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P r e f a c e

Abstract

A suite of models is constructed to facilitate the simulation o f the Sn02 charge writing process. In 

particular, at dimensions where the semiconductor band bending does not fully evolve, this entails 

the self-consistent solution of the non-linear Poisson equation and the Kohn-Sham equations at 

non-zero temperature, with the charge in the occupied surface states also self-consistently 

reconciled with the fundamental electron density generating the confining potential. In this way, 

a full quantum mechanical treatment of the discrete eigenstates of the quantum dot, inclusive of 

electron-electron effects, is made, and a Tip-QD-Substrate tunnelling model developed.

This work favourably conforms with observed experimental measurements, not only satisfying 

the recorded data on the ratios o f surface state densities far better than existing models, but also 

offers a tentative explanation for some of the hitherto unsatisfactorily explained sensitivity 

behaviour o f polycrystalline gas sensors on the decrease of the grain radii.

It models the charging of a spherical 4nm radius nanocrystal well, with the calculated I-V  

characteristic clearly exhibiting indications of the Coulomb blockade effect in good agreement 

with experiment. The calculated maximum electron complement of one nanocrystal of between 

81 and 87 injected electrons with a modal potential difference interval between charge transfer 

events of 0.065V, is in excellent concordance with the experimentally inferred population o f 8 6  

elections, charge storage events occurring at intervals of 0.07V.
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Chapter 1 Introduction

There is much interest currently in the properties and behaviour of nanoscaled semiconductors, as 

the reduction of their physical dimensions can correspond to significant alteration in their 

electronic properties and the manifestation of unusual and exciting characteristics. The smaller 

the particle, the greater the surface area to volume ratio, and the more biologically and chemically 

reactive the particle becomes. The better its solubility, the greater its ability to penetrate 

membranes, and the larger its capacity to permeate through media. The force of gravity becomes 

less important with its position replaced by surface tension and electrostatics. Most importantly 

of all, as the size of the particle decreases, the physics governing its nature moves away from the 

classical rules of the macroscopic world, and into the bizarre and wonderful quantum realm and 

all the amazing phenomena that this entails.

New developments in this emerging field of nanotechnology have enabled the use o f charge 

writing to pattern substrates, where charge from the tip of a scanning tunnelling microscope 

(STM) is transferred into the discrete energy levels of a quantum dot, formed by the confinement 

of a semiconductor in all three spatial dimensions.

At the University of Wales Swansea’s Multidisciplinary Nanotechnology Centre (MNC), the 

Semiconductor Interface Laboratory (SIL) have taken a Sn0 2 nanocrystalline film, a surface 

traditionally used in gas sensing, and used it to successfully demonstrate charge writing, see 

Figure 1-1, electrons being injected into the quantised eigenstates of the individual quasi-spherical 

grains, the stored charge remaining stable for many weeks.
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8 nm 

0 nm

200 nrr

1 0 0

0 nm

Figure 1-1 250nrrf STM scan o f  a nanopatterned S n 0 2 polycrystalline surface by the 
Semiconductor Interface Laboratory (SIL) o f the Multidisciplinary Nanotechnology Centre 
(MNC). Charge points average 15nm in diameter and 8nm in height and were formed by biasing 
an STM tip for lOOps at -6V.

This process has many implications across many fields; from the nanoelectronic -  for instance 

data storage (both digital and analogue) and computing with quantum cellular automata (QCA), to 

the biomedical, with the possibility o f nanoscale catalysis and molecular docking.

While some progress has been made through the experimental research in understanding this new 

and novel process, the comprehension o f the underlying physics behind this charge writing and 

electron storage phenomenon is comparatively in its infancy.

This theoretical work develops a suite o f models to facilitate the simulation o f this procedure in 

order to obtain a clearer understanding o f the physical process. In its most complex form, at 

dimensions where the semiconductor band bending does not fully evolve, this involves the self- 

consistent solution o f the non-linear Poisson equation and the Kohn-Sham equations, with 

inclusion o f the effects o f the surface states also self-consistently reconciled with the fundamental 

electron density generating the confining potential. These theoretical models allow the electronic 

structure o f the spherical quantum dots to be assessed in some detail, and permit preliminary 

simulations o f the charging process itself, illustrating clearly the effects o f Coulomb blockade and 

single electron charging.

2
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The theoretical simulations match pleasingly with the observed experimental measurements, and 

perhaps most importantly, offer a surprising hypothesis regarding the behaviour o f the ionised 

donor density at small dimensions. This proposal not only satisfies the observed data o f the ratios 

of surface state densities far better than existing models, but also offers a tentative explanation for 

some of the hitherto unsatisfactorily explained sensitivity behaviour o f polycrystalline gas sensors 

on the decrease of the grain radii.

3
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1.1 Introduction to Charge Writing

In the constant pursuit o f technological advancement, recent decades have seen the continuing 

decrease in size of mircoelectrical components in an effort to maximise processing power. In 

latter years, this physical diminution of the constituent semiconductors to the nanoscale has lead 

to significant alterations of their electronic properties, and a drift away from their bulk 

characteristics. Spatial confinement o f the semiconductor gives rise to discrete energy levels and 

allowed electron states. On each reduction of dimensionality, the energy and state density 

becomes more precisely defined, giving rise to improved charge carrier transport and optical 

properties. This realisation of practical semiconductor quantisation heralds a revolution in solid- 

state physics.

The study o f matter in this nanometer regime, the field of nanotechnology, shadows under its 

auspices many new and exciting areas of development, encompassing not only the science of 

electronics, but with far reaching implications for the disciplines of engineering and medicine 

also.

The key to progress is felt by many [1,2,3] to lie in the self-assembly o f nanoscale devices and 

structures, with the critical restriction on development, the difficulties in selectively positioning 

and orientating objects reproducibly on the nanoscale. Already DNA has been used to create self­

assembling periodic nanostructures [4] and self-assembled molecules called rotaxanes have been 

manufactured which are able to flip between two stable states and have potential as switches in 

future molecular based computers [1]. Charge writing offers the possibility of efficient and 

programmable self-assembly [5] by patterning a surface with localised charge to act as ‘docking’ 

sites for particular polarised particles. This pattern, repeatable to a high degree of accuracy, might 

allow the precision orientation of the desired nano-objects, enabling the repetitive fabrication of 

complex structures.

Work conducted by the Multidisciplinary Nanotechnology Centre at Swansea University, has 

demonstrated this charge writing on a polycrystalline Sn0 2 surface composed of quasi-spherical

4
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grains o f radius 4nm, see for example Figure 1-1. Electrons were injected into the nanocrystals1 

using the tip of a scanning tunnelling microscope (STM) under ultra-high vacuum conditions with 

a spatial resolution of 15nm [7]. In Figure 1-1, the STM tip was biased at -6 V for lOOps for each 

writing event, the resultant charged point encompassing two to three of the 4nm radii grains, each 

‘cluster’ protruding around 8 nm proud of the surface. Stored in a vacuum for more than three 

weeks, the confined electrons still remain localised in the charge injected sites.

The potential o f this technique for the future is considerable.

Bio-chemically, the patterning o f the surface could be used to orientate polar species and catalyse 

chemical reactions, or even provide a means of self-assembly as discussed above.

Electronically, digital data storage devices can be envisaged, sites charged or uncharged 

corresponding to the binary ‘1’ or ‘O’ states. Through this, computing with quantum cellular 

automata (QCA) [8,9,10] would also be feasible, digital logic functions performed by arrays o f 

quantum dot cells. Analogue data storage may even be possible exploiting the Coulomb staircase 

o f the charging events; this Coulomb blockade has been shown by several groups [11,12], 

including on these R = 4nm Sn0 2 nanocrystals by the MNC’s charge writing experimental team 

[6].

Whatever the application, it is clear that the smaller the resolution of the nanopatteming 

technique, the more efficient and versatile the application. This resolution depends on both the 

nature of the tip and the size of the charge confining nanocrystal. Whilst charge writing for 

selective absorption has been achieved to a degree by Mesquida et al. [13], creating nucleation 

sites for silica nanocrystals, the spatial resolution was of the order of 1 pm. Nanocrystalline Sn0 2 

films on the other hand, besides being both comparatively cheap and simple to manufacture, offer 

a much smaller spatial resolution; the 4nm radii grains of Figure 1-1 reducible in principle to 

grains of radii lnm. Indeed, it appears that the MNC is the only group to be researching the 

nanopatteming of nanocrystalline Sn0 2 films through STM [14].

1 Surface modification by the tip, such as material deposition, has been ruled out, along with the possibility 
o f  the charge being stored in the oxide layer o f  the silicone substrate [6], leaving the only feasible 
alternative that o f  charge storage within the discrete energy states. This is supported by the height 
dependence o f  the charged point on the bias o f  the STM tip and the ability to erase after writing the 
observed features with a positively biased STM tip [7].

5
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The task of modelling this charge writing process and the details of the electron confinement are 

non-trivial. Sn0 2 has received some attention in the literature due to its use in the field of gas 

sensing, and some work has been done [15,16,17] on the nature of the band bending caused by the 

depletion of electrons from the conduction band through the formation of surface states. Of 

particular relevance is the behaviour o f the semiconductor when the grains become too small to 

possess a distinct region un-depleted of charge carriers. In this case, the curvature of the 

conduction (and valence) band flattens and the depth o f the potential well, formed between the 

conduction band at the surface and at the centre of the grain, diminishes. To model this, Poisson’s 

equation must be solved, including not only the effects o f the ionised donor vacancies within the 

charge density but the, often-neglected, mobile charge carriers. In this way Poisson’s equation is 

non-linear and requires a numerical solution.

The limitations of this existing model from literature are considerable for the smaller dimensions 

of grain as no inclusion is made of the effects of quantisation. The discrete energy spectrum is 

not calculated, and so, consequentially, the potential is not self-consistent with any eigenstates 

that would be generated by it. Furthermore, it is proposed within this work that when the spatial 

dimensions are such that a region un-depleted of electrons does not develop at the grain centre, 

then the two boundary values employed in these papers are no longer automatically consistent 

with each other and the remainder o f the parameters defining the un-depleted system. The 

consequences of this appear to be quite profound.

Naturally, there are further works to be found in the literature that offer some, but not all, of the 

desired building blocks o f the charge writing model on other materials and in other symmetries.

For instance, in Marti et al. [18], the use o f R = 3.9nm Ino.5gGao.42As spherical quantum dots 

within room temperature solar cells is discussed. The authors present both analytical and 

numerical models of the potential, but although a self-consistent solution of the non-linear 

Poisson equation with the Schrodinger equation is mentioned, they use the spherical Bessel 

function (see Section 3.3) of a square potential well to approximate the wave functions. The dots 

have one energy level only, at which the Fermi level is set; although the occupancy of this level is 

determined with Fermi-Dirac statistics. An analytical charge balancing type calculation is used to 

assess the doping of the Alo.4Gao.6As in which the QDs are imbedded, though considerable 

approximations are made. No inclusion is made o f electron-electron interation forces or of 

interface (surface) states.

6
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For 2-dimensional circular quantum dots of radii ~12.5nm to 300nm, Mucucci et al. [19] 

investigates the capacitance and behaviour of the chemical potential for discrete energy levels, 

inclusive of electron-electron effects including use of the KLI-approximation for exchange 

favoured in this work. However, the applicability o f this publication to this treatise is 

unfortunately limited. Without surface states and assuming integer occupancy o f its energy levels 

(and so independent of the chemical potential), with its basic confining potential formed from the 

assumption of a uniform background positive charge, its methods are more suggestive than 

directly beneficial.

Torsti et a l [20] offers a more immediately useful model, applied to cylindrically symmetric Na 

quantum dots formed between a monolayer of Na and a Cu substrate at 1200 K. Although the 

basic confining potential is again formed from a uniform positive background charge, the discrete 

energy levels are calculated self-consistently with regard to the electron-electron interaction 

effects through the Kohn-Sham equations. The fractional occupancy o f the energy levels is 

calculated with the Fermi-Dirac statistics employed here and surface states are discussed with 

regard to their effects in the monolayer and substrate. Electron-electron effects are however only 

considered through the local density approximation (LDA).

The theoretical models developed in this work all have the same aim of minimising the 

complexity of each individual approximation whilst still retaining meaning in its results. In 

simulating the band bending behaviour, at their simplest, the depletion approximation o f literature 

[15] is used for large grains and has an analytical solution. At their most complex, the Poisson- 

Kohn-Sham-Charge Balance (P-KS-CB) method developed herein, applied to small dimensions 

where the band bending is not fully formed, self-consistently reconciles the non-linear Poisson 

equation (and so including the influence of the mobile charge carriers) and the Kohn-Sham 

equations. The exchange effects are approximated with the KLI potential [21] and the correlation 

potential with an LDA method [22]. Calculated at elevated temperatures, the fractional 

occupancy of the discrete energy levels is given by Fermi-Dirac statistics.

Most importantly, and to the knowledge of the author not employed anywhere else, this P-KS-CB 

method incorporates a procedure to ensure full consistency between the calculated surface state 

densities and the self-consistent charge density. This ensures that the two non-linear Poisson 

equation boundary values are always consistent with each other and the remainder of the defining

7
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parameters. It also ensures that the energy minimisation procedure behind the Kohn-Sham 

method retains its meaning.

The Kohn-Sham method maps the interacting many bodied problem onto an auxiliary single­

particle problem. It is based on the variational principle and minimises the total energy o f the 

system with respect to the electron density and the constraint of constant particle number. In this 

way the electron density, or ground state density, is that of the many-bodied system. Strictly, the 

single particle eigenstates have no physical meaning and only form part of the mathematical 

construction devised to yield the correct density. Yet they can provide good approximations to 

physical systems (see for example [23,24,25,26,27]), and have mathematically been shown to be 

the excitation energies to zeroth order in the electron-electron interaction [28], Consequentially, 

they are used as approximations o f the discrete energy levels of the system throughout this work11. 

Now, some authors (see for example Kohnanoff [29]), feel that fractional occupancies o f the 

energy levels cannot be used within the variational scheme, contrary to what is implied by the 

work of Ref.’s [21, 30] and in particular Torsti et al. [20]. For fractional occupancy dependent on 

the electron density (for example (indirectly) through the Fermi-Dirac distribution), one obvious 

problem is that the ‘constraint’ used to minimise the total energy functional is now itself a 

function of the electron density. It is suggested in this work that the extra self-consistency step, 

which ensures that the two non-linear Poisson equation boundary conditions are consistent with 

each other and the remaining defining parameters, also implies that the Kohn-Sham minimising 

electron density is the ‘true’ electron density of the many bodied system, despite its density 

dependent constraint.

This P-KS-CB methodology offers a rather surprising prediction regarding the behaviour o f the 

ionised donor density as the radius of the nanometric grains diminishes. Interestingly, this appears 

not only to satisfy the experimentally measured surface state density ratio of 4nm to 15nm radii 

grains [31] considerably better than the existing models, but seems also to offer the beginnings of 

an explanation for some of the hitherto unsatisfactorily explained sensitivity behaviour of 

polycrystalline gas sensors (see Sections 2.4 and 6.1.3).

11 Chapter 7 discusses a method o f  accounting for the electron self-energy using Green’s functions, 
providing a means to evaluate the true electron addition and removal energies o f  the many body system for 
future work.

8
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At a radius of 4nm the charge written nanocrystals o f Wilks et al. [6 ] require the full P-KS-CB 

method to simulate their electron structure. Representing the STM-nanocrystalline film-substrate 

system as two tunnelling junctions and treating the charged grain in isolation (i.e. not considering 

charge leakage into neighbouring grains), then through a consideration o f the free energy changes 

[32] with the tunnelling rate estimated through a Fermi Golden Rule approach [33], the P-KS-CB 

data can be used to simulate the charge storage with the grains. The models generate the 

characteristic Coulomb staircase charging pattern, and very favourably calculate the maximum 

complement of injected electrons and the voltage interval between charging events in comparison 

to experiment.

This treatise is novel in the contribution it makes to address the experimental Sn02 data from this 

new and exciting field of charge writing. Its work is original in its effort to combine the confining 

potential generated from the non-linear Poisson equation at non-zero temperature self-consistently 

with the Kohn-Sham equations also balancing the charge on the grain to ensure the consistency of 

the occupied surface states and charge density.

9
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1.2 Introduction to Chapters

Chapter 1 is a chapter of introductions. It introduces the field o f nanotechnology and discusses 

the importance of charge writing. It offers a brief introduction to the aims of the models 

developed herein and an indication of the worth o f their results. It discusses some of the pertinent 

solid-state physics basics necessary to an understanding of the problem and introduces the effects 

of nanoscale confinement and the quantisation of the energy spectrum.

Chapter 2 discusses the nature of surface states and their effects on the conduction and valence 

bands. It introduces the spherically symmetric, non-linear, complete charge density model o f the 

literature, and develops the numerical techniques necessary to solve this form of Poisson’s 

equation. These methods are then tested and compared against published Sn0 2 gas sensing work 

and surface state density data. Depletion widths and the effects on the conduction band if  the 

grain is too small to possess a non-depleted region are discussed. Conduction through gas sensing 

films is also covered and the effectiveness of the complete charge density model at small radii is 

considered.

Chapter 3 considers the discrete eigenstates formed within the potential well o f the Sn0 2 

nanocrystals in the absence o f electron-electron effects. It introduces the basic quantum 

mechanics necessary to understand the forms of the angular and radial components o f the wave 

functions. It develops finite difference numerical techniques to ascertain the orthonormal 

eigenstates of an arbitrary radial potential, and evaluates their accuracy both by comparison with 

the analytical solutions o f the spherically symmetric square potential well, and by comparison 

with an alternative tight-binding approach. In addition, this Chapter also introduces the concept 

of self-consistency and develops an iterative scheme to achieve this between the solutions o f the 

non-linear Poisson equation and Schrodinger’s equation.

Chapter 4 is devoted to the effects and modelling of electron-electron interactions. It discusses 

how the single-particle techniques of the previous Chapter can be adapted to simulate the true 

multi-particle system. Through simpler approaches, density functional theory (DFT) is 

introduced, and the Kohn-Sham method, where the single-particle eigenstates minimise the 

energy of the full many-body system, is developed. Some DFT approaches to the effects of

1 0
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electron exchange and correlation are briefly covered, with the main focus on a local density 

approximation (LDA) to correlation, and the Krieger, Li and Iafrate (KLI) approximation to the 

exact exchange. The numerical techniques necessary to simulate these last two potentials and the 

Coulomb potential for the spherically symmetric problem are also developed.

Chapter 5 is the most thoughtful o f the Chapters. It considers the issues involved in determining a 

unique potential, or rather unique for a given methodology, to satisfy the non-linear Poisson 

equation. It proposes that for small radii it is not necessarily certain that the same values o f the 

defining parameters nd, Ef, T,Q,m*  and s  corresponding to the barrier height 5* for large radii also 

correspond to a value o f zero for the second Poisson equation boundary value, the derivative o f 

the potential at the grain centre. It suggests that in this way the uniqueness of the non-linear 

Poisson potential for a given method, or form of electron density, is ensured. Significantly, it is 

suggested that if  the surface barrier height is to be kept constant along with T, Q, m \  and s  

over a range of grain radii, then the ionised donor density cannot remain constant. It offers some 

validation of this theory, mainly from discussions o f published work and indications of 

discrepancy arising therein through not considering this issue. A numerical technique is described 

and implemented to remove this issue of non-consistency. It is demonstrated how this method 

can be used to determine the movement o f the Fermi level on the addition of electrons to a 

quantum dot at non-zero temperatures, where the fractional occupancy of the discrete energy 

levels is a function of the Fermi level and the charge density.

Chapter 6  applies the models and numerical techniques evolved over the preceding Chapters to 

modelling the Sn0 2 grains as used in the experimental systems. Firstly, from the measured values 

of the conduction band on the grain surface, the ionised donor density of the 4nm radius 

nanocrystals are determined, their surface density compared with 15nm radius grains in excellent 

agreement with that experimentally measured. The calculated bulk ionised donor density and 

surface state density are also in qualitative agreement with that generally found. This ionised 

donor density behaviour is then used to offer a tentative explanation for the observed sensitivity 

increase of polycrystalline gas sensing films particularly below R  = lOnm and R  = 3nm. 

Secondly, this 4nm nd is used to model the movement of the Fermi level with the incremental 

increase of charge stored within the grain, this data then used in a tunnelling model to simulate the 

charge writing process. Compared with experiment, favourable results are again produced with 

respect to the maximum quantity of stored electrons, current magnitude, observable Coulomb 

staircase characteristic, and the voltage interval between charging events.

11
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Chapter 7 provides a summary of the models used and developed over the previous Chapters and 

presents a synopsis of their results. It discusses the validity of the work and the main avenues to 

be pursued for future development o f the simulations. It focuses on quasiparticle methods, 

surrounding the individual electrons with a positive polarisation cloud and so offering an 

improved assessment o f the true many-electron eigenstates than the Kohn-Sham single-particle 

eigenstates alone, and discusses the simulation of the quantum dot charging and the tunnelling 

current. It proposes several routes through which the sophistication of these calculations can be 

improved, and briefly mentions the challenges involved in taking into account the effects of the 

neighbouring grains and the sinter neck connections.
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1.3 Introduction to Solid State Physics

To achieve a good understanding of semiconductors, it is essential to consider the three main 

forms of solid matter -  metal, semiconductor, and insulator -  even in a brief synopsis o f this 

nature. It is sensible then to begin with a basic introduction to metals.

1.3.1 Free Electron Model

One of the simplest models o f metals is that of Sommerfeld [34]. Here the solid metal is seen as a 

lattice, or crystal, made up o f the nuclei and core electrons of the constituent atoms, stripped of 

their valence electrons. These free ‘valence’ electrons form the conduction electrons of the metal, 

and are free to move through the whole structure formed by the lattice of ions. This electron sea, 

or free Fermi gas, is treated with Fermi-Dirac statistics; an energy distribution, which, unlike its 

classical counterpart, the Maxwell-Boltzmann distribution, accounts for the Pauli exclusion 

principle, precluding identical fermions (particles with half-integer spin e.g. electrons) from 

occupying the same point in space.

The Fermi-Dirac distribution, illustrated in Figure 1-2 and given by

/ ( £ ) = 1 + ( U )  

yields the probability that an orbital of energy E  will be occupied in an ideal electron gas in 

thermal equilibrium, p. is called the chemical potential and is defined as the point at which j{E) = 

0.5 for E =  p.

300 K3 000 K12 000 K
0.8 -

0.6 -

UnoccupiedOccupied0.4

0.0
3 4 5 6 7 8 9 100 21

E , in units of eV

Figure 1-2 Fermi-Dirac distribution function at 300 K, 3 000 K, and 12 000 K. The chemical 
potential is set at 5eV.
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At absolute zero, the chemical potential is equal to the Fermi energy or Fermi level, Ef, defined as 

the energy o f the highest occupied orbital at T  = 0 K. However, for the rest o f this work, the 

convention o f Blakemore [35] and much of the work of literature will be followed and the 

chemical potential will generally be referred to as the Fermi energy for all temperatures.

The Sommerfeld model assumes that there are no electron-electron interaction forces and 

averages the potential of each o f the ion cores over the whole crystal and sets this potential to 

zero. As such, the time-independent Schrodinger equation (TISE) can be written

Ek and y/k denoting its eigenvalues and eigenvectors respectively. Due to the lattice structure 

formed by the ion cores, the wave function itself is required to be periodic in x, y  and z. This in

since e'kxL =1 from Eq. (1.3), and similarly for ky and kz. The corresponding eigenvalues Ek 

follow from Eq. (1.2):

propagation.

In solid-state physics, it is often useful to treat problems not in conventional space, but in a 

reciprocal space defined by the orthonormal vector set kx, ky, kz, called k-space. In this new space,

only at T=  0 K, but the situation is little different for finite temperature [35]). In the free electron

2m [d x 2

*1 ( i l ( 1.2 )

mind, if the free electron gas is taken to be confined to a ‘box’ of side length L and volume L3 

containing N  electrons, then the wave functions must satisfy the boundary conditions

Vk (x  + L ,y ,z )  = y/k( x ,y ,z ) 
Vk (x ,y  + L ,z) = i//k(x ,y ,z )  
i//k( x ,y ,z  + L) = y/k(x ,y ,z )

(1.3)

The wave functions are therefore given by the travelling plane wave

with the x  components o f the wave vector k satisfying

(1.4)

(1.5)

2m
( 1.6)

this is often referred to as the dispersion relation of the wave function along its direction of

points of equal energy form surfaces, with that surface corresponding to Ef known as the Fermi 

surface. The Fermi surface acts to separate the occupied and unoccupied states (strictly speaking
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a sphere o f radius k f , see Figure 1-3, where Ef = TrkfUm  from Eq.model the Fermi surface is

Fermi surface 
at Ef

Figure 1-3 Representation o f  the Fermi sphere in the A-space o f the free electron model. 
Occupied orbitals fill the sphere up to its radius kf. Strictly, this is for T=  0 K although there not 
a great deal o f difference for finite temperature [35].

There are two electrons resident on each allowed wave vector or k point within the Fermi sphere, 

and each k point has a volume o f (2n/LY  in conventional space. The sphere has a volume o f 4n 

k/ / 3 and so contains ./V electrons, where N  satisfies

N  = 2-
4xk

3 I 2n
~— k*
2>7T2

Consequentially, the Fermi level can be expressed as

E f  = ----
' 2m

,  \  2/3
3/rJV 1

from Eq.’s (1.6) and (1.7).

(1.7)

( 1.8 )

Defining the number o f orbitals per unit energy as the density o f states, D(E), such that

oo

N  = ( f(E )D (E )d E  (1.9)
o

then

D(E) = —  C I O )
dE

The total number o f orbitals o f energy < E  is given by

N  =
Z,3 (2 m E

,3/2

3 7T2 { tl2

from Eq. (1.7), and so, for the three dimensional free electron model

( 1 . 1 1 )
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n , _ ,  I 3 f2m V '2 l/2
D ( £ ) = ^ l F i  £  ( U 2 )

The volume V  is conventionally set to 1.

The Sommerfeld model gives good insight into many o f the properties o f metals (such as 

conductivity (thermal and electrical), magnetic susceptibility and heat capacity), but fails to 

describe some of their basic properties, such as the polarity o f the charge carriers in the Hall 

coefficient. The next evolutionary step, as it were, in the consideration o f the nature o f  solid 

matter is to take into account the periodic lattice potential and its influence on the conduction 

electrons. This model is often called the nearly free electron model.

1.3.2 N early  F ree E lectron  M odel

The lattice or crystal o f ions through which the conduction band electrons travel is taken to be a

structure formed from repeated identical units, known as unit cells. The repeat length o f the unit

cell making up the crystal is known as the lattice parameter a; for gallium arsenide (GaAs) the

lattice parameter is a = 0.565nm. A primitive cell is a minimum volume cell which can be

constructed in different ways according to different conventions, but contains only one lattice

point, see Kittel [36] for details, and the Brillouin zone is defined as the reflection o f the Wigner-

Seitz primitive cell into the reciprocal lattice. The first Brillouin zone will have particular

importance latter in this section and can be envisaged as [36]:

“ ... the smallest volume enclosed by the perpendicular bisectors o f  the reciprocal 
lattice vectors drawn from the origin”

see for instance Figure 1-4.

Figure 1-4 Construction o f the first Brillouin zone (shaded region) for an oblique 
2-dimensional reciprocal lattice.
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The solution to the TISE for the periodic potential V(r) formed from these repeating cells is given 

by the Block function (1.13)

¥ k {r) = uk{ r ) e ^

see Kittel [36] for proof. It is the product of the two functions -  the ‘unit cell’ function «*(r) 

having the periodicity of the lattice (and so the same in each unit cell throughout the lattice) and 

the plane wave ‘envelope’ function elkr.

In one dimension, this wave function y/k forms the solution to the Kronig-Penney model, which 

can be used to give a remarkable insight into the fundamental difference between insulators and 

conductors; the existence of forbidden energy gaps in the energy spectrum.

The Kronig-Penney model assumes that the ID periodic potential can be modelled as a periodic 

array of square wells as illustrated in Figure 1-5.

V(x)

x■b 0 a

Figure 1-5 1-dimensional Kronig-Penney potential

The period of the potential is a + b, and the TISE for the regions 0 < x < a and —b < x < 0 can be 

written

d 2y/k 2m

Letting

& 2  + - ^ 4  = 0

^ + ^ - ( E k-V0)y,t =0  
ax n

2 2  m 
a  = - r - E ,

0  < x < a  

- b < x < 0

n2 k

f  = ~ ( E k -V„ )  
n

(1.14)

(1.15)

and assuming that Ek < V0, then from the Block theorem i.e. y/k (r) = uk (r)e ,k'r , Eq. (1.14) 

becomes
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d u, 
dx2

+ 2 i k ^ L + (a2 - k 2)uk = 0 0 < x < a
dx V } k

du
^  U}  + 2 i k ^ L -  {b 2 + k 2)uk = 0  - b < x < 0
dx 2 ^  7

with the solutions

ku  =  Ae*a-k)* + Be-,{a-k)x 0 < x < a

u2k = C e^-It)x + D e ^ - Il)x - b < x <  0

The boundary conditions of the wave functions require that

M ° )  = “ 2*(0 )
ulk{a) = u2k{-b) 

and from the continuity of y/k and dy/jjdx that

du,
dx

du,t

_ du2k
x=0

dx

dx

du
x=0

2k

dx x=—b

It can be shown, using the method of Merzbacher [37], that this implies that 

p 2 - a 2
l a p

■ sinh pb sin aa + cosh pb  cos aa = cos k(a + b)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

For convenience, let Vo —► oo and b —> 0 in such a way that the product Vob remains finite (finite 

square barriers —> delta functions), then Eq. (1.20) becomes

Psmcaa + cosaa = coska (1.21)

where

mVnbaP = ( 1.22)

This implies that Eq. (1.21) can only be satisfied for the values of aa for which Psmcaa + cos aa 

lies between ±1, see Figure 1-6. For the other values o f the energy there are no Block function 

solutions to the wave equation, and so forbidden regions, or gaps, arise in the energy spectrum.

It can be seen from Figure 1-6 that the width of the allowed energy bands increases with 

increasing aa (with increasing energy) since the magnitude of Psmcaa decreases.
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+ cos aa
aa

forbidden energies

-71

- 4 tt -271 aa

aa

allowed energy bands

Figure 1-6 Plot o f P sincoa + cosaa  for P = 2 n. The forbidden values o f the energy (red hashed 
regions) are given by those ranges o f aa where the function exceeds ±1. The allowed energy ranges, or 
permissible energy bands, are marked on the second axes as hashed blocks.

If P increases then the ‘binding energy’ o f the electron can be seen to increase. For example, if P 

—» oo then sin aa must tend to 0, implying that aa = ±wi where n = 0, 1,2,  3... and therefore from 

Eq. (1.15),

E  =
+ 2  2  2  n n 7i
2ma2

(1.23)

the familiar expression o f the energy levels o f a particle confined within a quantum box.

At the other limit, P —*■ 0 then cos aa = cos ka implying that aa = ka, and therefore Eq. (1.15) 

becomes Eq. (1.6)

h2k 2
Ek = 2m

the continuous energy spectrum of the free electron model.

From Eq. (1.21) it is possible to deduce the onset o f the energy gaps at

n n
k = n = 0,±1,±2,... (1.24)

from coska = ±1 ka = nn. These k values define the boundaries o f the Brillouin zones -  the 

first zone extends from -n/a to n!a, the second from -2n!a to -n/a and n/a to 2n!a and so forth.
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Due to the periodic nature o f Eq. (1.21), if k is replaced by k+2nn/a where n is an integer, then Eq. 

(1.21) remains unchanged. This motivates the use o f the reduced wave vector, limited to the 

region

- ~ < k < -  (1-25)
a a

In this way, the extended zone representation o f the Energy-wave vector relationship can be 

reduced to the reduced zone representation of the reduced wave vector, see Figure 1-7.

4/r 3/r In  n  ^ n  2n  3/r 4/r n  n
a a a a a a a a  a a

Wave Vector k Reduced Wave Vector k

Figure 1-7 Plot o f Energy vs. (a) Wave vector k (b) Reduced wave vector k for the Kronig-Penney model 
with P = 3 ;r/2  (black line) and the free electron model (red line). Energy in units o f trn/2ma~. The shaded 
bands represent the allowed energy bands o f  the Kronig-Penney model; needless to say, the whole spectrum 
of E is allowed in the free electron model.

The shaded regions represent the bands of allowed energies, separated from each other by the 

forbidden energy gaps.

As would be anticipated, on departing from the Kronig-Penney 1-dimensional case the 2- and 3- 

dimensional Brillouin zones become more complex, see Blakemore [35], and surfaces o f constant 

energy in k-space depart considerably from the sphere o f Figure 1-3, see Kittel [36]. Nonetheless, 

this 1-dimensional model is sufficient to introduce the very important concept o f  allowed and 

forbidden energy regions, if in a rather idealised manner.
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The velocity, or rather group velocity1, of an electron at energy Ek moving through the crystal 

lattice in real space can be written

v = d f (1.26)
g dk y h J h

using dEk = V kEk-dk, and so its acceleration, when subjected to an external electric field for 

instance, is given by

dvp
a =

dt (1.27)
= X jl^ L  

Ti dt

The rate o f change o f the energy of the electron is equal to the scalar product of the force on the 

electron -e E  and vg its velocity i.e.

dE_ 
dt

therefore

= -e E  • vg (1.28)

a = - ^ V kVkEk-E (1.29)
n

On comparison with Newton’s 2nd law, the tensor V kV kEk/h 2 must have the dimensions of 

(mass)'1. This introduces the effective mass tensor for an electron subject to a periodic potential

k l =
h2

dk'dkj

(1.30)

and it can be seen that the effective mass of the electron is inversely proportional to the curvature 

o f the band. This quantity reflects the variation in the propagation of the electron wave function 

along the different planes o f the lattice. For this work it is assumed that while the main 

semiconductor o f interest, Sn02, is anisotropic (the electron mass is dependent on the direction of 

wave propagation) by defining the ‘density of states’ electron mass

m*D =(m*m*ym*) (1.31)

referred to here simply as m *, an adequate description o f the effective mass along the radial axis 

of the polycrystalline11 spherical grains is provided. For isotropic semiconductors, the effective

1 The group velocity is the velocity o f  energy propagation in the medium and is defined as doi/dk where co is
the angular frequency.
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electron mass is equal to the density o f states effective mass. It is implicitly assumed throughout 

the rest o f this section that semiconductor refers to an isotropic semiconductor, and that the 

dispersion relation Eq. (1.6)

is a satisfactory approximation, handily allowing the effective mass to be considered independent 

o f energy. This is a better approximation near the band maxima and minima.

If the allowed energy bands are either full or empty, then no electrons are free to move if an 

electric field is applied, and the crystal behaves like an insulator. If one or more o f the bands is 

only partially filled, then the electrons are free to move and the crystal is deemed a metal. 

Between these two extremes lie semiconductors (and semimetals) -  see Figure 1-8.

Conduction Electron Density ( m 1)

1019 1 023 1 028

Insulator Semiconductor Semimetal Metal

Figure 1-8 Schematic representation o f occupied states and band structure o f  insulators, 
semiconductors, semimetals and metals at a low, but finite, temperature. Approximate charge 
carrier concentrations are also given, although the semiconductor range can be extended via 
doping.

Generally, ‘the’ conduction band refers to the lowest energy empty, or conduction, band, and ‘the’ 

valence band refers to the highest energy fully occupied, or valence, band. The band gap is 

defined as the energy difference between the lowest point o f the conduction band and the highest 

point o f the valence band.

" A polycrystal is an object composed o f randomly oriented crystalline regions. Polycrystalline materials 
usually result when a substances solidifies rapidly with crystallisation commencing at many nucleation 
sites.
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For metals and semimetals the conduction band and valence band can be seen as overlapping (no 

band gap), as schematically illustrated in Figure 1-9. If the band overlap is small with only few 

states involved, then the material is treated as a semimetal, see Kittel [36] for a more precise and 

detailed treatment.

o o

Conduction Band

Valence Band

Figure 1-9 Schematic representation o f  metal (or semimetal) conduction and valence bands in 
conventional space. Note band overlap. Electrons easily excited into the conduction band.

For insulators however, the band gap is large (>5eV), and as such, electrons cannot be excited, 

thermally or otherwise, into the conduction band, see Figure 1-10. If the insulator is excessively 

heated, then the material breaks down.

Conduction Band

Eg > 5eV

Valence Band

Figure 1-10 Schematic representation o f the conduction and valence bands o f an insulator in 
conventional space. Bands seperated by wide band gap, Eg. Electron transitions between 
bands prohibited.

Semiconductors have an intermediate band gap (0 < Eg< 5eV) and it is possible that electrons can 

be promoted by light or heat, from the valence band into the conduction band leaving behind a 

positively charged 'ho le’ in the valence band, see Figure 1-11. Both the electrons and their holes 

correspond to electrical conductivity.
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% % Conduction Band

Eg < 5eV

O O
Valence Band

Figure 1-11 Schematic representation o f the conduction and valence bands o f  a semiconductor in 
conventional space. The band gap, Eg, between the bands is such that electrons can be promoted 
from the valence band into the conduction by thermal excitations or photons. 0 < Eg < 5eV.

If the conduction band has a minimum in reciprocal space at the same value o f k as the valence 

band maximum as illustrated in Figure 1-12, then the semiconductor is referred to as a direct band 

gap semiconductor since a direct optical electron transition between bands is possible through the 

absorption o f a photon.

E

Conduction
band

Valence 
\  band

0
Figure 1-12 Schematic o f  a direct band gap. Conduction band minima and valence band 
maxima located at the same point in k space. The photon is o f energy Eg = h(Og (black 
wavy line).

For an indirect semiconductor on the other hand, the conduction band maxima and valence band 

minima are widely separated in k-space, see for instance Figure 1-13, and both a photon and a 

phonon111 are required to optically promote an electron from the valence band into the conduction 

band.

111 A quantum o f oscillation in a crystal lattice made to vibrate via heat or sound waves.
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E

Conduction
band

Valence 
\  band

Figure 1-13 Schematic of an indirect band gap. Conduction band minima and valence 
band maxima not located at the same point in k space, but separated by km. The photon is 
of the energy Eg = hcog (black wavy line) and phonon of momentum hkm (red wavy line).

If a semiconductor is pure and crystallographically perfect, then the density o f electrons in the 

conduction band, n0, and the density o f holes in the valence band, p 0, will be equal (intrinsic 

semiconductor). The Fermi level is then placed at the centre o f the band gap, see Blakemore [35]. 

However, if dopant atoms or flaw states are present in the semiconductor for instance (extrinsic 

semiconductor), it is possible that one kind o f charge carrier will dominate, and the position o f the 

Fermi level will alter, see Figure 1-14.

In an /7-type extrinsic semiconductor, negative mobile charge carriers (electrons) o f density n 

dominate the electronic conduction; donor atoms (for example impurities in the crystal'v) or flaws 

are present which become positively charged, releasing electrons into the conduction band 

(although these electrons may also o f course become trapped within another flaw). In a p-type 

extrinsic semiconductor, acceptor atoms' or flaws are present which become negatively charged, 

accepting electrons from the valence band, and the conduction is dominated by the positive 

charge carriers (holes) o f density p.

IV For instance if a lattice composed of Group IV elements e.g. Si, is doped with Group V donor atoms e.g. 
As, then each impurity atom occupies a Si lattice point. Each dopant atom forms 4 covalent bonds with its
neighbours, but has a ‘spare' valence electron which can be promoted to the conduction band, leaving the
donor ‘atom’ behind as an ionised state. These donor impurities are represented as localised states below
the conduction band.
v For instance if a lattice composed of Group IV elements e.g. Si, is doped with Group III acceptor atoms 
e.g. P, then each impurity atom ‘accepts’ an excited electron from the valence band in order to complete its 
4 covalent bonds. The positive hole left behind in the electron’s wake remains weakly bound to the excess 
negative charge. These acceptor impurities are represented as localised states above the valence band.
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(a)
E

Ef —

Ev

Conduction hand 

•  • • • •

ooooo
Valence band

(b)

E

Ec

Ef

Ev

(c)
E

Conduction band 

• • • • • • • •
□□□□□□

OO 

Valence band

Ef
Ev

Conduction band 

•  •

m m m m w •

o ooooooo
Valence band

X  X  X

Figure 1-14 Schematic representation o f Fermi level for (a) intrinsic (b) «-type and (c) p-type 
semiconductors.

Assuming that the conduction band has a single energy minimum at the centre o f the Brillouin 

zone E = Ec, and that the effective mass is energy independent, then in the same way that Eq. 

(1.12) was calculated, it is possible to derive the corresponding equation for the density o f states 

within a semiconductor

D(E) =
f  2m' V ' 2

: / r n2
(e - e c)' (1.32)

for E > Ec. At a temperature T there is at equilibrium a unique energy distribution and Fermi level 

for those electrons thermally excited into the conduction band. The probability that a state of 

energy E is occupied is given by the Fermi fractional occupancy factor /(£ ) o f Eq. (1.1), and 

therefore the total electron density is given by

n = \ f ( E) D( E) dE

I n '
2 m*kKT

\  3 /2  co
J ( E - E c)lk„ T

E J k RT

which can be written

Yl — Nc9>\t2

\ + e ( E - E F ) lk BT

E f  ~  E c

— d (E  / k BT) (1.33)

(1.34)

using the Fermi-Dirac integral,

V0'») = [
y Jdy _

\ + ey - y  o
= T(j+\)&J(y0) (1.35)
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see Appendix I, Approximation o f the Fermi-Dirac Integral, with the gamma function 

r(3/2) = VW2 , see Appendix I, Gamma and Beta Functions, and defining the effective density 

o f conduction band states, N c, as

N  =2
r  * \ 3 / 2m k BT

2 7ih2
(1.36)

The Fermi-Dirac integral is not trivial to evaluate, and in practice, substantial approximations are 

made if the density belongs to either o f two important limiting cases, see Figure 1-15.

(b)

f(E)D(E)

E
D(E)

D(E)D(E)

Figure 1-15 Representation of the density o f states, £>(£), for two limiting cases, (a) 
degenerate electron density and (b) non-degenerate (or classical) electron density.

If the Fermi level lies at least ~2kBT  into the conduction band, when the temperature is small and

the conduction electrons numerous, then Ef - Ec » kBT  and the conduction electron gas is classified

as degenerated In the asymptotic limit o f large positive y 0 the Fermi-Dirac integral becomes [35]

W o )
Toj+1

7 + 1
To » 1

and so the metallic-like total electron density can be written as

n 3 / 2
1

n = ■
3 / r

2 m \ E f - E c)

tr

(1.37)

(1.38)

with a Fermi energy of

V1 The non-degenerate/degenerate terminology is not to be confused with state degeneracy (more than one 
quantum state for a given energy).
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Ef  — E - \ ----------------

f  2m
3 K

,2/3

(1.39)

When the Fermi level is at least ~2kBT  below the bottom edge of the conduction band, when total 

electron density is very small or the temperature very high, and only a small fraction o f the band 

states are occupied, then the conduction electron gas is referred to as non-degenerate (or 

classical). In this case E c is taken to be substantially greater than E f  and the asymptotic from o f Fj 

for large negative y 0

F M "  W  + l)eyo y 0 <~2 (1-40)

can be used [35], so that

and

xr  ( E , - E c ) / k BTn -  N„e 1

Ef  = Ec -  kBT In %

(1.41)

(1.42)

Naturally, an equivalent set of conductive hole relationships can also be developed. However, 

since the main semiconductor of interest for this work, SnC>2, is naturally «-type once annealed 

due to the presence of oxygen vacancies''11 which act as impurities in the crystal (see also Section 

2.1), a detailed description of hole behaviour is redundant, and so the reader is referred to the 

main references of this section [35,36].

As important as this synopsis of solid state physics was, as will be detailed in the next section, the 

bulk semiconductor equations of this section have in general little relevance to the simulation of 

the quantised energetic behaviour of a 4nm radius Sn02 spherical grain, other than as first 

estimation.

Nevertheless, it is certainly evident from such equations as Eq. (1.39) and Eq. (1.42) (aside from

v" In compound semiconductors (e.g. Tin dioxide) the crystal lattice forms out o f  precise ratios o f  the
constituent atoms. Crystals with the nominal atom ratios are termed stoichiometric. Some defects, such as 
vacancies (where an atom is missing from its usual site in the lattice), are termed stoichiometric defects, the 
crystal now departing from the nominal ratio o f  the two atoms. The lattice o f  S n 02 forms out o f  O"2 anions 
and Sn+4 cations. Annealing o f  the material seems to encourage oxygen vacancies (see for example Samson 
and Fonstad [96]), freeing up to 2 electrons to be promoted into the conduction band.
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the constituent parts of their derivations) that a fundamental connection exists between the Fermi 

level and the density o f electrons in the conduction band. This illustrates, perhaps more than a 

purely verbal explanation, the importance of always understanding the relationship and behaviour 

o f the two if the population of conduction band electrons is altered, as occurs during the process 

o f charge writing for example. These two equations, although not even applicable in the 

dimensions where quantisation dominates, exemplify the complexity o f the inter dependence of 

the two quantities and emphasise the inappropriateness of merely placing the Fermi level at the 

energetic position of the lowest empty orbital in this non-zero temperature range.

2 9
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1.4 Introduction to Quantum Confinement

The work o f the preceding section, Section 1.3, was dedicated to the basics o f solid-state physics 

for bulk materials. The main focus o f this thesis however is not that o f the bulk medium, but o f 

the quantum realm. This section is a simple introduction to how the behaviour o f the conduction 

electrons change as their degrees o f motion are curtailed in idealised rectangular semiconductor. 

It offers a brief look at their response as the physical dimensions o f their lattice are reduced, and 

their charge carriers are confined in one (a quantum well), two (a quantum wire) and finally, all 

three (a quantum dot) dimensions, as illustrated in Figure 1-16. It presents a simplified glimpse at 

the quantisation o f the electrons’ energy spectrum and discusses the density o f states for each 

reduced dimensionality.

if/ \

■ l /

L I/ ''

I

J S L . & .— Lz
Lr

3D Solid 2D Quantum ID Quantum OD Quantum

Well Wire Dot
Figure 1-16 Representation of Quantum Confinement. The dimensionality o f  the structure represents 
its number o f degrees o f freedom. Lx denotes the diameter o f the quantised region in the x  direction, 
and similarily for they- and z-axes.

In the bulk solid, the plane-wave wave function is free to propagate along any o f its three axes. 

Its energy spectrum is continuous, not discrete, with a plethora o f states for any given energy, as 

can be seen from the standard, bulk, density o f states; see for instance Figure 1-17.

Q

o
t-
■s,
SH
Q

Energy
Figure 1-17 Density o f states for a bulk semiconductor.
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1 .4  In t r o d u c t i o n  t o  Q u a n t u m  C o n f in e m e n t

In contrast, in a quantum well, confining the electrons in one spatial dimension, along the x-axis

for example, causes the formation of quantum states along that direction of motion. For the

idealised case of an infinitely deep rectangular potential in this one dimension, let

V(x) = 0 \x\<Lx

= oo otherwise

then y/ must therefore equal zero for |x| > Lx, implying that yALx) = y/(-Lx) = 0. Inside the well

+ = 0 (1.44)
dx2 n 2

If E < 0 then Eq. (1.44) can be expressed as

d 2y/ 
dx2

with

- « V  = 0 (1.45)

2 2m I d
«  = j r \ E  I (i.46)

and it is evident that the boundary conditions cannot be satisfied for a linear combination o f the 

standard solutions e™ and e 0*. This implies therefore that E >  0. Setting

2m „
p  = ~ r E  (i.47)

then

dx

with the solution y/ = sin kx. From the boundary conditions it is clear that sin kLx = 0, implying 

that kLx = nx7u ,n x = 1, 2, 3 . . . .  Therefore

= ^ T 7 T -  d-49)2mLx

compare with Eq. (1.23).

The energy dispersion relation for the two unconfined directions, y  and z, can be given to first 

approximation by the free electron dispersion relation, thus

n2Ekyt' = j - f { k l + k l )  (1.50)

The total energy of each state for the quantum well depicted in Figure 1-16 is therefore

h27T2n2x h 
2m* L2 2m
h n n2 h2 (. 2 11\ ,  o  ^

£ »= ^ - . ,2  + —  \k y + k z )  ” x =1.2,3... (1.51)
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In the two dimensional k-space spanned by ky and kz, the Fermi surface is a circle of radius kf 

centred on the origin (where ky = kz= 0). The circle has an area of i ik 2 and with two electrons per 

k  point o f area {2rif then the total number of electrons contained within the Fermi circle is

n k 2f k l
N = 2T u =^T- O'52){ i n f  2n

The number o f orbitals per unit energy, Dk k (Ek k ) , otherwise known as the density o f states of 

the yz-space is

dN  1 <
Dkyk2 (Ekyk2) -

( 2m*Ek k ^

dEu b 2n dEi f t
m

*  a 5 3 )

an expression independent of energy. For the total ‘two dimensional’ density o f states, it must be 

realised that each quantum state i.e. each discrete eigenstate o f En , has a state density o f m*l nh2

in the.yz-plane. Therefore, the total 2D density of states DX{EX) is
*

= (1.54)
K* „x

using the Heaviside step function 0{EX -  E n ) (introduced in Appendix III, Introduction to 

Green’s Functions). DX(EX) is illustrated in Figure 1-18.

2
3
o
&w
e
a

En Eu
Energy

Figure 1-18 Density o f  states for a 2-dimensional quantum well. Continuous energy spectrum 
along y- and z-axes, confined along x-axis only

For a quantum wire, carrier confinement is in two dimensions, say the x- and y- axes, and as such, 

the travelling plane-wave wave function is only able to propagate along the z-axis. In this way

17

2m

n 2 A
+  —  

L2 L2
n2k 2
2m*

+ nx,ny = 1 , 2 , 3 . . . ( 1 .5 5 )
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1 .4  In t r o d u c t i o n  t o  Q u a n t u m  C o n f i n e m e n t

analogous to the case o f the quantum well.

To access the density of states a little more thought is required, the Fenni surface now a single k 

point, kf, necessarily equal to kz and so o f ‘volume’ 2k. Representing the k-space volume ‘within’ 

this Fermi surface as Vt , then

dN
A , (**.) = dEkz 

2 dVkt 
I n  dEk

1 dVkt dkz 
n  dkz dEk

1 I m*
7th1 \  2 Ek

(1.56)

as dVk̂  / dkz must equal 1. Each quantised state has a state density of Eq. (1.56), therefore the 

total ‘one dimensional’ density of states is

= z j l ( E v m- E v / ^  “  E"-”’ )
(1.57)

as illustrated in Figure 1-19.

Q

aSA
o
£»5a«
O

Energy

Figure 1-19 Density o f  states for a 1-dimensional quantum wire. Continuous energy spectrum 
along z-axes only, confined along jc- andy-axes.

For the quantum dot, the electrons are confined in all three dimensions and no ‘free’ propagation 

is permissible. In this way the quantised total energy is

/  2 ^2 _ 2

=■xy
2m*

n \  n y n l

Ll L l L2
nx,ny ,nz = 1 , 2 , 3 . . . ( 1 . 5 8 )
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and the ‘zero dimensional’ density of states is described by a series of delta functions at the 

energy locations of the discrete eigenstates. Thus

( E ^ ) = 2 £  ) (1.59)
nxnyn2

as can be seen in Figure 1-20.

Q
5
CQ

O
6  'SH4>
Q

------------------- F------------------- 1------------------- 1--------------------1--------------------1
E112 ^ 1 1 3  £ 1 1 4

Energy

Figure 1-20 Density o f  states for a 0-dimensional quantum dot. Confined along all three axes.
No continuous energy spectrum -  electrons only supported in the discrete energy levels.

On each reduction of dimensionality, the energy and state density becomes more precisely 

defined, giving rise to enhanced charge carrier transport and optical properties.

Quantum wells pave the way for semiconductor lasers of far greater efficiency than the traditional 

diode laser, the location of its charge carriers more concentrated. Furthermore, merely by varying 

the depth and width of the well, the wavelength of the emitted light can be precisely tuned.

Quantum wires offer vastly superior conductivity and lower weight to their macroscopic counter 

parts. It is even feasible that bundles of nanowires could be manipulated to form a macroscopic 

‘rope’, electrons readily tunnelling between individual nanosized quantum wire strands, 

transferring the quantum characteristics into the every day world.

Quantum dots can be used to form semiconductor lasers superior not only to their bulk versions, 

but to even quantum well lasers. They could be used to form the next generation of super- 

efficient photovoltaic cells [38], their spatial confinement increasing the efficiency with which the 

energy of incident photons can be converted to electrical energy. They could act as biological 

sensors, biological tags in the detection of tumours, LEDs, have roles in quantum cryptography
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and quantum computing, as well as all the previously mentioned uses, from data storage to 

chemical catalysis, and a plethora o f applications in addition to these.

It is indeed true to say that quantum confinement heralds a revolution in solid state physics that 

will have far reaching consequences.
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1.5 Conclusions

This Chapter introduces the topic of charge writing and discusses the aims of this work and the 

rational behind it. It highlights the achievement of the Semiconductor Interface Laboratory in 

demonstrating charge writing on a SnC>2 nanocrystalline film, and indicates that while progress is 

being made in understanding this novel procedure through experiment, the knowledge of 

underlying physics behind this phenomenon is comparatively in its infancy.

It offers a guide to the theories used and developed herein and their achievements. It informs the 

reader of the tasks necessary to simulate the electronic characteristics of the nanocrystals at 

dimensions where the semiconductor band bending does not fully evolve, requiring the self- 

consistent solution of the non-linear Poisson equation and the Kohn-Sham equations, with 

inclusion of the effects of the surface states, also self-consistently reconciled with the electron 

density.

It presents a brief introduction to the basics of solid-state physics required to understand the work 

developed within this treatise, and introduces the consequences of confining the degrees of 

motion of the electrons within the semiconductor on the energy spectrum. It discusses the 

accompanying density of states for each reduced dimensionality and degree of quantisation.

3 6



Chapter 2 Surface States and Band Bending

This Chapter begins the development of the models of this work. It introduces surface states and 

their band bending effects, and lays down the simplest model of the conduction band o f a small 

nanometric Sn02 grain and the numerical techniques necessary to solve it. It also contains 

lengthy diversions into the topic o f gas sensing, the customary application of these polycrystalline 

tin dioxide surfaces, both as a means to compare the effectiveness of the developed numerical 

methods with results from literature, and for the insights into the electronic behaviour of 

nanometric particles this subject affords; invaluable in assessing the most efficient routes forward 

in the charge writing simulation.

Section 2.1 discusses the nature of surface bonds, their formation and their effect on the 

conduction and valence bands o f a semiconductor. The concepts o f depletion regions and surface 

barriers are introduced, and a more quantitative description of the effects of surface charge and its 

effects is outlined through the conventional model of a metal-semiconductor interface. Fermi 

level pinning is introduced and the fundamentals of surface gas absorption are covered. The 

sensitivity of films of nanometric grains to reducing gases is then discussed, touching on sintering 

and possible conductivity mechanisms.

Section 2.2 introduces the non-linear Poisson equation and the boundary conditions o f the 

complete charge density model of literature with which to simulate the band bending at the gas- 

semiconductor interface.

In Section 2.3 numerical techniques to solve the non-linear Poisson equation are outlined. The 

Taylor series expansion method is developed and its effectiveness with respect to alternative 

methods discussed. The basic concepts of computational error are introduced. To solve the
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Poisson equation of Section 2.2 with its relevant boundary conditions, both the bisection and the 

shooting methods, to be used in conjunction with the Taylor series expansion technique, are 

developed, and their general efficiency with respect to alternative methods discussed.

Section 2.4 applies the developed numerical techniques to particular cases of SnC>2 nanocrystals 

and compares the results with those found in the literature. Through this, the depletion width 

concept is covered in more detail and the effects on the shape of the conduction band if  the grain 

is too small to possess a non-depleted region introduced. This flattening of the curvature of the 

conduction band for small grain sizes is then considered in terms of conduction through a gas 

sensing film, and a very simple model for the sensitivity of such films (purely illustrative of 

trends and not to be considered exact) when the conduction process is dominated by transport 

over Schottky-like barriers is developed. The experimentally observed increase in sensitivity of 

gas sensing films on diminution of grain size, and in particular below R = 10 nm, is discussed 

both in terms of the conduction band movement and also with regard to the effect o f surface states 

on Fermi level unpinning and the movement of the surface barrier height.

Section 2.4 presents a summary of the Chapter; its important results and their implications for the 

development of the charge writing model.
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2.1 Surface States and the Bending of the Conduction Band Bottom

During the introduction to solid state physics o f  Section 1.2, one important facet o f semiconductor 

crystals was neglected -  the presence and effect o f surface states. Surface states form, as may be 

expected from the name, at the surface o f the semiconductor lattice, created by ‘dangling’ bonds 

from the crystal. These are the free bonds o f the surface semiconductor atoms, available due to 

the disruption o f the regular lattice repeating pattern caused by the physical edge o f the material. 

These atoms, or rather ions, are no longer surrounded on all sides like their compatriots in the 

‘bulk’ o f the semiconductor as illustrated in Figure 2-1.

Figure 2-1 Schematic illustration of'dangling ' bonds (denoted by electron cloud) at the 
surface o f a lattice.

Electrons promoted from the valence band and donor levels can become ‘trapped’ in these surface 

states, and as such, electrons can be thought o f as draining from the conduction band into these 

states, the conduction and valence bands bending as a result. When equilibrium is established, a 

surface barrier and a positively charged spatial region are formed -  see Figure 2-2, and a 

neutrality level can be defined from the surface value o f the conduction band and the lowest 

occupied surface state. The Fermi level now lies within the surface states.

3 9
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Figure 2-2 Illustration o f  the (a) flat band model o f  conduction and valence bands (b) surface 
state model in electrical equilibrium, the electrons having transferred from the conduction band 
into the surface states forming a surface barrier S* and a charged region depleted o f  electrons A 
(depletion width). The Fermi level now lies within the surface states, and a charge neutrality 
position, $), can be defined as the energy gap between the lowest surface state and the position 
o f  the conduction band at the surface o f  the grain. To correspond to the semiconductor o f  
particular interest in this work, S n 02, the semiconductor depicted here is n-type.

The effect and density o f these intrinsic states can be enhanced or passivated by surface 

interactions with the adjacent medium (unless, of course, the crystal is in a vacuum); be that as a 

surface exposed to reacting gases, as in the case of the gas sensor, or in metal-semiconductor or 

heterojunction interfaces. In the latter, states can be induced through disorder in the lattice at the 

junction, and in all by chemical bonding.

To see the effect of these ‘interaction’ surface states alone, neglecting the intrinsic states of the 

semiconductor, then as described by Tung [39]', in a modem reformulation o f the work of 

Bardeen [40], consider a metal-semiconductor interface where the work function of the metal is 

<bM and Xs the electron affinity of the semiconductor, as depicted in Figure 2-3. Let the band gap 

of the semiconductor at the interface have an induced surface density per unit area per electron 

volt of Nss with a charge neutrality position of The total charge at the surface of the 

semiconductor from these states per unit area is then eNss(Sb- <k) from Figure 2-3, where Sb is 

known as the Schottky barrier height".

I To be fair, it should perhaps be noted that Tung’s paper goes on to suggest that at the metal-semiconductor 
interface, it is not the presence o f  the traditional surface states o f  Bardeen that causes the formation o f  the 
Schottky barrier height, but rather polarised chemical bonds. In this work, this point is largely insignificant 
as the metal-semiconductor only appears in order to introduce the surface states o f  the gas-semiconductor 
interface, the presence o f  which are clearly accepted throughout the published literature.
II As <fio is greater than Sb in this case, the net charge in the surface states is negative, and as such, Nss act as 
‘acceptor’ states here.
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M etal Semiconductor

Ec
Ef

Ev

Figure 2-3 Schematic o f metal-semiconductor interface bandbending

This charge and its associated image charge in the metal, separated by a short distance S„, forms a 

dipole across the junction, creating a small voltage drop across the interface. The barrier height, 

or specifically, the Schottky barrier height is then

S„=t>M- X s -(Sk - ^ ) e 2ÊL(2-D 
*//

£,, being the dielectric constant o f the interface layer, and the interface voltage drop given by

V „ = -(Sb - ^ ) e E ^ L (2.2)

i.e.

S b = * „  ~ Z s + e V u

Defining the gap state parameter ygs as

7 gs
1 + e

2 K ssSlt

(2.3)

(2.4)

then Eq. (2.1) can be re-arranged to yield

S b = Ygs -  X s ) + (l -  Ygs Vo (2-5)

From this it can be seen that when Nss is very large, say in the limit ygs—* 0, then St,—* <fo- This 

means that the barrier height Sb is actually independent o f the type o f metal, and is a function 

purely o f the nature o f the surface states. Physically, this can be interpreted as the electron 

transfer between the semiconductor and the metal when the two interface not coming, as would be 

expected, from the semiconductor conduction band (the Fermi level situated at the edge o f the 

populated states in the metal and in the band gap or conduction band for the semiconductor, 

assuming it is /7-type at least) but from the surface states. Conventionally this is described as
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Fermi level pinning, since the position of the Fermi level is fixed relative to the surface position 

of the conduction band in this limit.

At the other extreme, when y > 1, when the surface charge is small, then Xs and the

barrier height is described by the traditional Schottky-Mott model of the metal-semiconductor 

interface. Any small changes in Ow, corresponding to contact with different metals for example, 

will be reflected in 5*.

The smaller the dimensions of the semiconductor, the greater the surface area to volume ratio of 

the sample and the larger the effect of these surface states. This has been exploited to the 

advantage of gas sensing; there has been much interest in the literature for example in the gas 

sensing abilities of Sn02 - Ref. [41] for instance focuses on the increase o f sensitivity of 

nanocrystalline tin dioxide gas sensing films over coarser grained films.

The increased reactivity of the ‘exposed’ surface of tin dioxide constituent atoms increases the 

likelyhood of gaseous atoms and molecules from the surrounding atmosphere being absorbed at 

the SnC>2 surface. Weak Van der Waals dipole-dipole interactions can cause physisorption, a very 

weak reaction and one unlikely to lead to any charge transfer between the gas particle and the 

semiconductor. Some gaseous species however can form a strong chemical bond with the 

surface, known as chemisorption, with charge transfer between absorbent (that which absorbs -  

the Sn02 crystal) and the absorbate (the absorbed substance -  the gas species). Ionosorption is 

specifically chemisorption with electron transfer to/from the conduction band, the absorbed gas 

acting as a surface state on the semiconductor donating/accepting electrons and as such, altering 

the surface electronic behaviour.

Oxygen species (e.g. O', 0 2') can be ionosorbed onto the tin dioxide surface, where they act as 

surface acceptor states. These create, or enhance, the surface barrier and cause a depletion layer 

(a spatial region depleted of charge carriers) to form, which can penetrate deeply into the 

nanocrystal. Exposure now of the gas sensor to a reducing gas, such as carbon monoxide (CO), 

acts to the reverse, releasing electrons into the nanocrystal and lowering the surface barrier by 

removing the ionosorbed surface oxygen.

It should be noted also that any charged chemisorbed surface complex will induce a dipole
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moment, as in the case of the metal-semiconductor interface, causing a voltage drop across the 

surface, V„.

The sensitivity o f a gas sensor is the ratio of its resistance in air and its resistance after exposure 

to the target gas. The SnC>2 gas sensing films comprise of a layer of polycrystalline grains 

through which a current is passed, electrons travelling across the interconnecting grain 

boundaries. Indeed, without interconnections, any current flow would only be possible through 

the surface states in physical contact, quantum mechanical tunnelling or thermionic emission. 

The interconnections form during one crucial phase of the nanoparticles manufacture -  annealing. 

Mentioned in Section 1.3, annealing (heating and gradually cooling) encourages the formation of 

oxygen vacancies, but also creates sinter necks -  the above-mentioned narrow joins at the grain 

boundaries. Kennedy et al. [42] report that the sinter neck growth can be described by

HR
^ s i r L =  k R n ~m^ R -n  (2.6)

dt

where Rsi„ is the radius of the sinter neck, R the radius of the particle (strictly before sintering, but 

assumed to be indistinguishable from is sintered size here) and the m and n exponents are related 

to the type o f diffusion forming the neck (lattice diffusion m = 3, n = 3.78, surface diffusion m = 

4, n = 5). The constant k  is dependant on several factors such as the surface tension, the diffusion 

coefficient o f the material and the temperature. Integrating, and imposing the boundary condition 

that at t = 0 no sinter neck exists, then

Rsin = ((« +1 )kRn~m+xt } ^  (2-7)

If it is assumed that the sintering parameters and conditions, including duration of annealing, are 

maintained constant over a range o f radii, then it can be inferred from Eq. (2.7) that the larger the 

grain, the larger the sinter neck, but the smaller the ratio (RsJ R )m. Therefore, the smaller the 

grain the larger the effect o f the annealing.

Regardless o f neck size, the sintering procedure vastly improves the charge transport process, Ref 

[42] reporting that for 35nm diameter samples the resistance before sintering of 700 kH drops to 1 

kQ afterward. The annealing procedure and the formation of the sinter necks can be considered to 

allow conductance through three general mechanisms [43], represented in Figure 2-4.

111 To see this, arbitrarily choose m = 3,n = 3.78 and set tk to lxlO-6, then for R = lnm, Rsin = 0.448nm and 
so RSJ R  = 0.448, and for R = lOOnm, Rsm = 2.49nm and therefore RsilJR = 0.025.
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(a) (b) (c)

Figure 2-4 Illustration o f the three conductance models for charge transport between 
two sintered grains (a) Open neck (b) Closed neck and (c) Schottky barrier

The first, Figure 2-4(a), has a junction described as ‘open’ necked. The grain conductivity is 

largely that o f the region un-depleted o f charge carriers in the centre o f the neck and would be 

determined by the energy required to promoted electrons from the donor vacancies (referred to as 

the activation energy) and the area o f the 'effective’ channel connecting the grains. The second 

scenario, illustrated in Figure 2-4(b), is a closed neck junction. The depletion zones o f the grains 

overlap, isolating the non-depleted regions o f each grain. This is a higher resistance case than 

Figure 2-4(a) and can be caused by less complete sintering or surface state depletion o f electrons. 

The conductivity would be a function o f the activation energy o f the surface states and the 

occupancy o f those surface states. The third diagram, Figure 2-4(c) is that o f a Schottky-like 

barrier, charge transport having to occur 'over’ the surface barrier.

The dominant process would depend on the size o f the constituent particles, the degree o f 

sintering and the type o f film. Thick (or porous) films (> lpm ) would allow all three mechanisms, 

while only the first two would be prevalent in thin film sensorslv [43]. Conduction through the 

films is a complicated process however, with more than one 'type’ o f contact in evidence. 

Structural inhomogeneities may even offer lower resistances 'paths’ through the film and fine 

porosity may limit the penetration o f gas into the sensor, defining domains, such that conduction 

between these domains forms the dominant transport process. Consequentially, an exact model o f 

the conduction process is complex indeed, if not impossible.

,v Although it is suggested by Beekmans [44] that, even in open/closed neck conductance, intergrain barriers 
may have a role to play. It is proposed that the poor alignment o f the crystal lattice between adjacent grains 
will give rise to a barrier within the sinter neck.
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Nonetheless, for all three mechanisms it is clear that the greater the charge in the surface states the 

greater the resistance of the film, the surface states acting to deplete the grain of its mobile charge 

carriers, and for the Schottky mechanism, also forming a surface barrier which the electrons must 

overcome to conduct. As such, the smaller the grain, the greater the influence of the surface states 

and the more sensitive a gas sensor made up of such small grains becomes.

Furthermore, it has been reported [41,42,45,46,47] that the sensitivity of the sensing film 

increases with the decrease of grain size, particularly below a diameter of ~20nm [41,42], at a rate 

greater than that which would be expected from the increase in surface area to volume ratio alone, 

and it has been suggested that this might be evidence of a certain amount o f Fermi level 

unpinning [31]. To understand this, consider that as the volume of the grain diminishes, then 

although the surface area to volume ratio increases, the actual density of occupied surface states 

must decrease to maintain the neutrality o f the grain. Thus from Eq. (2.4), as the surface charge 

density decreases ygs will increase. Examination of Eq. (2.5) reveals that

SS L
r s s = ^ r -  (2-8)

ergo, as ygs increases, so does the dependence of the surface barrier height on the work function of 

the environmental gas. If the dominant conductance mechanism in the film is over the Schottky- 

like barriers, then the sensitivity o f the semiconductor sensor will also increase. As the barrier 

height is now able to change, then evidentially, the Fermi level also has more freedom to move in 

response to the ionosorption of the target gas and it is said to become ‘unpinned’.

To summarise then, surface states arise from the free or ‘dangling’ bonds of surface ions o f a 

lattice. These states can be enhanced by chemical bonds; for example by chemisorbed oxygen 

species bonding with the surface o f a tin dioxide nanocrystal. Electrons can be thought o f as 

draining from the conduction band into these surface states, giving rise to a surface barrier and a 

spatially charged, or depleted, region extending into the semiconductor. For nanoparticles of 

semiconductor, if  the sinter neck between adjoining grains is sufficiently small, then transport 

across this surface barrier is the dominant conduction process between the grains. As such, the 

sensitivity of a gas sensing film composed of such grains is dependent upon the response of this 

barrier to changes in the environmental gasses. It can be seen that the lower the density o f surface 

states the freer the Schottky-like barrier height becomes to move. This is often referred to as the 

unpinning of the Fermi level. Indeed, regardless of the exact conduction mechanism, it is the 

surface states which, as a general rule, control the sensitivity of the sensor. The smaller the
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grains, the greater the surface area to volume ratio and the larger the effect these states have over 

the electronic behaviour o f the grains.

A detailed treatment of the band bending cause by these surface states in the nanoparticle regime 

follows in the next two sections.
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2.2 The Complete Charge Density Model (CCDM)

Inherent in any theoretical model o f a physical system such as this, there is some level of 

approximation. Here it is assumed that the quasi-spherical grains are completely spherical and 

uniform enough in composition that experimentally measured quantities such as Sb and nd have 

meaning for the model. In this way, a complete charge density model (CCDM), similar to that of 

Malagu et ah [15], can be applied to one spherical grain and its properties can be taken as 

representative o f those of all the nanoparticles on the film. In keeping with the literature, any 

effects of strong sintering are neglected, and electron transfer between grains is taken to be 

dominated by the Schottky-like surface barrier.

As mentioned previously, Sn02 is an w-type semiconductor due to the presence of oxygen 

vacancies in the lattice structure. It has a wide direct band gap, between ~3.57eV [48] and 3.86eV 

[ 4 9 ] and as such it is practical to represent its charge density as

p{r) = e nd -  N clf t1/2
Ef  ~ Vp(r )

k BT
(2.9)

using the expression for the bulk electron density in the conduction band, Eq. (1.34), and where 

the bottom of the conduction band is given by the potential vp(r), see Figure 2-5. nd represents the 

ionised density o f donors at the operating temperature of the sensor, and the Fermi level is chosen 

as the energetic minimum of the system i.e. Ef  = 0. The potential itself will follow from the 

solution o f Poisson’s equation (see Section 5.2 for a derivation o f this)

ep{r) (2 .10)
0

although, being a variable o f the charge density, Eq. (2.10) is a non-linear equation, complicating 

the matters of its solution; this will be addressed in Section 2.3. The usual Poisson ‘potential’ cp 

o f Section 5.2 is related to vp(r) by cp{r) = - vp(r)/e (the potential (p{r) not to be confused with the 

charge neutrality position $>).

