[MHH+12].

Conversely, physically based rendering techniques have more rigorous theoretical and 
mathematical underpinnings. They can be thought of as numerical simulations of the behaviour 
of light within a virtual environment, designed to be as close to physically valid as possible. 
Physical laws such as the conservation of energy and optics in the real world thus form the crux 
of such techniques, partnered with units of measurement from radiometry. Consequently, they 
can provide unrivalled realism and an intuitive method of achieving realistic results.

1.4.2 Models of light

The key to efficient synthesis of photo-realistic imagery in practice is tightly coupled to the 
concept of perceptual necessity. Whilst science has a seemingly rigorous understanding of op­
tical physics and electromagnetic radiation down to the quantum level, and could endeavour to 
simulate it accurately, it is unnecessary for the majority of applications. Instead, an abstraction 
can be created, simulating only the phenomenon that are evident in the output for a particular 
application. In this work and in the majority of computer graphics literature, this abstraction 
is based on the physical effects that manifest themselves as the visible phenomenon observed 
in everyday life. Hence, it does not fit neatly into a standard optical physics model (itself 
comprised of both wave and particle theories), so must be drawn from multiple models. Here, 
a brief overview of the noticeable lighting phenomenon observed around real environments, 
and a discussion on their typical relevance and development in physically based rendering is 
provided.

1.4.2.1 Geometrical Optics

The majority of optical effects observed in everyday environments, and hence simulated in 
computer graphics, can be explained using a geometrical (or ray based) model. Such a model 
follows the particle like behaviour of light, where it is assumed to travel in straight lines instan­
taneously between points. This geometric model provides an excellent simplification of light 
propagation when dealing with objects and features significantly larger than the wavelength of 
visible fight, commonly the case in rendering for scenes of macroscopic scale.

Reflection is the primary mechanism that allows visual systems to obtain information about 
their surroundings, and can be fundamentally categorised into specular and diffuse scattering. 
Specular (mirror-like) reflections follow the law of reflection in which for any incoming ray of 
fight there is only one outgoing direction. Despite its simplicity it is not trivial in a rendering 
context, since obtaining clear mirror like reflections requires accurate evaluation of the fighting 
along the outgoing direction, requiring a multi-pass or recursive approach. Diffuse reflection 
occurs, when fight arriving at a surface is scattered in many directions on account of numerous 
small scale interactions, some of which is reflected towards the eye. Due to their dominance in 
common environments, diffuse reflections are the basis of most shading algorithms in computer 
graphics, providing a sense of depth and making geometric detail visible. In physically-based 
rendering, the appearance of a wide range of materials can be modelled by distribution func-
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1.4. Achieving realism in rendering

tions which represent the proportion of light reflected in a particular direction. Such functions 
vary greatly in complexity, and commonly used distributions are covered Chapter 2.

Participating Media accounts for the scattering, absorption and emission of light in 3D 
space between surfaces. Typical examples are waterborne or airborne particles such as dust, 
fog and smoke. Participating media is responsible for effects in atmospheric optics such as 
sky appearance and colour shifts seen at sunrise and sunset, as well as rarer events such 
as crepuscular rays [TV08, LL01]. In computer graphics, realistic analytical daylight mod­
els [PSS99, HMS05, HW12], have enabled accurate rendering under natural lighting con­
ditions and phenomenon such as rainbows and halos have also seen physically-based solu­
tions [REK+04, KFY+10]. Light transport for participating media is classified into two main 
groups; homogeneous or inhomogeneous. The scattering, absorption and emission of homoge­
neous volumes remain constant throughout their spatial-extent, allowing them to be modelled 
in closed-form. Inhomogeneous media are more complex, normally requiring the evaluation of 
integrals via Monte Carlo methods [YIC+10]. Often, participating media is absent or ignored 
since its effect on the image is not offset by the additional computation required to simulate 
it. Commonly, extensions to incorporate homogeneous participating media are relatively sim­
ple in ray based light transport methods, since the effect of absorption and scattering can be 
computed along a ray with known endpoints.

Subsurface scattering is closely related to participating media, but describes the scattering 
of light under the surface of translucent objects, modelled as an extension to reflection models 
[JMLH01]. Light penetrates the surface of translucent and transparent materials undergoing 
scattering and absorption internally, exiting at a different point on the objects surface. This 
enables materials such as porcelain and marble to be modelled more realistically and the visual 
appearance of many organic materials such as skin is also dominated by subsurface scattering 
[Tuc07] making it an important aspect of realistic rendering.

Refraction is the bending of light at surface boundaries when light passes between medium. 
Due to the laws of energy conservation, its phase velocity changes according to the density 
change between the two medium and the incident angle at the boundary. Systems of lenses in 
cameras, microscopes and the human eye rely on refraction to manipulate light for magnifying 
and focussing images on the sensor or retina. The behaviour of light at such interfaces can be 
modelled using the Fresnel equations [Gla95], predicting the fraction of light that should be 
reflected or refracted at the boundary for a light ray incident at a given angle.

Refraction is also responsible for mirages and heat haze commonly seen above hot sands 
or tarmac caused by the refractive index of air changing due to variation in the air temperature, 
as heat is convected away from the hot surface. This refraction in so called non-constant media 
do not occur at surface boundaries and are inhomogeneous due to the variations in temperature, 
breaking down the assumption that light travels in straight lines. This makes visibility queries 
challenging and due to their rarity, such complex effects are generally ignored.
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Dispersion is the result of visible light becoming spatially separate into its component colours 
when undergoing refraction through so called dispersive media. This is a result of the wave­
length dependent response to interactions with certain materials. Rainbows are a naturally 
occurring example, as well as the brilliance associated with cut diamond, but such effects 
also play an important role in industries such as lens design and fibre optic communications, 
leading to artefacts such as chromatic aberration. Rendering algorithms commonly treat light 
as monochromatic, assuming light behaves as a single wavelength in order to simplify com­
putation. Ray based rendering can account for dispersion on demand, creating one or more 
monochromatic rays to replace a single polychromatic ray when dispersion occurs, discussion 
of which can be found in [SFDOO].

1.4.2.2 Light as Waves

Light is also known to have wave like behaviours, approximated by Maxwell’s equations of 
electromagnetism [Gla95] that account for more complex phenomenon generally explained by 
the presence of electric and magnetic fields. Less noticeable phenomenon such as diffraction, 
interference and polarisation can be explained under this model. Though commonly not ac­
counted for in mainstream rendering, such effects are still important from a physical realism 
standpoint and require consideration during material and implementation design.

Diffraction is the bending of light around near field obstacles. The famous double slit ex­
periment of Thomas Young was an example of such a phenomena, and strongly supported the 
theory that light consisted of waves. Diffraction generally only leads to observable phenomena 
when the relative size of the objects is close to the wavelength of visible light, far smaller than 
the scale usually dealt with in computer graphics. Despite this examples such as the colourful 
reflections from a compact disc and the blooming effect from strongly backlit objects have 
seen increased research attention in recent years. Stam [Sta99] developed a shader model for 
local surface based diffraction. Recently, Zhang and Levoy [ZL09] linked techniques used in 
geometric optical simulations to light field representations used in computer graphics allowing 
Oh et al.[OKG+10] and Cuypers et al.[CHB+12] to formulate local reflectance functions that 
can be used to implicitly simulate global interference patterns through the addition of phase in­
formation to each ray. This allows for far simpler integration of diffraction effects into existing 
ray-based global illumination Tenderers without modification, making use of existing sampling 
techniques for acceleration.

Phase and Coherence The effects of diffraction are observable due to wave coherence, a 
product of correlation between the phases of light waves in which their effect is either in­
creased or decreased non-linearly depending on their phase difference. The majority of light 
is incoherent, and as such the intensity of light rays along a given trajectory scales linearly 
with the number of rays. For coherent rays this is not the case, and leads to interference pat­
terns such as those observed during Young’s double slit experiment. Such effects are important 
in rendering thin transparent films, such as oil spills or anti-glare coatings on optical lenses, 
where a light ray can be internally reflected several times within a space similar to its wave-
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length, superimposing upon itself before escaping the film. The synthesis of such effects is 
approximated in some modem rendering frameworks such as LuxRender [Lux 13].

Polarisation Polarisation is arguably the most relevant phenomenon for computer graphics 
that arises from a wave based model, and can be thought of as the superposition of two trans­
verse waves with the same trajectory, oscillating perpendicular to one another. Unpolarised 
light exhibits little correlation between the phase of these two waves, and upon scattering these 
waves may undergo changes in phase as a result of the material’s electric field, causing them to 
become polarised to some degree. Photographers and sunglasses manufacturers use polarising 
filters to reduce light transmission from reflections and the sky, blocking waves of certain po­
larisations, increasing contrast and colour saturation whilst reducing glare. Fresnel equations 
that model refraction and reflection are affected by polarisation, and it can play an important 
role in accurately rendering inter-reflections. In depth discussions and implementations of po­
larisation based ray-tracers have been presented recently in SIGGRAPH courses by Wilkie et 
al.[WWll, WW12].

1.4.2.3 Quantum Effects

At its most fundamental level, light can be thought of as discrete packets of energy, or quanta, 
that can describe fundamental properties of energy across many areas of physics. In light 
transport, there are few visible effects that require such fundamental principles. The most 
well known and commonly observed of these are fluorescence and phosphorescence; photo 
luminescent effects whereby light of a given wavelength is absorbed and emitted at a different 
visible wavelength. However, since time dependent effects are rarely seen and the steady-state 
model used in rendering is highly convenient for all other fight transport, they are often ignored. 
Effects arising from magnetic or gravitational fields, non-Newtonian physics and the theories 
of relativity are ignored, since they are not applicable to general applications, although some 
have seen ray tracing based simulation [TM10].

1.4.3 Realism vs Photo-realism

The goal of photo-realism is to produce imagery of a virtual environment that is indistinguish­
able from a photograph of the same scene in the real world. The need for accurate models of 
fight transport and materials has been discussed, that simulate phenomena observable by the 
human visual system. Natural fighting models in the allow us to reproduce realistic conditions, 
and man made light sources can be modelled via accurate geometric representation and manu­
facturers fighting data. Lack of realism can also stem from artistic elements such as absence of 
dust, dirt and weathering in a virtual environment, or overly perfect geometry that is free of the 
deformations either found naturally or from imperfect manufacturing processes. Although true 
realism of the human visual system may be the ultimate goal, this is fundamentally difficult to 
both achieve and verify. The organic and interpretive nature of the human sensory system dic­
tates that no quantitative comparisons can be made between synthesised imagery and real world 
environments. Thus even if the aim is to obtain techniques that produce truly realistic imagery, 
how would such techniques be evaluated? Electing instead to attain photo-realism means that
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Quantity Name SI Units Photometric Equivalent

Q Radiant Energy J Luminous energy
Flux (Radiant power) W Luminous Flux (Luminous Power)

E Irradiance Wm~2 Illuminance
M Radiant exitance (or Radiosity) Wm~2 Luminosity
L Radiance W •sr~1 -m~2 Luminance

Table 1.1: Radiometric terms and their photometric equivalents used throughout this thesis, 
along with their symbols and SI units.

results can be validated against quantitative data from actual camera sensors, providing like for 
like comparisons.

If the desire of photo-realistic rendering is to recreate scenes as if obtained through photog­
raphy, then it is also necessary to simulate the characteristics of camera and lens systems that 
record such images. Camera flaws and imperfections come under the realm of rendering rather 
than artistic realism, since they are derived from physical effects of light transport through 
the lenses and apertures. Artefacts such as chromatic aberration, vignetting, bloom and glare 
come into this category, but as yet there has been limited research into the physically-based 
simulation of such effects in conjunction with global illumination or ray-based techniques. 
Lee et al.[LES10] explore real-time ray tracing based methods to emulate multiple lens ef­
fects including aberration and focussing effects such as curvature of field and tilt-shift. Hullin 
et al.fHESLl 1] present a physically-based lens-flare model, rendering convincing and com­
plex lens flare effects with reference to existing camera lenses. Being inherently free from 
lens artefacts and having the capability to synthesise such imperfections on demand enables 
photo-realistic rendering to produce results rivalling those obtained with expensive camera and 
lighting equipment, and for many years has provided an increasingly cost effective alternative 
to conventional photography.

1.5 Radiometry and Photometry

In solving global illumination, the steady-state distribution of light within an environment 
is computed, assuming instant propagation between surfaces. Synthesising the phenomenon 
discussed above requires an understanding of the physical quantities that describe how light 
energy is distributed. The field of radiometry is concerned with the measurement of elec­
tromagnetic radiation, and an overview of relevant theory is discussed in this section. An 
overview of the main radiometric quantities are outlined in Table 1.1. Flux d>, measured in 
Watts (W = Js~l), is the basic unit of energy in rendering since a time independent model is 
assumed. To compute light’s interaction with objects, the flux flowing through a surface per 
unit area, known as flux density needs to be computed. It is often useful to differentiate between 
flux arriving and leaving a surface, referred to as irradiance and radiance exitance respectively.
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Flux density is expressed in Wm 2:

dA
Flux can also be expressed with respect to solid angle; the 2D area subtended by a region from 
a point x in space, projected on the unit sphere at that point. Using solid angle as opposed to 
unit area is convenient when dealing with point-based light transport and abstractions such as 
point light sources for which surface area is not well defined or differentiable. Perhaps the most 
fundamental and most useful quantities in rendering is radiance. Radiance is the flux density 
per unit projected area, per solid angle:

L _  d<E _  d3>
dwdA-1- dmdAcosO

The area measure dA is projected perpendicular to the direction (O that we are concerned 
with to form dA-1. However we also need to account for the angle of (0 with the surface normal 
at the point x, since the flux arriving through dA-1- is spread out over a larger area than dA1 . 
The cosine term handles this change in area.

Using radiance allows us to simplify the modelling of light transport. Expressing quantities 
in radiance allows the computation of point to point energy transfer, invariant along straight 
paths and which does not decrease with distance. This makes it a natural quantity to use in 
partnership with ray tracing for solving visibility and occlusion queries. Furthermore, given 
the radiance at a point, all other measurements can be calculated as an integral of radiance over 
direction or area. It is therefore a useful quantity for the basis of a single rendering framework 
designed to handle many types of light transport algorithm.

1.5.1 Photometry

For most applications of realistic rendering discussed in this thesis, the requirements for real­
ism are based upon the ability of the human visual system to detect non-realistic effects and 
artefacts. It is therefore logical to touch on the implications of visual perception and how 
radiometric quantities are perceived by the human visual system.

Photometry is the perceptual measurement of radiometric quantities with respect to the 
human visual system. Due to the receptors that compose the human eye, its sensitivity is 
wavelength dependent, this differences between radiometric measurements do not reflect the 
perceptual disparities humans observe. Photometric models attempt to weight the measured 
radiance at each wavelength to represent the eye’s non-linear response in a more linear fashion.

Each radiometric quantity has a photometric equivalent. Accurate conversion of quantities 
between the two systems requires integration over spectral response curves, however due to the 
properties of the receptor types that make up the human eye, this response curve is highly de­
pendent on environment and context. Often these models are too costly to apply to rendering, 
and so approximations are used, ignoring contextual influences. A convenient representation 
for rendering are perceptual colour spaces, such as CIE XYZ and its derivatives, whose tristim­
ulus values are designed to be analogous the trichromatic vision of the human eye. Conversion 
between colour spaces such as RGB to CIE XYZ are simpler and more efficient for computing 
perceptual differences during rendering.
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1.5.1.1 Visual Perception

Quantitative measurements in photometry are useful, but to leverage the limitations of the 
human visual system in rendering requires complex models derived from experimental psy­
chophysical data. How humans interpret changes in illumination depends on many spatial 
factors (and temporal factors in animation), including the brightness of the environment, local 
contrast and dynamic range. More discussion of perceptual phenomenon and models used in 
computer graphics can be found in [FPSG96, MTAS01, CCM03, RPG99]. Complex models 
begin to account for phenomenon such as threshold and contrast sensitivity, visual attention 
and temporal effects, providing adaptive rendering methods that concentrate on perceptual 
artefacts, as opposed to regions exhibiting potentially imperceptible numerical error. Such 
techniques have shown considerable efficiency improvements, and further investigation into 
easy to integrate spatial and temporal perception models coupled with smart adaptive render­
ing may provide more widespread benefits to rendering.

1.6 Conclusion

This chapter has introduced important concepts for understanding light transport phenomenon, 
their origins in optical physics theory, and the complexity of simulating them accurately in 
virtual environments. Radiometric quantities relevant to global illumination and the work pre­
sented in this thesis have been presented, and the importance of their photometric counterparts 
has been discussed. This chapter also outlined the importance of visual perception in rendering 
for many applications, both as an indication of realism and a tool for improving performance 
for global illumination. It is these realism and efficiency characteristics that dictate the suc­
cess and widespread adoption of ray based global illumination in numerous industries and for 
non-commercial purposes.
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Although the use of Monte Carlo methods to evaluate light transport forms the backbone of 
this work, there are a great many factors that influence the perceived realism of a scene in 
any rendering system and its overall performance. The representation of each component of 
a virtual environment must be considered in order to simulate its light transport effectively 
and efficiently. The design and modelling of geometry, light sources and the light scattering 
properties of materials in addition to the virtual camera model all have significant influence on 
the perceived realism and visual appeal of the final image. While highly accurate models of 
each are desirable, they can be impractical and the trade-offs between realism and performance 
need to be considered.

In this chapter the most significant of these components will be discussed, and a brief 
overview of their mathematical representations will be presented to provide a background to 
physically based rendering systems. Reference to recent relevant literature and texts for further 
reading will be provided.
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2. Physically-Based Rendering

2.1 Ray casting and primitive intersections

Building upon the largely ray-based model of light established in Section 1.4, the most fun­
damental definition is that of a ray segment representing the path of a light ray in the scene. 
Parametrically a ray segment can be represented by:

r(o,d) =  o + t -d

where o is the ray’s origin, d is its direction in 3D space and t £ [0,°o)M is the distance along 
the ray which, with d, dictates the end point of the ray segment.

The initial challenge is to identify for a given ray which object in the virtual environment 
(if any) the ray intersects first from o to determine visibility (known as ray casting). Perhaps 
equally importantly, the precise point on the object the ray hits and the distance between the 
ray’s origin and the object intersection (t) need to be established in order to propagate light 
around the scene and accurately compute shading. As a result the ray casting function can be 
defined as:

r(o,d) =  x 6  S\x =  0  +  min{f|(0 -|-J -d) £ S} -d

such that x is the closest ray intersection point on the scene geometry S from o. This is funda­
mental to discussing the simulation of light transport throughout the thesis.

Naively, evaluating this function requires the ray to be tested with every object in the scene. 
For anything but non-trivial scenes this is impractical due to the computational cost of ray- 
geometry intersections, which is typically the most expensive aspect of any ray tracing based 
Tenderer. Typically the term ray tracing is used to describe algorithms based on ray casting 
principles, which trace rays recursively or account for some level of secondary effects (in our 
case illumination) in addition to visibility.

Modem scenes can typically contain in the order of 104  to 106 individual geometric prim­
itives, G, (shapes such as triangles, quadrilaterals or parametrics), and G can reach 108 for 
highly detailed models. To produce a basic ray cast image of N  pixels, assuming constant il­
lumination requires a minimum of one ray to evaluate Equation 2.1 for each pixel. For high 
resolution renders, N  is often in the order of 107 pixels, and the need for additional rays R, 
to account for anti-aliasing, light source occlusion tests and global illumination can easily in­
crease the total number of rays by an order of magnitude above the N  pixel count of the image. 
Thus, effective acceleration techniques are critical to the success of ray tracing to reduce its 
naive complexity of O (N-G-R).

2.1.1 Acceleration techniques

As the earliest set back for ray tracing’s widespread use, the need to accelerate and reducing 
the computation required for visibility testing is still a challenge tackled by many researchers 
today. The most effective techniques to date employ spatial partitioning, to subdivide the scene 
space into disjoint subsets, grouping primitives within a given volume. If no ray intersec­
tion is found for the bounds of a given partition, the primitives within that set do not need to 
be checked further, allowing rapid rejection. Such schemes incur small computational over­
heads due to testing against the bounding volume, but the overall computational savings are
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far greater if the bounding volumes are constructed carefully. Havran [HavOO] notes that the 
quality of such partitioning schemes is reliant on two key properties:

• Relative volume: If a ray intersects the bounding volume, then the probability that the 
ray also intersects the object should be maximised.

• Efficiency: The intersection test between a ray and the bounding volume should be as 
computationally cheap as possible.

Havran’s Ph.D. thesis [HavOO] provides a thorough discussion on ray casting and acceleration 
data structures with particular insight into traversal algorithms.

Such criteria have significant implications in the design and implementation of accelera­
tion data structures, especially when dealing with hierarchical approaches which provide fur­
ther improvements. The remainder of this section will give an overview of the predominant 
techniques in used today and provide reference to the literature for further reading.

2.1.1.1 kD-TVees

The k-Dimensional tree kD-tree belongs to the family of binary spatial partitioning trees (BSP- 
trees) and was introduced by Bentley [Ben75, FBF77]. It is widely used in search problems 
including clustering, density estimation and image processing [AGDL09] due to a number of 
desirable properties including:

• application to arbitrary dimensions (hence kD)
• providing adaptive partitioning of the domain to suit arbitrary data distributions
• supporting a flexible, heuristic-based approach to construction
• achieving fast traversal due to axis-aligned split planes

It consists of a binary tree in which each non-leaf node contained an axis aligned hyperplane 
spatially dividing the domain and hence the data elements within that node. They are con­
structed in a top down fashion such that the root node of the tree encompasses the entire do­
main. Construction of the tree is performed through a series of repeated steps:

1. A dimension d e  k and data element e in the current node are chosen according to a cost 
heuristic to determine the location of the partition.

2. The data elements in the node are classified into two sets according to their location in d 
with respect to the split plane.

3. Bounds are computed for the two child nodes based on the split plane, and the data 
elements passed to the correct child.

4. Termination criteria are checked and if not met, the process is repeated from step 1 with 
the two child nodes.

The kD-tree has been one of the primary data structures in ray tracing since its introduc­
tion, and the cost heuristic is arguably the most influential component of the kD-trees success
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and hence has seen much research [FS88, SF90b, SF90a]. MacDonald and Booth [MB90] in­
troduce the surface area heuristic (SAH), that is a locally greedy cost model that attempts to 
maximise the ratio of data elements to node surface area, in line with the properties discussed 
above. A special case of such a heuristic is that empty regions of the domain can be cut off 
more favourably, making traversal of these regions almost free [HavOO, HKRS02].

More recently, focus has shifted towards improved construction times for acceleration data 
structures, with the accessibility of ray tracing dynamic scenes at interactive and real-time 
frame rates, which are dependent on the total time from the geometry updates through to final 
image rendering, incorporating the construction times as opposed to just query performance. 
Thus research focussed on achieving asymptotically faster kD-tree construction in O [NlogN) 
time [WH06] and using approximation techniques to speed up the classification step [PGSS06, 
HMS06] and to provide parallel construction techniques for kD-trees [ZHWG08, SSK07]. This 
shift towards deformable and fully dynamic scenes has popularised alternative schemes for 
partitioning schemes as a replacement to the kD-tree.

2.1.1.2 Bounding Volume Hierarchies

Bounding volume hierarchies (BVHs), introduced to ray tracing by Goldsmith and Salmon 
[GS87], share many properties with kD-trees such as their adaptive nature and reliance on cost 
based heuristics for construction. However while kD-trees rely on spatial-division, and produce 
spatially disjoint sets, BVHs work via object-division thus child nodes are disjoint with respect 
to the geometry they contain, but can overlap in the spatial domain. Spatial subdivision like 
the kD-tree can result in duplicating references to geometric data held in the tree if it overlaps 
a given split plane, increasing memory consumption relative to object subdivision approaches 
like the BVH. As well as improved memory usage, which is often the bottle neck for modem 
hardware, object-subdivision permits additional flexibility when dealing with deformable ge­
ometry where small changes in geometry can be handled by incremental updates rather than a 
full rebuild of the data structure [Gar08]. Conversely, since they overlap spatially the traversal 
costs and hence query performance for BVHs can be reduced, which can be exacerbated under 
non-uniformly tessellated geometry. As a result a number of techniques have addressed this 
using a subdivision pre-process over the geometry [EG07, DK08] but this adds computation 
and memory usage that can be difficult to manage. Like kD-trees, the construction of BVHs 
has also seen attention [WBS07, WIP08].

Characteristics and advantages of both object-partitioning and spatial-partitioning have 
been researched and debated for many years, but more recently hybrid approaches have been 
proposed in an attempt to minimise the drawbacks of each. Stich et al.[SFD09] introduce spa­
tial splits to BVH constmction, evaluating both BVH and kD-tree style splits for each node, in 
a single data structure. This can provide improvements for static data or computing global illu­
mination, where the constmction cost of the data structure is a small proportion of the overall 
time to image. For dynamic scenes and interactive ray tracing, the near O(nlogn) constmction 
complexity of hierarchical bounding volumes can be too high, hence alternative approaches 
have been developed.
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2.1.1.3 Grids

Perhaps the conceptually simplest of all acceleration data structures is the uniform grid, provid­
ing subdivision into fixed sized volumes throughout a given dimension of the domain resulting 
in predictable traversal computation. Construction is linear with respect to the number of el­
ements being partitioned [ISP07], and hence are highly appropriate for fully dynamic data. 
Their shortcomings however are their non-adaptive nature, performing poorly under skewed 
data distributions due to their inability to subdivide regions with large quantities of data. Adap­
tive grids [KS97] provide a hierarchical approach to grid construction, nesting uniform grids 
inside non-empty nodes to provide a shallow adaptive hierarchies.

Fine grids can improve traversal performance, but for sparse data can incur high memory 
overheads, due to the number of empty cells still held in memory. Lagae and Dutre [LD08] 
present a hashed grid approach to minimise memory usage. Optimising grid construction for 
the GPU has also been investigated, for example in [KBS 11] using a two-level hierarchical 
approach.

2.1.2 Specialised data structures

In addition to their general use in ray tracing, research has also focussed on specialising data 
structures to improve performance for particular ray tracing tasks. Djeu et al.[DKH09] utilise 
empty kD-tree nodes inside watertight meshes to represent occlusion volumes for fast shadow 
ray tests when coupled with a modified traversal procedure. Hunt and Mark [HM08b, HM08a] 
tailor axis aligned data structures to perform better for primary camera rays using a perspective 
transformation of the axis-aligned split planes.

Designing for hardware Orthogonal to much of the work discussed here, improving traver­
sal performance by designing around bottlenecks of current hardware has seen notable im­
provements. Packet based ray tracing for coherent rays (such as rays for soft shadow tests or 
primary camera rays for visibility) has been studied for example in [BEL+07, GL10, GPSS07, 
WGBK07, RSH05] to leverage the similarities in trajectory of rays when computing inter­
section tests. However such approaches are not so suitable as ray coherence breaks down, 
requiring sorting and filtering to improve coherence [Tsa09] but is likely to provide little ben­
efit to the incoherence found in global illumination and attempting to extract similar rays can 
restrict and complicate the rendering system architecture.

Making use of SIMD architecture of modem CPUs has been studied by Dammertz et 
al.[DHK08] and Wald et al.[WBB08], who increase the arity of the BVHs to match the num­
ber of SIMD lanes, moving away from binary trees towards shallower hierarchies that allow 
all child nodes to be intersected in parallel with a given ray.

2.2 Surface representation

Ray tracing provides a mechanism for computing visibility between objects and propagating 
light through free space. Once visibility has been determined, the appearance and shading of 
the object from the view point must be established. The interaction of light with surfaces is
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Figure 2.1: Illustration of the geometric factors affecting the value of a BRDF f r(x, ©,0)')

complex, and dependent on a larger number of factors including properties of both the light 
arriving at the surface, and the composition and geometry of the surface itself at that precise 
location:

• Surface position,
• Relative viewing direction,
• Relative light source location,
• Wavelength of light,

For physically-based rendering, dependence on the lights wavelength is accounted for by eval­
uating the scattering of light for each wavelength independently, such that the scattered illumi­
nation is a multidimensional vector (of 3-dimensions in the case of RGB rendering). In practice 
the remaining factors can be divided into two distinct types:

• Positional variance, of the surface location,
• Directional variance, of the incident and exitant angles,

which was established by Blinn [BN76, Bli77], and form the foundation for many of today’s 
rendering systems. The positional variance on a surface is responsible for adding detail, such 
as grains and knots in wood or patterns in wallpaper and is achieved through texture mapping.

Directional variance is arguably more significant for improving the realism of materials in 
rendering since in general the amount of light transmitted (and hence also absorbed) from a 
surface is dependent on the location of the viewer and light source relative to the local surface 
geometry. Functions describing this directionally variant scattering are known as Bi-directional 
Surface Distribution Functions, or BRDFs.

2.2.1 Bi-directional Surface Distribution Functions

Given a position x on a surface, a BRDF describes the proportion of fight Li arriving from an 
incident direction (O that is scattered towards an outgoing direction (o' as outgoing fight L0 
(Figure 2.1). BRDFs are commonly written as f r(x, (o', (o') (although other notation is also 
useful, and will be introduced later in the chapter). To provide accurate appearance models and 
adhere to physically-based rendering principles, there are two key properties that must hold for 
all plausible BRDFs:
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• Conservation of energy: The total quantity of emitted light over the hemisphere at x, 
cannot exceed the quantity of incident light arriving at x.

• Helmholtz reciprocity: The value of the BRDF is constant with respect to the lights 
direction of travel, thus f r(x, ft)', ft)) =  f r(x, ft), ft)').

Together these properties ensure that light is in equilibrium for all points in the scene, and as a 
result there exists a steady state for which a solution can be found.

2.2.1.1 Analytical models

A wide number of BRDFs can be described analytically, using functions to dictate the distribu­
tion of incident illumination over the hemisphere and can compute the BRDF for a given pair 
of input vectors. These aim to be computationally inexpensive, and are successful in approxi­
mating a wide range of interesting materials.

The simplest and most well known BRDF is the Lambertian reflection model, which scat­
ters incident light equally in all directions over the hemisphere and is equal to £ for all ft) 
and ft)'. BRDFs with wide distributions over the hemisphere are referred to as low frequency 
BRDFs, and tend to produce soft indirect lighting.

In physically-based rendering, specular reflection and refraction from smooth conductors 
(eg: metals) and dielectrics (glass, diamond etc.) can be modelled using sets of Fresnel equa­
tions, describing the amount of light reflected (and hence refracted or conducted) for a given 
incident angle. This provides a more realistic appearance model than simple specular models 
that assume angle independent scattering.

Modelling rough surfaces Lambertian models are trivial to compute making them suited to 
high performance rendering. However their simplicity also neglects the more complex nature 
of real world materials. Perfectly smooth diffuse surfaces are uncommon in reality, so mod­
elling surface roughness is highly useful in producing realistic BRDFs. Achieving this can be 
done through the use of microfacets, which model a surface made up of many small flat faces 
(the microfacets) with shading normals oriented around the geometric surface normal accord­
ing to some statistical distribution. The facets are assumed to be significantly smaller than the 
area being illuminated, thus the appearance of the surface is considered to be the aggregate 
effect of many such facets. The roughness, and hence appearance of the material is dependent 
on a number of factors:

• Geometry model, describing the local lighting effects such as self shadowing and visual 
occlusion of the microfacets and interreflection.

• Statistical distribution, dictating the orientation of the microfacets which in turn pro­
vides the roughness of the surface,

• Facet BRDF, modelling the scattering of light for individual microfacets, as used when 
modelling a smooth surface.

Along with the distribution, allowing different scattering properties for individual microfacets 
makes it a highly flexible technique for modelling rough surfaces with diffuse or specular
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scattering. Microfacets are commonly associated with specular interactions, however Oren 
and Nayar [ON94] introduced a diffuse model that assumes a Lambertian scattering model for 
each microfacet, described using a Gaussian distribution, which produces more realistic results 
at shallow incident angles.

Torrance and Sparrow [TS67] introduced one of the earliest microfacet models for specular 
reflection, which is independent of the distribution of the microfacets themselves, so long as a 
specular BRDF is used for the scattering behaviour. Thus it can be used as a basis for many ma­
terials and visual appearance models combined with different distributions and facet BRDFs. 
Blinn [Bli77] introduced a distribution that describes an exponential falloff of facet orienta­
tions from the geometric surface normal, better approximating illumination for non metallic 
surfaces and side lit geometry making it useful for rendering shiny plastics and varnishes.

Anisotropic BRDFs So far examples have been given of isotropic BRDFs, which are invari­
ant with respect to the orientation of (o' and (O around the surface normal and tangent space. 
For example, the appearance of a sheet of plain paper when rotated about its normal does not 
change. Anisotropic models are dependent on this rotation around the surface normal, and 
thus are useful for modelling a range of materials such as brushed metals or fine woven fabrics. 
Most surfaces observed in the real world appear isotropic, like the sheet of paper, although they 
are unlikely to exhibit perfect isotropy due to small scale irregularities. For simplicity, they are 
commonly modelled using purely isotropic BRDF models in virtual environments.

Ward [War92] introduce an anisotropic BRDF based on an elliptical Gaussian function, 
whose distribution can be sampled from effectively (the significance of sampling outgoing 
directions from a surface using BRDF importance will be discussed in the following two chap­
ters). Ashikhmin and Shirley [ASOO] present an anisotropic microfacet distribution that is 
highly flexible, and can approximate both diffuse and specular materials of varying rough­
ness’s and anisotropies.

Measured data For more complex materials accurate analytical models are difficult to es­
tablish and limited functional light scattering models in turn limits the potential realism of 
rendering techniques. As a result data measured from real world materials (obtained using 
specialised equipment such as gonioreflectometers) can be employed to synthesise their ap­
pearance in virtual environments. An overview of such acquisition techniques can be found 
in [WLL+09]. Evaluating measured data usually requires interpolation methods [ZERB05] 
which can have a high impact on rendering performance due to the large quantity of data re­
quired to faithfully represent a BRDF. The realism that measured data can provide can however 
be unachievable via alternative methods.

Measured data for realistic BRDFs is available from, for example, the MERL BRDF 
database [Mitl3] populated using the work by Matusik et al.[MPBM03] which requires a 
lookup table for regularly spaced BRDF measurements without the need for interpolation found 
in irregular measurement data.
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2.2.2 Texture mapping

To provide surface detail, texture mapping can be applied that alters the effects of the BRDF 
scattering and is an essential part of realistic rendering. Such detail maps can be generated 
procedurally producing effects from simple functions like checkerboard or tiling patterns, or to 
synthesis complex natural materials such as marble, rock and snow using the pioneering work 
of Ken Perlin [Per85]. Like BRDFs, data can be acquired from the real world via photographs 
or computer generated images to provide improved realism.

Due to their fine detail, the use of texture maps can produce high variation in pixel values 
if appropriate filtering and anti-aliasing techniques are not used. Since both textures and image 
pixels have predetermined frequencies, based on the image or procedural function resolution 
of the texture, and the resolution of the rendered image respectively, this can cause severe 
artifacts. Luckily, both sample rates are known in advance, or can be approximated, and as a 
result the texture functions can be resampled to remove information of frequencies higher than 
the Nyquist limit of the image pixel filter [Ige99].

2.3 Light sources and emission

Illumination is a fundamental aspect of realistic imagery and without plausible representations, 
the lighting and the resulting realistic appearance of a scene can be weakened dramatically. 
Typically, the point light source is popular in computer graphics due to its simplicity, and due 
to its infinitesimal area and omni-directional distribution sampling and emission calculations 
are simple. Distant or directional light sources are also useful, in order to approximate light 
sources that are a long way from the scene geometry and have highly parallel rays.

However, neither approach is physically valid, since light sources in reality have finite 
area. As a result physically based rendering commonly uses area light sources, represented 
by geometric meshes with emissive properties. This makes illumination calculations more 
difficult, requiring integration over the surface of the light source in order to determine its 
contribution to the shading on a particular surface. Light sources that use complex meshes are 
however more computationally expensive, and as a result point and directional light sources are 
still useful in special cases to improve performance where their approximations are relatively 
accurate.

2.4 Light transport

Having identified some of the key components of physically based rendering using ray tracing, 
and motivation for their use, this section will discuss fundamental concepts and ideas to support 
an understanding of focus area of this thesis; light transport for global illumination.

Rigorous mathematical formulations of global illumination stem from its representation 
as a transport problem, where energy is propagated from one or more emitters, undergoing a 
number of interactions with the environment before being collected at a sensor. Mimicking 
the physics of light in this way is the most intuitive approach to tackle illumination of virtual 
scenes, accounting for light arriving directly at the camera sensor, and that which is scattered
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(a) Ray casting
E D L

(b) Recursive ray tracing 
ES*DL

(b) Global illumination
E (S \D Y L

Figure 2.2: Illustration and examples o f  (a) Ray casting (b) Recursive ray tracing which ac­
counts fo r  reflection and refraction and (c) Global illumination which adds indirect illumina­
tion. Only the method o f  light transport has changed in each rendered image, illustrating its 
importance in realistic image synthesis.

and provides a perception of the environment. Transport problems for global illumination ex­
hibit strong similarities with those established in the fields of radiative heat transfer, acoustical 
engineering and particle physics problems, from which many concepts are borrowed (such as 
Monte Carlo integration) to aid computer graphics.

This section will introduce mathematical formulations for light transport and briefly discuss 
the complexities of solving light transport accurately. This leads into an appreciation for the 
need for Monte Carlo integration techniques, which is the focus of the next chapter, and the 
basis for the work presented in this thesis.

2.4.1 Ray tracing

Turner W hitted’s [Whi80] recursive ray tracing builds upon ray casting from the camera to 
account for shading at surfaces using ray recursion (Figure 2.2). Unlike physical light transport, 
ray tracing is performed backwards from the camera to the light source(s) in the scene to reduce 
computation. In reality, only a small fraction of the light emitted actually hits a camera sensor
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or the human retina, and hence is of interest in simulations, making backwards ray tracing 
a better approach. Casting a primary ray from the camera r(jco, to), provides a point x\ on 
a surface visible from the camera (if one exists). From this, information about the surface 
geometry, BRDF and texture detail at that location can be provided for use during shading.

Secondary rays are then spawned from x\ to include illumination effects, and can take one 
of three forms depending on the surface characteristics. Diffuse surfaces spawn shadow rays 
explicitly linking x\ to one or more light sources in the scene, y to compute an estimate for the 
radiance arriving at jci . For specular surfaces, explicit shadow rays will return zero radiance 
due to the narrow distribution of the BRDF, so instead secondary rays are cast along the angle 
of reflection or refraction recursively until reaching a light source or diffuse surface Xd, from 
which a radiance calculation can be performed. This sequence of points (known as vertices) 
forms a path through the scene. Typically, the number of vertices in each paths is controlled 
by terminating the recursion after a specified number of iterations to improve performance and 
prevent infinite recursion, for example in the case of light bouncing between a set of mirrors.

2.4.2 Path space

Light transport is discussed in terms of paths between the camera and the light sources, carrying 
importance or radiance depending on their origin. Due to the complexity of path construction 
and their characteristics it is useful to adopt a number of concise notations when discussing 
light transport in depth. Path space is the set of all possible paths £2* between any two points 
in the scene of any length:

oo

£2* =  (J  £2jt
J t = i

where k is the number of connections (rays) that form a path with k + \  vertices. In most 
cases, only paths formed between the camera and the light source are of concern, since paths 
outside this set do not contribute radiance to the image. Ray casting only deals with path space 
of length one (ie: £2i), connecting pixels on the camera sensor to visible points in the scene. 
Adding shadow rays extends this to paths in k < 2 (£2i U£22) where vertices are diffuse. Ray 
tracing additionally includes paths of arbitrary k when dealing with specular surfaces (due to 
its recursion) so does not fit neatly into this representation of path space. Instead, paths (and 
by extensions light transport algorithms) can be classified based on their interactions with the 
scene.

2.4.2.1 Path notation for surface interactions

It is often useful to know the type of interaction each vertex of the path has with the scene to 
provide a means of classifying paths based on the type of illumination they contribute to the 
image. Many algorithms are limited to specific types of light transport, or perform badly under 
certain conditions, it is useful to describe such paths succinctly. Heckbert [Hec90] introduced 
such a scheme based on regular expressions, using a single letter to represent each path vertex
1. Using this notation the space of all paths that connect the camera with the light sources can

!For those unfamiliar with regular expressions, A 1 denotes zero or one occurrences of A, A* denotes zero or 
more, and A +  one or more occurrences. {A\B)  denotes the option of A  or B
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be expressed:

L(S\D)*E (2.1)
where L represents an intersection with a light source, Vertices that lie on the camera sensor 

are denoted E (for eye). Specular and diffuse interactions are classified by S and D respectively, 
describing whether the light carried along the path has undergone specular or diffuse scattering 
at this vertex.

