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Abstract

We calculate a basis for the free submodule formed by the invariants in the
Leibniz-Hopf algebra under the Hopf algebra conjugation operation. We also
give bases for the submodules of conjugation invariants in the dual Leibniz-
Hopf algebra and in the mod p reductions of both the Leibniz-Hopf algebra
and its dual.
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Chapter 1

Introduction

In this chapter, we will first give the historical development of Hopf algebras
and its link between with the other areas of mathematics. Secondly, we
will give the main motivation of this thesis which is related to the Steenrod
algebra and ring spectra. Finally we give a brief description for each chapter
of this thesis.

1.1 A short history of Hopf algebras

In algebraic topology Hopf algebras are named by the work of Heinz Hopf
in the 1940’s. Armand Borel coined the expression Hopf algebra in 1953,
honoring the foundational work of Heinz Hopf [2]. Pierre Cartier gave the
first formal definition of Hopf algebra in connection with cocommutative
bialgebra with his work hyper-algebra in 1956 [2].

John Milnor showed the Steenrod algebra is an example of Hopf algebra
in the 1960’s [26]. In 1965, J. Milnor and J.Moore gave the definition of
Hopf algebra in the sense of graded bialgebra [27]. In 1966, Bertram Kostant
introduced Hopf algebra in the modern sense, i.e., expressing antipode [24].

After that Hopf algebras have started being applied into different fields.
In the 1970’s Giancarlo Rota applied Hopf algebras into combinatorics. In
1986, quantum groups are introduced by Drinfeld [13], which give rises the
applications of Hopf algebras to physics and invariant theory for knots and
links.



1.2 What makes the Leibniz-Hopf algebra in-
teresting?

The Hopf algebra Symm of symmetric functions is central to many other
areas of mathematics such as[20]:

Symm 2 R.q(GLy), the ring of rational representations of the infinite linear group
v H*(BU), the cohomology of classfying space BU
« H,(BU), the homology of classfying space BU
«» R(W), the representative ring of the functor of the (big) Witt vectors

« U(A), the universal A-ring on one generator.

There are two important generalizations of the Hopf algebra of symmetric
functions which are the Hopf algebra of noncommutative symmetric func-
tions and its graded dual the Hopf algebra of quasisymmetric functions. The
Leibniz-Hopf algebra has been studied as the ‘ring of noncommutative sym-
metric functions’ [18, 19, 22, 15|, and is known to be isomorphic to the
Solomon Descent algebra [30] (with the ‘inner’ product [16]). A topological
model for this Hopf algebra is given by interpreting it as the homology of
the loop space of the suspension of the infinite complex projective space,
H,(QQECP>). Moreover, the antipode in H,(QLCP>) arises from the time-
inversion of loops. As antipodes are unique for Hopf algebras, this gives
a geometric interpretation for the antipode in the Leibniz Hopf algebra.[4,
Section 1]

The graded dual of the Leibniz-Hopf algebra, is the ring of quasi-symmetric
functions with the outer coproduct [25], which has been studied in [6, 14, 18,
17, 19, 21, 22, 25]. It is also known to topologists as the cohomology of
QX CP>[4, Theorem 1.1]. We now need to be more careful. This is be-
cause: we know the cohomology of a space is always graded commutative.
And, by Remark 2.1.7 the reader can conclude that the graded dual of the
Leibniz-Hopf algebra is commutative in the strict sense rather than in the
graded sense. On the other hand, the degree n part of the graded dual of the
Leibniz-Hopf algebra is isomorphic to the degree 2n part of the cohomology
of QX CP>[4, Remark 1.2].

The graded dual of the Leibniz-Hopf algebra was also the subject of the
Ditters conjecture [5, 18, 22|, making it relevant to a wide area of combina-
torics, algebra and topology. Quasi-symmetric functions are introduced to
deal with the combinatorics of P-partitions and the counting of permutations
with given descent sets.[18]. Moreover, a first link between Hopf algebras and
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quasi-symmetric functions was found by Ehrenborg[14].
After given the importance of Leibniz-Hopf algebra and its dual, let us
give more motivation related to algebraic topology.

1.3 The mod p dual Steenrod algebra and
commutative ring spectrum

The reader is referred to [1, Lecture 3] fore more information about the
topics covered in here. We will now give a short motivation regarding how
the conjugation in the dual Steenrod algebra is related to a commutative ring
spectrum.

A ring spectrum|3] is a spectrum F equipped with a homotopy-associative

multiplication map
uw:ENE — E,

(A is smash product), which has a two-sided homotopy unit. E is said to be
commutative if the following diagram:

ENE-—">EAE (1.1)

R

E

is homotopy-commutative, where 7 is the usual switch map.
On the other hand, the generalised homology groups of a spectrum X
with coeflicients in F are given by

E(X)=m(ENX),

where 7 is the stable homotopy group. Now we are ready to give the link
between the ring spectra and the Steenrod algebra. For to do it we choose
E as Eilenberg-Maclane spectrum, K (Z,), then

E.(E)=m(ENE),

the homology of E with coefficients in E is the the mod p dual Steenrod
algebra, A;, and the conjugation map on m.(E A E) is precisely the map
induced on 7 x (E' A E):

m(ENE) D n(EAE),

by switching the factors in the smash product. Thus, conjugation in the .47
is relevant to study in commutativity of ring spectra.

3



Moreover, we take the homotopy of a smash product of n copies of F,
nx(EA---AE), and 7,(E") = E,(E"-1), the E cohomology of an n—1-fold
product of copies of E.[10, Section 1]

Conjugation invariants and Spectral sequences

The gamma homology theory which is introduced by Sarah Whitehouse and
Alan Robinson[29] developed to study higher homotopy commutativity of
ring spectra.

Let X, denotes the symmetric group S, on a finite set of n symbols.
Expressions like H™(X,,; m.(E"")) arise in spectral sequences for gamma co-
homology of an Fy,-ring spectrum F.,[9, Section 1]. For E suitably nice, this
is H™(Z,; (E,E)® 1), the %, action is described in [33, Section 1]

By the section 1.3 it may seen for n = 2 and £ = K(Z;) we have:
H*(2,; A}) and ¥, acts by the conjugation in E,E = A}. And to under-
stand whole cohomology H*(%3; .A43), one can use the conjugation invariants
in A%. This is because L, invariants form H°(Z,; A%), from which we can con-
clude that the conjugation invariants on .43 is relevant to study in spectral
sequences.

1.4 How does this thesis related to the topo-
logical journey above ?

We now first give some more details regarding the Leibniz-Hopf algebra which
we will full explain in the chapter 1 of this thesis. After that we will shortly
explain how the conjugation invariants in Leibniz-Hopf algebra and its dual
is related to the Steenrod algebra and its dual.

The“Leibniz-Hopf algebra” is the free associative Z-algebra F on one
generator S™ in each positive degree. Let F; be the mod-2 reduction of this
Hopf algebra. Now, let S™ represent Steenrod operations, then A, is defined
as a quotient of F, by the Adem Relations[31]:

(]

SEESY ( ijy— J ) SettISI 0 <a < 2b.
j=0

Hence, we have a projection:
e .FQ — .Az,
then by dualizing we have an injection:

Ay = F.

4



So information about conjugation invariants in the mod 2 dual Leibniz-Hopf
algebra, F;, should lead to corresponding information in the mod 2 dual
Steenrod algebra, A,". In more details, the intersection of Im(7*) with the
conjugation invariants in F3 may give the related information for the conju-
gation invariants in A3.

Note that the same problem for the 47 is satisfactorily solved in[10, Sec-
tion 1]. The results in Chapter 4 in this thesis may be thought as a different
solution approach to this problem.

One may also think to use the results on Chapter 9 of this thesis for
the conjugation invariants in A,. Unfortunately, after some calculations, the
reader will see there is not a promising relation between conjugation invari-
ants in the Fo and A,.

Now after giving the motivation let us briefly describe the content of each
chapter in the following:

1.5 OQOutline

This thesis consists of eight chapters except for the introduction.

Chapter 2 begins by introducing necessary backgrounds and new termi-
nologies: Palindromes and non palindromes which are explained in details.
In this chapter, an alternative proof is given for the conjugation formula in
the Leibniz-Hopf algebra and in the dual Leibniz-Hopf algebra.

Chapter 3 is inspired by [9], and [7] is based on this chapter. It explains
an approach for the invariant problem under the conjugation in the mod 2
dual Leibniz-Hopf algebra. The ring of conjugation invariants in the mod
2 dual Steenrod algebra arises when one considers commutativity of ring
spectra [1].

Motivated by this, I have studied the fixed points in the mod 2 dual
Leibniz-Hopf algebra under this conjugation action. It is shown that, like in
the dual Steenrod algebra, these invariants are ”approximately” half of the
whole algebra, although we are able to give a much more precise statement
than was possible for the Steenrod algebra.

[8] is based on the rest of the chapters.

In Chapter 4, I am interested in the conjugation problem for any odd
prime number in the mod p dual case. It is shown in which way the results
differs from mod 2 dual case.

Chapter 5 focuses on the conjugation invariant problem in the integral
case, and gives details how to deal with that problem without a vector space
structure, but with an adaptation of the arguments in mod p case. In partic-
ular, we conclude that the results in the integral case coincide with the the



mod p dual case.

Chapter 6 we turn attention to the Leibniz-Hopf algebra. A basis is
calculated for the free submodule formed by the conjugation invariants in
this Hopf algebra.

Chapter 7 deals with the fixed point problem under conjugation in mod
p Leibniz-Hopf algebra. The mod p Steenrod algebra naturally occurs as
a quotient of the mod p Leibniz-Hopf algebra [31]. Motivated by this it is
shown that the conjugation invariants coincides with the invariants in the
integral case.

Chapter 8 exploits the duality between the mod 2 dual Leibniz-Hopf alge-
bra and the mod 2 Leibniz-Hopf algebra to get information about conjugation
invariants in the latter case from the former.

Chapter 9 then builds on this to solve the conjugation invariant problem
in the mod 2 reduction of the Leibniz-Hopf algebra.



Chapter 2

Preliminaries

2.1 Algebraic aspects

See [11], [32], and [27] for further details on topics in this section. In this
section we give definitions of algebras; coalgebras by commutative diagrams.
These definitions lead to definition of graded algebras.

2.1.1 Algebra

We will now define the simplest structure of an algebra over R. As a conven-
tion, unless otherwise stated R will denote a commutative ring with unit.

Definition 2.1.1. An R-algebra is an R-module A with an R-module mor-
phism ¢ : A ®zg A — A called multiplication.

Remark 2.1.2. We write A® A when we mean A ®g A in this chapter.
For a given R-algebra A:

i. The algebra is said to be associative if the diagram

ARAR AL AR A (2.1)

o B

AR A—2 s A

is commutative, where 1,4 denotes the identity morphism on A.

ii. The algebra is said to be commutative if the diagram

ARA—T-A® A (2.2)

Sk

A




1s commutative, where 7 : AQ A - A ® A, is the twisting map, i.e,
T(a®b) = (b®a), for a,b € A.

iii. The algebra is said to be unital if there exists a morphism u: R — A
which should satisfy:

RRALS A AL AR (2.3)

S

A

Remark 2.1.3. We write (A, p, 1) or simply A when we mean an R-algebra
A which is associative and unital. Similarly, we write 14 when we mean the
wdentity morphism on A.

Let D, E be two algebras, a homomorphism f : D — E of algebras, is an
R-module homomorphism such that the diagrams

DD D (2.4)

o |

E®EYELF,

R D (2.5)

b |

R-EEF,

are commutative. Alternatively we say, a homomorphism f : D — E of
algebras, is a R-module homomorphism, which commutes with multiplication
and preserves unit.

2.1.2 Graded modules, and graded algebras

Let A = (A;) be a sequence of R-modules where ¢ > 0, then A is called a
graded R-module. Components of A, A;, are then said to be in degree or
dimension of i. Let F and G be graded R-modules. By a graded R-module
homomorphism h : FF — G, we mean a sequence h; : F; — G; of R-module
homomorphisms. For given graded R-modules F' and G, we define a graded
module ' ® G by



F®G = ((F®G)j),

where

(F®G), ZF ® Gj_i.

Definition 2.1.4. A graded R-module A is finite type if every component
of A, ie., A, is finitely generated.

Definition 2.1.5. Let A be a graded R-module with multiplication
p: AR A A

A is called a graded algebra if for all p,q > 0

p(Ap ® Ag) C Apyyg.
Remark 2.1.6. If A has the unit, then the unit is of degree zero.

Let A be a graded R-algebra, then similarly the associativity, and unit
property can be defined by using the diagrams (2.1), and (2.3).

Remark 2.1.7. Some authors define ”commutative” in the graded case so
that an algebra A is commutative if, and only if, ab = (—1)19®ba for all
a,b € A. We do not follow this convention; througout this thesis the word
"commutative” will mean strict commutativity not graded commutativity.

Definition 2.1.8. A unital graded algebra A over R is connected if u: R —
Ap is an isomorphism.

Given two graded R-modules F' and G we defined F' ® GG to be graded
module. We will see now how F' ® G becomes an algebra over R.

Remark 2.1.9. When we have more than one algebra, to make it more clear,
we write (A, pa, a) using subscripts to emphasis which product belongs to
which algebra.

Definition 2.1.10. If we have two R graded algebra (F, ¢F, ur) and(G, ¢g, tic),
then F' ® G is the algebra over R with multiplication the composition given
by,

FRGRIFRGEEESL FRFRGRG 229 Fg G, (2.6)

where 7 is the twisting morphism and unit

R=R®R %% FgaG. (2.7)



Remark 2.1.11. By the composition (2.6) and diagram (2.7) we have :

vrec = (Pr®pe) o (lr®T®1g), prec = 1r ® la.

2.1.3 Coalgebra

We now give the definitions and properties for an R-coalgebra by reversing
all the arrows of morphisms in the definition of algebras in section 2.1.1.

Definition 2.1.12. An R-coalgebra is a R-module C' with a R-module mod-
ule morphism A : C = C ® C, called comultiplication.

For a given R-coalgebra C:

i. The coalgebra is said to be coassociative if the diagram

c—2 CcxC (2.8)
Al llc®A
coc®ecwceC

is commutative.

n
For c € C, let A(c) = Z d; ® e;, where d;, e; € C.
i=1

By diagram (2.8) we have the following equations:

(A@lc)OA(C):(A@)lc)Zdi@ei :ZZ(TU@)Si]’)@eia
i=1 i=1 j=1
(2.9)

m;
where A(d;) = Z(Tij ® s;5), where 1,8 € C.
j=1
Similarly,

n n pi
1®A) oAl =(18A)) d®e =3 > di®(y;®z),
i=1 i=1 j=1
(2.10)
)24

where A(e;) = Z(yij ® zi5),  Yij»2ij € C.

Jj=1

10



Alternatively, by the equation (2.9) and (2.10) coalgebra C is said to
be coassociative if

n my;

n P n pi
Z Z(Tij ® sij) ®e; = Z Zdi ® (yi; ® 2i5) = szz ® Yij @ 2.

i=1 j=1 i=1 j=1 i=1 j=1
(2.11)

ii. The coalgebra is said to be cocommutative if the diagram
C4-Ce®C (2.12)
N )
CeC

is commutative, where 7 is the twisting morphism. By the diagram
(2.12) for ¢ € C, we have,

Ale)=> a®di=)Y di®c with c,dieC.

i=1 i=1

iii. The coalgebra is said to be counital if A has a co-unit € : R — C which
should satisfy

C

A

e® 1 lc®e
R®C C cgc—=<

C®R
® (2.13)

Let M and N be R-coalgebras, A homomorphism f: M — N of coalge-
bras, is a R-module homomorphism such that the diagrams

M-—2¥MeM (2.14)

e

N—2YNgN,

11



M2 R (2.15)

nt

N2 R,
are commutative. By the diagrams (2.14) and (2.15) we have,
(f@f) OAA[ = AN Of and € = EN(f).

Remark 2.1.13. We write (C,A,¢€) or simply C when we mean an R-
coalgebra C which is coassociative and counital. Beside this, when we have
more than one coalgebra, to make it more clear, we write (C, Ac,ec) using
subscripts ”C” to emphasis which coproduct belongs to which coalgebra.

Definition 2.1.14. If we have two R graded coalgebras (M, Ay, €pr) and
(N,An,e€n), then M ® N is the coalgebra over R with comultiplication the
composition is given by

M@N® 2N MoMoNoN MES8'"™W Mo N®MeN,  (2.16)

and counit

MeN Y R R~R. (2.17)

Remark 2.1.15. By the composition (2.16), and diagram (2.17) we have :

Apmen = (I @7 1y) o (A @ Ay), and  eygn =€y R €n

2.2 Bialgebra, convolution and Hopf algebra

See [11], [32], [27] for further details on topics in this section.

2.2.1 Bialgebra

We defined algebra and coalgebra. To be able to give a definition for another
algebra structure which is bialgebra, we will first introduce the following
proposition:

Proposition 2.2.1. Let (B,p,u) be an R-algebra and let (B,A,€) be an
R-coalgebra, then the following are equivalent:

12



i. A and € are algebra morphisms.
it. @ and pu are coalgebra morphisms.

Proof. 1t is easily seen by using commutative diagrams for algebra and coal-
gebra morphism. O

Definition 2.2.2. A bialgebra is an R-module, endowed with an algebra
structure (B, ¢, ) and a coalgebra structure (B, A, €), where either ¢ and p
are coalgebra morphisms or A and € are algebra morphisms. It is denoted

by (B, ¢, u, A €).

We defined bialgebra structure. As a next step, we first need to define a
new morphism which is called convulution.

2.2.2 Convolution

Let (A, ¢, ) be an algebra and (C,A,¢€) be a coalgebra. Let Hom(C, A)
denote the set of of R-module morphisms from C to A. Let f, g € Hom(C, A),
then we can define a morphism from C to A as follows,

ccec®apa-t A (2.18)
The new morphism we get by composition of morphisms above,
po(f®g)oA (2.19)

is called convolution of f and g. It is denoted by f x g. By definition, more
explicitly for all ¢ € C' we have,

(fxg)(c)=po(f®g)oAlc).
TONOE

Z o).

where A(c Z d; ® e;, for some d;, e; € C.

i=1
Proposition 2.2.3. Let (A, p,u) be an algebra and (C,A,e) a coalgebra,
then Hom(C, A) is a monoid under the operation * with unit which is given
by composition:
C >R A

13




Proof. 1. Proof that Hom(C, A) is associative with operation *.

Let f,g,h € Hom(C, A). Hom(C, A) is associative if the following dia-
gram commutes.