I The difference in the measured values o f  the band gap probably due to stoichiometric issues as the number 
o f  oxygen vacancies may vary between manufacturing processes [49].
II Maffeis et al. [31] report a surface band gap o f  ~2.5eV on their nanocrystalline particles, suggesting 
perhaps the influence o f  surface states altering the ‘bulk’ properties.
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E
eV,

0

O R

Semiconductor Gas

Figure 2-5 Schematic o f S n 0 2 gas-semiconductor interface

The boundary conditions o f the differential equation require that at the surface o f the grain the 

potential is equal to the surface, Schottky-like, barrier height Sb, and that being spherically 

symmetric, the gradient o f vp at the origin must be zero i.e.

v P( R ) = S h

dv.

dr

(2 . 1 1 )

r=0

The gradient o f the conduction band at the grain boundary forms a measure o f the electric field 

across that boundary, and, as such, can be used to determine the charge in any surface states (see 

Section 5.2); defining the occupied surface state density N s as the uniform charge per unit area on 

the grain surface (hence avoiding the complicated issue o f ascertaining the neutral level o f  the 

surface states (see Tung [39]) as would be required if Nss, the charge per unit area per electron 

volt, were used) then

N . = - W r  d v r

dr
(2. 12)

r = R

N s also includes the ‘intrinsic’ surface states, neglected in Nss.

Therefore, solving the non-linear Poisson equation Eq. (2.10) in conjunction with the boundary
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values Eq. (2.11), given an experimentally measured Sb and nd for the required operating 

temperature, then the band bending and surface state density Ns can be assessed.

Importantly, this band bending will remain in evidence whilst the oxygen species remain 

chemisorbed; once the surface states form and the band bending develops the removal of the 

surrounding gas e.g. placing of the grains in a vacuum, will not affect the band structure. In this 

way the nature of these surface states will play a pivotal role for any grains prepared in an oxygen 

rich environment, even if they later go on to be charge injected in a vacuum. Hence, this 

modelling of the gas-semiconductor interface and assessment of the formed surface states is not 

limited in relevance purely to gas sensing issues, but key to the simulation o f the charge writing 

process.
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2.3 Numerical Methods for the Solution of the Non-Linear Poisson 

Equation

The Poisson equation, as given by Eq. (2.9), is non-linear; that is to say that the dependence o f the 

right hand side o f the equation on cp means that it is not a linear differential equation in q> and its 

derivatives. This equation does not have a simple analytical solution and numerical techniques 

must be employed to determine q> subject to the boundary conditions given by Eq. (2.11).

2.3.1 The Taylor Expansion Method

The first stage in this process is to develop a method to solve Eq. (2.9) assuming that both <p(0) 

and d(p/dr\R=0 are known, dq>!dr\ taking its usual value from Eq. (2.11). As such, let the

spatial region o f interest be divided into a 1-dimensional mesh of N  evenly spaced points, 

separated by a distance A and beginning at zero. It is then possible to evaluate a continuous 

function /  in this discrete space about each lattice point in terms of its previous values; /  can be 

evaluated at site ri+h abbreviated here as f+\, by expanding it as a Taylor series about the site r,

fi+1 ~ f i + &f!  + —  f ”+ —  f ! ”+ —  f i 'v + —  f , v + " '  (2.13)

/ '  denoting the first derivative o f /  with respect to r and so forth. By similar means it is also 

possible to evaluate/ at rt.\

/,-> = /, (2-14)

In the determination of Vp, once vp and vp are known on a particular mesh point, vp" can be found 

from the Poisson equation

X f  \  2 t ,  N e P ( V p  ) //) | f \v’ (r) = — v ’ (r) + ------ p—  (2-15)
r s

For the remainder of this section, vp will be represented as v, the position o f the p  subscript 

sequestered to represent the mesh site at which the potential is being evaluated on.

On the first mesh point, i = 0, the radius is zero and the values of v0 and Vq , and so v£, are known 

from the boundary values:
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and

v0 = a
v ; = o  (Z ,6 >

, = ep0(a)  (21?)
£

The values of vx , v[ , and v” are a little more difficult to obtain. For v on rx adding the two 

Taylor expansions Eq.’s (2.13) and (2.14) yields

f M + = 2 / ,  + 2 ^ f ? + 2 ^ f "  + . . .  (2.18)

Realising that f \  = / i  in this symmetry and letting / = v then

Vl =V° + Y V°" + E  (2*19)

where v0 and Vq are both known from Eq. (2.16). The error in the expression, E, is fourth order 

in A and can be written
. 4

E = —  vo + o ( a 6) (2.20)

Subtracting Eq. (2.14) from Eq. (2.13) then

A3f M — fi-\ =2A/; + 2 ^  2 ^ - / ;  +. . .  (2.21)

Employing the symmetry about the origin, le ttin g / ' = v111 in Eq. (2.21) and substituting into Eq.

(2.13) with/ =  v', then

v ; = v '  + A v £ + £  (2.22)

where

£  = 4 v; + 0 ( a4) (2.23)
o

and the error is of third order, v” follows from v and v' in Eq. (2.15) and with the error in 

v( dominant, will also be in error to the third order in A (the effect o f the Mr term will increase the 

error in v" quite considerably near the origin, but less so at the further reaches of the mesh).

For the value of v and its derivates on the third lattice site, i = 2, expand about the second lattice 

site, / = 1 .  Rearranging Eq. (2.14) so that

f ' = E l A L  + ± .f - - ^ f r + ... (2.24)
A 2! 3!
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then le tting /' = v1" and substituting into Eq. (2.13) yields

v2 = v 1+Av1'+ A 2f | v 1' - i » ; j  + £  (2.25)

on le tting /=  v . E  is o f order A4 and given by

E = —  v'0v + o (a 5) (2.26)
12 0 v '

To maintain the error in the potential at fourth order, V2 is required with its error proportional to 

0(A 3). Setting/=  v' in Eq. (2.13) and/ '=  v111 in Eq. (2.24) implies that

v ' = v ; + A f | v ; - I v 0' l + £
V J (2.27)

e =— a 3 v;v + o (a 4)
12 1 v 1

with E  to third order as needed. The second derivative on / = 2, v” , again follows from Eq. (2.15) 

and with a 0(A3) error.

For the values of v and its derivates on the lattice sites / = 3 to N  similar approaches to the above 

can be applied. Again se ttin g /' = v,u in Eq. (2.24) and substituting into Eq. (2.13) then

v(+] = V/ + a v ; + a 2 v ; -  i  v;_ i j + ^  vf  + • • • (2.28)

Now let /  = V/" in Eq. (2.13) so that

v?=v?_t + Avl,  + ... (2.29)

and with Eq. (2.18) arranged so that

f w= fi+i ~ 2f i +  fi-\ f iv (2.30)
h  A2 1 2 Ji

then setting /" = vlv in Eq. (2.30) and using Eq.(2.29), Eq.(2.28) can now be written

. f 2 |19  if 5 ff 1 A
V,-., =  v, + Av, + A — v,.--------- v,_, + - vm  / / I 24 ' 12 M g ' 2 + E  (2.31)

where the fifth order error is

19E = —  A V + 0 ( A 6) (2.32)
180 ' v }

Letting f  = v' in Eq. (2.13) and substituting in Eq. (2.30) with/ "  once again set at vlv, then

v;+i = v, '+ a
^ . V" ~ V U + \ 2 V U \ + E  (2-33)
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where the error E  is given to fourth order by

e = — a 4vJ + o (a 5)
0 /1  1 v >

(2.34)

As usual v" will follow from Eq. (2.15) with E  proportional to 0(A4).

In actual practice the formulas for v and its derivative on i = 2, Eq.’s (2.25) and (2.27), are 

replaced with Eq. (2.31) and Eq. (2.33), exploiting the symmetry of the potential once more:

with E  given to fourth order by Eq. (2.34). In this way, the truncation error of the computed 

solution v is o f fifth order in A, although the first ‘starting step’ is of 0 (A4). Due to the very small 

gradient towards the origin, the effect of this lower order mesh point is minimal. Indeed, this can 

be seen on the density Nh calculated from the gradient of v at R through Eq. (2.12); on replacing 

Eq.’s (2.25) and (2.27) with Eq.’s (2.31) and (2.33) and so exchanging an error of 0(A4) with one 

o f 0(A5), the surface state density alters by a negligible 6 x 10^ %.

In general then, the truncation error of this method is comparable with the common Runge-Kutta 

methods (see for instance Kreyszig [50], although it should be noted that there are higher order 

Runge-Kutta methods available e.g. the Runge-Kutta-Felhberg method). The advantage the 

Runge-Kutta methods have over the Taylor expansion approach is both that they are self-starting, 

and that propagation errors (instability) are lower as each step is begun anew, all old information 

discarded. However, their disadvantages are that they are very computationally expensive (four 

derivative evaluations on each step compared with the Taylor method’s two -  extremely costly 

when this method is iterated within self-consistency cycles -  see Chapters 2 and 4), and relatively 

inefficient (discarding all old data on each step). In addition, while they offer exact solutions for 

polynomials o f degree less than or equal to four, about the origin they can be quite inaccurate, 

much less so than a power series method, see Hamming [51]. Consequentially, although one such 

Runge-Kutta method is employed by Ref. [15] to solve Eq. (2.10), they shall not be used here. 

Propagation errors arise through the computed solution differing from the exact solution and this 

difference being fed into the following computational steps, the total ‘propagative’ error gradually 

accumulating on each mesh point until site i = N  is reached. If unaware of the true, exact,

(2.35)

with E  given to fifth order by Eq. (2.32), and

(2.36)
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solution, this kind o f error if  difficult to quantitatively assess. However, the manipulation of the 

forms of Eq.s (2.19), (2.22), (2.31), (2.33), (2.35) and (2.36) to include significant quantities of 

data from previous mesh points to maximise efficiency has been deliberate. In particular, the 

decision to input this data in the form of the second derivatives i.e. A qV ^A jV ^  and A2v”_2, 

rather than through preceding values of the function v itself i.e. 5 0 v ,, j5 , v m  and B2v,_2, has been 

intentional. While the derivation of a specific relationship between truncation error (previously E, 

now designated the symbol E T) and the propagation error EP is unobtainable, it is certain that E T 

influences EP. If multiple v values are used per step, say n in number, then the accumulated error

at each step will be broadly proportional to nEj  i.e. 0(nA5). If however, multiple v" values are 

used per step, say n in number, then the propagative EP would be expected to be proportional to 

rtA2E f  i.e. 0(nA6), the 0 (A4) error of V  dominating over the exp{As) error through v.

A third kind o f numerical error arises through round-off errors during computation; for example

the fraction 1/3 becoming the computer’s truncated decimal 0.333......333. These are likely to be

negligible in comparison to the truncation error.

The number o f mesh points in a given interval is proportional to 1/A, and so in general, a 

computational method, such as the above, with a truncation error o f 0(A 5) is said to have a total, 

or global, error of 0 (A4).

While this Taylor expansion method has been specifically created for this problem and optimised 

by the author to deliver high accuracy and stability over quite large meshes against computational 

speed, there is a family of Taylor expansion based methods in the literature (see for example 

Hamming [51]), known as the Predictor-Corrector methods, already ‘tuned’ for a balance between 

truncation accuracy and stability. These equations use one expression to estimate, or ‘predict’, 

the required value o f the function at the /+ 1 th mesh point, typically using several values from the 

prior i, i-1, i-2... mesh points, usually those of/ and/ ' .  The next action is to use a second series 

expansion expression, which like first, uses preceding data but crucially uses the first estimate of 

the function value on the /+ 1 th mesh point to create an improved, or ‘corrected’, evaluation of that 

same point.
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These methods are also not self-starting but require the initial mesh points to be assessed via 

alternative means (Taylor expansions or Runge-Kutta methods). Applying the Adams-Moulton 

Predictor-Corrector, global error of 0 (A4) as described in Kreyszig [50],

P m  = / ,  + ^ ( 5 5 / 7 - 5 9 / , : ,  +37 / / _ 2 - 9 f U )

Cm  = / ,  + ^ P ' m  + 1 9 // - 5 /A , + f U )  (2.37)

fi+l = C i+1

to Eq. (2.10), with the derivative of the predictor given by

p 'm = Pm ^ L  + A
A J / ; - T + (2-38)

calculated via the usual Taylor expansion approach as shown below in footnote [i] o f this section, 

then below -60  nm on a 250 point mesh for Sb = 1.35 eV and n<j = 1 .5 x l 0 24m'3, there is no 

perceptible difference between N, ascertained with this or with the Taylor expansion method. 

After this point, errors do begin to appear, growing to -0.15 % by 70nm and -0 .6  % by 144nm -  

the radius at which the Taylor expansion method fails to converge. Convergence is possible for 

another 4nm using the Adams-Moulton approach.

However, the predictor-corrector method is slightly computationally more expensive than the 

Taylor expansions, involving twice as many evaluations of the potential and one extra evaluation 

of the first derivative for each mesh point. When used in conjunction with the charge balance 

equation (see Chapters 5 and 6 ) to recreate the results of Figure’s 6-1 and 6-2, it is found that it 

does not perform as well as the Taylor method. At lOOnm its N, lies 0.2 % above the Taylor

1 From Eq. (2.13)

which, with the use o f  Eq.(2.24) and Eq. (2.30) to estimate the third and fourth derivatives o f/  respectively, 
can be written as

- p M + i / « ) + i ^ AS/’ + -
Also from Eq. (2.13) le t t in g /= /'  and again employing Eq.s (2.24) and (2.30) it is possible to derive 

K , = / / + A ( f / - - i / ' + A / .2) + I | Â + ...

Ergo,

K , = ^ + A ( i / ; - | i / ' 1+ ^ / ' 2) + 0 (A^
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expansions rising to 3 % above by 600nm, but this is the last point of convergence possible with 

the Adams-Moulton method, and generally, its performance within this range is more 

temperamental than the alternative. This could possibly be due to the increased truncation error 

for larger radii (following from the increase in mesh spacing) contributing to greater instability 

owing to the extra computational steps. Consequentially, it is the Taylor expansion method that 

has been used throughout this work as being the best all-round method to solve the Poisson non­

linear differential equation under these circumstances and operating parameters.

2.3.2 The Bisection Method

Having decided on a means to solve the differential equation Eq. (2.9) the problem now becomes 

solving it with the relevant boundary conditions of Eq. (2.11), as opposed to the pseudo-boundary 

values assumed through Eq. (2.16), the value of the potential at the origin, Vo, o f course not 

known.

Aquainted with the required value of v on the radius of the grain (Sb), if its initial value is 

estimated, e.g. as a, and using the known initial value of the first derivative of v, then running the 

chosen Taylor series method over the mesh, the computed value o f v(R) compared to Sb will give 

an indication of the accuracy of a. This is the essence of a ‘shooting’ method.

To solve Eq. (2.9) with Eq. (2.11) then three widely spaced first estimates of v’s initial value are 

chosen: a\, a2, and a 3. A ‘shoot’ with each is then made, running the Taylor expansion method 

over the mesh from 0 to R; the two ‘shoots’ which lie either side of, or ‘bracket’, the known value 

o f the potential at R  are then selected and the mid-point of their starting values calculated. This is 

then used as the starting point of another shoot, discarding the redundant data of the non­

bracketing shoot from the first three shoots. From here the procedure is repeated; the mid-point 

of the two initial conditions whose shoots bracket the known end point are used to produce 

another shoot, and so on until the initial value paired to the required end value is found to the 

required precision. This is demonstrated schematically in Figure 2-6.

This method of halving the interval known to contain the initial value generating the required end 

value is essentially an application of the bisection method, the zero point of the function

F ( a )  = v ( R , a ) - S b (2.39)
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being sought, the potential v’s initial value a  the variable. Some authors prefer the Newton- 

Raphson approach11 [52], perhaps feeling, as does Ref. [50], that the bisection method is slow. 

However, as detailed in Hamming [51], although the final rate o f convergence is faster with the 

Newton-Raphson method, it is often the initial rate o f convergence that is most important and 

determines the overall speed at which a solution is achieved. In this, the bisection method leads.

rO RrO R

O rR

1st Iteration 2nd Iteration wth Iteration

Figure 2-6 Representation o f  the Shooting-Bisection method. 1st iteration: three shoots from the three 
initial values a u a2 and or3. 2nd iteration: mid-point o f two bracketing shoots (from a\ and a 2) used 
for new shoot (highlighted in red), a 3 shoot discarded. /7th iteration: process repeated until v(R, a„) 
equals Sh to required precision.

The Newton-Raphson method would also require the computationally expensive evaluation o f 

dF/da , and is likely to be slow in converging if |dF/da  | is very small near F  = 0. If F  = 0 is an 

inflection point in F, as is quite likely, then the Newton-Raphson method can run into 

convergence problems [51], while the bisection method is very robust. This bisection method is 

also used in Chapters 5 and 6 for an additional purpose: finding the point o f charge equality 

varying the ionised donor density or Fermi level. Here, the sturdy nature o f the method is even 

more significant, discontinuities frequently present in what is often a quite ill conditioned 

function. This is discussed in more detail in the relevant Chapters.

Employed together to solve Eq. (2.9) with Eq. (2.11), the Taylor-bisection methodology has a 

global error o f  0(A 4) and usually takes between 20 and 25 iterations to achieve a computed value 

o f v at R accurate to within 5*1 O'6 % o f its specified value. Detailed discussions o f the results o f 

the solved Poisson equation are to be found in the next section, Section 2.4.

11 Often simply called N ew ton’s Method.
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2.4 The Complete Charge Density Model (CCDM) as Applied to 

Spherical Sn02 Nanocrystals

This section assesses the developed numerical techniques and appraises the merit of the complete 

charge density model against the available Sn0 2 gas sensing data.

On solving the non-linear Poisson equation Eq. (2.8) via the methods o f Section 2.3 for the 

conduction band bottom, setting Sb to leV and nd to lx l 0 25m'3, then, at room temperature and 

with a grain radius R  of 50nm, Figure 2-7 results.

1.00 n

0.75 -

_  0.50 -

0.25 -

0.00
40 45

-0.25
r (nm)

Figure 2-7 Plot o f  conduction band bottom, vp(r), from the Taylor-Bisection method solution o f  the 
non-linear Poisson equation for a R = 50nm S n 0 2 nanocrystal. Sb = leV , nd = l x l 025m'3, room 
temperature.

The density of states permittivity s ^ 0 has been set at ~10"10Fm ' 1 [43] from s±= 14e0 and £\\ = 9e0 

[53], and likewise for the density of states effective mass, m* = 0.275/wo from m*L = 0.299m0 and 

m\ = 0.234m0 [54]. The energetic zero of the system is the position of the Fermi level.

As would be expected in a grain of this size there is a considerable flat band region where

= N rgr,1/2 k BT
(2.40)

extending from the origin to Rq, where Rq ~ 36nm, and a space charge region, a region depleted of 

charge carriers the electrons having moved into the surface states, extending from Rq to R.
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N a n o c r y s t a l s

Conventionally [15] this depleted region, A, or potential extinction length, is considered to 

comprise of two distinct parts, a region which is almost depleted A' and the Debye length1 XD. 

The total depletion width is the distance from the grain edge to the point at which p -  0; at this 

point the electron density is considerable and such that it equals the density of donors, however, 

the region of space up to this point is also considered to be depleted of electrons. To resolve this, 

the depletion width A' is defined as the region o f space over which the electron presence can be 

taken as negligible and the Debye length, given by

. s 0s .T
Ad = , H V -  (2.41)

e2n

with the electron density n set at nd according to Eq. (2.40), describes the spatial region of 

intermediate charge between the A and A'. At room temperature, for Sn0 2 with an ionised donor 

density of lxlO 23 m ‘3 to 1.5xl025 m*3, then the Debye length will lie between 12.1nm and 0.9nm. 

From this definition of the depletion width, if A » XD it is implied that a reasonable approximation 

of the band bending can be made by totally neglecting the mobile charge carriers between R0 and 

R, Eq. (2.8) becoming simply the linear Poisson equation

e n
V \ ( r )  = -------------------------------------------------- (2.42)

which can be analytically solved. This approximation is known as the depletion approximation 

(DA) and is put into use in Chapter 6  and briefly in Chapter 5.

Returning to the complete charge density model, if the grain radius R  is now reduced below the Rq 

o f the R = 50nm case, say R  = 5nm, then maintaining Sb and nd, Figure 2-8 results. The conduction

1 The Debye length is a quantity from plasma physics. In order to understand what the Debye length is, the
reader must know a little about plasma. A plasma is defined loosely as an electrically conducting medium 
in which there are approximately equal numbers o f  positively and negatively charged particles. Each 
particle assumes a position such that the total force resulting from all the particles is zero, thus producing a 
uniform neutrally charge state. If a negative particle, say an electron, is displaced from its equilibrium 
position, the equilibrium position itself takes on a positive charge and exerts an electrostatic attraction on
the electron, causing the electron to oscillate about this equilibrium position. As the interaction between 
electrons is strong in this phase o f  matter, they w ill oscillate collectively at a characteristic frequency 
depending upon the nature o f  the particular plasma; these are known as plasma oscillations. A time t  is 
required for such an oscillation and the Debye length, Xp, is the distance travelled by the average thermal 
electron in time t/ 2 ti. A plasma can be more precisely defined in terms o f  this parameter as a partially or 
fully ionized gas in which constituent electrons may complete many plasma oscillations before they collide 
with an ion, and that inside each sphere with a radius equal to the Debye length there are many particles, 
and finally, that the plasma itself is much larger than the Debye length in every dimension.
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Figure 2-8 Plot o f  conduction band bottom, vp(r), from the Taylor-Bisection method solution o f  the non­
linear Poisson equation for slR = 5nm S n 02 nanocrystal. Sb = leV , nd =1 *1025m'3, room temperature.

band bottom rises up in energy, the curvature of vp flattening. This has been reported and 

discussed in References [15,16,17] for example.

Consider now a gas sensing film. Taking the identical spherically symmetric grains to be in 

Schottky contact with each other, then for R > A, as schematically illustrated in Figure 2-9 for a 

chain of grains, the band bending in each is fully evolved and the barrier which the electrons have 

to overcome to conduct is eVs= Sb - vp(0), often called the built-in potential Vb.

R >  A

2 R 3 R

T a

Figure 2-9 Energy diagram representation o f  a chain o f  R>A sintered grains. 

The conductivity across a Schottky, or Schottky-like, barrier is given by
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G = G0e~eV,lkl>T (2.43)

G0 is generally treated as a constant, and is taken to be dependent on several factors including the 

electron mobility [55] and the electron density [55,56].

On reducing the grain radius such that the whole grain is depleted o f charge carriers, then 

flattening o f the band bending occurs, see Figure 2-10, and eVs = Sh - vp(0) is no longer the built-in 

potential Vh, but much lower in energy.

R <  AE

Sh

0
2 R 3 R

X

Figure 2-10 Energy diagram representation o f a chain o f R< A sintered grains.

This implies, from Eq. (2.43), that the conductance o f the film should increase, the barrier that 

must be 'overcom e’ for conduction to take place now lowered. Defining A D as the depletion 

width o f the smallest grain to be considered to possess both a depletion width and a ‘bulk’ region 

(see Section 5.6 for more detailed discussion about depletion width behaviour and the variation o f 

A with R ), then the conductance o f grains R < A D should be markedly better than those o f R > A/> 

Provided, o f course, that this ease o f conduction is not completely countered by the diminution in 

the number o f available charge carriers, grains R < A D not possessing an undepleted region o f 

semiconductor.

Band bending implies surface states within the confines o f this model, and the alteration in band 

bending behaviour will have a corresponding manifestation in the surface state density. In order 

to combine an investigation o f this and to simultaneously provide a validation o f the methods o f 

Section 2.4 (which is, after all, the main purpose o f this whole Chapter), this surface state 

behaviour will be compared directly with work published in the literature, namely Malagu et al.
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[15]. To do this a few extra conventions and approximations must be adopted to align the model 

developed here with that of the stated reference. The energetic zero of the system is now set at 

the bottom of the conduction band of a large, R  » A D, grain. The position of the Fermi level 

relative to this minimum is such that the conductive electron gas can be considered non­

degenerate and so the approximation Eq. (1.41) can be applied to reduce the evaluation of the 

Fermi-Dirac integral to the simple calculation of an exponential:

n = N ceiE/~Vp{r))lkBT (2.44)

The chosen work of literature uses the more conventional Poisson potential (p i.e. cp {r) = - vp{r)le 

and works with N„ the surface acceptor density, instead of the occupied surface state density N„ 

its negative.

Finally, it is assumed that the donor states are completely ionised and have a density Nd, which is

E  / k  T  Id  3equal to N d = N ce 1 B . Unfortunately, for Malagu et al.'s Nd = 5x10 m‘ (see also footnote 

[ii] of Section 6.1), this implies that the Fermi level lies only 0.0516 eV (<1 kBT )  below the bulk 

conduction band bottom, implying that the system is not non-degenerate, and as such, that the use 

o f Eq. (2.44) is inappropriate and could lie in error in excess of 5% [35]. Inverting the Fermi- 

Dirac integral directly using Nilsson’s equation [57], accurate to within 0.5%, supports this 

assessment, placing Ef at -0.0434 eV. Nonetheless, to test the accuracy of the methods o f Section

2.3, the non-degenerate approximation is still adopted.

At an operating temperature of 673K the value of potential at the grain boundary is set at V = - 

0.68V, and along with the donor density, is considered constant for all radii. In the new format 

Eq.’s (2.8) to (2.10) become

t j L  + l? V _  = ---- £_ (jv  #  e« * 'V )  (2.45)
dr r dr £Qs r

<p(R) = V (2-46)

= 0 (2.47)
r=0

£r£0 d(p

d(p
dr

N , = - (2.48)
r=Rdr

Solving these equations using the techniques outlined in Section 2.3, then for the radii R = lOOnm, 

30nm, 10m, and 5nm, the band bending o f Ref. [15] is recreated, as seen in Figure 2-11.
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Figure 2-11 Plots o f  the potential <p against the radial coordinate r for (a) R = 5nm (b) R  = lOnm (c) R = 
30nm (d) R = lOOnm S n02 grains at Vb= -0.68 V, Nd = 5><1024m'3, 673 K.

The q>{R) - cp{0) difference of the 10 and 5nm grains identical to the two decimal places o f Malagu 

et a /’s -0.13 V and -0.03 V respectively, and AD lies at the reported ~22nm. The surface acceptor 

density trend in the range 0.1 nm to lOOnm is plotted in Figure 2-12, and appears identical to Ref. 

[15]’s Figure 6 .

It can therefore be assumed that the methods of Section 2.3 are perfectly adequate to solve the 

non-linear Poisson equation for these kinds of dimensions and conditions. The use o f the non­

degenerate approximation to the electron density does not appear to have an undue effect, the 

discrepancy between the usual Fermi-Dirac integral version of Eq. (2.44) most apparent at larger 

radii i.e. when R > AD and the potential reaches its ‘bulk’ position (and therefore lying closest to 

the Fermi level). By R = lOOnm the Fermi-Dirac integral trend lies 3.5 % above the non­

degenerate approximation.
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7E+16

■f 5E+16

4E+16

1E+16

1 0 0

R  (nm)
Figure 2-12 Plot o f  surface acceptor density against S n 0 2 grain radius for the Malagu et al. [15] 
system: Vb = -0.68 V, Nd = 5><1024m'3, 673 K. The dotted line indicates the replacement o f  the non­
degenerate approximation o f  the electron density with the Fermi-Dirac integral based density. By R  = 
lOOnm this lies 3.5 % above the non-degenerate approximation

What effect does the behaviour of Figure 2-12 have on the sensing abilities of gas sensors?

Whilst Ns (-N,) is not equal to Nss, intrinsic states aside and assuming that Sb - is constant with 

respect to grain radius, then a decrease in Ns would certainly be reflected in Nss. As —► 0 so 

does Ns, implying that y^—> 1, and therefore dSb /<9®g -> 1. This means that changes in the work

function of the target gas (i.e. different gasses) will cause equivalent changes in the surface barrier 

height Sb. This will follow through to larger variations in conductance via Eq. (2.43), implying 

that the sensitivity of the sensor (Rajr/ Rgas) will be high.

As R —> oo and the grains have the properties of the bulk semiconductor, then Ns is large and ygs- ^  

0, implying that dSb /dQ>g —»0and changes in the gas work function will be poorly reflected in

corresponding changes in Sb. As such, the conductivity between samples in air and samples in the 

test gas will be similar and the sensitivity of the sensor low in comparison with the small R 

regime.

O f course, based on this, when the grains are exposed to air (forming surface states) then the 

surface state densities will be lower the smaller the grain, and so, importantly, with fixed ®g and
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fixedx" ,  the change in Ns with grain size implies a change in Sb given Eq. (2.1), now recast as

S b = O g - z s - e2—LJL (249)
£it

Over Figure 2-12 then, with a change in N, of ~ 5.7xl0 16 m ' 2 and a 5lt = 0.5 to 2nm (from the 

metal-semiconductor interface of Tung [39]), then between R  = 0 and llOnm, a AV  o f 0.046 to 

0.183V would be expected from Eq. (2.49) i.e. between 6.7% and 26.9% of F s  (Sb for the more 

usual terminology of this work) given value. A change in V (Sb) would generally be expected to 

affect grains more when R > A (and perhaps influence the value of A D itself) than when R < A111. 

If V increases in a region where it does significantly affect Nh then N, would also increase, ergo, it 

would be expected that the trend of Figure 2-12 below 22nm would not change, or rise only 

slightly, while that above would become noticeably steeper.

If Fermi level unpinning were in evidence, then it would be seen as a diminution o f Sb from large 

to small grains for constant Og. Indeed, Maffeis et al. [31] does observe such a decrease: 

1.4(±0.1)eV at R = 15nm and 1.3(±0.05)eV at R = 4nm, although with the experimental limits of 

error, this is not conclusive evidence. Based on Eq. (2.49), Sit = 0.5 to 2nm [39] and the work of 

Chapter 6  in assessing N„ then ASb between the two grains would be expected to lie between 

0.006eV and 0.024eV.

O f course, Eq. (2.49) is not itself exact, as the quantity of charge (S'* - <fb)Nss excluded the intrinsic 

space charge, and the total voltage drop caused by Ns, although a representation o f the total

II The determination o f  the electron affinity o f  Tin dioxide is not completely straightforward. Values o f  
S n 02’s work function range from 4.3eV [58] to 4.7±0.2eV [59]. It is a quantity very dependent on the 
preparation o f the sample. It can be inferred from the work o f  Kulger et al. [60] on Indium-Sn02 (ITO) that 
there will be a similar dependence o f  S n 02 on the cleaning method o f  the sample: ITO cleaned with Ne+ 
spluttering has O = 4.0eV while cleaning with H20 2 gives = 4.8eV. Batzill et al. [61] suggest a value o f  
®sno2 ° f  4.55eV for a sample cleaned with Ar+ and annealed at 900K, while Shen et al. [62] concludes that
the annealing process over the temperature range 300K to 1100K introduces a work function shift in Tin 
dioxide o f  between approximately +0.2eV and -0.7eV (using error bar extremes).

For this work, an estimation o f  the electron affinity is calculated from Eq. (2.49). Using the Schottky 
barrier heights as measured by Maffeis et al. [31] and an approximated value o f  the work function o f  a 
~0.9nm spherical Tungsten tip (<DW = 4.53eV for a Tungsten sphere o f  radius lOnm [63]), a value for the 
electron affinity is calculated at each iteration o f  the P-KS-CB method (see Chapter 6) from Eq. (2.49). 
Generally, Zsno2 can taken to be ~3.2eV.

III For larger grains where R > A, a change in V(Sb) will have a profound affect on the gradient o f  the 
potential at R, while for grains where R <  A, the significant ‘damping’ o f the exponential term in Eq. (2.45) 
over the whole o f the potential will reduce the impact o f  any changes in V(Sb).
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surface state density (inclusive of the influence of the intrinsic space charge), may not accurately 

allow for all the effects of the natural surface states.

Regardless of SbS movement, any decrease o f Ns will be seen as an increase in sensor sensitivity, 

and when the grains become completely depleted there would be expected to be considerable 

sensitivity enhancement. However, while the sensitivity of the sensing film will indeed increase 

with the decrease of grain size, if A ~  22nm for V= -0.68 and Nd = 5xl0 24 m ' 3 is representative for 

gas sensing films as a whole, then full depletion (R < 2 2 nm) would not seem to explain the 

notable increase in sensitivity below a radius of lOnm (the 20nm diameter o f [41,42]), nor the 

results of Ref.’s [45,46,47].

Notwithstanding the discussion of the complexities of conductance in a gas sensing films in 

Section 2.1, a simple qualitative evaluation of the sensitivity of the Malagu system can be offered. 

Define the sensitivity S  of a sensing film as the ratio of its resistance in air and its resistance after 

exposure to the target gas i.e.

S = ^ ~  (2.50)
R gas

or in terms of conductance

S = ^ -  (2.51)
Gair

Assuming narrow sinter necks such that the dominant conduction mechanism is over the surface 

barriers, then removing the electron density from G0 of Eq. (2.43) the conductance can be 

expressed as

G = G'nfllme-eV’lkBT (2.52)

where nf,im is the electron density o f the gas sensing film. This quantity will depend on the density

of the grains in the film and the amount of inter-granular space. While this o f course could be 

estimated if the packing configuration was known, since the film structure can be taken as 

constant across gas exposure, then assuming uniform grain size across a film, the relative electron 

densities can be expressed as the ratio o f the relevant grain electron densities. Therefore, Eq. 

(2.51) can be written

,e V ? r ! k BT  

eV,gas I k r T

n e a s eS =  — ------------ (2.53)
n a ,r e
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The action of the reducing target gas is to return electrons to the conduction band. Ergo, whilst 

this is clearly dependent on the type o f gas, its concentration in the atmosphere, length of 

exposure, speed of reaction, permeability o f the film to the gas and so on, the maximum possible 

sensitivity, independent of the exact reducing gas, is give by a total return of all the charge in the

surface states to the conduction band. This implies the disappearance of V fas, and as the donor 

density has been assumed to be constant across all sizes of grain and all donors fully ionised, then

p _ N deeV°ir,k*T
max

(2.54)

Hair and Vsa,r are simply the electron density and depth of well of the Malagu system. Figure 2-13 

plots this maximum sensitivity against grain radius, clearly implying that although flattening of 

the conduction band does improve the sensitivity, it does so for R  < 20nm, and contrary to a 

particular increase below a radius of lOnm, the sensitivity actually levels off. Naturally, the 

actual sensitivity would be vastly lower than this and gas dependent, but the general trend should 

still be relevant, neglecting that is any dependency of permeability, porosity and the like, in the 

film on grain radius.
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Figure 2-13 Plot o f the theoretical maximum sensitivity, Smax, against S n 0 2 grain radius for the Malagu 
et al system.

While not the main focus of this work, this sensitivity issue will be briefly revisited in Chapter 6  

and an alternative model presented rectifying this discrepancy between theory and experimental 

observation.
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Returning to Maffeis et al. [31], in addition to the surface barrier heights, the authors also 

measured the ratio of surface state densities, and place that o f the R  =15nm nanocrystals 5.90 

times greater than that of the R = 4nm nanocrystals. Applying the complete charge density 

method to their system, then the ratio predicted is 3.75,v indicating that some problem exists with 

this theoretical model.

A possible cause of this discrepancy is the neglect of quantum effects. As was seen in Section

1.4, spatial confinement causes the formation of discrete energy levels, and so a small enough 

grain is, in effect, a quantum dot. As a result, its density of states will mirror the delta functions 

of Eq. (1.58) and Figure 1-20, and not the smooth continuous profile of Figure 1-17 leading to 

the bulk expression for the electron density, Eq. (1.34), used here. The effect of the discrete 

energy levels, and the point at which this quantised behaviour diverges from its bulk counterpart, 

is the subject of the following Chapters, the charge written grains o f Figure 1.1 having a radius of 

4nm, and so likely to lie in the realm of the quantum dot rather that in the bulk, if the work o f this 

section can be taken to provide even a slight guide.

In summary then, whilst the numerical techniques of Section 2.3 applied to the non-linear Poisson 

equation of the CCDM appear to exactly recreate the results published in literature, accurately 

reproducing the theorised band bending flatting of R < A D grains, it appears that neither this 

decrease in well depth nor the proposed un-pinning of the Fermi level through the diminution of 

the surface state density quite explains all the characteristics of the experimentally observed 

sensitivity increase of gas sensing films as the radius of the grains diminishes, particularly below 

a radius of lOnm. Neither does the complete charge density model completely account for the 

measured surface state density ratio between 4nm and 15nm radius grains, predicting a ratio of 

3.75 compared to the observed 5.90. Ergo, it would appear that the CCDM as it stands is not 

sufficient to simulate the electronic characteristics o f nanometric Sn0 2 grains, and it is proposed 

that the effects of quantisation must be incorporated into the model.

The pinning or unpinning of the Fermi level and its effects on Sb are not precisely treated in this

IV The quoted ratio o f  3 for the theoretical value follows from the ratio between R = 5nm and R = 15nm 
grains, or, unfortunately as it appears from the following paper, Malagu et al. [17], between R  =  lOnm and 
R = 30nm grains, some confusion having arisen between the experimentalists’ diameters and the theorist’s 
radii. This radius/diameter error also appears to be evident in Malagu et al. [15] and after discussion with 
the experimental contributors, Malagu et al. [16].
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work. For the main results, see Chapter 6 , the error bars reflect the known uncertainty in the 

Schottky-like barrier heights from Maffeis et al. [31]’s work. For radii in excess o f R  =15nm this 

is likely to be sufficient -  for a bulk grain, based on Eq. (2.49) there is likely to be a maximum 

shift in Sb of ~0.13eV from that of the smallest sample, only 0.03eV greater than that allowed for.
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2.5 Conclusions

This Chapter saw the first steps along the path to developing the models necessary to simulate the 

electronic structure of a nanometric grain during charge injection.

The surface states of semiconductor were treated. These states form from the free ‘dangling’ 

bonds o f the semiconductor lattice ions at the edge of the lattice, these ions no longer surrounded 

on all sides like their fellows in the bulk o f the semiconductor. The drain of electrons from the 

conduction band into these states causes the conduction and valence bands to bend and results in 

the formation of a space charge, or depletion, region and a surface barrier. A qualitative model o f 

this is developed using a metal-semiconductor interface and the relationship between the surface 

barrier and the surface states is investigated. This includes mention o f ‘Fermi level pinning’ 

where a large quantity o f charge trapped in the surface states renders the interface independent of 

the type o f metal (or gas), the surface conduction band fixed relative to the Fermi level by the 

surface charge. The gas-semiconductor interface is then discussed, along with the formation of 

surface states by the chemisorption (strong chemical bonding) of oxygen species on the SnC>2 

surface. Once formed, unless the oxygen species are removed by a reducing gas and the electrons 

returned to the conduction band, these surface states and surface state induced band bending will 

remain, even if the grains are placed in a vacuum (as in the charge injection process for example), 

and so their detailed treatment is essential for the objectives of this work.

To model the bending of the conduction band due to these surface states, the non-linear Poisson 

equation complete charge density model of the literature is introduced, and a suite of numerical 

methods created to solve it. The ODE is discretised over a discrete spatial mesh and a Taylor 

series expansion method is used, within a shooting method framework employing a bisection 

methodology, to solve for the conduction band bottom satisfying the relevant boundary conditions 

of a spherical nanoparticle. In this way the conduction band bottom is determined which satisfies 

the known value of the surface barrier height to 5x1 O' 6 % within 20 to 25 iterations, the global 

error of the solution of fourth order in the inter mesh point spacing. The composition o f the 

Taylor series formulas has been carefully orchestrated to maximise stability and speed, and the 

chosen methods compare favourably with the alternative numerical techniques for these criteria.

7 0



2 .5  C o n c l u s io n s

To evaluate the performance of the numerical suite as a whole, these techniques are compared 

favourably to work from the literature, where the surface state and band bending properties of 

spherical Sn0 2 nanocrystals have been investigated in a gas-sensing context. It is found that 

when the grains become too small to possess a distinct region un-depleted o f charge carriers, then 

the curvature o f the conduction band flattens and the depth of the potential well, formed between 

the conduction band at the surface and at the centre o f the grain, diminishes. For the system 

described by Malagu et al [15], the depths o f R = lOnm and R = 5nm grains are correctly 

calculated to be 0.13V and 0.03V respectively, and the behaviour of the surface state acceptor 

density with grain radius appears to be identical to that published.

Remaining within the gas-sensing milieu, conduction between the grains o f a gas-sensing film is 

discussed, and is considered to be dominated by the formation of inter-granular connections, or 

sinter necks, during annealing and operates through three distinct processes, depending on both 

the size of, and the concentration of, charge carriers in the sinter neck. The publications of 

literature considered within this project mainly treat the transport mechanism between grains as 

solely that of conduction over a Schottky-like barrier, formed at the sinter neck. As such, two 

alternative reasons to explain the experimentally observed increase in sensitivity o f the sensing 

films on the diminution of particle size, particularly beneath R  = lOnm, are considered with 

simple models. The first proposed explanation attributes these effects to the unpinning of the 

Fermi level, and consequent movement of the barrier height. Based on the data from the complete 

charge density model this is thought in general to be insufficient to the task. The alternative 

hypothesis, the decrease in well depth as a consequence of band bending flattening, is again 

evaluated from the complete charge density model and is also considered to be wanting, 

appearing to place the marked upturn in sensitivity at R = 20nm instead o f the observed R = 10 

nm.

Furthermore, in Maffeis et al. [31], STS measurements place the ratio of surface state densities 

between 4nm and 15nm radii grain to be 5.90 while the complete charge density model calculates 

the ratio to lie at 3.75.

These discrepancies would seem to indicate that some problem exists with the current model of 

the surface states and conduction band. It is proposed that at small dimensions, the neglect o f the 

quantisation o f the energy spectrum in the CCDM could contribute to these incongruities.
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The next Chapter extends the complete charge density model and begins to address the issue of 

the electron population of the grain being confined to the discrete energy levels.

7 2



Chapter 3 Solving the Schrodinger Equation

Having generated a conduction band profile from the solution of Poisson’s equation, the next 

stage in improving the sophistication, and hopefully the accuracy, of the computational model of 

the nanocrystals is to ascertain their eigenstates; their permissible energy levels and corresponding 

wave functions.

Section 3.1 deals with separating the electron wave function into two parts -  the radial and the 

angular, and solving the angular equation. The angular eigenstates can be determined exactly, 

with the eigenvalues forming an implicit part of the radial equation. The quantum mechanics 

necessary to interpret the angular component is developed along a path broadly similar to Bohm 

[64].

Section 3.2 develops a method of approximating the eigenstates of the radial equation for an 

arbitrary radially dependant potential: the ODE is approximated on a discrete grid of spatial 

points, and a tri-diagonal matrix formed modelling the space. From this matrix, with some 

manipulation, an orthonormal set o f eigenvectors can be formed, which with their corresponding 

eigenvalues, constitute the eigenstates of the radial Schrodinger equation.

In Section 3.3, the analytical solutions of the radial equation for a square potential well are 

derived and compared, favourably, with the approximate solutions from the finite difference 

method developed in the preceding section. Section 3.4 compares the finite difference results for 

this nearly free electron model with those from an alternative, tight-binding approach, again 

favourably.
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Section 3.5 discusses the issue of self-consistency, and its importance especially when modelling 

higher electron densities, and proposes a straightforward and readily workable iterative scheme to 

address the many problems in achieving this.

In the conclusion to this chapter, Section 3.6, the procedures and methods that are herein 

developed are extended to allow for a variable spatial mesh, allowing larger systems to be 

considered whilst still retaining the necessaiy resolution through a small mesh spacing in the 

regions of particular importance. In addition, the prospect of non-homogeneous media is 

discussed and the required modifications made to ensure the accuracy o f the eigenstates in this 

more complex situation.
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3 .1  S e p a r a t io n  o f  V a r ia b l e s  a n d  S p h e r ic a l  H a r m o n i c s

3.1 Separation of Variables and Spherical Harmonics

In a three-dimensional space, the time independent wave equation assumes the form

v v „ + | ^ ( £ „ - r y „ = o (3.1)

Should the symmetry of the space be such that spherical polar coordinates make a convenient 

coordinate system, see Figure 3-1,

r = (x02 V  +z02)U: 

0 -  arccos( za /  r )  

<j> = arctan ( y 0 / xa )
^  point P

Figure 3-1 Three dimensional coordinate systems: the relationship between 
Cartesian (jc, y, z) and spherical polar (r, d, <f>)

then the Laplacian acting on ^becomes

*72 1 &  < x 1

r dr 2 

1 d 2

1 d . n d 1 d 2 
s in # —  + -

sin O d d  dO sin2 0 d<f> Vr, (3.2)

r dr* r~

If the potential V is dependant on only one variable r, then the solution o f Eq. (3.1) can be greatly 

simplified as its eigenvectors can be separated into two functions, one solely dependant on r and 

the other a function of 0 and <f>. Letting

i^n = f n( r ) Y ( e j )  (3.3)

then Eq. (3.1) becomes

1 d ‘ 2m
- T T W » )  + T 2 - fo  ~nr))f„(r)r dr h

i .e .
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1
■ (r fA r))+ -r (En - V (r j )  

h Y ( 0 J )
( 3 . 4 )

f„ (r)r  dr2

and therefore, a function in r must equal, for all values o f r, 6 and <f>, a function in 6 and (f). Ergo, 

each function must be constant:

Q Y (0 , f )  = c Y (0 , j )  (3.5)

(3.6)
r d rL .........  /T r ‘

The task o f ascertaining the eigenstates of Eq. (3.1) has now been reduced to solving Eq. (3.5) and 

then Eq. (3.6). Eq. (3.6) is dependant on the form of V and as such cannot always be simply 

solved analytically and its treatment is discussed further in Section 3.2. The remainder of this 

section is dedicated to determining the physically admissible values of c and the corresponding 

eigenfunctions generally referred to as spherical harmonics. Intrinsic to this is the

quantum mechanical formulation o f angular momentum, the operator Q closely related to the total 

angular momentum operator L2. Beginning then with the concept of angular momentum, define 

the angular momentum operator such that

L  =  r x p

then its components are

Lx = y p z - z p y
Ly = zpx - x p 2 

Lz =xpy - y p x

(3.7)

(3.8)

which in QM terms can be written

L , - ±I

L - 1
y ~ i

L , = *

d d
y  z —

dz dy

' d d 'z  x  —
dx dz_

d d '
x ------ y —

dy dx

j r . .  1 h don defining the momentum components p x =  etc.
i dx

In the spherically symmetric space o f Eq. (3.5)

x = r sin 6 cos (f> 
y  = r  sin#  sin ^ 
z - r  cos 6

recalling Figure 3-1, and therefore

(3.9)
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3 .1  S e p a r a t io n  o f  V a r ia b l e s  a n d  S p h e r ic a l  H a r m o n i c s

dx = sin # cos <f>dr + r cos # cos (ftdO-rsmO  sin (ft dtft 
dy = sin # sin <ft dr + r cos # sin (ft d6  + r sin # cos (ft d<ft 
dz = cos # dr + r sin # d6  

then on separating the Cartesian derivatives into their polar components

d _ dr d dO d d<f> d
dx dx dr dy d6 dz d<ft

. _ . d cos # cos d d sin <b d
= sin # cos® 1------------- ----------------------

dr r dG r s in #  d(ft
d . _ . . d cos # sin d d cos (ft d

—  = sin#  sind —  + ----------- - — + ------- ------
dy dr r d6  r s in #  d(f>
d _ d sin 0 d

—  = cos # ------------------
dz dr r dO

and so finally

L, = ih

L - -
” i

. , d _ , dsind —  + cot#  cos d —  
dO d(f>

, d _ . , d
cosd -------cot#  sind —

5# dtft

L = - -z i dtft

The absolute magnitude of the angular momentum, \L\, follows from

1} = L l + L l + L l

(3.10)

(3.11)

so

L =  -W
(  2 2 s2 A

dy2 dz2

(  2 2

+ y
dz d 
dz2 dx2

(  a2 j2 A
+ z

dx2 dy2
- 2 x y

dxdy

„ d2 „ d2 „ d „ d „ d '-  2 y z  2 zx  2x  2 y ------ 2  z —
dydz dzdx dx dy dz_

Adding this to the square of the scalar product of r and p

0r p f = V  “
8 8 8

X  + V  Y Z ---
dx dy dz

=  - K
d2 2 d2 2 d 2

— T +y — ? dx dy dz
2 -  . 2 a2 , „ a2 a2 -_. 2 .._ +2zx+ z  — -  + 2xy------- + 2  y z ------

dxdy dydz
2 a a a

+ x  Y y —  + z —
dzdx dx dy dz

then

2 A
L2 +(r • p f  = - t i2{x2 + y 2 + z 2] — =- + — =- + — =- 

V V y  \ d x 2 dy2 dz2
' a  a a^
x  Y y -----YZ—

dx dy dz ( 3 . 1 2 )

= r 2p 2 +ihzr • p
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C h a p t e r  3 S o l v in g  t h e  S c h r o d in g e r  E q u a t io n

which can be expressed as

2 v  n u  s
r dr

( 3 . 1 3 )

Given that the Hamiltonian, H, of Hy/n= Eny/n can be written

« . £ + r
2m

then on comparing Eq. (3.4) with Eq.’s (3.13) and (3.14) it is clear that

L2 = - h 2Q

implying that the problem of determining the physically permissible values of c is equivalent to 

ascertaining the eigenvalues o f the total angular momentum operator L2.

(3.14)

(3.15)

Interestingly, from the commutation relations of the angular momentum operators

[f'X > L y  J —  L x  L y  L y  l i x

= ~tl‘

=  - h ‘

d d
y ------ z —

dz dy

r d d ^
y  x —

dx dy

d d )  f  d d
z  x —  -  z ------ JC—

dx dz J [ dx dz
r d d ^y  z —

dz dy

and

= itiLz 
[Ly ,L z ]=ihLx 

[Lz,L x] = ihL}

[l 2, l z]=l 2l „ - l , l 2

(3.16)

= {L2x +L2y )Lz - L z {L2x + L2y)

= ^x{^x^z ~ LZLX) + {LXLZ — LzLx)Lx + Ly(LyLz -  LzLy }+(LyLz - L zLy ^Ly 

= —iti{]LxLy + LyLx -  LyLx -  LxLy)

= 0 (3.17)

a number of conclusions can be drawn. From Eq. (3.17), since L2 commutes with L:, symmetry 

implies that I? will also commute with Lx and Ly. Then it is possible to measure simultaneously 

the eigenstates of L2 and any single component o f L. However, as the components Lx, Ly, and L: 

do not commute with each other, only one of these can be specified at a time.

The eigenvalues of Lz must satisfy

h d
LzY(0, f )  = (f>) = k xY{6, (f>)

i d<ff
( 3 . 1 8 )
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3 .1  S e p a r a t io n  o f  V a r ia b l e s  a n d  S p h e r ic a l  H a r m o n i c s

On splitting Y{d,(f>) into two functions, A(d)B(<P), then

i dtp

which has the solution = elk̂ ,h . B{<fi) must be a single valued function o f x, y  and z, and 

therefore it must be periodic in <f> with period 2n, implying that k ] /h  = m where m is an integer. 

Ergo,

Lz = mh (3-19)

How are Lz s eigenfunctions related to the eigenfunctions of L2 ? Substituting A{6)e'm* into Eq. 

(3.15) then

L2A(d)eim* = - t i

=  - h ‘

\ d . n d 1 a2s in # —  + ■
sin#  a#  dO sin 6 d<f> 

i a ( .  a  ̂ m 2----------- s in # — ----------
s in # a # v  d d )  sin 6

A{d)eim*

A i e y ^

thus

= cA(0)eim*

1 5 ( .  n a "i----------- s in # —  -
sin # a# ̂  a#J

m
sin #

A{G) = cA(6) (3.20)

So A{6) can be taken as dependant on both m and its own eigenvalue c, relabelled k2 i.e. A™(# ), 

and evidentially e ' ^ A ^  (#) serves as an eigenfunction for both Lz and L2.

Determining e'm̂ A™(6) ’s corresponding eigenvalue for L2, c, is a little more involved.

If

then

L2Y ( 0 J )  = c Y ( 0 J ) (3.21)

L2( L J )  = L zL2Y = L ,cY = c(Li Y) (3.22)

therefore if  Y is an eigenfunction o f L2, then (LSY) is also an eigenfunction belonging to the same

eigenvalue c.

Now, for
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LZY = mfiY

multiplication by the operator L+ = LX + iLy results in

L+LZY = m h L J  (3.23)

but from the previous commutation relations, Eq. (3.16)

[Lx + iLy )L2 -  Lz (Lx + iLy) = -fi{Lx + iLy) (3.24)

implying that

LzL J  = (m + \)hL+Y (3.25)

and similarly, from the operator L_=LX-  iLy

LzL_Y = {m -\)hL_Y  (3-26)

Therefore, if  Y  is an eigehfunction o f Lz where Lz = mti then L±Y  is also an eigenfunction o f Lz 

but belonging to Lz = (m ± \)h .  Significantly, both Y and L±Y are eigenfunctions o f L2 

corresponding to the same eigenvalue. This implies that starting with a given eigenfunction o f Lz, 

then it is possible to generate all the eigenfunctions o f Lz belonging to the same eigenvalue o f L2.

L± acts to raise/lower m by unity leaving c unchanged, however as

L2 =L2X+L2y +L2z

= L2x +L2y +m2h2 (3.27)

and the mean values of L2X and L2y must always be positive1, then L2 > h2m2 and thus there must

be an upper limit on \hm | of . Therefore, there must exist some value of m for which L±Y ^

vanishes, else repeat application of the L± operator will lead to an infinitely large set o f 

eigenvalues of Lz for given L2.

In the state where \m\ is at its maximum for given L2, then

Z+7 Wl = 0  or L_Ym2 = 0  (3*28)

where m\ is the maximum positive value of LJh  and m2 is the maximum negative value (for given 

L2), then

q2
1 Consider a rotation o f  the axes so that the new z  axis is parallel to the old x  axis, then llx = -h 2 — -  with

d(f>

positive eigenvalues, and similarly for L2y [64].
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3 .1  S e p a r a t io n  o f  V a r i a b l e s  a n d  S p h e r ic a l  H a r m o n ic s

U Y m' =(LZX +Ly + Lz )Y '

= (£_£. +L\ +hL! )Ym'

= (L_£+ + ft2 (m ,2 + ml ))Ym'

since L+Y m1 = 0  from Eq. (3.28) then

L2Y m■ = h2(m}+m1)Ym'

Repeating for L., it is found that

L2Y m2 = n 2{m2 _ m i)Y mi

For Eq. (3.30) and Eq. (3.31) to be simultaneously true then

m2 (m2 - 1  ) = ml {mx + 1) 

implying that

m 2 -  - m ] or m2 - m x + \

The second solution is inadmissible as m\ is the largest positive value of LJTi, and so the 

maximum negative value of m must be the negative o f the maximum positive value. Convention 

represents the term m\ by the integer /, and so

L2Y,m = h 2l{l + X)Ylm (3.33)

(3.29)

(3.30)

(3.31)

(3.32)

It can be useful to visualise ^1(1 +1) as the magnitude of the vector LITi and m as the projection of 

L  onto the z-axis, as illustrated in Figure 3-2.

/ =  1 1 =  2 1 = 3

m = + 1

m = + 3

+2
\

+ 1

0

~ \
\

*■;i. #

i /

•2

Figure 3-2 Relation between the / and m quantum numbers

Although, importantly, even when \m\ = I the angular momentum does not entirely orientate along 

the z-axis, having residual jc- and y-  components. This is a consequence o f the non-commutation 

of Lx and Ly with Lz, and implies that they cannot be fixed at any particular value in a state where
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Lz is definite. However, it must be made clear that it is not the case that the angular momentum 

has some definite direction, only with the caveat that that direction cannot be measured with total 

precision. Rather, for definite L2 and Lz, the cone of directions corresponding to Lx and Ly 

consistent with given L2 and Lz, are distributed through simultaneously.

Having determined L2’s eigenvalues, it now remains to ascertain the exact form of its 

eigenfunctions. As discussed previously, given an eigenfunction o f Lz, it is possible to generate 

new eigenfunctions of Lz belonging to the same L2 via repeated operation o f the ladder operators, 

L±.

For m = /, L+Y} = 0, and so given that Y /(0 ,<f>) = A\(O)e'1̂ , then

8<f> 1

which from the representation o f L+ in spherical polar coordinates,

L+ = LX +iLy =heH 8 . n 8 
—  + icotO —  
dO d<f>

implies that

= lcoX6Yi 
dO 1

(3.34)

(3.35)

(3.36)

(3.37)

On integrating with respect to 6,

In Y/ = /ln(sin#) +

=>^/ =g((^)sin/ 0

g{<j>) must make Yj an eigenfunction of Lz with a corresponding eigenvalue of hi, so g{(f>) = e'/(Z>, 

correct to an arbitrary multiplicative constant, which must be determined from normalisation. 

Therefore

y/ = Ce“* sin< 8  (3'38)

Now, applying the lowering operator L., any arbitrary state can be achieved. As such

L_Y\ = he*

= hCe«‘-])* 

Since for an arbitrary function^*)

d . n d
 + i c o t# —

80 d<j)

 + / cot 6
80

C sin/ 0 el 

sin7 0

(3.39)
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it follows that

Repeating,

and in general,

d  ,—  + / cot X  
dx

f i x )  = -7 - [sin' * / (* ) ]  
' ” dxsin x

j v - w  a
Y/-' = -h C ’— . sin2/ 6

sin 0  dO

i{l-2)<j> p  f  -I p, ^
■/-2 _ ,  « 2 * 2 „ „ e  B \  1 ■ sin ̂  0

sin 0  30 ^ sin 0  30  y

imd> f

sin mG
_ j  3_
sin0 30

\ l - m

sin2/ 0

To determine Y™ exactly, the normalisation parameters Cl'm have to be set to ensure

2 n  it

|  J r?  *( e ,w ?  ( e j )sin e ae 04= shh sm̂
=̂0 0=0

In order to do this, again look at the action o f L±. It can be expressed as
rm s~tlm\rm±\L±Ytm = c f y ;

then

|C? | 2 J f c m±1) V ±1̂  = J  (L±Y,mJ L J fd C l  

= jY ,m% L ±YlmdQ 

= J Y f { f i  -  L] + hLz)Y,mdQ. 

= h2(l(l + 1) -  m{m ± 1))

where

dQ. = sin OdOdcf)

and so with a convenient choice of phase

C = TiJl{l + \) -m { m ± \)  

= hyj(l + m)(l ±m  + 1)

Therefore

c
V (/+ / ) ( / - /  + l )x ( /  + / - ! ) ( / - /  + ! + \)x - - -x ( l  + m + \ ) ( l - m )

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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 ____________________ C____________________
ij2l x 2(2/ -1 )  x 3(2/ -  2 ) x • • • x (/ -  m){l + m + 1)

= C_
( 2  l ) \ ( l -m ) \

For m = /, if the relevant spherical harmonic were correctly normalised then

J  Y /'Y /d Q  = 1

so that
2 nn

CC* ^ s m 2,+xded<f> = \

(3.49)

(3.50)

(3.51)
o o

Evaluating the 6 integral as a beta function (Appendix I, Gamma and Beta Functions), then

|c |=  l(2 / + l)! !_ V(2 0 ! (2 /+ T

y 4^(2/)!! 27/! V 4/r (3.52)

With the phases chosen to agree with the conventional Condon-Shortley phase, using for instance 

C = (-1 /|C | [65], then

Yjm = ( - l ) /-'”( - l ) / V(2 Jjl / 2 / + 1 I (l + m)\ e lm* (  1 5 V'" . 2/
2;/! V 4;r sinw0 U in 0  8 0 J

= (_ i ) m l 2/ + 1 (C0Sf l y #  w > o
y (l + m)\

sin 6

with

Y~m = { - \)m{Y”Y 

and where the associated Legendre polynomials are defined by

1 (l + m)\ 1
Plm{cos6) = —l

2  /! sin'” 0

which for negative m are given by

_ 1  d_

sin 6 dO

\  l - m

sin 6 m>  0

P ;m (cos 6) = ( - ! ) '” (/ m)! P,7” (cos 0 )

(3.53)

(3.54)

(3.55)

(3.56)
(/ + w)!

The associated Legendre functions obey the orthogonality relation (see Appendix II, 

Orthogonality of the Associated Legendre Functions for identical m)
71
J* Pp (cos 9)P™ (cos 6) sin 6 dO

2  (p  + m)\ 
2p + \ (p - m ) \ p a

(3.57)

and so the function
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4 7  (cos 6) = t (cos 0) - I  < m <  I (3-58)
7 V 2 (/ + w)!

is therefore orthonormal with respect to the polar angle Similarly for azimuthal angle $
2;r

/Wj ,m2 (3.59)

implying that the function

£ .(* )  =
V2/r

(3.60)

is also orthonormal. The product o f the two functions, Y)m (0, <f>), is therefore orthonormal over 

the spherical surface, as required by Eq. (3.44).

The associated Legendre functions and spherical harmonics for / = 0 to 3 are listed explicitly in 

Table 3-1.

Table 3-1 Table o f  associated Legendre functions and spherical harmonics for / = 0 to 3. For m = 0, the 
associated Legendre functions are equivalent to the Legendre functions for the same value o f  /.

Associated Legendre Functions, P,m{0) Spherical Harmonics, Y," (0, <

0„°(0) = i

p ? m = cos 0

/>;(0) = sin 0

p2\ 0 ) = |  (3 cos2 0 --1)

p i r n = 3 cos 0 sin 0

0 /(0 ) = 3 sin2 0

p3°(0) = —(5 cos2 0 -  
2

3 )cos 0

/V(0) = —(5 cos2 0 -  
2

l)sin 0

0 /(0 ) = 15 cos 0 sin20

0/ ( 0 ) = 15 sin3 0

p; \ 0 )  = - - p; {0)

P2-'(0) = - - P l ( 0 )  
6

0/2(0) = — 0/(0) 
24

-  — /Vi 
12 3

—  0/(l 
120

03J(0) =  — 0/(0)
3 720 3

Ye°(0.+) =

Yt(0,fl) -  J ——(3 cos2 0 - 1 )  lox

Y ?(0 , f )  = + J —  3 cos 0s in0  e *  
2 \ 2 4 n

Y*(0,j) = J ^ s i n i 0e»”

Y2 (0, <p) = J  (5 cos2 0 -  3) cos 0
16 71

(5cos20 - l ) s i n 0 e ±,#

cos0sin 20 e ±,2#

Y}i3(0,p) = + J ^ - s i n 30 e ±'3
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The probability density distribution of an electron at a point (r, 6, <f>) is dependant on the square of 

its wave function, and as such, the angular probability density is proportional to P/” (cos#)2, 

examples of which are given in Figure 3-3.

m = 0

ee
e e

Figure 3-3 Plots o f  P,m (cos 0)2, representing the angular probability density, for / = 0 to 3 

As the value of m increases, the probability density shifts from the z-axis towards the x-axis, 

referred to as the equatorial plane. When \m\ = /, then | P/ (cos 0) | 2 oc sin21 6 and the function has a 

maximum 2X9= n  I 2 (on the equatorial plane); the lower m, the more diffuse this maximum is, 

meaning that the range o f latitude angles, 6, over which the particle can be found increases as m is 

decreased. Indeed, at / = 0, m = 0 the particle covers the full range of 9 evenly.

For the total angular momentum quantum number, as / increases, the width of the peak decreases, 

and so the function maximum becomes sharper. Ergo, at large / and large m the classical limit is 

approached and the particle can be considered to tend to an orbit almost exactly in the equatorial 

plane. Small fluctuations remain however as although the total and z-component o f the angular
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momentum are defined exactly, the x- and y- components remain unspecified, and so the angular 

momentum vector cannot be perfectly aligned along any one axis.

The exact forms of the angular density probability distributions are merely extensions o f Figure 

3-3 into three dimensions, see for instance Figure 3-4 in which 70°2 , 72° 2 and Y ^ 1 have been 

modelled in full for the purpose of illustration.

(a) (b) z  (c)

Figure 3-4 Examples o f  the angular probability density, Ytm{0,<f>)2 , for (a) 70° (b) 7,° and (c)

An alternative formula for the associated Legendre function, expressed in terms o f its equivalent 

Legendre function is

2 \ m ! 2p r ( x ) = (  i - j o

where the Pi (x) can be given by Rodrigues’ formula

d '
d x1

Pi(x)

Pl (x) = -^r -^ J (x 2 - \ ) ‘ 
2  /! dx

(3.61)

(3.62)

and x  is of course cos 6, see for instance Arfken and Weber [65]. Then, given that the highest 

power of x  in the expansion of (x2- l /  is 21, it follows that cTPfa)/dxm is a polynomial of degree / - 

m [64]. This is multiplied by the factor (1 - x2)m/2= sinOT 6 , so therefore, for x  between +1 and -1,

P™ (x) has I - m zeros. From the real part of e'm<t>, cos m<f), it is clear that in the same interval the 

azimuthal dependant function has m zeros, and thus the complete angular wave function, the 

spherical harmonic, has (/ -m ) + m = I zeros (or nodes) between x = 1 and -1. This is important in 

the selection of appropriate wave functions discussed in Section 6.2.
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In summary then, recalling Eq.’s (3.5) and (3.6), in a spherically symmetric space where V is a 

function of r only, the wave function solutions to Schrodinger’s equation for specified angular 

momenta quantum numbers, I and m, are given by

V„,m( r ,W )  = fn l ( r ) Y r ( W )
(3.63)

The angular function, Y,m (0, (j>), is termed the spherical harmonic and is defined by Eq. (3.53)

r " = ( - 1)"  J 2/ + 1 (/ " V p "  (cos 0)eim* m > 0
\  4n  (/ + m)!

while the radial component, f n̂ r \  must satisfy the equation

| 2  d  1(1 + 1)
d rz r dr r 

the solution of which occupies the next section.

/ ^ ( r ) + ^ [ £ „ - F W ^ ( r )  = 0 (3.64)
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3.2 The Radial Component of the Schrodinger Equation Solution

The form o f f„i(r) satisfying Eq. (3.64) is dependant on the potential V(r) and as such does not 

have standard solution in the way that Eq. (3.5) does. This section outlines a numerical approach 

to ascertain the approximate eigenstates of Eq. (3.64), where its 1-dimensional continuous space 

is broken up into N + l discrete, infinitesimal points o f predetermined spacing over which its 

derivates and potential can be estimated. Representing part of this discrete space as a square (N- 

l)x(AM) matrix, M,f„i and Enl follow from the solution of the standard eigenvector/value problem 

Mv = Xv.

In a similar fashion to Sub-Section 2.3.1, let the spatial region of interest be divided into a mesh 

of N+\ points, beginning at zero and set an evenly spaced a distance of A apart, then a function/  

at the site r,+1, abbreviated here as f+\, can be expanded as a Taylor series about the site r, as

A2 A3 A4 ■ 
f M = / ,  +A/ / +— / / v + ...

/ '  denoting the first derivative of/  with respect to r and so on1. Similarly, for/ at site rt.\

/ , - 1 = / ,  - 4 — •

On subtracting Eq. (3.65) from Eq. (3.66) then

fi+\ ~ fi-\ = ^
A A

4 /;'+ — f?+ — /■+■ 
3! 5!

and by rearranging, the first derivative off  can be approximated by

t fi+l fi-\
f i  = 2A

+ 0(A )

(3.65)

(3.66)

(3.67)

(3.68)

to second order in A. Likewise, on addition of Eq.’s (3.65) and (3.66), the second derivative can 

be approximated by

(3.69)

Via these two relations, Eq. (3.68) and Eq. (3.69), Eq. (3.64) can be estimated on this mesh to 

second order as

1 Historically, the prime notation y ' = ctylcbc was introduced in the late eighteenth by Lagrange as an 
abbreviation o f  Leibniz’s dy/dx notation for a derivative [65]
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f  2

+ 1 Is + /(/ +
° ] -

r n l
Ji+1

A 2 n 2 ' J
J I

I r>) A2 I n )

f " 1 2 m
= T f E j r

n (3.70)

As with Burden et al. [6 6 ]’s finite difference method, a (TV-l)x(TV-l) un-symmetric tri-diagonal 

matrix, M, is formed

M  -

bx Cj

a2 b2 c2
a3 b3 c3

O

O

*N- 3 UN-1  ^ N - 3

JN - 2 b N ~2 CN- 2

*N- 1 ‘W -l

where

a ,  =  —

V h j
. 2 2m T, /(/ + 1)

= — + —rV , + K '
A h 2 1

C,
1

and letting

V r u

\< i  < N  -  \v?  =

1  - 2 m  FA nl ~  2 nln

then Eq. (3.70) can be represented by

(M  -  X„//)vw/ + (flj/o + cN_xf N ) = 0

As r —*■ oo, f nir )  is required to tend to zero since the normalisation constraint requires
00

\ f d ( r ) f d ( r ) r 2dr = 1

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

iff ni is correctly normalised. From this, if r, —> oo as / —» oo, then f ”1 must also tend to zero in the 

same limit. Therefore for sufficiently large N, «  0 , and cN_xj §  in Eq. (3.74) can be set to 

zero for all /.

The boundary value at the centre o f the potential is a little more difficult. At r = 0, the term 

/(/+1 Yni(r)lr2 will be infinite unless / or f n̂ 0) is equal to zero. As consequence of the spherical

9 0
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symmetry and the physical necessity for a smooth wave function, if/w/(0 ) is not equal to zero, then 

its first derivative at this point must i.e. df„i(0)/dr = 0. Thus, if / > 0 then axf £  = 0 and Eq. (3.74) 

reduces to

where 8  is a small quantity which tends to zero as A tends to zero. Thus / , M/ « / 0w/ = 0 and 

therefore Q « M and so Eq. (3.77) alone is adequate to represent Eq. (3.74) in this case.

Equations (3.76) and (3.77) are standard eigenvector/value problems which can be solved via 

several approaches, such as a ^ -factorisation  technique (see Appendix II, Introduction to 

Eigenvalues and Eigenvectors) to determine the eigenvalues, accompanied by a process such as 

the inverse power method (see also Appendix II, Introduction to Eigenvalues and Eigenvectors), 

to ascertain the eigenvectors. However, any linear algebra package, for instance LAPACK [67] 

(or alternatively if M or Q is sparse, ARPACK [6 8 ]), should contain suitable subroutines to tackle 

these two equations.

f ni and E„i can follow immediately from v„/ and A,ni via Eq. (3.73) and the appropriate boundary 

values, to provide tenable approximations for the eigenstates of Eq. (3.64). However, the 

Hamiltonian H  is a Hermitian operator and as such, its eigenvectors, will span the vector 

space on which it is defined. Moreover, these eigenvectors can be chosen to be a complete 

orthonormal setu [69], this orthonormality forming an essential feature o f the DFT processes 

applied in later Chapters. The angular components of these eigenvectors, the spherical harmonics, 

are already orthonormal with respect to the quantum numbers / and m, therefore it is enough to 

require f ni to be orthonormal with respect to n for given /. Ergo, the most suitable radial wave

11A set of vectors • •} is deemed to be orthonormal if (xî j)=SIJ for all i and j.

(3.76)

For / = 0, if df„6Q)/dr = 0 then / 0w/ «  j '"l . Defining

Pi = bx +tf]

then substituting fd\ for b\ in M, now referred to as Q, Eq. (3.74) becomes

QVnl = „i (3.77)

Should / q1 equal zero and not the derivative, then for a sufficiently small A,

(3.78)

9 1
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functions are formed from v„/ and the relevant boundary values, and then orthoganalised and 

normalised to satisfy Eq. (3.75). One possible orthogonalisation procedure, described by 

Weissbluth [70] is particularly suitable due to its simplicity.

A transformation operator, A, is required that when applied to the non-orthonormal set of orbitals 

f a  formed from as above, will generate a new set o f orthonormal orbitals g„h such that

o

In an effort to keep the following arguments as clear as possible, the angular momentum quantum

is implicit in all the operators below, acting as they do on reduced sets of vectors, all of equal /. 

Defining the overlap integral S ^  such that

If S  could be diagonalised via unitary transforms111 (see also Appendix II, Introduction to 

Eigenvalues and Eigenvectors), as is always possible since S  is either Hermitian or real symmetric

(3.79)

oo
(3.80)

number / will be dropped from the sub- and super- scripts where practicable, although naturally it

(3.81)
o

then
CO

#nm = j g n ( r ) g m( r ) r 2dr
0

i.e.