The order of the L and E is also convenient for denoting a path’s origin, and hence whether 
it propagates radiance from a light source, or importance from the camera. In practice L(S\D)*E 
and E(S\D)*L are equivalent with respect to path space. For recursive ray tracing, which ex­
tends from the camera the set of paths it handles can be denoted:

ES*D+L

Whitted’s ray tracing model thus accumulates radiance from light sources visible to the camera 
or through specular reflection or refraction, ES*L, and the path space ES*DL known as direct 
lighting accounting for shading at the first diffuse vertex. In order to compute global illumi­
nation, this path space needs to be extended to encompass all possible paths in Equation 2.1. 
Figure 2.2 shows the effect of rendering these additional paths, alongside an illustration and 
their regular expression notation. Diffuse inter-reflection is responsible for colour bleeding, 
and caustics can add high energy features, both of which are crucial for purveying realism.

2.4.3 Global illumination as an integration problem

The original ray tracing technique as proposed by Whitted deals strictly with perfectly Lam­
bertian reflectors in conjunction with purely specular surfaces and point light sources. This 
presents a significant simplification over the need to solve integrals, instead evaluating illumi­
nation from a number of discrete points in the scene. Extending this discretisation approach 
to handle soft phenomenon (such as shadows from area light sources) results in banding and 
image artefacts if carried out naively by sampling discrete points in the integral. To enable the 
use of more realistic environments, more advanced techniques are required that can handle this 
additional complexity efficiently without introducing artefacts.

Cook et al.[CPC84], applied random sampling to ray trace a variety of effects including 
soft shadows, motion blur and depth of field, allowing such phenomenon to be solved in their 
full integral form. Applied to ray tracing this still only accounts for directly visible effects, but 
treats ray tracing as a set of interrelated problems that together form a higher dimensional in­
tegral, as opposed to a series of individual integrals of low dimension which cannot effectively 
be solved on their own.

Kajiya [Kaj86] presented a recursive integral equation from radiative heat transfer literature 
in a form suitable for rendering global illumination. This extends the idea of Cook’s stochastic 
ray tracing, allowing the inclusion of indirect lighting; light scattered towards visible surfaces 
from other surfaces in the scene. The modem form of Kajiya’s rendering equation is the 
theoretical basis of today’s global illumination research and is commonly expressed as:

L(x!,co)=Le(xf,G))-\- L(x! ,(o')fr(x',(D,(o')cos(nx>,(o')&(d' (2.2)
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(a) Hemispherical formulation

xf
(b) Surface area (or three-point) formulation

Figure 2.3: Terms used in the two formulations of the rendering equation and light transport 
theory. Terms for the hemispherical formulation (Equation 2.2) using unit vectors 0) and (o', 
and the surface area (or three-point) formulation used in Equation 2.3.

which describes the total radiance L scattered in direction (O from a point xf on a surface in 
the scene (Figure 2.3a) as an integral of incoming radiance L from (o' over the unit hemisphere 
at xf, Q.x>- This also accounts for the emitted radiance Le originating from x! itself. Here 
the integral is . This equation assumes no participating media is present in the scene and 
hence radiance is not lost when travelling between surfaces, which is commonly the case. The 
rendering equation can be generalised to account for the scattering of light between surfaces 
and a concise discussion of participating media can be found in [JenOl] in the context of photon 
mapping.

Note that this formulation of the rendering equation integrates over the hemisphere at xf, 
which is convenient when dealing with ray tracing operations based on sampling using BRDF 
distributions. Alternatively, radiance can be integrated with respect to the surface area of ob­
jects visible from xf, which is convenient in some circumstances when discussing light transport 
between surface patches or from arbitrary points in the scene (such as light sources). Given 
two points x and xf (Figure 2.3b), the rendering equation at xf can be rewritten:

L(xf —> x) =  Le(xf —> x) +  —y x ')fr(xf' —> x! —> x)G(x" «->• xf)V(xf' •<-> x^dAy/ (2.3)

where S is the set of all surfaces in the scene. L(xf —> x) is the exitant radiance from xf to x. 
This is commonly known as the three-point or area formulation of the rendering equation.

The geometry term G(xf x!) appears due to the need to transform the integral from solid 
angle to unit area measure, accounting for the grazing angles of exitance at xf and angle of 
incidence at xf:

r ( j >  i \ .A  cos(n^ .1®) cos(iv , - 0 )
G{x x > “  p ^ T   ( }

where ||y —> x"|| is the magnitude of the vector from xf to xf, and 0  is its normalised unit 
vector:

xf —y xf
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The binary visibility function V ( x f ' x ' )  represents the mutual visibility between two points 
and ensures the propagation of radiance between xf' and xf:

In the solid angle formulation, this is implicit since vectors towards (0 and ft)' will only intersect 
visible geometry by definition of the ray tracing functions r(xf, to) and r{xf, (o') respectively. 
Equations 2.2 and 2.3 are equivalent, and provide useful formulations of the light transport 
problem, both of which will be used throughout this thesis.

The recursive nature of light transport becomes evident when radiance from surfaces visible 
over the hemisphere at xf must be included in L{xf —> x). Incidentally, radiance scattered from 
x itself towards xf (or via x" to xf) can also contribute to L(xf —> x). Hence in theory the integral 
over all surfaces in S must be evaluated, resulting in an infinitely recursive integral. Correctly 
estimating this indirect illumination accounts for the high complexity of global illumination. 
The rendering equation can therefore provide a theoretical framework for all physically-based 
fight transport algorithms. The rendering equation only describes how radiance travels around 
the scene. To obtain an accurate appearance of a scene, the importance of a region or point 
with respect to the virtual camera needs to be considered in addition to the propagated radiance. 
Importance W, is the dual quantity of radiance, hence substituting W for L yields an equation 
describing the flow of importance through a point:

By evaluating the rendering equation and accounting for camera importance, the measured 
radiance M  for any path can be computed. The measurement equation for a pixel p  is of more 
interest in global illumination, obtained by:

with the additional constraint that x is a point on the camera sensor inside the region of pixel 
p, with xf and xf’ in S.

In relation to our regular expression path notation for surface interactions, it is generally the 
case that paths of the form E...L propagate importance using Equation 2.5 and paths originating 
at a light source, L...E, transport radiance according to the rendering equation. In practice the 
mechanisms behind both are the same, but this distinction becomes important when discussing 
the operation of fight transport algorithms and their characteristics for evaluating complex fight 
transport.

0 otherwise.

We(xf x) +  JW (xf' x ) f r(x" —yx' —̂ x)G(x" o x')V{x" ++ x')dAx»

(2.5)

Mp =  J  W(x! , co)L(xco')fr(x', co, (o') cos(iv, (0,)dAx>d(0‘ (2 .6)

or using the area formulation:

Rp =  J W ( x —>x')L(x" x')G{x' xf^dAxdAx' (2.7)
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Conclusion This chapter has provided a brief overview of the fundamental components of a 
ray based Tenderer, and the accurate representation of virtual environments. A mathematical 
model of scene objects, and the means to solve visibility and occlusion queries between them 
using rays has been outlined. This included detailed discussion into the need for acceleration 
data structures for ray casting, providing much needed performance improvements over naive 
approaches.

The representation of materials using BRDFs and importance of their efficiency was pre­
sented along with details of the implementations used to produce images in this thesis. The 
application of texture maps has been mentioned as a convenient method of adding the fine 
detail necessary for realistic renders. Further discussion of common light sources and camera 
models followed, as a means of modelling and measuring light emission in the scene.

This chapter concluded with a discussion of fight transport using ray tracing, and the need 
for recursive evaluation to tackle the complex problem of indirect fighting. Fundamental equa­
tions in the theory of light transport such as the rendering equation were introduced, and nota­
tion used throughout the remainder of the thesis was established including the concept of path 
space and the concise regular expression notation used to describe it.

With this theory of fight transport in mind, the next Chapter will discuss the mathematical 
background to Monte Carlo integration and stochastic sampling, fundamental to state of the art 
techniques for global illumination.
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Chapter 3

Monte Carlo Integration and 
Rendering
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This chapter provides an introduction to Monte Carlo integration, and discusses its use and im­
portance in solving the rendering equation for global illumination. It will provide a foundation 
for understanding the complexity of high dimensional problems, and motivation for applying 
probabilistic and stochastic (random) theory in order to provide efficient solutions. Several 
approaches to improve sampling distributions and reduce variance for stochastic methods will 
be discussed, along with a discussion on more advanced adaptive sampling techniques.

3.1 Probability theory

Probability theory, as a basis for statistics, is an essential tool for understanding and modelling 
the behaviour of large and complex systems. From the discussion of physical models of illumi­
nation in Chapter 1, light transport is one such a system and probabilistic methods are crucial in
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reducing the complexity involved in simulating it. Building upon probabilistic methods allows 
a good estimate to the solution of a complete system to be obtained with only partial knowl­
edge of its state. Computationally, this means that accurate models of complex systems can be 
acquired more cheaply than brute force approaches, providing such stochastic and probabilistic 
techniques are used appropriately.

Random variables are used in mathematics to describe the possible outcomes of a stochas­
tic experiment, based on the occurrence of random events. A random variable X  may take 
on any one of a number of possible values, each with an associated probability p(X) of be­
ing chosen, where 0 < p(X)  < 1. Such variables can be either discrete (whereby the number 
of possible outcomes is countable), or continuous where it could take on any one of an infi­
nite number of values within some specified interval or intervals, denoted £1 1. In turn such 
interval(s) can be finite or infinite.

In computer graphics we deal with both discrete and continuous random variables usually 
within finite intervals. Take the example of selecting a point on the surface of an object in 
a scene. There are countably many objects hence a finite number of outcomes, but for each 
object there are infinitely many points on its surface that can be chosen 2.

3.1.1 Probability distributions and density functions

Values for random variables are drawn based on a probability distribution function, that de­
scribes the likelihood of the random variable to take on a given value. The term probabil­
ity density function generally applies to continuous domains and probability mass function is 
used in the discrete case. In this thesis the term probability density function (shortened to 
PDF) will be preferred since the continuous case is more often discussed, although they can 
be used synonymously for purposes of discussion. A valid probability function ensures that 
Vjc € £l,p(X) > 0 and p(£l) = 1. That is, there must be a non-zero probability of choosing any 
value within £1, and the probability of sampling all points in £1 must equal 1 (guaranteeing that 
any sample drawn from p lies in £1). For continuous random variables a probability density 
function is used to describe the probability Pr, that the random variable X will lie within a 
given region of that domain:

for some a,b££l .  Since in a continuous domain each sample has a zero probability of being 
drawn individually, and thus p(X)  is zero.

Using random variables drawn from such distributions has some useful properties. Given 
a function f {X)  dependent on X,  properties that hold for X subsequently hold for f (X),  since 
its value is dictated by the underlying distribution of X  given by p(X).  Often the result of 
a function f (X)  over some domain is of more interest than the value of X  itself, since they 
provide the solution to the integrand; its expected value.

1 Recall that in the previous chapter, £1^ was defined as the area over the hemisphere of a point x  on a surface, 
since £2̂  is an interval within the integrand of interest over which we can draw samples

2In practice, since limited precision data types are used there are in fact a finite number of values that can be 
represented, but as this number is large and implementation dependent it is convenient to treat it as the continuous 
case.

Pr [ a<X<b] = [  p(X)6X
Ja

■b
(3.1)
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3.1.2 Expected values and variance

The expected value or mean of a random variable is the weighted average of all possible values 
of X. In the discrete case, the expected value of a random variable f ( X ) with values of X  in an 
arbitrary domain £1 can be obtained by the summation of all possible f (X)  weighted by their 
probability, p{X). For continuous random variables, the expected value becomes an integral 
over £2:

£[/(* )] =  /  f (X)p(X)dX.  (3.2)
JO.

A function used to compute E[f(X)} over £1 is said to be an estimator of f (X).  Variance is 
a useful means of quantifying the error of an estimator with respect to the true solution. The 
variance can be described as the expected deviation of a function or variable, from its expected 
value:

V\f(X)] = E[ ( f ( X) - E{ f ( X) } ) 2]

or alternatively, variance can be expressed as the expected value of the square, minus the square 
of the expected value:

V\f(X)\  =  £ [ /P 0 2] -E[ f (X)]2. (3.3)

Amongst other properties this holds since, for a set of random variables the expected value of 
their sum is equal to the sum of their expected values:

£ / « )
i=i

N

= l £  [/(*<)] 
1=1

(3.4)

and, provided the random variables are drawn independently, the same identity holds for vari­
ance:

~ n  I n

E /(*)i= 1
= ! * '[ / « ) ] ■

i=l
(3.5)

These properties are useful when combining expected values from independent estimators, 
since any estimator with N  samples, can be viewed as a combination of N  individual estima­
tors each with a single sample. In practice, this is one of the key concepts for the success 
of stochastic integration techniques in rendering, providing a running expected value useful 
for gradual refinement of the solution, and allowing flexible implementations that can be tai­
lored to massively parallel hardware running multiple independent estimators that can later be 
combined.

3.2 Basic Monte Carlo integration

For integrals where analytical solutions are not available or difficult to establish, or where the 
integrand can only be easily computed at certain points, numerical integration techniques can 
be used to compute an approximate solution to such an integral over a domain £2:

1= f  f (X)dX,
Jo.
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for which there is a function /  that can be evaluated for a random variable X G Cl. Where 
H is of one-dimension, analytical methods may be available or techniques derived from the 
interpolation of functions across subintervals may be applicable. As the dimensionality of the 
domain increases, such methods can be applied by breaking down the integral in to several 
one-dimensional sub-integrals. However such methods quickly lose their efficiency at higher 
dimensions since the number of evaluations of /  required increases exponentially.

Monte Carlo techniques are a practical alternative for solving problems in higher-dimensions, 
evaluating /  at a number of random points within Q, to provide an expected value of 7. Sup­
posing we have a PDF p(X) over £2, where VX £ £2, p(X) > 0. An approximation to I  can 
be obtained using a basic Monte Carlo integrator by evaluating N  independent samples drawn 
from the PDF:

( r \  — P f/1 _  1 y  / W ) (3.6)

where X \. . .X n  are independent random variables distributed in £2. If samples are drawn uni­
formly over £2 then p(X) is constant, VX € £2, reducing it to the mean of /(X). Due to the law 
of large numbers, (I) is an unbiased approximation to I converging towards /  as N  increases:

lim (/)„ =  /. (3.7)
TV— ...........................................................................................................................................................

As mentioned earlier with respect to /(X ), the estimator (I) itself is also dependent on the 
underlying distribution of X since it is also a function of X. Identities for expected variance 
established for random variables X, (Equations 3.4 and 3.5) therefore also hold for Monte Carlo 
estimators:

J_ y  f ( xi) 
N f t l p f a ) = h v

f ( xi)
A xi)

The standard deviation c  is also known as the root-mean squared error (RMS error), propor­
tional to the error of the estimator, and is generally more meaningful than variance, since it is 
expressed in the same measurement units as /(X ). Calculating the RMS error of the estimator 
is a useful quantitative tool for comparing the effectiveness of different algorithms to evaluate 
an integral if the exact solution is known. The standard deviation of (I) can be obtained from 
its variance:

f i Xi)
PiXi).

(3.8)

As N  increases, variance decreases linearly with N  and the error of the estimator decreases with 
y/N, providing Monte Carlo methods with a converge rate of O (\Za) . Given the true solution 
of the integral 7, the error of a Monte Carlo estimator over I  is given by:

Error ((I)n ) = 7  — (I)N.

Taking the expected value of the error provides the bias j3 associated with the estimator. This 
is the difference between the expected value of the estimator and the true solution of the inte­
grand:

£[</}„] =  £ [ ( /)„ - /] ,
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thus even as lim^oo, the bias of the estimator will be non-zero, j3 [(/)#] > 0. Monte Carlo 
methods are considered unbiased since they do not introduce systemic error, only statistical 
error due to insufficient N, thus under sampling the domain. For a Monte Carlo estimator, or 
indeed any unbiased estimator it holds that:

W: E[ { I ) n]=I .

Estimating the error of an unbiased estimator is significantly simpler than in the case of a biased 
estimator since any discrepancy between (/)# — /  is the result of error alone, and is trivially 
computed using V[(7>^]. In the case of biased estimators, this discrepancy is an unknown 
combination of error and bias, F[(7)w] +  P [(I)n] which is often difficult to estimate.

A crucial concept for global illumination is the use of consistent estimators. An estimator 
is said to be consistent if the variance and bias of the estimator goes to zero in the sample limit, 
with respect to the true solution of the integral, ie:

lim V[(I)N] = lim P[(I)N] = 0,
T V—too N — ><»

thus ensuring that for a given integral, the estimator will always produce the true result:

lim (/)„ = /.
/v —>oo

Thus unbiased estimators that are consistent, are strongly consistent. Biased estimators can be 
weakly consistent if their variance goes to zero, and they converge to some quantity 0 «  7:

lim (7)w = 7 + lim P[(I)n] = 0. (3.9)
N —>°° N —¥ ° o

The consequences of these estimator properties and the impact they have on designing algo­
rithms for rendering will be discussed in Chapter 4.

The efficiency of an estimator is another critical concept to bear in mind, since a  and 
N alone do not dictate the practical effectiveness of the estimator unless the cost of sample 
evaluation is also considered. The efficiency of an estimator can therefore be defined as:

•Ml = i kG  T

where T is the average cost of evaluating a single sample. For high dimensional integrals it is 
difficult to reliably determine T for a given estimator, except by empirical means. By running 
estimators for a given length of time and assessing their error (and bias if applicable), the 
efficiency of estimators can be reliably compared. The efficiency and RMSE measures will be 
used to evaluate some of the techniques proposed in this thesis empirically with comparisons 
to alternative estimators.

Advantages Monte Carlo methods have several advantages for complex problems. They can 
be applied widely since they have few restrictions. In their most basic form they require only 
two operations. First, a valid probability density function p(X)  from which to draw random
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samples from the domain. Second, the ability to evaluate the function of interest f (X)  for such 
samples.

The convergence of Monte Carlo methods, although slow compared to other numerical 
integration techniques, is independent of the dimensionality or smoothness of the integral. 
Singularities and discontinuities in the integral can be a problematic for many methods even in 
lower dimensions, but are handled elegantly by Monte Carlo integration. Integrals of arbitrary 
dimensions can be handled elegantly by simply extending sampling into those dimensions us­
ing an appropriate PDF, including recursive and infinite dimensional integrals of which light 
transport is an example. Furthermore, the estimator can provide expected values for such 
problems with no lower bound on the number of samples that need to be evaluated, unlike 
alternative techniques in which the minimum number of samples grows exponentially with di­
mension. This is thanks to the property described in Equation 3.4, allowing many estimators 
to be combined each with an arbitrary numbers of samples. This has further practical implica­
tions, allowing multiple estimators to be run independently, providing excellent scalability on 
parallel architectures.

3.3 Variance reduction techniques

The elegance and generality of Monte Carlo methods is tainted by its poor convergence when 
compared to numerical methods used for lower dimensional problems. To reduce the error of 
the estimator by half, the number of samples forming the estimate must quadruple. Evaluating 
the function f {X)  over the random variables often consumes the majority of the computation 
time, hence finding alternative techniques to improve the error of the estimator without addi­
tional samples has been well studied. Crucially, there are a number of general techniques that 
can reduce the variance of Monte Carlo methods without the computational cost of evaluating 
additional samples. In this section we will provide an overview of some techniques that have 
become popular in rendering and how they are applied to light transport since they will be 
referred to throughout the thesis.

3.3.1 Importance sampling

It is evident that the error of the Monte Carlo integrator relies heavily on the probability func­
tion p(X).  Importance sampling is a technique that attempts to choose a probability function 
intelligently so as to reduce error in the estimator. Any convenient PDF can be chosen provided 
P(X) > 0 when f (X)  ±  0, and with the obvious condition that it must be feasible to sample 
from p(X) for any valid X  G O. In many cases, especially in graphics, some information is 
known about the integrand and the shape of /(X ) prior to sampling; this is known as informed 
Monte Carlo. Conversely, under blind Monte Carlo methods no information is available to aid 
the sampling process and so a uniform density for p(X) is the only feasible solution, since a 
bad choice of p(X) can in fact increase variance.

Often, it is unfavourable to draw random variables from a uniform distribution over Q, 
since the value of f (X)  could be zero for large regions of the integrand, especially in high di­
mensional cases. Conversely, exceptionally high values (relative to the true sample mean) may
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be present in only small regions of the domain, thus sampling £2 poorly can lead to increased 
variance.

An optimal choice of p would ensure it follows the value of f (X)  throughout the domain, 
such that y is constant for all X , and equal to I. Since this is impossible without knowing 
I  itself, a function g(X) may exists that is an approximation to f{X)  can be chosen based 
on available information, accounting for known factors of /(X ). Assuming g(jc) oc /(X ) is 
accurate, setting p(X) oc g(X) will reduce variance in the estimator compared to a uniform 
distribution.

Importance sampling is one of the fundamental variance reduction techniques in Monte 
Carlo rendering, since a wealth of partial information is available to improve the sample dis­
tribution especially in the case of highly glossy BRDFs and Dirac distributed functions. Fur­
ther discussion and insight into importance sampling and related techniques can be found in 
[OZ98].

Defensive importance sampling Despite the effectiveness of importance sampling to con­
centrate samples towards areas of potentially large /(X ), it can be difficult to find an appro­
priate g(X) such that g(X) oc f (X)  throughout the entire domain. If g(X) has regions of low 
density is unbounded since p{X) can become arbitrarily close to zero, and hence the vari­
ance of the estimator is also unbounded producing noise spikes. To eliminate such problematic 
cases, Hesterberg [Hes97] suggested instead to use a mixture density combining importance 
sampling with a more uniform sampling distribution. Mixing with a uniform distribution en­
sures that the value of p(X) is clamped to some minimum value above zero for all X, bounding 
the variance. The resulting mixture distribution significantly reduces the general effectiveness 
of importance sampling, since in regions where g{X)oc /(X ), the mixture of g(X) with the uni­
form distribution will not be. Thus in the general case defensive importance sampling actually 
increases the overall variance, despite bounding the variance of individual samples.

Resampled importance sampling Instead of mixing with a uniform distribution, an attempt 
can be made to compute a better representation of the integral, and sample according to this 
approximation. Supposing M samples are taken using some importance sampled PDF p(X).  
A weight for each M  can be obtained by partially evaluating /(X ) for each sample and a new 
discrete PDF, q{X), constructed (with M possible outcomes) that is an approximation of /(X). 
Drawing and evaluating N  full samples from q(X) can reduce variance if q(X) is a better 
approximation to /(X ) than p{X),  which is the case as M tends to infinity. Obviously, this 
is only feasible if the partial q{X) can be obtained with good efficiency. In illumination, this 
technique has been applied to direct lighting [TCE05] whereby the costly visibility term is 
ignored to partially evaluate the M  initial samples. This approach can reduce variance, but is 
limited with respect to implicit lighting since the costly visibility term is required to produce Af, 
and it becomes degraded for explicit lighting when occlusion is a significant cause of variance 
as it is ignored when constructing q{X). Whilst providing good variance reduction for large 
M,  sample generation can be prohibitively costly and just as standard importance sampling 
produces spikes in the integrand, this approach can suffer the same shortcomings.
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3.3.1.1 Multiple importance sampling

Importance sampling can be effective in generating samples from a single function. Often, 
complex integrals are the product of multiple functions (g(X) and h(X)), a single distribution 
function representing g(X) oh(X),  the composition of such functions may be difficult to ob­
tain. In computer graphics, to determine the direct illumination at a surface during rendering, 
samples can be distributed according to the surface BRDF and cosine functions at the surface, 
or according to the flux distribution of the light source. Without being able to produce a single 
representative distribution, sampling must be done with respect to one of these functions, g(X) 
or h(X). Arbitrarily choosing one of these distributions may lead to a bad sample distribution, 
which as discussed above can increase the error of the estimator compared to using the uniform 
distribution.

3.3.2 Generating continuous random variables

Whilst importance sampling ensures that samples are distributed with respect to the value of 
the integral, the underlying distribution of the random variables X  themselves must also be 
considered.

In practice, probability density functions can be viewed as a functional black box. Com­
monly, a random number r G R in the interval [0,1) is provided to the PDF, which is mapped 
to a random variable X e f l  from which f (X)  can be evaluated. Generating numbers in [0,1) is 
convenient since it simplifies the mapping from r to X  and can be applied to arbitrary domains.

Good quality generation of r is therefore important to ensure well distributed samples. 
Uniform generation is undesirable since even though variance is minimal, it can result in arte­
facts that cannot easily be detected numerically. If points are generated too close together the 
variance reduction power of samples to the estimator is reduced, since coverage of the domain 
is inefficient. Meanwhile, no large regions of the domain should remain unsampled, else the 
resulting estimator will be subject to systematic bias. Mathematically, the quality of a distri­
bution is known as it’s discrepancy with low-discrepancy sampling being more desirable than 
high.

Stratified sampling When a known number samples are desired prior to sampling, stratifica­
tion can be employed to compute well distributed sample batches. Stratified sampling divides 
the domain into distinct cells with equal area (or volume for higher dimensions), known as 
strata. One sample is allocated to each strata in order to distribute the samples evenly across 
the domain to reduce the chance of missing important features of the integrand. Each sample is 
jittered (offset by some random amount) so as to reduce the artefacts associated with uniform 
sampling.

In graphics, stratified sampling is commonly applied to 2D problems such as pixel anti­
aliasing or lens sampling for depth of field although it can be applied to higher dimensions by 
decomposition. Despite the use of strata, samples can still exhibit a degree of clumping at cell 
boundaries. This is improved by the use of Latin hypercube sampling and shuffling, but loses 
its practicality and effectiveness for larger sample counts.
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Generating good samples is a complex and well studied topic, thus only an introduction to 
relevant aspects will be provided here. Further discussion on sampling strategies can be found 
in general rendering texts such as [PH 10].

Quasi-Monte Carlo Quasi-Monte Carlo methods use quasi-random distributions which re­
semble random distributions, but additionally provide sample stratification without the need 
for explicit strata. Quasi-random sequences are fully deterministic, but provide desirable prop­
erties without introducing the uniform placement that results in banding. The benefit of such 
sequences is that the number of samples generated does not affect the stratification of the sam­
ples. For example with stratified sampling one batch of sixteen samples will provide a far better 
distribution than sixteen batches of individual samples, which is analogous to sampling using 
pseudo-random numbers.

The van der Corput or Halton sequences are often used in graphics, since the number 
of samples is usually not known or is too large to efficiently apply an explicit strata based 
approach. Despite their low discrepancy, care must be taken when using sequences in parallel 
or in neighbouring regions due to their deterministic and correlated nature. The use of random 
shuffling to scramble sample sequences such as that introduced by Kollig and Keller [KK02] 
provides a practical method of alleviating such problems. This approach is highly useful for 
multi-dimensional sampling and is used to generate sample patterns for the rendering examples 
in this thesis. Contrary to such benefits, obtaining error estimates becomes difficult since it is 
no longer a purely stochastic process. By carefully producing scrambled sequences, both the 
desirable quasi-random distribution properties and benefits of stochastic processes such as the 
ability to combine independent estimators can be maintained.

3.3.3 Russian roulette and splitting

Russian roulette and splitting are related techniques that increase the efficiency of Monte Carlo 
estimators by increasing the contribution of each evaluated sample to the final estimate, while 
maintaining an unbiased estimator. They were introduced to computer graphics by Arvo and 
Kirk [AK90]. Russian roulette trades computational cost for increased variance by skipping 
the evaluation of samples that are likely to have low contribution to the estimator. A threshold 
q is chosen and dictates the probability that an estimate for the solution will not be evaluated 
for a particular sample. Drawing a canonical random variable § G [0,1]K allows us to decide 
the value of the single sample estimator:

(/) =  /  i f y <q
\  0 otherwise

In the context of Monte Carlo rendering, the ray casting calculations for extending a random 
walk is the most costly operation 3. The current importance of a camera path can provide a 
tentative estimate for that samples contribution. Terminating a path stochastically using this

3 A random walk is a mathematical formalisation for a path constricted by taking random steps through a 
domain. In this case, the process of casting rays stochastically from one surface point to another can be thought of 
as a random walk through the scene.
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potential estimate as y can save additional costly visibility queries. From a theoretical stand­
point, Russian roulette also allows a practical approach for random walks in infinite integrals 
such as the rendering equation. Applying Russian roulette at each vertex of the random walk 
and weighting any subsequent vertices accordingly provides an unbiased method of terminat­
ing random walks through infinite dimensions. Efficiency is also addressed, as longer paths 
become less likely so the algorithm concentrates on shorter walks where f (X)  is larger on 
average.

All samples evaluated for an estimator have similar computational cost, and hence the 
efficiency of the estimator is improved if time is spent on samples where f (X)  is large which 
have a high capacity to reduce variance as we have seen with importance sampling. Using 
Russian roulette provides an estimator with higher per sample variance, but on average the 
time to evaluate the integral is reduced given a reasonable value for y.

Splitting, on the other hand creates additional samples in regions of the integrand deemed 
important, thus each step of the random walk is ’split’ to evaluate multiple estimators for a 
single term of the random walk, increasing sample coverage over a particular region of the 
domain:

iV /= 1
where (/v)/ are independent estimators for a term v in the random walk (7)i -I-... -f (I)n - The 
caveat with this approach is that there is no guarantee that efficiency will be improved, since 
splitting and using a number of estimators M  where M <C A may also reduce variance to the 
same degree as splitting using N  estimators, resulting in oversampling. In rendering, splitting 
is more commonly applied to special cases, such as specular reflection and refraction where 
the number of splitting possibilities is small, but the variance reduction may be significant. 
However, care must be taken since successive splitting can lead to a considerable increase in 
the number of samples required for even a small part of the integral to be evaluated, potentially 
with minimal contribution.

3.3.4 Adaptive sample generation

Importance sampling relies on finding a PDF a-priori that resembles the ideal PDF proportional 
to /(X); Vx G D, in an attempt to place samples intelligently to reduce variance. Adaptive sam­
pling aims to reduce variance directly by concentrating samples in regions that are considered 
important using previously evaluated samples. Commonly, variance is used as a metric to en­
sure sampling is increased for regions that exhibit high variance and hence where the error of 
estimator is greatest. In contrast to importance sampling, no information about the integrand is 
needed before sampling begins, since the PDF used to distribute samples can be generated and 
adapted on the fly during sampling. In the case of blind Monte Carlo or when no known PDF is 
an appropriate approximation to / ,  adaptive sampling can greatly reduce variance. Producing 
an adaptive sampling scheme that does not introduce bias is however challenging, since the 
entire domain still needs to be sampled to ensure the convergence of (I) to I. To apply adaptive 
sampling, often the domain needs to be divided into discrete regions, from which a probability 
distribution function can be obtained. Sampling from a discrete PDF over a continuous func­
tion can lead to increased variance if the discretisation is coarse or the integral contains sharp
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discontinuities that are not captured by the discrete PDF. Furthermore, the measure of variance 
obtained during sampling does not necessarily reflect the true error present in the estimator. 
Absolute variance with respect to the solution I is still unknown, since variance and error met­
rics can only be calculated relative to the samples observed so far that make up (I). If part of 
the integrand has not yet been sampled, variance in that particular region may be low, hence 
it is likely to be avoided by adaptive sampling techniques. For this reason, adaptive sampling 
is often mixed with uniform or importance sampling to ensure improved domain coverage and 
convergence.

3.3.5 Markov-Chain Monte Carlo

Markov-Chain Monte Carlo (MCMC) methods are a collection of techniques that generate 
samples based on the construction of Markov chains, in which the generation of a new sample 
is dependent solely on the previous sample. Each new sample is weighted such that samples 
are distributed according to the target distribution. In the case of Monte Carlo methods this 
describes the target distribution in the limit, with a density proportional to f {X)  everywhere, 
hence more samples are distributed where f ( X ) is large. Particularly, in MCMC methods such 
a distribution can be reached without any knowledge of f ( X ) or its PDF, unlike importance 
sampling and control variates which rely on finding approximations to f (X)  before sampling.

Initially, a sample is generated to evaluate a random walk through the domain. Each subse­
quent sample is then generated by the mutation of the random variables that make up the pre­
vious sample; a process common to Markov chain methods. In complex integrals, this permits 
local exploration of the integral through important regions without having to generate samples 
stochastically, but by gradual change. By repeatedly applying mutation based operations over 
the previous sample alone, a chain of samples can be evaluated that tend towards parts of the 
integral that contribute significantly to the estimator, building up a distribution of samples that 
are generated according to /  without knowing the value of /  anywhere, meanwhile avoiding 
the need for approximations to the integral.

Markov-chain methods perform well for difficult integrals, especially where /  is zero for 
large areas of the domain. Once an important region is found, the use of sample mutation can 
be effective for local exploration, where traditional Monte Carlo methods may struggle due to 
the low probability of sample placement in those regions. Additionally, MCMC methods are 
orthogonal to many of the other variance reduction methods discussed here such as (multiple) 
importance sampling and Russian roulette, with the exception of sample stratification which is 
dictated by the mutation strategy.

Several MCMC methods have been applied to rendering global illumination, and have 
proven effective under difficult lighting scenarios. An overview of the resulting algorithms 
will be discussed in the next chapter with a focus on their performance for global illumination.

3.3.6 Additional techniques

Many techniques have been successfully devised for variance reduction in general Monte Carlo 
settings but are less well known in the rendering community since their uses are not widespread, 
or are difficult and yet to be identified. Control variates reduces variance by utilising a function
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h(X) that is correlated with f ( X ) that is easy to evaluate and with known expected value. Ap­
plying such techniques for rendering has been studied by for example in [SSSK04, FCH+06]. 
Applying techniques such as control variates and antithetic variables [Che81], where instead a 
negative correlation is constructed to reduce variance, to global illumination is non-trivial since 
correlated and easy to evaluate integrals are difficult to obtain. However, it is likely that many 
such techniques applied to problems in the physical and biological sciences still exist that can 
be of benefit to computer graphics and reduce variance in global illumination.

Conclusion This chapter has provided a background to Monte Carlo integration; one of the 
key theoretical concepts for solving the light transport problem. It has briefly covered the 
use of random variables and stochastic processes to solve high dimensional and complex inte­
grals, and their advantages to the alternative of deterministic approaches. It has covered some 
important properties of Monte Carlo estimators such as convergence, bias and variance. In 
addition, techniques to combat variance such as importance sampling and its derivatives have 
been discussed and the need for good sampling patterns to generate well distributed random 
variables. Russian roulette allows the evaluation of infinite integrals, such as the rendering 
equation, and the application and use of these techniques in global illumination is the topic of 
the next Chapter.
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Paradigms for solving light transport
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4. Paradigms for solving light transport

Now that an theoretical understanding and an appreciation for the importance of probabilistic 
methods and Monte Carlo sampling in rendering has been established, this chapter will discuss 
in-depth a number of paradigms and practical algorithms for evaluating the rendering equation. 
In order to develop novel algorithms to solve light transport and to assess their impact in the 
current field of research, a number of popular and state-of-the-art techniques must be discussed. 
This chapter provides a focussed analysis of a handful of such techniques, including their 
advantages and drawbacks which will be built upon by the novel work forming the remainder 
of the thesis. Unbiased Monte Carlo path tracing methods and the popular photon mapping 
approach are two such successful techniques that are both widely used and receive a large 
amount of attention in the literature.

Quadrature-based integration Classic numerical quadrature methods such as interpolation 
or extrapolation of polynomials do not typically extend well to multi-dimensional problems. 
To maintain a given level of accuracy for such techniques, sampling must increase exponen­
tially with the dimension of the integral. In Section 2.4.3 it was established that light transport 
is a problem of infinite dimensionality; light can be scattered between surfaces in scene in­
definitely, until being completely absorbed. Thus solutions that rely on deterministic methods 
require truncation of the integral into lower dimensions, resulting in an incomplete solution. 
Alternatively, quantisation can be applied to produce a discrete representation of the true do­
main, again reducing the accuracy of the solution.

Finite element methods such as radiosity [GTGB84, CG85] quantise scene surfaces into 
patches, analytically computing the flux transfer between patches. A set of form factors are 
computed for each patch that describe the light transfer coefficients between two patches based 
on their visibility and orientations. Indirect illumination is accounted for by iteratively prop­
agating flux received by a patch to all other patches, scaled by the precomputed form factors. 
Radiosity itself is thus not robust in high frequency integrals, and requires increasing numbers 
of patches to handle hard phenomena. The remainder of the techniques discussed in this chap­
ter (and the thesis) are based on stochastic sampling of the integrand, which is used consistently 
across state of the art methods, as we will see.

4.1 Monte Carlo path tracing

The final part of Chapter 2 presented fight transport as an integration problem in the form of 
Kajiya’s rendering equation [Kaj86]. Chapter 3 then discussed the power of Monte Carlo inte­
gration for such problems, where analytical methods cannot handle the complexity and level of 
detail required to evaluate it accurately. Even MC methods such as the distributed ray tracing 
ideas of Cook et al.[CPC84] cannot directly handle the infinite dimensions of the rendering 
equation without truncation to lower dimensions, adding systematic error to the solution.

It was not until the introduction of Russian roulette to rendering by Arvo and Kirk [AK90] 
that an unbiased means of evaluating the infinite sum of terms was established, solving the 
full rendering equation without bias. Combining Russian roulette with stochastic ray tracing 
allows the path tracing algorithm of Kajiya [Kaj86] to handle the continuous high dimensional
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domain that is presented by complex geometry, materials and lighting configurations required 
for realistic rendering. A substantial amount of work has been based around these three key 
theoretical concepts, increasing the capabilities of light transport simulation. This section will 
discuss in detail the fundamental theoretical and practical aspects of stochastic, path-based 
global illumination and the state-of-the-art extensions that have emerged.

Recall (from Section 2.4.3) the rendering equation expressed as an integral over surface 
area:

Lr(xf —y x) =  Le(xf —y x) -t- J Lr(x" —y x ')fr(x" —y xf —y x)G(x" -̂y xf)V(x" —y x')dA{xf) (4.1)

The reflected radiance term Lr(x! —y x) is modified by the terms of the BRDF and the geometry 
terms necessary to account for the respective orientation of x and x! and the visibility between 
them. These terms are more conveniently referred to as the throughput at x/ represented as 
T {jc —» a/ —»■ x”), or T (jc7, 0), (o’) when dealing with solid angle measures:

T{x',co,co') = f r(x!1G),ĉ ),)cos(n^1(0,)
= T{ x ^ x f ^ x " )
= f r(x" —>• x' —y x)G{x" <-y x!)V{x" —y x')

To obtain an equation for the radiance incident at x! scattered from jc", the Lr(x" —y xf) term 
in the integral can be substituted by the right hand side of the equation, known as Neumann 
series expansion. Intuitively, the radiance arriving at xf must have been either emitted at xf' 
or scattered towards xf' from additional surfaces in the scene. Thus for an infinite length path 
jCoo € Cloo where x„ =  •••,*<*„ Equation 4.1 can be rewritten as the sum of the radiance
from its constituent sub-paths with length k<°o:

Lr{x 1 ->xo) = Y . [  /•••/*LeiXk-tXk- 1) (4.2)
(Ti Js Js Js

x T ( x k  —y Xfc-1 —y X k - 2 ) • • - T ( x 2  —y X \  —>’ ô)dAjfc---dAo

Known as the path integral formulation of fight transport, its evaluation requires a mechanism 
able to construct and evaluate the throughput of paths for any finite length k. The idea of 
throughput at a vertex can be extended to representing the throughput of the path x^ = jco, 
from its origin jco, to its endpoint x^:

k

T(xk) = Y l T (X‘~ 1 Xi+1)
i= 1 

k

=  n M x i - 1  x i X i + i ) G ( X i - i  O X i ) V ( X i - i  -> Xi)
i—l

Combining the path formulation of fight transport with the measurement equation (Equation 
2.7) provides a more intuitive equation of fight transport as the basis of path based methods, as 
an integral of surface areas AXo, ...,AXk:

Mp — J  J  We (*0 * 1  )L ( * 1  ->• x0)G (xo  +4 Xi JdAjtodA*,

k=0 ̂ 0
^ T(xk)Le(xjt+i y xk)dAXo...dAXlc
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Thus to solve global illumination, a method is required that can evaluate paths of any length 
k, connecting the camera and light sources to obtain We and Le respectively, and evaluate the 
radiance measurement Mp for each pixel. However, since the incoming radiance and outgoing 
radiance at a point are in equilibrium, T{x\),...,T(xk) are symmetric. A useful property results; 
valid paths can be formed by connecting the light source and the camera, starting at any vertex 
along the path. This provides substantial flexibility in algorithm design and opportunities to 
improve efficiency as shown in the remainder of this chapter.

4.1.1 Building on MC ray tracing

Path tracing is an extension to classic Whitted ray tracing and Cook’s distributed ray tracing, 
that extending paths beyond the first non-specular vertex to account for illumination arriving 
indirectly.