C = coc-221 cecec
A f®gRh
CC ARARA
le®A w1y
CoCecC A A
fRgRh '
Aodea—222  sga LA

First we need to show the following equations hold.
L po(p®14)o((f@g) @h) o (A1) o A= (fg)xh.
2. po(la®p)o(fR(9g®hN)o(lc@®A)o A= fx(g*h).
By equation (2.9) in definition 2.1.12, for all ¢ € C' we have:

n m;

po(p®@la)o((f®g)®h)o(AR®1c)oAc) = Z Z(f(m)g(sij))h(ei),
o (2.20)
where 745, 535, e; € C. On the other hand, for all ¢ € C' we have;
(f*g)xh(c) =D _(f*g)(d)h(e:)
T (2.21)
= 3> (glsh(e)

for some 745, s;5, e; € C. By equation (2.20) and equation (2.21) 1. holds.
Similarly using equation (2.10) we can also show 2. holds. Finally, since
A is associative and C is coassociative, for all ¢ € C' we have:

14



(fxg)*h(c)=po(p®la)o((f®g)®h)o(A®1c)oAlc)
=po(p®@la)o((f®g)®h)o(lc ®A)oAlc)
=po(p®1a)o(f®(g®h))o(lc®A)oAlc)
=po(la®p)o(f®(g®h))o(lc®A)oAlc)
= f*(g*xh)(c)

Therefore, (fxg)xh = f*(gxh), in other words Hom(C, A) is associative
with respect to *.

Remark 2.2.4. Unless otherwise stated we will denote identity element
of an algebraic structure A by 14,

ii. Proof that the unit of Hom(C, A) is poe.
Let h € Hom(C, A), then for any c€ C

((hx(roe)(c )—90°(h®u06)°A( )

—Zh (o€

= > h(d:)u(e(es)
=1 (2.22)
= Zh e(ei)u(Ir)
= Z h(d;)e(e;)]4
= h(c),

where A(c) = Zd,' ® e;, for some d;, e; € C.

i=1
We used the definition of counit to show the equatliy of the last step of
equation (2.4.6). Therefore h * (ue) = h. Similarly, (ue) x h = h. By i. and

ii. Hom(C, A) is a monoid.
O

Remark 2.2.5. The operation, * is said to be convolution product.
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We have now one more step to define Hopf algebra. For to do that, we
introduce a new term which is called the antipode. Let (H, ¢, u,A,€) be a
bialgebra. Now H has both algebra and coalgebra structure, to be more
precise, denote the underlying algebra of H by H%, and underlying coalgebra
of H by H¢. Then by Proposition 2.2.2 Hom(H¢, H%) is also a monoid with
the convolution product, *. Now we can give the definition of an antipode.

Definition 2.2.6. Let (H,p, u, A,e) be a bialgebra. An endomorphism
S : H — H is called an antipode of a bialgebra H, if S is the two sided
inverse element of the identity morphism 15 : H — H with respect to the
convolution product in Hom(H¢, H*).

Therefore S is an antipode if and only if S satisfies,
po(lgy®S)oA=poe=ypo(S®1y)oA. (2.23)
Corollary 2.2.7. If an antipode ezists, then it is unique.

Proof. An antipode S of H is a two sided inverse in Hom(H¢, H*). Beside this
by Proposition 2.2.2 Hom(H¢, H?) is associative, therefore S is unique. [

Proposition 2.2.8. Let (H, ¢, i, A €), be a bialgebra, then the antipode S
has following properties.

i. S is an anti-automorphism. i.e., S(hihy) = S(h2)S(h,) where hy and
hy € H.

it. S preserves the identity element.
iit. If H is commutative or cocommutative, then So S = S8? = 1.

Proof. Proof of i. See [32, Proposition 4.0.1] for the proof of i.
Proof that ii. By Definition 2.2.6 we have:

Sxlg(Ig)=po(S®1y)oA(ly) = poe(ly). (2.24)

On the other hand, H is a bialgebra, hence by Proposition 2.2.1 € is an
algebra morphism which means ¢(Iy) = Ig. We also know u(Ig) = Iy, hence
poe(Iy) = u(Ig) = Iy. Beside this A(Iy) = Iy ®Iy. Therefore the equation
(2.24) turns out

S*l(IH) = S(IH)1H = S(IH) =IU,OE(IH) = IH.

This completes the proof.
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Proof of iii. By Definiton 2.2.6 we can easily observe that 1y is the
inverse of S with respect to x. To make the proof we only need to show
that S2 = S o S is also right or left inverse of S, therefore S? must equal
identity homomorphism, 1y. Let H be commutative algebra, and let A(c) =

Zdi ® e;, where d;,e; € H. For all ¢c € H we have:

i=1

(S?% S)(c) = o (S?®S) o Alc).

=90 (S?@5)(D) di®e)

=1

= (3 5*(d) & S(e)
=D S*(d:)S(es)
= S(i e:S(d;)) S is anti-automorphism. (2.25)

= S(Z S(d;)e;) H is commutative.
i=1

= S(noe(c)) definition of S.
= S(e(c)In))
=¢€(c)S(Iy)) S is R module homomorphism.

=€(c)Iy S preserves unit.
= (4o O)(0)

We showed S? is left inverse of S, hence S? = 1y. If H is cocommutative
then we have:

ici@)di:zn:di@@; with ¢;,d; € C.

Hence it is easily seen that equation (2.25) turns into:
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(S?%x 9)(c) = o (S?®S)oAlc).

=po (52®S)(Zdi®ei)

1=1

=po(S?® S)(Z e; ®d;) H is cocomutative.

1=1

_ w(; 5(e:) ® S(dy)) (2.26)

= i Sz(e,)S(di)

=S (Z d;S(e;)) S is anti-automorphism.
i=1

= S(uoe(c)) definition of S.

= poec).

Similarly, we showed 5?2 is left inverse of S, hence S? = 1. Note that we
used the same A for equation (2.26) which we used for (2.25). This finishes

the proof.
O

2.2.3 Hopf Algebra
Definition 2.2.9. A Hopf algebra is a bialgebra with an antipode.

Let K be a commutative ring with unit. We give one of the important
properties of Dual Hopf algebras.

Proposition 2.2.10. If H is graded projective K-module of finite type, then
(H,p, p, A €), is a Hopf algebra with multiplication o, comultiplication A, unit
i, and counit € if and only if (H*, A*, €*, ¢*, u*,) is a Hopf algebra with multi-
plication A*, comultiplication p*, unit €*, and counit u*. [27, Proposition 4.8]

2.3 Words

See[28, Chapter 1] for more detailed information on topics given in this sec-
tion. We now give basic concepts about words.
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Definition 2.3.1. Let E be an alphabet, that is a non-empty set of symbols,
ie., E = {a,b,c}. Its elements will be called letters. A word over the
alphabet F is a finite sequence of elements of E:

(a1,a9,a3,...,a,), a; € E.

The set of all words over E' is denoted by W. A product on W is defined
by concatenation:

(ala ag,a3, ... ’a‘m)(bla bZa b3a e 7bk‘) = (ala A2,03,...,0m, bl) b21 b37 ey bk)
The product is associative, which allows writing a word (a1, ag, as, . .., a,) as
ai,as, as, .. .,a, by identifying a letter a; € F with sequence (a;).

Remark 2.3.2. In the rest of this thesis a word (a1, az,as, . .., ay,) is denoted
by a1, as,a3,...,ay,.

The sequence without any letter is called the empty word which is the
neutral element for multiplication. W has a product which is associative and
it is also combined with the unit, so W becomes a monoid.

Remark 2.3.3. The alphabet E does not need to be finite, whereas a word
is finite.

As a convention, in the rest of this thesis we will use the alphabet £ = N.
Since N is our alphabet, we can also add the letters.

Definition 2.3.4. Let w = wy, ..., w, be a word, then the total number of
letters, p, is the length of w. The degree of w is w; + ... + w,. It will be
denoted by |w|.

Of course the empty word has the length of zero.

2.3.1 Properties of words

We first give the following proposition which will be an important tool for
the following section.

Proposition 2.3.5. Let R be the set of all words of degree n, where n > 1.
Then
R=AUAU---UA,,

where A; = {i,l1,...,ls: l1,...,1ls is a word of degree n—i},i=1,...,n.
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Proof. Let R be the set of all words of degree n, where n > 1, in other words,

we have:
R = U;{words of degree n, first letter is }.

Let A; = {é,l1,...,ls: 11,...,lsis a word of degree n—i},i=1,...,n. One
can observe that if w € R, then by definition 2.3.4 the first letter of w must
be in {1,...,n}, and the remaining must form a word of degree n — i, hence

w € A;. This completes the proof.
O

Corollary 2.3.6. Let R be the set of all words of degree n, where n > 1,
then the cardinality of R is 2"71.

Proof. We proceed by induction on the degree n. Let R be the set of all
words of degree n, where n > 1, in other words we have:

R={b1,b2,...,bp2 b1+b2+...+bp=n} bl,...,bp>0.

When n = 1, there is only one word in degree one, which is the word 1,
then the cardinality of R, namely |R| = 2!~! = 1. Hence, the first step of
induction is satisfied.

On the other hand, by Proposition 2.3.5, in degree n, we can find the

cardinality of R by the following equation:
|R| = |A1] + A2 + - + [Anca ] + |An], (2.27)
where A; is defined as follow:
Ai={i,l,...,ls: 11,...,l;is a word of degree n—i},i=1,...,n.

Note that when ¢ = n, A, = {n}, hence, |A,| = 1. Beside this, by definition
of A;, fori =1,...,n — 1, it is seen that, the cardinality of A;, namely |A;|
is equal to the cardinality of the set of all words of degree n — ¢. Hence, by
the inductive hypothesis |A;| = 2(*=9~1. Therefore, equation 2.27 turns out:

IR|=2"242"3 4. +20 41, (2.28)
from which we can conclude that |R| = 2"~!. This completes the proof. O

As we said N is our alphabet, so we have a totally ordered property. Let
w = wy, ..., w, be a word, we now define new terminologies in the following:

Definition 2.3.7. If wy, ..., wp, = wp, ..., w;, then w is called a palindrome.
If the length of w is odd, then w is called an odd-length palindrome which
will be denoted by OLP. If the length of w is even, then w is called an
even-length palindrome which will be denoted by ELP.
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Definition 2.3.8. If wy, ..., w, # wp, ..., w;, then w is called a non-palindrome.

Definition 2.3.9. If w,,...,w, > wy, ..., w; in dictionary order, then w is
called a higher non-palindrome. It will be denoted by HN P.

Definition 2.3.10. If wy,...,wp < wp, ..., w; in dictionary order, then w is
called a lower non-palindrome. It will be denoted by LN P.

HNPs, LNPs, ELPs and OLPs will play an important role in the following
chapters. We first introduce interesting observations regarding these words
as follows.

Proposition 2.3.11. Even-length palindromes have even degree, so there are
no even-length palindromes in odd degrees.

Proof. Assume that w = 4y,..., %, %1, .- ., 2k is an even-length palindrome.
We can easily observe that the left part of w is 4., ..., 4, which is the reverse
of the right part of w, namely ix,1,...,42¢. Thus, the degree of w is iy +

...+i2k=i1+"'+ik+ik+...+i1=2(i1+"'+ik) which is even. O

Proposition 2.3.12. There is a one-to-one correspondence between higher
non-palindromes and lower non-palindromes of any fixed degree.

Proof. Let by, ...,b; be a higher non-palindrome. Then b,,...,b; > b1,...,b,
in dictionary order. So, by,...,b, < by, ..., by, then by, ..., b, is a lower non-
palindrome. This means the reverse of a higher non-palindrome is a lower
non-palindrome and every reverse of a lower non-palindrome is a higher non-
palindrome. O

Corollary 2.3.13. For any fized degree, the number of higher non-palindromes
and lower non-palindromes are equal for all degrees.

Proof. The proof is straightforward by Proposition 2.3.12. O
Now using the observations above we give the following results.

Proposition 2.3.14. In degree n, n positive integer:

i. The number of even-length palindromes is 2%~ if n is even, and 0 if n
s odd;

i. The number of odd-length palindromes is 22" if n is even, and 2% if
n is odd;

iii. The numbelr of higher non-palindromes is 2"~2—22~1 ifn is even, and
272 _ 2% 1 if n is odd; and
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. . : _ n_q . R
w. The number of lower non-palindromes is 2" =2 — 2271 if n is even, and

Proof.

ii.

on=2 _ 251 if p 4s odd,

i. By proposition 2.3.11 it is clear that even-length palindromes
can only occur in even degrees which means the number of them is zero
in odd degrees. Let n be the degree, where it is a positive even integer,
and let iq,..., %, ik+1, ..., %9, be an even-length palindrome. Then its
degree is 2(4; + ... + i), 0 iy + ... + 4 = B, therefore i1,...,4; has
degree 7, but it can be any word in degree 2. By Corollary 2 3.6 the
number of all words in degree % is 25— And for any word, i1, ..., 1%,
of degree 3 we get a degree n, S“’ »tkoi2k palindrome. So, the number
of even- length palindromes is 27~

Let n be an even integer, then there is a one-to-one correspondence
from the set of all even-length palindromes in degree n to the set of all
odd-length palindromes in degree n given by,

il,'*'vzkvlk—f-lv coeybog Zlv"'aik+ik+la"'ai2k
with inverse given by,

i Tk ;
Bok—1.

il""’ik""’iﬂc—]Hi]""’?’_f)_""'

(Note that i; must be even because n is an even degree.) Therefore,
the number of odd-length palindromes is equal to the number of even-
length palindromes in even degrees, which is 227!, Now let’s consider
odd degrees

Let n be an odd integer and let 4y, ..., %41, ..., 92,41 be an odd-length
palindrome. Then 4y,...,%41,...,%2%+1 has a middle term, namely
ix+1, where éx4 1 > 1 and a left part word, namely i1, ...,% which is
the reverse of its right part word, i.e, igya,...,9o%41-

The degree of 41, ... 9%, tks1,- .-, G2k+1 1S 2(61 + - .. + i) + Gg41. Beside
this, since tg11 > 1, (i3 + - +ix) < n—2—“1 ,therefore i1, ..., has degree
which is less than or equal to "T_l But the left part word iy, ...,% can
be any word of degree which is less than or equal to "T_l

On the other hand, the middle term, ixy;, is determined by n and the
degree of 4y,...,4; we have 441 = n — 2(¢; + -+ + ). Hence, for
any word of degree less than or equal to -”—;1 we get a degree n OLP,

Stotktlt2ktl where G =1 — 2(4 + - - + 9x).
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Therefore, the number of all odd-length palindromes is equal to the

number of words with degree 0,1, ..., "T_l, ie.,

141421422428 4... 402" 1 = 9%,
Therefore, the number of all odd-palindromes is 2%,

iii. By Corollary 2.3.6 the number of all words in degree n is 2"~. Let n be
n positive odd integer. By (i) and (ii), the total number of palindromes
is 2"7. So by Corollary 2.3.13 the number of higher non-palindromes
is

on-1 _ o"7
2

= 271—-2 - QnT_l_l

Let n be an even integer. By (i) and (ii), the total number of palin-
dromes is
2571 42571 =28,

So by Corollary 2.3.13 the number of higher non-palindromes is

This completes the proof.

iv. By (iii) and corollary 2.3.13 the number of lower non-palindromes and
lower non-palindromes is equal to the number of higher non-palindromes.
This completes the proof.

O

We now give two important terminologies: coarsening and refinement.
These will be one of the important tools for the following chapters.

Definition 2.3.15. Let ey,...,e, be a word. r,...,r, is a coarsening of
€1,...,en if there exist ky, ..., k1, ky with ry = €14+ ...+ €k, T2 = €41 +
oot Cryy Thn =€k 41+ ... Fem,and 1 <k <ky<...<kp1 <k,=m.

Remark 2.3.16. Alternatively, we can give the following definiton for coars-

ening. Let by,...,b, be a word. A coarsening of by,...,b, ts a word which
can be obtained from by, ..., b, by turning some of the commas ’,” by,..., b,
mto "+7s.

Example 2.3.17. Coarsenings of the word 2,2,1 are the words 2,2,1 , 2+2,1
, 2,241 ,and2+2+11i.e,2,2,1,4,1, 2,3 ,and 5.
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According to this Definition 2.3.15 we can define refinement of a word as
in the following.

Definition 2.3.18. Let b;,...,b, be a word. c¢;,...,¢, is a refinement of
by, ..., by if there exists ky,. .., kn_1,k, with by =1+ ... + ¢k, ba = cpy41 +
coit Crgy b =ckp 11+ Femand 1 <k <ko <. <kpoy <kp=m.

Note that the empty word has only one refinement which is empty word.

Example 2.3.19. The refinements of word 2,2,1 are 2,2,1 , 2,1,1,1 |
1,1,2,1,1,1,1,1,1.

Remark 2.3.20. When we say a Word Hopf algebra we mean an algebra
which has a basis of words. In this context, in this thesis, we are interested
in some word Hopf Algebras: the Leibniz-Hopf algebra, the dual Leibniz- Hopf
algebra. And for any prime p, the mod p reduction of these algebras and its
duals.

Firstly, we will introduce the Leibniz-Hopf Algebra.

2.4 The Leibniz-Hopf Algebra

Definition 2.4.1. Let F denote the free unital associative Z algebra on
generators S1, 5%, 83, ... including the empty word which is denoted by S°.
F is spanned by 'words’ (of finite length) in the 'letters’ S!, 52, S3,.... The
unit of F is S°.

We now give more details regarding a basis of this free Z algebra.

Definition 2.4.2. Let by, ..., b, be a word”, then 515 ... §% is called the
corresponding basis element of F. And we will abbreviate this to Sb1:20%,
The number of letters of the word is called the length of the basis element.

We can give F a grading by S? has degree . Hence, F is a graded algebra,
i.e., F = @®n>0Fn, Where F,, denotes the degree n part of . Moreover, F
is connected, i.e, Fy = Z.

Proposition 2.4.3. For each n > 0, F, has a basis consisting of words
whose indices sum to n, i.e,

F, = {Sil,h,...,ik tiy+ i+ + i =n}
Example 2.4.4. The degree 4 part of F, namely F,, has basis elements:
g4 g31 g22 gl3 g2ll gl21 gll2 gLLLIL
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Proposition 2.4.5. In any degree of F, the dimension of F,, wheren > 1,
is calculated by the formula 271,

Proof. By corollary 2.3.6 the number of words of degree n is 2"~!. This
completes the proof. O

For given two basis elements, $%1:%2:%:%n and §bu.b2:b3--bk muyltiplication
@ is given by concatenation, which is determined by

w(sal,ag,ag,...,an ® Sb],bz,b3...,bk) — Sal,a2,aa...,an,bl,bz,ba...,bk’

where the letters S*, 5%, ... S Sb Gb2 = G% ¢ F
Furthermore, comultiplication A is determined on F by

A(S™) = Zn: St @ Ssm,
=0

and requiring that A be an algebra morphism.
Example 2.4.6.