I  = Af SA

Assuming that the operator ,4 is Hermitian, Af = A, then
A  -  C-l/2

(3.82)

A=ST' (3.83)

111 A unitary transformation is a linear transformation y  = Ux with a unitary matrix (operator) U. U  is 
deemed unitary if  its inverse is equal to its adjoint i.e. U x = i f . A usefull property o f  unitary matricies is

9 2



3 .2  T h e  Ra d ia l  C o m p o n e n t  of  th e  S c h rOd in g e r  E q u a t io n  S o l u t io n

as can be seen from Eq. (3.81), then

S ' = U -]S U  (3.84)

where S  ' is a diagonal matrix, the S ' components equal of course to the eigenvalues o f S . The

matrix (S  ' ) ' 1/2 is naturally also diagonal, its (S ')~ l/2 components simply equal to 1 / ,  and

then finally S 1/2 straight forwardly follows from

S-m= U ( S J l/2l f ] (3.85)

A is now defined, and the orthonormal eigenvectors g„i can be formed via linear combinations of 

via Eq. (3.79).

Applying the radial operator to the new set o f eigenvectors, g„i

d 2 2 d  1(1 + 1) 2m "
~TT + ~~i------ 5---dr r dr r h gni(r ) = ~ Y ,

d ‘
d r2 r dr

2 d  1(1 + 1) 2m

then the corresponding eigenvalues are

2m
= J T £»lgnl(r )

=■
A”

(3.86)

In all probability, some small variation in e„i will occur over values of r, due to the unavoidable 

effects of cumulative computational rounding errors and so forth, and so the mean should be taken 

over the mesh for each n and /. Thus, for the discretised space o f N  points

(3.87)

1 N 

= J - E

In practise, it is more efficient to construct the eigenvectors from Eq. (3.87) and then compute the 

eigenvalues anew from g  and M  (or Q).

that if  a matrix A is Hermitian, then there will exist a diagonal matrix IT AU, the diagonal elements o f  
which are the eigenvalues o f A. A proof o f  this is given in Byron and Fuller [69].
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The labelling f  g, E, s  is arbitrary and so the orthonormal eigenstates satisfying the radial 

equation are re-labelled /  and E, and are referred to as such throughout the remainder of this 

document.

In summary, a finite difference method has been described that produces approximations o f the 

eigenstates satisfying Eq. (3.64),

~ d 2 2 d  1(1 + 1)
dr2 r dr r 2

the set of vectors f„i(r) orthonormal with respect to n for given /. Then with the spherical 

harmonics of the proceeding section satisfying Eq. (3.33),

L1Yl- '( e , f ) = n 2i{i+ \)Ylm(e ,lp)

Y™ (6, (f>) orthonormal with respect to m and /, a fully defined approximation for the wave 

function of the Schrodinger equation Eq. (3.1) can be given for any potential V(r),

v :W *,(r,0 ,4 i)  + - r (£ „  -  = 0
n

V nlm{ r ,0 J )  = f nl(r)Yr(0,<f>)

y/ntm satisfying the requirements of orthonormality with respect to n, m and /.
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3.3 Spherical Bessel Functions

By discretising the Schrodinger equation and solving for its eigenstates, the orbitals and energy 

values determined are those of the discrete Schrodinger equation rather than its continuous 

counterpart. For certain applications, discretisations preserving the Schrodinger equation can lead 

to results at odds with its continuous form, see for instance Flores [71], notwithstanding the effect 

of the mesh size on the accuracy o f the eigenvalues/vectors. To judge the effectiveness then of 

the Schrodinger solver, the energy eigenvalues for a potential generated through the finite 

difference method should be compared to a set determined by alternate means from the 

continuous equation. A suitable test is the energy levels of a particle in a sphere with a finite 

square well potential, as represented in Figure 3-5, where the reference values can also be derived 

analytically.

V(r) =

E , k

- V0 V

r < a
r > a

<------------------- -------------------►
0 a

Figure 3-5 Schematic o f  finite square potential well for a particle in a sphere 

Recalling the time-independent Schrodinger equation (TISE) in spherical polar co-ordinates as

-n 2 (d 2f, 2 df, /(/ + l)
2m dr r dr r

+ (F(r)- £ ) / , =  0

which for the square well, can be expressed such that

^  1.1.. +—^ L _ $  + 0  f i - q 2f l = 0  where q 2 = —r-(V0 - E) outsidewell (3.88a)
dr r dr r h
d 2f t I d f t  /(/ + l) 2 2 2 m
~ r ~2 * ------ 2 V / +k f i = °  where k = ~ T E inside well (3.88b)dr r dr r h

For the differential equation describing the well interior, the substitution x  = kr allows it to be

represented as

9 5
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d * f,
dx'

(3.89)

For the solutions to this ODE, follow the powerfull and illuminating approach of Byron and Fuller 

[69] and consider the function gi(x)

Q
g,(x)

dz (3.90)

on a closed contour containing both the points z  = ±1 (else g/(pc) = 0 by Cauchy-Goursat’s 

theorem1), C/ a constant. On differentiating,

(/ + l)c , f <rte
J + 2

g?(x) =
(/ + lX/ + 2 )C/ r e

.1+3

dz +

then by defining the function q{x) as

\Cl i  z e "“

x M v - i  r

dz +
2i(l + l)C, j

J

dz

_ 2  - ix zz eze~,xz J C, r dz

2 f  
9i(x) = gJ(x) + - g ,,(x) +

X

\  1(1+1)
v 2X  J

£ /(* ) (3.91)

to prove that g/(x) can indeed satisfy Eq. (3.89), it is sufficient to show that q^x) = 0. From g/ and 

its derivatives

, , 2 UC, X ze-ta J C, x dz

however

2  lze~

( z ^ - . r dz
- ix -

(z2 -  i y j  (z2 -  iy

and so #/(x) can be written

r \ iCi I  d
q’( x ) = - 7 * h

\
dz = 0

as the integral of a derivative over a closed contour vanishes11.

I Cauchy-Goursat Theorem: For a function, f[z), analytic on and within a closed contour C, then

jc f(z)dz = 0

II A function is deemed analytic in a domain i f  it possesses a continuous derivative everywhere within that 
domain. Indeed, as shown through Cauchy’s integral formula in Appendix II, Derivatives o f  Analytic 
Functions, this derivative will itself be analytic and so when integrated over a closed contour will equal zero 
as a consequence o f  the Cauchy-Goursat theorem

9 6
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gi(x) is therefore a solution of Eq. (3.89) for any closed contour containing a singularity. The 

shape o f the contour itself is immaterial. However to conform to conventional definitions, the 

choice of contours of Figure 3-6 and their corresponding multiplicative constants are used, 

resulting in

, , w ~ L f c 2 Z 2 /  ' dz

i dz

(3.92)

(3.93)
2m  x l+] ^ n ( z  + \)l+\ z - \ ) ‘ 

the spherical Bessel function and spherical Neumann function of order /, although a little math is 

needed to cast these expressions in a more familiar form.

(a) Im(z) (b) Im(z)

Re(z) Re(z)

Figure 3-6 The contours o f  integration for the evaluation o f  (a) the spherical Bessel 
function (b) the spherical Neumann function

Let y  = xz, then for j£x)

. 1 ( - 2  ) '/ ! X e-»

\ ■ -• o'*
2 /r

+i dy

dy

Cj defined now as any anticlockwise contour enclosing the singularities y  = ±x. 

Expanding (1-jc2/y2)'1'1 as a power series using the binomial theorem

f  2

v y j
-  i + (/ + 1)—  +

JC2 (/ +  l)(/ +  2 ) x

y y

_ (/ + m) f  x \

m= 0 m\l\ \ y j
(3.94)

which is only convergent in the region \y\ > x, then a wise choice of Cy is a circle lying outside y  

x. Employing Eq. (3.94) within the spherical Bessel function expression then yields

9 7
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j i(x )  = ^ - ( - 2 ) l l\x  
2n i lj ^ dy+x̂ l+%ij ^ dy+-

— i( -2 y  l\x
(2 / + 1) (2 /+  3 ) (2 /+  5 )

= 2 V £ ( - 1)”
(/ + 1n).: 2m

m=0 m\(2l + 2m + \). (3.95)

and so follows the conventional form of the spherical Bessel function [65]. The reduction o f the 

integrals follows from the use of the residue theorem111, the residues determined from the bj terms 

in the Laurent series expansions11" o f each exponential term.

Due to the shape of the contour C„ the spherical Neumann function has to be approach a little 

differently, the binomial expansion, Eq. (3.94), used for its counterpart, j/(x), no longer 

convergent.

As demonstrated in Appendix II, Derivatives of Analytic Functions, a consequence of Cauchy’s 

Integral formula is the expression

gM (lo) = J ! L X ^ S ( £ L _ f e  
2 * - i J c ( z - Z o ) ”+l

which, when used to calculate the residue o f a pole of order (/-l), in conjunction with Leibniz’ 

theorem1", allows Eq. (3.93) to be expressed as

111 The Residue Theorem: The integral o f  the function j{z) around the closed contour C  contain n singular 
points o f/(z ), where n is finite, is equal to the sum o f n integrals o f  /(z) around circular contours containing 
only one singular point:

I  f ( z ) d z  = I n  Rj 
c 7=1

where Rj is the residue at point Zj and defined as

Rj = T “ £  f ^ dz I n  1 JCj
lv Laurent’s Theorem: Let the fu n ction ^ ) be analytic through the closed annular region between the circles 
Ci and C2, each with common centre z0, then at each point within the annulus, the function can be expanded 
as the convergent series

/ ( z )  =  ^ f l j z - z 0)" + ^ „ ( z - z 0)'"
n=0 n=1

e.g. For the exponential ez

v Leibniz theorem:
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n,(x) = ( - 2) ' / ! ^  /!
l\xM

= (~2)7 V  (- 2vY-m 0 +
*/+1 ^  »*!(/ - 1n) 11

f
j  l-m

“  —ixz d m ( j y +r j l - m  i md  d r  1 y +r \

V
d z l~m C d zm ^ z  +  l J Z=J d z ‘-m ~ d zm ^ z - l j

z = - l j

V+OT+l ^/+W+1

l-m  oo a

(_ 2y ™  2

_ -1  y  (l + m)\ ( - i )1 mx 1 
x l+1 t k  m\{l -  m)\ 2 s=0

where, again, the series expansions o f the exponential terms has been used. With the removal of 

the common factor l/x /+1 outside o f the series expansion, the coefficients of remaining xn terms, 

where n is odd, within the series expansion equals zero, and so nfoc) becomes

fr,  .V i  iV i  4 / ,  , w ,  iV i  Ui . \ \
n ,(x) =

-1
j+ \

(/ + lX / + 2 }...2 / ^2 /(/ + lX / + 2 )...(2 / - 2 ) t X4 ( / - l> ( /  + lX / + 2 ) ...(2 /-4 )
2 l 2 l 2‘

_ (~1)/+1 y  ( - l ) w (2/ -  2m)
2‘x !+] ^

2m

(3.96)

2/w_ (-!)'+' y (- ir (m -/>  _
2 / x /+l “ J m \( lm  -2 1 ). 

the traditional expression for the spherical Neumann functions'1.

Having two independent solutions to the well interior ODE, Eq. (3.88b), the general solution is 

then

fi(k r)  = a j l (kr) + a2n,(kr) (3 .9 7 )

However, physically the wave function must remain regular as kr —> 0 and so, from the behaviour 

o f each of the solutions in this limit,

2ll\x l
(2/ + 1)!

the constant a2 must equal zero. Thus, for r < a,

«,(*)- *->0 2ll\x l+]
(3.98)

in n * i n-m jm

— I /( x ) g w ] = y  /■  /  [ /w ] —  k w ]

The last step in Eq. (3.96) was achieved using the idenity
(s - n ) \  = ^_ly s ( 2 n - 2 s ) \

(2s-2ri)\ (n -s)\
where s and n are integers where s < n. This follows from the relationship

r (z ) r ( i-z )  = ^ 2 — 
sin zn

which can best be derived from Weierstrass’ infinite product representation o f the gamma function (see 
Appendix I, Gamma and Beta Functions) as demonstrated in Arfken and Weber [65].
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f i(k r )  = a J i(k r ) (3.99)

For / = 0 to 3, this will have the form of the relevant spherical Bessel functions as illustrated in 

Figure 3-7.

0.8  -

0.4 -se

- 0.2 -

-0.4 J

Figure 3-7 Plot of the spherical Bessel functions, j)(x), for / = 0 to 3

For the external ODE, Eq. (3.88a), the substitution x = iqr reduces it to the familiar representation 

of Eq. (3.89) and so the solutions j{ iq r ) and n^iqr) hold. However, for the first solution, 

traditionally labelled i£qr), convention requires multiplication by an additional factor of f l, ergo

h(qr) = i~l jiiiq r)  (3.100)

The second solution, traditionally labelled k/(qr), is more complex. As noted in the earlier 

discussion, in providing solutions to Eq. (3.89), the actual contour of integration of gfcx) in Eq. 

(3.90) is immaterial, provided that the said contour encloses the singularities at ±1. So should the 

contour Cj in Figure 3-6, be pinched at the origin, see Figure 3-8(a), and even separated into two 

circular contours, each enclosing a singularity in an anticlockwise direction, see Figure 3-8(b), 

then ji(x) will still form a valid solution.

(a) Im(z) (b) Im(z)

Re(z) Re(z)

Figure 3-8 The contour of integration for the spherical Bessel function (a) deformed 

into an hour-glass (b) pinched into two circular contours

100
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The contour o f nfoc) can likewise be deformed into two circular contours, anti-clockwise about z -  

-1 but clockwise about z  = 1.

In addition, if yi and y 2 are the two independent solutions of a homogeneous ODE, then, by the 

super-positioning principle [50], any linear combination Ay\+By2 is also a solution. Therefore, the 

functions

^ i])(x) = j ,(x )  + in,(x)
- I X Z

dz
nxM h  (z 2 _ i j +1 (3.101)

where Cy is a contour, anticlockwise, about z  = -1, and

hj2,(x) = in, (x)

(-2)'/! x J

where C2 is a contour, clockwise, about z = 1, both also form solutions to Eq. (3.89). h\X) (.x ) and 

hj2)(x)  are known as the spherical Hankel functions of the first and second kind respectively.

Returning then to k{qr), traditionally the second solution of the exterior ODE, Eq. (3.88a), is 

based on the spherical Hankel of the first kind, and is set at

ki(qr) = - i lh}l)(iqr)

e~qr ^  1 {l + m)\
V  h>m\{2qr)m ( l - m ) \  (3.103)

and so the general solution outside of the well is given by

f i  (qr) = 6, it (qr) + b2k t (qr) (3.104)

Asymptotically

i, (x )---------->■
/V ^°° 2x

k, (x ) ---------->/ v /  r—̂oo

(3.105)

f ° °  * 2and so from the normalisation constraint f  \ f , r  dr  = 1, f  —*■ 0 as r —> oo, then b\ must equal
J r =0

zero. For r > a, the wave function is then

fi(q r )  = b2kl(qr) (3.106)
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The function kfe)  is also known as a spherical modified Bessel function, and for / = 0 to 3 its 

general form can be seen in Figure 3-9.

&

ko(x) £](*) k2(x) k2(x)
8

7

6

5

4

3

2

1

0
0 0.5 1 1.5 2 2.5 3 3.5 4.54

Figure 3-9 Plot o f  the spherical modified Bessel function, kfoc), for / = 0 to 3

Continuity at a is an important factor, and both f  and its derivative must be continuous through 

this boundary. In mathematical terminology

0 = limf
dr

\

r=a+* dr r=a-£y

d 2f ,
a+e j2

-  lim f
E ^ O  J

a-e
dr (3.107)

which is true provided f ” is finite. For a physically realistic system, where f  is required to 

satisfy Schrodinger’s equation, f ” is never infinite. If / /  is continuous, then f  is also.

Cancelling the constants a\ and b2, then these two continuity requirements imply

d
dr jiik r )

j  i (kr  )

-7 -*/far) 
dr

ki (qr)
(3.108)

the solutions o f which determine the allowed energy eigenvalues. Eq. (3.108) is a complicated 

transcendental equation dependant on /, Vo and E, and a useful and relatively simple method of 

solution is via the intersection of the two equations [37]:
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y\(P)=

y 'i(P )=

P i \m  
ah (P)
y ja2 - f i P k ^ a 2 - p 2) 

a k t (-y/a 2 -  p 2 )

(3.109)

where

2 m
a  = a J — V{o

with the prime on the kt indicating the first derivative with respect to qr, evaluated at r = a, and 

similarly for j \ : i.e.

y7(^) = - 7 ^ T 7 /( ^ )  
d {k r )

For / = 0, the two equations are plotted in Figure 3-10, and their intersections circled. The radius 

of the well has been set at 5nm and V0 at 2eV.

1.5E+10

1.0E+10

5.0E+09

^  0.0E+00
40

-5.0E+09

-1.0E+10

-1.5E+10

P

Figure 3-10 Plot o f y\ and y 2 for / = 0, determined for the 3D square well R =5nm, V0 = 2eV. Points o f  
intersection, circled, indicate the discrete energy eigenvalues o f  the potential well.

Maintaining the well radius and depth, the eigenvalues from the finite difference and analytical 

approaches are compared in Table 3-2 for I = 0 to 3, with favourable results.

For a 700-point mesh with a minimum inter-mesh spacing of 0.0lnm, the discrete energy levels 

lie a mean -0.23% above those determined analytically; an acceptable tolerance, validating the 

finite difference scheme.
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Table 3-2 Table o f  energy eigenvalues for an R = 5nm, V0 = 2eV square potential, spherically symmetric 
3D well for / = 0 to 3. Eigenvalues, EFD, are calculated with a finite difference method on a 700 point mesh 
and compared via 100x(£FD - Efin)!EfLn to the analytical energy eigenvalues, EAn, following from the roots o f  
Eq. (2.108)

/ = 

E fd (eV)

0

err (%)

1

E fd (eV) err (%)

2

E fd (eV) err (%)

3

E fd (eV) err (%)

0.014 0.19 0.029 0.21 0.048 0.23 0.103 0.24
0.057 0.34 0.086 0.21 0.119 0.25 0.212 0.28
0.128 0.19 0.172 0.39 0.219 0.31 0.341 0.23
0.228 0.18 0.286 0.20 0.348 0.28 0.511 0.19
0.356 0.32 0.428 0.20 0.504 0.25 0.716 0.23
0.512 0.26 0.598 0.28 0.688 0.22 0.944 0.28
0.697 0.22 0.796 0.20 0.900 0.22 1.192 0.18
0.908 0.20 1.022 0.22 1.139 0.17 1.483 0.22
1.147 0.20 1.274 0.19 1.404 0.19 1.808 0.20
1.412 0.15 1.552 0.20 1.694 0.16
1.701 0.14 1.850 0.24 1.995 0.22
2.000 0.26

The points of intersection of y li and y l2 of Eq. (3.109) were determined via a small intersection 

program, using a bisection method [50,51] (see also sub-section 2.3.2) to find the exact point of 

equality. For small IJ fcc) is best numerically computed by analytically expanding it in terms of 

sines and cosines through the recursion relation

/ „/f 1 d v
x dx j

sm s (3.110)

However, for large / the recursion relationship

;« - iW + i«+i W = — A W  - ( 3 . i i i )s

can be useful. Unfortunately, for any extended range, the accumulation of rounding errors 

inherent with the use of any recursion relation can prove exceedingly problematic. To minimise 

their effects a technique similar to that employed in the FORTRAN subroutine BESJ, used to 

calculate Bessel functions of integer order, and discussed in Arfken and Weber [65] can be 

utilised. For given constant x, x0, Eq. (3.111) is used working downwards from

Jn+i(xo) = °  and j n(x o) = a

where n » I and n » x0, and finally normalising by comparing with results from the known form 

M x 0).

ki(x) can be approached in a similar manner. For small /, kfcx) is best considered through 

analytically determined A e B!xc factors, using for example
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kt (x ) = (-V)1 x 1' i
x dx ( 3 . 1 1 2 )

although for larger /, its decay as r —+ oo implies that &/(x) is best treated working upward from 

known forms of kfe)  with the recurrence relation

kn_x (x) -  kn+x (x) = - ^ - ^ - k n (x) (3.113)
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3.4 Tight-Binding (TB)

An alternative method to the previous, essentially nearly free electron approach, where the band 

electrons are taken to be disassociated from their atomic sites and only weakly perturbed by the 

periodic ionic lattice, is the tight-binding (TB) approach. In the TB approximation, electrons are 

viewed as occupying the standard orbitals of their constituent atoms, then 'hopping' between 

atoms during conduction. This restricted Hilbert space, spanned by the atomic-like orbitals, is 

assumed to be sufficient to describe the wave function solutions o f the Schrodinger equation. 

While the nearly free electron model is considered to be a good approximation for systems such 

as metals, the TB method can provide a better representation of systems where electrons are fairly 

localised, for instance in the chemical bonds of covalent semiconductors [29].

If the discretisation of the continuous Schrodinger equation for the nearly free electron 

approximation is an acceptable approach here, then its eigenstates should equal, to within a small 

tolerance, the tight binding model, formed for the same system.

Initially, begin in one dimension. Let | x , ) 1 be a state centred at site i, see Figure 3-11,

— o — o — o — o — o -
i-1 i i+1 y j

A

Figure 3-11 1-D chain o f  discrete sites 

w hich  obeys the relationship for orthonormality

{ x i \ x j )  =  e u

and therefore the completeness, or closure, relation

Z l* < )(* .l=1
/

Then an arbitrary state \y/) can be expanded in this basis" as

I Introducing the Dirac notation, with the ket state vector |/w) and the bra state vector such that

{n\a\m) = \y/*nZnf/md*r

II In an ^-dimensional vector space, an arbitrary vector v is described by its components (yh v2 v„) via

(3.114)

(3.115)
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k ) = 2 > . k )  (3-i 1 6 )
/

where is the probability of finding an electron at site i.

For the 1-D chain in Figure 3-11, a generic tight-binding Hamiltonian can be expressed as

H = Z k k k  l + Z k k  ( x j  I (3.ii7)
i V

where s, is the on-site energy and ufJ the hopping energy between sites i and j .  Considering 

nearest neighbour interactions only on a uniform mesh, then j  = z ± 1, uiJ+1 = Ujj.j = u and so the 

Hamiltonian becomes

h = z  i ■xt )(* o + \ x i i+ uY j d ̂  )(xm i+ 1 ■*  )(x'+i i) ^  •11
/ /

e, now separated into so + Vh where V, is an external potential and so is a residual energy, common 

to all the discrete spatial points within the space.

Applying the Hamiltonian to the state | y/) = ^  y/n | xn) and recalling that H\ y/) = E\ y/) then
n

= + Vn)+uYjPn\Xn+\) + V«\Xn-\))=
n n n n

Pre-multiply by (xk | and

¥ k t o  +Vh) + u(y/k_x + y/k+x )= E y /k (3.119)

follows.

Consistent with preceding work, discretising the continuous Schrodinger equation on a uniform 

mesh gives

f  *2  ̂ h 2
^  T,■+vh\ 2  k 

\ mA j
V 'k - — j ( v k- \+ V M ) = E V k (3.120)

2mA

For Eq. (3.120)’s eigenstates to be acceptable, then Eq. (3.120) must be equivalent to Eq. (3.119), 

implying that

n

v = £ v,e,
;=1

where are a set o f  n linearly independent vectors which span the vector space. The e, are said to form a 
basis and constitute a complete set (a set is complete if  it is not contained within any larger set).
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u =
- f t 2
2mA2

■ 2
(3.121)

=
0 mA2

Taking the confining potential V to be that of a finite square well, V = 0 within the well walls, 

simple analytic solutions to the Schrodinger equation exist. From the continuous plane wave

eigenfunction e lkx, where

k  = yJlm E/ti2

and E  is an eigenvalue of the continuous Schrodinger equation, the solution o f the discrete case is
ikxproposed as e ' ,  and so via Eq.(3.119):

Ee'b ' =£ljeih‘ +u(e,b‘-' + e 'fa'*1)

= £0e'b ‘ +«e'b‘(e-'M + e 'M)

i.e.

E = £0 +u(e~ikA + e /M) 
= £0 +2 u cos (kA)

ergo

E = £ o (l -  cos(M ))

Eq. (3.122) is referred to as the discrete energy dispersion relation.

(3.122)

Three dimensionally the situation is slightly more complex. Retaining our spherically symmetric 

space, see Figure 3-12

Figure 3-12 3-D spherical spatial grid o f  nearest neighbour discrete sites

1 0 8
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then from the TB Hamiltonian

H  = T ] x uk)€>jk{x 0k I + Z  I k * )uu w (x i'fk' I (3.123)
ijk ijk i'j'k'

taking nearest neighbour interactions only and once again separating e, into s0 + Vjk, //becom es

H  X jjk  ) ( * 0  +  K jk  \ X ijk | +  ^  (My*,/-11 x ijk ) { X i - l , j k  \ +  U ijk,i+ \ \ X ijk ) { X i+ \J k  \ +  U i j k J - l  \ X ijk ) { X i J - l , k  \
ijk ijk

+  U ijk ,j+ \ | X ijk ) { X i , j +1 ,k  | +  U ijk ,k - 11 X ijk ) { X i j k - 1 | +  U ijk ,k +11 X ijk ) { X ijk+ 1 | )

The external potential is spherically symmetric and so can be reduced to one variable, Vt. 

Applying the Hamiltonian to the state 1 Wim) = ^ W nr\xi’i'k’)» pre-multiplying by (xabc\ and
i 'j'k '

finally with the separation of variables y/l™bc = Rffibc then

£o + ’/'„ + « .- i -% L + « .+i % L + ^ * = - E  (3.124)
K a K a

where

&  + * « .i> E +i)
®bc

with the simplifications ua_x = uabc a_, etc. The hopping integrals Ub+i, uc,\ etc. however, still

retain an intrinsic dependence on a with their b and c coordinates in accordance with the spherical 

discretisation o f the space. As the RHS of Eq. (3.124) lacks any dependence on a, b or c, the LHS 

has to be constant regarding a, b and c, implying that A l™bc must be constant in b and c.

Comparing Eq. (3.124) with the discretisation of the continuous SE in spherical coordinates, 

analogous to preceding works

f  n 2 __ n 2 i(i+ \) 1- V H  ------
mA2 a 2m x 2

i t - A
a 2mA * 2 ( R L ' - Rl° - "2mA

= ERla (3.125)

then for equality

h ‘
«a+1 = " 2mA2

n 2 (

1+A

u „ _  i  =  —

a_l 2mA2
i-A

(3.126a)
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s n =
mis

lm Aim

(3.126b)

Aim _ Aim _ h2 tty + Q 
A abc a ~  22m x„

Taking once again the confining potential V to be that the finite square well of Figure 3-5, it is 

implied that within the well, the family of functions Rl are spherical Bessel functions if the tight- 

binding and nearly free models are equivalent. Proceeding as with the ID case, Eq. (3.124) 

becomes

2

f
fi A l2 - 1+ —

V I ra )

j ,  {k(ra + A)) (  A "j j ,  (k(ra -  A)) | A2

j i ( fr a) a J
/(/ + !)

From the series expansion of ji(x) and the binomial theorem then 

k(ra + A)j, (k(ra + A)) + k(ra -  A)j, (k(ra -  A))
kr„

(2/71 + / + 1)!(~1)OT(/ + m)\ 2̂ +1_______________
m̂ m \(2 m  + 2l + 1)! f a  k\{2m + l+  \ - k ) \

=  2
/+i V  ( - l ) m( /  +  m )!

'?0m\(2m + 2l + 1)!

(kr„)M -k{(kA)* + (-*A )‘ ) 

(-1)*(£A)2* m\(l + m + k)\

m=0

=  2/+1 A  (-1 )"(/ + !»)!
fa)ml(2m + 21 + 1)!

*=0
/

f r a )
2m+l

(2 k)<

A=] (2 k)\

(m + k)\{l + m)\
2k k  (  /  ^

- n b +  '
5=1 m + s

and so Eq. (3.124) can be written

E  — £r 1 -

2/ y  (-1)" (/ + w)! 
m\(2m + 21 + 1)! ( f r a )

2 m+l II + S H ) W V t(1 +
(2*0! w + 5 ;

( - ! ) " ( /+  »«)!
(* ^ )

2m+l 2r‘
■1(1 + 1)

m\{2m + 21 + 1)!\ /

(3.127)

When / = 0, the third term on the RHS vanishes and the second term reduces to the series 

expansion of cos(M), thus

E = £o (l -  cos(kA))

identical to the ID energy dispersion relation, Eq. (3.122). However, for / £  0 the k  summation in 

the second term retains its dependence on m and so the RHS remains a function of (kra)n. This 

implies that in general the tight-binding Hamiltonian is not satisfied exactly by the nearly free 

eigenstates. This said, an exact TB energy eigenvalue must be independent o f ra\ thus in the limit 

ra —> oo, outside of the potential well and again assuming accordance with the nearly free electron
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model, the family of functions R1 are spherical modified Bessel functions, asymptotically 

behaving as Eq. (3.105), namely

~Va

qra-*  °° • H )
/+ i e

Va

then in this limit Eq. (3.124) can be written as

E = e [\ 1 q^ a + k‘(q(r° + 1 q(ra ~ A) ~ A^ 1 | r
° l  2 qra k,{q&) 2 fc^A ) °y

+ F„

and thus

where # is

E = s  o (l -  cosh(^A)) + V0

q = ^2m (V0 - E ) / h 2 

Then to second order in A, 0 (A2), both Eq. (3.122) and Eq. (3.128) are equal, i.e.

h2Jr2 
E = —l — + 0 (  A2)

2m

(3.128)

(3.129)

It is reasonable to state then, wave functions aside, should the energy eigenvalues of the nearly 

free electron model and the tight-binding model be exactly equivalent, then the LHS E ’s of Eq. 

(3.122) and Eq. (3.128) will be the same as the eigenvalues used in k  and q on the RHSs. Using 

the nearly free eigenvalues to determine k  and q, then any deviance between them and their 

resultant tight-binding Es is a measure of the difference between the two treatments.

For the square well potential of Figure 3-5, with Vo set at 2eV and a well radius of 5nm, Table 3-3 

compares the Eq. (3.122) (/ = 0) and Eq. (3.128) (/ > 0) LHS energies, labelled Em, with the 

analytic solutions, labelled E 4n, for / = 0 to 3.

The percentage error increases with energy for Eq. (3.122) but decreases with increasing energy 

for Eq. (3.128), and lies in the range 3.21xl0‘7 % to 2.91 %, with its mean at 0.22 %. Despite the 

substantial percentage differences between the two approximations for the first energy 

eigenvalues o f / = 1 and 2, overall the error is taken to be negligible for the energy spectrum of 

this size o f nanocrystal. Indeed, should m be reduced to the effective electron mass of tin dioxide,
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Table 3-3 Table o f  energy eigenvalues for an R = 5nm, V0 = 2eV square potential, spherically symmetric 
3D well for / = 0 to 3. Eigenvalues, ETB, are calculated from the radial energy dispersion relations, Eq. 
(3.122) and Eq. (3.128) using the analytical energy eigenvalues, E 4n, to determine k. Ew  is then compared 
to E 4" via lOOx (Ew - E 4" ) ^ " .

/ = 

E w  (eV)

0

err (%) E w  (eV)

1

err (%)

2

E tb (eV) err (%)

3

E tb (eV) err (%)

0.014 0.0003 0.028 2.9106 0.047 1.7513 0.102 0.7623
0.057 0.0012 0.085 0.9287 0.118 0.6486 0.211 0.3292
0.128 0.0028 0.170 0.4260 0.218 0.3165 0.339 0.1767
0.228 0.0050 0.285 0.2250 0.346 0.1719 0.510 0.0949
0.355 0.0078 0.427 0.1264 0.502 0.0972 0.714 0.0504
0.511 0.0112 0.596 0.0719 0.686 0.0547 0.941 0.0259
0.695 0.0152 0.794 0.0398 0.898 0.0294 1.190 0.0120
0.907 0.0199 1.019 0.0205 1.137 0.0142 1.480 0.0039
1.145 0.0251 1.272 0.0090 1.402 0.0055 1.804 0.0004
1.410 0.0309 1.549 0.0028 1.691 0.0012
1.699 0.0372 1.846 0.0003 1.990 0.0000
1.995 0.0437

0.215m, then for / = 0 to 3, the percentage error between E n  and E 4n, is lowered to a mean 

~0.06% with a maximum error of ~0.8 % . From Eq. (3.129) it is clear that as A —*• 0, ETB tends to 

EAn. For non-zero A, replacing the analytic eigenvalues with finite difference ones makes no 

appreciable difference to the results o f Table 3-3.
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3.5 Self-Consistency

Accepting that the finite difference discretisation o f the Schrodinger equation for the nearly free 

electron approximation gives suitable eigenstates for the systems under discussion, then the next 

issue is one of self-consistency between the solutions of Poisson’s and Schrodinger’s equations.

For a self-consistent solution, the electron density resulting from a potential must generate that 

same potential - that is pout(r) -  p d f )  or Vou/(r) = V,„(r). In the context of this work, this means 

that the the electron density formed from the eigenstates o f Schrodinger’s equation for a potential 

generated from Poisson’s equation must produce that selfsame potential. This will generally not 

be the case for a spatially restricted system, with a small finite number of discrete energy levels 

and limited electron occupancy, where the initial potential was generated via a charge density 

estimated from bulk semiconductor properties.

To achieve this consistency, starting from a trial potential V°, the obvious approach would be to 

then to determine the potential V1 from F°’s charge density via

<r nlm

= ”e(r) (3.130)

and iterate until Vn+1 = V . f(E) is the thermally dependant Fermi fractional occupation factor 

where E  is equal to the difference between the energy eigenvalue under consideration and the 

mean value of the potential within the well.

As the potential alters for each iteration naturally so too will its gradient at the boundary of the 

quantum well and thus the charge contained within the occupied surface states must also vary. As 

such, the interface dipole between this surface charge and the image charge in, say the STM tip 

(when applied in the charge writing scenario), and so the corresponding voltage drop, Vint in 

Figure 2-5, will also undergo variations. To maintain an electron affinity consistent with the 

measured Sb this implies that the the depth of the confining potential, see Eq. (2.49), and therefore 

the number of discrete energy levels, must also change. Naturally, this can have a profound effect 

on the charge density, particularly for the higher electron densities.
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Under these circumstances, the simplistic iterative approach discussed above will generally fail to 

converge, the charge redistributions occurring between each iterative step driving the generating 

potentials into oscillation, each new potential being the extreme opposite to the old. This often 

leads to deep, non-convergent parabolic Vs.

To overcome this, the charge displacement can be damped via a mixing of the input and output 

charge densities. As discussed in Kohanoff [29], the most basic strategy follows

p r 1w = « p i ( ' - ) + ( i - « ) K w  (3-131)

where a  is an adjustable parameter, set to minimise the number of iterations. The greater a , the 

less is retained between cycles but the faster the rate of convergence, in theory at least. However, 

for some case, such as metallic and magnetic systems, a  must lie at -0.01 to avoid the divergence 

o f the iterative procedure and a great number of iterations are necessary before self-consistency. 

More sophisticated approaches are reviewed in Kohnanoff [29], where generally the input and 

output charge densities of other proceeding iterations are included, although for the system under 

study here, the scheme developed below, dependant on just one previous iteration, is sufficient.

For a successful mixing strategy, it is assumed that as n approaches N, where N  is the point at 

which the densities are taken as self-consistent, fP  becomes an increasingly better approximation 

o f (P. Should this be the case, then less damping is require as n —► N  since the charge 

redistribution between each iterative cycle is diminishing. Implied by this then, is that should the 

mixing parameter a  of Eq. (3.131) increase as f f  tends to youthen convergence can still be assured 

whilst avoiding the computationally prohibitive quantity o f cycles of Eq. (3.131). Therefore, the 

charge density mixing procedure favoured for this work is

a.»_  1 (3.132)

' "-P in t
1  +  .

Pout

where S  is an adjustable parameter, set to ensure convergence. For tin dioxide, generally iS ~ 0 . 5  — 

10 is adequate, even when including electron-electron interactions. As n —> N, a n tends to 1, and 

the input charge density equals the output charge density. Practically o f course, equality is only to 

within a set numerical tolerance

To illustrate Eq. (3.132) on a discrete spatial mesh, a good measure of the self-consistency of the 

system is
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r = X
1 v n (r ) - V n(r )Aout \ i ) y mV I ) (3.133)

r J L M

applied at the end o f each cycle. Figure 3-13 illustrates this self-consistency procedure for the 

parameters o f a 15nm radius spherical tin dioxide nanoparticle on a 200 pt mesh. Beginning with 

a trial potential generated from Poisson’s equation for the bulk electron density, the eigenstates 

are determined with the finite difference method, and iterated for ten cycles, each new potential 

formed from Poisson’s equation using the wave function dependant electron density Eq. (3.130).

5.0 - 

4.5 j
4.0 \

I
I

I

1 1

0.5 ■£

0  4 -  

0

1st iteration 

final (10th)

10 

R (nm)

12 14 16 18 20

Figure 3-13 Plot o f initial and final potentials for a 10 iteration self-consistency cycle applied to a 15nm 
S n 0 2 grain at room temperature. Trial (1st) potential generated from Poisson's equation using the bulk 
semiconductor electron density.

For the purposes o f these illustrative examples, Figure’s 3-13 to 3-15, the potential outside the 

well is set to the value o f the tin dioxide work function, calculated to satisfy Eq. (2.49). Table 3-4 

gives C, for a selection o f iterations and indicates the high degree o f self-consistency than can be 

achieved after only a small number o f cycles, a" ~ 1 by the final few iterations as required.

Table 3-4 Table o f C, for various iterations within a self-consistency cycle applied to a 15nm S n 0 2 grain at 
room temperature. Trial potential generated from Poisson's equation using the bulk semiconductor electron 
density.

iteration C

1st 0.92
—nd 0.38

3rd 9.82x10‘3

4th 6.94x1 O'4

final (10th) 2.93xlO'10
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Such is the power o f Eq. (3.132) in coupling the solutions o f Poisson’s and Schrodinger’s 

equations that even beginning from a square potential, discounting entirely the bulk 

semiconductor form of the electron density, within 10 iterations the same degree o f self- 

consistency as Figure 3-13 and Table 3-4 can be achieved, see Figure 3-14 and Table 3-5.

4.75 final (10lh) iteration

4.25 - 3rd iteration 1st iteration - square trial potential

2nd iteration 
4th iteration

>
3-

0.75 -L

0.25

-0.25 •
0 2 4 6 8 10 12 14 16 18 20

R (nm)

Figure 3-14 Plot o f initial and final potentials for a 10 iteration self-consistency cycle applied to a 15nm 
SnO: grain at room temperature. The trial (1st) potential is a 4.6eV deep square well.

Table 3-5 Table o f 4  for various iterations within a self-consistency cycle applied to a 15nm S n 0 2 grain at 
room temperature. The trial potential is a 4.6eV deep square well.

iteration 4

1st 137.01
2nd 2.29

3rd 7.07

4th 0.35

final (10th) 4.72x10''°

Here, £  is two orders o f magnitude greater than the £  o f Table 3-4, though £, rapidly decreases 

until V111 is equal to the V10 o f Figure 3-13. Again a '?—>1 as n approaches 10.

Returning to Figure 3-13, the actual difference between the self-consistent potential and that o f 

the bulk electron density may appear to be too small to warrant the extra computational effort, 

however, as the nanocrystals diminish in size the spacing between their discrete energy levels 

increases, and their electronic behaviour correspondingly diverges from that o f their bulk 

counterparts’. On charging therefore, the exact forms o f the individual orbitals containing the
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added electrons become even more important, as the spatial localisation o f the charge, and thus 

the resultant potential, is markedly different from the scenario where a continuum o f states 

‘sm ears’ the charge over the grain.

In way o f example, should the effects o f charging be simulated via the movement o f the Fermi 

level up the potential well, although unlike an actual charged grain the overall charge is still taken 

as zero i.e. Q = 0 in Eq. (5.42). Then for the conduction band bottom o f a 4nm radius S n 0 2 grain 

as plotted in Figure 3 -15(a), at Ef  = 1.25eV the occupied surface state density switches from -

6.52x10'" m'2 to 8 .2 6 x l0 16 m '2 between the bulk and self-consistent charge densities as the 

potential profile within the well changes from concave to convex. The maxim um  difference

(a)

3.5

>
i t

0.0
0 1 2 3 4 5

R (nm)

3.5

0.5
0.0

30 1 2 54
R (nm)

 1st iteration final iteration

Figure 3-15 Plots o f initial and final potentials for 25 iteration self-consistency cycles, applied to a 
4nm SnO: grain at room temperature at Fermi levels o f (a) 1.25eV and (b) 3.25eV, indicated on their 
respective graphs via a dotted line. Trial (1st) potentials are generated from Poisson's equation using 
the bulk semiconductor electron density.
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between the two band bottoms, 0.77eV, lies at the well centre. This is in contrast to the Ef = 

3.25eV case, Figure 3-15(b), where within the well, the maximum difference o f 0.57eV is found 

at ~2.92nm, but with the trial potential now also convex, and additionally, outside the well the 

vacuum potential differs by 0.87eV as the density o f charge contained within the surface states 

drops from 1.00xl018m‘2 to 2.25xl017m'2. Continuing the self-consistency cycle over 25 

iterations (although practically it could be halted far short o f this), then for the two Fermi levels, 

£ ’s of 1.83xl0'18 and 1.19xl0'26 can be achieved respectively.

Clearly then, self-consistency is of the utmost importance to the goals of this project, and the 

negelect o f this issue would be in serious danger o f rendering any charge writing simulation 

meaningless.
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3 .6  C o n c l u s io n s

3.6 Conclusions

In this chapter, it has been shown that by solving Schrddinger’s time-independent equation, the 

eigenstates of a finite potential can be determined, giving the discrete energy levels and orbitals of 

a quantum dot.

The mathematics and quantum mechanics were outlined that allow the electron wave function to 

be separated into its angular and radial components if  the confining potential is solely dependant 

on the radial coordinate. It was demonstrated that this then allows Schrodinger’s equation to be 

split into two separate equations, one angular one radial.

The angular equation was then solved exactly, its eigenvectors referred to as the spherical 

harmonics and whose dependence on two quantum numbers, m and /, was shown. Its eigenvalues 

are demonstrated to be /(/+1) where / forms the allowed limit on the azimuthal quantum number 

m ,m <  |/|, and can take the values 1 = 0, 1, 2 ,... . These eigenvalues are not only integral to the 

corresponding spherical harmonics, but are also required within the radial Schrodinger equation.

The radial component of the wave function cannot be determined exactly, dependant as it is on 

the form of V. To tackle this, a finite difference method is developed, discretising the radial 

equation on a uniform grid of spatial points. The whole radial operator is then expressed as a tri­

diagonal matrix, reducing the ODE to a simpler algebraic problem of ascertaining the eigenstates 

of an Ax = Ax type equation, solved using routines from the linear algebra package LAPACK 

(although simple ^-facto risation  and inverse iteration techniques to solve this type of problem 

are discussed in the accompanying appendices). This was then coupled with a method of 

orthogonalising the eigenvectors to generate the final eigenstates o f the radial equation. To assess 

the accuracy and suitability of this approach, firstly, the finite difference method was applied to a 

square potential where the eigenstates can be calculated analytically fairly simply, and the results 

o f the two methods compared. For a 700-point mesh with an inter-mesh spacing of 0.0 lnm, the 

finite difference discrete energy levels lie a mean ~0.23% above those determined analytically, 

see Table 3-2, a more than acceptable discrepancy. Secondly, these nearly-ffee finite difference 

results are compared with those from a tight-binding Hamiltonian, where the electrons within the 

semiconductor are no longer taken to be essentially free, only being weakly perturbed by the 

periodic ionic lattice, but rather are viewed as occupying the standard orbitals of their constituent
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atoms, then 'hopping' between atoms during conduction. Again using the finite square well 

potential as the reference potential, the results of the two approaches only differ by a mean 

-0.22%, see Table 3-3, reducing to ~0.06% on using the effective mass of Sn02.

Having shown that the radial component of the wave function can at least in principle be 

determined within an acceptable error tolerance, the next subject to be treated was that o f self- 

consistency. For a self-consistent solution, the electron density resulting from a potential must 

generate that same potential - that is poukf) -  pm(r) or Voui(f)= V,„(r). To achieve this far from 

straightforward goal, a mixing scheme was developed to create an amalgamate charge density at 

each iteration from the charge densities o f the current and preceding iterations. By doing so, the 

charge fluctuations between each iteration are damped and the system can converge to a self- 

consistent potential. The scheme is shown to be successful for a 15nm Sn02 grain at room 

temperature even when the trial potential is square, see Figure 3-14, and the necessity of self- 

consistency is clearly demonstrated for higher electron densities in Figure 3-15.

So far however, to simplify the discussions a little, the mesh upon which the radial equation is 

discretised has been uniform. This is not ideal in treating scenarios where the decay o f the wave 

function outside of the grain is slow, as the potentially vast external space, which is of little 

interest, has to be considered with the same resolution as the internal region, which is of great 

interest, but is possibly very small in extent. To overcome this, a variable mesh and the 

consequent new discretisation of the radial Schrodinger equation must be developed. This, 

incidentally, is essential for the logarithmic meshes used in Chapter 4 to model atoms in testing 

approximations of the exchange potential.

For a finite spatial mesh, as in Figure 3-16

f -1 f  //+1
* — :— > ----------------- : > •

/+!

Figure 3-16 Schematic o f  variable mesh 

a function/ can be expanded via a Taylor series about site i such that

f M = / ,  +A

A2 A3 A4 • (3’134)
= / ,  - A ,/ /  + - ^  + " '
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(compare with Eq. (3.65) and Eq. (3.66)). Assuming that although A, ^  A,+], the mesh spacings 

are o f the same order of magnitude i.e. 0(A,) » 0(A/+i)= 0(A), then

/,♦. = U  +(A ,+, - A , ) / /  + (A3+1 + A3) A ' + 0(A3)

//♦i - / m  =(A ,+, + A ,) / /  + (A i1 -A 3) 4 ’ + 0(A 3)
2!

then the first and second derivatives of/  can be written

2
/ / = | / +, + / m - 2 / i - ( a /+1- a / ) / ; ] + o ( a )

s '  _  f i +1 / - I  _  A/+j ^  f t  +  \

A,-+1 + A, AJ+1 + A, 2!

(3.135)

therefore

/ ; = A/+,A;.
]  A ;-t-1 " A ,

A/+1 + A /V
//+! +

^  A A 'N
i + A a ._ A

A,+i +  A,- y
+ 0(A) (3.136)

and

/ ; + - / / =r.
1 — A l, -A? 

r/(A/+] + A f) A /+1A,

^ _ A ;+, - A ,

A/ + 1 +  A; J
fi+l + ' l  + A- - A'

A,+i +  A, j
//- , - 2 / / + 2 //+1 //-] 

r, A/+1 + A,

(3.137) 

+ 0 (  A)

Then for a variable mesh, the equation analogous to the constant mesh Eq. (3.70) are

( 2m /(/ + l)
2 A i + - T V ih r,

A:B, +
1 (

~nl

?i A,+i + A, j
/ 'M _

i+\ A,C, -
1

r, A/+] + A ,,
/ •nl 

i-l

2m
E j f  + 0(A)

A, =

C, =

1 — A-+1 -  A?

1 -

r»(A/+] +  A ,)  

A,+i -  A,

A,+1A,

(3.138)

A/+i +  A / (3.139)

A,+i +  Aj

Although the error in Eq. (3.138) is an order o f magnitude greater than in Eq. (3.70), if the mesh 

is divided into regions o f constant spacing, only at the points of change will the error be ~0(A) 

else it will lie at the more satisfactory ~0(A2). In this way it is possible to retain a high degree of 

accuracy whilst making use of the advantages of a ‘variable’ mesh in modelling a region large in

121



C h a p t e r  3  S o l v in g  t h e  S c h r o d in g e r  E q u a t io n

spatial extent. The eigenstates satisfying Eq. (3.138) are obtained in exactly the same way as those 

of Eq. (3.70).

In modelling real systems, when the mesh extends outside the nanocrystal then it is likely that the 

material parameters will change. If the electron mass is not homogeneous over the mesh, and is 

taken to be dependant on the r coordinate only, then as suggested in Burt [72], the kinetic energy 

operator acting on ^m ust be modified. If the Laplacian of Schrodinger’s constant mass equation 

is replaced such that

V > ->V

then

m*(r)

m

Vy/

1
m*(r)

Vy/

m*(r)
V • V y/ + Vy/ • V

since V • (fA ) = /V  • A + A  • V / [73]. Now V • V y/ is simply V V , and given

<9/ , I d / -  1 d f 2V / = — r +— — 6 + --------- — d>
dr r 30 r sin 0 d<j>

(3.140)

(3.141)

the second scalar product in the RHS of Eq. (3.141) reduces to the product o f two partial derivates 

with respect to r, since m* is solely dependant on r, then

V-
1

m '(r)
Vy/ V > 1 dy/ dm*(r) (3.142)

m*(r) m*(r)2 dr dr

The second term in the RHS of Eq. (3.142) is zero except at the boundaries between two different 

media, and, being dependant on only the r coordinate, effects only the radial Schrodinger equation 

Eq. (3.64) and its discretisations.

The radial component, ), of the total wave function for a non-homogeneous media, must 

therefore satisfy the equation

2m* (r) dr‘
+

2 1 dm* (r)
r m*(r) dr

d  1(1 + 1) 
dr r 2 L,(r)+[En-r ( r ) ] fn,(r) = 0

(3.143)

which on a variable mesh, is discretised so that
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n 2 , „  %2i { i + \ f
— 4 + K +  ,  \  2 ’

\ m, 2m, r, j 2m*
A tB t +

A,+i + A/

1 m / '+ ! mM
m* A)+1+A, j ;

.2 (

2m*
A , C , -

f 2 1 m*^-m *_x^
A;+i + A, m* A/+1 + A;. y

/ 'til 
1+1

(3.144)

/,!i = E nf ? 1 + 0 (  A)

^ 7, 5/ and C, as defined in Eq. (3.138). Once again this is solved for its eigenstates in the same 

manner as Eq. (3.70).

This Chapter then has developed techniques to accurately provide the single-particle eigenstates 

of a given potential formed across inhomogeneous media, and introduced the iterative scheme to 

self-consistently reconcile these eigenstates with the potential generating them. Up to this point, 

that potential has not made any allowance for the influence o f each electron on its companions, 

other than through their net charge density in Poisson’s equation. Forward then to Chapter 4 and 

the dissection and modelling of these electron-electron interactions.
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Chapter 4 Electron-EIectron Interaction Effects

In this Chapter, the complex effects of electron-electron interaction, essential in modelling any 

multi-electron system, are discussed, and it is shown how the single-particle techniques of the 

preceding Chapters can be extended and adapted, to provide a self-consistent reference potential 

possessing the ground state electronic density of the many body interacting system.

Unlike earlier sections, atomic units will be adopted for this Chapter, in order to ease the passage 

of the reader slightly through the plethora of symbols present in the forthcoming arguments. Thus

e = h = m = 1

with energies measured in Hartree, H,

1 H = — y  « 4.36 x 10-18 J 
ma0

and unit o f length now the Bohr radius, a0,

\a 0 = - ^ T *5.29xlO ",1m 
Tcme

Section 4.1 introduces the difficulties associated with any many bodied system, develops the 

Hartree and Hartree-Fock approaches, discusses the antisymmetry o f the many bodied wave 

function and Slater determinants, and then proceeds to cover density functional theory (DFT) and 

the Kohn-Sham method, with the introduction of the Hartree and exchange-correlation potentials. 

The task o f finding the Kohn-Sham single-particle eigenstates is shown to be the same as 

minimising the total ground state multi-particle energy and the section concludes with a brief 

outline o f the available exchange-correlation approximations.

1 2 4



C h a p t e r  4  E l e c t r o n - E l e c t r o n  In t e r a c t io n  E f f e c t s

In Section 4.2 the exact Hartree-Fock exchange term returns in a DFT context, the exchange only 

optimised effective potential (OEP) method is discussed and the Krieger, Li and Iafrate (KLI) 

approximation to the exchange potential is introduced. The KLI method is implemented in 

modelling atomic systems, in good accord with literature examples, and the appropriateness of 

using the KLI exchange in place o f the exact OEP exchange is debated.

Section 4.3 is devoted to the electron-electron interaction of smallest magnitude, correlation, and 

the uniform electron gas density expansions o f Perdew and Wang.

Section 4.4 covers the numerical implementation o f the Hartree, exchange and correlation 

potentials, and discusses the simplifications allowed by the nature of the spherical quantum dot 

under study. Within the closed subshell approximation, these three potentials are shown to be 

spherically symmetric and as such, compatible with the finite difference techniques outlined in 

Chapter 3 to determine the allowed eigenstates of a spherically symmetric quantum well. Applied 

in conjunction with each other on a homogeneous lOnm radii Sn02 grain for integer orbital 

occupancy, several self-consistent potentials resulting from these techniques are shown.

Section 4.5 concludes the Chapter and summarises the developments therein.
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4.1 The Many Body Electron Problem and the Kohn-Sham Equations

The essential issue in studying and analysing the electronic structure of matter is not the solution 

o f the Schrodinger equation for isolated electrons, but rather its solution for a system of N  

interacting electrons. A task of much greater difficulty, with the electrons now free to interact 

amongst each other: the presence o f an electron in one particular region of space influencing the 

behaviour of the other electrons in the surrounding regions through Coulombic repulsions and the 

effects of the Pauli exclusion principle. The wave function of this many electron system is then 

not merely the product of the wave functions of the individual electrons in isolation, but a rather 

hazier entity altogether. The difficulties associated with accurate calculations of this nature are in 

essence the quantum mechanical many-body problem.

The Hamiltonian for such a multi-electron system, be it atom, molecule or quantum dot, is

/ = i

V2
— ^- + v(r,)

! N  N  i

( 4 - 1 }2 — — ir ,-r ; 
j*i

where the first term represents the kinetic energy, the second, the ‘external’ potential i.e. the 

potential due to the nuclei, any magnetic fields etc., and the third term is the electron-electron 

repulsion.

The wave function describing the total electron cloud is then the many bodied wave function

vP*(r i> i*2,  rN) satisfying Schrodinger’s equation

^ ( r ,  rJ,) = £ t4't (r1>...,rAr) (4-2>

The electron probability distribution follows from

Pt (ri,...,rÂ) = |'Pt (r1,...,rJV)|2 (4-3)

and determines the probability Prfj\, r2, ... r#) of the existence of an electron at ri, another at r2 

and so forth.

The ground state of the system is the label applied to the lowest energy eigenstates satisfying Eq. 

(4.2).
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4.1.1 The Hartree and the Hatree-Fock (HF) Approximations

The complexity o f the many-electron wave function ¥* makes it practically unsuitable, and so one 

method of approximation, the Hartree approach, is to form a product of single particle wave 

functions such that

N

'F (r1, • • •, r^ ) = n V »  (r/) (4.4)
/ '= !

each o f the functions y/,(r,) satisfying a one-electron Schrodinger equation

V2 ^
h,¥i^i)= —- L + v(r,) + ve#(r<) ^,(r,)

I 2 J (4.5)

known as the Hartree equation, where the new term v ejg ( r ;) represents an averaged potential

, (4.6)ve#(ri) = J TJ _ r \ ' d xi
\ i j  I

which is the classical electrostatic potential felt by particle i due to the charge distribution o f the 

other N-\ particles. The product of single particle wave functions, Eq. (4.4), is referred to as a 

Hartree product.

The total energy is then the sum of the eigenstates, eh minus a term correcting for the double 

counting of the electron-electron interaction [19,29]:
N  i  N  N

(4-?)
,=1 z  /=] J*l

r — r
'  j

The Hartree Hamiltonian is spin-independent, and as such, its eigenstates are degenerate with 

respect to spin and therefore spin can be neglected.

Nevertheless, for electrons, and indeed all fermions1, the wave functions satisfying Eq. (4.4) must 

be antisymmetric with respect to the interchange o f the space and spin coordinates of any pair of

1 Fermions are particles with half integer values o f  spin (e.g. protons, neutrons, electrons (all spin-1/2) and 
Q~ (spin-3/2)). They are represented by antisymmetric wave functions and obey Fermi-Dirac statistics.
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particles. This is the generalisation o f the Pauli exclusion principle" to many interacting particles 

[70,29]. Redefining if/ to include a spin component by extending the single particle wave 

functions into single particle spin orbitals"1 such that the variable x, condenses into a single 

variable the spatial coordinates i-* and the spin coordinates cr, [29], then it is found that the Hartree 

product Eq. (4.4) does not fulfil this antisymmetric requirement.

Consider for instance the two electron system

xF(Xi ,x2) = ^ i(Xi ) ^ 2(x2)

then clearly

(x, )y/ 2 (x2) * -y /x (x2 )y/2 (x ,)

However, forming the many electron wave function from linear combinations of Hartree products 

such that

^ ( x 1,x 2) = - L k ( x , ) ^ ( x 2) - y/x (x2 )tf/ 2 (Xj)]

does provide a two electron wave function that is antisymmetric under coordinate exchange 

Wi (x, )¥ i (x2 ) - ^ ] ( x 2 )\f/ 2 (x ,)] = ~[y/x (x2 )y/2 (x ,) -  y/x (x, )y/2 (x2 )]

Generally, this can be extended to encompass a system of N  electrons, the many bodied wave 

function now defined with a mathematical construct called a Slater determinant:

(4.9)

^ l ( X i ) 1) ^ v ( X l )

£ II

^ l ( x 2 ) V 2 & 2 ) < M X 2 )

^ l ( X t f ) V n ( * n )

= SD{y/x (Xj )y/2 (x2) • • • y/N (x^ )}

Symmetric wave functions describe Bosons (e.g. pions (spin-0), photons and gluons (spin-1), and the 
theorised gravitons (spin-2)), particles with integral values o f  spin obeying Bose-Einstein statistics.
II The Pauli exclusion principle states that no two independent fermions can occupy the same state.
III A general spin orbital a(x) consists o f  the product o f  a spatial function <f(r) and a spin function <f(<r). For 
the electron orbitals, a is either +Vi or -V2, usually referred to as spin-up ( | )  in the positive case or spin- 
down in the negative ( |) .  Then

«(x,) = ^ ( r,)^ ( ° ')
The spin functions are required to be orthonormal, and so for the general matrix element

(t?(x1)6(x2) |l / |r ] - r 2 ||c(x])£/(x2)) = (^a(r1) ^ ( r2) |l / |r1 - r 2 | |^ ( r 0 ^ ( r 2))(^a(o-)|^c(^))(^2 (<t) | ^ ( ct))

= {0a (r i )0b (r2 )|! / I r i -  r2 l|0c (r i )0d (r2 ))$(<*a > )#(<*b ’ °d  )
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A function of the form of Eq. (4.9) is inherently antisymmetric since the interchange of two

sign o f the determinant (see Appendix II, Introduction to Eigenvalues and Eigenvectors). In

identical, the determinant vanishes (again see Appendix II), and therefore one electron and one 

electron only can occupy a given orbital at any one time (the aforementioned Pauli exclusion 

principle).

The modification of the Hartree approximation to encompass the Slater determinant 

representation o f the many-bodied wave function leads to the Hartree-Fock approximation.

Separating the Hamiltonian, Eq. (4.1), such that

where v is again the external potential, then the wave function Eq. (4.9) satisfying the Schrodinger

particles corresponds to an interchange of two rows within the determinant which changes the

addition, if  two single particle eigenvectors are identical then two columns o f the determinant are

(4.10)

equation Hy¥=E'P is formed from single orthonormal electron wave functions such that the 

variational principle [70] (see Appendix III, Introduction to the Calculus of Variations ) is 

satisfied i.e.

£ (vP |// |xP) = 0 (4.11)

Represented as a matrix, the operator H  will have the diagonal elements h, and the off-diagonal 

entries v 2(r,-,r,) where

(4.12)

and the expectation value of the Hamiltonian is then simply

i= l i= l j * i

With the constraint on the single-particle orbitals of orthonormality, the variational equation Eq.

(4.11) can be implemented with the Lagrange multipliers X,j, where /I* = Xj t , yielding
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N  N

/=1 J = ] ( 4 .1 4 )

=  0

and the resulting Euler equations given by

KVi (X1) + X  [f )̂ 2 (ri ’ r2 )V j  (X2 )^X2. Vi (X1) (4.15)

N 17 N
~  Z  Ij V j  ̂ X2 )̂ 2 (rl»r2 (X2 )^X2 V j  (X1) = X  ̂ ' jV j (X1)

y*' y=i

Forming the matrix A from the Lagrange multipliers so that the element Ay  is equal to Xy, then A 

will be Hermitian since X* = XJf, and therefore, there must exist an unitary operator A that will 

diagonalise A via

AAA'] = e (4.16)

where e  is a diagonal matrix, its non zero entries the eigenvalues e, (see footnote [iii] o f Section

3.2 and also Apendix II, Introduction to Eigenvalues and Eigenvectors). Transforming the 

orbitals with if/' = Ay/ then

( v \^ \v )  = (v '\£ \v ')  (4.17)

and the Lagrange multipliers Xy i £ j  can be said to have been eliminated [70]. The Slater 

determinant is invariant under unitary transform [29], and therefore the Euler equations can be 

taken to be also. Thus

^ > ,'(x i) = ^ , ' ( xi) (4-18)

where

(4.19)

F , = h , + t P , - K j )
J=]

JjV'i(xl) = IJ V'j (X2 )v2 (ri > r2 ) v ’j (x2 )̂ 2 K(X1)
KjV'i (X1 ) = [f V'J (x2 )v2 (1*1, r2 )y/] (x2 )dx2 f )  (x,)

/ * A with the restriction j  ± i dropped as J, and K ( are equal at j  = i and will therefore cancel each

other i.e. a particle in a spin orbital if/, does not react with itself. J , and K t are referred to as the

Coulomb and exchange operators, Fi is known as the Fock operator, and collectively Eq. (4.18)

and Eq. (4.19) are known as the Hartree-Fock equations. Most importantly, in Eq. (4.18) the

Lagrange multipliers e, have become the single electron eigenvalues.
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Furthermore, defining

Jij = {Vi(x, P j k (xi)) = f f V*(X] )y/*(x2)v2(r,,r2)y/t )if/j(x2 )dx]dx2
■ A , (4.20)

Ky = (Vi ( X 1 ) |K jy ,  ( x , )) = J J yf* (x , )y/] (x2 )v2 (r,, r2 )y/j (x , )y/t (x2 )dx]dx2

where the arbitrary prime has been dropped on the orbitals for clarity, then the total energy E, 

equal to the expectation value of the Hamiltonian Eq. (4.10), may be written

N  i N  N

,=i z ,-=i j=i

where
(4.22)

Pre-multiplying Fiy/i by the wave function’s complex conjugate and integrating yields an explicit 

expression for £•,

(4-23>
j =1

and therefore the total Hartree-Fock energy can be expressed as
N  -I N  N

( 4 - 2 4 ),=1 z  /= l j =l

Now, consider the energy difference between this system of N  electrons and the energy of a

system of N+ 1 electrons, labelled j  =1, 2, ..., N, i. Then
N  1 N  N  i  N

f 7 — If \_ I.
' Ne n> i = i x  + 4 Z w * - E ,k) - E ,

j= 1 z  y=! *= l Z  *=1

"  (4.25)
= E „ + '£ < .J lk - K lk)

£=1

= *,

and as such the single particle eigenvalue, s, can be interpreted as an ionisation energy i.e. the 

energy required to remove an electron from orbital i assuming that the other orbitals remain 

unchanged by the process. This is known as Koopman’s theorem.

Computationally, the spin orbitals need to be considered separately in terms of their spin and 

spatial components. In order to remain consistent with the earlier terminology and that of of the 

main reference of this section, Kohanoff [29], <//(r) will refer to the spatial dependant part of y{x).
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From the orthonormality of the spin part of ^(x), as discussed in footnote [iii] of this section, the 

Coulomb, Jjj, and exchange, K ih integrals in the Hartree-Fock energy can be written

J ij =  J j V « * ( r i ) ¥ * ( r 2> 2 ( r i . r 2) ¥ i ( r i ) ¥ j ( r 2 ) d r 1d r 2 ( 4  2 6 )

K0 = d  (o-,., a  j ) J J y/* (r, )y/* (r2 )v2 (r,,  r2 )y/j (r, )y/t (r2 ) d r l d r 2

and the Fock operator Ft applied to t//,(r) gives the Hartree-Fock equations for spatial orbitals:

Fi¥ i(r l ) = £i¥ i(r]) (4.27)

with

J=1 (4.28)
J  j  =  J ¥ j  ( r 2 ) ^ 2  ( r i .  r 2 ) ¥ j  (**2 ) d r 2

k j  = S(cri, (Jj) J yf] (r2 )v2 (r,, r2 )y/i (r2 ) d r 2

The Hartree-Fock equations are similar then to the Hartree equations, except that they contain the 

exchange integral operators which introduce the coupling terms between the different single 

electron states. These effective exchange potentials are non-local, dependent as they are on the 

location of the other electrons, and exchange can be said to be fully taken into account within the 

HF approximation. In contrast, the Hartree approximation only accounts for the other electrons as 

a mean field i.e. with a local potential. Importantly, the electron-electron self-interaction cancels 

exactly within the HF method.

It must always be remembered however that the foundation of the Hartree-Fock approach, the 

anti-symmetric Slater determinant, is only an approximation. In the true many bodied wave 

function, the electrons will not only experience the effects of exchange and electrostatic repulsion, 

but will also always act to correlate their movements in order to minimise their total energy. 

There are many other possible anti-symmetric wave functions which cannot be written as Slater 

determinants and as such are inaccessible through the HF approximation. There are methods of 

improving the HF approximation, for instance including correlation effects via linear 

combinations of Slater determinants or using perturbative methods. Unfortunately, these schemes 

are quite computationally costly however, and so to avoid these problems, -the alternative 

approach o f density functional theory (DFT) is applied here.
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4.1.2 Density Functional Theory (DFT)

Using DFT it is possible to determine the electronic ground state density, and, as such, the 

governing potential and the total ground state energy. Extending this knowledge to cover excited 

states is discussed in Chapter 7.

Let H  be a Hamiltonian such that

H  = T + V + Uee (4.29)

where T  is the kinetic energy operator

r  = - - Y v , 2 (4.30)

V, the interaction with external fields

^  = £ v(r,) (4.31)
i

and Uee is the operator for the electron-electron interaction. Using the approach o f Levy [74] 

define the universal functional

F[n] = m in (o |f  + £/Jo) (4-32)
0->/j I I

for all densities n obtainable from some antisymmetric wave function <X>, these densities 

consequentially deemed JV-representablelv . The functional F  is referred to as universal since it is 

explicitly independent of the external potential [29].

Denoting the ground state energy, wave function and density by EGS, <X>G5, and nGdx) respectively, 

then the two theorems of density functional theory for //-representable n(r) are [75]:

E[n\ = F[n] + J v(r)«(r)^r > EGS (4.33)

Ecs = F [ncs ] + J v(r K s  (r )^r  (4.34)

To prove Eq. (4.33), let the wave function which minimises Eq. (4.32) be denoted as 0 ^ n then 

Eq. (4.33) becomes

( ® L  IT + Ua  |0 ! „ ) + 1 v(r)«(r )dr =(® ^ T + V + U. <D" \>  Er cmin j  — ^G S

1V Another commonly encountered term is T-representable and refers to the subspace of TV-representabile 
densities that follow from a local potential V.
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therefore Eq. (4.33) is true by the definition of the ground state i.e. the minimum of the 

expectation value of the kinetic and potential energy operators.

From the expectation value o f the Hamiltonian for the ground state

Egs = (®gs | t  + F  + Uee O gs )

then using Eq. (4.33)

(4.35)

{4.cs|f  + F + f/ee|®cs)< (® S  

The external potential can be cancelled, so

T + V + U. ^min /

T + U < (®"GS T + U )\  G S  w  ee ^ G S  /  ~  \ min w ee  ^m in /

However, the definition of as the wave function that minimises F  requires that

(^GS T + U. T + U. <D"gs\  
min j

(4.36)

(4.37)

Eq. (4.36) and Eq. (4.36) can only both be simultaneously true if

then

<fcos|r + £ « |® csH < ic r„  

£ g s =(®

T + U. min J

T + U. ^GS ) J*^(r )̂ GS 

= + U ee\ ^ i )  +  J v(r)nGS(r)dr

= F[nGS] + jv (^ )n GS(r)dr

proving Eq. (4.34).

The ground state electronic density then determines the ground state multi-particle wave function, 

from which all ground state properties can be calculated. This implies that all the ground state 

properties are in fact functionals o f the ground state density. Henceforth the ground state many- 

electron wave function will simply be represented by the symbol O. This discussion o f the 

fundamental properties and theorems of DFT is a reformulation of Hohenberg and Kohn’s work 

[76] to guarantee the antisymmetry o f O.

How now to actually determine these groundstate entities? The electron-electron interaction 

energy Uee, the expectation value of the electron-electron interaction operator Uee, is generally 

decomposed into two parts: the classical electrostatic energy, EH, often called the Hartree term 

(compare with the Hartree Coulomb integral Ju)
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« <4-38> 2 J J r -  r

and exchange and correlation energies, Exc. The main problem is the assessment of the many 

particle kinetic energy term

r  = ( o |f |o )  (4.39)

In the Kohn-Sham scheme, the true kinetic energy is split into the sum of the non-interacting 

kinetic energy i.e. the energy of single-electron wave functions in the absence o f electron-electron 

interactions

T> =  ( 4 -4 0 >

ignoring for the moment any possible spin dependence, and a correlation component. This 

additional term is included with the exchange and correlation contributions from Uee, this sum 

labelled Exc. The exact exchange, calculable as in HF theory, accounts for the energy reduction 

due to antisymmetrisation and corrects the self-interaction of the Hartree energy. The correlation 

energy is now the energy difference between the full ground state energy and the one obtained 

from the approximate Slater determinant. It allows for the kinetic energy difference between the 

interacting and non-interacting systems and accounts for the energy reduction as the electrons 

coordinate their movements to minimise their Coulomb energy.

The Kohn-Sham approach is then conceptually simple. Assume that a system o f non-interacting 

electrons exists, whose ground state density is identical to that of the interacting system of 

electrons. As their kinetic energy and exchange energy can be calculated exactly, provided a 

realistic approximation can be made of the correlation effects, then in principle, by minimising the 

non-interacting system with respect to its density, the true ground state density o f the interacting 

system can be found.

Therefore, separating the energy functional into its constituent parts such that

E ksW  = 7 > ]  + } »(r)v(r)<fr+ 1 J J ^  d r d r ' + (4'41>

and applying the variational principle, with the constraint that the density integrates to N  

electrons:
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E ks [«] -  M J  n(r)dr]= 0 (4-42)
dn{ r)

then

SEKS[n]  _  <XTs [ h ]  f  n(r') , , , <5E’x c [w ]+ v(r) + f dr' + *cL” J = fx (4.43)
J r - r l  <5?(r)<5h(r) Sn(r) J |r -r '| dn{ r)

where /i is the Lagrange multiplier. The functional derivative of the exchange-correlation energy 

with respect to the electronic density is called the exchange-correlation potential, v*c(r), and its 

preceding term in Eq. (4.43) is referred to as the Hartree potential, V/Xr) -  note the similarity to 

the effective potential of Eq. (4.6) in the Hartree approximation. Both these potentials and the 

external potential are local.

