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Abstract

Study of blood flow inside arteries is physiologically significant and computationally challeng­
ing. Vascular diseases are the leading causes of death worldwide. Since the geometry is 
characterized by twisted, bended, bifurcated, trifurcated and multi-branched structure, the 
numerical modeling of blood flow is highly complicated. Blood flow is also complex due to 
the unsteady (pulsatile), three dimensional and helical nature. The computational work in this 
thesis contains flow simulation of few idealistic models followed by a thorough numerical study 
of a realistic thoracic abdominal aorta. The three dimensional, viscous Navier Stokes equa­
tions are solved explicitly using characteristic based split (CBS) method for time discretization 
and standard Galerkin method for spatial discretization by imposing physiologically relevant 
boundary conditions. The artificial compressibility method, which is found to be efficient for 
biomedical flow problems, has also been discussed briefly. The velocity vectors, wall shear 
stress contours and pressure distribution plots presented in this thesis provide important in­
sight into actual behavior o f blood flow inside arteries. The meshes contain boundary layers for 
accurate calculation of wall shear stress. The idealistic models studied under steady conditions 
are straight and s-shaped arteries. All these idealistic models represent healthy arteries. For 
idealistic models, it is found that complex secondary flow, pressure drop and the WSS vary with 
change in geometrical configurations and flow rate. In addition to idealistic models, a realistic 
thoracic aorta with an aneurysm has been studied, by prescribing fully developed pulsatile wave 
form at the inlet and all four exits. The patient specific geometrical data of this thoracic aorta 
has been obtained with the aid of standard CT scans and processed by AMIRA to construct an 
initial mesh. In this realistic simulation, WSS is found to be low at the beginning of the cardiac 
cycle, increases to maximum at the peak flow rate and decreases rapidly as the velocity drops. 
This research work involving fluid dynamical studies in arteries concludes that hemodynamic 
quantities such as Oscillatory shear index (OSI), flow separation and reversal regions and blood 
pressure may play a vital role in pathogenesis of arterial anomalies. The Numerical models and 
the required CBS and velocity profile generation codes have been provided by the team.
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Nom enclature

x ,y ,z  Three coordinates

u ,v ,w  Velocities in three directions

ip A scalar variable

V  Velocity vector

Umean Mean velocity of blood flow in cm /s2

V  Divergence term

5{j Kroneckar delta

P  Blood pressure in dynes/cm2

f i  Force vector

t Time in seconds

px Pressure in dynes/cm2 at point x

vx Velocity in cm/s at point x

7  Specific weight in dynes/cm3

p Blood density in dynes/cm3

h Height between two points in cm

F l  Frictional loss in dynes/cm2

E  Kinetic energy in joules

lo Frequency of pulsatile flow in cycles per second

R  Radius of the artery in cm

Rc Radius of curvature of the artery in cm

D  Diameter of the artery cm

p  Dynamic viscosity of blood in Poise

v Kinematic viscosity of blood in cm2/s



Q Flow rate in cm3/s

Re Reynolds number of blood flow

De Dean number of blood flow in bends

T Shear stress in dynes/cm2 on arterial wall calculated analytically

Twall Shear stress in dynes/cm2 on arterial wall calculated numerically

Ti j Deviatoric stress in dynes/cm2 on arterial wall

I Identity matrix

n Normal vector

T Time period of oscillations

Tw* Stress component acting opposite to the temporal mean shear stress

O S I Oscillatory Shear Index of blood flow

T A W S S Time averaged Wall shear stress in dynes/cm2s

W SSG Wall shear stress gradient dynes/cm3

<8> Tensor product

V T Independent variable vector in generic Navier Stokes equations

f t Convective flux vector in generic Navier Stokes equations

g t Diffusive flux vector in generic Navier Stokes equations

Ui Momentum in generic Navier Stokes equations

c Speed of sound in cm/s

U q o Freestream velocity in cm/s

U * Nondimensionalised velocity

P* Nondimensionalised Density

Nondimensionalised coordinates

t* Nondimensionalised time

P * Nondimensionalised pressure

U* Nondimensionalised momentum

T *
i j

Nondimensionalised deviotaric stress

u Intermediate momentum

L Charecteristic length in cm



/3 Artificial compressibility parameter

e A small constant used to  calculate (3

^conv Convective velocity

Diffusive velocity 

he Local element size in cm

N Shape functions

H Variable representing the domain

M  Mass matrix

B  Strain matrix

I Length of the artery in cm

fnorm Normalised radius

B.i Radius measured from an imaginary node

K { t )  Transient profile for generating unsteady velocity boundary conditions

B i Amplitude of the pulsatile blood flow

Angular frequency of the pulsatile blood flow 

4>i Phase angle of the zth harmonics

W*SUpG Streamline upwind petrov Galerkin weight
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Chapter 1 

Introduction

1.1 Significance o f haem odynam ics

Haemodynamical study is important mainly to two research communities. First one is vas­
cular research community and the second is engineering research community. Fluid mechan­
ical factors play a key role in the pathogenesis o f vascular disorders such as arteriolosclero- 
sis, atherosclerosis and thromboembolism. In arteries, the relationship between local veloc­
ity and stress patterns, and atherosclerotic lesions has been confirmed by many researchers 
[1 , 2, 3, 4, 5]. According to Bharadvaj et al [1] arterial regions with low or oscillatory shear 
stress are vulnerable for atherosclerotic lesions formation. Ku et al [5] have studied the local­
ization of atheromatous plaque due to low wall shear stress, directionally varying stresses and 
longer residence time of fluid particles. Atherosclerotic lesions are commonly found in regions 
where an unidirectional laminar flow is changing its path due to curvature and bifurcations 
[6 ]. Turbulence at the branched locations of arterioles can trigger cell damage. Frangos et 
al [4] have presented the combined responsibility of shear force and circumferential strain in 
localization of atherosclerotic lesions. Apart from atherosclerotic disorders, haemodynamical 
anomalies in aged and weakened arteries can produce local dilations known as aneurysms. 
When these aneurysms in an aorta grow beyond a critical dimension (generally 5 cm or more), 
surgical intervention is required in terms of stents, grafts and coils. Post-surgery haemody­
namical study in such cases requires monitoring of drag forces on stents [8 ]. Stenosis and 
restenosis are also commonly occurring vascular pathologies. The severity of a stenosis can 
be judged by decrease in haemodynamical flow rate at a location distal to it [9], Determin­
ing haemodynamical quantities such as the wall shear stress and oscillatory shear index with 
the help of i n  v i vo  studies is not precise. Over the past few decades, extensive numerical 
simulation of bio-fluids has taken place in the field o f vascular research. However, it is impor­
tant to note that, there is a portion of research community involved in i n  v i t r o  experimental 
research. These experimental studies rely on laser doppler velocimetry (LDV) and particle 
tracking Velocimetry (PTV) to quantify haemodynamical velocity. In the present generation 
of cardiovascular research, computational study of haemodynamics is also known as i n  s i l ico  
study. In this thesis, numerical simulation of biomechanical problems will be referred to as 
i n  s i l ico  studies.

The literature survey presented here forms the substantial part of thesis. Computation­
ally, the primary objective of this research topic is to compute haemodynamical quantities in
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idealistic and realistic geometries with the aid of characteristic based split method [13]. The 
secondary objective is to  study the impact of haemodynamical factors on vascular well being.

1.2 Layout o f th e thesis

The work undertaken here is highly multidisciplinary in nature. An attempt has been made 
to include all the significant concepts essential for the simulation of vascular bio-fluids. The 
concepts covered in this thesis range from basic fluid mechanics of biofluids to  advanced 
computational fluid dynamics. The essence and path of blood flow in human body has been 
explained in the next chapter. A brief explanation about types of vessels has been presented in 
the same introductory chapter followed by a short discussion on haemodynamical quantities. 
Structure of a blood vessel plays a noticeable role in haemodynamics, thus a paragraph on 
biological vascular structure has also been included in the next chapter, followed by a brief 
discussion on properties of blood. Understanding the output of a CFD code is essential to 
make a pragmatic judgement on haemodynamical behavior, thus a chapter (3) has been added 
to explain flow features. Governing equations of bio-fluids and an efficient solution scheme 
employed in the present work will be explained in Chapter 4. The actual description of the 
numerical work undertaken during the course starts from Chapter 5. A paradigm problem 
illustrating the flow through a straight artery with constant radius will be described in the 
Chapter 5. In order to classify the flow in arteries with geometrical irregularities, flow through 
a bend type artery has been presented in the Chapter 6 . Impact of multiple bends on the 
haemodynamical flow can be apprehended by the Chapter 7. Chapter 8 elucidates the impact 
of curvature angle of the artery on the flow. A double bend type artery with higher curvature 
angles has been studied thoroughly in this chapter. In the Chapter 9, a realistic model of an 
aorta inflicted with thoracic aortic aneurysm has been presented. The distribution of oscillatory 
shear index and wall shear stress in the TAA will be discussed in this chapter. An attempt has 
also been made to understand the pathogenesis of aneurysm, with the aid of CFD. The thesis 
will be completed with the concluding remarks on the work undertaken, in the Chapter 10.
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Chapter 2

An introduction to vascular 
biomechanics

2.1 A n overview  on haem odynam ical circulation

There are two types of circulation, namely pulmonary and systemic. Pulmonary circulation 
occurs between the heart and the lungs in order to oxygenate the blood. Systemic circulation 
involves two way transportation of blood from heart to tissues and vice versa. Coronary 
circulation is part of the systemic circulation, in which oxygenated blood is carried to heart 
muscle myocardium to supply nutrients. Systemic circulation is larger as compared to the 
pulmonary. The heart contains four chambers namely, right atrium, right ventricle, left atrium 
and left ventricle. Lungs dispose carbon dioxide from the blood, in order to oxygenate it. 
Through pulmonary veins, oxygenated blood from lungs enters the left atrium chamber of 
the heart and subsequently to the left ventricle. The oxygenated blood from left ventricle is 
pumped with high pressure to aorta. The oxygenated blood from aorta is transported to tissues 
via arterioles and capillaries. This phase of systemic circulation ensures the adequate supply 
o f nutrients to the tissues. The deoxygenated blood returns to the heart, by entering the right 
atrium chamber followed by right ventricle. It is very important to know that oxygenated blood 
flows in a network, which involves arteries, arterioles and capillaries. Similarly, deoxygenated 
blood flows in the network of capillaries, venules and veins. These facts can be clarified by 
referring to the Figure 2.1. For comprehensive understanding of haemodynamical circulation, 
readers are referred to [11]. The haemodynamical circulation is necessary for efficient tissue 
perfusion. The blood flowing in a vessel satisfies all three laws of conservation. Similar to any 
other fluid, the forces that act on blood are gravitational load and pressure gradient. The forces 
that resist the blood flow are viscous-shear forces. Turbulence can also cause this resistance. 
Unlike a flow in a straight tube, the critical Re of turbulence for an intricate blood circulation 
tree is not 2000. It can be as low as 200 [7] due to geometrical complexities. The combination 
of maximum velocity and lower viscosity can also induce turbulence, due to increase in Re. It 
is obvious that presence of turbulence inside lumen will increase the magnitude of wall shear 
stress. This higher shear stress is due to higher shear strain and higher friction on endothelium. 
Inside a blood vessel, if the pressure and velocity at a point are known, pressure and velocity at 
any point downstream can be calculated approximately using bernoulli's equation with some 
additional terms in the right hand side. These additional terms include rate of change of kinetic 
energy between two points and frictional loss [11]. The frictional loss is low for a large artery
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such as aorta.

tary Veins

Aortic Arch

Oxygenated blood to 

the rest of body
Deoxygenated 
Blood from the 

rest of body

Figure 2.1: Blood circulation from human heart.

2.2 H aem o d y n am ica lly  im p o r ta n t  a r te r ie s

In the whole of circulation system, aorta is the biggest artery. The aorta is connected to the 
left ventricle of the heart and extends distal to the diaphragm. There are three sections in an 
aorta, namely ascending aorta, aortic arch and descending aorta. The arch of aorta branches 
into three arteries, namely brachycephalic artery, left common carotid artery and left subclavian 
artery. The aorta has always been a center of attraction for many researchers [8, 16, 17, 22] 
in haemodynamics, since it is susceptible to dilatations such as thoracic and abdominal aortic 
aneurysms. However, another most widely researched [1, 2, 3, 5] artery is carotid artery. The 
carotid artery begins with aortic arch and its bifurcated branches run through neck to head. 
The right carotid emerges from Brachiocephalic artery. The carotid bifurcation type structure 
leads to a complicated haemodynamic flow pattern. There are two carotid arteries in the human 
body, one in the left and another one at the right. The carotid artery is categorized into three 
segments, namely common carotid artery, internal carotid artery and external carotid artery. 
The presence of sinus-bulb at the internal carotid artery contributes to a stronger reversed flow 
[2], The cerebral artery has also been studied thoroughly by many researchers [26, 27, 28], 
since it is susceptible to cerebral aneurysms. Haemodynamics of femoral artery [19, 20] needs 
attention, since its multiple bend structure is vulnerable to atherosclerosis. The femoral artery 
is one of the longest arteries in human body, which is situated in the thighs. Branches are very 
common geometrical features of arteries. In an artery, these branches may appear one after 
another emerging out of the mother artery as in celiac-superior mesenteric artery or opposite to 
each other with an offset distance, as in right-left renal arteries. Haemodynamical features in
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the mother artery depends on the orientation and number of daughter branches [59], Patient 
specific images of the aorta and the carotid artery can be seen in the Figure 2.2. The location 
of these arteries in the blood circulation network has been highlighted in the Figure 2.1.

(a) A orta  (b) Carotid artery

Figure 2.2: Aorta and Carotid artery.

2.3 H aem o d y n am ica l q u an ti t ie s

Haemodynamical quantities of prime importance are pressure, velocity, viscosity and shear 
stress. All these quantities are interrelated. The variation of one quantity with respect to 
other quantities can easily be determined using governing equations derived in the next chapter. 
These haemodynamical quantities play a significant role in judging the cardiovascular well being 
of humans. Any abnormal variation of these quantities in a diseased artery can lead to multiple 
organ failure.

2.3.1 B lood p ressu re

For a healthy adult, the typical systolic and diastolic values of pressure are 120 mmHg and 
80 mmHg respectively. The blood pressure on vascular walls is higher for aged humans. 
This is due to decreased arterial yielding as a result of arteriosclerosis. For any human being 
irrespective of age and sex, blood pressure falls significantly during sleep. Other factors that 
contribute to the variation of blood pressure are static exercise, dynamic exercise, anger, 
sexual excitement and anxiety. Among all the arteries, the aorta experiences the highest blood 
pressure. The blood pressure can be measured i n  v ivo  with the aid of sphygmomanometer. 
In any artery, blood pressure can be computed i n  s i l i co  [24, 33]. Maynard and Nithiarasu 
[34] have computed pressure in an ascending aorta and other two locations in the arterial tree 
using locally conservative Galerkin (LCG) method. Blood pressure at any location in the body 
can be obtained by summing up pressure due to gravitational pull, heart force and frictional 
loss. In a vessel, if pressure at one point is known, pressure at another point can be calculated 
approximately using the relation [11],
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1 1 d E  I
P \ - P 2  =  2P^2 -  2 ^ 1  + 7 h  + - fa + J  F L d x  (2 -1)

where p\ and p2 are pressures at two different points x \  and X2 , p is density, v\ and V2 are 
velocities at two different points x \  and X2 , 7  is specific weight, h is height difference between 
two points x \  and X2 , E  is kinetic energy and F i  is frictional loss.