A(S™) = A(SH)A(SY)
=5 +5'95'+5*®8%)(S°® S+ 5! @S9
= (P25 +8'®52+S5' s+ SMeS +S*® S!
+ 5% ® S°)
Definition 2.4.7. The counit ¢ is given by

w1, i n=0
6(5)_{0, if n>1,

and requiring that ¢ be an algebra morphism.

(F, A, €) has a coalgebra structure with coproduct, A, and counit e.
Proposition 2.4.8. (F, ¢, u, A, €) is a bialgebra.
Proposition 2.4.9. F is cocommutative with coproduct A.

Proof. To show the cocommutativitiy we need to show that the following
diagram is
F2-FQF (2.29)

N

FQF
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commutative. Let §™»-" € F then using the fact that A is an algebra
morphism we have:

A(S™om) = A(SM)A(S™) - A(S™)

ni Ngq
= Z(S“ ®Sn1_i1)...(5’iq®gnq"iq)
i1=0  ig=0
71 g
_ Z(Sil ..... iq ® Snl—il ..... nq—iq)
1=0  ig=0
71 Tq
— Z(Snl—jl ~~~~~ Ng—Jq ® S]l 77777 Jq)
n= Jq=0
— 'T'A(Sn] ..... nq)’
g
where for k =1,...,q, A(S™) = Z S @ S™ % Hence, by the equation
ix=0
above it is easily seen that diagram (2.29) is commutative, so F is cocom-
mutative. This completes the proof. O

Remark 2.4.10. “Cocommutativity” means strict, not graded, just like com-
mutativity in Remark 2.1.7.

Proposition 2.4.11. (F, ¢, u, A ¢€) is a Hopf algebra.

By Proposition 2.4.8 F is a bialgebra. To show that F is Hopf algebra,
what is left to show is that F has an antipode which will be denoted by x .
Before giving a proof, we need following lemma.

Lemma 2.4.12. The antipode for F may be recursiveley defined by x 7(S°) =
SO, and for anyx € F,, n > 1,

XrF(x) = - Z yixr(z),
i=1
where

A(x)=50®$+2yi®2i

i=1

and |z;| < n.
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Proof. Assume that for z € F,,, n > 1
A)=S5"®z+ ) 4i® 2
i=1

Substituting our formula for A(z) into the equation (2.23) in definition 2.2.6,
we arrive at:

o (Lr ® xr) 0 Ale) = poc(a)

po(lr®@xs)(S°®z+ Zyi ®2;) =0 by definition 2.4.7 ¢(z) =0

i=1

p(S° ® x#(2) + )y ® x#(2) = 0

i=1

x)+ Z yixr(z) =0
i=1
- Z YixF(zi),
i=1

which shows x r satisfies recursive formula. O

Proposition 2.4.13. For the special case, where x = S™, the antipode,x r,
s given by

X}_ Sn Z( 1 ksn ..... ik’
where the summation is over all refinements S of S™.

Proof. The proof will proceed by induction on the degree n. By Proposition
2.2.7, x7(S° = S°. Hence the first step of induction, n = 0, is satisfied.

Since A(S™) =Y, ' ® S™, Proposition 2.4.12 shows that we have a
recursive formula for antipode which is given by

- ZS’ (S™7H). (2.30)

Now let consider the equation (2.30). It expands in the following:
XF(S") = = (Sxr(S™) + S2F(S™2) + - + S"xA(S"™). (231)

Since x#(S"™") = x#(S°) = S° = 1, the equation (2.31) turns into :
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where the first summation is over all refinements ry1,719,...,715, of n — 1,

the second is over all refinements ro;, 729, ..., 7, of n —2,..., and the last
one is over all refinements 7,1, 7o, ..., Tnk, of n —n = 0, i.e., empty word.
Hence the length of r,1,7na, ..., Tk, namely k, is zero. More precisely, by

distributive property of the product in F, the equation (2.32) turns into:

+ (=1)knF18m, (2.33)

In the language of Proposition 2.3.5, we observe that each summation on the
right hand side of equation (2.33) is over A;, where ¢ = 1,...n. and each
summand in the summation is coming with coefficients (—1)**!, where k; + 1
is the length of the summand. Le., the summation Y (—1)k+LgLrraz..rik
is over A;, and each summand S'"11722-"1k has coefficient (—1)¥%1, simi-
larly, the summation $_(—1)k2t18%m21 222k i5 gver Ay, and each summand
S2rar22eTaky has coefficient (—1)¥2+1) and so on. Note that, when i = n
the summation has only one summand which is S™ and S™ has coefficient
(=1)k+1 = (~1)!, since k, = 0.

Moreover, by the definition 2.3.18 the set of all refinements of the length
1 word n corresponds to R which is the finite union of these A;. Hence, in
the language of Proposition 2.3.5 the right hand side of equation(2.33) is the
sum of all refinements of S™. This completes the proof. a

Corollary 2.4.14. Let S®-% ¢ F, then the antipode,\r, is given by
X}_(Sbl ..... bp) — Z(_l)nst]""’t",

where the summation is over all refinements St of Sbe-01,

Proof. Let S%%2-% ¢ F By Proposition 2.2.8 7 is an antiautomorphism,
SO

X}_(Sh,...,bp) — X}_(pr)xf(sbp_l) .. 'Xf(sz)XF(Sbl)'
More explicitly by Proposition 2.4.13 we have:

X}'(Sbl""’bp) _ Z(_l)kl Sil,l..,ikl Z(_l)(kz—kl)siklﬂ eolky L.
Z:(_1)(kp‘kzu—l)Si"‘p—l‘*‘1'“"1.’%7 (234)

where S is a refinement of S%, similarly, S¥*1+1%: is a refinement
of §b-1, ... S™p-1+1%p ig g refinement of S®. We know the product of F
is concatenation. Hence, equation (2.34) turns into:

X}_(Sbl,...,bp) — Z(_l)kpsil,...,ik],ik1+1,...,ik2,ik2+1 ..... kp_1+1,...,ik,,, (2_35)
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where Stttk +1rniky ka1 Rp-1+18kp js g refinement of S, because
Stk js g refinement of S, similarly, Sti+1++%: is a refinement of S%-1,

, Sp-1+1%p g g refinement of S%. This completes the proof.
O

Remark 2.4.15. By proposition 2.2.8 the antipode, X, is an anti-endomorphism
of F, hence in the conjugation formula we first take the reverse of S®1-,
namely S% % then apply refinement operation to Sb»%1 . We consider

more details of antipode in the following chapters.

Example 2.4.16.

X}‘(SB’I) — 51,3 _ 51,2,1 _ Sl,l,? + Sl,l,l,l-

2.5 The mod p Leibniz-Hopf algebra

In this section for any prime p we consider the mod p Leibniz-Hopf algebra.
We give more details while considering p = 2, i.e., the mod 2 Leibniz-Hopf
algebra.

The free unital associative Z/p algebra on generators S, 52,53 ... has
the same algebraic structure as JF, but everything takes place over field Z/p.
It is denoted by F,, and it is a Hopf algebra, so has the antipode which is
denoted by xx,. Moreover, xz, is defined by the same formula as x .

On the other hand, for the mod 2 Leibniz-Hopf algebra, the antipode is
denoted by xz,. Since we work on mod 2, the formula for antipode xr in
Corollary 2.4.14 is simplified into the antipode formula for 3 in the following:

Remark 2.5.1. To make it more clear, the reader should keep in mind that
Fn denotes the mod n reduction of F, whereas (Fp)m denotes the degree m
part of F.

Definition 2.5.2. Let S% b € F,, then the antipode, xz,, is given by

X]:2 (Sbl,...,bp) — Z Stl,...,tn

where the summation is over all refinements St»tn of Sbrrb1

There are examples which are given for the antipode of F3 and F; as
follows.

Example 2.5.3. The image of S*? under xz, is given by

X7, (53,2) = §23 _ §221 _ 212 4 g2111 _ gl13 | g2l 61,112 gLLLLL
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Example 2.5.4. The image of S>? under xz, is given by
XF. (S3,2) — S?,3+S2,2,1 +82,1,2+SZ,1,1,1+Sl,1,3+S],l,2,l +Sl,1,1,2+51,1,1,1,1
: )

In the next section we give basic algebraic details of the Dual-Leibniz
Hopf algebra.

2.6 The dual Leibniz-Hopf Algebra

The Leibniz-Hopf algebra, (F, ¢, u, A, €), is graded and finite type, and since
F is free Z module, it is a projective module. Hence by Proposition 2.2.10,
dualising F we obtain a new Hopf algebra (F*, A* €*, ¢*, u*). This is the dual
Leibniz Hopf algebra. In fact by the dual of 7 we mean the graded dual,i.e.,
F* = @,Hom(F,,Z) = F;, where F; denotes the degree n component of
F*. Since F is finite type so is F*. F* is also connected.

Remark 2.6.1. Note that the product, A*, and coproduct, ©*, in F*, are
defined as dual of coproduct A and product ¢ in F. And similarly unit, €*,
and counit, u*, in F*, are defined as dual of counit € and unit u in F.

Definition 2.6.2. We know a basis for F is given by all words S%1-%2:%  We
denote the dual basis for the free Z-module, F*, by subscripts: {Sh, bs.....b, }-
The dual basis element of F* is defined with the duality given by.

o 1 if k=n, and b; = J1,b0 = jo,...,bp =3
‘Sln,b:.),b:«;,...,bk(S’JLJ2 ..... Jn) :{ ' ! 172 72 g Ik

0 otherwise,
(2.36)

where SJ1:32-Jn ig g basis element of F.

The length of the dual basis element Sp, p, 5,,...5, Will be the length of the
word bl, bg, b3, .. ,bk.

Proposition 2.6.3. In any degree n > 1 of F*, dimension of F,, is calcu-
lated by the formula 21,

Proof. Follows immediately from Proposition 2.4.5 O

Recalling Remark 2.6.1, the multiplication of the dual Leibniz-Hopf al-
gebra is defined as the dual of coproduct, A*, and this product structure is
given by the overlapping shuffle product, which is defined below. For the
reader’s convenience, let us recall Hazewinkel’s notation.

In Hazewinkel’s language[17], F is denoted by Z =Z < Z,,Z5,... > on
generators Z,, Zs, ... which corresponds to S',S?, ... in this thesis.
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On the other hand the graded dual of F is denoted by M[17][Section 1],
and is called overlapping shuffle algebra. Moreover, the multiplication of M
is defined as the dual of the coproduct which is denoted by u and corresponds
to A in this thesis. And this product structure, A*, in the dual algebra is
precisely given by the overlapping shuffle product[17][Section 6], which can
be described in the following:

Definition 2.6.4. Let S,,, o, and Sy, s, € F* 50, Sq,,. e, has length k,
and Sp,, ., has length m. Overlapping shuffle product of S,,, 4, and Sp,, . b
is defined by

vvvvv

where h inserts a number of Os into ay, . . ., ax (up to m), and inserts a number
of Os into by, ..., by, (up to k), and then adds the first indices together, then
the second and so on. The sum is over all such A for which the result contains
no 0.[6, Section 2]

Example 2.6.5. Let Sz, and Sy € F*
A*(S32® S4) = Sz24 + S342+ S432 + S72+ Sz
Proposition 2.6.6. The overlapping shuffle product is commutative.

Proof. By Proposition 2.4.9 F is cocomutative with coproduct A, therefore
F* is commutative with Overlapping shuffle product, A*. O

Coproduct, ¢*, which is called excision or cut is given by

i=0
where S is the identity of F*.
Example 2.6.7.

©*(Sa32) = So ® Sa32+ S1®@ S50+ S13® S2+ Ss32 0.

.....

N _J 1, if  ji,...,Jq has degree zero
W Sh,g) = { 0, otherwise

Proposition 2.6.8. The antipode, x 7+, is dual to the antipode X r.
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Proof. F is a graded algebra, so F = &,F,, where F, denotes the degree
n part of F. Moreover, the antipode, xr, is a graded Z module morphism,
i.e., xr = ®nxx,. Similarly, product, coproduct, unit and counit are graded
Z module morphisms, i.e, ¢ = B, n, coproduct A = H,A,, unit, u = By,
and counit, € = @,¢,. By definition 2.2.6 the antipode, x 7, on (F, ¢, i, A, €)
satisfies following equation:

po(xr®lr)oA=poe=ypo(lr®xr)oA. (2.37)

Applying contravariant graded functor Hom(—, Z) to the equation (2.37) we
have:

Ao (xr®1lF) op" =€opu’=A0o(lr®xr) oy (2.38)
Since (1r @ x7)* = 1r ® X%, and (xr @ 15)* = x ® 1, we have:
Ao (x5®1lp)op" =€ op”=A"0(1®@XF) oy (2.39)

where x% is dual of xr and satisfies the equation (2.39) which is for being
antipode. By Coroallary 2.2.7 antipode is unique, hence x% is the antipode
for (F*, A*, u*, p*, €*). This completes the proof.

O

Note that the Proposition 2.6.8 can be generalised for any Hopf algebra
that has a dual Hopf algebra.

Remark 2.6.9. In general for an infinite dimensional R-algebra A we do
not have an isomorphism:

A @A~ (A® A).

But we have:
FrF = (F®F).

To be able to understand the isomorphism above, we recall the following
properties of F :

i. F is infinite dimensional free Z algebra which is graded, finite type
and connected, i.e, F = @,>0F,, where F, denotes finite rank free
Z-modules in each degree of n.

ii. By the dual of F we mean the graded dual, i.e., F* = @©,>0F,, where
F» = Hom(F,, Z) which is the dual of F,,, so F;; is free of rank n.
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Keeping in mind the properties of F above, lets consider tensor product
of F* by itself:
F*'Q@F = @p(F* @ F" ),
= On(Bi=oF; ® Fpi)
= EDn( &, Hom(F;, Z) ® Hom(F,_;, Z))
= @, &}, Hom(F;, Z) ® Hom(F,,_;, Z).

On the other hand, we now consider (F @ F)*, but before that we remind
some properties of contravariant Hom functor and graded contravariant Hom
functor on free Z modules:

ili. Hom(F; ® F;,Z) = Hom(F;,Z) ® Hom(, Z) because F;, F; are free of
finite rank.

iv. The functor Hom(—, Z) preserves finite direct sums, i.e., Hom(®? 4 Fn, Z) =

@ (Hom(F,,Z).
Now consider dual of F ® F:
(F®F) = EBnHom((]: ® F)a, z) by ii.

= @nHom( ®ico Fi ® Fnis Z)

=~ @n @?:0 Hom(.ﬂ & f'n-—i, Z) by iv.
~ O, B, Hom(F;, Z) ® Hom(F,—;,Z) by iii.
=F"QF".
Note that the property iii. does not hold for infinite dimension case. And
the functor Hom(—, Z) does not preserve infinite direct sums.

In conclusion, being F is finite type and taking the graded dual of F lead
us to have an isomorphism: F* ® F* = (F ® F)*.

Proposition 2.6.10. Let Sy, p, € F*, then the antipode, X%, 15 given by

X_’;:(Sbl ..... bp) = (_1);0 Z S’r‘1,...,7‘f7

where the summation is over all coarsenings r1,...,75 of by, ..., by [14].

Proof. Both x% and xr are graded Z-module homomorphisms. Moreover,
by Proposition 2.6.8 we know x% is defined as graded dual of xz, i.e., x5+ =
@nXFz- So we have the following:

X7z (F)n = Fyy XFz(Sbrby) = Sby,py © XF  Fn = L, (2.40)



where for each n > 0, xz: is a Z-module homomorphism, and Sy, .5, € Fi-
Beside this, since F* is of finite type, so for each n, F is a free module of
finite rank.

To have a complete description for x r:(Sh,,..s,) in equation (2.40), we
need to evaluate it for all basis elements S7J» of F,. Let S7»J» be any
basis element in J,,then we can evaluate S7'J» under y 72 (Spy,...6,) as fol-
lows:

X7z (Sby,..5 (S ) = Sy b, (an(sjl """ j")) (2.41)
Beside this, we know by Corollary 2.4.14 we have:
X (ST in) =3 " (=1)98t s, (2.42)

where the summation is over all refinements St s of Si»-J1 Hence sub-
stituting equation (2.42) in equation (2.41) we arrive at:

X7z (Spy,o b (ST ) = Sy b,,(Z(—l)gs‘l ~~~~~ ta), (2.43)

where the summation is over all refinements St »ts of Sin-1
On the other hand, by definition 2.6.2 Sty,... b, 18 defined with the duality
given by.

otherwise,

Sbl’m’bp(Si],iz,...,iy) — { é =Yy and bl =11, b? =12,..., bp =1p (244)

where S is a basis element of F,. According to equation (2.44), the
right hand side of equation (2.43) equals:

—1)9 p=g, and by =t,, by =t,...,b, =1t
sbl,...,b,,(Z(—l)gstn---,tg)={ (C1r p=g S =t =k
(2.45)

where S''e is refinement of S/»71. Now to be more precise let’s re-write
equation 2.43. Since the right hand side of equation (2.43) equals the right
hand side of equation 2.45, then we have:

. . 1\ b1,....bp 3 Grgee sl
53S9y = { IS o telement of S
(2.46)
Beside this, if S% % is a refinement of S then S/ is a coars-
ening of S®b». And using the fact if ,,..., 71 is a coarsening of b1, ..., by,
then ji, ..., jn is a coarsening of by, ...,b; in fact, S/ is a coarsening of
Sb:-b1 Hence, using these facts we re-write equation (2.46) in the following:
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: 11,5000 3 1 b
\ jogny . | (1P if S71--In s a coarsening of S%
X7 (Sby,..,) (5717 77) { 0 otherwise,

X;:(Sbl,...,b,,) = (_l)pZSjl,...,jna

where the summation is over all coarsenings ji,. .., jn of by, ..., b;. This com-

pletes the proof.
O

Example 2.6.11.

Xf*(S3,2,1) = *51,2,3 - 5'3,3 - 51,5 — Se.

2.7 The mod p dual Leibniz-Hopf algebra

In this section for any prime p we consider the mod p dual Leibniz-Hopf
algebra. We give more details while considering p = 2, i.e., mod 2 dual
Leibniz-Hopf algebra. By the mod p dual Leibniz-Hopf algebra we mean
F*®Z/p which has the same algebraic structure as F*, but everything takes
place over field Z/p. It is denoted by F;. Like F*, F is a Hopf algebra with
the antipode which is denoted by xr;. xr; is defined by the same formula
as xr~. For the prime two, i.e., the mod 2 dual Leibniz Hopf algebra, the
antipode is denoted by x r; Since we work on mod 2, the formula for antipode
X in Proposition 2.6.10 is simplified into the antipode formula for xr; in
the following:

XJ-’*(Sbl,...,b,,) = ZS“ ..... tns

where the summation is over all coarsenings Sy, ., of Sy, . ;-
Our main goal will be to find the conjugation invariants in F, F, and
dual of these algebras.
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Chapter 3

Conjugation Invariants in the
mod 2 Dual Leibniz-Hopf
Algebra

Im(xr; —1) and Ker(xr; — 1) are subvector spaces of ;. An element w € F3
is an invariant under conjugation, Xr;, if xr; (w) = w. In other words,
(x7; —1)(w) = 0. Thus, Ker(xr; —1) is formed by the conjugation invariants
in F;. Hence, if we can determine a basis for the Ker(x7; ~ 1), then we can
find all conjugation invariants.