Next consider a system of non-interacting particles confined within a local potential v5(r). In the 

absence o f the electron-electron interactions, Hartree and exchange-correlation, the minimisation 

condition requires

Srs [n] ...- r 7 ^  + vs(r) = // (4.44)
on( r)

Denoting the density that solves this as ns(r), then these equations, Eq. (4.43) and Eq. (4.44), have 

identical solutions, ns(r) = n(r), provided that the potential vs is chosen to satisfy

vs(r) = v(r) + v//(r) + vJCC(r) (4-45)

Ergo, by solving the Schrodinger equation

V:
2 + n (r ) V  i ( r )  =  £ i ¥  A r )  ( 4 -4 6 )

for the non interacting single body eigenvectors in a potential vs(r), the density, «(r), of the 

interacting many bodied system in a potential v(r)v is ascertained:

»(>•)=X / h o f  (4-4?)
/

Along with expressions for the Hartree and exchange-correlation potential, the two equations Eq. 

(4.45) and Eq. (4.46) form the Kohn-Sham equations, the self-consistent solutions o f which can 

be determined using the procedures of Chapter 3 -  see Section 4.4. The use of a local exchange-

v The external potential v(r) for the quantum dot system o f interest here follows from the solution o f  
Poisson’s equation, see for example Eq. (2.10). In this way, v will in general be refered to as vp if  it is 
generated from Poisson’s equation alone, or vsp i f  it follows from some iterative procedure coupling 
Poisson’s equation and a Schrodinger-like equation.
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correlation potential is in contrast to the non-local exchange potentials of the Hartree-Fock 

approach, and this reduction from integral exchange operators to a relatively simple multiplicative 

exchange potential makes the KS equations far quicker to solve than older HF ones.

It is usual to state that the KS approach maps the interacting many bodied problem onto an 

auxiliary single-particle problem, and that the task of minimising E^lri] has been replaced by that 

o f solving a non-interacting Schrodinger equation. However, these single-particle eigenstates 

have no physical meaning by themselves in the strictest sensevl, and only form part of the 

mathematical construction devised to yield the correct density. Yet they can provide good 

approximations to the excitation energies of physical systems [23], and indeed have 

mathematically been shown to be the excitation energies to zeroth order in the electron-electron 

interaction [28]. Detailed theoretical calculations with comparisons to experimental data 

[24,25,26,27] demonstrate that the KS eigenvalues approximate very well the vertical ionisation 

potentials. For valence orbitals, Gritsenko et al. [27] suggest that for closed-shell molecules the 

KS eigenvalue - ionisation potential deviation can be as little as 0.08eV ( <0.1%). For the lower 

valence and core levels, the deviation can be substantially greater, although Chong et al. [26] 

indicates that over 64 different molecules, over all the 406 ionisation potentials, the maximum 

error is only ~3.6 % and the average energy difference only 0.4eV.

Whilst the KS eigenstates are taken as acceptable approximations to physical eigenstates for the 

main results contained in Chapter 6 of this work, Chapter 7 discusses a method o f accurately 

including self-energy using Green’s functions in order to assess the true electron addition and 

removal energies of the many body system for future investigations.

The Kohn-Sham method and the DFT ground state density, although often considered concepts 

applicable only at absolute zero with integer orbital occupancies, hold at elevate temperatures, see 

for example Kohn et al. [77] or the work of Mermin [78], and with fractional occupancies, see for 

instance Perdew et al. [30], although some articles contend this, see for example Kohanoff [29]. 

Fractional occupancies appear in a KLI context (see Section 4.2) in Krieger et al. [21], and most 

relevantly to the methods employed within this treatise, are calculated by Torsti et al. [20] with 

Fermi-Dirac statistics to simulate a Na quantum dot system at 1200 K (see Section 1.1).

V1 An exception to this is the highest occupied KS eigenvalue, which does satisfy Koopman’s theorem when 
the exact functional form o f  the exchange energy is used. This is discussed in more detail in Section 4.1

1 3 7



C h a p t e r  4  E l e c t r o n - E l e c t r o n  In t e r a c t io n  E f f e c t s

Naturally, maintaining a thermal electron component in the total electron density in this way 

makes this total density very sensitive to the accuracy o f all the Kohn-Sham energy levels, 

including those that would be considered the ‘excited’ eigenstates o f a more traditional integer 

occupancy scheme. As such, it is imperative that the highest accuracy functionals alone are used 

within the Kohn-Sham method [23] if  these excited states, and so their Fermi-Dirac dependent 

fractional occupancies and consequentially the variationally minimising density, are to have 

meaning in this treatise.

The next stage is to treat the spin o f the electrons. The extension of the Kohn-Sham theory, and 

DFT in general, to include spin is not however completely straightforward. As discussed in 

Eschrig and Pickett [79] for instance, the spin-DFT ground state density does not uniquely 

determine the potential, although Kohn et al. [80] estimates that the effects of this are not 

significant.

It is sufficient to separate the total density into two independent spin densities such that

n(r) = nT(r)+ n i (r) (44g)

= Z " r t(r) + «,.l(r)
/

where

«/a(r ) = fioV/ '«(r)V/ io(*) (4.49)

then the single-particle Kohn-Sham spin orbitals must self-consistently satisfy

— + v,CT(r ) V',tr(x )  =  £i<rV'i* ( r )  (4.50)

where

v s* ( r )  =  v(r) + vH (r) + vJCC£T(r) (4.51)

with the spin dependant exchange-correlation potential

v«,([»„];r) = % £ d  (4.52)
8na{ r)

The Coulomb potential vH remains unchanged, dependant as it is solely on the total electronic 

density

«(r ')

The total energy of the system in spin DFT is therefore [29]
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eks K 1 = Ts K  ] + jw ( r )v ( r )dr + i  |  J  ” (r M r  ^drdr'+ Exc K  ]
(4.54)

= Z  S  -  |  J  j  ' “  j  (r Mr ) <f r + K 1

where the spin-polarised expressions for the exchange-correlation potential have been replaced 

with the un-polarised potential, and

r . h , ]  = - \ Y Z f t  J l C W V W O O *  (4.55)

has been used for the kinetic energy.

But what o f Exc and its functional derivative vxcl  Up to this point DFT has been exact and no 

approximations introduced, however the precise form of Exc is unknown. As a consequence of 

previous discussions (specifically those following Eq. (4.34)), Exc is guaranteed to be a density 

functional -  the exchange correlation energy is a component of the ground state energy and all 

ground state properties are functionals of the ground state density, but it is not explicitly known.

Broadly, there are three levels of approximation in the literature to address the exchange- 

correlation energy [81].

The first is the local density approximation (LDA). Here the general inhomogeneous electronic 

system is treated as locally homogeneous electron gas, the simplest system of correlated electrons, 

substituting in the variable electron density into known uniform-density expressions.

For instance, dividing Exc into individual exchange and correlation components, the homogeneous 

exchange energy per electron is given exactly by the expression [29]
/ - nI/3

and so the LDA exchange energy is merely'
, 1/3

3_
\ 7 t  j

nm (4.56)

For spin dependent systems Eq. (4.56) becomes

=  -  7  4

with the introduction of the relative spin polarisation parameter C, of Perdew and Wang [22]

ldar „  / ' i _ 3 f 3 Y /3 1/3 ( l + p 4/3+ ( l - p 4/3 (4.58)— I n 
n
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^  (4.59)

The correlation contribution can be excellently approximated. Several schemes exist, the most 

accurate based on the quantum Monte Carlo calculations o f Ceperley and Alder [82] for a 

homogeneous electron gas, which are exact within numerical accuracy. The parameterisation of 

these results by Perdew and Wang [22] are discussed in Section 4.3.

In general however, the use of a homogeneous electron gas as a reference system can introduce 

considerable errors, especially when treating systems with densities that are considerably non- 

uniform, such as molecules for example. In addition, the Hartree self-interaction terms are not 

completely cancelled by the LDA exchange-correlation terms and most problematically, the LDA 

vxc decays exponentially instead o f proportionally to -Mr, particularly affecting ionisation 

energies. The LDA is also notoriously poor in its calculation of band gaps, see for example 

Muscat et al. [83]. Although in its favour, the LDA does satisfy the sum rule for the exchange- 

correlation hole''11, and can model systems with strong bonds (metallic, ionic and covalent) well, in 

particular finding considerable success when applied to bulk metals. The model’s successes and 

limits are covered in some detail in Kohanoff [29].

The second level of exchange-correlation approximation, gradient expansions (GEs), addresses 

the LDAs’ neglect of inhomogeneities in the electron density, making a series expansion of Exc in 

terms o f the density and its gradients. In general,

£ ? [ » ]  = J» (r)4°> (r)]A c[* (r),V n (r),V 2n(r),..] (4-60)

where the enhancement factor Fxc modifying the LDA expression is given to fourth order by

FXc(P>(l ) - \ +— P + — — cl 2 ~ — -qP  + Dp2 + O iyn 6) (4.61)
xc 81 2025 405

where

vuThe exchange-correlation hole represents the reduction in probability o f  finding a second electron in the 
immediate vicinity o f an existing electron. The exchange hole follows from the tendency o f  spin alike 
electrons to avoid each other and the correlation hole arises from the movements o f  electrons to minimise 
their Coulomb energy. Importantly, taken together the exchange-correlation hole about a given electron 
contains exactly one displaced electron -  this is known as the sum rule.
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|Vh|2

4(3;ri r Jrt

V 2«

2 \ 2 / 3  8 / 3

(4.62)
q =

4(3 n L)l l i n2 x 2 / 3  5 / 3

The first two coefficients are exact, whilst the coefficient o f qp has been estimated to an accuracy 

o f -20%  and the final coefficient D  has not been calculated explicitly, though is estimated to be 

zero [29].

Though improving on the LDA for binding energies and general atomic energies, and with some 

improvement in the calculation of band gaps, gradient expansion approximations unfortunately 

offer no improvement in general for the properties o f semiconductors. They retain the incorrect 

exponential decay o f the exchange correlation potential in the asymptotic limit o f the local density 

approximation, and still do not compensate completely for the self-interactions of the Hartree 

term.

Whilest there are many schemes to improve on these avenues of approximation, see Kohanoff 

[29], the third major level in the estimation o f ground state functionals are orbital dependant 

expressions, which form implicit, rather than explicit, functionals o f the density. In this way, the 

KS theory can be reformulated to use the HF representation of the exact exchange, although 

substituting the Kohn-Sham single electron orbitals in place of the HF wave functions. Then, 

with a suitable approximation of the correlation contribution, the total energy is minimised under 

the constraint that these orbitals must form solutions of a non-interacting problem in a local 

potential. This is known as the optimised effective potential method (OEP). As discussed in the 

next section, Section 4.4, the self-consistent generation of a potential and its corresponding 

eigenstates is not a simple task, so for practicality, the KLI approximation to this optimised 

effective potential is used here.

In the ideal case, due to the rather arbitrary division of Exc into Ex and Ec, it is likely that it is best 

to treat both terms, exchange and correlation, in a consistent manner to achieve the optimal 

compensation of errors introduced in the approximation of the correlation term. Thus, by treating 

exchange as a functional of the orbitals then, although the correlation is o f a significantly smaller 

magnitude, the most accurate results are likely to follow if the correlation is treated in a similar 

way. However, orbital dependant representations o f the correlation energy are not exact and are 

complex objects indeed. The method of Engel and Dreizler [81] will be briefly discussed in
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Chapter 7, but for now such procedures are un-practical. For the work undertaken here, the 

exchange energy will be in its exact form, to allow self-interaction corrections and in order to 

achieve the correct asymptotic behaviour, but the correlation energy will be approximated via the 

parameterisation of Perdew and Wang [22]. Indeed, a similar pairing -  KLI exchange and a 

polynomial approximation of Ec by Tantar and Cerpely [84] -  was used by Mucucci, Hess and 

Iafrate [19] to model 2-dimensional circular quantum dots. This coupling is accurate enough for 

the current purposes of the author.
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A p p r o x im a t io n

4.2 The Optimised Effective Potential (OEP), Exact Exchange and the 

KLI Exchange Approximation

Defining the Kohn-Sham exchange-energy functional in order that in conjunction with the 

expression for the Hartree or Coulomb energy, Eq. (4.38), this functional will cancel any self­

interaction effects [81], ergo

0  ij

with the exchange potential related to this via

vx a ( K ] ; r ) =
(4.64)

< M r)

then an avenue is available for the exact treatment of exchange within DFT, although this is not as 

straightforward at might first appear.

4.2.1 The Optimised Effective Potential (OEP)

The functional derivative of Eq. (4.63) with respect to na does not follow immediately, but must 

be evaluated as a chain expansion

< M r )  i

+ c.c. +  ■
dEx

ds«s y
(4.65)

where c.c. indicates the complex conjugate o f the first term.

The derivatives of the energy with respect to the eigenvalues and eigenvectors can be calculated 

directly from Eq. (4.63)

dfia Y  f  r > r ( r ) ^ ( r ¥ g ( Q  V i r
^  ja * '  l r - r '1 (4.66)

dE,
ds K S ds,K S

1 0  j
r - r

SEr

J

while the remaining derivatives can be assessed by the response of the system to a small 

perturbation; should the potential vsa in Eq. (4.50) be perturbed by 8v5CT then

= - J  * 'G to ( r , r > “  (r ')* „ (r ')

r - r

(4.67)
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where

G/a(r >r ') = X
(4.68)

-K S  -K S  
j*i ^ jo  ia

see Appendix III, Introduction to Green’s Functions for further detail, and consequently

^ s a ( r )
r - K S

- ^ -  = ¥ ^ { r ) ¥ ^ { r ) S aa,

(4.69)

<^sa(r )

Furthermore, the variation of the density with respect to the potential, often called the linear 

response function, Xsair , r ')> can now be determined such that

# v ( r )
Z s * ( r y )  =

= +c -e- (4.70)

Eq. (4.65) actually requires the inverse of this, however, Eq. (4.70) is very ill conditioned with 

respect to inversion, so in an effort to avoid this, multiply Eq. (4.65) by Xsa (r, r") and integrate 

over r". Then since

the OEP integral equation

J  d r ' X s l  (r > r " )X so  (r ' r ') = <?(r -  r 0

J dr 'Zscr (r, r ' ) v x<J (r') = AXCT(r)

is finally obtained, where

A „ (D  = Z  j d r '
SE.

r')
+ C.C. + ( « > la ( r )

ds KS 
ia J

(4.71)

(4.72)

(4.73)

However,

J d r ^ f ( r ) G („(r)r') = 0 (4-74)

as a consequence of the orthonormality o f the wave functions, therefore any solution vxa o f Eq. 

(4.72) is only determined up to a constant and its exact magnitude must be set from the 

requirement that vxa must minimise the total energy o f the system. That in mind, let the total 

energy, E, be given by
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E[nA = ■ + 1 *  v(rK(r) + drdr' + £,[««]

where the eigenstates satisfy
(4.75)

- T  + v„(r) ^ ( r )  = C ( C 0 - )“ V * 5'/a r /a (4.76)

Then, should the spin fractional occupancy o f an eigenstate p  be altered slightly such that f per-> f pa 

+ where remains constant for all eigenstates i *  p, it follows that the self-consistent 

potential will change by some small amount, from vSCT to vSCT + 8vJ<7 in order that the total energy 

remains minimised. This change in total energy can be related to the alterations in the other two 

quantities via

SE = dE

Sf,p a
U r SE

&so>

For the total energy to be minimized with respect to the potential vsm then

<® R ]
* „(> •) 7P 1

implying that Eq, (4.77) reduces to

=y.r*‘ SE Sy/ f f jr' )  
ySy/™.{r') SvS(T(r)

SE dE

+ c.c. =  0

% p a  df Pa

SO

dr Sne(r) SE
tfpa Snt

— = \d T V f ; ( r ) h ^ KPi(T)

= Jdr- p a

f p a  Sy/fa{r)

=  £
KS
p a

(4.77)

(4.78)

(4.79)

(4.80)

This provides the normalisation constraint on vxa, since the exact vxa is needed in vsa for Eq. 

(4.78) to hold and Eq. (4.80) to be true. Eq. (4.80) can be written as

\ d r y / f ’ (r) « C ( r K ( r ) -
SE„ \

f P r)
+ c.c. = 0 (4.81)

However, for m the highest occupied energy orbital
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employing Eq. (4.97) in conjunction with footnote [i] of this section to arrive at the last line, the 

potential vmaXo be defined presently in Eq. (4.85). Importantly vxam = vma only holds for the m 

orbital as discussed in some detail later. Then

generalising the Hartree-Fock equations (compare with Eq. (4.27) and Eq. (4.28)) for spin 

fractional occupancy and using the new notation o f including the spin as a subscript. The Fock 

operator (square parenthesise, see Eq. (4.19)) however has been evaluated with the OEP orbitals. 

Then, from Eq. (4.82) in conjunction with Eq. (4.25) it is possible to write

manner o f Eq. (4.24), and the minus on the subscript indicates that the m orbital has been 

discounted in the energetic summation. As such, Koopman’s theorem (see Section 4.1) can be 

said to be satisfied, but only for the highest occupied KS orbital [21].

Therefore, unless p  is equal to m, then although Eq. (4.81) should be obeyed by any correctly 

normalized self-consistent KS solution, it will lack any physical significance, in the strictest 

sense, with regard to the correct rate of change o f E  with respect to/ ,  since

+ J Vma (r)£ f j a  J v fa  * (̂  )v2 (l\ *2 W fa ( r2 )^ lV m a (r Vr
j

~  J Z  f j °  J V ™  (r2 ( r ^ 2  (r> r 2 )v?a  ( r 2 )VmSa (r )d r 2d r
j

j j

(4.82)

£ ks = e hf - E hfma — (4.83)

where Em  represents the expectation value o f the total energy, which has been determined in the

( 4 . 8 4 )
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£pS * SpF unlessp - m

although Eks will of course equal EHF. To be exact, the Hartree-Fock eigenvalues are recognized 

as the unrelaxed electron-removal energies, whereas only the highest occupied KS eigenvalue is 

considered an ionisation energy (but inclusive of relaxation effects).

Consequently, for best results, vxa is only required to satisfy Eq. (4.81) for p  = m, and then Eq. 

(4.81) can be considered to provide a generalisation of Engel et a l  [81] ’s normalisation constraint 

to the fractional occupancy regime.

Although at first sight the OEP integral equation Eq. (4.72) appears straightforward to solve, it is 

very numerically demanding. In Engel and Vosko [85], the interested reader can find a technical 

discussion for spherical systems (generally meaning atoms, but Kotani [86,87] demonstrates the 

method within band structure calculations), where two main refinements are added to the 

preceding arguments. Firstly, the Green’s function o f Eq. (4.68) are replaced with Green’s 

functions formed from products of the first and second solutions to the radial Kohn-Sham 

equation, then secondly, the analytic asymptotic form of vX(T is used to enhance accuracy of the 

constructed numerical exchange potential. However, this still leaves the solution the integral 

equation a far from trivial task.

4.2.2 The Krieger, Li and Iafrate (KLI) Approximation

An alternative, semi-analytical approximate scheme to solving the full, numerically demanding 

integral equation was proposed by Krieger, Li and Iafrate. Indeed, there are three approaches to 

the KLI approximation, briefly outlined in Engel et al. [81], but here, only the exchange-only 

derivation most clearly complimentary to the preceding work is selected from Krieger et al. [21] 

and discussed.

Forming the potential

v/CT(r) = -
1 SE,

f i a ¥ ™ \ r ) 8 y , ™ { r )  

then from the total energy, Eq. (4.75), it is possible to form the derivative

V2SE[ne]

S¥ ™{ r ')  '£

= fn

+ v(r') + v/ / (r') + vte(r') 
z

< - v Xff(r/) + vto( r ' ) ] ^ ( r ' )

(4.85)

(4.86)
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As such, Eq. (4.78), the derivative of the total energy with respect to the potential vsa becomes

= - v- ( r ')+ v to(r')]G,«r(r'.rXi'i“ ’( r > “ ( r ) + c r .) = 0  (4.87)
scrO 7

using Eq. (4.69). This can be simplified further as a consequence of Eq. (4.74), thus

Z  f > °  J (r ') -  v*> (r')]Gto(r ' ,r V ,f  (r (r) + <*.)=0  (4-88)
/

If £j(j in the definition of the Green’s function, Eq. (4.68), is approximated with a mean energy 

s ia then

,KS,„'^.fKS* 
j°r  (r)-a:s „a:s

>*» € ia  ~  £ i

-£S „ ATS

Integrating Eq. (4.88) over r' then yields

X  fia [(v*a (r ) -  v/a ( r )V ,?*  (r) -  (vxa, -  v/ff V / f  * (x)y™  O)] = 0

(4.89)

(4.90)

where

vXff/(r) = J ^ ( r ) ^ ® ( r ) v xa(r)A- 

v/<T(r) = J  ̂  ( r ) ^ f  (r )v/CT (r)rfr
(4.91)

The approximate exchange potential, vfa ( r ) , attributed to Slater [88], is written as

5 X ( r K , ( r )
vI* ( r )  = - L

(4.92)

X « « r(r )

allowing Eq. (4.90) to be arranged so that

£ « , a ( r )k < 7 ,-v, J
v xa (r ) = (r) + — (4.93)

Let m signify the index of the highest occupied orbital i.e. f a-  0 when i > m, then realizing that 

\f/ma will tend to zero as r -»  oo slower than any other orbital, there must be a point Rm such that

fiaVio(Y)
fma¥mo(r)

<S  i< m  and r > R„ (4.94)
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where £is arbitrarily small. Dividing Eq. (4.90) by and neglecting terms O(S)

[(V*a ( r ) - ' Vmo (»*) V iJ a  ( r )  -  fccm  -  Vm<7 V f  T  (**)]= 0  V > R m

i.e.

v„ (r) = vm_ (r) + (v -  vm_) r>  Rm (4.95)x o  v / mcr v / \ xotn m<j / /w

Now, Eq. (4.90) is determined only up to a constant -  if vx<7 is a solution then so is vxa+ C, the 

eigenfunctions remaining unchanged. In the asymptotic limit,

(4.96)

from Eq. (4.85), and choosing C so that vxo(r) -»  0 then

vxam=vmcr (4.97)

and

(4.98)
r

as r  -> oo1. Therefore

1 Eq. (4.97) and Eq. (4.98) are not just properties o f  the KLI approximation to the exchange potential, but 
the exact KS exchange in general. This can be seen from the alternative derivation below. Beginning at the 
universal Eq. (88) and recalling the argument which led to Eq. (94), then given

£  /,„  J * ' ( L „  (>•')- v,„ (r ’)]G„ (r’, r V f  ( r >  “  (r) + « . )  = 0
/

dividing throughout by fmaWmJj) and neglecting terms O(S), yields

\  < k \v„  (r-) -  V ., <r')]G„„ (r', £  ( 0  = 0
for r > Rma. Applying the operator sma- h j j )  to this expression, h j r )  defined as in Eq. (4.76), and 
integrating over r', then an expression identical to Eq. (4.95) is arrived at:

v*,(**) = vmtr(r) + (vxam - v ma) r > R m (*)
using

(*„„ -  K  W )G _  (r ’, r) = V l s ( r > r  (r)
i±m

= - S i r '  -  r) + 1//™ (r (r)
As before, v ^ is  determined only up to a constant i.e. both vxffm d  vX(7+ C are solutions o f (*), then C can be 
chosen so that vxJ r ) ->  0 as r -»  oo. In the same limit vOT0(r) ->  from Eq. (4.85), and (*) reduces to

v = vxom m a

or can be used to give

r
confirming the earlier claims that Eq. (4.97) and Eq. (4.98) are properties o f  the Kohn-Sham exact 
exchange.
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m—\

I » to(r)[vw , - v J  
= v* ( r ) ■+-*---- ^ ---- — -------  (4.99)

Z u n^ ( r )
!

To use this expression practically, then the set of constants vxai, i extending from 1 to m-\ has to 

first be ascertained. Multiplying Eq. (4.99) by nj(J(r) and integrating over r yields

m n . (r\yi. (r}
fja^xoj = fjoV Sxl J + Y J\ - Ja — }a— dr[vxai- v . J  j  = l ,2 ,. . . ,m - l  (4.100)

,=1 n a

then on defining

1/ff ^ Ja{r)nia{r) .
M,. = —----- — dr i , j  = \ ,2 , . . . ,m - \  (4.101)

J n0 {r)

vX(rj can be obtained from solving the system of linear equations

m-\ . v

(4-102)

m—\

v sl . -  V .xcr j  v j <j
/=1

The actual methods of numerical implementation of the above are discussed in Section 4.4, where 

due to the nature of the semiconductor nanocrystal under investigation, some simplifications can 

be introduced and the KLI exchange potential can be shown to be spherically symmetric in these 

circumstances and so compatible with the computational methods developed in the preceding 

Chapters. Although at first the task of solving Eq. (4.99) appears to be considerably more 

complex than simply solving the OEP integral equation, it really does provide a fast and effective 

means of evaluating the exchange potential.

4.2.3 Evaluation of the Exchange Models

Extensive discussions and comparisons have been made within the literature between the various 

methodologies and approximations in calculating the potentials of atoms within the exchange only 

limit, see for instance Ref.’s [21,81,85,89],

Engel and Dreizler [81] provide OEP ground-state energies satisfying the Levy-Perdew theorem 

[90]

ExWfa J = “ J  " (r )r  * Vvx (ir)dr (4.103)

to within 0.14 mH (0.0038 eV) up to Radon (86Rn, E = 21 866.75 H (-595.03 keV) Ex = 387.45 H 

(-10.54 keV)) for closed-subshell atoms. With these as reference values, the KLI ground-state
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energies are found to deviate between ~0 to a maximum of 10 mH (-0  to 0.27 eV) while the LDA 

values lie a substantial -138 to 14 424 mH (-3.76 to 392.50 eV) adrift. Compared to non-local 

HF, the OEP values rest between 0 and 40 mH (-0  to 1.09 eV) higher, corresponding to the 

difference between minimising the same energetic expression to produce a common potential as 

opposed to minimising it for a set o f orbital-dependent potentials.

Krieger, Li and Iafrate [21] report that direct calculation of the highest occupied atomic 

eigenvalues, sm, are accurate to within 0.4% of the OEP results and show that the Slater and LSD 

(spin polarised LDA) potentials over and underestimate em to -10%  and -40%  respectively.

Clearly then, the KLI method is substantially better than comparable approximate methods and 

compares very favourably with highly precise OEP results for a fraction o f the numerical cost.

In order to assess the accuracy o f the actual implementation of the preceding equations by the 

author before progressing onto calculating the band structure o f the Sn02 grains, it is sensible to 

test against known data. Therefore, on a 700-point logarithmic mesh, a selection o f exchange 

potentials for Neon (10Ne) have been plotted in Figure 4-1, and likewise for Cadmium (48Cd) in 

Figure 4-2, appearing to recreate Figures 1 and 2 of Ref. [21] exactly.

o
■1
-2
■3

-4

■5

-6

■7

-8
- 9

-10
1 .E - 0 3 1 .E - 0 2 1 .E - 0 1 1 .E + 0 0 1 .E + 0 1

-K L I

• O E P

 S

 L D A

f  (a.u.)

Figure 4-1 Plot o f  exchange potential, in Hartree, versus the radial distance from the nucleus, in Bohr, 
for Neon using the KLI approximation (KLI), the optimised effective potential method (OEP), the 
Slater potential o f  Eq. (4.92) (S), and the local density approximation (LDA).

The KLI exchange potential is given by Eq. (4.99), the OEP potential satisfies Eq. (4.72), the 

Slater potential follows from Eq. (4.92), and lastly, the local density exchange potential is derived 

from Eq. (4.58).
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Whilst not quite achieving the very high accuracy of Ref. [81] on their 1600 point mesh, the KLI 

ground state energies of 10Ne and 48Cd calculated here, do lie within an acceptable ~0.02% and 

-0.05%  o f their reference OEP values, 128.54(54) H (-3.49 keV) and 5 465.11(44) H (-0.15 

MeV) respectively. The highest occupied eigenvalues differ from Ref. [21]’s KLI -0.8494 H

7  - 1 0 -

*  - 1 5 -

-20 -

- 2 5  -

- 3 0  -

<q - 3 5  £O 
X UJ

- 4 5  -

- 5 0  -

(O

- 4 0

1 .E - 0 3 1 .E - 0 2 1 .E - 0 1 1 .E + 0 0 1 .E + 0 1

r(a.u.)

Figure 4-2 Plot o f  exchange potential, in Hartree, versus the radial distance from the nucleus, in Bohr, 
for Cadmium using the KLI approximation (KLI), the optimised effective potential method (OEP), the 
Slater potential o f  Eq. (4.92) (S), and the local density approximation (LDA).

(-23.11 eV) for 10Ne, and -0.2651 H (-7.21 eV) for 48Cd, by the slightly higher percentages of 

-0.74% and -0.9%  respectively - still an adequate tolerance, especially given the sensitivity o f the 

atomic energy levels to small fluctuations in the Coulomb and exchange potentials.

In principle then, the KLI method has been amply shown to be satisfactory for the purposes of 

calculating the exchange potential within this document, and actual numerical implementation of 

the procedure favourably reproduces the results of literature.
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4.3 Correlation Within the Random Phase Approximation for a 

Uniform Electron-Gas

The correlation potential is calculated using the parameterised random phase (RPA) uniform 

electron gas approximation of Perdew and Wang [22]. They use high and low electron density 

expansions for analytic expressions o f the correlation energy fitted to the Green’s function Monte 

Carlo results of Cerpley and Alder [82]. The correlation potential follows from the functional 

derivative o f the correlation energy. In the quantum dot system under study here, this method 

appears to very adequately allow for the very small magnitude effects of electron correlation.

For the uniform electron gas, the density parameter, rs, and the relative spin polarisation, C, 

(encountered previously in Section 1.1, Eq. (4.59)), are defined as

=
( 3 V /3

~ ni

(4.104)

n i +n*

with the correlation energy per electron, sc, expressed as a function of these in both a high density 

expansion,

£c(rs>f) = c0( O In rs - c ,(O  + c2(£)rs Inrs - c3(£)rs + ......... (4.105)

and a low density expansion

ec(rs , Q  = ̂ ^  + ̂  + ....  (4.106)
s s

In the random phase approximation (RPA)1 the correct exponent of the density parameter is p  = 

3/4 (improving on the p  = 1 o f alternative schemes [91,92]) and on fitting to Cerpley and Alder 

data which is exact, the parameters of Table 4-1 follow.

1 Discussed in more detail in Chapter 7, the random phase approximation (RPA) relates to the effect o f  a 
charge, such as an electron, on its surrounding space. In essence, the screened coulomb potential is the 
electrostatic potential due to an electron and its associated polarisation cloud. This is related to the bare 
coulomb potential o f  the unscreened electron via the dielectric function. In the random phase
approximation, this dielectric function is calculated using the lowest order term o f the polarisation 
propagator only i.e. the polarisation propagator between two space-time points, 1 and 2, is based solely on 
the Green’s function propagators G (l,2) and G (2,l) and neglects further contributions including the 
screened coulomb interactions between the propagators themselves.
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Table 4-lParameters for the density expansion approximations o f  correlation energy. Energies in Hartree

£c(.rs, 0) £c(rs, 1)

Co 0.031091 0.015545

Cl 0.070823 0.049778

C2 0.00256 0.00055

C3 0.00936 0.0023

do 0.4001 0.4296

d , 0.4590 0.7918

To link between the <^= 0 and <^= 1 cases, the spin interpolation formula first proposed by Vosko, 

Wilk and Nusair [91] is used:

f u n  d ^ r + o - c r - 2  ( 4 - 1 0 7 )

24/3 -  2

where clearly /  "(0)= 1.709921. The spin stiffness, ac(rs), is defined as d 2£c(rs , g ) / d £ 2

evaluated at 0, and is approximated by

=  / ’( 0 ) f e ( r „ l ) - f c (r „ 0 ))  <4 -108)

The correlation potential for electrons o f spin a  then follows from the derivative

d(ne£c)
V c o r r ( r s > C )  = dn.

3 drs d£

(4.109)

where

\+1 <j  =T

sgn<7=
(4.110)

and

L _  \ d£c(rs$ )  + d£c(rsJ) + (i _ ^ 4 \ / ( Q  d a c(rs)
drs drs drs /* (0) drs

^ = w | t , W ) - « . W ) ~ )  ( 4 ' U 1 )

✓ N.

v J  1.0) _
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In the general case o f the SnC>2 grain relevant here, excepting Figure 4-5, the electron spin 

densities are taken to be equal and therefore spin-unpolarised i.e. £  is equal to 0, allowing the 

correlation potential to be simply approximated as:

v £ > , )  = c0(0)^lnr, - i j - c 1(0) + ̂ ^ - ( 2 1 n r i

-S rf0(0) 4rf,(0) (4' 112)
“ rA s) 4 r f 4 3r,

These two forms are equal at rs ~ 25.84 (roughly 25 to 26 stored electrons) and so are both 

required to span the total range of electron densities involved in modelling charge storage.

As with all local density approximations, the key idea is to consider the general inhomogeneous 

electronic system as locally homogeneous at each specific spatial point, so for example, the 

electron density ne{r) is taken to be uniform at r. Thus, in Eq. (4.112) the density parameter rs is 

actually dependent on r  and as such, so are the correlation potentials.
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4.4 Numerical Implementation

The computation requirements of calculating the Coulomb, KLI exchange and RPA correlation 

potentials in three dimensions can be reduced greatly by exploiting the spherical symmetry of the 

system under study and by modelling the electronic spectrum with closed sub-shells, summing 

over the azimuthal quantum number m for given /.

This second quality is not an approximation as such, since within the limits o f the assumptions of 

the model, the energy eigenvalues, and therefore the thermal fractional orbital occupancies, are 

independent of m. In other words, thermal filling occurs evenly across degenerate orbitals, and 

even the direct addition of individual electrons via quantum mechanical tunnelling during charge 

writing, has no direct effect on this, since at non zero temperatures, maintaining an electronic 

equilibrium, the added electron is just absorbed into the electron sea already present in the 

conduction band. Its charge is felt, and in conjunction with the techniques o f Section 5.6, the 

Fermi level is seen to move, corresponding to an increase in the electron population in the 

partially filled and empty energy levels, but its actual physical presence must be treated as being 

‘smeared’ over the complete spectrum of occupied states.

Importantly, in order to separate the wave functions into their radial and angular components and 

so utilise the techniques of Chapter 3 to actually compute the eigenstates of the effective potential, 

then that potential must be spherically symmetric; that is, a function of r only. Therefore, the 

electron-electron interaction potentials must also be shown to be solely radially dependant.

In order to achieve these goals as expeditely as possible, the first part of this section analyses 

some of the common individual components of the three potentials before proceeding to the 

second part of the section where the specifics of each case are treated. The section concludes with 

a selection of graphs of the potentials, formed on a homogeneous Sn02 quantum dot system for a 

variety of integer occupancies, placing these electron-electron interaction potentials into practise 

with the self-consistent methods developed in Chapter 3.

To begin then, take the frequently encountered term



4 . 4  N u m e r i c a l  I m p l e m e n t a t i o n  

This is, of course, the reciprocal of the magnitude of the vector rn  in Figure 4 - 3

Figure 4-3 Representation o f  the two vectors r! and r2, connected by the vector rI2, the 
magnitude o f  which is |rr r2|.

which can be expressed in terms of the angle y between the two vectors ri and r2 with the aid of 

the cosine formula of elementary geometry such that

1 ( 2 2 ~ V1/2 r = y*] + r2 -  2rxr2 cos y )

. /  7 x-i/2
r, - r .

( 4 . 1 1 3 )

i 00
= - Zr> t o

f  \ n r.
P„(cosy)

with

r>=rx

r<=r2

r> =r2

r \ >  r 2

r 2 > r\

( 4 . 1 1 4 )

and where the last line of Eq. (4.113) follows from expanding the bracketed term of the line above 

in a binomial series then collating powers of (r j r >), the Legendre function Pn (cos y) (recall 

Section 3.1) defined as the coefficient o f the «th power.
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From the addition theorem for spherical harmonics (see Appendix III, The Addition Theorem), 

the Legendre function can be expanded

A w  "

^ (co s r } = —  (4.115)
m=—n

allowing l/|r!-r2| to be written terms o f Y ”

i r 1 ^ < 4116)|rl 21 n=QA n  +  i r > m=—n

Usefully, if  / i s  equal to zero i.e. {G\, $ )  is equal to (02, $2), then P„( 1) = 1, and the product of a 

spherical harmonic and its complex conjugate summed over all m is simply

£ ; | o 0 . « | 2 = - ^  (4-n ? )
m=-n m=-n

For the product of two different spherical harmonics, then as seen in Section 3.1 Eq. (3.44), their 

orthogonality with respect to their quantum numbers requires that

f K ' > .  =■

where

dQ = sin OdOd#

Setting n2 and m2 to zero in Eq. (3.44) yields an expression for the solid angle integral o f one 

spherical harmonic

J y  ” (6, f ) d n  = V4T<5„ 0<5m o (4.118)

The integral of the product of three spherical harmonics, often written (llm] \Y™2 \l2m2) where

</,mi | ^ |  l2m2) = |  Y ? \ e 4 ) Y ?  ( 6 4 ) Y ^ ( e 4 ) d a  (4.119)

is something which has received a great deal of attention due to its frequent appearances in 

quantum mechanical problems and has undergone extensive analytical analysis. While o f course 

it is possible to analytically or numerically integrate the product after determining the explicit 

forms of the spherical harmonics, it is simpler and usually more accurate (if integrating 

numerically), to either utilise ready tabulated data for common orbital combinations or the Gaunt 

formula, where the integral is expressed in terms of 3j  symbols [70]:
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I U /, V /, l2 l3'1 ‘ 2 ‘ 3

m, m2 w3J^0 0 0 ,
(4.120)

These coefficients are closely related to the common Clebsch-Gordan (CB) coefficients, such that

( h  h  i A  (-i)''-'*--"-
ym , m 2 m 3 J ■^2/j +1

■<v2 mxm2 I'M ~ m3 ) (4.121)

where

/ I/ / j \ <?/ \ /(/] + /2 — /3)K̂ 3 + A — ^)'(^3 + ^ 2  —A)-(2/3 +1)
(/]/2w1m2|/1/2/3/w3) = §(vn3, mx + m2) l ------------------ (/ + /  + / + 1) i ------------------

(-l)V (A  +^i)K /i ~ m x)\(l2 +m2)l(l2 - m 2)\{l3 + m3)\(l3 - m 3)\ 
k\(lx +l2 - l 3 -  k)\(lx - m x-  k)\(l2 +m2 -  k)\(l3 —l2 +m] + k)l(l3 -  /, -  wz2 + &)!

(4.122)

The 3j  symbols have several useful qualities [70], and in particular

( - 1)
/, +/2+/3

Y, h h ' f h h h ' f h h
Kmx m2 m3j ™3 mx m2j ™2 m3 m,,

Y, h h ' y 2 h h ' Y, h h '
Kmx m2 m3/ ™2 mx m3, j n x m3 m2,

(4.123)

mx - m 2 -  m3 7

h  Y  /V  /1 h
^ 2{mx m2 m3j

£ ( 2*3 +>)
h  h  V
w2 m

1 ‘ 2 ‘ 4

ml m2 m4J

h h  h

' k  h  h  "
m, w2 m3j

I I  I  ̂h  *2 *3

= 0 unless

m. m c m3 y

2/3 + l

— /?— mxmA ® m2m5

(4.124)

m, + m-, + m, = 0

0 0 0

A(lxl2l3) 

= 0 if /j + 12 + /3 is odd

(4.125)

The symbol A(l\l2h) is known as the triangle condition, see Figure 4-4, and is the requirement that 

the vector sum of the angular momenta is zero i.e. L3 = L]+L2 . This can expressed as

lx+l2 +l3 is an integer
, , (4.126)
| A — ̂ 2 1 — 3̂ — h 2̂

as discussed in Arfken and Weber [65]. This means that the integral, Eq. (4.120), will vanish 

unless

/, + 12 +13 is an even integer

| / , - / 2|< /3 < / ,+ /2 (4.127)

m2+m3 = mx
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Figure 4-4 Schematic representation o f  the triangle condition 
Ml\hh)  i -e- the vector sum o f  the angular momenta is zero

Furthermore, when A(/j/2/3) is satisfied, the identities

Y * \ e , w ?  = £ ( - 1)”= J (2/. + 1X2/^+D(2£ £ j j
IM V ^71

UA

x f
h k L ' (h k L

\ m x - m 2 M , 1 ° 0 0

(2/, + l)(2 /2 +1)(2L + 1) r h k % k L '
4  7t vWl m2 M ) , 0 0 o ,

(4.128)

YLM'( 0 , t )

also hold [70].

Applying all these relations to the electron-electron interaction potentials, then considerable 

simplifications can be made.

4.4.1 Implementing the Coulomb Potential

For the Coulomb potential of Eq. (4.53)

v « (K ] ;r2) = f 1i ^ r d r 1
K ~ ri|

the total electronic density is given by Eq. (4.47)

ne(ri) = Y dfi[v 'i(r if
i

which in spherical polar coordinates can be expressed as

ne (fi A , f t ) =  £ fm | Rni (fi )|21 Yim (3  A  ) f  (4.129)
nlm

The radial part o f the wave function written temporarily with the notation R„i to avoid confusion 

with the fractional occupancy factor f„i, and the subscript e has been reintroduced on n to denote 

the total electron density and so avoiding confusion with the index n. Then, using Eq. (4.117), the
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sum over all m of the product of the spherical harmonic and its complex conjugate can be reduced 

to a single term dependent on /, removing the angular dependence o f ne

” e ( ' i  )  =  X  fn l  ~ 7 ~  IR nl ^  f  ( 4 - 1 3 0 )
nl 4 /T

recall Eq. (3.130).

Next, the l/|r i-r2| term in Eq. (4.53) can be expanded in terms o f (6\, (fa) and (02, (fa) dependant 

spherical harmonics such that

v ^ 2,0 2,& )=  f ' i f S ^ r r n S i -  ' L Y " (-e ^ Y^ ' * ^ dr^
n l k=0 A K  +  1 r > m = -k

(4.131)

Then using Eq. (4.118), the angular Q] integral can be performed, and employing the resultant 

Kronecker delta functions within the summations to remove the (#2 , (fa) angular dependence, the 

Coulomb potential reduces to

/  \  f V ' 1 s  2 /  + 1 1 ^ /,/ ( r l ) | 2 j  ( A  n o \VH (r2) = I X  fni —F = --------- - r \  dr, (4.132)
J V4 x  ry

and, as such, the requirement that v H be spherically symmetric has been met.

To perform the radial integral, the integration interval is simply divided into two, so that

v „ (r2) = / X / -  + J 2 / , , ,  (4.133)
J0 *  V4;r r2 J V4k  r,

Naturally, in practise these continuous potentials, radii and so forth are mapped onto a uniform or 

variable mesh as detailed in Chapter 3. Over a finite discrete grid of N  spatial points, the integral 

of a continuous function can be estimated in a number of ways. Here, the composite Simpson’s 

formula [50] is used

a+2MA ^
J  g{x)dx * — (g(xa ) + 4g(xa+, ) + lg {x a+2) + 4g(xa+3) +
a

+ 4g(Xa+2M-l) + g(Xa+2M )) + ) (4.134)

over each even sub-interval o f equal mesh spacing, extending from point x a to point x c&2m, and 

where each discrete value gix^p) is exactly equal to the continuous g(x) evaluated at x = a +  J3A. 

If the interval is odd, 2M +  1, then Eq. (4.134) can be used to estimate the integral between points
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a  and a  + 2M  while the integral from point a  + 2M  to point a  + 2M  + 1 can be calculated using 

an expression generated by Hamming’s direct method [51], analogous to Simpson’s half-formula:

( 2 M + \ ) A

J  g ( x ) d x * — ( - g ( x 2M_]) + Sg(xm ) + 5g(x2M+lj)+ 0(A 3) (4.135)
2 M A

As discussed in Chapter 3, the spatial mesh simulating the quantum dot system under study is 

usually made up of several predefined inter-mesh spacings, with the only constraint that for the 

total extent o f the spatial grid, N  is set large enough that R„i(rN) is approximately equal to zero.

4.4.2 Implementing the Exchange Potential

The KLI exchange potential is given by Eq. (4.99),

h-1
Z  Uia (r )V/a (r ) Z  ni° (r  ̂ ' "  **  1

Vxcr(K<7];r ) =_L^ — ~ — + —
Z ^ ( r ) Z « . ( r )

/ /

substituting h for m as the label of the highest occupied eigenstate to avoid confusion with the 

symbol used for the azimuthal quantum number.

The degeneracy of each eigenstate of given n and / in the spherical space o f the problem implies 

that the occupancy o f spin up and spin down orbitals of equal energy will be the same. Ergo, = 

ni and as such the spin up and spin down exchange potentials will be identical, so it is sufficient 

to only calculate one potential.

Thus to begin, identify the common denominator of the two terms as half the total electron 

density and so independent o f angular position via Eq. (4.130), then

h - \

Z ^ ( O v ,a ( r )  X « , , ( r )[v,CTf - V /J  
vx ( r , e,  0)  = -----'    + -i  — ------------------------------------- - (4.136)

nl nl

For the sake of clarity, the spin subscripts will only be gradually removed as each factor is 

individually considered in the proceeding calculations.

For the numerator of the first term, referred to as T\m where v;o.can be expressed as
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from Eq. (4.85), r ^ c a n  be written

^ ( ri) = X * /a ( riK 7 (ri)
/

• Via  ( r l )V*o ( r 2 ) v ] a  ( rl )V  J o  ( r 2 ) dr,
ri “ r2

(4.138)

where

G(nili,nj Ij ;rl) = {r̂ )R*njlj ( O j - f e r ^ , / ,  )*„,/, ^ 2 ) ^ 2  (4.139)

using Eq. (4.116) and the equality o f the spin states and their occupancies. The spin subscript is 

now dropped from T\m and replacing the product Yjf'Yj"1 using Eq. (4.128) and evaluating the 

angular integral using Eq. (4.120), yields

rji( \ 1 V  .r V V  , x(2£ + l)(2/ +1)

H n,l,m, n jljM j LM  L 'M ' ^  1 H Jt

,--------------------- (  L /,- V  Y L /, I. Y L I  L*
xJ (2 L ' + \) (2 L + 1) '

v 1 \ M  -m ,  M  J[M  - m i 0 0 )

I I ^•’» * i  kjf' > —. . „ __m * . ^
(4.140)

where the orders of elements within the 3j  symbols can be adjusted using Eq. (4.123). 

Then using Eq. (4.124) and finally Eq. (4.117) it is possible to write

= T,{r,)' r  t  \  1 V  r  s  +  +  ^  'V  r > (  l / \(^i(ri) = " 7  Z S L L J n j i j  ~r~^-----Z & n ^ n j l j ' S ,)
M "jlj 71 1 ' (4.141)

demonstrating that the first term, in its entirety, of Eq. (4.136) is independent of the angular

rL /,- lj
v0 0 o y

\ 2

coordinates.

The second numerator is a little more complex. As discussed in Section 4.2, the terms in the 

square parenthesis are determined from the solution of the system of linear equations Eq. (4.102), 

namely

v sl . ^x a  j -v =£( su-ni P *(rK°(rY fc*.j o  IJ J  j o  J n  / r \  L XOI I O J
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The Slater potential, given by the first term of Eq. (4.99), has been shown to have no angular or 

spin dependence, Eq. (4.130) and Eq. (4.141), and as such its average, vfat -> v®, is simply

= j V ; ( r ) ^ ( r ) v f  (r)dr

= J  R*nili (r)Rnlj { r )v f  {r)r2dr (4.142)

exploiting the orthogonality of the spherical harmonics.

For the average of the potential via 

V,a = J  V*a 0 l  'Wiafa )v/tT(r,

V ia  ( r i )V * v  f a  ) w ) o  (**1 ) V j a  f a  )

rl “ r2
dr2drx

j

1  n j l j t r t j  L M  Z L  +  l

x \ Y l ( 0 2 .& ) ir -(0 2 > « w ;' (02,&)dQ:

then dropping the spin subscript and with Eq. (4.120) and exploiting Eq. (4.123)

1 r f  t  l  i  \ 2

fnjij (2/J + 1 ) I J  G(n,l, , rijlj; rx )r2dr
^  n  J ,

L /, I j
0 0 0 (4.143)

The integral of the two spin densities can immediately separated into its radial and angular 

components such that

1 cn ta(r)nja(r) \ f  |^»  / ( O  Cr )| ,  h  m 2 , ,2
—  f ^  }dr = - \ f ^  1 11 I - -1 - { r2dr\\Y”'{ 0 j )  dQ
f ia J na{v) 2 J  y  f  2 / , + l | ^ ( ^ | 2  J |  , I -  I

87t ' ' (4.144)

Using Eq. (4.128) and the orthogonality of the spherical harmonics, the angular integral can be 

written

rl » 2i 12 f (21 j +1)(2/, +1) .----------
\\Y"‘(e,<i>) \r« (e ,^  d a = \  £  J— V(2i+0(2i'+i)

L L ’M M ’ \ j t

( I  I L \ (  I  I
J 1 J V  Y l ,  L  L '

mi rrij M  1 m i m j M '

Y f ( 0 , # ) Y F ( 0 , t ) d n

■1 ~j 
0 0 0

M '  ,

=z
(2/, + 1)(2/ + 1)(2I +1)

L M

NY/. /, L *
ml rrij M  j

• j  

0 0 0 ( 4 . 1 4 5 )
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Collating the above and initially making the assumption that [vxj -  v( ] retains a dependence on m, 

i.e. [v / -  v , ] as v, has already be shown to be independent of mi (Eq. (4.143)), then

f»/a(r)B /ff(r) ^Z S  S - l  f  jcx \r  )n icr\T ) j  f— — 1

I  " f "*  na(r)  r ) v " ' - v ' d

I  h - \

~  V xnJlJmj  ~  V n jlj  J-  ^
KM  K (r)l K  y . 2/t + 1 , y *

_ l(2/, + 1)(2/ + 1)(2Z +1)
x 2 , 2 .  ~ v ,  J------------- 7 - -------------

m, L M  ^ JL

( I  I
1 J 1 1 T'1 b L ]

2  ^

r r i j 1° 0 0 ,
y

=  V x L l .  ~ V n l -J J "jlj
implying that a function dependent on mj is equal to a function which has been demonstrated to be 

independent of my. As this is incorrect, then the initial assumption that [v ,̂ -  v, ] is dependent on 

m, must also be incorrect and therefore

1 r w/CT(r H CT(r ) N 
S  8 , - f 2 \  ^  „  dr
rrf J n„{ r)/=l v

k a ,  ~ V.a\

y x n j l j  - Vv J “ Z [ VW ,  ~ \ l ]
n.l.

■r2dr

2 X / , - H v w r

z s
m. LM

(2/; + l)(2 /.+ l)(2Z  + l)

47T

L /, lj
M  m, m} j

NV /f lj 
0 0 0

-  l _ v f -  l ( 2 / / + 1 ) f r  K ( r ) l K ( r ) | 2 2 j
L% /,  V y J  Z k v ,  V« ,J  %7t 21 k +1 I |2 r  r

(4.146)
V*

= v f  , -  V„ ,jj  JJ

again employing Eq. (4.124). There is no inconsistency this time, and to clarify the glut of 

symbols and indices, [v , -  v t ], labelled K t , follows from the solution of the m independent 

set o f equations
h - \

(4.147)Anji.nji. K nji ^njlj
n,L

where
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(4.148)

Solving Eq. (4.147) is merely the task of solving the matrix-vector problem A K  = J  (K  and J  

vectors) -  one of the standard tasks of linear algebra. As such, any linear algebra package, such 

as LAPACK [67] for example, should contain appropriate subroutines to solve for K, most 

achieving this without the explicit, and computationally expensive, formation o f the inverse of A. 

A brief overview of two iterative methods that could, feasibly, also be employed is mentioned 

however in Appendix II, Introduction to Eigenvalues and Eigenvectors, or for a wider variety of 

techniques see Ref. [50] for example.

Continuing with the simplifications of v*, then with \yxj -v , ] independent o f m„ the numerator of 

the second term in Eq. (4.136), called T2m becomes

h-1

indicating that as required, the KLI exchange potential is spherically symmetric, dependent as it is 

solely on the radial coordinate in these circumstances.

4.4.3 Implementing the Correlation Potential

Finally, for the treatment of the RPA correlation potentials, Eq. (4.112), of Perdew and Wang

r 2a(0  = X « /a ( r ) k a / - VJ

h-1

independent of spin, mt, #and <f>, and as such

(4.149)

v, = - f - ( r , ( r )  + r 2(r)) = vx(r)
ne(r)

(4.150)

[22],

v*?orr ( K  ];:r) = C0 (0)^ln rs (r) -  -  J 

v« ([B].r ) = - H ( Q )  + 4 j!(0)
y c o r r \ l n e l ’1 J  .  ,  . 3 / 4  T  /4rs(r) 3rs(r)
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where

r,{ r) =
f  3 \ 1/3

(4.151)
v4/rrce( r ) ,

and with the coefficients of the density expansions given in Table 4-1, then these are reducible 

simply with the substitution of Eq. (4.130) into the density parameter rs :

-> 1 /3

r (r) =  = r (r)f „  2/ +1._ . , 2V'3 (4-152)
4  K W |

nl 4 n

so that vcorr(r) —» vcorr(r) for both correlation potentials:

v ^ ( r )  = C o ( 0 ^ 1 n r , ( r ) - i j - Cl(0) + ̂ M 2 ( 2 1 n r , ( r ) - l ) - ? ^ ^ )

j o  M  - H ( 0 )  , 4^,(0) (4-153)
4rs(r)314 3 r,(r)

4.4.4 Evaluation o f the Numerical Procedures

Should a single electron, and a single electron only, reside within the semiconductor valence band 

then the Coulomb and exchange-correlation potentials should exactly cancel, as there are no 

electron-electron interactions since there is only one electron present. In this very particular 

example, the approximations used in this section are not strictly accurate as the complete 

cancellation o f interaction effects is an effect due to the sole occupancy of one spin orbital only, 

not the partial occupancies o f one spin up and one spin down orbital. For vcorr, the relative spin 

polarisation is no longer zero but ±1, dependent on whether the single electron present lies in a 

spin up or a spin down state, though from Eq. (4.107) it can be seen that the correlation energy per 

electron is the same regardless i.e. ec (rs,-l) = sc (r5,l). As such, the spin polarised correlation 

potential expansions are simply

r 1 a
(r,± l) = Cq (1)[ In rs (r ) -  i  | -  c, (1) + (2 In rs (r ) - 1) -  2r^ c^

3

v* (r>+1)= - 5^ >  + ± W  (4’154)v c o r r \ '  V  \ 3 / 4  > /  \Ars{r) 3 rs(r)

replacing the ^ = 0  expansion coefficients in Eq. (4.153) with those for <^=1 from Table 4-1. 

Consequentially, although the local density based correlation potential will unphysically remain 

non zero, the KLI potential of Eq. (4.99) will reduce to exactly the negative o f the Coulomb 

potential, spherical symmetry guaranteed as the spherical harmonic o f the lowest energy
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eigenstate is E0°. However, as indicated in Figure 4-5 , even with the exchange approximated by 

Eq. (4.150), the exchange and Coulomb potentials cancel to the 11th decimal place.

0.10 T T 0.020

0 .08  -
-  0 .015

0 .06  -
-  0 .010  «

0 .04  -

-  0 .005  .2

■o « 0.00 £ =
-  -0 .005 ©

3  CL
-0 04 -

-  -0 .010 t
-0 .06

-  -0 .015-0 .08  -

- 0 .1 0  -L -L -0 .0 2 0
r  [nm]

Figure 4-5 Plot o f coulomb, exchange and correlation potentials for a single electron in the SnO: 
valence band for a lOnm radius grain. The correlation potential has been calculated using Eq. (4 .154) 
and has been plotted in meV (right hand axis), while the other potentials are plotted in eV (left hand 
axis).

The material parameters used in Figure 4-5 are those o f a sample lOnm radius S n 0 2 grain, 

modifying the values o f the atomic units to take into account the new permittivity and electron 

mass, and for the purposes o f illustration, these values been taken to be uniform across the whole 

system (both inside and outside the grain). The work function was set at 4.53eV and the ionised 

donor density and surface barrier height were taken at 4 .18x 1025m'3 and 1,4eV respectively.

To demonstrate the effect o f an increasing electron population, the electron-electron interaction 

potentials o f integer electron quantities for the same lOnm S n 0 2 system as above have been 

plotted in Figure 4-6 (Coulomb potential given by Eq. (4.132)), Figure 4-7 (KLI exchange 

potential calculated via Eq. (4.150)) and Figure 4-8 (correlation potential determined using Eq. 

(4.153)).

While the asymptotic behaviour o f the local density correlation potential is incorrect, its 

magnitude is such that the effect o f this will be negligible. For this particular system an electron 

population o f -7 0  represents the maximum self-consistent electron compliment.
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Figure 4-6 Plot o f  the Coulomb potential for a selection o f  integer electron populations for a lOnm S n 02 
grain.
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Figure 4-7 Plot o f the exchange potential for a selection o f integer electron populations for a lOnm S n 02 
grain.
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Figure 4-8 Plot o f  the correlation potential for a selection o f  integer electron populations for a lOnm S n02 
grain.
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4.5 Conclusions

In this chapter, the difficulties in calculating the electronic properties of a many particle system 

have been discussed, and via the Hartree and Hartree-Fock approximations, the Kohn-Sham 

approach has been introduced.

The Kohn-Sham method essentially maps the interacting many bodied problem onto an auxiliary 

single-particle problem, the ground state density of which is identical to that of the interacting 

system of electrons. The task of solving this non-interacting Schrodinger equation self- 

consistently then replaces the much harder problem of finding the many-bodied wave function 

that minimises the ground state total energy functional.

The particles in the single bodied auxiliary system only interact with the reference potential, not 

between themselves. This self-consistently determined reference potential includes the 

background potential from the ionised donor atoms as well as potentials allowing for electron- 

electron effects. The first of these interaction potentials, and largest in magnitude, is the Coulomb 

or Hartree potential, which allows for the classical electrostatic repulsion between the electrons 

and can be calculated exactly. The next potential in order of magnitude is the exchange potential, 

which accounts for the Pauli exchange principle prohibiting two identical electrons from 

occupying the same state. The smallest electron-electron effect is the correlation potential. This 

potential adjusts for the kinetic energy difference between the interacting and non-interacting 

systems and accounts for the energy reduction as the electrons coordinate their movements to 

minimise their energy due to their mutual electrostatic repulsion.

The exchange and correlation effects are the most difficult quantities to access, and after some 

discussion, the Krieger, Li and Iafrate approximation to the exchange potential is outlined and the 

correlation potential is accounted for via the homogeneous electron gas approximation o f Perdew 

and Wang.

The numerical implementation o f these three potentials is outlined, and employing the techniques 

developed in Chapter 3, some examples are given. These include atomic exchange only 

simulations, reproducing the results of literature with some considerable success, along with 

several sample potentials for an illustrative lOnm radius tin dioxide spherical nanocrystal system,
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and which include a demonstration of the cancellation o f the exchange and Coulomb potentials 

for one occupied spin orbital.

It can be taken that these methods and their application adequately enable a suffiently accurate 

simulation of the electron-electron interactions to be made that the way is now free to focus on 

some of the more subtle aspects of modelling these Sn02 nanocrystals.
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Chapter 5 Gauss’ Theorem and the Importance of 

Boundary Values

This Chapter contains perhaps the most important of the theoretical developments of this work. It 

focuses on the issues involved in determining a unique potential, or rather unique for a given 

methodology, which satisfies the non-linear Poisson equation.

It proposes that for small radii, where the non-linear Poisson equation cannot be approximated by 

its linear cousin, it is not necessarily the case that the same values of the defining parameters R, 

nd, Ef, T, Q, m and s  corresponding to the barrier height Sh also correspond to a value o f zero for 

the second Poisson equation boundary value, the derivative of the potential at the grain centre. 

Through the consistency of all boundary values and material and operating parameters, it is 

suggested that the uniqueness of the Poisson potential for a given method, or form of electron 

density, can be ensured.

Through this premise, for the Kohn-Sham methodology, the potential dependent, variable, total 

electron population can be considered constant with respect to the self-consistent charge density. 

With the uniqueness o f the self-consistent potential for the given values of the defining 

parameters secured by the values of the boundary conditions corresponding to those same 

defining parameter values, only then does the Kohn-Sham equations, as applied here, actually 

reflect the underlying principle of variational minimisation of the total energy with respect to a 

constant particle number constraint. As such, only then does the self-consistent density equal the 

ground state density of the interacting many-bodied system.
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The treatment of the boundary values o f the non-linear Poisson equation introduces significant 

questions regarding the value of some work of literature (principally Ref.’s [15,16,17,31]) in the 

calculation o f such quantities as the band bending and density of occupied surface states in the 

nano-scale regime, where bulk semiconductor values and approximations are no longer 

appropriate, even outside o f a DFT context.

The Chapter begins on a simple note however, and Section 5.1 gives some detail on the vector 

operator ‘del’ and discusses its action on scalar and vector fields with the concepts of gradient, 

divergence and curl. Also introduced is the theorem of Gauss equating the surface integral of a 

vector with the volume integral o f its divergence.

Section 5.2 applies Gauss’ theorem of the first section to the subject of electrostatics and develops 

Gauss’ law, which relates the electric field on a hypothetical closed surface to the charge enclosed 

within this surface, and from which Poisson’s equation is derived. The section then proceeds to 

apply these equations to a spherical chargeable semiconductor grain and discusses the density of 

occupied surface states, deriving the standard expression for the occupied surface acceptor density 

o f literature [15,16,17], a function of the first derivative of the potential at the surface of the grain.

In Section 5.3 it is shown that should Poisson’s non-linear equation be solved with the boundary 

requirements of Section 2.2: that the value of the potential on the grain surface is specified, and 

that this potential must have a stationary point at the grain centre, then unlike the linear case, 

these boundary conditions do not guarantee an unique solution to the non-linear Poisson equation. 

The effect of this is that within the previously developed Kohn-Sham methodology -  with this 

self-consistently determined Poisson potential forming part of the single-particle reference 

potential - this issue of non-uniqueness implies that the total energy of the system can no longer 

be taken to be minimised with respect to the constraint of constant particle number, since the total 

particle number is not necessarily constant if there is ambiguity in the self-consistent potential, the 

total particle number being itself dependent upon this potential. Consequentially, it is feasible that 

there could be several self-consistent solutions minimised to differing total electron numbers for 

the system. As such, the self-consistent Kohn-Sham density is not, contrary to anticipation, 

necessarily the ground state density of the system.

Section 5.4 proves that regardless of this ambiguity in the potential, its first derivative on the grain 

boundary, dq>!dr\ , and the potential dependant charge density, p((p, r), do uniquely determine

1 7 3



C h a p t e r  5  G a u s s ’ T h e o r e m  a n d  t h e  Im p o r t a n c e  o f  B o u n d a r y  V a l u e s

each other, and as such, the electric field at the grain boundary, and so the occupied surface state 

density, is uniquely set by a given electron density. Naturally, the boundary electric field itself is 

not uniquely specified unless the charge density, and consequentially, the potential, are 

themselves unique.

Section 5.5 discusses the requirements necessary to define an electric field uniquely and proves 

that the electric field does uniquely correspond to the potential, although as in the preceding 

arguments, if  this potential is not unique then neither is the electric field. This is then contrasted 

with the actual ‘physical’ requirement that the system be in its ground state and as such, implying 

that the density, and thus the potential and electric field, are unique. To reconcile these two 

positions, its is proposed that the values of the defining parameters R, rid, Ef, T, Q, m  and e  

corresponding to the barrier height Sb are not necessarily those which correspond to stationary 

point in the potential at the grain centre when the grain is sufficiently small that a region of zero 

potential does not develop. As such, it is suggested that for the non-linear Poisson equation, the 

boundary values used here do in fact satisfactorily define the potential if those particular boundary 

values are consistent with the values o f the defining parameters. Then, and only then, will

d  R ( r)R 2—  equal -  |  ̂ ' r 2dr and the standard expression for the occupied density o f surface
d r  r  {  £

states, Eq. (5.43), be true.

In Section 5.6, validation is offered of the claims of the preceding sections, and some areas of 

error are highlighted in existing published work. It is suggested, that in a spherical geometry, if 

the surface barrier height is to be kept constant along with Ef , T, Q, m  , and s  over a range of grain 

radii, then the ionised donor density cannot remain constant. This section then introduces a 

straightforward method that can be used to ascertain the true ground state density o f the subject 

non-linear system, and demonstrates its use on a simplified SnC>2 system, modelling the 

movement of the Fermi level resulting from the injection of individual electrons, such as would be 

experienced during STM charge writing [6,7].

Section 5.7 provides a synopsis of the developments of the Chapter and their consequences.

Naturally, it should be stressed at all times that with sufficient, accurate data, Poisson’s equation, 

linear or otherwise, can always be precisely and uniquely solved, and indeed, the essence of the 

techniques developed in this chapter is the divination of such data.
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5.1 The Action of V on a Field, Scalar or Vector, and Gauss’s Theorem

The vector differential operator V, called del or nabla, can be written as

„  d , d A d A ,V =  X H VH-------- z  (5.1)
dx dy dz

in Cartesian coordinates.

When applied to a scalar field <p(x, y, z) in a way such that

V ,  = £ i  + £ *  + £ i  (5.2)
dx dy dz

the differential operator is said to return the gradient o f the scalar (p. This is the vector field 

defined by the requirement that its dot product

d(p = V(p-dr (5'3)

is equal to d(p, the differential change in cp corresponding to the arbitrary space displacement dr

dr = dxi  + dyy + dzz (5-4)

From the definition of the dot product then

<^? = |V^|<ir|cos0 (5.5)

where 6 is the angle between the vector Vtp and the displacement vector, and it is clear that the 

rate of change of (p is greatest if the differential displacement is in the direction of V(p i.e. 6 = 0 so 

cos 0 = 1 .  Consequentially, this defines the direction of the vector V<p as the direction of the 

maximum rate of change of (p.

To describe del’s action on a scalar field succinctly, it is merely sufficient to state that the gradient 

of (p is the directional derivative in the direction of the maximum rate o f change of (p. It plays 

many important roles in physics and in particular, it expresses the relation between a force field 

and a scalar potential field

force = -V(potential) 

familiar for instance in electrostatics and Newtonian gravitation.

When del is applied to a vector field V  such that

d K  dVy d v ~ ^V - V  = — -  + — -  + — -  (5.6)
dx dy dz
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a scalar field results that is known as the divergence of the vector field.

More difficult to envisage than the gradient of a scalar field, it can perhaps be better understood 

from a physical interpretation o f its action [65],

Let the vector V(x, y, z) represent the momentum per unit volume of a liquid, then for a small 

volume dxdydz, see Figure 5-1, the rate o f fluid flow into (direction of positive x ) this volume per 

unit time through face EFGH is

Ratel ™ « = L L ,„ ^ *  (5-?)

the components of V perpendicular to Vx, Vy and Vz contributing nothing to the inward flow 

through this particular face.

i
z

G H
c / D

dz E f  y

/ dx
dy B

Figure 5-1 Diagram o f  a parallelepiped in Cartesian space

The rate of flow out through face ABCD is then

Rate = VX\ ^dydzABCD x \ x =dx

jr 3VXVr +— -d x  
dx

dydz
jc=0

(5.8)

using a Taylor expansion about the origin (often called a Maclaurin series). The net rate of 

outward flow in the x  direction is then

Net Rate Out|, = R a t e ^  -  Rate|

8V.
I EFGH

dx
dxdydz (5.9)

x=0

Naturally, these arguments hold for the other two axes, and so
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r
dvr d V y 8V

Net Rate Out = X + ' + — -
dx

\ * II O o dzy=0 2=0 >
dxdydz

= V - \ d r  (5-10)

and therefore, the net rate of flow out of the volume element dxdydz (abbreviated to dx) per unit 

volume per unit time is V*V.

However, what is the flow rate, or flux1, through a surface? It is simply the surface integral

J V -do
s

(5.11)

where the element o f area d a  can be written ndA where n is a normal unit vector indicating the 

positive direction. Conventionally, this positive direction is the outward normal if the surface is 

closed. Therefore, Eq. (5.10) can be written

£V -< *F  = V-Vrfr (5.12)
6 surfaces

For an arbitrary volume V defined by a boundary S, if the space is divided into an arbitrary large 

number o f infmitesimally small parallelepipeds, then for the total volume V, the flux through S  is 

just

V-d<s= ]T V -V c/r (5 .1 3 )
exterior surfaces volumes

the V 'da  terms of all interior faces cancelling, as illustrated in Figure 5-2

Figure 5-2 Representation o f  cancellation o f  V .da on interior surfaces

1 To be pedantic, flux is defined as the product o f an area and the field across that area rather than the actual 
flow o f  something through an area. However, the later view is conceptually useful and for subtleties, the 
reader is referred to Haliday, Resnik and Walker [93] for example.
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Taking the limit where the number of parallelepipeds tends to infinity and the volume of each 

tends to zero, then Eq. (5.13) becomes

Jv-t/o = jV-Vdr (5.14)

commonly known as Gauss’ theorem.

Physically, since V.V is the net outflow per unit volume as discussed above, J V • \ d r  is the total 

net outflow through the volume V, which through Gauss’ theorem is equivalent to the surface 

integral J V • da over the surface S  defining V.

For completeness, it is sensible to conclude this section with the second application of del to a 

vector field - through the cross product, referred to as the curl of the field [65]:

V x V =
fdV z dVy >

y  dy

i y *
d d d
dx dy dz
K V Vy  z

x +  -
( dVr dV,
y dz dx y +

dr, sv„
dx dy

(5.15)

the determinant expanded from the top down.

To visualise its action, consider the circulation of a fluid around a differential loop in the .xy-plane, 

as seen in Figure 5-3.

Figure 5-3 Representation of the circulation of a fluid around a differential loop in the xy-plane. 

The circulation is given by the vector line integral
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Jv -d X (5.16)

over each line segment and thus the total circulation around the loop is given by

circulation! 234  = J  Vx (x, y)dXx + jvy (x, y)dXy + jvx (x, y)dXx +jvy (x, y)dXy (5.17)
1 2  3  4

From Figure 5-3 it can be seen that over the first line integral dX* = dx, while for the third line 

integral dX* = -dx. Similarly for dXy\ dXy = dy in the second and dXy = -dy in the fourth integrals. 

Then using the Taylor expansions

dK,
Vy (x0 + dx ,y0) = Vy (x0, y 0) + 

Vx(x o>yo +dy) = Vx{xQ,y Q) +

dx

dV„

dx + ...
Wo

dy

(5.18)

dy + ...
Wo

in the limits dx—>0 and dy—>0, the circulation can be expressed as

f  . . .  \
circulation, 234 =Vx(x0,y 0 )dx +

dVy
K ( x 0ty 0) +

dx
dx

-W o

dy

(
^ ( W o ) + 4 r ldy

dy
•W o  J

d y - V  (x0,y„)dy

dx dy
dxdy (5.19)

The circulation per unit area in the xy-plane is therefore

circulation per unit area = V x v|

dividing Eq. (5.19) by dxdy.

(5.20)

As such, the curl o f the vector V can be visualised in terms of its individual components, the axis 

o f each curl component perpendicular to the plane formed by the remaining two axes, and given 

by the circulation per unit area o f V on that plane.
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5.2 Gauss’ Law and Poisson’s Equation

O f particular importance to this work are the consequences o f Gauss’ theorem, developed in the 

previous section, for electrostatics.

For a point electric charge, q, situated at the origin of a coordinate system, the electric field E 

produced by this charge is defined as the force per unit charge acting on a small test charge q,

F
E = — (5.21)

Q,

The force on q, from q is then

from Coulomb’s law, and so E is simply

F = -  q,q T—  (5.22)
47T£r£0 r 2

E = — 2-----L  (5.23)
47t£r£Q r

From Gauss’ theorem then, if a closed surface S  does not include the point electric charge q at the 

origin, as illustrated in Figure 5-4,

Figure 5-4 Representation o f a closed surface 5  not encompassing point q at the origin o f  the 
coordinate system

then
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V -E  d z

4^ o  i
J V • (rr~2jdr

=  0

using the general relationship for a fu n c tio n ^ )  that

V ( r / ( r ) )  =
0  8 . 8  

x —  + y  h z—
dx dy dz

■ (xx f  (r) + yy f  (r) + z z f  (r ))

= y - x f { r ) + ^ - y f { r )  + -^-zf(r)
dx dy dz

- 3 / ( r )  i * 2 I >;2 i ^
r dr r dr r dr
d f (r )  

dr
= 3 f ( r )  + r

since

9 f ( r ) - df ( r ) dr _ df ( r )  8 / 2  ̂ , 2y i  _ x df ( r )
dx dr dx dr dx r dr

and where in particular, fo r^ r)  = rnA

V -(r r w_,)= V - ( r rw)

=  (n  +  2 ) r " _1

which vanishes for n = -2 unless r  = 0 - hence the simplification in Eq. (5.24).

