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SUMMARY

In this work an algorithm is developed for simulating incompressible steady flow 
on two and three-dimensional unstructured meshes. The Navier-Stokes equa­
tions axe briefly reviewed as the basic governing equation for fluid flow. Using 
this set of equations, in the limit of incompressible flow, the problem of im­
posing the time independent continuity equation on the momentum equations 
arises. This difficulty can be removed by employing the Artificial Compress­
ibility approach. This approach modifies the continuity equation by adding a 
pseudo pressure time derivative. This modification makes the set of equations 
well conditioned for numerical solution. If the set of modified equations is used 
for the solution of steady state problems, the added pressure derivative tends 
to zero and the set of equations reduces to the steady state incompressible 
Navier-Stokes equations.

The cell-vertex finite volume method is employed for solving the modified equa­
tions on unstructured triangular and tetrahedral meshes. The principles of 
central difference space discretisation are described and the basic ideas behind 
adding artificial dissipation term axe reviewed. A normalisation procedure for 
the computation of the artificial dissipation term is adopted. Two different for­
mulations based upon a cell-vertex finite volume method and a Galerkin finite 
element method for the discretisation of the viscous terms on unstructured 
triangular meshes are employed in two and three dimensions. A modifica­
tion to the finite volume formulation is introduced for improving accuracy on 
unstructured grids. The issues relating to multi-stage time stepping, bound­
ary conditions and some techniques for increasing computational efficiency are 
described. A general review of several methods for generating regular and 
irregular unstructured triangular and tetrahedral meshes are presented.

The proposed algorithm is validated by solving several inviscid and viscous 
two-dimensional test cases. Extension of the algorithm to three dimensions 
are studied by using some further benchmark examples. Some engineering 
applications are considered to present the ability of the developed flow solver 
to simulate more complicated real world problems. Finally, some conclusions 
are drawn and a few guidelines for further research work are suggested.
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a

Introduction

1.1 Over V iew

Simulation of the physics of fluid flow plays an important role in understanding 
and adapting flow phenomena for engineering purposes. For over 200 years, 
researchers have studied fluid flow in an attem pt to help solve realistic en­
gineering problems. In many instances, a fluid interacts with objects which 
results in forces on the object, and in some cases, these forces change the form 
and position of the objects which can then have a significant effect on the flow 
itself. Examples of fluid-structure interaction problems includes the flow over 
automobiles, low speed aircraft and structures, such as tall buildings, cooling 
towers and large cylindrical storage tanks.

The behaviour of the fluid can be described by a system of equations which 
is known as the Navier-Stokes equations. Due to considerable mathematical 
difficulties encountered in solving this non-linear system of equations, it is 
very difficult, for general flows, to find an analytical method of solution. By 
applying simplifying assumptions, some comprehensive analytical methods for

1
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fluid mechanics have been developed. However, these methods are generally 
limited in their ability to simulate complicated flows over complex geometrical 
configurations.

Experimental methods have historically been used to measure the fluid flow 
parameters over complex geometries. Although wind tunnel experiments have 
the capability to produce information on realistic flows, they axe expensive. 
The task of matching flow conditions, the difficulties associated with accurate 
measurements and the time consuming nature of the procedures are other 
disadvantages associated with wind tunnel experiments. Furthermore, there 
are many cases in which the use of wind tunnel experiments axe practically 
impossible.

The development of high speed digital computers has led to the development 
of Computational Fluid Dynamics (CFD) for simulating complex fluid flows. 
Nowadays, the simulation of complex flow fields is possible by numerically 
solving the mathematical equations which govern fluid flow. The control over 
fluid properties and the ability to simulate complicated flow fields are some 
advantages offered by CFD. Although wind tunnel experiments axe still very 
im portant, computer simulations can be used to provide a significant insight 
into fluid behaviour. Since CFD is now a rapidly maturing discipline, many 
different techniques have been developed and a complete review of these meth­
ods is beyond the scope of this thesis. However, a description of Computational 
Fluid Dynamics, together with an historical background, can be found in the 
survey papers by Chapman [1], Kutler [2] and Jameson [3].

The main focus of this work is to develop a numerical solution algorithm for 
the simulation of incompressible viscous flow suitable for simulating aerody­
namic and environmental flows. Interest in this topic originates from the need 
to achieve accurate predictions of pressure and velocity fields to improve the 
aerodynamic design of objects. Such simulations have been used for improving 
the design of proposed aerodynamic configurations such as caxs and low speed 
aircraft. In addition, today, there is considerable interest in using CFD to 
predict flow fields around environmental structures, such as buildings.

In an effort to achieve this, inviscid and viscous flow solvers are developed, 
firstly in two dimensions, then extended for three-dimensional flow simulation.
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Validation of the scheme is accomplished by comparing the numerical results 
with the results from available analytical, experimental and independent nu­
merical results published in the literature. Finally, the flow solver is applied 
to study realistic flows.

1.2 Background

In order to simulate fluid flow the set of Navier-Stokes equations can be used as 
an appropriate mathematical model. Unfortunately, these equations are highly 
non-linear and there are several difficulties in obtaining their solution. Hence, 
to make some simplifications to these equations, appropriate approximations 
have to be made. At the first level of approximation, the Reynolds averaged 
form of the equations can be applied for many practical applications. This 
hypothesis assumes that the flow variables can be determined in terms of a 
mean value plus a value representing the fluctuation due to turbulence effects. 
Then, laminar flows can be regarded as a special case of the Reynolds Averaged 
Navier-Stokes equations, where the turbulence is zero. For high Reynolds 
number flows about streamlined bodies, the entire outer flow field is effectively 
inviscid and the effects of viscosity are confined to a thin layer adjacent to the 
solid wall and in the wake of the body. Hence, the second level of approximation 
can be achieved by completely neglecting the effects of viscosity and thermal 
conductivity and this leads to the Euler equations. Further simplification can 
be made by making the assumption of irrotational flow and thus a velocity 
potential function can be introduced. The resulting mathematical formulations 
are called the Potential Flow equation [4,5,6].

Using methods developed for the solution of the compressible Navier-Stokes 
equations gives rise to some numerical difficulties in the limit of the incom­
pressible flow. Since density remains constant, the time derivative in the con­
tinuity equation is zero. On the other hand, the speed of sound dominates 
the system of equations and destroys the stability and accuracy of many nu­
merical schemes. Therefore, the development of computational algorithms for 
incompressible flows implies that techniques are required to overcome the diffi­
culties of extracting the pressure from the combined continuity and momentum 
equations. These problems can be resolved using the artificial compressibility 
approach which casts the set of equations in pseudo transient form by intro­
ducing an artificial compressibility term into the contintiity equation. The
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resulting equations can be solved using methods which have been developed 
for the computation of compressible flows.

Computer based methods which have been developed to solve the Reynolds 
Averaged Navier-Stokes equations can be divided into three main categories; 
Finite Difference Methods (FDM), Finite Element Methods (FEM), and Finite 
Volume Methods (FVM). The FDM has been adopted by many CFD develop­
ers for use on regular curvilinear structured grids. Implicit and explicit schemes 
have been successfully applied to solve the set of Navier-Stokes equations [7- 
9]. The FEM provides great flexibility at the expense of a more complicated 
mathematical formulation. Various FEM schemes have been applied to handle 
inviscid and viscous flows in two and three dimensions [10-13]. The FVM has 
a simple physical interpretation when applied to the flow equations. The flexi­
bility and simplicity of the FVM facilitate its implementation on unstructured 
meshes for solving complex problems. FVM practitioners have developed sev­
eral algorithms which have demonstrated the applicability of the approach to 
simulate flow over arbitrary complicated geometries. One particular approach, 
which has been developed for compressible flow solvers, is central space dis­
cretisation coupled with multi-stage time stepping [14-19]. The considerable 
efficiency achieved using this approach makes it a suitable method for adopting 
for the simulation of incompressible flows.

Apart from the choice of numerical method, devising a suitable mesh is another 
im portant requirement of any numerical method. For simple geometries, an 
appropriate grid can be generated using methods based on mapping techniques
[20]. For more complex geometries, the generation of suitable grids has proved 
to be quite troublesome as the shapes do not readily conform to a single global 
structured grid. To solve this problem, two common approaches have been 
proposed; the multi-block structured approach [21] and the unstructured trian­
gular approach [22]. The multi-block approach decomposes the global domain 
into several regions and within each sub-region a local structure grid is gen­
erated. However, the subdivision of the domain into a number of sub-regions 
which must be topologically equivalent to blocks is a non-automated process, 
and hence, is time consuming. The use of unstructured grid generation, how­
ever, overcomes many of these problems. Several unstructured triangular mesh 
generation techniques have been recently developed, which can generate ap­
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propriate meshes for two and three-dimensional domains. The main advantage 
of generating meshes in this way is that they provide a flexible manner for 
discretising complex domains without recourse to large scale domain decom­
position [22]. However, in the unstructured approach, a connectivity matrix 
must be used to define the elements and this leads to the requirement to use 
indirect addressing in the flow solver.

In this work, effort has been devoted to developing a cell vertex Finite Volume 
algorithm which uses multistage integration and central space discretisation to 
solve the incompressible flow equations. The ability of the algorithm to deal 
with complex geometrical configuration is maintained by utilising side-based 
data structure on unstructured triangular and tetrahedral meshes. This algo­
rithm  can be applied for the simulation of inviscid and viscous incompressible 
flows over solid bodies.

1.3 Scope o f  the Research

Difficulties associated with the numerical solution of the set of Navier-Stokes 
equations in the limit of the incompressible flow has motivated the development 
of several methods. The incompressible flow equations can be solved using 
derived or primitive variable formulations of the Navier-Stokes equations.

The derived variable approach uses new dependent variables. As some exam­
ples, Stream Function/Vorticity and Vorticity/Velocity approaches have been 
used [6,24]. However, these methods can not easily be extended to three dimen­
sions since there are difficulties in expressing boundary conditions and there is 
a need for a separate equation for the solution of the pressure field [6].

The primitive variable approach utilises the independent variables of velocity 
and pressure which can be classified into three groups; the Pressure Poisson 
method, the Penalty method, the Fractional Step technique and the Artificial 
Compressibility approach.

The first, which historically was one of the most commonly used, is the Pressure 
Poisson method [5]. In this method the velocity field is advanced in time by 
using the momentum equation. Then, pressure is obtained from the Poisson 
equation such that the continuity equation will be satisfied at the next time
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step. The method can be applied to steady state problems and it is referred to 
as the Pressure Correction method. In this method, the velocity and pressure 
axe indirectly coupled.

The second group of primitive variable approaches is known as Fractional Step 
or the Velocity Correction technique which was first introduced by Chorin
[25]. This technique starts the computation by solving an intermediate velocity 
field for the momentum equations with omitted pressure gradients. Then, 
the pressure field is solved by inserting the intermediate velocity field into 
the continuity and the momentum equations. The pressure field is usually 
determined separately in the second stage of computations. This technique 
has been widely used in the context of FDM and FEM [28-34]. Application of 
the method was extended to the solution of both steady, incompressible and 
slightly compressible flows [30-32]. Recently, attem pts have been made to use 
this technique to develop a unique algorithm for solving both incompressible 
and compressible flows [32,33].

The third method which uses primitive variables was proposed by Chorin [34] 
and is known as the method of Artificial Compressibility. In this approach, a 
pseudo time derivative of pressure is added to the continuity equation, which 
directly couples the pressure and velocity fields. The equations are advanced 
in time until a divergence-free velocity field is obtained for steady state con­
ditions. Similarity exists between this method and the Fractional Step (Ve­
locity Correction) method [25], which maps the intermediate velocity field to 
a divergence-free velocity field using an Artificial Compressibility parameter. 
Hence, because time accuracy of the set of equations has been destroyed, both 
approaches are only suitable for steady state problems. However, the Artificial 
Compressibility approach has the advantage of a direct coupling between the 
pressure and velocity fields as they are advanced in pseudo time. This makes 
the approach computationally less expensive than the other primitive variable 
approaches. The Artificial Compressibility approach has been widely used in 
a FDM context [35-41]. Some FDM developers have extended the approach to 
the solution of the time dependent two and three-dimensional problems [42- 
45], Turkel suggested a more sophisticated approach based on mathematical 
analysis [46]. Among FEM users, Peraire et al applied the approach for the 
simulation of three-dimensional flows on unstructured grids [47].
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In the FVM community, Rizzi and Erikson [48] used the approach in appli­
cations to rotational inviscid flows on three-dimensional structured meshes. 
Farmer [50] applied the approach to ship wave problems considering free sur­
face boundaries and Belov et al [51] extended the approach to solve time de­
pendent problems by using a semi-implicit scheme on three-dimensional struc­
tured grids. Dreyer [49] used the approach utilising Jameson’s cell-vertex Finite 
Volume scheme [14-16] for solving inviscid flow problems on two-dimensional 
unstructured triangular grids. The Jameson scheme, which employs multi­
stage Runge-Kutta time stepping together with separate central difference 
space discretisation and added artificial dissipation term, provides a flexible 
procedure to simulate flow over complex configurations. In the present work, 
an attem pt is made to adapt the Artificial Compressibility approach to the 
solution of the incompressible flow equations and to solve the resulting equa­
tions using the Jameson’s cell-vertex Finite Volume scheme [14,16] on two and 
three-dimensional unstructured meshes.

1.4 O utline o f Presentation

The main aspect of this work is the development of an algorithm for the sim­
ulation of incompressible laminar flows. Towards this goal, the set of Navier- 
Stokes equations is modified according to the Artificial Compressibility ap­
proach. More flexibility is provided by adopting a cell-vertex Finite Volume 
discretisation on unstructured triangular meshes and utilising a side-based al­
gorithm in three-dimensional generalised coordinates. The solution procedure 
follows the multi-stage Runge-Kutta time stepping approach together with a 
separate central difference space discretisation with added artificial dissipation. 
The numerical solution of the modified equations is applied on two-dimensional 
regular and irregular unstructured meshes. The approach is then extended to 
three dimensions. In this thesis, the procedures followed are reported through 

ten chapters.

Chapter 2 reviews the mathematical description of the laminar Navier-Stokes 
equations together with the appropriate boundary conditions.

Chapter 3 considers the modification of the Navier-Stokes equations required 
for the Artificial Compressibility approach.
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Chapter 4 summarises the cell-vertex Finite Volume formulation and its appli­
cation to the integral form of the Navier-Stokes equations.

Chapter 5 describes the discretisation of the governing equations, including the 
convective, artificial dissipation and viscous terms, on unstructured triangular 
and tetrahedral meshes.

Chapter 6 discusses the details of the numerical procedures employed for the 
solution of the modified equations using a multi-stage time-stepping scheme 
and discusses issues related to computational efficiency.

Chapter 7 briefly reviews the different mesh generation techniques which have 
been applied for creating unstructured triangular meshes.

Chapter 8 presents results which assess the performance of the algorithm on 
appropriate test cases for the simulation of two-dimensional inviscid and vis­
cous incompressible flows.

Chapter 9 presents extensions ~to the flow solver for the simulation of three- 
dimensional incompressible flows and shows the accuracy and efficiency of the 
algorithm to deal with different complicated test geometries.

Chapter 10 draws the final conclusions and proposals for further work.
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Basic Governing Equations of Fluid Mechanics

2.1 Introduction

The behaviour of a physical system can be expressed by conservation laws. It 
means that the quantities such as mass, momentum and energy axe conserved 
regardless of the geometry of the system. These three conditions without any 
additional dynamic law completely describe the behaviour of the flow field. The 
conservation of mass, momentum and energy for the motion of an unsteady 
flow can be expressed by the system of Navier-Stokes equations.

Mathematically, the Navier-Stokes equations may be written in two forms; 
differential and integral form. However, the differential form is equal to the 
integral form with the assumption of the smoothness of the solution. The lam­
inar viscous form of the Navier-Stokes equations can be applied by neglecting 
the turbulence effects. Fax from solid bodies and wake regions, viscous effects 
can normally be neglected and the Navier-Stokes equations then reduce to the 
Euler equations. The system of Euler equations constitutes the most com­
plete description of inviscid, non-heat-conducting flow and hence is the highest

14



Chapter 2 : Basic Governing Equations 15

level of approximation for non-viscous fluids. Although the Euler equations 
axe obviously not universally valid, the importance of their accurate numerical 
simulation resides in the dominating convective character of the Navier-Stokes 
equations at high Reynolds numbers.

In this chapter, in order to give a short review of the laminax viscous incom­
pressible flow and related equations, the mathematical formulation of the gen­
eral form of Navier-Stokes equations is described. General conservative form 
of the Navier-Stokes equations is presented in Section 2 .2 . Section 2.3 contains 
the vector form of these equations. The modifications for the isothermal and 
incompressible flow are described in Sections 2.4. Section 2.5 and 2.6 present 
sets of equations for viscous and inviscid flows, respectively. Finally, in Section 
2.7, a general description of the equations which are applied to implement solid 
wall, fax field and symmetry boundary conditions axe discussed.

2.2 T h e  N av ier-S tokes E q u a tio n s

Complete description of the flow behaviour, at any specified time, requires in­
formation about velocity field and static properties at all points of the domain. 
For compressible flow, the static properties for any real flow in thermodynamic 
equilibrium are density and pressure. In the region of low speed flow, with the 
assumption of isothermal flow, the changes in density axe negligible so that the 
flow can be considered incompressible. Hence, in this case, the static property 
of the flow is only specified by pressure.

In order to describe the governing flow equations, consider a domain fl, enclosed 
by boundary T, fixed with respect to a Caxtesian frame of reference, with n 
being the outward directed unit vector normal to the boundaxy T (Figure 2.1).

If the local variation of a quantity per unit volume W  is acting in the domain 
fi, the variation of W  is due to the effect of the internal sources S  and the fluxes 
from surrounding boundaxies. If the quantity W  obeys the conservation law, 
the rate of its variation within the domain is equal to the net contribution 
of the fluxes F  passing through boundaxy T plus any surface source Sr and 
volume source Sn- They can be written as
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Boundary T Normal n

/  HI '
IsU' * i

X 3

Figure 2.1 Description o f  the three dimensional flow domain  Q

2 - J w d a  = - I f - n d r + f s r - n d r  + J s n dQ (2 .1)
n r r  n

The equation of the conservation law can be w ritten in volume integral form 
using Gauss divergence theorem by converting the surface integrals to volume 
integrals. After rearranging, we have

^ J \ V d Q  + J v - f d Q  = j v - S r dU + J s n dQ (2.2)
n n n n

The differential form of the conservation law for the domain T can be written
as

^  +  V-  F  =  V - 5 r  +  5n (2.3)

where V is the divergence of the vector field defined by F  which includes 
partial derivatives d / d x tIx. Here, xt- is the coordinates in the i direction of the 

cartesian coordinates and is the unit vectors in the i direction ( j =  1,2,3).
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The vector F  =  W U  consists of the flux passing through the boundary of the 
domain. The surface source Sr can be considered as the stresses acting on 
the surfaces of the boundary which is called the diffusive flux. The vector of 
internal sources Sn describes the contribution due to the molecular motion and 
thermal reaction of the fluid. The computations to be considered here are for 
flows in the absence of volume sources. Hence, the term 5n is assumed to be 
omitted from equations (2.2) and (2.3) for the rest of this chapter.

2.2.1 C onservation o f M ass

For conservation of mass, the quantity W  is considered as the specific mass p. 
The specific mass flux is a vector quantity because of the scalar nature of p. 
For a single phase fluid, any variation of p is due to the convective flux only. 
W ith the assumption of no source or sink of mass within the domain, the rate 
of increased specific mass inside the domain is equal to the rate of flow which 
crosses the domain. Therefore, using equation (2.2), the integral form of the 
mass conservation law can be considered as

^ j p d n  = J p ( V - X J ) d Q  (2.4)
n n

where p and U  are the specific mass and velocity vectors, respectively.

From equation (2.3), the differential form of the Navier-Stokes equations may 
be written in the following conservation form

%  + ^ pUi) = 0 (i =  1,2,3) (2.5)

where ux is the velocity component in i direction of cartesian coordinates (i =  
1,2,3).

2.2 .2  C onservation o f M om entum

For conservation of momentum, the conserved quantity is considered as the 
momentum, pU. Note that, the momentum flux is a tensor because of the
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vector nature of the momentum. The complete form of the conservation equa­
tion consists of both convective and diffusive parts and the total flux can be 
considered as the summation of these two parts.

The variation of momentum within the domain must be equal to the net con­
tributions from any sources. In the absence of chemical reactions, the integral 
form of this equilibrium may be expressed by using equation (2 .2) as

n n n

where the convective part pU(V • U) represents the amount of momentum 
transported by the fluid motion and the diffusive part V • a describes the flux 
contribution due to the molecular motion and thermal reaction of the fluid 
acting on the boundary surface.

The vector of internal stresses, a is dependent on the nature of the fluid. The 
components of total internal stresses for a Newtonian isotropic fluid can be 
taken as

crij =  Tij -  Sijp ( i , j  = 1,2,3) (2.7)

where r^ , 6{j and p are the shear stress, Kronecker delta and isotropic pressure, 
respectively.

The stress tensor, r tJ- expresses the viscous stresses in terms of velocity varia­
tions. It is assumed that the stress tensor is a linear function of the deformation 
tensor for a Newtonian viscous fluid. Also the relation between the stresses and 
deformation is independent of the direction for an isotropic fluid. Following 
these assumptions, the stress tensor components r tJ- can be written as

Tii = f l ( d f i  + d 7 i )  + X S i i frTk =  1,2,3) (2.8)

To eliminate A in the present analysis, it is assumed that the Stokes hypothesis 
is valid so that A and the viscosity coefficient of the fluid p are related by

p U (V -U )d ft 3) dSl =  0 (2.6)
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A = -§#< (2.9)

Hence, by applying the divergence theorem to the surface integrals, for laminar 
viscous flow, the conservation of momentum can be written in the component 
differential form

d d
fo(pui) + f a r ( p uiUj + p h j  ~  Tij)  = 0  (*,j = 1 ,2 ,3 )  (2.10)

2.2.3 C o n se rv a tio n  o f E n e rg y

The conservation of energy implies that the total energy per unit mass E  is 
equal to the summation of the action of work on a body and surface forces 
plus the variation of energy due to any heat flux vector entering inside the 
domain Q. A mathematical representation of the above statement is

I S rBda* S
n n n n

The total energy per unit mass, E  is defined as the sum of the internal energy 
e and the kinetic energy,

£  =  e +  i ( U - U )  (2.12)

The components of the heat flux vector can be adopted by Fourier’s law of 
heat conduction. It relates the heat flux to temperature gradients as follows

pE(y • u )<m- f u(v • a) <m + / (v • q*) <m = o (2.11)

qi = - k
dT
dxi (* =  1,2,3) (2.13)

The conservation of energy equation can be written in differential component 
form as ( i , j  =  1,2,3)
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d d
0l(PE ) +  foT ( P (E u > +  p) -  Tii Ui + qj )  = 0  (2.14)

If the fluid is a perfect gas, then the pressure p is related to the temperature 
T  through the equation of state,

p = p R T  (2.15)

with R as the gas constant. Assuming further that the gas is calorically perfect 
(i.e. constant specific heat Cp and Cv), then the following relations exist [2,3]

e = CVT

C„ =  (2.16)
7 - 1

where Cv is the specific heat at constant volume, Cp is the specific heat at 
constant pressure and 7  is the ratio of the specific heats. For air at standard 
conditions, 7  =  1.4 and R  = 287 m 2/ s 2 K.

Combining equations (2.12), (2.15) and (2.16), the following equations axe ob­
tained which relate the pressure p and temperature T  to the variables (p, U, E)

p = {1 - l ) p  E - - ( U . U )

T  =
(2.17)

Cvp{j -  1)

It is to be noted that for a fluid which cannot be considered perfect, the required 
equations of state can be found in the form of tables, charts or curve fits.
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2.3 V ec to r F o rm  o f th e  N avier-S tokes E q u a tio n s

For numerical formulations, it is often convenient to write the Navier-Stokes 
equations in a compact vector form. In this form, the Navier-Stokes equations 
in the absence of body forces may be written as

d W
~ di +

<■ ag= 
dxi dx2

( d i d<9hc\
dx3 /  V dxi

dgd dhd
dx' + £ ) - •  <218»

where

W  =

P
pUi 
PU 2 
pU 3

.  p E

pu 1 0
pui2 +  p Til

pUiU2 f d = Tl2
pUiU3 Ti3

.p u \E  + p . -UiTn +  U2̂ \2 +  W3T13 — qi .

pu2 0
pu2ui T21

pu22 +  p crd — 0 t 22
pu2u3 r23

.p u 2E  +  p . .U\T2\ -f- u2r22 -f- u3r23 — q2.

pu 3 0
pU3U\ T31
pu3u2 hd = T32

p u 2 +  p 7"33
,pu3E  + p. -U\T3\ -f u2t32 -f- U3T33 — q3_

The vector W  represents the vector of conserved variables, fc gc and hc con­
stitute the flux vectors of convective and pressure terms, while fd, gd and h4* 
represent the diffusive flux vectors. Note that the first row of equation (2.18)
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corresponds to the continuity equation as given by equation (2.5). Similarly, 
the three other rows axe given by equations (2 .10) while the fifth row is related 
to the energy equation (2.14). The elements of the viscous stress tensor can 
be calculated from equation (2 .8 ) as

/  du:

( du;

T31 =

3

f  du\ 
dx3

T n  =  fjL

r2 2 —  P

7*33 =  /i

.3 dx2

'4 du3 
.3 dx3

dui 
dx 2

du3
dx2

du3
r dXl

3 V
du2 
dx  2 ♦ £ ) ]

- - (  3 V
dui
dxi + £ ) 1

3 \
du\ 
dx 1

du2 y  
dx2) .

(2 .20)

2.4 Isotherm al Equation o f State

For low speed flows, the assumption that the changes in the temperature field 
are very small can be made and the flow can be considered isothermal. For 
this case, the equation of state (2.15) is replaced by

c2 =
dp
dp

7P 
P

(2.21)

where the constant c is the speed of sound and 7  is the specific heat coefficient 
under constant pressure for perfect gas [1].

This assumption simplifies the set of equations by decoupling the energy equa­
tion (2.14) from other conservation laws. In this case, equations (2.5), (2.10) 
and (2.21) are the complete set of equations. Note that, for incompressible 
flow, since there is no change in specific mass p then the value of the speed of 
sound c tends to infinity. ■
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2.5 T he Incom pressible V iscous Flow Equations

For a low speed flow the changes of specific mass p from the mean value po 
axe very small. The low speed flow is a flow in which the maximum velocity is 
less than three times of the speed of sound. In this case, unlike compressible 
flow, where all the equations are fully coupled, the energy equation (2.14) can 
be solved independently after establishing the velocity field.

In the case of truly incompressible flow, the changes in specific mass p axe 
negligible. Therefore, by using the mean value of specific mass po, the following 
approximations can be made ( i , j  = 1,2,3)

dp  A
a * 0

d d
(2 .22)

9  (  ̂ 9  ( \\ p U i U j )  ~  p o  —  { U i U j )

Taking these approximations to equation (2.18) and dividing both sides of the 
equations by p0, the simplified vector form of the Navier-stokes equations can 
be obtained for incompressible flow as

<9W  /  d i c d gc dhc\  /  d i d dgd dhd\  . .  .
“a T  +  f e  +  ^  +  a ^ ) - ( 9 i I  +  i i 7  +  a i 7 ) = 0  (2'23)

where

W  =

0
Ui
u2

L U 3

Ul ■ 0 -

U i 2 +  v ' f d = r ' n
UiU2 r \ 2

.  UlUz . -  t 'iz .
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u2 - o -
u2ux d r '  21

u22 +  p' g = _/T 22
. U2U3 - _/I T  23 J

hc =

Uz ’ o -
UzUi hd = t '3 1 

/u3u2 T 32
. u 32 + p '. -  '̂33 -

(2.24)

where p' = p/po and r , /  =  and the stress tensor is the same as
equation (2.8). Hence, in equations (2.8) and (2.9) p can be replaced by the 
kinematic viscosity i/.

2 .6  In co m p ressib le  Inviscid  Flow E qu a tio n s

For attached flows at large Reynolds numbers, the important viscous effects 
axe confined to a thin layer in the vicinity of solid boundaries. If the boundary 
layer is very thin compared to the characteristic length of the flow field, then 
the interaction between the boundary layer and inviscid portion of the flow field 
is often neglected. In this case, the viscous terms can be dropped completely 
from the Navier-Stokes equations and the resulting equations are called the 
Euler equations which represent inviscid flow condition. The vector form of 
the governing equations for truly incompressible inviscid flow can be simplified 
to the following equation

aw
dt

/  d fc ds.c dhc\
+  ( d 7 1 +  d T 2 +  d ^ ) = 0  (2 '25)

where the components W , f c, gc and hc are given by equation (2.24)

As can be seen in both equations (2.23) and (2.25), by omitting the time 
derivative of the specific mass from the continuity equation, there is a time 
independent constraint on the momentum equations for both unsteady and 
steady cases. This condition causes one of the main difficulties in the numerical 
solution of the incompressible flow equations.
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However, by considering constant entropy the isothermal equation of state, the 
time derivative of the specific mass can be replaced with a transient pressure 
term by using

dp _  dp dp _  ^  dp
dt dp dt c2 dt 1 '

In this case, for steady state conditions, the temporal terms are zero, and 
hence equations (2.23) and (2.25) are independent of c and the set of equations 
represents the incompressible flow equations. However, for time dependent 
cases, the local speed becomes very small comparing with the speed of sound 
c. This fact is more significant in very low speed regions, i.e. near stagnation 
points. Hence, in such a case, the speed of sound dominates the system of 
equations and makes the set of equations ill conditioned for numerical solution.

2.7 B o u n d a ry  C ond itions

In order to pose the problem in complete form, boundary conditions need to 
be provided along the whole boundaries of the domain of interest. In general, 
the domain boundary can be divided into three categories, the first is the 
wall boundary, the second is the flow domain symmetry boundary and the 
third is the flow boundary which must be specified to produce a bounded 
computational domain.

For viscous flows in general, the nature of the boundary conditions imposed 
on the wall boundaries axe set on the basis of physical experiences. All known 
experiments for viscous flows indicate that the relative velocity between the 
fluid and solid wall is zero. This is called the no-slip condition and is expressed 
by

( U • n )waii =  0 

( U • t  )wau =  0

where U  =  (w i,u2,u 3), n =  (n i,n 2,n 3) and t  =  ( t i , t2, t3) are velocity vector, 
unit vector normal and unit vector tangential to the wall boundary, respec­
tively.