Starting with a location on the camera sensor j c o ,  a  ray through the lens is generated and 
intersected with the scene objects to find a point xi on a visible surface. If this surface is spec­
ular, as with Whitted’s model, the path is continued until a non-specular vertex or light source 
is found (or until the ray leaves the scene). In path tracing, the path is continued to compute 
the incident illumination at indirectly visible points, accounting for the indirect illumination 
arriving at the first non-specular vertex jc

In Monte Carlo ray tracing, an estimate of the direct illumination incident at any surface 
position x! in the scene can be obtained by tracing additional rays from x! and recording their 
radiance contributions, evaluating Lr{xf, co). If N  rays are traced stochastically over the hemi­
sphere at xf with directions 0)/ distributed according to some PDF p(co'), a Monte Carlo esti­
mate for L(xf, co) is obtained:

Ldirect(xf,co) = Le(x',co) + /  Le(r(xf, col), ~co')fr(x\ CO, col) cos(iv, £0')dco'

,r ,-7 , t J  ^  , 1
\L d i r e c t \X  i ® ) / N  —  L e \X  , CD) +  ^  ^  p ( ( 0 ' )

where (Learect(x', co))N is an estimate of the direct lighting at xf obtained by evaluating N  sam­
ples. Assumed the first diffuse hit point of the path. Evaluating (LjI>ec/(x/, co))n provides 
an estimate for the direct lighting at xf scattered towards x. In order to compute global illumi­
nation, the radiance scattered along r(xf, coj) towards xf must also be included; the indirect 
term Lr(r{xf,col), —col). SubstitutingLe{r(x!, col),—col) inside the sum with the total radiance 
L{r(xf, col),-col) along - a >/:

L(r{xf, col), — col) = Le(r(x', co[),-co!) +Lr(r(xf, col),-col)

allows both the direct and indirect lighting to be accounted for. Evaluating L(r(xf, col), —col) 
can be achieved by finding the closest intersection point of the ray r(xf, cot') and evaluating the 
direct lighting once again using Equation 4.3. Repeating this recursively produces a ray tree 
with a branch factor N  connecting the camera sensor with the light source(s) via surfaces in 
the scene. An arbitrary N  can be chosen at each vertex, to provide a radiance estimate for that

44



4.1. Monte Carlo path tracing

particular dimension of the integral. For large N  the number of rays can become prohibitively 
costly. The radiance carried by each path is diminished by T(x —>• x' —>■ jc") at each vertex due 
to energy conservation, thus longer paths also have less impact on the final image than shorter 
ones. As a result N  is usually kept at one for each vertex, producing cheaper computational 
costs per path, which also enables the scene space to be explored more thoroughly permitted 
by the increased number of independent paths.

The foundations for MC path tracing and the algorithms in the following section are re­
liant on stochastic path generation, thus it is important to understand their construction and 
characteristics.

4.1.2 Path tracing

The path tracing algorithm treats each pixel of the image as a separate integral, and a Monte 
Carlo estimator for each provides an expected value for the measured radiance through that 
pixel on the camera sensor. Thus paths are constructed for each pixel independently, exploring 
the scene and gathering radiance for a single pixel via numerous independent random walks. 
Supposing a path is constructed from some point on the camera sensor xo in the direction of 
the lens (Oq to a visible point r(xo, (Oq) = jc, in the scene. Extending from x, requires a number 
of steps to be performed:

1. Obtain a new outgoing direction coj over the hemisphere at

2. Update the path throughput T (x,•),

3. Check for path termination by applying Russian roulette to T (x,•),

a. If the path is terminated, return.

b. Otherwise trace a ray r(jq, ©/) to obtain jc,-+i ,

4. Scale T (Jc,) to account for Russian roulette,

5. Set xi = Jt;+i and oo = —co' and repeat from 1.

These steps are repeated until the path is terminated either by Russian roulette or upon the ray 
leaving the scene. At each vertex jq, direct lighting can be computed using Equation 4.3, and 
scaled by the paths throughput T(jc o  —>• xi) obtaining an unbiased estimate for the measured 
radiance through p. This procedure is outlined in Algorithm 1.

The inclusion of indirect lighting significantly complicates the evaluation of each pixel in­
tegral, so variance reduction techniques become increasingly important when dealing with the 
complex light transport that can occur when handling multiple-bounce illumination. At each 
step, a number of the variance reduction techniques discussed in Chapter 3 can be applied 
to drastically improve the efficiency of the path tracing algorithm. Understanding the princi­
ples behind these techniques is crucial to identify their drawbacks and develop novel variance 
reduction techniques later in the thesis.
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4. Paradigms for solving light transport

Algorithm 1 Path extension for global illumination
l: (o[ «— sample hemisphere over jc,
2: T{xi) = T(x,-_i) x T(xi,  £0, ,  G)') > Update path throughput
3: <5 «— random variable in (0,1]R
4: q =  m in {q ,L um (T (x i ) ) }
5: if £ > q  then > Apply Russian roulette
6: terminate path Jc,
7: else
8: T(xi) <— T(xi) /  q t> where q  is the termination threshold
9: jc,-+i <r- r{xi,(0') > Trace ray to find jc,-+i

10: G), <---- G)/

Explicit and implicit connections So far, direct lighting has been computed by a ray r ( jc ,■, io ' )  

sampled over the hemisphere of jc ,  using p{(0') hitting a light source during path extension. 
These are known as implicit connections, since they are a result of the path extension mecha­
nism.

For low frequency BRDFs the distribution of p(<o') is wide, and as a result the probability 
of hitting a light source over jc,- is small, since light sources typically do not take up a large 
portion of the hemisphere over a surface. A better approach is to keep track of the emissive 
surfaces in the scene (the light sources) and sample from their surfaces stochastically. The 
sampled location y on the light source can then be joined with the camera path vertex us­
ing a shadow ray, r(jc,-,jc,- —> y), to account for visibility. The BRDF can be evaluated using 
/ r(jc,-, G), jc ,  —> y) to calculate the radiance contribution at j c , .

These explicit connections are linked to the idea of next event estimation, whereby the next 
event in the random walk (the path) is obtained by sampling from a distribution other than 
those defined over the current state, which propagate the dual quantity carried by j c , .  In the 
case of ray tracing and path tracing, which carry importance, explicit connections sample from 
radiance distributions over the light sources to obtain j c , + i  =  y.

However, explicit connections are not always applicable. For diffuse BRDFs, which are 
low frequency and where / r(jc,-, G), (o') ^  0 for most (o', they can vastly reduce variance. For 
higher frequency BRDFs that are zero across large regions of the hemisphere they cannot be 
applied efficiently since it is highly likely that any (o' chosen from a distribution other than one 
from the BRDF will yield zero radiance. As the BRDF becomes more restrictive, the problem is 
exacerbated and so an alternative approach must be taken to deal with singularities that follow 
Dirac distributions. Perfect specular reflection and refraction are common examples of Dirac 
distributions in rendering, and as a result implicit lighting is the only method for accumulating 
radiance scattered by such surfaces.

Singularities and Dirac distributions Singularities such as specular interactions are com­
monly encountered in rendering. Though they are not physically valid, conveniences such 
as the infinitesimal surface area of point light sources and the emission direction of distant 
light sources are also represented by Dirac distributions and cause problems for light source
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4.1. Monte Carlo path tracing

f r ( x - > x '  - + y )

(a) Explicit connections

f r i g ,  a >. (O ')

(b) Im plicit connections

Figure 4.1: Direct lighting at a point in the scene can be computed explicitly, by sampling a 
point v on the light source (a). Alternatively, sampling from  the BRDF at the vertex f r(x -*  
x ' y) produces implicit connections.

sampling.
Although they help to reduce variance for a particular area of the integrand, since they in­

troduce a deterministic step to an otherwise stochastic path construction process, singularities 
can also cause problems; like inhibiting the ability to obtain radiance or importance measure­
ments explicitly via shadow rays discussed above. This is the root of many problems for light 
transport algorithms when combined with the variance introduced by stochastic path tracing 
through lower frequency BRDFs, that require implicit connections to sample the radiance or 
importance flowing through them.

The sequences of specular and diffuse vertices in light transport paths causes problems for 
many methods, and so sampling all light paths with low variance is still an open problem, and 
one that will be discussed in more detail and motivates the novel work proposed in Chapter 5.

4.1.2.1 Path correlation

The path construction and radiance evaluation described this far is a naive but theoretically 
valid one: a path from j c o  is constructed by repeatedly extending the path to j c * until hitting a 
light source (denoted y ) ,  and evaluating the measurement function at j c * .

This approach is highly inefficient, since path construction comes at considerable cost due 
to the ray tracing function and so intuitively, improved efficiency can come about by increasing 
the ratio of radiance measurements to traced rays.

A better approach is therefore to estimate the incident direct lighting at each vertex, thereby 
creating a correlated series of radiance contributions that reuse the same path vertices. Obtain­
ing multiple correlated contributions from a path o f k vertices, requires a maximum of 2k rays,
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4. Paradigms fo r  solving light transport

Figure 4.2: Tracing paths naively as illustrated here is computationally expensive. This can 
be reduced by making use o f  path correlation across the integrand, reusing vertices o f  longer 
paths to compute radiance estimates fo r  multiple shorter paths.

assuming every vertex is non-specular. To obtain the same contributions, a set of naive paths 
require - 2 — rays, since each radiance contribution comes from a new random walk which 
must be generated individually from jco, making it far less efficient (Figure 4.2).

In conjunction with explicit light source sampling, this potentially enables a radiance mea­
surement to be obtained at each non-specular vertex using next event estimation, whilst reusing 
the current state of the random walk to produce a correlated radiance contribution stochasti­
cally.

Utilising this correlated approach requires careful handling of samples to ensure each path 
is weighted correctly. For diffuse surfaces, direct lighting computed explicitly by sampling yo 
will commonly provide most of the radiance contributions. However in the interest of reducing 
variance and handling specular surfaces where narrow BRDFs inhibit explicit lighting, the 
inclusion of implicit connections is still necessary. Assume that a contribution from Le(xk —>■ 
jc*_i) of a path jco, •••,** is accounted for implicitly at jc* by path extension. Using an explicit 
connection, the same path space may be accounted for as direct lighting at jc^-i by sampling 
yo as a light source (see Figure 4.3). To simplify this, the integrand can be separated using 
the notion of path space such that a path of length k only evaluates a single sample from each 
set G o , f t * ,  obtaining a single contribution for each path length in (0 ,k). Thus if the 
vertex at Xk-\ has sampled a light source explicitly, Le(xk - » jc*-i) should not be added since 
the radiance of a path in has already been accounted for.

Some important nomeclature Generally, a Monte Carlo sample in the context of render­
ing algorithms refers to the correlated set o f paths and their combined radiance measurement 
arriving at the camera jco along the primary ray:

k
L(xo, C0o) =  £  T(xi)Le(xi, CQj)Lr(xi+i, co,)

1=0

since they are commonly generated consecutively using a set of random variables and the path 
extension mechanism described above. A sample contribution or the sample radiance therefore 
refers to the total radiance arriving at the camera sensor from this correlated set of paths. This
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4.1. Monte Carlo path tracing

Xq

Figure 4.3: Example o f  a path x* =  jco, *l> —» xk constructed from  the camera. When evaluating 
both implicit (from j —» xk) and explicit (jc^-i yo) connections, care must be taken to 
ensure each path length is only accounted fo r  once. Direct lighting fo r  xo, x \, ..., x ^ - 2  is 
omitted fo r  clarity.

sample radiance is comprised of the accumulation of radiance at each vertex jc, for all 0 <  / <  k 
each of which represents a single path in Clt connecting j c ,  with a point on the light source. 
These are described as the vertex contributions of the sample. This is an important concept 
for the techniques introduced in this thesis based on the isolation and utilisation of path vertex 
data, and will be discussed in further detail in later chapters.

4.1.3 Sampling and path densities

Ensuring good sample generation is an important aspect of MC based rendering, driving every 
stochastic step of the process. Producing high quality sampling patterns for pixel sub-sampling 
reduces geometry and texture aliasing effectively, but including indirect lighting emphasises 
the need for good stratification across higher dimensions. Although each pixel is treated as an 
independent integral, sample distributions can take into account the local pixel neighbourhood 
in order to prevent excessive correlation, and by doing so can reduce perceptual artefacts and 
noise. In addition, due to the diverse nature of BRDFs, an initially well stratified distribution 
can easily breakdown as it becomes warped by surface interactions, minimising its effective­
ness to explore the scene space. As a result, the importance sampling and variance reduction 
techniques discussed in Section 3.3 can have a high impact on the final visual quality.

4.1.3.1 Importance sampling

Importance sampling is one of the widest used variance reduction techniques in global illumi­
nation, as there is a significant amount of information about the shape of the integral available 
prior to obtaining radiance calculations. Both sensor importance in the form of BRDF distribu­
tions, and light source positions and flux are known at any given path vertex. Path construction 
relies on the ability to generate an outgoing direction j c ,  — > j c , +  i  such that the radiance received 
along it is maximised, aligned with the desire to concentrate samples where the integral func-
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4. Paradigms fo r  solving light transport

(a) BR D F im portance sam pling (b) L ight source im portance sam pling

Figure 4.4: Illustration o f  importance sampling on a diffuse surface, using (a) the BRDF distri­
bution and (b) using a distribution over the surface area o f  the light sources. For wide BRDFs, 
light source sampling is fa r  more effective than relying implicitly on the BRDF distribution to 
obtain radiance from  light sources.

tion f { X )  and hence L(jc,-+i —>-jc,)r(jc,) is largest. This provides two possibilities in determining 
suitable co ':

1. Assume L(jc,+ i —> jc,) is constant for all possible x,+ i and sample using 7’(jc,_i —> jc, —> 

X i+ 1 ) to obtain jc,-4 j.

2. Estimate L(jc, + 1 —> X j) by choosing jc,+i directly from the surface of light sources.

In the case of path extension, no knowledge of the indirect radiance distribution over the hemi­
sphere at Xi is known, and hence T ( x i  — >■ j c ,  — »  j c , +  i  ) must be relied upon as an approximation 
to f(X ) to reduce variance. Recall that path throughput can be broken down into the BRDF 
f r(x,-i — »  j c , -  — » j c , - + i ) ,  geometry term G ( j c , - + i  - B - x , )  and visibility V ( j c , - + i  b  j c , ) .  For Lambertian 
surfaces where the BRDF is uniform, sampling can be performed according to the geometry 
term, concentrating samples around the surface normal of j c ,  .

Given that for the last vertex of a path jc, the incident direction jc,_i B  jc, is known, using a 
PDF that follows the distribution of the BRDF at jc, to sample co ' will maximise the throughput 
of the path T (jc,+i ) for radiance calculations at jc,+i .

When computing direct lighting at a non-specular vertex, the positions and emitted flux of 
each light source is available and hence only the visibility term V (jc,_i —> jc,) remains unknown. 
Ideally, co' would be sampled according to the product of L(jc,+ i —> jc,) and / r(jc,-_i - y  jc, —» 
jc,+i)G(jc,+i <-» jc,), however this is difficult to achieve in practice.

Using T ( x j - 1  -» jc, —> x,+ i) to approximate f { X )  as used during path extension can suffice 
when handling highly-specular BRDFs, since a narrow BRDF produces larger regions of the
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4.1. Monte Carlo path tracing

integrand where r(jc,_i —>• jc,- -> j c , + i )  will be zero. In the case of diffuse surfaces, sampling 
according to a PDF based on the position and flux of the light sources is often better, since 
diffuse BRDFs are commonly non-zero everywhere. Explicit direct lighting follows this logic 
and is a form of importance sampling according to the distribution of L over all light sources. 
Ideally, a combination of these approaches would reduce variance further, despite the inability 
to draw samples from L ( j c , - + i  —> jc,-)r(jc,_i —► jc,- —> j c , - + i )  directly.

Sampling using all information available from multiple distributions can be achieved by 
the use of multiple importance sampling (MIS, recall Section 3.3). Using MIS, samples 
can be drawn independently from each distribution and weighted based on the probability 
of choosing each sample from the opposing distribution. The disadvantage with this ap­
proach is that the full contribution of each sample must be evaluated, requiring rays to be 
traced from each distribution handled by MIS. However the reduction in variance can be 
significant, especially in the presence of glossy surfaces or small light sources. In prac­
tice, the expensive evaluation of VC*,--! —» j c , )  for each sample can be delayed until after 
L ( j c , + i  —> X i ) f r ( x i - i  — » jc , —> X i + i ) G ( x i + i  o  j c , )  is determined to be non-zero, which is cheaper 
to compute.

Singularities in the BRDF caused by specular reflection and refraction at jc, implicitly re­
quire importance sampling when sampling from the BRDF since there is only one jc,-+1 for 
which f r(xi- 1  —»• jc, —> jc,+i) is non-zero and finite, which is required for a valid PDF p{X) to 
exist. Additionally, MIS provides no benefit since there is only a single distribution from which 
samples can be drawn.

Path densities Each radiance contribution L ( j c , - + i  —> j c , )  T ( j c , _  i —> jc , — > j c , - + i  ) is dependent on 
the random variables used to extend the path from jc ,  to j c , - + i .  The application of local impor­
tance sampling (for BRDFs or direct lighting) means that an independent PDF is used to extend 
the path at each vertex. The probability of choosing j c , + i  given jc ,  is denoted p ( j c , + i  | j c , )  abbre­
viated to p(xi). For a path of length k terminated by Russian roulette, the unbiased radiance 
measurement for this path R k  must be weighted by p ( jc , ) at each vertex 0 <  i  <  k:

s * =  I F T  = n I r T  (4-3)P W  t o  p M

p(xk) is known as the path density of Jcjt =  j c o ,  ...,JCjt. To be a valid PDF, it must hold that 
p(j c )  < 1 for all j c .  Unless p is deterministic (ie: undergoes a perfect specular interaction) as 
k increases pixk) is decreased, resulting in longer paths becoming increasingly more difficult 
to sample stochastically. The notion of path density can be generalised to describe the partial 
density for a subset of the path between any two vertices xa and jc * :

b
p(xa ->• xb) = p{xa)p{xa+1 \xa)...p{xb\xb-\) = J~J/7(jc,|jc,-_i) (4.4)

i =a

High variance often occurs when the PDF is a poor estimate of L ( j c , + i  —> j c , ) T ( j c , _ i  , j c ,  , j c , + i )  at 
j c , .  When using locally greedy importance sampling of the BRDF p ( j c ,  | j c , _ i )  OC T ( x i - 1  — > Xi  —» 

j c , + i )  ignoring the effect of L ( j c , + i  — >• jc ,  ) . When paths with low density are generated for which
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L(xi+i -» xi) is large, because p{xf) 1 it is also the case that R, L ( j c , + i  — > j c , ) ,  increasing 
the pixel estimators variance V[(Ip)]. This high variance was discussed in Section 3.2 and is 
responsible for the spiked noise that is commonly associated with Monte Carlo methods. In 
rendering, this appears in the form of bright speckles over individual pixels in the image.

4.1.4 Path termination

Russian roulette makes it feasible to evaluate an unbiased approximation to the rendering equa­
tion, in addition to providing improvements in efficiency when used correctly. Terminating 
paths deterministically after a fixed number of bounces is common in interactive Tenderers, as 
it provides more predictable performance characteristics, however it also adds bias to the solu­
tion, ignoring radiance measurements at longer path lengths. This becomes noticable in highly 
occluded scenes and in specular and glossy environments where longer paths carry larger radi­
ance contributions.

In its simplest form, Russian roulette can be applied by drawing a uniform random variable 
4 and comparing it with a constant q, both in [0,1)M to probabilistically decide path termination 
at a vertex j c , .  This provides an equal probability q of terminating a path at every vertex, 
regardless of its density or the importance it carries. Short paths are therefore favoured by 
Russian roulette and, since they generally carry higher importance (hence the potential for 
f{X)  to be large) this is desirable. However, due to the diversity of BRDFs commonly used 
in physically based scenes, especially in the presence of specular surfaces, this relationship 
between importance and path length no longer holds. An alternative approach is to use a 
different value for q at each path vertex that is proportional to the path importance W ĵco —► jci ), 
propagated along j c , + i ,  equal to the path throughput r(Jc,+i). This dictates the proportion of 
radiance arriving at jc , that will be propagated back towards the camera, and thus is a good 
measure of the paths potential to contribution to the image, without knowledge of the incident 
radiance. When deciding path termination at jc , the path throughput is updated as:

where Ms a scalar representation of T ( j c , + i )  such as its luminance or maximum value across 
each channel that represents the colour spectrum (typically an RGB triplet). This ensures 
that each path is weighted to account for the radiance potentially lost by those paths that are 
terminated, ensuring over time that statistically, the expected value of the radiance estimator is 
equivalent.

4.1.5 Particle tracing

Also known as light tracing, this algorithm was introduced by Dutre [DLW93] and follows the 
same principles as path tracing, but reverses the direction of the path construction by starting 
from the light sources. Instead of propagating importance, light tracing simulates the propa­
gation of radiance through the scene, more closely modelling photons in the real world. This 
allows it to better account for high intensity light paths such as caustics, that are likely to have 
far higher path densities when sampled from the light source, as opposed to the camera. Due

T(xi+i ) / t  if %<t 
0 otherwise
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Figure 4.5: Light tracing is the reverse o f path tracing, extending paths from  the light sources 
in the scene and explicitly connecting them to the camera.

to the reciprocity of BRDFs, and the symmetry of occlusion and geometric terms in the ren­
dering equation, whether tracing from the light or the camera the same integral is solved, and 
the same path construction framework can be employed. Path tracing generates a number of 
samples through each pixel of the image, corresponding to a separate estimator for each indi­
vidual pixel. Intuitively it makes sense to devote an equal number of samples to each pixel, as 
they all share an equal portion of the image space *. In light tracing, and indeed any method 
that propagates radiance starting from the light sources alone, the whole domain is treated as a 
single integral, increasing the significance of good sampling strategies. First, for each particle 
a position on a light source must be selected. Commonly, an importance sampling strategy is 
used that selects a light source based on the total flux distribution over all light sources. Thus 
emitters of higher power (eg: large weak emitters, or small bright ones) will emit proportionally 
more particles and hence contribute more to the final image. Using a uniform sampling strategy 
would require re-weighting each particle according to the light sources power, increasing the 
variance between emitted particles, and hence variance in the final image.

A point yo on the light is then selected uniformly over the surface. Finally, an outgoing ray 
direction is chosen assuming a Lambertian BRDF at yo, or with respect to IES lighting data if 
applicable. From yo the ray is traced to obtain the point y\ lit directly by this photon.

Path extension is performed as before from y | (recall Algorithm 1) by sampling the BRDF, 
applying Russian roulette and updating the path throughput until termination, forming a light 
path yo - y/- Equivalent to the explicit direct lighting computations used in path tracing, explicit 
connections from each light tracing vertex can be made to the camera lens, in order to determine 
the pixel that should receive its contribution. In a pinhole camera model, since the lens is 
represented by a single point, the correct pixel is simply found by calculating the intersection 
point of a ray r(y/,y/ -»  jco) with the camera sensor. Just as path tracing must rely on implicit

'T h is is not necessarily  optim al, since the goal is to m inim ise the variance o f  the im age as a w hole, w hich  
is usually not equally distributed betw een p ixels. Section 4 .4  d iscu sses this in m ore detail along with alternative 
approaches to pixel sam pling
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path extensions to accumulate radiance incident on specular surfaces from x* —► yo, light tracing 
requires implicit connections to connect specular vertices carrying reflected radiance to the 
camera sensor, yi —> jco. In a pinhole camera model this is impossible, since both the lens and 
the specular BRDF at the vertex are Dirac distributions. Even assuming a finite aperture model, 
the lens is not modelled geometrically and so implicit connections are still not feasible.

Though the algorithms of path tracing and light tracing are theoretically equivalent, in prac­
tice their performance can be significantly different. A major shortcoming of the fight tracing 
algorithm is its inability to render reflections and refractions seen through specular objects. 
Scenes dominated by caustic fighting are handled well by fight tracing, however caustics are 
only produced in the presence of highly reflective or refractive surfaces. Additionally, fight 
tracing paths can focus on regions that have low or no importance to the image, where even the 
high radiance they carry will not contribute to the image, wasting computation. The same is 
true for path tracing with respect to low radiance regions, however it is generally more efficient 
due to the diffuse characteristics of fight transport and the viewpoints used in the majority of 
scenes. This is discussed in more detail in Chapter 5 and is one of the principles behind our 
hybrid rendering approach.

4.1.6 Bi-Directional path tracing

The path tracing and fight tracing algorithms trace a set of correlated paths, connecting each 
vertex to the fight source or camera sensor respectively. In the case of path tracing, the radiance 
contribution in the path space of £1* is created by joining the path Jc*_i with a fight source, 
producing a path of the form:

* o ,* i ,. . .x * _ i,y o

where yo is a point on a fight source obtained explicitly, or

■̂ 0 j - ^ l : " ' X k

where jc *  = yo in the case of implicit connections, since jc *  is generated as an extension of j c * _ i  . 

Light tracing paths are formed equivalently but by the extension of yo resulting in yo,yi, ... 
y/_i, jco or in the implicit case yo,yi, ••• yi where y/ =  jco-

Under more difficult fighting conditions this can perform poorly, since connecting jco and 
yo by extending only one path is not always effective, and can result in the propagation of 
importance to regions with low radiance (and vice versa in the case of light tracing), without 
considering the result of the overall measurement equation which it is sampling.

Developed independently by Veach and Guibas [VG94] and Lafortune and Willems [LW93], 
bidirectional path tracing (BDPT) samples and extends paths from both the camera and a fight 
source, connecting them explicitly, thereby sampling proportional to both radiance and impor­
tance. Given a camera path Jc* of length k and a light path y/ of length /, their endpoints can be 
connected constructing a complete path of length k +  / +  1, between camera and fight source:

jc o ,JC i,...* * ,y /,...,y i,y o

This attempts to maximise the throughput of the complete path and thus the measurement func­
tion that is being integrated. Taking the path integral formulation for the radiance measurement
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at pixel p, this can be expressed as:
t

M p  =  W e ( x o X \ ) Y [ f r ( X i - i  X i - >  Xi + i ) G ( X i - l  * + X t ) V ( X i - l  <r+Xi )  
i=l

s
x Le(yo-> y i)Y \fr(y i- i ->yi yi+i)G{yi-i +>yi)V(yi-i +^yt)

i =  1
Given two independently generated paths x t and y s , a bidirectional sample Zk = z q , ■■■,Zk can be 
constructed using sub paths of x t and y s , where k = s + 1 and 0 < s < k and 0 < t  <k. Path 
tracing and light tracing can be thought of as special cases of this approach with s < 1 and t = 1 
respectively 2. By varying s and t while keeping s + t constant, paths in of equal length can 
be evaluated. A path of length n (with n-1-1 vertices) can be sampled in n +  1 different ways, 
thus producing n +  1 path densities, depending on where intermediate vertices are sampled 
from the light path or camera path. For a bidirectional path zs,t given s and t the full PDF is:

pfas) = p(xo)-pM xs-i)p(ytlyt-i)-p(yo)
However, identical paths could be generated with multiple different path densities using the 
same PDFs:

p(zs+i,t-i) = p(xo)...p(xslxs-i)p(yt lxs)...p(yo)
p(zs+2,t-2) = p(xo)-p(xs\xs-i)p(yt \xs)p(yt-i\yt)-p(yo)

p(zs+t,o) = p(xo)...p(xs\yt)p(y,\yt-i)...p(yi\y2)p(yo\yi)
(4.5)

requiring only the re-evaluation of the PDFs at each vertex in the reverse direction. Due to the 
reciprocity of BRDFs and symmetry of the rendering equation, the radiance Rp is unaffected by 
the sampling strategy and /  remains constant regardless of the values of s and t used to obtain 
the path density. This provides an opportunity to reduce variance, by intelligently choosing a 
suitable PDF for the path. An estimator for the pixel integral can be obtained:

5>0 /> 0 P sA x s j )

where /( x s j )  is the radiance measurement function M p  for the path x s j  and w Sjt is the weight 
given to a particular sampling strategy, to maintain an unbiased estimate. As for the case of 
explicit and implicit sampling, care must be taken to record only a single contribution for each 
path length up to k. Naively this can be done by summing the contributions of all paths of a 
given length n (with n +1 vertices), and dividing by the number of ways they can be constructed 
n +  1, such that w5)/ =  5+f1+1. Averaging the estimators in this way means that together their 
variance is similarly a mean of the variance from each of the n +  1 contributions, which is far 
from desirable [Vea97]. Multiple importance sampling can be applied to combine the strengths 
of each path construction strategy and minimise variance in the image, providing a set of good 
weights for each strategy wsj  of a path with length s + t.

2In the case of light tracing, the assumption is made that the lens is not represented geometrically and so 
implicit connections where t = 0 are impossible.
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Figure 4.6: A set o f  bidirectional paths can be constructed by explicitly joining the vertices o f  
the camera and light paths.

Simply connecting the endpoints of each path is inefficient, and in similar fashion to the 
unidirectional path and light tracing algorithms, a correlated set of paths from the camera to 
the light source(s) can be constructed by connecting intermediate vertices (Figure 4.6). In 
cases where light sources are highly enclosed (for example by a lamp shade) this is usually 
more efficient than relying on shadow rays from the camera path. The light path can first 
escape the enclosed space, and have a higher probability of linking to a camera path vertex in 
more open regions of the scene free from occluders. Although this requires additional rays to 
connect the vertices of each path combinatorially, in more difficult lighting scenarios it is often 
still advantageous. Veach [VG94] and Lafortune [LW93] both proposed a technique based on 
Russian roulette to skip some vertex connections if their contributions are minimal. By only 
connecting vertices with proportionally significant contributions, the number of rays required 
is reduced trading increased variance for improved efficiency.

The strength of BDPT comes from its ability to combine the advantages of path and light 
tracing, and using MIS to do so in a provably good way. Additionally, as both path tracing 
and light tracing are subsumed by bidirectional path tracing, it can make use of the explicit 
connections to light emitters and sensors to improve efficiency and performance. For light 
paths that are connected directly to the camera (where s = 1), a light path can contribute to 
multiple pixels by projecting vertices onto the camera sensor, instead of using the origin of the 
eye path generated for the bidirectional sample used for a particular pixel. Similarly, direct 
lighting (where t =  1) can be evaluated by choosing a point on the light source independent 
of the generated light path, instead using samples that are well stratified with respect to the 
surrounding pixels.

In some cases however, BDPT is restricted to evaluating paths identically to unidirectional 
methods, providing no additional advantage. In the presence of highly specular surfaces ex­
plicit connections cannot be made, restricting the number of strategies under which a path 
of given length can be constructed. Thus, the significant benefits provided by MIS are also 
eliminated.
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Figure 4.7: Markov-chain M C algorithms like Metropolis light transport locally explore path 
space efficiently via path mutation, reusing sub-paths (jco —» x\, x\ —»• yo and  JC3 —» yo!

In highly occluded environments, many of the explicit ray connections used to construct 
the set of correlated paths can fail, decreasing the efficiency of BDPT. The camera and light 
paths are generated independently, so there is no guarantee that vertices on the two paths are 
mutually visible. Pajot et al.[PBPPl 1] propose a combinatorial approach to path connections 
replacing the one to one connections of camera and light paths with a many to many relation­
ship, improving correlation and the use of each generated sub-path.

Since it is still a stochastic process, low density paths carrying high radiance still occur. Us­
ing locally greedy importance sampling strategies like BRDF sampling still present problems 
in highly occluded environments, where visibility is not factored into the sampling process. 
In cases where only a single evaluation strategy is available, BDPT does not provide any ad­
vantage over standard unidirectional techniques. Caustic lighting is a common situation where 
this occurs, especially when emanating from small light sources where the chances of im­
plicit connections are reduced. To improve upon this, and in highly occluded environments, 
Markov-chain Monte Carlo methods can be used to explore regions of path space based on 
their measured importance, as opposed to a locally greedy estimate to the integral.

4.1.7 Metropolis Light Transport

Veach and Guibas [VG97] introduced the Metropolis-Hastings algorithm (discussed in Chapter 
3) to light transport, providing an effective means to tackle difficult lighting scenarios. Here 
an introduction to the principle behind Metropolis Light Transport (MLT) is provided. For 
more in depth discussion see the Ph.D. thesis of Veach [Vea97] and the more recent work by 
Kelemen et al.[KSKAC02],

In Veach’s original variant of Metropolis light transport, given an existing path (known 
as a state) X generated using MC sampling, a proposed path X; for the MC Markov-chain 
is generated by modifying (mutating) elements of the previous state X. Evaluating this new 
state, and repeatedly applying mutations forms a chain of random walks through the integral, 
eventually generating a state with density proportional to / .
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The tentative transition function Tr(X —»• X'), is used to generate a proposed state X', 
representing the probability of obtaining X' from X under some mutation strategy.

This proposed sample X' is then accepted or rejected stochastically, using a pseudo-random 
variable £ similar in operation to Russian roulette. The threshold for this is determined by an 
acceptance probability a(X —> X') which is responsible for the behaviour and effectiveness of 
Metropolis sampling.

The acceptance probability must be designed such that an equilibrium state is reached 
for the implicit distribution obtained over the course of the Markov-chain, representing the 
ideal PDF over / .  Thus, if X is already in equilibrium (where p(X) oc f ) then p(X) = p(X'), 
otherwise mutations will tend away from the ideal PDF. This is described by the detailed 
balance rule:

The efficiency of the Metropolis sampling estimator relies on the ability of the acceptance 
probability function to reach equilibrium with as few mutations as possible, which corresponds 
to maximising the acceptance probability:

If the sample is accepted, X is replaced by the new state X', otherwise X is kept as the basis for 
the next mutation. In either case, X is weighted using the acceptance probability a(X —> X')

distribution of X, reaches an equilibrium distribution proportional to the ideal PDF; /(X ) /

When sampling path space stochastically, paths with low densities and high contributions 
are problematic, increasing pixel variance. Only a single sample is evaluated from these diffi­
cult regions before new samples are generated the estimator moves on to explore the remainder 
of the integrand. Using the path mutation approach of MLT, local path space regions with high 
contributions can be explored once found, contributing numerous samples despite their low 
densities. By reusing sub-paths of of previous samples that are unaffected by the mutation, ex­
ploration can be achieved whilst minimising additional ray tracing computation, and reducing 
the average sample cost.

Unlike pure MC path tracing, MLT does not evaluate individual integrals for each pixel 
but, using path mutation, distributes samples from a single estimator across the image. This 
can improve pixel correlation, since by mutating the path vertex that lies on the camera sensor, 
hard to find paths can contribute to multiple pixels via mutations. Radiance measurements 
of neighbouring pixels are often similar, so the correlation provided by path mutation can be 
beneficial. Variance for MLT estimators (especially for individual pixels) is non-trivial, and 
has been analysed in [APSS01].

Metropolis light transport has seen significant research attention. Kelemen et al.[KSKAC02] 
make a number of simplifications and improvements to MLT, sampling and mutating the ran­
dom variables responsible for path generation within the n-dimensional hypercube over [0,1)R. 
They also introduce the notion of large step mutations to improve ergodicity, in turn improving

/(X ) Tr(X -¥ X') a(X X') =  /(X ') Tr{X! -> X) a(X! -> X)

) =  min |

and added to the estimator and the process continues, forming a chain of mutations where the

/n /(x )d n .
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stratification over the image. Sample stratification can be a problem with MLT, as acceptance 
probabilities traditionally sample pixels according to their radiance and ignore the distribution 
of samples with respect to individual pixels. In higher contrast scenes, darker pixels are often 
left undersampled and noisy while brighter regions may have adequately converged, such as 
directly visible light sources. These high contribution path remain the focus of the Metropolis 
sampler due to the tendency of the transition function.

Energy redistribution path tracing (ERPT) by Cline et al.[CTE05] combine standard MC 
path tracing with Markov-chain MLT, initialising independent MLT integrators for each pixel 
with short mutation chains, spreading sample contributions to nearby pixels in the image to 
improve correlation and variance. Shorter chains ensure the MLT integrator does not get stuck 
on high contribution paths for too long, avoiding bright splotches, and instead moving to new 
regions of the image plane to better explore the scene. A side effect of this is that the short 
chains cannot explore longer or more complex paths as thoroughly before moving on, increas­
ing the overall convergence time for such scenes since there is a heavier reliant on stochastic 
sampling.

An alternative approach to improving stratification is to tailor the mutation and transition 
functions to suit the evaluation of multiple equally weighted integrals: the image pixels. Veach 
[Vea97] introduced two-stage MLT, which uses an initial low resolution and low sample den­
sity image to provide an estimate for the actual pixel integral, which is used as a target function 
for sample mutation and improve stratification. For difficult scenes this is impractical and may 
require a significant amount of computation to obtain an accurate estimate, which is then dis­
carded upon starting the MLT sampler at full resolution. Hoberock and Hart [HH10] improve 
upon this with an iterative start up approach that increases the image size gradually, contribut­
ing all samples to the final image. Additionally, they propose a noise-aware variant of MLT 
which adjusts the target distribution based on a perceptual variance estimate, improving sample 
distribution and visible noise.

Recently, Jakob and Marschner [JM12] tackled the problem of mutations in highly spec­
ular paths, using the tight constraints of specular vertices to define a manifold in path space. 
Utilising the differential geometry at each surface, this manifold can be locally explored via 
path mutation, allowing it to fit in to existing MLT and ERPT algorithms providing significant 
improvements over previous mutation approaches.

4.1.8 Trading accuracy for performance

In some applications, the performance or noise characteristics of unbiased Monte Carlo meth­
ods are undesirable, and the introduction of bias to the estimator can provide visually more 
pleasing images. The design and effectiveness of all algorithms for global illumination is re­
liant on their ability to handle a number of key factors, including:

• Wide range of lighting phenomenon

• High geometric complexity

• Realistic material models

• Accurate visibility queries
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The trade-off of accuracy to improve performance often involves the use of approximations that 
reduce the robustness of the algorithm with respect to one or more of these elements. Photon 
mapping is a popular technique that introduces several sources of bias in an effort to improve 
performance and reduce per pixel variance over pure Monte Carlo methods. The novel work 
introduced in Chapter 5 will build upon recent advances in the photon mapping paradigm, so a 
thorough discussion of its theoretical background and related work is presented.

4.2 Photon Mapping

Photon mapping, introduced by Jensen [Jen96, JenOl] is a two pass bidirectional approach 
based on the principles of Monte Carlo light tracing, storing information carried by each light 
path vertex (photon) in a data structure; the photon map. Radiance measurements are obtained 
using a second pass, tracing a path from the camera and carrying out density estimates over 
the photon map to construct local flux estimates. Being based on light tracing, photon map­
ping is particularly effective for the generation of caustics, but with the ability to evaluate the 
full global illumination solution, including specular and glossy reflections, participating media 
[JC98] and subsurface scattering [JMLH01].

4.2.1 Photon tracing and storage

Photon tracing is performed in a similar fashion to light tracing, stochastically sampling po­
sitions and outgoing directions on light emitters according to some probability distribution 
and the emitter’s characteristics. The now familiar path extension mechanisms and variance 
reduction techniques described in Section 4.1.2.

Instead of explicitly connecting each non-specular light path vertex to the camera as in 
MC light tracing, the vertex data is cached in a photon map data structure. This builds up 
an approximate representation of the incident illumination across the scene. Caching path 
vertices in the photon map allows sub-paths from the light sources to be used by multiple 
pixels, improving correlation and reducing per-pixel variance and high frequency noise.

Typically this first photon tracing pass can accumulate in the order of 104 to 107 photons 
depending on the scene complexity and desired trade-off between accuracy and performance. 
Caching such a large amount of data makes the representation of both photons and the photon 
map structure crucial. A single photon is typically represented by its position and surface 
orientation in 3D world space, the flux it carries and the direction from which it arrived:

P h o t o n {

f l o a t  [ 3 ]  p o s i t i o n  

f l o a t  [ 3 ]  f l u x

f l o a t [ 2 ]  i n c i d e n t  d i r e c t i o n  

f l o a t  [ 2 ]  n o r m a l

The incident direction and surface normal can be represented in the global coordinate system 
using polar coordinates (0,0), representing the azimuth and zenith respectively, and are used 
to obtain and improve radiance estimates (discussed below).
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(a) Caustic photon map (b) G lobal photon map

Figure 4.8: Illustrations o f the photon paths that make up the caustic photon map L S^D  and 
global photon map L(S\D)*D. All surfaces are diffuse except the sphere which is a dielectric, 
with refraction denoted by dashed lines.

The flux representation is dependent on the spectral model used during rendering, generally 
using a single floating point value for each spectral channel, 12-bytes in the case of RGB ren­
dering. This can also be compacted using Greg Ward’s 4-byte packed format [War911 to save 
memory, however on modem systems it is usually not a problem and not worth the decreased 
accuracy and performance.

As with the particles in light tracing, it is advantageous for all photons stored in the photon 
map to have similar power, to reduce variance in the density estimates [JenOl]. If the flux of 
photons differs greatly, density estimates must incorporate a larger area of the scene during the 
radiance estimation pass to maintain similar levels of variance, reducing efficiency.

Applying Russian roulette at each vertex also improves the overall efficiency without addi­
tional bias, since the number of photons stored is reduced without affecting the total flux held 
in the photon map. This controlled increase in variance from path termination results in fewer 
ray computations during the photon tracing pass, alongside lower memory requirements and 
faster density estimates.