(5.24)

(5.25)

(5.26)

(5.27)

Consider now the second choice o f situation; if the surface S  does enclose the origin, as seen in 

Figure 5-5(a).

5

Figure 5-5 Representation of (a) a surface 5 enclosing the point q at the origin, and (b) one 
surface made up of the two surfaces S' and S' connected by an infinetesimally small hole such 
that the origin is no longer enclosed
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Place a second surface S' o f radius S lying within S  and surrounding the origin, see Figure 5-5(b). 

If these two surfaces are connected by a small hole then both surfaces can be treated as one 

simply connected closed surface, and should the radius o f the connecting hole be allowed to tend 

to zero, then its contribution to the surface integral vanishes and the total surface integral is just

4 7T£r£0
J(?r 2)-da + j*(rd 2)-da '

, S  S '

the volume defined by S  and S' not now containing the origin.

=  0 (5.28)

If S' is chosen to be spherical then the element of area d a ' can be written

da' = r 'S 2dQ = - r d 2dQ (5.29)

where dQ is an element of solid angle, and the unit normal vector follows convention and faces 

outward from the volume i.e. r '  = - r . Therefore,

f -TT- • - rS 2d d  = -4 /r
I s 2

which is, significantly, independent of the radius 8.

(5.30)

Thus, from Eq. (5.28) and Eq. (5.30), for the arbitrarily shaped surface S  of Figure 5-5(a) 

enclosing q, the surface integral of the electric field

J E • d a  = q
s

is true.

£.£t
(5.31)

These two important results, Eq. (5.24) and Eq. (5.31) i.e.

J  E • da  =
s

are collectively known as Gauss’ law.

0

£.£r ° 0

q not enclosed by S  

q enclosed by S
(5.32)

Now consider a charge distribution such that

= j' p d T (5.33)

Applying Gauss’ law, q interpreted as the total distributed charge enclosed within S , then
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[ e -do = f —̂ — dz  J J p
S  V r 0

= js7 -E d r
v

(5.34)

Since the volume V is arbitrary, as a consequence of the surface S  being arbitrary, then the two 

volume integrands must be equal, and therefore

PV-E = ■ (5.35)

is true. Eq. (5.35) is familiar as one of Maxwell’s famous equations of electromagnetism.

Letting the electric field be represented as the gradient of a scalar potential field q>

E = -Vtp  

then Eq. (5.35) becomes

V -(V p) = v V  = - - £ -  (5.37)

(5.36)

£r£r 0

the Poisson equation of Section 2.2

Applying Gauss’ law to the spherical quantum dot system under study, place a spherical surface S

infinitesimally within the boundary of the grain, i.e. at R., such that it encloses the charge

distribution due to the ionised donors and the disassociated electrons but not the charge within

any surface states. As the scalar field is radially dependent only, then

E = -V ^ (r)

T d p ( r ) ,  _ d(p(r), , d(p(r) * 
x “r y ■+■ z

dx dy dz

/ , . .>,1 dq>{r)
= -(xx + yy  + zz )— - —  

r dr
- d(p{r) 

dr

using Eq. (5.26). With the element o f area

da = rR^dQ

the surface integral of the electric field over S  can be written

•rR2dQ.
J J dr R_

dr

(5.38)

(5.39)

( 5 . 4 0 )
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This is equal to the volume integral of the contained charge distribution such that

9  =  \ —̂ —dr
* %

R_

£ r £ 0  v  £ r £ 0

4/r

£ r £ 0  o

\{n d ~ n e{r))r2dr (5.41)

Requiring the charge within the grain plus the charge contained within the occupied surface states 

to equal the charge o f the grain, Q, then a ‘charge balance’ equation can be formed such that

4 R
Q = AneR2N s + -^ -e R 3nd -A n e jn e(r)r2dr (5.42)

where Ns is the occupied surface state density. In the limit R. —*■ R, Ns can be written

N  Q , £ r £ 0  dq> (5.43)
AuzRz e dr

using Eq. (5.40) and Eq. (5.41). This surface density is assumed to be uniform over the grain 

surface.

When the grain is uncharged, Q = 0, Eq. (5.43) is the charge neutrality condition o f Malagu et al. 

[15] and their surface acceptor density, the negative of the occupied surface state density here, is 

simply Eq. (2.48)

£r£o dtpN , = -
dr

a plot of which, as a function of R, can be found in Figure 5-7 as outlined in Section 2.4.

Through the charge balance equation, Eq. (5.42), to some degree the ionised donor density, 

occupied surface state density, electron density and the scalar potential can all be considered 

interdependent. As such, they are all rather complex functions, either directly or indirectly, o f the 

temperature, Fermi level, dot radius, surface barrier height as well as the individual material 

parameters of the semiconductor, such as its effective electron mass and permittivity, and any 

initial doping of the semiconductor during fabrication. This charge balance equation, although 

trivial in itself, will in later sections prove to be quite useful.

The spherically symmetric scalar potential (p follows from solving Poisson’s equation subject to 

two boundary conditions. The first requirement is that at the grain centre, the electric field is set to
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zero; otherwise, the potential will not be smooth with regard to a transversal of the origin and the 

symmetry will be broken. The second boundary stipulation is that at the surface of the grain, the 

potential must be equal to the Schottky-like barrier height, which as discussed in detail in Section 

2.2, is the surface barrier at the semiconductor interface. In the case o f the tin dioxide grains 

under study here, this barrier arises through the formation of surface states on the semiconductor 

as chemisorbed oxygen species (O', O2') from the surrounding air act as electron acceptors. The 

charge in these surface states creates the surface barrier.

Whether the electron density is expressed with a Fermi-Dirac integral or determined self- 

consistently, it retains a dependence on cp itself, and as such, Poisson’s equation is considered 

non-linear. Only if the radius of the grain is such that it is greater than the electron depletion layer 

(formed by the previously mentioned chemisorbed oxygen species acting as electron acceptors) 

penetrating into the nanocrystal, is it possible to neglect the electron density in the total charge 

density and approximate the potential with a linear Poisson equation. In the situation where the 

electron density is not superfluous, the non-linearity poses no insurmountable barrier to a solution 

o f the equation via the computational methods discussed in Section 2.3, although it does 

potentially have very important consequences.

1 8 5



C h a p t e r  5  G a u s s ’ T h e o r e m  a n d  t h e  Im p o r t a n c e  o f  B o u n d a r y  V a l u e s

5.3 On the Uniqueness of Poisson Equation Solutions, and the 

Implications of a Variable Particle Number for a Ground State 

Density

To begin this section, consider the situation where Poisson’s equation is linear:

1 d  (  2 dq>
v * r ) - 7

p{r)

Multiplying throughout by r2, and then on integrating over the radial coordinate

d(p 
dr

r>*V + C = -\!*± S dr = A(,r)
/ir  J p

and applying the requirement that

dq>
dr

=  0
r=0

the first derivative of (p can be expressed as

d(p A(r) -  A(0)
dr

Integrating once again,

p(r) + k  = f A( r ) - m dr = B(r)

then with the boundary condition that (p{R) = Sb, the solution (p becomes

cp{r) = B{r) + (Sb -B {R j)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

If a scalar function e(r) is now added to <p(r) such that

l _ j L ( r 2 d ^  +  e A  =  _  ( X ? )
r 7  '-2 dr dr

and the same boundary conditions are applied to the new function cp + e as to (p, then

d(<p + e)± ( ip+e) = m ^ m  with ^
dr ’ r 2 dr

= 0 and
r=0 dr

=  0
r=0

and so

(5.50)

(5.51)

<p{r) + e(r) = B(r) + (Sb -  B(R)) with (p(R) = S b and (p{R) + e(R) = S b (5.52)
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Therefore, on comparing Eq. (5.49) with Eq. (5.52)

<P{r) + e{r) = (p{r) (5.53)

for all r, implying that

e(r) = 0 (5.54)

for all r, and it can be said that the boundary conditions have uniquely determined the solution of 

Poisson’s equation.

Now consider the case of the non-linear Poisson equation:

.21 d  (  , d(p\ p((p,r)
•2 dr

r —  = ~
dr J

Proceeding as in the linear case, and with the same boundary requirements, then

d(p A{(p, r) -  A((p,0)
dr

where

and

where

A(<p,r) = - j

<p(r) = B(tp, r) + (Sb -  B(ip, R))

B (v ,r)  = f M - A(V'0) dr

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

If a scalar function e(r) is now added to the solution q> however, then this will also alter p(cp, r) to 

p{(p+e, r) and so

d(<p + e)+ e )= ^  + e> r)-A (P  + e,0) 
dr ’ r

d(p
dr

= 0 and
r = 0 dr

=  0
(5.60)

<p(r) + e{r) = B{<p + e, r) + (Sb -  B(q> + e, R)) with <p(R) = Sb and e(i?) = 0 

implying that

e(r) = (B(<p + e ,r )~  B(tp, r)) -  (B(q> + e ,R )~  B(<p, R)) 

with the boundary conditions

e(R) = 0 

de 
dr

(5.61)

(5.62)
=  0

r=0
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and whilst this is naturally satisfied by e(r) = 0, it is not necessarily the only possible option. As 

such, the solution of Poisson’s equation for those particular boundary conditions is not nessesarily 

unique.

What bearing does this conclusion have on the self-consistent solution of the coupled Kohn-Sham 

-  Poisson equations? Here the form of the electron density, usually Eq. (1.34) for the first 

iteration and then essentially

ne (r ) = X  f t 8* 2 (5-63)
i

for the remaining iterations, changes on each cycle until the two sets of equations are self- 

consistent -  that is to say, the electron density that generates the effective potential, generates 

itself through the consequent wave functions. This self-consistent density is the density that 

minimises the total energy of the system inclusive of electron-electron interaction effects; in the 

Kohn-Sham density functional methodology, this is then the ground state density of the system. •

The potential does change cycle to cycle, but more importantly so does the entire nature of the 

relationship generating the electron density. In this way, many potentials, from the many forms of 

the generating function, can satisfy any boundary requirements, but importantly, only one 

potential will be self-consistent -  only one unique potential will generate, and be generated by, 

the ground state density. Ergo, for the case of the coupled equations, the charge density in Eq.’s 

(5.55) to (5.62) should be the final self-consistent density, these equations and arguments having 

no meaning in the course of the interim self-consistency iterations1.

As a consequence of the above, a scalar potential e cannot be added to cp without violating this 

self-consistency and moving the system away from its energetic minimum, unless o f course e{r) =

0 for all r, and as such, again it can be said that the boundary conditions have uniquely determined 

the solution of Poisson’s equation.

Therefore, based on the above arguments, it appears that if  the system is described via Poisson’s 

non-linear equation alone, then the two boundary values do not adequately specify the system.

1 This adoption o f  the final Kohn-Sham self-consistent density as the only relevant contributor to any 
‘unique’ / ’non-unique’ debate involving the KS equations is tacitly embraced throughout the remainder o f  
this Chapter, as indeed is the convention o f using ‘unique’ when, strictly, what is meant is ‘unique’ for a 
given method (e.g. Poisson or Poisson-Kohn-Sham).
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However, if the system is described via the coupled Kohn-Sham -  Poisson equations, then, as a 

consequence o f the additional requirement o f energy minimisation, it is apparently implied that 

the satisfying potential is unique, and therefore, that the two boundary values are adequate after 

all.

There is one very significant caveat however, which negates this apparent benefit of self- 

consistent determination o f the density and potential. The underlying variational energy 

minimisation takes place with regard to a constant particle number constraint - see Chapter 4 and 

Kohnanoff [29]. By including a thermal population o f electrons, which are dependent not only on 

the position of the Fermi level (which is always set at a constant level over each Kohn-Sham -  

Poisson set o f cycles) but also on the position of the conduction band bottom (for these non-flat 

band scenarios, the conduction band bottom is not a constant, and consequentially, is replaced by 

its mean value), the total electron population is actually variable, and as such, itself a function of 

the potential being sought and no longer a true minimisation constraint. While the self- 

consistency iterations do, without doubt, generate a self-consistent potential consistent with 

regard to its relevant total complement of electrons, it is not necessarily certain that this density 

itself is unique. There may exist several, equally valid, self-consistent solutions with different 

total electron complements, each minimising the total energy with respect to their differing 

constraints, and through Eq.’s (5.55) to (5.62), they can all satisfy the Poisson equation boundary 

values.

It could be argued on energetic principles that only the solution with the lowest electron 

population would be valid; this corresponding to the lowest energy contained in thermally excited 

electrons and interaction forces. However, the lower the negative charge component o f the total 

charge density, the deeper the potential well, and the deeper the well, the greater the gradient of 

the potential at the grain surface. This means a larger electric field, and correspondingly more 

energy ‘stored’ within this field. Unfortunately then, this minimum electron argument does not 

provided a simple way out o f the non-uniqueness dilemma inherent with this variable particle 

number system.

Therefore, as matters stand, the solution of Poisson’s equation for the particular boundary 

conditions found here cannot be taken as unique, whether Poisson’s equation is solved in isolation 

or in conjunction with the Kohn-Sham equations.
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As such, to elucidate perhaps its most important consequence within the context of this article: if 

the solution to Poisson’s equation is not guaranteed to be exclusive, and this non-unique potential 

forms part of the reference potential in a Kohn-Sham methodology, then an ambiguity is 

introduced to the Kohn-Sham electronic density through the variational constraint of total particle 

number. In this context, this 'constraint' cannot function as a constraint, being itself a variable, 

since in the Fermi-Dirac fractional occupancy scheme used here, the total electron number is also 

a function of the mean position o f the conduction band bottom (the Kohn-Sham reference 

potential). With this non-uniqueness issue introduced, the total energy of the system can no 

longer be taken to be minimised, and as such, the self-consistent Kohn-Sham density is not 

necessarily the ground state density of the system and consequentially, not nessesarily the density 

of the many-bodied interacting electron system.
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5.4 On the Uniqueness of the Surface Electric Field for a Given Charge 

Density

Having postulated that the solution of the non-linear Poisson equation is not unique for the given 

boundary conditions, can the potential dependent electron density be taken as uniquely 

determining the electric field on the surface S  i.e. at the grain boundary?

Suppose that it does not, suppose that the surface electric field corresponding to a potential q> can 

be both generated by a charge density p{cp, r) and a charge density p(<p+e, r). As such, let

dr
? ( d 2(p 2 dtp^

r drw | ** /7v
R o

= J p<V + e , r ) r2dr (564)

J0 *r£ 0

dr r dr ,

p(<p + e,r) 2

where, as before, e(r) is an arbitrary function, the gradient of the potential at the grain centre is 

always taken to be zero and <p\R is equal to -Sb.

For Eq. (5.64) to hold for all radii R then

d 2(p | 2 d(p _ p(<p + e,r) ^  ^
d r2 r dr e

which is of course the requirement that V 2q> = -p{q> + e ,r )l s . It can be assumed that both

d ^ + 2 d p =_p(v1rl 
dr r dr s

and

p{(p + e ,r) d  {(p + e) 2d(<p + e)
+  ■ (5.67)

s  d r2 r dr

are also true, as they are simply statements of Poisson’s equation, and as such, proved already via 

Gauss’ law.

Therefore, comparing Eq. (5.65) with Eq.’s (5.66) and (5.67)

p{(p,r) = p{(p + e ,r) (5.68)

or equivalently
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d q> 2 dcp _ d  {(p + e) 2 d{q> + e)
d r2 r dr d r2 r dr

This implies that

d(p
dr

d(q> + e)
dr

(5.69)

(5.70)

and thus Eq. (5.64) will hold if, and only if,

R ^  
dr

= H r 2dr ^  t f d f r  + e) = J p ( p  + e , r ) r2dr ( 5J l )
i s  dr o { s

Ergo, with regard to the potential,
dr

and p{q>,r) uniquely determine each other, and as such, if

the electric field at the grain boundary is uniquely determined by the potential, then it is uniquely 

set by the given charge density.

Interestingly, neither Eq. (5.68) nor Eq. (5.69) actually requires (p + e to equal (p. Indeed
r 2 / „  , ^  ^  _ , 2 _  ^  , 2 .d (q> + e) + 2 d(q> + e) _ d  (p + 2 d<p d e 2 de

dr‘ dr d r2 r dr d r2 r dr

implying that

d e 2 de
— ^  + ----------=  0
dr r dr

(5.72)

(5.73)

which is simply a statement of Laplace’s equation V2e = 0 . Of course, e must also meet the 

boundary requirements, Eq. (5.62):

e(R) = 0 

de
dr

=  0
r = 0

However, this is not an issue of practical importance as the computational method employed 

ensures by its nature that the scalar field employed on the right hand side and the left hand side of 

Poisson’s equation is always the same.

To summarise this section briefly then, it has been shown that the electric field at the grain 

boundary corresponding to q> and the density p(q>) do have a unique correspondence. However, as 

p(<p) is not unique since (p is not unique in this non-linear scenario, see Section 5.3, then the value 

o f the electric field at the grain boundary is itself not uniquely given.
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Identifying the occupied surface state density with the surface electric field, it can be taken, 

reiterating the above, that there is a one to one correspondence between the charge density and the 

occupied surface state density, but this surface density cannot be uniquely known until the 

potential is uniquely determined.
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5.5 On the Uniqueness of the Electric Field, and Satisfying the Charge 

Balance (CB) Equation

Having ascertained that the electric field at the grain surface and the electron density uniquely 

determine each other if the field is uniquely set by the potential, the next question is whether this 

can be applied to the electric field as a whole. Is the electric field for a given potential in this 

situation unique?

In general, there are many different potentials that can generate the same field - a  concept referred 

to as gauge invariance. A gauge is a particular choice o f scalar and vector potential with which to 

define a field, and a gauge function is a scalar function that can be used to change the gauge. For 

instance, in its most general form, the electric field can be expressed in terms of the scalar 

potential (p and the vector potential A such that
Q

E  = ~ V (p ~~dtA  (5 ,74 )

then any gauge transform of the form

(5-75)
A -» A + V /

where the gauge function y(x, t) is an arbitrary function, leaves the field E unchanged.

The most popular gauge of electromagnetism is the Coulomb gauge, where it is required that

V -A  = 0 (5-76)

As such, substituting Eq. (5.74) into Eq. (5.35) yields

V V ^ - ^  = - -  (5.77)
dt s

which can be reduced to the familiar Poisson equation

v V = - —
8

on employing Eq. (5.76).

However, when the charge density itself is a function of the scalar potential, the gauge transform 

will also affect it, and while Gauss’s law will of course still be obeyed, it is not necessarily the
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case that the gauge transformed charge density will still generate the gauge transformed scalar 

potential meeting the original boundary conditions.

What if  the boundary conditions of the system were such that the potential was defined 

absolutely? Given that gauge transformations would appear to be no longer appropriate, can it be 

assumed that the electric field is also defined absolutely? The real question then that must be 

answered is actually what does it take to define the electric field uniquely?

The vector field uniqueness theorem stated and proven in Arfken and Weber [65] specifies that a 

vector is only uniquely given if  its divergence and curl are known within a simply connected 

region and its normal component is specified over the boundary of the region:

V -V  = s
Vx V = c (5-78)

VH

The scalar s is referred to as the source density, and the vector c as the circulation density.

Initially, choose the Coulomb gauge for simplicity, then for the electric field E = -V tp , its curl 

can be written

V x ( - V tp) = —

x y z
d_ d_ d_
dx dy dz
dtp dtp dq>
dx dy dz

(5.79)

which, on expanding the determinant, is always equal to zero, and so V x E can  be taken to be 

specified as zero, satisfying requirement (2) of Eq. (5.78).

The divergence o f the electric field V • E = -V  • (V#?), requirement (1) of Eq. (5.78), is taken as 

being determined by the solution of Poisson’s equation V 2 0 > = -/?(0 >,r)/£r£o meeting the usual 

boundary conditions

tp(R) = Sb 

dtp
dr

=  0
r = 0

as discussed in Section 5.2. However, it was shown in Section 5.3 that tp, and so p{tp), are not 

necessarily unique under these circumstances.
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With regard to requirement (3) o f Eq. (5.78), the value of the electric field on the boundary; from 

the work o f Section 5.4, it can be seen that once again, there will be a one to one correspondence 

between the boundary value o f E and the scalar potential (p /charge density p{(p) (gauge 

temporarily fixed), although, the value o f the electric field on the boundary will not itself be 

uniquely given, as again, (p is not necessarily unique.

It would appear then, that if  (p were unique, then from Eq. (5.78), the electric field would be 

unique, but since the potential (p is not unique, neither is E. In this case (non-unique E) can it also 

be assumed that there is a one to one correspondence between the non-unique (p and the non­

unique E?

Consider the reverse. Assume for a moment that more that one electric field can correspond to a 

given potential (p, and consequentially it is possible to add a vector function e to the field so that

(5.80)

is also true in addition to

This implies that

V -e = 0 (5.81)

and so

(5.82)
dr R

then

dr R dr R
=  0 (5.83)

and thus the normal component o f e on the grain boundary is

* , = 0 ( 5 . 8 4 )
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Requiring the electric field to remain spherically symmetric then e can only be a function of the 

radial coordinate, and as such, its curl must be zero

V x e  = 0 (5-85)

from the definition Eq. (5.15) recast in spherical polar coordinates

Vx V =

rZ(r2 sin6>) Q/(rsin0) §/r
d d d
dr d6 d<!>
K rVe rV^ sin 0

(5.86)

A vector with zero curl is called an irrotational vector, and as such, can be represented as the 

negative gradient o f a scalar function

e = -V e (5-87)

on consideration of Eq. (5.79).

From Green’s theorem1 and Eq. (5.84)

j*Ve-V e d r  = j*e-e<ir = 0 (5.88)
v v

-  J-and since e-e = e is greater than or equal to zero, then

e = 0 (5.89)

With Eq.’s (5.81), (5.84) and (5.85), e is uniquely specified, and from Eq. (5.89), uniquely set at 

zero. Therefore, there can only be one electric field corresponding to (p.

The choice of gauge here is actually immaterial -  the electric field must remain unchanged and so 

consequentially, the source and circulation densities must also be unaffected by any gauge 

transformation. Gauge is just a matter o f convenience. As such, for a given potential and charge 

density there will be an unique electric field, specified by Eq.’s (5.79), (5.35) and (5.38) at R. 

Although, if the potential for a system is not unique, as in the case of the non-linear Poisson

1 From the identity [65]
V • (wVv) = «V • Vv + Vw • Vv

linking the continuous scalar functions u and v, then for a volume V with a surface S Gauss’ theorem 
implies that

J wVv • da  = JmV • Vvdv + J Vw • Vvdr
S V V

a result known as Green’s theorem, or to be more precise, one o f  its forms.
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equation with the boundary values used here, then the electric field of the system will not be 

unique overall, but will uniquely correspond to that particular potential.

Nevertheless, regardless of all this ambiguity, when the total electronic system is at its energetic 

minimum, the electron density is the ground state density, and since the ground state is taken to be 

unique, the potential generating it must also be unique. Ergo, the electric field is unique and the 

occupied surface state density, Eq. (5.43),

N  Q , er£0 dtp
AmeR2 e dr 

appearing in the charge balance equation Eq. (5.42),

Q = 4m R 2N s + —  eR2nd -  4 n e jn e(r)r2dr 
^ o

is determined exactly, specified at the values o f R, St,, rid, Ef, T, Q, m and e  which correspond to 

the ground state density.

How can the work o f Section 5.3, that the density is not necessarily determined uniquely, be 

reconciled with this?

The key issue is the boundary values of the Poisson equation. The surface barrier height is 

naturally dependent on the parameters defining the system -  for instance consider the standard 

planar geometry Schottky equation"

11 In a planar geometry, for the illustrated system between D0 and D

D0 D
■> JC

Poisson’s equation is

and

d 2q> _ end 
dx2 s ns r
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eN 2Vb = ™'  (5.90)
l£ Q£rnd

of Ref. [94] for example, where the activation energy, or in the terminology used here, the built in 

potential Vb is Sb minus the energy difference between the conduction band bottom and the Fermi 

level, assuming bulk semiconductor behaviour. Change a parameter such as the permittivity or 

ionised donor density and unless the other contributing factors are adjusted to compensate, the 

barrier height will change.

What about the gradient of the potential at the grain centre? In the depletion approximation (DA), 

it is a pre-requisite that the grain radius is sufficient in extent that for the parameters defining the 

system, a field free, flat band region always exists at the grain centre. Therefore both Poisson 

boundary values are consistent with the defining quantities of (R ,) nd, Ef, T, Q, m , and e, and in 

this approximation, are sufficient to set the potential uniquely.

^  =0
x=£>0

FA=^(Z))-p(D 0)
Integrating Poisson’s equation then

dv .+ c  =—erid -
dx e 0er

and the constant o f  integration C can be found by evaluating the above expression at D0: 

Integrating again

C = —— D0 
£ * £ .

<p + k = — -  D0x) 

and again evaluating the expression at D0 to find the constant o f  integration k:

£ = — —^—D l -  <p(D0)
£0 £r

The charge from the ionised donors in the depletion region D-D0 must equal the charge from the surface 
acceptor density:

{D - D0)nd = N t 
and so finally, assessing the value o f  the potential D  yields

Fa= ^ (D )-^ (D 0)

eNt
£n£rn

ip 2 - 2 DD0 +D2)
' 0  “ r

r 2
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When the band bending does not fully evolve, when the non-linear Poisson equation must be 

used, is it not an inherent assumption that the parameters which are consistent with Sb are also 

consistent with d(p/dr = 0 for r = 0?

Consider instead the possibility that this derivative is also a function o f those same parameters 

defining Sb- R, rid, Ef, T, Q, m and e -  and furthermore, that there exists only one unique potential, 

corresponding to one unique charge density, which satisfies both boundary conditions.

In this way, it is proposed that the potential satisfying R, Sb, —
dr

= 0, rid, Ef, T, Q, in ,  and s
r = 0

consistently is unique, and so the non-linear Poisson equation is solved uniquely. As such, the 

electron density represents that of the actual ‘physical’ system for those values of parameter, 

which in the case o f the coupled KS-Poisson equations, can be identified as the ground state 

density.

The concept of taking dcpl dr\r_Qas dependent on the defining parameters is quite logical. At the

start of the section, it was proven that the electric field does uniquely correspond to a given charge 

density, and, as that charge density is undoubtedly dependent on R , rid, Ef, T, Q, m  and e, it 

follows that E must be dependent also. With the Coulomb gauge in this spherically symmetric 

geometry, what else is the electric field other than the first derivative of the potential along the 

radial axis? Indeed, this offers an explanation for the unique/non-unique potential divide over the 

switch in the Poisson equation from linear to non-linear; the charge density within the neutral 

region (r < R0) o f a large grain (R > A) is, by its very definition, zero i.e. constant, hence the 

independence o f E at r = 0 (the boundary value d<p/dr\r Q) to the defining parameters’11, whilst

for small grains (R < A), a neutral region is not present and the charge density, and consequently 

E, at r = 0 is undeniably dependent on the defining parameters. Ergo, small R implies dependent

d <pld r \„(,■

The assumption that d<p/dr\r Q = 0and  (p{R) = - S b may not be consistent for all sets o f the 

defining parameters is also rather a logical conclusion. It would seem that something o f this

111 although A itself would always be dependent on the defining parameters R, nd, Ef, T, Q, m* and s .
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nature is certainly implied when considering the limiting case where the grain radius R tends to 

zero.

Consider an uncharged grain. When R > A, see Figure 5-6(a), the band bending does fully 

develop and as R —> oo, an extended region, where both the first and the second derivatives o f the 

potential equal zero, can be seen to develop. However, when R < A, as discussed in Section 2.4, 

the potential difference between the surface and the centre of the grain is no longer the built in 

potential, Vb, as <p(0) moves downwards, slowly approaching -Sb on diminishing R, as seen in 

Figure 5-6 (b) and (c).

(a)

-Sh~

R >  A

d  (p
drA

R

(b) R <  A

R

(c) R < A, R - »  0 

R
----------------- 1-----► O — 1— ► ° r

▼ 1r
<  J  

▼

- o
d 2<p

< 0 d 2(p

r= 0
dr2 r =0 dr2

Figure 5-6 Representation o f the potential (p for a spherical grain where (a) its radius is larger than its 
depletion width (b) its radius is less than the depletion width -  the band bending does not fully evolve, 
and (c) the radius tends to zero.

Indeed, as R —> 0 both cp(0) —*■ (p{-Sb) and d(pldr\r=R —> d(p/dr\r=Q, and therefore, from the usual 

definition o f the second derivative, see for instance Ref. [50],

d (p
dr‘

r = 0

= lim
<5r-> 0

d<pldr\r̂ - d < p ld r \ rM

a-

when the radius tends to zero and Sr must be less than or equal to R then d (pldr | —> 0 .

In addition, in the same limit ne{0) —> ne(R), and using one of the bulk approximations o f ne, say 

Eq. (1.41) o f Section 1.3,

ne{r) = N ceiEf+e<p)' kBT

which in the usual reference frame (the Fermi level represents the zero of the energy), means that

n , ( 0 ) - > ; V ce " W  ( 5 . 9 1 )
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then, unless -S b is equal to the value of ̂ (0) for a R > A grain

(5.92)
* v

then p(0)( = end - ene{0) ) will not be equal to zero. In general, since Sb > - ^ ^ ( 0 ) ,  then as R 

tends to zero p(0) —► £ where £  is some positive number.

As such, with a zero first derivative, Poisson’s equation at r = 0 is given by

d (p
d r‘

which implies that

P( 0)

,=0

£
0 = --------- (5.93)

as R —> 0, clearly incorrect unless s  —> oo or £ is, in fact, zero. So, save the defining parameters 

changing (for example the permittivity tending to infinity or rid —* 0 together with Nc —> 0), then 

this inconsistency will only be avoided if Sb is equal to ^ ^ ( 0 ) .  Ergo, it can be taken in this case 

the parameters consistent with d<p/dr\r=Q = 0 are not consistent with general Sb, and are only 

consistent with one particular value of Sb.

While this limiting case is certainly not conclusive proof o f the conjecture that the charge density 

satisfying both of the Poisson equation boundary values is uniquelv, it is unquestionably 

suggestive.

Accepting that this speculation concerning dtp/ dr\rQ and the uniqueness o f the charge density is 

not necessarily unrealistic, what are the implications?

1V For instance, it could be argued that as R —► 0 Eq. (1.41) is no longer applicable and should be replaced 
by a quantised expression. While o f  course this is true (and indeed taken into account in later sections), 
what is important is the possibility o f  the inconsistency that has been suggested.

Although, in support o f  Eq. (5.93) in a quantised treatment, for a small enough radius there will be no 
energy levels present at all in the grain and as such, no electron density and thus only positive p  possible, £  
= end- Interestingly, this will happen at a radius greater than zero and as such, Eq. (5.93) can’t be so easily 
dismissed by asserting that as R —> 0 the actual number o f  ionised donors present in the grain will reach 
zero (although the density o f  these donors would not have to change), and hence confirming the apparent 
inconsistency o f  Eq. (5.93) for general boundary values. However, see also footnote [iv] o f  Section 6.1.
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Regardless of the radius of the grain, the zero potential derivative (vitally) forms one o f the initial 

conditions in the shooting method solving the Poisson equation, incidentally handily providing a 

means to avoid the computational issues of a 1/0 factor, and so a zero potential is automatically 

assumed for all sets of operating parameters. If at R < A the above assumption is correct 

however, then it would be expected that for all operating parameter sets other than the set best 

simulating the energetic minimum i.e. the set containing those values most suitable for 

approximating the actual physical system, then some manner of discontinuity will appear between 

this zero value of the derivative and the smoothly evolving derivatives of the following points on 

the actual mesh of computed values. Consequentially, for the true model o f the physical system, 

while it would be expected that for a small displacement from the origin, say the inter mesh 

spacing A for a sufficiently closely spaced mesh, the first derivative at that point would deviate 

from zero, that deviation would be negligible; if  it proved not to be, that its value was not 

insignificant, then the inequality

d 2p  + 2 ^ \ 2 d r U f 2 d<Adr 
J Hr\ drr dr dry  dr J

dr

dr

-lim A 2^
a->o d r

(5.94)
R

will be evident, and the defining parameter set will not be that of the physical system. Gauss’ 

equation will still hold of course for whatever potential satisfies Poisson’s equation, but, as a 

consequence of Eq. (5.94), only for the true system, the one whose parameters minimise its 

energy, is the actual occupied density of surface states given by Eq. (5.43).

As a result, for practical computation, an additional 5 term is incorporated into the charge balance 

equation Eq. (5.42) so that

4 R
Q = 47teR2N s + -^ -e R 3nd - 4 m \ n e{r)r2 dr + 8  (5.95)

3 0

is true for the general system, and where the deviation factor 8  can be subdivided into its 

constituent components such that

8 = 8 der + 8 disc + 8 ks (5-96)

The term ^ er is commonly the most important contribution to 8  and follows from Eq. (5.94) and 

its accompanying discussion. Explicitly, it is written
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8* r =47T£0£r A2^
0 r dr

(5.97)

and estimates the charge present due to the departure of dcp/ dr\r=Q from zero. For an uncharged

grain and the systems represented here, dcp/dr at A is non-positive and as such, S*er represents a 

zero or negative charge. On charging, this term is more flexible, representing charges of any 

value and polarity.

The second term on the RHS o f Eq. (5.96), Silsc, represents the 0(A3) error (0(A4)/A) due to the

estimation of the continuous derivatives R 2^ -
dr

and A2—
R  d r

with their discretisations, the
A

0(A3) error from the numerical integration of the electron density, and finally, the error present as 

a consequence of approximating terms at the origin by their values at A, namely dq>! dr\^. As A

—► 0 so to will S*,sc; however, at practical inter mesh spacings, A ~ 0.01 -  0.1 nm, $ lsc may not be 

negligible for high electron densities (for instance those in the order 1025m‘3 - a consequence of 

high ionised donor densities) and appears to become dominated by the error from the numerical 

integration of the electron density. In general, <f5C provides a zero or positive charge 

contribution.

The final term contributing to 8, ( f s, represents the error that can occur in the coupled 

methodologies (Schrodinger-Poisson or Kohn-Sham-Poisson) given that the final electron density 

appearing in the charge balance equation is a consequence of the generating potential, not part of 

the charge density that generated the potential. As such, unless perfect self-consistency has been 

achieved, Gauss’ law will not be exactly satisfied if this new electron density replaces the old, 

generating density, and therefore an inconsistency between the charge contained within the grain 

and the surface integral o f the electric field, calculated from the existing potential, will then 

appear. This charge is accounted for via tF . In general, this term is a complex object and can be 

non-negligible for high electron densities or densities where a significant percentage o f the total 

electron population lies in thermally populated states above the Fermi level, and as such, are 

electron densities particularly susceptible to flux and thus difficult to make self-consistent. Of 

course, any acceptable solution to the coupled equations must be self-consistent to within a high 

degree of tolerance, regardless of the appropriateness of the defining parameters, and 

consequentially 8FS should always tend to zero if  a self-consistent solution is possible for the
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given criteria. When Poisson’s equation alone is being used to model the band structure, then iP  

is naturally also zero.

To summarise then, it is proposed that both boundary values used here in solving the non-linear 

Poisson equation are dependent on the material and operating parameters, and not just Sb. As

such, fully consistent R, Sb, —
dr

= 0 ,n d, Ef, T, Q ,m  , and e, and fully consistent combinations
r = 0

only, will uniquely specify the potential, and thus the electron density. This unique electron 

density, for the specific values of R, nd, Ef, T, Q, m and e  that are consistent with the two 

boundary values, corresponds to some energetic minimum of the total electronic system, be that 

the full DFT Kohn-Sham- Poisson scheme, where the density is the ground state density, or 

simply the Poisson equation alone with a bulk semiconductor model of the electron density. Only 

for these fully consistent boundary values and defining parameters is 8  in Eq. (5.95) zero, and 

does Eq. (5.43) for the density of occupied surface states hold. Only then can the true potential, 

charge density and occupied surface state density of the given system be considered actually 

known.

O f course, for large grains of sufficient radius that the depletion approximation can be used and it 

is possible to neglect the effects of the mobile charge carriers, then Poisson’s equation is linear. In

this case 8 is automatically zero,
dr

= 0 consistent with any Sb, provided Sb is consistent with
r = 0

the defining parameters {nd, Ef, T, Q, m , and e) of the system.

The charge error or deviation term, 8, when it is present, will contain the error of any deviation 

from zero of the derivative of the potential at the grain centre, as well as contributions from the 

consequences of the unavoidable deviation between a continuous space and its discretised 

approximation, and any residual error from the failure of coupled systems to achieve self- 

consistency. In actuality, the point o f zero 8  represents the most physical parameters of the 

discretised system, not necessarily the continuous one, although as A —► 0 these should become 

identical to each other.
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5.6 Evidence in Validation of the Claims Regarding the Boundary 

Values of the Non-Linear Poisson Equation

If the reasonings o f  the preceding sections are correct, then this question o f uniqueness certainly 

does have implication for some o f the existing publications within the literature, and in particular 

for the theoretical calculations o f Malagu et al. in Ref.’s [15,16,17,31].

For instance, consider the relationship between surface acceptor density and grain radius for S n 0 2 

nanocrystals investigated in Ref. [15] using standard semi-classical models -  as briefly introduced 

in Section 2.4. Specifically, take Figure 2-12, reprinted below as Figure 5-7 with the non­

degenerate trend removed and two depletion approximation series added,

9E + 16

8E + 16

9  4E + 16
DA imposed a 
DA 

CCD

3E + 16

2E + 16

1E + 16

60 80 100 120 
R  (nm )

Figure 5-7 Plots o f  surface acceptor density against SnCA grain radius for the Malagu et al. [15] 
system. Both the complete charge density (CCD) and depletion approximation (DA) (when R > 22nm 
only) are plotted in addition to the depletion approximation imposing a constant A o f 22nm (DA 
imposed A).

which is calculated as in Ref. [15], duplicating their Figure 6, with Eq.’s (2.45) to (2.48) i.e.

\_ d _
r 2 dr 

dtp 
dr

d<p(r) '| _ ^ e<p(r)lkhT j

dr J £ r£o

=  0
r=0

cp{R) = -V  

dtp
dr r=R~

eN,

and assuming that Eq. (5.42) holds:
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4 R
4neR2N t = —  eR3nd -  4 n e \n dee(p/kbTr 2dr

3 i

The zero of the potential is set at the value of the potential at the centre of a sufficiently large 

grain that the band bending fully evolves, with V  the value of the potential at the surface of the 

grain relative to that potential zero. If the band bending is fully evolved, then V  is equal to Vb - 

the built in potential of the grain, defined as the difference between the potential at the centre of 

the grain and the potential at the grain boundary.

As mentioned in Section 2.2, this model is usually referred to as the complete charge density 

model (CCDM) since the charge density includes both the effects of the ionised donor atoms as 

well as the thermal electron population. This contrasts with the depletion approximation (DA), 

where only the influence of the ionised donor atoms is included in the charge density.

For the experimentally measured values of a sample SnC>2 system in air (T  = 673.15K, nd = 5xl024 

m'3, V=  0.68V and e^o = 10‘10 Fm’1), the authors of Ref [15] report a constant depleted region, A, 

of ~22nm (provided of course that R > A). They conclude that the DA is a good approximation in 

this range as it correctly models the surface state density to within less than 5% of the CCD 

values.

Representing the charge deviation 3 through the percentage difference Rch

tfl “ 02

(5.98)

Rch = 100 x

R

q] =4 m ^ n dee<p/kbT r 2dr 
o

4 ;r  r>3 /. r»2 dq>q 2 = —  eR nd + 4tiR £re 0—-  
3 dr r=R

where RCh expresses 3 (= q\ - qi) as a percentage of the electron density, then Figure 5-8 illustrates 

the behaviour o f this percentage difference against grain radius for the tin dioxide system 

described above.

When R > 22nm and the DA is a good approximation i.e. when the effect o f the thermal electrons 

is negligible and Poisson’s equation is effectively linear, then Rch initially lies at ~0.02%, tending 

to — 0.0006% as R —> oo. Then as discussed in the preceding sections, in this situation the
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boundary conditions do uniquely determine the potential,
dq>
dr

= 0 independent o f the defining
r =0

parameters, and Eq. (5.42) is automatically satisfied, at least to within the bounds of the error 

inherent within the experimental quantities and the computational process itself.
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Figure 5-8 Plot o f  the percentage difference, Rch, given by Eq. (5.98) against S n02 grain radius for 
the Malagu et a/.[15] CCD system.

However, in the range, R < 22nm, where a region of zero potential does not form, then a clear

disparity exists between ^ 2~^~
R ( \

and -  J P ^ ’r ' r 2dr , reaching a substantial 43.9% as R—> 0.
R o 8

Separate from the need to allow for the effects of a discrete energy spectrum, this discrepancy can 

be understood through the existence of the charge error term 5  (the component <?s set at zero); the

dtp
given parameters of T, rid, V and £r£o not consistent with

dr
= 0 for these smaller radii.

r =o

Consequently, in this particular scenario, with these particular parameters, below 22nm the 

surface state acceptor density of Figure 5-7 cannot be accepted as accurate.

Should T  and e ^ 0 be taken as exact for all radii, and with the assumption that V remains 

unchanged over the various sizes o f grain, then, by the theories proposed here, if  the Fermi level 

is not to move or the grain to become spontaneously charged, then it is implied that the ionised 

donor density must be variable with respect to the grain radius. When the grains are of such an 

extent that the band bending can fully develop and a region of zero potential can form at the grain 

centre, this ionised donor density will tend to a constant bulk value.
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If this is so, then for the range R  < 22nm, it should be possible to find the point where £ is  zero by 

varying nd, maintaining the values o f the other parameters. Indeed, for a lOnm radius grain with 

the usual T =  673.15K, V = 0.68V and s^o  = 10 '° Fm '1, the charge error S, its component parts, 

and the corresponding value Rch (£ a s  percentage of the charge o f the thermal electrons), can be 

found in Figure 5-9, where nd is varied from lx lO 24 n r  to lx lO 26 m*3.

i.E-23 - r 40

6. E-23 -

4. E-23 -

2. E-23 -o
0)O) 0.E+00 
j= leh
°  -2. E-23 -

1.E+25

-4. E-23 - -  -20x -x-x

-6. E-23 - -30

-8. E-23 J -40
Ionised donor density (nV3)

Figure 5-9 Plots o f the charge error 8  and its components, along with the percentage difference, 
given by Eq. (5.98) against the ionised donor density, nd, for a lOnm radius S n 0 2 grain based on the 
Malagu et al. [ 15] CCD system

The most important contribution, 8k r - from the deviation o f dtp/dr at r = 0 from its required value 

o f zero, can be seen to smoothly increase in magnitude from ~ -2x 10‘24 C at nd = 1 x 1024irT' to ~ - 

6xlO"2'C at around nd = 2.25x1025m'3, before dwindling away to essentially nothing (~ -6x1 O'26 

C) by nd = lx l0 26m '. The positive charge component 8 i,sc lies at 8 x 1 0 25 C at nd = lx l0 24m° and 

follows the exponential-like increase o f q\, the total charge of the thermal electrons, over the 

range o f ionised donor densities, dominating 5  after 3.25x1025m \  the point at which Rch crosses 

the x-axis. As such, the zero value o f Rch (and therefore 5 ), the point at which the model actually 

reflects the physical grain, is taken to lie at nd — 3.25x1025m‘3. Rch is increasingly negative after 

this point, although this is hard to see from the graph due to the damping effect o f the rapidly 

increasing electron charge q\.

At nd = 5 x l0 24m'3 the density o f occupied surface acceptor states for a lOnm grain is 1 .67x l0 ,6m' 

2, as seen in Figure 5-7. For the newly proposed ionisation donor density o f « ^= 3 .25x l025m'3, the 

corresponding occupied surface acceptor density rises to 1.05x10 l7m'2 -  a six fold increase on the 

old N,.
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Interestingly, this increase in ionised donor density for decreasing radius is hinted at even from 

the depletion approximation. To demonstrate this in a way pertinent to the models o f Malagu et 

al. [15], a slightly circuitous route is followed, the reasoning behind which should shortly become 

evident.

Ref. [15], working in the depletion approximation, develops the analytical expression for the 

potential o f the spherical system

cp{r) =
(

and the relation

o

N, =nd

* l + Ro 
3 r 2

(5.99)

R R<
, 3  3 R } ;

(5.100)

for the surface acceptor density (see Section 6.1 for more details), where Ro, as always, represents 

the radius of the flat band region. For the usual values o f T=  673.15K, nd = 5xl024m'3, and Vb = 

0.68V, the authors of Ref. [15] conclude that the neutral region grows linearly with the radius, 

generating a constant depletion width, A, where A = R -  R0, of ~20nm -  consult their Figure 2.

However, Eq. (5.99) can of course be written as a third order polynomial in R0,

3Vbe rs 0R
erij

=  0 (5.101)

the roots1 of which are the acceptable values of Ro for the particular R dependant coefficients used. 

In this case, Rq must be both real positive or zero, and less than R, and as such, only one root is

1 Formulae for the solutions o f  the general third order polynomial

ax3 + bx2 + cx + d  = 0
can be found in any good mathematical reference book, see for instance Woan [73] or for an historical 
account, Gullberg [95]. Let

i f  3c b2 ]
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physically acceptable. The depletion width for this root is plotted against grain radius in Figure 

5-10.
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Figure 5-10 Plot o f depletion width, A, against S n 02 grain radius for the Malagu et al [15] DA system. 
The grain radii are taken to be sufficiently large that it can be assumed that the band bending fully forms 
and as such, that the depletion approximation (DA) is appropriate.

Evidentially, A tends to a constant value o f around ~13nm, and does not remain a steady 20nm as 

reported. The ionised donor density used in generating this data series is kept constant 

throughout.

f  ~ V /3
- U J d  

2

- 1 - V 5

/
n 1/3

X, = u + v - -
3 a 

u + v bo  , . / T M - V
x 23 = ---------------- ± z v 3 -------

2,3 2 3a 2
If D  is greater than zero then there are two complex and one real root, otherwise if  D  is equal to zero, then 
the three roots are real roots and at least two o f  them will be equal.

While if  D  < 0 then

9  = arccos

, IM 6 bx , = 2, —  cos----------
1 V 3 3 3a

|jp[ o ± k b
= - 2 , |—  cos----------------

3 3 a
and there are three distinct real roots.
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This trend in R0 can be seen in the profile of the DA surface acceptor density in Figure 5-7. At a 

grain radius o f ~22nm, the N ,'s o f both depletion approximation series’ and the complete charge 

model are very close, and all have similar depletion widths, ~20nm, ~20nm and ~22nm 

respectively, implying that the effects of the thermal electrons are minimal at this radius.

However, as the radius increases, the volume of the shell depleted o f charge carriers also 

increases, in proportion to R3-R03, and consequentially the charge on the surface o f the grain must 

also increase in line with this. The effect then of neglecting the charge o f the mobile charge 

carriers within this shell will also be greater since the shell volume is greater, hence the slow but 

increasing separation of the true DA and the complete charge carrier profiles. This is assuming 

that the mobile charge carrier concentration over the depletion width is independent o f the actual 

radius of the grain; that is to say, that the charge per unit volume due to the thermal electrons in 

the depletion width is independent of grain size. O f course, the increase o f the N, overestimation 

will not continue indefinitely as the second term in Eq. (5.100) will tend to zero as R —*■ oo and the 

surface density will become linearly dependent on R, independent of R0, and the separation 

between the profiles constant.

The effect on the surface state density for a constant depletion width o f 20nm is plotted in Figure 

5-7 as the trend ‘DA imposed A’. The observant reader will notice the difference between this 

and Figure 3 o f Ref. [15] where the authors state that they plot the same quantity from the same 

equations, presumably with their claim of constant ~20nm depletion width. Their figure bears a 

closer resemblance to the correct DA surface density calculated with a variable depletion width 

tending to ~13nm. The artificial maintenance of this extended depletion width naturally results in 

an overestimation o f the contribution from the ionised donor atoms, over and above the positive 

charge overestimation effect due to the neglect of the negative thermal electrons, and as such, 

causes a corresponding overestimation of the negative charge within the surface states.

A cursory glance at Figure 2.1 l ’s (c) and (d), identical to Ref, [15]’s Figure 4a and Figure 4b for a 

30nm and a lOOnm grain respectively, does seem to counter the above discussion and indicate that 

their depletion widths are constant. However, a closer look at the region of interest of these 

figures, say the last 25nm as shown in Figure 5-11, indicates otherwise, and clearly exhibits the 

expected diminution of the depletion width. Although, despite an actual increase in the average 

thermal electron presence per unit volume on the increase of the grain radius (augmenting the 

effects of discounting these electrons in the DA further), it is the complete charge density profile
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Figure 5-11 Plots o f the complete charge density (CCD) and depletion approximation (DA) potentials 
for the last 25nm o f (a) a R = 30nm grain, and (b) a R = lOOnm grain, o f the Malagu et al [15] system.

o f the 30nm grain that differs the most from its complementary DA profile. This can perhaps be 

explained by the increased role o f the first derivative in Eq. (2.45) (through its effect on the values 

o f cp and their effect in the electron density) at smaller radii.

The complete charge density potential does not exactly reach zero, but if  R0 is taken at the point 

which the potential passes -0.0 IV, then for 30nm, A =  21.33nm (DA A =  16.32nm) and for 

lOOnm, A = 16.29nm (DA A = 13.67nm).

Having now clearly demonstrated that if the ionised donor density is constant then A is variable, 

what o f the case where the depletion width is kept constant?

In this situation, it is the ionised donor density that again must be allowed to vary if the other 

parameters o f Eq. (5.99) - the permittivity o f the space and the barrier height - are maintained at a 

constant level. For the two depletion widths, A = 13nm and Malagu et al's  A = 20nm, Eq. (5.99) 

yields the ionised donor density against grain radius trend o f Figure 5-12. As already stated, only 

a depletion width o f ~13nm is consistent with a bulk ionised donor density o f 5 x l0 24m'3.

The increase in the required ionised donor density to maintain the values o f the other parameters 

on the decrease o f radius is very clear, and is certainly supportive o f the claim s o f  rising nd on
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Figure 5-12 Plot o f ionised donor density for the two constant depletion widths o f 13nm and 20nm, 
against S n 0 2 grain radius for the Malagu et al [15] DA system.

decreasing R for the CCD system. In the latter, there is no ‘choice’ whereby another quantity, 

such as the depletion width (there is no A), can be varied to maintain the consistency o f the 

boundary values dtp/dr\ and Sb, and the remaining, ‘fixed’, defining parameters o f R, Ef, m * 

and e.

Indeed, this ionised density movement , along with the effects o f energy quantisation, may go 

some way to explain the discrepancy between the measured ratio o f occupied surface state 

densities between 4nm and 15nm grains, 5.90, and the theoretical ratio o f ~3 calculated using 

Malagu et al. ‘s method [31 ].

For the experimental parameters pertinent to the MNC Charge Writing Group, the effects o f the 

charge discrepancy c)and its implications for the ionised donor density are discussed and treated 

in some detail in Chapter 6.

Accepting that the quantity 3 must be reduced to zero for the true ground state density (KS 

methodology), or just some energetic minimum density (Schrodinger-Poisson or Poisson alone), 

to be reached and for the resultant electronic properties to be any reflection o f the physical system 

being modelled, then provided that sufficient data can be experimentally gathered or calculated 

that all but one o f the independent variables determining 3 is known, the missing value, pertinent 

to the ground state, can be found by varying the unknown quantity until 3 is caused to vanish, and
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R ^
dr

R ( r\
equals -  |  ̂ ' r 2d r . This was in essence the procedure of extracting the ‘correct’ nd

R I  £

from Figure 5-9. The bisection method, already discussed in regard to the numerical solution of 

Poisson’s equation in Section 2.3, is particularly useful in achieving this, as its robust nature 

ensures the best possible chance of determining a convergent solution of what, at times, can be a 

quite sensitive and ill-conditioned problem.

For the purpose of illustrating this outer self-consistency iterative cycle to satisfy the charge 

balance equation (adopting ‘inner’ for use with the self-consistency cycles used to simultaneously 

solve the Kohn-Sham and Poisson equations where this is relevant), consider a 5nm radius Sn02 

grain at 250K. If the surface barrier height, Sb, relative to the Fermi level is leV, then neglecting 

electron-electron effects and only using s orbitals, then, for a neutral grain, self consistently 

reconciling Poisson’s equation, Schrodinger’s equation and the charge balance equation, and 

thereby requiring 8 to equal zero, an ionised donor density of 5.75x1025 m‘3 is necessary.

Using that ionised donor density, it is a simple matter to repeat the calculations, now varying the 

charge on the grain, Q, to simulate charge injection, and solving for the Fermi level at each step. 

The Fermi level cannot of course remain constant as this situation is effectively simulating the 

addition of electrons, to the discrete, unoccupied (or possibly partially occupied) energy levels, 

lying (by definition) above the Fermi level of the grain of no, or lower, charge.

With the previous constraints of allowing only 1 = 0 orbitals and neglecting electron-electron 

interactions, then Figure 5-13 demonstrates the Fermi level movement of the grain as it undergoes 

charging. A clear stepped pattern emerges, with two electrons stored at each plateau. This 

corresponds to the double occupancy (two possible spin states) of each 5-orbital, although since 

the temperature of the system is non-zero, a thermal population of electrons exits above the Fermi 

level, and so the Fermi level does not simply equal the energy of each eigenstate in turn. Each 

added electron from the STM tip should be seen as more of an addition of a unit charge to the 

overall electron sea present within the semiconductor conduction band, as opposed to the addition 

o f an electron to any particular orbital.

The increased energy spacing between each plateau reflects the increasing difficultly in moving 

the system further from its natural, uncharged, state o f energetic equilibrium, and is consistent
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Figure 5-13 Plot of Fermi level movement against number of stored electrons for a 5nm radii Sn02 
grain at 250K with 5* = leVand nd = 5.75xl025m'3. Self-consistent calculations, neglecting all 
electron-electron interaction effects and working solely with s orbitals (/ = 0).

with the increasing energetic separation of the discrete eigenstates.

Conceptually at least, this model o f charging presents no difficulties, and could quite feasibly 

produce the characteristic Coulomb staircase I-V plot of single-electron charging [6,11,12]. 

Again, this topic of charge storage and Fermi level movement will be revisited in more detail in 

the following Chapters and validated with experimental data.

In summary, this section has provided validation of the claim of the preceding section that the 

derivative of the potential at the centre o f a grain is not always zero for all choices of radius and 

material parameters corresponding to the specified barrier height.

In this way, support has been given for the assumption that this dependence of d(p!dr at r = 0 

enables the non-linear Poisson equation to be solved uniquely. This once again ensures that the 

resulting self-consistent density of the coupled Kohn-Sham-Poisson equations is the true ground 

state density of the interacting many bodied system and thereby endows the results of the 

numerical simulation with some physical meaning.

In providing this validation, some possible flaws in the work of Malagu et al. have been 

highlighted, with both the CCD and DA models, and the idea of a variable ionised donor density 

with respect to grain radii has been introduced.
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L in e a r  P o is s o n  E q u a t io n

Finally, a simple and useful method has been demonstrated whereby the charge balance equation 

can be satisfied in conjunction with the Poisson and, if  required, Schrodinger or Kohn-Sham 

equations, provided that all but one of the defining parameters R, nd, Efi T, Q, in , e  and Sb are 

determined. As an illustrative example, the charging of a simplified 5nm radius Sn02 grain at 

250K was modelled, its ionised donor density first determined for the neutral case, then on the 

addition of electrons, its Fermi level was solved for, with a clear stepped pattern evident in its 

movement.

217



C h a pt e r  5 G a u s s ’ T h e o r e m  a n d  t h e  Im p o r t a n c e  of  B o u n d a r y  V a l u e s

5.7 Conclusions

This Chapter discusses the nature of scalar and vector fields in some detail, covering some aspects 

o f the work o f Gauss in this area and deriving Poisson’s equation. More importantly, it also 

investigates the importance of uniqueness with relation to the potential, electric field and charge 

density o f the spherical system under study.

It is suggested that, when the spatial dimensions are such that a flat band region does not develop 

at the grain centre and the non-linear Poisson equation must be solved to ascertain the potential, 

then it is no longer the case that the Poisson equation boundary value d p /  dr\r=Q=0 is

automatically consistent with all values o f the defining parameters R, nd, Efi T, Q, m and e. As 

such, it is proposed that the potential and therefore the electron density satisfying Sb, 

d<p/dr\r=Q = 0 , R, nd, Ef, T, Q, m and e  consistently is unique, and represents the ‘physical’ 

system for those values of parameter.

Consequentially, it is argued that the charge balance equation Eq. (5.42),

4 R
Q = 4weR2N s + - ^ e R 3nd -  4 m ^ n e{r)r2dr

with the occupied surface state density of Eq. (5.43),

N Q , £ r £ 0 d p

4 7veR* e dr

is only satisfied for these sets of consistent values.

Evidence validating these premises is then presented from the consideration of the bandbending in 

the limit R —> 0, the behaviour of the depletion approximation in order to maintain a constant 

depletion width, and from an analysis of the work o f Malagu et al. [15,31] with particular 

attention to Ref. [15]. Along with some error pertaining to their depletion approximation section, 

the main area of fault appears to lie in Malagu et al.'s calculation of the (occupied) surface 

acceptor density from the potential of the non-linear Poisson equation where the grain radius is 

less that ~22nm, as demonstrated in Figure 5-8. For the case of a lOnm grain, maintaining the 

surface potential at -0.68 V and varying the ionised donor density, the point at which the charge 

balance equation is actually satisfied rests at an ionised donor density 6.7 times greater than that
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used in Ref [15], and consequently there is a corresponding increase in the occupied surface 

acceptor density by a factor of 6.3. It is proposed that this ionised donor density increase, in 

conjunction with the effects of quantisation, may account for the considerable discrepancy 

between experiment and theory when this model is put into practise in Ref. [31].

The final development of this Chapter is a more qualitative validation of its assertions: a simple 

method is introduced which can be used to ascertain the true density satisfying the charge balance 

equation for a non-linear system, and this applied to a simplified SnC>2 system modelling the 

movement of the Fermi level on the injection o f electrons into the grain (see Figure 5-13). A 

clear stepped pattern is in evidence, two electrons stored at each plateau corresponding to the 

double occupancy of each 5-orbital, and which could very feasibly produce the characteristic 

Coulomb staircase I-V plot o f single-electron charging.

The dependence of the non-linear Poisson equation boundary value d(p/dr\r=Q on the values of

the defining parameters R, n& Ef, T, Q, m and s, is of particular consequence when the Poisson 

equation is not solved in isolation, but coupled with the Kohn-Sham equations. It assures, that 

even with a variable electron population (with a dependence on the reference potential), that the 

self-consistent density is the unique ground state density. The electron population is then constant 

with respect to the self-consistent density, and as the boundary conditions satisfied by the self- 

consistent potential ensure that the self-consistent potential is unique for the given values of the 

defining parameters, only then does the Kohn-Sham equations as applied here actually reflect the 

underlying variational principle, i.e. the minimisation of the total energy with respect to a constant 

particle number constraint, and only then does the self-consistent density equal the ground state 

density of the interacting many bodied system.

The way is now paved for Chapter 6 where all the developed techniques of this work will be 

applied to modelling true physical systems and the theoretical results compared with those of 

experiment.
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Chapter 6 Application of the Theoretical Models to 

Experimental Systems

This Chapter presents results based on the concatenation of the models developed over the 

previous Chapters. These preceding sections have introduced and created the theory and 

approximations necessary to provide an accurate simulation of the electronic properties o f nano­

scale quantum dots, and the following portion o f this treatise applies the culmination o f these 

reasonings to modelling nanocrystalline SnC>2 grains in a spherical geometry in order to achieve a 

fuller understanding of the experimental results collated for these systems.

Section 6.1 is devoted mainly to assessing the surface state densities of the 4nm and 15nm radii 

nanocrystals of Maffeis et al. [31]. Divided into five sub-sections, the first, 6.1.1, estimates the 

likely depletion width of the semiconductor using the non-linear Poisson’s equation, with the 

traditional expression for the electron density, in conjunction with the charge balance equation. 

The second sub-section, 6.1.2, uses this depletion width within the analytical depletion 

approximation to determine the surface state density and the ionised donor density o f the bulk 

semiconductor. This enables the limit on the maximum possible physical ionised donor density to 

be set. The third sub-section, 6.1.3, is independent of the two preceding sub-sections, other than 

in the sense that they place its results within some larger context, and applies the full Poisson- 

Kohn-Sham-Charge Balance scheme to ascertain the ionised donor densities o f small radii grains 

{R < 20nm). In this way the 4-15nm surface state density ratio is determined. Sub-section 6.1.4 

introduces a few additional thoughts and further, though tentative, evidence in validation of the 

variable ionised density approach through a study of existing Sn02 gas sensing data. The final 

sub-section presents a summary o f the section and a discussion the results of the three very 

different models.
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Section 6.2 is an investigation into the charging o f 4nm grains as reported in MafFeis et al. [7] 

and, in particular, Wilks et al. [6]. Separated into two sub-sections, the first, 6.2.1, models the 

movement of the Fermi level, using the Poisson-Kohn-Sham-Charge Balance method, with the 

incremental increase of charge stored within the grain, and offers an estimate of the total electron 

complement for comparison with the experimentally inferred limit. This data is then used in sub­

section 6.2.2 in a simple tunnelling model to simulate the response of the current through the 

structure to variations in tip-substrate potential difference. This is then evaluated against Wilks et 

al.'s  measured tunnelling current. This elementary tunnelling model also allows the voltage 

interval between charge storage events to be calculated and compared with that inferred from 

experiment by Ref. [6].

In the usual manner, the final section, Section 6.3, concludes the Chapter with a synopsis o f the 

work presented within it. It summaries the results found herein and their likely value from 

evaluation against the relevant experimental data published in literature.
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6.1 Determination of Ionised Donor Density and Surface State Density 

in Neutral Sn02 Grains

Experimental work has been performed on Sn02 grains in air at 296K by Maffeis et al. [31] in 

order to assess their occupied surface state densities; or to be more exact, the ratio of occupied 

surface state densities between two sizes of grain, namely R = 4nm and R = 15nm. As reported in 

Section 5.6, the existing theoretical model unsatisfactorily predicts a ratio nearly half that actually 

measured. The nanocrystals o f the experimental group were manufactured via an evaporation- 

condensation method using a Differential Mobility Analyser (DMA) [42], sintering taking place 

during the particle formation process at 923K. STM measurements confirm their radii at 4nm and 

15nm, and STS data places their conduction band minimums at the grain surfaces, relative to the 

Fermi level, at 1.3(±0.05)eV and 1.4(±0.1)eV respectively1. Utilizing further STM-STS 

measurements, normalized conductivity spectra integrated the over the surface band gap have 

been used to give a representation of the surface state density. Over an average of 6400 1-V 

curves, the mean values o f the conductivities were 0.5V for the 4nm, and 2.95V for the 15nm 

nanoparticles -  implying a surface density ratio of 5.90 between the two grain sizes.

In order to offer a model that calculates the surface state ratios between the two samples 

accurately, the full charge neutrality scheme developed in Chapter 5 must be applied to determine 

the ionised donor density, rid, corresponding to the measured barrier heights for the required radii.

6.1.1 The Non-Linear Poisson Equation and the Determination o f the Approximate 

Depletion Width o f the Bulk Semiconductor

Neglecting the effects of a discrete energy spectrum, and utilising the traditional representation of 

the electron density in the bulk, Eq. (1.34),

ne(r) = N c&j/2
Ef - v p{r)

kBT

1 Interestingly, whilst the 0.1V difference between the surface band edges measured by Maffeis et al. is 

within their bounds o f  experimental error, this shift could also be direct evidence o f  Fermi level unpinning, 

see Section 2.1 and Section 2.4.
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G r a in s

the first assessment of the problem can be made, coupling the non-linear Poisson equation with 

the charge balance equation (P-G approximation] to ensure consistent dq>! dr\r=Q =0and

(p{R) = - S b as outlined in Chapter 5. In this way, the surface barrier heights of 1.3 eV and 1.4 eV 

form the upper and lower limits of each data point, the ionised donor density, rid, being varied to 

ensure the overall neutrality of the grain, as can be seen in Figure 6-1.
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Figure 6-1 Plots o f  ionised donor density against S n02 grain radius for the P-G approximation, in 
the ranges (a) l-100nm (b) l-10,000nm. Upper and lower limits o f  error bars correspond to the 
surface barrier heights, Sb, 1.3eV and 1,4eV respectively.

The density of donors, Nd, must be constant, and as such, independent of grain size (being oxygen 

vacancies introduced through the annealing of the sample in an oxygen atmosphere at an elevated 

temperature during particle formation). This then implies that the ionised density would be 

expected to tend to a constant level, the ionised donor density seen in the bulk semiconductor, as 

the radius of the particle tends to infinity. It also implies that the ionised density must have an 

upper limit, the donor vacancies being finite in number (and therefore a seemingly ever-increasing 

density on diminution of grain size not physically possible).
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It is clear then, that the methods involved in producing Figure 6-1 are not valid approximations 

either for the very small or for the very large. Indeed, the accompanying surface state acceptor 

densities, see Figure 6-2, are troubled with similar deficiencies. The 4nm to 15nm surface density 

ratio lies at 0.26, so presumably at least one of these two radii falls outside of this method’s valid 

range.
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Figure 6-2 Plot o f  surface state acceptor density against S n02 grain radius for the P-CB approximation 
with a variable ionised donor density. Upper and lower limits o f error bars correspond to the surface 
barrier heights, Sb, 1.3eV and 1.4eV respectively

What would happen if the density of the surface states were required to remain constant over the 

changes in radii? The charge from the ionised donor atoms and mobile electrons is proportional 

to the volume of the grain, whilst the charge contained within the surface states is proportional to 

the surface area of the grain. The consequence o f this is that on the decrease of radius, the surface 

state charge will play an increased role, the trend in its behaviour proportional to the MR 

behaviour of the surface area to volume ratio of a sphere, as plotted in Figure 6-3. Even allowing 

for a surface acceptor density variation similar to that predicted by Malagu et al. [15], see Figure 

2.12, (although this pattern is itself a consequence of Figure 6-3 for constant nd) this steady region 

would still be expected, albeit reached at larger radii.

It is probable then that this lack o f a bulk constant region in the P-G data is due to a problem in 

computation. As the radius increases, the determination o f Ns from the gradient o f the potential at 

the grain boundary is likely to become less accurate with the unavoidable increase in mesh 

spacing (although this can be partially compensated for with a variable mesh). As such, 3 in Eq.

(5.95) becomes dominated by its tf*30 component as R increases, rather than the preferred In 

this way, the charge balance process o f Chapter 5 is not so much determining the conditions for

10 20 30 40 50 60 70 80 90 100
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Figure 6-3 Plot o f  the surface area (SA) to volume (V) ratio o f  a sphere against radius. SA/V  

behaviour is proportional to MR.

which both d<pl dr\ =0  and <p(R) = - S b are consistent, but rather tends towards detecting the 

parameters that minimise

An additional factor to consider is o f course that at large radii, there might be significant effects to 

the form of the potential from the accumulation of errors that is inherent in the Taylor expansion 

method of solving Poisson’s equation; either through an increase in the number o f mesh points or 

through the aforementioned increase in mesh spacing. Close inspection of Figure 6-1 (a) indicates 

that the likely region of large R  failure in the model is after ~70nm, with a slide from ~\/R  to 

quasi-linear behaviour. This has been highlighted in Figure 6-4, where trendlines
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Figure 6-4 Reprint o f  Figure 6-1 (a) o f  the plot o f  ionised donor density against S n 02 grain radius. The 
range has now been extended to 120nm and trendlines added to indicate the possible switch in 
behaviour and the probable point o f  failure o f  the model at ~70nm.
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have been added to Figure 6 -1(a) to indicate the possible switch in behaviour and the likely point 

o f  breakdown.

This observation and its conclusion for the upper limit o f  the validity o f this model, is supported 

by Figure 6-5, where the depletion width, A, has been plotted against radius for R = 40nm to 

lOOnm.

~17nm

40

~21nmEc 1.3 eV

1.4 eV<
20

10

0  —   r----------------------------------- ------------------------------------------------------------------------------------------ -----------------

40 50 60 70 80 90 100
R (nm)

Figure 6-5 Plot o f the depletion width, A, against S n 0 2 grain radius for the P-CB approximation with 
a variable ionised donor density.

As would be expected, a reasonably constant A develops once the grains reach such a size that a 

field free region can be stably sustained at the grain centre; in this case after small peaks at ~58nm 

(Sh = 1.3eV) and ~62nm (Sh = 1.4eV), a result o f the grains becoming momentarily degenerate. 

Unfortunately, this region o f constant A is only sustained for an R span o f ~21nm at a mean A of 

40.6nm for Sh = 1.3eV and ~17nm at a mean A o f 42.5nm for Sh= 1.4eV, before beginning to drift 

larger. This departure from the desired (and expected) behaviour, constant A in this case, after 

approximately 80nm is more apparent here than in say Figure 6-1, and with a fair degree o f 

certainty draws the upper limit on the applicability o f the non-linear Poisson equation applied 

with the charge balance equation for this system.

Determining the exact value o f A is a little open to interpretation. For Figure 6-5 the procedure 

used defined A as the point at which the potential deviated more than a small given percentage o f 

the value of the potential at the grain centre. This was found to be more suitable than relating A 

to any exact value or a percentage o f Sh, as in practice, there are variations in the value o f (p at r =
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0 with respect to nd, and as such R. In this way the most universally consistent definition of A is 

maintained over all values o f R  within this coupled Poisson -  Charge Balance methodology.

On a positive note, this reasonably constant depletion width, 41.55±0.95nm, lies within the range 

lnm to lOOnm reported by McAleer et al. [43] for ‘typical’ Sn02 crystals (nd » 1024-1026m'3, Vb *

1 eV).

6.1.2 The Analytical Depletion Approximation and the Determination of the 

Surface State Density and the Ionised Donor Density o f the Bulk 

Semiconductor

A simpler alternative to the P-CB procedure is available when a grain is large enough that a field 

free region is assumed to exist in its interior r < R0 and the charge from the ionised donors is 

exactly balanced by the disassociated electrons present. The region o f grain outside o f this neutral 

zone is considered to be completely depleted of these charge carriers by the surface states, thus 

forming a shell around the neutral region that extends to the grain edge, see Figure 6-6. This 

assumption is known as the depletion approximation (DA), and, as discussed in Chapter 2 and 

again briefly in Chapter 5, allows an analytic solution.

Figure 6-6 Schematic o f  S n 02 grain and conduction band bottom, vsp, in the depletion 
approximation, where the grain is assumed to be large enough that a field free region exists 
where r > R0, and that a depletion width, A, can be defined such that A = R - R0.

Dividing the spatial regions as in Figure 6-6, then for the depleted shell i.e. the radial interval R0 < 

r< R , the linear Poisson’s equation in spherical polar coordinates can be expressed as

G r a in s

r

r 2 dr dr J £
1 d f  2 dvP(r ) ) _ e 2nd (6 .1)
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on recalling Eq. (2.9) and Eq. (2.10) and discarding the electron density. Then on integrating 

twice, the bottom of the conduction band is described by

v „ ( r )  =
2 2 r e n.