2.3.2 R ole, nature and m easurem ent o f b lood velocity

It is a well known fact that, higher the blood velocity higher will be the wall shear stress. 
This can be confirmed by the simulations presented in next chapters. The velocity of blood 
in an artery reaches its peak value during the systolic phase and will reach a negative value 
during the diastolic phase. Vascular blood velocity is always unsteady and pulsatile in nature. 
However, it is common to  study steady flow in a specific region of an artery, in order to depict 
an average behavior of the flow [19, 1 , 21]. It is not realistic to assume fully developed profile 
at the inlet. Since presence of bends and out of plane tortuosity prior to the inlet will make the 
flow profile asymmetric [16, 32]. However it is a common practice to assume fully developed 
flow at the inlet [24, 25] for idealized models. I n  v ivo  whole field blood velocity in any part of 
the body can be computed or monitored with higher resolution using various techniques such 
as laser doppler velocimetry, laser speckle contrast imaging, particle image velocimetry and 
nuclear magnetic resonance [35]. Unsteady velocity waveform at a cross section of an artery 
can be measured in  v ivo  by the ultrasonic technique [30]. The generic Poisuelle parabolic 
profile is applicable to steady flows only. In idealistic models, the most widely used waveform 
is given by classical Womersley's solution [15, 36]:

u(x>t) =  A ( i _  M i i » r / R ) \ e^
if™  \  JQ{i2ot) J

where x  and t  are spatial and temporal dimensions respectively, A  is a complex conjugate of 
pressure gradient [37], i  =  y j — 1, p is density of blood, u  is frequency of pulsatile flow, Jo and 
J i are zeroth order and first order bessel functions respectively [15], R is vascular radius, r  is 
the radius of a small element and a —R y /^  is Womersley number with v as kinematic viscosity. 
The involvement of harmonics and other mentioned parameters make this profile more realistic. 
Typical Womersly spatial and temporal profiles calculated by the above equation are given in 
the Figure 2.3. This profile has been calculated for a patient specific carotid artery (Figure 2.2) 
by Bevan et al [80]. The harmonics and other parameters can be found in the same reference.

2.3.3 V iscosity o f blood

Blood rheology is a vast field of study. This field is termed as haemorheology in clinical 
literature. Baskurt [40] has clearly linked peripheral vascular disease, hypertension and diabetes 
mellitus with abnormal haemorheology. Blood is viscoelastic and thixotropic under certain 
physiological conditions. Thurston [41] has proven the elastic nature of blood in unsteady flow 
conditions, experimentally and analytically. Blood also exhibits shear thinning behavior [38]. 
Blood is thinner when the shear forces that produce the flow are very high. Blood viscosity 
depends on plasma viscosity due to protein concentration and content of haematocrit [29].
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Figure 2.3: Womersly Profile.

Increased plasma viscosity due to haemodilution will decrease the wall shear stress drastically 
at a given shear rate. Blood viscosity also depends on shear strain rate of flow. Blood viscosity 
is inversely proportional to shear strain rate. Hardening of blood cells due to pathologies of 
aging, will increase viscosity [11], In haemodynamical literature, varying viscosity is known as 
apparent viscosity. For vessels with diameter larger than 1 mm it is common to assume constant 
blood viscosity (i.e Newtonian flow) of about 0.035 Poise. Another factor that justifies the 
assumption of constant viscosity is shear strain rate. If shear strain rate of blood flow is higher 
than 100 viscosity can be considered constant [47], In this research work, a constant value 
of viscosity will be considered for all the problems, since the dimensions of vessels are greater 
than 1 mm. But, it is important to consider non-Newtonian behavior of blood in micro-vessels 
[43], Blood viscosity // in a vessel with radius R can be obtained by poiseuille's law:

- U R 4 dP
^  ~  8Q ( ^

where, Q is flow rate, d P /d x  is pressure gradient. Blood exhibits non-Newtonian behavior 
under various conditions. Blood is found to be non-Newtonian in the regions of flow separation 
and recirculation, and at low shear rates [59]. To model non-Newtonion behavior of blood in 
micro-vessels, there are various constitutive models available [48]. These include Casson model, 
Carreau-Yasuda model and K-L model.

2.3.4 R eynolds n um ber

Reynolds number is a dimension-less number, which is the ratio of inertial forces to viscous 
forces. Reynolds number can reach as low as 1 in small arteries and veins [11], A typical 
range of Reynolds of number in arterial flow is 0 to 5000. In the range 100 to 1000, inertial 
and viscous forces are equally influential. Due to this fact, vortical flow is always possible in 
arteries. Reynolds number is given by the equation:
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Re =  (2.4)
V

Where, umean is mean velocity o f blood flow, D is diameter of an artery and v is kinematic 
viscosity o f blood flow. From the above equation it is clear that, substantial decrease in 
hematocrit leads to turbulence, since viscosity o f blood drops. In an arterial flow, Reynolds 
number can vary due to various physiological factors such as stenosis, curvature and presence 
of grafts [44]. In this research work, viscosity of blood is assumed to be constant. Therefore, 
velocity and dimensions are the only two factors responsible for variation of Reynolds number.

2.4 Structure of a b lood vessel in brief

Blood vessels are one of the most intelligently built natural ducts. If all the blood vessels of 
a human are to be connected end to end, length is unimaginable. Like any other engineering 
cylindrical tube, blood vessels will also experience axial, hoop and radial stresses. The internal 
diameter of the vessel is known as lumen. The physiological zone of the vessel is categorized 
into three layers. These three layers are named as tunica intima, tunica media and tunica 
adventitia. For arteries, tunica intima is thick in nature. It consists o f endothelium cells bonded 
by connective tissues. Endothelial is a single layer of endothelium cells present throughout the 
vascular system. It can be seen as an interface between blood and tissue. According to the 
experimental work by Fry [52], the yield stress for endothelium cells is about 380 dynes/cm2. 
The stress beyond this value, due to haemodynamical pressure and wall shear stress can 
damage endothelium cells severely. The endothelial facilitates the transfer of nutrients from 
blood to tissues. The glycocalyx coating present in the endothelial is permeable to glucose, 
adrenalin and other nutrients and impermeable to plasma, since plasma is bigger in size. Thus 
plasma is retained in the blood. The central layer is known as tunica media, which is thin in 
nature. Internal elastic lamina separates the media from intima. The media consists of smooth 
muscle cells, which are combination of collagen and elastin. Smooth muscle cells are oriented 
circularly around the vessel. So that the contraction of these cells will decrease the lumen size. 
The outermost layer is known as tunica adventitia or tunica externa. External elastic lamina 
separates adventitia from media. In adventitia, fibroblasts and nerves are held together by 
collagen. Collagen is present in all three layers. The general vascular structure can be seen in 
the Figure 2.4 which has been reproduced from [81]. The structure of vessel remains same for 
veins. But the intima is thinner in veins.[45, 46]

2.5 B iological and physiological characteristics o f blood in 
brief

Blood provides the required nutrients and oxygen to the tissue and takes away the carbon diox­
ide and waste products from the tissues. Thus, health of the tissues is greatly dependent on 
the characteristics of blood. The blood is also involved in the modulation of body temperature, 
acting defensive against infections and healing of injuries [39]. Elements of blood are white 
blood cells, red blood cells, platelets and plasma. Plasma, is the major constituent of blood. 
Content of plasma in the blood is more than 50 %. Thus, volume of plasma in the blood de­
termines the viscosity of blood. Plasma is mainly water with a small portion of proteins. White
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Figure 2.4: General vascular structure [81].

blood cells play a prominent role in immunity of human body. The white blood cells are also 
known as leukocytes are present in blood and lymph as well. Extremely larger or lower amount 
of leukocytes in the human body indicates a pathology. The red blood cells also known as 
erythrocytes are produced in the bone marrow. Erythrocytes are responsible for transportation 
of oxygen from lungs to tissues. Platelets are also known as thrombocytes. Thrombocytes are 
required to stop bleeding (haemostasis). Lower number of these cells can lead to excessive 
bleeding, whereas a higher number can lead to blood clots leading to thrombosis. The density 
of blood is about 1050 kg /m 3. On an average, a human body contains 4.5 to 6.0 L of blood 
[47].
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Chapter 3

Flow features

3.1 Introduction to  flow features

In the field o f computational bio-fluid dynamics, qualitative numerical results are always pre­
sented in terms of flow features. These flow features include distribution of pressure and wall 
shear stress, velocity vectors and oscillatory shear index (OSI) in the case of unsteady flows. 
These flow features will be described briefly in the next sections. Flow features give a quick 
glance of physics in in  s ilico  biomedical models. Flow features facilitate easier identification of 
region of importance in the domain under study. The study of flow features and streamlines in 
order to understand the vascular blood flow dates back to 1945 [56]. In arteries, the region with 
abnormal and stronger flow patterns is more vulnerable for pathologies such as atherosclerotic 
plaque deposition and arterial dissection. Rupture of an aneurysm is always characterized by 
disturbed flow patterns [28], Accuracy of in  s ilico  models can be determined by comparing 
numerically obtained flow features with those of experimental work. The flow features depend 
on the motion of fluid. In order to have a quick understanding of flow features, it is essential 
to know about the phase lag in the motion of fluid, due to inlet pressure. The flow in an artery 
can be divided into three regions, namely near wall, boundary layer and core [38]. Flow in the 
core region is dominated by inertia forces, thus phase lag is very low. Flow in the boundary 
layer involves balance between inertia and viscous forces, so the phase lag is moderate. Viscous 
dominant flow near wall experiences very significant phase lag. Pathologically, the importance 
of each hemodynamical quantity has been highlighted in the Table 3.1.

3.2 H aem odynam ic pressure d istribution

Pressure at every grid point is obtained by solving Naviers-Stokes equations. The pressure 
gradient or pressure drop depends on vascular diameter, flow rate, curvature or bifurcation 
angles if any, endothelial wall roughness and blood physical properties [38]. In any blood vessel, 
this pressure gradient is negative when the blood is accelerating and positive when the blood 
is decelerating with negative velocity [11]. For regular geometries such as a straight cylinder, 
pressure remains high at the inlet irrespective of the velocity. But for irregular geometries such 
as bends and bifurcation the peak pressure will shift to  one of the bends or bifurcations at 
higher inlet velocities. For arteries with bends, the location of peak pressure depends on the 
angle and radius of curvature, and number of bends. For double bend arteries it is common to
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locate peak pressure in the outer bend [24]. If the i n  s i l i co  model is symmetric, the pressure 
distribution in the symmetric plane (along the central axis) gives clear picture of pressure 
concentration in the whole model [19]. In case of arterial aneurysms, increase in peak pressure 
indicates the drastic growth of size and rupture [49]. Ahmed et al [50] have shown that, the 
pressure at peak systole, on an aneurysmal wall remains same as that of its parent artery, for 
an idealized cerebral aneurysm-model. Papaharilaou et al [16] have shown that, peak pressure 
in an idealistic abdominal aneurysm with an S-shaped inflow segment occurs near the distal 
end of sac. The pressure values at all the grid points become more significant, when arterial 
wall distensibility needs to  be included in the numerical simulation. Since these pressure values 
are taken as boundary conditions for fluid structure interactions (FSI) simulations. The blood 
pressure distribution on the vascular wall of a typical thoracic aorta can be seen in the Figure
9.4 Chapter 9.

3.3 V elocity field

Velocity stream lines and associated contour plots are essential to understand the direction of 
flow and motion of fluid particles. In haemodynamical simulation, plotting of axial velocity 
profiles in symmetric plane is very common in bend and bifurcation type arteries [24, 19, 2, 25]. 
A strong asymmetric axial velocity profile at a cross-section indicates strong flow separation. 
In bend-arteries, axial velocity plots explain the intensity o f centrifugal force on the bends. 
In bifurcation-type arteries, axial velocity plots determine the effect o f bifurcation on flow in 
branches. In bend-type arteries, it is very important to visualize secondary flow. The secondary 
flow is given by velocity vectors parallel to the plane of cross section. The secondary flow is 
always characterized by recirculation zones at downstream. Secondary flow with recirculation 
can be seen in the Figure 6.5 of Chapter 6 . Stronger secondary flow happens with increase 
in Reynolds number. This stronger secondary flow involves multiple vortices. The strength 
of secondary flow depends on intensity and angle of curvature, and number of bends. Under 
pulsatile conditions, wood et al have concluded in there work [2 0 ] that secondary flow in a 
femoral artery of male subjects is stronger than that o f female subjects. The strength of 
secondary flow is given by Dean number D e [38]

D e =  R e \fkc  (3-1)

where kc =  R being the radius of the artery and R.c being the radius of curvature. 
Higher the Dean number, stronger will be secondary flow. The Dean number is valid for laminar 
flows only. Qiao et al [24] have shown that secondary flow is stronger and complex for higher 
value of R. For femoral arteries, typical range of Dean number is 10-1000 [51, 20], Complex 
secondary flow is characterized by multiple vortices. Apart from Dean number, the strength 
of secondary vortices also depend on the velocity profile at the inlet [32]. Multiple spiral 
vortices in the secondary flow are responsible for the accumulation of white blood cells such as 
macrophages and monocytes. The presence of these cells is believed to initiate and propagate 
lesions [75]. Malinauskas et al [76] have reported, the elevated LDL (low density lipoprotein) 
permeability of the intima in a luminal location with complex secondary flow. Velocity vector 
plots also facilitate the identification of flow separation zones. Flow separation regions are 
very common in aneurysmal bulges and arterial sinus bulbs. Separation regions are responsible 
for the variation of shear and normal stresses on the arterial wall. A detachment point in a
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separation region leads to low shear stress on walls. Whereas a reattachment point enforces 
relatively higher shear stress on the wall. If the reversed flow exists between the attachment 
and reattachment points, the arterial wall in this region is characterized by negative shear stress 
[53]. O ’Rourke et al [17] have observed a detachment point followed by a strong recirculation 
zone in steady flow conditions and vortex shedding in systolic phase of pulsatile flow for a 
realistic abdominal aortic aneurysm. Flow separation is more pronounced [54] at the inflow 
region for balloon like expanding stents. Nicholls et al [55] have linked the flow separation 
zones in the bifurcation regions to atheroma. In multi-branched arteries, such as renal arteries, 
the occurrence of flow separation depends upon various parameters. These parameters include 
pulse rate, branch to trunk flow ratio and Reynolds number [57]. The presence of branches 
causes flow separation in mother artery. Kim et al [59] have observed flow separation regions 
in a location of mother artery, opposite to the renal branch. In this work, a high intensity flow 
separation has also been observed at branch locations proximal to the mother-branch junction. 
A stenosis in the aortic valve is responsible for flow separation region downstream in aorta. 
The occurrence and intensity of flow separation depends on the degree of the stenosis [58].

3.4 W all shear stress d istribution

Wall shear stress is the stress generated on the endothelial, due to shearing action of the blood 
particles on the wall. The shearing action is the result of tangential force component of the 
blood flow. The tangential force r  for a circular cross section can be calculated by classical 
poiseuille’s equation:

T = S  <3-2>
where is viscosity of blood, Q is flow and R is radius of lumen. Experimental deter­

mination of the shear force involves measurement of wall shear rate with the aid of velocity 
profiles. These velocity profiles are usually obtained by techniques such as particle tracking, 
laser doppler, MRI and ultrasonic. In i n  s i l i co  modeling of blood vessels, accurate computa­
tion of wall shear stress requires higher number of boundary layers near the wall. Numerically, 
wall shear stress Twau can be computed by the equation:

Twali =  ( /  -  n ® n ) T i j  (3.3)

where, I is identity matrix, n is a normal vector, <g> will give the tensor product and 
is Cauchy’s stress. Two normals are used to remove normal stresses and retain tangential 
stresses. Cauchy's stress is given in the Equation 4.5 of Chapter 4. In numerical studies it is 
common to use wall shear stress as a parameter to perform grid convergence studies. In grid 
convergence studies, number of numerical models with different mesh densities will be solved. 
The model with desired accuracy of peak and average wall shear stress will be considered as 
the converged mesh.