In many implementations of photon mapping, two data structures are utilised; a caustic 
photon map and a global photon map. The caustic photon map stores paths of the form L S +D, 
which often produce high frequency illumination detail that is difficult to preserve using density 
estimation, so can require far larger numbers of photons to represent effectively. By using 
this additional caustic map, efficiency of the algorithm can be improved with respect to the 
density estimation queries. Additionally, the high density and energy of caustic photons can 
be problematic when mixed with sparse general illumination features, reducing the quality of 
the radiance estimates due to increased flux variance. Producing caustic photons exclusively 
can be achieved by explicitly casting photons from the light sources towards specular objects,
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using projection maps [JC95], allowing the relative size of the global and caustic photons maps 
to be controlled more easily.

The global photon map is responsible for representing all illumination in the scene, L(S\D)*D, 
including photons contributing to caustic illumination. Typically, this will have a more uni­
form distribution and lower flux density on average. As a result, the global photon map can be 
coarser than that of the caustic photon map, without the same loss of detail.

During the photon tracing pass, the two sets of photons are maintained as flat unordered 
arrays. Radiance estimation (discussed below) relies upon the representation of the photon 
maps for its efficiency, and often involves many millions of queries. The kD-tree is a good 
choice for nearest neighbour queries and provides many desirable properties including:

• Fast query performance,
• Compact storage,
• Effective handling of non-uniform distributions.

kD-trees have been discussed in Chapter 2 in the context of accelerating geometry inter­
sections for ray tracing, but for photon mapping efficient kD-tree construction is somewhat 
simpler. Each photon represents only a single point in space, avoiding the need for expensive 
clipping or duplicate references to the data in leaves of the tree. Construction is also faster 
in practice, using a median-based split heuristic, resulting in each child node having roughly 
equivalent numbers of photons. This produces a balanced binary tree with good performance 
for neighbourhood searching, whose construction represents only a small part of the computa­
tion performed during photon mapping. Wald [WGS04] has investigated alternative approaches 
to kD-trees for photon mapping, based on an adaptation of the surface area heuristic used for 
ray tracing.

4.2.2 Radiance estimates

The photon map provides a discrete representation of the incoming flux <!>, at a number of 
points (the photon locations) throughout the scene. For an arbitrary location in the scene an 
approximation of the incoming flux can be obtained by querying the photon map, and con­
structing the scattered radiance using the local photon data. Recall the equation for radiance 
scattered towards (o as an integral over the hemisphere at location jc :

The incoming radiance L, can be obtained from the photon map, that holds the incoming flux 
4>i of photons around j c .  From the definition of flux in radiometry (Section 1.5) this can be 
rewritten in terms of incident radiance:

Thus, substituting the flux estimate into the radiance integral in Equation 4.6 produces:

(4.6)

r d
'nx dcodAcos 6
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An approximation of this incoming flux at jc can be obtained by integrating over the discrete 
representation held in the photon map. By sampling from n of the nearest photons surrounding 
x, the incident radiance can be approximated by a finite sum of the incoming flux ®p{xp, cop) 
for each photon p:

L r ( x , C 0 )  «
1=1  ^

1 n

where the area of the neighbourhood A is dictated by the volume occupied by the n photons 
around jc. The incident direction a) for the BRDF and cosine factor is obtained from each 
individual photon in n.

Naively, the nearest photons are found by expanding a sphere around jc. Since the scene 
space over which the kd-tree is built lies in 3-dimensional Euclidean space, the volume can be 
approximated as A = |7Tr3, where r is the distance to the furthest of the n photons. In general, 
increasing the number of photons in the photon map provides ever increasing accuracy in the 
radiance computation. Higher overall density in the photon map ensures A becomes smaller 
due to the fixed n.

4.2.3 Rendering

After construction of the photon map, the second pass uses the radiance estimation above to 
evaluate the measurement function for each pixel in the image. The render pass closely follows 
the approach taken to MC ray tracing (as opposed to path tracing), extending camera paths into 
the scene until reaching a non-specular vertex, jc<*. At this point, the radiance leaving jcd towards 
the camera is computed. This can be divided into the emitted and scattered radiance:

L(jc, £o) =  Le(jc, m) Lr(jc, co)

As with unbiased MC methods, the limitations of light paths in the presence of specular sur­
faces require some path space to be evaluated solely using camera based ray tracing. Namely, 
light sources visible directly or through specular objects; paths of the form ES*L. Similarly, the 
emitted radiance Le(x, co) is evaluated directly without use of the photon map. The scattered 
radiance Lr(jc7, co) can be obtained from the cached photon map data:

Lr{x, CO) =  Lrtc(x, (O) Lr̂ d(x, ft))

where Lr c is caustic lighting obtained using the caustic photon map and Lrd is obtained from 
flux held by photons in the global photon map. Given that the global photon map also contains 
caustic photons, care must be taken to account for caustic illumination from only one of the 
photon maps for a given path. Thus the caustic photon map is only used when the diffuse 
surface jcj is visible directly or through specular interactions. After scattering through low 
frequency BRDFs, the illumination is soft enough that the sparse representation of caustics in 
the global photon map provides a more efficient alternative to querying both maps.
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The caustic photon map is visualised directly, using density estimation at xj to approxi­
mate the radiance of caustic paths using Equation 4.7. Caustics are generally of interest when 
photons are focussed by specular interactions, producing high photon densities thus, the radius 
of the search kernel can be relatively small in caustic regions, minimising the introduction of 
systematic bias.

The remaining Lrd term can be obtained from the flux contained within the global photon 
map. Visualising the global photon map directly can result in the gather area for such estimates 
to become large relative to the footprint of the pixel, due to the coarseness of the global photon 
map and the need to locate the n photons necessary to reduce variance. In turn this increases 
the risk of visual artefacts and bias in the image. As these such surfaces are directly visible, it is 
desirable to minimise error especially in the presence of high frequency detail; not something 
well handled using density estimation alone.

Instead, more accurate estimates can be acquired at additional cost, by using Monte Carlo 
ray tracing to extend the camera path from Xd to add an unbiased level of indirection to the 
radiance obtained via density estimation. This reduces the impact of noise produced due to 
low photon densities. Furthermore, this requires direct lighting to be computed explicitly using 
shadow rays as in unbiased MC methods, adding further computation but also preserving the 
high frequency shadow edges which the human visual system is sensitive to.

Achieving the same quality via density estimation alone would require considerably more 
photons, especially in the case of higher frequency BRDFs, where extensive coverage of the 
hemisphere over the surface would be required in addition to the surface area itself.

4.2.4 Bias, variance and consistency

Although the use of density estimation can save a considerable number of rays and improve 
performance, it has shortcomings. Density estimation introduces a number of sources of bias, 
whose elimination has been the focus of many years of research. This section will outline 
the cause of these problems and some key literature that aims to improve the accuracy and 
robustness of photon mapping.

Storing a finite number of photons provides a discrete approximation to the otherwise con­
tinuous function of scattered flux throughout the scene. The performance benefits of photon 
mapping are a result of the introduction of bias in place of variance, largely dictated by the 
size of the kernel r and its ability to reuse neighbouring sub-paths. Ideally, this trade-off would 
introduce only enough bias to remove the visible effects of variance. Intuitively, as the number 
of photons n in the gather kernel decreases, the variance of each photon p becomes proportion­
ally more prevalent in the estimate. In terms of bias, as n increases the kernel bandwidth r also 
increases, thus additional bias may be introduced due to the increased distance between the 
photons and the gathering point. There are three main types of bias present in photon mapping 
that result:

• Boundary bias occurs in the presence of discontinuities in geometry, where the estima­
tion kernel overlaps the boundary between these discontinuities resulting in the darken­
ing of edges and comers, and blurring of otherwise sharp features.
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• Topological bias is due to photons that lie on surfaces neighbouring the surface from 
which the camera vertex x lies. Inclusion of such photons can easily impact the radiance 
estimate, resulting in under or over estimation. Assuming the surface is flat across the 
kernel also incurs topological bias. For a curved surfaces, the area of the kernel is under 
estimated resulting in an increase in the estimated flux density.

• Proximity bias is the result of density estimation blurring the local density around the 
gather point, smoothing the illumination across the kernel bandwidth which can remove 
high frequency details such as sharp caustic detail or shadow boundaries.

A significant body of research has been introduced to tackle the problems of the variance/bias 
trade-off, which results from producing a radiance estimate on a 2-dimensional surface, from 
a 3-dimensional representation of the incident illumination. Some significant works will be 
summarised below.

Kernel design To reduce the types of bias mentioned above, the gather kernel can be de­
signed to apply non-uniform weights across the photons dependent on their similarity with the 
gather point. The shape of the kernel can be modified to better suit the underlying geometry, 
thus providing a more accurate approximation of the volume containing the photons. The most 
basic spherical kernel, where A = ^nr2 in Equation 4.7 is highly inaccurate for approximating 
density over surfaces, since photons lie within a 2D manifold in 3D space. Topological bias can 
be reduced by considering the kernel in higher dimensional (non-Euclidean) space, including 
parameters of the local geometry around the gather point such as:

• 2D/3D Euclidean distance,
• Surface normal at x',
• Local photon orientation (cop,
• Local photon distribution,

which help to modify the naive spherical kernel to better fit the 2D manifold of the surface, 
improving density estimation. Applying kernel filters, such as the cone filter [JenOl], increases 
the influence of nearby photons, since they are likely to better represent the incident illumi­
nation at the gather point. Additionally, small changes in the kernel bandwidth can produce 
large changes in the radiance estimate, visible as splotches in the final image, which can be 
somewhat alleviated using kernel filters.

Modifying the kernel shape via simple flattening of the spherical kernel along the local 
surface normal to create an ellipsoid or disk shaped kernel has been shown to provide a good 
approximation [JenOl]. As the gather kernel becomes smaller, it can be assumed that the local 
surface will become locally flat, thus allowing A = nr1 in the radiance estimate.

Further improvements to the gather kernel can be achieved by accounting for the surface 
normal and incident direction of gathered photons. This can reduce the influence of back facing 
photons that are included in the domain of the kernel due to thin objects or surfaces with high 
curvature.
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Anisotropic kernels can also be useful making use of the local photon distribution [SSO08] 
or photon differentials [SFES07] to shape the kernel adaptively, reducing bias at illumination 
and geometric boundaries. Similarly, geometry bias can be reduced by analysis of the under­
lying geometry to improve the estimation of A for non-planar surface regions [HP02, TM06, 
HS07]

This discrepancy between the surface area measure of the kernel A and the true area en­
compassing the n gathered photons in the 2D surface manifold is what gives rise to additional 
bias in the estimator. However, a trade-off must be made between maintaining fast density 
estimation, and providing accurate and locally adaptive gather kernels which come at the cost 
of added complexity.

Bandwidth selection Choosing the size of the gather kernel can also have a significant effect 
on the resulting radiance estimates. Too few photons and the resulting image will exhibit 
high levels of noise, whilst too large a bandwidth can incur bias in the form of low frequency 
blurring in addition to high query costs. Bandwidth selection is an outstanding problem in 
many filtering contexts for computer graphics, not just photon mapping. Although effective 
iterative solutions are available (see [JMS96, Sch03] for an overview) these are generally too 
costly for application to computer graphics and/or require careful parameter tuning.

The problem of optimal bandwidth selection is an important one due to its strong influence 
on the resulting images. The use of adaptive approaches impacts the characteristics of the 
output with respect to the variance and bias of the estimator, so such techniques must be chosen 
carefully. This is further discussed in Chapters 5 and 6 which build upon photon density 
estimation and filtering kernels for image based convolution respectively.

4.2.5 Limitations of classical photon mapping

Despite the notable improvements discussed above, practical limitations still apply to such 
an approach. Namely, the amount of available memory limits the ability of the photon map 
to accurately represent the underlying continuous illumination field, pointed out by [HOJ08] 
among others [HHS05, HS07]. This loss of accuracy is exacerbated by density estimation in 
the presence of a number of features including:

• Hard illumination (eg: caustics, hard shadows),
• Small scale geometry,
• High curvature surfaces.

In addition, increasing the photon density not only increases memory consumption for the al­
gorithm but impacts the performance of the density estimates and kD-tree traversal. Thus these 
penalties and the limits imposed by current memory models ensure that photon mapping as de­
scribed above cannot always produce sufficient quality results for scenes with such features. A 
number of techniques have aimed to reduce the memory consumption of the photon map, or 
conversely improve the quality of the estimates that can be obtained with a finite numbers of 
photons. Fan et al.[FCL05] introduced Metropolis sampling to photon tracing, depositing more 
photons in important regions of scene space in turn producing higher quality images with the
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same number of photons. Spencer and Jones [SJ09, SJ13] showed that modifying the topology 
of an existing photon distribution using constrained repulsion allowed the use of smaller ker­
nels, improving rendering performance and reducing bias. Modifying deposited photons can 
however introduce bias into the photon map itself, in addition to the bias resulting from density 
estimation, and so care must be taken to respect discontinuities in the illumination. However 
such features may not be sufficiently represented in the existing photon map since it is already 
a discrete approximation.

Havran et al.[HHS05] and Herzog et al.[HS07] reorganised the photon mapping algorithm, 
storing intersection points of the camera paths in a tree prior to the photon shooting pass, 
removing the need to store photons and splatting photons to camera path hit points as opposed 
to gathering them.

Whilst providing improvements in the quality and performance of photon mapping, the 
inherent memory limitations are still prevalent in the above mentioned techniques, since storing 
a finite number of photons N  in the map still presents a discrete approximation to the continuous 
function of scattered radiance.

The ability to increase the number of traced photons arbitrarily would in turn allow an 
unbounded increase in the photon density, improving the underlying approximation. Increasing 
N  whilst maintaining a fixed number of photons n in the gather kernel results in a decreasing 
kernel bandwidth, and hence area A. Thus, bias decreases proportionally to N  on average. 
Theoretically, as the total number of photons N  approaches infinity, the estimate of the reflected 
radiance at a surface point x' in the scene approaches the true reflected radiance Lr(x',co) 
[JenOl]:

I L^J
Jim —j  Y  f r(x!, (o',(o)A<t>p(x\(0P) = Lr(x/ , co) (4.7)
N-*°o jcr

where (3 E ] 0  : 1 [. Given that an infinite number of photons are used to represent the integral, 
an infinite number of photons can be used in the estimate, and the solution will converge 
providing N& is infinitely smaller than N. The kernel bandwidth r will become infinitesimal 
and converge to zero. Over an infinitesimal disk (or sphere) the effects of bias as described 
above are alleviated, theoretically leading to an accurate estimate of Lr(x',co). It is this that 
drives the recently proposed reformulation of photon mapping into a progressive variant.

4.2.6 Progressive Photon Mapping

Progressive photon mapping (PPM) devised by Hachisuka et al. [HOJ08] provides improve­
ments over classical photon mapping described above, removing the need to store photons 
whilst gradually reducing the kernel bandwidth, leading to a reduction in visible bias. Progres­
sive photon mapping extends the reverse photon mapping and photon splatting ideas of Havran 
et al.[HHS05] and Herzog et al.[HS07] discussed above, storing only camera path hit points but 
without the use of final gather rays, and splatting photons to nearby camera hit points without 
additional storage requirements. The resulting two-pass algorithm has a low memory foot­
print, is progressive in nature and can produce final images of higher quality than conventional 
photon mapping.
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Figure 4.9: Progressive photon mapping consists o f  a ray tracing pass (left), distributing 
hitpoints around the scene fo llow ed by a photon tracing pass (right) to compute radiance 
estimates.

This progressive variant of photon mapping is an important and high impact recent devel­
opment to density estimation in global illumination and forms part of the novel contributions 
proposed in Chapter 5. As a result it will be the focus of detailed discussion in this section to 
provide background and motivation for work in this thesis.

An illustration of the progressive photon mapping algorithm is outlined in Figure 4.9. An 
initial pass uses recursive ray tracing to identify a finite set of points on non-specular surfaces 
visible through each pixel. Subsequent passes then trace a set of photons, storing a photon 
for each non-specular surface, building up a photon map akin to the initial pass found in the 
original PM algorithm. After each photon tracing pass, a photon map is constructed and density 
estimation is performed around each of the stored camera hitpoints. After a set number of 
photons have been traced, the current photon map is used to refine the flux estimate and kernel 
radius for each hit point ready for the next pass. Once the radiance estimate at each hitpoint has 
been updated, the photons for the current pass are discarded and a new photon tracing pass can 
begin, maintaining the combination of constant memory usage and reduced bias that eluded 
previous approaches.

This process is analogous to averaging multiple independent photon maps, where each it­
eration trades bias for variance as the kernel bandwidth r is reduced over time, tending towards 
zero. This progressive reduction in kernel bandwidth and overall increase in photon contri­
butions is what provides convergence to a consistent solution with reduced variance and bias. 
The resulting PPM estimator aims to remove the upper limit upon the number of photons con­
tributing to the radiance estimate at each hitpoint, attempting to fulfil the convergence property 
expressed by Equation 4.7.
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4.2. Photon Mapping

4.2.6.1 Camera hitpoints and statistics

Acting as gather points for density estimation, each camera hit point from the initial pass stores 
sufficient data to perform both density estimation and radiance measurements for the associated 
pixel:
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In addition to the hitpoint location and surface normal for density estimation, the camera 
ray direction G) and BRDF at jc  are also included to compute the scattered radiance. The path 
throughput T (Jc) from the camera to jc  is cached at the hitpoint along with the paths origin on the 
image plane, to allow radiance contributions to be added directly to the image buffer. Statistics 
are also maintained to track the current kernel radius r and accumulated photon count N, which 
allow for the progressive reduction of kernel bandwidth and correction of the flux estimate after 
each iteration (discussed in detail below):

S t a t i s t i c s f

f l o a t  r  C u r r e n t  k e r n e l  r a d i u s

i n t  N  A c c u m u l a t e d  p h o t o n  c o u n t

c o l o u r  T  A c c u m u l a t e d  u n n o r m a l i s e d  f l u x

>

Though allowing for arbitrary numbers of photons, the initial pass restricts PPM to evalu­
ating radiance at a finite number of visible points. This becomes problematic for example in 
the anti-aliasing of geometric and texture edges where the points need to be well distributed 
and numerous enough to resolve fine detail. Additionally, there is no support for distributed 
rendering effects such as glossy surfaces and depth of field.

Stochastic hitpoint generation Stochastic progressive photon mapping [HJ09] (SPPM) adds 
the ability to compute radiance estimates over a visible region, as opposed to a set of discrete 
points, whilst maintaining the desirable properties and progressive nature of the original al­
gorithm. In general, this is achieved by adding a distributed ray tracing pass between photon 
tracing passes in order to obtain new camera hitpoints lying inside the visible region of each 
pixel. This enables flux to be estimated over a different visible location at each iteration j c , ,  

which over successive iterations cover the entire space S visible from a given pixel, where 
xi G S for all i. As a result statistics are maintained for each pixel in SPPM representing the 
current kernel radius and the total flux contributed from pervious iterations, as opposed to 
maintaining a set of statistics for each hitpoint as in PPM.

By changing both the camera hitpoints and the photon distribution at every iteration stochas­
tically, SPPM can provide radiance estimates for complex integrals in a progressive manner, 
without the limitations of previous photon mapping techniques. The remainder of this section
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will discuss the stochastic formulation of the algorithm in further detail, since it is subsumes 
the original PPM approach and is significant to the novel work proposed in Chapter 5. For 
further details of the differences and derivations of the stochastic variant from the original ap­
proach see [HJ09]. The notation used in the context of (S)PPM follows that of the original 
authors [HOJ08, HJ09].

4.2.62 Radius reduction

The key concept behind (S)PPM is the reduction of the kernel bandwidth to decrease bias. 
Instead of performing a nearest neighbour search for fixed n, the density estimate is produced 
from photons that lie within a fixed radius r of the gather point. For a given location jc  the 
photon density of photons within a fixed radius r can be calculated simply as:

assuming a uniform kernel filter and a planar surface at jc . For the initial iteration i of the 
algorithm, the photon density can be computed as in the classic photon mapping approach 
using the number of photons located in the current gather radius. In discarding the photon 
map, the density at each subsequent iteration must consider the total number of accumulated 
photons Ni (S) collected from all previous iterations up to i over die set of surface points S 
visible through the pixel. Thus the density must be updated based on the number of new 
photons Mi+i ( j c , )  collected at the hitpoint jc ,  6 S for the new iteration i -F 1:

However to reduce bias, the (S)PPM algorithm must also reduce the kernel radius. Given an 
ideal photon distribution, for a region of uniform illumination any density estimate performed 
should ideally compute the same photon density for that region, regardless of the kernel band­
width. To maintain a consistent estimator (as in Equation 4.7), the number of photons that 
contribute to the radiance estimate for each pixel region must increase towards infinity, other­
wise flux contributions would be lost and would have no effect on the final estimate 3. Thus 
maintaining constant density requires the gather area to decrease proportionally to the number 
of photons that are accumulated. A global parameter a  is used to dictate the rate of radius 
change at each iteration based on M, ( j c , ) :

Since convergence only occurs due to the decreasing kernel radius, the parameter a  provides 
a balance in the trade off between bias and variance. Given that S has a kernel radius of 
Ri(S) at iteration i the new radius /?,+i(S) must ensure that the new area 7tRi+i(S)2 decreases 
proportionally to the change in AT, (S') [HOJ08]:

Ni+l(S)= N i{S) + aMi(xi) (4.8)

(4.9)

3 Intuitively, if the number of photons did not increase this would be equivalent to averaging the estimate at 
each iteration, which does not reduce bias effectively
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Along with the current kernel radius and number of accumulated photons, each pixel (in the 
case of SPPM) tracks the currently accumulated flux over S, which must similarly be adjusted.

4.2.6.3 Flux correction and radiance computation

Contrary to classical photon mapping, each pixel’s flux is stored unnormalised with respect to 
the gather area and the number of photons traced, since both vary during rendering. For each 
set of new photons collected over the gather kernel with area (5)2 and number of photons 
Mi(xi), their combined unnormalised flux can be calculated:

Mtixi)
(0) =  ^  f r ( x , (d ,G)p)$>p(Xp, (dp)

P=  1

Notice that the flux of each photon is multiplied by the BRDF at jc .  This new flux needs to be 
combined with the flux accumulated over all previous iterations, in order to satisfy consistency. 
Progressively reducing the kernel radius means that photons that lie within R[ may no longer 
lie within the kernel defined by /?,•+1, requiring an adjustment in the flux estimate from the 
previous iteration to account for photons that now lie outside the new radius. The assumption 
of constant photon density is maintained and the refined flux is scaled by the change in area of 
the kernel:

fi+l {s, to) =  (Ti(s, to) +  to)) (4-10)

where t, (5, co) is the unnormalised flux estimate for iteration i scattered towards the direction of 
the camera co from visible surfaces in S. If the area nRi{S)2 of the gather kernel is reduced over 
a photon distribution of constant density, the number of photons will decrease proportionally. 
In turn assuming each photon carries the same flux on average, the total unnormalised flux 
contributing to the radiance estimate should be decreased by the same proportion, since the 
current Ri(S) is used for flux normalisation.

A radiance estimate can be obtained after any iteration of the algorithm by normalising 
T,-(S, co) using the shared statistics. Following the normalisation process of conventional photon 
mapping, the radiance scattered towards the camera at co can be calculated for the shared pixel 
flux as:

L(S,o>) »  7£/r(x,«Bj,©)A<l>p(xp,a^) (4.11)
A P=l

_  1 Tt(5,cu)
KRi(S)2 Ne(i)
y  T/(5,ffl) 
i™ Ne{i)KRi{S)2

where Ne(i) is the total number of photons emitted up to and including iteration i. In the limit 
a radiance measurement is obtained that is in theory equivalent to solving the radiance integral 
of the surface area visible from that pixel using Monte Carlo integration. In practice this is not 
the case and is discussed further in Chapter 5.
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Convergence and extensions The progressive reformulations of photon mapping are ini­
tially plagued by the same geometric, topological and proximity bias as classical photon map­
ping, dependent heavily on the radius of the gathering kernel [JenOl].

Hachisuka et al.[HJJ10] discuss error estimation in PPM, and provide a means to estimate 
the relative levels of variance and bias forming the overall estimator error, and show how it can 
be used as a stopping criteria. Knaus and Zwicker [KZ11] similarly present a rigorous analysis 
of the PPM algorithm’s properties, establishing that its variance decreases with 0(1 / N a) 
and bias with O (l / N l~a). Thus the choice of a  is important to determine the behaviour 
of PPM and the convergence of overall error. The formulation of PPM described by Knaus 
and Zwicker further shows that the convergence of the algorithm is independent of the number 
of photons gathered and the local photon density. Thus the collection of such statistics as 
originally presented by Hachisuka is unnecessary. In turn this permits each iteration of their 
probabilistic approach to be run in parallel as the combination of individual photon maps, since 
the radius of each iteration and the resulting radiance estimate is independent of all previous 
iterations.

The error convergence of 0(1  / Na) with 0 < a  < 1 results in poorer convergence char­
acteristics than Monte Carlo path tracing approaches in which error is reduced to the order 
O (l /  y/N). The density estimation and photon caching properties of (S)PPM make for in­
creased sampling performance, arid allow it to haridle a number of scenarios that Cause dif­
ficulties for unbiased path tracing approaches. This forms part of the motivation behind the 
novel work proposed in the following chapter, and a comparison between the two approaches 
and their limitations will be discussed in detail.

Hachisuka and Jensen [HJ11] present an adaptive photon tracing scheme that allows the 
distribution of photons to be adjusted using an importance function based on photon visibility. 
This allows a higher photon density in visible regions, improving efficiency for close ups of 
large or highly occluded scenes where a large percentage of the deposited photons do not 
contribute to the image. However, their approach uses a binary visibility function that does not 
take into account the importance of photons with respect to their contributions. Thus, a large 
number of photons may still be deposited in regions distant from the camera that contribute 
minimally to the image.

4.3 Alternative Monte Carlo methods

Alternative approaches to light transport have been devised that also rely on the introduction of 
bias to Monte Carlo methods with the aim of reducing variance. Many of these techniques are 
less robust than the path tracing and photon mapping techniques described above and are often 
limited in the range of lighting phenomenon they can solve, or the materials that they are able 
to handle. This makes design difficult for artists and designers that rely on accurate material 
rendering or complex geometry, and can require additional effort to produce the desired effects, 
requiring familiarity with the algorithms or their results in order to counteract the bias and 
inconsistencies introduced by such techniques.

Many of these such as instant radiosity [Kel97] and numerous derived techniques pro­
vide rapid convergence for diffuse and low frequency lighting but cannot effectively handle
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specular materials and caustics. Virtual point light approaches work in similar fashion to 
photon mapping, consisting of a photon tracing pass, caching illumination around the scene 
using virtual point light sources (VPLs). The second rendering pass replaces density estima­
tion with point to point gathering using shadow rays or maps to each VPL. This is a popular 
approach for interactive rendering due to its efficient path reuse, but can introduce signifi­
cant image artefacts due to the normalisation parameters used to compute contributions from 
the VPLs (see for example [KK04]). Many extensions to the approach improve robustness 
and enable the handling of non-Lambertian surfaces [HKWB09] or include volumetric effects 
[NNDJ12b, NNDJ12a, WKB12]. To obtain good results without artefacts, a large number of 
VPLs are required. To maintain performance and scalability with numerous VPLs research has 
focussed on clustering [DGR+09] or hierarchical approaches [WFA+05] to provided bounded 
approximations. A comprehensive reference to point light based methods and related tech­
niques, in addition to those suitable for interactive global illumination can be found in the re­
cent survey of Ritschel et al.[RDGK12] and SIGGRAPH course by Krivdnek et al.[KHA+12], 
but detailed discussion is outside the scope of this thesis. Point light based techniques are be­
coming increasingly competitive with path tracing and photon mapping approaches for more 
complex scenes as the types of phenomenon they can handle is expanded (see for example 
[WKB12]). Nevertheless, they are still unable to handle importance features such as caustic 
lighting and can incur noticeable bias on complex materials in order to remain efficient, making 
them inappropriate where accuracy and robustness are required.

4.4 Extending unbiased Monte Carlo methods

Unbiased path tracing methods provide an effective solution to high quality global illumination. 
Having been at the forefront of state of the art global illumination research for many years, 
a significant number of techniques have resulted, focussed on addressing its limitations and 
improving efficiency.

The work proposed in this thesis follows the philosophy that extending robust unbiased 
techniques is an effective and highly future orientated approach, as discussed in the introduc­
tion of this thesis. Biased estimators, or those which lack fundamental robustness with respect 
to scene and illumination features do not necessarily converge to the correct result and as such, 
they can require considerable research attention to achieve the desired capabilities. Continua­
tion of the current trends in hardware clock speeds and parallelism will likely give rise to faster 
convergence for existing biased approaches, but still produce results of insufficient quality 4.

On the contrary, unbiased techniques can already provide high quality results and future 
hardware developments will thus naturally result in improved efficiency without substantial 
algorithmic change.

Adding and extending unbiased techniques via the addition of approximative algorithms 
can address intermediate noise caused by variance, while producing high quality results in the 
limit. It is desirable that these intermediate results are comparable to those of more sample-

4Inevitably, if current trends continue high quality unbiased rendering will become real-time, potentially elim­
inating the need for biased methods altogether.
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efficient biased techniques. This also preserves the desirable practical properties of the under­
lying unbiased approach, and the potential of such methods to adapt easily to new hardware.

The final background section of this thesis will discuss a number of paradigms that build 
upon Monte Carlo methods, focussing on improvements to unbiased path tracing. The aims 
of such approaches are to improve convergence, visual quality of intermediate results or to 
produce ultimately biased results using the path samples from unbiased integrators. Recent 
techniques in each category are discussed along with their strengths and weaknesses to high­
light open problems.

4.4.1 Cache-based importance sampling

As discussed in Chapter 3, importance sampling techniques attempt to maximise a sample’s 
contribution to the estimator with respect to its importance to the originating sensor or emitter. 
However such a greedy importance sampling approach can result in a poor approximation of 
the illumination since it ignores the incident radiance or sensor response during the construc­
tion of camera or light paths, respectively. Obtaining a coarse approximation of the integrand 
that accounts for some of this missing importance can improve the accuracy of the probability 
distribution functions used for importance sampling. A number of techniques employing this 
approach to reduce sample variance are discussed in this section.........................................

Path mutation Metropolis Light Transport [VG97] and Energy redistribution path tracing 
[CTE05] discussed in Chapter 4 build up an importance function over time via the local explo­
ration of path space. This improves convergence in scenes with difficult lighting and occlusion 
since connections established between the camera and emitters can be modified, leveraging the 
generally high coherence of the illumination integral.

In contrast to explicit cache based approaches, path mutation schemes cannot share impor­
tance information globally, and upon leaving a region of path space (to ensure ergodicity) such 
importance information is lost. Caching even a sparse representation of local importance can 
help guide the rendering process at arbitrary path vertices irrespective of the current state of 
the renderer.

Particles as importance indicators Instead of relying on BRDF importance sampling alone 
to generate new samples, information obtained during the rendering process can be used to 
determine areas of the integrand that hold high importance, guiding future sample generation. 
Several methods have used a pre-pass based on particle tracing to generate an approximation 
of the incident illumination that can be queried during the MC rendering pass.

Jensen [Jen95] and Hey [HP01] utilised the photon map to provide illumination informa­
tion to aid importance sampling in path tracing. An initial pass creates a sparse photon map, 
creating a coarse representation of the incident radiance. During path tracing, the photon map 
is queried at each path vertex to construct a discrete PDF over the unit hemisphere. This dis­
tribution function is used to provide radiance based importance for sampling high contribution 
path space.

Budge et al.[BAJ08] adopt a similar two pass approach, specifically for rendering caustics. 
After creation of the photon map, a clustering procedure instead groups nearby photons and
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each cluster is ranked according to its flux density. During rendering, an existing unbiased 
VPL method [KK04] is used to compute non-caustic illumination and the photon clusters used 
to improve path tracing.

Georgiev et al.[GKPS12] build an unbiased sampling technique in the context of VPL 
rendering, constructing a set of four increasingly conservative PDFs, as a form of defensive 
importance sampling (recall Section 3.3), to avoid excessive variance around discontinuities. 
These PDFs are then shared between neighbouring samples to improve correlation.

Pre-passes such as photon tracing introduces additional computation, as they do not con­
tribute directly to acquired radiance, and strip away the progressive nature of MC path tracing. 
Additionally, the number of photons necessary to obtain a good representation of the illumi­
nation is not known, easily resulting in insufficient data to employ importance sampling, or 
inefficient oversampling.

Adaptive importance caching Alternatively, the radiance contributions of previous sam­
ples can also be utilised during rendering to guide subsequent samples, without the need for 
pre-processing. Furthermore, all samples contribute directly to the estimator as radiance mea­
surements.

Cline et al.[CAE08] introduce a strategy that constructs and samples a discrete PDF to 
guide random variables used for path construction, based on the integral of neighbouring pixels. 
However their approach is only effective up to the first non-specular vertex, unsuitable for 
progressive rendering, and can introduce high contrast artefacts where pixel similarity breaks 
down, such as geometric edges, since it relies on a local image based model.

Bashford-Rogers et al.[BRDC12] instead build up a view independent object-space cache 
of important directions at discrete points in the scene. Using compact cosine lobes allows easy 
updates during rendering, avoiding the requirements for a pre-process, and ensures all samples 
directly contribute to the final image.

Although providing guidance for path generation, care must be taken with these techniques 
to avoid excessive variance where changes in the integral are not sufficiently represented by 
the discrete PDFs. In addition, such methods do not solve the underlying difficulty of initially 
sampling high frequency or caustic illumination. Implicit light source connections obtained 
via specular paths are highly sensitive to even small path changes, and can lead to increased 
variance even in the presence of good integrand estimates. The characteristic spiked noise 
observed in MC integration can be reduced but not eliminated, as the underlying cause of the 
problem still remains; sampling high energy paths that have low probability densities.

4.4.2 Adaptive rendering

Adapting sample placement can help to reduce variance and error locally, providing improved 
convergence for a particular integrator. In order to provide visually pleasing images, it is desir­
able to achieve consistent convergence across all pixels of the image, such that the visible error 
in each pixel is the same. Distributing samples across pixel integrators according to their per­
ceptual or statistical error can provide more uniform convergence, attending to undersampling 
whilst avoiding oversampling pixels with low error.
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Image based approaches Early work on image based adaptive sampling were established 
by Mitchell and Netravali [MN88] to tackle aliasing, and Bolin and Meyer [BM98] who used 
a perceptual model to produce a distribution map over the image to guide pixel sampling. 
Recently, a number of papers have focussed on interleaving adaptive sampling and filtering 
[ODR09, RKZ11, RKZ12, LWC12] reducing residual error and a promising avenue for future 
progressive rendering methods since they filter existing pixel radiance to reduce visible error, 
and target sampling to reduce the residual error left in the filtered image.

Image based adaptive sampling can be effective on its own for reducing perceptual error 
in low complexity scenes. As the pixel integrands becomes more difficult to sample stochasti­
cally, such techniques lose efficiency due to their brute force approach to variance reduction by 
tracing additional samples. Combining these approaches with cache-based importance sam­
pling and/or object-space adaptive techniques such as Markov-chain Monte Carlo (as explored 
by Hoberock and Hart [HH10]) is promising and could be an interesting area of study for 
further research.

Multi-dimensional approaches Hachisuka et al.[HJW+08] introduced a multi-dimensional 
adaptive sampling technique, storing samples in a high dimensional kD-tree and using Eu­
clidean distance to estimate error in this extended path space. They can cater for arbitrary lens 
effects during ray tracing, but their sample storage does not scale well to suit the complexities 
of global illumination and sample reconstruction can become costly.

Drawbacks Adaptive rendering techniques can be advantageous for indicating under sam­
pled regions of an integrand, and be further enhanced by perceptual metrics if appropriate (see 
for example [RPG99]). The main drawback of adaptive techniques is that regions can only 
be recognised as under sampled once the source of the variance is found. Relying on pixel 
variance or error metrics can result in under sampling regions with difficult lighting, if the 
path space that contributes to the pixel has not been properly explored. In the worst case this 
can produce significant bias if used without ensuring adequate coverage of the integrand, as 
investigated by Kirk and Arvo [KA91].

4.4.3 Sample reconstruction

Recent methods such as the work by Sen and Darabi [SD12] and Lehtinen et al.[LAC+ 11] rely 
on identifying statistical relationships between Monte Carlo samples to remove noise. Typi­
cally a small number (8-16) of Monte Carlo samples are rendered storing the spatial, texture 
and radiance data associated with each sample. Statistical analysis of this data is performed 
to determine the dependence of each samples radiance on the random parameters used to con­
struct the Monte Carlo samples. These dependencies are then used to determine the individual 
samples that are effected by noise and produce filter weights as input to a cross-bilateral filter 
to minimise their impact on the image. Whilst providing impressive results and handling large 
dimensional problems, they do not scale well with increased input samples. To capture more 
difficult lighting phenomena such as glossy reflections and caustics higher sample counts are 
often needed, making such reconstruction techniques inappropriate in such situations.
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Li et al.[LWC12] recently presented an adaptive sampling and filtering approach building 
on the work of Sen and Darabi. They reduce memory consumption by generalising towards 
a per pixel scale, storing the mean and variance for samples of the pixels for each dimension 
(as opposed to the data of each sample). Additionally, they provide adaptive sample placement 
over the image guided using an existing estimator from statistics to estimate filter error. Though 
reducing memory usage and thus allowing more samples to be rendered prior to reconstruction, 
no quantitative data is presented.

Although providing impressive image quality from low sample counts, the sample pro­
cessing stage for these reconstruction techniques can take in the order of minutes to compute, 
potentially making it infeasible for the rendering of fast previews or implementation into a 
progressive rendering system.

The novel technique proposed in Chapter 6 of this thesis is motivated by the use of vertex 
data to improve filtering, but to do so in a memory efficient way for an arbitrary number of 
samples, while suitable for inclusion into a progressive rendering framework.

Irradiance caching The high dimensionality of light transport is suggestive of cache based 
solutions that pre-compute some aspect of the domain and reuse it to improve efficiency.

Ward et al.[WRC88, WH08] introduced irradiance caching, storing a sparse set of samples 
representing the irradiance at surface locations. An image is rendered by extrapolating between 
cached sample to reconstruct the irradiance at the surface point being shaded. Artefacts are re­
duced by using the derivatives of position and surface orientation to better predict irradiance 
changes during extrapolation. However, problems still arise due to the density of the irradiance 
cache, especially in regions of non-planar geometry. Like any discrete approximation, dis­
cussed earlier in the context of photon mapping, storage costs for cache based solutions restrict 
their accuracy to properly reconstruct the illumination from a set of discrete points.

Kontkanen et al.[KRK04] use image-based irradiance filtering to reduce noise, based on 
the assumption of filtering low frequency irradiance. These assumptions restrict the techniques 
usefulnesss since high frequency detail is common when dealing with non-Lambertian mate­
rials. Self shadowing and illumination gradients caused by geometry are not easily preserved, 
and rely on additional costly ’feeler’ rays to detect and preserve local geometric changes.

Radiance caching and filtering algorithms have also been proposed [GKB09, KGPK05] 
based on the ideas of irradiance caching, with the inclusion of spatial and direction components 
to guide filtering. However all these algorithms either rely on low frequency illumination or 
BRDFs, or are not applicable to general light transport.

4.4.4 Noise removal

Monte Carlo estimators are commonly associated with their distinctive white speckling. Using 
importance sampling based on BRDF and cosine sampling, although generally reducing vari­
ance can exacerbate the presence of high intensity speckled noise where the expected sample 
distribution does not accurately present the actual measured radiance field.

Once introduced into an image, such noise can be highly persistent and difficult to remove. 
Applying adaptive rendering techniques based on pixel variance targets sampling towards pix­
els exhibiting such noise, but this can be a highly inefficient technique. Due to the rarity of
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such samples in the importance sampling distribution, thousands of samples can be required to 
offset their weighted contribution.

A more effective approach can be to remove (or reject) these low density samples tem­
porarily until they become ’normalised’ with respect to the distribution, when they can be 
reintroduced without increasing variance.

DeCoro et al.[DWR10] employ a sample rejection technique based on the local sample 
density in a 5D joint image-colour space, delaying the addition of samples that do not conform 
to the current distribution of the neighbourhood. This allows objectionable noise to be removed 
from scenes with non-specular materials and high frequency lighting, without the blurring and 
artefacts commonly associated with filtering. Rejected samples can then be re-evaluated and 
added to the solution when the local density becomes sufficient, remaining unbiased in the 
limit. Using density estimation performs admirably in well converged areas, where there is 
a good sense of the normal distribution of sample energies. For sparsely sampled regions it 
can however have detrimental effects due its harsh rejection properties, resulting in significant 
energy loss and removal of illumination clues. The relative luminance of samples in the same 
pixel are not taken into account, removing isolated samples that may not be responsible for 
noise due to the presence of those with higher energy.