   + c~ (6.2)
6 s  r

ci and C2 being the constants o f integration. From the behaviour o f vp and its derivative at the 

boundary of the neutral zone then

dvp (r)

dr
=  0

e2R ln
c, =  —

r~Ro

vp(^o) = vp(0)

3s

c2 = v „ (0 ) -
e 2R ln d

2s

allowing the equation governing the vp to be expressed as:

2" ( - 1 R l R 2^e n £ i_ ~tvo •lvo
v 6  3 r " 2 y

+ v r o ) (6.3)

For the regions o f constant A, vp(R) - vp(0) = Sb- 0.03 eV ~ Sb, and therefore rearranging Eq. (6.3) 

yields

£ $b___
(6.4)

3R 2 j

and then, from the requirement o f charge equality, balancing the charge within the shell R0 to R 

with the charge on the surface o f the grain

N, = nd
3 3 R : (6.5)

follows, finally giving analytic expressions for the ionised donor density and corresponding 

surface state density at given radius. From Eq.(6.4), maintaining a constant depletion width (and 

as such, only for radii larger than the specified A), Figure 6-7 follows.

It can be seen from this figure that as R —> oo, rid tends to a constant level, bu!knj, as required by the 

earlier discussions. For A = 40.6nm and Sb = 1.3eV , bulkrid equals 9.85xl023nT3, and for A = 

42.5nm, 5^=1.4eV, bulkrid = 9.68x1023m'3. This is an identical trend to that seen in Figure 5-11, 

which was obtained with the same procedure, see Section 5.6, but for different defining 

parameters.

To offer a brief summary, essentially the mean of the two bulknd values, (9.76±0.08)xl0ZJ m'J, is\ 2 3  -3
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Figure 6-7 Plot o f  ionised donor density against S n 02 grain radius for the depletion approximation 
analytic solution. Upper and lower limits o f  error bars correspond to the surface barrier heights, Sb, 
1.3eV and 1.4eV with their corresponding depletion widths, A, o f  40.6nm and 42.5nm, respectively 
(following from Figure 6-5).

taken as the true value of the ionised donor density of the ‘bulk’ semiconductor. The constant 

depletion width follows from the complete charge density model (CCDM) (non-linear Poisson 

equation) coupled with the charge balance equation, and the final bulk ionised donor density 

figure is the application o f this constant A within the analytic expressions o f the depletion 

approximation, and as such, can be treated as exact as the grain radius tends to infinity.

It has been experimentally determined [53,96] that for bulk Sn02, the doubly ionisable oxygen 

vacancies introduced through annealing obey the relationship

bulk _  N  d________  N d
d  ( E j , - E f ) ( . E j - E , )  ( 6 -6 )

1 + g ,e  hT l + g 2e k"T 

where gi = 2, g2 = 0.5 and the energies of the first and second ionised levels o f the oxygen 

vacancy (E d and E d2)  taken relative to the conduction band bottom are 0.34eV and 0.145eV 

respectively [97"]. Ergo, at room temperature for bulknd =  (9.76±0.08)xl023m'3, the total

" As an interesting aside, should any reader wish to refer to this paper o f  Carotta, Dallara, Martinelli and 
Passari [97] a few points are worthy o f  note. From their surface electron density o f  1 .5x l021m'3 (printed as 
1 .5 x l0 15cm'3) the Hall constant is in fact 4.16xlO'3m3/C (not their stated 4.16xlO'3cm3/C), and that using 
the correct expression for the electron density (see for example Eq. (1.34) or Eq. (1.41), not their printed 
expression), then the Fermi level and bulk electron density are given by Ef = -0.0671 eVand nb = 
3 .1 0 x l0 24m'3° - which are the two values reported (or very close to those values at least) by the authors. 
However, the donor density Nd is then 2.881 x l0 25m 3, not their reported value o f  4.11x1024m"3, and the
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concentration of donors must be Nd = (7.91±0.07)xl024m’3. Each oxygen vacancy is doubly 

ionisable, and as such, the ionised donor density must always, when bulk statistics are no longer 

applicable, be less than or equal to twice the total donor density i.e. nd< (1.58±0.01)xl025m'3.

Consequentially, the maximum value of nd calculated from the depletion approximation as applied 

here, nd = 3.18xl024m‘3, is consistent with this maximum limit. However, as already qualitatively 

stated (and not withstanding the significant error in the 4nm-15nm Ns ratio), the behaviour o f nd in 

Figure 6-1 -  generated using the non-linear Poisson equation and the charge balance equation 

only -  on diminishing R  is clearly unphysical with the upper limit on nd being exceeded at around 

24.5nm. Clearly then, if the outer iteration charge balance method and the idea o f variable 

ionisation density are to stand up to scrutiny, then not only must the effects o f quantisation 

applied within the charge balance scheme correct the 4nm-15nm ratio, they must also prohibit nd 

exceeding (1.58±0.01)xl025m'3.

The corresponding graph to Figure 6-7 for surface acceptor density, N„ is Figure 6-8 generated
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Figure 6-8 Plot o f  surface acceptor density against S n 02 grain radius for the depletion approximation 
analytic solution with a variable ionised donor density. Upper and lower limits o f  error bars 
correspond to the surface barrier heights, 5*, 1.3eV and 1.4eV with their corresponding depletion 
widths.

value o f  the electron mobility, //, is likely to lie in the range 6 .70x l0 ‘4 to 6.70x1 O'5m2/Vs, not their stated 
1.6xlO'5m2/Vs. The value o f  y  at 350°C cannot be exactly calculated for this footnote, as only data for G0 
at 200, 300, 400 and 480°C is tabulated. Some o f the authors o f  this paper [97] contributed to Malagu et al. 
[15] (and so to Malagu et al. [16,17]), and the referenced source o f  the Nd used there (5 x l0 24m'3) was 
unfortunately Ref. [97].

100 1000 10000 100000

230



6 .1  D e t e r m in a t io n  o f  Io n is e d  D o n o r  D e n sit y  a n d  S u r f a c e  S t a t e  D e n s it y  in  N e u t r a l  S n 0 2
G r a in s

from Eq. (6.5). Again, this is applicable only to grains sufficient in extent to possess the given 

depletion width. It is found that as R  —► oo, N t tends to (4.05±0.06)xl016 m'2 in qualitative 

agreement with that inferred by McAleer et al: [43] from experimental work (N , » 1017m‘2 for 

bulknd « 1024-1026m'3, Vb* leV).

Perhaps the most interesting feature of Figure 6-8 (in contrast to Figure 5-7 and more specifically 

the following Figure 6-9) is the influence of the rising ionised donor density on diminishing R  in 

reversing the downward trend in the density of occupied surface acceptor states. N, rises to 

(4.02±0.14)xl016m'2 by R = 42.5nm (smallest radius possible within the upper limit on the 

depletion width), approximately equal to its value in the bulk. This increase of N t below ~ 65nm 

(Nt at its minimum of (3.51±0.06)xl016m'2 ) is unlikely to be found to continue beyond R  = 

42.5nm, and in all probability, even N, at this point will be found to be overestimated (lying at the 

extreme of the applicable range o f the DA), else this model will contradict the experimental 

results of Williams and Coles [41]. This paper will be discussed in more detail at the end of this 

section, but essentially, they report a decrease in the sensitivity of Sn02 polycrystalline gas 

sensing films from 20nm diameter to coarser, micron sized grains, implying an increase from the 

occupied surface state density of the 20nm to the ‘bulk’ grains.

For the purposes of illustration, should the ionised donor density be maintained at a constant level 

through a range of grain sizes, neglecting the implications of an inconsistent d<pl dr\r=Q =0and

(p(R) = - S b other than to set the constant nd at the calculated bulk semiconductor value, bulknd, 

then a pattern similar to that predicted by Malagu et a l [15] develops, see Figure 6-9. The bulk 

electron density approximation, non-linear Poisson equation (complete charge density), has a 

surface density ratio for the 4nm to 15nm grains of 3.75 (1.3-1.3eV and 1.4-1.4eV ratios equal to 

seven decimal places), but fails to converge after ~220nm. The analytic DA (using Eq. (6.5) only, 

with both constant nd and constant A as specified in Malagu et a l 's  Ref. [15]) on the other hand, 

is not appropriate much less than 50nm, although without upper limit. The actual value of Nt for 

the range ~70nm to ~220nm is likely to lie between the two approximations, given the 

aforementioned difficulties in assessing N, for large meshes (P) and the impact of the 

simplifications involved in the DA approach, especially at the smaller end o f its effective range. 

For this region of overlap, some discussion is necessary.
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F ig u r e  6 -9  Plots o f surface acceptor density against S n 0 2 grain radius for both the non-self consistent 
bulk electron density approximation (P) and the analytic depletion approximation (DA). Upper and 
lower limits o f  error bars correspond to the surface barrier heights, S*, 1.3eV and 1.4eV with their 
corresponding bulk ionised donor densities o f  9.85x1023m‘3 and 9.68x1023m '3, respectively. The analytic 
DA also uses the accompanying depletion widths, A, o f 40.6nm and 42.5nm, respectively (following 
from Figure 6-5).

At grain radii o f  <60nm, the ATs o f both the depletion approximation series and the complete 

charge model are very close, implying that the effects o f  the thermal electrons are minimal on the 

surface state density at these radii.

As the radius increases, the volume of the shell depleted o f charge carriers also increases, in 

proportion to R'-R(i', and consequentially the charge on the surface o f the grain must also increase 

in line with this. The effect then of neglecting the charge o f the mobile charge carriers within this 

shell will also be greater since the shell volume is greater. This acts to increase the magnitude o f 

the N, from the DA over what it would otherwise be inclusive o f the mobile electrons.

Running concurrent to this is another mechanism due to the fact that bulknd is an under-estimation 

o f the ‘equilibrium’ P-CB ionisation density at radii less than ~100nm. As a consequence, to 

maintain the surface barrier height, the electron density is lower on the grain boundary in this 

CCD model than it would be for higher nd. Indeed, the whole electron density is lower over all, 

both in absolute magnitude and in relation to the relative amount o f positive charge present due to 

the ionised donors. This affects N„ increasing its magnitude in this CCD model over the 

corresponding ‘equilibrium’ P-CB values. The play off between these two factors is the likely 

cause o f the variation between the DA and the bulk approximation CCD series’.
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Nevertheless, returning to the main point, despite the improved estimate o f the 4nm-15nm 

occupied surface density ratio of 3.75 (experimental value is 5.90 [31]), and its consistency with 

the inferred surface density increase between 20nm diameter and coarse grains o f Williams and 

Coles [41], this illustrative Malagu et a/.-like example of constant ionised donor density can only 

be just that -  illustrative. Neither the DA, nor the non-linear Poisson equation model, as applied 

in Figure 6-9, are truly consistent within their own respective schemes.

Only Figure 6-2 for the non-linear Poisson equation, and Figure 6-8 for the DA, are consistent 

methodologies, although each is only accurate within a specific range of radii for these defining 

parameters (DA: R > 42.5nm; P-CB: ~24.5nm < R < ~80nm -  lower limit likely to actually be 

much higher, 24.5nm being the point at which nd exceeds its maximum allowed value).

6.1.3 Full Non-Linear Poisson - Kohn-Sham - Charge Balance (P-KS-CB) 

Treatment and the Determination of the Surface State Density Ratio o f 4nm 

to 15nm Radii Grains

To move forward in the simulation o f these grains, the full Poisson-Kohn-Sham scheme needs to 

be brought to bear, modelling the discrete energy spectrum with the complete charge density, and 

including the electron-electron interaction effects through KLI exchange and LDA correlation (as 

described in Chapter 4).

Accepting, firstly, that the non-linear Poisson equation in conjunction with the charge balance 

equation is likely to prove a good model for radii less than ~80nm down to some lower limit, the 

very lowest possible value of which would be ~25nm, after which quantisation effects are 

dominant. Secondly, that the analytical depletion approximation, using the constant depletion 

width of 41.55±0.95nm inferred from the P-CB scheme, is a good model for radii greater than 

~43nm, increasing in accuracy as R  —> qo. Then the computationally expensive Poisson-Kohn- 

Sham method need only be applied to model small radii grains, where the effects o f quantisation 

must be included.

In order to do this, Poisson’s equation and the Kohn-Sham equations must be self-consistently 

solved, in conjunction with the charge balance equation, equalising the charge in the surface states 

with that contained within the grain. By cycling through these three parts, a stable, consistent set 

of values can be achieved.
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However, this is not a straightforward process. In addition to the influence o f now also 

contributing to S  in Eq. (5.95) (due to failings within the inner self-consistency cycles (Poisson- 

K.ohn-Sham), see Section 5.5), the movement o f the conduction band bottom (and to a lesser 

extent, the variation o f the grains’ work function, see Section 2.4) can cause the number o f 

permissible energy levels to suddenly vary for an infinitesimal change in ionised donor density. 

This can result in discontinuities in the variation o f the convergence factor, Rch; examples o f 

which are found in Figure 6-10 for the sample radii 4nm, 8nm, lOnm and 15nm.
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Figure 6-10 Plots o f  the convergence factor, Rch, against the ionised donor density for S n 0 2 grains o f  radii 
(a) 4nm (b) 8nm (c) lOnm and (d) 15nm, for both minimum and maximum surface barrier heights, Sh.

7?,./, expresses the charge deviation S(=  q\ - q2) as a percentage o f the electron density, see Section 

5.6, and is defined by Eq. (5.98)

01 -02Rch = 100 x

where

A

= Am  J  n( e<p/ khT 2r~dr

r>3 a d 2  ^ 0 ^ s p  02 = —  e R n d -A7TR-  —
3 e dr

r=R

Both series in each plot o f  Figure 6-10 are typically made up o f between 80 to 120 points, non- 

uniformly spaced, increasing in concentration as Rĉ  -  0 is approached (due to the bisection
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method used in satisfying the charge balance equation, see Section 5.6). In this way, although 

discontinuities about this value are readily detected, their presence at higher Rch may go 

unobserved. Figure 6-10 is illustrative of the difficulties encountered in obtaining the true 

consistent solution sets.

Simulating anything other than small systems can be difficult. The larger the grain radii, the 

greater the number of energy levels and so modelling systems much larger than ~20nm with these 

material and operating parameters becomes computationally prohibitive.

However, within this 20nm limit, as desired and plotted in Figure 6-11, the ionised donor density 

increases from (1.554±0.004)xl024m'3 at 20nm, as the radius decreases, up to a maximum of 

~(1.29±0.03)xl025m'3 at lOnm, driven by the increasing surface area to volume ratio (the 

increased effect of the density of charge in the surface states requiring a corresponding increase in 

nd to maintain neutrality), and then decreases after this as quantum effects completely dominate, 

the form of the spatially localised electrons’ probability distributions profoundly affecting the 

potential at the grain surface. In general, for R > ~2nm, the discrete energy spectrum maintains a 

higher electron density at equal donor ionisation than the bulk continuum (P-CB) model.

The fact that the peak nd lies below its theoretical maximum of (1.58±0.01)xl025m‘3, arrived at by 

what is essentially an independent calculation, see preceding sub-sections, is good evidence in 

favour of the validity of Figure 6-11.
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Figure 6-11 Plot o f  ionised donor density against S n 02 grain radius. Upper and lower limits o f  error 
bars correspond to the surface barrier heights, Sb, 1.3eV and 1.4eV respectively
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Below a radius of ~0.5nm the quantum well is too narrow to possess any discrete energy levels 

between the conduction band bottom and the value of the effective work function. As such, 

although this model then ceases to be applicable, without an electron population contributing to 

the charge density, an analytical solution is once again possible111, the apparent inherent 

contradiction of Eq. (5.93) aside.

As in the depletion approximation calculations, integrating Eq. (6.1) twice, but now applying the 

boundary requirement that at r = 0 dvp / dr\ = 0 as well as the usual vp(R) = Sb, then

vp(r) = - ^ - ( r 2 - R 2)+ ^  (6.7)

and as such

6 e rs 0

N , = ^ -  (6-8)
s rs  o

Indeed, without allowable eigenstates within the grain, then as extensively discussed in Chapter 5, 

the solution o f the linear Poisson equation is uniquely specified with these boundary values, the 

charge balance equation automatically satisfied for all values of nd. The disassociated electrons 

from the ionised donors’ all required to reside within the surface acceptor states. Needless to say, 

the proposal o f this and the preceding Chapter is that nd is not constant at these small radii, and 

this hypothesis does certainly apply to Eq. (6.7). Therefore, without the means o f determining nd, 

unless it has been measured experimentally at the relevant radii, Eq. (6.7) and Eq. (6.8) are 

unfortunately o f little practical uselv. See also the analytical R —» 0 limiting case discussed in 

Section 5.5.

Plotted in Figure 6-12 is the corresponding movement of the surface acceptor density for the 

ionised donor densities o f Figure 6-11. From ~0.5nm the surface density increases with 

increasing radius to its maximum at ~10nm where N t = (3.95±0.08)xl016m '2, falling after this

III Arguments regarding the applicability o f  such things as an energy independent effective mass to solids o f  
such a small extent aside.
IV Although, interestingly, it could be argued that without any energy levels and therefore with no 
‘conduction band’, unless a surface state was close enough in physical proximity to a donor flaw that an 
ionised electron could directly ‘m ove’ into it from the donor, then the donor would be unable to ionise at all 
i.e. nd -»  0 when R < 0.5nm for these parameters. In this case, Eq.’s (6.7) and (6.8) are applicable, and vp 
will tend to Sb for all r and N, w ill tend to zero. Ergo, the analytical model would support the behaviour o f  
the full quantum mechanical P-KS-CB model.
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Figure 6-12 Plot o f occupied surface acceptor density against S n 02 grain radius. Upper and lower 
limits o f  error bars correspond to the surface barrier heights, Sb, 1.3eV and 1.4eV respectively.

until it drops to (8.46±0.06)x 1015m'2 at 18nm, before slowing beginning to rise once more. The 

peak surface acceptor density at ~10nm lies very close to that calculated for the bulk 

semiconductor, (4.05±0.06)xl016m'2. Very importantly, this precise P-KS-CB data places the 

4nm to 15nm ratio between 5.20 (*SVs at 1.3eV) and 5.93 (S^s  at 1.4eV) -  in excellent agreement 

with experiment (5.90).

In Figure 6-13, both the ionised donor density, Figure 6-13(a), and the surface acceptor density, 

Figure 6-13(b), are plotted. Grain radii spanning lnm to 100 OOOnm (0.1mm) are covered for the 

three different (consistent) modelling schemes: Poisson -  Kohn-Sham-Charge balance (P-KS-CB) 

(see also Figure 6-11); Poisson-Charge balance (P-CB) (see also Figure 6-1); and the depletion 

approximation (DA) (see also Figure 6-7). The depletion approximation is plotted twice; once 

with the depletion width maintained at 41.55±0.95nm varying nd (DA [nd]), and also with constant 

nd (set at bulknd) varying A (DA [A]). As usual, the upper and lower limits o f the error bars 

correspond to the surface barrier heights of 1.4eV and 1.3eV, with the accompanying bulk ionised 

donor densities o f 9.68x1023m'3 and 9.85xl023m'3 respectively for the DA series’.

Quantitatively, the three models line up well at the edges of their respective applicable ranges, 

although there is a step when switching from P-KS-CB to P-CB after a radius o f ~20nm. The 

difference between the two DA methodologies is only apparent for radii under 1 OOOnm, and most 

interestingly, the limit of each is found on, or very near, the point of their respective intersections 

with the series P-CB - ~43nm for DA \nj\ and ~75nm for DA [A] (this can be seen with more
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F ig u r e  6 -1 3  Plot o f  (a) ionised donor density, and (b) surface acceptor density against SnCK grain radius, 
in the range 1-100,OOOnm. Upper and lower limits o f error bars correspond to the surface barrier heights, 
Sf,, 1 -3eV and 1.4eV respectively. Both plots are composed o f  data from the three consistent schemes: 
Poisson -  Kohn-Sham - Charge Balance (P-KS-CB), Poisson - Charge Balance (P-CB) and the Depletion 
Approximation (DA). DA [nd] maintains a constant A and varies nd, and vice versa for DA [A].

clarity in Figure 6-14). If it were not for the region of quasi-constant A for P-CB (see Figure 6-5), 

it could be suggested that the behaviour o f P-CB drifts from variable nd, constant A at ~43nm to 

constant nd, variable A at ~75nm (and onwards to computational failure -  see Sub-Section 6.11). 

Indeed with this hypothesis, for radii < 75nm variation in the nd o f P-CB would be apparent, and 

at 75nm itself will equal (9 .75±0 .34 ) x l0 2'1 n r  -  the DA [A]’s nd or DA [«</]’s hulknd ( = 

(9.76±0.08)xl0:Tn°). In this way, the action o f the P-CB electron density (absent in the DA) 

seems to provide the appearance of this drift in behaviour for the P-CB series with its constant A 

for this radii range.
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The P-CB methodology is an approximation flawed both by its computational implementation in 

its upper limit (~70 / 80nm), and the inadequacy of the form of its electron density toward its 

lower limit (which is clearly much greater than 24.5nm -  see Sub-Section 6.1.2). The above 

interpretation of the ~43 to ~75nm behaviour of its electron density (facilitating the appearance of 

a shift in rid behaviour (when compared to the DA trend) from variable to constant whilst 

maintaining a constant A throughout) can be seen, if nothing else, as a positive contribution to the 

overall argument for variable rid• It is not, perhaps, unjust to say that the values of the P-CB 

model are conceivably more qualitative than exact in its applicable range. These issues of 

accuracy are in no doubt due to the aforementioned problems, although it seems that the 

quantisation of the energy spectrum is significant for the entire range of radii where the charge 

due to the electron presence cannot be neglected. It is possible that computational inaccuracies 

are also considerable before this point of negligible electron density is reached.

This issue of the P-CB model’s accuracy in mind, if the trend in nd for DA is taken as exact as 

R - *  oo, and that the trend in nd for P-KS-CB is also exact, then it is likely that the behaviour o f nd 

in region after 20nm (computational limit o f P-KS-CB) but before the presence o f the electrons in 

the depletion width can be totally neglected, will favour a smooth transition from

p- ks-cb tQ a va]ue eqUai to it on the DA [rid] profile, rather than perhaps the path evident
I R = 2 0 n m

from the P-CB profile. An even more likely alternative is that rid would tend to a value less than 

the P-KS-CB’s nd at R = 20nm on the DA [ttd] profile, following the trend of P-KS-CB greater 

than lOnm. The ionised donor density of the P-KS-CB series at 20nm (1.55xl024m"3) is reached 

at a DA [nd] radius of 75nm. However, following the trend of the P-KS-CB profile and smoothly 

melding nd into the DA [nd] trend, (exact equality reached at R = 200nm, nd = 1.09xl024m'3) 

Figure 6-14 is the outcome.

The variation in rid is represented in Figure 6-14(a) and the corresponding movement o f N, is 

plotted in Figure 6-14(b). Unfortunately, the comparatively small step in the ionised donor 

density between P-KS-CB and DA schemes is translated at this radius into a much larger step in 

the occupied surface acceptor density. However, the inferred movement o f nd produces a smooth 

trend in N, bridging the gap, reminiscent of the N, movement of constant nd -  for example see 

Figure 6-9. Although it should always be emphasised that when considering the data o f these 

three schemes and the transitions between models, it is important to remember that while both the 

P-CB and DA models are complementary classical schemes (hence the smooth ‘passover’ of
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Figure 6-14 Plot o f (a) ionised donor density, and (b) surface acceptor density against S n 0 2 grain 
radius, in the range 1 -100,OOOnm. Upper and lower limits o f error bars correspond to the surface barrier 
heights, 1.3eV and 1.4eV respectively. Both plots are composed o f data from the three consistent 
schemes (P-KS-CB, P-CB and DA (both DA [a7j] and DA [A] — constant A and rtj respectively)) plus an 
inferred movement o f nd with its corresponding N, trend -  see accompanying text.

P-CB to DA[/?<y]), the P-KS-CB model is not. Instead it is a quantum mechanical treatment o f the 

system, and as such, the reader should not dwell overly on the P-KS-CB / P-CB step, the 

emergence o f classicality from quantum theory one o f the longest standing conundrums in 

quantum mechanics [98].

In Figure 6-14, the mean values only o f the P-CB, DA [nj\ and DA [A] trends have been plotted, 

with only the numerical values proposed as significant in modelling the actual densities denoted 

with a marker and its accompanying error bars.
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6.1.4 Further Thoughts

The main supporting evidence up to this point for the theoretical results produced from this 

concatenation o f modelling schemes is three-fold. The surface state density and depletion width 

for the bulk grains are comparable with that inferred from experiment, see McAleer et al. [43], 

and most importantly, the surface state density ratio between 4nm and 15nm radii grains of 

5.57±0.37 is in excellent agreement with the measured ratio o f 5.90 [31].

Some mention has been made o f the work of Williams and Coles [41]. These authors measured

the sensitivity o f three sizes of Sn02 particle over a range of temperatures to three test gases (H2,

CO and CH4). Two sizes of spherical nanoparticle -  one where the median diameter was 20nm

and the other 8nm -  were generated by vaporising tin dioxide with a laser in either air (20nm) or

Argon (8nm) and sintering (heating in air) at 673K. The third sample was prepared using

conventional chemical techniques. It consisted o f micron (1 OOOnm) size grains, although each

grain was a conglomerate of smaller 20 -  lOOnm diameter crystals. On comparing their resistance

with and without the presences of the test gases, they reported:

“It appears that both nanocrystalline Sn02 samples are significantly more sensitive than 
the conventional powder to each o f the three test gases. In addition, by decreasing the 
particle size of the nanocrystalline sample, a marked increase in sensitivity can be 
achieved, especially in the case of hydrogen.”

Unlike the work of Maffeis et a l [31] where the grains of different sizes were prepared in 

identical conditions, and enough of their defining parameters measured to simulate their 

behaviour with some accuracy, the barrier heights and work functions of the various sized 

William and Coles grains are likely to vary (see Section 2.4), and enough information about their 

final electronic properties is not known to construct a precise model. However, assuming that 

their behaviour is at least qualitatively comparable with the results of this Chapter, further support 

of the theoretical models can be offered.

The grains with a median radius of lOnm will lie around the lOnm surface density peak of 

Figure’s 12, 13(b) and 14(b), and as such will have an average surface state density slightly below 

the value of this local maxima. Consequentially, the surface state density of the coarser sample 

will be at least 2.5 % greater than that of the lOnm radii grains (endowing these micron aggregate 

grains with bulk characteristics and not treating them as individual lOnm -  50nm radii grains, 

whose mean surface density (assuming an even distribution of sizes) would be less than the lOnm 

radii grain alone). These coarse grains will also have a surface state density approximately -25.5 

times that of the 4nm radii grains.
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Equating a decrease in the occupied surface state density with an increase in gas sensing 

sensitivity, see Section 2.4, this implies that as experimentally observed, not only will the 

sensitivity of the grains increase on decreasing size, but the 4nm radii grains will be considerably 

more sensitive than even the lOnm radii ones.

In contrast, for a constant ionised donor density model, whilst the surface state density still 

decreases on decreasing radii, referenced to the bulk value of N„ the 4nm and lOnm radii grains 

have surface state density ratios of ~12.5 and ~31 respectively. This means that the expected 

increase in sensitivity of the 4nm over the lOnm radii grains would only be a factor o f 0.5 greater 

than the bulk -  lOnm sensitivity increase.

Ergo, though not exact and certainly not conclusively, it would appear that the results o f Williams 

and Coles [41] (see their Figure 3, plots (a) to (c)), would in general favour the variable ionised 

donor density methodology over the constant one, based on the behaviour of the surface density 

alone. It is possible, however, to offer a more quantitative comparison of the constant versus 

variable ionised donor density models for these gas sensing film sensitivity results by extending 

the work of Section 2.4.

Recalling Eq. (2.53)

.e v r  Ik„r

S = -
n g a s e

based on a Schottky model of the granular conductance, then the premise o f Section 2.4 was that 

the maximum possible sensitivity o f the gas sensor, independent of the exact reducing gas, 

concentration and all other factors, would be given by a total return of all the charge carriers 

trapped within the surface states to the conduction band, with an implied disappearance o f V fas. 

This change in the conduction band electron density implies a change in the position o f the Fermi 

level. While this was largely immaterial with Malagu et al. [15]’s simulation in Section 2.4 

where the donor vacancies were assumed to be totally ionised, here, whether ‘constant’ or not, 

this Fermi level change will cause a change in the number o f ionised donors from Eq. (6.6).

Take the ‘constant’ ionised donor case first. Working in the middle of William and Coles [41]’s 

temperature range, say at 673K, then from Eq. (6.6) with Sb = 1.35eV and Nd = 7.91 x l0 24m*3, the 

ionised donor density of the bulk in a clean air environment will be 2.84x1024m‘3. From the
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complete charge density model the electron density nair can be determined, then inverting Eq. 

(1.34) with the Nilsson equation [57], accurate to within 0.5%, the Fermi level can be seen to drop 

to -0.08eV when all the electrons are to be found in the conduction band. From Eq. (6.6) this 

implies that the ionised donor density will be reduced to 8.34x1023m'3, constant for all radii. 

Using this, Figure 6-15 shows that the diminution of the carrier concentration in air below AD (~ 

42nm) causes a steep rise in the ratio ngJ n air but this does not totally follow through to Smax, see 

Figure 6-16 , the maximum sensitivity rising to 40nm on diminution of R, but then falling almost 

as sharply as it rose as R —> 0.
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Figure 6-15 Plot o f  the electron density ratio ngJ n air against S n 02 grain radius for a 'constant' 
ionised donor density o f  2.84x1024m'3at 673K, Sb = 1.35eV.
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Figure 6-16 Plot o f the theoretical maximum sensitivity S ^  against S n 02 grain radius for a 
'constant' ionised donor density o f  2.84x1024m'3at 673K, Sb = 1.35eV.

2 4 3



C h a p t e r  6  A p p l ic a t io n  o f  t h e  T h e o r e t ic a l  M o d e l s  t o  E x p e r im e n t a l  S y s t e m s

Clearly, the actual sensitivity would be vastly lower than this, and gas, concentration, exposure 

time etc. dependent, but the general trend should still be relevant (again neglecting any R 

dependency on permeability and the like).

For the variable ionised donor density, matters are more complex. For this brief diversion, the P- 

KS-CB scheme only will be applied. Working on a small mesh and relaxing slightly the 

convergence criterion, the preliminary results for the T=  673K, Sb = 1.35eV system are plotted in 

Figure 6-17 .
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Figure 6-17 Plot o f the ionised donor density nd against S n 0 2 grain radius at 673K, Sh = 1.35eV. nd in 
air is determined from the usual P-KS-CB method. nd in gas is estimated from a compensated version 
o f Eq. (6.6) incorporated into the P-KS-CB iterations, solving for the Fermi level on the addition o f  the 
surface state electrons o f the clean air scenario assuming no new surface states.

The peak at R = lOnm o f Figure 6-11 has now moved to R = 4nm and is o f a slightly lower 

magnitude but the general trend remains the same despite the temperature difference. If the 

reducing target gas returns all the surface state electrons to the conduction band, then the Fermi 

level will change and so to must the ionised donor density as previously discussed. This shift is 

difficult to assess and is a problem encountered again in Section 6.2.1, but an estimate can be 

made from Eq. (6 .6 ) as a simple approximation (see Sub-Section 6.2.1 for the procedure). With 

no surface states, this new nd trend is also plotted in Figure 6-17, labelled 'nd in gas’. It can be 

seen that a transition occurs as R becomes greater than lOnm, the donor vacancies no longer 

totally ionised, falling to 14nm, where the ionised donor density lies beneath its full surface state 

counterpart. This movement corresponds to the action o f the Fermi level. Below R ~ 14nm, on 

the addition o f the extra electrons to the conduction band the Fermi level moves up into the 

quantised energy levels to match this increased carrier concentration, the ionised donor
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concentration following. Above ~14nm, the charge balance equation is equalised by the Fermi 

level moving downwards, as in the constant nd case, and the ionised donor density follows. 

Figure 6-18 plots the resulting ngas/nair ratio, which very interestingly, firstly rises to R = lOnm 

and then again sharply below a radius of 4nm.
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Figure 6-18 Plot o f  the electron density ratio ngJ n air against S n 02 grain radius for the variable ionised 
donor density approach at 673K, Sb = 1.35eV.

This equates to Figure 6-19, where the maximum sensitivity is plotted against grain radius. As 

would be hoped to explain the experimental sensitivity increases of the sensing film on the 

decrease of grain size, particularly below the ~20nm diameter (R = lOnm) [41,42], Smax increases 

to R = lOnm and significantly, again below R  = 4nm.
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Figure 6-19 Plot o f  the theoretical maximum sensitivity Smax against S n02 grain radius for the variable 
ionised donor density approach at 673K, Sb = 1.35eV.
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Crucially, this second sharp rise has been experimentally observed by Kennedy et al. [42], and see 

also Ref.’s [45,47], although attributed to R  being less than the space-charged (depletion) width, 

estimated at 3nm in all three papers by these authors. However, in Ref. [42], AD alone was 

measured at ~ 7 to 8nm, and so it is certainly possible that another explanation is more likely for 

the observed further rise in sensitivity.

The very slight decrease in Smax between lOnm and 4nm in Figure 6-19 is possibly related to the 

preliminary nature of this data (the use of large meshes and relaxed convergence criterion).

To make one last observation on this little digression; the smaller the grain, the larger the sinter 

neck in relation to its size, all other things being equal (see Section 2.1). Dependant on the 

absolute size o f the neck of course, but the larger the neck the more likely one of the other 

conduction mechanisms described in Section 2.1 is to dominate the film conductivity, rather than 

Schottky barrier transport. In this variable rid simulation, unlike the other ‘constant’ case, as the 

surface barrier height tends to zero and the Fermi level significantly rises up the well above the 

conduction band bottom, the actual situation described appears to be that o f open neck 

conductance, see Figure 2-4(a), the electron population of the grains overlapping. The 

determining factor now in the inter-granular conductance is the effective area o f the channel 

between the grains (and of course the density of charge carriers), and with no depletion width, this 

is essentially the area of the sinter neck. While experimentally this could be measured, from Eq. 

(2.7), and assuming uniform sintering parameters over the range of radii, a comparison of relative 

sensitivities can still be estimated, although the exact magnitude is rather arbitrary.

It is not possible at this early stage in this model’s development to compare the open neck and 

Schottky conductance’s across the 14nm divide directly, not enough of the other factors (e.g. 

electron mobility) controlling the magnitude of the conductance known. However, for the sake of 

illustration only, in Figure 6-20 the dashed lines indicate a switch in conduction mechanism for 

the R > 14nm grains also. Note that the slight decrease in Smax between R  = lOnm and R  = 4nm of 

Figure 6-19 appears to have been replaced by a slight increase as would be desired.

Essentially, this change of mechanism, if it occurs, would not seem to negate the effects 

tentatively put forward as a consequence o f the variability o f the ionised donor density. It would 

seem from these preliminary results that not only does the ‘constant’ ionised donor density model 

fail to successfully simulate the experimentally observed trend, but that the ionised donor density
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Figure 6-20 Plot o f the theoretical maximum sensitivity Smax against S n 0 2 grain radius for the variable 
ionised donor density approach at 673K, S/, = 1.35eV, allowing a switch o f conduction mechanism 
from Schottky to open neck for the ‘gas’ exposed states, to estimate the effects o f  the Fermi level in 
the conduction band and the disappearance o f  the Schottky barrier. Two series are plotted; one where 
the sinter necks have formed from lattice diffusion (m = 3, n = 3.78) and one from surface diffusion 
(m = 4, n -  5) the R dependence o f  each different. As the model stands, the mechanism switch is only 
likely to occur for grains where R < 14nm; however, at this early stage the relative magnitudes o f  the 
two modes (Open/Schottky and Schottky/Schottky) cannot be compared, not enough data being 
known. Consequentially, all points are treated as if the mechanism switch occurs, the dashed lines 
indicting the region where this approach is unlikely to be true and likely to be an overestimation of 
S’^  max-

model does; both with the significant sensitivity increase o f R < lOnm grains over those o f a 

larger radius [41,42] and with the sharp sensitivity rise observed below 4nm [42,45,47]. Indeed, 

this mechanism shift may explain why these increases are seen at the same dimensions in both 

thick films (e.g. Williams and Coles [41]) and thin films (e.g. Kennedy [42]), where in the latter, 

only open and closed neck (not Schottky, see McAleer et al. [43]) conductance is probable. This 

topic is not the main focus o f this work, but would provide interesting future investigation.

6.1.5 Section Sum m ary

The importance and complexity o f  this section is such that a formal summary is necessary at this 

point. The preceding three sub-sections have seen the application o f three very different 

independent models (although the depletion approximation is connected to the P-CB model via 

some input parameters) to the S n 0 2 spherical grain systems in order to span the range o f radii 

over which compatible experimental evidence is available.

With reservations, for >25nm to ~ 70 / 80nm the non-linear Poisson equation has been solved in

m =3 n= 3.78 

-♦— m -A n -b

10 12

' ♦.
—I--
14 16 18

-♦

20
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conjunction with the charge balance equation (P-CB) for the experimentally measured parameters 

of the Maffeis et al. [31] system. The predicted trend in ionised donor density and corresponding 

movement of occupied surface acceptor density can be found in Figures 6-1, 6-2, 6-4, 6-13, and 6- 

14. For grain radii between ~60nm and ~80nm, a relatively constant depletion width of 

41.55±0.95nm can be seen to develop. This A is within the lnm to lOOnm range reported in Ref. 

[43] for typical tin dioxide grains.

For radii greater than ~ 43nm, the depletion approximation (DA) can be applied and an analytical 

solution to the linear Poisson equation achieved. In this way, using the same defining parameters 

as above and the P-CB calculated value o f A, the trends in the ionised donor density and occupied 

surface acceptor density can again be plotted, and the bulk (R  —► oo) values for both ascertained; 

bulknd = (9.76±0.08)xl023m'3 and bulkN, = (4.05±0.06)xl016m'2. The calculated bulk surface 

acceptor density is in qualitative agreement with the bulk N, ~ 1017m*2 reported in Ref. [43] for 

typical tin dioxide grains.

From the calculated bulknd and the experimentally determined position of the donor levels [53,96], 

the total density of the doubly ionisable oxygen vacancies can be determined as Nd = 

(7.91±0.07)xl024m‘3. As such, an upper limit can be set on the maximum allowed ionised donor 

density in any of the three schemes, nd < (1.58±0.01)xl025m'3, completely ruling out the 

behaviour of the P-CB model for radii under 24.5nm.

For small radii grains, R  < 20nm, the effects of quantisation are more and more important until 

they completely dominate any electronic behaviour. In order to model grains of these dimensions, 

the non-linear Poisson equation is self-consistently solved with both the Kohn-Sham equations 

and the charge balance equation (P-KS-CB). In this way, the problem of nd —► oo as R—* 0 is 

averted (P-CB), and the quantisation effects / surface area to volume ratio play-off results in a 

peak ionised donor density of (1.29±0.03)xl025m'3 at lOnm. This maximum P-KS-CB w^does not 

exceed the maximum allowed nd calculated independently, and interestingly, the peak in Nt at 

lOnm does not exceed its independently calculated bulk value either. The relationship between 

the occupied surface densities of the 4nm, lOnm and bulk semiconductor grains are in agreement 

(with some reservations) with the experimental work [41] on the sensitivity o f gas sensing films 

using nanometric grains of diameter 8nm and 20nm, as well as coarser grained films.
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Most significantly, the ratio between the 4nm and the 15nm radii grains, 5.57±0.37, is in very 

good agreement with that calculated experimentally, 5.90, from integrated normalized 

conductivity spectra reported by Maffeis et al. [31].

Taken together, the three models are all in quantitative agreement within their applicable ranges 

as illustrated in Figure 6-13. However, some issues regarding the accuracy of the P-CB data are 

present, attributable in the main to the likelihood that at these dimensions (R < 200nm), where the 

influence of electron population is perhaps not always negligible, that the energetic spectrum must 

be treated discretely, rather than as a continuum. Figure 6-14 presents a slightly speculative look 

at nd and N, variation, inferring the movement of rid, and consequently Nt, from the last point of 

the P-KS-CB series into the DA [wrf] series i.e. from nd= 1.55xl024m'3 to nd = 1.09xl024m‘3.

The prediction of variable ionised donor density, influential at small and medium radii, adds more 

complexity to the behaviour of N, than would otherwise be found for constant nd. Evidence to 

validate this hypothesis has been presented both in Chapter 5, and more pertinently, here. 

However, to prove/disprove this premise conclusively, further experimental data is needed. For 

the trend in the surface state density of system described in the preceding sub-sections, the peak at 

~10nm and the trough at ~18nm, relative to the uniform nd trend (see Figure 6-9), must be proven. 

As such, merely extending the work of Maffeis et al. to included further grain sizes should be 

sufficient. To minimise the experimental work, and so utilising the data already collated, adding a 

point at ~10nm would be adequate for this purpose (the theorised 15nm N, value very close to that 

of a 18nm grain). Additional experimentally determined values would, of course, be preferred, 

and would provide further insight into the problem. For instance, data that would be particularly 

beneficial would be at the P-KS-CB limit o f 20nm and at large R values to test the validity of the 

A calculation (as well as the obvious values of the bulk quantities themselves). Ideally, several 

points between 20nm and say, 200nm would also be recorded to evaluate the validity of the P-CB 

model compared to the inferred behaviour. Naturally, the new grains would have to be prepared 

in the same manner as the existing 4nm and 15nm particles and have equivalent material 

properties. In particular, the Schottky-like barrier heights should be approximately equal across 

all samples.

This in mind, Tables 6-1 to 6-4 presents the occupied surface acceptor density ratios for the four 

most probable concatenations of schemes for the Maffeis et al. system, whereby, given relevant 

experimental measurements, the argument of variable as opposed to constant ionised donor
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density could be decisively settled and the validity of all the methodologies in this Chapter tested 

further. The mean values of N, for the surface barrier heights of 1.3eV and 1.4eV have been used 

only for clarity, and the chosen value of the constant ionised donor density, where appropriate, is 

that of the calculated bulknd.

The N, ratios of Table 6-1 are based on the constant nd scheme of Figure 6-9. The non-linear 

Poisson equation is solved with the electron density of Eq. (1.34) for R < 200nm, and the 

depletion approximation’s Eq. (6.5) for R  —► oo (the bulk semiconductor). In practice, any grain 

with a radius greater than ~ 1 OOOnm (1pm) can be used to approximate the bulk with a reasonable 

degree of accuracy.

Table 6-2 is again based on the constant nd scheme as above, but self-consistent P-KS values 

replace the surface acceptor densities in the tabulated ratios for R < 15nm and introduce .quantum 

effects (Nota bene P-KS is not the same as P-KS-CB!).

Table 6-3 represents the occupied surface density ratios of the variable nd schemes o f Figure 6-13. 

As such, the P-KS-CB method calculates the surface state densities for R < 15nm, the P-CB 

method covers the radii range 15nm < R <  43nm, and the DA determines N, for radii greater 

than, or equal to, this.

The final table, Table 6-4, represents the surface density ratios of the variable nd schemes of 

Figure 6-14, and as such, uses the P-KS-CB model for R < 15nm, the inferred values o f nd for 

15nm < R < 200nm, and DA [nd] data for R > 200nm.

Table 6-1 Table o f  occupied surface acceptor density ratios for the constant nd models, nd set at bulknd. The 
non-linear Poisson equation solved with the electron density o f  Eq. (1.34) for R < 200nm, and Eq. (6.5) o f  
the depletion approximation is used for the bulk semiconductor value.

4nm lOnm 15nm 30nm 70nm 200nm Bulk
4nm 1 2.49 3.75 7.48 17.43 26.28 31.07

lOnm 1 1.50 3.00 6.99 10.54 12.46
15nm 1 1.99 4.65 7.01 8.29
30nm 1 2.33 3.51 4.15
70nm 1 1.51 1.78

200nm 1 1.18
Bulk 1
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Table 6-2 Table o f  occupied surface acceptor density ratios for the constant nd models, nd set at bulknd. The 
non-linear Poisson equation solved with the electron density o f  Eq. (1.34) for 15nm < R <  200nm, and self- 
consistently with the Kohn-Sham equations for R < 15nm. The bulk semiconductor surface acceptor 
density is given by Eq. (6.5) o f  the depletion approximation.

4nm lOnm 15nm 30nm 70nm 200nm Bulk
4nm 1 2.51 3.93 10.96 25.53 38.48 45.50

lOnm 1 1.57 4.37 10.17 15.33 18.13
15nm 1 2.79 6.50 9.79 11.58
30nm 1 2.33 3.51 4.15
70nm 1 1.51 1.78

200nm 1 1.18
Bulk 1

Table 6-3 Table o f  occupied surface acceptor density ratios for the variable nd models. The non-linear 
Poisson equation is solved self-consistently with the Kohn-Sham equations and the charge balance equation 
for R < 15nm, and just with the charge balance equation using the electron density o f  Eq. (1.34) for 15nm < 
R < 43nm. The surface state densities o f  grains with radii larger than or equal to 43nm are given by Eq.’s 
(6.4) and (6.5) o f  the depletion approximation.

4nm lOnm 15nm 30nm 70nm 200nm Bulk
4nm 1 24.91 5.54 40.25 22.14 23.90 25.54

lOnm 1 0.22 1.62 0.89 0.96 1.03
15nm 1 7.26 3.99 4.31 4.61
30nm 1 0.55 0.59 0.63
70nm 1 1.08 1.15

200nm 1 1.07
Bulk 1

Table 6-4 Table o f occupied surface acceptor density ratios for the variable models o f  Figure 6-14. The 
non-linear Poisson equation is solved self-consistently with the Kohn-Sham equations and the charge 
balance equation for R < 15nm, the inferred values o f  the ionised donor density are used in the range 15nm 
< R < 200nm, and finally, Eq.’s (6.4) and (6.5) o f  the depletion approximation are used for R > 200nm.

4nm lOnm 15nm 30nm 70nm 200nm Bulk
4nm 1 24.91 5.54 7.68 16.70 23.90 25.54

lOnm 1 0.22 0.31 0.67 0.96 1.03
15nm 1 1.38 3.01 4.31 4.61
30nm 1 2.18 3.11 3.33
70nm 1 1.43 1.53

200nm 1 1.07
Bulk 1
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Based on the data at hand, the variability of the ionised donor density with respect to radius at 

small dimensions is not in any way disproved, and indeed, within the P-KS-CB model, offers a 

considerably better simulation of the Maffeis et al. system than other comparable hypotheses i.e. 

those with a constant nd with respect to radius. Consequentially, in the next section, where charge 

storage is modelled in a 4nm Sn02 grain, the P-KS-CB model will be used along with any other 

required variable-w^ data, without recourse to any alternative, constant nd, model.
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6.2 Charge Writing in 4nm Sn02 Grains

This section theoretically represents the charge writing observed on 4nm Sn02 nanocrystals by the 

same experimental group as measured the occupied surface state density ratio between 4nm and 

15nm radii Sn02 nanocrystals. This group (see Maffeis et al. [7] and in particular Wilks et al. [6]) 

has had considerable success in injecting electrons into the quantised energy levels o f spherical 

grains, manufactured through vaporising tin dioxide with a laser in a mixture o f Argon and 

Hydrogen [99] and then deposited on a Si substrate. These particles were then annealed at 400°C 

for 20 min in air, then at 300°C for 1 hr in a vacuum before being charge injected and scanned at 

room temperature. Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) 

analysis indicated that the particles were roughly spherical with a median diameter o f 8nm. From 

their results, they infer that for these 4nm radii Sn02 nanoparticles, a maximum number of 86 

electrons can be stored in a single nanocrystal, although they believe that the actual limit is likely 

to be lower than this.

In order to simulate this charge storage, the self-consistent P-KS-CB technique is again applied, 

now modelling the Fermi level movement on the addition of each electron (Sub-Section 6.2.1). 

This data is then used in Sub-Section 6.2.2 in a simple tunnelling model, simulating the tip- 

substrate current and calculating the grain charging behaviour with tip bias.

6.2.1 Determination of the Fermi Level Shift of a 4nm S n 0 2 Grain on Charging

The system is defined from the input parameters and results of Section 6-1 and uses the mean 

ionized donor density ascertained for the Ef -  OeV neutral grain, nd = 1.49xl024m'3, and the mean 

surface barrier height of 1.35eV. The position of the surface barrier height is maintained at a 

constant level over the addition of charge, enabling the Fermi level position for each integer 

quantity of charge to be determined using the previously described (see Chapter 5) and previously 

applied (see preceding sub-section) P-KS-CB method. This Fermi level movement is illustrated 

in Figure 6-21.

A clear stepped pattern emerges, indicative of electron filling in s-, p-, d- and /-orbitals. The 

angular momentum states are generally selected to obey an atomic-like

« = finode +  ̂ (6-9)
requirement, see for instance Gasiorowicz [100], the greater angular momentum states lying at
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higher energy for equal n. n is defined as the principal quantum number, and is the number of 

nodal surfaces in the wave function plus one. nnode represents the number o f nodal surfaces within 

the r dependant part of the wave function and / equals the angular momentum quantum number 

(as there are / nodal surfaces in a spherical harmonic of degree I -  see Section 3.1). In this way, 

the most physically likely structuring of the levels is achieved. This discrimination forms part of 

the process o f selecting out the suitable eigenstates from the 300+ eigenstates returned by the 

finite difference solution of the Schrodinger / Kohn-Sham equation (one for each mesh point -  see 

Section 3-2), few of which will even lie within the energetic confines o f the defined potential 

well.

The lowest energy state corresponds to n = 1, / = 0; the next to n = 2, / = 0 then / = 1 and so forth. 

For given n there are: n values of /, / = 0, 1, 2...W-1, for each /; 2/+1 values of the magnetic 

quantum number m, -I < m < /; and each wave function has two possible spin states. As a 

practical example, in hydrogen, the energy levels depend solely on the principal quantum number 

and so, momentarily neglecting spin for the sake of convention, n = 1 is considered non­

degenerate (one 5-state); n = 2 is fourfold degenerate (one s- and three p- states); n = 3, nine-fold 

degenerate (one s-, three p- and five d- states) and so on. Considering spin, of course, doubles the 

degeneracy. In the quantum dots considered here, each energy level is dependant on both n and / 

and so each energy state is considered 2(2/+l) degenerate, wave functions of equal n and / but 

differing spin and magnetic quantum numbers all lying at the same energy.

Using the electron configuration notation o f worb, where n is again the principal quantum number 

and ‘orb’ is the type of orbital (s-, p-, d -,f- etc.), then electron filling of the Wilks et al. [6] system 

illustrated in Figure 6-21(a) occurs in the order:

Is 25 2p  35 3p 1 3d  45 4p  4d  55 AfSp 5d 6s 5 /partial 

However, with the thermal electron presence, orbital ‘filling’ in reality occurs across all orbitals 

above the Fermi level simultaneously, and so is perhaps a misleading term. Even so, the norb 

concept does give a good description of the electron structure. Figure 6-22 is a re-print o f Figure 

6-21(a) with the above labelling convention added.

The 15 level has a minimal contribution as thermal effects mean that it is effectively ‘skipped’ 

with regard to the charge writing process, being filled from the offing with thermally excited 

electrons (denoted by the underscore).
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Figure 6-22 Fermi level movement on addition o f electrons to a 4nm SnO: grain assuming a constant 
ionised donor density. Re-print o f Figure 6-15(a) with added orbital labels.

The 3p  state appears to contain 7 electrons -  this can be explained through the energetic closeness 

o f the early energy levels, and particularly the 3d  and 3p  states. Electron ordering and thermal 

filling is such that added electron number 11 predominantly resides in the 3s level, but with a 

significant high thermal presence in both the 3p  and 3d levels. The next 6 electrons are then able 

to be stored within this /7-orbital, maintaining an increasing thermal presence in the 3d  state.

The 6s 5/ partial states alternate position as to which lies lowest energetically. Filling begins with 

the 5f  orbital beneath the 65 orbital; however, once the 65 thermal electron population 

substantially fills its state, the two orbitals exchange energetic positions, the 65 state now 

energetically the lowest and with a complete electron complement, and the higher 5 /  state 

partially empty.

This energetic interchange o f state positions is analogous to the 4d/5s fluctuations in atomic 

electronic structure, seen in the periodic table between Rubidium ( ,7Rb) and Indium (49In). There 

o f course, there is no thermal electron population; it is just a matter o f ‘energetic’ physics, 

maintaining the lowest possible total atomic energy for any integer electron configuration.

The ability o f the applied P-KS-CB method to reach a convergent solution ceases after 81 added 

electrons, 2 stored electrons ‘into’ the 5/w ave functions. This is only 5 electrons short o f the total 

electron complement for the nanocrystal inferred from the experimental work [6 ].
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Throughout Figure’s 6-15(a) and 6-16, nd was maintained at a constant level. This is contrary to 

what would be implied by Eq. (6.6) if, of course, this equation were valid at these radii. From this 

relation it would be expected that as the Fermi level rises so too would the number o f ionised 

donors. Although, as has been shown for the case o f the neutral grain (see Section 6-1), Eq. (6.6) 

is not adequate to calculate the necessary ionised donor concentration to maintain the charge 

neutrality of the grain at these dimensions. However, as the Fermi level rises it certainly would 

be expected that so too would nd, up to a maximum of 2Nd, regardless of the size o f grain.

With this is mind, should the denominators of the bulk semiconductor equation Eq. (6.6) be 

compensated in such a way that it correctly produces the neutral 4nm nd o f the discrete energy 

spectrum model, for example incorporating a multiplicative factor a  such that

 £  + £ ___
S J k E il (6.10)

l  +  g l e  k J  1 +  g 2e  k J

a  equal to ~ 0.7336 for the ‘standard’ system simulated here with nd = neu,ralnd = 1.49x1024m‘3, 

then incorporating this modified equation into the iterative cycles o f the P-KS-CB process should 

give an estimation o f nd s increase with E/.

This new graph, Figure 6-21(b), differs only slightly from the constant nd Figure 6-21(a). The 

variable ionisable donor density reaches a point by ~3 added electrons that the shift in the P-KS- 

CB satisfying Fermi level causes 100% of the donors to be ionised. Initially this raises the E /s  o f 

Figure 6-21(b) in comparison with the constant case, and makes convergence slightly more 

difficult, since at this early stage the electronic structure is very much dominated by thermal 

electrons, and small changes in the Fermi level can result in considerable changes in the electron 

density. Over the long haul, the increase in nd causes an increase in N„ see Figure 6-23, and it 

happens that the charge balance can be maintained with a slightly lower thermal electron 

population i.e. the Fermi level of the variable ionised donor density tends to lie below the 

corresponding position for constant ionised donor density.

The apparent electron structure can be described by

Is 2s 2p  35 3p  3 d 4s 4p  4d 5sm  4 /14/15 5p  5d 6 s  5 /partial 

the 3p  orbital now containing its correct complement o f 6 electrons, and so Figure 6-21(b) pre­

empts Figure 6-21(a) for the 3d 45 4p  4d  5s plateaus by one added electron. As for the constant 

case, Figure 6-24 is a re-print of Figure 6-21(b) with the labelling convention added.
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Figure 6-23 Plot o f surface acceptor density movement on the addition o f electrons to a 4nm S n 0 2 grain 
for both variable and constant ionised donor density (nj).

6.0
5d

14/15

4d

0.0

n u m b e r  o f  s to r e d  e le c t r o n s

Figure 6-24 Fermi level movement on addition o f  electrons to a 4nm S n 0 2 grain assuming a variable 
ionised donor density. Re-print o f Figure 6 -15(b) with added orbital labels.

The 55 4 /states lie energetically very close together, and during filling alternate position several 

times as to which lies lowest energetically, analogous to the 65 5/ part,al alternations o f Figure 

6-21(a). However, unlike the constant nd case, due to the closeness o f the two states here, a 

consequence o f the subsequent thermal re-ordering during the position switches is a gain o f 1 

electron in the hybrid 55 4 /  state -  17 electrons being stored instead o f 16. This brings Figure 

6-21(a) and Figure 6-21(b) back into step for the last few orbital states, where the 65 5/ partial 

orbitals again alternate in position during electron filling.
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The convergence of the P-KS-CB methodology now halts at an electron complement of 87 -  in 

good agreement with the 86 electrons inferred from experimental observation [6].

The movement of Nh as illustrated in Figure 6-23, is slightly chaotic, but is largely dependant on 

no, and as such, can be treated as fairly constant if nd is. For the variable ionisable donor 

densities, 100% ionisation is reached by ~3e, and so its influence on the variation in N, can be 

considered to cease. From Figure 6-23, it can be seen that the greatest instability is found at the 

start, for less than -12  electrons, and at the other extreme, greater than -78  electrons. The charge 

contained within the surface states is quite ill conditioned, both with respect to variations in vsp at 

the grain boundary and with respect to variations in the electron density as a whole. The later 

statement is evident since N, functions to balance the charge o f the total electron population -  a 

complex quantity dependant on energy level position, Fermi level position and the mean of vs, 

(the optimised potential, inclusive of vsp and electron-electron interactions). While the thermal 

electron population acts to smooth out fluctuations in energy level position when considering the 

movement of the Fermi level, it can be seen to almost have the opposite effect with N,. At and 

below 12 additional electrons the high percentage of the total electron contingent made up by 

thermal electrons is likely to be the dominant reason for N,’s instability. After 78 electrons, 

nearing the limit of the convergence o f the P-KS-CB model, the Coulomb and exchange- 

correlation effects are very large in magnitude, and have an extremely marked influence on the 

form of the optimised potential. These are very sensitive quantities to any change in electron 

density in themselves, and are likely to be the main adverse influence on the surface acceptor 

density in this range. These two regions o f instability are likely to indicate the ranges of greatest 

inaccuracy in the graphs of Fermi level movement (Figure’s 6-15, 6-16 and 6-18).

Interestingly, the 5s 4 /  fluctuations, problematic with regard to Fermi level movement, have little 

effect here -  the two states merely being seen as a whole, and as such, treated as a relatively 

constantly positioned electron sink.

Closer examination of Figure 6-23 reveals a slight downward trend in both profiles, indicative of 

a small decrease in the thermal electron population. Tentatively, the two surface densities can be 

approximately modelled via

E s ,N constnd -1  8 7 x l0 15 -2 .1 8 x 1 0 ,3x

es,n ^  _ j l-8 7 x l0 15 +4.60x 1015x x < 4  (6.11)

' [2.1 lxlO16-  2.65 x1013jc x > 4

2 5 9



C h a p t e r  6  A p p l ic a t io n  o f  t h e  T h e o r e t ic a l  M o d e l s  t o  E x p e r im e n t a l  S y s t e m s

x representing the number o f electrons added to the grain, N, densities in units o f m '2. For clarity, 

Figure 6-23 is re-printed below as Figure 6-25 with the added trend lines.

3.0E+16 variable nd constant nd

2.5E+16
CM

E 2.0E+16

t  1.5E+16 
c
■§ 1.0E+16
k.
2a<u o
™ 0.0E+00
o
|  -5.0E+15 
(/)

-1.0E+16

5.0E+15
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Figure 6-25 Plot o f surface acceptor density movement on the addition o f  electrons to an 4nm SnCF grain 
for both variable and constant ionised donor density (nj) . Re-print o f Figure 6-23 with the added trend 
lines o f  Eq. (6.11).

Counter-intuitive as this diminution appears, especially considering the increasing angular 

momenta available in the higher energy states, it is likely to be caused by the gradual increase in 

spacing between energy levels as their energy increases up the quantum well. For a simplistic 

illustration o f this see Figure 6-26, where the analytically determined / = 0 energy levels o f  a 5nm 

spherical, 2.0eV deep square well are plotted (see Section 3-3).

2.0 -----------------------------------------------

1.8 

1.6  -

1.4 - -------------------------------------------------

_  1. 2  -  _________________________________________________________________

5 , 1.0 -

0.6 4

0.4

0.0 J -----------------------------------------------
Figure 6-26 Plot o f eigenvalues o f the / = 0 solutions o f  a 5nm radius spherical, 2.0eV deep 
square well with the material parameters o f a S n 0 2 grain. See Chapter 3 for further details.

As the Fermi level moves up the quantum well and thermal electron filling increases in the higher 

energetic states, the total thermal electron population will decrease as the density o f states at these 

energy levels decreases.
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6.2.2 Estimation of Tunnelling Current and Charging Behaviour

To fully evaluate the accuracy of this P-KS-CB model and its derived parameters against Wilks et 

a l  [6]’s results, then ideally a simulation of the STM tip-substrate tunnelling current based on the 

P-KS-CB data should be developed to precisely compare theory with experiment. Unfortunately, 

the development of a sophisticated tunnelling model is a non-trivial task, and due to time 

restraints, must be left until a future date. This said however, it is possible to generate a 

simplified tunnelling program that can provide a first estimation of the tip-substrate current and 

the dependence of the electron storage on the tip-substrate potential difference.

A detailed discussion of classically forbidden barrier penetration and full tunnelling is not 

appropriate or necessary for this short, almost introductory, sub-section. For an elementary, 

cursory overview of the topic recall the form of the wave function of an electron confined within 

a finite square potential well (see Section 3.3); for electron eigenstates with an energy, E, less 

than that of the potential V of the barrier wall, the wave function penetrates into the classical 

forbidden barrier a short distance, as its magnitude exponentially decays to zero. If another 

identical potential well is situated close enough to the first, then a small proportion o f the electron 

wave will appear in this second well. Since the majority of the probability wave (square of the 

wave function magnitude) will still exist in the first well then it is most probable that the electron 

will be found there. However, as both wells are identical then the electron need not favour one 

over the other and may ‘disappear’ from the first well and ‘reappear’ in the second, having 

‘tunnelled’ through the intervening forbidden zone1. Indeed, the magnitude o f the probability 

wave existing in the second ‘empty’ well is greater than would first be expected since in Section

3.3 the second, exponentially increasing, plausible solution of the wave function within the barrier 

was set to zero to satisfy the boundary condition that y/ —> 0 as R —»■ oo. This argument is naturally 

no longer applicable if this barrier merely connects two wells and the usual form of the wave 

function in the absence of the second well now gains this exponentially increasing component. 

For a more rigorous mathematical treatment, the reader is referred to any good quantum 

mechanics textbook (for instance Merzbacher [37] or Gasiorowicz [100]).

1 An interesting alternative view can be found in Turton [101]. Through Heisenberg’s Uncertainty Principle 
an electron can be thought o f as ‘borrowing’ enough energy to move over the potential barrier and into the 
‘empty’ well the other side, repaying the energy ‘loan’. The ‘loan’ only lasts for ~10'15 s but this is long 
enough for the ‘tunnelling’ event to occur.
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The principles of this simple tunnelling model are outlined in Sub-Section 7.2.3 with a mind to 

further refinement for future work. Nevertheless, in brief, the movement of electrons through the 

tunnelling junctions formed by the STM tip -  nanocrystal separation and the oxide layer between 

the nanocrystal and the substrate are taken to be moderated by the Helmholtz free energy changes 

involved in each electron transfer event. This free energy is defined as the difference between the 

total energy stored within the system, ET, and any work done by the system, W. With the 

assumption that the overall system can be considered to reside in its lowest possible energetic 

configuration, charge transfer events in which the free energy is decreased are naturally 

considered most probable.

Shown in Figure 6-27 is the simulated charging behaviour of the familiar 4nm radius Sn02 

nanocrystal for the P-KS-CB variable nd data determined in the preceding sub-section. The 

number of electrons deposited in the grain by the STM is plotted against the tip-substrate potential 

difference. The STM tip is Tungsten and its active region is modelled as a 0.9nm radius sphere 

(following the approach of Tersoff and Hamman [33]). The tip-grain separation is in practise 

variable, but taken here as being on average 0.7nm. The grain resides on a lnm thick S i02 oxide 

layer over the underlying Silicone substrate.

100 n
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Tip-Substrate Potential Difference (V)
Figure 6-27 Plot o f  the electron addition to a R = 4nm grain against tip-substrate potential difference for 
a simple free energy based simulation, using the variable nd data generated from the P-KS-CB scheme. 
The tip (W) to grain separation is taken to be 0.7nm, and the oxide layer on the Si substrate is taken to be 
lnm  thick.

The tip voltage was varied from 0 to -6.365 V, and charge storage seen to occur in 63 separate 

events, 9 of them multiple electron transfers (corresponding to systems where the n and n+ 1 

Fermi levels lie particularly close together or the two cases where, erroneously, the n+ 1 Fermi
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level has been determined to lie fractionally lower than the n case). The unevenness of the 

staircase-like pattern, known as the Coulomb staircase", follows from the electron orbital 

configuration o f the Fermi level movement. Deep steps (with respect to the horizontal axis) 

corresponding to transitions between ‘orbitals’ (s- to p-, p- to d- etc.), whilst the commoner 

shallower steps corresponding to the addition of single electrons within specific ‘orbitals’, the 

interval between charging events a reflection of the energy difference between the n and n + 1 

states.

The corresponding tip-substrate current of Figure 6-21 is shown in Figure 6-28.
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Figure 6-28 Plot o f the tip-substrate current against the tip-substrate potential difference for the basic 
tunnelling simulation o f  room temperature charge storage on an R = 4nm S n 02 nanocrystal, using the 
variable nj data generated from the P-KS-CB scheme. The tip (W) to grain separation is taken to be 
0.7nm, and the oxide layer on the Si substrate is taken to be 1 nm thick.

11 The Coulomb staircase [101] is the manifestation o f  the Coulomb blockade effect, essentially the 
suppression o f  charge flow at low bias voltage. Consider two initially uncharged electrodes in close 
physical proximity connected to a constant current source. Should an electron transfer from one to the 
other, then the charge difference across the junction will equal 2e (the charge on the electrode which has 
lost the electron o f  +e and o f - e  on the electrode which gained the electron), meaning that the tunnelling 
event has increased the energy o f  the system from its unchanged state. This is obviously prohibited. This 
constraint on tunnelling is referred to as the Coulomb blockade. However, although no electron can pass 
the gap, current may still be considered to flow in the system, causing a build up o f  negative charge on one 
electrode and a corresponding amount o f  positive charge on the other. When this charge reaches a 
magnitude o f  e ll  on either side, should an electron now tunnel between the two probes, the charge 
difference across the junction will now equal e, crucially the same as before the charge transfer event. 
Energy conservation is not violated and so the tunnelling o f  the electron is allowed. O f course, should two 
electrons try to cross at once then an energy imbalance arises, as before, and the event is forbidden. In this 
way, only one electron at a time is allowed passage -  hence the term ‘single electron transfer’.
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The fluctuations in the general exponential-like smooth behaviour corresponding to the grain 

charging events; the magnitude o f the dips increasing as the voltage is increased, with particularly 

deep minima appearing to be a consequence o f multiple electron depositions and transitions 

between the ‘orbitals’ o f Figure 6-18. The simple scheme used neglects the effects o f co- 

tunnelling (tunnelling events where the overall change in Helmholtz free energy is negative, 

although the free energy difference over either o f the junctions can be positive) and thermionic 

emission from the STM tip.

Comparison with Wilks et al. [6]’s experimental work is again favourable. The authors o f this 

article varied the STM tip voltage from 0 to -6 V, deducing from the differential o f the I-V  graph 

the occurrence o f the plateau regions indicative o f the single electron transfer (Coulomb 

blockade) effect. Figures 6-29 and 6-30 compare the current and d l/d V trends in the voltage range 

-2 to -2.8 V using the adapted experimental data o f Ref. [6]’s Figures 5(a) and (b).
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Figure 6-29 Comparison o f experimental and theoretically simulated tunnelling current in the range -2.0 
to -2.8V during room temperature R = 4nm S n 0 2 nanocrystal charging.

The simulated I-V  curve lies slightly below that measured; this may reflect the previously 

mentioned neglect o f co-tunnelling and thermionic emission or possibly a contribution from 

charge conducted purely through the surface states o f the grain. The differences between the two 

series o f Figure 6-30 are perhaps larger; the simulated maxima and minima (each trough-peak pair 

corresponding to a single transfer event) are o f greater magnitude and less numerous in this region 

than their measured counter parts. It can but be hoped that better modelling o f the tip and 

assessment o f the energy stored within each grain will rectify this.
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Figure 6-30 Comparison o f experimental and theoretically simulated tunnelling current in the range -2.0 
to -2.8V during room temperature R = 4nm SnO: nanocrystal charging.

Encouragingly, the theoretical simulation places the mode o f the voltage intervals between 

charging events at 0.065V (mean o f 0.098V) in excellent agreement with the average period o f 

the experimentally observed dl/dV  fluctuations o f 0.07V (hence the inferred upper limit o f 86 

electrons for each grain: 6 divided by 0.07).
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6.3 Conclusions

The theoretical methods developed in preceding Chapters were applied to the Sn02 grains at room 

temperature as used in experiment by the UWS MNC charge writing group, reported in Maffeis et 

al. [7, 31] and Wilks et a l [6], with pleasing results.

Firstly for neutral nanocrystals, using the measured values of the surface barrier heights for 4nm 

and 15nm radii grains, taken as 1.3eV and 1.4eV respectively, the bulk ionised donor density was 

extrapolated as bulknd -  (9.76±0.08)xl023m'3 with a depletion width of 41.55±0.95nm. This 

depletion width and its corresponding surface acceptor density, N, = (4.05±0.06)xl016m'2, are both 

in qualitative agreement with that experimentally found by McAleer et al. [43]: N , «  1017m'2 A = 

l-100nm for nd «1024-1026m‘3. From the ionised donor density of the bulk semiconductor, the 

concentration of donors could be set at (7.91±0.07)xl024m'3, and consequentially the upper limit 

on nd could be placed at (1.58±0.01)xl025m‘3.

Applying the P-KS-CB method in the range 2nm to 20nm, the surface area to volume 

ratio/quantisation play-off results in a peak ionised donor concentration o f ~(1.29±0.03)xl025m*3 

(within its upper limit imposed by consideration of its asymptotic behaviour), and a surface 

acceptor density of (3.95±0.08)xl016m‘2 at lOnm. Moreover, the predicted N, ratio between the 

4nm and 15nm nanocrystals is 5.57±0.37, in excellent agreement with the recorded 5.90 [31].

The relationship between the occupied surface densities of the 4nm, lOnm and bulk radii 

semiconductor grains are also in good qualitative agreement (with some reservations) with the 

experimental work of Williams and Coles [41] on the sensitivity o f gas sensing films. 

Preliminary simulations of the inter-granular conduction mechanisms indicate that the variation of 

the ionised donor density appears to explain the observed sensitivity increase below R = lOnm 

[41,42] and below R = 3nm [42,45,47] of Sn02 gas sensing films in general.

The second application of the theoretical methods was to model the charged 4nm Sn02 grains of 

Maffeis et al. [7] and in particular Wilks et al. [6]. Using a mean surface barrier height o f 1.35eV 

and consequent mean nd of 1.49x1024m'3 as determined for the neutral grains of Ref. [31] analysed 

above, then on increasing grain charge -  simulating the addition of individual electrons to the
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grain via the tip of an STM - a clear, stepped movement of the Fermi level was seen. The Ef  

pattern, barring an occasional alteration due to thermal effects, corresponding to electron storage 

in the arrangement

Is 2s 2p  3s 3p  3d  As Ap Ad 5s Af 5p  5d  6s 5f

The increase in Fermi level is likely to cause an increase in ionised donor density, but 

approximately allowing for this via a modified Eq. (6.6) causes very little real difference in the Ef 

profiles, the occupancy o f the surface density o f states adjusting to compensate for the increase in 

charge. After ~3 added electrons, p reaches 1.58xl025m'3, and the mean surface acceptor density 

moves from N f onst =8.76x 1014m‘2 toAT,var=1.91xl016m'2.

The maximum sustainable electron population within one nanocrystal is placed between 81 and 

87 electrons in very good agreement with the experimentally inferred limit of 86 [6].

A basic estimate of the charging of, and the tunnelling current through, the 4nm nanocrystals of 

Ref. [6] using the P-KS-CB data is again in favourable agreement with that measured, both in 

magnitude and form, and with the modal potential difference interval between charge transfer 

events calculated to be 0.065 V, compared with the actual interval of 0.07 V.