(2.28)
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For inviscid flow, the only boundary condition applied at the wall boundary is 
the flow tangency or no flow normal to the wall boundary and is expressed as

( U • n )„aii =  0 (2.29)

For the flow domain symmetry boundaries the flow tangency can be imposed 
by considering no flow normal to the wall boundary. Therefore, the same prin­
cipal as inviscid flow can be applied. Hence, equation (2.29) is valid for this 
type of boundary condition. Special care should be considered when perpen­
dicular symmetry boundaries have to be used or the symmetry boundaries are 
connected to the wall boundaries.

The far field boundary conditions for the Navier-Stokes equations are more 
difficult to specify in a way that facilitates the computation. In practice the 
far field boundary is placed typically 12-15 reference length away from the 
body. The common approach to impose the flow boundary condition is to 
differentiate between inflow and outflow boundary conditions which can be 
determined easily by considering the sign of the dot product of the velocity 
and normal vectors at flow boundaries.
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For external flows about a body in a uniform stream, provided that the far 
field boundary is placed far from the body the viscous terms at the far field 
boundaries are usually very small. Consequently, in these regions, the gov­
erning equations reduce to the Euler equations and hence various approaches 
devised for the treatment of inviscid flow boundaries can be used. The con­
vective nature of the inviscid equations implies that information in the flow 
domain propagates along characteristic fines corresponding to the local wave 
directions.

For internal viscous flow computations, where open boundaries occur close 
to the wall boundary, the effects of the far field boundary condition on the 
implementation of the non-slip wall boundary condition and viscous gradients 
close to the solid wall cannot be ignored. The appropriate definition of the 
boundary conditions for such a case is not yet theoretically established. Some 
discussion is provided by Rudy and Strickwerda [6], Bayliss and Turkel [7]. A 
more detailed discussion of the far field boundary conditions for viscous flows 
can be found in references [2,5-8].

2.8 Sum m ary

In this chapter, the integral and differential form of the Navier-Stokes equations 
has been reviewed using the conservation laws. In addition, the details of 
the mathematical formulation of the equations and the essential information 
to specify the properties of the proposed fluid are described. Then, possible 
simplifications to the flow equations have been discussed. The specific case of 
the equations for incompressible flow, which is applicable for low speed flows, is 
studied for both inviscid and viscous flows. Finally, the appropriate boundary 
conditions for wall, symmetry and far field boundaries are defined. For more 
detailed discussions on these equations, readers may be referred to the reference 
texts on fluid dynamics [1-4].

The problems associated with the solution of the set of incompressible flow 
equations cause some difficulties in the accurate computation of the velocity 
and pressure fields. Therefore, it is necessary to investigate techniques to 
modify the set of incompressible flow equations in a form which make them 
better conditioned for using established computational methods.
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\ E

Formulation of 

the Incompressible Flow Equations

3.1 Introduction

For the condition of incompressible flow the changes in specific mass are neg­
ligible and, therefore, the time derivative in the continuity equation tends to 
zero. This implies a time independent constraint on the momentum equations 
which is a m ajor problem in solving the Navier-Stokes equations due to the 
difficulty in extracting the pressure from the coupled continuity and momen­
tum  equations. The issues related to the solution of the incompressible flow 
equations under these conditions motivates this investigation on appropriate 
numerical solution methods.

In Section 3.2, various mathematical models for the solution of the incompress­
ible flow equations are reviewed. Among them, the Artificial Compressibility 
approach is identified as one of the efficient techniques for resolving the prob­
lems associated with the solution of the incompressible form of the Navier- 
Stokes equations. This approach modifies the set of equations to pseudo un-

29
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steady form which axe then suitable for steady state solution using standard nu­
merical methods developed for solving the compressible form of Navier-Stokes 
equations. In Section 3.3, after a mathematical discussion about the Artifi­
cial Compressibility approach, hyperbolicity properties of the modified system 
of equations and its relevant parameters are studied. Finally, in Section 3.4, 
the non-dimensional form of the modified equations and the parameters of the 
adopted approach are described.

3.2 R eview  o f M odels for S im ulating  In co m p ressib le  Flow

A number of methods have been developed for the numerical solution of the 
incompressible flow equations using derived or primitive variable formulations. 
The application of each method depends upon the condition of the flow, i.e. in- 
viscid/viscous, steady/transient, irrotational/rotational and two/three dimen­
sional flows. They can be divided into two general categories of derived and 
primitive variable approaches. In this section, the most important techniques 
for numerical solution of the incompressible flow equations are reviewed.

3.2.1 D erived  V ariab le A p p ro ach

The derived variable approach defines the Navier-Stokes equation (2.10) in 
terms of new dependent variables. These methods can be listed as, the Stream 
Function/Vorticity method [1], and the Vorticity/Velocity method [2]. For 
some particular applications, when the flow can be considered as steady, invis­
cid and irrotational Panel methods may be used [3].

The Stream Function/Vorticity method is a technique which casts the momen­
tum equations in terms of a distribution of vorticity, d. This form is obtained 
by taking the curl of the momentum equations and a derived Poisson equation 
for the stream function 'F. The resulting set of equations for inviscid flow can 
be written in two-dimensional form as

dd (
at + (

dd dd
U i ~  1- U 2 -

dxi dx' ) -
(3.1)

d2V d2V
+  r  =  -I?dx\ dx \
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where
d ^  d $

ui =  - — , u2

and

dx2 dxi

4 = P - P -  (3.2)
U X i  O X  2

The pressure can be computed separately from an equation, which is called the 
Poisson equation. This equation is obtained by taking the divergence of the 
momentum equation and introducing the divergence-free velocity condition of 
the continuity equation. This equation for inviscid flow is given by

d2p d2p _  r dui du2 du2 du]
dx\ dx\ . dxi dx2 dxi dx2 .

(3.3)

The Vorticity/Velocity approach applies the vorticity equation for the compu­
tation of the vorticity field. A combination of continuity and the definition of 
vorticity, equation (3.2), can be used for the velocity field which for inviscid 
flow is described as

d2ui d2ui _  dd
dx2 dx2 dx2

(3.4)
d2u2 d2u2 dd
dx\ dx\ dx i

Again, the pressure can be computed separately using equation (3.3) as an 
additional equation.

Panel methods may be used only for the numerical solution of steady, inviscid 
and irrotational flow using Laplace equation in the velocity potential $  namely

d2$  n
dxi  +  dx\   ̂ ^

where

d$  d§
! h l ~ Ul ’ d ^ ~ U2 (3.6)
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For the solution of this form of equation many standard solution techniques 
exist. One of these techniques is called the singularity method which can be 
developed using the linearity property of the equation. In this method, a linear 
superposition of known elementary flow fields, such as source singularities, is 
defined. The unknown coefficients of this linear superposition can be obtained 
by considering the condition that in the absence of wall suction or blowing the 
resultant velocity field satisfies the condition of zero normal velocity on solid 
wall surfaces. The Panel method can be used for the computation of the flow 
over three-dimensional complex geometries. By using this methods, a solution 
for the pressure on the body can be obtained without solving for the flow field 
throughout the domain.

Both the Stream Function/Vorticity and Vorticity/Velocity formulations have 
several restrictions and difficulties. Neither of them can easily be extended to 
three dimensions and there are difficulties in expressing boundary conditions 
for both of them. The separate equation for the solution of the pressure field 
is another weak point for these methods. Panel methods are restricted to the 
solution of steady, inviscid and irrotational flow. The problems associated with 
derived variable approaches motivate the use of primitive variable formulations.

3.2.2 P rim itive Variable Approach

The primitive variable approach utilises the independent variables of velocity 
components and pressure. This requires the solution of equation (2.23) for vis­
cous flow or equation (2.25) for inviscid flow. For incompressible flow, the time 
derivative of the specific mass in the continuity equation tends to zero. Hence, 
the time independent continuity equation serves as a constraint for the time 
dependent momentum equations which must be satisfied for all time. This 
fact precludes the use of the simple explicit time marching procedures for the 
solution of the equations of motion. However, there are three common tech­
niques for overcoming this problem. These methods are the Pressure Poisson 
technique, Fractional Step technique, the Penalty method and the Artificial 
Compressibility approach.

The first m ethod which is called Pressure Poisson method [3] is able to solve 
the time dependent incompressible inviscid or viscous equations of motion. In
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this method, the momentum equation (2 .10) is solved for the velocity com­
ponents and the Poisson equation (3.3) is solved for pressure. Continuity is 
satisfied indirectly through the solution of the Poisson equation. The momen­
tum equations (2 .10) axe marched in time utilising the boundary condition on 
the velocity. Then the Poisson equation (3.3) is solved for the pressure utilising 
the Neumann boundary conditions. This method can also be applied to sta­
tionary problems and is referred to as the Pressure Correction method [1]. For 
steady state computations, an explicit method can be applied to the momen­
tum equations, followed by several iterations applied to the Poisson equation 
for the pressure. Since there is no primitive equation for pressure, the lack of 
natural boundary condition for pressure presents severe difficulties. However, 
there have been several attem pt to overcome boundary condition problem of 
the pressure [30]. A brief summary of some of common pressure-based methods 
are given in Appendix E.

The second primitive variable approach is known as the Fractional Step or 
Velocity Correction method, which was first introduced by Chorin [4]. Numer­
ically, this technique splits the operators of the Navier-Stokes equations into 
two parts, which are solved in two separate stages [4,5]. This technique starts 
by solving an approximate velocity field utilising the momentum equations for 
incompressible flow in which the pressure term is decomposed. The fractional 
momentum equation (2 .10) can be written as

+  =  0 («,; =  1,2,3) (3.7)

where Xj, Uj, and t[- are the cartesian coordinates, velocity components and 
shear stress, respectively. Here, ’o’ denotes the variables at the first stage. 
Then, considering ’oo’ for the variables at the second stage, they follow as

(Ui)n+01 = ( U i f  + 0i ((Au,r + (A uiD
(3.8)

(P')"+®’ =  (p')» +  e 2 ( ( o r  + (A P' r )

where p' = p /p  is the isotropic pressure per specific mass. The parameters 0 i  
and 0 2  are two relaxation parameters in the range of 0.5 to 1 [12]. The compu­
tation for the set of incompressible equations can be completed by rearranging
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the rest of the momentum equation in conjunction with mass conservation 
equation (2.5) as ( i , j  =  1,2,3)

5 T  +  -  9 ' E < A “->’
(3.9)

< ^  +  e , £ ( V r  =  - £ ( ✓ )f \ n

The approximate velocity field is solved from the first part, equation (3.7), then 
the pressure field can be solved by inserting the approximate velocity into the 
the second part, equations (3.9). Since, for incompressible flow the speed of 
sound c tends to infinity, it is suggested to utilise the artificial speed of sound. 
Therefore, the time accuracy of the system of equations is destroyed and the 
method can be applied only for steady state flow. However, time stepping can 
be applied as iterative marching to the steady state condition. Appropriate 
time step limits can be found by eliminating (A u*)00 from equation (3.9) [12]. 
As can be seen, two iterative procedures are necessary for every single stage of 
the computations, which makes the method computationally expensive.

The third method is Penalty method which adds a value of r)pv to the right 
hand side of the continuity equations where subscript rj denotes the penalty 
solution. Eliminating the pressure from the momentum equations using the 
new continuity equations, we get a system involving the velocity only. After 
velocity is calculated from the momentum equations, one can determine the 
pressure pv from the new continuity equation. An iterative procedure can be set 
up such that the difference between the penalty solution and the exact solution 
can be as small as desired for any 0 <  rj < 1 [30-32]. In Penalty method pressure 
is eliminated by penalizing the continuity equations, although it is retained in 
the boundary conditions. Involving only the velocities, a considerable saving 
in computing time and computer memory is achieved due to direct coupling 
between velocity and pressure.. However, in many engineering applications 
the pressure may be the most important design parameter, but the pressure 
is recovered by using perturbed continuity equation exhibits oscillations due 
to the ill-conditioned pressure matrix. Another disadvantage is the penalty 
parameter which for small values, causes loss of accuracy and for too large 
value sometimes prevents convergence to the solution [32].
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The fourth technique is the Artificial Compressibility approach which was pro­
posed by Chorin [14]. In this approach, the incompressible equations are cast 
in pseudo-unsteady form. The approach can be applied to the viscous and in­
viscid set of equations in two and three dimensions and it is attractive because 
of the efficiency of the algorithm. The Artificial Compressibility approach has 
received the attention of several workers utilising Finite Difference [15-24], Fi­
nite Element [25] and Finite volume [26-29] Methods. Recently, some workers
[24,26] applied the approach to solve unsteady problems. Although, there are 
some similarities between the second and fourth techniques, the third technique 
has the advantage of direct coupling between the pressure and velocity fields as 
the equations are advanced in time. In this work, the Artificial Compressibility 
approach is adopted for the computation of two and three-dimensional inviscid 
and laminar viscous incompressible flows.

Recently considerable progress has been made to solve incompressible form of 
Navier-Stokes equations using various finite element method. A brief review 
of some of these method is given in Appendix F.

3.3 Artificial Com pressibility Approach

The fundamental idea of Chorin’s Artificial Compressibility approach is to in­
troduce an unsteady pressure term into the continuity equation, which resolves 
the problem of the time independent velocity constraint on the momentum 
equation. When the solution converges to steady state conditions, the pseudo 
temporal derivative of pressure tends to zero, thus the set of equations satisfies 
the incompressible equations. The Artificial Compressibility approach allows 
techniques developed for compressible flow simulations to be used for solving 
the stationary incompressible equations. In this approach an artificial com­
pressibility term under the form of the pressure time derivative is added to 
the continuity equation. The added transient pressure term is formed similar 
to equation (2.26). In the limit of incompressible flow the local velocities may 
be very small compare to the speed of sound c. Using an empirical parameter 
f3 instead of c resolves the problem of dominating sound speed in the system 
of equations. Hence, the modified set of incompressible viscous flow equations 
may be written as (z, y =  1,2,3)
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• Conservation of mass :
1 dp duj

   H -  =  0
/92 dt r  dx5

(3.10)

• Conservation of momentum :

dui d f ,
= 0 (3.11)

The set of equations may be written in vector form as 

d W
dt +  P +  +  +  ^  +  = 0  (3.12)

d x i dx2 dx3 dx\ dx2 0 x3 J

where the vectors W , fc, g c, hc, f and hd are
(2.24), and the preconditioning matrix P is

0 0 0 -

P  =
. 0 1 0 0

0 0 1 0

.  0 0 0 1 .

(3.13)

The preconditioning matrix, P  can be used for casting the system of equa­
tions in hyperbolic-parabolic form. Here, /?2 may be viewed as a relaxation 
parameter for pseudo time marching of the pressure iteration. Analogous to 
the compressible flow equations (2 .21), the equation of state is considered as

(32 = TP
Po

(3.14)

where po is the mean value of specific mass, 7  is the ratio of the specific heats 
and the parameter /?2 can be called the Artificial Compressibility parameter.

Note that, because of the added pseudo transient pressure term, the proposed 
system of equations can only be applied for steady state flow. In this case, 
the added temporal derivatives of the pressure tend to zero when the solution 
converges to the steady state condition. Thus, the set of equations satisfy the 
incompressible form of the Navier-Stokes equations.
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3.3.1 M a th e m a tica l C h a ra c te r  o f th e  M odified  E q u a tio n s

Application of the Artificial Compressibility approach casts the system of equa­
tions in a form similar to the compressible Navier-Stokes equations. Since the 
effort to develop methods to solve the compressible Navier-Stokes equations 
has been very intensive, a substantial assortment of computer based meth­
ods exist which can be used for the solution of the modified set of equations. 
Practically, most of these methods are based upon the hyperbolic character of 
the convective part of the equations. Here, the hyperbolicity of the modified 
set of equation is studied using their differential form. Rizzi and Erikson [26] 
investigated the effect of the preconditioning matrix P  on the mathematical 
character of the system of equations by writing the inviscid form of equation 
(3.12) in quasi-linear form, namely

d W  „  d W  „  d W  _  d W  '
+  G i ——  -f G 2 -7:—  4- G 3 ——  =  0

dt dx\ dx* dxr (3.15)

where

G , = P
d f

d W

g 2 =  p _5g
aw

G . = P
a h
aw

-  0 p2 0 0 •

1 2 u\ 0 0
0 u2 111 0

_ 0 y>3 0 Ul .

■  0 0 p 2 0 -

0 u2 Ul 0
1 0 2 u2 0

. 0 0 u3 u2 .

-  0 0 0 P2 1
0 uz 0 Ui
0 0 U2

.  1 0 0 2u3 .

(3.16)

In this case, a matrix H  can be formed by taking a linear combination of 
individual flux Jacobian matrices, such as

H  — G i( i  4- G 2C2 4- G 3£3 (3.17)

where the variables fi, f2 and £3 are arbitrary real variables, representing the 
slope of the characteristic waves of the system.
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The eigenvalues of the m atrix H , which can be taken as characteristic convec­
tion waves of the Jacobian matrices of the modified set of equations, are found 
as

Ax — U  X2 =  U  -j- cl A3 =  U -J- cl A4 — U  — cl (3.18)

where
U  =  t/i£i +  U2C2 4- W3C3 (3.19)

and

a2 =  U 2 +  a 2(Ci2 +  C22 +  C32) (3-20)

Because the eigenvalues of the matrix H  are real, it can be stated that the in­
viscid part of equation (3.12) is guaranteed to be hyperbolic. The convergence 
rate and stability of the numerical scheme is dictated by the slowest and the 
fastest characteristic convection waves, respectively. Equation (3.20) highlights 
the im portant effect of the choice of ft2 on the convergence and stability of the 
numerical scheme. Notice that the eigenvalues can be adjusted according to 
the value of the parameter /32.

3.3.2 Artificial C om pressibility Param eter /?2

Initially, the Artificial Compressibility parameter, j32, was constant in the pre­
conditioning m atrix proposed by Chorin. There have been several attempts to 
give a precise value for this parameter. In the Finite Difference community, 
Chang and Kwak [16-18] tried to find the lower limit, upper limit, and opti­
mum magnitude of (32 for both laminar and turbulent flow problems. Kwak 
et al [19] suggested a bound for parameters and Soh [20] investigated limits of 
the param eter and appropriate boundary conditions.

Rizzi and Eriksson [26], in their Finite Volume formulation, verified that the 
hyperbolicity of the problem may be degraded if the different characteristic 
convection waves in the system, equation (3.18), become too disparate by spec­
ification of an inappropriate value for the parameter /?2. By two-dimensional 
measurements of the condition of the system of equations for any specified U 
and /?2, they verified that the condition of the system of equations depends 
upon the ratio of C p  =  /32/(U  • U). Finally, they concluded that with the 
value of C p  >  1 the pressure waves dominate over the convection waves and
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the system is less directionally dependent and better conditioned. Hence, it 
was concluded that for solving the flow field the parameter /?2 need not to be 
a global constant. Then, in order to adapt the scheme to the concept of local 
time stepping, it was suggested that (32 be computed to be proportional to the 
local velocity squared as

M ax. [ / £ in , O ( U - C )  ] (3.21)

where /?^in and Cp are the lower bound of j32 and the constant ratio C^2, 
respectively. It is shown that, the hyperbolicity of the system of equations 
depends upon the value of Cp2. After examining several values for this ratio, 
a range of 1 < Cp < 5 was suggested for this ratio and =  0.3 as the lower 
limit of the Artificial Compressibility parameter.

However, Turkel [15] after some mathematical considerations, suggested a more 
general preconditioning matrix, P  which contains modifications not only to the 
continuity equation, but also to the unsteady term of the momentum equations. 
Thus, the preconditioning matrix is taken to be of the following form

j32 0 0 0

P  =
(a  +  l)u i 1 0  0

(a  +  1 )u2 0 1 0

. (a  +  1)«3 0 0 1

(3.22)

where the parameters a  and ft2 have to be found in such a way that render 
the system better conditioned for numerical solution. Following the same pro­
cedure for ensuring the hyperbolicity of the new system of equations, Turkel 
gave the definition of P2 as

fo r  a < 1  (32 =  max. [ ^ in , (2 -  a) ( U  • U ) ]

(3.23)

fo r  a >  1 P2 = max. [ p 2min , a ( U - U )  ]

Finally, Turkel concluded that the best results for the governing equations can 
be obtained using equation (3.23) with a = 1 and Cp — 1. More details of this 
approach and the extension to three dimensions may be found in Appendix A.
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Dreyer [27] applied Turkel’s preconditioning matrix using the Finite Volume 
formulation by using equation (3.23) for the parameter (32 for the simulation of 
incompressible flow on two dimensional triangular meshes,. It can be concluded 
from his work that — 1 < a  < 1 and values of 0.2 < Cp < 6.0 should be used.

Note that, by considering a =  — 1 in equation (3.23), Turkel’s approach leads 
to the scheme of Rizzi and Eriksson which requires less computational effort. 
Hence, the preconditioning matrix proposed by Rizzi and Eriksson is adopted 
for the present algorithm using expression (3.21) for the parameter /32. This 
formulation gives Chorin’s initial Artificial Compressibility approach with f32 =  
Constant.

3.4 N on-dim ensional Form of the M odified Equations

For practical purposes, it is often convenient to write equations (3.12) in a 
non-dimensional form. Also, by non-dimensionalising the equations, the flow 
variables are normalised so that their values fall between certain prescribed 
limiting values. For the present work, the following non-dimensionalisation 
has been adopted [1-3,14-16]

~2 
o|

(* =  1,2,3) (3.24)

where denotes a non-dimensional value, free stream values axe denoted by 
the index 'O' and t  is the reference length. The Reynolds Number is defined by

R P °l|U °l
jia

Note that, because of conditions pertaining to low speed flow, i.e. the isother­
mal conditions, there is no change in viscosity fio so the Reynolds number 
remains constant throughout the flow domain.

If this non-dimensionalisation is applied to the modified equations, the result­
ing system of equations may be written as

r  =

U ;  =

P  =

t |Uo|
I

Uj

|Uo|
P_

Po

p  =
P o \U

X ;  =  —

[I =

XA
I
I
&
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d W '
dt* +  P ‘

,d e »  , dg~  , d h ' \  , 3 V  dgJ- S h *  1
+  +  +  +  (3 ' 26)

where the vector of conserved variables W*, preconditioning matrix

P*, connective flux vectors f c*, gf* and h0* and viscous flux vectors f4**, gd* 
and h4** axe given by

W* = u,
u !

Lui

- /9*2 0 0 0 -

p* = 0 1 0 . 0
0 0 1 0

.0 0 0 1 .

fC* =
«i

u f + p ' 
u\u*2
U{U3

0 
T*U  
T *  12

U r

U9U1
u*22 +p*

'‘2U3

ul

hc* = u*ul
 ̂  ̂ *
U3U2

L u f + p *  J

- 0 - - 0  -

g *  =
T* 21 h *  = 7**31
T 22 T 32

J L T 23 J -  r *33 -

(3.27)

with the parameter /?2* defined as a function of the local velocity vector

/?’* =  M ax. [ f min , Cp(U“ ■ U*) ] (3.28)

The shear stresses can be considered as

TH
T ij —

Po\Uz
( i , j  =  1,2,3) (3.29)

We can rewrite the dimensionless form of the stress tensor described by 
equation (2.8) a5

^ “( S  +  S ) + A ^ f 3  ('•■; =  1.2.3) (3.30)

Note that, by omitting the the non-dimensional form of the equation is 
identical to the original dimensional form (except for the time derivative of
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pressure in the continuity equation). For convenience, the asterisks can nor­
mally be dropped from the non-dimensional equations.

3.5 S u m m ary

In this chapter, after a review of various methods for solving the incompress­
ible flow equations, the Artificial Compressibility approach was chosen. This 
technique modifies the set of incompressible equations by introducing a pseudo 
time derivative pressure term into the continuity equation. In the set of mod­
ified equations, direct coupling of the pressure and velocity fields make them 
well conditioned to apply explicit numerical methods previously developed for 
the solution of the compressible form of the Navier-Stokes equations. This 
additional transient term affects the time accuracy of the set of equations, and 
hence, the set of modified equation can be used for solving the steady state 
flows. In this case, the time marching procedure can be viewed as an iterative 
relaxation to the steady state condition.

From the mathematical study of the hyperbolicity of the convective part of the 
set of the modified equations, it was concluded that the system of equations 
can be better conditioned for numerical solution by using appropriate values 
for the parameter (32. There is an effect of this parameter on the stability 
and convergence of the numerical solution which appears in the eigenvalue 
of the convective part of the system of equations. In order to have a better 
convergence rate, (32 can be scaled using the local velocity in the computational 
domain.

In summary, the mathematical model for the present incompressible flow solu­
tion algorithm consists of a set of non-dimensional equations given by equation
(3.26), in conjunction with the relaxation parameter /?2 defined by equation 
(3.28). Following the suggestion of other workers, the scaling coefficient Cp of 
the artificial compressibility parameter is considered in the range of 1 < Cp <  5 

and the lower limit for (32 is considered as 0.2 < (32 < 0.5.
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Finite Volume Formulation

4.1 Introduction

In computer-based methods for solving fluid flow problems, a limited number 
of points is specified to represent the domain of interest. Then, the assump­
tion is made that the solution of the equations at these points presents the 
solution of the equations within the entire field. If an appropriate solution 
method for the set of governing equations can be devised, the computational 
approach offers a powerful means of studying fluid flow. Such a solution can be 
achieved by application of the Finite Volume formulation which is based upon 
the integral form of the Navier-Stokes equations. This method is a powerful 
approach for computation. Furthermore, it can be efficient if appropriate data 
structures can be used. Using a side-based algorithm, considerable flexibility 
and computational efficiency can be incorporated into the method. Here, the 
term side is applied to edges of triangular cells and faces of tetrahedral cells of 
two and three-dimensional meshes, respectively.

This chapter presents an algorithm for computing the solution of the flow equa-
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tions using the Finite Volume Method. In Section 4.2, after a brief reference 
to some concepts of the Finite Volume Method, the approach used for the dis­
cretisation of the flow equations is reviewed. A cell vertex scheme is chosen and 
the concept of overlapping control volumes is discussed. Then, discretisation 
of the integral form of Navier-Stokes equations using a cell-vertex approach 
is studied in Section 4.3 and the essential formulations for the computation 
of side areas and volume of the control volumes are presented. For the sake 
of simplicity and ease of understanding, most of the figures throughout this 
chapter are explained in a two-dimensional framework.

4.2 T h e  F in ite  V olum e In te g ra tio n

A brief introduction to some of the important concepts of the Finite Volume 
Method is presented in this section. Although a more detailed discussion on 
the method can be found elsewhere [1-4], it has been considered appropriate 
to include this introductory section with the objective of providing a quick 
reference to some of the important concepts of this method which axe relevant 
to issues discussed in the following sections.

The Finite Volume Method was proposed in the field of Computational Fluid 
Dynamics independently by MacDonald [5], and MacCormack and Paulay [6] 
for the solution of two-dimensional, time dependent Euler equations and ex­
tended to three dimension by Rizzi and Inouye [7]. Since then, this method has 
been used for solving both compressible and incompressible flows [7-10]. The 
Finite Volume Method is based upon the integral form of the equations and the 
global conservation law for the whole domain is satisfied for every sub-domain 
or control volume. In this respect, the Finite Volume Method is similar to the 
Finite Element Method. However, the Finite Volume Method assumes that the 
variables axe piecewise constant within each sub-domain, and hence, by omit­
ting the test function from the formulations, uses a simple formulation based 
upon volume averaging gradients. Therefore, the Finite Volume Method has 
the same flexibility as the Finite Element Method, whilst using a mathematical 
expression which clearly describes the physics of the fluid flow.

The Finite Volume Method has the ability to deal with complicated geometries 
and irregular sub-domains; The Finite Volume Method can be implemented
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using a side-based data structure to carry out all the required mathemati­
cal operations. In this data structure the relationship between a cell and its 
neighbours is defined using the side connectivity matrix. Such a data struc­
ture is suitable for defining unstructured meshes which provide a flexible means 
for discretising complex domains. Therefore, the Finite Volume Method can 
handle any type of grid. Hence, unlike the Finite Difference Method which 
is usually applied to the differential form of the governing equations and is 
usually applied on structured grids, the Finite Volume method can be easily 
applied on unstructured meshes.

Now consider a domain Q which is enclosed by the boundary T (Figure 2.1). 
For this sub-domain fi, in the absence of body forces 5n, equation (2.1) can 
be written as

J w d n  + j ^ - n d T -  j  Sr - n d T  = 0 (4.1)
n r  r

For simplicity, assume that F  includes both the flux vector F  and the surface 
stresses Sr  on the boundary V. Hence, equation (4.1) can be written as

d_
dt

J w dn + j ( f - n ) d T  =0 (4.2)
n r

where n is the normal vector to the boundary and F  is a general flux vector 
acting on the boundary of the domain. If the domain is divided into a large 
number of small arbitrary sub-domains, then, the governing equations can 
be used to estimate the average rate of variation of W  in each sub-domain. 
This method of obtaining discrete approximations preserves the conservation 
form. The implementation of the discretisation of the computational domain 
can be done by dividing the domain into the sub-domains within which the 
integrations are performed.

The first step in the implementation of the Finite Volume Method is to divide 
the computational domain into a number of sub-domains, which are called con­
trol volumes. The control volumes can be formed by a set of non-overlapping 
cells in two dimensions or tetrahedral cells in three dimensions . In an unstruc­
tured grid, the control volumes can consist of triangular or tetrahedral cells in
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two and three dimensions, respectively. The control volume can be formed by 
either a cell or a number of cells sharing a vertex (Figure 4.1). Hence, the two 
schemes, cell-centred and cell-vertex, have been developed [8 ,11].

4.2.1 Different Schem es for the Finite Volum e D iscretisation

It is necessary to assign the flow variables to a fixed location within the control 
volume. The approach to this depends on the choice of the adopted scheme. 
The Finite Volume Method can generally be divided into cell-centred and cell- 
vertex schemes. Then, the discretisation may be obtained by storing values of 
flow variables at either the cell centres [8,9] or the cell vertices [10,11] which, 
in both cases, are considered to be the centre of appropriate control volumes.