In this chapter, we will determine a basis for this vector space by proving
Theorem 3.0.2 which is the main theorem of this chapter.

Remark 3.0.1. In the rest of this thesis, in mod 2 cases, the reader should
keep in mind that the identity map —1 will be the same as +1.

Theorem 3.0.2. A basis for Ker(xr; — 1) consists of:

i. in even degrees, the (x F3 — 1)-image of all higher non-palindromes and
all even-length palindromes

i. in odd degrees, the (x5; — 1)-image of all higher non-palindromes and
the Ap,~-tmage of all odd-length palindromes,

Here Az; denotes the sum of all “left coarsenings”, which we will fully

define in Section 3.2.
For the beginning of a proof for Theorem 3.0.2, we will first prove Theorem

3.0.3.

Theorem 3.0.3. The image of (x5; — 1) on F; has a basis consisting of
the (Xr; — 1)-images of all higher non-palindromes and all even-length palin-
dromes.
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Note that there are no even-length palindromes in odd degrees. Before
giving a proof for Theorem 3.0.3, we first consider linearly independent ele-
ments in Im(x%, — 1) .

3.1 Linear independence

Proposition 3.1.1. Let S;, _;,, be an even-length palindrome. Among the
summands of longest length in (xz; — 1)(Siy,..ip,) there is one odd-length
palindrome, Si, | i tiyi1,.isns aNd this odd-length palindrome does not occur
as a longest summand in the (xr; — 1)-image of any other even-length palin-
drome.

Proof. In the xr;-image of a length m basis element, all summands have
length less than or equal to m, and the only length m summand is the reverse
of the length m basis element. Thus, in the (xz; —1)-image of a palindrome,
say, Sy, b, all the summands have length strictly shorter than the length
of Sy,,..s.- Because, Sy, . 5 has coefficient 1 as a summand of xz;(Sp,,...b,)
and —1 as a summand of (—1)(Ss,, .»,.)- Hence, they cancel each other, so
Sh,,...p, Occurs having a coefficient zero as a summand of (X-"'E — 1)(Spy....50)-

If Si.. iy is an even-length palindrome, then in (xr; —1)(Si,,....iz, ), there
are 2k — 1 summands of length 2k — 1, namely

Si1+iz,i3,-~-,i2k’ Sil,i2+i3,i4 ----- (ZTERERE Sil»--~ai2k—2ai2k-l+i2k‘

Among these longest 2k — 1 length summands, as noted in the proof of
Proposition 2.3.14 , there is an odd-length palindrome, namely

S'ilw-aik—laik+ik+17ik+27~~-vi2k .

Moreover, it is the only palindrome among these summands.
Now, let Sj, . ;, be another even-length palindrome, then similarly the
only longest length palindrome of (xr; — 1)(S;,,...5,,) 18

Sjl7---sjl—1,jl+jl+l7jl+2,-~~,j21 ’

which is a summand of (xrz —1)(Sj,,....5,,) With 2/—1 length. For this to equal
St 1vik+insrsierarvizes W Must have I =k, 51 = 41,..., 5101 = th—1,Jir2 =
k42, -+ Jo = dox and Jy + Jip1 = ik + feq1. Since, S i, and Sy, j, are
both ELPs , so we have equality: jj+1 = 7 and ix4; = %k, from which can
deduce that j; = 4y and jiy1 = @41, then it follows that Sj, i, = S, gk
This completes the proof. O

37



Theorem 3.1.2. Let ws,...,wy, be all the higher non-palindromes in even
degrees, and let ey, ..., e, be all the even-length palindromes in even degrees.
Then (x7; — D)(w1), .-, (X — Dlwn), (xzp — (er)s- -, (xzp — 1)(e) are
linearly independent.

Proof. Let wy, ..., wn, be all the higher non-palindromes in even degrees, and
let ey, ..., e, be all the even-length palindromes in even degrees. Assume that
v1, ...,V are distinct elements of {w1, ..., wm,e€1,...,e,} with the property
that;

(X7 = D(vr) + -+ (xz3 — 1) (vk) = 0. (3.1)

Moreover let’s order these elements according to their length as follows:
length(vy) < length(vy) < -+ < length(vy),

and so that even-length palindromes of any length [ come before higher non-
palindromes of length .

We know vy, . . ., vy, are distinct elements of the set, {ws, ..., wm,€1,...,€,}.
Hence, either vy, is an even-length palindrome or vy, is a higher non-palindrome.
If v is a higher non-palindrome, say with length r, then there are exactly
two length 7 summands in (xr; — 1)(vg). One of them is an HNP, v itself
which comes from —1(vg), and the other one is the reverse of v, an LNP,
which is a summand of xz; (v). All other summands of x r; (vx) have length
strictly less than 7.

Furthermore, v; cannot occur in the (xr; — 1)-image of any other length
r HNP, say v,. Because, similarly, (x Fr— 1)(v,) has only two length 7 sum-
mands, namely v}c, and its reverse, an LNP. And v, is neither an LNP nor
equal vy.

Moreover, vy, cannot occur in the (xr; — 1)-image of any HNPs of length
shorter than r, say v;c/ with length ". This is because, by the same argument
above the longest summands of (xr; — 1)(v,) have length r', and 7' < 7.

On the other hand, v, cannot occur as a summand of ELP of length r
or of a shorter length ELP under (xr; — 1). Because by the argument in
the proof of Proposition 3.1.1, in the (xr; — 1)-image of a palindrome, all
summands have strictly shorter length than the palindrome. Hence all the
summands of the (xz; —1)-image of an r length ELP will be of length which
is strictly shorter than r from which we can deduce v, cannot be any of
these summands. In addition by the same argument above it can be easily
seen v cannot occur as a summand of ELP of a shorter length than r under
(xz; — 1)

We have established that vy cannot occur in the image of a shorter higher
non-palindrome, or in any other higher non-palindrome of the same length
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under (xr; — 1), and we also have showed that v, cannot occur in the image
of an ELP of the same length or of a shorter length ELP under (xz; — 1)
Therefore v), cannot occur in (xz; — 1)(v1), -+, (X7 — 1)(vr-1)

This summand cannot be cancelled, so the left-hand side of equation
(3.1) cannot be zero. This contradiction shows that vy is not a higher non-
palindrome. Thus, there are no higher non-palindromes of the same length
as v, because of our second assumption about the order of v, ..., v;. Hence,
v must be an ELP, so has length r. In this case, by Proposition 3.1.1 there
is a unique odd-length palindrome summand in (xr; — 1)(vx) of length 7 —1,
and this odd-length palindrome does not occur as a longest summand in
the (xr; — 1)-image of any other even-length palindrome. Hence, this odd-
length palindrome summand cannot occur in the (xz; — 1)-image of any
shorter length ELP or of any other ELP of the same length, namely 7.

As noted above, there are no higher non-palindromes of the same length
as vg. So for this r — 1 length OLP to be cancelled, it must be occur in the
(xF; — 1)-image of any HNP of length less than or equal to r — 1.

This 7 — 1 length OLP cannot occur in the (xr; — 1)-image of any HNP
of length r — 1, because the longest summands in the (xz; — 1)— image of
any r — 1 length HNP are HNP itself and its reverse, and neither of them are
OLP.

Furthermore, by the length consideration which is noted above, it is clear
that this r — 1 length OLP cannot occur in the (xz; — 1)-image of any HNP
of length strictly less than r — 1. Hence, this r — 1 length OLP cannot occur
in the (xr; — 1)-image of any HNP of length less than or equal to r — 1.

Hence if vy is an ELP, then this » — 1 length OLP, which is a summand
of (xr; — 1)(vx) cannot occur in the (xr; — 1)-image of any shorter length
ELP or of any other ELP of the same length. And it also cannot occur in
the (xz; — 1)-image of any HNP of length strictly less than the length of
wg. Therefore it cannot occur in (xz; — 1)(v1),..., (xF; — 1)(vk—1). Thus,
it cannot be cancelled, so the left-hand side of equation (3.1) cannot equal
zero. This contradicts to our initial assumption. Hence,

(Xfé’ - 1)(w1)7 EERE) (Xf; - 1)(wm)’ (X.Fr_’,“ - 1)(61)’ R (X]"; - 1)(62)

are linearly independent. This proves the theorem.
O

Now we consider linearly independent elements in Im(xr; — 1) for odd
degrees.

Theorem 3.1.3. In odd degrees, the higher non-palindromes in F3 have
linearly independent images under (xz; — 1).
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Proof. The same argument in the proof of Theorem 3.1.2 also applies here.
O

Remark 3.1.4. Recall that, in odd degrees there are no ELPs.
Corollary 3.1.5. In each even degree 2n,
Im(xr; — 1) = Ker(xr; — 1),

and .
dimIm(xr; — 1) = §dim(}'§)2n.

Proof. By Proposition 2.3.14 in each even degree 2n, there are 227~2 — 271
HNPs and 2"~! ELPs, so there are 22"~2 elements in the linearly independent
subset of Im(x; — 1) given by Theorem 3.1.2. Hence,

1
dimIm(xr - 1) > 22n=2 — §dim(}-2*)2n.

In F35, the multiplication is overlapping shuffle, so it is commutative.
Hence, by Proposition 2.2.8 we have:

X2f5 =1
Therefore, we arrive at:
(Xm = Dlxry = 1) = x5 — 2x5 +1=0,
from which we can deduce:
Im(xry — 1) C Ker(xp; — 1),

hence,
dim Ker(xz; — 1) > dimIm(xz; — 1).

Furthermore, by the Rank-Nullity Theorem in each even degree 2n we have:
dim Ker(xz; — 1) + dimIm(xr; — 1) = (dim 75 )2,
therefore

1
dim Ker(xz; — 1) = dimIm(xz — 1) = 3 dim(F3)2n-
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Theorem 3.1.6. In even degrees, the image of (x7;—1) has a basis consisting
of the (xF; — 1)-images of all higher non-palindromes and all even-length
palindromes.

Proof. By Theorem 3.1.2 the (xr; — 1)-image of all higher non-palindromes
and all even-length palindromes are linearly independent. On the other hand,
by Corollary 3.1.5 for in any fixed degree, dim Im(xr; — 1) = %dim Fy.
Beside this, by Proposition 2.3.14 the number of all higher non-palindromes
and even-length palindromes is equal to dim Im(xz; — 1). Thus, (x5 — 1)
images of all higher non-palindromes and all even-length palindromes also
span Im(xz; — 1). Therefore, they form a basis for Im(xr; — 1) in even
degrees of F5*. O

Corollary 3.1.7. In even degrees, Ker(xr; — 1) = Im(x5; — 1).

3.2 Spanning set for (xr; —1)

We will first show that, in odd degrees, the (xr; — 1)-images of all OLPs
can be expressed in terms of the (xr; — 1)-images of HNPs by the following
proposition:

Proposition 3.2.1. Let wy = S;, be an odd-length palin-

drome. Then

(xFz — 1)(wo) = Z(Xf; = 1)(Su,.. o sinsarsizirs)s (3.2)

where the summation is over all proper coarsenings ly, ... Iy of 11, ..., tk+1-

,,,,, Tkt 150k420 502k +1

Note that proper condition ensures that Sj, . 1., ix10....i064, 1S @ higher non-
palindrome. To prove this proposition, we need some technical results.

Example 3.2.2. By Proposition 3.2.1, for OLP, 511211, we have:

(X7 = D(S11,211) = (xmp — 1) (Sa11) + (xmp — 1)(S2,211) + (X7 — 1)(S1,3,1,1)