Pajot et al.[PBPll] also build on density estimation to tackle bright spot removal, based 
on per-pixel ID luminance distributions of the observed samples. This improve performance 
over the method by DeCoro et al., reducing the 5D k-Nearest neighbour density estimates 
to a ID per-pixel kernel estimates which incur lower overheads. Conversely to DeCoro et 
al., neighbourhood similarities are not accounted for, leading to the rejection of samples that 
help represent important illumination features such as caustics, which are seen as outliers with 
respect to the distribution of a single pixel.

Both approaches operate over the sample radiance; the aggregated radiance of the contribu­
tions from each vertex of a path. This results in the rejection of additional samples, since high 
intensity noise from a single vertex will typically result in the rejection of the correlated set of 
radiance. Higher rejection rates result in additional bias, and darkening of the image which is 
especially noticeable at low sample counts.

Part of the novel work in Chapter 6 aims to address some of these issues, providing an 
efficient approach to remove high intensity noise with low rejection rates to minimise bias. 
Additionally, the new approach aims to provide a pre-processing step to convolution based 
image filtering.

4.4.5 Image based filtering

A vast swathe of techniques for image de-noising have been developed (see for example 
[BCM05a] for a review), commonly revolving around computing the output value of a pixel 
using the weighted sum of pixels within a neighbourhood in effort to preserve the underlying 
signal. Here a number of notable and relevant techniques are discussed to provide an overview 
of the current literature.

Suykens and Willems [SWOO] use per-sample adaptive kernel widths to distribute radiance 
across pixels during progressive rendering. Kernel widths are dictated by the path densities 
of each sample, transforming noise to lower frequencies which are less objectionable. This
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comes at the cost of blurring image features as it does not consider geometric or texture edges, 
distributing samples over strong discontinuities and losing detail.

An interesting interactive filtering approach has been developed by Bauszat et al.[BEMl 1] 
which pertains to be more robust to outlying samples and geometric edges. Instead of filtering 
the illumination directly, they seek to find a transformation mapping the underlying local ge­
ometry of a pixel to the noisy illumination data. This is then used to preserve the shape of the 
function over the geometry (dictating edges and gradients), but following the shape of the illu­
mination input. Results provide effective noise reduction with high performance and effective 
geometry anti-aliasing. This approach is currently limited to diffuse, near-Lambertian BRDFs 
and omits direct lighting making it unsuitable for general global illumination. Only edges in 
the geometry buffer are used to fit the transformation function, hence features of the indirect 
illumination are not preserved.

Bilateral and Cross-Bilateral filtering Many modem image based filtering techniques used 
in rendering stem from methods such as the popular bilateral filter [TM98] and subsequent 
cross-bilateral filter [ED04, PSA+04], The principle of the bilateral filter is to extend the 
idea of range Gaussian convolution across the 2D image space, but to incorporate additional 
dimensions derived from the value difference between pixels to restrict blurring across edges.

A pixel p is denoised by computing a weighted average of the pixels q in a neighbourhood. 
In Gaussian convolution this neighbourhood is defined over the pixel coordinates in 2D image 
space alone, producing the convolution operator:

GC[l\p = '£ G ',( \\p -q \\) Iq
qes

where Ga{\\p — q\\) denotes the value for q from the 2D Gaussian kernel centered around p, as 
described by:

where <7 is the kernel bandwidth (in this case the image space neighbourhood) and e is Euler’s 
number. Therefore as pixels become more distant in the neighbourhood, their influence with 
respect to the filtered value of p is reduced.

The bilateral filter extends this concept by extending the neighbourhood to include pixel 
intensities. As a result the influence of q on the resulting value of p is reliant on two kinds 
of weights; the 2D Gaussian as above and the distance between p  and q in the pixel intensity 
domain. Thus, the resulting bilateral filter value BF of pixel p can be calculated:

BF\f\p = T  Ig<t(IIp-<7||)g„, (/,-/<,)/,
P  q £ S

where Zp is a normalisation constant computed from the sum of Ga(\\p — q\\)Gar{lp — Iq) for 
all q, to ensure energy preservation across the filter kernel. As a result of this additional range 
term, pixels that vary greatly in intensity are distant in the new neighbourhood, and thus their 
influence on the p is reduced by the kernel Gar. The notation for bilateral and convolution 
based filtering in this thesis is based on that used in [PKT09], due to its clarity.
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The cross-bilateral filter (CBF) also known as the joint-bilateral filter builds upon the stan­
dard bilateral filter, but instead utilises data from additional images or data sources to provide 
further dimensions to restrict the convolution filter, as opposed to relying on pixel intensities 
of the input image that may be corrupted by noise. Thus the computation is much the same, 
but the filtered output of Ip is reliant on the distance between p  and q in the neighbourhood of 
the range buffer RBp:

CBF[I,RB\P = Ga(\\p-q\\)G ar(RBp -R B q)lq
z P qes

Eisemann and Durand [ED04] and Petschnigg et al.[PSA+04] first applied this to the problem 
of noise reduction in low light photography, using a photograph taken with a fill flash as a range 
buffer to preserve edge detail in the image based on the pixel intensities. Thus, the pleasing 
tones of the soft ambient lighting are preserved, without blurring the hard edge detail.

In the context of rendering, this allows a low variance buffer to dictate the dimensions 
and range of the filter whilst de-noising the illumination that is the source of high variance in 
the estimator. Commonly, range buffers are composed of surface normal orientations, depth 
buffer information and visible texture detail for each pixel extending the CBF to more complex 
neighbourhoods that better describe the continuity of the images features. Extension of the 
CBF to take advantage of multiple inputs is simply a matter of computing additional distances 
between the intensities for each range buffer RB:

CBF[I,RB°,...,RB"]P =  J - £ G ff( | |p - 9 ||)G<*(|*B ,-.R fl4|)
qes

...Ga,- i (\RB‘-'(p )-R B "q-'\)G a:,(\RBn(p )-R B ‘q\)Ig,(4.12)

Techniques based around the (cross) bilateral filter have shown to produce good results for 
MC rendering (see for example [XP05, SKBF12, SD12, LWC12]). This principle of the cross­
bilateral filter is built upon in the novel techniques presented in Chapter 6, and implementation, 
limitations and comparisons will be discussed there. More discussion on bilateral filtering and 
an overview of its related work and applications can be found in [PKT09].

Dammertz et al.[DSHL10] successfully modify the a-trous wavelet transform, adding filter 
weights derived from geometry and input sample based stopping functions into a cross-bilateral 
filtering framework. Despite largely respecting both geometric and illumination edges, the k- 
trous filter can lose fine detail especially in textures, where reliance on the sparse input does 
not restrict the filtering sufficiently. Their filter also presents noticeable artefacts in the form of 
ringing around contours of illumination gradients.

Schwenk et al.[SKBF12] use a perception based blending operator, relying on pixel vari­
ance to combine path traced input samples with a filtered image, producing an unbiased al­
gorithm in the limit. It further allows them to use the higher quality cross-bilateral filter for 
fast previews which can be too slow for interactive rendering. Illumination edges and glossy 
reflections however become blurred due to the ignorance of illumination features, the main 
problem addressed in Chapter 6. Their blending approach is largely orthogonal to the filtering 
technique utilised for noise reduction and is in the spirit of the desire for high quality rendering 
taken in this thesis, making it of interest for future integration with the proposed work.
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General image denoising Recent techniques [RKZ12, KS13] have made use of image de- 
noising filters to handle general Monte Carlo noise irrespective of complex effects. The non­
local means [BCM05b] filter is one such popular technique, based on the bilateral filter but op­
erating over the similarity of pixel neighbourhoods as opposed to individual pixels. Although 
effective and backed by a significant amount of prior research in computer vision, additional 
data available from the renderer is not used that could improve the effectiveness of the filtering 
and preserve further detail. As a result such techniques are often limited to removing more 
subtle low intensity noise and for cleaning up the appearance of final renders as opposed to 
providing previews and noise reduction for sparsely sampled regions.

4.5 Conclusion

This chapter supplied a thorough review of the numerous paradigms developed in the quest 
for improving light transport synthesis. Both a theoretical and implementation orientated dis­
cussion of major state of the art techniques has been carried out including recent extensions. 
Monte Carlo path tracing algorithms are capable of rendering a broad range of materials and 
lighting phenomenon. High variance in the presence of complex effects can however reduce 
the visual quality of results. A wealth of prior research from the mathematical disciplines 
has provided a number of techniques such as importance sampling and Russian roulette that 
have become crucial improvements. Bidirectional path tracing and Metropolis light transport 
further extend the effectiveness of path tracing techniques, allowing better estimates in highly 
occluded scenes or those with difficult lighting conditions.

Photon mapping, a popular alternative paradigm, is capable of handling complex illumina­
tion, particularly caustic lighting and specular materials. Caching a discrete flux representation 
in the form of photons allows variance reduction via the reuse of samples and path correla­
tion. Bias introduced as trade off for such benefits has been discussed, along with its causes 
and recent avenues of improvement including progressive photon mapping. This forms an im­
portant introduction to the novel work in the following chapter of this thesis, which combines 
path tracing and photon mapping in a complimentary progressive formulation, reducing overall 
variance and bias.

Finally, a summary was provided of extensions to Monte Carlo methods that have been pre­
viously proposed to tackle the variance and noise resulting from stochastic sampling. Cache 
based methods, techniques for adaptive rendering and sample reconstruction from sparse sig­
nals have all been explored in recent literature and an overview has been provided to represent 
the plethora of techniques available, and to allow insight into the avenues that need attention as 
further motivation for this thesis. Noise removal and image based filtering algorithms realise 
the insights and proposed techniques in Chapter 6, which removes noise during progressive 
rendering utilising a sample clustering scheme based on path vertex data, and preserves illumi­
nation features.
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5.1 Introduction

In the previous chapters of this thesis, a number of key approaches for solving the light trans­
port problem, either in its entirety or in part, have been discussed. All such methods have
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their individual strengths and weaknesses, and consequently it can be advantageous to com­
bine them so as to maximise the merits of each constituent algorithm, whilst minimising the 
impact of their failures. When drawing upon existing algorithms for global illumination, care 
must be taken to ensure each element of light transport is accounted for, so that a full global 
illumination solution can be produced. Typically, some techniques can handle highly diffuse 
environments well, but struggle when presented with complex specular effects. In developing 
hybrid techniques, additional care must be taken that each class of light transport is accounted 
for exactly once, so that additional bias is not introduced that may favour particular illumina­
tion features. An effective method of achieving this is to ensure that each type of light transport, 
characterised by surface interactions or some other well defined means, is the responsibility of 
a single specialised algorithm, whose individual results are combined to form the full global 
illumination solution.

Handling the wide variety of light transport features robustly poses a tough problem when 
designing global illumination algorithms. Chapter 4 discussed in detail the implementation 
and principles behind Monte Carlo path tracing and photon mapping approaches, along with 
an overview of their respective advantages and limitations. Monte Carlo path tracing and its 
derivatives have difficulty evaluating highly specular light paths, especially in conjunction with 
high frequency lighting features. Conversely, photon mapping techniques perform poorly for 
less deterministic paths where the underlying photon distribution is distorted by interactions 
with diffuse surfaces, and not well distributed with respect to the camera importance.

In this chapter, a new hybrid rendering approach is described that seeks to solve some of 
the problems currently associated with state-of-the-art light transport algorithms from these 
two paradigms. The approach presented here employs a classification strategy in path space 
during sample evaluation to classify paths into distinct subsets. These subsets can then be 
evaluated with specialised derivations of the Monte Carlo path tracing and progressive photon 
mapping algorithms, adopting the advantages of each paradigm while aiming to disinherit their 
weaknesses under particular classes of light transport.

First, the limitations and inefficiencies of existing unbiased Monte Carlo path tracing, pho­
ton mapping and their respective extensions are first discussed to motivate their use in a hybrid 
algorithm. Following this a discussion of previous works that leverage multiple paradigms to 
solve global illumination is presented, and some practical and theoretical implications for such 
techniques. The remainder of the chapter will detail the path space separation and the use and 
roles of path tracing and progressive photon mapping as an effective hybrid rendering tech­
nique. This chapter finishes with presentation of the results of this novel approach, showing its 
success alongside an in depth discussion and its potential as a platform for future research.

Contributions

The novel work presented in this chapter seeks to eliminate high frequency image noise through 
a combination of Monte Carlo path tracing and stochastic progressive photon mapping. The 
path tracing process is separated into path generation and radiance evaluation at each vertex, 
allowing radiance contributions to be selectively evaluated on the fly, depending on the path 
characteristics. A set of pattern matching filters over path space are defined, enabling each sub­
path contribution to be evaluated individually according to its surface interactions. Standard
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unbiased path tracing is used to evaluate the largely non-specular paths. This takes advantage 
of the path tracer’s ability to form explicit connections to light sources and provide the means 
for effective sample placement. An adaptation of the stochastic progressive photon mapping 
technique of Hachisuka et al.[HJ09] is employed to render fast, crisp caustics with low bias. 
Despite exhibiting bias early on in rendering, the desirable low memory and vanishing error 
properties of SPPM, which are commonly associated with unbiased rendering techniques, are 
leveraged and further refined. In doing so the following novel contributions are presented:

• Efficiently combining path tracing and progressive photon mapping techniques to pro­
duce a vanishing error, multi-pass progressive algorithm (referred to as PTPPM).

• A set of filtering criteria over path vertices are proposed, to reduce potentially high vari­
ance samples during Monte Carlo rendering using on the fly vertex contribution filtering.

• An efficient and progressive means to render unbiased non-caustic lighting and caustic 
lighting.

•  Superior reduction in quantitative error, resulting in better convergence rates when com­
pared to both standard path tracing and stochastic progressive photon mapping.

In turn these techniques give rise to a number of desirable properties for rendering complex 
scenes:

• Caustics and difficult specular path interactions are handled that are otherwise not pos­
sible using unbiased Monte Carlo methods

• Good sample distributions and variance reduction techniques are available for non-caustic 
lighting, utilising image space stratification during path tracing

• Reducing photon mapping to a sub-set of path space results in lower memory consump­
tion and faster density estimates resulting in more efficient caustic evaluation.

The basis of the work presented in this chapter has undergone peer review and has been 
published and presented at the Computer Graphics International 2012 conference and was 
further selected to appear in a special issue of The Visual Computer journal [DJM12].

5.2 Motivation

In this section, further motivation for the incorporation of path tracing and stochastic progres­
sive photon mapping will be discussed, and the limitations of unbiased vertex based approaches 
and density estimation techniques will be presented along with the underlying causes which are 
addressed by the novel work.
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(a) Full global illum ination with 128 sam ples (b) Sam ples from  (a) w ith caustics om itted

(c) Full global illum ination with 16x sam ples o f  (a)

Figure 5.1: The addition o f  caustics results in increased sample variance fo r  Monte Carlo 
estimators, (a) Full path tracing shows distracting high frequency noise, (b) By omitting the 
direct caustic paths, visual improvements are noticeable, but at the expense o f  losing important 
features, (c) The fu ll global illumination solution with 2048 samples, where noise is still visible.

5.2.1 Limitations of unbiased Monte Carlo methods

Unfortunately, path tracing suffers from spiked noise in the presence o f highly peaked BRDFs 
and the generation of caustics in non-trivial cases. In these scenarios, the probability o f sam ­
pling light sources through specific combinations o f interactions is low, resulting in high sam ­
ple variance. Even after evaluating many thousands o f samples, the resulting variance can still 
show up as high frequency spiked noise in the image. High energy caustic lighting is a prime 
example exhibiting these difficulties, due to its impact on the final image. It can be seen that fil­
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tering out the direct caustic components from the sample set provides a significant decrease in 
variance, at the expense of removing the important information and realism that caustic paths 
bring to such images (Figure 5.1). The implications of caustic lighting and specular materials 
in real world scenes make such paths a candidate for attention and improvement.

The fundamental problem that restricts current unbiased vertex based light transport tech­
niques, is that the narrow BRDFs of specular materials inhibit the use of next event estimation 
and explicit vertex connections, decreasing the algorithm’s effectiveness. Implicit connections 
are therefore relied on to produce radiance contributions, emphasising the use of effective sam­
pling distributions. These problems are compounded by the use of BRDF importance sampling, 
since specular paths with high throughput can create unpredictable peaks in the importance 
sampling distribution.

This is increasingly the case for small light sources, common in scenes modelled on the 
real world, where paths with implicit connections are difficult to explore, leading to poor con­
vergence. For point or directional light sources, useful for approximating small or distant light 
sources, direct caustics cannot be evaluated at all by camera paths since explicit sampling of 
the light source not possible from a specular surface, and implicit sampling is not possible for 
light sources with infinitesimal surface area.

The problem of implicit sampling is exacerbated when dealing with reflected or refracted 
caustics through specular-diffuse-specular (SDS) surface interactions. Such paths are important 
for rendering interior scenes (such as a room with windows illuminated from the outside) or 
scenes under artificial lighting (where emitted light must pass through the glass casing of a 
light bulb). Under these conditions, simulating SDS paths is essential, especially if such scenes 
contain specular objects, for example a mirror. Light must pass through a specular interface 
(the window or light bulb glass, S), before undergoing scattering by a diffuse object (the D) 
in order to be observed in the mirror (the final S). In SDS paths, the number of consecutive 
implicit connections required to connect the light source and camera is further increased, thus 
a small change in the outgoing direction at the enclosed diffuse vertex or the incident angle 
at a specular surface can lead to large changes in the resulting path geometry (Figures 5.2a to 
5.2c). In the presence of high frequency features such as small light sources or hard shadows 
following the SDS interactions, variance of the pixel estimator can increase significantly.

In the simplest case, assume there exists a valid path of the form ESDSL that should be 
sampled by an estimator. Under path tracing, the only option is to extend the camera path at 
each vertex, using BRDF importance sampling to connect the camera and light source implic­
itly. In the bidirectional case, a light path LSD or camera path ESD can be generated, perhaps 
both with high density, but their vertices cannot be connected explicitly unless on convex sur­
faces. Thus the use of BDPT provides no additional benefit, falling back to a unidirectional 
path construction from the camera (as in Figure 5.2a).

Even with the use of Markov-chain Monte Carlo methods such as Metropolis light trans­
port, small mutations in the random variables used to generate SDS paths can be ineffective or 
highly inefficient. Mutation cannot be performed at specular vertices due to their Dirac distri­
bution, limiting the available mutations. Mutations around L in position or emission direction 
are ineffective since implicit connections to the camera are not supported (and impossible in 
the case of a pinhole camera model). Modifying the outgoing direction of the primary ray 
from E or the enclosed diffuse vertex D relies once again on an implicit connection to the light
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(a) PT (b) BDPT

V

•  •

(c) MLT PT (d) PM

Figure 5.2: Sampling a path o f  the form  ESDSL can be problematic with (a) path tracing, 
(b) bidirectional path tracing and (c) Metropolis light transport, (d) Using density estimation 
with light sub-path caching allows multiple such paths to be evaluated efficiently by photon 
mapping algorithms.

source, although this time more informed. To maintain an unbiased estimator this requires 
the change to be propagated along the path re-evaluating its terms including costly visibil­
ity queries, incurring the overhead o f re-tracing a significant portion o f the full path (Figure 
5.2c). Whilst providing an advantage over standard MC methods, in the presence o f small light 
sources mutation is also highly ineffective. Even small changes to the outgoing direction at E  
or D  can change the path significantly due to the deterministic nature o f specular reflections or 
refractions.

5.2.2 Photon M apping for caustic illumination

The more relaxed constraints o f photon mapping methods permit them to generalise visibility 
queries, allowing reduced variance at the cost o f introducing bias. Using density estimation 
widens the path space encompassed by each sample, allowing better evaluation o f paths con­
taining complex specular interactions compared to exact point to point path space techniques. 
Taking the example o f an ESD SL  path, the LSD  light sub-path and ESD  camera path can be 
generated independently, and if they lie within the distance dictated by the gather kernel radius, 
are treated as connected. The amount o f bias introduced is dependent on the distance between 
the end points o f the paths in the domain o f the filter kernel.

Unlike Markov-chain MC methods, the remaining sub-path vertices and E  and L origins
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are not modified, saving the computational overhead of additional ray tracing. Additionally, 
photons can contribute radiance to multiple camera paths, and each camera path can connect 
to multiple light sub-paths, efficiently reusing the illumination data to increase correlation and 
reduce high frequency noise in the image.

It has been established that classical photon mapping can have impractical memory re­
quirements to provide high enough photon densities to reduce visual artefacts, and result in 
costly photon lookups.

Progressive photon mapping and its stochastic variant are effective in regions of high pho­
ton density such as caustics, and their ability to handle complex light paths has shown to 
superseed that of the original photon mapping, approach as discussed in Chapter 4. Decreas­
ing the kernel radius as photons are collected reduces bias and introduces variance slowly in 
high density regions, since there are still a significant number of photons from which to draw a 
radiance estimate. Crucially, in such high density regions the initial gather radius of the kernel 
can be kept small without introducing high variance due to insufficient photons in the estimate.

In regions of lower photon density, (S)PPM exhibits poor convergence as the initial ker­
nel radius may not provide sufficiently reliable radiance data to offset the increasing variance 
brought about by the poor photon density. Thus larger kernels are needed to keep variance low, 
in turn increasing the amount of initial bias in the estimate. As the final radiance estimate is a 
weighted average of all previous PPM iterations, bias introduced in initial passes is highly per­
vasive and still affects pixel estimates even after a considerable number of passes. This is a side 
effect of the progressive kernel bandwidth reduction. In practice, as the gather radii become 
small, it is increasingly likely that no or few photons will be collected for a given iteration i, 
and hence the unnormalised flux T  for the subsequent iteration i - I - 1 will remain constant when 
M i ( S ) is zero or Af,-(5) < <  N i ( S ):

T/+ 1  ( S ,  co) = ( t / ( 5 ,  co) +  <&,•(*/, ( 4 ’ 1 0  r e v i s i t e d )

WT/(5, co)

Apart from progressively reducing per sample efficiency, this also means that more iterations 
are required in low photon density regions before the initial bias is eliminated by those iter­
ations where 4>,-(jc,-,0)) is non-zero. For high density regions such as caustics the probability 
of non-zero radiance estimates is much lower, and hence even though the initial bias may be 
high, the probability of obtaining zero radiance estimates is reduced. In the limit, as the radius 
R i ( S )  becomes infinitesimal, M((S) will inevitably reach zero, since the photon density is finite. 
Bias will therefore always be present in PPM in practice, though with negligible impact on the 
image for sufficient i.

It has been established in Chapter 3 that good sample distributions are key in the success 
of all Monte Carlo and quasi-Monte Carlo methods. Utilising such sampling sequences and 
patterns for photon sampling results in a set of primary photons that are well distributed with 
respect to the light sources in the scene. As photons are emitted, the sampling sequences aim 
to ensure that photons sharing similar points of origin on a light source, are propagated widely 
across the visible geometry. For subsequent interactions with the scene, the ability to control 
the underlying global distribution of these secondary photons is decreased. For diffuse BRDFs,
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where the importance sampling functions are wide, the global photon distribution becomes 
analogous to that of multiple independent low density distributions each from a different emit­
ter. Relying on light source and flux based sample distributions alone can therefore produce 
poor photon maps, exhibiting highly erratic densities and a distribution that does not follow 
the features of the illumination. The inclusion of glossy and specular interactions with narrow 
BRDFs can further enhance this distortion, where small changes in the random variables used 
for path construction cause large variations in the path geometry and thus the locations of the 
photons.

Furthermore, the resulting photon map is often poorly distributed with respect to camera 
importance. Even assuming an optimal photon distribution, using a perspective camera model 
means that visible regions of the scene will likely be under or over sampled, reducing efficiency 
or increasing variance, bias or both. The angle of incidence of primary camera rays with the 
surface can also play a major part in the resulting image quality, noticeable in the images 
rendered with SPPM later in this chapter. Monte Carlo methods do not suffer this problem as 
illumination arriving at diffuse surfaces is a result of sampling according to both the camera 
importance and explicitly from light sources.

The slow convergence properties of PPM can be a drawback of relying solely on density 
estimation for radiance estimates. Compared to the O (N 1//2) convergence of unbiased MC 
methods, PPM exhibits poorer convergence of O (Na), reliant on the radius reduction parame­
ter 0 < a  < 1. Optimal values of a  have shown to be around |  [HPJ12] [KZ11]. Modifying a  
to match the asymptotic convergence of path tracing methods is impractical and leads to poor 
efficiency. If a  is too small, the gather radius is reduced such that the rate at which variance is 
introduced exceeds that of the bias reduction brought about by averaging successive radiance 
estimates, increasing the total amount of error in the estimator.

5.2.3 Hybrid approaches

Hybrid approaches to global illumination have been explored previously. Wallace et al.[WCG87] 
and Sillion and Puech [SP89] extended finite element radiosity to incorporate specular reflec­
tions and refraction by the inclusion of an additional ray tracing pass. Shirley [Shi90] sepa­
rated the direct lighting computation from the radiosity pass in order to improve hard shadows 
and account for bump maps. More complexity was integrated into such a system by Chen et 
al.[CRMT91], who rendered caustics using a light tracing pass, though without the ability to 
handle reflected and refracted caustics.

Suykens and Willems explored multi-pass approaches for combining (bidirectional) path 
tracing and radiosity methods for global illumination [SW99, Suy02], In their proposed sys­
tem, bidirectional path tracing is utilised as a final pass to account for all light transport not 
otherwise handled in preceding passes, ensuring full coverage of the path space.

The reliance on finite element methods makes these techniques poorly suited to high fre­
quency lighting and geometry without finer or adaptive subdivision of the patches, increasing 
computational or storage requirements. The added complexity of progressive variants, which 
require tracking residual illumination that is not accounted for, also makes them less favourable 
for many present day applications.
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Recently Dammertz et al.[DKL10] introduced a biased progressive method, which also di­
vides path space to allow specialised algorithms to compute a solution for each subspace, in a 
similar fashion to the work presented here. They separate paths into three categories; indirect 
illumination EDL and EDD(S\D)*L, caustics EDS(S\D)*L, and specularly gathered illumi­
nation. Utilising virtual point lights (VPLs) provides fast convergence and high coherence 
between pixels reducing noise for the indirect illumination. Virtual point light based methods 
have difficulties when incorporating complex scattering models such as subsurface scattering 
and volumetric effects since eye paths are terminated at the first diffuse hit point and rely on 
point to point gathering. Light propagating through non-specular materials therefore cannot be 
easily accounted for, requiring special handling via local density estimation (as is used in pho­
ton mapping) or continuation of the camera path which will lead to the high frequency noise 
typical of Monte Carlo methods; absence of which is the main benefit of VPL approaches.

In the rendering framework proposed by Dammertz et al., caustics are collected using 
a histogram (or binning) approach, gathering photons into fixed sized kernels based on ray 
differentials at the first diffuse camera vertex. Using fixed size bins poses similar limitations 
to those found in classical photon mapping, where boundary, proximity and topology bias 
are easily introduced in the presence of complex geometry and illumination discontinuities. 
Additionally, it is not clear how non-spherical or arbitrarily shaped kernels could be employed 
to help reduce proximity bias such as light leaking that lead to visual artefacts. The requirement 
for pixel sub-sampling for anti-aliasing in addition to these fixed size bins results in photons 
being collected that are outside the pixel footprint, which can cause noticeable blurring for 
sharp caustics and paths undergoing complex refractions. Although stochastic progressive 
photon mapping also exhibits similar behaviour early on with respect to kernel size, the gradual 
radius reduction ensures this bias vanishes with increased passes, and complex caustics are 
rendered faithfully.

5.2.3.1 Drawbacks of hybrid approaches

Incorporating two or more algorithms into a single framework also has its disadvantages. As 
they subsume existing approaches, the task of implementing a hybrid algorithm can be com­
plex, requiring an understanding of the existing algorithms and their execution flow. This 
becomes increasingly more important when dealing with highly parallel architectures such as 
the latest multi-core processors and general purpose GPU hardware. Understanding the under­
lying performance bottlenecks and memory access patterns of an algorithm is essential in order 
to efficiently incorporate it within a hybrid technique. In addition to access patterns, memory 
consumption can also become problematic since data required under each original method is 
often still necessary, at least in part.

Furthermore, it is important to ensure that those properties unique to each algorithm that 
make them desirable are not lost upon forming a hybrid approach. Practical properties such as 
progressive estimation of the integral, consistency, systematic bias and view dependence need 
to be taken into account and preserved where possible.

The two pass approach taken by classical photon mapping does not fit well with the pro­
gressive nature of unbiased Monte Carlo methods. Both the view independence of photon map­
ping and the progressive characteristics of MC methods would be lost in a hybrid approach,
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decreasing the usefulness of such a technique. Thus combining a progressive photon map­
ping approach with unbiased Monte Carlo path tracing retains the usefulness of a progressive 
Tenderer.

In recent years, hybrid approaches have seen less attention due to the ability of modem 
techniques to handle complex geometry, materials and light transport using a single algorithm. 
Unbiased path tracing and biased photon mapping are some such techniques which, with their 
respective extensions and improvements, have been used as the benchmark for state of the 
art research for a number of years. However, their limitations and inefficiencies discussed 
above and in the previous chapter remain prevalent, and the benefits brought about by hybrid 
techniques are still applicable.

In this work, the properties of progressive photon mapping are leveraged to provide better 
evaluation of caustic lighting and complex SDS paths, combined with path tracing techniques 
whose strengths lie in solving diffuse and glossy direct and indirect lighting under complex 
conditions, with good convergence characteristics. This results in a hybrid progressive algo­
rithm exhibiting reduced variance and error characteristics with vanishing bias. Additionally, 
the progressive nature of the two techniques is preserved, and the slower convergence of pho­
ton mapping methods for low density regions is offset using path tracing, whilst still taking 
advantage of the effectiveness of photon tracing techniques in areas of high photon density.

5.3 Overview

The hybrid algorithm presented in this chapter operates in a multi-pass progressive manner, 
focussed on providing high quality results and efficient convergence characteristics for diffuse 
lighting and caustic lighting. The first pass traces paths from the eye using standard path gen­
eration techniques discussed in Chapter 4, including BRDF importance sampling and Russian 
roulette path termination. Unlike path tracing, radiance contributions at each vertex are post­
poned until after the full path is generated. Instead, the surface interactions of each vertex are 
used to classify the associated sub-paths into either the diffuse or caustic subspace. Radiance 
contributions are calculated for diffuse sub-paths and added to the image buffer. Contribu­
tions to the caustic subspace are skipped at this stage, and evaluated in a second pass using a 
modified PPM technique.

Caustic photons are generated at the light sources and traced through the scene, deposited 
on diffuse surfaces. During this photon path generation, the path signature is built up on the 
fly, and the path is terminated prematurely if the signature does not match the pattern for the 
caustic subspace, or else terminated using Russian roulette. A kD-Tree is constructed around 
the deposited caustic photons in order to accelerate photon gathering. Hitpoints from the ini­
tial camera path generation are utilised to gather photon flux and compute caustic radiance 
estimates for each pixel, after which the photons are discarded. After each iteration, the inter­
mediate radiance estimates computed by the two algorithms can be combined to produce a full 
global illumination solution. Maintaining a disjoint path space for each algorithm means that 
no bias is introduced at the compositing stage, and without the need for complex or expensive 
weighting functions. The core components of the two passes are summarised in Algorithms 2 
and 3 respectively, and details will be explained in the remainder of the chapter.

92



5.4. Path space separation and filtering

Algorithm 2 Diffuse lighting pass via path tracing
l: for all pixels P in image do 
2: P(xd) <— null
3: jc,_i •<— jco > Generate point on the camera Jto
4: while path not terminated do
5: x i+ i 4 -  r(xi,  fi>/)
6: Jcj+i 4- xi +  Xi+1 > Extend jc,- using / r(jc,-, co,, ft)') and r(;c,-, co/)
7: if P(jc,*) =  null and / r(jc,-) has diffuse component(s) then
8: F(jc</) 4- *,+i > Store first diffuse hitpoint, for reuse in Algo. 3
9: for all vertices jc,- in x n do

10: if Xi contribution(s) are ’’diffuse” then o Apply path space filtering
11: s <— Generate direct lighting samples
12: L direc t (*«) Evaluate direct lighting at jc, using s
13: L d ^ L d  +  L direc t ( X i )  ■ T ( X i )  • f r { x h X i - 1 4 -  JC/, X i  - > •  JC,+ 1)

> Update diffuse radiance Ld

Algorithm 3 Caustic illumination pass using photon tracing 
1: for j  «— 0 —> n photons do
2: y} <r- r(yo, (Oo) c> Generate primary photon from emitter at yo
3: while photon path not terminated do
4: yj+1 4- yj + X j + 1 > Extend yj using f r{yh  co', co) and r(yj, COy)
5: if photon contribution of y7 is ’’caustic” then o  Apply path space filtering
6: Photon map 4— y7
7 : Build kD-Tree around photon map 
8: for all pixels P in image do 
9: Retrieve P(xd) from Algo. 2 Line 3

10: Gather N  nearest photons around P(xd)
11: Lc Lc+  photon flux of the N  photons
12: L<— Ld + Lc /  n > Combine the diffuse Ld and normalised caustic Lc components

5.4 Path space separation and filtering

The regular expression and path notation introduced by Heckbert [Hec90] is used once again 
in order to concisely describe the seperation of path space. Pattern matching can be applied 
over these regular expressions in order to selectively evaluate the paths generated by both the 
unbiased Monte Carlo and photon mapping techniques. First, let us construct an expression 
that encompasses all paths in our caustic subspace:

E(S\D)*D+S+D-L (5.1)

Notice firstly that this incorporates both direct and single-bounce indirect caustics due to the 
optional diffuse vertex, D?. Indirect caustics are also a common source of high variance in path 
tracing, even viewed through multiple diffuse bounces. Low probability paths generated by
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inaccurate BRDF importance sampling at the diffuse vertex, D+, coupled with high luminance 
caustic paths created by the S+L sub-path can vastly increase variance. Even when viewed in­
directly through other diffuse vertices, the unbounded variance of such interactions can create 
high intensity noise in the pixel estimator, more commonly when the distance between sur­
faces is small and even diffuse BRDFs do not dissipate the high radiance sufficiently to reduce 
variance.

Based on this caustic regular expression the two path subspaces can be defined. The camera 
generated path space, evaluated using path tracing, encompasses primarily diffuse paths with 
higher path probabilities due to explicit light source connections, resulting in lower variance:

(Dl) ES*L: Light sources viewed directly or indirectly via specular surfaces,

(D2) ES*DL: Direct lighting (optionally viewed via specular surfaces),

(D3) E(S\D)*DDL: Multiple bounce indirect diffuse lighting viewed via other surface inter­
actions.

Although paths with diffuse-specular interactions are included in this subspace, potentially 
leading to high pixel variance, the successive diffuse vertices (...DDL) mean that these paths 
are of relatively low luminance. Additionally, evaluation of single and multiple bounce diffuse 
lighting is also performed at this stage as it responds well to sample stratification. The lower 
frequency BRDFs present non-deterministic vertex interactions meaning the well distributed 
samples are more effective at reducing estimator variance. Using explicit light source sampling 
allows the application of multiple importance sampling for direct lighting at diffuse vertices, 
which is not applicable when handling direct lighting with density estimation. The remain­
der of the path space is handled by an adaptation of progressive photon mapping, relying on 
photons distributed from the light sources:

(Cl) LS+D(S\D)*E: Direct caustics, formed from the light source.

(C2) LDS+D(S\D)*E: Indirect caustics, reflected from a single diffuse surface.

For simplicity the path tracing subspace (Dl to D3) will be referred to as ”non-caustic” or 
’’diffuse” and the path subspace handled by the progressive photon mapping algorithm (Cl and 
C2) as ’’caustic”. All possible paths are included in these two subspaces, allowing the eval­
uation of the full global illumination solution, where the two techniques have no overlapping 
path space.

5.5 Path tracing

The first pass in each iteration evaluates the radiance obtained from the non-caustic path sub­
space using Monte Carlo path tracing. In the implementation proposed here, the path genera­
tion and radiance estimation steps are isolated to allow for inclusion of the vertex classification 
and selective radiance evaluation.

During path generation, the random variables required to construct the camera path itself 
are generated and the path traced through the scene. The geometric and surface interaction data
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(a) Direct lighting (ES*D+L = Dl U D2) (b) Single bounce diffuse (ES*DDL € D3)

(c) Multiple bounce diffuse (D3 \ES*DDL)  (d) Caustic and indirect caustic (Cl U C2)

Figure 5.3: Filtering over path traced samples allows noisy direct and indirect caustics (d) to 
be separated from  lower variance samples (a)-(c) and more efficiently generated via photon 
tracing.

necessary to allow radiance calculations to be postponed is recorded for each path vertex x.  
This includes the path throughput up to the current vertex, T( x j )  and reference to the surface’s 
BRDF f r{x, co, co'):

P a t h V e r t  e x {
P o s i t i o n  x  W o r l d  s p a c e  p o s i t i o n
BRDF* f r R e f e r e n c e  t o  BRDF
C o l o u r  T(xj)  P a t h  t h r o u g h p u t  f r o m  jco

>
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D(L)
E

Path length

1 0 1 1 1 - - -

Implicit lighting

■  0 0 1

Vertex interactions

Figure 5.4: Optional implementation detail o f an example path and its corresponding bit 
string. The lowest 11 bits store a binary representation o f  the path vertex interactions, 4 bits are 
reserved fo r  the path length and the topmost bit indicates an implicit light source connection.

To provide a concise means to classify path contributions, a bit-string can be computed 
during path generation to encodes the path’s interactions with the scene (Figure 5.4). The state 
of each bit of the path vertex representation indicates whether the path underwent a specular 
(cleared bit) or non-specular interaction (set bit). This bit-string is an optional implementation 
detail, since memory usage is not a concern, and other representations are possible.

In order to improve efficiency and ensure path termination in specular environments (where 
infinite reflection can occur), Tenderers often limit the maximum allowed path length. In this 
implementation a six vertex limit is chosen, which is long enough for most paths to termi­
nate stochastically without any bias. In the rare cases where paths reach this limit, the path 
throughput is typically small enough that any bias is minimal.

The path length is encoded using 4 bits, to ensure that the correct bits are used in the 
pattern matching computation. A single bit is used to denote whether or not the final path 
vertex implicitly hits a light source. This is useful when identifying implicit caustic paths 
generated via path tracing, assisting in the lazy evaluation of direct lighting samples for the 
path’s final vertex.

Pattern matching is applied to this bit string using Cl and C2, to filter out caustic contri­
butions. Operating over compact bit strings means that pattern matching is fast, relying only 
on cheap integer comparisons and bitwise operations in order to match path signatures with 
regular expressions. To simplify the regular expression computation, and as the specular and 
non-specular nature of the path vertices maps naturally to binary numbers, compact lookup 
tables can be pre-computed to match common vertex patterns and sub-paths.

To account for the vertex classification step, the radiance evaluation for each vertex contri­
bution is delayed until after path generation. The advantageous side affects of this are two-fold. 
First, lazy evaluation can be applied for all light source sampling. Normally, during path gen­
eration the number of random variables required for lighting computations is unknown. Both 
the inclusion of specular vertices, and the implicit connection of the path with light sources 
can reduce the need for random variable generation. After the complete path is known, the 
sampling requirements are also known precisely, based on the BRDF sampled at each path 
vertex, and the classification given to each vertex of the path which may reduce the need for
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direct lighting. Second, the effect of this lazy evaluation permits the distribution of samples to 
be potentially improved, as the exact number of samples and their relationship is known and 
can be generated together.

Generation of the necessary direct lighting samples is performed lazily, reducing the over­
head of generating wasted samples. The generation of such samples is skipped when the path 
vertex is:

• Sampled using a specular BRDF, where direct lighting is not possible.

• Diffuse, and precedes a specular interaction and is therefore part of a DS*L caustic,

• Diffuse and precedes a specular-diffuse interaction, and thus an indirect DS*DL caustic 
path,

• Located on a light source, as light sources themselves are non-scattering,

In the case of diffuse vertices that precede an implicit light source connection, a direct light­
ing sample is still generated since multiple importance sampling can be applied to potentially 
reduce variance. The implicit ray connection to the light source has already been checked for 
visibility during path construction, so utilising multiple importance sampling for variance re­
duction can have minimal costs in such cases, if the relatively cheap computation of the MIS 
weights is calculated prior to checking visibility.

During path classification, it must also be ensured that implicit lighting from emissive sur­
faces is omitted after diffuse-specular interactions (...DS*L contributions) as this corresponds 
to direct caustic lighting. As the ray generation for such implicit caustics are generated anyway, 
these contributions could also be added to an additional unbiased caustic buffer with minimal 
overhead. This could be combined with the caustic buffer produced by the progressive pho­
ton mapping technique developed later, improving convergence later in the rendering. Coming 
up with a weighting operation to combine these buffers is left for future work, but could be 
useful in reducing the bias present in the photon mapping estimator and improving the overall 
convergence of the caustic lighting.