( b )

Figure 4.1.a A triangular cell-centred control volume

Figure 4.1.b A cell-vertex control volume consist o f triangles

In the cell-centred scheme, the exact location of the variables inside the control 
volume is unknown. Therefore, the variables are assigned to the centre of the 
cells. Thus, for this approach, the control volumes are a set of non-overlapping 
computational cells equivalent to the mesh cells (Figure 4.1.a). This scheme 
requires an additional array to store values of flow variables at the centre of 
the cells and out side the boundaries of the domain.

In the cell-vertex scheme the variables are assigned to the grid nodes. For this 
approach, the control volume for a node is typically taken as the union of all 
the cells sharing that node (Figure 4.1.b). Note that, a boundary node lies on
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the boundary of its own control volume. In a general unstructured mesh there 
are less nodes than elements. This is manifestly the case in three dimensions 
where there are approximately five times the number of elements than nodes. 
Hence, the cell-vertex scheme provides a more efficient algorithm. Therefore, 
in the present work the cell-vertex scheme is adopted.

Figure 4.2 Two-dimensional overlapping control volumes.

In present Finite Volume scheme, the control volume can be considered as the 
union of all the cells sharing a node. Hence, control volumes of every two 
neighbouring nodes i\ and «2 share the cells which include those nodes (Figure 
4.2). Therefore, this results in a set of overlapping computational control 
volumes. However, the alternative of the non-overlapping control volumes 
around every vertex can be developed [12]. But for the sake of simplicity of 
programming, present cell-vertex scheme involves the set of overlapping control 
volumes.

4.2.2 C oncept o f  O verlapping Control Volum es

Consider three arbitrary sub-divisions of Hi, and ft 3 for the domain ft 
(Figure 4.3). Equation (4.2) for each sub-domain can be written as

W d Q +  j  F n d T  =  0 (4.3)
Cli ABDA

- fd t j
n2 BCDB

/ f  • n  d r  =  0 (4.4)
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^ J w d Q +  j  F  • n<fT =  0 (4.5)
f i 3 C A D C

The contour integral for each sub-domain can be written in terms of a sum­
mation of line integrals surrounding that sub-domain. For instance

(j> F ■ nd T  = j ) F - n d T + j ) F - n d T + j ) F - n d T  (4.6)
A B D A  A B  B D  D A

(h F ■ n d T  =  (p F • ndT -F to F  • n  d r  +  c b F - n d T  (4.7)
C D B  B C  C D  D B

j ) F - n d T = j ) F - n d T  + j ) F - n d T + j ) F - n c l T  (4-8)
C A D C  C A  A D  D C

Figure 4.3 Three arbitrary sub-divisions for the domain Fl

Clearly, the line integral along a line between two sub-domains appears twice 
but in different directions. Now, the following relations are evident

j > F - n d T  = — F ■ ndT
A D  D A

j > F - x i d r =  — J i F - n c i r  (4.9)
B D  D B

j F - n d T  = -  j f - n d T
C D  D C
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Hence, summing all the contour integrals inside the domain H, the interior line 
integrals appear twice with an opposite sign. Since these contributions cancel, 
the resulting contour integral for the main domain can be written as

y  F • ndT =  £  F  • ndT -f £  F  • ndT  +  £  F  • ndT (4.10)
A B C A  A B  B C  C A

Adding the time dependent volume integrals of the sub-domains to the sum of 
contour integrals leads to the global conservation law for the whole domain, 
namely,

- fm j
n A B C A

It is im portant that all the contour integrals be taken in a consistent direction 
otherwise the internal flux contributions will not be cancelled. In order to have 
the outward direction for normals, the direction of contour integrals is chosen 
as anti-clockwise.

4.3 D isc re tisa tio n  U sing  C ell-vertex  F in ite  V olum e M eth o d

The discretised form of equation (4.11) can be applied over each control vol­
ume. It is apparent that the flux for a side must be defined in order to calculate 
the flux integral for a control volume. Here, a side-based discretisation of the 
governing equations follows two-dimensional procedure proposed by Jameson 
et al [8,10]. In this approach, the control volume associated with the vertex i 
is formed by gathering the volumes of the cells meeting at the vertex i (Figure 
4.4). The flow variables are stored at the vertices and they are assumed to 
represent average values over the entire control volume surrounding each ver­
tex. Using a side-based algorithm, the contour integral of equation (4.2) can 
be applied for the sides surrounding every control volume i which consist of 
several triangles or tetrahedra.

The contour integral in equation (4.2) can be approximated by a summation 
over the boundary of the control volume (Figure 4.4)

N t i d e

F  • n d r  =  ^  F  • As (4.12)
k =1

/ F  • ndT = 0 (4.11)
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( a) (b)

Figure 4.4.a An elementary 2D cell-vertex control volume i 
Figure 4.4.b An elementary 3D cell-vertex control volume i

(  by gathering all the cells surrounding node i )

where Nmc is the number of sides surrounding the control volume i. Defining 
the the cartesian components of the flux vector F  as

F  =  fix  +  g i 2 +  h i 3 (4.13)

and the vector of projected areas of the side k , As is defined as

As =  As i  Ii +  A s2 I 2 4" As3 13 (4.14)

where Ij is the unit vector in the Xj direction and A Sj is the projected area 
of the side k perpendicular to the Xj axis of the cartesian coordinate system
y  = 1,2,3).

By assuming W ; is an average value of the quantity W  over the control volume 
i and £1; is the volume of the control volume associated with node i, the variable 
W j at node i can be defined as
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Then, for a domain discretisation fixed in time, the semi-discretised form of 
equation (4.11) can be expressed as

O -I ^  t i d e

+  E  ( f A s i  +  s As2 +  h A s 3 ) i  =  0 (4 -16)

Note that, only the fluxes across external boundary sides of a control volume 
contribute to the flux balance of equation (4.16). The flux balance at each node 
can be evaluated directly by summing the contributions from its surrounding 
sides. The fluxes f , g  and h are estimates of the mean fluxes normal to the 
cartesian components of the side k. This averaged flux of each side F* can be 
formulated using the flux F t associated with the end nodes of the proposed 
side as

1 n̂ode

n Z z ' E * '1 “ •171t=l

where Nnode is the number of nodes of the side. As can be seen, equation 
(4.16) describes the evolution of the average value in time. This equation 
provides great flexibility to apply the formulation to polygonal control volumes, 
which make it suitable for irregular meshes around complex geometries.

Equation (4.16) shows that, in the absence of source terms, the variation of 
average value over a time step A t  should be balanced with the sum of 
fluxes passing through sides. When the neighbouring control volumes ir and 
ii are considered, the flux through the side between these two control volume 
contributes to both of them but with opposite signs. By adding all the con­
tributions to the control volumes, there is no uncancelled contributions from 
inside the domain and the global conservation is satisfied and the scheme is 
said to be conservative. Therefore, the scheme can be developed based upon a 
side-based algorithm in which the computation can be proceed using all sides 
throughout the computational domain.

It is interesting to note that using a side-based algorithm, the grid coordinates 
appear only in the determination of the volume of the control volume and 
side areas. Hence, for the flux balance computation for each control volume, 
only the coordinates of vertices of boundary sides of the control volume are
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needed. Therefore, it is more convenient to use a side-based data  structure for 
unstructured  grids in which the connectivity data can be defined in terms of 
the end nodes and nodes associated with neighbour control volumes.

4.3.1 A rea  o f th e  Side

Since the process of flux balance com putation between the control volumes 

utilises the sides surrounding the control volumes, the sides can be considered 

as the basic element in the discretisation procedure. The area and the ori­
entation of the sides can be defined in terms of a single vector in which its 
components consist of the projected areas normal to the cartesian axis.

For two-dimensional problems, using two end points rii and rii of an edge, the 
projected length, A sj, is defined as

A Sj =  (x j)n2 — (xj)m (j  — 1,2) (4.18)

For three-dimensional problems one of the alternatives to calculating the pro­
jected area of boundary sides is to use the vector product of two edges of a 
boundary face as two vectors in cartesian coordinates (Figure 4.5).

■ . ■- -  : 

As3 sMMMm-

\

Figure 4.5 Projected areas A xj perpendicular to cartesian axis
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Considering the vector product of two edges E i2 and E 13 meeting at node n \ 
we can write

A s =  i ■̂ ni2 ^ E ni3

II I 2 I 3
(A*l (Ax2)nt2 (A*3)ni2

(A*i)nia (A^2)ni3 (A*3)'n13 -I

(4.19)

Therefore, considering equation (4.19), the components of the projected areas 
can be defined as

1
(A l2)m2(A*3)„13 -  (AZ3)„12(A*2)ni3

Aso = (A x3)ni2(A£ i)ni3 -  ( A iO ^ A a * )ni2 v 'J'*U3 (4.20)

A -s.i =  - ( A * l ) „ 12( A * 2 )„ 13 -  ( A X2)ni, ( A x ! )ni2 v x/«i3

4.3.2 V olum e o f th e  C o n tro l V olum es

The volume of the control volume associated with node i, which is the summa­
tion of the volumes of the cells meeting at that node, can be calculated directly 
using

=  £  Xj • n d r ( i =  1,2,3) (4.21)
r»

For two and three-dimensional grids the number of nodes which define each 
side is equal to the order of dimension Ndim. Thus, generally the volume of the 
control volume can be computed using its surrounding sides by utilising A Sj 
projected areas and coordinates of the nodes n of the surrounding sides k as

Ngide
f t  =  £  (* A  ( ^ i ) *  O '=  1,2,3)

k= 1
(4.22)



Chapter J : Finite Volume Formulations  _________________________  57

where (X j ) k = (Xj )n/Ndi™ is the average value of ( x j )  at the proposed
side. Note th a t, the com putation of fh can be done using a cyclic sum m ation 

of the above formula over all the sides. The contribution of each side to the 
com putation of the control volume is added to the two neighbouring nodes of 

tha t side but with opposite signs (Figure 4.6).

Figure 4.6 Side k between two neighbouring control volumes

For two-dimensional problems, the control volume area 0 ; of the triangles 

meeting at the node i, can be computed from

N.e d g e

« . =  E
(X0 n2 +  (Xl) n l (4.23)

where N edge indicates the number of cells surrounding each control volume and 
subscripts n i and ri2 indicate the two end points of the edges k which enclose 
the node i.

In three dimensions the control volume can be computed using the sum m ation 
of the volumes of the tetrahedra meeting at the node i as

N ,

a  =  [ —  + (X l3)n* +  (xi)n3
fc=i

(4 .24)
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where subscripts n i, n2 and n3 indicate the three points of the faces k which 
surround the node i.

4.5 Sum m ary

Some concepts of the Finite Volume formulation for discretisation of the Navier- 
Stokes equations on the unstructured meshes have been presented. After an 
introduction to the cell-centred and the cell-vertex schemes, the cell-vertex 
Finite Volume scheme for discretising governing has been chosen as the basis 
of the method. The discretisation of the integral form of the Navier-Stokes 
equation using a side-based algorithm has been described. Finally, the details 
required to compute the geometrical parameters of triangular and tetrahedra 
control volumes has been presented.

Following the cell-vertex Finite Volume scheme of Jameson et al [8,10], the 
governing equations can be discretised in space and time separately. More 
details of the formulation and numerical techniques for the solution of the 
incompressible flow equations are described in the next two chapters. Chapter 
5 describes the details of the space discretisation of the fluxes associated with 
the boundary sides of the control volumes and Chapter 6 reviews the technique 
for implementing the time integration and boundary conditions.
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Discretisation of Governing Equations

5.1 Introduction

The spatial discretisation procedure of the governing equations follows the nu­
merical solution of the Navier-Stokes equations proposed by Jameson et al
[1,14]. Following this approach, the discretisation in space and time is done 
separately. The discretisation of both the viscous and convective fluxes are 
im portant tasks in the cell-vertex finite volume formulation. In this work, 
the fluxes are discretised in space following the cell-vertex finite volume ap­
proach. The proposed algorithm is developed for use on unstructured triangu­
lar/tetrahedral meshes utilising a side-based data structure. In this chapter, 
after describing the spatial discretisation of the governing equations, space dis­
cretisation of the convective and the diffusive fluxes is studied. The techniques 
regarding the numerical solution, including time stepping, boundary conditions 
and computational issues are described in Chapter 6 .

The evaluation of the components of the convective flux term along the sides of 
the mesh depends on the selected numerical scheme as well as on the location 
of the flow variables with respect to the grid. In the present work, a central-

60
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difference scheme is adopted, which can be efficiently implemented for both two 
and three-dimensional applications. Because of the application of this scheme 
for space discretisation, an artificial dissipative operator must be added to 
the flux vector to ensure the stability of the numerical method. Due to the 
irregularity of node spacings in unstructured grids, the implementation of an 
inappropriate artificial dissipation may degrade the accuracy and stability of 
the scheme. A good formulation of the artificial dissipation is essential for 
accurate simulations.

The computation of the viscous stresses implies employing proper formulations 
for the evaluation of the first order derivatives of the velocity components. Two 
formulations for the discretisation of the viscous terms are studied. These for­
mulations axe derived from the cell-vertex finite volume and the Galerkin finite 
element formulations for triangular meshes, respectively. In order to improve 
the accuracy of the cell-vertex finite volume formulation, a modification is 
introduced for the stencil employed for the computation of the viscous terms.

This chapter presents the formulation for the spatial discretisation of the con­
vective, viscous and artificial dissipation terms. In Section 5.2 the standard 
cell-vertex finite volume formulation, which was reviewed in Chapter 4, is em­
ployed for discretising the modified incompressible equations. In Section 5.3 a 
brief review of the different space discretisation schemes is given. Section 5.4 
describes the spatial discretisation of the convective term. Some aspects of the 
artificial dissipation axe studied in Section 5.5 and the application of appropri­
ate formulations for scaling and the normalisation of the artificial dissipation 
axe discussed. In section 5.6, after an investigation of various alternatives for 
the computation of the viscous terms, a new modified stencil for computing the 
contour integral for viscous stresses in the cell vertex finite volume formulation, 
is introduced.

5.2 Spatial D iscretisation  o f the Governing Equations

The implementation of the finite volume method for the solution of the incom­
pressible Navier-Stokes equations is described in this section. The numerical 
method for the solution of these equations relies largely on the methods de­
veloped for the compressible equations. The cell-vertex finite volume scheme
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is developed on the basis of the scheme proposed by Jameson et al [1] for the 
solution of the compressible Euler equations. Here, a discretised form of the 
set of modified equations, which were presented in Chapter 3, is formulated 
using the procedure described in Chapter 4.

The first step is the implementation of the finite volume method for the solution 
of the proposed modified incompressible equations, including preconditioning 
matrix P . The governing set of equations of incompressible laminar flow can 
be obtained by dropping the asterisks of the set of non-dimensional form of 
equations (3.26). Integrating this set of equations within the control volume i 
and applying the Gauss-Divergence theorem, the integral form of the proposed 
equations can be written similar to the equation (4.11), as

^  J w d Q  + p / i r - n < i r  =  o (5.1)
n r

where n is an outward unit vector normal to the boundary T enclosing the 
sub-domain ft. The cartesian components of F  are defined as f , g and h. If 
the convective and viscous elements of fluxes are considered as F c and F d, 
respectively, then the integral form of this equation may be written for three 
dimensions as

d t j
W d ft +  P f ( f cd r 1+ g cdT2 + h'dT3)

Ti

-  j { r i d r 1 + gdd r 2 + bdd r 3)
Ti

=  0 (5.2)

Now, similar to equation (4.15), we can approximate equation (5.2) as contour 
integrals around the sides k surrounding each control volume as

dt W i + oT £  [(f 'Asj+g'Asj + h'Asj)
1 Jfc=l

— ( f'd A si  +  gd A s2 +  hd A.S3) =  0 (5.3)

The vector of conserved variables W , the preconditioning matrix P  and the 
convective and viscous component of fluxes vectors are given by equation 
(3.27).
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to higher order accuracy increases the complexity of numerical schemes and 
they often need additional formulations for the computation of the fluxes.

Unlike upwind-differencing schemes, central-differencing schemes do not dis­
tinguish between upstream and downstream influences. For computation of 
the convection dominated flows, the central-differencing schemes do not pro­
vide enough diffusive effects to damp unwanted oscillations and can lead to 
instabilities in the solution. Hence, it is necessary to add explicit artificial 
dissipation fluxes to maintain stability of the scheme and to prevent odd-even 
point oscillations. Such oscillations can be controlled with the addition of 
a numerical viscosity. Therefore, any central-difference discretisation scheme 
should contain a dissipative operator in order to ensure stability of the numer­
ical method.

In the present work, a central-difference scheme is employed, which implies a 
requirement for an additional artificial dissipative term. The convergence and 
accuracy of the scheme is directly related to appropriate formulations for the 
artificial dissipation.

5.4 C onvective T erm

In order to evaluate the convective flux term within the control volume, the 
approximation to the convective flux integral C(W ) is given by

C(W<) =  Y ,  [ f 'A s i +  gc As2 +  hc As3 ]* (5.5)
fc=l

where N ^ e  is the number of sides enclosing the control volume i. C (W ;) is 
the convective operator, which represents the discrete approximation to the 
convective (inviscid) flux balance across all boundaries of the control volume 
i. By introducing the velocity flux Q for each side as

Q —' U\ Asi +  1/2 A $2 "1" ^3 A s3 (5.6)
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the convective operator for control volume i can be written as

c (  w o = £
Jfc=l

Q
Q ui +  pA si
Q u2 +  p A s2 

- Q u 3 +  p  A s 3 J k

(5.7)

In practice, each side is accessed only once and the flux balance is carried 
out by adding the flux contribution to the left control volume and subtracting 
the same amount of flux from the right control volume. By accumulating 
flux contributions of the convective operator from each boundary side of the 
control volume, the residual due to the convective term at the central node of 
the control volume will be obtained.

The conserved variables on the sides enclosing the control volume can be com­
puted using the simple procedure of a non-centred weighting. In this case the 
flow variables at the side k delimiting two control volumes is given by

^dim
w *  =  Y /U n W n (5.8)

n = l

where iV*m is the number of vertices of each side. Here, u n are weighting 
coefficients at node n  of side k defined as

ujn =  — ----- (5.9)n X'Ndi-m. Q  \ J
Z^n= 1

These weighting coefficients are defined using Qn , the volume of the control 
volumes associated with the end nodes of the side k. Other options for defining 
these weighting coefficients are also possible. For the meshes with smooth 
variation of mesh spacings, a special case of equation (5.8) in which u>n =  
1 /Ndim has been implemented in the present work as

■t Ndim
W* =  —  £  W n (5.10)

t m  n = l

It means that, the flow variables along the side k are taken as a simple average 
of values at the nodes associated with that side.
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Figure 5.1 Accumulation o f convective flux in two dimensions

The computation of the convective fluxes can be done using a loop over all the 
sides by adding the convective flux associated with every side, equation (5.7), to 
its two neighbouring control volumes. The two-dimensional description of the 
convective flux accumulation of the present cell-vertex approach is presented 
in Figure (5.1). Note that, if k represents a boundary side, the centre node of a 
control volume lies on its own boundary. Therefore, it is necessary to add the 
fluxes related to this control volume to the nodes of the proposed side. The 
values of flow variables on these boundary sides are determined according to 
the boundary conditions defined on that side.

5.5 Artificial D issipation

It is shown that, for nodal based schemes on equilateral triangular grids a three 
level oscillation is permitted by the discrete equations as the solution of the 
system of equations proceeds to the steady state [14]. Any explicit solution 
of second order central-difference scheme of the linear convection equation 
generates oscillations. Indeed these oscillations make the central-difference 
schemes unstable. The instability of the central-differencing schemes can be 
controlled with the addition of a numerical viscosity. These additional terms
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should simulate the effect of the physical viscosity, on the scale of the mesh, 
especially around discontinuities and high gradient regions. Hence, this term  
must be of higher order than the truncation error in order to be negligible in 
smooth regions. Note that, the artificial dissipative operator has no physical 
meaning, and it is only used to control numerical oscillations.

Even in viscous flow computations, outside the boundary layer and wake area 
the effect of the diffusive terms is negligible, so there is not sufficient natural 
dissipation to damp the oscillations which appear due to the central-difference 
discretisation of the governing equations. Although the boundary conditions 
should suppress such modes at steady state, their existence during the (pseudo) 
transient solution process may adversely affect convergence [13]. Before de­
scribing the details of the formulation of artificial dissipation for the set of 
modified equations, a brief review of the basic idea behind the formulation of 
this term is presented in this section.

The central-difference schemes include a form of artificial dissipation for two 
main purposes :

i) to control the odd-even decoupling of grid points which is typical of central- 
differencing,

ii) to m aintain stability in the essentially inviscid region of the flow field.

For the solution of the governing equations, the artificial dissipative term 
should be constructed in such a way that satisfies the following conditions:

i) the dissipative operator should be capable of eliminating all physically 
meaningless oscillations, but must remain small enough so as not to reduce the 
accuracy of the original scheme.

ii) it should be conservative. This means that when it summed over the entire 
flow-field all dissipative terms cancel. Therefore, no net production of mass 
and momentum occurs. This criterion can be achieved by ensuring that, for 
each contribution to a particular control volume, there exists an equal and 
opposite contribution to the opposite control volumes.

iii) its construction should be in a simple and inexpensive manner. This means
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that, although the dissipative operator is to be calculated at each time-step, 
its calculation should not consume too much CPU time.

The artificial dissipative term D (W {) can be formulated in a number of differ­
ent ways [1,15-18]. Here a very brief summary of related schemes is given in 
one-dimensional form.

5.5.1 R eview  o f U seful Artificial D issipation M odels

As a modification to the convective term, Von Neumann and Richtmyer [19] 
suggested adding a dissipation term to the central-difference discretisation in 
space using a first difference term as

d W
D{W )  »  - d 2 A n  —  (5.11)

ux \

In order to enhance the effect of the dissipation in the presence of strong 
pressure gradients and to reduce it in smooth flow regions, MacCormak and 
Baldwin [33] made d2 proportional to a second derivative of the pressure field 
as

d2 =  v3(|XJ| +  c ) ( A x 0 2 | (5.12)

where c is the speed and i/2 is a global constant. This pressure scaling term is 
generally second order, except in regions of strong pressure gradients, where it 
reduces to the order of one.

Another form of artificial viscosity is expressed by Steger [21] and applied in 
the Beam and Warming implicit scheme [22]. This form introduces higher 
order derivatives while scaling the dissipation with the maximum eigenvalue 
of the convective part of the system of equations, equation (3.18). This form 
presents a dissipation proportional to the third difference as

D (W ) «  „4( |U | +  c) (AxO3- ^  (5.13)

where 1/4 is a global constant. In viscous flow computations, in order to reduce
the magnitude of the artificial dissipation inside the viscous layer, a weighting
function can also be used [23].
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Jameson et al [1] combined a second order dissipation term introduced by Von 
Neumann and Richtmyer [19], using the pressure scaling of MacCormak and 
Baldwin [20], with the fourth order dissipation term of Steger [21] as

D( Wi )  »  - d t Ax ;  +  !/4( |U | +  c)(A x3-)3^ 3 -  (5.14)

In the presence of strong pressure gradients or discontinuities, this blend of 
undivided Laplacian and Biharmonic operators is able to damp high-frequency 
oscillations, while for smooth flow the fourth differencing is sufficient to sta­
bilise the computations. Note that, expressions for undivided Laplacian and 
Biharmonic operators are used, since the difference in the flow variables is not 
divided by the corresponding A X j .
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Figure 5.2 Designation o f one-dimensional stencil

At this point, some simplified discretisation of the first, second, third and 
fourth differences are given [24] using a one-dimensional stencil (Figure 5.2). 
The expressions V, V 2, V3 and V4 are vectors of undivided first, second, third 
and fourth order differences of flow variables, respectively. The first difference 
A x i ( d W / d x i )  for the edge m can be approximated by
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Summation of V W  over edges surrounding node n gives an approximation for 
the second difference AxJ(d2W /d x J) as

V 2W n =  (V W )m+1 -  (V W )m

=  W n+1 -  2W n +  W n_! (5.16)

Then, the third difference A x f ^ W / d x f )  along the edge m  can be approxi­
mated using the second differences at neighbouring nodes as

A x?- ^ 3-  ft! (V3W )m =  V 2W „+1 -  V 2W „

=  W „+2 -  3W n+1 +  3W „ +  W„_! (5.17)

Summing all the third differences along the edges around node n leads to an 
expression equal to the approximation for the fourth difference at that node as

V 4W „ =  (V3W )m+1 -  (V3W )m

=  W „+J -  4W n+1 +  6W „ -  4W n_, +  W „_2 (5.18)

5.5.2 Artificial D issipation Operator for the Present A lgorithm

For incompressible smooth flows the second term of equation (5.14) is sufficient 
to provide artificial dissipation. Therefore, the first term of this equation can 
be neglected, and hence, the fourth differencing term introduced by Steger
[21], equation (5.13), and formulated by Jameson et al [1] for the cell-vertex 
finite volume method, is adopted. The edge-based dissipation formulation, 
which was originally developed for the inviscid flow equations on unstructured 
triangular grids, is implemented in the present work. The formulation can 
be applied with minor modifications and parameter tuning for both two and 
three-dimensional computations.

The fourth differencing term or biharmonic operator can be constructed by us­
ing a flux balance formulation which maintains the original conservative form.
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The artificial dissipative term is constructed using the undivided Biharmonic 
operator which corresponds to a fourth difference of the conserved variables

D ( W {) =  V4W  t- (5.19)

For both two and three-dimensional cases, the artificial dissipation term will 
be computed by taking differences along edges of the mesh. For each central 
node of control volume z, the undivided Biharmonic operator can be defined 
as

m̂dgt
V4W,- «  i/4 M  V2W , -  V2W ,) (5.20)

j=l

where N edge is the total number of edges connected to the node i and j  is the 
other end node of that edge, and AtJ- is a scaling factor associated with edge 
m  located between nodes i and j .  In practice, A i s  calculated using the value 
of A i and A j, which are scaling factors of the two end nodes of the edge.

Figure 5.3 Two dimensional description o f  dissipative flux

It is necessary to calculate the undivided Laplacian term, V2W i, for the com­
putation of the biharmonic operator. The computation can be started by a
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summation of the differences between the flow variables across each edge inside 
the control volume (Figure 5.3). These axe the edges that share the central 
node of control volume i. For each node z, the biharmonic operator can be 
expressed as

N t d g t

V 2W , =  Y ;  ( w ,  -  W j ) (5.21)
n = l

where j  represents the neighbouring nodes of node z, with the total number of 
edges, Nedge ? and W j represents the flow variables as given in equation (3.27).

It should be noted that like other central-difference schemes, accurate results 
can be achieved by tuning the coefficient 1/4, the global constant of artificial 
dissipation, which appears in equation (5.20). The minimum possible value of 
the coefficient 1/4, which is needed to guarantee convergence, produces the most 
accurate results. Although the empirical coefficients of the artificial dissipa­
tion formulation should be tuned for given problems, the ability to minimise 
numerical dissipation provides great flexibility for improving the accuracy of 
the results.

5.5.3 Scaling the Artificial D issipation

For edge-based dissipation, the Biharmonic operator can be scaled using the 
flux bounds associated with the particular edge. This bound can be obtained 
from the spectral radii of the flux Jacobian matrices associated with equation
(3.15). The scaling factor of the dissipation along each edge, A;j, can be 
taken as the minimum or average of the flux bounds A i and A j of two end 
nodes i and j  of the edges. Hence, Ai can be evaluated proportional to an 
estimate of the maximum local eigenvalue of the flux Jacobian matrices [25,26], 
equations (3.18). In practice, the scaling factor at each node can be computed 
proportional to the summation of the spectral radii associated with the sides 
connected to that node. Thus, the spectral radii of the modified flux Jacobian 
matrices, equation (3.18) can be applied to formulate the scaling factor of each 
node as

a . =  E
k=1

U • As | + y J {U  • A s)2 + /32(As • As) (5.22)
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where As is the vector of the projected area, which is defined in Chapter 4, 
and U  is the average velocity vector of the proposed side k.

Another form of the scaling factor was introduced by Farmer [27]. This for­
mulation is formed analogous to the scaling factor for the formulations of the 
cell-vertex finite volume compressible flow solver [11]. This form of scaling 
factor was considered as

(5.23)
k

Note that, if the parameter j32 is considered as a function of local velocity, equa­
tion (3.21), there may be an effect on the value of the scaling factors expressed 
by equations (5.22) and (5.23). This effect will be more pronounced with dif­
ferent choices of the empirical coefficient of Cpi for the proposed expression for 
/32. Hence, the value of dissipation may increase in the high velocity regions 
and decrease in the low velocity regions. This fact may degrade the accuracy 
of the computations, especially if the value of the Cp2 is chosen different from 
unity. Imposing the preconditioning matrix P  at each pseudo time step, al­
lows the artificial dissipation formulation to be completely independent of the 
preconditioning matrix P  [25]. Hence, in order to minimise the computational 
load, this term may be considered constant during every pseudo time stepping 
procedure. Thus, the spectral radii of the unmodified flux Jacobian matrices, 
equation (3.18) can be applied. Therefore, the formulation of the scaling factor 
A; is identical to equation (5.22) or (5.23) by taking /?2 =  1.

However, using these formulations for scaling the artificial dissipation may 
make the scheme dissipative if the mesh spacing is not fine enough in the high 
velocity regions. In such positions, in order to reduce the artificial dissipation, 
analogous to the formulation of speed of sound for a compressible perfect gas, 
the artificial speed of sound, /?2, may be considered proportional to the pressure 
as

Ntid.

a . =  E
k=1

U  • As fi2 (As • As)

0 * *  2 2  
Po

(5.24)
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where 7  is the ratio of the specific heat and po is the mean value of the spe­
cific mass. Thus, two other forms of dissipation scaling factor can be formed 
by replacing (32 with /32* in equations (5.22) and (5.23). By considering the 
parameter /?2* as a function of local pressure, the value of the scaling factor 
not only becomes independent of the choice of the empirical coefficient Cp2 but 
also it helps reduce the value of the artificial dissipation at positions where the 
high velocities accrue in the regions of coarse mesh spacings.

5.5.4 N orm alisation o f the Artificial D issipation

Application of edge-based dissipations on unstructured meshes produces non- 
uniform dissipation due to the irregularity in the number of edges connected to 
each computational node. This effect degrades the convergence and accuracy 
of the computations. Application of appropriate normalisation can help reduce 
the problem.