Overall, it can be concluded that whilst there are many approximations inherent in the theoretical 

simulations outline here (use of spherical symmetry, use of the KS energy levels in place of the 

many particle energy levels in order to estimate the thermal electron population etc.), in matching 

the experimental data as well as they do, these models can be taken to offer a comprehensive and 

accurate simulation of the surface state properties and charging behaviour of Sn02 nanoparticles. 

In doing so, at the very least, they can be taken as strong support of the hypothesis developed in 

Chapter 5 that both the boundary values used here to solve the non-linear Poisson equation, and 

not just Sb, are dependent on the material and operating parameters.
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Chapter 7 Conclusions and Further Work

This Chapter concludes the thesis. It presents a summary o f the theories and results o f this work 

and offers several directions that a continuation of these investigations could take.

Section 7.1 discusses the proposals made within this treatise and analyses the models created to 

simulate the band structure of the Sn02 nanocrystals. It treats the data from both the depletion 

approximation, where the effects of the thermally disassociated electrons are discounted from an 

assessment of the crystals charge density, and the more complex complete charge density model. 

It re-introduces the charge balance equation and returns to the pivotal proposal of this work, that 

the electron density satisfyingSb, d p id r \r=Q = 0 , R, rid, Ef, T, Q, m and e consistently is unique,

and represents the real ‘physical’ system for those values o f parameter. This section summarises 

the results of the self-consistent solution o f the coupled non-linear Poisson equation, Kohn-Sham 

equations and the charge balance equation, and discusses how these can be used to model the 

discrete electronic structure of the nanocrystals under charging. The section concludes with an 

evaluation of the model simulating the charge writing process itself.

Section 7.2 considers the improvements that could be made to the developed methodologies, and 

examines avenues of future inquiry that might prove fruitful. It discusses orbital dependent 

correlation, charge leakage between grains and the treatment o f the individual electrons as 

quasiparticles (electron plus polarization cloud) to improve the estimation of the true multi­

particle eigenstates. Most importantly, it develops the STM Tip-QD-Substrate tunnelling model 

briefly used in Chapter 6, and discusses the further refinements that could be made to this 

essential component of the charge writing simulation.

Section 7.3 concludes the Chapter and indeed the thesis, and presents a few final remarks in 

closure.
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7.1 Synopsis

This work has seen the development of a suite of theoretical models and techniques to obtain a 

clearer understanding of the fundamental physics behind the charge writing process on spherical 

Sn02 nanocrystals.

The basis , of any simulation of this nature must begin at the determination of the conduction band 

structure. For the Maffeis et al. [31] system, the depletion approximation can be applied to grains 

with a radius > 43nm, and as such, it is assumed that the grain is large enough to possess two 

distinct regions. For the first zone, lying at the centre of the grain and extending from the origin 

to a radius Rq, the density of the disassociated mobile electrons exactly matches that of the 

stationary ionised vacancies. Beyond this, from R0 to R, it is assumed that this region is 

completely depleted of charge carriers by the surface states and as such is known as the depletion 

width. In this way, with the boundary conditions that the conduction band bottom must equal the 

experimentally measured surface barrier height at the boundary of the grain and have a zero first 

derivative at its centre (or rather R0 in this approximation), then an unique analytical solution can 

be formed for Poisson’s (linear) equation.

BelcTw 43nm, when the grains become too small to possess a distinct region un-depleted o f charge 

carriers, the curvature of the conduction (and valence) band flatten, and the depth of the potential 

well formed between the conduction band at the surface and at the centre o f the grain, diminishes. 

In this range of radii, where the semiconductor band bending does not fully evolve and is 

dominated by the effects of the surface states, the mobile electrons cannot be neglected, and to 

determine the form of the conduction band bottom, the non-linear Poisson equation must be 

solved. Due to the non-linear nature of the differential equation, numerical techniques must be 

employed to achieve this.

This work proposes that in this regime, it is not to be assumed that the same values o f the defining 

parameters R, rid, Ef, T, Q, m and e  corresponding to the first Poisson boundary value, the barrier 

height Sb, also correspond to a value of zero for the second Poisson equation boundary value, the 

derivative of the potential at the grain centre.
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Furthermore, it is proposed that the potential, and therefore the electron density, satisfying Sb, 

d(pldi\ = 0 , R, nd, Ef, T, Q, m and e consistently is unique, and represents the real ‘physical’ 

system for those values of parameter.

In this way, by employing the charge balance equation Eq. (5.42), which incorporates the charge 

within the surface states, and consistently solving it with the non-linear Poisson equation, then it 

is suggested that the true electron density o f the system can be determined.

With reservations, for >25nm to ~ 70 / 80nm the non-linear Poisson equation can be solved in 

conjunction with the charge balance equation (P-CB) for the experimentally measured parameters 

o f the Maffeis et al. system. For grain radii between ~60nm and ~80nm, a relatively constant 

depletion width of 41.55 ± 0.95 nm is seen to develop.

For smaller radii grains, R < 20nm (if not at greater radii), the effects of quantisation increase on 

diminishing size, until they completely dominate any electronic behaviour. In order to model 

grains of these dimensions, the non-linear Poisson equation is self-consistently solved with both 

the Kohn-Sham equations and the charge balance equation (P-KS-CB). The Kohn-Sham method 

maps the interacting many bodied problem onto an auxiliary single-particle problem, its single 

particle eigenstates minimising the total energy of the system with respect to the electron density 

and the constraint of constant particle number. For the systems under study, the occupancy of the 

discrete energy levels is determined by Fermi-Dirac statistics and is dependent on the Fermi level 

and conduction band bottom; consequential the ‘constraint’ of constant particle number is actually 

a function of the electron density. However, it is proposed that the charge balance consistency 

procedure ensures that its satisfying electron density uniquely (or uniquely for its given method at 

least) represents the true electron density. In this way, the total particle number is in essence once 

again a constraint, and the energy minimisation procedure retains its meaning.

The validation of the electron density uniqueness hypotheses and the dependence of the non­

linear Poisson equation boundary value d<p/dr\r=Q on the values of the defining parameters R, nd,

Ef, T, Q, m* and e, comes in four parts.

In the first instance, it was shown that the electric field can be uniquely specified by the available 

data if the potential, and so the charge density, is. As such, d(p! dr\r=Q will correspond to a given
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charge density and so will be dependent on the defining parameters if the charge density is. 

Therefore, for small grains (R < A) where no neutral zone is present and the whole grain spatially 

charged, then the charge density, and so the boundary value d p /d r \r=Q, are clearly defining 

parameter dependent.

The second part of the validating evidence is from the analytical limits, and is more suggestive 

than perhaps offering irrefutable substantiation. A case can be made that in the limit R —*■ 0,

d 2(pldr2\ 0 ; yet in general p(0) —► Z where Z is some positive number in this same limit
I r= 0

unless Sb is equal to one specific value, that of -<p(0) for a R > A grain when p(0) —► 0. Thus with 

d(p I dr\r=Q = 0 , the inconsistency Z = 0 is generally evident unless Sb is equal to one unique value

i.e. the parameters consistent with d(p/dr\r=Q = 0 are not consistent with general Sb, and are only

consistent with one particular value of Sb, suggestive of an unique potential, and as such, an 

unique electron density.

However, the Z =  0 incongruity can also be resolved if, for example, d<pldr\r=Qzn& nd are 

interdependent and d<p/dr\r=Q = 0 as R —> 0 requires that nd —> 0. Indeed, at the other end o f the 

spectrum, in the depletion approximation, maintaining dtp/dr\r=Q = 0  and constant Sb, Ef, T, Q,

m and e, then over variation in R, contrary to current opinion [15], either the depletion width 

must vary or the ionised donor density. The non-linear P-CB method indicates that a constant 

depletion width and variable ionised donor density are favoured. Additionally, the expression of 

Samson and Fonstad, Eq. (6.6), determining the density of ionised donors from the donor density, 

is essential one based on bulk semiconductor statistics; in the nanometric regime, with the effects 

of quantisation, it would perhaps be unusual if this bulk expression did hold, and nd did remain 

constant over the decrease of R, the other defining parameters remaining unchanged. Therefore, 

to come finally to the point, assuming that nd does vary, then for constant nd, Ef, T, Q, m and e, 

over variation in R, a variation in d<p/dr\r=Q is implied i.e. d(p/ dr\r=Q = 0  is dependant on the 

parameters R, nd, Ef, T, Q, m and e.

The third part of the hypothesis’ justification follows from analysis of published work, in 

particular Malagu et al. [15], and indications of discrepancy therein, arising through this issue not 

being considered and is very encouraging.
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The fourth, and final, part of the validation is the success of the models based upon this 

hypothesis in simulating the experimental data, often far better than existing models not treating 

this issue. Specifically, from the measured surface barrier heights o f 4nm and 15nm radii grains 

[31], the bulk ionised donor density was extrapolated as bulknd = (9.76±0.08)xl023m‘3 with a 

depletion width of 41.55±0.95nm and bulk surface acceptor density of N, = (4.05±0.06)xl016m'2, 

in qualitative agreement with that experimentally found by McAleer et a l [43], The peak ionised 

donor concentration was independently determined (from a different model within the suite) to lie 

at ~(1.29±0.03)xl025 at lOnm, within the upper limit imposed by the doubly ionisable vacancies 

of density Nd set from bulknd. Most importantly, the Nt ratio between the 4nm and 15nm 

nanocrystals is found to be 5.57±0.37, in excellent agreement with the recorded 5.90 [31], and 

improving considerably on other simulations not treating the boundary value consistency issue 

(see Ref. [31]). This variable ionised donor density behaviour can be used to offer the beginnings 

of an explanation for the hitherto unsatisfactorily justified, experimentally observed sensitivity 

increase of polycrystalline gas sensing films on the decrease of the grain radii, particularly below 

R  = lOnm [41,42] and R = 3nm [42,45,47].

From the ionised donor density satisfying the P-KS-CB model for the given Sb (relative to Ef at 

zero) and known parameters of a neutral 4nm radius Sn02 grain, the same model can be used to 

predict the movement of the Fermi level on the injection of charge to the grains. It estimates the 

maximum sustainable electron population within one nanocrystal at 81 to 87 electrons; once again 

in very good agreement with the experimentally inferred limit of 86 [6].

The final program of the suite uses the P-KS-CB charging data, applying Fermi’s golden rule and 

reflecting upon the changes in Helmholtz free energy, to calculate the STM tip-substrate 

tunnelling current and the voltage dependency o f the charge storage events. Both the magnitude 

and form of the tunnelling current compare favourably with that experimentally measured. The 

modal potential difference interval between charge transfer events is calculated to be 0.065V, 

compared with the actual 0.07V.

The evidence in favour of the legitimacy o f the boundary value hypothesis and the models that 

stem from it is considerable.

Overall, this work can be considered to make an original contribution to addressing the 

experimental Sn02 data from this new and exciting field o f charge writing. It presents the novel
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idea of combining the confining potential generated from the non-linear Poisson equation at non­

zero temperature, self-consistently with the Kohn-Sham equations and also balancing the charge 

on the grain to ensure the consistency of the occupied surface states and charge density. Further 

work, discussed in the next section, suggests some improvements that could be made to the 

models, and the direction that future investigations could take.
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7.2 Further Work

This section details some methods of improvement of the models and possible avenues o f future 

enquiry.

7.2.1 Orbital Dependent Correlation

Due to the rather arbitrary division o f the exchange-correlation energy term into its constituent 

parts Ex and Ec, it is likely to be best to treat both terms, exchange and correlation, in a consistent 

manner to achieve the best cancellation of errors introduced in the approximation of the 

correlation term. By modelling the exchange effects as functionals of the single-particle orbitals 

then the most accurate results are likely to follow if the correlation is treated in a similar manner. 

However, orbital dependant representations of the correlation energy are not exact and are 

complex objects indeed. The method of Engel and Dreizler [81] offering the first order 

approximation of the correlation energy

1 f , 3 , 3 (r i ^ k S(**])y/f *(r2)y/fs (r2)j_
O  ̂ -< z- AS . AS - KS  J 1  ̂ I.. _
2 i j  kj £t + £ / ~ £ k ~ £i I i — 2

|  OCC unuccufs  |

E c S  2  C K S  ^  C K S  _  C K S  _  C K S  T

x j d 2rld 3r:

I J  K J  “ i “ y

( r r  (r3 W™  (r3 w r  (r4 y r ?  (r4) Y'f* (r3 ) ^ f  (r3 M *5* (r4 W™  (r4) ̂
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J V r ,  (r, ^  (rj )vx )
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y lr i “  r21

(7.1)

might provide a workable expression, although since the correlation effects are of such a 

significantly smaller magnitude, undue expenditure of computational effort for an improvement of 

accuracy negligible compared to the errors inherently introduced through the approximations 

forming the system (and the ~0.2% inaccuracy o f the finite difference approach in determining the 

eigenvalues), would not be cost effective.

7.2.2 Quasiparticles: The GW Approximation

The single particle Kohn-Sham eigenstates are, in the strictest sense, purely Lagrange multipliers 

(excepting the highest occupied orbital -  Koopman’s theorem, see Section 4.1). As such, their 

use as the true eigenstates of the multi-particle system is not conceptually correct, notwithstanding
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the experimental and theoretical evidence justifying their use as approximations to ionisation and 

excitation energies [23,24,25,26,27, 28].

In order to improve on this situation, the next level of sophistication within the model is to add to 

the independent single electron its Coulomb hole (due to repulsive Coulomb interactions), thus 

simulating the electron and its surrounding polarisation cloud o f positive charge as a single 

particle-like quasiparticle [102]. Indeed, the Coulomb hole reduces the total charge o f the 

quasiparticle and therefore screens the interactions between quasiparticles. This screened 

interaction is sufficiently weak that the quasiparticle is effectively almost independent, thus 

justifying the use of its eigenstates as improved approximations of the true ‘excited’ many- 

electron eigenstates.

To simulate the electron-Coulomb hole ensemble, one avenue which has met with considerable 

success is Hedin’s Green’s function approach. In keeping with the nature of this chapter, this 

scheme is given only in outline below, and not rigorously developed. For a detailed derivation of 

the following equations and their implications, the reader is referred to Hedin’s original paper 

[103] and a good primer on quantum field theory, see for example Kaku [104],

To introduce this method, begin by considering the equation

/  H
dt

y/ = 0 (7.2)

where the true Hamiltonian can be separated into two pieces, Ho the Hamiltonian of the non­

interacting system and Hh the complete interaction effects. To determine the propagator G(r, r', t, 

t ') of if/ i.e. the function G(r, r', f, f )  which propagates the wave function y  in time from t to f  > t 

such that

y/{r\t') = J d rG (r ,r '; / ,* V (r ,0  t> t '  (7.3)

then

must be solved. The propagator G(r, r', t, t') is a Green’s function in the correct mathematical 

sense of the term.
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This is not necessarily a simple matter; however, if the Green’s function o f the non-interacting 

Hamiltonian, termed G0, is known, then symbolically1

G = G0 +GHjG0 ( y ^
= G0 + GqH  jGq + G0H  jGqH jGq + • • •

which can be written explicitly [104]

G( r, r t, t') = G0 (r, r t, t ') + J dtx J drx G(r, ̂ ; t, tx )H , (i-j, tx )G0 (rx, r tx, t')

= G0 (r, r t, t') + J d 4rx G0 (r, r t ; t, tx )H  I (rx, tx )G0 (r ,, r '; tx, t ')

+ f d*rxd*r2G0 (r, r , ; Z, tx )H } ( r , , tx )G0 (rx ,r2\tx, t 2 )H i ( r 2 > h  )Go (r 2 »r ''d2,0  + •''

(7.6)

With (//0 as the solution of the homogeneous form of Eq. (7.2), (z3 /<9t - 7/o)^o = 0, then the time 

evolution of the wave function becomes

y/{r, 0  = y/Q ( r , t) + J d 4 r, ■G0 (r, r , ; / , ̂  ) / / ,  ( r , , /, M M i )

= (r »0 + j  d 4 ''i G0 (r, 1-j; /, tx ) t f  7 ( ^ , /, )y/0 (rx, tx)

(7.7)

1 For two operators A and B

Identifying

1 1
= (\ -  A~xB + A~xBA~XB + ■■■)*

A + B 1 + A~XB A
= A _1 - A ~ XBA~X +A-'BA-'BA~X +

1

then the symbolic relations

follow.

= A~i
A + B

■BA'1

A = i - - H 0
dt 0

B = - H ,

G = 1
A + B 

1
G° = 7

G = Gq + GHj  G0 

= G0 +G0H ,G 0 +G0H jG0H jG0 +
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from Eq. (AIII.74) [105]. This perturbative expansion can be visualised as the interaction o f a 

particle with a background potential at various points along its path [104] as illustrated in Figure

Figure 7-1 Representation o f  the time evolution o f  a wave function, the particle interacting 
with a background potential at various points along its path.

When the Hamiltonian is time independent and energy is conserved, G(r, r'; t, /') depends only on 

the time difference t - 1' and as such, can be written G(r, r'; t-t'). This can be Fourier transformed 

into the frequency domain, and so into G(r, r'; s). Explicitly

Defining the interaction Hamiltonian, Hh as the non-local irreducible self-energy operator then

due to its own presence. Along with the Hartree potential, the exchange-correlation potential of 

density functional theory represents the local, variationally optimised approximation to this non­

local, non-Hermitian, dynamic energy operator.

Local components, [v#(r) + vJCC(r)]t5(r - r") can be removed from E and relocated within the first 

term of Eq. (7.9). Therefore, recalling the Kohn-Sham optimised local potential, Eq. (4.51)

7-1.

(7.8)

V A J

The self-energy of a particle is the energetic response of the system experienced by the particle

vs(r) = v(r) + vH (r) + vxc{r)

Eq. (7.9) can be recast as
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where AS, describing the non-local, dynamical exchange and correlation effects, is equal to S - vH 

- vxc, and with
.KS*

J* i 8  J 8 i

related to the required Green’s function G via the perturbative expansion o f Eq. (7.6)

G(r, r'; e  / ) = G 8S (r, r '; e i) + J  dr2 J  drx G£s (r, r , ; e i )AS(r1, r2; s t )G8S (r2, r e  ,) + • • • (7.12)

then the reference system is now the single-particle approximation of Kohn-Sham, and all 

quantities except S, as yet undefined, dependant on the KS single particle eigenstates.

But what of S? Hedin [103] developed an approximation for the self-energy SĜ  in the form of 

an expansion in terms o f the screened Coulomb potential W. For simplicity, Hedin’s practise of

replacing the space-time coordinates r b t\ with the integer 1 and so on will be adopted here. Thus
+00

J<il = Jdrj J dtx
-0 0

l+ =( r ],f] + r )  r —» 0 , r > 0  (7-13)

<5(1,2) = £(r, - r 2)<5(/, - t 2) 
v2(l,2) = v2(r„ r2)<5(/1 - t 2)

W( 1,2) is the potential at point 1 due to a charge and its associated polarisation cloud at point 2, 

and is expressed by

» U 2 )  = Jv2(l,3)*-'(3,2)d3

= v2 (1,2) + J  ̂ (l,3)i>(3,4)v2 (4,2)d3d4 (-1' 14>

where s x is defined as the propagating dielectric function

(1,2) = (<?(1,2) -  J  v2 Q,3)P(3,2)d3f' (7-15>

which connects the screened and unscreened Coulomb interactions. The polarisation propagator 

P (l,2 ) can be expanded

P(l,2) = -z'G(l,2)G(2,l) + 1 G(\,3)G(4,\)W(3,4)G(2,4)G(3,2)d3d4 + • • • (7.16)

The GW  definition of the self-energy follows from Eq. (7.9), relocating only the local Hartree

component such that

i2V'
— — + v(r) + vH (r) -  s i G(r,r'; s , ) + J ZGW (r, r *; e t )G (r”, r'; s i )dr” = -<5(r -  r ') (7.17)

and is given by Hedin’s screened potential expansion
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1 GW (1.2) = GQ,2)W(l+,2) -  J G(l,3)G(3,4)G(4,2)(F(l,4)(F(3,2)rf3rf4 + • • • (7.18)

For those readers familiar with Feynman diagrams, the three lowest order contributions from the 

expansion o f P  are represent in diagrammatic form in Figure 7-2 and similarly for the self-energy 

£ in Figure 7-3

2

(0)

(i)

/w w(2)

Figure 7-2 Diagrammatic representation o f  the first three orders in W o f  contributions from the 
expansion o f  the polarisation function P

E  (1) 2

2 _ ^ 7

E  (3)

p . . .
i v

Figure 7-3 Diagrammatic representation o f  the first three orders in W o f  contributions from the 
expansion o f  the self energy l F w
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The single-particle Green’s function G(ju, v) is depicted by an arrow containing solid line from 

points v to n  as in Hedin [103], and the interaction, here the screened Coulomb interaction W(ju, 

v), as a wavy line between n and v.

Defining the vertex function T as

r(l,2;3) = <S(1,2)<S(1,3) -  J J J J G(5,6)r(6,7;3)G(7,4)<MrfS</6</7 (7.19)
i j*/j

P  and E can be written

P{ 1,2) = -z j  J G(1,3)T (3,4;2)G(4,l)d 3d 4 (7.20)

z gw = .J J W q +j3)G(l,4)r(4,2;3)J3^4 (7-21)

and

G( 1,2) = G0( 1,2) + J J G0(l,3)£C"'(3>4)G(4>2)d3rf4 (7.22)

where G0 satisfies

r V2 ^
— r -  + v(r) + vH(r )- ^  G0(r,r,;^/) = -^ (r -r ')  (7.23)

v  2  y

Along with Eq. (7.14), the set of equations Eq. (7.19) to (7.23) are known as Hedin’s GW  integro- 

differential equations. In principle, their self-consistent solution solves the many-body problem 

exactly, although in practice this is a very demanding task computationally [29] and 

approximations must be made.

Conventionally the random phase approximation (RPA) is often used, where the polarisation 

function P (l,2 ) is approximated by its zeroth order in W term, P0 = -/G(1,2)G(2,1). 

Correspondingly then, the vertex function T(l,2;3) is reduced to <5(1,2)<5(1,3), simplifying the 

expression for the self energy.

Indeed, truncating in this manner has less effect than might be supposed. Should the self-energy 

in the vertex function Eq. (7.19) be approximated to first order, yielding

T(l,2;3) = <y(l,2)<y(l,3) + J J W(\* ,2)G(l,4)G(5,2)T(4,5;3)rf4<75 (7.24)

then P, Eq. (7.20), reduces to the sum of the leading terms in each order, see Figure 7-4
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0+ +

Figure 7-4 The leading diagrams o f  zeroth, first, and second order in W etc. for 
P. Often referred to as the ladder-bubble sum.

and likewise for E, Eq. (7.21), see Figure 7-5

Figure 7-5 The leading diagrams o f  first, second, and third order in W etc. for E.

Hedin [103] reports that this E offers no real improvement on E estimated purely to first order in 

W. He concludes that while an infinite sum is required for P  in the case of very low electron 

densities (see also Economou [105]), and that the leading terms appearing in Figure 7-4 will not 

suffice alone, in the case of higher densities however, it is the quality of G and W that is most 

important.

A further simplification that is often made [102,106] is the approximation o f Green’s function G 

by the optimised Kohn-Sham DFT Green’s function GqS .

The estimation o f the self-energy then follows from the set of equations:

The GW  self energy as previously mentioned excludes Coulomb effects but is inclusive of all 

exchange and correlation effects, local and non-local. Working with the assumption that the 

Kohn-Sham eigenstates already give good approximations to the quasiparticle states, then it is 

reasonable to use first-order perturbation theory to obtain the correct energy levels o f the quantum 

well. Applying the small self-energy correction E(r, r'; £,)- vxc( r ) ^ r  - r') then

In order to circumvent Eq. (7.29)’s non-linearity, the finite difference-like approximation [106]

PQ (1,2) = -iG™  (1,2)0™ (2,1) (7.25)

(7.26)

(7.27)

(7.28)Eg^(1,2) = /G0*5(1,2)1F0(1+,2)

(7.29)
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r)YGWfr r 'T KS\Y'GfT /  t. \  xiG fV r i. „K S  \  . (  KS \  v* 5 * > * /  /  r n  OfDL (r,r ;£■,)« Z (r,r;£, ) + (£•,-£, )-------- -----------  (/.JO)
os

can be used to recast Eq. (7.29) as

+ Z , ( ^ s |2 G“' ( ^ s ) - v „ | ^ f )  (7.31)

where Z, is referred to as the quasiparticle renormalisation factor

1
Z, = (7.32)

' d Z o w ( e ? s ) l d E \ ¥ ? s )

and is equal to the quasiparticle weight

Z t = jV ,( r ) |2</r<l (7.33)

where y/, are the quasiparticle wave functions.

Separating out the Coulomb interaction from the screened potential such that

(1,2) = i G q S (1,2)v2 (1,2) + /G ^s (l,2)[fF0( l+,2 ) - v 2 (1,2)]

= ZGXW 2 )+ lFcw (\,2) (7.34)

then the expectation value of ZĜ  can be analytically assessed, yielding

= (7.35)
j  |F  F I

The correlation component, explicitly written in the energy domain as
oo

Zccw(r,r';f) = - L  f G f  (r,r';e + s'W o (r,r';s')- v2(r,r')]ele‘’ds' (7-36)
2 n  J

-00

where t  is an infinitesimal positive time, is usually evaluated with a complex contour integral 

[106], and is used to set both Z, and (i//fs |z Gfr | y /fs ̂ .

The above discussion outlines the necessary steps to improve the KS eigenstates in order that they 

accurately represent the energy levels within the quantum dot, assuming of course that the 

approximations made to Hedin’s GW  equations are acceptable within this system. The 

computational implementation of the GW scheme is a subject of considerable intest in the 

Literature, and in particular, Rojas et al. [107], Rieger et al. [108] and Steinbeck et al. [109] 

outline some additional simplification to accelerate convergence for larger systems and several 

potentially useful computational details.
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Broadly speaking, the assessment o f the GW  self-energy can fall into one of three categories (self- 

consistent (£ = iGW), partially self-consistent (E = iGW0), and non-self-consistent (Z = iG0Wo) 

and only further investigation o f this topic will determine the optimum scheme to employ for 

accurate results for minimum computational effort. The bulk of immediate future work should 

therefore be focused in this field, although it is possible that with the level of error inherent within 

the framework of approximations describing the charged nanocrystal, the extra computational 

effort in self-energy correcting the KS eigenstates will not be at all cost effective and sensible.

7.2.3 STM Tip-QD-Substrate Tunnelling

The ability of a particle to tunnel through a classically forbidden region has been a topic of 

interest from the very first days o f quantum mechanics; rigorous discussions o f its basic 

mathematical detail can be found in any good quantum mechanics textbook (for instance 

Merzbacher [37], Bohm [64] or Gasiorowicz [100], and a short non-mathematical overview of 

barrier penetration can be found in Sub-Section 6.2.2). Complex treatments from the literature 

are varied and diverse: from the time evolution operator method [110] to the non-equilibrium 

Green’s functions o f Keldysh [111] (common in many modem tunnelling simulations, for 

example Ref.’s [112,113,114]) and those of Caroli et al. [115]. Duke [116] offers a 

comprehensive discussion of various tunnelling methods, and much work has been done with TB 

(Tight Binding - see for example Ref. [117]) and LACO (linear combination of atomic orbitals -  

see for instance Ref. [118]) models. As an elementary exploration into this wide and varied field, 

a simple (in comparison at least) perturbation theory route has been followed, similar in its basics 

to that o f Wasshuber [32]. In the spirit of the chapter, this tunnelling scheme is again only given 

in outline below, and not rigorously detailed.

The STM tip, the quantum dot under study and the substrate can be viewed as one interconnected 

system, and one which can be represented as a simple electronic circuit o f two capacitors, each 

representing one of the potential barriers (or tunnelling junctions), in series -  as illustrated in 

Figure’s 7-6 and 7-7. In this way, tunnelling events can visualised as charge transfers across the 

said capacitors.

The charge on junction one, J\, tip to nanocrystal, is

? , = C , F JI (7.37)

on junction two, J2, nanocrystal to substrate,

q2 = C2V!2 (7.38)
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V/, — A V j .$ — V j i + Vj2 

T

r

vj\ <

Vj2 -<

C,

C2

Figure 7-6 Schematic o f STM Tip - QD - Substrate system. Active region o f Tip modelled as a 
sphere o f radius r\ and the quantum dot treated as a sphere o f radius r2. Tip-QD and QD-Substrate 
separations denoted by 8, and S2 respectively. The potential difference between the Tip-Substrate is 
Vb, with the voltage drop over junction 1 (Tip-QD), J u represented as VJt and likewise VJ2 for 
junction 2 (QD-Substrate), J2. Each junction is modelled as a capacitor, C\ representing J\, and C2 J2.

n, q = - ne

QDT

Vji
S H

Vj2

Figure 7-7 Circuit schematic representing Tip-QD-Substrate system o f Figure 7-6. represents the 
number o f electrons tunnelling across J\, the charge on J x simply q i = - nxe, and similarly for 
junction 2. The number o f electrons stored within the QD is n with a charge o f  q.

and on the nanocrystal itself

q = q \ - q 2 (7.39)

q  com prising  o f  the n electrons resid ing  on the nanocrystal, the d ifference betw een  the n\

Oxide Layer

C o n c l u s i o n s  a n d  F u r t h e r  W o r k

STM Tip

Vacuum
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electrons tunnelling into the quantum dot, and the n2 electrons tunnelling out of the dot to the 

substrate.

With the natural assumption that the overall system can be considered to reside in its lowest 

possible energetic configuration, then for a given tip-substrate potential difference, only those 

electron transfers events that reduce the overall energy can be considered to be statistically likely. 

Measuring the system via its Helmholtz free energy, F, defined as the difference between the total 

energy stored within the system, ET, and any work done by the system, W,

F  = Et - W  (7.40)

then the-change in this energy for a tunnelling event is a measure o f the probability o f this 

tunnelling event. As mentioned above, given that physical systems will always reside in their 

lowest possible energy configurations, charge transfer events in which the free energy decreases 

i.e. AF  (= Ff- F,) < 0, are logically favoured.

For the very simple treatment applied to the P-KS-CB data in Section 6.2, the total stored energy 

was the energy stored within the Sn02 grain of n electrons. In a sophisticated analysis, the total 

energy of the n electrons in their particular eigenstates, the energy of the thermal electrons, the 

Coulomb and exchange-correlation energies would all need to be evaluated, along with 

allowances made for the effect of the shift in the Fermi level between the n and n ±1 systems on 

all these quantities. Importantly, this Fermi level movement can no longer seen as a movement 

‘up’ the energy well, but rather that the energy levels and confining potential must be dragged 

down relative to the Fermi level, ‘fixed’ at a voltage VJ2 above the zero o f the system. Hence, ET 

is not a particularly simple object to evaluate. The elementary approach used in Section 6.2 is 

based on the assumption that since it is the change in free energy that is being sought, a 

reasonable approximation of AET can be obtained via the following argument. As the thermal 

electron population (electrons excited into energy levels above the Fermi level) remains relatively 

constant over charge transfer events, see Section 6.2 for detail, then if the energy levels are seen 

as moving down, and not the Fermi level moving up the energy well, then to first approximation, 

the energy of the electrons (without interaction effects) due to their presence in these eigenstates, 

will remain fairly constant with regard to small increases or decreases in the population of 

electrons. Consequentially, if the energy of electron-electron interactions are simply estimated by 

the classical potential energy of the charge stored within the two capacitors, then the change in ET 

can be expressed as the change in the capacitative energy of the system plus the energy taken to 

move the Fermi level (merely the difference o f the two Fermi levels in the old, freely moving
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Fermi level reference frame)11.

From the classical expression for the energy stored in a capacitor, the total capacitative energy of 

the system is

EcapJ j £ l l X j £ l .  (7.41)

Since q = ne then

and similarly

C-,Vh +ne 
JX ~ Cx +C2

Vn = ~ l  b ■■■■ (7.42)

_ CxVb - n e
Vj2 = ' * (7-43)

therefore Eq. (7.41) can be written

Cx +C2

C,C2Fb2 + (n e f  f744 .
cap 2 ( C , + C 2)

The tunnelling of an electron over either of the junctions will cause a change in the voltages 

across the junctions of ± e/(Cj + C2) from Eq. (7.42) and Eq. (7.43). Taking the capacitance of 

each junction as constant, then this voltage change causes a corresponding polarisation charge of 

qpol = C A V . The charge that then must be ‘replaced’ is -e  -  qpoi, which of course is equal to the

negative of the charge gained/lost over the junction through which a tunnelling event did not 

occur. Therefore, the work done by the system is W = - ( -  e -  q ^ , )v b , or in general

w  = _ eVb(n)C2 + n2Cl )
c x + c 2

As such, the change in Helmholtz free energy for a single electron transfer event over junction 1 

or 2 for the elementary approach used in Section 6.2 will therefore be

AFJ, = E f  - E f  + e{e±2 n e± V bC2) (7.46)
2 ( C , + C 2)

11 Indeed, this idea has been simply employed by Johnson et al. [119] in their T~0K 2-dimensional QD 
system to estimate the movement o f  the Fermi level on the addition o f  a single electron to the dot i.e.

E ,  (N  +1) ■- E ,  (AO = £  + (£ „ „  -  E „ )

C the capactitance between the QD and the gate, and EN the total energy o f  the N  electron system etc.
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a f?2 = £ f 1 -  Ef + (7-47)
e(e + 2 ne ± F^C,) 

2(C,+Cj)

the +ve on the AF  superscript indicating a tunnelling event from left to right across the junction 

(as depicted in Figure 7-7), and conversely the -ve ; right to left.

Assuming that the STM tip is locally spherical [33] then the capacitances C\ and C2 follow readily 

from the image charge method applied to two spheres of dissimilar radii (see Appendix IV, 

Mutual Capacitance o f Two Spheres using the Image Charge Method). For the system o f  Figure 

7-8 with the parameters o f Section 6.2 (W tip with a radius o f curvature o f 0.9nm, Si substrate, 

tip-nanocrystal separation (5i) o f ~0.7nm, S i0 2 thickness (52) o f lnm and a R = 4nm S n 0 2 

nanocrystal), the capacitances Ci ~ 9.55*1 O'20 F and C2 ~ 4.44* ft)'18 F follow.

Substrate

Figure 7-8 Cross sectional energy diagram o f the Tip-QD-Substrate system. Labelling 
conventions remain the same as Figure 7-6 with the addition o f x representing the electron 
affinity, <t> the work function, and ESG the semiconductor band gap.

Then, using the expression for tunnelling current developed in Appendix IV, Fermi’s golden rule:

<• i* 2^e i 12
7 = e T (A ^ =  J J — ^ 1  D ' D r f Q - f f W E , - E f  + A F )dE idEf  (7.48)

the i and /  subscripts representing the initial and final states o f the tunnelling electron, a first 

approximation o f the tunnelling current can readily be achieved.

The density o f states o f the tip and the substrate are calculated with standard expressions for the
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density of states of a metal and semiconductor respectively [35]:

1 (2  m,lpY 2
D„P(E) =

2n*

Dsub(E) =

h*

2msub
271*

VI
\  3 /2J

(7.49)

(7.50)

The tunnelling matrix element Hf i { = (i//f  |H x \ y/ () )  is more difficult to assess. For a detailed 

simulation, a suitable approach would be to use the

Hf,  = - ^ - - y / ' V y / f ) (7 -51)
2m •

expression of Bardeen [120] as in Tersoff and Hamann [33], the integral carried out over any 

surface within the barrier region. However, an adequate estimate o f the matrix element can be 

made from the use of the Wentzel-Kramers-Brillouin (WKB) approximation that

* ex p (- J d x ^ (2 m /h 2)(V (x )-E )^j (7 ,5 2 )

V(x) describing the potential barrier, see Blakemore [35] or Bohm [64], For the parameters and P- 

KS-CB data of Section 6.2, this simplification and those of Eq. (7.48) results in the Coulomb 

staircase charging profile shown in Figure 6-27, reprinted below as Figure 7-9, and the 

accompanying current-voltage plot shown in Figure 6-28, reprinted below as Figure 7-10.

100 1

90 -

g 80 -

|  70 - ©
LU 60 -
•a
£
2 50 -
(O
o
©A
E3z

30 -

20 -

10 -

-2 -3 -60 1 -4 ■5 -7

Tip-Substrate Potential Difference (V)
Figure 7-9 Plot o f  the electron addition to a R = 4nm grain against tip-substrate potential difference for a 
simple free energy based simulation, using the variable nj  data generated from the P-KS-CB scheme. The 
tip (W) to grain separation is taken to be 0.7nm, and the oxide layer on the Si substrate is taken to be 1 nm 
thick. Re-print o f  Figure 6-27.
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80 -i
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60 -

50 -
<
&  40 -
c
£w 30 -
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10 -

■2 ■3 -60 ■1 -4 -5 ■7
Tip-Substrate Potential Difference (V)

Figure 7-10 Plot o f  the tip-substrate current against the tip-substrate potential difference for the basic 
tunnelling simulation o f  room temperature charge storage on an R  = 4nm S n 02 nanocrystal, using the 
variable nd data generated from the P-KS-CB scheme. The tip (W) to grain separation is taken to be 
0.7nm, and the oxide layer on the Si substrate is taken to be lnm thick. Re-print o f  Figure 6-28.

As discussed in the referenced section, these simulations are in very good agreement with the 

experimental data (see Figures 6-29 and 6-30) even with this primitive model o f the electron 

tunnelling; most importantly, the modal voltage interval between charging events is calculated at 

0.065V compared to the average period o f the experimentally observed dlldV  fluctuations of 

0.07V.

Given the success of even the very simplistic application of this first-order perturbation theory 

approached shown here, it is possible that more sophisticated non-equilibrium Green’s function 

approaches (Keldysh [111] etc.) and the like, will not be necessary for the particular 

circumstances and parameters of interest here.

Future work would focus on such things as improving the calculation of the tunnelling matrix 

element, a more accurate assessment of the energy differences of the n and n ± 1 states of the QD, 

and improving the modelling of the tip-QD junction (more realistic tip geometry and so a more 

accurate Ci). Also important would be the inclusion of additional potential sources o f current; for 

example, including the effects o f co-tunnelling (tunnelling events where the overall change in 

Helmholtz free energy is negative, although the free energy difference over either of the junctions 

can be positive) and thermionic emission from the STM tip. It may also be possible that under 

these particular circumstances non-charging electron transfer through the surface electron states 

will provide a sizable contribution to the tunnelling current. For this scenario, the change in
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Helmholtz free energy would not include the energy shift of the Fermi level between n and n ± 1 

systems, making transfer events more likely at lower biases. However, more detail would have to 

be known about the energetic structure of the surface states, or at the very least, the density of the 

unoccupied surface states, before any quantitative assessment o f this current can be made.

7.2.4 Charge Leakage

The charge writing treatment to date evaluates the Sn02 nanocrystal in isolation. However, in 

polycrystalline films the individual quantum dots rest in close proximity to each other. Charge 

transfer between grains is not only likely to influence the charging process and the duration over 

which charge can be stored, but intimately affect the shape o f the band structure and the entire 

discrete energy spectrum. The first stage in the assessment o f this phenomenon might be to treat 

inter grain tunnelling through the same energy considerations as were used to evaluate the tip- 

grain-substrate tunnelling, though any in-depth treatment of the charge writing process must 

eventually move beyond the spherical symmetry of the individual grains, and treat the charge 

distribution across the grain ‘clusters’ as a whole.

Consideration would naturally need to be given at this point to the sinter-necks between grains 

and their effect on the discrete energy levels. In studying this part of the charging process, it may 

be possible to also further the primitive gas sensing film sensitivity model o f Chapters 2 and 6 to 

something a little more meaningful, and treat the increases in sensor responsiveness below R = 

lOnm and R = 3nm in detail.
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7.3 Concluding Remarks

There can be no doubt that the potential impact of the charge writing process is considerable, its 

possible applications wide ranging; from the nanoelectronic to the biomedical. The recent 

experimental advances in this field, particularly with such things as the STM charge injection of 

4nm radius Sn02 nanocrystals, bring the true dawn of this budding technology ever closer.

This work has aimed to shed a little more light on the relatively neglected underlying physics of 

the process, and has perhaps gone some way to explaining and interpreting some of this nanoscale 

experimental Sn02 data. This concluding Chapter has summarised the models used and 

developed over the preceding Chapters, and has offered a final synopsis and discussion o f their 

results and implications. It has indicated what has been achieved, and what possible avenues 

could be pursued to further extend this work, and improve the understanding o f this new and 

exciting branch of science.
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Appendices

Appendix I 

AI.l Approximation of the Fermi-Dirac Integral

The family o f Fermi Dirac integrals taking the form

Fw = [ i ^  (AL1)

and their close cousins

F /y° )  = r( j+ iW j(y° )  ( A I ' 2 )

arise from the evaluation o f the statistical magnitudes o f an electron gas, integrating over all 

possible states weighted by the Fermi-Dirac function. They have many applications: Einstein’s 

relation for degenerate semiconductors is a function o f F.y2, the ‘supply’ function is dependent on 

F 0, and F3/2 can appear in electronic energy density expressions. However, perhaps the most 

widespread occurrence is that o f F y2 in the carrier density expression Eq. (1.35).

Generalised approximations o f the Fermi-Dirac integrals can be found for -1/2 < j <  5/2 with an 

error between 0.7 % and 1.2 % [121], and higher accuracy expressions can commonly be found 

for j  = 3/2 (0.63%) and j  = 1/2 (0.53%), see Aymerich-Humet et al. [122]. Blakemore [57]

presents a review o f approximations for ^/^(yo) in particular, several o f  which are o f  higher order 

degrees o f accuracy.

This work uses the Chebyshev polynomial approximations to F y2 o f Werner and Raymann [123],
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and as such, the Fermi-Dirac integral is represented with the two expansions:

Fm ( y 0) = e - £ a ne - °

F v 2( y o ) = y o

n =0
r

3 /2 — +  y   —3 2n+2 
\  J  n =0 y 0 y

- 00 < y 0 < +1 

+ 1 < y 0 < +oo

(AI.3)

(AI.4)

With the coefficients o f Table AI-1, these give F i/2 to 0.02 % and 0.05 % respectively; adequate 

for the purposes o f  this work.

Table AI-1 Table o f coefficients for the Werner and Raymann approximation o f  F1/2

n a n b n
0 + 0.88607596 + 0.843500
1 -0.30871705 + 0.710809
2 + 0.14638520 - 3.712456
3 - 0.05843877 + 6.705628
4 + 0.01431771 - 5.594877
5 -0.00150176 + 1.777787

AI.2 Gamma and Beta Functions

In the infinite limit, the gamma function, plotted in Figure AI-1, can be defined as [65]

1 * 2 * 3 * * * /?
T(z) = lim

z(z  + l)(z + 2) • • • (z + n) 

r(z)

z ^ 0, - 1,—3 ...

4 -

-2 -

-61-

(AI.5)

Figure AI-1 Plot o f  the gamma function, f(z ).
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Replacing z with z + 1 in Eq. (AI.5) then

z l -2-3 •••/! z
F(z + 1) = Inn n    —— —— - —  ------   n (AI.6)

00 z + n + l z(z + l)(z + 2) ’ • • (z + tt)

= z r ( z )

Forz = l

then applying Eq. (AI.6)

and so on until

l • 2 - 3 — w i , 
r ( l ) = h m ---------------------- n = l

«-> co 1 - 2 - 3  • • • « ( «  + 1 )

r ( 2) = l
r(3) = 2r(2) = 2

r(« ) = ( « - l ) !  (AI.7)

for n a positive integer. From this, the gamma function can be interpreted as a generalisation o f  

the elementary factorial function, extending the latter to negative and non-integer values. For this 

reason, the gamma function is also referred to the factorial function [50].

One alternative definition' o f the gamma function, called the Euler integral, is
oo

r  (z) = j e ~ ' t z~]dt <R(z)>0 (AI.8)
o

the restriction on the real component o f  z necessary to prevent divergence, see Arfken [65]. Using 

the above, then

m\n\-  lim \ e  Uumd u \ e  Vv ndv 9I(m) < - 1  and 5 ? (« )< - l
»oo J  J

0 0

and substituting x2 and y 2 for u and v respectively yields

a a

m\n\= KmAU-*'  x M d x [ e - yl y 2"*'dy
a—>oo J Ja —»oo

0 0

which in polar coordinates, with x = r cos6 and y  = r sin6 can be written

a 7t 12 n i l

m!n!= lim 4fe-rV " ’+2"+3<fr fcos2”+,0 sin2"+l0rf0=2(m + n + l)! fcos2”*'0sin2”+l0</0
a—>oo J J  Ja-* oo

0

1 The third definition o f the gamma function is known as Weierstrass’s form:

T(z) = lim — FT (l + z / m)~x nz
n—>oo t  i- A
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Rearranged, this is generally referred to as the beta function,

B(m + \,n + \)

y
a x = a

y -  a

Figure AI-2 Diagram o f Cartesian and polar coordinates. Shaded region indicates area 
excluded from beta function integral on transformation between coordinate systems.

The transformation to polar coordinates results in the shaded region o f Figure AI-2 being 

neglected from the integration. However, this is o f  no importance as within this region the

maximum value o f the integrand is e~a a2m+2n+2 5 which vanishes so rapidly as a —► oo that the 

integral over that region vanishes anyway.

r =

=2Jcos 2m+1 <9 sin2'"1 O d e -  mlnl - r (”* + l)r(tt + l) (AI.9)
(m + « + !)! r(m + n + 2)

The beta function is o f particular use in Chapter 3 in evaluating the integral o f  sin2/+10. Letting m 

= -Vz in Eq. (AI.9) then

2 j s i n - ' ^ = r (1 /2 ) r ( "  + 1)

where

and

T(« + 3 /2 )

T (« +  l)  =  n\

r ( «  + 3 /2 )  = (« + l / 2 ) r ( n  + l / 2 )

= (n + 1 /  2)(«  - 1 /  2)(n -  3 / 2)....(1 / 2)T(1 / 2) 

(2n + l)(2n -  \)(2n  -  3)... 1

2
(2« + l)!!

n + 1
T ( l / 2)

T ( l /2)

T(1 / 2) = 2j  e~'2 dt = J n
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therefore

n

J s in  2n+xO d d  
o

using 2 nn\ =  (2»)!!

2 9 6

=  2

y ^ 2 w+ift!

-v/#(2n +  1)!! 

(2/i)!!

(2/1 +  1)!!

(AI.IO)
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Appendix II

A II .l O rthogonality o f  the A ssociated  L egendre Functions for Identica l m

From the definition o f Ptm{x) using Eq. (3.61) and Rodrigues’ formula Eq. (3.62), it is possible 

to write [65]

j (x; - i r £ ^ ( * 2 - V d *  (a i i . i )

If p ± q ,  initially assume that p < q .  Then on integrating by parts q + m times

j. / ' _ i y w/ ,_ i y i + m  !• (  r f p + m  ^
f P"(x)Pam(x)dx = K } K }---- f(x 2 - l )q- ------- (x2 - l f - ------(x2 - ^  dx (AII.2)
J p 9 2P q p\q\ J, ' dxq+m{ K J dxp+mK ’ y

as all integrated parts will equal zero provided they contain a (x2- l )  factor. Using Leibniz’s 

theorem (see footnote [v] o f Section 3.3), the RHS integrand can be expanded as

dxq+mI ) t ) I ) Z j il(q + m _ 0 l d x q + m - i f< ) d x p+m+i^ >

(AII.3)

The maximum power o f x within the term (x2- l )w is x2m and x2p within (xMy*, and so the 

inequalities

q + m - i  <2m
\  (AIL4> p  + m + i < 2 p

must hold, implying that

q < p  (AII.5)

contradicting the initial assumption p  < q. Therefore, the RHS integrand must equal zero. 

Similarly, should the assumption that p  > q be made, then after integrating p  + m times it is 

concluded that p  < q, implying that the RHS must again equal zero.

Now let p  = q, then from Eq. (AII.3) i = q - m ,  and therefore Eq. (AII.2) becomes

f (p"(x)Jdx  f(x2- l f - ^ - C x 2 - l ) ” - ^ - ( x 2 - l ) ' ’*  (AII.6)
J ; '  ' 22pp\p \(p -m ) \(2m) \P  dx2" dx2p ( ’

With the substitutions

i2m  j l t n
■(x1 - \ y = - T- ( x 1"'-mx2m- 2+ - )

dx2m dx2m
=  (2  m)\  (A IL 7)
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and

J (x 2 -1  ) p dx = ( - l ) p J sin 2p+1 Odd 

=  2 -

-1 o

( - 1 )'(2  n)\\
(2n + \)U

_  (~ l)p2 2/?+1 p\p\  (AII g)
(2/7 + 1)!

where the double factorials have been reduced to normal factorials using the relations,

{2ri)\\=2n n\ and (2» + l ) ! ! =^— (AII. 9)

Eq. (AII.6) can be reduced to

j>;w) dx -
\  H  x ' /

-1

i2 2 (/> +  **)!
2p + \ (p - m ) \  (AIL 10)

Combining the two case p  = q and p ^ q ,  then

f P"(x)P.” (x)dx= 2 (-p+m ) ,Sp (AII.11)j p ,  2 p + x  ( p _ my  M

The orthogonality o f the Legendre polynomials follows as a special case o f Eq. (All. 11) (m = 0). 

While it is possible to develop an orthogonality relation for associated Legendre functions o f  

identical lower index and differing upper, see for instance Arfken and Weber [65], this is not 

required in the context o f this work.

A II.2 Introduction to E igenvalues and E igenvectors

For a linear transformation A, represented as a matrix, a scalar X is considered its eigenvalue and a 

nonzero vector x its eigenvector if
(AIL 12)

Ax = Ax

This is a very important relation, particularly in quantum mechanics, since any observable in 

nature is taken to be representable as a linear operator A and that any measurement o f  that 

observable must equal one o f the eigenvalues o f A. As such, a short treatment o f Eq. (AIL 12) and 

a discussion o f the properties o f A ’s eigenstates will not only be informative, but o f  considerable 

use at several points within the main body o f this work.

Two matrices, A and B, are considered to be similar if  there exists an invertible matrix P such that
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B = P AP (AIL 13)

Conventionally, B is described as being related to A via a similarity transformation.

Importantly, if  A and B are similar, then from Eq. (All. 12)

P aA x , = AiP'lXj

which can be written

PaAPPax,= AP'] x,

with the identity /  = PPA. Defining the vector^, as y t = PAx,, then using Eq. (AIL 13)

Byt= Ay,

This means that i f  ̂ 4 and B are similar, then A and B must have the same eigenvalues.

Moreover, if  X, = (p\„ p 2, .... p„,) is an eigenvector o f A, defined over the vector space Vm 

corresponding to the eigenvalue Ah where i = 1, . . . ,« ,  so that AX, = AX„ then i f  the eigenvectors 

span V„, the matrix P, with elements p,p is a diagonalising matrix for A such that

since, if  the n vectors X, span V„, they are linearly independent, and therefore det P *  0 and PA 

exists (a proof o f which can be found in Byron and Fuller [69]). Then as D = dy = AjSy and AXj =

0

D = P AP = (AIL 14)

0

k

k

-  Y . P , k d k,
k

for i and j  extending from 1 to n. Therefore

AP = PD

which, since P has an inverse, yields Eq. (AII.14)1,

D = PaAP

1 Interestingly, {x,,X^)= ^ p l p kj = Stj i.e. P^P = I  then = P'] and so the diagonalising matrix P  will
*=i

always be unitary.
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Unfortunately, this is not particularly useful in itself as a method for practically computing the 

eigenvalues o f A, as the diagonalising matrix P can only be constructed if  the eigenvectors o f A 

are known, and generally the eigenvalues o f  a matrix are needed first to determine the 

eigenvectors.

Forward then the ^-factorisation method, which as its name suggests is based on the 

factorisation o f a matrix into two components, Q which is unitary and R which is upper 

triangular*1. It is an iterative method that gradually transforms the matrix into a format from 

which its eigenvalues can easily be extracted. As applicable to the finite difference

approximations o f this work, the matrix A is taken to be real and tridiagonal.

Let A0 = A and factor A0 = QoRo, then forming a matrix A\ such that A x = R0Qo', next factor A\ = 

Q\R\ and compute A2 = R\Q\ and so forth, determining

As= QSRS (AIL 15)

then computing

AS+] = RSQS (AIL 16)

Q'] is required to exist by our definition o f Q (although incidentally in a real space unitary Q is 

orthogonal Q), therefore Rs = QS~]AS and As+\ = QS'XASQS, hence As+1 is similar to As. Following this 

through to its conclusion, then Ag+1 is similar to A0-  A for all s, implying that all A ’s have the 

same eigenvalues.

Digressing for a moment, the actual factorisation o f As into QSRS is achieved using Given’s 

method (see for example Wilkinson [124]). In essence, plane rotations are used to zero matrix 

subdiagonal entries such that multiplying As from the left by the matrix C2 sets the <221 element o f

C2 As (denoted by a f f ) to zero, then multiplying by the matrix C3, acts to set the element <232 o f  

C3C2As ( a $ )  to zero and so on, until

C„Cn.]...C3C2As= R s (AIL 17)

where Rs is upper triangular as required.

Cj is constructed simply: in rows j - 1 and j ,  and columns j - 1 and j ,  lies the 2x2 submatrix 

11 all elements below the main diagonal are equal to zero
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cos 6j sin 6j
-  sin 6j  cos 6j

(AIL 18)

with all other elements along the main diagonal set to 1 and all other entries set to zero. 0} is such 

that

a (J \  = - s in  O j d ^ j ^  + cos 6 = 0

i.e.

6j = arctan {a^Z\ ) / ) (AIL 19)

These Cy are orthogonal and as such their product, and the inverse o f this product - Qs, is also 

orthogonal

a  = (CHC n_t . . . C 3C 2y l = C t2 C? . . . C l f i l  (AII.20)

which yields

4 +i . . .C3C2AsC T2C l  . . . C l xC l  (AII.21)

from Eq. (AIL 16)

Returning to the main argument, repeated application o f Eq. (AIL 15) and Eq. (AIL 16) will 

generate a series o f A ’s with identical eigenvalues. Importantly, as 5 -»  oo As is found to become 

upper triangular. A lengthy discussion o f this trend and formal proofs o f  convergence o f As to its 

upper triangular form, for a variety o f  eigenvalue constraints, can be found in Wilkinson [124]. 

However, these facts are not germane to the discussion in hand but, nonetheless, the interested 

reader might find satisfaction with the following, less rigorous argument:

As s  ̂ oo, then for convergence, it is required that As+i  ̂ As i.e. Qs 'AsQs -»  As. While this 

condition would be satisfied for any As and Qs that commute, for it to hold true in general for any 

real tridiagonal matrix A, then given the form o f  Qs, Qs must tend to I i.e 6j ->  0 for all j .  This 

implies that aj}.\ for all j  must tend to zero, and thus while the upper diagonals o f A can become 

nonzero in the earlier iterations (and will unless A , and therefore As, is symmetric), its lower 

diagonals remain at zero, and asymptotically As’s subdiagonal tends to zero, thus in the 

asymptotic limit, As becomes upper triangular.

To see the advantage o f an upper triangular As over a tridiagonal As in ascertaining A ’s 

eigenvalues, the concept o f determinants needs to be briefly discussed. A determinant o f  an nxn  

matrix A is a scalar quantity associated with that matrix and is written
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a \\ a n *ln

det A = a 2\ a 22 2n

For n = 1, the determinant is

and for n > 2, it can be represented as

a n\ a n2

det A = Q\\

or

det A = ajXCn + aJ2CJ2 + • • • + ajnCjn

det A - a lkClk + a  2̂ 2k + Vank̂ nk

where j  and k run from 1 to n, and

C,k = ( -1 )J+A Mjk

(AII.22)

(AII.23)

(AII.24)

(AII.25)

(AII.26)

where Mjk is the determinant o f the (« -l)x (« -l) submatrix o f A, formed by deleting the j  row and 

k? column o f A. Thus for a 2x2 matrix

det A =
au an

a 2 \ a 22
-  aua22 a\2a2\

Four important properties o f determinants that play important parts either in this Appendix or in 

other Chapters are:

1. Interchange o f two rows o f  a determinant reverses the sign o f the determinant.

2. Multiplication o f a row o f a determinant by a constant c multiplies the value o f the 

determinant by c.

3. The value o f the determinant is zero if  any o f the rows or columns are proportional (or 

identical) to each other.

4. The determinants o f similar matrices are equal.

As proof o f statement 1, consider the case n = 2, then clearly (1) holds since

a b

and

c d

c d 
a b

= ad - b e

- b e -  ad
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For the order n matrix A, let B be obtained from A via the interchange of two rows, then by Eq. 

(AII.24) expanding about row j , j  not one o f the interchanged rows

k = \

detB = f j (.-\y*kaJkNJt
k =1

The determinant NJk is of course obtained from the determinant Mjk by the interchange of the same 

two rows which converted^ to B. These two determinants are o f order n-1. Then by induction, if 

(1) holds for the n-1 case it must hold for determinants o f order n. So clearly Njk =  -  MJk and det 

A = - det B, and statement 1 is proven for determinants of any order.

For statement 2, if B is obtained from A via the multiplication of row j  of A by a constant c, then 

expanding about this row

detS = X ( - l ) y+‘ ^ ^ t
k =1

=  £(-1  r kcaJkM Jk
k =1

= c ^ ( - \ ) J+k a jkMjk = cdetA
k=]

and statement 2 is proved.

Considering statement 3, if  in matrix A, row j  is equal to c times row i, then by (2) det A = cdet B 

where for matrix B, row j  is identical to row i. Interchanging these two rows will leave det B
unchanged, but by (1) det B will change sign, implying that det B = - det B i.e. det B = 0 and

therefore det A is also zero, and statement 3 is proved.

To prove statement 4, for similar matrices A and B,B = P']AP then

dQtB = dQt(P-'AP)

= d e tP -1 det A det P
= det A (AII.27)

since det (AB) = det (BA) = det A det B (see Kreyszig [50]). Therefore the determinants o f similar 

matrices are equal.

Returning to the main discussion and applying the above aside to the case at hand, from Eq.’s
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(AII.24) and (AII.26) the determinant o f  a diagonal matrix must simply be the product o f its 

diagonal elements, and therefore a product o f its eigenvalues. So if  a general matrix can be 

diagonalised by a similarity transform i.e. if  it has a spanning set o f  eigenvectors, then by Eq. 

(AII.27) its determinant and that o f its diagonalised form must be the same, and since its 

eigenvalues must remain unchanged then

detA = AlZ,A3...A„ (AII.28)

for a general, diagonalisable nxn matrix^1".

Furthermore, i f  A is upper triangular Eq.’s (AII.24) and (AII.26) clearly indicate that its 

determinant is again purely dependant on the product o f its diagonal elements. Then since

it follows that

det ( A - A , I )  =

{ A - ^ I ) x t = 0

a \\ A'i an

a 22 ~  ̂ 7

0

= n < « , - 4 )
y=i 

=  0

a In

a 2 n

a — A-n n  i

(AII.29)

(AII.30)

implying that ,4’s diagonal elements are again its eigenvalues.

Ergo, the QR factorisation technique, as described above, will, when applied to a real tridiagonal 

matrix, transform it such that it becomes an upper triangular matrix and therefore will have its 

eigenvalues lying along its main diagonal. Further details o f  the QR method and strategies to 

accelerate its converge can be found in Wilkinson [124] and Stewart [125].

For a numerical example, the ^-factorisation method, as described above, applied to the matrix

6 - V l 8 0 0
V l8 7 0

0 v r 6 0

0 0 0 3

111 This in fact true for any matrix A -  see Kryszig [50] and Byron and Fuller [69]
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ascertains its eigenvalues to within ~ lx lO '5 % o f  their exact values, namely 11, 6, 3 and 2, after 

around 10 iterations.

Having extracted the eigenvalues o f  a matrix, the next stage is to determine its eigenvectors. A 

particularly useful technique is inverse iteration. Essentially, from a non-zero starting vector x(0), 

inverse iteration, or the inverse power method as it is sometimes known, generates a sequence o f  

gradually improving estimates through solving

(A -  a l )x (k+1) = x (k) k = 0,1,2... (AIL31)

for x(k+l\  where cr represents an approximation o f the eigenvalue corresponding to the eigenvector 

being determined. Practically, is normalised after each iterative step so that actually x(k)x(k) = 

1 in Eq. (AII.31). Expanding x(*+1) and x{k) as linear combinations ofyf’s exact eigenvectors, y„ Ay,

= Ay, so that

then

therefore

and

= Y j a , y ,

/

t - ^ y *  =

(AII.32)

A, -  cr

= V # ^ -  (AII.33)
- a

This means that if  cr is close to an eigenvalue Am then x(k+V) will be richer in y n than in any other 

eigenvector, and, provided /3„ is not too small, will approximate y„ well up to a normalisation 

factor.

To enhance the estimate o f the eigenvalue for iterative step k, consider the action o f  the exact 

eigenvector in Eq. (AII.31):

(A -  <rkI)y„ = (A„ -  <rk )yn (AII.34)

now, substitute the improved vector x(A+1) for and let A„ be the improved eigenvalue estimate, 

tTk+], then the LHS o f  Eq. (AII.34) is equal to x(k) and so
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+ x(k)x(k+]) (AII.3 5)

using the x̂ k)x(k) = 1 normalisation relation [52].

To solve Eq. (AII.31) for x(*+1), a selection o f techniques can be used, including the iterative 

Gauss-Seidel method. For an nxn matrix system Ax = b, it returns the vector x and is particularly 

competitive computationally, like with all iterative methods, i f  the matrix A is large and sparse.

For this first stage o f  the Gauss-Seidel method, rearrange the system o f  equations so that no 

diagonal coefficient is zero, then equate the elements to \ , j  =1 to n, by diving through each 

equation by the current value o f aJP then factor

A = I + L + U  (AIL 3 6)

where L and U are lower and upper tridiagonal matrices respectively with their main diagonals set 

to zero. Since Ax = b and Ix = x then

x = b - L x - U x  <AII-37>

As this is an iterative procedure, the accuracy o f  will in general be greater than that o f  x{k). 

This improved data o f the advancing cycle can, at times, be used to enhance the accuracy o f the 

current cycle. For instance, during iteration k after working with row 1 o f the matrix, there exists

an improved jc*+1 which can then be used in the remainder o f the k cycle and so forth. Explicitly,

x(k+l)= b - L x (k+])-Ux{k) (AII.38)

The convergence o f any iterative sequence is dependant on the connection between x{k) and x(W). 

Rearranging Eq. (AII.38) so that

(I + L)x(k+l)= b - U x (k) 

then multiplying by (/+ !)'1 on the left yields

x( ^ = C x ik)+ ( I  + Lylb (AIL 3 9)

where C = -(/+Z,)'1 U, and is referred to as the iteration matrix. If the spectral radius o f C (denoted 

as p(C) and equal to the highest magnitude eigenvalue o f C, max|£] ) is less than one, then the 

sequence converges: a s 1V,V

1V For each eigenvalue Cs o f  C there is a corresponding eigenvector us which can be normalised to any vector 
norm, thus ||u5|| = 1. Therefore ||C|| > ||Cus|| = HCiMI = |£l- This relationship holds for all the eigenvalues o f  
C, including the largest, hence Eq. (AII.40) [126].
v A vector norm for a vector x is denoted by ||x||. Common norms are the /r norm:
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P(C) < ||C|| (AII.40)

then it is possible to find an infinitesimally small quantity e > 0 such that ||C|| < p(C)+s < 1 with 

p(C) < 1. Given that \\AB\\ < \\A\\ ||5||, then ||C*|| < ||C||* < 1 so

lim || C k\\ = 0  (AII.41)a:—>00 v '

and Eq. (AII.39) will tend to some fixed value i.e. it will converge. Since

lim ||C ||* > lim ||C * ||
A:—>oo A:—>oo

a condition that is used practically as sufficient for convergence is

IÎ H < 1 (AII.42)

The spectral radius o f C can be used to accelerate the convergence o f the Gauss-Seidel technique.

From Eq. (AII.38)

*(*+!) = *(*) + b . Lx(k+l)- (U+ I)x(k) 

then the addition o f a factor co > 1 creates a Successive Over-Relaxation (SOR) formula for the 

Gauss-Seidel method

x(i+1) = +a> (b - Lx(l* ])- (U + I)x{k)) (AII.43)

Kreyzig [50] recommends the value

2
co = ------  ------ (AII.44)

i +Vi  - p ( C )

II X 111 =| AT,| + | x2| +... + I x j
the Euclidian or /2-norm: 

and the /co-norm
|| x 11̂ = m a x |x ,  |

j

Similarly, ||/1|| represents the norm o f a square matrix, and again, there are different choices o f  norm. 
Commonly there is the Frobenius norm

the column sum norm

|| A ||= m a x ^ | ay \
^ i

i.e. take the sum o f in column j , j  = 1 ,2...«, and then take the largest o f  these sums, and the row sum
norm

A ||= max y * | atj
j

i.e. take the sum o f \a^ in row i, i = 1 ,2 ...« , and then take the largest o f  these sums
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As a numerical example, these two iterative methods, GS and SOR, applied to the matrix-vector 

system

1 - 1 / 4 - 1 / 4 0" '50"
- 1 / 4 1 0 - 1 / 4

x =
50

- 1 / 4 0 1 - 1 / 4 25

0 - 1 / 4 - 1 / 4 1 _25_

where the exact value for x is

"87.5'
87.5

x =
62.5

62.5

generate vectors accurate to ~ 5 x l0 '7 % and ~ lx lO '13 % respectively, after only 15 iterations.

Utilising the SOR method within the inverse iteration technique, the eigenvectors o f  the matrix

' - 2  2 -3"

2 1 - 6  
-1 - 2  0

can be found, agreeing with exact eigenvalues

1' " -2" "3"
2 x2 = 1 * 3  = 0

-1 0 1

to similar accuracy.

AII.3 Derivatives of Analytic Functions

Iff[z) is analytic on and within a closed contour C, its value at each point within C is determined 

by its values on the bounding curve C. This is known as Cauchy’s integral formula and can be 

expressed as [69]

_ =_Lf JM
where zo is any point within C.

Given Eq. (AII.45), then by the definition o f the first derivative

y (^ o ) =  ~z r jL d z  (A II.45)2m Jc z - Z q
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Z\-+Z0 Z , -  Zr

= — lim <£
2/Z7 Zi-*Z0JC

= — lim I -----
2 m z ,-> zn Jc ( 7  —

m  n z )
Z Z\ Z Zr

dz

Zy — z,1

f ( z )
2m *i-«o Jc (z -  Zj )(z -  z0 )

-fife

therefore

/'(Zo ) -  7 T 1  ^ (Z). 2 ^  = 7 -  1™  f  / 0 )2 m Jc ( z - z 0) 2 m z l-*znJc2m  z\ -*zo'
1 1

= — lim (z, -  z0 )<f-----
2 m z ŷ z 0 *c ( z -

(z -Z jX z -Z o )  ( z - z 0) 2

m

dz

( z - z i ) ( z - z 0y
-dz (AII.46)

From the bounds o f  absolute magnitude

— l i m( z ,  - Z q) ! ----------------------- -J z  < —  l im ^ l
2/n zi->2o Jc (z  -  Zj )(z  -  z 0 ) 2 n  £->° *

m \ \  dz\
c \ ( z - z 0) - £ e ‘ || z - z 0 |

where ze 'e has been set equal to zy -  z. Using the ML-inequalityvl [50] and replacing | z - z 0 | by its 

minimum value, / a and | j{z )  | by its maximum value, M,  then

/ ( z )  || dz  |
* l im d

2;r*-»° J c | ( z _ Zo) _ £ g ^  || Z - Z 0 I2 2 n  /J2 £^ n ~ £  

and thus the LHS o f  Eq. (AII.46) is zero and so

/ ' ( z 0 ) =  — <f - J ^ - d z  
2m Jc ( z - z 0)

Indeed, for the rcth derivative

/<»)fz  i _  n! x  / < z >
0 2® *  ( z - z 0)”+1

fife (AII.47)

The requirement that f i z )  be analytic implies the existence o f all other derivatives, the 

derivative being continuous within C as a consequence o f the existence o f the («+1)* derivative. 

A function is deemed analytic in a domain if  it possesses a continuous derivative everywhere 

within that domain, and so all the derivatives off{z )  are also analytic.

ML-inequality:

£ /(z )< fe <ML

where M  is a constant such that for all values o f  J/(z)| on C, ]/[z)| < M, and L is the length o f  contour C .
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Appendix III

AIII.l Introduction to the Calculus of Variations

An important problem o f calculus is the determination o f the stationary values o f  a function / F o r  

a function o f several variables, f{x\, x2, ... jc„), this requires that

j L  = 0 ! = l,2 ,.. .,n  (AIII.l)
dXj

generally a task o f  no particular difficulty. However, suppose the problem is modified so that the 

stationary value o f a function /  must be found, but now subject to the constraint that a second 

function g(xj, x2, ... x„) must be constant. This is not straight forward: the partial derivative o f/  

with respect to jc, taken in Eq. (AIII. 1) requires that all other variables, x} where j  ^ i, remain 

constant, however, the existence o f a constraint means that it is not possible to vary one variable 

without also altering at least one o f  the other independent variables.

The differential o ff

df  = T , & dx‘ (AIH-2 ), OXj

must vanish for all small displacements from the stationary point. In the absence o f a constraint, 

dXj can be selected independently, and so it is possible to choose dbc, ^ 0, dxj = 0 then dfld5c, = 0 

and so forth. Introducing the constraint, then

<A I I L 3 >

and must always equal zero. Adding Eq. (AIII.2) and a multiple o f Eq. (AIII.3) yields

n ' 3 L + a * '
ydx, dxu

dx<= 0 (AIII.4)
/

which to be true for all choices o f dxh implies that

K  + ^  = 0 i = 1,2 n (AIII.5)
dx, dXj

This set o f  equations is identical to those generated in finding the stationary values o f  the function 

h , where h  =  f  + A g ,  without any constraints. A  is referred to as a Lagrange undetermined 

multiplier. If a set o f  constraints exist, gk, then Eq. (AIII. 5) becomes

310



A p p en d ix  III

(AIII.6)

introducing a separate Lagrange multiplier, A,k, for each constraint.

What if  this were to be extended, so that it is the form o f the function f  or even functions f ,  that 

are required such that a second quantity, itself a function o f the f ’s (known as a functional), takes 

a stationary value?

Classically, this is the root o f an alternative, but equivalent, formulisation o f Newton’s equations 

o f motion, known as the action principle. In essence, the foundation o f  this alternative 

methodology is the evaluation o f all possible paths between two points in time and the selection 

o f the one with the minimum ‘action’. This then is the route taken by the system and called the 

classical or Newtonian path [104].