After lazy generation of the necessary samples, the direct lighting is computed at each path 
vertex using the BRDF and geometry information stored at each vertex, and the final set of 
radiance values is added to the unbiased diffuse image buffer.

Using unbiased Monte Carlo methods provides accurate and robust evaluation of the non­
caustic illumination, whilst eliminating the noise that is commonly introduced by caustic paths, 
which are dealt with in a second pass using density estimation.

5.6 Caustic evaluation

The second pass of each iteration evaluates caustic lighting using a derivation of progressive 
photon mapping. Having generated a set of eye paths to evaluate the diffuse sub-space, vertex 
data from the first pass can be reused to identify visible regions from which photon density 
estimates can be performed. Similarly to the path tracing pass, only a subset of the complete
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Caustic Paths Photon Mapping
Scene Direct Indirect Deposited Emitted % deposited

Cornell
Box

PT
PTPPM

153k
(122k)

218k
(172k) 4.71 mil 52.2mil 9.0%

Ring PT
PTPPM

1328
(1069)

12.8k
(10.1k) 5.40mil 37.7mil 14.3 %

Shapes PT
PTPPM

16.7k
(12.3k)

10.0k
(7.31k) 6.22mil 81.1mil 7.66%

Table 5.1: Comparison of the number of caustic paths generated using path tracing and the 
hybrid method proposed here, know as PTPPM. The caustic photon mapping pass evaluates 
many times more caustic samples than using path tracing alone. The first two columns for 
PTPPM (in brackets) show the number of radiance contributions excluded by vertex contribu­
tion filtering. Both algorithms were run for 5 minutes on each scene.

path space needs to be sampled, reducing the computational and memory costs in comparison 
to full photon mapping approaches.

During the initial iteration of the algorithm, the local statistics need to be initialised to 
allow photon gathering in keeping with the original formulation of PPM [HOJ08], During 
the preceding path tracing pass, the first hitpoint with a non-specular BRDF component is 
found for each camera path. The local statistics for the progressive photon mapping pass are 
initialised, at these primary vertices. The pixel footprint described by the ray differentials at 
the primary vertex is used to dictate the initial kernel radius. This ensures that even in regions 
of low photon density the initial bias introduced into the progressive density estimate is kept to 
a minimum.

For subsequent iterations the primary hitpoints are refreshed from the preceding path trac­
ing pass, providing the points x, within the pixel region S around which photons are gathered. 
Often it is necessary to generate multiple camera paths per pixel in Monte Carlo rendering, to 
perform anti-aliasing and estimate distributed effects, as well as improved direct lighting esti­
mates. This is exploited in this work to enable improved initial radii values for pixel statistics 
by averaging over the ray footprints of multiple camera hitpoints. This is especially helpful 
in the presence of geometric discontinuities and distorted or highly anisotropic ray footprints 
caused by glossy or specular reflection.

5.6.1 Photon tracing

Having found primary hitpoints for the current iteration, photons need to be traced to obtain a 
coarse, discrete approximation to the caustic illumination in the scene. As with the path tracing 
phase, only the subset of all possible paths are of interest. In similar fashion to the first camera 
path pass, pattern matching is applied on the fly during photon generation. As the path space 
of caustics is more restrictive, the termination of a photon path is simpler, being terminated 
earlier when a photon has undergone multiple diffuse bounces, with vertices matching LDD.
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Cornell Box (after 16 iterations) Metallic Ring (after 128 iterations)

Figure 5.5: Visualisation o f  the cumulative caustic photons deposited during iterations o f  
the photon tracing pass. Depositing only direct and indirect caustic photons changes global 
uniformity o f  the photon map significantly, and reduces the number o f photons in the map to 
around 9% and 14% fo r  the Cornell Box and Metallic Ring scenes respectively. This improves 
the performance o f the photon gathering pass, offsetting the additional time spent computing 
the diffuse lighting using unbiased techniques.

For scenes with little or difficult caustic lighting, the number of emitted caustic photons in 
relation to non-caustic photons may be low. This improves memory consumption compared 
to using (S)PPM for the entire path space, and more efficient density estimation. Figure 5.5 
shows a typical caustic photon distribution for two example scenes. The caustic photons are 
concentrated around the specular objects and provide a highly non-uniform global distribution.

The photon tracing stage is complete when the desired number of caustic photons have 
been deposited in the scene. For scenes with few or difficult to find caustic paths this can lead 
to the excessive rejection of photons, providing poor performance. Hence the photon tracing 
procedure is terminated after a large number of emissions if the desired caustic photons have 
not been stored. This improves efficiency in the case of difficult caustic illumination.

By storing an approximation of only the caustic lighting, the number of photons that need 
to be stored per pass can be reduced without loss of quality in the flux estimate. Caustic lighting 
is generally a focussing phenomenon which results in highly non-uniform densities through­
out the scene. Contrarily, diffuse illumination has a more even global distribution due to the 
wide BRDFs of diffuse materials. Eliminating non-caustic photons thus increases the variance 
in density across the scene. This emphasises the need for adaptive spatial subdivision data 
structures to improve the performance of photon density estimates over highly non-uniform 
arrangements of photons. Large areas of sparse photons can be queried cheaply, whilst high 
density regions of concentrated caustic photons can be subdivided by the kD-Tree to reduce 
the number of distance queries required. For each iteration i, a kD-Tree is constructed around
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the current set of caustic photons in preparation for photon gathering. Additionally, due to 
the reduced number of photons stored compared to (S)PPM, kD-Tree construction times are 
reduced in addition to the query times for each iteration (the results in Section 5.7 will provide 
further discussion). Once the caustic photons have been gathered for each pixel, the kD-Tree 
and the photon map is discarded and the photons are no longer needed.

5.6.2 Photon gathering

The photon gathering phase closely resembles that of the original (S)PPM method (recall Sec­
tion 4.2.6). In contrast, only a subset of the complete path space is computed, so only partial 
radiance estimates for the caustic path space are required.

In similar fashion to the original, a radiance estimate is obtained and gradually refined by 
utilising the pixel hitpoints and the corresponding statistics. The updating procedure for the 
statistics remains the same, but instead operates over the caustic photon subset to compute the 
new accumulated photon count for caustics Nf+l (S) using the number of caustic photons in the 
current gather kernel, Mf(;c,):

Omitting the generation of non-caustic photons, does not affect the stochastically generated 
nature of the photon map. As a result, the photon distribution across a local region remains 
statistically constant between iterations; the same assumption previously imposed by (S)PPM.

As with the distributed ray tracing incorporated into SPPM, the path tracing pass of PTPPM 
generates new hitpoints for each pixel at each iteration. The Mf(xi) photons are accumulated 
over a region centred around this new hitpoint jc,- € S. The total unnormalised flux that these 
new caustic photons in jc ,  contribute to the radiance leaving S towards the camera can therefore 
be computed by:

The current caustic flux estimate for this region rf (S, a) can then be updated using the new 
flux estimate for this iteration, multiplying it by the change in radius from Ri(S) to /?,+i (S), to 
ensure an increasingly accurate estimate:

To produce the full global illumination image this partial flux estimate obtained via photon 
mapping needs to be normalised and combined with the path tracing radiance estimate for 
non-caustic lighting during image reconstruction.

Nf+1(S)= N f(S) + aMf(x,) (5.2)

and the radius is similarly reduced using the global parameter a:

Ri+l(S)=Ri(S)
Nf (S) +  Mf (*,-)

M f ( x i )

<Dci (xi,co)= £  f r{xh (0 ,(0j)^ j{x j,(0j). 
j= 1

(5.4)

(5.5)
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Image Reconstruction After each iteration, an image can be produced by combining the 
pixel radiance estimates obtained from the two path subspaces. Since these subspaces evalu­
ated by each method do not overlap, it is a trivial matter of summing the normalised radiance 
accumulated during path tracing, with the current progressive photon mapping estimate.

The flux estimates stored alongside the shared photon statistics first need to be normalised 
with respect to the total number of photons emitted so far across all iterations. Assume that 
all possible photon paths (both caustic and non-caustic) have been traced and separated to 
construct two photon maps. Using the shared radius, a number of caustic photons Mf ( jc / )  and a 
number of non-caustic photons M f (*, ), could be gathered independently that lie within j c The 
contributing caustic and non-caustic flux values (<J>f(jc/,m) and Phif(xi,co), respectively) can 
then be computed from each subspace independently. Given that both sets of photons are being 
gathered over the same region /?,-(£), the relative corrected flux values tf(S, co) and r f  (5, co) 
remain proportional. After i iterations, N%(i) caustic photons and N f (i) non-caustic photons 
have been collected. As a result the radiance evaluation of the two path spaces can similarly be 
separated:

L(S, co) =  lim
,-->oo Ne(i)7tRi(S)2

lim | < (* .« )
I— (Af (i) +  N!(i))nRi(S)2 (Ne (i) +NZ(i))xR,(S)

Radiance values for all non-caustic lighting are computed using the path tracing algorithm, 
hence the photon mapping non-caustic radiance estimate can be substituted with the unbiased 
path tracing estimate producing a full global illumination solution:

* s ' a) =  (a? (o + L  L  M x ' a ' m ' ) L [ x ' <0')(n •<B' )da>'dx

Thus obtaining an estimate for the radiance arriving at S scattered towards co. To estimate the 
radiance at a particular pixel requires S to be the region of all surface points visible from the 
camera through the pixel, and Qx the area over the hemisphere at each location jc  G S.

5.7 Results and discussion

The hybrid technique presented here has been tested on a number of scenes containing complex 
lighting effects with a particular focus on caustic lighting. Test scenes exhibit both reflected 
and refracted caustics, incorporating the specular-diffuse paths notoriously difficult in unbiased 
MC techniques. Direct and multiple bounce diffuse illumination is also prevalent, in addition 
to high frequency detail maps that provide improved visual fidelity.

All images are rendered on a PC with 8 GB of memory and a 2.66Ghz Intel Core i7 CPU 
utilising 8  threads, providing more than sufficient memory and parallelism to provide a com­
parison of the different techniques on modem consumer hardware. All images are rendered at 
a resolution of 512x512 unless otherwise stated and a photographic tone reproduction operator 
(tone mapping) is applied following the work of Reinhard et al.[RSSF02] to improve clarity
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and is responsible for some of the visual differences between the path tracing a photon mapping 
methods.

The path tracing implementation used for both the hybrid approach presented here and 
the standard path tracing use the same rendering framework for all aspects of image gener­
ation. The Monte Carlo path tracer uses variance reduction techniques described in Section
3.3, including next event estimation to evaluate direct lighting at each vertex, sampling from 
the light sources using a PDF based on their relative total flux. Russian roulette is introduced 
at the third path vertex using a threshold q based on the path throughput, or using q — 0.5 if 
the path throughput is higher. This ensures radiance estimates are made for the initial impor­
tant bounces, and subsequently terminates paths with 50% probability along high contribution 
paths such as specular interactions to improve efficiency.

For each iteration of the hybrid approach, two camera paths are traced per pixel. The 
benefits of this are two-fold. First, because the pixel footprints are initialised using the ray dif­
ferentials at the primary non-specular vertex, providing two ray footprints improves the initial 
kernel radius for pixels that cross geometric discontinuities and reduces the risk of artefacts that 
can be caused by kernel bandwidths derived from anisotropic ray footprints. Second, tracing an 
additional camera path better balances the convergence of the diffuse and caustic illumination 
since each density estimate typically evaluates multiple samples (one from each photon), but 
each MC path computes only one.

Comparisons with SPPM are also provided whose implementation follows that outlined by 
the original authors in [HJ09]. Parameters are also adopted from previous work, depositing 
500k photons and using a radius reduction of a  =  0.7. A kD-Tree is built around the photon 
map in order to accelerate density estimation, using a median-split heuristic in order to pro­
vide a good trade off between construction time of the tree and photon gathering. Although 
heuristics such as the voxel-volume heuristic of Wald et al.[WGS04] have shown to be effec­
tive for classical photon mapping, their slow construction times are less suited to a progressive 
paradigm.

In the hybrid approach photon tracing for each iteration is restricted to depositing 50k caus­
tic photons, or termination occurs after the emission of 400k photons. The initial criteria avoids 
the overhead of photon gathering becoming too large, when caustic illumination dominates the 
scene. The second limit is useful in scenes with difficult to sample caustics, where the time 
taken up by the photon tracing pass can become excessively long if left unbounded.

More optimal parameters can be chosen manually for each scene depending on the charac­
teristics of the illumination, achieving a better balance between the refinement of caustic and 
diffuse lighting estimates. For scenes where caustic lighting dominates significant regions of 
the image, it can be favourable to increase the number of photons traced during each iteration 
to improve convergence for those regions.

The two passes of the algorithm are conducted sequentially for each iteration, and the multi­
core CPU is utilised by parallelising each pass. The generation of individual camera paths and 
each photon is independent, and thus parallelism can be conducted in the same way as for the 
two original algorithms. However, threads must be synchronised for photon gathering since 
either the complete photon map, or the complete set of pixel hitpoints for each iteration must 
be generated before caustic evaluation can be performed.

To evaluate the effectiveness of the proposed technique, both quantitative and visual com­
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parisons are used. Equal time comparisons provide an indication of the relative efficiency of 
each technique to produce an accurate and perceptually correct image, compared to a refer­
ence render. Since all three algorithms discussed here are implemented in the same code base, 
developed as part of this thesis, the majority of their sub routines such as ray tracing, BRDF 
sampling and scene layouts are common to each, thus performance is most heavily influenced 
by the algorithm design itself. Cropped parts of the images are also shown to highlight where 
methods differ. The root mean square error (RMSE) is also computed during progressive ren­
dering using a pixel-wise comparison to the reference solution. This provides a quantitative 
indication of the total numerical error across the image.

Using a hybrid method means that the number of samples evaluated for each path subset is 
reduced compared to the constituent algorithms. Despite this, regions of diffuse lighting have 
not noticeably suffered due to undersampling, due to the elimination of high frequency noise 
thanks to the separation of the vertex contributions. In comparison to SPPM, the new hybrid 
algorithm exhibits far less noise in diffusely lit regions, whilst producing caustics of equivalent 
visual quality across our test scenes.

5.7.1 Cornell Box

The first test scene (Figures 5.6 and 5.7) is inspired by popular modifications to the comell 
box scene, including glass and chrome spheres lit from above by a moderately sized area light 
source. Spherical geometry with refractive and reflective properties ensures the formation 
of both focussed caustics on the floor, and highly dispersed caustic lighting is visible on the 
surrounding ceiling and walls. The ceiling and regions under the spheres are lit indirectly, with 
both hard and soft gradients visible around the spheres and the top of the walls. This a good 
test scene as it exhibits a number of common and varied phenomena.

Using standard path tracing, high frequency noise in the image is very apparent, obscuring 
the finer detail and fails to express the smoothness of the true illumination. Caustics are present 
but contain significant noise especially around the edges and in the multiple bounce caustic on 
the right hand side, refracted from the mirrored sphere through the glass.

Rendering with SPPM alleviates the high intensity spiked noise due to the use of sample 
correlation and photon caching providing far improved caustic illumination. However, parts 
of the image dominated by diffuse illumination contain noise caused by low density and high 
initial variance. Additionally, bias is introduced around the edges of the box, particularly 
noticeable in the shadowed regions that cross geometric edges. Due to the slower iterations of 
the SPPM algorithm (see Table 5.2), camera centric effects such as the reflection and refraction 
of the glass sphere take longer to resolve, despite the reuse of the photon map data.

Using the hybrid method, the otherwise objectionable high frequency noise caused by path 
tracing in conjunction with the specular convex geometry is removed, presenting a cleaner 
and less visually disturbing image. Caustic detail is provided by the photon mapping pass, 
improving in particular the multiple bounce caustics and their edges where such paths have 
low density when sampled from the camera. Boundary and proximity bias for illumination and 
geometric edges has been eliminated through the use of explicit point-to-point connections.
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Path Tracing Our Method

SPPM Path Tracing Reference

Figure 5.6: Path tracing is affected by its poor evaluation o f  caustic paths. Our method does 
not introduce the lower frequency noise produced by SPPM  visible around the image edges, or 
the higher frequency noise on the back wall and glass ball. Images fo r  all three methods were 
rendered in 30 minutes

5.7.2 Metallic Ring - difficult caustics

While the Cornell box provides a number of general lighting conditions and phenomena, this 
second scene aims to provide more challenging caustics for a more rigorous test of caustic 
lighting evaluation. This scene (Figure 5.8) contains a metallic ring sitting on a flat detailed 
surface within a walled environment. Illumination is provided by a small area light source.
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Path Tracing Our Method SPPM

Figure 5.7: Close-up images o f the Cornell Box scene fo r  each o f  the three techniques, cropped 
from  Figure 5.6. Low photon densities increase noise levels fo r  the SPPM algorithm, and 
variance is dependent on the surface orientation. PT struggles to cope with the sparse and 
high energy caustic lighting producing distracting speckles.

Direct caustics are visible in the centre as a high energy cardioid caustic, and more subtle 
caustics outside the ring. These features are also reflected in the interior and exterior of the 
ring respectively, which is difficult for methods that do not rely on sample caching, such as 
unbiased MC methods. Due to the light falloff on the walls of the environment, these regions 
are relatively dark and produce soft diffuse gradients.

Path tracing cannot effectively render the cardioid caustic due to the small light source 
which is difficult to sample implicitly. Likewise, the reflection of such caustics also proves 
difficult, despite being an extension of the same paths the lack of coherence reduces the effec­
tiveness of unbiased MC approaches.

SPPM has noticeable noise as a result of low photon densities on the wooden floor and 
brick walls. Our method evaluates all light paths effectively, producing diffuse lighting with 
similar quality to the path tracing image, and caustics comparable to those produced by SPPM.

5.7.3 Shapes - Reflective open environment

Finally, a scenario is presented that can be challenging for both camera path and light tracing 
methods (Figure 5.10). Due to its open nature, particle tracing techniques perform poorly,
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Path Tracing Our M ethod

SPPM Path Tracing Reference

Figure 5.8: Equal time comparison after 30 minutes between path tracing, the hybrid PTPPM  
m ethod and SPPM. A low noise path tracing image is also provided fo r  reference, which took 
many hours to render. Close ups o f  the same images show reductions in noise fo r  our method 
compared to both methods

allowing many emitted photons to miss the geometry entirely or be deposited in regions with 
low camera importance. An area light source illuminates a large plane containing diffuse, glass, 
and reflective objects. Caustics are visible directly as well as via reflections and transmission, 
thus posing a further challenge for unbiased MC techniques.

To highlight the improvements brought about during the early stages of rendering, under 
low sample counts, this scene has been rendered for four minutes as opposed to thirty. As pro-
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W g j  i i j p iE n a a lfc l

Path Tracing Our method SPPM

Figure 5.9: Close-up images o f  the reflected illumination and shadowed regions from  the 
Metallic Ring scene fo r  each o f  the three techniques. Cropped from  Figure 5.8.

gressive techniques are often most useful for rendering previews, before generating production 
quality images, the early stages of rendering are where noise reduction can be most reward­
ing. This can be seen in Figures 5.14 and 5.13, where the error visible in the hybrid approach 
is markedly below that of previous techniques, and is localised around the more challenging 
areas of the image; the caustics.

Interestingly, rendering using path tracing provides lower overall error for this scene than 
SPPM due to the wide dispersion of photons traced from the light source, and the significant 
diffuse illumination across the image. Even with the similar photon distribution, the direct 
lighting at diffuse vertices provides vast improvements in the hybrid method.
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(a) Path tracing (b) Our method

(c) SPPM  (d) Path traced reference

Figure 5.10: Equal time comparison after 4 minutes o f rendering between path tracing,
our method and SPPM. This scene displays both direct and indirect lighting, in addition to a 
range o f reflected and refracted light paths. Due to its open nature, both the indirect diffuse 
lighting on the blue box, and the caustic lighting seen via reflection and refraction are difficult 
to evaluate

5.7.4 Q uantitative comparisons

Computing RMSE values for the three scenes further demonstrates the effectiveness of the hy­
brid rendering technique (Figure 5.11). To preserve equality, these error calculations have been 
applied to the raw pixel data, before the application of tone mapping. In regions where diffuse
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Figure 5.11: Plots of log root mean squared error (RMSE) over time for the three scenes. 
The hybrid approach provides consistently lower error, and convergence is dependant on the 
relative complexity of the diffuse and caustic lighting.

lighting presents more of a challenge, such as the Cornell Box scene and heavily shadowed 
regions, convergence of the hybrid approach follows that of path tracing. In scenes like the 
metallic rings, dominated by caustic lighting convergence resembles the rate of SPPM. In more 
mixed environments such as the final test scene, both caustic and diffuse lighting to converge 
at similar rates, with neither path sub space consistently dominating the rate of convergence.

Table 5.1 shows the number of caustic paths evaluated using the combined PT and SPPM 
technique in comparison to the standard MC path tracing Tenderer for the test scenes. Light 
tracing allows many more caustic paths to be evaluated which results in the vast improvements 
in rendering quality for such illumination. The final column shows the percentage of pho­
tons that are stored in the photon maps on average, compared to the same number of photons 
without the vertex contribution, path-space filtering. Thus, the size and memory requirements 
of the new photon mapping implementation are reduced to around 7%-15% in comparison to 
SPPM when used alone storing photons for the full global illumination solution. This dramatic 
decrease allows faster photon gathering as can be seen by the photon statistics in Table 5.2.

Path tracing dominates the runtime of the hybrid approach (PTPPM) for all scenes, due to 
the next event estimation performed at each camera path vertex to obtain radiance contribu-
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Path Tracing Our method SPPM Reference

F igure 5.12: Close-up images o f the Shapes scene fo r  each o f  the three techniques, cropped 
from  Figure 5.10. Due to the open environment and difficult caustic lighting, neither P T  or 
SPPM perform well under such conditions.

tions, requiring many more rays than for a single photon path.

5.8 Limitations and future work

It can be seen that SPPM leaves significant dark portions of the image, localised over a small 
pixel region. Under sparse photon densities, insufficient photons exist in the footprint of the 
pixel for any given iteration to provide good estimates. Enlarging the kernel footprint may not 
be a feasible solution, especially where the local geometry is complex as additional photons 
may not be available. This establishes significant levels of variance across the image even 
during the initial passes. As the radius of the kernel shrinks, the problem is compounded since 
variance increases progressively in order to reduce the bias afforded by density estimation. 
Thus the absence of this initial bias results in high variance from the start, and the efficiency of 
the estimator is poor.

By allowing the use of unbiased point-to-point methods, the hybrid approach developed in
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Iterations Photon Image
Scene PT PM Path Tracing Tracing Gathering Reconstruction

Cornell Box PTPPM 1640 820 1420s 289s 70.5s 18.3s
(30 mins) PT 2034 - 1800s - - -

SPPM - 1282 271s 479s 1040s 12.4s
Metallic Ring PTPPM 1172 586 1410s 325s 51.5s 12.4s

(30 mins) PT 1446 - 1800s - - -
SPPM - 929 370s 721s 689s 11.5s

Shapes PTPPM 340 170 139s 56.3s 32.2s 5.05s
(4 mins) PT 458 - 240s - - -

SPPM - 186 63.5s 80.6s 92.0s 4.85s

Table 5.2: Number of iterations performed by each algorithm, and the time spent in each
stage, whilst producing the images shown in this section. Note that each iteration of PTPPM 
method evaluates two Monte Carlo paths, and gathers photons around one hitpoint. Path 
Tracing times for PTPPM include the path generation, regular expression filtering and diffuse 
radiance calculations. For SPPM it represents the time spent in the distributed ray tracing 
passes.

this chapter can employ explicit sampling for important regions of the image without relying 
implicitly on the underlying photon density being sufficient. Conversely, in high energy caustic 
regions where the underlying density is high, photon mapping can provide accurate estimates 
using small filter kernels. This ensures estimators have low initial variance, and as the kernel 
bandwidth shrinks, the photon density is often sufficient to introduce variance slowly. Despite 
this, initial bias can still be a problem, as with the original (S)PPM technique, but ensuring that 
the kernel bandwidth is no larger than the ray footprint minimises the blurring of illumination 
across neighbouring pixels.

As with previous photon mapping approaches, performing density estimation on strong 
illumination boundaries can often over-estimate the radiance contribution to the pixel, due to 
proximity bias. High energy caustics can often contain sharp illumination features, or have 
strong borders with low density regions outside the envelope of the caustic. For progressive 
photon mapping, as the kernel decreases this proximity bias of the existing Nf (S) photons is 
offset by those collected in subsequent iterations. However for pixels outside the boundary of 
sharp caustic features, as the radius of the kernel is reduced the number of additional photons 
Mf(xi) may be small in relation to Nf(S). Relying on the ratio of these pixel statistics to 
dictate the radius reduction results in a slow decrease in bias, increasing its persistence during 
rendering. As the hybrid approach proposed here does not include the non-caustic photons, 
the difference in photon densities at such illumination boundaries is increased and thus the 
residual bias left behind by relying on this ratio of photon counts is also increased. By using 
the radius reduction technique of Knaus and Zwicker [KZ11], which is independent of the 
local statistics, reducing the radius by a fixed amount each iteration regardless of the number 
photons collected, the persistence of such bias can be reduced.
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Omitting the diffuse photons reduces the overall photon density in the scene. Knaus and 
Zwicker [KZ11] show that the same convergence rate can be achieved by ignoring local statis­
tics and reducing radius rates uniformly at each iteration, assuming a constant local photon 
density. However for low density regions, some iterations may not collect any photons, and 
the density is non-constant. Hence Mf(x,) = aM ffa) = 0, and so the radius Ri(S) will not 
be reduced if Nf(S) is non-zero. Under these conditions, the progressive bias and variance 
trade off is affected since the radius is not reduced and the current flux estimate remains the 
same. Utilising the probabilistic method of Knaus and Zwicker will alleviate this, since both 
the radius reduction and flux correction are independent of the local statistics. Since the ad­
vent of the work described in this chapter, Kaplanyan and Dachsbacher [KD13] have discussed 
the problem of initial kernel bandwidth selection to reduce bias and variance. They develop 
a locally-adaptive technique to balance variance and bias to minimise error in a general PPM 
context, hence it is also applicable in this case. The core problem for density estimation still 
remains, but by intelligent choice of initial kernel bandwidth it can be minimised on a per pixel 
basis.

Given the percentage of photons stored in the photon map, performance for photon gath­
ering is improved but the photon tracing step itself can become inefficient. This is largely 
due to the inclusion of indirect caustic sub-paths LDS, requiring an additional ray to be sam­
pled and traced for each photon path before allowing termination (to identify LDD sub-paths). 
Such paths could be included in the path tracing stage for scenes with low intensity caustics as 
decided by the user.

Glossy materials are often problematic in a hybrid framework such as that presented here, 
and they can be difficult to sample with both unbiased MC methods and photon mapping ap­
proaches. The classification of glossy materials is non-trivial, as their representation and ap­
pearance can be arbitrarily close to either diffuse Lambertian surfaces or specular materials 
like polished metals. Dammertz et al.[DKL10] treat them as diffuse or specular based on a 
predefined user choice, affecting only the convergence of the algorithm not its visual appear­
ance. Ideally, this would automatically identify the best technique to handle an individual path 
or sub-path based on the properties of the path vertex in order to reduce error. The addition 
of detail such as specular maps can make an absolute choice impractical and more complex 
BRDFs are highly dependent on the incident angle of the rays.

Following the publication of the contributions described in this chapter [DJM12], Georgiev 
et al.[GKDS12] and Hachisuka et al.[HPJ12] have independently presented similar techniques 
for combining BDPT and SPPM using multiple importance sampling to automatically weight 
the two techniques at each path vertex, reducing variance. Difficulties in such an approach 
arise due to the different path spaces that similar contributions occupy, when using point to 
point connections and density estimation. To connect a camera and light path of lengths i and 
j  respectively, vertex connections can be made explicitly for BDPT resulting in a total path 
of length i +  j. For density estimation to construct a similar path, the vertices of both paths 
need to be neighbouring in Euclidean space, according to the gather kernel radius. Thus a path 
of length / +  7  +  1 is required, and in order to combine such techniques on a per-vertex basis 
requires a common space from which to compute path densities. Extending the path space 
of the BDPT approach can be achieved by randomly generating a vertex within the kernel 
radius of the density estimation technique, and including it in the density of generating that
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path contribution. Alternatively, the space of density estimation techniques can be reduced by 
merging neighbouring vertices [GKDS12], matching the space of MC path estimators.

A weighted approach improves the evaluation of glossy materials and reduced visible 
spiked noise in images, which are robust under a number of difficult scenarios. This comes 
at the cost of high implementation complexity, not only subsuming BDPT and SPPM, but re­
quiring additional care to ensure the MIS weights for each technique are computed correctly, 
and presents further difficulties for efficient implementation.

The complexity of such weighted approaches makes the use of Markov-chain MC tech­
niques difficult, and such a solution is yet to be established. By combining MC and photon 
mapping techniques in a simplified but effective hybrid framework, the PTPPM technique pre­
sented here can easily utilise Metropolis-light transport for difficult diffuse illumination, and 
equivalent techniques for photon mapping [HJ11] can improve caustic illumination.

The algorithm presented here represents a concept that is equally applicable to any Monte 
Carlo orientated method such as bidirectional path tracing or Metropolis light transport. Util­
ising BDPT in place of uni-directional path tracing could provide significant performance im­
provements and reduce the overhead of a hybrid technique, since photon paths that do not 
contribute to the photon map can be utilised for the diffuse fighting computation. Similarly, 
caustic paths generated from the camera whose contributions are skipped could also be re­
weighted and added to the photon map although in practice the number of additional photons 
would be relatively small for anything but simple cases. Utilising BDPT for direct caustics 
could also improve convergence due to the fight tracing sub paths, however this would risk 
re-introducing the high energy spiked noise that is being eliminated.

A desirable addition would be to allow automatic adjustment to the number of Monte Carlo 
generated and photon traced paths during rendering, improving convergence for scenes with 
difficult caustic or diffuse fighting. Building upon the bias and error estimation work of [HJJ10] 
may allow a more rigorous estimation of error present in each technique, allowing an automatic 
adjustment. Care would need to be taken however to ensure that portions of path space were 
not under sampled prematurely, if they have not been explored sufficiently and their variance 
is not representative of the actual integral.

From an implementation perspective, the current efficiency of the estimator has room for 
significant improvement. Subsuming both path tracing and photon mapping progressively re­
sults in a wealth of information being available to guide subsequent passes without the need 
for pre-processing. Data from each progressive pass can be used to guide the evaluation of 
the opposing integral. Previous techniques such as significance caching [BRDC12] and photon 
driven importance sampling [Jen95] could provide useful information to both passes improving 
the illumination estimates. Techniques for more efficient photon mapping can also be applied, 
such as the use of projection maps [JenOl] to refine direct caustics and a technique applicable 
to the indirect distribution of photons could also be advantageous, may require preprocessing 
of the geometry and the inclusion of visibility queries. A technique similar to shadow photons 
[JenOl], in which a sparse set of direct fighting photons (which are already computed and dis­
carded in the implementation described here) are stored and queried could improve efficiency 
by allowing probabilistic evaluation of direct fighting computations at each vertex.

The convergence of hybrid methods such as that presented here and the similar works by 
Georgiev [GKDS12] and Hachisuka et al.[HPJ12] are still limited by the lower convergence
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rate of SPPM, for areas of the image where SPPM is used for sample evaluation. As the radius 
is reduced, evaluation by path tracing techniques can be favoured and thus in the limit the 
solution will become unbiased. Optimal combinations of such a complex framework is yet to 
be established, and provides an interesting foundation for future work. The use of path vertex 
data as discussed in this chapter, and the concept of path classification can still benefit such 
techniques to improve convergence by adjusting the balance between light and camera paths to 
improve specific types of illumination.

Finally, combining unbiased Monte Carlo and density estimation approaches has been 
shown to benefit the rendering of global illumination, but still inherits problems from the orig­
inal contributing techniques. Bias reduction for density estimation is still problematic, and 
errors due to poor distributions over complex geometry and the results of proximity bias still 
impact the resulting images. High frequency noise and effective techniques for evaluating 
the radiance scattered from glossy materials are still problematic. Recent work by Jakob and 
Marschner [JM12] to enable more effective Markov-chain mutations through complex specu­
lar and near-specular light transport improving rendering through the exploration of path-space 
manifolds.

5.9 Conclusions

Achieving high efficiency whilst maintaining robustness is a desirable but difficult to attain 
property for computer graphics algorithms. It has been shown in the past that a single specific 
algorithm can often solve a particular light transport problem more efficiently than a gener­
alised one [DKL10, KK04, DWB+06]. A novel multi-pass progressive algorithm has been 
presented that combines the benefits of both Monte Carlo path based and progressive photon 
tracing methods via path space filtering. Though separable path space filtering methods have 
been used before for full global illumination [DKL10, BAJ08], the PTPPM algorithm has the 
advantage of being both progressive and accurate, allowing convergence to the correct solution 
or until the desirable level of quality is achieved.

The core of this chapter has been to introduce a hybrid density estimation and pure Monte 
Carlo path tracing techniques in a progressive framework which, via quantitative RMSE anal­
ysis, has shown to be more effective than the individual techniques it subsumes. The resulting 
work incorporates a number of contributions:

• By rearranging the rendering pipeline, radiance accumulated at path vertices can be 
classified based on their surface interactions, and evaluated lazily to improve the per­
formance of path tracing techniques.

• Support for visually significant SDS paths has been combined with unbiased rendering 
of general illumination to reduce overall variance and improve accuracy.

• High efficiency is achieved by significantly reducing the memory and computational 
costs of density estimation techniques for caustic lighting.

Using path-vertex data has allowed the identification and division of caustic illumination 
that causes high variance in global illumination path tracing and insight into the characteristics
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and distribution of such path space. For a given estimator, it can be seen that some regions of 
path space are highly problematic whilst others are relatively noise free. Figure 5.3 illustrated 
this in the context of path tracing, and motivated the work in this chapter.

Aside from quality and speed, the two driving forces behind computer graphics, the ease 
of use and toolkit available to non-specialist end users such as artists, designers, and engineers 
must be addressed in order to push global illumination into the widespread use it deserves. As 
such, investigating hybrid approaches like that which has been presented here to improve con­
vergence is an important step towards developing a framework that can cope with all manner of 
illumination effects equally well. This reduces the knowledge required by the end user, elimi­
nating the need for questions such as ’’Which algorithm do I choose for this particular scene?” 
or ’’What does this parameter actually do?”. Hence, eliminating the experimental tweaking of 
parameters in order to achieve good results allows users to focus instead on their primary goal, 
be it creative design or scientific analysis. Hybrid approaches such as the work presented in 
this chapter go some way to making accurate global illumination a universal tool, instead of an 
expertise.

This work focussed on utilising path data in high intensity caustic lighting and complex 
specular interactions that are handled poorly, if at all, by unbiased MC methods. However, 
in a more general case such path vertex data and its analysis may provide further benefit to 
achieve noise free rendering. Even within a single mode of light transport, such as non-caustic 
illumination, path vertex data can be used to isolate important features in the image.
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PTPPM SPPM

Figure 5.13: Images showing the progressive rendering methods at equal times. PTPPM
results in visually more pleasing images compared to stochastic progressive photon mapping, 
especially at lower sample counts. From top to bottom approximately 4, 8, 16, 64 and 256 
seconds respectively.
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Figure 5.14: Images showing the progressive rendering methods at equal times the novel
PTPPM method (first row) produces in lower overall error than SPPM (second row). From left 
to right the images were rendered in approximately 4, 8, 16, 64 and 256 seconds. The third 
and fourth rows display the pixel-wise error fo r  PTPPM and SPPM  respectively, compared to 
the path tracing reference image in 5.10
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Irradiance-Aware filtering for Monte 
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6.1 Introduction

Following the work proposed in the previous chapter, the concept of utilising vertex data to 
enable variance reduction has been established. Despite the improvements in visible noise and 
quantitative error made evident in the previous chapter, convergence for high quality rendering 
techniques is still inherently slow and produces visible noise early on. By visualising vertex 
contributions as a series of distinct layers based on the number of surface interactions (Figure 
6 .1) a number of observations can be made about the distribution of noise and characteristic 
illumination features in the image.

In environments with largely non-specular BRDFs, common in the real world and where 
the nature of scattering is non-deterministic, the dimensionality (and hence the complexity)
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of the integral increases with vertex depth. Intuitively, the number of possible directions from 
which illumination could arrive increases, hence each additional path vertex expands the search 
space and thus more samples are required to provide similar levels of variance. This can 
be explained by looking at the formulation of path densities during path construction. The 
extension of a path from a point x to x7 is dependent on the PDF p(x!) used to select an outgoing 
direction (o' over the hemisphere at x, typically via PDF importance sampling based on the 
BRDF and local geometry. As a path x* =  xo ,...,x*  is extended from xo, the probability of 
sampling the next vertex is dependent on the probability of all previous vertices, thus the path 
density up to x* is given by:

k
p(xk) =  p (xq) p{xl) ... p(xk) = Y[p(xi)

i= 1

where p(xo) is the PDF associated with sampling the path origin (ie: the pixel location on the 
image plane, or point on an emitter). To be valid, it must hold that p(x) < 1 for any x and (o', 
unless p  is deterministic (a purely specular interaction) where p{x) = 1 may hold. Thus fornon- 
specular interactions, as k increases p{x]c) is dependent on exactly k — 1 PDFs where p{x) < 1 
for all jco to x*. None of these PDFs can fully account for the incident radiance (irradiance) 
at Xfc, thus in general the potential variance of the estimator increases with higher dimensions 
1. As a result, longer paths increase the chance of background noise being introduced into 
the image. Additionally, the variation of each of the k — 1 choices for p(x) G (0,1]R at each 
vertex adds to the total variation in path density p(x*) € (0 , 1]R for similar paths of equivalent 
luminance.

Another observation from Figure 6 .1 is that the frequency of illumination features changes 
with path depth. Due to the dispersive nature of wide BRDFs, the presence of strong features 
in the illumination are reduced as energy is spread more uniformly around the scene. As a 
result, phenomena become softer displaying lower frequency details at longer path lengths. 
Thus the noise reduction power of techniques operating over composite path radiance from all 
path space (as opposed to per-vertex contributions), are restricted by all illumination features 
across the composite path space.

This also applies to features in visible texture maps which form an essential part of the 
final radiance measurements. Noise in the incident illumination is present irrespective of the 
texture detail on the surface, and thus filtering the final sample radiance inclusive of such 
detail provides additional restraints, potentially reducing the capability of the filtering scheme. 
Isolating both the signal and underlying noise of such features individually as a further tool for 
noise reduction is the motivation for the novel contributions throughout the following chapter, 
culminating in a noise reduction framework for progressive rendering.

6.1.1 Irradiance awareness in image based filtering

In order to make use of these observations, a vertex level approach is explored for image- 
based filtering; a wide and varied field of noise reduction techniques. This section will provide

^ ote  that only if the incident illumination were already known could a PDF introduce no additional variance 
to the estimate, in which case sampling is unnecessary anyway since the solution must also be known.
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(a) Primary diffuse lighting (b) S ingle diffuse interaction (c) M ultiple d iffuse interactions

Figure 6.1: An example (taken from  Figure 5.3) showing distinct sets o f path tracing con­
tributions, identified based on vertex interactions and path length. From this, features o f  the 
illumination can be identified and attributed to dimensions o f  the integrand, which is used to 
improve noise reduction techniques.

motivation for the application of this work to image-based filtering, and the principles behind 
such techniques for noise reduction in Monte Carlo path tracing.

To accurately estimate the measured radiance through a pixel in a path based Monte Carlo 
Tenderer, the radiance from all surface points visible through that pixel must be evaluated:

P(i,j) = J / Le(x1 c o ) +  Lr(x, co)djcdft), (6.1)

for the continuous set of all visible locations in the scene S and the set of directions towards the 
camera Q  from S. To estimate Lr, further integration a tx  is required to account for the radiance 
arriving from all directions (Or over the hemisphere:

Lr(x,co) =  /  Li(x,(d ')fr(x ,(0 , co')(n- (o')d(o' (6.2)
Jci

where L, is the incident radiance arriving at the surface from ft)'.
Typically, these integrals are slowly varying, that is for small changes in x  and c o , the 

change in Lr (;c, ft)) is also small. Such similarity exists across neighbouring pixels in the image 
plane, since pixels are a discrete reconstruction of the continuous 2D image plane, commonly 
translating into a small spatial distances (in x  and c o ) between ray hit points in world space. 
The incident illumination L, at each hit point thus changes slowly in diffuse environments with 
simple geometries. Filtering techniques rely on this pixel coherence, exploiting the similarities 
in the signal of neighbouring integrals to reduce the incoherent noise that varies across them, 
as a result of stochastic sampling. This approach can provide effective noise removal in regions 
where neighbouring pixels have well correlated integrals.