For two-dimensional compressible cell-vertex finite volume schemes on unstruc­
tured triangular meshes, Sykes [28] proposed a normalisation procedure for 
diminishing the effect of the variable number of edges which can be connected 
to each nodal point. Sykes divided the Laplacian operator computed for each 
node, equation (5.21), by the number of edges connected to that node. Then 
the left hand side of equation (5.20), is normalised by dividing the scaling fac­
tor of the proposed edge by (iVt- +  iVj)/(2 x 6 ), where N{ and N j are the number 
of edges connected to the two end points of the edge k. The factor 6 is obtained 
from the number of edges connected to each node of a completely regular and 
uniform two-dimensional mesh, which consists of of equilateral triangles.

In the present work, the normalisation of the dissipation for three dimensions 
is adopted using the following steps. The Laplacian operator, equation (5.21), 
can be normalised by multiplying by l/iV*, where N{ is the number of edges 
connected to the central node i. Finally, the Biharmonic operator, which is 
computed along the edges, is normalised by multiplying by (N i +  N j ) / ( 2  x 14), 
where 14 is the number of edges connected to the centre of a regular equilateral 
control volume which consists of 24 tetrahedral cells.



Chapter 5 : Discretisation of Governing Equations 75

5.6 V iscous T e rm

The computation of the diffusive flux components, i f  , and hf is more 
complex than that required for the convective flux. This complication is due 
to the methods of computation of the shear stress components, equation (3.30), 
which axe proportional to the first derivatives of the velocity components. The 
approximation to the viscous flux integrals for each control volume t, that 
appears in equation (5.4), can be written as

Ng xd.€
V (W 4) =  J 2 ( t d A ^  + Sd ^ 2 + h d A s 1)k (5.25)

fc=l

where V’(W j) is the discrete approximation of the viscous terms. The elements 
of the viscous flux operator can be written as

0

Ngidt
V (W 0 =  2

k=1

T n  A S i  +  T'12^'52 +  T1 3 A.S 3

r2i Asi +  r22As2 +  r 23As3 

t3i Asi -f- r32A s2 +  t33A s3

(5.26)

where the viscous stresses can be calculated from equation (3.30) as

_  1 /  du{ duj \  2 du{
r‘i = ^ \ d T j + d7{ ) + 3 l

( i , j  = 1,2,3) (5.27)

In order to calculate the viscous stresses, it is necessary to calculate the gradi­
ents of the velocity components du{/dxj .  These derivatives can be computed 
assuming that the velocities are piecewise linear over a discrete domain ft7, so 
that their first order derivatives will be piecewise constant and may be evalu­
ated as

Jgit t-ft jr-  e - 1,2,3) (5.28)
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where the integral is performed around a domain ft7 bounded by contour r 7. 
Taking /  as the average value of a variable, such as velocity component Uj at 
boundary side, this contour integral can be approximated by

d f _ ^
d x j  ft

-« ^ t i d e

* £1=1
N d i m

Ndim £  / .  A,,'
71=1

O '=  1,2,3) (5.29)

Here, A Sj is the projected area of the sides I surrounding domain ft7 and N aide 
is the number of sides surrounding the secondary cell. The volume of the 
domain ft7 for each side is approximated using by

f t7
Nfide£
i=i N d,d i m

(5.30)
n = l

Note that, the above approximation involves a cyclic summation over all the 
boundary sides of the domain ft7.

There is an im portant effect on the accuracy of the numerical solution due to 
the choice of the formulation for evaluation of the velocity gradients. Workers 
on finite volume methods have introduced different formulations for the eval­
uation of velocity gradients and viscous stresses. Here, a brief review of some 
of the formulations is presented.

5.6.1 C ell-centred Formulations o f the V iscous Stresses

For cell-centred finite volume schemes, a number of formulations have been 
adopted for the computation of velocity gradients around each side. Beaven [6] 
examined different stencils on both quadrilateral and triangular two-dimensional 
regular grids. In the first stencil (Figure 5.4.a), he used the average of the 
velocity components stored in the neighbouring cells to each side. Then he 
computed the velocity gradients of each cell using the average velocity at its 
surrounding sides. Finally, the average value of the velocity gradient of two 
neighbouring cells was considered.

The second stencil (Figure 5.4.b) was formed by joining two neighbouring cells. 
In this case, the mean value of the variables stored at the centre of neighbouring 
cells of sides surrounding the secondary cell is used for the direct computation
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Figure 5.4 Cell-centred stencils for computing viscous stresses

of contour integral of velocity gradients associated with the central side of the 
secondary cell.

Natakusumah [7] applied another type of secondary cell by joining the centre of 
two neighbouring cells to nodes of the sharing sides (Figure 5.4.c). Therefore, 
in order to compute viscous stresses, he utilised both the variables at the 
centre of two neighbouring cells and the variables obtained for the nodes of 
the proposed side. This stencil produces good results for the two-dimensional 
meshes in which the cells are inverse symmetric about the edges.

The stencil proposed by Natakusumah was modified by Beaven [6] for the 
meshes with symmetric cells about edges (Figure 5.4.d). In order to find closer 
points to the centre of the required side, he used two mid points of the surround­
ing sides of the neighbouring cells instead of their vertices. After comparing 
the results for cell-centred stencils on given test cases, he concluded that the 
fourth stencil (Figure 5.4.d) produces more accurate results. Note that, this 
formulation is introduced only for two-dimensional triangular meshes.

5.6.2 C ell-vertex Formulations of the V iscous Stresses

The first formulation for the computation of the viscous stresses is applied 
by several numerical workers [8-10]. In this type, the secondary cell around 
each side is formed by a combination of two cells sharing that side (Figure 
5.5). The geometry of this stencil is very similar to the second stencil type 
of the cell-centred scheme. The computation of the velocity gradients can be



Chapter 5 : Discretisation of Governing Equations 78

completed by using the average values of the variable at surrounding sides of 
the secondary cell. In this case, the equation (5.29) can be used to complete the 
velocity gradients with the value of i.e. the number of sides surrounding 
each secondary cell taken as

2D : Nnde — [ 4 inside domain /  3 on boundary ]

3D : N aide = [ 6 inside domain /  4 on boundary ]

In practice, the computation of the diffusive fluxes are performed in two steps. 
The first step, involves the computation of the first order derivatives of the 
velocity components ui,U2 and U3, which is necessary for the computation of 
the viscous stresses at boundary side k of every control volume. The velocity 
gradients can be evaluated directly at the sides of the control volumes. Since 
first order derivatives were obtained by using the cell-vertex type stencil, the 
components of the viscous stress tensor associated with each control volume 
can be computed by accumulating the contribution of all the boundary sides. 
Hence, the second step involves the computation of the viscous flux associated 
with the central node of every control volume by utilising stresses r,j at its 
boundary sides. Similar to the convective flux computations, the viscous flux 
of each side is added to its neighbouring control volumes with opposite sign 
(Figure 5.1). This procedure can be done using a loop over all the sides using 
a side-based data structure. This formulation produces acceptable results on 
the meshes in which the cells are inverse symmetric about sides.

Q-

( a )  ( b )

Figure 5.5 Two different cell-vertex stencils for computing vis­
cous term
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The second formulation for the cell-vertex scheme is derived from a Galerkin 
Finite Element formulation for triangular meshes [12]. This formulation con­
siders the value of a variable within the triangular cell to be given by a combi­
nation of the values defined at the vertices of the cell, weighted according to the 
geometric shape function defined at each node (Figure 5.5.b). Although the 
computations of fluxes axe made for each cell, gathering all the contour inte­
grals of the cells associated with a control volume will cancel the contributions 
from interior sides. Hence, similar to the cell-vertex finite volume scheme, only 
the contribution of boundary sides of the control volume will be effective in the 
flux computations. This formulation is applied for the cell-vertex finite volume 
scheme in two dimensions [11]. In order to make the thesis self-contained, a 
brief description of the formulation, and extension to three dimensions, is given 
in Appendix B.

In order to employ the Galerkin finite element formulation for the present cell- 
vertex scheme, equation (5.29) can be used. The computations are performed 
by a loop through the mesh cells calculating the contributions to equation 
(5.29) and assigning this to the control volumes associated with all the nodes 
of that particular cell. Hence, the calculations can be done either by using 
side-based or cell-based connectivity data. This formulation is able to produce 
acceptable results for all types of regular and irregular meshes.

Another alternative is to modify the stencil for the computation of the veloc­
ity gradients in the cell-vertex finite volume formulation. This formulation is 
developed based on the idea of the fourth cell-centred two-dimensional type 
stencil (Figure 5.4.d) to improve the shape of the cell-vertex secondary cells 
(Figure 5.5.a), associated with regular criss-cross and irregular meshes. The 
vertices of this stencil are formed by using two auxiliary points mi and m 2 lo­
cated on the intersection of line normal to the mid point of side k and boundary 
of the neighbouring cells (Figure 5.6). Thus, these points are different from 
the neighbouring nodes of the proposed side i\ and 22- Having found the co­
ordinates of these auxiliary points, the velocities at these two points can be 
interpolated from the nodes on the related boundary side of the secondary 
cell. The position of the extra points and the interpolation coefficients can be 
computed prior to starting the computations. The derived formulations for the 
position of points and interpolation coefficients can be found in Appendix C.
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Figure 5.6 Modified cell-vertex type secondary cell 

a) Two dimensional and b) Three dimensional

For this stencil (Figure 5.6), the velocity gradient for each side k can be com­
puted similar to the cell-vertex finite volume formulation. The only difference 
is that instead of two neighbouring nodes i\ and z2 of each side, two auxil­
iary points of mi and m 2 are utilised for the computation of viscous stresses 
associated with side k. Then the computed stresses Tij are added to the cen­
tral nodes of neighbouring control volumes of that side. This method can be 
applied for both two and three-dimensional irregular triangular meshes and 
produces acceptable results.

5.7 Sum m ary

In this chapter, the space discretisation of the convective and viscous terms 
are described. The discretisation of the convective term is achieved by using a 
central-differencing scheme. This scheme requires the addition of an artificial 
dissipation to achieve stability.

For the present algorithm, the edge-based dissipation is applied by computing 
the Biharmonic operator, equation (5.21), for both two and three-dimensional 
cases. The Biharmonic operator can be scaled proportional to the maximum
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local eigenvalue of the flux Jacobian matrices. In order to minimise the value 
of the artificial dissipation, the Biharmonic operator can be scaled using the 
minimum scaling factors associated with two end nodes of the edges. Generally, 
in order to improve the accuracy and convergence of the computations on 
unstructured meshes, application of the normalisation of the dissipation term 
is recommended.

The accuracy of the viscous term is largely dependent upon the formulation 
used for the computation of first order velocity derivatives of equation (5.27). 
For cell-vertex schemes, generally two common formulations of the finite vol­
ume and Galerkin finite element are applicable for the evaluation of the vis­
cous terms on triangular and tetrahedral meshes. The cell-vertex finite volume 
formulation produces accurate results, on the meshes in which the cells are 
inverse symmetric about the sides. Such mesh can be easily generated in two 
dimensions. The Galerkin finite element formulation presents good results for 
all types of irregular triangular meshes. Another alternative is proposed by 
modifying the stencil for the computation of the viscous terms. Application 
of this modification facilitates the accurate computation of the viscous terms 
on any type of two and three-dimensional irregular triangular and tetrahedral 
meshes. However, this formulation requires an additional set of points for the 
modification of the stencil for the computation of the viscous stresses. Hence, 
the Galerkin finite element formulation has been used to simulate viscous flow 
on three-dimensional unstructured irregular tetrahedral grids.
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Numerical Solution Technique

6.1 Introduction

After the space discretisation of the fluxes, the time integration of the govern­
ing equations can be performed following the explicit multi-stage Runge-Kutta 
time stepping proposed by Jameson et al [1,8]. The details of the central- 
difference approximation to the space discretisation of the convective and diffu­
sive flux vectors on unstructured triangular meshes were presented in Chapter
5. In this chapter, the details of the numerical procedure for the time inte­
gration of the governing equations is described. The description is given with 
reference to the general formulation of the cell-vertex finite volume descritiza- 
tion of the integral form of the Navier-Stokes equations, which was presented 
in Chapter 4. The time stepping of the set of discretised equations is described 
in Section 6 .2 . In Section 6.3, a general introduction to different boundary 
conditions is presented. Finally, some numerical techniques for accelerating 
convergence and increasing computational efficiency of the numerical scheme 
are reviewed in Sections 6.4 and 6.5, respectively.

85
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6.2 T im e S tep p in g

An explicit multi-stage Runge-Kutta scheme [1] has been implemented to inte­
grate the equations to steady state. After spatial discretisation, equation (5.4) 
can be transformed into a set of coupled ordinary differential equations

f t (W i) + ^  R (W i) = 0 i = l , 2 , . . . , N total (6.1)

where is the control volume associated with node i and N totai is the total
number of nodes. The preconditioning matrix Pi is computed using the local 
velocities at i. Here, R(W {) is the total residual of the convective and viscous 
terms defined as

R( W i) =  [ c c w . o - n w o ]  (6.2)

As mentioned before, the application of the artificial compressibility approach 
to the set of incompressible Navier-Stokes equations destroys the time accuracy 
of the system of equations. This is because of the introduction of the pseudo 
transient term in the continuity equation. Hence, for the present algorithm the 
time stepping can be viewed as an explicit relaxation to steady state.

Various integration methods have been developed for a system of ordinary 
differential equations as in equation (6.1). Details of such approaches as linear 
multiple-step methods, predictor corrector schemes Runge-Kutta schemes can 
be found elsewhere [1-5]. In the present work, the explicit multi-stage Runge- 
K utta time stepping scheme of Jameson et al [1] has been implemented.

Consider W ” as the value of W» after n pseudo time steps. The basic idea of 
the Runge-Kutta scheme is to evaluate the differential system (6.1) at several 
values of W  in the interval between n A t  and (n -f l)A t and to combine them in 
order to obtain an approximation for W "+1. The general form of an m-stage 
Runge-Kutta scheme is described as

w j0) = W"

wf5 = - 0! (Af,(*V°-) ii(w|0))
u
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Wp> = wj#> -  e2 (A^ i)(1) iz(wf))
U Wf

w ,H  = w,'0) -  em ij(w !m-1))

W n+1 =  W (m)t t

where A t  is the discrete time step, and 0 i . . .  0m axe coefficients particular to 
the number of stages.

The computation of the residual terms at every stage can be very expensive. 
A cheaper alternative is to use the hybrid formulation. With this formulation, 
the convective operator is evaluated at every stage in the time step, but the 
time step limit, the viscous operator V̂ Ŵ ), and preconditioning matrix Pi, 
are only evaluated at the first stage. Thus, the computation of time stepping 
will be in the form of

wf> = 

wj1’ =

wj2) =

w (m) =t

w n+1 =t

where 0 i . . .  0m are coefficients of the proposed multi-stage scheme. Two schemes 
of five and three-stage time stepping have been tested for calculations in the 
present work. For five-stage schemes the coefficients 0 i . . .  6$ are defined as

01 =  l /4  02 =  l /6  03 =  3/8 04 =  1/2 05 =  1

and for three-stage schemes the coefficients 0i . . .  03 are defined as

W ?

w | 0 ) _  ^  (AUPi)W j ' c c w j o ) )  _  y ( W ( ° ) )  

r (0 ) .  (AtjPQW
ft;

C(WJ‘0 _ y (w H (6.4)

wj0) -  0m — ‘ft1— [c(w |m‘1)) -  y(wj0))

W!(m )

87

(6.3)

0!  =  0.6 02 =  0.6 03 = 1.0
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The time step A t must be chosen to be consistent with the stability limitation 
of the governing equations [4,5]. Since the system of modified equation is cast 
similar to the Navier-Stokes equations, a time stepping limit can be adopted 
which originally was developed for the compressible equations [8]. Thus, the 
time step limit for each control volume can be defined as

A U =
Af/fii +  Af/fi?

(6.5)

here AJ can be defined as the characteristic of convection by using the system 
wave of the governing equations [9] as

Ntide 

Ac=1

U • AS I + v ( t j  • A s)2 +  p 2 (As • As) (6.6)

where As is the vector of projected areas of the sides surrounding the con­
trol volume given by equation (4.14). U  is the average velocity vector of the 
proposed side k as

U  —  U \  I i  +  U 2  I 2 4 “ U 3 I 3

^  ■Wdim

U i = N Z  ^ (Ui)n
(6.7)

n = l

where I i,  I 2 and I 3 are the unit vectors in the X i,x 2 and x3 directions, respec­
tively. This velocity can be used in equation (3.28) for computing f32. Here, 
Ndim is number of nodes of each side which in triangular meshes is 2 and in 
tetrahedral meshes is 3.

Xf represents the maximum eigenvalue of the viscous operator and can be 
defined as

A? =  —  ( As • As )* (6.8)

where N aide is the number of sides surrounding control volume i.
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Note that the time step A t{ is computed for the centre node of the control vol­
umes by cyclic summation over sides surrounding the control volumes. These 
computations can be done prior to the multi-stage procedure.

The global time step limit of the system is dictated by the minimum value of the 
time step AU in the computational domain. However, for the explicit schemes 
the limit on time step for which the integration of convective dominated flow 
is stable, is dictated by the CFL condition. This condition implies that A t < 
CFL/|A^ax|. The constant CFL depends on the particular applied multi-stage 
scheme. A conservative estimate for the general time step limit of the flow 
computation leads to following condition

C F L
(Aj/fi.- + A?/n?)  (6'9)

With the application of the artificial compressibility approach, the stability 
of the numerical scheme is directly related to the choice of the parameter /?2, 
which appears in the preconditioner P . Several suggestions about the choice 
of parameters associated with /?2 are reviewed in Section 3.3.2. In order to 
verify these parameters, independent choices of 0 2 have to be considered by 
examining proper parameters for the expression (3.28).

6.3 B o u n d a ry  C o nd itions

The construction of appropriate boundary conditions represents one of the 
important tasks in the development of an algorithm. In general, for most 
incompressible problems with which we are dealing with in this work, the 
domain boundary can be divided into two major categories; first is a solid 
wall boundary and second is a far field boundary, which must be specified to 
produce a bounded computational domain. However, there are other types 
of boundaries such as symmetry boundaries, which may be used for limiting 
the domain i.e. in symmetric flow. Numerical formulations for this type of 
boundary is similar to the inviscid wall boundary conditions. The stability 
and the accuracy of the solution can be disturbed by improper treatment of 
the flow conditions specified on these boundaries.
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Figure 6.1 Outward normal vector on the boundary

Let k represent a boundary side, i represents a node associated with a control 
volume attached to the boundary and j  represents a node on the boundary, 
then the outw ard unit norm al vector n, (Figure 6.1) can be expressed as

n =  rii I i -(- n 212 +  ^ 3 1 3  (6.10)

Using the projected area of the boundary sides perpendicular to the j  cartesian 

axis, A Sj, the component of n can be defined as
Asi

n i
As
A s2

n 2 =  —=4- (6.11)

n 3 =

As
A^3
As

wrhere

|A s| =  V  As ■ As (6.12)

The components of the vector of area As are defined in C hapter 4.

By cyclic sum m ation of all the contributions of the boundary sides fc, associated 
with the node i on the boundary, the resultant unit normal at node i can be 

found as

Si =  -—  (6 1 3 )
* " t  i t = i

where N slde is num ber of sides sharing node k.
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6.3.1 Solid W all Boundary Conditions

The surface of the solid wall boundary is normally considered as a rigid im­
permeable wall, so that no mass flux passes through the boundary. Depending 
upon the condition of the inviscid or viscous flow, the flow tangency or no slip 
condition may be implemented.

We can use the components of the normal at a boundary node to define the 
component of the velocity vector normal to the boundary at node i as

U? =  U  • n 

(6.14)

+  (u2n2) I 2 +  (u3n3) I 3

For inviscid or viscous flow, the normal component of the velocity flux across
that boundary should be zero. In order to impose zero velocity flux through
wall boundaries, it is necessary to set all the components of normal velocity 
U" to zero. This can be easily done by

(U V is c id  =  Ui -  U? (6.15)

where U* is the velocity at wall boundary node i, after zero normal velocity 
correction.

In viscous flow, because of the no slip condition on solid walls, there should be 
no velocity component on solid wall boundary nodes. Thus,

(V isc o u s  = V i -  V i (6.16)

In practice, the process of computing the corrected velocity flux through side 
k is performed by introducing the corrected through the stages of the time 
stepping.
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6.3.2 S ym m etry  and Side-slip Boundary C onditions

For symmetric problems, in order to reduce the computational load and mem­
ory overhead, it is reasonable to compute a part of the flow domain which can 
be separated by symmetric lines in two dimension or symmetric surfaces in 
three dimensions. The inviscid flow over a sphere is an example of this type 
where the flow is symmetric to the line parallel to the free stream flow direction 
and passing through the centre of the sphere. In some cases, it is necessary to 
impose side-slip boundaries, which can be used to separate a part of a flow do­
main to compute the details of the flow over a certain part. Imposing side-slip 
boundaries on the sides of a flat plate for simulation of the laminar boundary 
layer is an application of this type. Using equations (6.14) and (6.15), the pro­
cedure of computing inviscid solid body boundary conditions can be applied 
to impose zero normal velocity through this imaginary wall.

6.3 .3  Far Field Boundary Conditions

A complication arises when the solution of the governing equations is sought on 
an unbounded domain. However, for practical purposes a numerical calculation 
must be performed in a finite domain. Therefore, far field boundary conditions 
which are capable of simulating the properties of the infinite fiow-field should 
be implemented.

Since imposing a free stream value at the outer boundary will not allow infor­
mation to propagate out of the domain, this information will reflect back to 
the domain and disturb the computations. Extrapolations may however intro­
duce unwanted reflection back into the domain. Thus, they must be applied 
with caution. Therefore, it is necessary to use elaborate techniques such as 
non-reflecting boundary conditions, based upon the elimination of information 
propagating along the characteristic lines.

The direction of propagation of information can be deduced from the sign of the 
eigenvalues of the convective part of the Jacobian matrix, which are described 
in Chapter 3. Remember that, although the eigenvalues A of the convective part 
of the governing equations, equations (3.18), are real, they are not all positive.
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Hence, according to the sign of the eigenvalues, there axe three incoming waves 
and one outgoing wave. Therefore, in three-dimensional problems, there axe 
three right running waves at the inflow and one left running wave at the outflow 
(Figure 6.2). Note that, for two-dimensional flow, the number of right running 
waves decreases to two. Dependent upon these directions, the values at the 
fax field boundaxy nodes can be determined using either free stream values or 
values of vaxiables inside the domain.

FLOW
Inflow

boundary
outflow
boundary

X j & 3

Flow Domain

Figure 6.2 Incoming and outgoing characteristic waves

In the present work, the proposed fax field boundaxy condition of Soh [10] has 
been adopted for imposing free stream values or extrapolating variables on 
the inflow or outflow fax field boundaxies. This technique enforces free stream 
velocity components as incoming characteristics at inflow and pressure as in­
coming chaxacteristic at outflow. Since, the upstream dependency is dominant 
in the situation of incompressible flow, to prevent the effect of outgoing waves 
to the computational domain the velocities at outflow boundaxy can be ex­
trapolated from neighbouring nodes inside the domain. Thus, the velocities 
at the outflow boundaxy can be extrapolated from upstream. For the inflow 
boundaxy, considering zero gradient for the pressure close to boundaxy, the 
velocity components may be extrapolated from inside the domain. It should 
be noted that, the inflow and outflow boundaxy can be distinguished from the 
sign of the dot product of computed velocity vector and normal vector to the 
boundaxy surfaces, (n^ • U;).
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6.3.4 G eneral Rem arks about Boundary Conditions

In the early stages of time stepping, the sudden implementation of solid wall 
boundary conditions, will result in high discontinuities in flow variables. Thus, 
imposing solid wall boundary conditions should be done gradually. The bound­
ary conditions should be imposed over a number of iterations using a relaxation 
parameter. At the intersection of inviscid or symmetry walls, the resulting nor­
mal vectors will not be in the direction perpendicular to either of the walls. 
Hence, a special treatment for these boundaries is required. The zero normal 
velocity can be imposed individually for each of the wall boundaries associated 
with the intersection of the wall and symmetry boundaries.

Note that, even for viscous flows, where the flux velocity U; at the wall bound­
ary side is set to zero, the components of the momentum flux remains non-zero 
due to contributions from the pressure term. Therefore, for the flux distri­
bution of side k which lies on the boundary a special formulation is required. 
This is done by adding the contribution of the values of the computed fluxes 
of the boundary side k to its end nodes, which are located on the boundary of 
their own control volumes (Figure 6 .1).

6.4 C onvergence A cceleration

Various indicators can be used to measure the speed of convergence, such as 
root mean square of the pressure and velocity residuals, or calculating conver­
gence rate rc at each time t = tn. For instance for pressure, the formulation 
can be adopted as

in  t= n A i t j  t —0

( # - )  =  r . - H # - )  (6-17)

where A£m;n is the minimum time step computed throughout the nodes of the 
domain, and Rp is the root mean square of the pressure residuals. The general 
formulation for the calculation of the root mean square of the residuals can be



Chapter 6 : Numerical Solution Technique 95

defined as
N

R\Vi =
\  Nnodes E (6.18)

where Nnodes is the number of nodes inside the domain and the residuals R( W*) 
axe given in equation (6 .1).

To accelerate the convergence, several standard techniques have been applied. 
Those implemented in the present work involve the use of local time stepping 
and residual smoothing.

6.4.1 Local T im e S tep p in g

It is common to use minimum AU in order to guarantee the time accuracy of 
the numerical procedure, but it will reduce the speed of convergence to the 
minimum time step of the domain.

For an explicit scheme, the maximum permissible time step at each control 
volume associated with node i, which is determined by its stability limit, may 
be used to accelerate the convergence to steady state. In practice, the time step 
A t{ is computed by looping over each node using expression (6.5), which results 
in an average time step for each control volume. The average time step limit is 
then used as a local time step to advance the solution in that particular control 
volume. This will ensure that the disturbance in the solution is propagated 
across the domain in a number of time steps proportional to the control volume 
size. In such a case, although the minimum time step of the domain affects 
the global convergence rate, the convergence of other control volumes are not 
restricted to the minimum time step.

In the present algorithm, since only steady state solutions are of interest, the 
time accuracy of the scheme is no longer important, and hence, modification 
to the time stepping scheme can accelerate the convergence to steady state.

6.4.2 R es id u a l S m o o th in g

Another method to modify the time step limit is to replace the residual at 
one control volume, defined in equation (6 .2), by a weighted average of the
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residuals of neighbouring control volumes. The average is calculated implicitly 
as

R'i = Ri +  eW2R'i (6.19)

where e is a weighting parameter, R^ is the smoothed residual and V 2i^  is the 
undivided Laplacian of the residual, which can be defined as

N n o d e

= £ ( X m - % )  (6 -20 )
771=1

where is the total number of neighbouring nodes inside the control vol­
ume. Substituting equation (6.20) into (6.19) gives the following expression 
for the smoothed residuals

N n o d e

K  +  ‘ E K  

*  =  (6-21)

This implicit system is then solved by performing several Jacobi iterations

J ^  +  6 i f i * - 1’
J?Sn) =  -------------- ^ ----------  (6.22)

1 +  eNnode

where R ^  refers to the unsmoothed residuals R, and with n as the final itera­
tion, will be the smoothed residuals R ' . Here, e is an empirical coefficient.

6.5 C o m p u ta tio n a l Efficiency

In order to have a practical flow solver, it is necessary to ensure that the algo­
rithm  is efficient. This can be done by applying appropriate data structures to 
facilitate access to the essential set of geometrical data, which are coordinates 
of nodes of each side and the nodes of neighbouring control volumes. This 
issue motivates the use of an indirect addressing system based on a side data 
structure. In addition, the algorithm should be able to take advantage of the
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capability of modern super computers, in particular, hardware which has a 
vector architecture. These issues will be summarised in the rest of this section.

6.5.1 Side-based D ata  Structure and Indirect A ddressing

In the proposed algorithm, fluxes are to be calculated across sides of the grid, 
and hence, the side is the most basic element of the grid. The flux computation 
of the present method involves a single loop over all the sides of the mesh, 
assigning the calculated flux at a side to both control volumes adjacent to that 
side.

A side-based data structure can be constructed for expressing the connectivity 
data, and the flux balances can be performed by a single loop over sides, 
using an indirect addressing system. The mesh information can be stored to 
two matrices. The first one includes coordinates of nodes and the second one 
consists of a side connectivity matrix, which stores all necessary information 
concerning the sides of control volumes.

To define a side-based data structure, each row of the connectivity matrix 
contains specific integer labels of information about one side. Since the cell- 
vertex scheme works in terms of sides and neighbouring nodes, only triangles 
or tetrahedra can be treated within the grid. To ensure that the correct sense 
of contour integration is taken, the numbering system must preserve the anti­
clockwise sense in each triangle. In order to impose this role, the order of the 
nodes associated with each side in the data structure should conform to the 
following arrangement.

In two-dimensional grids the side-based data structure includes the num­
bering of four nodes. The first and the second axe the two end points of the 
edges. The third and the fourth indicate the nodes which form the triangular 
cells located to the left and the right hand of the proposed edge, respectively. 
Note that an anti-clockwise direction should be considered for the definition of 
the nodes of the triangular cell which is located in the left hand side.

For three-dimensional meshes, the set of data for each face includes five node 
numbers. The first three numbers define the nodes of the proposed triangular 
face. The fourth and fifth nodes indicate the node of the tetrahedral cells
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located on the left and right hand sides of the proposed face, respectively. 
Therefore, for each cell the appropriate sign for the flux contribution for each 
tetrahedral cell is automatically determined.

Using indirect addressing system, a loop over all grid sides can be devised to 
calculate the flux balance of all control volumes. The contribution of each side 
is calculated only once in this loop. The results are then added to or subtracted 
from the results stored in the neighbouring control volumes of each side. As 
an example, part of the code, which performs evaluation of the volume of the 
control volumes, is listed here.