Physiologically, abnormal variation of wall shear stress will distort the mechanical properties 
of endothelial layer. The experimental work done by Fry [52] proves that the wall shear stress 
beyond 380 dynes/cm2 will distort endothelium cells. Any region of lumen exposed to low
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wall shear stress is susceptible to atherosclerosis [60], since the blood moves slowly here. In 
the case of arteries with mild curvature multiple bends, high wall shear stress occurs in the 
intermediate region between two successive bends [19]. For high Reynolds number flow in the 
bend-type arteries, peak wall shear stress and peak pressure occur at a location near to each 
other. To confirm this, readers are referred to Figures 6 .6  and 6.7. During the pulsatile flow 
in bend-type arteries, wall shear stress increases and decreases with velocity [24]. Asakura 
and Karino [3] have confirmed the presence of low wall shear stress and low fluid velocity in 
the internal radius of curvature o f a coronary artery. This region is believed to be a favorable 
spot for atheroma. In bifurcation type arteries such as carotid, the wall shear stress largely 
depends on the angle between and dimensions of the internal and external carotid arteries. 
The arteries with bifurcations experience a sudden drop in wall shear stress at the start of 
bifurcation junction, due to increase in the cross sectional area [25] at the bifurcation. The 
carotid artery experiences peak wall shear stress at the apex of the bifurcation and very low 
wall shear stress at the external wall of the sinus bulb [5, 69]. Thus, the likelihood of plaque 
deposition in the sinus of a carotid is higher. Yang et al [6 6 ] have indicated the presence of 
WSS-maxima in the left carotid junction of aortic arch and peak WSS at right hand side of 
the aortic arch. Stress in an aneurysmal sac is usually low, but starting and end points of the 
sac are subjected to higher shear stresses [16]. According to the research done by Shojima et 
al [61], high wall shear stress initiates an aneurysm, low wall shear stress supports the growth 
of an aneurysm and wall shear stress at the tip  of rupture of an aneurysm is found to be very 
low. Wall shear stress in an aneurysm largely depends on the angle of aneurysmal axis with 
respect to the plane of parent artery [67]. Accurate quantification of WSS in an aneurysmal 
wall requires the inclusion of wall elasticity [6 8 ]. For a precise understanding of the impact of 
wall shear stress on the endothelial, various indices have been developed. These indices are 
time averaged wall shear stress, wall shear stress gradients and oscillatory wall shear index. 
Wall shear stress gradient is d r w/ d x ,  where tw is WSS and x  is the tangential wall coordinate. 
Other two indices are discussed in brief in the following two subsections. The WSS distribution 
on the vascular wall of a typical thoracic aorta can be seen in the Figure 9.5 of Chapter 9.

3.5 O scillatory shear index

This index has been originally developed by Ku et al [62] in 1985, to study the abrupt variation 
of wall shear stress in a carotid bifurcation. It is given by:

O S I =

rT
/  tvL* dt

Jo

f T/ T\u dt
Jo

(3.4)

Where T  is time period and r w* is the stress component acting opposite to the temporal 
mean shear stress [62]. It is the most widely used index by the present generation of cardio­
vascular research community, to determine the. growth factor of haemodynamically triggered 
pathologies [24, 21, 28, 60]. The oscillatory shear index (OSI) captures the cyclic nature of 
wall shear stress on endothelial, due to the pulsatile blood flow. The definition of OSI is being 
changed by researchers over years, in order to make it more accurate. The latest definition of 
oscillatory shear index is given by [24, 63]:
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Jo

In the above equation, OSI can vary between 0 and 0.5. Higher value of OSI indicates 
abrupt variation o f wall shear stress. Higher OSI also implies stronger intensity of reversed 
flow. Reversed pressure gradient due to the high intensity retrograde inlet waveform in an 
artery causes the slow fluid near wall to reverse before the fluid in the center will reverse. This 
phase lag of flow will increase the OSI significantly [2 0 ]. Higher OSI contributes significantly 
to the pathogenesis of atherosclerosis [4]. In in  s ilico  simulation of carotid bifurcation, the 
OSI is sensitive to the outflow boundary conditions [64]. The apex and sharp sinus corner 
of the carotid bifurcation are more susceptible for higher OSI [65, 21]. Physical exercise will 
reduce the OSI significantly. Lee et al [63] have shown that, the regions of low and oscillatory 
shear stresses in an abdominal aorta found when the subject is resting, vanished under exercise 
conditions. The OSI distribution on the vascular wall of a typical thoracic aorta can be seen 
in the Figure 9.7 of Chapter 9.

3.6 T im e averaged wall shear stress

The time averaged wall shear stress (TAWSS) is the mean of WSS values recorded at all the 
time steps. Like WSS gradient and OSI, time averaged wall shear stress can also be used 
as rupture index for aneurysms. Higher value of TAWSS contributes significantly towards the 
damage of endothelium. Time averaged WSS is given by:

The distribution of TAWSS in an artery largely depends on the geometry [20]. Combination 
of low TAWSS and higher OSI is responsible for flow disturbances in arteries [64].

(3.6)
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Table 3.1: Pathogenical importance of each blood flow feature.

Serial
no

Hemodynamical quantities Impact on vascular well being.

1 Abnormal hemodynamical 
Pressure

Responsible for growth af­
ter initiation and rupture of 
aneurysm

2 Abnormal axial flow Responsible for flow separa­
tion and extrema of WSS

3 Abnormal secondary flow Responsible for monocytes ac­
cumulation and increased par­
ticle residence time

4 Higher WSS Responsible for endothelial 
cell damage

5 Lower WSS Responsible for plaque accu­
mulation

6 Abnormal WSSG Responsible for endothelial 
cell damge

7 Abnormal OSI Impact is similar to that of ab­
normal WSS (i.e. pathogene­
sis of atherosclerosis) for pul­
satile flows

8 Abnormal TAWSS Impact is similar to that of 
higher WSS (i.e. Damage to 
endothelial cells) for pulsatile 
flows
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Chapter 4

Governing equations and solution  
scheme

4.1 Introduction

In physiological terms, science of blood flow and its impact in terms of forces and stresses on 
surrounding vascular wall is known as haemodynamics. Abnormal haemodynamics can cause 
harmful structural changes on endothelium and smooth muscle cells. These vascular changes 
in turn will cause haemodynamical anomalies. Strong eddy currents and flow separation are 
ideal examples for haemodynamical anomalies. The variation of physical quantities within the 
flow is necessary to understand the haemodynamic behavior. These typical physical quantities 
are velocity, pressure, density, temperature, normal stresses and shear stresses. There are 
various methods to determine these physical quantities. These methods include experimental, 
analytical and numerical. Performing experimental study to physically observe and measure 
physical quantities demands experimental setup and equipments. Analytical methods rely on 
theorems based on classical mechanics. But there are several limitations on analytical and 
experimental methods. On the other hand, we have numerical methods. In these methods, 
governing equations of fluid are solved numerically to obtain the values of physical quantities. 
This work involves extensive utilization of numerical methods to compute physical quantities. 
In the first section, governing equations o f fluids are mentioned. The second section deals with 
the boundary conditions to be imposed on the governing equations of flow problems. The final 
part o f this chapter presents an efficient numerical scheme dedicated to solve complex flow 
problems.

4.2 Governing equations of fluid dynam ics

The whole science of fluid dynamics is based on three physical principles. They are conserva­
tion of mass, momentum and energy. For the purpose of computation, blood can be assumed 
as continuous. This assumption is based on the fact that the length scales are bigger than the 
mean free paths of blood cells in macro circulation. The behavior of such flows is dealt by a 
branch of mechanics known as continuum mechanics. In the context of continuum mechanics, 
flow of a fluid can be studied using any of the four flow models [1 0 ] namely, fixed control

16



volume, moving control volume, fixed infinitesimally small volume and moving infinitesimally 
small volume. Governing equations of fluid dynamics can be obtained by applying three phys­
ical principles to any one of the four flow models.

Continuity equation, considering a cartesian coordinate system can be obtained by applying 
the physical principle "mass is conserved" to a model of infitesimally small fluid volume fixed 
in space.

(4.1)

where p is density (approximately 1050 kg/cm 3 for blood) , V  is velocity vector and V  
represents divergence.

a? +  v ' ^  =  °

Three momentum equations in conservative form, considering a cartesian coordinate system 
can be obtained by applying the physical principle "momentum is conserved” to a model of 
infitesimally small fluid volume fixed in space.

g <“ >

dpw dp d rzx d rzy d rzz
_  +  V . K ^  =  - -  +  —  +  —  +  —  +  Pfz (4.4)

Where u, v and w are velocity components, p is pressure, is a viscous stress tensor 
and fi is force vector. The stress terms are functions of velocity gradients. These momentum 
equations are the result of Newton’s second law (M a  =  F ). The right hand side of the mo­
mentum equations contains pressure gradient, viscous forces and body forces. It is important 
to note that the pressure gradient will turn positive, when the blood decelerates [11 ] due to 
pulsatile nature of flow.

The above quasi linear partial differential Equations 4.1 to 4.4 are the basic governing 
equations of fluid dynamics in conservative form. The governing equations can also be written 
in nonconservative form by assuming a model o f moving infinitesimally small fluid volume. The 
governing equations in conservative form are suitable for incompressible flow problems, since 
they are easy to  handle numerically in this case. The governing Equations 4.1 to Equations 4.4 
all together are known as Navier-Stokes equations. The governing partial differential equations 
are nonlinear in nature and are difficult to  solve analytically. To make the governing equations 
more suitable for a fluid like substance, the stress terms need to be replaced with velocity 
terms. This can be done by Cauchy’s stress relation, in which deviatoric stress is given as

dui du j 2 duk 
'«  =  +  (45)
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Where / i is viscosity o f blood, which fluctuates [8 ] due to factors such as diseases and 
body conditions (typical range is 0.03-0.05 poise) and 5{j is Kroneckar delta. Kroneckar delta 
is unity if i  =  j  and is zero if i  ^  j .  For micro-vessels // is plasma viscosity [60].

4.3 Boundary conditions

In a typical fluid dynamics problem involving an inlet and an outlet, boundary conditions are 
decided by characteristics. It is obvious that blood flow inside an artery is subsonic. If the 
subsonic flow is governed by hyperbolic type partial differential equations, there are two char­
acteristics. For such a case, one boundary condition needs to be prescribed at the inlet and 
another one at the exit. In arterial haemodynamic simulations, it is common to prescribe 
a velocity profile at the inlet and pressure at the outlet. If dependent variables are defined 
at the boundary, the boundary conditions are Drichlet-type. On the other hand the bound­
ary conditions are Neumann-type, if  the derivatives of dependent variables are defined at the 
boundary. A mixture of both Drichlet-type and Neumann-type is also possible. This mixed 
type of boundary conditions is known as Robin type and is commonly found in convective heat 
transfer problems [12 ].

For a viscous flow, physical boundary conditions include no-slip condition, where all the 
velocity components are ignored at the wall (i.e. u ,v ,w  =  0). No-slip condition means zero 
relative velocity between wall and immediate fluid. In arterial blood flow problems, no slip 
conditions are enforced on wall, since blood vessel wall distensibility is negligible. For idealistic 
arterial models a fully developed time dependent inlet velocity based on Womersley solution 
[15, 16] or in  vivo  measurements can be prescribed. It is a common practice to consider 
either zero pressure [17, 18] or setting second derivative of velocities and pressure in mean 
flow direction to zero at outlet [25]. In an artery, if the inlets and outlets are circular, velocity 
profile can be calculated using Hagen-Poiseuille flow equation:

where umean is the mean velocity, r ( x ) is the distance between a point x and the axis of 
the vessel and R  is the radius of the blood vessel.

4.4 G eneric form of governing equations

The governing equations 4.1 to 4.4 in conservative form can be represented generically by:

u {x , t ) =  2 u,"mean R 2
(4.6)

d V  dFi dG i n
-T~ +  =  0
d t dx i dx i

(4.7)

where,

V T =  (p: pu i, pu2, pu3) (4.8)
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is the independent variable vector,

F j '  =  (put, puiU i +  Sup, pUiU2 +  si2p, puiUz +  5i3p) (4.9)

is the convective flux,

G j  =  (0, - r a ,  —r i2, - m )  (4.10)

is the diffusive flux

4.5 Classical N um erical Schem es

To discretise a governing equation of fluids, there are numerous schemes available. These 
schemes include Stream line Upwinding Petrov Galerkin Schemes (SUPG), Taylor Galerkin 
Schemes and Charecteristic Galerkin Schemes. In the present work, the two methods, SUPG 
and TG schemes will be discussed for a typical ID  Convection Diffusion equation of a scalar 
variable given below.

d\b dib d2ib . .
■ i + u i - ^ = °  <4-u >

where i/; is a scalar variable.

4.5.1 Taylor Galerkin Approxim ation

In this scheme, Taylor expansion will be used for temporal discretisation and standard Galerkin 
approximation for spatial discretisation. For a typical Convection-Diffusion equation (Equation 
4.11) given above, the solution scheme will yield:

A t
- u -

d ^ ) 71

dx
+  v

d 2^ n
d x 2

A t  2 d2 ipn
+  ~2U dx 2

+  0 (A t2) (4.12)

The above equation clarifies that the scheme gives second order accuracy in time. The 
added diffusion term f u 2 leads to a stable solution. After weakening the above equation 
using a standard galerkin weight, the resulting final matrix type equation is given below.

[M]{ A t }  =  A t[ [C ]M  +  [D ]M  + [ K ] W }' (4.13)

Where, Aip =  ipn + 1  - i p n, “ represents nodal quantity, [M] is mass matrix, [C] is convection 
matrix, [D] is diffusion matrix and [K] is added diffusion matrix. For each element in the 
domain, the matrices are as given below:

[M } =  \
2 1 

1 2
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P ] = !
- l  l  
- l  l

\D\ =  Vj
1 - 1

- 1  1

[K \  =
A  tu 2 

21

1 - 1

- 1  1

where I is length of an ID  element.

4.5.2 Stream  line upwinding schem e

The importance of the SUPG lies in its weighting function. This weighting function will reduce 
the instabilities occurring perpendicular to the flow direction, since added diffusion acts only 
in the direction of flow. The SUPG weighting function is given below.

w ,suPG= h d N ^ u  (414)
2 dx  |w|

Where, h is element size, N  is shape function and |u| gives the magnitude of the velocity 
u. The term A  will determine the direction of streamline.

4.6 N on-D im ensional form of governing equations

To reduce the number of parameters and for programming convenience, all the governing 
equations can be non dimensionalized. The continuity equation can be written with indices,

Momentum equation can be written with indices,

dUi  d  . TT. dp d r i j

~W + d ^ {ujUi) =  ~ d ^ + a ^  (416)

In the above equations U{ =  pui and the density term in the continuity equation can be 
replaced by:

:)t  (417)
dt  c ? d t  1 '

where c is the speed of sound. The above equation is valid for isentropic conditions only. 
Non dimensional form of governing equations can be obtained by using scales:
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t l .  =  ± L : p . =  ^ : I ; =  5 : t . =  ^ : p . =  P (4 ,8 )
u-oo Poo L* r oo^oc

where, Wqo is free stream velocity and is free stream density and L  is characteristic 
length. By using the above scales in Equations 4.15 and 4.16, non-dimensional continuity and 
moment equations can be written as:

% + % - •

J 1 J

The deviotric stress Equation 4.5 can also be non-dimensionalized,

+  (4 21)
y - l ac* +  & r* r ' 3 d x i '

The non dimensional parameter Re is Reynolds number, given by Re =  and v =  
is kinematic viscosity.