Lemma 3.2.3. Let S;, be an odd-length palindrome, and let

~~~~~ Tkt 15Tk +2s--502k+1

li,..., L, be a proper coarsening of iy, ...,ixr1, and let v be any summand of
(XF2=1)(S01,.. i sinso-sizers ). Then the number of proper coarsenings qu, .. ., g
of i1, ... ikq1 for which v is a summand of (xz; — 1)(Sqy,...qrisoioess)
odd.
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Proof. Let Siy. . iyi1vieqnvisne: D€ aN odd-length palindrome, and let v be a
summand of (xzz — 1)(Sy,... .l ixsa,ises: )» Where l1, ..., Iy is a proper coars-
ening of 41,...,%41. Then, either v = S); 1. i 0. izess OF ¥ IS a summand
of XFx(St,...lmsixszrisnsr ). 1D other words, v = Si; i ixsonisns: OF U IS @
coarsening of S, . . iiioim,..is Where Ly, ... ) is a proper coarsening of
Tty - oy 01.-( by ..., 1y is reverse of the word [y, ..., 1;.)

If v is a summand of (xr; — 1)(Squ,grsikrovionss)> Where qi, ..., ¢, is a
proper coarsening of 4y, ..., 41, then similarly, v = Sy, o ii 0. iz, OT V1S
a coarsening of Sy, .\ v 0grai-

Of course, if v = Sj; 1,0 ixs2...ize.1, then there is only one proper coarsen-
ing qi,...,q, of é1,...,dpyy for whichv =S5, o i .. . i, OF visacoarsen-
ing of Si, 1 iksogrray DAMElY @1, @ =1y, .

If v = Sy lmsiksorizess @0d v is a coarsening of Sy, i 0gr...a Lthen
Sy lmoikszvizess 1S @& coarsening of S, | 4 .04r..q- There are no proper
coarsenings qi, - . ., ¢, for which this holds. This is because if Sy, .1, ix0izkss
is a coarsening of Sj,,. ., .ixis.r,.aqrs then by the definition of coarsening
ioks1 > q1. Wealso know q; > 4, since qy, . . ., g, is a coarsening of 41, . . ., {x41.
SO, igk+1 Z q1 2 il. Beside thiS, 'il = i2k+1, since S’il,---,ik+1,ik+2,~-~,i2k+1 is
a palindrome. Hence, we have equality: ioxy1 = g1 = ¢;. Thus, we see
that ly,...,ln, k2 - - ., %ok is @ coarsening of iog41, ..., %%+2,qr, - . ., G2, Where
o, - .., qr is a coarsening of 4o, ... ,ix;. Consequently, we can apply the same
argument to preceding term to see that io;, = go = 75, and so on until we see

that q1 = i13q2 =i27---»Qk :Z.k'

On the other hand, we know g, ..., ¢, is a coarsening of iy, ...,%4x41, and
we have determined the first k part of qq,...,q,. S0, @1,499, ..., Tk, Qrg1s- - GQr
is a coarsening of ¢y, ...,%; ;. Hence we must now have that gx1,...,¢, is a
coarsening of ixy;. And by the definition of coarsening, it is clear that this
can only happen if r = k£ 4+ 1 which means ¢, = iy4;. Hence, ¢1,...,¢, =
i1, ...,10ky1 is completely determined. Therefore qy,...,q, is not a proper
coarsening of 4y,..., %y 1.

Thus, we see that if v = S, 1. 44 0. i4., then there is only one proper
coarsening which gives this summand namely, qy,...,q¢. = l1, ..., .

If v is a coarsening of Si,, | . iviotm,ts @0 U = Sy o i o s then
there are no proper coarsenings gy, ..., g, for which this can happen. This
can be seen by the same argument as above with ¢;,...,q. and ly,..., 1,

interchanged.

Finally, suppose that v is a coarsening of S, .., . ita,im,..i1» and also a
coarsening of S; .- It is easily seen that, in this case, v is a
coarsening of Si2k+1yv--7ik+21ik+1)---ﬂ'l‘

Moreover, each proper coarsening of Si,, ., .. 0ixs1,..i1 15 Obtained by
turning at least one of the 2k commas of this palindrome into pluses. Thus,

2k+1se-5tk+2:Gr oG
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we can go from S, .. .iii2.ikss,..in tO U Dy turning a number of these 2k
commas into pluses.
Remembering that we assumed v is a coarsening of Si,, ., ._ix.2,im,...11> and

also a coarsening of S;,, .. ..ix,0.qr....q1 SO sPecifically, v is obtained by turning

some (or none) of the k£ commas of 4941, ...,%k+1 into pluses, and turning
some (at least one) of the k commas of ix, 1, .. .,%; into pluses since l,,, ..., 5
is a proper coarsening of ix11,...,1%1.

Let t be the number of commas in 41, ...,4; that are turned into pluses
in v, then [,,,...,l; corresponds to choosing a subset of these ¢ commas.
There are 2! such subsets, and hence, there are 2 coarsenings qi,...,q, of
i1,...,%k+1 With the property that v is a coarsening of S, ..  irisdr..ar-
However this includes the empty set, which must be excluded for q, ..., ¢, to
be proper. Thus, there are 2° — 1 proper coarsenings qi, ..., g, of 41,..., %41

such that Si,, ., . .ici0.0r...x N8S v as a coarsening. And 2t — 1 is odd, this

completes the proof.

O
Lemma 3.2.4. Let iy,...,%41,%k42,---,%2k+1 be an odd-length palindrome
and let
A={S}, jm:J1s--.,Jm 1S a proper coarsening
Of t1,y .oy b1y Tht2y - - - »Z2k+1}
B= {Sll,,_,Jm,-k+2’,_,‘i2k+l :ly,...,1l, is a proper coarsening
of i1,. . -,’tk+1}
C={Se..c,:Cl...,Cs IS 4 coarsening
Of tokatly .- tkt2sln ..., Lywhere Iy, ... 14
is a proper coarsening of txy1,...,%1}
then BNC =0, and A= BUC.
Proof.  i. Proof of BNC = 0.
If z € B, then £ = S); 1,640, izes1» Where Iy, ..., I, is a proper coars-
ening of #;,...,%41. So the last k£ terms in = are ixyo,..., 0041 =
Uky .-+, 01, SINCE Sy ixi1,.iseer 1S @ Palindrome.
On the other hand, if z € C, then z = S,, ., where ¢;,...,¢c; is a
coarsening of iogt1, ..., tk42, My, ..., My, and my,...,my is a proper
coarsening of 4g4q,...,1;.

Hence, if £ € BN C, then the last term in z is ¢; = ¢, and ¢g > My
since ci,...,¢s is a coarsening of 411, ..., %t2, My,...,m;. On the
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ii.

iii.

other hand, m; > i, because, m,,...,m; is a proper coarsening of
ik+1,---,1;. Hence, i; = ¢; > my > 41, from which we can conclude
that we have the equality: iy = ¢, = m; = ¢;. Thus the penultimate
term in x is i = cs_1 > My > i, continuing this, we find that ¢; = ¢,
, 92 = Cs—1,-..,0 = Co—(k—1)- Lhus the last k¥ terms of my, ..., m,; are
i -..,1,. However m, ..., m; is a proper coarsening of ix1,...,%; so,
this cannot happen. Hence, thereisnoz € BNC, ie, BNC = {.

Proof of BUC C A.

If x € B, then © = Si,__ 1. itr0,izesrs Where ly,... [, is a proper
coarsening of 4y,...,%4xs1. Hence, by definition 2.3.15, it is clear that

Sliyvlnsinya.izess 1S also a proper coarsening of S;, i1y 0. isky, - HeNCE,

B C A.
On the other hand, if z € C, then z = S, ., where c¢y,...,¢cs is a
coarsening of ioxy1, ..., k+2, My, ..., M1, and ni,,...,m; is a proper
coarsening of ixy1,...,%. Again it is clear that z is also a proper

coarsening of Sj, .. 1ikso . izkss- Thus
C C A.

Hence, we arrive at:
BUC CA.

Proof of AC BUC.
Let Sj, ;.. be any element of A. We need to show that either Sj, ;.. €

BorS;, . j.€C.

Since Sj, .. ;.. is an element of A, then ji, ..., jm is a proper coarsening
of 41, ...y ks, kt2s - - -, b2ks1- Thus, ji,...,Jm is obtained by changing
some (at least one) 2k commas of 4y, ..., 4k 41,942, - - - , t2k+1 iNtO pluses.
Particularly, if the last k indices of j,,...,j,» match with the last k
indices of 41,. .., k41, th42, - G2kt1 5 1€ Jrne(ke1) = Ght2y « - iJm1 =
i2ky Jm = f2k+1, then ji,...,Jm I8 J1,..., Jm—k,Gk+2, - - - t2k41, Where
J1y++ ., Jm—k iS a proper coarsening of 7y, ...,4x,1, because jy,..., Jm i
a proper coarsening of 41, ..., %41, Lkt2, - - - » 12k+1-

Now, suppose that this is not the case. So, Sj;, . ;.. is obtained by

m

a. Turning at least one of the last kK commas of i1, ...,%+1, ..., %2k+1
into pluses and
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b. Turning some (or none) of the first £ commas of S;
into pluses.
Consider the result of only doing case (a), i.e. changing some

of the last k¥ commas of Sz-l,_,_,ikﬂ,ik”,...,z‘zkﬂ s we get Siy il

Lyeoosbhd1aeeesi2k+1

where I,,...,l; is a proper coarsening of ixiy,...,%0k41. Since
Si1ysiring 1yeriziss 18 @ palindrome so tgy1, - -y l2k41 = g1, -5 01
Hence, I, ..., is then a proper coarsening of ¢x41, .. .,%;, and we

have equality: Si;,.. i in it = Sigestyeosivtzdnrlss
As a next step, applying (b) to S;
that S;, ;.. is obtained from S;
So Sj,...im € C.

By i and ii we arrive: A = B U C. This completes the proof.

2bt1yeriigalnenln WE Can easily see

2k 1y rtkt2olnse sl by a coarsening.

O

Example 3.2.5. By Lemma 3.2.4, for OLP, S 31, we have:
A = {84,17 Sl,4a 85}7 B = {54,1}1 and C = {Sl,4a 85}

Proof of Proposition 8.2.1. Let wo = Si,, i\, ixs2rizks: D€ @ OLP, then by
the definition of xr;, and using the fact that wy is a palindrome, (xr; —1)(wo)
is the sum of all the proper coarsenings of S;, . . In other words,
in the language of Lemma 3.2.4 we have:

(xr; — D(wo) =) _a. (3.3)

a€A

--1ik+1 1ik+27' . ':12k+1

Now consider the sum:

Z(Xfé“ - 1)(Sll,-»-,lm,ik+2,-..,i2k+1)7 (3'4)

where the summation is over all proper coarsenings ly, ..., 0y, of 41,...,tk41-
It is clear that Si, . i..ixs0.ises: 15 an HNP, because [y, ..., I, is strictly
greater than iggy1,...,%k+2 in the dictionary order.

Moreover, let v be a word, if v is in the sum in (3.4), then it must be
a summand of (xr; — 1)(St,....lom ik 2.-isns: ) fOT @ proper coarsening Iy, ..., Iy
of 41,...,%k41. Then v = Sp 1. ixs2.ize.; OF U 1S & proper coarsening of
Sinkstrisgaddmynr- Hence, in the language of Lemma 3.2.4, v € Borv € C,
so v € A, which means v is a summand in ) _,a.

On the other hand, the coefficient of v in (3.4) is the number of proper
coarsenings g, . . ., gr of i1, ..., ig41 for which (xz; —1)(Sgy.....qriks2.rizesr ) N2S
v as a summand. By Lemma 3.2.3 this number is odd. Hence it is one in
mod 2. Therefore, we have :

Z(Xﬁ_’; - ]')(Slla-~~alm1ik+27~~-vi2k+l) = ZU' (35)

vEA
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Consequently, by equation (3.3) and equation (3.5) we arrive at:

(X}}“ - 1)(w0) = Z(sz* - 1)(Slla~-~,lm»ik+2v---vi2k+1)’

where the summation is over all proper coarsenings [y, ..., [, of i1,...,%xs1.
This completes the proof. O

We will show that the (xr; — 1)-image of any LNP can be expressed in
terms of the (xr; — 1)-image of HNPs. Before that, we need the following

technical result.

Proposition 3.2.6. Let S;, ;. be a lower non-palindrome. Then

(X7 = D) = (X3 = D(Sinin) + Y (x5 = D(Shhi):
where the summation is over all proper coarsenings j1,...,J% of i1, ..., %n.

Proof. Let S;,, . ;. be a lower non-palindrome, then we have a corresponding
HNP which is S;, ..;,. Applying (x7; — 1) to this HNP we get:

(X]‘-é" - 1)(Szn ..... i]) = Sin ..... i1 + Sil ..... in + Z S_jl ..... Tk (36)

where ji,...,Jx is a proper coarsenings of i1, ..., %,.
In F3, we know
(xr; —1)o(xm —1)=0.

Therefore, applying (x; — 1) to both sides of equation (3.6) yields:

where the summation is over all proper coarsenings ji,...,Jx of 41,...,%,.
Re-writing equation (3.7) we have:

where j1, ..., ji is a proper coarsening of i1, . ..,4,. This completes the proof.
O

Theorem 3.2.7. Let wy be a lower non-palindrome, then (xr; — 1)(wo)
can be written as a linear combination of (xr; — 1)-images of higher non-
palindromes.
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Proof. Let wg be a lower non-palindrome in odd degrees, the proof is by
induction on length of wy. A lower non-palindrome must have length greater
than or equal to two, because otherwise it is a palindrome. If length of wy is
two, then take LNP, wy = Sy . Its image under (X}'g —1):

(X}'é’ - 1)(11}0) = Sa,b + Sb,a + Sa+b = (X.]'—'ék - 1)(Sb,a),

where Sy, is a higher non-palindrome.

Now assume that all lower non-palindromes of length strictly less than y
(y > 2) have the (x7; —1)-images that can be written as linear combinations
of the (x7; — 1)-images of higher non-palindromes. Let wo = Sj,, ., be a
length y LNP, then by Proposition 3.2.6 we have:

.....

i. a higher non-palindrome,

ii. an odd-length palindrome, in which case (xr; — 1)(S,,,...q,) is 2 linear
combination of (xr; — 1)-images of higher non-palindromes by Propo-
sition 3.2.1, or

iii. a lower non-palindrome. In this case the inductive hypothesis applies,
because g1, ...,gp is a proper coarsening of the reverse of wp, namely
Sby,...h1» 50 has length strictly less than y. Hence, (xr; —1)(Sy,,..4,) is @

~~~~~

linear combination of the (x 3 — 1)-images of higher non-palindromes.

7777

bination of the (xr; — 1)-images of higher non-palindromes. This com-
pletes the proof.

a

Theorem 3.2.8. In odd degrees, the image of (x 73— 1) has a basis consisting
of the (xr; — 1)-images of all higher non-palindromes.

Proof. In odd degrees, HNPs, LNPs, and OLPs form a basis for /5. Hence,
Im(xr; — 1) is spanned by the (xr; — 1)-image of HNPs, LNPs, and OLPs.
We can reduce this spanning set: by Proposition 3.2.1 the (xr; — 1)-image
of an OLPs can be written as a linear combination of the (xz; — 1)-images
of HNPs, and by Theorem 3.2.7 the (x; — 1)-image of LNPs also can be
written as a linear combination of the (xr; — 1)-images of HNPs. Hence the
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(x7; —1)-image of OLPs and LNPs are linearly dependent with the (xz; —1)-
image of HNPs. Therefore, in odd degrees, the (xr; — 1)-image of all HNPs
also spans Im(xr; — 1).

On the other hand, by Theorem 3.1.3, in odd degrees, the (xr; — 1)-
images of higher non-palindromes are also linearly independent. Hence they
form a basis for Im(xry — 1). This proves the theorem. d

Proof of Theorem 3.0.3. By Theorem 3.1.6 in even degrees, (xr; — 1) has a
basis consisting of the (xz; — 1)-images of all higher non-palindromes and
even-length palindromes. On the other hand, by Theorem 3.2.8 in odd de-
grees, (xr; — 1) has a basis consisting of the (xz; — 1) images of all higher
non-palindromes. This proves the theorem. (]

Corollary 3.2.9. In the mod-2 dual Letbniz-Hopf algebra, F5, the dimension
of the Im(xg; — 1) in degree m is:

. 22n—2’ if m = 2n,
dim IlTl(X}‘E - 1)m = {2271-—3 _ 2”'2 if m=2n-1.

Proof. By Corollary 3.1.5, in 2n degrees, the dimension of Im(xr; — 1) is
227=2_(On the other hand, by Proposition 2.3.14, in degree 2n — 1 there are
22n—3 _ 9n=2 HNPs, so there are 2273 — 272 elements in basis which is given
by Theorem 3.2.8. Hence the dimension of Im(xz; — 1) is 2°*~ — 2”72, This
completes the proof. O

Corollary 3.2.10. In the mod-2 dual Leibniz-Hopf algebra, F5, the dimen-
sion of the Ker(xpy — 1) in degree m is:

' 2271—2’ if m= 2n,
dim Ker(xz; — 1)m = {22n—3 +272 if m=2n—1.

Proof. In degree 2n, by the Rank-Nullity Theorem we have:
dimIm(xz — 1) 4+ dimKer(xz; — 1) = 2>

Hence, by Corollary 3.2.9 it is clear that we have:
dim Ker(xr; — 1) = 227" — 2272 = 22072,

On the other hand, by using the same argument above, in degree 2n — 1, we
have:

dlm Ker(x}_; _ 1) — 2271—1 - (2277,——3 _ 277,—2) — 2271—3 + 2n—2'
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We have established the dimension for Ker(xr; — 1). We will now give a
proof for the main theorem of this chapter. Firstly, we need to give technical
results and introduce a new terminology, which is the semi-image " Ap,+.”

Definition 3.2.11. Let S;,, . 5, be a basis element of ;. The semi-image ”
,,,,, tn Of Sp,,...p, for Whicﬂ.’the last |£] terms of Iy,...,l, are the same as
the last || terms of by, ..., b,.

Example 3.2.12. The \r;-image of the odd-length palindrome S11,2,1,1 5:
)\}‘; (S11211) =S11211+ 52211+ S1.311 + Sa1.1-

Theorem 3.2.13. In odd degrees, let p1,...,p, be all the odd-length palin-
dromes, and let hy, ..., hs be all the higher non-palindromes. Then

)\.7-'2‘ (pl)v T )‘.7"5 (pr)’ (X}}* - 1)(h'1)’ A (X.F; - 1)(hs)

are linearly independent.

Proof. Let py,...,p, are all the odd-length palindromes in odd degrees, and
let hi,...,hs be all the higher non-palindromes in odd degrees. Suppose
D1, ..., Pk are some distinct elements of {p;,...,p,} and hy, ..., h; are some
distinct elements of {hq, ..., hs} with the property that:

Arz(p1) + -+ Ar(or) = (Xmp — D(ha) + -+ (xmp — 1) (). (3.9)

Moreover, let’s order these elements according to their lengths in a non-
decreasing order, i.e,

length(py) > length(px—1) > --- > length(p), (3.10)

and
length(h;) > length(hi—1) > - -+ > length(hy). (3.11)

Let m be the length of px, then by definition 3.2.11, the only length m
summand in Ag;(px) is px, namely p; itself. On the other hand, by the
ordering assumption (3.10), there can be other OLPs that have length m on
the left hand side of equation 3.9. To be more precise, let i be the smallest
index such that p; has length m, then similarly, in Az; (p;), there is only one
summand of the same length as p;, namely p; itself. Consequently, the only
length m summands in Ary(p1) + -+ + Arz(pi) will be those p; that have
length m, i.e., p;, pix1, - - -, Pr—1,Pk. And py,...,p;—1 will have length strictly
less than m.

49



Beside this, since py,...,pr are all distinct, p;, pis1,--.,Pk—1, Pk cannot
cancel, so the maximal-length summands on the left hand side of equation
(3.9) have length m and are palindromes.

Now, let’s consider the right hand side of equation 3.9. Let n be the length
of hy, then the only length n summands in (xz; —1)(h;) are h; and its reverse,
which is an LNP. Again, by the assumption of ordering, (3.11), there can be
other HNPs that have length n on the right hand side of equation 3.9. Let j
be the smallest index such that h; has length n, then in the same manner, the
only length n summands in (xr; — 1)(h;) are h; and its reverse. Following
this, the only length n summands in (xz; — 1)(h1) + - - + (x5 — 1)(l) are
hj,hjt1, ..., and the reverse of those HNPs. And hy,..., h;_; will have
length which is strictly less than n.

Furthermore, since Ay, ..., h; are all distinct, hj, hji1,..., y and the re-
verse of those HNPs cannot cancel, so the maximal-length summand on the
right hand side of equation (3.9) have length n and are HNPs and LNPs. In
other words these n length summands are non palindromes.

Finally, we see that, the maximal-length summands on the left hand side
of equation (3.9) are palindromes, whereas the maximal-length summands
on the right hand side of equation (3.9) are non-palindromes. This leads to a
contradiction which shows that equation (3.9) cannot hold unless both sides
are zero. Therefore,

Ary(P1), - Ams (), (Xmp — D(Ra), -y (X — 1)(Rs)

are linearly independent. This completes the proof.

We can now give the proof of the main theorem.
Proof of Theorem 3.0.2. In even degrees, by Corollary 3.1.7 we have:
Ker(xr; — 1) = Im(x7 — 1).

Therefore a basis for Im(xr; — 1) is also a basis for Ker(xz; — 1), and by
Theorem 3.1.6 the image of (x; — 1) has a basis consisting of the (xr; —1)-
images of all higher non-palindromes and all even-length palindromes. Hence
in even degrees, this basis is also a basis for Ker(xr; — 1).

Now, let us consider odd degrees. In F;, we have:

(xrs —1)o(xr —1)=0,

so the (x#; — 1)-image of all HNPs are in Ker(xr; — 1).
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On the other hand, in odd degrees, by Proposition 3.2.1 Az;-image of
an odd-length palindrome is also in Ker(xz — 1). Moreover, by Theorem
3.2.13 (xr; — 1)-image of all HNPs and Az;-image of all OLPs are linearly
independent.

Beside this, by Proposition 2.3.14 the number of all HNPs and OLPs is:

(2271—3 _ 2n—2) + 2n—1 — 2217,—3 + 2n—2,
which is exactly dim Ker(xs; — 1). Hence, (xr; — 1)-image of all HNPs and
Arz-image of all OLPs also span Ker(xr; — 1). Therefore, (xr; — 1)-image
of all HNPs and Ar;-image of all OLPs form a basis for Ker(xr; —1) in odd
degrees of F;. O

Corollary 3.2.14. In odd degrees, Ar;-images of all odd-length palindromes
form a basis for Ker(xr; — 1)/Im(xx; — 1).
Proof. Suppose that there are some odd-length palindromes p, ..., p; such
that;

Arz (1), -, Axs(pr) € Ker(xry — 1)/Im(xx; — 1)
with the property that:

)\_7:5("01) +.-+ /\].‘2* (pk) =0 mod Im(x;:; — 1),

which means Ax; (p1)+- - -+Ax; (pr) € Im(x7; —1). And by Theorem 3.0.3
we know, in odd degrees (xr; — 1)-image of higher non-palindromes form a
basis for Im(xr; — 1) which implies that there are higher non-palindromes
hi,...,hyx with the property that:

Ars(P1) + -+ Ax (k) = (xmp — D(ha) + -+ (xmp — D(R)  (3.12)

But by the same argument in the proof of Theorem 3.2.13, equation (3.12)
cannot hold unless both sides are zero, so it is a contradiction. Therefore,
the Az;-image of all OLPs are linearly independent mod Im(xr; — 1).

On the other hand, since F; is a finite type,

dim(Ker(xz; — 1)/Im(xz; — 1)) = dim Ker(xr; — 1) — dim Im(x»; — 1),

in each degree. Therefore, by Corollary 3.2.9 and Corollary 3.2.10 in each
degree n we have:

dim(Ker(xz — 1)/Im(xz — 1)) = 2.

Beside this, by the Proposition 2.3.14 the number of OLPs in 2n — 1 degrees
is 2"~'. Hence, the Az,-images: Az;(p1),..., Ar;(pk) also span Ker(xz —
1)/Im(xr; — 1), so the Ar;-image of all odd-length palindromes form a basis

for Ker(x 7 — 1)/Im(xr; —1).
O
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Corollary 3.2.15. [7] In degree m, the quotient Ker(xr —1)/Im(xx; — 1),
i.e., the Tate cohomology of Z/2 acting on F; by conjugation, has dimension

. (Ker(xr; — Dm 0, if m=2n,
dim =9 on-1 :
Im(xz — Dm 2l if m=2n-—1

Proof. It can be seen by Corollary 3.1.7 and by Corollary 3.2.14. O
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Chapter 4

Conjugation Invariants in the
mod p Dual Leibniz-Hopf
Algebra

For any odd prime p, both Im(xr; +1) and Ker(xr; —1) are subvector spaces
of F;. In particular, Ker(xr; — 1) is formed by the conjugation invariants
in F,. In this chapter, we determine a basis for Ker(x}-; — 1) by proving
Theorem 4.0.1 which is the main theorem of this chapter.

Theorem 4.0.1. For any odd prime p, Ker(xr; — 1) has a basis consisting
of the (xr; + 1)-images of all higher non-palindromes and all even-length
palindromes.