Beginning with a simple scenario in the absence o f any constraints; consider a classical 

mechanical system specified by the coordinates q,(t), i = 1 to n with a potential V(qu qi, •••, qn, 0- 

Its motion will be determined by its Lagrangian, L, defined (non-relativistically) as the difference 

between the kinetic and potential energy o f  a system i.e.

with respect to the functions q,{f), i = 1 to n. The requirement that the action be minimised is 

alternatively known as Hamilton’s principle.1

qt ,q () = T {qt ,q t ) ~ V { q n t) 

the dot denoting differentiation with respect to time [69],

(AIII.7)

The functional o f the system known as the action is defined as the integral o f the Lagrangian 

between time U and ^

'i

and the Newtonian path is then the motion o f the system which minimises the action,

SS = 0 (AIII.9)

1 To be exact o f  course, the condition SS = 0 is only necessary for a minimum. The solutions q< could also 
generate a point o f inflection or a maximum in the functional S. Only on the physical interpretation o f  the 
situation is the extremum o f  S interpreted as a minimum.
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To calculate SS, deform the path by Sq, (t) , see Figure A3-1,

Figure AIII-1 Representation o f  varied path o f  q,(t) through the fixed points q,{t\) and q fo )

keeping both q,{t\) and qfo)  fixed i.e.

then

= 0

(AIII. 10)

(AIII.11)
dqt dq,

•1

varying the Lagrangian with respect to both changes in position and velocity. Integrating the 

second term o f  the integral by parts yields

SS
*2

■ S J
dt

'  1,

8L d dL 
dq, + dt dq,

d (  „ d O
S q i + ~ Jtdt \ dq,

=  0 (AIII. 12)

In addition, from Eq. (AIII. 10), the last term can be seen to equal zero, and so in general, the 

action is minimised if

dL d  dL . t „ 1 = 0 1 - 1,2, . . . ,«
dq, dtdq,

(AIII. 13)

These equations are known as the Euler-Lagrange equations, and their solutions give the form o f  

qt for which the action is a minimum. For instance, for an arbitrary potential V(x,y, z ) with

T = — m[xS + y 2 + i 2)

then

L = -^m(x2 + y 2 + i 2) -  V(x,y ,z)

with the Euler-Lagrange equations
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.. dVmx = -------
dx
dV

my = ~ —  
dy
dVmz = -------
dz

As -dV/dx is simply the force on the particle in the x-direction, vectorially the three equations can 

be written as

mix = F

Quantum mechanically o f course, the minimum action is only the most likely path o f  a system, 

there being a finite probability o f  alternate behaviour. The action has now been promoted to the 

fundamental object o f the system, and indeed, a generalised version o f  the Euler-Lagrange 

equations and Hamilton’s principle for an infinite number o f degrees o f  freedom is the comer 

stone o f  field theory.

To move beyond the simple classical scenario discussed above, consider that although Eq. 

(AIII. 13) minimises an integrand with n variables, q\(t), q2(t). • • qJJ), they are dependent variables 

as they all depend on the independent variable t . To add more independent variables, introduce 

the Lagrangian density, whose spatial integral yields the Lagrangian. In one spatial dimension 

(in addition to time) and for one dependent variable y(x, t), the action principle means that the 

function y  that describes the motion o f  the system is the one which causes

*2 *2 A2

S = ^Ldt = W  &dxdt (AIII. 14)

to be an extremum with respect to those functions y(x, t) which satisfy the given values o fy  on the

boundary o f the domain D. D  is defined on the two dimensional xf-plane by the rectangle xi < x <

x2, t ] < t <  t2. The Euler-Lagrange equation for this functional is then

d& d d<£ d d<£ A
+ (AIII. 15)) * 8 (ft)

) l d t )al£
Time has now lost any particular significance as an independent variable within the variational 

framework, and the action principle and the Euler-Lagrange equation have been generalised for a 

Lagrangian density simply o f two arbitrary independent variables.
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Generalising this to a system o f n independent variables x, i.e. extending the space to n- 

dimensions, and including m dependent variables, yp then the relevant Lagrangian density is o f  

the form

v v . v v v  fy\_ &!_ (K fy jE . fym.
^ 1  ’  2  ’ ’ x n ’ s i ’ S 2 ’ m ’ ~  » • • • »  ^

uXj uX| 3^2

where jy, = y /x i , x2, ..., x„). For the action

r r 1S'= Xj,yj ,— -  dxldx2 "'dxn
i  I

(AIII. 16)

(AIII. 17)

to be minimised, ^ = 0 ,  the set o f  Euler-Lagrange equations which give the extremising functions 

yj are

de£ ^  a d<£ A . 1A
• r ~ + L ~ s r  a = 0  v = u . . . . , » i
3 ^  I 8 * : J  f y j

I t e u

(AIII. 18)

It is now a convenient place to reintroduce the concept o f constraints. Analogous to finding the 

stationary value o f  a function j(x\, xj, ... x„), satisfying the set o f constraints gjx\ ,  xj, ... xM), the 

problem here is to determine the stationary value o f the multiple integral

dX]dx2 ' " d x n

satisfying the integral constraints

dxxdx2 -"dxr (AIII. 19)

where Jk is a constant, for the general case o f n independent variables (x,), m dependent variables 

(y,), and p  integral constraints (Jk). As in the case o f the simple function f  form the new function

p
^  “ (AIII.20)h = &  + Y d*'k8k
/t=i

where Xk are p  constant Lagrange multipliers, then the task o f extremising S given all Jk, is 

identical to applying the Euler-Lagrange equations to h

dh d dh A 1 _
—  +  2 , ^  r * .  \ = 0  7 =  U , . . , mdy

' d % 
Kdxi ;

(AIII.21)

As an example, regard the Lagrangian density
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e£ = -  
2

dy/* dy/ dy/* dy/ dy/* dy/
dx dx dz dz

+ V(x,y,z)y/*y/ (AIII.22)
dy dy

with three independent variables (jc, y  and z) and two dependent variables (the real, y/\, and 

imaginary, y/2, parts o f  the complex wave function y/ (= y/(x, y, z ) ) ) and where V is chosen to be 

real.

To minimise

subject to the normalisation constraint

5  = 1 <£dxdydz
D

J  = J ¥  *ysdxdydz -

form the function h,

h = <£ + Xy/*y/

/=]

\dy / ,
2

+ dy/ 2
2"

dx. dx.
+ {v + X%/^ + y/*)

(AIII.23)

(AIII.24)

(AIII.25)

re-labelling x ,y , zasx ] ,  x2 and jc3 for convenience, and the two Euler-Lagrange equations

1
Xy/i +Vy / i - - Y  —  

J J 2 f t d x ,
d ( dy/,

=  0 y = u (AIII.26)

follow. These equations can be written in the more familiar form o f the time-independent 

Schrodinger equation

1 ^-  — V y/ + Vy/ -  Ey/ (AIII.27)

should the Lagrange multiplier be identified with the negative o f the energy eigenvalue, X = -E 

[65].

Indeed, this rather neatly leads on to the perhaps commoner form o f  the variational principle in 

quantum mechanics, where, instead o f working with the Lagrangian formulation and its 

independent variables o f  ‘position’ (yj) and ‘velocity’ (dyj / 5x;), it is often more useful to work in 

the alternative and comparable Hamiltonian formulation and its independent variables o f  

‘position’ ) and ‘momentum’ (dL/d(dy  ■ / dxt)).
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In this way, Schrodinger’s equation Eq. (AIII.27), or (H - E)y/ = 0, follows from the equivalent 

route o f seeking the function y/ such that the expectation value o f the Hamiltonian, in

the Dirac notation o f  Chapter 4, is minimised i.e. S(y/\H\y/) = § , subject to the normalisation

constraint (y/ | y/) = 1 [70]. It is therefore required that

where A is the unusual lagrange multiplier. Given that

(y/\H\y/) + A(y/\y/) = j*{y/*Hy/ + Ay/*y/)dxdydz = j*/z dxdydz
D D

and
* 7 2♦ y/ V y/ .y/ Hy/ = - - — — + Vy/ y/

= ̂ S7y/* - Vy/ +Vy/*y/

1 4^dy/* dy/ .

2 M dxi dx,

then proceeding as before, it can be seen that h  is the same as in the Lagrangian formulism, see 

Eq. (AIII.25), and as such, the Euler-Lagrange equations applied to h  are given by Eq. (AIII.26), 

and identifying A = -E then once again (H - E)y/ = 0 results.

AIII.2 Introduction to Green’s Functions

Green’s functions perform a pivotal role in many branches o f  modem quantum physics. An 

extensive topic, linking differential and integral equations, Green’s function theory cannot be 

comprehensively be covered in one short Appendix and for further detail introducing this rather 

vast subject, the interested reader is referred in particular to Economou [105] and Byron and 

Fuller [69].

AIII.2.1 Time-Independent Green’s Functions

The Green’s function o f the linear, Hermitian, time-independent, differential operator L is defined 

as the solution o f the differential equation

(A -  L)G(r,r';A) = -S {r -  r') (AIII.28)

subject to certain boundary conditions. The operator L is taken to possess a complete set o f  

orthonormal eigenfunctions, {(p„}, such that

3 1 6



A p p en d ix  III

(/lM- Z ) ^ ( r )  = 0 (AIII.29)

where Xn are the corresponding eigenvalues o f  the eigenfunctions q>„. {(p„) satisfy the same

boundary conditions as G.

Once G is known, then it can be used to solve equations o f the form

( ^ i M r ) = - / ( r )  (AIII.30)

generating the particular solution with the integral(s)

v(x)  = jG (r , r U ) / ( r V r '  X± {X n} (AIII.31)

y/{r) = <pt (r) + J G(r, r Xt )f{r')dr'  X, = {X„} (AIII.32)

The proof o f this is straightforward. For the general inhomogeneous differential equation given in 

Eq. (AIII.30), expand ^ a n d /in  terms o f  the complete set o f homogeneous eigenfunctions, such 

that

(Kr) = £<*„?>„ 0 )  (AIII.33)
n =0
CO

/ ( r ) = X A f t ( f )  (AIII.34)
n = 0

and similarly for the Green’s function G:

G(r, r';A) = f > „ ( t ) a ln (r') (AIII.35)
M=0

Substitution o f Eq. (AIII.35) into Eq. (AIII.28), with the expansion o f  the delta function as

8{r ~ r ') = X  <P„ (r)<p* (r ') (AIII.36)
n = 0

yields

V" " X  X«V» ^  = “ Z  V n (r 1 (AIII.37)
n = 0  «=0 n = 0

and substituting both Eq. (AIII.33) and Eq. (AIII.34) into Eq. (AIII.30) results in

co

^ ( X a „ - X „ a „  + fin)pn = 0
M=1

which, from the linear independence o f  <p„, implies that

« „ U „ -A )= /? „  (AIII.38)
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If X does not equal any o f the discrete eigenvalues X„ then

<Pn(X)Pn
K r )  = X

n=0 X„ X

<pn(x) 
X . - X«=0 '',n

using (()„ s orthonormality. The orthonormal nature o f the eigenfunctions also implies that

a i (  O f t , - * ) = * > • )  (AIII.39)

from Eq. (AIII.37). Then on interchange o f the summation and integral

n=0 X„ X
■f(r')dr'

= J G(r, r'; X)f(r')dr' (AIII.40)

as required, and where the Green’s function satisfying Eq. (AIII.28) is given by

G (r , r U )  = t ^ f >
on combining Eq. (AIII.35) and Eq. (AIII.39).

n=0 Xn X
(AIII.41)

When X is equal to one o f the eigenvalues X„, a solution to Eq. (AIII.30) only exists if  p n = 0, as 

can be seen from Eq. (AIII.38). For m not equal to n then

m*n Xfn X

is a solution to Eq. (AIII.30). However, given that

(X-L)(pn( r) = 0

is true, then y/- (p„ is also a solution o f Eq. (AIII.30) since

(X -  L)[y/{r) -  (pn (r)] = ( X -  L)y/{r) - ( X -  L)(pn (r) 
= - / ( r ) - 0

Therefore, in general

V ( r )  =  P„(r) + jG (r, r U , ) / ( r ' ) * ’ 

where the Green’s function G(r, r'; X„) is given by

G (r ,r U w) = Xm*n Xm Xn

(AIII.42)

(AIII.43)

(AIII.44)

(AIII.45)

(AIII.46)

However, in this case, although referred to in the literature (see for instance Krieger et al. [21] or 

Engel and Driezler [81]) as a Green’s function, G(r, rf; X„) is not in the strictest mathematical
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sense, as it does not satisfy Eq. (AIII.28) for all {(pn).

Applying the same orthogonality arguments for m ± n as in the A ± X„ case, then from Eq. 

(AIII.37)

= m * nVm (r>)
A'm ~  A'n

and Eq. (AIII.28) is satisfied, but for m = n, Eq. (AIII.37) implies that

O  = o

which is inconsistent with the definition o f an eigenvector. Indeed, Economou [105] states that

“...G(z) is uniquely defined if  and only if  z £ {X„}. If z coincides with any o f the 
discrete eigenvalues o f L, G does not exist...”

where G(z) is an abbreviation o f G(r, r'; z), Economou’s z representing the X o f this appendix.

This said, considering the limit where X in G(r, r'; X) tends to X„ : 

lim (X -  L)G(r, r'; X) = lim ( A  -  Z ) V - ^ 5 2 ^ 1 2

= lim (A - Z ) y ^ (r)^ (° + lim ( X - X n) ^w(r)^” (r>)
^  £ :  ^  K - * -

m=0

= -< 5(r-r ') (AIII.47)

it can be seen that G(r, r r; X„) does however satisfy

(Xn - L)G(r , r';Xn) = -S (r  -  r') + <pn(r)<p*(r ') (AIII.48)

Should the operator L have a continuous spectrum o f eigenstates, o f  which A is a member, then 

G(r, r f; A) can normally be considered to exist, but will not be unique as any general solution o f  

the homogeneous equation can be combined with G to also form a solution. As L is Hermitian its 

eigenvalues will be real, and so a ready avenue in working with such Green’s functions is to 

extend them into the complex plane, integrating around the branch cut resulting from the 

continuous eigenstates. See Economou [105] for instance for further details.

To exemplify, regard the problem in Chapter 4 o f  calculating the perturbations, 8s  and 8f/, o f  the 

eigenstates o f Eq. (4.46),
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V2
— ^ - +  vs (r ) v/ i ( r ) = £ iv/ i (T) 

resulting from a small change, Svs, in the potential vs.

Explicitly, Eq. (4.46) becomes

V 2
-  — + v , ( r ) - s , {Vi (r) + Sy/, (r)) + (r) -  ds \y / i (r) + 8y/i (r)) = C

which, using Eq. (4.46) once again and from

0 » 8vs8y/, 
0 « 8ei8y/i

Eq. (AIII.49) reduces to

■ — + v,(r)-<e, Sv ,  (r) = (Ss -  (r )V , (r)

multiplying by y/* and integrating over all space yields

< & ,-  =  J  V* ( r ) ^ 5  (X)¥i

The Green’s function o f Eq. (AIII.46) is taken as the solution o f  the equation

" —  + vs( r ) - £ , G(r,r'; s -x) = 8(r  - r') -  y/t (r)y/*(r')

and then from Eq. (AIII.32), the solution o f

■ + v , ( r ) - * f- (y/, (r) + 8y/i (r)) = (Ss -  8vs (r )V , (r)

will be

y/t (r) + 8y/i (r) = y/t (r) + J G(r, r'; et ){Ss -  Svs (r ')V / (r')dr’ 

This can be written as

Sy,  (r) = - J  G(r, r'; s,  )& , ( r > ,  (r ' ) * '

on realising that

jG(r,r';£-,y;(ryr' = 0

(AIII.49)

(AIII.50)

(AIII.51)

(AIII.52)

(AIII.53)

(AIII.54)

(AIII.55)

(AIII.56)

(AIII.57)
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AIII.2.2 Time-Dependent Green’s Function

This section will limit itself to linear partial differential equations o f first order in time only, as 

applicable to equation o f the form o f the time-dependant Schrodinger equation for example.

Analogous to the time-independent situation, for a partial differential equation o f the form

_ £ E _ j ^  = 0 (AIII.58)
dz

where z  is a time variable, the associated Green’s function is defined as the solution o f the 

equation

-  -J- + Z, |G(r, r'; z,z')  = -S (r  -  r')S(z -  r') (AIII.59)
\O Z  J

L is a linear, Hermitian, time-independent, differential operator which is assumed to possess a 

complete set o f orthonormal eigenfunctions, {<p„}, such that

(A„ - L y p n (r) = 0 (AIII.60)

To solve Eq. (AIII.58), proceed as before, and expand if/ in terms o f (p„

\f/{r,z) = Y j a n{z)(pri{r) (AIII.61)
n = 0

the r dependence o f <// introduced through r dependent an. Substituting Eq. (AIII.61) into Eq. 

(AIII.58) yields

~da„(z)X
n

(p„ are linearly independent so

dr
+ A„a„(T) <p„(r) = 0

+ = 0 (AIII.62)
dz

and the solution o f Eq. (AIII.62) is simply

a„ (t) = e~i"(’~T)a„ (r') (AIII.63)

where a n{ z ' ) follows from (p„ s orthogonality:

«»(*■') =

Consequently

^(r, z )  = f j <p„ (r]e~UT~T,) |  <p* ( r > ( r ' , r V r '
«=o

which can be written as
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y/{r,z) = J g ,  (r, r z ,r > ( r '  r'>/r' (AIII.64)

where

G, (r, r';T,T') = Y d<pn (r )tp'n (r (AIII.65)
n=0

The function Gi is not a true Green’s function, satisfying as it does

^ 0  '
—  + L

ydz  j
G j(r,r';r,r ') = 0 (AIII.66)

but is often referred to as the propagator o f the function since it propagates if/ from time x' to time 

x, where x > x'. The subscript 1 on the function G\ indicates that it pertains to an equation o f first 

order in time.

But what of G proper? Eq. (AIII.65) indicates that as x approaches x' then

lim G, (r, r'; z, r ')  = 8{r -  r ')  (AIII.67)

recalling the expansion of the delta function in Eq. (AIII.36). From the definition o f G, Eq. 

(AIII.59), G must satisfy Eq. (AIII.66) everywhere except at the point r = r', x = x\ Motivated by 

this observation, propose that G] be combined with the Heaviside function #(x-x') so that

G(r, r r, z) = Gx (r, r'; r, t)0(t -  z') (AIII.68)

where the Heaviside function is defined by

, fl z - z ’> 0
^ - r )  = lo r - r - s o  (AI1L69)

and as such its derivative is a delta function
rs

—  6{z -  z') = S(z -  z') (AIII.70)
dz

Substituting Eq. (AIII.68) into Eq. (AIII.59) yields

G (r,r';z , z ’) = [Gx ( r , r z,z ')6{z -  r ') ] -  l [G} (r, r z , z ' ) 0 ( z  -  z')]
dz

f  d h L
dr

Gx (r, r'; z, z')0(z -  z ’) -  Gx (r, r'; r, z ’)8{z -  z')
J

= - G ](r ,r ' ; z ,z ,) S ( z - z f) (AIII.71)

making use of both Eq. (AIII.66) and Eq. (AIII.70).

Since the delta function is equal to zero except at x = x', G\ need only be evaluated at x = x', and
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therefore, according to Eq. (AIII.67), Eq. (AIII.71) reduces to

as required.

(AIII.72)

As G is a true Green’s function, then for the partial differential equation

the wave function y/ follows from

(AIII.73)

y/(r, t) = y/ o (r, r) + J G(r, r'; r ', T')dr'dT' (AIII.74)

where y/o is the solution of the homogeneous equation. For the Schrodinger equation for example, 

the term F(r, x) might represent a perturbation o f some kind -  see Chapter 7. This chapter also

time difference r  - r' allows it to be related to the time independent Green’s function, discussed in 

the earlier subsection.

AIII.3 The Addition Theorem

The proof of the addition theorem of spherical harmonics

is layed out in Arfken and Weber [65] and is the method followed here.

For the coordinate systems depicted in Figure AIII-2, x2, y 2, z2 are related to x\, y u z\ by the 

rotations 02 and $>, and a given point can be specified by both (6\, (fh) and (y, y/), in the axes x\, 

y u Z] and x2, y 2, z2 respectively.

Assuming that a functionX#, <t>), to be evaluated over the surface of a sphere, can be expanded in 

a Laplace series", then

11 Laplace series: convergent double series of spherical harmonics, such that a suitable function/,  evaluated 
on a surface of a sphere, can be represented

highlights the property of the time-dependent Green’s function that its dependence solely on the
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X\

Figure AJII-2 Representation o f a point on two different coordinate axes, fa) denoting its 
position relative to Z\ and (y, fa) denoting its position relative to x2, y2, z2- The axes x2, y 2, z2 
are obtained from x },y\, Z\ by the rotations 02 and fa. Angular coordinates o f  the point are in bold 
for clarity.

m , f a ) =
Y " \Q ^ fa )  relative to x ], y ], z ]

n

Y j a^ K ' ( r ^ )  relative to x 2, y 2, z :
(A11I.75)

dropping the n summation since the Legendre polynomials are an eigenfunctions o f L2 with 

eigenvalues n(n+\).

Multiplying by Y"*(y,i//) and integrating, then

or

\ m , h ) Y ° \ Y , ¥  =o„

jr:(.dl,h)Y°-(r.v')dnn,=a (AII1.76)

Now, if  the Legendre polynomial Pn(cosy) has the Laplace expansion

Pn(cosy) = ^ b „ mYnm(Ox,fa )  (AIII.77)
m = -n

where the dependence on 02 and fa is built into bnm, then multiplying by the complex conjugate o f
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Y™ and integrating over the sphere yields

Jj>„(cosr ) C - ( 0 i . A ) ^  =b,

which can be written

J ^ f r „ ° ( y , r ) r r ( 0 tM d n = b „ m (aiii.78)

The subscripts on the solid angle Q have been dropped since over the range of integration the 

choice o f polar axis is immaterial.

Equating Eq. (AIII.76) and Eq. (AIII.78) implies that

'n m  ~  “ nO „  0  , *2n + \
(AHI.79)

Then on realising from Eq. (AIII.75) that at y = 0, P„(l) = 1 while P " (1) = 0 /w ^  0 then evidently

(AIII.80)

and so

A K

c w m )

(AIII.81)

In  + 
An 

2n +1 
An

2n + l

which, on taking its complex conjugate allows Eq. (AIII.77) to be written as

A n
7>„(cosr)=— - 2 >&)

2n +1 „m = -n

as required.
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Appendix IV

AIV.l Mutual Capacitance of Two Spheres Using the Image Charge Method

The image charge method is an approach that can be used to calculate capacitance in a situation 

where the geometry o f the problem can be complicated. Essentially, the method seeks to simplify 

the problem by ‘removing’ the problematic charge distributions and ‘replacing’ them with a set o f 

‘image’ point charges that duplicate the ‘old’ potential.

For the approximation o f the tunnelling behaviour used in the main body o f this work, it is 

assumed that the capacitance o f the two junctions can be adequately described by their mutual 

capacitance only, and this capacitance is, in general, independent o f the voltage applied across the 

junction. In this way, the voltage across the junction being modelled can be set arbitrarily, and so 

it is acceptable to place one side o f the junction at OV.

Consider the case o f the two conducting spheres in Figure AIV-1.

Figure AIV-1 Schematic o f two conducting spheres, labelled S\ and S2, o f  radii r\ and r2 
respectively, situated a distance 6 apart. The separation o f the centres is d.

The potential at the surface o f sphere one, 5 j, can be duplicated by a point charge, q0, at its centre 

satisfying

q0 -  4nVrxs x (A IV .l)

and the same can be said for sphere two, S2, except that this charge is o f course zero.
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However, if the two spheres were removed, then the two point charges cannot simply replace the 

spheres as matters stand because the charge qo will perturb the potential at the former surface of 

S2. Another point charge is now needed, say qu within the former S2 and of opposite polarity to q0 

in order to negate the effect of q0 and restore the potential at the former surface of S2 to zero, see 

Figure AIV-2.

Figure AIV-2 Representation of first steps of the image charge method applied to Figure AIV-1. S\ 
has been replaced by the point charge q0, and S2 has also been removed. The image point charge q\ 
has been placed within the former locus of S2 and lies a distance a  from q0 and a distance d\ from 
the centre of S2. The point (x, y) represents an arbitrary point on what would be the surface of S2.

Therefore, for an arbitrary point (x, y)  on the former S2 s surface, the relationship

0 =
1 1

V*2 + y 2 4 Tie 2 2 
+ y

(AIV.2)

must hold. Having ‘removed’ the two spheres, the permittivity of the space in which they were 

imbedded is now uniform, and as such can be cancelled out from the above expression, making it 

largely immaterial. The 3-dimensional problem can be solved in the 2-dimensions of Figure AIV- 

2 without any loss of generality; the rotational symmetry around the horizontal x-axis ensuring 

that (x, y)  represents any point on the surface of a sphere.

Letting

then Eq. (AIV.2) can be written

(AIV.3)

1 P
x 2 + y 2 (x - a Y  + y2 , . . 2

which implies that
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a
j3z - i  / r - i

and therefore

jc-
1 - / T

2 o  2
2

+ /  = (AIV.4)
( l - / ? 2)2

the equation of a circle of radius af3 /(l-/?2) centred on (a / (  l-/?2), 0). Ergo, the radius of £ 2  must 

equal aft I ( \ - f t2) and d  must equal al{\-(52\  and as such j.3 = r2 / d, so therefore

(AIV.5) 

(AIV.6)

q ' = - 7 q°

d, = d -  a  = —
1 J

Given that r2 < d  then J3<\, implying that \q\\< \qo\. Also, since d -  a  = f t  r2, then d - a <  r2, and 

therefore the charge q1 must lie within S2; as mentioned earlier, pre-empting this result.

The old boundary of S2 is now back at 0V, however, q\ has perturbed the potential at the old 

boundary of S\. Therefore, an image charge of q\, q2, is needed within S] to compensate for q\, as 

illustrated in Figure AIV-3.

Figure AIV-3 Representation of first steps of the image charge method applied to Figure AIV-1. 
Further image charges have been placed within the old loci of their representative spheres: q2 a 
distance d2 from the old centre of S\, and q\ and q3, residing d\ and d3 respectively from the old 
centre of S2. As described in the text, this process continues indefinitely.

Repeating the previous reasoning, then rx must now equal and (d  - dA) must equal a

/( I -(52). Thus P= r\ I {d - d\) and therefore

9 2 =
r,r-1 2

d 2 -  rl '9o (AIV.7)
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d  = - ^ ~
2 d 2 - r 2 ( A I V . 8 )

using Eq.’s (AIV.5) and (AIV.6). q2 perturbs the potential at S2, and an image charge o f q2, q2, is 

needed and so on.

The mutual capacitance o f S\ and S2 is then the sum of the charges contained with S2, qz, divided 

by the potential difference between the two spheres, V:

r  = <H_ = 9i +^3 +(is
mutual y  y (AIV.9)

The series qz is rapidly convergent, |<?2n+i| < \qin-\\ n a positive integer, making the image charge 

method a practical and useful tool.

Applied to the Tip-QD junction as described in Chapters 6 and 7, for a tungsten sphere o f radius 

0.9nm separated from a SnC>2 sphere o f radius 4nm by a distance o f ~ 0.7nm, then Cmulua/ ~ 

9.55x10'20F.

The second junction described in the above Chapters, QD-substrate, is between a sphere and a 

conducting plane. Consider now a point charge q situated a distance d/2 above a conducting 

plane at OV, see Figure AIV-4(a).

(a)

Substrate

(b)

Figure AIV-4 Diagram representing (a) a point charge +q situated a distance d/2 above a substrate, 
representative o f a conducting plane, and (b) a point charge +q and its image -q  separated by a 
distance d. The lines emanating/terminating from the point charge(s) indicate the electric field.
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Removing the plane, the potential can be recreated simply by replacing it with a mirror charge -q, 

placed a distance d/2 below the former plane, see Figure AIV-4(b).

In this way, the image charge method applied to calculating the capacitance of two spheres can be 

applied to the problem of the capacitance between a sphere and a plane of separation d/2 by 

replacing the plane by a second sphere, o f equal radius to the first, the pair separated by a distance 

d. For the QD-substrate junction of Chapters 6 and 7 with a Sn02 sphere of radius 4 nm separated 

from the Si substrate by a lnm thick oxide layer, the mutual capacitance is Cmutuai ~ 4.44x10'18F.

AIV.2 Fermi’s Golden Rule

For the time-dependent Schrodinger equation (TDSE), represent the full (perturbed) Hamiltonian 

o f the system as the sum of the unperturbed reference Hamiltonian H0 and a small time dependant 

perturbation H\

(H , + H 0 ) v ( t )  =  i t i ^ p  (AIV.10)
ot

For the unperturbed case the solutions H 0<l>n =hcon<f>n are assumed to be known, hcon\he 

eigenvalues and the eigenvectors of H0 fulfilling the usual normalisation conditions.

Given that the perturbation, H h is small, it is possible to describe the wave function of the 

perturbed case as a series expansion of the unperturbed case

=  (A IV .ll)
n

then from the TDSE

+ h £  ̂  ( t f o - w  = £  + * 1 0.C.
n d t  n n (AIV.l 2)

implying that

(AIV.13)
n Gt n

Multiplying by (j)*me +,<0mt and integrating over all r, naturally recalling the orthogonality condition 

that <̂j)*Jmd \  = 8nm , then

ifl ̂ d P ~  = ^ C" (AIV-14)
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with

0) m n = ° > m - “>n (AIV.l 5)
=  J'fmH^„d3r

When the perturbation is turned on at time t = 0 let the system be in an initial state k, therefore 

c*(0) = 1 while c„(0) = 0 n ^  k. Assuming that for a first-order approximation, scattering out of 

this initial state over time is negligible, then in general crfj) = 1. Ergo, from Eq. (AIV.l4) it 

follows that

= H  M  (AIV.l 6)
dt mt

and so

(>) = X  = - ^ - ( l  -  e“" - ') (AIV. 17)
s o

Therefore, the probability at time t that y/ is an eigenstate of H0 with energy hcon is

ĉo=|(̂ k(o)|2
= m 2

I M

i „  |2 ,  ^
I nk\ a . 2 ’__2| ^ n k t-4 rsinc ' (AIV. 18)

* 1 2 ,

When t -»  oo, a time long enough to ensure that the scattering process, in this case the tunnelling 

event, has been completed, then from the imaginary part of

J2a jz

integrated over a closed semi-circular contour in the upper half of the complex plane, where its 

residue was obtained from its Laurent expansion, it follows that

sin2( < y / 2 )  = ln t  (AIV. 19)
J2 2

that is, for t —> oo, 4Z2 sinc(cOnk t i l )  has the properties o f a delta function, 27tfS(conk). The 

transmission probability per unit time from state k  to state n i.e. the rate of change of P„(t) is

= 4 K « | 2 = i r l  H„„\2^ J  = ~ \ H J 2S ( E „ - E k ) (AIV.20)
at n 1 n 1
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using 5(ax) = |£ar|-1S(jc). This implies that a scattering process only takes place if energy is 

conserved, see for example Gasiorowicz [100]. Eq. (AIV.20) is a form of the famous Fermi’s 

Golden Rule [70].

For the tunnelling processes described in Chapters 6 and 7, work has to be done by the power 

source for the electron to tunnel between sites, and energy is taken to charge the grain by the 

arriving electron. With each tunnelling event then, there is an associated change in the energy of 

the system. This has been measured via the Helmholtz free energy, and as such, this change in 

the free energy associated with the evolution of the system from state k  to state n, AF, should be 

reflected in the matrix element Hnk i.e.

H nk^ H nke - ^ tlh (AIV.21)

and so following through Eq.’s (AIV. 14) to (AIV.20), the rate of tunnelling between the initial 

state k  to the final state n is given by

r t ^ = ^ \ H nt\2S (E „ -E t - A F )  (AIV.22)

In this way, summing over all the available states, the total rate of tunnelling from the occupied 

states, labelled /, on one side of a barrier to the unoccupied states, labelled j ,  on the other side of 

the barrier is found from

r(A F ) = ̂ - f M Ef  - E , - A f ) (AIV.23)n . f

f n representing the Fermi occupation factor. Taking the states to be densely packed then the 

summations can be converted into integrals in momentum or k-space i.e.

2 > 2 f - r \J(2?r)3

per unit volume, realising that there are two possible electron states, due to spin, for each state of 

Eq. (AIV.23). The differential wave vector element can be simplified via c^k = dElk1  ̂dk, dQk the 

solid angle differential, so that

_ r d 3k ck2dk
2 f e r . f —

The number of electron states per unit volume within an infinitesimal energy range is given by

D{E)dE = {kl 7 r ) 2 dk

see Blakemore [35] for details, and so

Y J -^ \D {E )dE
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where D{E) represents the density of electron states, allowing the summations over momentum of 

Eq. (AIV.23) to be converted into energy integrals such that
* oo oo

r (AF) = T "  1 \D(E‘ )D{Ef  )s {e , - E f  + AF)dEld E ,  (AIV.24)
Ei Ef

giving an usable and practical expression for the tunnelling rate o f electrons through a potential 

barrier. The charge carried by each electron is -e, and as such the conventional tunnelling current 

is simply I  -  eT.
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Absorbate, 42 

Absorbent, 42

Acceptor density, 25, 40, 42, 62, 63, 71, 173, 184, 199, 

206, 208, 209, 210, 212, 218, 224, 230, 231, 236, 

237, 239, 248, 249, 250, 251, 259, 266, 267, 272 

Action principle, 311,313 

Activation energy, 44, 199 

Adams-Moulton method, 55, 56 

Addition theorem, 158, 323 

Affinity, electron, 40, 65, 113 

Analogue data storage, 5 

Analytic functions, 96, 98, 308 

Cauchy-Goursat theorem, 96 

Analytical solution, 7,10, 50, 73, 236,248, 269 

Angular momentum, 76, 77, 78, 81, 86, 92, 253, 255 

associated Legendre functions, 84, 85, 87, 297, 298 

operator, 76, 78

spherical harmonics, 76, 85, 91, 94,119, 158,161,

164,323 

Anisotropic, 21

Anneal (see also Sinter), 28, 43, 65, 71, 223, 229 

Antisymmetry, 124, 127, 128, 129,132, 133, 134 

ARPACK, 91, 337

Associated Legendre functions, 84, 85, 87, 297, 298 

Asymptotic, 27, 28, 141, 142,147, 149,168, 266, 301 

Atomic

energy levels, 141,151, 152, 256 

orbitals, 106, 283 

units, 124, 168 

Azimuthal angle, 85, 87, 119,156, 162

B

Band bending, flattening of, iv, 2, 36, 200,269 

Bands

conduction, 6, 10, 11, 16, 22, 23, 24, 25, 26, 27, 28, 

29, 37, 38, 39, 41, 42, 45, 47, 48, 58, 60, 62, 67, 

70, 71, 73, 117, 156, 189, 190, 199, 215, 222, 

228, 229, 234, 236, 242, 243, 244, 246, 269, 270 

flattening of, iv, 2, 36, 200, 269 

forbidden, 17, 19,20, 22,23, 24, 25, 40,41, 47,

140, 141,222 

overlap of, 23,44, 92, 231 

valence, 10,22, 23, 24, 25, 37, 39, 70, 167 

Basis, 106, 107, 269

Bessel functions, 95, 97, 98, 100, 102, 104, 110, 111 

spherical, 95, 97, 98, 100, 110 

spherical modified, 102, 111 

Beta functions, 84, 295 

Binding energy, 19 

Binomial theorem, 97, 98,110 

Bisection method, 38, 56, 57, 70, 104, 215, 234 

Bohr radius, 124 

Boltzmann distribution, 13 

Bonds
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covalent, 25, 106, 140 

ionic, 106, 119, 140 

surface, 37 

Van der Waals, 42 

Bose-Einstein statistics, 128 

Bosons, 128

Boundary values, 6, 7, 8, 14, 18, 31, 37, 38, 48,49, 50, 

56, 70, 91, 172, 173, 174,184, 186, 187, 188, 189, 

191, 192, 195, 198, 199, 200,202, 205, 208, 214, 

219, 236, 267, 269,316,317 

Bra, 106 

Branch cut, 319

Brillouin zone, 16, 19, 20, 26, 288 

reduced zone, 20 

Built in potential, 60, 61, 199, 201, 207

c
Calculus of variations, 129, 310 

Capacitance, 7, 286, 287, 326, 329, 330 

capacitative energy, 285, 286 

Carbon monoxide, 42 

Cartesian, 77, 175 

Catalysis, 2, 5, 35 

Cauchy-Goursat proof, 96 

Charge balance equation, 7, 55, 184, 194, 198, 203, 

204, 215, 217, 218, 219, 220, 221, 223, 224, 226, 

227, 229, 230, 233, 235, 236, 237, 245, 248, 251, 

257, 268, 270 

Charge carriers, 4, 6, 7, 16, 25, 30, 32, 34, 42, 44, 45, 

58, 59, 61, 71, 205, 212, 227, 232, 242, 243, 244, 

246, 269, 292

depletion of, 6, 7, 10, 37, 38,42, 44,45, 58, 59, 61, 

66, 70, 71, 185, 199, 205,206, 207, 210, 211, 

212, 213, 214, 218, 220, 222, 226, 227, 228,

229, 230, 231, 232, 233, 236, 237, 239, 241,

246, 247, 248, 250, 251, 266, 268, 269, 270, 

271,272 

Charge leakage, 9, 268, 290

Charge transfer, 42, 262, 263, 267, 272, 283, 285, 290

Charge writing, 1, 2, 4, 5, 6, 9, 10, 11, 29, 36, 37, 38, 

49, 70, 118, 156, 174, 215, 253, 255, 266, 268, 269, 

272,290, 291 

Chebyshev polynomials, 292 

Chemical potential, 7, 13, 14 

Chemisorbed, 42, 45, 49, 70, 185 

Circulation, 178, 179, 195, 197 

Classical physics, 13, 28, 86, 127, 134, 170, 206, 239, 

261,285, 286,311,313,337 

Clebsch-Gordan coefficients, 159 

Closed neck, 44, 247 

Closure relation, 106 

Commutation, 78, 80, 81, 301 

Complete charge density (CCD) model (CCDM), 10, 

37, 47, 58, 59, 68, 70, 71, 72, 207, 212, 213, 214, 

216,229, 231,232, 243, 268 

Completeness, 106, 107, 178, 316, 317, 321 

Complex conjugate, 131, 143, 158, 161, 324, 325 

Condon-Shortley phase, 84

Conduction band, 6, 10, 11, 16, 22, 23, 24, 25, 26, 27, 

28, 29, 37, 38, 39, 41, 42, 45, 47, 48, 58, 60, 62, 67, 

70,71,73, 117, 156, 189, 190, 199,215, 222, 228, 

229, 234, 236, 242, 243, 244, 246, 269, 270 

bulk, 62

Conductivity, 4, 16, 23, 34, 37, 38, 43, 44, 45, 60, 61, 

64, 66, 71, 222, 242, 246, 247, 249 

Constraints, 8, 90, 101, 129, 135, 141, 145, 147, 162, 

172, 173, 189, 190,219, 253, 263, 270,310,311, 

315,316 

Continuity requirements, 102 

Contour, 96, 97, 98, 100, 101, 282, 308, 309, 331 

closed, 96, 97, 98, 308 

of integration, 100 

Convergence, 55, 56, 57, 97, 98, 114, 215, 234, 244, 

246, 256, 257, 259, 301, 306, 307, 323, 329 

Correlation effects, 7, 10, 124, 125, 132, 135, 136,

138, 139, 140, 141,153, 154, 155, 156, 166,167, 

168, 169, 170, 259, 268, 274, 275, 277, 278, 281, 

282, 285, 337 

Co-tunnelling, 264, 289 

Coulomb

energy (see also Hartree energy), 135, 140, 143
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gauge, 194, 195, 200

potential, 11, 138, 160, 161, 167, 168, 169, 171, 

278

Coulomb blockade (see also Coulomb staircase), 2, 5, 

263, 264

Coulomb effects, 2, 5, 9, 11, 130, 132, 134, 135, 138, 

140, 143,152,156, 160, 161, 167, 168, 169,170, 

171, 180,194, 195, 200, 216, 219, 259, 263,264, 

275, 278, 280, 281, 282, 285, 288 

Coulomb staircase {see also Coulomb blockade), 5, 9,

11,216,219, 263, 288 

Cross product, 173, 178, 179, 195, 197 

Crystal lattice, 13, 14,16, 21, 22, 24,25, 28, 39,40,

42

Curl, 173, 178, 179, 195, 197

D

DA see Depletion approximation 

Debye length, 59

Degeneracy, 27, 28, 62, 63, 127, 156, 162, 206, 226, 

255, 292

Del, 10, 37, 47, 59, 70, 71, 72, 173, 175, 178, 207,

229, 232, 243, 268 

Delta functions, 18, 34, 68, 161, 317, 322, 331 

Density functional theory (DFT), 10, 91, 124, 125,

132, 133, 134, 137, 138, 139, 143, 173, 205, 277, 

281

Density of states, 15, 21, 22, 26, 30, 32, 33, 34, 36, 58, 

68, 260, 267, 287 

Depletion, 6, 37, 42,44, 58, 61,71, 199, 212, 227,

232, 269

width, 10, 38, 59, 61, 210,211, 212, 213, 214,218, 

220, 226, 227, 228, 229, 231, 233, 237, 239,

241, 246, 248, 266, 269, 270, 271, 272 

Depletion approximation (DA), 7, 59,199, 205, 206, 

207, 210, 212, 218,220, 227, 229, 230, 232, 233, 

236, 237, 239, 240,247, 248, 249, 250, 251,268, 

269, 271

Derivative, 11, 50, 52, 53, 55, 56, 89, 91, 96, 102, 103, 

136, 139, 143, 147, 148, 153, 154, 172, 173, 175,

186, 200, 201, 202, 203,205,213, 216, 228, 269, 

308, 309,310, 322 

functional, 136,139, 143, 153 

partial, 310

Determinant, 128, 129, 130,132, 135,178, 195, 301, 

302,303,304 

Deviation factor, 203, 205, 207, 208, 209,234 

Diagonalise, 92,130,299, 300, 304 

Dielectric, 41, 153, 278 

functions, 153, 278

permittivity, 58,168, 184, 199,202, 213, 327 

Differential equations, 48, 50, 56, 70, 73, 95, 96,99,

100,101, 119, 269, 280,316,317, 321,323 

ordinary (ODEs), 70, 73, 96, 99, 100,101,119 

Digital data storage, 5 

Dipole, 41,42, 113 

Dirac notation 

Bra, 106 

ket, 106 

Direct band gap, 24, 47 

Direct optical transition, 24 

Discrete

energy spectrum, 1, 4, 5, 6, 7, 8, 10, 11, 32, 34, 68, 

72, 103, 108, 113, 116,119, 208,216, 222,235, 

236, 257, 270, 290,318,319 

lattice, 95, 106,109, 113,120, 122, 204 

Discretisation, 70, 93, 95, 106, 109, 113, 120, 122, 

204, 205

Dispersion relation, 14, 22, 31, 108, 110, 112 

Displacement vector, 175 

Divergence, 114, 173, 176,195, 294 

Domain, 96, 277,282, 309, 313 

Donor density, 62, 67, 229, 230, 271

ionised, 3, 6, 8, 11, 57, 59, 168, 170,174, 183, 184, 

199, 202, 204, 207, 208, 209, 210, 211, 212, 

213, 214,215, 216, 217, 218, 220, 222,223, 

224, 227, 228, 229, 230, 231, 232, 233, 234, 

235, 236, 237, 239, 242, 244, 246, 248, 249, 

251, 252, 257, 266, 267,271, 272 

Doping, 25, 184 

Dot product, 21, 77, 122, 175 

Double factorial, 298
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E

Effective density, conduction band states, 27 

Effective mass, 21, 22, 26, 58, 120, 236 

Eigenstates, 1, 6, 8, 10, 12, 34, 73, 74, 76, 78, 89, 91, 

94, 95,106, 107, 110, 113, 115, 119, 122,123, 124, 

125, 126, 127, 137, 138, 141, 145, 156,216, 236, 

255, 261, 268, 270, 274,275, 278,281,282, 285, 

298,319

Eigenfunctions, 76, 79, 80, 82, 149, 316, 317, 318,

321,324

Eigenvalues, 14, 73, 78, 80, 82, 91, 92, 93, 95, 102, 

103, 104, 111, 112, 119,129, 130, 137, 143,

147, 151, 152, 156, 166, 274, 298, 299, 300,

301, 304, 305, 306, 308, 317, 318, 319, 324, 330 

Electric field, 21, 22, 48, 173, 174, 180, 182, 183, 184, 

189, 191, 192, 193, 194, 195, 196, 197, 198, 200, 

204,218 

Electrode, 263 

Electromagnetism, 183, 194 

Electron

affinity, 40, 65, 113

density, 2, 8, 11, 26, 27, 28, 36, 47, 59, 61, 63, 66, 

67, 68, 113, 115, 116, 120, 138, 139, 140, 153, 

155, 160, 162, 172, 174, 184, 185, 188, 191,

194, 198, 200, 202, 204, 205, 207, 213, 218,

220, 222, 228, 229, 231, 232, 234, 235, 238,

239, 242, 243, 250, 251, 257, 259, 268, 270 

gas, 13, 14, 27, 28, 59, 62, 125, 139, 140, 153, 170, 

292

degenerate, 27, 226, 292 

non-degenerate or classical, 27, 28, 62, 63, 206, 

255

mobility, 61, 222, 230, 246 

states, 4, 132, 289, 332, 333 

Electron-electron interactions, 7, 8, 10, 14, 114, 123,

124,125, 126, 127, 132, 133, 134, 135, 136, 137, 

156, 160, 167, 168, 170, 171, 188, 215, 259, 285 

correlation, 7, 10, 124, 125, 132, 135, 136, 137,

138,139, 140, 141, 153, 154, 155, 156, 166,

167, 168, 169, 170, 259, 268, 274, 275, 277, 

278,281,282, 285,337

coulomb, 2, 5, 9, 11, 130, 132,134, 135, 138,140, 

143, 152, 156,160, 161, 167, 168, 169, 170,

171, 180, 194,195, 200, 216, 219, 259, 263, 

264, 275, 278, 280,281, 282, 285, 288 

exchange, 7, 10, 11, 120, 124, 125, 128,130,132, 

135, 136, 137, 138,139, 140, 141, 143, 147,

148, 149, 150, 151, 152, 156, 162, 166, 167,

168, 169, 170,256,259, 274, 277, 278, 281,

285, 337

exchange-correlation, 124, 136, 138, 139, 140, 167, 

259, 274, 277, 285 

Electrostatics, 1, 59, 127, 132, 134, 153, 170, 173,

175,180

Emission, thermionic, 43, 264, 289 

Energy bands 

allowed, 18, 22

forbidden, 17, 20, 22, 23, 24, 25, 40, 41, 47, 140, 

141,222

Error, 37, 51, 52, 53, 54, 55, 56, 57, 62, 65, 68, 69, 70, 

111, 112, 120, 121, 137, 174, 204, 205, 208, 209, 

218, 222, 230, 237, 240, 283, 292 

global, 55, 57, 70 

propagation, 53, 56, 259 

round-off, 54, 93, 104 

truncation, 53, 54, 56 

Euler

equations, 130

Euler-Lagrange equations, 312, 313, 314, 315, 316 

integral, 294

Exchange effects, 7, 10,11, 120, 124, 125, 128, 130, 

132, 135, 136, 137, 138, 139, 140, 141, 143, 147, 

148, 149, 150, 151,152, 156, 162, 166,167, 168, 

169, 170, 256, 259,274, 277, 278, 281,285, 337 

exact exchange, 11, 135, 141, 149 

Exchange-correlation effects, 124, 136, 138, 139,140, 

167, 259, 274, 277, 285 

exchange-correlation hole, 140 

Excited states, 133, 138

Expectation value, 129, 131, 134, 146, 282, 316 

Extended zone representation, 20 

External fields, 133

External potential, 107, 109, 129, 133, 134, 136
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F

Factorial, 294 

double, 298 

Fermi

energy, 7, 11, 13, 14, 15, 25, 26, 27, 28,29, 37,38, 

39, 41,45, 47, 57, 58, 62, 63, 65, 68, 70, 71,

117, 118, 156, 174, 184, 189, 199, 201, 204, 

208, 215, 216, 217, 219, 221, 222, 229, 242, 

243, 244, 246, 253,255,257, 259, 260, 262, 

263, 267, 270, 272, 285, 286, 290 

sphere, 15 

surface, 14, 32, 33 

Fermi-Dirac

integral, 26, 27, 62, 63, 185, 292, 293 

statistics, 7, 8, 13,127,137, 270 

Fermions, 13, 127, 128 

Feynman diagrams, 279

Finite difference method, 10, 73, 90, 94, 95, 103, 104, 

112, 113, 115, 119, 125, 255, 274, 281, 300 

Flattening of bands, iv, 2, 36, 200, 269 

Flaw states, 25, 216 

Flux, 177, 204 

Fock operator, 130, 132, 146 

FORTRAN, 104 

Fourier transform, 277

Free electron model, 13, 14, 15, 16, 19, 31, 73, 106, 

110, 111, 113

nearly free electron model, 16, 73, 106, 110,111, 

113

Free energy, 9, 262, 264, 272,285, 286, 289, 332 

Frobenius series method, 307 

Functionals, 8, 10, 124, 132, 133, 135, 136, 137, 139, 

141, 143, 153, 170, 188, 277,311,313,337 

derivatives of, 136, 139, 143,153 

energy, 8, 135, 170 

universal, 133 

Functions

analytic, 96, 98, 308 

scalar, 186, 187, 194,197 

vector, 196

wave, 10,14, 17, 18, 21, 30, 32, 73, 86, 87, 88, 91, 

92, 94, 99, 101, 106, 111, 115, 119,120, 122, 

124, 126, 127,128, 129,131, 132, 133, 134, 

135, 141, 144,156, 160,170, 188, 215, 255, 

256, 261, 275,276, 282, 315, 323, 330

G

Gamma functions, 27, 99, 293,294 

Gas, 3, 6, 8, 10,11,13,14, 27,28, 37, 38,40,42, 43, 

44,45, 49, 59, 60, 62, 64, 66, 67, 68, 70, 71, 125, 

139, 140, 153, 170, 231, 242, 244, 248, 266,272, 

290, 292

Gas sensor sensitivity, 3, 8, 11, 37, 38, 42,43, 45, 64, 

66, 67, 68, 71, 152, 231, 241, 242, 243, 244, 245, 

246, 247,248, 266, 272, 290 

Gauge, 194, 195, 197,200 

Coulomb, 194, 195, 200 

invariance, 194 

transform, 194

transformation, 194, 195, 197 

Gaunt formula, 158

Gauss-Seidel (GS) method, 306, 307, 308 

Global error, 55, 57, 70

Gradient, 48, 53, 65, 113, 140, 141, 173, 175, 176, 

183,189, 191, 197, 199, 224 

Gradient expansion, 140, 141 

Ground state, 8, 124, 126, 133, 134, 135, 137, 138, 

139, 141, 152, 170,172, 173,174, 188, 190, 198, 

200, 205,214,216,219 

Group velocity, 21

GW approximation, 274, 278, 280, 281,282, 338

H

Hall effect, 16, 229

Hamiltonian, 78, 91,107, 109, 110, 119, 126, 127, 

129, 131, 133, 134,275, 276, 277,315,316, 330 

Hankel functions, spherical, 101 

Hartree

approximation, 129, 132, 136 

Coulomb integral, 134
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energy (see also Coulomb Energy), 134, 135, 141 

method, 127, 132 

potential, 136, 170, 277 

product, 127, 128 

Hartree-Fock method, 127, 130, 132, 135, 137, 141, 

146, 151 

Heaviside function, 322

Helmholtz free energy, 262, 264, 272, 285,286,289, 

332

Hermitian, 91, 92, 93,130, 277, 316, 319, 321 

Hilbert space, 106 

Hole, 23, 25, 28, 140, 182, 275 

Homogeneous, 74, 101, 122, 125, 139, 140,155, 156, 

170, 276,317,319, 323 

electron gas, 139, 140, 170 

Hopping, 106, 107, 109, 120 

Hydrogen, 241, 253, 255

I

Ill-conditioned, 215

Image charge method, 41, 113, 287, 326, 328, 329, 

330

Impurities, 25, 28 

Inhomogeneous electron gas, 140 

Instability, 53, 56, 259 

Insulators, 13, 22, 23

Integral, 26, 27, 62, 63, 84, 92, 96, 98, 119, 128, 132, 

134, 137, 144, 147, 150, 158, 159, 161, 163, 164, 

173, 177, 178, 179, 182, 183, 184, 185, 204, 282, 

288, 292, 293, 294, 295, 308, 311, 312, 313, 314, 

316,317,318

equation, 144, 147, 150, 316 

Interface dipole, 113 

Inverse power method, 91, 305 

Ionisation energies, 131, 140, 147, 275 

Ionosorbed, 42, 45 

Isotropic, 21

Iteration, 10, 53, 65, 74, 113, 114, 115, 119, 120, 123, 

136, 166, 188, 215, 230, 257, 300, 305, 306, 308

J

Junction

gas-semiconductor, 37, 40, 49, 70 

heterojunction, 40

metal-semiconductor, 37,40, 42, 43, 65, 70 

tunnelling, 9, 262,283

K

Ket, 106

Kinetic energy, 122, 126, 133, 135, 139, 170 

Kohn-Sham, iv, 2, 7, 8, 9, 10, 36, 124,136,137,170, 

172, 173, 189, 190, 217,219, 233, 248, 251, 268, 

270, 273

eigenstates, 138, 274, 281 

potential, 120, 124, 170, 173, 190, 219 

Koopman’s theorem, 131, 137, 146, 274 

Krieger-Li-Iafrate (KLI) approximation, 7, 8, 10, 125, 

137, 141, 142, 143, 147, 149, 150, 151, 152, 156, 

162, 166, 167, 168, 170,318 

Kronecker delta, 161 

Kronig-Penney model, 17, 20 

k-space, 14, 16, 20, 24, 32, 33, 332

L

Ladder operators, 82 

Lagrange multipliers, 129, 130, 274, 314 

Lagrangian, 311, 312, 313, 314, 315, 316 

density, 313, 314 

LAPACK, 91,119, 166, 337 

Laplace series, 323 

Laplacian, 75, 122

Lattice, 13, 14, 16, 17, 21, 22, 24, 25, 28, 30, 39, 40, 

42, 43, 45, 47, 50, 51, 52, 70, 106, 119 

Laurent expansion, 98, 331

Legendre equation, 84, 85, 87, 157, 158, 297, 298, 324 

associated Legendre equation, 84, 85, 87, 297, 298 

Linear, 2, 6, 7, 8, 9, 10, 11,31,36,37,47,48, 50,56, 

58, 59, 63, 68, 70, 91, 92, 93, 101,119, 128, 132, 

144, 150, 163, 166,172, 173, 174, 185, 186, 187, 

188, 191, 192, 197, 200, 205, 206, 207, 216, 218,
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219, 220, 222,223, 225,226, 227, 229, 230, 231, 

233, 236, 247, 248, 250, 251, 267, 268, 269, 270, 

271, 273, 283, 298, 305, 316, 317, 321 

algebra, 91, 119, 166 

response functions, 144 

Linearly independent, 107, 299, 321 

Local density approximation (LDA), 7, 10, 125,139, 

140, 141, 151, 152, 153, 155 

Lowering operator, 82

M

Maclaurin series, 176

Many body effects, 7, 8, 10, 14, 114, 123,124, 125, 

126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 

156, 160, 167, 168, 170, 171,172, 188, 190,215,

216,219, 259, 270, 280, 285 

Matrix, 73, 89, 90, 92, 93, 119, 128, 129, 130, 166, 

288, 289, 298, 299, 300, 301, 302, 303, 304, 305, 

306, 307, 308, 332, 339

determinant, 128, 129, 130, 132, 135, 178, 195, 

301,302, 303,304 

diagonal, 73, 90, 93, 119, 130, 304 

diagonalisation of, 92, 299, 300, 304 

eigenvalues, 300, 305 

eigenvectors, 308 

inverse power method, 91, 305 

QR factorisation, 304 

similar, 302, 303 

sparse, 91, 306 

submatrix, 300, 302

tri-diagonal, 73, 90, 119, 300, 301, 304, 306 

upper triangular, 300, 301, 304 

Maxwell equations, 183 

Maxwell-Boltzmann statistics, 13 

Mesh

constant, 121 

logarithmic, 120, 151 

variable, 120, 121, 122, 151, 161, 224 

Metals, 13, 16, 22, 23, 37,40, 41, 42, 43, 65, 70, 106, 

140, 288 

Semimetals, 23

A/L-inequality, 309 

Molecular docking, 2, 4 

Mote Carlo method, 140, 153 

Multiplicative potential, 137

N

Nabla, 106, 173, 175, 178,290

Nanocrystalline, 1, 5, 9, 36, 42, 47, 241

Nearly free electron model, 16, 73, 106, 110, 111, 113

Neumann function, spherical, 97, 98, 99

Newton’s method, 57

Newtonian path, 311

Newton-Raphson method, see Newton's method 

Node, 255

Non-degenerate states, 27, 28, 62, 63, 206, 255 

Non-interacting 

Hamiltonian, 276 

kinetic energy, 135 

particles, 135, 136 

reference system, 135, 136, 170, 275 

Non-linear, iv, 2, 6, 7, 8, 9, 10, 11, 36, 37, 47, 48, 50, 

56, 58, 63, 68, 70, 172, 173, 174, 185, 187, 188, 

191, 192, 197, 200, 205, 206, 216, 218, 219, 220, 

222, 223, 226, 229, 230, 231, 233, 247, 248, 250, 

251, 267, 268, 269, 270, 271, 273, 281 

Normalisation, 82, 83, 90, 101, 145, 147, 305, 306, 

315,316,330 

yV-representable, 133

o
Occupancy, 26, 113, 160, 332

fractional, 7, 8, 11,26, 137,145, 146,147,160, 190 

integer, 7, 125, 138 

Open neck, 246

Operators, 76, 78, 80, 82, 91, 92, 93, 119, 122, 129, 

130, 132, 133, 134,146, 149, 173, 175, 277, 283, 

298,316,319, 321 

angular momentum, 76, 78 

differential, 175, 316, 321 

energy, 122, 133,134, 277
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gauge, 194, 195, 200

potential, 11, 138,160, 161, 167, 168, 169, 171, 

278

Coulomb blockade (see also Coulomb staircase), 2, 5, 

263, 264

Coulomb effects, 2, 5, 9, 11, 130, 132, 134, 135, 138, 

140,143, 152, 156, 160, 161, 167, 168, 169,170, 

171, 180, 194, 195, 200, 216, 219, 259, 263,264, 

275, 278, 280, 281, 282, 285, 288 

Coulomb staircase (see also Coulomb blockade), 5, 9, 

11,216,219,263, 288 

Cross product, 173, 178, 179,195, 197 

Crystal lattice, 13, 14,16, 21, 22, 24, 25, 28, 39, 40,

42

Curl, 173, 178, 179, 195, 197

D

DA see Depletion approximation 

Debye length, 59

Degeneracy, 27, 28, 62, 63, 127, 156, 162, 206, 226, 

255, 292

Del, 10, 37, 47, 59, 70, 71, 72, 173, 175, 178, 207,

229, 232, 243, 268 

Delta functions, 18, 34, 68, 161,317, 322,331 

Density functional theory (DFT), 10, 91, 124,125,

132, 133, 134, 137, 138, 139, 143, 173, 205, 277, 

281

Density of states, 15, 21, 22, 26, 30, 32, 33, 34, 36, 58, 

68, 260, 267, 287 

Depletion, 6, 37, 42, 44, 58, 61, 71,199, 212, 227,

232, 269

width, 10, 38, 59, 61, 210,211, 212, 213, 214, 218, 

220, 226, 227, 228, 229, 231, 233, 237, 239,

241, 246, 248, 266,269, 270,271, 272 

Depletion approximation (DA), 7, 59, 199, 205, 206, 

207, 210, 212, 218,220,227,229, 230, 232, 233, 

236,237, 239,240,247, 248, 249, 250, 251, 268, 

269, 271

Derivative, 11, 50, 52, 53, 55, 56, 89, 91, 96, 102,103, 

136, 139, 143, 147, 148, 153, 154, 172,173, 175,

186, 200,201, 202,203, 205,213, 216,228, 269, 

308, 309,310, 322 

functional, 136, 139, 143,153 

partial, 310

Determinant, 128, 129, 130,132, 135,178, 195,301, 

302, 303, 304 

Deviation factor, 203, 205, 207, 208, 209,234 

Diagonalise, 92,130,299, 300, 304 

Dielectric, 41, 153, 278 

functions, 153, 278

permittivity, 58, 168, 184, 199,202, 213, 327 

Differential equations, 48, 50, 56, 70, 73, 95, 96, 99,

100,101, 119, 269, 280,316,317, 321,323 

ordinary (ODEs), 70, 73, 96,99, 100,101,119 

Digital data storage, 5 

Dipole, 41, 42, 113 

Dirac notation 

Bra, 106 

ket, 106 

Direct band gap, 24, 47 

Direct optical transition, 24 

Discrete

energy spectrum, 1, 4, 5, 6, 7, 8, 10, 11, 32, 34, 68, 

72, 103, 108, 113, 116, 119, 208,216, 222, 235, 

236, 257, 270, 290,318,319 

lattice, 95, 106, 109,113,120, 122,204 

Discretisation, 70, 93, 95, 106, 109,113, 120, 122, 

204,205

Dispersion relation, 14, 22, 31, 108, 110, 112 

Displacement vector, 175 

Divergence, 114, 173, 176, 195, 294 

Domain, 96, 277, 282, 309, 313 

Donor density, 62, 67, 229, 230, 271

ionised, 3, 6, 8, 11, 57, 59, 168, 170, 174, 183, 184, 

199, 202, 204, 207,208,209, 210, 211, 212, 

213, 214, 215, 216, 217, 218, 220, 222, 223, 

224, 227, 228, 229,230, 231, 232, 233, 234, 

235, 236, 237,239, 242, 244, 246, 248, 249, 

251, 252,257, 266, 267, 271, 272 

Doping, 25, 184 

Dot product, 21, 77, 122, 175 

Double factorial, 298
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175, 183, 184,185, 188, 189, 190, 191, 192, 193, 

194, 195, 196,197, 198,199, 200, 201, 203, 204, 

205, 207, 208, 210, 213, 216, 218, 219, 221, 224, 

225, 226, 255,259,261, 262, 267, 269, 270,272, 

273, 277, 278, 282, 283, 285, 288, 289,291, 311, 

312, 320, 326, 327, 328, 329, 330, 333 

Predictor-Corrector methods, 54, 55 

Adams-Moulton method, 55, 56 

Primitive cell, 16 

Principle of superposition, 101 

Probability distribution, 87, 126 

Propagation error, 53 

Propagator, 153,275, 278, 322

Q

QR factorisation, 304

Quantisation, 4, 6, 10, 29, 30, 36, 68, 71, 214, 219, 

230, 233, 239, 248, 266, 270, 271 

Quantum, 1, 2, 5, 7, 10, 11, 12,19, 24, 27, 30, 31, 32, 

33, 34, 35, 43, 68, 73, 76, 86, 88, 91, 92, 113, 119, 

125, 126, 136, 137, 140, 142, 153, 156, 158, 162, 

183, 206, 220, 235,236, 240, 250, 255, 260, 261, 

275, 281, 282, 283, 285, 290, 298, 313, 315, 316, 

335,336,337,338

dot, 1,2, 5, 7, 11, 12,30,33,68, 119, 125, 126, 

136, 137, 142, 153, 156, 162, 183, 220,255, 

282, 283, 285,290 

number, 86, 88, 91, 92, 119, 156, 158, 162, 255 

well, 30,31,33, 34, 113, 125,236, 260, 281 

wire, 30, 32, 34 

Quantum cellular automata (QCA), 2, 5 

Quantum field theory (QFT), 275 

Quasiparticle, 12, 275, 281, 282

R

Random phase approximation (RPA), 153, 156, 166, 

280 

Reciprocal 

lattice, 16 

lattice vector, 16

space, 14, 16,20, 24, 32, 33, 332 

Recurrence relations, 105 

Reduced zone representation, 20 

Reducing gas, 37, 42, 67, 70, 242 

Reference potential, 120, 124, 170, 173, 190, 219 

Relaxation, 147, 307 

Residues, 98, 331 

Rodrigues’ formula, 87, 297 

Roots, 210, 211, 311 

Round-off error, 54, 93, 104 

Runge-Kutta methods, 53, 55

Runge-Kutta-Felhberg method, 53

s
Scalar, 21, 77, 122, 173, 175,176, 183, 184, 186, 187, 

188, 192, 194, 195,196, 197, 218, 298, 301 

field, 175, 176, 183, 192 

function, 186, 187, 194, 197 

product, 21, 77, 122 

Scanning Tunnelling Microscope/Microscopy (STM), 

1, 5, 9, 113, 174, 215, 222,261,262, 264, 267, 268, 

272, 283, 287, 289, 291 

Scanning Tunnelling Spectroscopy (STS), 71,222 

Schottky barrier, 11, 38, 40,41, 42,44, 45, 47, 48, 60, 

64, 65, 66, 69, 70, 71, 168, 174, 184, 185, 198, 223, 

232, 237, 242, 246, 247, 249, 250, 253, 266, 272 

Schrodinger equation, 10, 14, 73, 88, 89, 94, 95, 102, 

106, 107, 108, 113, 116, 119, 120, 122, 126, 127, 

129, 136, 137, 170,204, 214, 215, 217, 255, 315, 

316, 321,323,330 

time dependent (TDSE), 330 

time independent (TISE), 14, 75, 95, 119, 315, 316, 

321

Screening, 153, 275, 278, 280,282 

Self-assembly, 4, 5

Self-consistency, iv, 2, 6, 7, 9, 36, 113, 114, 115,116, 

117, 118, 120,123,124, 125, 136, 138, 141, 145, 

146,156, 168, 170, 172, 173,185, 188, 189, 190, 

204, 215, 216, 219, 233, 248, 250, 251, 253, 268, 

270, 273, 280, 283 

mixing procedure, 114
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Self-energy, 8,137, 277, 278,279, 280, 281, 283 

Self-interaction, 132, 135, 140, 141, 142, 143 

Semiconductors, iv, 1, 2, 4, 6, 13, 21,22, 24,25, 26, 

28, 30, 34, 36, 37, 39, 40, 41, 42, 43,45,47,49, 61, 

64, 65, 70, 113, 115, 116, 119, 150, 167,173,184, 

185,199, 205, 215, 220, 222, 223, 227, 229,231, 

237, 248, 250, 251, 257, 266,269, 271, 288 

bulk, 4, 28, 30, 64,113, 115, 116, 173,199, 205, 

220, 223, 231, 237, 241, 248, 250, 251, 257,

266, 271 

extrinsic, 25 

flaws, 25 

impurities, 25, 28 

intrinsic, 25 

n-type, 25, 28, 41, 47 

p-type, 25 

Semimetals, 23

Sensitivity, 3, 8, 11, 37, 38, 42,43, 45, 64, 66, 67, 68, 

71, 152, 231, 241, 242, 243, 244, 245, 246, 247, 

248, 266, 272, 290 

Separation of variables, 109 

Shooting method, 38, 56, 70, 203 

Silicone, 5, 25, 253, 262, 287, 330 

Similarity transformation, 299, 304 

Singularities, 97, 100 

poles, 98

Sinter (see also Anneal), 12, 37,43, 44, 45,47, 66, 71, 

222, 241,246, 290 

closed neck, 44, 247 

open neck, 246 

Slater determinant, 124, 128, 129, 130, 132, 135 

Slater potential, 151, 152, 164 

Sn02, 1, 4, 5, 6, 9, 10, 11,21, 28, 36, 37, 38, 42, 43,

45, 47, 58, 59, 65, 68, 70, 71, 115, 116, 117, 120, 

125, 151, 155, 156, 168, 169, 170, 171, 174, 185, 

206, 207, 215, 217, 219, 220, 222, 227, 229, 231, 

241, 247, 252, 253, 262, 266, 267, 268, 269, 272, 

285, 287, 290, 291,329, 330 

Sommerfield model, 13, 14, 16 

Sparse, 91, 306 

Spherical

Bessel functions, 95, 97, 98, 100, 110

Hankel functions, 101

Harmonics, 75, 76, 85, 91, 94, 119, 158, 161,164, 

323

modified Bessel functions, 102, 111 

Neumann functions, 97, 98, 99 

polar coordinates, 75, 82, 160, 197, 227 

symmetry, 10, 11, 48, 60, 76, 88, 91, 104, 108, 109, 

112, 125, 150,156,161,166,167, 184, 197,

200, 267, 290 

Spin, 13, 127,128, 130, 131,135,138,139, 140,145, 

146,151, 153, 154,155, 162, 163, 164, 166, 167, 

171,215, 255,332 

density, 138, 155,164 

orbital, 128, 130, 131,138, 167, 171 

polarisation, 139, 153, 167 

Square well, 17, 73, 95,108, 110, 111, 116, 120,260 

finite, 95, 108, 110, 120 

infinite, 31 

Stannic oxide see Sn02 

Statistics

Bose-Einstein, 128 

Fermi-Dirac, 7, 13, 127, 137, 270 

Maxwell-Boltzmann, 13 

Sub-shell, 125, 150, 156

Substrate, 5, 7, 9, 221,253, 261, 262, 263, 268, 272, 

283, 285, 287, 290, 329, 330 

Successive over relaxation (SOR) method, 307, 308 

Superposition principle, 101 

Surface conduction band, 6, 70, 71, 269 

Surface states, iv, 2, 6, 7, 9, 10, 36, 37, 38, 39, 40, 41, 

42, 43,44, 45, 46, 47, 48, 49, 58, 61, 64, 66, 67, 70, 

71, 113, 117, 118, 173, 174, 183, 184, 185, 203, 

205,209, 212, 224, 227, 231, 233, 236,242, 244, 

259, 264, 269, 270, 273, 290 

density of, 8, 10, 11, 40, 45, 48, 49, 53, 61, 62, 63, 

66,68, 117, 173,174, 184,193, 198, 199, 203, 

205, 206, 207, 209, 210, 212, 218, 220, 222,

224,228, 230,231, 232, 233, 236, 237, 239,

241, 242, 248, 249, 250, 251, 253, 259,266,

267, 272 

Surface tension, 1, 43 

Symmetry
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circular, 7, 142 

cylindrical, 7

spherical, 10, 11, 48, 60, 76, 88, 91, 104, 108, 109,

112,125, 150, 156, 161, 166, 167, 184, 197,

200,267, 290

T

Taylor expansion, 37, 50, 51, 53, 54, 55, 56, 70, 89, 

120, 176, 179, 225 

method, 53, 54, 55, 56, 225 

Tensor, 21

Thermal populations, 59, 138,189, 207,209, 212, 215, 

232, 255, 256, 257, 259, 260, 267, 285 

Thermionic emission, 43, 264, 289 

Three j  (3/) symbols, 158,159,163 

Tight binding (TB), 106, 109, 110, 111, 283 

Tin dioxide see Sn02 

Transcendental equations, 102 

Triangle condition, 159 

Truncation error, 53, 54, 56 

Tungsten, 65, 262

Tunnelling, 1,5, 9, 11, 12, 34,43, 156, 221,253, 261, 

262, 263, 264, 267, 268, 272, 283, 285, 286, 287, 

288, 289, 290, 326, 331, 332, 333, 334, 339, 351 

current, 12, 221, 261,267, 272, 287, 289, 333

u
Undepleted, 6, 44, 61, 71, 269 

Uniqueness, 11,26, 172, 173, 174, 188, 189, 190, 191, 

192, 194, 195, 196, 197, 198, 200, 202,205, 218, 

219, 268, 269, 270,319 

Unit

cell, 16, 17

vector, 177 

Unitary, 92,130, 299, 300 

transformation, 92, 130 

Unscreened, 153,278

V

Vacancies, 6, 28, 43, 44,47, 223, 229,242, 244,248, 

269, 272

Valence band, 10, 22, 23, 24, 25, 37, 39, 70, 167 

Van der Waal s bonds, 42 

Variation principle, 129, 310 

Vector, 14, 15, 20, 81, 87,91, 106, 107, 157,159, 166, 

173, 175, 176, 177, 178, 179, 182, 194,195, 196, 

197, 218, 298, 299, 305, 306, 332 

field, 173, 175, 176,178, 195, 218 

field uniqueness theorem, 195 

function, 196 

operator, 173 

sum, 159 

Vertex function, 280 

E-representable, 133

w
Wave function, 10, 14, 17, 18, 21, 30, 32, 73, 86, 87, 

88,91,92, 94, 99, 101, 106, 111, 115, 119, 120, 

122, 124, 126, 127, 128, 129,131, 132, 133, 134, 

135, 141, 144, 156, 160, 170, 188, 215, 255, 256, 

261,275, 276, 282, 315, 323, 330 

Wave vector, 14, 15, 20, 332 

reduced, 20 

Weierstrass’s form, 99, 294 

Wigner-Seitz cell, 16

Work function, 40, 45, 64, 65, 115, 168, 234, 236, 241
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