4.7 Solution to  th e N avier Strokes equations using the characteristic- 
based split (C B S) schem e

This scheme is similar to the work done by Chorin [70] and can be applied to both compressible 
and incompressible flows. Whereas the Chorin's split was developed for incompressible Navier 
Strokes equations only. The CBS scheme is more stable due to the involvement of split 
and characteristic Galerkin. The scheme involves three steps. First step is determination 
of intermediate velocity using an intermediate momentum equation. Second step involves 
obtaining pressure by a continuity equation. In the third step, intermediate velocity is corrected 
to attain the final velocity. A fourth step can be included, if any scalar quantity such as 
temperature needs to  be calculated. Initial temporal discretisation of the governing moment 
equation using Taylor series gives:

U ji+ l _  V n =  A t d dvn + & 2  d r 71-' A t2 d (  a , rr dp”
2 Ukd x k \ d x /  iU j) +  dx i

(4.22)

The pressure term in the above equation will be calculated at a time tn +  OAt. and 

0  <  0 2 >  1 .

^ !  =  , 2^  +  ( 1 _ , 2) ^  (4 .23)
OXi OXi OXi

Temporal discretization using three steps of CBS scheme are given below:
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Step 1 : Intermediate momentum

r\
A U i =  Ut -  U? =  A t  (u jU i)  +

n

(4.24)

where U™ =  U i(tn), A t  =  t n + 1  -  tn and ~ indicates an intermediate quantity. 

Step 2: Determination of pressure or density

A  p =  pn + 1  -  pn (4.25)

dx idx i  dx idx i

d 2p n Q 2A p
-—  ----- 1- U2 ~— — (4.26)

Step 3: Momentum correction

AUi = E/r+1 - u p  = AUi ~ (4.27)

where 0.5 < 6 1 >  1 . For explicit scheme 6 2  =  0. An approximate integration backwards, gives 
these equations extra convection stabilization terms (last term in the RHS of step 1). These 
extra terms reduce oscillations due to highly convective flows. The above three steps coupled 
with energy equation and gas law forms a procedure to solve compressible flow problems. The 
spatial discretization of the governing equations using Galerkin method is given in the Section

4.8 A rtificial com pressibility form ulation

The compressible wave speed c in the step 2 is very large for incompressible fluid dynamic 
problems. For larger c, the solution scheme becomes stiff and impose severe time step restric­
tions. Therefore, the wave speed c should be replaced with an artificial parameter ft. (3 is 
also known as artificial wave speed. The value o f /3 chosen should be valid for any Reynolds 
number and any flow regime (diffusion and convection dominated). The values of j3 and A t, 
which are found to be appropriate for accurate and faster solutions are given below:

where £ is a small constant (e: will not allow ft to reach zero), vconv is the convective 
velocity and is the diffusion velocity. These velocities can be calculated using the non- 
dimensional relations below:

4.9.

j3 =  m ax{E,v  conv, ^diff) (4.28)

^conv — V ui ui (4.29)

2
(4.30)

"d iff =  h jT e
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where he is local element size and Re is the Reynolds number. The convection and diffusion 
coefficient are computed in a different manner for pre-conditioned AC schemes. But computing 
convection and diffusion coefficients by Equations 4.29 and 4.30 increases the performance of 
the scheme. The local element size at a node i  in three dimensional (four noded tetrahedral 
elements) cases is given by:

hi =  m in  (3 volume/opposite face area)/e (4-31)

In the above equation, the minimum value is selected among the number of elements, ie, 
connected to node i. The local time step A t is calculated as (in terms of non-dimensional 
quantities):

A t =  m m (AiconV) A idiff) (4.32)

where

h
Afconv = ----------—n (4.33)

^conv +  P

and
A h2Re t t  n i .
A *diff =  —g-  (4-34)

In the equation 4.33, /3 is calculated from Equation 4.28. The calculated A t is multiplied 
by a safety factor varying between 0.5 and 2.0 depending on the problem and mesh size. The
best way to identify safety factor, is to start with maximum value and reduce until the scheme
starts converging.

4.9 Spatial d iscretization  and final m atrices

The scheme employed in this work makes use of standard Galerkin method to descretize the 
governing equations in space. The general and intermediate velocity terms, and pressure term 
can be approximated as given below:

Ui =  N uUi; AUi =  N uAUi; AUi =  N uA u j : p =  N pp (4.35)

where N  are the shape functions and left hand side of all the terms represents nodal 
quantities. The above three steps of CBS-AC can be approximated using Galerkin method as 
below:

step 1: Weak form of intermediate momentum



In the above equation t* depicts the part of the deviatoric part of traction only and i%i are 
the outward normals to  the boundaries. Weak form o f pressure equation can be obtained by 
multiplying pressure term with standard Galerkin weight and replacing c with AC parameter f3 
as given below.

Step 2: Weak form of pressure equation

The missing traction part of pressure in the step 1 can be found in the above equation as 
£**. The finite element discretiztion facilitates the enforcement of traction boundary condi­
tions, naturally. The CBS-AC scheme is advantageous for traction prescribed problems, since 
it is not essential to explicitly prescribe Drichlet conditions for pressure in this scheme. The

(4.37)

Step 3: Weak form of momentum correction

I

final matrix of the discretized governing equations are obtained by including Equations 4.35 in 
the Equations (4.36)-(4.38).

Step 1: Intermediate momentum

A U =  - M ; 1 A t[(C uU  +  K r U -  f) -  A £ (K „U ) ]n (4.39)

Step 2: Pressure

(M  +  A i2^ 6>2H )A p  =  A £ [ - G i r  +  ^ G A U  -  A£6>iHp -  fp]n (4.40)

Step 3: Momentum correction

A U  =  A U  -  M , r 1A i[G r (p n +  02Ap)J (4.41)

where
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H =

M u = J N ut N udQ; K t =  J  BTp ^I0 -  B dCl; i = J  N uTt *dT

^ ( V N p ) TV N p^ ;  M  =  ( J - ^  Npoffi; G = ^ ( V N P)TN udfl

fp =  A t9 i [  N PT (A U *  -  AtS7pn)n Td I] K u =  -i f  (V r (u N u))T (V T (u N u)d fi (4.42)

where B =  S N Ul S is an appropriate strain matrix or operator obtained from deviatoric 
stress Equation 4.21 and N u is the shape function. In 3D space m  =  [1 ,1 ,1 ,0 ,0 ,0]T and

/n =
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Chapter 5

Flow through a straight artery  
w ith constant circular cross 
section

5.1 Introduction

A straight artery/tube with constant radius 0.3 cm and length 8  cm has been studied for various 
Reynolds numbers. Steady flow simulation of an artery at various Reynolds numbers gives an 
averaged [22] behavior o f pulsatile flow simulation. The typical range of radius based on lumen 
diameter is 0.3 cm to 0.9 cm [19, 24, 21, 1, 29] for idealistic arterial models. This study will 
represent a straight section of a healthy artery. It is not expected to observe any abnormal 
flow patterns in this straight artery, since the flow remains developed (poiseuille’s) throughout 
the length. But complete understanding of flow behavior in a straight artery is essential, since 
it forms the benchmark for a study of arteries diseased w ith stenosis and aneurysms. For a 
straight tube, analytical solutions for pressure drop and wall shear stress are available. Because 
of this reason, a numerical solution on the straight artery/tube has been performed, in order 
to validate the numerical scheme. The numerical predictions o f WSS and pressure are found 
to be in good agreement with analytical (poiseuille’s) calculations.

5.2 N um erical m odel and boundary cond itions

In order to calculate accurate values of wall shear stress, the geometrical domain has been 
discretized with boundary layers. An in house mesh generator known as FLITE3D has been 
used to discretize the domain. The finite element grid w ith boundary layers consisted 220454 
tetra elements and 62503 nodes. Average element size in the model is 0.03 cm and number 
of boundary layers is eight. The mesh is of uniform longitudinal spacing and thickness of the 
edge boundary layer is 0.002 cm.. The total boundary layer thickness is 0.077 cm. Figure
5.1 shows the mesh with boundary layers. The boundary conditions include no slip condition 
at the wall and fully developed velocity profile at the inlet. The assumptions made in the 
numerical simulation are similar to those made by many authors [19, 24]. These include rigid 
arterial wall, incompressible, Newtonian, steady and laminar flow. The governing Navier Stokes
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equations of blood flow have been solved with the aid of the explicit-artificial compressibility 
scheme based on CBS method [14]. The solution methodology has already been presented in 
the previous chapter. The steady blood flow simulation has been carried out for 5 cases with 
varying Reynolds numbers (120, 240, 480, 960 and 1920). These Reynolds numbers are chosen 
based on cardiac cycle, Re-1920 being peak systolic flow. The Reynolds number is calculated, 
by considering the maximum inlet velocity and vascular diameter. In order to overcome the 
pressure oscillation difficulties, safety factor used is 0.5. The pseudo iterations were performed 
until the L2-norm of velocity and pressure errors reached 10- a .

(a) Surface mesh (b) Cross-sectional view of the mesh

Figure 5.1: Mesh and boundary layers for a straight artery with constant radius.
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Figure 5.2: Flow through a straight artery at Re-120.
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Figure 5.3: Flow through a straight artery at Re-1920.

Table 5.1: A straight artery: Results (in dynes/cm 2) for five different Reynolds numbers.

Re Max pressure A p Peak WSS Poisuelle’s Ap Poisuelle’s WSS
120 113.3 113.3 2.015 108.08 2.02
240 227.2 227.2 4.025 216.17 4.053
480 459.6 459.61 8.125 432.34 8.10
960 914.5 914.5 16.825 864.68 16.21
920 1802.2 1802.2 32.42 1729.36 33.0

5.3 R esu lts  an d  d iscussions

Figures 5.2 and 5.3 show pressure, velocity vector and WSS plots for the Reynolds numbers 
120 and 1920 respectively. From these two figures, it can be noted that maximum axial 
velocity remains at the center for all the sections and both the cases. Same trend has also 
been found for Reynolds numbers 240, 480 and 960 (Figures not shown here). This is due to 
the fact that there is no variation in cross section and the tube is straight. In this straight 
artery, the primary (axial) flow dominates throughout the length and no secondary flow occurs 
at any cross section. By observing the Figures 5.2c and 5.3c, we can conclude that the wall 
shear stress remains constant along length, since velocity gradient remains same at all the 
cross sections. Pressure contour plots suggest a pressure drop in all the cases, which is due to 
frictional losses. Table 5.1 gives the values of maximum pressure, pressure drop, poiseuiIle’s 
pressure drop, wall shear stress and poiseuille’s WSS at five Reynolds numbers (i.e. 120,
240, 420, 960 and 1920). Pressure and wall shear stress values are in dynes/cm2 Pressure 
drop remains same as maximum pressure, since exit pressure is zero. From this table, it is 
evident that the pressure drop increases with the Reynolds number. Table also proves that 
the peak wall shear stress increases with Reynolds number, due to the increasing flow rate. 
Since the lumen is completely cylindrical and the flow is fully developed, Hagen Poiseuille 
equation can be employed to calculate pressure and wall shear stress, analytically. The Table
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5.1 contains calculated pressure drop for five Reynolds numbers using the Hagen Poiseuille 
equation (A P  =  8fiuaVg lQ /7rr4), where I is length of straight cylinder in cm, uavg is average 
axial velocity in cm/s, r  is the radius of straight artery in cm and Q is the flow rate in cnv3/s. 
The analytical values of wall shear stress for five Reynolds numbers using Hagen Poiseuille 
equation ( rwgn  =  4//Q /7rr'3) is given in the last column of the Table 5.1. The analytical 
pressure drop and wall shear stress values are found to be in good agreement with those 
calculated numerically. For wall shear stress, the error due to numerical discretion is less than
0.2 % for all the Reynolds numbers. The pressure drop calculated numerically, is also in good 
agreement with analytical solution, since error due to numerical discretization is below 5 % 
for all the Reynolds numbers. This numerical-analytical correlation justifies the convergence 
of mesh. Because of this supporting fact, the same average element size (i.e. 0.03 cm) and 
same number of boundary layers have been used for spatial dicretization of all the idealistic 
artery-models in the forthcoming chapters. The numerical solution has also been attempted 
for four other models (4, 5, 6 and 7 boundary layers). The edge thicknesses for each model 
are give in Table 5.4. But the mesh with 8 boundary layers has given numerical WSS value, 
which are very close to the analytical values. This can be confirmed by referring to Figure 5.4 
and Table 5.2.

Table 5.2: A straight artery: WSS convergence for 5 different Boundary Layers.

Number of BLs Edge size WSS
4 0.005 31.2
5 0.004 31.54
6 0.0036 31.92
7 0.0031 32.3
8 0.002 32.42

WSS convergence

Numerical
Analytical34.5

33.5

« 32.5

31.5

30.5

4.5 5.5
Number of Boundary layers

6.5 7.5

Figure 5.4: A straight artery: WSS for 6 models with different Boundary Layers.
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Chapter 6

Flow through a m odel artery w ith  
a 90 degree bend

6.1 Introduction

A curved tube with constant diameter (D =  0.6 cm), inlet section length 5D, 90 degree bend 
with a radius of curvature 2.8D and an outlet section length 3D has been studied for various 
Reynolds numbers. In order to validate the solution, the geometrical features chosen here are 
based on the research work conducted by Rabiee et al [31]. This study will represent a curved 
section of a healthy artery. This type of bend structure is a possibility in almost all the arteries 
in the human body. Complete understanding of flow behavior in a curved artery is essential, 
since it forms the benchmark for a study of an artery with bends. Hemodynamical studies of 
curved arteries is highly essential in the field of biomechanics, since the presence of curvature 
will induce centrifugal forces on the walls. The flow patterns, pressure gradient and wall shear 
stresses vary significantly as a consequence of this centrifugal force. The centrifugal force in 
the curved artery is also responsible for the formation of complex secondary flow (vortices) 
downstream. However, the strength of the secondary flow largely depends on the intensity of 
the centrifugal force. Physiologically, all of these centrifugally induced abrupt flow features 
will induce pathologies such as hyperplasia, atherosclerosis and arterial dissection.

6.2 N um erical m odel and boundary conditions

The finite element grid with boundary layers consisted of 269032 elements. Average element 
size in the model is 0.03 cm and number of boundary layers is eight. The mesh is of uniform 
longitudinal spacing and thickness of the edge boundary layer is 0.002 cm. The total boundary 
layer thickness is 0.077 cm. The mesh generation algorithm and the CFD solver used are same 
as those in previous chapter. Figure 6.1 shows the mesh and boundary layers. The boundary 
conditions prescribed are no slip condition at walls and fully developed flow at the inlet. The 
assumptions made in the numerical simulation are similar to those made in previous problem. 
These include rigid arterial wall, incompressible, Newtonian, steady and laminar flow. The 
steady blood flow simulation has been carried out for five different Reynolds numbers (i.e. 
120, 240, 480, 960 and 1920). The pseudo iterations were performed until the L2-norm of
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(a) Surface mesh (b) Cross-sectional view of the mesh

Figure 6.1: Mesh for an artery with single bend.

velocity and pressure errors reached 10-5 .

6.3 R esu lts  an d  discussions

1. Figure 6.2 depict axial velocity of flow in the symmetric plane for five Reynolds numbers.

2. The flow along the length is termed as primary flow, whereas the flow along the plane 
perpendicular to the length of artery is termed as secondary flow. The same terminology 
has been used throughout the thesis.