As Theorem 4.0.1 suggests, Ker(xr; — 1) coincides with Im(x ;s + 1), we
will consider a basis for Im(x5; + 1) to determine a basis for Ker(xz; —1).
We will prove Theorem 4.0.1 by showing the following.

Theorem 4.0.2. For any odd prime p, the image of (xr; + 1) has a basis
consisting of the (X}‘; +1)-images of all higher non-palindromes and all even-
length palindromes.

To prove this theorem, we first consider linearly independent elements in
Im(xz; +1).

4.1 Linear Independence

Theorem 4.1.1. Let w1, ..., w, be all the higher non-palindromes in even
degrees, and let e, . .., e, be all the even-length palindromes in even degrees.
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Then
(xzp + D(w), -, (xry + Dlwm), (xz; + D)(er)s -, (xry + Dlez)

are linearly independent.

Proof. Let wy, ..., w,, be all the higher non-palindromes in even degrees, and
let ey, ..., e, be all the even-length palindromes in even degrees. Assume that
v1, ..., Y are distinct elements of {wy, ..., wn,e1,...,e,} with the property
that;

bilxz + D(01) + ba(xry + 1)(v2) + - +belxsy + D(we) =0, (4.1)

for some non-zero coefficients by,...,bx € Z/p.
Moreover, let’s order these elements according to their lengths in the

following:
length(vy) < length(vs) < - -+ < length(uvy). (4.2)

Since {vy,..., vy} is a subset of {wy, ..., wny,ey,..., e}, either v; is an ELP
or an HNP.

If vy is a higher non-palindrome, then by the same argument as in the
proof of Theorem 3.1.2, v, cannot occur in the image of a shorter higher non-
palindrome, or in any other higher non-palindrome of the same length under
(X}';; +1). This is because, xr; is defined as mod 2 reduction of the formula,
xr-. Beside this, v, itself is one of the longest summands in (xr; + 1)(vk)
which comes from (+1)(vg) and is an HNP.

Note that again, we use the fact that v, is one of the longest summands
of (x7; + 1)(vx). Moreover the presence of vy implies to be the right hand
side of equation (4.1) is not zero, so we have contradiction. The key point is
the presence of v; with non zero coefficient as a summand of (xz; + 1)(v).

In addition, vy cannot occur as a summand of an even-length palindrome
of the same length under (X]-‘; + 1). This is because, the longest summand
of this ELP under (x 7t 1) is itself, an ELP with coefficient 2, whereas, vy
is an HNP.

Moreover, by length consideration, the longest-length summands of shorter
ELPs under (X}-; + 1) cannot also include vg. Therefore, vy, cannot occur in
the image of an ELP of the same length or of a shorter length ELP under
(XFy +1).

We have established that v cannot occur in the image of a shorter higher
non-palindrome, or in any other higher non-palindrome of the same length
under (x 7+ 1), and we also have shown that v, cannot occur in the image
of an ELP of the same length or of a shorter length ELP under (x T 1).
Therefore, vx cannot occur in b1 (xx; +1)(v1), ba(xx; +1)(v2), - s b1 (X7 +
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1)(vg—1). Hence, vy cannot be cancelled, so v; occurs with non-zero coefficient
bi on the left-hand side of the equation (4.1). Therefore the left-hand side of
equation (4.1) cannot equal zero.

This contradiction shows that v, is not an HNP. Thus, there are no HNPs
of the same length as v, because of our second assumption about the order,
(4.2). Hence, vy, must be an ELP, and as we stated above, the longest sum-
mand of v, under (X;; + 1) is vy, itself, an ELP. Thus, it is clear that, this
ELP, v, , cannot occur in the (x 7+ 1)-image of any other ELP of the same
length. And by length considerations, it is clear that vy cannot occur in the
(XJ-';; + 1)-image of any shorter length LNP or of any shorter length of HNP.
Hence, it cannot occur in bi(xzs + 1)(v1),ba(x7 + 1)(v2), .- - be—1(X7; +
1)(vg—1). Thus v cannot be cancelled, so v occurs with non-zero coefficient
br on the left-hand side of the equation (4.1), therefore the left-hand side of
equation (4.1) cannot equal zero. This contradicts our initial assumption, so

(x7; + D)(wi), -5 (xFy + D(wm), (X7 + D(e1), -+, (xzz + 1)(es)
are linearly independent. This proves the theorem. O

Theorem 4.1.2. In odd degrees, the higher non-palindromes have linearly
independent images under (xr; +1).

Proof. The same argument as in the proof of Theorem 4.1.1 applies here. [

For the remainder proof of Theorem 4.0.2, we need to determine a span-
ning set for Im(x 7z +1).

4.2 Spanning set for Im(xz; +1)

We will first show that, in odd degrees, the (xz; + 1)-images of all OLPs
can be expressed in terms of the (xz; + 1)-images HNPs by the following
relation:

be an odd-length palindrome. Then

Toeoablalkd 15y 82k41

Proposition 4.2.1. Let S;

(XJ";,‘ + 1)(_Si1 ,,,,, ikv’ik+1y~-,i2k+1) = Z(X}'; + 1)(511 ,,,,, lnoik 425005 i2k+1)’ (43)

where the summation is over all proper coarsenings ly, ..., Ly, of t1,...,%k11-

Note that the proper condition implies that Sy, . 1., ixi0..ioks. 1S @ HNP.
To make a proof more manageable, Proposition 4.2.1 is stated in an equivalent
form in Proposition 4.2.2.
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Proposition 4.2.2. Let S;,
Then

_____ inirsinsorizes V€ an odd-length palindrome.

Z(Xf; + 1)(Sllywalmvik+2»---yi2k+1) =0, (4'4)
where the summation is over all coarsenings Uy, ..., L, of i1,. .., tgs-

To give a proof for Proposition 4.2.2, we need following technical results:

n
Lemma 4.2.3. Z (n) (—1)7 = 0, where n is a non-negative integer.

=0 N

Proof. Let n be a non-negative integer, substituting a = —1 and b = 1 in the
the binomial theorem

(a + b)n _ Z (n> ajbn—j’
j=0 J

it is easily seen that:

O

Corollary 4.2.4. Let X be a finite set, then the number of odd-cardinality
subsets of X is equal to the number of even-cardinality subsets of X.

Proof. Let X be a finite n-element set, where n is an positive integer, then
by Lemma 4.2.3, more explicitly we have:

(-6 (-(-0)-()-C) ()

There are two cases to consider for n, either
Casel. n is even, or
Case2. n is odd.

In case 1, n is even, then by equation 4.5 we have:

1)+ (=)= GG ()G (2)

(4.6)



In case 2, n is odd, then by equation 4.5 we have:

n n n n n n n n n n
G (@) s) = () )+ ()+ () =)

(4.7)

Considering the two cases above, it can be easily seen that the right hand

side of equation (4.6) and equation (4.7) are the the sum of odd-cardinality

subsets of X, and the left hand side of equation (4.6) and equation (4.7) are

the sum of even-cardinality subsets of X. By the equality in equation (4.6)

and equation (4.7 ), the number of odd-cardinality subsets of X is equal to
the number of even-cardinality subsets of X. This completes the proof. [

Now we can introduce a proof of Proposition 4.2.2.

Proof of Proposition 4.2.2. Let Si\ .1 ixsa,izes: D€ an odd-length palin-
drome. Let Sy, a4, be any word. If Sy, 4, occurs in the sum (4.4) then, we
shall show that it occurs with coefficient zero.

Before giving a proof we can observe that Si i, icie..izks: CANNOY
be in the (XJ—';, + 1)(Siy, . ikr1sierarsizesr)> SO cannot be in the sum (4.4).
This is because S;, i\, 1 icre,izns: Nas coefficient plus one as a summand
of 1(Siy,..iks1sicsorizers ), and has coefficient (—1)%**!, ie., minus one as a
summand of X% (Siy,..ixs1,ik12,vi2ks1 )» R€DCE they cancel each other.

If S4 .4, occurs in the sum (4.4) at all, it must be a summand of
(x}p + 1)(Siy,.dmsikgarizess) fOT some coarsening li,..., L, of i1,... 4k,
then, either

A. Sdl,--.,dn = Sll,~-<,lm,ik+2,-~,i2k+1 or
B. Su,...d. is a summand of xxx (Sh, . tm.iksarizess) -

In case A, if Sy, ,..dn = Siy,...\lm,ins2rvizisr> theD Say,... 4, occurs having coef-
ficient one as a summand of 1(S),,...1,n ixs2,vizes: ). NOW, to find the coefficient

of Sg,,...4, in the sum, we also need the number of other coarsenings ci, ..., ¢,
of i1, ..., 4k41 for which Sy, 4, is a summand of (xz; + 1)(Ser,...cqrinparionss )
If Sarydn = Shpodmsingarionsrs @0d Say,.d, is @ summand of (xr; +

1)(SCI,--~7quik+2r-~ai2k+1)’ then either
. Sd1,~-~7dn = Scl7--~chvik+2;---vi2k+l or
ii. S4,,..4, is a summand of x;;(Scl,..,,cq,ik%m,i%ﬂ).

If Say,..dn = Sei,...cqiivarisnsrs SiDCE We also have equality above: Sy, 4, =

Sll,...,lm,ik+2,...,i2k+1a then q=m,C = l17 ey cq = lm) 1€, Cp,. .. 1cq = lla LRI 7lma
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so there are no "other” coarsenings for which Sy, 4. occurs as a summand
of 1(Sl1»--~»lm7ik+2a---vi2k+] )

If S4...4, is a summand of X;;(Sc],,_,,cq,ik+2,,..,i2k+1), then Sy 4, is a
coarsening of Sy, ., i .sce.c- Hence dnp > c¢1. On the other hand, since
C1y-..,Cq is a coarsening of ¢y,...,%k41, We also have ¢; > ¢;. Beside this,
11 = l9x41, Since S,-l,_”ﬂ-kﬂ,ik+2,.._ﬂ-2k+1 is an OLP. In addition, using the fact
that Sg,,..4, = Sll,...,lm,ik+2,...,i2k+17 then 49,11 = dy, from which we can de-
duce i; = id9y1 = d,. Hence d, > ¢; > i; = d,, so we have equality:
dn =C = 7:1- It then follows that dn—l 2 Co Z 7:2 = dn—ly SO dn_g = C9 = ig.
Repeating the same argument, we find that ¢z = 43,¢4 = 44,...,ck = g,
SO 41 must equal x4y and ¢ = £+ 1, so ¢i1,..., ¢4 is not a proper coars-
ening. So, if Sy, 4, is a summand of Xf;(Scl,m,cq,ik“,_,_,i%ﬂ), then there
is only one other coarsening ci,...,c, for which Sy, g4, is a summand of
xf;(Scl,___,cq,ik%__,i%ﬂ), namely the improper one c¢y,...,¢q = %1,..., lkt1.
And by definition of xr; Sa,,. a, occurs having a coefficient (—1)**! as a
summand of X7 (S'il,-~-yik+],ik+2-~»7i2k+1 )

Hence, if Sg,...4, = Si,. . imsiryo. ions» then the coeficient of Sy, 4, in
sum (4.4) is zero, because Sy, 4, occurs having a coefficient 1 as a sum-

. 2k+1
mand of 1(Sy,, . tm.irra..iks:)» a0d has a coefficient (~1) as a summand
. .
in X;,,(Si],...,ik+1,ik+z...,i2k+1)a and in no other terms.

In case B, if Sy, 4, is a summand of XFs (St b sigransizner ) then Sa - a.
is a coarsening of Sj,, .\ i ol

If Sq, .4, also occurs as Se1,rcarinsarviseq: [OT SOME coarsening ci, .. .,Cq
of xy1,...,%%+1, then we are back in case Aii, the argument in that case
shows that Sy, .4, has coefficient zero. So we may assume that Sy, 4, does
N0t OCCUr &S Se;, .. co ik 2, isky [OT ALY COAIsening cy, ..., cq.

To find the coefficient of Sy, 4 in the sum, we need to find the number
of all coarsenings ¢y, ...,cq of 41,..., 441 for which Sy, 4, is @ summand of
X75 (Ser...cqizsnrizes:)- Bach such coarsening c;, ..., ¢, contributes (—1)k+a
to the coefficient of Sy, 4, in the sum (4.4). This is because, for each such
coarsening ci, ..., ¢q Sq,, .4, Occurs as a summand of X]-';(Scl’.._,cq,ik+27myi2k+l),
and by definition 2.4.13 any summand of y Fs (Ser,oosaringarm oy ) OCCUTS hav-
i i —1\k+g , , -
ing a coeflicient (—1)**9. Hence x}-;(SC]7_.,,Cq,zk+2,“,,12k+l) has Sg, ... 4, as a sum
mand with a coefficient (—1)**9.

If Sg,,. 4, is a summand of X}-;(Sll,~--ylmaik+2»---1i2k—+—])’ then Sy, a4, is a
coarsening of S; I+ Since Sig 1. iksoilm,i1> 18 & coarsening of
_i1» then it follows that Sy, 4, is also

n

3

24151 bkt 2olmye s
Sil:-~-1ik+1,ik+2,~-yi2k+1 = Si2k+1a---aik+2:ik+lv
a coarsening of S, . . ixioiizst,enis-
Moreover, each coarsening is obtained by turning some of the 2k commas
of 4op41,. .. 9k42,tks1,...,%1 into pluses. Hence di,...,d, is. Concretely,
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di,...,d, is obtained by turning 2k — (n — 1) commas into pluses . Some of
these (possibly none) will be from the k commas of 4941, .. .,%k+1, the rest
(including at least one because of our assumption above in the case B) will
be from the k commas in 4x,1,...,%;. Let 2 be the number of commas taken
from igi1,...,0180 1 <2 < (2k— (n—1)).

If ¢g,...,c1 is a coarsening of 441, ...,% such that d,,...,d, is a coars-
ening of 4ox41, .., %k+2,Cq, - - -, C1, then cg, ..., c; is obtained from ixqq,...,%
by turning a subset of those z commas into pluses, a subset of cardinality
k — (g — 1). Moreover, each such coarsening arises from exactly one such
subset, and there are 2% such subsets ( 27 is even, since z > 1 ).

The coarsening ¢, . . ., ¢; contributes (—1)*9 to the coefficient of Sy, .. 4,
so this contribution is +1 according to parity of k + ¢, i.e., +1if k — (g — 1)
is odd and —1 if k — (¢ — 1) is even. Since z > 1, by Corollary 4.2.4 the
number of subsets of odd cardinality is equal to the number of subsets of
even cardinality, and hence net contribution to the coeflicient of Sy, g4, is

zero. (Note that counting the number of such coarsenings ¢y, ..., c¢; means
the counting the number of such sequences cg,...,c;.) Hence, in both case
A and case B, Sy, 4, occurs with coefficient zero in the sum (4.4). This
completes the proof O

We will now show that the (xr; +1)-images of all LNPs can be expressed
in terms of the (x mt+ 1)-images of all HNPs by the following proposition:

Proposition 4.2.5. Let S;,, . ;. be a lower non-palindrome. Then

(X7 + 1)(Siy,i0) = (”1)n((Xf; +1)(Sin,.ia) + Z(XJ—'; + 1)(Sj1,.,.,jk)),
where the summation is over all proper coarsenings Sj, ;. of Si,, . -

Proof. Let S;, . i, be a LNP, then applying (xx; — 1) to this LNP we have:

(x5 = D(Sirrin) = =Sisrosin T (=1)"Siris + > (1S5 5r  (4.8)

where S}, ;. are all proper coarsenings of S;, . ;,. On the other hand, in F,*,
multiplication is overlapping shuffle which is commutative, so by Proposition
2.2.8 we have:

Xg-';; =1

Therefore, we have:

(s = D +1) = X5 + x5 — X7 —1=0.
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Therefore, applying (xz; + 1) to both side of equation (4.8) we arrive at;

0 = (s +1) (= Sirsin) H 0D (21D (1) O 1) (Sjo)).

Thus, we have:

.....

completes the proof. O

Theorem 4.2.6. If wyg is a low non palindrome in degree 2n—1, then (x;; +
1)(wo) can be written as a linear combination of (xr; + 1)-images of higher
non palindromes.

Proof. By induction on length of wy. A low non palindrome must have length
greater than or equal to two, because, otherwise it is a palindrome. If length
of wy is two, then (wp) = S,p, and we have:

Oz + 1)(wo) = Sap + (=1)2Sha + (=1)%Sass = (X3 +1)(Sha),

where S, , is a high non palindrome.

Now assume that all LNPs which have strictly shorter length than y have
(X3 +1)-images that can be written as linear combinations of the (x5 +1)-
images of HNPs. Let wo = Sy, .5, be an LNP with length y. By proposition
4.2.5,

(x7; + D(wo) = (=1)"((xFz + 1)(Shy,..b:) + Z(Xf; +1)(Sgy...g5))- (49)

,,,,,

where Sy, b, is a high non palindrome and each S,

.....

i. a higher non-palindrome,

......

combination of the (xz; + 1)-images of HNPs by Proposition 4.2.1, or

iii. a lower non-palindrome. In this case the inductive hypothesis applies
because g1, ...,9p is a proper coarsening of the reverse of wp, namely

..........

is a linear combination of the (xz: + 1)-images of HNPs.

Thus, in each case, the (xr; + 1)(Sy,,...q,) can be written as a linear
combination of the (xz; + 1)-images of HNPs.
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Now we can introduce a proof of Theorem 4.0.2.

Proof of Proposition 4.0.2. In even degrees, by Theorem 4.1.1 the (XF; +1)-
images of all HNPs and ELPs are linearly independent in Im(x F Tt 1).

Furthermore, HNPs, LNPs, ELPs, and OLPs form a basis for ;. Hence,
Im(xp; + 1) is spanned by (xr; + 1)-image of these basis elements. By
Proposition 4.2.1 and and by Theorem 4.2.6 we can reduce this spanning set
to (xp; + 1)-images of all HNPs and ELPs. Hence, they form a basis for
Im(xr; +1).

On the other hand, in odd degrees, recalling Remark 3.1.4 it can easily
seen that (xr; + 1)-image of all HNPs span Im(xgs + 1), since the same
argument in even degrees also applies this case. Moreover, by Theorem 4.1.2
the (xr; + 1)-image of all HNPs are linearly independent in Im(xr; + 1).
Therefore they form a basis for Im(xrs + 1). This proves the theorem. [

We know a basis for vector space Im(x s+ 1). Now showing that:
Ker(xr; — 1) = Im(xz +1),
we will deduce a basis for Ker(xz; —1).
Theorem 4.2.7. On F;, we have:
Ker(xr; —1) = Im(xs; +1).
Proof. 1. Proof of Im(x5; +1) C Ker(xz; — 1).
By the proof of Proposition 4.2.5 we have:
(XJ-‘;; — 1)(XF;; +1) =0,
from which we can deduce:

Im(xpy + 1) C Ker(xgz — 1).

ii. Proof of Ker(xz; — 1) C Im(xz; +1) :
In 73, if z € Ker(xz; — 1), then xx:(x) = z, hence (xr; +1)(z) = 2z,
so there is an element z € JF, such that (xr; + 1)(z) = 2z, hence
2z € Im(x7; +1). For the remainder of the proof, in that case, we need
to show that z € Im(x7; +1). On the other hand, if (x5; +1)(z) = 2z,
using the fact that the characteristic of F is not equal two, we arrive
at: I

(s +D(5) =2,

61



from which we conclude that x € Im(x Fy+ 1). Since for any z €
Ker(xr; — 1) we show that z € Im(xz; + 1), hence Ker(xr; — 1) C
Im(x}-; + 1)

By i. and ii the proof is complete.