For non-planar geometry and at geometric edges, hit points from neighbouring pixels ex­
hibit large or sudden changes in the local geometry, resulting in significant differences in their 
illumination integrals. Additionally, the coherence of the scattered radiance Lr between nearby
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hit points is more sensitive under narrow BRDFs, which preserve small changes in the inci­
dent illumination. The presence of texture detail can also reduce pixel similarity and degrade 
coherence quickly across the image plane due to fine detail on visible surfaces.

For such regions which lack coherence, low variance sources such as geometry and texture 
buffers can be employed to help preserve visually distinctive edges in conjunction with filters 
such as the cross-bilateral (recall the discussion in Section 4.4). Image based techniques have 
been popular due to their fast performance but often sacrifice visual quality. The resulting algo­
rithms can produce filtering artefacts, loss of high frequency features, or are limited to certain 
forms of fight transport; wherein fie the strengths of Monte Carlo methods. However relying 
on low variance sources cannot be applied to identifying pixel correlation with respect to illu­
mination features, since they are the source of high variance that is the target of the filter. As a 
result, a number of existing techniques do not filter the direct lighting or handle high frequency 
environments [BEM11, SKBF12], where the introduction of bias has a significant impact on 
the resulting image, blurring shadow edges and reflections. However, such illumination still 
brings noise to the image that can be distracting especially in shadow penumbra, so filtering is 
still desirable.

6.1.2 Contributions

In this work, a novel framework for the dynamic storage and filtering of Monte Carlo samples 
is presented that effectively removes noise whilst preserving high frequency features in the 
incident illumination and texture detail. Utilising path length and vertex interactions, sets of 
per-pixel clusters are maintained, representing the radiance and incident radiance integrals of 
each pixel. This results in a layered clustering framework that represents the pixel integral.

Treating path tracing as a Poisson process,and clustering in this way allows the frequency 
of sample occurrences in a pixel to be compared with the occurrence of similar luminance 
samples in its neighbourhood. From this, two advantages are obtained. First, high energy 
noise in the incident radiance on visible surfaces can be identified and temporarily removed, 
which is otherwise difficult to handle without strong artefacts. Second, clusters of similar 
luminance can be compared across an image-space filter kernel, allowing weights to be derived 
for convolution filtering, respecting similarities in the incident radiance. Combined with the 
geometric edge detection provided by depth and normal buffers used by more established cross- 
bilateral filtering techniques, bias is reduced across edges from both high and low variance 
sources.

Furthermore, this can be done so as to preserve complex texture detail since the incoming 
radiance can be filtered as opposed to the final radiance arriving at the camera. Though not 
in itself novel, combined with the ability to decompose illumination based on high variance 
characteristics, the data available within a given filter kernel and the correlation of illumination 
integrals can be maximised across regions with multiple complex features. The final pixel 
radiance is reconstructed from the filtered irradiance, statistical BRDF estimates, and texture 
data all of which are obtained cheaply during the rendering pass.

The method proposed in this chapter effectively filters noise from the incident illumina­
tion, whilst preserving hard gradients and edges that are otherwise difficult to identify, pro-
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viding important visual cues and realism for complex materials and light transport. The main 
contributions of this chapter can be summarised as:

• Introduction of a novel layer-based clustering framework, that compactly and accurately 
represents changes in the incident illumination (irradiance).

• Image based irradiance filtering, enabling the preservation of texture-based and illumination- 
based features without the need to store BRDFs or local geometry data.

• A probabilistic, discontinuity aware image-space filtering algorithm that is sensitive to 
illumination from multiple overlapping sources.

• The introduction of the Poisson probability distribution to noise removal, producing a 
statistical framework useful at low sample counts.

• Improvements to high intensity noise removal techniques, including the ability to tune 
results post-render, and suitable as a pre-process for image-based filtering.

The work presented in this chapter has undergone peer review and has been published and 
presented at the Computer Graphics International 2013 conference and was further selected to 
appear in a special issue of The Visual Computer journal [DJ13].

6.1.3 Poisson Distribution

Before delving into the details of irradiance aware filtering, a brief introduction is provided 
to the Poisson probability distribution. This forms an important part of the procedure for 
identifying statistical differences between the illumination integrals of neighbouring pixels, 
so that they can be preserved.

The Poisson distribution is a discrete probability distribution expressing the likelihood that 
a given number of events will occur within a specified interval. It is based on the assumption 
that such events occur with a known average rate and are generated independently of the inter­
val since the last event. Given an average of X events have been observed in a fixed interval and 
that the process or processes generating such events are random with respect to the frequency 
of occurrence, the probability of observing exactly k events is given by the probability mass 
function:

Xke~x
P(X = k) = — —  (6.3)

where e is Euler’s number, the base of the natural logarithm. Examples of the Poisson distribu­
tion for various mean occurrences are shown in Figure 6.2. Notice that the Poisson distribution 
is a skewed distribution, accounting for the absence of probabilities for negative k. As X moves 
away from zero, the Poisson distribution becomes symmetric, following the normal distribution 
with mean X and standard deviation \fX\

1 (*-*/
----------------------- e 2A.2

The poisson distribution can be used to model and predict a number of processes that are 
based on random events, ranging from prediction of defects in manufacturing, or the number
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Figure 6.2: Plot o f  the Poisson distribution, showing the probability mass function P{X =  
k ) fo r  various mean number o f observed events, X. Notice as X increases the distribution 
resembles the binomial and standard normal distributions. The lines on the graph do not 
represent the distribution but are a visual guide as to its behaviour.

of calls arriving at a call centre in a given time period. A famous and classic example is 
Bortkiewicz’s 1898 study of men kicked to death by horses in the Prussian cavalry, which was 
found to exactly follow the Poisson distribution. Further details and derivations of probability 
distributions including the Poisson approximation can be found in many texts on mathematical 
probability, such as [Gor97].

The Poisson distribution is especially useful when modelling rare events, where a large 
number of events may be observed as a result of independent processes, but the generation 
of each event itself is rare, such is the case in Monte Carlo methods. Samples are generated 
stochastically during rendering, and despite making use of stratification and importance sam­
pling techniques, the generation of a given sample is not influenced by previous samples.

6.2 Rendering and sample clustering

In order to describe the proposed filtering technique, the rendering procedure is first described, 
with focus on obtaining the vertex contributions. The rendering is divided into the path gen­
eration and radiance evaluation phases, as in the techniques presented in the previous chapter 
(recall Section 5.5), allowing for each vertex contribution to be identified. A path jc* of length 
k generated using MC sampling therefore returns a radiance contribution for each vertex v for
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Figure 6.3: Path tracing contributions returned by the renderer consist o f the unbiased radi­
ance estimates (top) as produced by a standard path tracer, and the incident radiance arriving 
at the first diffuse vertex (bottom). Notice particularly the absence o f  texture detail in the sharp 
reflections.
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Figure 6.4: Geometry illustration fo r  the radiance and irradiance calculations in Equations 
6.4 and 6.5. Radiance arriving at a vertex v is scaled by the path throughput T (xd -»  xv) from  
the first diffuse vertex xd, omitting the BRDF and texture reflectance at xd.

0 <  v <  k corresponding to the path space =  & i,& 2 ,..•,&£ respectively.
In this work, the previous formulation is adapted such that each vertex contribution is 

further broken down to make use of readily available intermediate data. From each vertex 
contribution v, a pair of values is returned by the path tracer, representing the radiance and 
the incident radiance arriving at the first non-specular vertex xd (Figure 6.3). The radiance 
contribution for a vertex v can be defined as:

where L/(jcv, 0)',) is the radiance arriving at x v directly from the light source in the direction co', 
(Figure 6.4). Since this is a product of coefficients, removing some terms from Equation 6.4 
allows partial estimates to be computed, omitting certain dimensions of the rendering integral 
to obtain useful data independent of the remaining coefficients. In other words by removing 
the influence of certain parts of the integral which change rapidly, such as direct illumination 
or surface detail for example, similarities in the remaining radiance information can be shared. 
The incident radiance Iv for a vertex contribution v is obtained during the calculations required 
to evaluate the radiance R v. This is somewhat similar to the radiance carried by photons in the 
photon mapping algorithms discussed previously, ignoring the effects of the BRDF and texture 
detail at the first diffuse vertex of the path. Thus the incident radiance as it arrives at xd can be 
obtained by omitting f r(xd) (Dd,(Od):

V

R v — Lj (xv, G)v) 1 1  f r (xj, (Qj, Ct)() (n, • 0 )j) (6.4)

I y  =  { U d  ■ 0)'d )

V

Lj(xy. 0 )v) J~J f r(xj. 0 )j , coj) (it/ • co ) (6.5)
i = d +1
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where d is dictated by preceding specular vertices i for 0 < i < d. The premise for ignoring 
initial vertices before d is that specular interactions, due to their Dirac distributions, are more 
deterministic in nature and add little variance to the integral directly. The goal of the radiance 
separation is to isolate only the incident illumination; where the main source of variance lies.

The relationship between Rv and 7V for a given vertex contribution can be formulated as:

R d—1
= M Xdi 0)d, CO'd)Y[fr(Xi, ‘ ®/)

yv I= 1

(6.6)

which will be revisited later in more detail when discussing the filtering procedure in Section
6.3.3.

The result of this radiance separation is that high frequency detail resulting from the use of 
texture maps is removed. This detail varies quickly between pixels, regardless of the incident 
illumination, and so removing it from the radiance evaluation allows it to remain unaffected by 
any filtering performed over 7V; the primary source of the high variance.

As discussed in the introduction of this chapter, features in the incident illumination can 
also be isolated based on the dimension of the integral they lie in (for example, the path length). 
Bearing this in mind, the vertex contributions for the first three vertices following Xd in the 
camera path are maintained as separate contributions, forming the three layers of the filtering 
framework (Figure 6.5). Ignoring these vertices with respect to path length ensures that direct 
lighting arriving on non-specular vertices, of the form ES*DL, is stored within the same layer 
of the clustering framework, since it evaluates the same integral over the diffuse vertex.

Although complicating the clustering process this improves sample separation and allows 
for easier detection of changes in illumination during filtering. By separating path contribu­
tions, each layer can be filtered independently, regardless of the illumination features and noise 
present in the remaining layers.

6.2.1 Cluster formation

Each path generated and evaluated during the rendering step produces a pair of radiance mea­
surements for each of the three layers, as depicted by Figure 6.5. In order to make use of such 
contributions across the image plane, and to do so in an efficient manner a clustering scheme 
is developed. The design of this clustering framework is such that it can:

• Isolate visual discontinuities in the pixel integrals,

• Allow the efficient use of image-based convolution filters over the incident radiance,

• Maintain the unbiased radiance and its relationship with the incident radiance contribu­
tions (Rv and 7V respectively),

• Operate alongside a progressive renderer (ie: handle an arbitrary number of samples),

• Minimise the requirements for storage and computation during rendering.
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Composite, v >  1

Direct lighting, v =

Single bounce, v — 2

Multiple bounce, v >  3
Radiance Irradiance

Figure 6.5: Example o f the layers in the clustering framework, enabling high frequency texture 
detail and changes in the illumination to be isolated simultaneously, based on the features at 
each path vertex.
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In this section, the resulting clustering approach is presented that tries to achieve these aims, 
building on the layer based radiance contributions derived in the previous section.

Clustering is performed on a per-pixel basis, producing a set of clusters that each represent 
a contiguous range of the pixel integral, whilst remaining disjoint from one another. Thus, each 
contribution is included in exactly one cluster. A ’’cluster set” or ’’set of clusters”, denoted 
Co,...,Cn_i refers to the n clusters that represent all the samples evaluated so far (from the 
current and all previous iterations) for a given pixel at a given layer. For example, the three red 
clusters under v =  1 in Figure 6 . 6  are a set of clusters, Cb,Ci,C2 , where n = 3.

Since the goal is to isolate discontinuities in the incident illumination (where variance is 
highest) clustering is performed using incident radiance; the Iv measurements for each vertex 
contribution. Geometric and textural changes are not of interest at this point, at they can be 
resolved by the use of low variance range buffers, similar to those used in the image based 
filtering techniques previously discussed in Section 4.4.5.

The human visual system is generally more sensitive to changes in luminance than in chro- 
maticity [Gla95]. As a result, preservation of the visual discontinuities in the clustering model 
is achieved using the 1 -dimensional space of luminance, via the conversion of Iv to the percep­
tual CIE XYZ colour space 2. By clustering over a 1-dimensional perceptual space, rather than 
a linear space of 3-dimensions (or more in the case of spectral rendering) both the complexity 
and storage requirements of the clustering step are greatly reduced.

Figure 6 . 6  shows an example of the resulting clusters for a pixel neighbourhood around a 
shadow penumbra. It can be observed that the y-axis separation and the gradients of clusters 
can indicate the behaviour of the arriving illumination. The contributions of the three light 
sources of the scene can be clearly identified in the direct lighting layer (v =  1 ), and outliers in 
the first indirect lighting layer (v =  2 ) are evident.

Each individual cluster in the model stores aggregated statistics for the subset of samples 
in the respective domain:

C l u s t e r S t a t i s t i c s f

f l o a t  [ 3 ] Rv
f l o a t  [ 3 ] Iv
f l o a t min
f l o a t max
i n t e g e r N :

rejected : 1 b i t

>

where Rv and 7V are the summations of the Rv and Iv values for each of the N  contributions in 
the cluster.

Alongside these, the minimum and maximum extents of the cluster in the ID luminance 
space are stored. The number of samples N  making up the cluster is stored to allow Rv and Iv 
to be normalised, and to provide a means to compare pixel integrals across the image. A single 
bit from the sample count N  is used to indicate whether this cluster has been rejected during 
the high intensity noise removal step outlined in the next section, 6.3.1.

2This is the same principle applied to Russian roulette path termination based on path throughput, reducing the 
visible effects of the increase in variance due to path termination while still improving efficiency
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Figure 6.6: Example p lo t o f  the layered clustering fo r  neighbouring pixels in a shadow penum ­
bra (see coloured points in Figure 6.5). The green and red plots are offset on the y-cixis fo r  
clarity o f  presentation. Illumination discontinuities form  separate clusters, while smooth re­
gions are clustered together. The scene has three area light sources, whose contributions are 
depicted as discontinuities on the y-axis, and sample variation across the area light source by 
more gradual gradients.

The aim of holding these statistics for each cluster is to enable each set of clusters to be up­
dated dynamically, whilst respecting the quality of the integral approximation, the performance 
of both the clustering and filtering stages and the progressive nature of path tracing. Thus, two 
operations are required:

1. The addition of new contributions to a set of existing clusters,

2. The merging of existing clusters to improve performance, without sacrificing the ability 
to identify illumination changes.

Two heuristics are proposed that are responsible for updating and maintaining each indepen­
dent set of pixel clusters for each layer based on the changes in the local integrand.

The first heuristic allows the addition o f new samples to existing clusters as samples are 
rendered by the path tracer, creating new clusters if necessary to preserve the discontinuities in 
the pixel integrand. If a new vertex contribution lies within the bounds of an existing cluster or 
its distance from the nearest cluster is within a percentage threshold p  of the contribution, then 
the cluster’s contribution count, N, is incremented. The Rv and /v values for the contribution 
are added to the aggregated values of the cluster, Rv and Iv respectively. If the contribution lies 
outside the extended bounds of the existing clusters, it is assumed that the pixel integral over 
the luminance range of the contribution is not sufficiently represented, and a single element 
cluster is inserted. As a result, the parameter jU dictates how sensitive the overall framework is
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to changes in luminance, and is the minimum percentage change in sample luminance that it 
can differentiate between.

As the clustering procedure operates alongside a progressive path tracer, it needs to respond 
to the changes in the integrand that come about as the estimator becomes more refined, and the 
distribution of contributions in the luminance domain changes. The range of luminance values 
covered by each set of clusters can only increase during sampling, as more of the integrand is 
explored, and thus discontinuities between clusters formed at the start of sampling can become 
less important to the overall image. To avoid a gradual increase in the number of clusters, a 
second heuristic is introduced that is responsible for merging existing clusters, maintaining a 
compact approximation of the integral.

The clustering model should be collapsed in smooth regions to reduce storage costs and 
computation where no discontinuities are present. This allows further refinement in regions of 
the integrand with rapid luminance changes, where discontinuities are more likely, and a finer 
representation of the sample luminance is desirable.

Based on the observations from plotting irradiance contributions (Figure 6 .6 ), the cluster 
merging heuristic makes use of both the absolute luminance difference ( 1J/ derivative), and the 
change in gradient (2nd derivative) between neighbouring clusters:

M(w+1) = (AC, -  AC,-+1) • ft +  minq£a^c™aXq (6.7)

where AC is the gradient of the cluster C:

££  _  maxc — mine

To perform cluster merging M(, l+1) is evaluated for each neighbouring cluster pair in the cur­
rent layer, combining the statistics of clusters where M is smallest in order to maintain a mini­
mal cluster set:

mine — Min{ mincn mincj }, 
maxc = Max{ maxQ, maxcj },

Nc =N q +Ac; ,
Rc = Rq + R q ,
Ic — Iq +  Icj •

Clusters for each layer are stored in ascending order of luminance to improve performance 
whilst processing and amending the clusters. A constant (j> is employed to weight the influence 
of gradient change in M, and a value of 0.75 has been found to behave well by experimentation.

There are a number of improvements brought about by inclusion of the cluster gradient 
into the heuristic, that cannot be handled by relying on absolute change alone. Over time, 
through the progressive extension of clusters by new samples, the min and max luminance 
ranges of clusters in the same pixel can become similar, even if they are a result of differing 
illumination features. However, such continuities may instead be present as discontinuities 
in neighbouring pixels, if one of the features is not present. Such occurrences are useful to
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Figure 6.7: Incorporating the 2nd 
derivative luminance gradient into 
the cluster merging heuristic allows 
distinctive features o f  the illumination 
to be preserved, despite their similar­
ities in absolute luminance.

identify reduced correlation in image based filtering. Incorporating the gradient change allows 
patterns of similar luminance to be preserved even if they come to occupy similar space in the 
ID luminance domain, based on their differing gradient characteristics (see Figure 6.7).

Favouring gradient change over absolute luminance using 0 provides a better balance be­
tween cluster merging at extreme ends of the luminance range. For low intensity samples the 
gradient change is comparatively small, so increasing 0 favours merging between lower en­
ergy clusters, where discontinuities have less visible impact. For high luminance samples the 
opposite is true, and high values of 0 separate high intensity outliers and discontinuities.

This second heuristic has more impact with respect to filtering performance and quality. 
The framework is not overly sensitive to the initial parameter p  and values between 0.1 and 
1.0 (±10%  to ±100% ) produce visibly similar results for the test scenes in Section 6.4. The 
same p  value of 0.5 is used for all images rendered using the work in this chapter.

During the early stages of the process, p  determines the number of initial clusters that 
are formed. A small value of p  increases the likelihood of creating new clusters from each 
subsequent sample, however the total number of clusters is still constrained by the less greedy 
cluster merging metric. Increasing p  results in fewer clusters being formed which can improve 
performance for slowly varying integrals, but can miss discontinuities if p  is too large. To 
put an upper bound on memory usage, the number of clusters stored for any one pixel layer is 
constrained via cluster merging. In the implementation described here a limit of eight clusters 
per layer is used, deemed empirically sufficient for the scenes provided here (memory usage 
and cluster statistics are discussed and presented in Section 6.4). Only enough clusters are 
needed to identify the visible changes in that particular layer of the illumination.

Paths are rendered and their contributions clustered in batches of four per pixel, reducing 
the overhead of cluster operations, while maintaining the short frame updates desirable in pro­
gressive rendering. In the initial pass, each contribution forms a cluster, since there is little 
information available about the distribution of samples in the integrand.

6.3 Noise removal and filtering

The novel clustering framework detailed thus far has a number of useful traits regarding the 
separation and identification of illumination features. In turn, these properties permit the de­
velopment of two complimentary noise reduction techniques, geared towards preserving illu­
mination features. First, high intensity noise removal is tailored towards temporarily removing
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samples that are the cause of the white speckles typical in Monte Carlo rendered images of 
scenes containing specular materials. The samples responsible for this effect are generated 
with low probabilities, thus their presence at the start of the rendering process means that their 
contribution is disproportionate to the number of samples rendered so far. Until the sample dis­
tribution is normalised (according to the law of large numbers, recall Section 3.2) these samples 
are typically problematic due to their high energy. As a result of the clustering procedure above, 
these outliers can be removed efficiently and conservatively using density estimation of local 
clusters, discussed in Section 6.3.1. However, removal of these samples does not reduce the 
general noise caused by Monte Carlo estimator variance. Thus, the second filtering technique, 
discussed in Section 6.3.2, addresses the general noise of the estimator. Once again the clusters 
produced in the previous section indicate where discontinuities lie which should be preserved. 
The sample statistics for each cluster enable a probabilistic approach to convolution, producing 
a set of kernel filter weights as input for a cross-bilateral filtering scheme.

6.3.1 High intensity sample rejection

The high intensity noise removal approach proposed in this section builds upon recent density 
estimation methods by DeCoro et al.[DWR10] and Pajot et al.fPBPl 1] discussed in Section 
4.4.4. The premise behind such methods is to rely on density estimation over a joint domain 
consisting of colour and Euclidean spaces to identify statistically outlying samples that do not 
conform to the current distribution for a given pixel or pixel neighbourhood. These outliers are 
then temporarily withheld from the image to avoid introducing spiked noise, and introduced 
individually as they become statistically similar to the ever changing pixel distribution of the 
progressive Tenderer.

The approach taken here aims to extend these principles, improving on efficiency and tem­
porarily incurred bias. In addition there is a focus on the suitability of such techniques as a pre- 
process to image-based filtering. Building upon the newly introduced clustering framework, 
affords a number of benefits to the approach presented here, and a number of key differences 
from previous works:

• Per vertex contributions are considered individually, as opposed to composited into the 
final radiance of a complete path,

• Intermediate incident radiance values (the 7V values from the clustering framework) form 
the basis of density estimation and contribution rejection, instead of the final radiance 
measurements,

• More lenient but effective noise removal is applied, suitable at low sample counts and 
for difficult to sample illumination.

• Outlier rejection can be adjusted post-render, utilising the clustered data to fine tune the 
noise removal to achieve the desired results.

Layer based sample rejection Relying on composite path radiance means that previous ap­
proaches cannot isolate the cause of high variance and noise within a path sample, and hence
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<
Xq Figure 6.8: Layer-based noise removal (a) 

can isolate high energy contributions (x t , )  

and retain vertex contributions that con­
form  to their respective path space dis­
tributions (x\ and X2), which are other­
wise rejected by previous composite ap­
proaches (b).

(a) Layer based outlier rejection

<
(a) C om posite, path-based outlier rejection

must remove the contributions from all vertices of the path (Figure 6.8b). Thus, despite only 
a single vertex being responsible for the increased pixel variance, contributions that can po­
tentially improve the estimator for the remaining path space are also removed. This results 
in reduced efficiency and introduces avoidable bias to the estimator. The number of paths 
temporarily removed from the estimator is increased, subsequently removing energy from the 
image introducing noticeable darkening of the image.

Conversely, the technique presented here utilises per-vertex contributions as described in 
the clustering process presented above, allowing isolation of the illumination effects and hence 
also the noise contributed at each layer by the respective samples. As mentioned in the moti­
vation for this work at the beginning of the chapter, the variance of the estimator increases on 
average in higher dimensions due to the variation in sample density at each vertex. High energy 
noise at a single vertex can therefore be removed whilst the remaining vertices still contribute 
to the estimators for their respective path lengths, illustrated in Figure 6.8a).

Texture independent density estimates The second key difference is that outliers are pro­
cessed with respect to their incident radiance, as opposed to the final pixel radiance they con­
tribute to the image. Working in the space of incident radiance has be done before [KRK04], 
but not applied to outlier rejection techniques. In previous approaches, relying on final radi­
ance values means that the ability to reduce noise, caused by the high variance illumination, 
is dependent on the texture changes across the 2D image neighbourhood. This presents two 
problems:

1. Complex texture detail increases the colour space distance between samples, reducing 
the local density.

2. High frequency edges can increase the local density, preserving unwanted noise.

These are somewhat inverse outcomes of the same fundamental problem, where the colour 
space distance of contributions is artificially increased and decreased respectively by texture
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detail. This can be seen as a form of boundary bias (recall Section 4.2 regarding bias in photon 
mapping) but as opposed to just geometric edges, changes in texture detail also form discon­
tinuities across the filter kernel. Over a uniform region of a textured surface, the density of 
contributions for a given region of the image is reliant solely on the underlying incident radi­
ance at the surface, producing differences in colour space. Thus, outlying noisy samples will 
be removed effectively. Inverting this assumption, such that the incident radiance is constant 
across image space and the texture detail varies, means that intuitively no samples should be 
removed since the radiance is uniform. Variation in the pixel radiance is now only a result of 
the texture detail, which is of low variance providing good sampling techniques and adequate 
texture filtering has been applied. However, changes in texture detail are now solely respon­
sible for the local density change in colour space and subsequently, contributions incident on 
regions of fine or high contrast texture detail may be removed. By eliminating the effect of tex­
ture maps on density estimates and relying on incident radiance the technique described here 
provides a more intuitive approach to removal of high intensity contributions; Only dimensions 
of the integrand where the majority of the variance is introduced into the estimator are included 
in the density estimation.

Effects of the filtering parameters As well as the luminance similarity measure fi intro­
duced previously which represents the colour space distance between contributions, the high 
intensity noise removal relies on two additional parameters:

• a , specifies the filter kernel bandwidth defining a neighbourhood in 2D image space,

• d, specifies the global density threshold,

The global density threshold d dictates the minimum number of neighbours n within the neigh­
bourhood defined by ju and c , below which a contribution is rejected:

In the approach presented here, the 2D spatial and ID luminance domains (a  and ju) are kept 
constant across the image, leaving the behaviour of the high intensity noise removal to d. Since 
<T and fi are fixed, the density d can be normalised and thus n and d are proportional and used 
synonymously.

Figure 6.9 shows the effect of adjusting the global density threshold d for a set of contribu­
tions in a scene with glossy and specular metallic BRDFs. As the density threshold increases 
for a fixed set of contributions, more are rejected from the final image. If d{n) is too high, 
the rejection strategy becomes overly harsh and effects become noticeable, especially at high 
contrast edges and gradients. Even low values of n provide a noticeable improvement in the 
objectionable noise, but using this technique alone does not remove noise in its entirety. Not 
only is the aim to remove persistent high intensity noise, but to reduce all high frequency noise 
visible in the image.
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Figure 6.9: Effects o f  changing the density threshold parameter, d, o f  the high intensity noise 
removal with o  = 11 and p. = 0.5 as used fo r  the Glossy spheres scene. Timings can be found  
in Figure 6.10.

Energy preservation at low densities Convolution related filtering techniques reliant on 
weighting a neighbourhood of samples are highly influenced by high intensity noise, but excel 
when faced with more subtle noise where the energy of individual input values is more uniform. 
Thus they are a logical choice in partnership with density based noise removal techniques. In 
addition to the remaining noise left behind, a drawback of the techniques proposed by DeCoro 
et al.[DWR10] and Pajot et al.[PBPl 1] is that their rejection principles are not immediately 
suitable for use alongside such image-based convolution filters.

Neither method operates well under low sample densities, resulting in a large proportion of 
contributions being removed across a region, providing few input samples for a subsequent fil­
ter. In the work proposed here, the view is taken that it is better to reject contributions leniently 
with a risk of artefacts, such as can be seen in Figure 6.11, than to apply an overly aggressive 
strategy and remove significant radiance entirely from a region. Doing so would provide no in­
dication of the underlying materials or light transport for those pixels, and furthermore remove 
the ability of any successive filter to improve the perceptual image quality.

6.3.1.1 Noise removal procedure

Algorithm 4 provides an outline of the noise removal strategy. Computing density estimates 
for all clusters over a fixed kernel radius means the computation of the actual density is skipped 
since it is implicit by fixing <7 and p .  Thus as soon as the required minimum density has been
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Algorithm 4 High Intensity Noise Removal
l Lmax 4 0 > Highest accepted luminance
2 for depth 4 -  0 - *  3 do
3 density 4 -  0 c> Num. similar samples
4 for c 4-  <num. clusters in layer> —> 0 do > for each cluster
5 C ■‘r- Clusters [c]
6 density <— density  + Cnum
7 bool t 4 -  density >  n o where n is the local density threshold
8 if ^  Lfymx then t  ̂ true
9 if It then

10 for all pixels P in <r2 kernel do t> Check pixel neighbourhood
11 for all clusters Cp in P  do
12 if Overlap(Cp, C) > 0 then
13 density <— density  + CPnum > include similar samples from P
14 t 4— f © (<density >  n) > where © is boolean OR
15 if t then
16 Pmax 4 N[ax(Lmax, Cfnax)
17 Clusters [c] set as enabled
18 c 4 - c — 1

reached (ie: density > n, Algorithm 4, lines 7 and 15) the cluster in question can be accepted. 
In the work by DeCoro et al.it is n that is fixed, and a nearest neighbour search is required to 
obtain a value for the minimum radius enclosing the n nearest samples. By fixing the kernel 
radius as opposed to n, much faster searching is achievable since the spatial domain is fixed 
and an iterative expansion or contraction of search space is not needed (can be required in 
k-NN searches), in addition to the performance improvements brought about by searching in 
reduced dimensions. Furthermore, 2D image space is already partitioned uniformly into pixels 
and further partitioning is afforded by the clustering over the luminance domain, providing 
an opportunity for fast searches and the exclusion of distant contributions in both spatial and 
luminance domains. As a result of these optimisations, the kernel width <7 can be extended 
with sub-linear performance impact (Figure 6.10). This can improve filtering for larger regions 
and soft gradients, whilst still removing patches of high intensity noise in regions corrupted 
with sparse general noise.

Using a clustering framework to represent a pixels sample distribution, as opposed to a 
sparse set of individual samples as used by previous approaches, requires a means of estimating 
the number of similar samples in the clusters of neighbouring pixels. The existing parameter 
fi used during clustering is employed again to determine cluster similarity in luminance space 
for establishing local densities. Since the clusters of each pixel are constructed independently, 
clusters cannot be compared directly.

Treating clusters as sub-integrals of their respective path space, the distance in luminance 
space between any two clusters can be computed as a proportion of their overlap in this space. 
In other words, the intersection of the areas A  of the definite integral for the current cluster C
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F igure 6.10: Increasing the minimum density threshold fo r  each contributing sample results 
in a sub-linear increase in computation, which is negligible when compared with the costs o f  
rendering (see Section 6.4 fo r  the respective images and data fo r  these scenes).

and a neighbouring cluster Cp are computed, as a ratio of Cp:

Overlap (Cp,C) =  ( 6 .8)

where C' is the current pixel cluster extended according to p . This accounts for the luminance 
range covered by the min and max extents of the cluster, and to clusters that are similar within 
the luminance domain according to p:

m ine  — mine ■ (1 — p )  

m axc =  maxc • (1 + p )

Storing clusters in ascending order of luminance in the framework improves the perfor­
mance of this stage of the algorithm. Ordering the clusters allows high luminance clusters to 
be processed first, and if accepted, the remaining non-zero clusters in the pixel can be enabled 
(Algorithm 4 line 1). This is possible since samples of lower energies can be effectively han­
dled during the irradiance-aware filtering stage (introduced in the following section), so only 
contributions supplying high intensity noise are of interest for removal here. This allows the 
remaining clusters to be enabled easily with high efficiency, and also following the mantra of 
preserving energy through minimal rejection rates.

Note that Lmax stores the maximum accepted luminance of the cluster in the current pixel, 
not per individual layer. The accepted cluster with luminance Lmax will dominate the intensity 
of the pixel, so rejecting clusters of similar luminance will have little effect on the expected 
value of the pixel. Consequently, it also speeds up the density estimation as the actual local 
density of this contribution need not be calculated and contributions from neighbouring pixels 
need not be queried.
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6.3. Noise removal and filtering

After the noise removal procedure has been run once for a given pixel, only incremental 
updates are required when new clusters are created. The rejection status of each cluster is per­
sistent throughout rendering, stored in alongside the cluster statistics. When new contributions 
are added to an existing cluster, they are automatically accepted or rejected by association, 
based on that clusters current rejection status. For a new cluster, its max luminance is tested 
against the existing Lmax value of the highest accepted cluster in the respective pixel. This can 
be found trivially since the clusters are ordered, and if max < Lmax then the cluster is flagged 
as accepted, otherwise it is rejected to avoid the potential introduction of noise (since the full 
neighbourhood density is not being computed). The noise removal algorithm is run again after 
a set number of frames or when parameters change, evaluating the full neighbourhood density 
where necessary on newly created clusters.

In contrast to previous approaches, the parameters d, fi and a  can be modified while ren­
dering, or after rendering is complete. This is due to the fact that a complete, compact represen­
tation of all contributions is maintained throughout using the per-pixel clusters, thus allowing 
individual clusters to be added and removed from the image as desired. This permits the user to 
fine tune the noise removal and to clean up the image to the desired levels, while maintaining 
minimal bias through reduced rejection rates.

6.3.2 Illumination preserving filter

The advantage of the rejection based method above is that typical filtering artefacts in the 
image, generally caused by blurring or smearing of features, are not present. Bias is instead 
introduced by removal of existing samples, but such an approach is inadequate for reducing 
the residual noise. After applying the high intensity noise removal algorithm proposed in this 
section, the visual quality of the illumination features is improved, by introducing a novel 
technique built upon the principles of the cross-bilateral filter, discussed in Section 4.4.5. The 
general premise is that more reliable and low variance data is utilised to identify high frequency 
changes that need to be preserved when de-noising the target image. Depth, normal and texture 
buffers are typically used to identify changes in geometry (Figure 6.12) that produce low noise 
and are reliable with minimal sampling, as well as being readily available as a by-product of 
the ray tracing process.

Revisiting the Cross-Bilateral Filter Using these range buffers in conjunction with Gaus­
sian convolution provides an effective scheme for low pass smoothing, but can struggle to 
reduce noise in regions where the range buffers are highly restrictive. Recall the procedure be­
hind the CBF discussed in Section 4.4.5. To calculate the filter kernel for a given pixel p using 
a cross bilateral filter (CBF), the distance between pixels q G S (the 2D pixel neighbourhood) 
and p need to be computed for each range buffer, to provide the range terms for the Gaussian 
convolution. Revisiting Equation 4.12, the output value for a pixel p using a series of range 
buffers RB°, ...,RBn can be computed:

CBF[I,RB?>, ...,RBf']p =  / ,  L  £  Ga(\\p-q\\)G ^{\RBp -R B q\) ...
z p qes

-  RB"- '\)Gap(\RB"p -  FB£|) (6.9)
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¥T , Accepted Rejected
Unfiltered .. .

contnbutions contnbutions

Figure 6.11: Example o f  the high intensity noise reduction applied to each layer o f  vertex 
contributions from  the Ajax bust scene, using the parameters described in Section 6.4. From 
top to bottom the layers are v =  1, v =  2, v >  3.
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6.3. Noise removal and filtering

(a) Depth buffer (b) Texture detail (c) Surface norm als

Figure 6.12: Low variance buffers are relied upon to identify edges in the geometry that should  
be preserved during filtering. Previous approaches also rely on the texture buffer to preserve 
edges in the image, but this can limit the effectiveness o f the filter in small regions o f  fine detail.

thus the final weight of a pixel q can be drastically influenced by only one of the set of n range 
buffers. Thus as n increases the number of influential pixels in complex environments will 
diminish, increasing the output qualities reliance on a small number of samples from the noisy 
input image. Alternatively the overlapping features identified by each filter may lose the edge 
preserving qualities of the convolution as a whole. In other words, the net effects of combining 
the n range buffers can in the worst cases produce a convolution kernel with equal weights, or 
have no effect on the input at all.

In addition, small features in the range buffers, such as from highly detailed textures, can 
significantly reduce the number of useful pixels in the kernel that are given significant weights. 
Intuitively, as the number of pixels in the kernel decreases, the signal to noise ratio is affected 
due to the relative increase in variance of the stochastic estimators. Since the weights are 
normalised in order to preserve energy, the influence of these few pixels on the filtered output 
of p  increases. As a result, noise in small regions becomes amplified rather than reduced.

To combat this, and to maximise the number of influential samples in the filter kernel, the 
technique proposed here relies only on the depth and normal buffers to isolate geometric edges. 
Thus the effectiveness of the new technique is independent of texture features, resulting in more 
usable and influential pixel data given the same kernel size. Accomplishing this is down to the 
clustering framework that operates over incident radiance at each vertex, eliminating the effects 
of texture detail on the pixel intensities allowing those alone to be filtered and the texture detail 
preserved.

Preserving illumination features Relying exclusively on low variance data means that fea­
tures not present in the range buffers cannot be preserved in the filtered image. The source of 
the noise being targeted by filtering is in the high variance illumination, thus any discontinu­
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ities present in the radiance field are not taken into account when applying the low pass filter. 
This can present significant artefacts around high frequency edges as a result of blurring hard 
shadows, and not maintaining specular and glossy reflections, as will be seen when discussing 
the results of the approach proposed here.

Unlike the geometry, the incident radiance is made up of layers each of which have their 
own features and phenomena that should be preserved in the final image. Following the ap­
proach taken with clustering and the high intensity noise removal algorithm, the novel low pass 
filter also operates over each layer of the incident illumination individually, with attention to 
only the discontinuities present in the current layer. By doing so, the corruption due to noise 
from features in the remaining layers is eliminated improving the signal to noise ratio with 
respect to the discontinuities making them easier to identify.

Again, as with the removal of the texture based range buffer, this strives to minimise the 
complexity of the range buffer terms, maximising the number of pixels that influence the result­
ing pixel value whilst adhering to only discontinuities relevant to those illumination features. 
This allows indirect lighting to be filtered across boundaries in the direct illumination, bound­
aries in other layers of the incident illumination and vice versa. This provides benefits that are 
not achievable using a single layered approach.

To handle these discontinuities and boundaries in the illumination, commonly caused by 
light source occlusion and high frequency BSDFs which bring both strong edges and high 
variance to the image, the discrete Poisson probability distribution is employed. This provides 
additional filter weights that detect visible changes in the high variance signal, and not present 
in the geometry based range buffers.

6.3.2.1 Poisson-based filter weights

Due to the central limit theorem 3, the sample mean for a Monte Carlo estimator will have 
an approximately normal distribution, for N  independently drawn samples. This property was 
used by Kontkanen et al.[KRK04] under the assumptions of slowly varying, low frequency 
illumination to provide a model for statistically estimating irradiance for a pixel. However, 
it is unknown when (ie: for what N) the distribution of such pixels will approach a normal 
distribution, and such an approach is not feasible when assumptions on the frequency of the 
illumination are lifted. Instead, the approach taken here is to analyse the occurrence of samples 
in a specific luminance band across a pixel neighbourhood; thus providing a statistical model 
of a distribution across pixels, as opposed to across the luminance range of a single pixel.

During rendering, given two independent distributions of N  samples from arbitrary inte­
grands (ie: a set of samples from two pixels), it would be desirable to establish whether or 
not they follow the same distribution, and hence determine their similarity with respect to the 
current features of interest in the integrand.

However, for low N, the central limit theorem and hence the assumption of a normal distri­
bution does not apply. As a result, the Poisson distribution is turned to, as it can be applied to 
rare events and provides more reliable estimates at low sample counts, allowing an estimate of

3The central limit theorum states that for a given distribution, the mean of a large number of independent 
random variables will be close to normally distributed
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integrand significance to still be attained. Recall from Equation 6.3 that for a Poisson random 
variable X the probability that it equates to k is given by:

X^e~^
P(X = k) = —

In other words, what is the likelihood that given an average occurrence of X events in a given 
interval, k events will be observed in any other interval under the same process(es)? It is ob­
vious that given two pixels p and q the total number of contributing (ie: non-zero) samples 
alone cannot be relied upon to provide a similarity measure, since the variation in pixel inten­
sities is dominated by the values taken on by each of the random samples, not the occurrence 
or absence of the samples themselves. Therefore, in order to obtain a statistical model that is 
meaningful with respect to the final pixel radiance, the luminance or intensity of the samples 
must be taken into account, in addition to their occurrences.

Assume first, that there exist two pixels with identical integrals, such that the expected 
values of their estimators are equal in the limit, ie: (Ip)n = {^)n for large N. After N  sam­
ples, the distributions of their respective samples over the integrand should be similar to one 
another, with respect to the normal distribution. Similarly, taking any respective part of the two 
integrals, such as samples within a specific luminance range, will yield similar properties with 
respect to the sample distribution.

Taking these two pixels, assume that for a given luminance range a number of samples Np 
and Nq have been observed from pixels p  and q respectively. As a result the expectation would 
be that the probability of observing Np events in the estimator of q would be such that:

NNpe -N<
P(Ng = N p) = ^ — -  (6.10)

IV p.

is maximised, having substituted X =  Nq and k — Np m the Poisson approximation. This is 
based on the fact that both Np and Nq have been observed over the same interval, resulting 
from the integrals of p and q being sampled equally via the uniform distribution of samples 
across pixels in the image. In the case of MC path tracing this is true, and an extension to 
adaptive rendering for non-uniform distributions over the image is discussed later in the context 
of future work.