3. Three sections have been selected for qualitative studies of secondary flow. The num­
bering of the sections start from the section proximal to the inlet, third one being the 
section proximal to the outlet. The three sections are shown in Figure 6.3. Figures 6.4 
and 6.5 represent secondary flow for Reynolds numbers 120 and 1920. Left hand side of 
the circles is towards inner curvature of the bend.

4. The wall shear stress contour plots for the single bend artery at two different Reynolds 
numbers, are given in Figure 6.6.

5. The pressure distribution for the single bend artery at various Reynolds numbers has 
been shown in Figure 6.7.

6. For the pressure and WSS contour, scale chosen to each plot is different. This has been 
done to capture the spatial variation of WSS and pressure.

7. In order to understand the spatial variation of WSS on vascular wall, peak WSS on each 
of the three geometrical sections has been tabulated in the Table 6.2. The three sections 
are inlet straight section, bend and outlet straight section.
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Table 6.1: An artery with single bend: Results (dynes/cm2) for five different Reynolds 
numbers.

Re Maxpressure Pressuredrop Peak WSS
120 91.8 91.8 2.95
240 199.0 199.0 7.6
480 448.0 448.0 20.25
960 1007.6 1007.6 52.25
1920 3148.18 3148.18 123.6

'rfilbi
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(a) R e-120 (b) Re-240 c) Re-480

(d) Re-960 e) R e-1920

Figure 6.2: An artery with single bend: Axial velocity profiles (X-Z plane).

6.3.1 V elocity  profile in sy m m etric  p lane

Effect of centrifugal force on velocity profile at the bend is evident from the Figure 6.2. At 
lower Reynolds numbers (i.e. 120), the velocity profile at the exit is fairly uniform. But at 
higher Reynolds numbers, the maximum of axial velocity shifts outwards. This phenomenon 
has already been observed by Hoogstraten et al [19]. The axial velocity flow pattern obtained 
here is similar to those obtained by Rabiee et al [31]. At higher Reynolds numbers, as the 
flow enters the bend, the developed flow deviates and the peak of primary flow velocity shifts 
to external curvature, since fluid particles are centrifugally pushed towards the outer wall. 
Because of this peak velocity shifting-effect, the vascular wall region of the external curvature 
is subjected to higher WSS (Figure 6.6). The double peak axial velocity, which can be seen
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proximal to the end o f bend is responsible for the formation of double vortex secondary flow 
[77].

6.3.2 Secondary flow in cross sections

From the previous chapter it is clear that the complex secondary flow is not expected in a 
straight tube. Based upon this fact, no sections have been selected in straight inlet section. 
Three sections have been chosen in the bend region (Figure 6.3) including the one at the end of 
bend region. In the section-b (Figure 6.3), the peak value of secondary flow velocity is found to 
be 25 % of that o f primary flow velocity. Whereas in a section distal to the bend, the peak value 
of secondary flow velocity is found to be 5 % of that of primary flow velocity. This indicates 
that primary flow dominates over secondary flow, once the flow reaches the end of straight 
outlet. The strong secondary flow in terms of vortices can be observed at the end o f bend 
only (Figures 6.4 and 6.5). This supports the fact that, in vascular bends strong secondary 
flow appears downstream [24]. At higher Reynolds numbers, secondary flow down stream 
becomes more complex due to increase in the number of vortices. Approaching turbulence 
due to  higher Reynolds number is responsible for this complex secondary flow. Additionally, 
we can confirm that secondary flow at all the Reynolds numbers, is always directed towards 
inner curvature. The same effect has also been observed at a location of straight inlet section 
proximal to the bend. This effect can be termed as early bend effect. Whereas the strong 
secondary flow appearing distal to the bend can be termed as late bend effect. The early bend 
effect is a consequence o f flow impingement and the inertia. Where as the late bend effect 
is due to the interaction between early bend effect and the centrifugal force. The early bend 
effect pushes the fluid towards internal curvature. The centrifugal force pushes back the fast 
moving fluid at the center o f the artery towards the external curvature. This combination of 
centrifugal force and early bend effect creates a multiple vortex secondary flow pattern. This 
pattern can be observed downstream only, since the strength of centrifugal force is higher at 
the end of bend. This occurrence of higher centrifugal force at the end of bend can be clarified 
by velocity profiles given in the Figure 6.2. At higher Reynolds number, the secondary flow 
distal to the bend appears as a horse shoe vortex (Figure 6.2). The luminal regions involving 
secondary vortices are associated with subendothelial macrophage accumulation [75]. The 
increased accumulation of macrophage in a plaque inflicted artery initiates and propagates 
lesion.

6.3.3 Wall shear stress contour plots

The Table 6.1 indicates that the peak wall shear stress increases with Reynolds number. The 
value of peak wall shear stress doubles when the Reynolds number is increased by two times. 
According to the Figure 6 .6 , at lower Reynolds number (120), wall shear stress concentration 
appears after the end of the bend. Since the strength of the centrifugal load is not enough 
to  produce strong impingement of fluid particles on the external curvature wall of the bend 
and slower fluid particles will directly shear on the wall at the end of bend. But at higher 
Reynolds numbers (Figure 6 .6 . Re-1920) the peak wall, shear stress is concentrated on the 
outer curvature of the bend. Since stronger centrifugal force impinges and shears fast moving 
moving fluid particles on the external curvature of the wall. Also, a small WSS concentration 
can be observed at the internal curvature of the beginning of the bend (view not shown here). 
This WSS concentration is purely due to the early bend effect. This will disappear at higher
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Figure 6.3: An artery with single bend: Three sections chosen for secondary flow.

(b) Section b (c) Section c(a) Section a

Figure 6.4: An artery with single bend: Secondary flow (X-Y plane) in three cross sections 
at Re-120.

Reynolds numbers. At a given Reynolds number, the WSS value is found to be higher than 
that of the straight section in the previous chapter. This indicates that presence of curvature 
increases the peak WSS. According to the Table 6.2, the WSS value in the straight inlet region 
is very close to that of Poiseuille flow, calculated in the previous chapter. As compared to 
the straight artery in the previous chapter, a slight difference in WSS happens in the straight 
inlet of this artery, due to early bend effect. The bend region is subjected to higher WSS, 
due to the flow impingement on the wall of external curvature. This impingement of the 
particles is a consequence of peak axial velocity at the external curvature of the bend. At 
higher Reynolds numbers, the WSS value in the straight outlet is closer to that of the bend. 
At lower Reynolds number, the straight outlet tries to regain the WSS value of a Poiseuille flow.
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(a) Section a (b) Section b (c) Section c

Figure 6.5: An artery with single bend: Secondary flow (X-Y plane) in three cross sections 
at Re-1920.

(b) Re-1920(a) R e -120

Figure 6.6: An artery with single bend: wall shear stress (Peak values are given in Table 
6.1).

Table 6.2: An artery with single bend: Peak wall shear stress (dynes/cm2) in three entities.

Re Inlet Bend Outlet
120 2.64 2.95 2.145
240 4.96 7.6 4.865
480 9.16 20.25 12.2
960 19.01 52.25 46.8
1920 33.3 123.6 115.69

6.3.4 P ressu re  d is tr ib u tio n

The variation of pressure with respect to Reynolds number has been given in Table 6.1. The 
pressure drop is same as maximum pressure, since the exit pressure is zero. Higher pressure 
drop at higher Reynolds numbers can be noticed from the table. By observing the pressure 
distribution given in Figures 6.7, we can conclude that at lower Reynolds numbers, qualitative 
pressure distribution is roughly same as that of a straight tube in the previous chapter. But at 
higher Reynolds numbers, highest pressure can be observed at the outer curvature of the bend. 
This effect indicates the presence of stronger centrifugal force at higher Reynolds numbers.
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(a) R e-120 (b) Re-240 (c) Re-480

Figure 6.7: An artery with single bend: Pressure distribution at five different Reynolds 
numbers (Peak values are given in Table 6.1).

The centrifugal force Fc is given by

Fc = —  (6.1)
r

Where m is mass, v is velocity of fluid and r  is radius of curvature of bend. The equation 
indicates that the higher velocity at outer curvature of the bend amplifies the centrifugal 
force on the wall. At higher Reynolds numbers, the pressure drop is found to be higher than 
that of the straight section in the previous chapter. This proves that presence of curvature 
leads to higher pressure drop. We can also conclude that the presence of curvature leads to 
impingement of the fluid particles on the outer wall of the curved segment, resulting in higher 
pressure on this region. This centrifugal force-impingement driven pressure has been observed 
at higher Reynolds numbers only.
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Chapter 7

Flow in a m odel artery w ith two 
bends of 35 degree each

7.1 Introduction

A double curved tube with constant radius (D =  0.6 cm), inlet section length 1.5D, two 35 
degree bends with a radius of curvature 7.5D and an outlet section length 2.5D has been studied 
for various Reynolds numbers. In order to validate the solution, the geometrical features 
chosen here are based on the research work conducted by Hoogstraten et al [19]. In this 
chapter, the steady state solution for the double curvature artery has been presented for 
various Reynolds number flows. The Reynolds numbers selected are 120, 240, 480, 960 and 
1920. The Reynolds numbers above 1000 usually corresponds to exercise conditions. Whereas 
below 1000 corresponds to resting conditions [22]. This study will represent flow through the 
curved sections of femoral artery, since curvatures present in this idealized artery resemble 
with those of femoral artery [20]. This study involves two bends. However, the curvature 
and number of successive bends in a femoral artery depends on the subject's posture. Both 
the bends are in same plane of symmetry and, planes of inlet and outlet are parallel to each 
other. Such geometrical features are common in femoral arteries [77]. Arteries with multiple 
curvatures are of physiological importance, since these curvatures will introduce aberrant flow 
patterns and abrupt variation of wall shear stress. The curvature induced abnormal wall shear 
stress and blood pressure are expected to  be leading cause of atherogenesis. Whereas curvature 
induced complex secondary flow is believed to be responsible for accumulation of monocytes 
and macrophages on the endothelium [75]. This analysis is based on the research done by 
Hoogstraten et al [19]. The main objective of this chapter is to explore the qualitative and 
quantitative primary/axial flow , secondary flow patterns, wall shear stress and pressure in an 
artery with two mild curvature-bends. In order to understand the flow behavior in various 
sections of the artery, the.spatial domain can.be. divided in to  four entities. These entities are 
straight outlet, first bend, second reverse-bend and straight outlet. We will discuss about the 
flow patterns in all these entities. The value of WSS in the straight inlet is found be in good 
agreement with analytical solution (Poiseuille flow). This agreement serves as a validation of 
mesh and the CFD code.
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(a) Surface mesh in X -Z  Plane (b) Cross-sectional view of the mesh

Figure 7.1: An artery with two mild curvatures: Meshed model.

7.2 N u m erica l  m odel an d  b o u n d a ry  cond itions

The finite element grid with boundary layers consisted 322137 elements and 56674 nodes. 
Average element size in the model is 0.03 cm and number of boundary layers is eight. This 
element size has given a converged solution in the straight artery (refer Chapter 5). The 
mesh is of uniform longitudinal spacing and thickness of the edge boundary layer is 0.002 
cm. The total boundary layer thickness is 0.077 cm. The mesh generation algorithm and 
the governing equations-solver used are same as those in previous problem. The steady state 
governing equations (continuity and momentum) have been solved explicitly. The boundary 
conditions include no slip condition at walls and fully developed velocity profile at the inlet. 
The assumptions made in the numerical simulation are similar to those made in the previous 
problem. These include rigid arterial wall, incompressible, steady, laminar and Newtonian flow. 
The diameter/size of the idealized artery is large enough to consider the flow as Newtonian, 
since shear rate will be above 100 s- l  for such dimensions. The steady blood flow simulation 
has been carried out for five different Reynolds numbers (120, 240, 480, 960 and 1920). 
Figure 7.1 shows the mesh with boundary layer elements. In order to overcome the pressure 
oscillation difficulties, safety factor (also known as relaxation factor) used is 0.5. The pseudo 
iterations were performed until the L2-norm of velocity and pressure errors reached 10~5 for 
all the Reynolds numbers. The solution converged at a mass error less than 0.3 % for all the 
Reynolds numbers.

7.3 R e su lts  an d  d iscussions

1. Figure 7.2 depicts vectorial representation of axial flow in the symmetric plane.

2. Three sections have been selected for qualitative studies of secondary flow. The three 
sections are shown in Figure 7.3. If the observer is visualizing the top view, left side of 
the section is towards internal curvature of the first bend. The numbering of the sections 
start from top of the artery, third one being the bottom most section. Figures 7.4 and
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7.5 show secondary flow in the selected sections at Re-120 and Re-1920.

3. The pressure distribution for Re-120 and Re-1920 has been shown in Figure 7.6.

4. The wall shear stress contour plots at Re-120 and Re-1920 are given in Figure 7.7 .

5. In order to understand the spatial variation of WSS in the bend-type artery, WSS at four 
different geometrical entities has been give in the Table 7.2.

6. The graph in the Figure 7.8a gives the variation of WSS along the right hand side-edge 
of the artery. 20 points have been selected to plot quantitative distribution of WSS 
along the edge. First two points lie on the straight inlet, next six lie on the first bend, 
ninth one lies in between first and second bends, next 8 points are on the second bend
and last three are on the outlet. Same order applies for the left hand side of the edge
given in the Figure 7.8b.

7. The values of pressure and peak WSS at five different Reynolds numbers are given in 
Tabie 7.1.

(a) R e-120 (b) Re-240

<»»
H »-3
b V (U&l

m i

w
(d) Re-960 (e) Re-1920

(c) Re-480

Figure 7.2: An artery with two mild curvatures: Velocity vector in a symmetric plane 
(X-Z).
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7.3.1 Flow in sym m etric plane

From Figure 7.2, it can be noted that axial velocity is changing significantly with Reynolds 
numbers. However, at the lowest Reynolds number (i.e. 120), the flow appears parabolic 
at all the cross sections, indicating negligible impact of centrifugal load on the bends at this 
Reynolds number. In the first bend, the maximum of axial velocity is always concentrated 
towards external curvature (due to the higher centrifugal effect) for all the Reynolds numbers 
except Re-120. But for second bend, the path is highly dependent on Reynolds number. 
A t lower Reynolds numbers the maximum of axial velocity is occurring towards the external 
curvature, due to the dominance of centrifugal effect over inertia effect. But for higher Reynolds 
numbers, the maximum of axial velocity is shifting drastically, towards internal curvature. This 
indicates that inertia forces dominate over centrifugal force at faster blood flow. The shifting 
of peak axial velocity away from the center o f artery indicates flow separation. Because of this 
flow separation, the endothelium will experience high and low shear stresses. Axial velocity 
vector plots for all the Reynolds numbers are found to be matching with those obtained by 
Hoogstraten et al [19]. No double peaked axial flow has been observed in the first bend. This 
indicates that the double spiral vortex is not possible anywhere proximal to  the first bend. The 
double peaked axial flow is a consequence of interaction between early bend-effect and the 
centrifugal force. The centrifugal load responsible for the formation of double peaked axial 
flow is believed to be nullified at the end of the first bend, due to the immediate presence of 
reverse curvature second bend [77]. A clear double peaked axial flow can be observed at the 
beginning of second bend. This happens due to the interaction between early second bend 
effect and centrifugal effect. The outflow profile at the highest Reynolds number resembles a 
blunt-turbulent velocity profile.

V

Figure 7.3: An artery with two mild curvatures: Three sections and an observer’s view.