Example code File: volume

c Evaluate the volume of each computational control volume

do 10 is 3 1 , nsides
nl = IsidesCis .1)
n.2 = Isides(is .2)
n3 = IsidesCis .3)
nl = IsidesCis .4)
nr = IsidesCis .5)

dr 3 ((Coord(n3,2) -Coord(nl,2)) * (Coord(n2,3) -Coord(nl,3)) - 
to. (Coord(n2,2) -coord(nl,2)) * (Coord(n3,3) -Coord(nl,3)))/2.

dv = ( Coord(nl,l) + Coord(n2,l) + Coord(n3,l)) * dx / 3.
*

Volume ( nl ) = Volume ( nl ) + dv 
Volume ( nr ) = Volume ( nr ) - dv 

10 continue

End, of file

6.5.2 C o d e  V ec to risa tio n

The modern vector computer is capable of vectorising the computational loops 
which are required in the calculation of the flux balance and time stepping. 
For vectorisation, it is essential that the address labels of the control volumes 
should not be accessed more than once in a proposed single loop. Therefore, 
the procedure is limited by the appearance of recurrences within the loops used 
by the finite volume method. Thus, the sides can be reordered and subdivided 
into a number of groups such that, within each group, all side addresses are 
accessed no more than once. This process is known as colouring and is normally
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performed before the execution process. Note that, for practical reasons, the 
boundary sides are separated from the internal sides of the computational 
domain. In the present work the colouring process is performed by looping over 
all sides and then assigning each side to a particular colour. As an example, 
part of the vectorised code, which performs the evaluation of the volume of the 
control volume is listed here.

Example code File: vecto rised .vo lum e

c Evaluate the volume of each computational control volume

do 20 ic = 1 , ncolsides 
nstr -  Icolsid ( ic*2-l )
nend = Icolsid ( ic*2 )

c
c$dir no_recurrence 
cdir$ ivdep 
c

do 10 is = nstr , nend
nl = Isides(is,1)
n2 = IsidesCis,2)
n3 = IsidesCis,3)
nl = IsidesCis,4)
nr = IsidesCis,5)

*

dx = CCCoordCn3,2) -CoordCnl,2)) * CCoordCn2,3) -CoordCnl,3)) -
ft (Coord(n2,2) -coordCnl,2)) * CCoordCn3,3) -CoordCnl,3)))/2.

dv = C CoordCnl,1) + CoordCn2,l) + CoordCn3,l)) * dx / 3.
*

Volume C nl ) -  Volume C nl ) + d v  

Volume C nr ) = Volume C nr ) - d v  

10 continue
20 continue

End of file

For increasing the efficiency of the computations, the colouring is controlled 
to ensure that all individual groups of colours contain approximately the same 
number of sides. In order to optimise the number of sides in groups of colours 
the following procedure is implemented. A loop is taken through the sides to 
check if any potential colour does not already exist in the two adjacent control 
volumes. An existing colour is used if the difference between the number of 
sides within that colour and all other colours will not be greater than one. If, 
after the checks, the side can not be assigned to a colour group then a new 
colour is created. This procedure is repeated until all sides have been assigned
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to a colour. A matrix containing the start and end numbers of each colour 
allows the division of single loop to multiple loops.

6 .6  S u m m ary

The aspects of the time integration and boundary conditions for the numerical 
solution of the governing equations are discussed in this chapter. The time 
stepping was used as a relaxation iteration to steady state. This is done by 
adopting a multi-stage Runge-Kutta scheme, which has been developed for the 
solution of the compressible form of the Navier-Stokes equations. Two multi­
stage schemes were described. In the present algorithm, the three-stage scheme 
has been adopted for the case studies.

The implementation of the inviscid and viscous wall and far field boundary 
conditions has been discussed. A brief review of the techniques for increasing 
the computational efficiency, such as local time stepping, residual smoothing, 
code vectorisation and using a side-based data structured are described. Since 
the implicit procedure of the residual smoothing is somewhat expensive, it 
has not been used for three-dimensional computations. However, the applica­
tion of the procedure of residual smoothing improves the convergence rate for 
computations in two dimensions.
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Unstructured Mesh Generation

7.1 Introduction

The governing equations of fluid dynamics are formulated on the basis of the 
continuum hypothesis. In computational engineering, it is impossible to con­
sider all the points in the continuum domain because of the restriction of 
memory and speed of computers. Thus, only a set of selected points can be 
chosen for the calculation of flow variables. These sets of points and their con­
nections form the mesh. W ith the assumption that the information at these 
points presents the complete description of the domain, this mesh can be used 
by a numerical method for solving the flow equations. Application of the finite 
volume method for the solution of the governing equations requires that the 

flow domain be divided into a set of contiguous, non-overlapping cells. This 
method facilitates the use of unstructured meshes, which provide flexibility for 

flow simulation over complex geometries. In unstructured meshes, the cells 
can be defined in terms of objects, which for a two-dimensional mesh includes 

nodes, edges and triangular cells, whilst for a three-dimensional mesh includes 
nodes, edges, faces and tetrahedral cells.

102
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This chapter describes the basic principals behind discretisation procedures 
of the flow domain and the generation of regular and irregular unstructured 
meshes around arbitrary configurations. Section 7.2 reviews the two approaches 
of structured and unstructured mesh generation. Section 7.3 describes the 
stages of producing regular grids by using methods appropriate for the gener­
ation of structured grids. Finally, Section 7.4 summarises the methods applied 
to generate irregular unstructured triangular and tetrahedral meshes. Section
7.5 gives a brief description of the Delaunay triangulation method for generat­
ing triangular and tetrahedral unstructured meshes.

7.2 M esh G eneration Approaches

Recently, considerable effort has been focused on the domain discretisation 
process, which is called mesh generation. For some problems, the generation 
of a suitable mesh can be demanding. With the increase of computer power and 

improvements in flow simulation techniques, there is a greater focus on accurate 
solutions to real problems. Therefore, this places constraints on the mesh 
generation. The grid must have the ability to reflect the geometrical boundaries 
of the domain and resolve the physics of the problem accurately. In addition, 
the number of points should should not be excessive and their distributions 
should meet the demand of flow solver (i.e. smoothness and regularity). Any 
mesh must meet these requirements. Hence, the grid generation procedure 
can be thought of as a set of iterations cycling through the grid generation 
and evaluation steps. Thus, the grid generator should be fast, efficient and 
automatic.

An im portant classification of grid generation techniques is based upon the 
structured and unstructured philosophies. For structured grids the set of points 
map to a regular array, and the cell connectivities axe implicitly defined in the 
ordering of the m atrix array of the set of points. Unstructured meshes, in 
addition to the set of points, require the explicit definition of connectivities 
between nodes to form cells. Although, a survey of grid generation methods 
can be found in the comprehensive review given by Weatherill [12], a brief 
discussion about the advantages and disadvantages of the structured versus 
unstructured grids is presented.
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Structured grids have been widely used because of the ease of use and imple­

mentation of boundary conditions. The generation of the rectilinear meshes 

provides great control over the quality of the grid in terms of the position of the 
points and the size of the cells but they are applicable for simple configurations. 

For the complex configurations multi-block structured grids can be applied [1] 
in which the computational domain is subdivided into a set of blocks. The 
arrangement of the blocks defines the topology which is consistent with the 
boundary shape. Such an approach has been used by Shaw, Georgala and 
Weatherill [25] to predict transonic inviscid flow about an aircraft with pylon 
and wing configurations, as well as military aircraft with chin intake and pro­
pelling nozzles. The problems with multi-block structured grids are the time 
required to set up the block connectivities, the considerable difficulty of defin­
ing the mesh blocks and ensuring the contiguity of mesh fines at the various 
interfaces [2]. Another approach that has been suggested is the use of separate 
overlapping meshes. In this approach the flow variables are interpolated be­
tween these meshes using an iterative solution procedure. This approach also 
presents some difficulties when applied to closely coupled components, such as 
nacelle, pylon and wing regions of modern aircraft. As an alternative, the use 
of non-align meshes which do not conform to the shape of the configuration 
has been proposed and for relatively simple flow problems some success has 
been reported. However, the application of the solid wall boundary conditions 

leads to complex interpolation formulas and the accuracy obtainable by such 
an approach is questionable [11].

For complex geometries, the generation of an appropriate grid often causes a 
major problem [6]. The structure imposed by rows and columns of rectangular 
grid points can become very restrictive. Therefore, the rectangular grids may 
not seem to be the best way to discretise a complicated domain. In addition, 
there remains some doubts about the possibility to automatically generate a 

structured grid and maintain low cell skewness, a smooth point distribution 
and adequate grid resolution of important regions [16]. The motivation for 
overcoming these problems has lead to the use of entirely unstructured meshes 
comprising triangles in two dimensions and tetrahedra in three dimensions 
[7,8]. This flexible approach is free of many of the problems that have been as­
sociated with other approaches. Using this approach, the grid can be adapted
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to irregular boundaries and a smooth distribution of triangle and tetrahedral 

size can be achieved without distortion of the cells. In 1986, Jameson, Baker 
and Weatherill [11] demonstrated how three-dimensional unstructured tetrahe- 
dra meshes may be used to efficiently solve the Euler equations over a complete 
aircraft. Unstructured grids had been initially employed in finite element codes
[11]. In order to use unstructured meshes it is necessary to include the ability 
to apply additional information about the connectivity of the grid and an in­
direct addressing system which must be used to locate cell neighbours. This 

requires additional memory and may seem less efficient than structured grid 
methods. However, unstructured grids have the ability to discretise complex 
domains without having to use an excessive number of computational nodes. 
Therefore, there may be a compromise between efficiency and memory.

The accurate simulation of viscous high Reynolds number flows is seen as a crit­
ical problem of the unstructured approach and require a major development ef­
fort to overcome the difficulties. Unstructured mesh generation methods do not 
naturally generate highly stretched elements appropriate for the resolution of 
boundaxy layers in viscous flow simulation. Unstructured triangular and tetra­
hedral meshes have been seldom employed for the solution of Navier-Stokes 
equations. In 1986, Weatherill, Johnston, Peace and Shaw [26] developed of a 
finite volume method for the solution of the Reynolds-Averaged Navier-Stokes 
equations on a triangular grid consisting of small directly triangulated struc­
tured regions around the aerofoil and an unstructured mesh elsewhere. Since 
then, the solution of the Navier-Stokes equations on triangular unstructured 
meshes has been the subject of many exercises and investigations, particularly 
in the field of the compressible flow simulation [27,28].

Difficulties associated with solving viscous flows using the triangular meshes 
for complex geometries has resulted in the hybrid structured and unstructured 

meshing strategies. In this approach, quadrilateral meshes are employed in the 
viscous regions, and unstructured meshes are employed in the inviscid regions
[29]. Although this approach has proven valuable for computing flows over 
various types of configurations, it lacks the generality required for arbitrarily 
complex geometries [27]. consequently, mesh generation developers have begun 
to focus on an approach which combines some concepts of structured grid
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technology with the traditional unstructured methods. Hence, an approach was 
developed, the so-called method of Advancing Layers or Advancing Normals. 
This approach which was advocated by Weatherill [20], automatically creates a 
layer of semi-structured (regular) triangular cells with arbitrary aspect ratio in 
viscous regions and unstructured (irregular) cells in the inviscid dominated flow 
fields. In this approach, as the layer advances, the cell aspect ratio grows until 

the elements have unit aspect ratio, whereupon the grown grid is interfaced 
with a traditional unstructured grid [21 ,22]. Such an approach, which was 
readily extended to three-dimensions by Pirzadeh [30], can be easily modified 
to generate tetrahedra, prisms or hexagon.

The interesting aspect of unstructured triangular and tetrahedral meshes is the 
ability to accommodate local source points to provide a variable grid resolu­
tion within the domain. In addition, cells can be added or removed locally as 
dictated by the flow or geometrical features, and thus, provides a natural envi­
ronment for mesh smoothing and grid adaptation [6-9]. However, the required 
criterion for the grid adaptation can be obtained from the feature of the flow 
field. Various techniques have been developed for grid adaptation i.e. using 
error estimation schemes [8] and a streamline based approach [31]. Adaptivity 
techniques were initially developed for unstructured grids which were tradi­

tionally generated using isotropic cells. Since the demand for viscous flow 
simulations over complex geometries has presented a challenge which could 
not be accurately resolved by a priori adopted structured grids, the adaptivity 
strategies have been extended to the generation of mixed regular and irregular 
meshes [21].

In the present work, regular, irregular and mixed regular/irregular unstruc­

tured triangular and tetrahedral meshes are employed and the adaptivity pro­
cedure is considered. Note that since the present flow solver has been developed 

using a side-based algorithm, both the regular and irregular meshes are treated 
in the same manner. The following sections give a brief summary of some ap­
proaches for the generation of the triangular and tetrahedral meshes which 
have been employed in this work.
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7.3 R egular U nstructured M eshes

In regular grids, the produced set of grid points can have a high degree of 
structure which in some cases can be exploited. For instance, when the solution 
of the viscous flow equations is of interest, because of the rapid variation of the 
velocity components parallel to a solid body inside the boundary layer, accurate 
solutions of the flow requires a number of grid points normal to the solid body. 
In this case, application of irregular unstructured meshes using equilateral cells 
leads to huge number of nodes close the solid wall surface. However, regular 
grids have the ability to incorporate a few high aspect ratio cells inside the 
boundary layer, adjacent to the solid wall surface. Hence, for the computation 
of viscous flow over simple geometries, structured quadrilateral and hexagonal 
grid points can be used to create ideal regular unstructured triangular and 
tetrahedral meshes in two and three dimensions, respectively.

Figure 7.1 Directly triangulated regular meshes,

(a) Uni-direction diagonals (inverse symmetric),

(b) Symmetric diagonals to the flow axis

(c) Criss-cross diagonals (non-inverse symmetric).

Two-dimensional regular unstructured triangular meshes can be generated by 
dividing the quadrilateral grid spacings into the two triangles using diagonal 
edges (Figure 7.1.a). In viscous flow simulations over a closed configurations, 
the solution may exploit the symmetric direction of diagonal sides on upper 
and lower surfaces (Figure 7.1.b). In this case, considerable improvement of 
the numerical solution may be achieved. However, for both Figures (7.1.a)
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and (7.1.b), the direction of the diagonal edges directly affects the shape of 
the control volumes. This may affect the accuracy of the computations. The 
problem can be overcome using a crisscross form of regular meshes (Figure 
7.1.c). The criss-cross meshes can be formed by altering the diagonal edges 
within the neighbouring quadrilateral grid. However, in these types of regular 
meshes, the shape of the control volume and the number of edges connected to 
its centre vary. Hence, even with applying appropriate scaling and normalisa­
tion techniques for the edge-based artificial dissipation term, oscillatory effects 

can appear in the solution [28].

Similar to two-dimensional meshes, three-dimensional regular unstructured 
tetrahedral meshes can be created using structured hexagonal grid. Within 
each hexagon, either five or six tetrahedral cells can be accommodated by 
defining appropriate connectivities. If the alternative of six tetrahedra cells 
within each hexagonal grid spacing are considered, the criss-cross meshes can 

be produced by altering the diagonal faces in neighbouring hexahedra. In 
this work, regular triangular meshes are used for some simple geometries, and 
hence a brief summary of some of the methods for generation of structured 
grid points is given.

The structured grids in two and three dimensions can be generated by map­
ping a single set of computational coordinates ( £ i , £2 > £3 ) to the curvilinear 
coordinates of the physical space ( xi, x 2, £3). Various mapping techniques are 
available for this boundary value problem. These include algebraic schemes
[4], partial differential equations [5] and conformal mapping techniques [1].

Algebraic grid generation system can be referred to as interpolation for generat­

ing values of cartesian coordinates in the interior of the rectangular transformed 

region from the specified values at the boundaries. This technique generates 

grids directly, therefore, it is computationally fast and provides control over 
grid spacing due to its explicit nature. The algebraic system can be viewed as 
an interpolation scheme in which curves are fitted between points in opposite 
boundaries or intermediate surfaces in the field. Evaluation of an interpolation 
function at constant values of the curvilinear coordinates defines the coordi­
nate system. Uni-directional and multi-directional interpolation schemes can 
be applied for two and three-dimensional domains in which there are four and
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six sides of boundary data, respectively.

In the methods based on the solution of partial differential equations, the so­
lution procedure and the properties of the generated grid are closely related to 
the properties of the applied partial differential equation, i.e. elliptic, parabolic 
or hyperbolic. Hyperbolic methods axe used for problems in which the exact 
position of outer boundaries is not critical. Nowadays, the elliptic equation 
technique appears to be the most predominantly used in the field of struc­
tured grid generation [4]. This is due to their natural smoothing properties 
which prevents discontinuities. This property makes them ideally suited for 
grid generators. Although the generated grids are not necessarily orthogonal, 
they will be smoothly varying even if the boundaxy of the domain has a slope 
discontinuity. Following this approach, the curvilinear coordinates axe gener­
ated by solving the non-homogeneous Laplace equations (Poisson equations). 
The solution of equations can be obtained by the use of central differencing 

and using control functions for controlling the grid point spacing. This sys­
tem of equations can be numerically solved by application of finite difference 
approximations in both two and three dimensions [3],

An alternative approach to structured grid generation is conformal mapping 
which transform a geometrically complicated domain into a simple domain 
within which a mesh can be generated. Then, this mesh is converted to physical 
domain as a computational mesh. The concept of a mapping in two dimensions 
is to define a transformation, which takes a physical domain defined in the plane 

of (xi ,  X2), onto the rectangular domain on the plane (£1 , £2)- A curvilinear 
coordinate system generated by conformal mapping is very rigid in the sense 
that little control can be exerted over the distribution of the grid points. The 
coordinate system tends to be difficult to construct compared with algebraic or 
elliptic systems. However, the complex variable techniques by which conformal 
transformations are usually generated, axe inherently two-dimensional. In spite 
of some progress in using mapping techniques for generation of structured grid 
points, these methods axe not easily applicable to three dimensions for all 
geometries. Surveys of the various techniques axe given in [19]. However, for 
simple geometries three dimensional structured grid points can be formed by 
stacking or rotating two dimensional grid points.
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7.4 U n s tru c tu re d  M eshes

There axe different methods for creating genuinely unstructured meshes. The 
two major methods axe the Advancing Front and Delaunay triangulation which 

have been developed over the last 10 yeaxs [10,11]. In three dimensions, the 
Advancing Front method begins with a set of triangles, known as the front, 
which encloses a domain. Elements are created on each triangle of the front by 
either creating a point or using an existing point. In this way, cells axe created 
in the domain and the front advances until the domain is filled with tetrahedra. 
More recently, in line with other unstructured generation grid methods, grid 
point spacing is controlled by sources placed in the domain. Effort has seen 
the development of fast search algorithms [8,10,24]. The Delaunay method is 
different in the sense that, given an enclosing surface triangulation, the De­
launay triangulation approach connects all boundary points to form a coarse 
triangulation prior to the insertion of points using some form of refinement 
strategy. The recovery of the given set of boundaxy triangles within the tetra­
hedral construction has been a major issue in Delaunay triangulation approach. 
However, major advances have been made in this approach and today point 
insertion strategies, combined with a Delaunay triangulation algorithm, can ef­
ficiently generate very large meshes for complex geometries [15,23]. Although, 
appropriate data structures have been applied to perform searches for the Ad­

vancing Front, these searches are not as fast as those which can be performed 
within the Delaunay tetrahedral structure. Therefore, a major development in 
recent years has been the speed advantage of Delaunay triangulation method 
as compaxed with Advancing Front methods [12,15].

Due to the m ajor development in speed of the Delaunay triangulation, the 
codes based on this algorithm were found very efficient for iterative procedure 
of mesh generation and evaluation, particularly for three-dimensional prob­
lems. In order to achieve better results of geometry definition and surface 
grid generation, also to speed up the time consuming grid generation and eval­
uation iterations, a single environment which contains all the tools required 
for pre-processing computational simulation has been utilised. This open en­

vironment is called the Parallel Simulation User Environment (PSUE) which
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has the potential to provide an all encompassing environment for unstructured 
mesh generation applied in computational engineering. The PSUE framework 
integrates modules such as ; Geometry Builder/Viewer, CAD Input, Geome­
try Repair, Grid Generation and Adaptation and Analysis of data [12]. Hence, 
the quality of both regular and irregular meshes can be evaluated using the 
PSUE package. In this work, this package is widely used, especially for the 
generation and evaluation of three-dimensional inviscid unstructured meshes. 
Here, a brief description of Delaunay triangulation method, which is employed 

for generating the irregular unstructured meshes, is presented.

7.5 D elaunay Triangulation

The Delaunay triangulation is one of the most effective methods of creating 
irregular unstructured triangular meshes, which has recently been the subject 
of many studies. Weatherill [16] and Jameson, Baker and Weatherill [11] im­
plemented the Delaunay triangulation technique for aerodynamics applications 
of single and multi-connected domains using a modified Bowyer triangulation 
algorithm [17]. Here, a very brief description of the two-dimensional Delaunay 
triangulation algorithm is presented.

Delaunay circumcircle

Delaunay triangle

Nodal point

Voronoi polygon

Figure 7 .2  Voronoi diagram and Delaunay triangulation

Given a set of points in the plane, the Dirichlet tessellation [18] can be con-
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structed which assigns to each points a territory that is the area of the plane 
closer to the certain point than any other point in the set. This tessellation 
of a closed domain results in a set of non-overlapping convex polygons, called 
Voronoi regions [19], which covers the entire domain, Figure (7.2). The ter­
ritorial boundary, which forms a side of a Voronoi polygon, must be midway 
between the two points. This side is a segment of the perpendicular bisector of 
the line joining these two points. The definition of the Voronoi regions ensures 
that the triangulation produces triangles of reasonable aspect ratio. The De­
launay triangulation is formed by joining the points which have some segments 
of boundary in common. Note that, each Delaunay triangle has a unique vertex 
of the Voronoi diagram and no other vertex within the Voronoi structure lies 
within the circle centred at this vertex. Figure (7.2) shows a two-dimensional 
schematic of a Voronoi diagram and associated Delaunay triangulation of a 
small set of points.

In practice, since the initial set of points is not readily defined, the Delaunay 
algorithm can be done through a sequential process of introducing new points 
into the existing structure. Then, this broken structure is reconnected to form 
a new Delaunay triangulation. This approach facilitates the introduction of 
local source points with prescribed resolution and domain of influence. These 
sources impose local clustering of grid points and provide variable resolution of 
the mesh. Thus, the process starts by setting up an initial triangulation, which 

can be adjusted in such a way that all points to be triangulated are contained 
within one or two super-triangles. The next step is to ignore the presence of the 
boundary and thus triangulate the entire domain treating the boundary points 
in the same way as internal points. Then, all triangles which happen to be lo­
cated outside of the boundaries are identified and subsequently removed. This 
simple process can be achieved providing that all adjacent boundary points are 
found to be contiguous in the Delaunay algorithm [13,14,15].

Today, point insertion strategies, combined with a Delaunay algorithm enable 
the method to generate very large meshes for complex geometries. The a t­
tractive aspect of this type of mesh generation is the fact that the concept 
of Delaunay triangulation can easily be extended to three dimensions. The 
m ajor differences are that the notations of Delaunay triangles is replaced by
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Delaunay tetrahedra in three dimensions [15]. Hence, the territory of each 
data point is a convex polyhedron and each vertex of the Voronoi structure 

is at the circumcentre of a sphere defined by four points, which describe the 
Delaunay tetrahedron. A brief review of the Delaunay triangulation algorithm 
for three-dimensional mesh generation is given in Appendix D.

7.6 S u m m a ry

Several methods of unstructured mesh generation techniques are reviewed in 
this chapter. For simple geometries, the regular unstructured triangular meshes 
can be produced using structured grid methods. For complex configurations, 
an alternative grid generation procedure is to use irregular unstructured grids. 
The approach of Delaunay triangulation is an efficient method for generat­
ing unstructured triangular and tetrahedral meshes. In this technique, local 
sources can be introduced to define variable mesh resolution. The advantage 
of the resulting mesh is that cells are forced to be equilateral which make the 
mesh more suitable for accurately solving the inviscid flow equations.

In the present work, since the regular unstructured meshes provide more control 
over the size of the cells, they are used at early stages of computation for 
simple problems. Note that, in spite of their name, the number of edges or 
cells connected to each node can be irregular, especially in three dimensions. 
Hence, they have been used to verify the ability of flow solver to deal with such 
a problem. This fact has considerable effect on the computation of edge-based 
artificial dissipation term. However, in order to demonstrate the performances 
of the flow simulator and have a comparison, most of the inviscid test cases 
are examined on the irregular unstructured meshes as well.

In boundary layer and wake regions of the viscous flows, the regular grids are 
the most appropriate meshes for resolving high gradient of the flow variables. 
Therefore, the accuracy of the viscous flow solver will be examined by develop­
ing individual regular unstructured mesh generators for individual problems, 
which are studied in the following chapters.
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Simulation of Two-Dimensional Flows

8.1 Introduction

The results and comments on the implementation of the algorithm for simulat­
ing two-dimensional incompressible inviscid and viscous flows using the artifi­
cial compressibility approach on cell-vertex finite volume method are studied 
in this chapter. The results will be presented in three sections. Section 8.2 
presents the results of inviscid flow computations and verifies the accurate 
implementation of the convective term, artificial dissipation term and proper 
boundary conditions. Section 8.3 presents the viscous results. After demon­
strating the validation of the algorithm by using geometrically simple test cases, 
Section 8.4 presents applications to simulate some realistic engineering prob­
lems. For each case, the results presented show the performance and accuracy 
of the solver. The performance of the flow solver is shown using the conver­
gence behaviour of the computations in terms of the residual of pressure and 
velocity components. The accuracy of the method is assessed by comparing 
some of the computed results with those obtained from available exact solu­
tions or other experimental and independent results reported in the literature.
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Typical pressure and velocity fields axe shown using contours of variables or 
stream lines. For all the test cases of this chapter, the computations started 
from the free-stream values. Far field boundary conditions were implemented 
by imposing free-stream values of velocity components at inflow and pressure 
at outflow. Other values at far field boundaries were extrapolated from inside 
the domain.

8.2 Inviscid Flow Sim ulation

The first test case is the flow around a circular cylinder. This test case, for 
which an analytical solution is available, is a challenging case, and hence has 
been used by many researchers to examine the accuracy of flow solvers. There­
fore, it is employed to verify the accuracy of the discretisation of the convec­
tive and artificial dissipation terms in the present flow solver. The second test 
case presents results of an internal flow computation in a channel with a 10% 
arc bump. The case can be used for examining the implementation of inflow 
and outflow boundaries which intersect solid wall boundaries. The computed 
results of this test case are compared with independent results from other in­
compressible flow solvers. The third test case is the simulation of the flow over 
a NACA0012 airfoil. The ability of the flow solver to deal with sharp edges at 
different angles of incidences are studied using this test case. The results are 
compared with other independent results from the aerodynamics literature.

For all the inviscid cases, the distribution of pressure on the solid wall is mea­
sured using pressure coefficient Cp as

c .  -
Po|Uo|

where px- is the pressure at wall boundary node i and po? Po and Uo are the 
free stream pressure, specific mass and velocity, respectively.
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8.2.1 Flow Around a Circular Cylinder

The test case involves the inviscid flow computation around a circular cylinder. 
For this test case, numerical and analytical results are available [1,8]. The exact 
incompressible solution for this example has been developed using a complex 
potential formulation [1], This test case is used to verify the accuracy of the 
discretisation of the convective and artificial dissipation terms. For this case, 
the most difficult part of the flow simulation is to compute an accurate pressure 
distribution on the cylinder surface, especially at its down stream side.

Figure (8 .2.1.a) shows the view of the unstructured mesh used in this compu­
tation, which was created by Delaunay triangulation. The outer boundary was 
placed at a distance of 10 radii away from the centre of cylinder. The grid is 
composed of 2529 points, 4662 cells, and 7192 edges. There are 360 grid points 
distributed on the cylinder surface, which can be seen in Figure (8.2.1.b).

The free-stream values were considered as (ui)° =  1.0, (1*2)° =  0.0 and (p)° =  
1.0 (i =  1 iNnode). In this test case, without imposing zero wall dissipation, 
slight dissipative effects appeared in the flow field near the cylinder surface. 
Enforcing zero wall dissipation [23] reduces this dissipative effect and produces 
more accurate results. However, lack of dissipation on solid wall allows some 
oscillations of the values of the flow parameters propogates on the solid wall 
nodes. This effect prevents achieving maximum convergence of the residuals of 
the flow parameters on the SUN work-station. However, there is approximately 
4.5 orders of magnitude reduction in pressure residuals after 2000 iterations. 
The convergence history of the pressure and velocity residuals are shown in 
Figure (8.2.1.c). The computed pressure coefficient on the cylinder surface 
and the analytical solution are compared in Figure (8.2.1.d). As can be seen, 
the computed pressure coefficient is in close agreement with the analytical 
solution.

The computed velocity vectors are shown in Figure (8.2.1.e). In order to give 
a general sense about the computed flow field, pressure and velocity contour 
plots are shown in Figures (8.2.1.f) and (8.2.1.g), respectively. The results pre­
sented provide some confidence in the capability of the algorithm to accurately 
simulate two-dimensional inviscid flows.
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Inviscid Flow Around a Circular Cylinder

Figure 8.2.1.a Triangular mesh for the flow around a circular cylin­

der generated by the Delaunay triangulation m ethod
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Inviscid Flow Around a Circular Cylinder

Figure 8.2.1.b Partial view o f the mesh around the cylinder.
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Figure 8.2.1.C Convergence o f pressure and velocity residuals.
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Inviscid Flow Around a Circular Cylinder
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Figure 8.2.1.d  Coefficient o f pressure on the surface o f  cylinder 

(comparison with the analytical solution [1]).

Figure 8.2.1.e Velocity vectors around the circular cylinder.
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Inviscid  Flow A ro u n d  a  C y lin d er
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Figure 8.2,1 . f  Typical pressure contours around the cylinder 

(  Min. =  0.55, Max. =  1.525, Intervals =0.1).
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Figure 8.2.1.g  Typical velocity contours around the cylinder 

(  Min. =  0.0, Max. =  2.0 , Intervals =0.1 ) .
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8.2.2 Flow Through a Channel with a Circular Arc

The problem considered here is the internal flow through a channel with a 
bump consisting of a 10% arc. The test is used by researchers in both fields of 
compressible and incompressible flow. The intersection of the solid wall with 
inflow and outflow boundaries and the short distance of these two boundaries 
from the bump at the centre of the channel are two main points which make 
the case sensitive to a correct implementation of the inflow/outflow boundary 
conditions. Hence, this case which was purposed by Ni [2], can be used for ver­
ifying the accurate implementation of inflow and outflow boundary conditions. 
Later Choi-Merkle [3] performed incompressible flow simulation. He applied 
the artificial compressibility method [4], with constant (32 using the finite dif­
ference scheme of Briley-McDonald [5]. The velocity and pressure contours 
resulting from this work are used for comparison.