We now give the proof of the main theorem of this chapter:

Proof of Theorem 4.0.1. By Proposition 4.2.7 we have :
Im(xr; +1) = Ker(xz; — 1).

Therefore a basis for Im(x; +1) is also a basis for Ker(xz; —1). By Theorem
4.0.2 (xp; + 1)-image of all HNPs and ELPs form a basis for Im(xr; + 1),
hence they also form a basis for Ker(xz; — 1).This proves the theorem. [

Now we can state the dimension for Ker(xz; — 1).

Corollary 4.2.8. In the mod-p dual Leibniz-Hopf algebra, F;, the dimension
of the conjugation invariants in degree m 1s:

- 22n—2’ if m= 2n,
dimKer(xr — 1)m = {22n——3 — 92 f m =9 — 1.

Proof. By Proposition 2.3.14, in degree 2n, there are 2272 — 2"~! HNPs
and 2" ! ELPs, so there are 22”2 elements in basis given by Theorem 4.0.1.
Similarly, in degree 2n — 1 there are 227~3 — 2"~2 HNPs, so there are 2273 —
272 elements in basis given by Theorem 4.0.1. This completes the proof. [

62



Chapter 5

Conjugation Invariants in the
Dual Leibniz-Hopf Algebra

A submodule of a free R-module need not be a free R-module. However,
we know F* is free over Z and using the fact that Z is a principal ideal
domain([23, Theorem 6.1], the submodules: Im(xz + 1) and Ker(xz — 1)
are also free over Z. Similar to Ker(xr; — 1), Ker(xz- — 1) is also formed by
the conjugation invariants.

In this chapter, using the previous results in the mod p Leibniz-Hopf
algebra, F7, we will show that how we can take an easy approach to find a
basis for Ker(xz« — 1) by proving Theorem 5.0.1.

Theorem 5.0.1. A basis for Ker(xrz« — 1) consists of the (xz+ + 1)-image
of all higher non-palindromes and all even-length palindromes.

As Theorem 5.0.1 implies Ker(x - —1) coincides with Im(xz+«+1). Firstly,
we will consider a basis for Im(x#- + 1) by the following theorem.

Theorem 5.0.2. A basis for Im(xz« + 1) consists of the (x5 + 1)-images
of all higher non-palindromes and all even-length palindromes.

For the proof of Theorem 5.0.2, we first consider linearly independent
elements in Im(x - + 1).

5.1 Linear Independence

Theorem 5.1.1. In even degrees, let wy,...,w, be all the higher non-
palindromes , and let eq,...,e, be all the even-length palindromes. Then

(xF+1)(wr), .., (xFe + 1) (wm), (X7 +1)(en), - - ., (xF+ +1)(e;) are linearly
independent.
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Proof. Our proof starts with the observation that the definition of the con-
jugation in F*, xz-, is same as the definition of conjugation in 7}, XF;-
Furthermore, in the proof of Theorem 4.1.1 we did not refer to coefficients
of the summands of ELPs and HNPs under (xr; + 1), hence the same proof
of Theorem 4.1.1 works also here. O

Theorem 5.1.2. In odd degrees, the higher non-palindromes in F* have
linearly independent images under (xz+ + 1).

Proof. Again, in the proof of Theorem 4.1.2 we did not refer to coeflicients
of summands of HNPs under x 7. Hence the same argument as in the proof
of Theorem 4.1.2 also applies here. O

For the proof of Theorem 5.0.2, we are left with the task of ascertaining
a spanning set for Im(xp~ + 1)

5.2 Spanning set for Im(yz + 1)

We will now show (xz+ + 1) is spanned by (xg- + 1)-images of all HNPs and
all ELPs. Let’s first have a look the relation between the (xz« + 1)-image of
OLPs and the (xr+ + 1)-image of HNPs.

Proposition 5.2.1. Let S;, . be an odd-length palindrome. Then

cbhabkt 1y b2k 41

(X]:* + 1)(—Si1,..,,ik,ik+] ..... i2k+1) = Z(X}-' + 1)(Sll ----- I lk2,- i2k+1)7 (51)
where the summation is over all proper coarsenings ly, ..., Ly of t1,.. ., tgt1.

Note that the proper condition implies that .S), is an HNP.

aaaa l'm 7ik+2a“'vi2k+l

Proof. The proof is same as the proof of Proposition 4.2.1. O

The relation between the (xz« + 1)-images of all LNPs and the (xz +1)-
images of all HNPs is given by the following Theorem:

Theorem 5.2.2. Let wy be a lower non-palindrome in 2n — 1 degrees, then
(x7+ + 1)(wo) can be written as a linear combination of (x#+ + 1)-images of
higher non-palindromes.

Proof. The proof for Theorem 5.2.2 is similar to proof of Theorem 4.2.6. O

We can now give a proof for Theorem 5.0.2.
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Proof of Theorem 5.0.2. Recalling Remark 3.1.4, by Theorem 4.0.2, in all
degrees of F*, the (xz; + 1)-images of HNPs and ELPs span Im(xz; + 1).
On the other hand, we know X is same as xr,. Therefore, the (xr- + 1)-
image of HNPs and ELPs also span Im(x z«+1). Moreover, by Theorem 5.1.1
and by Theorem 5.1.2 in all degrees of F*, (xx+ + 1)-image of all HNPs and
ELPs are linearly independent in Im(xz~ + 1). Hence they form a basis for
Im(x#« + 1). This completes the proof. O

We have determined a basis for free submodule Im(x #- +1). Now showing
that:
Ker(xz- — 1) = Im(xz« + 1),

we will give a basis for Ker(xz — 1).

Theorem 5.2.3. In F*, we have:
Ker(xrz — 1) = Im(x# + 1).

Proof. i. Proof that Im(x»- + 1) C Ker(xz — 1).

JF* has the same multiplication as F;. Thus, remainder of the proof is
same as proof of the i.part of Theorem 4.2.7.

ii. Proof that Ker(xr — 1) C Im(x#- + 1).
If £ € Ker(xr — 1), then xx-(z) = z, hence (xr + 1)(z) = 2z, so
2z € Im(x#- +1). For the remainder of the proof, we will show that if
2z € Im(xz+ + 1), then z € Im(x - + 1). We first deal with the even
degrees of F*.

Let wy, ..., wy, be all the higher non-palindromes in even degrees, and
let ey,...,e, be all the even-length palindromes in even degrees. As-
sume that vy,...,v; are distinct elements in {ws, ..., wm,e1,...,€,},
then by Theorem 5.0.2, there are distinct elements, vy,...,v; in the
set,{wy, ..., Wn,€1,...,€,}, such that:

2z = (xF+ + 1)(byvy + bovg + - - - + brvg), (5.2)
for some coefficients by, bo,...,by € Z. Since xr- + 1 is a Z-module

homomorphism, moreover, equation (5.2) has form:
2r = bl(X}'* + 1)(U1) + bQ(X}'* + 1)('02) +--- 4+ bk(X}'* + 1)(’Uk) (53)
Moreover, let’s order vy, ..., v according to their lengths in the follow-

ing:
length(vy) < length(vg) < --- < length(vg).
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Since {v1, ..., v} is a subset of {wy, ..., wny,e1,...,e,}, either vy is an
ELP or an HNP. If v, is an HNP, then v cannot occur in by (x# +
1)(v1) +ba(xr +1)(v2) 4+ - - + br—1(x7 + 1) (vk—1). This is because, the
definition of x 7« is same as the definition of x;, and (x#+ +1)(vx) has
a summand which has the same length as v, which is vy, itself, an HNP,
and comes from (+1)(vx). Hence, the same argument as in the proof of
Theorem 4.1.1 applies here. Consequently, v, cannot be cancelled, so
v occurs with a coeflicient by on the right-hand side of equation (5.3).

On the other hand, 2z € F*, and F* has a basis, therefore 2z can
be written uniquely as a linear combination of basis elements, so the
coeflicients of these basis elements are even. Expressing the right hand
side of equation (5.3) with these basis elements, one basis element has
coefficient by, so it is even. We have established that by is even.

If vy is an ELP say with length 7, then there can be no HNPs of the same
length because of our second assumption about the order of vy, ..., vg.
Moreover, Proposition 3.1.1 can be easily adapted to this case to see
there is a unique odd-length palindrome summand in (xz+ + 1)(vg) of
length r — 1 with coefficient (—1)" = 1, since 7 is even. In addition by
the same argument in the proof of Theorem 3.1.2 this r—1 length OLP
cannot occur in by (xz« + 1)(v1) + bo(x7~ + 1)(v2) + -+ + br_1(x7 +
1)(wg—1). Thus, it cannot be cancelled, so this  — 1 length OLP occurs
with non-zero coefficient b;, on the right-hand side of the equation (5.3).

Since, 2z € F*, so in the same manner above by, is even. Now we have
established that whether v, is an ELP or v, is an HNP, it occurs with
an even coefficient by, say by = 2by, where by € Z.

Now we define & = = — by (x5~ +1)(v;). In particular, & € Ker(xz« —1),
because = € Ker(xs-—1), and by the proof of i above, by (x7-+1)(vi) €
Ker(xz« —1). If we re-write equation (5.3) with respect to &, we have:

21 = bl(x_r*'*‘l)(’vl)-f-bz()(}‘*+1)(Ug)+' . '+bk—1(X}'*+1)(Uk—1)~ (54)

N9w by the same argument above, by_; is even, say by = 2by._1, where
bi—1 € Z. Thus, now we define & = £ — by, (x7+ +1)(vk-1). In the same
manner above, this is in Ker(xz — 1).

Repeating this argument we see that coefficients by_s, ..., b1 occur as
even, say bx_s = 2bg_s,...,by = 2by, where by_o,...,b; € Z. Hence we
can re-write equation (5.3) as follows:

2r = 2()_1X_7:*+1 (’Ul) + 21)_2)(]:*_},1 (’Ug) + -+ 2b—ka*+1 (Uk) (55)
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Dividing each side of equation (5.5) by 2 and re-writing, we obtain:

T = (?_1XF+1(’01) + b_2XJ-‘*+1(U2) +-+ b_kXJ-'*+1(vk), (5.6)

from which we can deduce that z € Im(x + 1). Since we can do
the same argument for all z € Ker(xz — 1), then Ker(xz — 1) C
Im(xz+ + 1). In addition by i we have Im(xz- + 1) C Ker(xz — 1).
Hence Im(x 7+ + 1) = Ker(xz« — 1) in even degrees of F*.

It is easily seen that the same proof for the even case above works
for odd degree case, since there is no ELP in odd degrees. Hence,
Im(x7- + 1) = Ker(xz — 1) in odd degrees of F*.

Finally by i. and ii. on JF* we see that:
Im(xz + 1) = Ker(xz — 1).

This completes the proof.

We now give the proof of the main theorem of this chapter:
Proof of Theorem 5.0.1 By Theorem 5.2.3 we have :

Im(xz + 1) = Ker(xz — 1).

Therefore a basis for Im(x#++1) is also a basis for Ker(xz- —1). By Theorem

5.0.2 (xp+ + 1)-image of all HNPs and ELPs form a basis for Im(xz~ + 1),

hence they also form a basis for Ker(xz« — 1). This proves the theorem.
Now we can state the rank for Ker(xz- — 1).

Corollary 5.2.4. In the dual Leibniz-Hopf algebra, F*, the rank of the con-
Jugation invariants is:

2n—2 . _
rank Ker(xz — 1), = {2 ) if m = 2n,

223 _on—2 if m=2n— 1.

Proof. The same proof for Corollary 4.2.8 also works for here. O
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Chapter 6

Conjugation Invariants in the
Leibniz-Hopf Algebra

Like F*, F is also free over Z. Bearing in the mind that Z is principal ideal
domain, both of the submodules Im(x = + 1) and Ker(xs — 1) are also free
over Z[23, Theorem 6.1], and Ker(xz« — 1) is also formed by the conjugation
invariants.

In this chapter, we will determine a basis for this submodule Ker(xz«—1)
by proving Theorem 6.0.1 which is the main theorem of this chapter:

Theorem 6.0.1. A basis for Ker(xr — 1) consists of:

i. the (x+ + 1)-image of all higher non-palindromes and all odd-length
palindromes in even degrees.

. the (xF + 1)-image of all higher non-palindromes in odd degrees.

Before proving this theorem, similar to F*, we also first consider a basis
for Im(x =+ 1) to determine a basis for Ker(xr—1) in the following theorem:

Theorem 6.0.2. In the Leibniz-Hopf algebra, F, in degree n, the submodule
Im(x + 1) has a basis consisting of:

i. the (x5 + 1)-images of all odd-length palindromes and higher non-
palindromes, if n is even, or

ii. the (x7 + 1)-images of all higher non-palindromes, if n is odd.

To give a proof, we first consider linearly independent elements in Im(x z+

1).
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6.1 Linear independence

Proposition 6.1.1. Let S -i2k-1 be an odd-length palindrome in even
degrees. Among the summands of shortest length in (xr + 1)( St izk-1)
there is one even-length palindrome, Sit-ik-1 % Fiktarize=1  gnd this even-
length palindrome does not occur as a shortest-length-summand in the (xr +
1)-image of any other odd-length palindrome.

Proof. We consider even degrees. In the (xr + 1)-image of an OLP, say
Siternize=1 - gl] summands have length strictly bigger than the length of
Sitotkrizk-1 - This is because S*-%-12k-1 has coefficient 1 as a summand
of 1(S&»ti2k-1) and —1(%*~1) as a summand of x (S i2k-1), Hence
these coefficients cancel each other, so §%%»i2k-1 occurs having coefficient
zero as a summand of (xr + 1)(§"»%%2k-1) And the other summands of
xF(S4rtktzk=1) are proper refinements of S%-%»t26-1 g0 have length
strictly bigger than the length of St tkizk—1,

Hence it is clear that the summands of (xz + 1)( St -tki2k-1) " are all
proper refinements of Si2k-1rikeil = Giteikesi2k-1 and as noted in the
proof of Proposition 2.3.14, there is an ELP of length 2k, namely

. . i i . .
Gitreenrtk=1,4 bk 2,esizk -

as a refinement of S%%%2k-1 (Note that i, must be even because we work

. N
in even degrees). Moreover, S'»*%-122 %k+22k-1 g the only shortest

length palindrome among the summands of (xz + 1)(S%thsi2k-1),
Let Siv-sdi-dzi-1 be another OLP. Similarly, the only shortest length
palindrome as a summand of (xz + 1)(S71Jt--J21-1) ig

ST Ji—1, %3 di2sad2i-1
. g i .
For this to equal S *%-122 %+2:-02k~1 e must have:
L=k, g1 =11, Ji-1 = G—1,J142 = Tkt2y - - - Jou—1 = G2k—1

and % = %, so we have equality: 7; = 4 from which we can deduce that:

§I1sdlyadol=1 = Gilseeikyeeizk—1

This completes the proof. |
Theorem 6.1.2. Let wy,...,w,, be all the higher non-palindromes in even
degrees, and let 01,...,0, be all the odd-length palindromes in even degrees,
then

Xz +D(v1), -, (xr + D(om), (xF +1)(01), -, (xz + 1)(02)

are linearly independent.
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Proof. Let wy, ..., w,, be all the higher non-palindromes in even degrees, and

let 01, ..., 0, be all the odd-length palindromes in even degrees. Assume that
v1, ..., U are distinct elements of {wy, ..., wy,01,...,0,}, with the property
that;

a1(x7 + )(v1) + ... + ap1(xF + 1) (ve—1) + ar(xr + D(vx) =0, (6.1)

for some non-zero integer coefficients ay, ..., ax.
Moreover, let’s order these elements according to their lengths as follows:

length(vy,) < length(vg_1) < --- < length(vy),

and so that OLPs of any length [ come after HNPs of length [. Since
{vi,...,u}C {v1,...,0m,01,...,0,}, either vy is an odd-length palindrome
or vy is a higher non-palindrome. Now let consider the case where vy is an
higher non-palindrome.

If vy, is a higher non-palindrome, then (x# + 1)(vx) has exactly two sum-
mands which has the same length as v;. One of them is an HNP, vy, itself,
which comes from (+1)(vg), and the other one is the reverse of vy, an LNP,
which is a summand of x(vg). All the other summands in the (x + 1)(vk)
have length strictly greater than the length of v;. This can be deduced easily
by considering definition of x» and identity morphism.

Furthermore, v cannot occur in the (x7 + 1)-image of any other HNP
of the same length, because, if there is another HNP of the same length, say
vy, then similarly, (xr — 1)(v;) has exactly two summands which have the
same length as v,, which are v, itself, and its reverse which is an LNP, and
the other summands have length strictly greater than v,. It is obvious that
v is different than v;c, vk is not an LNP and v, cannot equal a word that has
length strictly greater than its length.

Moreover, by length considerations and the same argument above, it can
easily seen that vy cannot occur in the (xr + 1)-image of any longer length
HNP.

Now, we have established vy cannot occur in the (x= + 1)-image of any
longer length HNP, or in any other HNP of the same length. Therefore,
v cannot occur in ay(xr + 1)(v1), ..., ax—1(xF + 1)(vk—1). Hence, vj cannot
be cancelled, so, v, occurs with a coefficient by on the right hand side of
equation (6.1). Hence the left-hand side of equation (6.1) cannot equal zero.
This contradiction shows that vy is not a higher non-palindrome. Thus, there
are no higher non-palindromes of the same length as v, because of our second
assumption about the order of vy,...,v;. Hence, vy must be an odd-length
palindrome, say with length r. Now lets consider this case. If v} is an OLP,
then by Proposition 6.1.1 there is an even-length palindrome summand in
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(x7 + 1)(vg) of length r 4+ 1. In addition, this even-length palindrome does
not occur as a shortest-length-summand in the (xr + 1)-image of any other
odd-length palindrome. Hence, this even-length palindrome cannot occur in
the (xr + 1)-image of any other OLP of length greater than or equal to the
length of wvg.

As noted above, there are no higher non-palindromes of the same length
as vk,(we assumed wy has length r in the preceding paragraph). For the
remainder of the proof, we will now show that this  + 1 length ELP cannot
occur in the (x#+ 1)-image of any HNP which has length greater than r+1,
or equal to r + 1.