7.3.2 Secondary flow in sections

Due to the presence of boundary layer mesh, velocity vectors are close to each other near 
boundary in the Figures 7.4 to 7.5. In the section-a the secondary flow towards internal
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(a) Section a (b) Section b (c) Section c

Figure 7.4: An artery with two mild curvatures: Secondary flow in three cross sections 
(X-Y plane) at Re-120.

(a) Section a (b) Section b (c) Section c

Figure 7.5: An artery with two mild curvatures: Secondary flow in three cross sections 
(X-Y plane) at Re-1920.

curvature is found to be as high as 40 % (at Re-1920) of the primary flow. Indicating stronger 
early first bend effect. The percentages for sections b and c are 43 % and 20 % respectively. 
This proves that secondary flow due to early first bend effect diminishes over length of the 
artery. Similar to the the flow in a single bend, secondary flow at the middle of first bend 
is directed towards its internal curvature. This tendency of flow towards internal curvature 
is termed as early first bend effect. The early first bend effect occurs as a result of inertial 
dominated flow. Interestingly, there is no vortical formation in any cross section of the first 
bend, since the early first bend effect dominates over the centrifugal effect throughout the first 
bend. Secondary flow patterns are deviating from those obtained by Hoogstraten et al [19], 
since the vortices are being detected at the end of second bend only. But the flow pattern is 
found to be similar to those reported by Banerjee et al [77], The centrifugal load responsible 
for the formation of complicated secondary flow is believed to be nullified at the end of the 
first bend, due to the immediate presence of reverse curvature second bend [77]. In the second 
bend, until the end of bend, the secondary flow is directed towards external curvature. This 
is due to the presence of early first bend effect in the second bend. Two recirculations can be 
clearly seen at the end of bend. This happens, since stronger centrifugal load required to drive 
the fluid particles to external curvature occurs at this cross-section. But at very higher Reynolds 
number (i.e. 1920), a weak vortex can be observed at the middle section of the second bend,
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since at this Reynolds number, the strength of centrifugal force is enough to produce a small 
vortex before the end of second bend. Unlike a single bend artery in the previous chapter, more 
than two vortices cannot be found even at higher Reynolds numbers. This indicates that the 
secondary flow largely depends on angle of curvature of the bend and number of bends. The 
centrifugal load due to  mild curvature is not strong enough to produce more than two vortices. 
The two vortices appearing downstream, change their direction of rotation at higher Reynolds 
number. A t lower Reynolds numbers, the upper vortex is turning clockwise. Whereas, at 
higher Reynolds number (i.e. 1920) the upper vortex is turning anticlockwise. The presence of 
straight section between two bends may change the flow behavior, significantly. The presence 
of this intermediate straight section will result in stronger secondary flow at the end of first 
bend and it may also facilitate the presence of more than two vortices at the end of second 
bend. The element size plays a key role in capturing more accurate velocity vectors. Further 
refinement in the region other than boundary may show recirculating flow in the cross sections 
other than those observed here. Due to computational time constraints, this effort has not 
been considered in the present work.

7.3.3 Pressure distribution in the artery

At a lower Reynolds number (i.e. 120), the qualitative pressure distribution (Figure 7.6a) 
is roughly same as that of a single bend and straight arteries in previous chapters. But at 
higher Reynolds number (i.e. 1920), the peak pressure (Figure 7.6b) shifts to the junction of 
first-second bend. This indicates the presence of stronger early first bend-effect in this region 
and at the Reynolds number 1920. This region of wall at the junction is subjected to higher 
pressure due to the impingement of fluid particles driven by early first bend effect (refer the 
flow pattern in the Figure 7.2). The pressure drop is same as the maximum pressure, since 
the exit pressure is zero. A t a given Reynolds number, the pressure drop value (refer Table 
7.1) is found to be higher than that of the single bend artery (refer Table 6.1 in the previous 
chapter). This observation gives a clue that, pressure drop increases with increase in number 
of bends. Since the increase in number of bends increases the frictional loss. However the 
angle of curvature in these bends is smaller than that o f the bend in the previous chapter. We 
will elucidate the effect of angle of curvature on the pressure distribution in the next chapter. 
The pressure plots in this analysis are found to be similar to those obtained by Hoogstraten et 
al [19].

Table 7.1: An artery with two mild curvatures: Results (dynes/cm2) for five Reynolds 
numbers.

Re Maxpressure Pressuredrop Peak WSS

120 93.7 93.7 2.65
240 194.2 194.2 7.2

. 480- . -430.3 - - - 430.3
960 1062.4 1062.4 65.3
1920 2512.773 2512.773 177.0
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(a) Pressure distribution in sym m et-(b) Pressure distribution in symmet­
ric plane-Rel20. ric plane-Rel920.

Figure 7.6: An artery with two mild curvatures: Pressure distrubution (Peak values are 
given in Figure 7.1) .

(b) WSS d istribution-R e!920a) W SS distribution-R e!20

Figure 7.7: An artery with two mild curvatures: WSS distribution (Peak values are given 
in Figure 7.1).

Table 7.2: An artery with two mild curvatures: Peak wall shear stress (dynes/cm 2) at five 
sections.

Re Inlet First bend Intermediate region Second bend Outlet
120 2.25 2.27 2.65 2.192 2.055
240 5.35 5.785 7.2 5.775 4.955
480 11.22 14.0 22.1 13.3 9.455
960 25.55 35.44 65.3 42.245 20.15
1920 40.2 78.6 177.0 106.15 42.5

7.3.4 W all sh ea r stress

A WSS concentration region has been located at the external curvature of the first bend. This 
region is coincident with the junction between first and second bend. This remains same for
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Figure 7.8: An artery with two mild curvatures: Variation of wall shear stress along the 
edges of the artery.

all the Reynolds numbers. Due to mild curvature of first bend, the inertia effect dominates the 
centrifugal load resulting in shearing of fluid particles on the junction. The peak WSS value 
varies with the Reynolds number. For lower Reynolds numbers (i.e. 120 and 240), another 
small concentration region has been observed at the external curvature of second bend (view 
not shown here). The centrifugal effect seems to be strong enough in the second bend to 
produce little shearing of fluid particle on the external curvature of the second bend. The 
highest value of peak WSS observed is 177.0 dynes/crrr, which happens at Reynolds number 
1920. At a given Reynolds number, the peak WSS value is found to be slightly higher than 
that of the single bend artery in the previous chapter. This observation gives a clue that, 
peak WSS increases with number of bends. This slight difference in shear stress is also due 
to the milder curvature of the bends. By observing the Table 7.2, we can conclude that the 
first-second bend junction is subjected to higher WSS and straight outlet section is subjected 
to lower WSS. Physiologically, we can also conclude that any straight luminal region proximal 
to the bend is vulnerable for plaque accumulation. The magnitude of WSS in the straight inlet 
region is found to be closer to that of Poiseuille’s shear stress calculated for flow through a 
straight artery (refer Table 5.1 of Chapter 5). This validation has been confirmed for all the 
Reynolds numbers (Table 7.2). However a slight difference occurs, which is due to early-first 
bend effect. The presence of bend next to a straight inlet, increases the WSS in the inlet. 
At lower Reynolds numbers (Re-120 and Re-240) the straight outlet appears to regaining 
the poiseuille's WSS. But at higher Reynolds numbers, the magnitude of WSS in the straight 
outlet deviates significantly from poiseuille’s WSS, Since centrifugal effect experienced by bends 
prevail downstream in the straight outlet. Highly distorted outflow profile at higher Reynolds 
number-flow (Figure 7.2) is the evidence for this effect in the straight outlet. By observing 
the graphs in the Figure 7.8, we can conclude that the left hand side-edge is subjected to 
higher shear stress and the right hand side-edge experiences relatively lower shear stress. This 
is a consequence of higher axial flow along the left hand side-edge (refer Figure 7.2). The 
abrupt spatial variation of WSS occurs at higher Reynolds numbers only. Along the left hand 
side-edge of the artery, the wall shear stress raises gradually until the end of first bend and
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drops gradually along the second bend. This gradual decrease of WSS occurs, since the flow 
is slightly directly away from the wall at the end of second bend. The WSS along the left 
hand side-edge of the outlet increases to 60 dynes/cm2 (Re-1920), due to turbulent type flow 
profile. The WSS along the right hand side of the artery drops until the end of first bend 
and raises until a location proximal to  the end of the second bend. Interestingly, at very high 
Reynolds number (1920), the WSS at the location where internal curvature of the first bend 
meets the external curvature, drops to  a value lesser than that of Re-960. This dip in WSS 
occurs, since much o f the fluid particles speeding under the influence of inertia (late first bend 
effect) are driven towards the internal curvature of the second bend, and very few of them 
will shear the opposite wall. In both the graphs, the WSS start with a value approximately 
closer to the Poiseuille WSS (refer Table 5.1 of Chapter 5). By these graphs we can also 
conclude that the inner curvature of the first bend and external curvature of the second bend 
experience lower WSS as compared to  their opposite walls and these walls are susceptible for 
atherogenesis. According to the graph, the WSS at the end of the external curvature of the 
first bend reaches as high 160 dynes/cm2 (at Re-1920). We can hypothesize that this large 
value of WSS might initiate the damage of endothelial cells.
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Chapter 8

Flow in a m odel artery w ith two 
bends of 90 degree each

8.1 Introduction

A double curved artery with constant diameter (D) has been considered for numerical simula­
tion. The length of the straight inlet section is 5D. There are two bends in the artery. The 
radius and angle of curvature of the inlet curved bend are 5.833D and 90 degree respectively. 
The radius and angle of curvature for the outlet curved bends remains same as that of inlet 
bend. The curvature of bends in this example is stronger than the bends in the previous 
chapter. This strong curvature will induce the abnormal flow pattern, higher intensity of flow 
separation and abrupt wall shear stress distribution. Such haemodynamical anomalies in a 
weakened artery will lead to  pathologies such as arterial lesions, thrombosis and hyperplasia. 
Physiologically, angle of curvature can be as high as 180 degree. Typical examples include aor­
tic arch and intracranial region of internal carotid artery [38]. The Reynolds numbers selected 
are 120, 240, 480, 960 and 1920. This analysis is based on the research done by. Similar to 
the double bend artery in the previous chapter, the two curvatures are in the same plane of 
symmetry and the planes of inlet and outlet are parallel to each other. In order to validate the 
solution, the geometrical features chosen here are based on the research work conducted by 
Qiao et al [24], The main objective of this chapter is to explore the qualitative and quantitative 
primary/axial flow, secondary flow patterns, wall shear stress and pressure in an artery with two 
strong curvature-bends. Similar to the artery in the previous chapter, in order to understand 
the flow behavior in various sections of the artery, the spatial domain can be divided in to four 
entities. These entities are straight inlet, first bend, second reverse-bend and straight outlet. 
We will discuss about the flow pattern in all these sections. The value of WSS in the straight 
inlet is found be in good agreement with analytical solution (Poiseuille flow). This agreement 
serves as a validation of mesh and the CFD code. This double bend artery has been solved for 
two cases:

•  Case-1: Lumen Diameter D = 0.6 cm

•  Case-ll: Lumen Diameter D = 1.2 cm
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The ratio (kc) of vessel radius to curvature radius is 0.086 and 0.171 for case-1 and case-11 
respectively. The non dimensional dean numbers from the Equation 3.1 (at Re-1920) are 563 
and 793.4 for case-1 and case-11 respectively. These two case studies are intended to understand 
the relation between flow patterns and the luminal radius. The artery with smaller diameter (D 
=  0.6 cm) represents minor arteries such as coronary artery. Whereas the artery with higher 
radius (0.6 cm) represents large arteries such as aorta. The luminal radius is an influential 
factor on wall shear stress and wall pressure. In the present work, it has been found that the 
increase of radius results in reduction of pressure drop (A P  =  8fiuaVg lQ /n r4) and wall shear 
stress (Twau =  A y Q /n r3).

a) Surface mesh (b) Cross-sectional view of the mesh

Figure 8.1: An artery with two strong curvatures: Meshed model.

8.2 N u m erica l m odel an d  b o u n d a ry  cond itions

The finite element grid with boundary layers consisted 120814 elements and 211010 nodes 
for case-1. The finite element model for case-ll consisted of 1255330 elements and 216822 
nodes. For both the cases, average element size in the model is 0.03 cm and number of 
boundary layers is eight. The mesh is of uniform longitudinal spacing and thickness of the 
edge boundary layer is 0.002 cm for both the cases. The total boundary layer thickness 
is 0.077 cm and number of boundary layers is 8 for both the cases. The mesh generation 
algorithm and the Navier-Stokes equation solver used are same as those in previous problem. 
The boundary conditions include no slip condition at walls and fully developed velocity profile 
at the inlet. The assumptions made in the numerical simulation are similar to those made in 
previous problem. These include rigid arterial wall, incompressible, Newtonian, homogenous, 
steady and laminar flow. The density and viscosity of the blood are 1050 kg/mm^ and 0.04 
poise respectively. The model has been built in cartesian coordinate system (x ,y ,z ) .  w is the 
axial velocity and it represents primary flow, u is the velocity in the plane of curvature and 
v is the velocity component perpendicular to the plane of symmetry. The combination of u
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and v (i.e. \ /u 2 +  v2) represents secondary flow. The steady blood flow simulation has been 
carried out for five different Reynolds numbers (1 2 0 , 240, 480, 960 and 1920). Figure 8 .1  

shows the mesh with boundary layer elements. In order to  overcome the pressure oscillation 
difficulties, safety factor used is 0.5. The pseudo iterations were performed until the L2 -norm 
of velocity and pressure errors reached 10- 5  for both the cases and all the Reynolds numbers. 
The solution converged at a mass error less than 0.3 % for both cases and all the Reynolds 
numbers.

8.3 R esu lts and discussions

1 . Figures 8 .2  and 8.3 depict vectorial representation of flow in the symmetric plane for 
case-1 and case-11 respectively.

2. six sections have been selected for qualitative studies of secondary flow. The six sections 
are shown in Figure 8.4. Left side of the sections is towards internal curvature of the first 
bend. The numbering of the sections start from top of the artery, sixth one being the 
section proximal to  the outlet. Figures 8.5 and 8 .6  represent secondary flow in selected 
six selections at Re-1920.

3. The pressure distribution at Re-120 and Re-1920 has been shown in Figures 8.7 and 8 .8  

for case-1 and case-11 respectively.

4. The graph in the Figure 8.9a gives the variation of WSS along the right hand side-edge 
of the artery. 17 points have been selected to plot quantitative distribution o f WSS 
along the edge. First three points lie on the straight inlet, next five lie on the first bend, 
ninth one lies in between first and second bends, next five points are on the second bend 
and last three are on the outlet. Same order applies for the left hand side of the edge 
given in the Figure 8.9b.

5. The wall shear stress contour plots at Re-120 and Re-1920 are given in Figures 8.10 and 
8 .1 1  for case-1 and case-11 respectively.

6 . In order to understand the spatial variation of WSS in the bend-type artery, WSS at 
four different geometrical entities has been give in the Tables 8.3 and 8.4 for case-1 and 
case-11 respectively.

7. The values of peak pressure, pressure drop and peak WSS at five different Reynolds are 
given in Tables 8.1 and 8.2 for case-1 and case-11.

8.3.1 Flow in sym m etric plane

From Figures 8 .2  and 8.3, it can be noted that axial velocity is changing significantly with 
Reynolds numbers for both cases. At lower Reynolds number (i.e. 120), the flow remains 
developed at the .outlet for .case-1. But for case-ll, the. outlet flow is asymmetric even for 
lower Reynolds number (i.e. 1 2 0 ), since the late second bend effect prevails downstream to 
the straight outlet. A t all the Reynolds numbers and both the cases, the maximum of axial 
velocity in the first bend is pushed towards the external radius of the bend. This indicates 
the presence of centrifugal effect in the first bend. In the first bend, flow tends to separate
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Table 8.1: A il artery w ith  two strong curvatures: Results (dynes/cm2) for five Reynolds
numb er s- C ase-1.