The geometry of this channel is defined by considering the length of the channel 
to be three times its width and the length of the bump equal to the channel 
width. The computational grid employed is shown in Figure (8 .2.2.a). The 
grid is composed of (65 x 17) points (or 1100 points in total), 2052 cells and 
3151 edges. For the computation of this test case, the free-stream values were 
considered as (ui)° =  1 .0 , (1*2)? =  0.0 and (p)° =  1.0 (i =  1 , ./Vnode).

Figure (8.2.2.d) shows the typical computed velocity vectors. The computed 
pressure and velocity contours are depicted in Figures (8.2.2.b) and (8.2.2.e), 
respectively. To assess the accuracy of the present computations, the pressure 
and velocity contours obtained by the incompressible flow solver of Choi-Merkle 
[3] are shown in Figures (8.2.2.c) and (8 .2 .2 .f). In general, there is a close 
agreement between the two results.

Figure (8.2.2.g) shows the distribution of the coefficient of pressure on the solid 
wall. The computation was performed by starting the calculation from initial 
values on the inflow and outflow boundaries. After 1400 explicit iterations on 
a SUN work-station which uses single precision by default, approximately 6 

orders of magnitude in the reduction of the pressure and velocity residuals was 
reached (Figure 8.2.2.h).
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Inviscid Flow Through a Channel w ith 10% Bum p
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Figure 8 .2 .2 .S  Triangular mesh for the channel with bump.
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Figure 8.2.2.b Typical pressure contours inside the channel 

(  Min. =  -0.4, Max. =  0.4, Intervals =  0.2).
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Figure 8 .2 .2 .C  Pressure contours after Choi-Merkle [3].
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Inviscid Flow Through a Channel w ith 10% Bum p

Figure 8.2.2.d Typical velocity vectors inside the channel.

Figure 8.2.2.e Typical velocity contours inside the channel 

(  Min. =  0.75, Max. =  1.25, Intervals =  0.1).
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Figure 8.2 .2 .f  Velocity contours after Choi-Merkle [3].
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Inviscid Flow Through a Channel w ith 10% Bum p
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8.2.3 Flow Over a N A C A 0012 Aerofoil

The problem considered is the simulation of the flow around a NACA0012 
aerofoil which is a well known aerodynamics test case. This symmetric aerofoil 
is widely used for flow calculations in many CFD workshops. There axe several 
results which can be used for comparison [6-9]. Some of the available results 
can be used for validation of the developed flow solver to deal with sharp 
trailing edges. The pressure and velocity fields close to the trailing edge of the 
aerofoil can be used for verifying the accuracy of the computation of the flow 
field close to the sharp end of the object at different angles of incidences. In 
this work the calculations were performed for 0.0, 2.0, and 5.0 degree angles of 
incidence.

The view of the irregular grid used for this calculation is shown in Figures 
(8 .2 .3.a) and (8.2.3.b). The outer boundary is at distance of 10 chords from 
the aerofoil. The grid employed was fully unstructured, which was created 
by the Delaunay triangulation. The computational domain consists of 3406 
triangles. The number of the points is 1805 with 168 points located on the 
aerofoil and the total number of the edges is 5211.

The computation of this test case started from the free-stream values as (ui)° =  
Cos(a), (u2)° =  S in (a )  and (p)° =  1.0 (i = l,Nnode)^ Here a is the angle with 
the horizontal cartesian axe x\. The computation was performed starting from 
free stream values. For all the simulations of inviscid flow over the NACA0012 
aerofoil the computation took less than 2000 iterations to converge. A typical 
converged history of computed pressure and velocity residuals are plotted in 
Figure (8.2.3.c). Generally, there is approximately 6 orders of magnitude re­
duction in pressure and velocity residuals, so the solution can be considered to 
be adequately converged on the SUN work-station which uses single precision 
by default. For a  =  0.0° and a  =  2.0°, the computed surface pressure coef­
ficient Cp on the aerofoil is compared with the result of the simulation using 
potential flow solution [7] in Figures (8.2.3.d) and (8.2.3.e). In Figure (8.2.3.f), 
the computed coefficient of pressure on the aerofoil for the angle of incidence 
a  = 5.0° is compared with the results of the Rizzi et al [8] computed using a 
finite volume method and Eriksson [9] computed using a panel method. Typi­
cal computed pressure and velocity contours around the aerofoil are presented 
in Figures (8.2.3.g) and (8.2.3.h). In general, the results of the present flow 
solver look very similar to those results obtained by other workers.
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Inv iscid  Flow  O ver a N A C A 0 0 1 2  A erofoil

Figure 8 .2 .3 .B  Triangular mesh for flow around the NACA0012 pro­

file generated by the Delaunay triangulation method.

Figure 8.2.3.b Partial view o f the mesh around the aerofoil.
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Inviscid  Flow  O ver a  N A CA 0012 A erofoil
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Figure 8 .2 .3 .C  Convergence o f pressure and velocity residuals.
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Figure 8 .2 .3 .d  Coefficient o f pressure on the aerofoil body for a = 
0 .0°, comparison with the results from potential flow 
solution by Peraire [7].
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Inviscid  Flow O ver a N A C A 0 0 1 2  A erofoil
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Figure 8.2.3.e Coefficient o f pressure on the aerofoil body fora = 
2 .0°, comparison with the results from potential flow 
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Figure 8.2.3.f Coefficient o f pressure on the aerofoil body for a  =  
5.0°, comparison with other incompressible flow com­
putations by other workers [7,9].
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Inviscid Flow Over a N A C A 0012 Aerofoil (a =  5.0°)

1.0

Figure 8.2.3.g Typical pressure contours around the aerofoil 
(Min. = 0.011, Max. = 1.55, Intervals =  0.05).
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Figure 8.2.3.h Typical velocity contours around the aerofoil 
(Min. = 0.035, Max. = 1.685, Intervals = 0.075).
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8.3 V iscous Flow Sim ulation

In this section, the accurate implementation of the viscous terms is verified 
by selecting some test cases which provide a good test for the viscous flow 
problems. For all the two-dimensional viscous cases, the viscous stresses have 
been evaluated using the cell-vertex finite volume formulation, together with 
suitable meshes which meet the requirements of this formulation. The first test 
case is the flow over a flat plate, which is a well known benchmark example 
for incompressible laminar viscous flow. For this case, the accuracy of the 
computed viscous stresses and resulted velocity components inside a boundary 
layer region can be verified by some analytical dimensionless relations. The 
next test case is the steady flow around a circular cylinder at Reynolds numbers 
below 150. This case is used to study the ability of the flow solver to simulate 
viscous wake regions behind an object. Some of the available results from 
experimental works are used to assess the accuracy of the computed results. 
In order to capture high gradient velocity variations inside the boundary layer 
and in wake regions, the minimum mesh spacing normal to the direction of 
dominant velocity should be less than 1 / y/ifc.

8.3.1 Flow Over a Flat P late

For a flat plate parallel to the free stream the flow solution was found by one of 
the P randtl’s first students, Blasius [10]. His mathematical similarity relation­
ship is a unique relation between the horizontal component of the velocity U\ 
and the dimensionless parameter y. This relation is valid for all the Reynolds 
numbers in the limit of incompressible flow. W hite [11] demonstrates that 
the comparison between the Blasius relation and the experimental results of 
Liepmann [12] for several low Reynolds numbers are quite good.

For this test case, the length of the flow domain is considered to be twice the 
height. In order to provide a proper starting point for the viscous region, a 
length of inviscid flow equal to half the plate length was applied. Two different 
types of meshes are created using two different stream-wise and anti-stream- 
wise direction of diagonal edges. Present computations show that the result 
from the two different meshes are not significantly different for these two types
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of meshes. Here, the results on a regular mesh are presented. The general and 
partial view of the applied mesh are shown in Figures (8 .3.1.a) and (8.3.l.b). 
This grid is composed of (132 x 70) points (or 9240 points in total) and 27317 
edges. The aspect ratio of the triangles located on the leading edge of the plate 
is equal to one. The mesh spacing is expanded from the leading edge in both 
directions leading to triangles with aspect ratios of 108 at the end of the plate.

For this test case, the free-stream values were considered as («i)° =  1.0, 
(u2)9 =  0.0 and (p)J =  1.0 (i =  ljNnode)- The free stream velocity com­
ponents are imposed at the inflow boundary and free stream pressure at the 
outflow boundary. The remaining variables at inflow and outflow boundaries 
are obtained by extrapolation from inside the domain. Hence, all the results 
presented were obtained without imposing any special treatment at the inter­
section of the flat plate wall and the far field boundaries. The computation 
was performed on the grid, starting from free stream initial values. After 5000 
explicit iterations, the residuals based upon pressure and velocity components 
reduced by seven orders of magnitude. Typical velocity and pressure con­
tours for a Reynolds number of 3ft =  10000 are shown in Figures (8.3.1.c) and 
(8.3.1.d), respectively.

The accuracy of the present computations can be assessed by comparing the 
computed results with the results of Blasius [10]. He derived a dimensionless 
coordinate, which makes the results independent of the horizontal position on 
the plate and Reynolds number. This relation is defined as

„ =  (8 .2 ) y 2/ioxi

where X\ and X2 are cartesian coordinates parallel and perpendicular to the 
direction of the free stream velocity |Uo|, respectively. Here po and po are the 
mean value of the viscosity coefficient and specific mass, respectively. For the 
horizontal and vertical components of velocity, U\  and u 2, at different points 
normal to the plate, two parameters u  and v  are defined as

Ui
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Figure (8.3.l.e) presents the independency of the results from the choice of 
Reynolds number, using the parameter u of Blasius similarity solution for 
Reynolds numbers of 1000, 3000, 5000 and 10000 at a certain position of the 
plate, X\ =  0.45. For comparison of the computed results at different positions 
of the plate length, a constant Reynolds number of 10000 is considered for 
the rest of the work. The comparison of computed u and v with the Blasius 
solution are presented in Figures (8.3.1.f) and (8.3.1.g). The shear stress and 
the skin friction coefficient at different positions on the plate length are scaled 
by applying the parameters

5 =  7i2 \ / ^  (8*4)

and
c , =

2 T-12
po|Uo|

(8.5)

The comparison of the results of s and Cf are shown in Figures (8.3.1.h) 
and (8.3.l.i), respectively. In general, good agreement between computational 
results and the parameters of Blasius similarity solution are obtained.
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Figure 8.3.1.a General view o f the regular mesh for a Flat Plate.
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Figure 8.3.1.b  Partial view o f the mesh close to the Flat Plate.
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V iscous Flow O ver a  F la t P la te

•0 . 2

Figure 8.3.1.C General view o f velocity contours, 3ft =  10000 

(Min. = 0.0, Max. = 1.00, Intervals = 0.1)

0 . 9 5  

1.1 1 . 2

Figure 8.3.1.d  General view o f pressure contours, 3ft =  10000 

(Min. = 0.95, Max. = 1.30, Intervals = 0.05).
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Figure 8.3.1.e  Comparison o f computed u = u i / |U 0|, with Bla­
sius similarity solution at xi = 0.45 for different 3ft 
(y = x 2y/po\UoU2jj^xl).
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V iscous Flow O ver a F la t P la te , = 10000
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Figure 8.3.1. f Comparison o f u = U i/|U 0| normal to the plate 
with Blasius similarity solution for different positions 
on the plate (y  =  x 2y / p 0\\J0 \ /2poXi) .
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Figure 8.3.1.g  Comparison o f v — U2/ |U o |> /^ "  normal to the 
plate with Blasius similarity solution for different po­
sitions on the plate (y =  x2^/po\Uo\j2p^x^).
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V iscous Flow  O ver a  F la t P la te , =  10000 (C o n tin u ed )
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Figure 8.3.1.h The shear stress parameter (S  =  Ti2y/tRXl), normal 

to the plate compared with the Blasius similarity so­
lution (y =  x 2y/po\Vo\/2p0xi).
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Figure 8.3.1.i Skin friction coefficient (Cf =  2r12/p o |U 0|2) com­
pared with the Blasius exact solution at different po­
sitions on the plate length L = x \ / I .
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8.3 .2  Flow  A ro u n d  a  C ircu la r C y linder

This test case, the viscous laminar flow around a cylinder, can be used to study 
the ability of the solver to simulate wakes. Experiments show that the wake 
flow behind a cylinder remains steady up to a certain Reynolds number. The 
laminar vortex streets will appear for 50 <  3̂  < 150 and the flow can not then 
be considered steady. There will be turbulent vortex shedding with Reynolds 
numbers > 150 [13]. Hence, for the present laminar flow computations, 
simulations are performed for < 150.

Flows of this kind are applicable to simulate the flow around large scale struc­
tures. Structures such as large empty storage tanks are subject to external 
wind loading. The pressure on this cylindrical geometry, which develops due 
to the wind flow, may cause disastrous results. An example of this problem is 
the wind induced collapse of oil storage tanks at Haydock, Lancashire, Eng­
land, in 1967, Figure (8.3.2.a). Therefore, this problem has been subject of the 
several theoretical and experimental studies, Figure (8.3.2.b).

For this test case, a two-dimensional theoretical formulation has been devel­
oped by Acrivos et al [14] and experimental results are available after the 
work of same author [15]. The experimental test involves measurements of the 
length of the wake bubbles, as well as measurements of the rear pressure be­
hind the cylinder, for Reynolds numbers below 150. In this experimental work 
the steady flow was enforced by imposing a splitter plate behind the cylinder 
to remove the vortex street effects.

In our simulations for this test case, both regular and irregular meshes have 
been used. Figure (8.3.2.c) shows a view of the regular mesh used in the 
computation. The outer boundary was placed at a distance of 10 chords away 
from the centre of the cylinder. The regular grid is composed of 7200 nodes, 
14400 cells, and 21720 edges. There are 120 grid points distributed on the 
cylinder surface, which can be seen in Figure (8.3.2.d). A finer regular mesh of 
240 x 60 nodes is also examined but there was no significant improvement in 
accuracy of the results. In this mesh, to simulate the experiments, a symmetry 
line is imposed at rear side of the cylinder. For the computations of this test 
case, the free-stream values were considered as (ui)° =  1.0, (1*2)° =  0.0 and 
(p)J =  1.0 (i =  l , # ^ ) .
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The accurate and efficient computation of the flow fluid for the case on irregular 
unstructured meshes requires not only an appropriate solution algorithm but 
also adaptive refinement of the mesh. Hence, the manual adaptivity based upon 
the features of the flow field is developed for this steady flow problem in which 
the grid in regions with steep gradients of velocity components are defined. 
The procedure can involve a complete redefinition of the mesh, which is called 
remeshing. This process requires information to generate a new mesh in an 
attem pt to achieve a solution which satisfies an intended quality of the results. 
Adaptive remeshing helps to confine the high resolution grid clusterings only 
in required regions, and hence provides considerable efficiency.

For a Reynolds number of 25, two irregular meshes were employed using mesh 
adaptivity procedure. These irregular meshes which were generated used the 
method of Advancing Layers or Advancing Normals [14,15], and consist of 
regular layers with minimum aspect ratio cells equal to 0.1. The adapted 
meshes were generated by manually refining the viscous wake region behind the 
cylinder. The refinement of the mesh was driven by the previous computed flow 
fields. The adaptivity procedure was achieved using sources points and lines, 
which were placed within the viscous wake region behind the cylinder to control 
local point spacing of the mesh [16]. By considering appropriate amplification 
and decay parameters for each point or line source adequate grid clustering can 
be defined within the regions of steep gradients of the flow variables in the wake 
region. Partial views of two adapted meshes, are presented in Figure (8.3.2.e) 
and Figure (8.3.2.f). The first mesh contains 15925 nodes, 31493 elements and 
47418 edges and the second mesh contains 30061 nodes, 59708 elements and 
89769 edges. Unlike the case with the regular mesh, no symmetric horizontal 
wall boundary condition was imposed at the rear of the cyfinder.

For all the cases, the computations took less than 5000 iterations to converge 
and approximately more than 7 orders of magnitude in the reduction of the 
pressure residuals was reached on SGI machine by using double precision. The 
convergence behaviour of the pressure and velocity on the regular mesh for 
Reynolds number of 25 are shown in Figure (8.3.2.g). The resulting stream 
fines, velocity and pressure contours are presented in Figures (8.3.2.h), (8.3.2.i) 
and (8.3.2.j), respectively.

In order to evaluate the accuracy of the algorithm, the measured distance of
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the wake stagnation point from centre of the cylinder, L = lwake/t, where t  is 

the cylinder diameter, can be compared with the computed results. In Figure 

(8.3.2.k) the predicted position of the wake stagnation point for the Reynolds 
number 17.5, 25, 50, 75, and 150 on regular and irregular meshes are compared 

with experim ental results. The computed skin friction and pressure coefficient 
on the cylinder surface are shown in Figure (8.3.2.1). It is observed tha t the 

pressure at the rear stagnation point of the cylinder is nearly equal -0.5, which is 
identical to the experimental measurement [15]. The comparison of the results 
obtained by the present algorithm are in good agreements with experimental 
data. Hence, the design of structures can particularly take advantage of the 
pressure loads computed from the CFD algorithm.

Figure 8.3.2.a Wind-induced collapse o f  oil storage tanks, 

Haydock, Lancashire, England, in 1967.

Figure 8.3.2.b Result o f  a wind tunnel simulation o f the collapse

o f  the shells o f  oil storage tanks.
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V iscous R egular M esh around a Circular Cylinder

Figure 8 .3 .2 .C  The mesh for viscous flow around a cylinder
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Figure 8.3.2M Partial view o f the regular triangular mesh
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I r re g u la r  A d ap te d  M eshes a ro u n d  a C ircu la r C y linder

Figure 8.3.2.e Partial view o f  the first mesh adapted for R  =  25

Figure 8.3.2.f Partial view o f the second mesh adapted fo rR  = 25 .
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V iscous Flow around a Circular Cylinder, 3ft =  25

-i
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Figure 8.3.2.g Typical convergence behaviour o f velocity compo­

nents and pressure residuals.

Figure 8.3.2.h Typical stream lines which show wake region behind
the circular cylinder.
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V iscous Flow around a Circular Cylinder, 3£ =  25
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Figure 8.3.2J Typical velocity contours around the cylinder 

( M in.= 0.0, Max. =  1.16, Intervals = 0 .1 )
»
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Figure 8.3.2.J Typical pressure contours around the cylinder 

(M in.= 0.54, Max. =  1.63, Intervals = 0 .1 )
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V iscous Flow  a ro u n d  a  C ircu la r C y linder
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Figure 8.3.2.k The computed wake stagnation point, L = lwake/f, 
compared with the experimental results [15].
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Figure 8.3.2.I Coefficient o f Pressure, Cp =  2(pi — p0)/ po\TJ0\2 
and Skin friction, Cf =  2 ti2/^oPo|Uo |2 on the cylin­
der for =  25.
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8.4 A pplications

In this section, the two-dimensional incompressible flow solver is employed to 
simulate some of the flow problems in the field of engineering. As an appli­
cation for the two-dimensional inviscid flow solver, the first case involves the 
simulation of wind flow over Swansea University Campus. This case demon­
strates the ability of flow solver to compute the flow field which can be used 
for environmental planning purposes. The effect of changing the arrangement 
of the buildings was presented by considering the wind flow from different di­
rections. The next application case is considered as the viscous flow over an 
aerodynamic configuration. The simulation of flow over a NACA0012 aerofoil 
presents the validation of the viscous flow solver to deal with a sharp trailing 
edges geometry. The results of the computation of this case can be used to 
investigate the ability of the flow solver to capture boundary layer separation 
and resulting recirculation near trailing edge of the aerofoil.

8.4.1 W ind Flow Through University Campus

The velocity and direction of the wind streams between buildings in urban area 
is a major consideration. This situation can produce unpleasant conditions for 
pedestrians and may even cause damage to the structures. The results of the 
present flow solver can be used to help predict the flow field. Such an evalua­
tion helps to design the optimal position of buildings and can be used in the 
field of environmental engineering. Assuming that the wind flow is in a very 
high Reynolds number, the viscous regions will be confined in thin layer close 
to the solid wall, and hence, the rest of the flow field can be considered invis­
cid. Therefore, the wind flow over two-dimensional plan of Swansea University 
Campus is simulated using the inviscid flow solver. Considering the wind from 
different directions, the calculations are made for 0.0 and 180.0 degree angles 
of incidence.

The grid employed is fully unstructured and was created by the Delaunay 
triangulation. The computational domain consists of 21453 triangles. The 
number of points is 11519 with 1635 points located on the walls of different 
buildings. A general and the partial view of the grid used for this calculation 
are shown in Figures (8.4.1.a) and (8.4.1.b). The computation of this test case
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started from the free-stream values as (ui)° =  Cos(a), (^2)° =  S in (a )  and 
(p)9 =  1.0 (i = l^Nnode) where a  is the angle with the horizontal cartesian 
axe x\. Figures (8.4.1.c) and (8.4.l.d) are the velocity vectors and streamlines 
resulting from wind flow at 0.0 degree of incidence to the x\ axis. Figures 
(8.4.1.e) and (8.4.1.f) present the same results for a flow at 180.0 degree of 
incidence to the X\ axis. As can be seen, the arrangement of the buildings 
with respect to the flow direction has an important effect on the flow direction 
and velocity magnitude at different positions of the campus. Although there 
is not any documented measurements for the local direction of wind between 
the main buildings, local observations show that the results from the inviscid 
solver are qualitatively realistic.

Figure 8.4.1.a Unstructured mesh for Swansea University Campus
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W in d  Flow over S im ulation  U n iversity  C am p u s

Figure 8.4.1 .b Close view o f the mesh for University Campus, 
generated by Delaunay triangulation method.
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W in d  Flow S im ulation  over U n iversity  C am p u s
( Angle of Incidence a = 0.0° )

Figure 8 .4 .1 .C  Typical velocity vectors through campus.

Wind Direction

Figure 8.4.1.d Resulting streamlines from inviscid flow simulation.
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W in d  Flow S im ulation  over U n iversity  C am p u s
( Angle of Incidence a =  180.0° )

Figure 8.4.1.e Typical velocity vectors through the campus.

Wind Direction

Figure 8.4.1.f Resulting streamlines from inviscid flow simulation.
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8.4.2 V iscous Flow Over The N A C A 0012 Aerofoil

Here, the ability of the flow solver to simulate the viscous flow over an aero­
dynamic configuration is investigated using a NACA0012 aerofoil. For this 
aerofoil which is widely used in many CFD experimental and numerical in­
vestigations, boundary layer separation and recirculation takes place close to 
the trailing edge. A well documented set of results is available for simulating 
inviscid and viscous flow over this aerofoil [17-22]. This case was considered 
to examine the behaviour of the flow solver to deal with this sharp ended con­
figuration. The view of the regular grid, which is used for this calculation is 
shown in Figures (8.4.2.a) and (8.4.2.b). The outer boundary is at a distance 
of 12 chords from the aerofoil. The computational domain consists of 4480 
triangular cells. The number of the points is 8704 with 128 points located on 
the aerofoil surface and the total number of the edges is 13184.

The computation of this test case started from the free-stream values as (ui)° =  
Cos(a), (1*2)° =  S in (a )  and (p)J =  1.0 (i =  1, N r ^ )  where The computation 
for the Reynolds number of 5000 and 0.0 angle of incidence was started from 
free stream values. The typical convergence of this case took less than 5000 
iterations for a reduction of eight orders of magnitude. The convergence history 
of the computed pressure and velocity residuals are plotted in Figure (8.4.2.c). 
In order to provide a general sense of flow field around the aerofoil, the results 
such as typical pressure contours Figure (8.4.2.d) , velocity contours Figure 
(8.4.2.e) and velocity vectors Figure (8.4.2.f) around the aerofoil are presented. 
Details of recirculation due to thickening of the viscous region, which cause 
flow separation, can be clearly seen in Figure (8.4.2.g). As can be observed 
in Figure (8.4.2.g), the recirculation near the trailing edge appears due to 
flow separation. This separated flow region appeared in the predictions of 
Swanson and Turkel [19]. The computed coefficients of surface pressure Cp and 
skin friction Cf on the aerofoils surface are presented in Figures (8.4.2.h) and
(8.4.2.i), respectively. The formulation for Cv is given by equation (8 .1) and 
Cf is defined by equation (8.5). Although most of the results of computations 
for =  1000 are presented, the calculation was successfully made for several 
Reynolds numbers in the range of 50 <  < 5000 at 0.0 degree angles of
incidence. For different Reynolds numbers of 50, 200 and 5000, the coefficients 
of surface pressure Cp and skin friction Cf on the both side of aerofoils surface 
are presented in Figures (8.4.2.j) and (8.4.2.k) .
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V iscous Regular M esh around a N A C A 0012 Aerofoil

Figure 8.4.2.a Regular symmetric mesh around the aerofoil.
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Figure 8.4.2.b Partial view o f the mesh around the aerofoil.
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V iscous Flow  over a  N A C A 0012 A erofoil ( a = 0.0°, =  5000 )
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Figure 8.4.2.C Convergence o f Pressure and Velocity residuals.

1 . 0  51.1

Figure 8.4.2.d Typical pressure contours around the aerofoil 
(Min. =0.811 Max.= 1.57 Intervals = 0.1).
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V iscous Flow  over a N A C A 0012 A erofoil (a  =  0 . 0 ° , =  5000)

1.1

1.0
0 . 6

0.8

1 . 1-

1.1

Figure 8.4.2.e Typical velocity contours around the aerofoil 
(Min. =0.0 Max.= 1.16 Intervals = 0.1).

Figure 8.4.2. f Typical velocity vectors around the aerofoil.

Figure 8.4.2.g Details o f the velocity vectors at the trailing edge 
o f the aerofoil.
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V iscous Flow  over a  N A C A 0012 A erofoil ( a =  0.0°, =  5000 )
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Figure 8.4.2.h Pressure coefficient on the aerofoil surface.
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Figure 8.4.2J Skin friction coefficient on the aerofoil body surface.
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V iscous Flow  over a N A C A 0 0 1 2  A erofoil ( a =  0.0° )
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Figure 8.4.2.j Pressure Coefficient on the aerofoil surface, 
for different Reynolds numbers.
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Figure 8.4.2.k Skin friction Coefficient on the aerofoil surface, 
for different Reynolds numbers.
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8.5 S u m m a ry

In this chapter, results from the two-dimensional inviscid and viscous algo­
rithms have been presented. From the test calculations the following points 
can be made.

For two-dimensional inviscid flow computations acceptable results have been 
predicted on irregular unstructured meshes without normalisation of the ar­
tificial dissipation term. The accuracy of the results have been improved by 
refining the mesh spacing close to the solid wall boundary.

In two-dimensional viscous flow simulations, diffusive terms have been com­
puted by implementing a cell-vertex finite volume formulation for computing 
viscous stresses and satisfactory results have been obtained.

Both inviscid and viscous flow solvers have been employed for simulation of 
some applied problems in the field of engineering.
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Simulation of Three-Dimensional Flows

9.1 Introduction

In this chapter, some test cases axe selected to study the ability of the pro­
posed finite volume algorithm to simulate both inviscid and viscous flows on 
unstructured tetrahedral meshes. Some available analytical and independent 
numerical solutions or other experimental results are used to assess the accu­
racy of the algorithm.

In Sections 9.2, the accurate implementation of the convective and artificial 
dissipation terms axe discussed. Sections 9.3 presents the results of the viscous 
flow computation using the Galerkin finite element formulation for computa­
tion of the viscous stresses. Section 9.4 presents results of the flow simulation 
for complex problems in the field of engineering. Note that in order to to save 
computational CPU time, the procedure of implicit residual smoothing is not 
applied for the three-dimensional tests cases which include more number of 
nodes than two-dimensional cases.
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9.2 Inv isc id  Flow  S im ulations

In this section the results of the implementation of the convective and artificial 
dissipation terms axe discussed. For inviscid flow simulations, the accuracy 
and convergence of the algorithm axe dependent on the implementation of 
appropriate artificial dissipation term, which is necessary due to application of 
central difference space discretisation. Since the artificial dissipation term is 
computed along the edges, the irregularity of the number of edges connected 
to each node in three-dimensional meshes causes some difficulty. Hence, it is 
necessaxy to normalise the artificial dissipation term.

The inviscid flow around a sphere is considered as a test case. The main 
motivation for selecting this case comes from the fully three-dimensional be­
haviour of flow around a sphere. Hence, this test case can be used to verify the 
performance and accuracy of the three-dimensional inviscid flow solver. An 
analytical incompressible solution for this example has been developed using 
a complex potential formulation [1]. Here both regular and irregular meshes 
have been used to assess the performance of the inviscid paxt of the flow solver 
on different types of unstructured tetrahedral meshes. By talcing advantage of 
the symmetry of the flow, both meshes axe generated only around a quarter of 
a complete sphere.

A specific regular mesh generator is developed for this test case using spherical 
system of coordinates. The grid points for each quarter of the sphere axe con­
structed by putting a number of coupled Khiiam (Pascal) triangulation patches 
on top of each other and mapping into the spherical coordinates. Connection 
of the corresponding nodes of the patches in the radial direction forms a set of 
prismatic volumes, each of which consists of three tetrahedra. These elements 
can be arranged in a symmetrical manner in neighbouring prisms. Regulax 
refinements were imposed neax the stagnation points on the sphere surface. 
The size of the tetrahedra were increased using an expansion parameter in all 
directions from the two poles of the sphere. Figure (9.2.a) shows the view of 
the regulax mesh of a quarter of sphere used in the computation. The volume 
mesh is surrounded by one solid wall, one far field and two symmetry surfaces. 
The outer boundary was placed at a distance of 12 radii away from the centre of
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cylinder. The grid is composed of 60840 nodes, 337896 cells, and 684608 edges. 
There are 17632 grid points distributed on the wall surface. Some details of 
the mesh are shown in Figure (9.2.b).

An irregular mesh was also created using the Delaunay triangulation method 
[2], which is embedded inside the PSUE package [3]. The mesh was adapted to 
the flow condition by refining regions in front and behind the sphere surface. 
The manual adaptivity procedure was developed by local refinement of the 
mesh. This refinement is enforced by positioning source points within the 
domain close to the stagnation points. By defining the grid resolution in certain 
regions around the source points grid clustering can be controlled. Partial views 
of the irregular mesh are presented in Figure (9.2.c) and Figure (9.2.d). The 
mesh contains 37542 nodes, 196463 elements and 402425 faces.