If the assumption about the similarities of the integrals of p and q is removed, then the 
probability P(Nq = Np) can be expected to reduce in relation to the similarity of the pixel inte­
grals according to the Poisson distribution. In the context of filtering, this statistical similarity 
can be used to compute filter kernel weights for each pixel q in the kernel, centred around the 
target pixel p that is being de-noised. For a pair of pixels where P{Nq =  Np) is large the pixels 
are correlated and thus q should have influence on the filtered value of p. Small or zero val­
ues for P{Nq = Np) indicate highly varied distributions, and a discontinuity in the luminance 
integral and so the weighting of q on p should be minimal.

Formation of kernel groups Having built a sample clustering framework around luminance 
bands means that for a given pixel, the distribution of samples with respect to luminance is
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Algorithm 5 Formation of kernel groups
1 KGroups <- initialise kernel groups from clusters in p
2 for all pixels q € G2 do o Each pixel in the filter kernel
3 for all clusters Co to Cn in q do
4 for all groups K in KGroups do
5 b Overlap(C,, K) > Equation 6.8
6 if b >  0  then
7 add statistics of C, to K > Equation 6.11
8 if minx or maxk have changed then
9 Check and merge existing KGroups

10 
11

break 
if b = 0  then

12 insert C, into KGroups o Create a new kernel group

• c

(a) Extend cluster bounds — ► (b) Find overlapping clusters in q e  o 2

Figure 6.13: Creation of a kernel group involves extending the bounds of existing clusters in 
the target pixel (according to Equation 6.8)(a), and computing the overlap with neighbouring 
pixel clusters for q E cr2 (b)

preserved and as a result the ideas above can be implemented in the clustering framework 
describe thus far. An overview of this process is shown in Algorithm 5.

As was the case for the high intensity noise removal, dealing with clusters requires a mech­
anism for identifying similar clusters across a set of pixels. Using the same parameter p  as 
before, the overlap between the clusters can be computed following Equation 6.8 to compare 
any two clusters. However, for convolution based filtering the relative similarities between all 
pixels in the kernel are required, in order to construct weights for the filter kernel. Therefore 
an extension to this mechanism is required, identifying similarity between clusters from mul­
tiple pixels, so that their influence on the de-noising process can be adjusted accordingly, via 
normalisation over the kernel. To this end, a top level clustering scheme is introduced that 
temporarily groups existing clusters from different pixels q in the kernel S (determined by the 
parameter a  from before) based on their luminance range (as described by Algorithm 5).

Despite being O (|C | • |Kj • cr2), where |C| is the size of the set of clusters C the number of 
clusters per pixel is constrained by the framework such that |Cj <  8 and for most cases |K\ <  |C|
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due to the correlation between pixel integrals (note that if such correlation was not present then 
low pass convolution filters would not be of use in the first place). For slowly varying or low 
frequency illumination, which is prevalent in the real world and hence also in photo-realistic 
imagery, a single kernel group is produced representing all samples across a neighbourhood. 
In more complex regions that includes illumination edges, multiple kernel groups are produced 
each of which represents a distinct band of luminance. Together these groups aim to represent 
the visible discontinuities of the incident radiance within the filter kernel, much like the role 
the individual clusters hold for each pixel.

Each kernel group K is responsible for keeping track of the contributions from clusters of 
each pixel for the luminance band covered by K:

K e r n e l G r o u p f

f l o a t min M i n  l u m i n a n c e

f l o a t max M a x  l u m i n a n c e

i n t e g e r  [cr2] N S a m p l e  c o u n t s

c o l o u r  [cr2] R R a d i a n c e  c o n t r i b u t i o n s

c o l o u r  [cr2] / I r r a d i a n c e  c o n t r i b u t i o n s

Initially, this set of kernel groups is populated using the clusters in the centre pixel p that is 
being de-noised, by simply creating a new kernel group from each pixel cluster. For subsequent 
pixels, a cluster C from q will commonly overlap with an existing kernel group K, due to the 
presence of pixel correlation over the filter kernel, and the data in K for q must be updated from 
C (algo. 5 line 7):

min =  Min{ min, mine } 
max = Max{ max, maxc }

Nq = Nq+Nc 
Rq  — &q +  RC

Iq = Iq + Ic (6.11)

hence for a given set of clusters Co, ...,Cn G q, the resulting kernel group statistics are computed
as:

1=0

*« = L * c , [C.nAT^O]
i= 0

i=n

U = £ /q  [c.n/^o]
i'=0

where:
f 0  il
( 1 ot

_  . - if maxc < minK or mine > maxK, C D K  — i  „ ,otherwise
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in other words, for all clusters C that overlap K  in the luminance domain. As a result, if the 
bounds of K are extended, it may be possible to merge existing kernel groups (Algorithm 5 line 
9). This merging process maintains a minimum set of kernel groups, reducing work required 
to compute filtering weights using the Poisson approximation.

Filter weights and final radiance calculations are performed for each kernel group indepen­
dently, allowing multiple overlapping illumination sources to be de-noised. The filter weights 
for each kernel group are calculated from the statistics of each contributing pixel q (where 
C DK^ O) ,  using Equation 6.10. These Poisson weights, denoted Wx are combined with a 
subset of the more conventional weights used in cross-bilateral filters, namely:

1. Wq.2 , from the Gaussian distribution over a 2,

2. Wad, based on the depth values for each pixel,

3. Wffn, from the surface normal orientations.

The resulting weights are a product of these sets of filter weights for the kernel cluster:

<  = W„it (p) ■ Wa,(p) ■ Waj(p) ■ Wx (p) (6.12)

All weights excluding Wx can be computed once per pixel since the underlying geometry is 
constant across all samples. The resulting convolution kernel, weights the influence of each 
contributing pixel while adhering to both geometric changes and features in the luminance of 
the incident illumination field across the kernel. Using this filter kernel, the de-noised final 
radiance value for a pixel can be calculated from the data in the kernel groups.

6.3.3 Pixel radiance computation

Each kernel group K stores N , and /  as a sum of corresponding values in the per-pixel 
clusters that overlap K. To remove noise from the centre pixel p it is desirable to combine the 
radiance R in the neighbourhood to remove noise but in doing so, minimise the bias introduced 
to p. This achieved by isolating components of /  and R from p  to preserve high frequency
changes like texture detail, whilst convoluting the remaining components to reduce noise in
the incident radiance. First, recall the calculations for the radiance and incident radiance for 
each path vertex contribution v, from Equations 6.4 and 6.5:

V

R v =  L i ( x v, (Ov) 11 f r ( x i , COi, (Oi) (jlj • G>i) 
i=  1

v

Iy  =  {U d  ■ (o'd ) L i { x v , (O ') f r ( x h  (Oi, c o ' ) ( n i . (o ')
i=d+1

and since these are products of many terms, the omitted terms from 7V can be found using 
Equation 6 .6 :

R d—\
y- = f r ( * d ,  G>d, co'd) PI f r ( x i ,  (Oh co') (n/ • (o ') (6 . 6  revisited)
J v  i = i

(6.4 revisited) 

(6.5 revisited)
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From a practical perspective, a BRDF f r(jc/, £»,, col) is composed of two distinct elements, as 
discussed in Chapter 2. The scalar scattering coefficient, / 5(x,)G),Ct)/ G (0,1], dictates the pro­
portion of light from to, scattered towards to/. The spectral coefficients of each colour channel 
for the BRDF are accounted for by the texture detail coefficient f (xt ) .  This describes the rela­
tive change between colour channels, and is independent of cp, and coj, changing only with the 
position of x, on the surface.

fr(xh (Oi, 0)1) =  fix^COiCO'fiXi)

Separating magnitude change ( /5()) and component-wise change (/'()) in this way is useful 
for preserving local and rapidly changing per-pixel detail, whilst sharing the global incident 
illumination information across neighbouring pixels.

For each pixel, the f  ( jc ,-) term for 1 < i < d of each Monte Carlo path is scaled by the path 
throughput from jco to xj added to the layered detail buffer D. This becomes refined during 
each rendering iteration such that D is the weighted sum of all /* (*<*):

d-i
d = f M i i n x i ) ^  • cod

;=i

One such detail buffer is stored per layer (Figure 6.14) in order to account for detail maps 
on glossy and specular surfaces, and to ensure the textures visible from glossy surfaces do 
not affect direct lighting estimates. The only remaining unknown value not present in the 
clustering framework is f s(xi, Cty, col) which can easily be obtained by rearranging Equation 6 . 6  

and substituting D:

f M  = A -  (613)l\L)v

From these Equations it can be seen that the high variance radiance Rv and incident radiance 
7V can be isolated from the lower frequency terms of the specular path throughput and texture 
detail D. To leverage the power of image based convolution filters, contributions from the 
corresponding layer v, in neighbouring pixels are utilised to improve the signal to noise ratio 
of 7V, while preserving the D term for the target pixel.

Kernel group radiance To be of use in the clustering framework, this isolation of terms 
must be applied to the contributions represented by a cluster, and hence within a kernel group 
spanning the pixel neighbourhood.

From Equation 6.13, a BRDF scalar coefficient can be calculated for all contributions in a 
cluster:

representing the overall magnitude change between R and 7 of a cluster. To remove noise 
caused by insufficient sampling of the illumination, the incident radiance data Iq and f s(q) 
from each contribition pixel in the filter kernel (ie: those clusters C G q where C U K ^  0) 
needs to be weighted according to Wp(q), while preserving the texture detail Dp for the pixel
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v = v =  2 v >  3

Figure 6.14: The texture detail buffers D v fo r  each layer o f  the framework, representing the 
path throughput and texture detail buffer fo r  each layer in the Ajax bust and Glossy spheres 
test scenes. Note that the Ajax scene has only two layers since specular inter-reflection does 
not occur.

being de-noised. The final radiance contributed to p  by clusters in pixel q for kernel group K 
is computed using:

K [ R ^ q\ = K[Iq\ K \ f s( q ) ) b p (6.14)

Rp^q  is then combined from each pixel using the respective filter weights from W jf to influence 
the contribution of q to the filtered radiance value of the kernel group:

a2
- W f ( q )  (6.15)

q= 0

providing a filtered contribution from each kernel group n, representing the filtered contribu­
tions of samples in the pixel integral at that luminance range covered by K.  The total measured
pixel radiance is the sum of Rp for each kernel group, normalised using the sum of the sample
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Algorithm 6  Incident radiance filtering
l Mp <r~ 0 > Final radiance measurement for pixel p
2 for all clusters K in kernel groups do
3 for all pixels q G <72 do o  Each pixel q in the filter kernel
4 Wx(q) <- Poisson(AT[V9],
5 > Equation 6.12
6 Rpir-q radiance from K > Equation 6.14
7 k p ^ R p + Rp^ q/K[Nq]-W?(q)
8 Mp -f— Mp -\-Rp > Add normalised radiance

counts in those clusters:

L

n= 0

producing the final filtered radiance value for the pixel.
To improve performance, kernel groups with uniform Poisson weights for each pixel in 

<T2 can be merged, reducing the number of iterations over the kernel groups (Algorithm 6  

line 2). This reduces the filter to a more conventional cross-bilateral filter over the incident 
radiance, without the need to compute W*. For smooth regions this improves the run time of 
the filter without loss in quality, since the Poisson weights are unnecessary due to the absence 
of discontinuities in the illumination.

6.4 Results and discussion

To evaluate the technique proposed here, numerical and qualitative results are presented for 
scenes containing a wide range of materials and a varying array of noise characteristics. Along­
side this, complex texture maps are rendered which typically present difficulties to image-based 
filtering techniques when combined with noisy illumination. Comparisons with unbiased path 
tracing and a geometry aware cross-bilateral filter are also presented. Visual, qualitative com­
parisons show the improvements and reduction of general Monte Carlo noise and spiked noise 
brought about by the novel filtering techniques.

The same path tracing implementation used in the previous chapter (Section 5.7), is used 
once again for comparisons with an unbiased technique and as it is the basis of the renderer in 
the irradiance aware filtering scheme. This includes the variance reduction techniques, making 
use of next event estimation with multiple importance sampling for direct lighting at each 
vertex, BRDF importance sampling and Russian roulette for efficient path extension. Images 
are rendered at 768x768 resolution and tone mapping is applied as before, as described in 
[RSSF02]. The same hardware is also used for the rendering comprising of a 2.66Ghz Intel 
Core i7 CPU utilising 8  threads, and 8 GB of RAM.
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Reference (20,224 spp)

Ri hm
H13K8I H

Path Tracing Our Method Cross-Bilateral Cross-Bilateral 
(21 samples) (16 samples) (Smoothing noise) (Preserve texture)

F igure 6.15: Glossy spheres test scene, comprised o f  multiple glossy materials and high detail
textures. Path tracing and our method are compared after equal rendering times (see Table
6.1), and the cross-bilateral filter uses the same input samples as the our method  
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Unlike the previous chapter, where images were rendered for up to thirty minutes, here 
rendering times are reduced to the order of one minute. The motivation behind this is that image 
based filtering serves to provide fast previews with similar appearance to the final rendering. 
Since the largest bias is introduced early on, in place of additional path tracing computations, 
short rendering times show off the capabilities of the filtering schemes when provided with a 
minimal quantity of unbiased input data. Overtime the image will reflect the abilities of the 
underlying path tracer as opposed to the image based filtering techniques.

To demonstrate the generality of parameter selection, the same settings are used for all 
images in this chapter. Clustering sensitivity is dictated by fi, set to 0.5. The kernel bandwidth 
over the pixel neighbourhood is set to a  = 1 1  for use in the high intensity noise removal and 
the probabilistic convolution filtering. The high intensity noise removal procedure uses a low 
density threshold, d = removing contributions with a local density below this threshold. 
This has aim of removing only the highest energy samples that could not otherwise be filtered 
using convolution based approaches, and thus maximising the energy preserved by this filtering 
stage. For comparisons with a standard cross-bilateral filter, direct lighting is not filtered on 
specular or glossy surfaces, and the same kernel size, texture, depth and normal buffers are 
constructed for both methods. The layered texture buffer used in the proposed illumination 
aware filtering technique is collapsed into a single texture buffer for use with the cross-bilateral 
filter.

Metallic spheres Figure 6.15 shows a scene with highly detailed, realistic textures in addi­
tion to diffuse, pure-specular and glossy surfaces. The glossy materials are based on reflectance 
data from aluminium and copper metals as discussed in [PH 10] with varying degrees of rough­
ness. The scene is lit by three small area light sources that provide hard and soft shadow 
gradients, and regions of multiple overlapping shadows. The variety of reflective materials 
provide indirect views of the surrounding high detail textures and a large number of glossy 
inter-reflections are created that are typically challenging for image-based filters.

Rendering this scene with path tracing alone produces high noise levels due to the high 
throughput of the glossy materials, resulting in speckled noise across the image when combined 
with BRDF importance sampling from diffuse surfaces. Detail in the multiple reflections is 
obfuscated by noise, making the edges in reflections difficult to identify.

Results presented for the cross-bilateral filter use two sets of parameters. The first is 
tweaked post-render in an attempt to visibly reduce noise. This is achieved by maintaining the 
same kernel bandwidth a  for the image space neighbourhood, and adjusting the range buffer 
kernel over the texture colour domain to provide less restrictive filtering across pixel intensities 
in the texture buffer. Thus, more pixels in the kernel contribute to the target pixel in an effort 
to improve the signal to noise ratio. The second uses a narrow kernel over the texture buffer, to 
try and preserve maximum detail in the specular reflections and visible diffuse surfaces.

The cross-bilateral filter reduces the high frequency noise, but at the cost of introducing 
significant filtering artefacts, blurring textures significantly. Shadow boundaries and strong 
reflections are not represented in the low variance geometry range buffers, and thus cannot 
be preserved effectively no matter the parameter choice. In the second instance where tighter 
restrictions on the texture buffer kernel are imposed, the cross-bilateral filter fails to reduce
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Scene Samples Path Tracing Noise Removal Filtering Total Time
Glossy Spheres PT 22 44.2s - - 44.2s

Our Method 16 32.7s 0.51s 8.6s 41.8s
Ajax in Water PT 21 45.2s - - 45.2s

Our Method 16 35.1s 0.74s 7.4s 43.24s

Table 6.1: Time spent in each stage of the irradiance aware filtering algorithm with reference 
to path tracing. The path tracing stage for our method includes management o f the sample 
clusters, and generation of the geometry and texture buffers.

noise across small texture features, like the mortar in the brickwork and reflection of the panels 
in the wooden floor, since in the kernel is too restricted by the texture detail to suitably distribute 
the energy across the image.

Applying the noise removal and filter proposed in this chapter provides a drastic reduc­
tion in noise across the image, whilst preserving all types of visible edges. Using the Poisson 
weights for edge detection avoids overly blurring high frequency features such as the over­
lapping direct shadows on the floor, producing results that closely match the referenced path 
tracing image. Ignoring the texture detail during filtering, operating over the incident radiance 
ensures that the texture detail is preserved and completely unaffected by the filtering process, 
regardless of parameter settings. This can become especially important for specular reflections, 
where texture detail becomes finer due to convex reflection and filters operating over radiance 
samples are forced to reduce the filter bandwidth.

Ajax bust in water The second scene (Figure 6.16) provides a variety of effects difficult for 
both filtering algorithms and path tracing. The well known Ajax bust (donated to the commu­
nity by Jotero.com [Jotl 3]) provides complex and intricate geometry lit from above by a large 
area light source. This creates self shadowing, allowing the detail in the geometry to be seen 
and the peak of the hat shades the left side of the face. The lower portion of the scene presents 
difficult conditions for path tracing due to the specular reflection and refraction on the surface 
of the water. In addition, the marble checkerboard floor presents further challenges for radiance 
and image based filtering techniques as it contains subtle detail, especially problematic viewed 
via refraction on the water surface.

Path tracing is again riddled with noise from the presence of specular BRDFs. Being 
shaded by the peak of the hat, geometry in the face is reliant on indirect illumination from the 
environment. Containing noticeable levels of noise, the geometry detail is masked and difficult 
to distinguish. Relying on implicit radiance contributions from the specular interactions, path 
tracing struggles to evaluate samples on and under the surface of the water, with high levels of 
noise making some regions indistinguishable.

Using the novel illumination aware filtering scheme minimises the blurring of self-shadows 
on the face, providing more depth and clarity to the beard and hair especially in regions lit in­
directly. Refraction through the specular surface of the water is noticeably improved, with 
fewer artefacts even with the sparsity of the samples where the path tracing input is plagued
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Reference (20,224 samples)

Reference Path Tracing (21 spp) Our Method (16 spp) Cross-Bilateral

F igure 6.16: Ajax bust in water, displaying complex geometry, transmission, caustics and self 
shadowing. The images fo r  path tracing and our method are equal time comparisons (see Table 
6.1). The cross-bilateral filter uses the same input samples as our method.
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Scene Total Clusters Single Memory Outliers
Spheres 6.19M 1.67M 236MB 0.109%

Ajax 5.56M 1.91M 223MB 0.274%

Table 6.2: Clusters and memory statistics for our results. Single denotes the number of clus­
ters representing just one sample, and the last column is the percentage of outlying samples. 
Memory use includes our texture, depth and normal buffers (29MB per image).

with noise, and the texture detail barely visible. Filtering incident radiance without restrictions 
imposed by texture detail ensures that the use of the input samples can be maximised in geo­
metrically similar regions. This preserves texture detail even through the water surface, and the 
sparse approximation of the illumination is handled better than the cross-bilateral filter, which 
introduces streaking artefacts along boundaries of the filter kernels.

Chromatic lighting The illumination aware filtering framework can also successfully handle 
chromatic lighting effects, despite being based on a ID luminance domain. Figure 6.17 shows 
renderings of a scene with multiple light sources of varying intensities, colours and sizes. The 
angled grid structure results in numerous overlapping shadows with graduated hard to soft 
boundaries as the distance between the occluder and the receiver increases.

Since the cross-bilateral filter is ignorant of all illumination boundaries, it blurs across the 
image and the lack of texture detail does not restrict the kernel, which can in some cases can be 
useful and reduce the bias introduced over such unidentified edges. Using Poisson weights and 
the luminance based contribution clustering, the new scheme can preserve illumination edges, 
differentiating between contributions from each light source and effectively de-noise the image 
without merging important features.

Memory usage and performance Performance data for the main test scenes are provided in 
Table 6.1 that presents the breakdown of the rendering time spent in each stage of the process. 
As the aim is to operate in a progressive rendering paradigm, the vast majority of the computa­
tion is taken up by the sample generation and evaluation using path tracing, since this dictates 
the overall convergence characteristics of the image. The overheads of processing the sample 
contributions and clusters in the illumination aware filtering is negligible, due to the memory 
efficient and ordered storage of the clusters, ensuring both insertion and cluster merging is 
fast. In addition, the high intensity noise removal step also provides minimal overhead due to 
the optimisations discussed in Section 6.3.1 and the need for only incremental updates at each 
frame. The remainder of the runtime (around 20-25%) is taken up by the illumination aware 
convolution filter, dominated by the formation of the kernel groups from existing pixel clusters 
from which the Poisson weights are derived.

Clustering and memory usage statistics are outlined in Table 6.2. The increased complex­
ity of the glossy spheres scene, as a result of overlapping shadows and complex reflections, 
requires additional clusters in order to preserve detail in the illumination. This is mirrored in 
the slightly reduced filtering performance, due to the increase in clustering operations. For the
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Figure 6.17: A green grid above a white plane lit by three coloured lights o f  varying size. Top: 
Path traced reference. Second row: Path traced input with 16spp. Third row: Our approach, 
handling the overlapping sources, shadow gradients, and colours. Bottom row: cross-bilateral 
filter.
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6. Irradiance-Aware filtering for Monte Carlo rendering

Ajax scene, filtering performance is improved due to the low occlusion in much of the scene, 
resulting in more uniform lighting which produces fewer changes in the integrand allowing 
larger clusters across many pixels.

The number of single contribution clusters in the framework follows the level of spiked 
noise in the image, as each single cluster may represent potential outliers in the sample distri­
bution. Due to the complex specular paths in the Ajax bust scene, the amount of work required 
by the high intensity noise filter is increased. However it also has a positive impact on clean­
ing up the overall image, and quantitatively results in a larger number of contributions being 
classified as outliers and removed from the image.

The net result of is that the memory usage and performance for both scenes is approxi­
mately equal, despite the varying illumination conditions and complexity of the image.

6.5 Limitations and future work

It has been shown that the ability to isolate features in the illumination and pixel integrand 
can be of significant benefit when reducing noise in Monte Carlo estimators. The clustering 
framework proposed here can deal with complex light transport, texture detail and geometry 
while providing high quality results. There are however some limitations that are unaddressed 
in the current work and require further investigation to extend the success of the techniques 
proposed here.

In the current implementation outlined here there are a number of opportunities for perfor­
mance improvements. As the discontinuities contained within the clustering framework aim to 
preserve only visible edges in the image, it seems logical to turn towards perceptually based 
metrics to improve the resulting clusters. Given the current sample distribution across a pixel 
for an iteration of the algorithm, a perceptual model could be employed, for example derived 
from the ideas established by Ferwerda et al.[FPSG96], that controls the merging of clusters 
based on their perceptual difference, as opposed to the heuristics proposed here. Such ap­
proaches have been successfully applied in the past to the adaptive placement of samples over 
the image plane (for example by Ramasubramanian et al.[RPG99]), using perceptual analy­
sis of the image. To this end, a more optimal cluster set could be found that could in turn 
reduce the computation required during all stages of the framework, providing faster filtering 
performance.

Parameter and kernel bandwidth selection Although it has been shown that good results 
are achieved with constant parameter selection, fully automatic methods are desirable espe­
cially for progressive rendering. Moving to perceptual metrics could reduce the need for an 
explicit sensitivity threshold jU, but the kernel bandwidth cr and density threshold d parameters 
remain.

Optimal bandwidth selection is still an open problem, as discussed in relation to photon 
density estimation in Chapter 4. In the context of illumination-aware filtering, addressing 
this problem of finding optimal per-pixel and layer specific kernel bandwidths could provide 
improvements in the balance between noise, bias and performance.
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Currently, a single bandwidth is used globally across all layers in all pixels. As a result 
the potential for performance gains is large for regions that have little noise, since the band­
width can be reduced minimising the number of pixels that need processing without visible 
differences. Conversely for regions with high levels of noise, the bandwidth may need to be 
increased to reduce variance, allowing improved image quality from the same overall compu­
tation. The introduction of a layer based approach means that these potential gains are also 
increased. For pixels in direct shadow (such as the ceilings in the glossy spheres scene, and the 
ceiling and floor of the Ajax scene which is underwater) no filtering is necessary for the direct 
lighting layer since there are no contributions from pixels in the kernel bandwidth.

One intuitive approach to bandwidth selection is to iteratively increase the kernel band­
width during each filter pass, up to some stopping criteria. Classical photon mapping employs 
such a strategy to ensure enough photons are included in the radiance estimate to avoid intro­
ducing variance. For image based filtering however, the goal is to minimise noise in the target 
pixel, which is reliant on the filtering weights chosen for individual pixels in the kernel. Esti­
mating the weights across the kernel prior to fixing the bandwidth is difficult to do efficiently, 
especially for complex cases where the final weights are a result of multiple terms, such as 
the geometry data and Poisson calculations required by this work. An alternative approach is 
to adjust the kernel bandwidth based on the estimated variance or error of the previous filter 
iteration. This introduces new problems, such as accounting for the change in variance brought 
about by the newly generated samples, which an estimated kernel bandwidth may not account 
for. Automatic bandwidth selection would also provide an automated means for convergence, 
currently achieved by manual reduction of a  over the image plane, which is not ideal.

Aliasing and geometry Operating over the incident radiance of vertex contributions allows 
filtering to preserve the texture detail of a pixel. However, relying on a cross-bilateral filter 
also requires depth and normal buffers to determine discontinuities in the geometry. As a result, 
geometric aliasing is apparent (see the edges of the spheres in Figure 6.15) due to the restriction 
of the filter kernel. This is a problem common to many image based filtering methods, and the 
approach presented here is no different. Recent works such as anti-aliasing recovery by Yang et 
al.[YSLHl 1] have been adopted to counteract this problem of geometric aliasing, and has been 
successfully applied to the cross-bilateral filter by Schwenk et al.[SBF13], Although removing 
restrictions over texture range buffers in this work, the principle problem of restriction in other 
domains still remains, reducing efficiency across areas with fine geometry.

As the clustering framework and filtering steps are somewhat independent, it would be in­
teresting to use alternative image based techniques aside from the cross-bilateral filter. Buades 
non-local means filter [BCM05b] may further improve this layered approach without the re­
strictions and limitations imposed by the cross-bilateral filter.

Extensions As with any filtering approach, the quality of the output is reliant on the input 
samples provided by the Tenderer. It is therefore useful to construct a filtering scheme that 
is orthogonal to existing variance and noise reduction techniques. Adaptive rendering, based 
on adjusting the sample distribution over the image plane, could be implemented orthogonally 
to irradiance-aware filtering, with minor changes. Using the Poisson distribution provides the
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likelihood of an event based on the mean occurrence of events within a given interval. For 
uniform sampling, the interval (ie: number of rendered samples) in each pixel is equal, hence 
comparison is simple. Under an adaptive scheme, each interval is dependant on the adaptive 
distribution. Thus, the probabilities of each pixel can be normalised with respect to the pixels 
sample density before computing Poisson weights.

With regards to mutation based adaptive sampling such as Metropolis light transport, sam­
ples are not distributed according to constant PDFs, since the PDF is build over the course 
of rendering (discussed in Chapter 4). Thus application of a probabilistic filtering scheme is 
non-obvious in such a context, and is yet to be explored.

Similarly, investigation into the use of depth of field and motion blur effects has not been 
established. Since the samples are clustered based on luminance, such effects should fit into the 
existing framework with respect to preservation of illumination edges. An alternative approach 
may however be necessary for detecting edges in the geometry, since the range buffers used in 
the cross-bilateral filter will have increased variance. Recent work based on the cross-bilateral 
filter by Li et al.[LWC12] and Sen and Darabi [SD12] incorporate these effects by comparing 
the variance and mean of the sample depths or surface normal values for each pixel. Such an 
approach could also be applied here, at the cost of small memory overhead.

An obvious approach for further work is to utilise the power of the GPU to investigate 
possible improvements in performance and scalability of the algorithm. Image based filtering 
methods are generally well suited to highly parallel architectures due to the independence 
of each pixel, and predictable computational requirements. Both the clustering and filtering 
algorithms presented here operate on a per pixel basis, thus the coupling between tasks for 
each pixel is relatively loose, which should aid scalability.

6.6 Conclusions

Obtaining fast previews of global illumination for virtual environments is a useful property, 
maximising the amount of feedback about the final measurements or appearance of a scene. 
However this is only true if such feedback is reliable, that is, it represents the end solution with 
reasonable accuracy, minimising error and bias. This chapter has presented a clustering and 
filtering framework that takes a novel multi-layer approach to filtering to achieve such a goal. 
By effectively utilising intermediate radiance measurements and surface details that are already 
a by-product of unbiased Monte Carlo rendering, the work presented here has proposed a new 
approach to enable high quality illumination previews.

The core concepts of this chapter have described a set of techniques that together can effec­
tively reduce noise in Monte Carlo methods under complex lighting conditions whilst preserv­
ing image discontinuities from overlapping phenomena in the illumination. Special attention is 
paid with respect to geometric features, and fine texture detail is fully preserved and does not 
restrict the abilities of the image based filtering scheme. Thus a number of contributions have 
been discussed including:

• The introduction of a layer-based clustering framework that accurately represents changes 
in the illumination in multiple dimensions, both across the image plane and within image 
pixels themselves.
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• A novel probabilistic filtering technique was introduced that preserves the discontinuities 
in the illumination across the image, maintaining sharp details such as hard shadows and 
reflections which is a significant challenge in image based filtering.

• Permitted by the clustering framework, the filtering scheme operates independently across 
each illumination layer, improving the ability to filter complex overlapping effects with­
out reducing the filter kernel’s effectiveness.

• A density based noise-removal technique for highly efficient removal of statistical out­
liers in the sample data, eliminating high intensity noise common in Monte Carlo Ten­
derers.

• Finally, both filtering and noise-removal can be fine tuned post-render making it espe­
cially effective in the trade off between variance and bias, depending on user require­
ments.

The clustering framework is the core concept, isolating samples according to particular 
characteristics (in this case path length and luminosity) and separating the distinctive but over­
lapping features of the integral. On top of this, a high intensity noise removal procedure was 
introduced in order to remove spiked noise caused by statistical outliers, tailored towards a fast 
pre-process for image based convolution. It is believed that both of these techniques can be 
applied in other disciplines, in order to probabilistically separate set of samples from complex 
integrals evaluated using stochastic methods. Thus, such a clustering procedure can enable 
further techniques, aside from the cross-bilateral filter discussed here, to remove noise and 
improve integrator estimates. The dynamic nature of the clustering procedure enables large 
quantities of samples to be handled efficiently whilst maintaining discontinuities in regions of 
importance, and compressing the sample data in those that are not.

Applied to Monte Carlo global illumination methods, the result is a set of techniques that 
together can effectively reduce noise under complex lighting conditions whilst preserving im­
age discontinuities in addition to respecting geometric features. Fine texture detail is fully 
preserved and does not restrict the abilities of the filtering kernel, thus keeping the size require­
ments for filtering kernels small.
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Chapter 7

Conclusion

Monte Carlo techniques have been at the forefront of photo-realistic global illumination for 
many decades. Unbiased path tracing techniques have long been known for their high accuracy, 
robustness and ease of use. Their popularity has been furthered by their strong mathematical 
foundations and the adoption of techniques from existing disciplines that outlive the use of 
Monte Carlo techniques in computer graphics.

The renewed attention of researchers in recent years can be attributed in part to the develop­
ment and widespread availability of parallel architectures; an excellent platform for the highly 
scalable and progressive nature of path tracing. However, as global illumination has advanced, 
so have the demands placed upon such algorithms, requiring new approaches for solving light 
transport in ever more realistic environments.

This thesis has explored several directions of promising research that built upon unbiased 
Monte Carlo techniques to go some way in addressing the shortfall of research to meet such 
demands. The novel insights and the resulting algorithms in this thesis have begun to show 
the power of utilising the wealth of additional information available in path based light trans­
port algorithms. The effectiveness noise reduction brought about by such techniques has been 
backed-up by both visual and quantitative evidence.

In Chapter 5, the high complexity of light transport in virtual environments was tackled 
by the careful combination of unbiased path based and progressive density estimation based 
algorithms. Building upon the natural strengths of each paradigm, the characteristic speckled 
noise associated with pure Monte Carlo methods was eliminated, whilst the effects of bias typ­
ically incurred by density estimation techniques were minimised. This was made possible by 
utilising the characteristics of each path vertex contribution. Modifying the SPPM algorithm 
to handle the caustic path-space allows the computation of specular-diffuse-specular lighting 
that is otherwise difficult for unbiased vertex based methods. Regions of sparse photon distri­
butions problematic during density estimation occur in the presence of low frequency BRDFs, 
which are effectively handled by the explicit connections of next event estimation in path trac­
ing. The advantages of such an approach were demonstrated with a number of test scenes, 
providing compelling visual and quantitative comparisons. Furthermore, the progressive na­
ture of both techniques is maintained, allowing both visually pleasing illumination previews 
and high quality final results.
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Extracting and analysing the vertex data of radiance contributions during the course of this 
work allowed several insights to be made into the distribution of features and noise within the 
space of the rendering integral. Treating path space as a series of layers across path lengths pro­
vided additional insight into the uses of such path data in a progressive framework. Although 
producing high quality results for complex illumination, both Monte Carlo techniques and 
density estimation suffer from significant variance and bias removed only with large computa­
tional effort. Additional sampling of the integral eventually reduces noise, but the temporary 
and controlled introduction of bias in place of variance can provide more pleasing previews at 
low sample counts. Numerous such image-based filtering techniques exist but many lack the 
generality or accuracy to be an effective partner to Monte Carlo rendering.

Chapter 6 introduced a novel image-based filtering approach supplemented by path ver­
tex data to build an irradiance aware probabilistic filtering framework. First, an efficient and 
dynamic clustering framework was proposed in order to compactly store vertex contributions, 
whilst preserving information about illumination discontinuities in the image. Over this frame­
work, a highly efficient technique for the removal of spiked noise was proposed, acting as both 
a pre-process to prevent filtering artefacts, and a probabilistic convolution filter that preserves a 
wide range of features in the estimators of unbiased Tenderers. The culmination of these novel 
contributions lead to a reduction in noise levels for a number of scenes, while preserving high 
frequency texture, geometry and illumination features which can otherwise be challenging to 
identify using convolution filters.

Open problems and future research

The new concepts developed in this thesis have provided a initial step into understanding the 
importance of leveraging path vertex data to reduce variance, eliminate noise and improve 
visual artefacts prevalent in Monte Carlo global illumination techniques. Novel approaches to 
both high quality progressive rendering and effective image based filters have been presented 
which successfully utilise path vertex data readily available during rendering.

Glossy materials present a problem for many global illumination techniques, including to 
an extent the work presented here. For the hybrid approach in Chapter 5, the handling of such 
materials is non-optimal. When scattering from glossy materials with narrow BRDFs, den­
sity estimation performs poorly due to its heavy reliance on the incident direction of photons. 
Such BRDFs also restrict the explicit camera connections of next event estimation in unbiased 
techniques, causing greater challenges under more difficult lighting conditions.

The more general problem of caustic illumination visible via glossy scattering is a long 
and outstanding one, but can be improved by the use of recent Markov-chain MC techniques 
[JM12]. Subsequent to the publication of work in this thesis (in [DJM12]), researchers have 
further addressed the problems of combining unbiased Monte Carlo and density estimation 
techniques from a theoretical standpoint, reinforcing the evidence that the combination of 
path based and density estimation based approaches is an important topic for future research 
[HPJ12, GKDS12].

In addition, research built upon these two predominant paradigms still faces limitations 
inherent to each approach. Stochastic based sampling is still relied upon to locate important 
regions of the integrand, which can only be effectively exploited by importance based and
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Markov-chain MC methods once found. Initial bias and kernel bandwidth selection for density 
estimation is still an open problem despite seeing renewed attention in light of the popularity 
of progressive photon mapping and its extensions. Despite being desirable for low variance 
previews, the initial bias of density estimation approaches is persistent throughout the render­
ing, and thus research into more effective ways of minimising such bias without introducing 
variance is desirable. Utilising path vertex data to separate illumination features in the gather 
kernel may in turn allow the detection of estimates with high proximity or boundary bias which 
can be segregated from the remaining low bias estimates.

Similarly, the poor efficiency of progressive density estimation as the bandwidth radius 
is reduced is yet to be tackled. Even for techniques that combine multiple paradigms, the 
convergence of such approaches is still dominated by the poorest of the estimators [HPJ12].

Layer based separation of path contributions has been shown to separate illumination fea­
tures of the integrand while maximising the use of contributions within an image based neigh­
bourhood. Having lifted the restrictions imposed by relying on a texture based range buffer, 
it would be desirable to eliminate similar restrictions imposed by geometry buffers based on 
depth and normal data. An extension into world space is a potential research direction which 
could extend the neighbourhood from 2D image space to identify features in world space, pro­
viding convolution filtering over spatially distant pixels across the image, similar in principle 
to non-local means.

Investigation into the application of probabilistic and layer based techniques for photon 
mapping is also yet to be explored. The use of Monte Carlo techniques for unbiased generation 
of photons means that probabilistic methods are naturally suited to photon mapping and virtual 
point light methods, in addition to the camera based path tracing that has been the focus of this 
work. Photon mapping could also benefit from statistically based techniques to reduce error or 
visual artefacts.

A vast amount of additional vertex data is available during Monte Carlo rendering that 
is yet to be properly investigated. For example, incident radiance directions can also play 
a part in the identification and isolation of illumination features, a critical part of low-bias 
noise reduction especially for glossy materials. Such data is yet to be leveraged for use in 
progressive rendering. Developing more advanced visualisation practical tools to aid general 
investigation and analysis of empirical path space in a more general way could be of great 
benefit to researchers. Development of a flexible sample storage framework coupled with 
more advanced data visualisation techniques could aid a more exploratory approach to light 
transport research. Such tools have been helpful in identifying path correlation and empirical 
observation of path vertex data that has proven useful throughout the development of work in 
this thesis. Extending these tools may aid the development of future research along similar 
themes.

In a wider scope, the wealth of existing ideas need to make their way into widespread 
use through the combination of orthogonal techniques in efficient and complimentary ways. 
Though a wide range of new research techniques are presented annually, many are seldom 
seen organised under a single framework. Drawing from avenues such as:

• Image based filtering,
• Image based adaptive rendering,
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• Object space importance caching,
• Markov-chain Monte Carlo integration

can together provide benefits to one another. The work presented here in both Chapter 5 and 
Chapter 6 are theoretically orthogonal one another, in addition to adaptive rendering and impor­
tance caching approaches. Combining multiple techniques efficiently can focus on regions of 
the integrand with high importance and variance, but also target more specific layers or features 
of illumination instead of relying on variance at a pixel level. Additionally, identifying regions 
in which low cost solutions (such as image based filtering techniques) are perceptually viable 
can improve noise efficiently, allowing the more computationally expensive techniques such as 
adaptive sampling to be concentrated in regions where less costly techniques are impractical 
or would produce significant artefacts. Thus, not only is there room for investigation into how 
such techniques can benefit one another, but also into automatic methods for identifying under 
what conditions do they perform poorly in comparison to one another such that their strengths 
can be combined more efficiently.

Even throughout the period of research culminating in this thesis, the development of work 
aimed towards solving and understanding global illumination both in academia and industry 
has made tremendous progress. It is clear from the discussion and development of ideas in this 
thesis that despite decades of research there are still a great many problems in photo-realistic 
rendering that remain open. From radiometric effects and natural phenomena (Chapter 1) yet 
to see widespread use in rendering, to Monte Carlo variance reduction techniques established 
in external disciplines and mathematics (Chapter 3) that may have potential benefits for com­
puter graphics applications. There are a great many avenues of research that can close the gap 
between photographic images and physically-based rendering, and with new research emerges 
new questions, as this thesis has shown.

Global illumination research is driven by the demand for realism and speed. In making 
steps to fulfil such demands, it is the hope that this thesis can help further the application and 
popularity of physically-based, highly accurate global illumination. Increasing the awareness 
and elegance of physically-based rendering is also an important target for research, pushing 
the funding and support for the development of new algorithms and purpose built hardware 
that will help ray tracing techniques achieve the leaps and bounds that rasterisation has gone 
through over the last decades. In turn, the constant evolution of hardware provokes new re­
search and ideas that are constantly shifting the boundaries and possibilities for what is an ever 
more complex and far reaching topic. The research described in this thesis has gone some 
way to explore and expand just a few of the many possible avenues that will inevitably lead to 
photo-realistic, physically-based global illumination techniques becoming the cornerstone of 
rendering across a wide number of industries.
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