Rc Maxpressure Pressuredrop WSS
120 183.0 183.0 2.54
240 372.0 372.0 7.165
480 853.72 853.72 18.7
960 2126.05 2126.05 50.25
1920 5963.0 5963.0 168.7

Table 8.2: An artery with two strong curvatures: Results (dynes/cm 2) for five Reynolds 
numbers -Case-II.

Re Maxpressure Pressuredrop Peak WSS
120 102.65 102.65 1.933
240 229.025 229.025 5.4
480 525.6 525.6 14.66
960 1454.326 1454.326 49.44
1920 4418.459 4418.459 157.02

(a) R e-120 (c) Re-480(b) Re-240

(e) R e-1920(d) Re-960

Figure 8.2: An artery with two strong curvatures: Velocity vectors in symmetric plane 
(X-Z plane) for Case-I.

from internal curvature and concentrate towards external curvature, resulting in higher shear 
stress on the external curvature wall and lower shear stress on the internal curvature wall. 
Same trend appears in the second bend of case-1. The axial flow in the second bend is highly

49



(c) Re-480(a) R e -120 (b) Re-240
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(d) Re-960 (e) R e-1920

Figure 8.3: An artery with two strong curvatures: Velocity vectors in symmetric plane 
(X-Z plane) for Case-II.

dependent on radius of vessel. For case-1, the maximum of the axial velocity in the second 
bend is fully concentrated towards the external radius. But flow pattern in second bend is 
different for case-ll. For case-ll, the maximum of axial velocity in the second bend is found 
to be at the center of the vessel. But the flow in the second bend of case-ll (Re-960 and 
Re-1920) is asymmetric. In the early phase of the second bend, the flow is relatively higher 
near internal curvature due to late first bend effect. At the end of bend, the flow is relatively 
higher towards the external curvature, since the centrifugal effect dominates the late first bend 
effect. A comparison can be done with case-1 and the artery in the previous chapter, since the 
lumen diameter remains same. The comparison indicates that the axial velocity in the second 
bend is completely different. Thus, the axial velocity in the second bend is highly dependent 
on the angle of curvature of the bend. In the previous chapter, the early first bend inertia 
effect prevailed downstream to the artery due to mild curvature. This resulted in shifting of 
axial flow towards internal curvature of the first bend. Whereas higher centrifugal effect due to 
stronger curvature pushed the flow towards external curvature of second bend in case-1 artery. 
Flow separation can be clearly observed in the curvatures of both bends (Figures 8.2e and 
8.3e). These flow separation regions will induce extremum of wall shear stress gradient. Unlike 
the artery of previous chapter, turbulent type blunt outflow profile has not been observed at 
higher Re numbers here. Occurrence of turbulence is unlikely here, since the centrifugal effects 
due to stronger curvature dominate the inertia effects.

8.3.2 S econdary  flow in sections

From the Figures 8.5 and 8.6 it is clear that, secondary flow is stronger downstream for both 
cases and at all the Reynolds numbers. No recirculation occurs in the first bend. The secondary
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Observer

Section c

Figure 8.4: An artery with two strong curvatures: Six sections chosen in the double bend 
artery and an observer’s view.

(a) Section-a (b) Section-b (c) Section-c

(d) Section-d (e) Section-e (f)  Section-f

Figure 8.5: An artery with two strong curvatures: Secondary flow in all six sections (X-Y 
plane) at Re-1920-CaseI.

flow in the first four sections is always directed towards the internal curvature of the first bend, 
since the early first bend effect dominates the centrifugal effect in the first bend. Whereas the 
secondary flow in the next three sections is directed towards external curvature. This indicates 
that early first bend effect prevails even in the second bend. If a secondary flow comparison is 
made between case-1 and case-ll, there are observable differences. For case-ll, the formation
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(a) Section-a (b) Section-b (c) Section-c

(d) Section-d (e) Section-e (f)  Section-f

Figure 8.6: An artery with two strong curvatures: Secondary flow in all six sections (X-Y 
plane) at Re-1920-CaseII.

of four vortices downstream occurs at Reynolds number-480 (figure not shown here). But 
the number of vortices observed for the case-1 at the same Reynolds number is two (figure 
not shown here). In case-ll, more than two vortices can be seen at Re-960 (figure not shown 
here). Thus, the strength of the secondary flow depends on radius of the lumen. This fact is 
in accordance with Dean number given by Equation 3.1 of Chapter 3. In the first section the 
secondary flow ( calculated using \Jv? +  v2, where u and v are components perpendicular to 
the axial flow w) is found to be 50 % of primary flow, indicating the dominance of secondary 
flow in the first bend. At the junction of first-second bends, secondary flow is found to be six 
times higher than that of primary flow, since the dominance of secondary flow over primary 
is very high. The secondary flow u (component in the plane of curvature), is as high as ten 
times of that of primary velocity, due to the first bend centrifugal effect. The multiple vortical 
secondary flow will not occur at this junction, since the centrifugal effect will be nullified by 
the immediate presence of reverse curvature second bend. At the end of second bend, the 
secondary flow is found to be 12 % of primary flow. This Indicates that the primary flow 
dominates the secondary flow at downstream of the artery. This percentage wise combination 
of secondary-primary flows is found to be similar for both the cases. Secondary flow with 
multiple vortices can be observed downstream to the second bend only. This secondary flow 
pattern occurs since the fluid particle driven by late second bend effect will be centrifugally 
pushed to the external curvature.

8.3.3 P ressu re  d is tr ib u tio n  in th e  a r te ry

At a lower Re (i.e.120), the qualitative pressure distribution (Figure 8.7a) in the case-1 artery 
is approximately same as that of a double bend, single bend and straight arteries studied in
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(a) Re-120 (b) Re-1920

Figure 8.7: An artery with two strong curvatures: Pressure distribution for Case-I (Peak
values are given in Table 8.1) .

(b) Re-1920(a) Re-120

Figure 8.8: An artery with two strong curvatures: Pressure distribution for Case-II (Peak 
values are given in Table 8.2).

the previous chapters. But it varied significantly for case-ll. In case-1, peak pressure remains at 
the inlet for all the Reynolds numbers (Figure not shown here except for Re-120 and Re-1920 
in Figure 8.7), indicating lower centrifugal effect on pressure for smaller luminal radius. But 
in the case-ll, peak pressure shifts to the external curvature of the first bend at Re-480 and 
above. This is happening due to the stronger impact o f fluid particles on the the curved wall, 
induced by higher mass flow rate. This effect has also been observed in the single bend problem 
of Chapter 6 . For the single bend artery, this impact on the curved wall of bend occurred at 
Re-960. But in case-ll, the impact appeared at Re-480, due to higher flow rate. From Tables
8.1 and 8.2, it is clear that peak pressure and pressure drop are lower in case-ll. Larger luminal 
radius decreases the pressure drop (A P  =  8fiuavgL Q / ir r A). In both the cases, pressure drop 
increases with the Reynolds number. Pressure values of Case-1 can be compared with the artery 
analyzed in the previous chapter, since the luminal radius remains same. The peak pressure and 
pressure drop values in the case-1 are found to be higher than those of the arteries presented 
in the previous chapter. This indicates that, the pressure drop and peak values increases 
with the angle of vascular curvature. The change in radius of curvature modifies the spatial 
pressure distribution. In the.previous chapter higher pressure concentration (at Re-480 and 
above) occurred at the curvature wall, since the radius of curvature was relatively higher 
(rc =  3.9 cm). But in this chapter (case-1), the highest pressure occurs at the inlet for all the 
Reynolds numbers. Since smaller centrifugal effect occurring due to smaller radius of curvature 
(rc =  3.5 cm) is not enough to pressurize the curvature wall.

53



V a ria tio n  of WSS along th e  le ft hand side o f a rte ry

Points a long th e  le f t hand side o f a rte ryPoints a long th e  right hand  side o f a rte ry

(a) Right hand side (b) Left hand side

Figure 8.9: An artery with two strong curvatures: Variation of wall shear stress along the 
edges of the artery (case-I).

(a) R e-120 (b) R e-1920

Figure 8.10: An artery with two strong curvatures: WSS distribution for Case-I (Peak 
values are given in Table 8.3).

Table 8.3: An artery with two strong curvatures: Peak wall shear stress (dynes/cm 2) at 
six sections for case-I.

Re Inlet First bend Intermediate region Second bend Outlet
120 2.745 2.255 2.54 2.45 2.01
240 4.175 4.585 7.165 4.95 4.905
480 9.0 14.0 18.7 12.8 12.0
960 17.55 32.75 50.25 34.95 34.45
1920 39.3 131.685 168.7 134.7 131.5

8.3.4 W all shear s tre ss

For the case-I, WSS is found to be concentrated at the end of first bend for Re-120 and Re-240 
(Figure not shown here), since the presence of immediate reverse curvature second bend causes
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(a) R e -120 (b) Re-1920

Figure 8.11: An artery w ith  two strong curvatures: WSS d is tribu tion  for Case-II (Peak
values are given in Table 8.4).

Table 8.4: An artery with two strong curvatures: Peak wall shear stress (dvnes/cm 2) at 
six sections for case-II.

Re Inlet First bend Intermediate region Second bend Outlet
120 1.35 1.625 1.93 1.635 1.48
240 2.88 4.5 5.35 4.5 4.255
480 6.35 12.665 14.55 12.6 9.8
960 15.3 41.55 49.2 41.2 28.05
1920 31.5 136.2 156.75 136.2 77.2

the fluid particle to shear the wall at the junction. For higher Reynolds numbers (480 and 
above), peak WSS is also found at the external curvature of first bend, since the centrifugal 
load due to higher velocity impinges the fluid particle on this wall. For case-ll, peak WSS is 
found to be at the end of first bend for all the Reynolds numbers, since lower centrifugal effect 
due to higher luminal radius (refer Equation 6.1) is not enough to impinge fluid particles on the 
first bend and reverse curvature second bend shears the fluid on the junction wall. From Tables
8.1 and 8.2, it is evident that WSS is higher in the case-I artery for all the Reynolds numbers 
than case-ll. Thus, the WSS depends on the lumen diameter and it is higher for an artery with 
smaller lumen diameter ( t W(1u  =  A^lQ/ttr 3). By this observation, it can be hypothesized that, 
the narrowing of lumen due to atheroma will lead to higher WSS on the walls. WSS values of 
Case-I can be compared with the artery analyzed in the previous chapter, since the lumen radius 
remains same. Peak WSS for the artery with 35 degree bend in the previous chapter occurred 
at the end of first bend, for all the Reynolds numbers. This is in contrast with the case-I, since 
the location of peak WSS has shown dependency on Reynolds number (peak WSS occurs at 
two locations at higher Re). Thus, the location of peak WSS in a bend-type artery depends on 
the angle of curvature. Lower angle of curvature results in direct impingement of particles on 
the first-second bend junction. Whereas the higher angle of curvature results in impingement 
(due to centrifugal effect) of fluid particles on the first bend external curvature wall. However 
the magnitude of centrifugal effect depends on the Reynolds number. The values of peak 
WSS at various Reynolds numbers for the 35 degree bend in the previous chapter are closer 
to those of case-I. Thus, the values of peak WSS is not found to be varying significantly with 
the increase in angle of curvature (from 35° to 90°). However, further increase in angle of 
curvature (above 90°) might vary the WSS significantly. From Tables 8.3 and 8.4, it is clear



that the intermediate region (junction between first-second bend) is subjected to higher WSS 
for both cases. It is worthwhile to perform unsteady simulation and examine OSI (oscillatory 
shear index) in this region. The peak WSS in the inlet is in good agreement with analytical 
calculations (refer Chapter 5 and compare with Case-I). A t lower Reynolds numbers (120 and 
240), the peak WSS in the outlet is closer to the analytical calculations. Whereas for higher 
Re (480 and above) the flow disturbances due to the presence of bends will not allow the flow 
to develop at the outlet, resulting in higher WSS. From the graph 8.9, it is clear that RHS and 
LHS experience tota lly different WSS patterns. The WSS at both sides starts with a value 
closer to poiseuille's WSS. In the LHS, the WSS increases to a peak value 162 dynes/cm2, 
due to  centrifugal effect on the external curvature of the first bend. Whereas, the WSS in 
the RHS decreases to a value lesser than that of poiseuille's flow. This drop in WSS at the 
internal curvature might initiate atherosclerosis and Banerjee et al [77] have observed lesions 
in this region. In the RHS, after this drop, the WSS oscillates and increases to  a peak value 58 
dynes/cm2. This raise in WSS occurs at the end of second bend, due to presence of external 
curvature and the resulting centrifugal effect. In the LHS, once the WSS reaches peak value, 
it sharply drops to  a value closer to that o f poiseuille’s flow. The same WSS pattern has been 
observed for RHS and LHS edges of case-ll (Figure not shown here). By these observations, we 
can generalize that, in any bend-type arteries, internal curvature-walls are subjected to lower 
WSS and external curvature-walls are subjected to higher WSS. The resulting wall shear stress 
gradient between external and internal curvatures will play a vital role in vascular pathogenesis.
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Chapter 9

Flow through a patient specific 
thoracic aortic aneurysm

9.1 Introductions to  aneurysm s

Aneurysm is an abnormal and local expansion of blood vessels. It occurs in response to weak­
ening and disease of arteries. Aneurysms most commonly occur in arteries. In exceptional 
cases, aneurysms are also found in veins [49]. The arteries located in the circle of willis are 
most vulnerable for aneurysms. These aneurysms are known as cerebral aneurysms. An aorta 
can also be inflicted with aneurysms. The aortic aneurysms can be classified into thoracic 
aortic aneurysms (TAA) and abdominal aortic aneurysms (AAA). Other aneurysms are known 
as peripheral aneurysms. The aneurysms found in femoral, carotid and internal mammary [72] 
arteries are known as peripheral aneurysms. A growing aneurysm can rupture leading to death 
of the patient. The morbidity and mortality rates of AAAs in England are as high as 11,000 and 
10,000 respectively, per year [71]. Diagnostic methods available to detect cerebral aneurysms 
are CT scanning, lumber puncture, cerebral angiography and computer tomographic angiogra­
phy. The risk factors for pathogenesis of aneurysms include polycystic kidney disease, syphilis, 
diabetes, obesity, hypertension, tobacco use, alcoholism, marfan’s syndrome and copper defi­
ciency. A cerebral aneurysm is asymptotic until it ruptures. Symptoms of aneurysmal growth 
or ruptures include are drastic drop in blood pressure, rapid heart rate and light-headedness. 
Men are more likely to be diseased with aneurysms than women. Geometrically, aneurysms 
can be classified into pseudo, fusiform and saccular. A fusiform aneurysm is the expansion of 
whole cylindrical portion of a section of an artery. Whereas a saccular type involves bulging a 
side of an artery. In a pseudo aneurysm, the outer layer o f an artery is enlarged. Histologically, 
aneurysms are due to intimal cell damage. Endothelial cells damage as a result o f higher shear 
stresses by blood flow. Healthy cells are round in appearance, where as damaged cells appear 
elongated. Once an aneurysm has been formed, control o f blood pressure is very significant. 
In this age of advanced medical technology, there are various treatment options available for 
aneurysms. Cerebral aneurysms can be treated either by surgical clipping or endo-vascular 
coiling. An .aortic aneurysm, is. usually -treated by-grafts. -Graft-system can be-introduced 
through a femoral artery and then driven to the aorta [8 ]. This method involves replacement 
of inflicted artery with a man made duct known as graft. Treatment of an aneurysm also 
involves medication. Medication can be done to  reduce blood pressure, relax blood vessel and 
minimize the risk of rupture. Most commonly prescribed medicines are beta blockers and cal­
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cium blockers. However, prevention is always better the cure. The occurrence of an aneurysm 
or any cardiovascular pathology can be prevented by teetotaling, cholesterol and fat dieting, 
controlling high blood pressure and carrying out physical exercise.