The computation of this test case started from the free-stream values as (ui)° =  
1.0, (u2)i =  0.0, (u3)° =  0.0 and (p)° =  1.0 (i =  l^Nnode). For both types of 
meshes, the computations took less than 10000 iterations to converge and since 
the procedure of residual smoothing is not applied, approximately four orders 
of magnitude in the reduction of the pressure residuals was reached. The typ­
ical convergence behaviour of the pressure and velocity are shown in Figure 
(9.2.e). Typical computed velocity vectors axe presented in Figure (9.2.f). The 
contours of pressure on the sphere and symmetry surfaces of regulax and irreg­
ular unstructured meshes axe shown in Figuxes (9.2.g) and (9.2.h), respectively.

The pressure coefficient, Cp, on the sphere surface for the regulax mesh and the 
analytical solution [1] axe shown in Figure (9.2.i). For the irregular mesh the 
computed results of Cp on the sphere surface axe compaxed with the analytical 
solution in Figure (9.2.j). Note that, the analytical solution of Cp is plotted 
only for the sphere wall, whilst the computed Cp is plotted for all the nodes 
on the sphere and intersection of the two symmetry walls. In general, for both 
regulax and irregular meshes, the agreement between the computed Cp and 
analytical solution [1] axe quite acceptable.
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Figure 9.2.3 Regular mesh around a quarter o f sphere.

Figure 9.2.b Regular mesh around a quarter o f a sphere.



Chapter 9 : 3D Flow Simulation _______________

Irregular M esh around a Sphere

166

Figure 9 .2 .C  Irregular mesh around a quarter sphere.

wJXi;VaVaW

Figure 9.2.d Irregular mesh around a quarter sphere.
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Figure 9.2,e Typical convergence history o f pressure and velocity 
residuals (computed on the irregular mesh).

167

Figure 9.2.f Typical computed velocity vectors on the sphere and 
symmetric surface.
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Inviscid  Flow a ro u n d  a  S p h ere
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Figure 9.2.g Typical computed pressure contours on the sphere
and symmetric surface for the regular mesh (Min.=0.335 
, Max.=1.57, lntervals=0.1).
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Figure 9.2.h Typical computed pressure contours on the sphere
and symmetric surface for the irregular mesh (Min.=0.334 
, Max.=1.54 , lntervals=0.1).
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9.3 V iscous Flow Sim ulations

In this section the implementation of the viscous term of the three-dimensioned 
flow solver is examined. For the evaluation of viscous stresses, the application of 
the Galerkin finite element formulation is studied. Flow over a flat plate, which 
is widely used for validation of incompressible laminar flow solvers, is chosen 
as a test case to investigate the accuracy of the computation of the viscous 
term. The comparison of the computed results with the results from Blasius 
similarity solution axe used to assess the accuracy of the velocity components 
inside the boundary layer region. The mathematical similarity solution for a 
flat plate parallel to the free-stream is found by Blasius [5]. The relations, which 
were described in Section (8.3.1), present unique relations between components 
of velocity U\ and U2 and the dimensionless parameter y =  £2/ ( 21)- These 
parameters are valid for all the Reynolds numbers in the limit of incompressible 
flow. Here, tzi and U2 are the components of the velovity in X\ and £2 direction.

For this test case, a regular mesh is generated by stacking two-dimensional 
regular grid points and then five tetrahedra are considered inside every hexag­
onal grid spacing. The width and height of the flow domain are considered 
equal to 50% and 100% of the plate length, respectively. In this test case, the 
free stream velocity components axe imposed at the inflow boundary and free 
stream pressure at the outflow boundary. The remaining variables at inflow 
and outflow boundaxies axe obtained by extrapolation from inside the domain. 
Although the computation axe performed without imposing any special fax 
field boundaxy condition treatment, i.e. enforcing velocity profile at the out­
flow boundary, symmetric walls axe imposed at the two edges of the plate in 
the flow direction. In order to reduce the effect of free-stream values, the sym­
metry boundaxies axe considered equal to 50% and 100% of the plate length at 
inflow and outflow, respectively. The general and partial view of the applied 
mesh are shown in Figures (9.3.a) and (9.3.b). The grid is composed of 18480 
points, and 97977 edges. The aspect ratio of the tetrahedra located at the 
leading edge of the plate axe equal to one with an expansion of the mesh in 
both directions leading to triangles with aspect ratio of 100 at the end of the 
plate.
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The computation was performed on the grid, starting from free stream values. 
The free-stream values are considered as (ui)° =  1.0, (u2)° =  0.0, (u3)J =  0.0 
and (p)J =  1.0 (i =  1, ./Vnode). Although the residual smoothing is not applied, 
after less than 5000 iterations, the residuals based upon pressure and velocity 
components reduced by 4.5 orders of magnitude. The convergence behaviour 
of the pressure and velocity residuals are shown in Figure (9.3.c). In order to 
present the independency of the results from the choice of Reynolds number, 
the results of u =  U i/|U | at a certain position of the plate, x\ =  0.40, are com­
pared in Figure (9.3.d) with Blasius similarity solution for different Reynolds 
numbers of 1000, 2500, 5000 and 10000. Note that all the computations, for 
different Reynolds numbers are done on the same mesh. Typical velocity and 
pressure contours for =  1000 , computed by the present algorithm, me shown 
in Figures (9.3.e) and (9.3.f), respectively.

The accuracy of the computations can be assessed by comparing the computed 
results with the results of Blasius [5]. For comparison of the computed results 
at different position of the plate length, a constant Reynolds number of 5000 is 
considered. The accuracy of the horizontal and vertical components of velocity 
ui and u2 at different points normal to the plate are studied using the param­
eters u and v defined by equations (8.3). The comparison of these parameters 
with the Blasius solution are presented in Figures (9.3.g) and (9.3.h). The 
horizontal components of velocity U\ is plotted for different r 3 values in Figure
(9.3.i). In general there is agreement between the computed results and the 
Blasius similarity solutions.
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The Flat P late V iscous M esh

Figure 9.3.a General view o f the regular 3D mesh for a Flat Plate.

Figure 9.3.b Partial view o f the mesh close to the Flat Plate edge.
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Figure 9.3.1.C The convergence behaviour o f the pressure and ve­
locity residuals.
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Figure 9.3.e General view o f the velocity contours
(Min. = 0.0, Max. = 1.1, Intervals = .05)
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Figure 9.3.f General view o f the pressure contours
(Min. = 0.9, Max. = 1.41, Intervals = 0.1).
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Figure 9.3.g Comparison o f u =  U i/|U | normal to the plate with 
Blasius similarity solution for different positions on 
the plate (y =  x2^p\ U\ / 2px i ) .
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Figure 9.3.h Comparison ofv = u2/ \ \ J \ y / ^ ^  normal to the plate 
with Blasius similarity solution for different positions 
on the plate (y =  x2y/p\1U\ /2pxi ) .
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9.4 A pplication to C om plex Problem s

In order to assess the ability of the solver to deal with geometrically complex 
problems, some test cases were selected which relate to problems associated 
with Civil Engineering. The first case is the external wind flow over a tall 
building. The pressure distribution on the building surface can be used for 
environmental and structural design purposes. The next test case is chosen 
as the flow over a single cooling tower, can be achieved. The last test case 
is the flow over three cooling towers. The results from this flow simulation 
can be used to evaluate the interference effects between towers. The results 
can be applied in both fields of the Structural and Environmental Engineering. 
For each case, the flow field is presented in terms of the pressure and velocity 
contours as well as velocity vectors and stream lines. Some of the results are 
compared with experimental data.

9.4.1 W ind Flow over a Tall Building

This test case involves the environmental and structural problem of the simu­
lation of steady inviscid wind flow around buildings. Wind is one of the main 
climate factors influencing the design of buildings. A tall building, by its na­
ture, is an obstacle to the wind and deflects air along various streams and 
channels, which can produce unpleasant conditions for pedestrians and may 
even lead to structural damage. Experiments show that the buildings, which 
are substantially taller than their surroundings, present a large obstruction to 
the wind, deflecting it both horizontally and vertically. One of the effects of 
this deflection is to create vortices, and increased wind speeds near ground 
level in the area around the building. In these regions some problems may be 
presented by the locally accelerated flow.

The model which is chosen here consists of two separate buildings. For this 
case some experimental results are available [7]. In order to simulate the ex­
perimental model, the second building is considered to be the taller one. The 
height and width, as well as the distance between the two buildings, are con­
sidered to be equal to unity. All other dimensions are assumed to be equal to
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one quarter of the height of taller building. The layout of the simulated model 
is shown in Figure (9.4.1.a).

An irregular unstructured mesh was created using Delaunay triangulation 
method [2], which is embedded inside the PSUE package [3]. The zone of 
refinement behind the main building was adapted to the vortex wake region 
behind the taller building. The adaptivity procedure was developed by refining 
the mesh and imposing point and line sources for local refinement within the 
horseshoe shape wake region behind the tall building and close to the walls [4]. 
The volume mesh is surrounded by ten solid walls, one fax field and one sym­
metry boundary. The mesh contains 39797 nodes, 220878 elements and 447863 
faces. The partial view of the adapted mesh which is used for the simulation 
is presented in Figure (9.4.l.b).

For this case, the computations took about 7000 explicit iterations to converge 
and approximately 4.5 orders of magnitude in the reduction of the pressure 
residuals was achieved. The velocity distribution axound such a building and 
the wind pressures on the walls and roof axe all closely linked. The pressure 
load on the surfaces of the building can be used for structural design purposes. 
The computed pressure coefficient Figure (9.4.1.c) and the results from ex­
perimental model Figure (9.4.1.d) show that the distribution of the computed 
pressure coefficient on the wind ward building wall is in quantitative agreement 
with experimental data.

The experimental data indicates that the flow close to the windward face of 
the tall building radiates from a central region at the height of some three 
quarters of the building height. The computed velocity vectors on the surfaces 
of the main building are shown in Figure (9.4.1.e) and can be compared with 
the related experimental results, which axe created using smoke flow, in Figure 
(9.4.1.f).

The vertical vortices between and behind the buildings were made visible by 
injecting smoke in the experimental test. The computational results at an 
imaginaxy intersecting surface parallel to the flow direction passing through 
buildings and the experimental results can be compaxed in Figures (9.4.l.g) 
and (9.4.1.h).
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Below the level of the flow stagnation point, at the front face of the building, a 
considerable quantity of air flows downwards and outwards to be concentrated 
near ground level at the wind ward corners. These accelerated air-streams pass 
around the corners to form two jets of air, which stretch downwind for a con­
siderable distance, forming horizontal and vertical vortices [7]. The computed 
velocity vectors at ground surface are shown in Figure (9.4.1 .i) and indicate 
a horizontal horseshoe vortex at ground level behind the main building. This 
horse-show vortex was made visible using a film of pigmented oil in the ex­
periment Figure (9.4-l.j). Experimental measurements show that the distance 
between two buildings has a great effect on the horseshoe vortex patterns. The 
slight difference in location of this vortex between the computed and the exper­
imental data is due to viscous effects and the distance between the buildings.

As can be seen the flow solver predicts flow behaviour which is in general 
qualitative agreement with experimental data.
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Figure 9.4.1.3 The layout o f the simulated model o f buildings [7]

Figure 9.4.1.b Partial view o f triangular surface mesh for wind flow 
over tall buildings
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Figure 9 .4 .1.C Typical computed pressure coefficient Cp on building 
surfaces (Min.=-0.15, Max.=0.85, Intervals =0.1).

Figure 9 .4 .1 .d  Experimental results for the pressure coefficient Cp 
on the main windward wall
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Figure 9.4.1.e Typical com puted pressure contours on the building 

and ground surfaces

Figure 9.4.1. f  Experimental results for the pressure coefficient on

the main building surfaces
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Figure 9.4.1.g  Typical velocity vectors passing the tall building 
on a section o f the domain parallel to the flow direc­
tion

Figure 9 .4 .1.h Experimental results showing the flow over tall build­
ing
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Figure 9.4.1.i Typical velocity field around the buildings at ground 
level

Figure 9.4.1.j The flow pattern at ground level obtained by exper­
iment
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9.4.2 W ind Flow over a Single Cooling Tower

The next case is the application of the three-dimensional inviscid flow solver in 
the field of structural engineering. This case is the flow simulation over a single 
cooling tower. The collapse of three cooling towers of Ferry Bridge in North 
England due to wind effects absorbed the attention of many researchers in the 
field of fluid dynamics and structural engineering. This interesting test case 
involves different fluid phenomena, i.e. different direction of the flow patterns 
due to the slopes in different directions. Here, a single cooling tower, which 
contains no vertical curvature, is chosen. The details of dimensions of the tower 
which axe normalised by the base diameter axe given by Figure (9.4.2.a).

An unstructured mesh was created by the Delaunay triangulation utilising the 
PSUE package. The surface meshes comprise of a fax field boundary, three 
solid wall boundaxies and three symmetry boundaxies. The fax field boundary 
is located 12.5 times the base diameter of the tower from its centre. The grid 
consists of 367179 faces and 179987 tetrahedra cells. The number of points 
used is 33582 with 14410 points located on the boundaries. A general view 
of the grid used for this calculation is shown in Figure (9.4.2.b). For all the 
results presented in this section the direction of wind flow is from the left to 
the right side.

The computations take 10000 explicit iterations until a 3.5 order of magni­
tude reduction for pressure and velocity residuals is achieved. Figure (9.4.2.c) 
presents the top view of the velocity vectors on different surfaces and Figure 
(9.4.2.d) shows the velocity vectors on the tower surface and an imaginary 
plane passing through the centre line of the structure. Figures (9.4.2.e) and 
(9.4.2.f) present general views of the pressure and velocity contours on the 
tower and ground surface. The results of computation show the application of 
the inviscid flow solver for evaluating the pressure distribution on the structure.
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W in d  Flow over a Single C ooling Tow er
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Figure 9.4.2.a General dimensions considered for the tower.

Figure 9.4.2.b Unstructured triangular mesh for cooling tower.
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Figure 9.4.2.C Velocity vectors resulting from inviscid computa­
tions.

Figure 9.4.2.d Velocity vectors resulting from inviscid com puta­

tions.
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Figure 9.4.2.e Wind ward view o f pressure contours on the ground 

and tower surface (Min. =0 08, Max.=1.58, Intervals 
= 0 .1).

Figure 9.4.2J Wind ward view o f velocity contours on the ground 
and tower surface (Min.=0.0, Max.=1.63, Intervals 
= 0 .1).



Chapter 9 : 3D Flow Simulation 189

9.4.3 W in d  F low  O ver T h re e  C ooling Tow ers

The last case to be considered is the flow simulation over three cooling towers, 
which is the application of the three-dimensional inviscid flow solver in the 
field of both environmental and structural engineerings. The investigations 
of the effect of grouping cooling towers is of practical interest. This is an 
interesting test case, which involves several fluid flow phenomena, including 
different directions of the flow due to the grouping the structures, curvatures 
of the towers, expansion and contraction of flow and the existence of several 
stagnation points.

The grid applied was fully unstructured and was created by Delaunay trian­
gulation utilising PSUE package [3]. The computational domain consists of 
283957 faces and 137824 tetrahedra cells. The number of points is 25764 with 
16618 points located on the boundaxies. A general view of the grid used for 
this calculation is shown in Figures (9.4.3.a).

After 7500 explicit iterations a reduction 3.5 orders of magnitude is observed for 
the pressure and velocity residuals. Figure (9.4.3.b) presents the top view of the 
velocity vectors on different surfaces of the mesh. Figures (9.4.3.c) and (9.4.3.d) 
present wind ward views of typical pressure and velocity fields on the ground 
and on the surfaces of the towers, respectively. Figures (9.4.3.e) and (9.4.3.f) 
present two different view of typical three-dimensional stream lines around 
the set of towers. The visualisation package ENSIGHT was used to produce 
these plots. The results from the solver can be used for obtaining the design 
parameters such as forces on the the towers due to different arrangements.
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Figure 9.4.3.a Unstructured mesh for three cooling towers,

Figure 9.4.3.b Velocity vectors on the towers and ground surfaces 

(W ind flow direction is from the left to the right).
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Figure 9 .4 .3 .C  Wind ward view o f typical pressure field on the 

ground and on the sufaces o f the towers (M in.=0.335 
, Max.=1.66).

M ax.

Figure 9 .4 .3 .d  Wind ward view o f typical velocity field on the ground
and on the sufaces o f the towers (Min.=0.014 , Max.=2.59).
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Figure 9.4.3.e General view o f stream lines

Figure 9.4.3J Top view o f stream lines
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9.5 S u m m a ry

In this chapter, appropriate test cases were selected to study the performance 
of the algorithm for both inviscid and viscous three-dimensional flow simula­
tions. Acceptable results axe achieved from the inviscid flow computations by 
applying the normalisation procedure for the edge-based artificial dissipation 
term. Application of the Galerkin finite element formulation for the computa­
tion of viscous terms produces acceptable results on unstructured tetrahedral 
meshes.

Some application were employed to evaluate the ability of the flow solver to 
predict some demanding flows in the field of engineering. From the results it 
can be concluded that the flow solver is able to predict the pressure and velocity 
fields over complex configurations, which is applicable for the structural design 
and environmental planning. It seems that the algorithm can be taken as a 
corner-stone for further development to accurately solve realistic engineering 
problems.
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10

Concluding Remarks

10.1 C onclusions

A contribution in the area of computational fluid dynamics has been made to 
the development of an incompressible flow solver capable of simulating two and 
three-dimensional flows. The incompressible Navier-Stokes equations has been 
modified using the Artificial Compressibility approach. A side-based algorithm 
was adopted based upon a cell-vertex finite volume scheme. The algorithm was 
designed to work on unstructured meshes consisting of triangular and tetra­
hedral cells in two and three dimensions, respectively. The development was 
achieved in two stages. At the first stage, a code has been developed to solve 
inviscid flow problems, and then, it has been extended for computing lami­
nar viscous flows. In the second stage, the solution algorithm was extended 
to three dimensions in order to simulate flow problems on unstructured tetra­
hedral meshes. Various flow problems were used to verify the accuracy and 
performance of the two and three-dimensional flow solvers. In this chapter, 
after a review of the important points in development of the algorithm, a brief 
conclusion is made about the choice of parameters which axe used in the present
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work. Finally, suggestions about further work can be found in the last section, 
study.

10.2 D evelopm ent o f the Flow Solver

Compressible flow solvers are able to simulate flows with a Mach number above 
approximately 0.2. Extensive numerical practices show that, when the com­
pressible set of the equations have been applied in the field of slightly com­
pressible flow, the speed of sound becomes much larger than the speed of 
convection. Hence, the efficient numerical methods which have been estab­
lished to solve the compressible Navier-Stokes equations do not work well for 
an incompressible flow problem. On the other hand, for a truly incompressible 
flow problem, because of the very small changes in the value of the specific 
mass, the time derivative of the specific mass in the continuity equation tends 
to zero. Therefore, a divergence free velocity constraint is imposed on the mo­
mentum equations. The absence of a time derivative of specific mass destroys 
the hyperbolicity of the set of Navier-Stokes equations, and hence, common 
numerical methods for solving the compressible flow equations fail to solve 
the incompressible flow problems. In order to overcome this problem, several 
methods have been introduced using derived and primitive variables.

If, the interest is only in steady flow, artificial compressibility approach is an 
efficient way around the difficulty. This approach removes the high speed of 
sound from the system of equations by prescribing a pseudo-temporal evalua­
tion for the pressure which makes the set of equations hyperbolic. This modifi­
cation casts the set of equations well conditioned for using numerical methods 
which have been established for the solution of the compressible Navier-Stokes 
equations. However, due to the introduction of a pseudo transient pressure 
term the time accuracy of the equations is destroyed and they can only be 
used when the steady state flow simulation is of interest. Note that, the pseudo 
temporal derivative of pressure tends to zero when the solution converges to 
steady state and then the set of modified equations satisfies the incompressible 
Navier-Stokes equations. This approach is attractive because of its efficiency 
due to direct coupling between the pressure and velocity fields as they are 
advanced in pseudo time. Hence, the proposed modified equations is capable 
of working only with the continuity and momentum equations and there is no
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need to apply an additional equation for the computation of the pressure field.

The numerical solution procedure was adopted using a cell-vertex scheme fi­
nite volume scheme which discretises the integral form of the governing equa­
tions. Application of such a scheme on unstructured triangular and tetrahedral 
meshes uses a side-based algorithm which provides the ability to deal with com­
plex geometries in both two and three dimensions. In the present algorithm, 
the governing equations were discretised in space using the second order cen­
tral differencing scheme. Thus, in order to control the instability of the scheme 
for both inviscid and viscous flow simulations, the application of the artificial 
dissipation was necessary.

In the present algorithm, the artificial dissipation term was evaluated by ap­
plying the Biharmonic operator which was computed using an edge-based al­
gorithm. Hence, the size of the grid spacings and number of edges connected 
to the nodes directly affected the value of the artificial dissipation at different 
nodes. Although the worse effects of mesh spacing were improved by refining 
the mesh near the regions of high gradient flow variables and derefining in 
the zones of the low gradient flow variables, using unsmooth meshes, which 
includes sudden changes of mesh spacing degraded the effectiveness of the ar­
tificial dissipation. However, the mesh dependency of the artificial dissipation 
term was recovered using appropriate scaling factors. Hence, the artificial dis­
sipation term  was scaled by applying suitable scaling factors proportional to 
the maximum eigenvalue of the flux Jacobian matrices of the convective part 
of the governing equations. The effect of the variation of the number of edges 
connected to every node was resolved by normalising the artificial dissipation 
term. However, for two-dimensional cases the present simulator gave accept­
able results using appropriate meshes, but for three-dimensional problems the 
application of normalisation proved demanding for the computation of the ar­
tificial dissipation. In the present work, proper normalisation techniques for 
unstructured triangular and tetrahedral meshes were adopted. In general, the 
accuracy of the results were improved by reducing the value of the coefficient of 
the artificial dissipation whilst the convergence behaviour of the pressure and 
velocity residuals showed some, although insignificant, deterioration. Although 
the timing of this parameter was somewhat time consuming, it provided the 
ability to apply the minimum required numerical dissipation.
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In the simulation of viscous problems, the accuracy of the results depended 
upon the applied formulation for computation of viscous term. For the present 
cell-vertex scheme three different formulations were studied. The first one was 
the cell-vertex finite volume formulation which produced accurate results on 
the two-dimensional regular meshes. An alternative formulation was developed 
by modifying the stencil for computing the viscous stresses. The next formu­
lation was the Galerkin finite element formulation which produced accurate 
results for the triangular and tetrahedral meshes. Since this formulation was 
independent of the shape of the cells in the control volume, it was found suit­
able for simulating viscous flow problems on three-dimensional unstructured 
meshes. However, for three-dimensional cases, the last formulation was found 
more efficient than the modified cell-vertex finite volume formulation which 
required an additional set of points on both side of element faces.

In the present algorithm, the time stepping was used as relaxation iteration to 
the steady state. The multi-stage Runge-Kutta schemes which have originally 
been developed for the solution of the compressible Navier-Stokes equations 
were adopted for integrating the governing equations to steady state. Two 
schemes of three and five-stages axe investigated. The three-stage Runge-Kutta 
schemes was chosen for the computation of all the case studies because of its 
efficient performance in terms of speed of convergence.

Acceptable results throughout all the domain were achieved when free stream 
values and extrapolated values of the flow variable were used together. In the 
present algorithm, the free stream values of velocity components and pressure 
were imposed as the value of flow variables on inflow and outflow boundaries, 
respectively. The values of the remaining flow variables on the far field bound­
aries are extrapolated from inside the domain. For external flow computations, 
far field boundaries were considered to be far enough from solid body.

The proposed algorithm has been studied for general unstructured grids which 
were used for flow simulation around arbitrary geometries. The computations 
were started from free-stream conditions without any pre-knowledge about the 
flow field and flow conditions. Adopting a side-based data structure, together 
with code vectorisation provided a good performance on high-speed vectorised 
computers, particularly in three dimensions. The developed algorithms were 
applied to standard test cases. The ability and accuracy of the flow solver
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on unstructured triangular and tetrahedral meshes were presented for different 
test cases. The developed algorithms have shown their ability to simulate 
inviscid and laminar viscous flows.

10.3 C hoice o f P a ra m e te rs

The stability of the present incompressible flow solver was directly related 
to the parameter of the artificial compressibility {32. The present artificial 
compressibility approach was adapted with the idea of local time stepping 
by considering the parameter /?2 proportional to the local velocity field and 
introducing an empirical coefficient Cp2. The empirical coefficient taken as 
Cp2 =  3 presented stable convergence for both inviscid and viscous flow sim­
ulations. However, the minimum limit of ft2 =  0.3 provided a more efficient 
performance.

For the present central difference scheme, the minimum and maximum bound 
for the coefficient of the artificial dissipation dictated the accuracy and con­
vergence of the computations. Therefore, in the present scheme, the constant 
of the artificial dissipation term 1/4 was found as the most sensitive parame­
ter. Accurate tuning of this parameter ensured the accuracy and stability of 
the scheme. In general, acceptable results were obtained using the value of 
1/4 =  3/256, where the normalisation of the artificial dissipation term was not 
applied, whilst the value of this parameter was reduced to v4 =  1/256 where 
the normalisation of the artificial dissipation was employed.

By improving the quality of the mesh, larger values of CFL number could be 
applied which defined the maximum time stepping limit and obviously affected 
the rate of convergence. In this work, the CFL number was chosen as 1.0 < 
C F L  < 3.5 for various test cases. At early stages of the computations, the 
rate of the convergence was affected by large disturbances in of the solution 
inside the flow domain, especially close to the solid bodies. Hence, the wall 
boundary conditions, the maximum time stepping limit, CFL number and 
the minimum required value of the constant of the artificial dissipations 1/4, 

were enforced through a number of iterations. In this way, accurate results 
were achieved without destroying the stability and convergence speed of the 
numerical solution.
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Although the procedure of residual smoothing improved the rate of the conver­
gence of the two-dimensional computations, it was not employed for the three- 
dimensional computations because of its expensive explicit nature. In the case 
of applying residual smoothing as a convergence accelerator, the scheme had 
better performance using the weighting parameter e =  0.25.

10.4 R eco m m en d a tio n s  for F u r th e r  W ork

The results of the research carried out in this thesis suggest that the proposed 
approach is very flexible and is capable of producing realistic flow predictions. 
It is felt that the material covered in this thesis is a good start for further 
study in the area of incompressible inviscid and viscous flow simulations us­
ing the cell vertex finite volume method on unstructured triangular meshes. 
Nonetheless, much remains to be done to improve both accuracy and efficiency 
of incompressible flow solver developed in the present work. The following 
sections give some suggestions for further research in these directions.

(1) A rtific ia l D issipation

Extensive numerical experimentations suggest that one of the factors af­
fecting the accuracy and convergence of the central differencing discretisation 
scheme is the formulation of the artificial dissipation term. Application of this 
term requires appropriate mesh and parameter tuning which involves extensive 
effort. It could be beneficial, to find simple formulation which does not include 
tuning procedure. An alternative is the implemention of other form of space 
discretisation, such as higher order upwind or TVD schemes.

(2) T u rb u len ce  M odel

The most pressing area requiring additional work is the inclusion of a tur­
bulence model. In most real problems it is important to predict the turbulent 
effects on the flow solution.

(3) Transient Flow Sim ulations
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Very recently, the approach of the artificial compressibility has been ex­
tended to the transient problems using semi-implicit schemes. It seems that, 
with some effort, the present scheme can be extended to the solution of tran­
sient problems on unstructured meshes. This can be done by adding an im­
plicit loop for time stepping after the convergence of every explicit pseudo time 
marching to steady state conditions.

(4) Parallel Processing

An interesting area of work is the development of the capability to take 
advantage of parallel processing techniques. Mesh decomposition approaches 
have been already developed for the compressible flow solvers. Adopting the 
same techniques for the present solver facilitates a further development of the 
incompressible algorithm and would make it more applicable to large engineer­
ing problems.

(5) Free Surface Boundary. Condition

Adding a free surface boundary conditions would provide the ability to 
solve more applied problem in the field of shallow water simulation and hy­
draulics.

(6) Grid A daptation

Preliminary results indicate that more optimal results can be achieved 
using the combination of grid refinement and derefinement procedures. Auto­
matic adaptation based upon an appropriate error estimation scheme, would 
help to obtain more accurate numerical solutions.

(7) M ulti-grid Techniques

Numerical experimentations indicates that, as the physics of the flow in­
crease in complexity, the size of the local time steps reduces. In such circum­
stances the dependency on convergence accelerating techniques will increase 
and multi-grid technique is an approach which should be investigated.



A

Preconditioned Method of Turkel 

for Incompressible Flow

Turkel [2] introduced different methods for solving the system of the equations 
using the conserved and primitive variables for both incompressible and low 
speed compressible flows. In this appendix, Turkel’s preconditioner method 
for solving the system of equations using the conserved variables for incom­
pressible flow is presented in three-dimensional form. However, the intent is to 
use methods tha t take advantage of the hyperbolicity of governing equations. 
Hence, the work is concentrated on the inviscid part of the equations.

Turkel considered a generalised method of Chorin’s artificial compressibility 
approach [1]. The method allows the artificial time derivatives in all the equa­
tions, and not just the continuity equation, to provide faster convergence to 
the steady state conditions and facilitate the use of both the conservative and 
primitive variables. This generalised form of equations is formed by introduc­
ing two arbitrary variables of a  and f} in the general preconditioning matrix.

202
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Then, it was shown that this form in results in a symmetric hyperbolic system 
and so it is well-posed for numerical solution.

This set of the equations which contains modifications in the unsteady terms 
of continuity and the momentum equations, can be written in the three- 
dimensional form as

_  i dW  . d fc dgc dh*\
p  —  +  + ^ -  +  a ^  = 0at dx\ d x ’t

( A l )

where

P "1 =

P2

( a + l ) u i
P2

(a + l)« 2
P2

( a + l ) u 3

0

1

0

0

0

0

0

1

(A. 2)

Its inverse is given by

/32 0

-(a + lju! 1

-(a +  1 )u2 0

■(a -f l )u 3 0

0

0

1

0

(A 3)

The preconditioning matrix is to be used as a device to create a well posed 
hyperbolic system of equations. Note that, a  =  — 1 gives Chorin’s artificial 
compressibility approach. The system of equations can be integrated to a 
steady state solution the the incompressible inviscid equations.

In order to present the effect of the preconditioner matrix of P , equation (A.l) 
can be written in a quasilinear form

d W  , dW  ^ ,d W  ^ ,d W  . .
~ d f  + G l +  +  3 =  ( }

where the modified flux Jacobian matrices G^, G '2 and G 3 axe given by
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g ; =  p
dfc
dW

- 0 p 2 0 0 -
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dhc
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- 0 0 0 p 2

0 u 3 0 — a u i

0 0 U3 — a u 2

. 1 0 0 (1 -  o t ) u 3

Similar to the artificial compressibility approach, the hyperbolicity of equation 
(A.4) can be determined by examining the eigenvalues of m atrix H' which is 
a linear combination of the modified flux Jacobian matrices taken as

H' = GiCi + G'C2 + G'3C3 = (A  6 )

Cx

(2

C3

Cl^2 W *  b P

(1 — a X lU i  +  ( 2U2 +  ( 3 U3 — ( 2 ^ 1  — ( 3 GU1

-  Ci&u2 C i^i +  (1 -  <2X2^2 +  (3^3 -  (3OM2

-  ClOiU3 (,2&U3 C l ^ l  +  (>2 U 2 +  ( 1  — < ^ )C 3^ 3

It can be shown that, for arbitrary real values of £1, ( 2 and f3, the eigenvalues 
of H' are real and are given by
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x _  U  x U  +  a x _  U  +  a x _  V ~ a
1 (1 -  a )  2 (1 -  a )  3 (1 -  a )  4 (1 -  a )  ( )

where

U  =  (1 — a ) (u i£ i  +  U2C2 +  1*3 ( 3 ) (A .8)

and

a = U2 +4^2(Ci2 + C22 + C32) (A.9)

The convergence and stability of the explicit solution of this system of the hy­
perbolic equations depends upon the eigenvalues of the flux Jacobian matrices. 
In addition, the eigenvalues Ai, A2, A3 and A4 can be used for the construction 
of the fax field boundary conditions. However, multiplication of the unsteady 
terms by the preconditioning matrix P  provides a control over the eigenvalue 
magnitudes, permitting the alternation of the system in such a way that renders 
it more appropriate for using for explicit numerical solution techniques. The 
system of equations can be well conditioned for numerical solution by selecting 
parameters a and (52 in such a way that minimises the maximum wave speed of 
the system. The wave speed of the system of equations can be found by taking 
the Fourier transform of the quasilinear equation (A.4) and then substituting 
the £1, £2 and £3 components of the Fourier transform variables for fi, £2 and 
( 3  into equation (A.7), respectively. From the expression of these eigenvalues, 
the maximum ratio of wave speeds can be determined algebraically in Fourier 
space. An approximation must then be made for application in physical space. 
Following this procedure, Turkel proposed the choice for an optimal value of 
(32 given in an a priori choice of a  as

fo r  a  <  1 (32 =  (2 — a) (u \  +  u\ +  u \ )

(A. 10)

fo r  a  >  1 (32 =  a  ( u\ +  u\  +  u\ )

Note that, for artificial compressibility preconditioning corresponding to a  =  
— 1 , the following scaling for /32 results

fd2 =  3(^1 +  u\ +  u l ) (A.11)



B

Galerkin Finite Element Formulation 

for Triangular Meshes

An alternative formulation for evaluating the viscous term for the cell-vertex 
finite volume scheme is developed [3] based on a Galerkin finite element ap­
proximation on triangular meshes [4]. In this appendix a brief description of 
Galerkin finite element formulation is given in two and three-dimensional form.

The spatial discretisation procedure begins by storing the variables at the 
vertices of the triangular and tetrahedral cells in two and three dimensions, 
respectively. In this formulation, the vector form of Navier-Stokes equation are 
multiplied by a test function cp, and integrated by parts to give the following 
form of governing equations

d_
dt

J t p W d n  +  j  <p{v • f c) d a  =  j  • Fd) d a  ( b . i)
n n n
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Integrating the flux integrals by part, and neglecting boundary terms gives

d_
dt

J v w d n  =  J  (f c - v < p ) d n -  / ( ! ' “'•  v < f i ) d a  (b .2 )

The discretisation takes place over each cell rather than around each side (Fig­
ure 6.5.b). Consider a typical triangular/tetrahedral cell inside a control vol­
ume associated with node i (Figure 4.4). In order to evaluate the flux balance 
equations at a vertex, the test function <p, has the value of unity at node i , zero 
at all other nodes and varies linearly across the cell. Therefore, the integrals 
in the above equation are non-zero only over node i, are zero at all other nodes 
and vary linearly across the cell.

For the left hand side of equation (B.2) which contains no derivative of <p, the 
test function can evaluated by using the following exact integration formulas

a\b\c\ ft'
for  2D : J  dQ -  (a +  6 +  c +  2^  2 0 ' -

n

.  f  a b c d a \ b \ c \ d \  , f t '
f o r  3D  : /  <Pi’-P2(P z{Pa d£l =  7------ ------------ -— - r r  6ft =  —J  ( a  +  6 +  c +  d +  3)! 4

n

(B. 3)

where ft' is the volume of the cell. Thus, using equation (B.3), the left hand 
side of the equation (B.2) can be written as

f _  d f  „ r ft' d W  
fo r  2 D :  - j p W d a v j  —

n;

fo r  3 D :  ^ - [  <pW dQ x  —
d t J Y  4 dt

n'

(BA)

The right hand side of equation (B.2) includes the derivatives of ip. They may 
be evaluated by integration of ip over the cell as
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53 Y .  VkAsk (B .5)
Jt= l

where As* is the vector of projected areas of side fc, which is defined by equation 
(4.19). (pk is the average of the test function of side fc, as (pk =  Vn/Njim
where Ndim is the number of nodes n at each side. Since the value of the 
test function is non-zero only at node i, only the contribution of terms which 
include <pi remains in equation (B.5). Therefore, the derivatives of test function 
at every node i (Figure 4.4) can be written as

(B. 6 )

AS123
" W

As can be seen for each node n only AS12 and AS123, the two and three- 
dimensional vectors of projected areas of the side opposite to that node, is 
effective (Figure 4.4). For simplicity, these vector can be denoted by Al„ and 
Asn, respectively.

fo r  2D  : ( V ^  =  -
All,- +  Al2i 12A1

~2QI'

fo r  3D : (V</?); = 'A si2i +  As23i +  As3ii
Cl'

-hi<p  d r

The convective fluxes F c axe taken as piecewise linear functions in space. Thus, 
they can be taken equal to their average values at the centre of the cell as 

F c =  Y^n=id‘ 1?n/Nnodei where Nnode is the number of nodes n at each cell. 
Then, by employing equation (B.6), the convective part of equation (B.2) for 
every cell can be written as

fo r  2D : j  (F c • V< )̂ dfi «  ( )] [i E
n = l

(B. 7)

fo r  3D j<r Vc^) dQ
■(

F c + F C 4- F cTli n 2 n 3 +  F |
)] [3fi' ^  ^

n = l

The viscous flux includes first derivatives of <p. It can be shown that the 
discretisation of the viscous term is conservative inside each cell by considering
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the contribution of all the nodes of the cell. Assuming that the viscous flux is 
piecewise constant over each cell, the viscous stresses r  are calculated at the 
centre of cells. Hence, by using equation (B.6) for derivatives of </?, the diffusive 
part of equation (B.2) can be defined for each cell as

fo r  2D : J ( F d - V?)dQ s s  F J
1.2ft

n = l

f  r 1 4
fo r  3 D  : J  (Fd ■ V V ) d f t  [ g j y  E As

r> t n =  1

( B .  8)

Now, for a cell-vertex scheme, the discretisation of the convective and diffusive 
fluxes for each control volume can be achieved by integrating equations (B.7) 
and (B.8) over the cells sharing central node i of every control volume. Since 
the contribution of internal sides of the control volume appears twice, they 
cancel each other and sum of contour integrals of the interior cells equals to the 
contour integral over the control volume. By summing over all cells of control 
volume, the spatial discretisation of governing equations can be written as

k = 1 /c= l

k = 1 J t= l

where subscript Q, =  Q' represents the volume of control volume and 
is the number of sides of the control volume.

This form leads to a similar discretisation form for the cell-vertex finite volume 
method. The only difference between this finite element formulation and the 
finite volume formulation for triangular and tetrahedral grids is in the method 
of evaluation of viscous terms and the constant coefficients. It can be shown 
that for equilateral triangular cells the discretisation of viscous term resulting 
from finite element formulation is equivalent to the cell-vertex finite volume 
formulation [5].



c
Modified Stencil 

for Viscous Stress Computations

The cell vertex finite volume approach employs a secondary cell around each 
boundary side of control volumes for the computation of contour integrals as­
sociated with the computation of the velocity gradients of the viscous stresses 
[6-8]. This secondary cell is formed by two neighbouring cells sharing the 
same side (Figure 5.5.a). The shape of this secondary cell has an important 
effect on the accuracy of the numerical solution of the governing equations. 
This stencil evaluates viscous stresses accurately on meshes in which their cells 
are inverse symmetric about the centre of the shared side. Although for two- 
dimensional meshes such a constraint can be satisfied it is very difficult to 
generate a three-dimensional mesh which meets such a requirement. There­
fore, the initial secondary cell around the sides can be modified to form an 
appropriate secondary cell. This can be done by finding two extra points on 
the boundary of the initial secondary cell in the direction normal to the centre 
of the proposed side (Figure 5.6). In order to find the position of these points, 
it is necessary to solve the vector equation of the straight line passing through

210
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the central point of the proposed side coupled with the vector equation of the 
plane surface for every surrounding side of the initial secondary cell.

The vector equation of the straight line normal to the centre point c of a side 
can be defined as

rm =  fc +  hns (C .l)

where r c is the position vector of the central point of the interior side of the 
secondary cell and r m is the position vector of the desired point which is located 
on the normal line at the distance h from rc. Generally any position vector 
can be defined as

r  =  Xili 4* ^ 2̂-2 4“ ^ i l 2 (^'•2 )

The components of r c can be obtained using a simple average of the coordinates 
of the proposed side s. Here, the unit vector n 3 can be considered equal to 
the normal unit vector of the proposed side s. The components of n a can be 
defined by equation (6 .11).

On the other hand, the vector equation of the plane for every surrounding side 
k can be defined by the following relation

rm • n k = D k (C.3)

where is the unit normal vector and of side k and Dk is the characteristic 
constant of the particular plane which includes side k . This constant describes 
the normal distance of the plane from the origin. In practice, D k can be found 
by introducing the position vector of one of the end nodes r n of the proposed 
side.

Note that, any surrounding side k which has an oblique angle with the central 
side s of the secondary cell, has no intersecting point with the normal straight 
line '/in ' which passes through the point c of the side s. Thus, the computation
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should only be made for those boundary sides of the secondary cell which satisfy 
the following criterion

n a • nfc < 0 (£-4)

However, there is a point associated with every surrounding side of the initial 
secondary cell which has an angle where the central side is not oblique. But, 
at left and right hand sides of the central side, only mi and m 2, two closest 
points to the mid point of the central side locate on the boundary of the initial 
secondary cell. The position vector r m and height h for every boundary side k 
of the secondary cell can be found by coupling the equation (C.3) with equation 
(C .l). Having found rm and h for all the boundary sides of the secondary cell, 
the two points m x and m2 are those with the minimum distances hi and hT to 
the centre of the proposed side s. Now, the modified stencil can be completed 
by connecting these points to the end nodes of the side s.

Figure C.1 (a) 2D and (b) 3D description of the sub-cell

By finding the position of the two auxiliary points mi and m 2, the flow variables 
W m at these points can be interpolated from their neighbouring nodes within 
the cell. This can be done using the volume of sub-cells which are formed 
by connecting the nodes of the cell to the auxiliary point m  (Figure C .l).
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W  v  O*
wm= £  (C.5)

71=1

where W n is the value of flow variables at node n and is the sub-cell opposite 
to the node n which preclude that node. The volume of the computational cell 
Q! can be computed by the summation of these sub-cells as

Nnodc
a ' = £  n; (c.6)

n = l

In order to reduce the computational load, the position of auxiliary points mi 
and m 2 and the coefficient of interpolation related to every node 0,^/Cl' can be 
computed once prior to the stages of computations.

The procedure for the computation of viscous stresses could be performed 
exactly in the same manner as cell-vertex finite volume stencil by replacing two 
neighbouring nodes ii and ir of every side surrounding control volume (Figure 
6 .5.a), with the two auxiliary computed point mi and m 2 (Figure 6 .6 ). Note 
that, similar to the cell-vertex finite volume formulation, the computed viscous 
flux of every side must be added to the central nodes of the two neighbouring 
control volumes ii and zr , with opposite sign. The whole procedure can easily 
be done by using a side-based algorithm using a single do loop over all the sides 
of the computational domain. This modified secondary cell can be applied on 
both two and three-dimensional meshes.



D

The Unstructured Grid Generation Procedure 

Using the Delaunay Algorithm

The Delaunay triangulation and its geometrical properties have been widely 

known for a considerable time. However, the application to mesh generation 

techniques has only relatively recently been explored. In general the use of the 

Delaunay triangulation for grid generation requires a set of points interior to a 

given domain. Unfortunately, the Delaunay criterion does not give any indica­

tion as to how points should be defined. Therefore, it is necessary to construct 

a way of grid point generation for arbitrary geometries. A key requirement of a 

mesh generation procedure is to ensure that the mesh is boundary conforming 

i.e. in two dimensions, edges in the triangulation form the boundaries and, in 

three dimensions, triangular faces of the assembly of tetrahedra conform to the 

boundary surface. Unfortunately, given a set of points rii and corresponding 

triangulation T(n^), obtained from the Delaunay triangulation of the points, 

there is no guarantee that the bounding edges, or faces, will be contained
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within T ( n i ) .  The boundary connectivity constraint, required of a boundary 

conforming mesh generator, is not naturally built into Delaunay construction. 

The length scale and point distribution determine the point connectivities, ir­

respective of the boundary surfaces. Hence, it is necessary to ensure that the 

problem is well defined and that the boundary data is appropriately included 

into any Delaunay triangulation algorithm. Generally, in the development of 

a Delaunay triangulation grid generation, three problems must be overcome.

i) Connecting the points which can be resolved using Voronoi diagram

ii) Generating the position of interior points.

iii) Ensuring that the resulting triangulation is boundary conforming.

The global procedure for the generation of three-dimensional grids can be de­

fined as follow.

1) Input boundary points r i i , i  = 1 ,NBoundary and boundary point connectivities 

Of the faces C j ,  J  =  1  ,M B(mndarŷ

2) Derive boundary edges £*, k = 1 Edges, NEdges from boundary face con­

nectivities C{.

3) Perform the Delaunay triangulation of nt- to obtain tetrahedra Tm,m  =

1  > N T ( t o t a l ) '

4) Create interior field points and connect using the Delaunay triangulation to 

form tetrahedra T/, / =  1, -^T(interior) •

5) Ensure that the surface triangulation of Cj, j  = 1 ,iV is contained in the 

volume triangulation. Recover any missing faces by following the steps; recover 

boundary edges Ek in T/, and recover boundary faces C j in T/.

6 ) Identify all tetrahedra outside the domain of interest T0h, h  = l , N L.

7) Delete tetrahedra T0/i, h =  1 , L  to give the final grid 2}, / =  1 , N s .
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Following the grid construction, post-processing can be applied to smooth the 

grid, check consistencies and derive grid quality statistics prior to use with an 

analysis module.

Two algorithms has been reported on the construction of the Delaunay tri- 

angulation follows by Bowyer [9] and Watson [10]. The approach discussed 

by Bowyer [9] is favoured over that of the companion paper by Watson [10] 

because it is more readily applied to the construction in three dimensions [11]. 

Here, the algorithm used to generate the Delaunay triangulation follows the 

work of Bowyer. This algorithm, which is based on the in-circle criterion, is a 

sequential process; each point is introduced into an existing Delaunay satisfy­

ing structure, which is broken and then reconnected to form a new Delaunay 

triangulation. In three dimensions the algorithm, in step-by-step format is as 

follows.

1) Define a set of points which form a convex hull within which all points will He. 

An appropriate Delaunay data structure is established for this construction. 

It should be noted that some vertices of the associated Voronoi diagram axe 

not strictly defined. Since they lie outside the convex hull and therefore do not 

possess four forming points of a tetrahedron, thus do not have four neighbour 

Voronoi vertices. Default values are used in this case.

2 ) Introduce a new point anywhere within the convex hull.

3) Determine all vertices of the Voronoi diagram to be deleted. A point which 

lies within a sphere, centred at a vertex of the Voronoi diagram and which 

passes through its four forming points, results in the deletion of that vertex. 

This follows from the ’in-circle’ criterion of the Voronoi construction.

4) Find the forming points of all the deleted Voronoi vertices. These are the 

contiguous points to the new point.

5) Determine the neighbouring Voronoi vertices to the deleted vertices which 

have not themselves been deleted. These data provide the necessary informa­

tion to enable valid combinations of the contiguous points to be constructed.
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6 ) Determine the forming points of the new Voronoi vertices. The forming 

points of new vertices must include the new point together with three points 

which are contiguous to the new point and form a face of a neighbouring 

tetrahedra (these are the possible combinations obtained from Step 5).

7) Determine the neighbouring Voronoi vertices. Following Step 6 , the forming 

points of all new vertices have been computed. For each new vertex, perform a 

search through the forming points of the neighbouring vertices, as found in Step 

5, to identify common triples of forming points. When a common combination 

occurs, neighbours of the Voronoi diagram have been found.

8 ) Reorder the Voronoi diagram data structure, over-writing the entries of the 

deleted vertices.

9) Repeat Steps 2-8 for the next point.



E

Pressure-based Methods For Solving 

Incompressible Flow Problems

The solution procedure for the velocity and pressure in pressure-based methods 

can be performed in either an un-coupled or coupled manner. The computa­

tional strategy for solving the conservation equations in an un-coupled manner, 

sequentially for one variable at a time, is known as the segregated approach. 

Most of the solution methods reported in the literature have followed the seg­

regated strategy.

One of the most general segregated methods is known as the SIMPLE (Semi- 

Implicit Method for Pressure-Linked Equations) procedure [12]. This proce­

dure is based on a cyclic series of guess-and-correct operations to solve for 

the primitive variables. The velocity components are first calculated from the 

momentum equations using a guessed pressure field. The pressure and veloc­

ities are then corrected so as to satisfy the continuity equation. This process

218
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continues until the solution converges. In this procedure the actual pressure 

is defined as a combination of pressure and a pressure correction value. How­

ever, for some problems the SIMPLE procedure over-estimates the value of the 

pressure correction. Hence, an under-relaxation parameter is defined.

Another method is known as PISO (Pressure-Implicit with Splitting the Op­

erators) algorithm which uses slightly different formulations from the SIMPLE 

procedure and adds another correction for the velocity which is computed from 

the predicted pressure field [13]. The method utilises the spilitting of the op­

erations in the solution of the discretised momentum and pressure equations 

in such a way that the flow fields obtained at each time step axe close ap­
proximations of the exact solution of the difference equations with a formal 

order of accuracy. Since this method uses a true pressure equation, it may be 

preferable.

Since it is not possible to readily determine the exact value of the under- 

relaxation parameter of SIMPLE procedure, the SIMPLER (SIMPLE Revised) 
procedure is developed to improve the convergence. In this procedure the veloc­

ity is guessed initially and the pressure is computed from the Poisson equation 

then the corrected velocities are computed using the momentum equations [12]. 

In spite of the improved convergence behaviour of SIMPLER over SIMPLE, 

these procedures do not appear to be free from difficulties. Under-relaxation is 

usually necessary especially on fine grids and for complex geometries. In some 

cases the use of the pressure correction process in SIMPLER procedure seems 

to destabilize the convergence process [14].

Several methods have been developed for improving the convergence of the 

segregated pressure-based methods which involve solving a system of equations. 

These methods are classified as

I) Approximate Factorisation Technique:

1) Implicit Alternative Direction technique (ADI)

2) Implicit Lower-Upper technique (ILU)
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II) Conjugate Gradient type accelerations (CG) :

1) Generalised Minimal Residual (GMRES)

2) Quasi-Minimal Residual (QMR)

3) Two norm Minimal Residual (Bi-CG)

4) Conjugate Gradient Square method (CGS)

5) Conjugate Gradient Stable method (CGSTAB)

6) Conjugate Gradient applied to Normal equations (CGN)

7) Transport Free Quasi-Minimal Residual (TFQMR)

III) Multi-Grid accelerations (MG) :

1) Full Multi-Grid (FMG)

2) Discretisated Coarse Grid Approximation (DCGA)

3) Galerkin Coarse Grid Approximation (GCGA)

IV) Block Correction acceleration (BC)

The users of segregated methods believe that it is very costly to solve velocity- 

pressure coupling when nonlinearity of the equations has not been solved. Al­

though fully coupled solvers increase the robustness, improve the convergence 

and consume less computational time than segregated methods, they axe based 

upon a more complex linear solver for the governing equations. The first at­

tempt to solve simultaneously the governing equations in a coupled way on 

staggered grids was the so-called SIVA algorithm [15]. The pressure and the 

six surrounding staggered velocities on the control volume were solved simulta­

neously. Momentum equations were combined yielding a Poisson-like equation 

for the pressure. Owing to the point-wise nature, SIVA was found to con­

verge rather slowly. Similar attem pt lead to CELS algorithm [16]. More recent 

methods follow the boundary layer practice in which the domain is swept from 

upstream to downstream, implicit differencing of momentum being used for 

stability. Upstream influence through the pressure field has been accounted
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by introducing some form of forward differencing for the stream-wise gradient 

which allows departure-free behaviour. Such methods have been developed in 

the framework of the so-called partially parabolic assumption [17]. Unfortu­

nately, in such methods the coupling is performed only in sub-domains so that 

the resulting matrices to solve are easy to handle, but poor convergence rate 

is sustained, especially on fine grids mainly because of the weak coupling be­

tween sub-domains. This situation is in some respect improved with multi-grid 

methods [18,19]. Another alternative to the one-step method (non-segregated) 

has been developed using so-called influence matrix techniques. This method 

is very complex and the cost of solving the influence m atrix system is very high 

in three dimensions. Although the fully coupled method does not appear to 

bring sufficient improvements with respect to standard Poisson based methods

[14].

It should be noted that in pressure-based approaches, the appropriate discrete 

boundary condition for pressure is obtained in the form of Neumann condi­

tions which uses pressure derivatives. For a complete implementation of the 

Neumann boundary condition for the pressure, it is necessary to use a stag­

gered computational grid for the solution of the Poisson equation. A staggered 

grid is a grid where the velocity components and the pressure are defined 

on separate overlapping grids. Recently, an alternative grid arrangement has 

been introduced for this method, known as a collocated grid, which requires 

less computational storage allocation and less interpolation than the staggered 

grid approach but requires two adjustable under-relaxation factors [20].



F

Finite Element Methods for Solving 

Incompressible Flow Problems

In the finite element computation of incompressible flows, using a standard 

Galerkin formulation, there are two main sources of potential numerical in­

stabilities. One is due to the presence of the convection term. Symmetric 

treatment of the convection term by standard Galerkin formulation, in which 

the test and trial functions are similar, is identified as the sources of numerical 

instabilities. This is true in a sense that Galerkin finite element discretisa­

tion (equal to second order differencing) of the convection term produces a set 

of equations that are decoupled between adjacent nodes and the scheme can 

result in spurious node-to-node oscillations. Such oscillations become more 

significant for high Reynolds numbers with sharp internal or boundary layers 

in the solution. Although these oscillations can be suppressed by severely re­

fining the mesh, the necessary degree of refinement is not often economical. 

In the finite volume and finite difference contexts, such instabilities can be

222
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removed by the use of dissipation or upwind operators. In the finite element 

community, some efforts to stabilise the Galerkin finite element method have 

lead to implementation of the Petrov-Galerkin formulation, in which the trial 

and test functions axe different. The test functions are chosen equal to trial 

function plus a higher-order function in order to give more weight to upwind 

nodes. This method is first order accurate and the extension to unsteady cases 

or when a source term is present does not give a consistent formulation [21].

Soon it was pointed out that to reduce the oscillations, it is sufficient to add an 

artificial diffusion term acting only in the direction of the streamlines. Then 

it was observed that a streamline diffusion term can be introduced naturally 

in the standard Galerkin method by perturbing the weighting functions with 

their derivatives without modifying the original governing equations. This 

method which is called SUPG (Streamline Upwind Petrov Galerkin) or SDM 

(Streamline Diffusion Method) results in a higher order accurate method with 

good stability properties. Nevertheless some oscillation remain, due to the 

absence of control gradient in directions other than the streamlines. However, 

the SUPG is more stable than the standard Galerkin formulation in which 

the presence of sharp layers globally pollutes the solution. In order to remove 

the shortcoming of SUPG, a discontinuity capturing term can be added to the 

scheme. The additional term enhances the ability of the method to produce 

smooth approximations to internal and boundary layers.

Later the SUPG formulations was generalised by adding the least squares form 

of the residuals to the Galerkin formulation [22]. This approach is called GLS 

(Galerkin Least Squares) and coincides with the SUPG method in the hyper­

bolic case, or piecewise linear elements.

The other source of instability is produced if an inappropriate combination of 

interpolation function for the velocity and pressure is used to solve the Navier- 

Stokes equations. After employing equal order interpolation it was noticed that 

a good velocity solution was usually accompanied by a very poor meaningless 

pressure solution [23]. When mixed interpolation (or unequal interpolation) 

was employed velocity and pressure made sense. Equal order interpolation gen­
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erally results in a singular matrix [24]. To overcome the above deficiency, the 

velocity and pressure interpolating functions have to satisfy certain conditions 

of compatibility called the Babuska-Brezzi conditions. When the steady state 

equations for incompressible flow are cast in terms of the primitive variables u 

and p, it can be readily seen that the appearance of zero diagonal terms ren­

ders the system singular unless the number of velocity variables is greater than 

the pressure variables. The Babuska-Brezzi condition restricts the use of equal 

order of interpolation for u and p, and hence, considerable limits the combina­

tion of the velocity and pressure functions, and complicates the programming 

and data handling procedure [25].

Several methods have been developed for circumventing this restriction using 

pairs of elements for velocity and pressure or high degree polynomials. An 

alternative to satisfy the Babuska-Brezzi condition are the use of a pair of 

elements or different polynomials for the velocity and pressure approximations. 

These create considerable programming headaches. However the same mesh 

for velocity and pressure can be applied using high degree polynomial elements 

like Taylor-Hood element which the assembly cost, consequently, is higher than 

ordinary elements. There are other forms of divergence-free elements which 

either are inaccurate (involving low degree finite element pairs) or cumbersome 

to program (involving high degree elements pairs) [14].

An alternative technique which relaxes the well known Babuska Brezzi stability 
condition in the velocity-pressure discretisation using equal order of interpola­

tion is Fractional Step technique (Velocity Correction method) [26,27]. In this 

method the momentum equations is splited into two parts which are solved in 

two stages and a pseudo transient term is added to the continuity equation. 

In this method which is suitable for steady state computations, the discrete 

steady state equations have no zero diagonal and the difficulties associated 

with equal order interpolation coupled will not appear [28].

Some other methods have been developed and analysed for circumventing 

Babuska-Brezzi in the sense of equal order polynomials with respect to the 

same mesh may be used for the velocity and pressure. These methods which
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directly couples the velocity and pressure solution involves a modification of 

the discrete incompressibility constraint. The coupling between the velocity 

and pressure may be achieved by methods like Penalty and Artificial Com­

pressibility methods [14].

The system of equations discretised by the Finite Element method is a sys­

tem of non-linear equations in terms of velocity, pressure and corresponding 

finite element space. In order to solve the non-linear system of Navier-Stokes 

equations, some linearisation procedure can also be invoked. Thus the problem 

can be solved by applying some relaxation procedures like Newton, the Simple 

Iteration and Continuation methods.

In Newton’s method, the discretised primitive variable formulation is defined 

in a  linear form using the following procedure. Given an initial guess u° for

velocities, one can generate the sequence of u” and pj1 for n = 1 ,2 ,3 ,..... by

§olving the linear problem of

h(un) =  0

(F.l)

/(« " )  +  g(un- \ u n) + g(u" .u " -1) +  fc(p") =  c +  5 ( u " - \ u"_1)

where / ,  <7, h and c are the oprators which form the continuity and momentum 

equations. Newton’s method requires the evaluation and solution of a new 

Jacobian matrix at every iteration. At the price of a reduced convergence rate 

one can lessen these costs by employing a quasi-Newton or updated method 

such as Broyden’s method [30].

The Simple Iteration method can be applied for sufficiently low Reynolds num­

bers and it can be shown that it is globally and linearly convergent [31]. Given 

an initial guess u° for the velocity, one generates the sequence of u” and p? for 

n =  1,2, 3 ,  by solving the linear problem of
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h(un) = 0

(K2)

/ ( « " ) + +  =  c

A hybrid method can be defined to take advantages of both Newton’s and the 

Simple Iteration methods by defining

h(un) =  0

(f.3 )

/ ( O  +  g (u" -1, u") +  a3g(un, u”' 1) +  h(pn) =  c +  oc9g{un- \  u"’ 1)

The procedure for the computation can be started using the Simple Iteration 

method ag =  0, and close to the solution it can switch to the Newton’s method

OLg — 1.

The Continuation methods can be used for high Reynolds numbers. Since 

the convergence of the solution depends upon the initial guess, the method for 

solving low Reynolds numbers can be used for obtaining the appropriate initial 

guess. Then by using information obtained by solving the problem for desired 

Reynolds number the computations can be proceed using the iterative methods. 

For solving very large sparse, linear systems of algebraic equations, particularly 

for high Reynolds numbers or three dimensions, gauss elimination solvers are 

not often adequate. As a result there have been numerous iterative methods for 

solving the linear systems. Including in this category are variants of Conjugate 

Gradient, Multi-Grid, Reduced Basis, Generalised Minimum Residuals, and 

related algorithms. It should be noted that no general consensus has been 

reached with regard to which approach is the best. Finally, for time dependent 

problems, the system of semi-discretised equations can be solved by one of 

the methods namely ; Single-Step Fully Implicit, Single-step Semi-Implicit, 

Backward Differentiation Multi-Step schemes. An alternative to solve a time 

independent problem is to determine the steady state solution as the large 

limit of the transient problem [14].
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