(a) Anterior view (b) Posterior view

Figure 9.1: TAA: Meshed model.

9.2 I n  si l ico m odeling  of a  th o rac ic  ao r tic  an e u ry sm

Geometrical modeling of any human organ is extremely challenging. The presence of a folded 
neck in this aorta, makes the modeling and simulation more interesting. The modeling and 
simulation of flow through a realistic aorta will give better understanding of flow and wall 
shear stress patterns, which is not possible by simulating idealistic models. The geometry of 
the aorta inflicted with aneurysm has been constructed using CT-scans. The resolution of the 
scan is 0.0877x0.0877 cm in the slice plane and 0.1 cm between slices. Region segmentation 
has been done by A M  I I I  A ® .  The stereolithiographic (STL) file generated by A M  I B  A ®  
cannot be used directly to obtain a smooth mesh. The model obtained at this point, involves 
many small vessels attached to the main aorta. The small vessels, which are irrelevant to the 
present simulation have been clipped and removed. But small proximal parts of left subclavian, 
left common carotid arteries and brachycephalic trunk are retained. Mesh contraction method 
is used to obtain a smooth surface mesh [73]. Volume triangulation has been done by an in- 
house mesh generator known as FLITE3D. The anterior and posterior views of the mesh can 
be seen in the Figure 9.1. A bulge located at the bottom of descending aorta is the aneurysm. 
The algorithm in the mesh generator is based on triangulation method [23]. For more detailed 
explanation on geometrical modeling and grid generation, readers are referred to [74], The 
approximate inlet diameter is 3 cm and approximate height (measured from outlet to the top 
of aortic arch) is 20.1 cm. The mesh consists of 75443 nodes, 420351 tetrahedrons-elements 
and five boundary layers, so that wall shear stress can be calculated accurately. The average 
element size of the finite element model is 0.08 cm. The approximate boundary layer thickness 
is 0.05 cm and final layer (layer adjacent to the wall) thickness is 0.003 cm. The boundary layer 
of three branch-outlets and the inlet can be seen in the Figure 9.2. The governing mass and 
momentum equations have been solved using CBS method (refer Chapter 4) to compute three 
dimensional velocities, wall shear stress distributions and pressure distributions. Unlike the 
steady state solution for the arteries in the previous chapters, this numerical model has been
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solved for an unsteady flow. In order to overcome the pressure oscillation difficulties, safety 
factor used is 0.5. The pseudo iterations were performed until the L2-norm of velocity and 
pressure errors reached 10-5 for each time increment. The solution converged at a mass error 
less than 0.2 % for each time step. Just for the sake of curiosity, an unsteady flow simulation 
without the folded neck (by smoothing the neck geometry) has also been performed. In this 
case considerable differences in WSS and OSI distribution have been identified, as compared 
to the aorta with a realistic folded sharp neck.

(a) Three branch outlets (b) In let

Figure 9.2: TAA: Boundary Layer Mesh.
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Figure 9.3: TAA: Temporal velocity waveform.

9.3 B o u n d a ry  cond itions

Similar to the problems in previous chapters, no slip condition has been enforced on walls. A 
fully developed-pulsatile waveform has been prescribed at the inlet and outlets. Since the inlet 
and outlet surfaces are not circular, Hagen-poiseuille flow given in the Equation 4.6 cannot
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be implemented. For non-circular sections, Hagen-poiseuille flow needs to be mapped. This 
mapping procedure has been de described by Mynard and Nithiarasu [34]. This procedure 
involves computing the spatial variation of velocity by the equation:

u - 2umean( l  — Tnorm) (9-1)

where r norrn =  r / R i  is a normalized radius, r being the radius measured from the node and 
Ri is the radius measured from an imaginary node. Womersley profile described in the equation
2 .2  cannot be used in this situation, since Womersley profile is applicable for cylindrical walls 
only. In order to obtain a pulsatile velocity profile in time, u in the above equation should be 
multiplied by a transient profile k{t)\

'R 'h a rm

k (t) =  ^ 2  BiCos(u)it +  (f>i) (9.2)
i—1

where t is time, B i is amplitude, =  2 ir f i is angular frequency and fa is phase angle 
of ith  harmonics. All these parameters are realistic in nature and have been obtained from 
hospital. The values for these parameters are presented in the Table 9.1. For comprehen­
sive understanding about this data acquisition methodology, readers are referred to  [34]. The 
temporal velocity of one cardiac cycle is shown in the Figure 9.3. The analysis of quickly 
changing flow (pulsatile) requires very small step sizes. Therefore, the temporal domain has 
been discretized into 99 steps, where one step size 0.006 second. The total time length of one 
pulsatile cycle is 0.6 second. There are four exits in the aortic FE model. The flow rate is 
divided among the four exits based on the physiology of an average human being. The realistic 
outflow rates are is 7 % for left subclavian, 10 % for left common carotid arteries 7 % for 
brachycephalic trunk and rest of the volume flows through descending aortic outlet. The to­
tal flow rate assumed is 6  Z/m. Initial conditions include zero velocity components and pressure.

9.4 R esu lts and discussions

In this artery, due to the presence of 180° bend, centrifugal effect influences the wall shear stress 
and pressure distributions. The three branches present in the aortic arch will also influence 
the flow pattern. The output quantities chosen to explain the response o f the aneurysm to 
pulsatile haemodynamics are haemodynamical pressure, wall shear stress and oscillatory shear 
index. The importance of these haemodynamical quantities has already been explained in the 
Chapter 3. Pressure distribution plots at two instances are given in Figure 9.4. WSS plots for 
two selected time steps can be found in the Figure 9.5. In order to capture the flow behavior, 
the instances chosen are start of the pulse, peak systole, early systolic deceleration, end systole 
deceleration and a diastolic step. The Figure 9.6 shows the variation of WSS with time. The 
anterior and posterior views of OSI distribution in the aorta are shown in the Figure 9.7.

9.4.1 H aem odynam ic pressure in th e aorta

Haemodynamical pressure is the primary load on the aneurysmal wall, thus it is one of the 
factors responsible for pathogenesis and rupture of aneurysm [16]. The blood pressure creates
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Table 9.1: TAA: Harmonics used to generate unsteady velocity profile.

Harmonic Frequency (Hz) Amplitude Phase (rad)
0 0.000 126.88125 0.0000
1 1.63548 219.048 -1.6
2 3.27097 156.0645 3.049
3 4.90645 80.25450 1.813
4 6.5419 57.644 1.224

5 8.17742 56.193 -0.10786

6 9.81290 25.001 -1.55024

7 11.44840 17.105 -1.405

8 13.08390 24.24746 -2.9386

9 14.71940 8.16 1.4578

10 16.35480 10.9 2.745

11 17.99030 12.68 0.49

12 19.62580 2.756 -2.4845

13 21.2613 5.98 -0.25438

(a) Pressure plot in the second systolic (2nd tim e(b ) Pressure plot at early systolic (7th tim e step) de­
step) step. celeration.

Figure 9.4: Pressure distribution in the Aorta.

a normal force on the endothelial wall, which is tensile in nature. In the beginning of the pulse 
(Figure 9.4a), the pressure value decreases gradually, starting from the upstream-aortic inlet to 
the downstream-aortic outlet. This pattern is same as those of idealised arteries in the previous 
chapters (at lower Re only). At peak systole (Figure not shown here), peak pressure occurs 
in the aortic arch, since centrifugal effect due to peak velocity impinges the fluid particles on 
the external curvature of the aortic arch. During the early systolic deceleration (Figure 9.4b) 
and late systolic deceleration, the peak pressure is occurring on aneurysmal wall. This high 
pressure zone might be susceptible for rupture initiation. The deceleration and flow reversal
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of the blood causes the pressure drop to switch from outlet to inlet. The value of the haemo- 
dynamic pressure on the aneurysmal wall at late systolic deceleration step is 64.0 dynes/cm2. 
At the diastolic step (Figure not shown here), the pressure drop completely reverses, with zero 
pressure at the inlet and peak pressure at the outlet.

(a) WSS in the second systolic step-Anterior view, (b) WSS at late (18th tim e step) systolic deceleration-
Posterior view

Figure 9.5: Wall shear stress in the aorta.

9.4.2 W all sh ear s tress  in TAA

The location of peak wall shear stress and its value have shown strong dependence on time. 
Folded neck is found to be the most affected region by WSS, since the fluid particles shear 
with the sharp bend. At the beginning of the pulsatile flow, peak WSS (Figure 9.5) occurs at 
the folded neck. However the value of peak WSS is found to be small (90 dynes/cm2). For the 
peak systolic acceleration and early systolic deceleration steps, location of peak WSS (Figures 
not shown here) remains at the folded neck. The peak WSS in the folded neck reaches as 
high as 415 dynes/cm2 at the peak systolic acceleration step. Whereas, for the aorta without 
folded neck, the peak WSS is found to be as low as 200 dynes/cm2 (in the location where 
there was folded neck). At the diastolic step, the peak WSS is concentrated at two locations 
(Figure not shown here). These two locations are the bend region (65 dynes/cm2) of ascending 
aorta and a location (62 dynes/cm2) proximal to the aneurysm. The WSS concentration at 
these two location occurs, since the decelerating fluid particles shear with the bent walls. At 
the diastolic step, for the aorta without folded neck, peak WSS (50 dynes/cm2) occurred at 
a location in the bend region of ascending aorta. WSS in the aneurysm remains low (less 
than 10 dynes/cm2) for all the 99 steps. The variation of the WSS with respect to time has 
been given in Figure 9.6. From the figure it is clear that, the peak WSS occurring at the 
peak systolic flow is 400 dynes/cm2. This value is higher than the yield stress for endothelial 
wall, suggested by Fry [52], Fry [78] has also suggested that, a WSS value as high as 800 
dynes/cm2 can erode endothelial cells. According to the Figure 9.6, the WSS is proportional 
to the flow velocity until the late systole. But, from the late systole to early diastole, the WSS 
fluctuates. This fluctuation is due to the reversed flow and forward moving flow.
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(a) Anterior view (b) Posterior view

Figure 9.7: TAA: Oscillatory Shear Index in the aorta.

9.4.3 O scillato ry  shear index  in TAA

The definition and equation of dimensionless OSI are given in the Section 3.5. From the Figure 
9.7, it is evident that, the peak OSI is located proximal to the aneurysm. But the WSS is very 
low (for all the time steps) at this region. This proves that, the combination of higher OSI 
and lower WSS is responsible for pathogenesis of aneurysm. Higher OSI can also be located in 
the beginning of ascending aorta, outlet to brachycephalic artery and the start of descending 
aorta. These locations are subjected to multidirectional and fluctuating shear stresses. The 
maximum possible value of OSI is 0.5. The maximum OSI found in the aorta is 0.49, which is 
occurring at a location proximal to aneurysm. Higher OSI at this particular location, suggests 
higher residence time [79] of blood particles and increased permeability of endothelium to low 
density lipoprotein (LDL).
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Chapter 10

Conclusions and Future scope

10.1 Conclusions

Initially, a brief introduction to blood circulation, arteries and hemodynamics has been pre­
sented. Governing equations of blood flow and an efficient solution scheme to  them have 
been discussed. The characteristic based split-solution scheme discussed here, is found to be 
suitable for bio-fluid dynamical problems. Steady flow through four idealistic arteries has been 
presented. Pulsatile flow through a realistic artery has also been explained. Flow through a 
straight artery has been validated with analytical calculations. The validation is in good agree­
ment and supports the idea of implementing numerical simulation in diagnosis and treatment 
of vascular pathologies. Flow pattern in the straight artery is found to be smooth, with no 
flow disturbances and no stronger secondary flow. Whereas the presence of bends in an artery 
disturbs the flow. Presence of bend also increases the pressure drop and wall shear stress. In 
the artery with a single bend, at higher Reynolds number, peak pressure occurs at the external 
curvature o f the bend. In the single bend artery, recirculation in the plane of cross-section 
occurs downstream only and secondary flow becomes complex at higher Reynolds number. 
Second problem solved, involves two bends in the artery. In this double bend artery, flow in the 
second bend differs significantly from the flow in first bend. Flow in the second bend is highly 
dependent on Reynolds number. In the second bend, the location of maximum axial velocity 
shifts to the opposite wall at higher Reynolds number. No recirculation occurs in the first 
bend, whereas four vortices have been observed in the second bend. Third problem solved also 
involved two bends, but the angle of curvature is higher. The increase in angle of curvature in­
creases the pressure drop drastically, whereas variation in WSS is found to be ignorable. In the 
Chapter 8, the artery with same angle of curvature has been solved for two lumen radii. The 
location of peak WSS is found to vary with lumen radius. Strength of secondary flow varies 
with lumen radius at a given Reynolds number. Pressure drop and WSS decrease with increase 
in lumen radius. In all the bend-type problems, relatively lower WSS has been found in internal 
curvatures. This fact suggests that, internal curvatures are vulnerable for atherogenesis and 
lesion formation. Finally, pulsatile flow through an aorta inflicted with thoracic aortic aneurysm 
has been elucidated. The aorta consists of a rare geometrical feature, which js a folded neck. 
In this chapter, a brief introduction to aneurysm, and their pathogenesis and diagnosis has 
been explained. The haemodynamical discussion in this chapter also involves geometrical and 
numerical modeling of TAA. The spatial and temporal distribution of haemodynamical quan­
tities such as WSS and pressure on the aortic wall has been discussed. Temporally, peak wall
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shear stress and its location is found to  vary significantly with inlet velocity. For most of the 
time steps, higher WSS occurs at the folded neck. WSS is found to be low on and around the 
aneurysmal wall for all the time steps. Oscillatory shear index is found be high at a location 
proximal to aneurysmal wall. This supports the fact that, low WSS and high OSI could be 
responsible for pathogenesis of aneurysm. Numerical simulation has also been performed on 
an aorta w ithout sharp-folded neck. In this case peak WSS is found to  be half o f that of the 
realistic aorta.

10.2 Future Scope

This research work can be extended in numerous directions. The work to consider pulsatile 
inlet flow conditions to the bend artery is underway. In this study, it is expected to locate 
higher OSI in the internal curvatures. The work done here on bend type arteries can also be 
proceeded towards out of plane bend-type arteries. Little or no literature exists in these type of 
idealized arteries. In the future, arteries with more than two bends should be studied. Strength 
of secondary flow is highly dependent on number bends. Many regions with flow separation are 
expected to arise, with increase in number of bends. Multiple bends are common geometrical 
features o f femoral arteries [19]. The effect of angle of curvature o f the bend on the flow 
should be studied thoroughly by considering many angles. The effect of radius of curvature 
should also be studied on arteries. There is a need to study other types of idealized arteries 
using CBS-AC scheme. These arteries can be carotid bifurcation or cerebral arteries. Presence 
of bifurcation in the carotid is expected to have greater impact on WSS and OSI patterns. 
The realistic model of TAA should be studied using realistic inlet and outlet velocity profiles. 
The realistic velocity profiles are expected to be asymmetric rather than fully developed. It is 
very important to include wall distensibility, thus the idealistic and realistic arteries should be 
restudied by considering the deformation of wall.
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