Now let’s recall the beginning of our proof. We know (xr + 1)-image of
an r + 1 length HNP have exactly two summands with length r + 1, which
are HNP itself, and its reverse, an LNP. And all the other summands in the
(xF + 1)-image of r + 1 length HNP have length strictly greater than r + 1.
It is obvious that this 7 + 1 length ELP cannot equal an r + 1 length HNP,
it cannot equal r + 1 length LNP and it cannot equal any word of length
strictly greater than r + 1.

Furthermore, by the same argument as in the preceding paragraph, it is
clear that an r + 1 length ELP cannot occur in the (xr + 1)-image of any
higher non-palindrome of length strictly bigger than r + 1.

Hence we established that, if vy is an OLP there is an ELP as a summand
of (x7 + 1)(v) which cannot occur in the (xr + 1)-image of any other OLP
of length greater than or equal to the length of vx. And, this ELP cannot
occur in the (xz + 1)-image of any HNP of length strictly greater than wvy.
Hence, it cannot occur in a;(xz+1)(v1) +. .. +ar—1(xF +1)(vk_1). Thus this
ELP cannot be cancelled, so occurs with non-zero coefficient ay on the left
hand side of (6.1) from which we can deduce the left hand side of equation
(6.1) cannot be zero. This contradicts our initial assumption. Hence,

(X}' + 1)(“)1), ey (XJ" + 1)(wm)’ (XJ: + 1)(01), ey (X}' + 1)(02)
are linearly independent. This proves the theorem. O

Theorem 6.1.3. In odd degrees, the higher non-palindromes have linearly
independent images under (xz + 1).

Proof. The proof of Theorem 6.1.2 also works for proof of Theorem 6.1.3 [

Remark 6.1.4. In odd degrees, The argument in the proof of Theorem 6.1
doesn’t show that OLPs have linearly independent image under (xx + 1),
because Proposition 6.1.1 doesn’t apply in 2n — 1 degrees since there is no
ELP in odd degree, and so there is not a unique FELP among the summands
of shortest length (x# + 1)-image of an OLP.
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To complete the proof of Theorem 6.0.2, in odd and even degrees, we will
now determine a spanning set for Im(x» + 1).

6.2 Spanning set for Im(xr + 1)

In odd degrees, firstly, we will show that the (x# + 1)-images of all OLPs
can be expressed in terms of the (xr + 1)-images HNPs by the following
proposition:

Proposition 6.2.1. Let S -ii+1-2k41 be an odd-length palindrome with
odd degree. Then

(6.2)

summed over all proper refinements ji,...J5 of igy1,.-.,%2k+1 where j; >

(ik41)+1
-

Note that the proper condition implies that St is an HNP. To
make a proof more manageable, Proposition 6.2.1 is stated in an equivalent
form in Proposition 6.2.2.

Proposition 6.2.2. Let St tiktiniokt1 be qn odd-length palindrome with
odd degree. Then

D (xr + D((=1)FHtsiiediit) = g, (6.3)

. . . : ; : (fr1)+1
summed over all refinements ji,...J5 of igy1,. .., loks1, where j; 2> 55—,

To give a proof for Proposition 6.2.2, we need following lemmas:

Lemma 6.2.3. Let sy, ..., Sy be any word, where s1,...,8, sum to positive
odd integer p. Let k be the largest number for which sy + --- + 8 > p;“—l,

where 1 < k. Then

1
kzlﬁslzz%.

Proof. Let si,...,8, be any word. Let k be the largest number such that
Sg+ -+ Sy > %, where s; + - - + s, = p for a positive odd integer p.

i. If k=1, then s;+ -+ 8, > -”;—1 which means sy + -+ + 8, < P;—l
Hence, p — (s3+ -+ + 8m) >p—(5"—”22). Since p — (sa+ -+ + Sm) = s1,
then we have s; > %. As before, we note that p is an odd integer,
the inequality s; > %1 is equivalent to saying s; > P—;—l
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ii. f k #1,then k> 2,80 s+ -+ 8y, > S+ -+ S > &21, since

S1+ 82+ - +8n=p,and so+ -+ Sy > p;—l, then s; < %1 by the
same argument in i case.

O

Lemma 6.2.4. Let ST ™ be any word and S* % be any proper coars-
ening of ST1"™ then, the number of even-length sequences ST that are
coarsenings of ST and refinements of S % s equal to the number of
odd length sequences S99 that are coarsenings of S™ "™ and refinements
Of Syl

Proof. Let 8™~ be any word and S*~~% be any proper coarsening of
STi™m then, ST+™m has m—1 commas and S%»% has b—1 commas. Since
St g g coarsening of S™+"™  these b—1 commas are a subset of the m—1
commas in ™" and the complementary subset has (m—1)—(b—1) = m—b
commas which have been turned into pluses.

For S99 to be a coarsening of S™ " it must also be obtained by
turning some of the m—1 commas into pluses. And for S#% to be a refine-
ment of S¥»%_ the selection of commas must be chosen from the m — b com-
mas that were turned into pluses in S"»%. In other words such sequences
S7»4n corresponds the m — n element subsets of a set m — b elements. So

—-b
the number of such sequences S%+9 is given by m ) The parity of
m

the sequences correspond to the parity of the subset. There are two cases to
consider for length of m, either

Casel. m is even,

or

Case2. m is odd.

In case 1, m is even, then even-length sequences S# % correspondence
to even order subsets,and odd-length sequences S% % correspond to odd-
cardinality subsets.

In case 2, m is odd, then even-length sequences S99 correspondence
to odd order subsets, and odd-length sequences S%% correspondence to
even-cardinality subsets.

By Corollary 4.2.4, the number of odd-cardinality subsets of m — b ele-
ment set is equal to the number of even-cardinality subsets of m — b elements
set . Therefore, in both case 1 and 2, the number of odd length such subsets
S99 s equal to number of even-length such S99 subsets. And we know
each such sequences S%% is a coarsening of S™ "™ and a refinement of
St This completes the proof. O
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Now we can introduce a proof of Proposition 6.2.2.

Proof of Proposition 6.2.2. Let S%»%t+1--i2k+1 bhe an odd-length palindrome
with odd degree, let j; ..., j; be a refinement of i1, . .., %ox41, and let S41dn
be any word in odd degrees, we will show that the coefficient of S% - in

> O+ (= 1)Hgined) (6.4)

is zero.

If S%dn occurs in sum (6.4) at all, it must be a summand of (xr +
1)((=1)k+tGhiedinnit) for some refinement ji, ..., 5 of 4gy1, .- ., dops1 With
J12 (z_k+21_)ﬂ’ then either

A. Sd],...,dn — Silv"'v":k’jla"ﬂjl or
B. S%-dn is g summand of yz((—1)kFSimikdieit) |

In case A, if §%rdn = Ghrwikdiendl then, S99 occurs having a coef-
ficient (—1)¥*! as a summand of 1((—1)k+ Gt ikdtit) where 1 is identity
homomorphism. Therefore, S% % has length k + [, so we have equality:
k + 1 = n. However, to find the coefficient of S4+9» in sum (6.4) , we also

need the number of other refinements ¢, ..., ¢4 of ¢x41, ..., %241 With ¢; >

ngﬁ for which S%-% is a summand of (xp + 1)({(—1)F+t951tkcrrca),
If S%otn = Ghostiodtndt where 71, . . ., j; is a refinement of 4y, . . . , fox41,

and S99 is a summand of (xz+1)((—1)¥T98% e where ¢y, ..., ¢q

is a refinement of ix41,. .., %241, then either
i. Sdl,..‘,dn — Si],..,,ik,cl,,..,cq
or
ii. §%4dn is g summand of xx((—1)FFT9GutkCloe),

If S%-dn — GhsiksClnCa then ¢y, ..., Cq = J1,..-,J1, which means we have
equality: ¢ = [, so there are no "other” refinements for which §%-% occurs
as a summand of 1((—1)k+9G4ikcrrCa),

If §%-dn is a summand of yz((—1)k+98%ikctca) then S%rdn is a
refinement of Stk g0 d; < ¢,. In addition, cy, ..., ¢, is a refinement
of 4g41, . - ., Iok41, similarly ¢; < dgx41, so it is easily seen that dy < c¢g < dggq1.
Beside this, %1, ..., %, tk+1, tk+2 - - - t2k+1 is an OLP, hence d; < ¢; <igpy1 =
i1. Nevertheless, we also have that % = Gitsikedtndi g0 §; = dy, hence,
i1 = di < ¢ < Qgg41 = 11, from which we can deduce that i; = d; = ¢,.
Having established that i; = d; = ¢4, we can now see S20eln = Q2o Jioendt
and S%-dn ig a refinement of S¢-1»c1ik-i1  Consequently and similarly,
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g = dy < cq_1 < gy = 1g, therefore iy = dy = c4—1, and so on up to i =
di < Cg_(k-1) < kg2 = Uk, 1.6, @ = dp = Cg_(k—1), and dgy1 < ¢k < g1
We established that i1 = ¢g,i3 = ¢4-1,...,% = cq—(x-1). Hence, we can now
see Sdk+1rdn = Gitedt g0 dy ) = j; which means we have j; = dgy1 < g,
i.e., -k = diy1 = j1. We also know j; > (’—'“"'—21—)+—1 from which we can deduce
Cok > (%i%)-i-l‘

On the other hand, ¢y, ..., ¢y is arefinement of {541, . .., fokt1 = tkt1, .-+, 01
and we have determined the last k part of c;,...,¢,. So, ¢1,¢2,. .., Cgety Thy + - -5 01
is a refinement of 4441, , - . ., 1. Hence, we must now have that c;, ¢z, ..., cq—k

is a refinement of ixy;. Hence ¢; + c2 + -+ + ¢4—x = k41, and we know

c > (z—k%)—ﬂ In addition from the preceding paragraph we also know c,_; >

(ikj;;—)+1. If g — k > 1, then we have:

(f41) +1 " (p41) + 1
2 2

We established ¢; + ¢z + - -+ + ¢4—k = ir41, hence this can only happen if
g—k =1, and ¢; = ixy;. Moreover, in the preceding paragraph we have
already established i, = cg,%20 = c4-1,...% = Cg—(k-1)- Thus, ¢;...,¢; =
k41, 2k, - . -, 11 is completely determined. Therefore, there is only one other re-
finement ¢y, . ..,c, of igt1, .. ., d2ks1 for which S99 is a summand of (xr, +
1)((—1)kraSimikerica) which is the improper one ¢y, . . ., Cg = k41, « - -  12k+1-

On the other hand, we know S% % has length k + ! = n and by defini-
tion 2.4.13 S%»% occurs having a coefficient (—1)2**!(—1)¥*as a summand
in XF((___1)2k+15i1,...,ik,ik+1,.,.,i2k+1)' Hence, if Sdl,...,dn — Sil,...,ik,jl,...,j,’ then the
coefficient of S%-% in the sum is zero, because $%-% occurs having a
coefficient (—1)**! as a summand of 1((—1)**!Séikdt3t) and has a coef-
ficient (—1)%**1(—1)**! as a summand in xz((—1)2k*+1 G tktkt1ized1) and
in no other terms.

In case B, if S%++d» is a summand of xx((—1)¥F Si-ikdt-it)  then
Sérdn ig a refinement of (—1)F+ GJ-drikit where jj,..., 71 is a refine-
ment of dopy1,. ..,y with j; > (5’“;)—“

= (igs1) + 1> gy

citcot-rtcygg = c1tCop >

If S%-dn also occurs as Si-#€hCa for some refinement cy, ..., ¢, of
Tk41,- -+ > 02ks1, then we are back in case A, the argument in that case shows
that its coefficient is zero. So we may assume that S does not occur as
Si-tklirnC for any refinement ¢, .. ., cq With ¢; > (’J";—)f—l

To find the coefficient of S%»% in the sum, we need to find the num-
ber of all refinements ¢y, ...,¢q of 4x41, ..., t2k+1 With ¢ > (“c—+;)+—1 for which

Sdidn is 3 summand of (xr)((—1)F+t9S4»tc1¢)  Each such refinement

c1, ..., cq contributes (—1)**+9 to the coefficient of S% % in the sum. This
) q

is because, for each such refinement c;,. .., ¢, Sdidn gecurs as a summand
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of (xr)((—=1)k*taGiwircrrca) and by definition 2.4.13 and since x r is a mod-
ule homomorphism, (xz)((—1)kt2S%kc1¢) hag S%-dn a5 3 summand
with a coefficient (—1)*(—1)kt9 = (—1)"TF+a.

Since n, k are fixed, the coefficient of S% % is determined by the num-
ber of such refinements c,...,c, with ¢ odd and the number with g even.
We shall show that the number of odd-length refinements and the number
of even-length refinements is equal. Therefore, since each such refinement
c1,...,cq contributes —1 or 41, according to the parity of g, then they cancel
each other. Hence, 5%+ occurs with coefficient zero in the sum. In other
words if the the number of odd length such refinements cy,...,c, matches
the number of even-length such refinements c;, ..., ¢4, then St gecurs
with coeflicient 0 in the sum.

Since S%9n is a refinement of SJdbikeit and Sdiivikel g g re-
finement of S¥»tksbk+1rmizkt1 = Sl2kt1wtet1iie 0 it follows that S%» % is a,
refinement of Si2k+1:-ik+1.%+41 - Hence, there is an index g with 1 < g < n
such that S% 4 is a refinement of Si2k+1+1 and S+1 ig 5 refinement
of Sik,...,il‘

So more explicitly, to find the coefficient of S -ds:
find the number of refinements ¢y, ..., ¢4 of tx41, ..., toks1 = tht1, ..., % With

dg+15+0n e need to

Thus, in other words, the sequences ci,...,cq with ¢; > (“%)—il— that
we want to count are refinements of 4541, ..., %41 = tgs1,-..,%; that admit
dy,...,dg as a refinement of ¢y, ..., c; with ¢; > “"*TI)H And it is clear that
counting the number of such sequences ¢y, . .., ¢; means counting the number
of such sequences ¢y, ..., ¢,.

If dy,...,d, is a refinement of ¢, ..., ¢ then, ¢4, ..., ¢ is a coarsening of
dy...,dy. In particular, ¢; = de +- - - + dy for some e in the range 1 <e < g.
For ¢; to be greater than or equal to Q’%H—l we need e to be small enough.

Precisely, let f be the largest index such that d; +--- +d, > %ﬂ where
1< f<g. Then,

de+"'+df_1+df+"'+dgz%@egf. (6.5)

This corresponds to ¢, ..., ¢; being a coarsening of dy,...,ds_1,ds+---+dg.

And more precisely, we also want the coarsening ¢, ...,c; of dy, ..., ds_1,ds+
-+++dg to be a refinement of 4;,...,%k41.

Hence, counting the number of coarsenings c,,...,c; of dy,...,d, for

which ¢; > %;)—H means counting the number of coarsenings ¢,,...,c; of

dy,...dg_r,ds+ - +dy.
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If ¢4, ...,c1 is a coarsening of dy, ... ,ds_1,ds+- - - +dg and is a refinement
of 4;,...,%k41 then, by Lemma 6.2.4 the number of odd length coarsenings
Cqy---,c10fdy, ..., dgwithep > M is equal to the number of even-length
coarsenings cg,...,c; of di,...,dg w1th c1 > (—”“‘”21—)“ as long as 41,...,%k+1
is a proper coarsening of dy,...,ds_1,df + -+ + d,. This completes the
proof in the case where "dy,...,ds_1,ds+---+d,” is a proper refinement of
(ST JIE R

If i1, ...,%k+1 is not a proper coarsening of ds, ..., ds_1,ds + - - +d, then,
f =k+1, di,do,...,dp = i1,%9,...,% and df-l-'-'-l-dg = 41 where f is
the largest number for which df +...4+dg > EZLH—! Then by Lemma 6.2.3
dy > (’J";)—H Therefore, if we set ¢; = df,co = dy41,...,Cny1-f = dp and
g=mn+1— f,thenc,...,cq is a refinement of ixy1,...,% = fgg1,. .., l2k41
with ¢; > (’—"% which ensures S%»+% gccurs as S for some
refinement cy,...,cq Of %41, ..., %2+1, thus this only occurs when we are in
case A, for which we have already proved that the coefficient is zero.

Hence, in both case A and case B, §% % occurs with coefficient zero in
the sum over all refinements. This completes the proof. O

Secondly, in odd degrees, we will show that (xr + 1)-images of all LNPs
can be expressed in terms of the (xr + 1)-images HNPs. Before that we need
following technical result:

Proposition 6.2.5. Let S¥in be a lower non-palindrome with odd degree.
Then

(xr + D(SHn) = (1) (xr + 1D)(S ") + Y (=) (xr + 1)(S%),
where the summation is over all proper refinements Stk of Sinrit

Proof. Let S+ be a lower non-palindrome with odd degree. Applying
(xF — 1) to Sh»+in we arrive at:

(X}' _ 1)(Si1,...,in) = _ Glirin 4 ( nSzn, i Z IcS]1, ,Jk (66)

where the summation is over all proper refinements 571+ of Sttt By
Proposition 2.4.9, F is cocommutative, so by Proposition 2.2.8 we have:

Xz =1

Hence, (x# + 1)(x7 — 1) = 0. Therefore, applying module homomorphism
(xF + 1) to both sides of equation (6.6) we get;

0= (xr+1)(=5"")+(xr+1)((=1)"S Z k(xr 1) (S99,
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Thus,
(xr + 1)(Si1""’in) =(-1)"(xr+1) S’" Z XF +1 (Sjl,---»jk)’

where the summation is over all proper refinements S/ of St  This
completes the proof. (]

Theorem 6.2.6. If vy is a lower non-palindrome in degree 2n — 1, then
(xF + 1)(vo) can be written as a linear combination of (xr + 1)-images of
higher non-palindromes.

Proof. The proof is proved by decreasing induction on length of vy. In degree
2n — 1, the longest possible length is 2n — 1, and there is only one element of
length 2n—1, namely S%1-+11 Tt is unique and is an odd length palindrome,
so the hypothesis is true for all LNPs of length greater than or equal to 2n—1,
since there are none.

Now assume that all lower non-palindromes of length strictly bigger than
p have (x#+1)-images that can be written as linear combinations of (x +1)-
images of higher non-palindromes. Let vy = S%% a lower non-palindrome.
By Proposition 6.2.5 we have:

(xF + 1)(wo) = (xr + 1)(=1P(S™ ") + 3 (=11 (xz + 1)(S9), (6.7)

where S% is a higher non-palindrome and each S99 is either
i. a higher non-palindrome,

ii. an odd-length palindrome, in which case by Proposition 6.2.1 (x= +
1)(S91-~%) is a linear combination of (x# + 1)-images of higher non-
palindromes, or

iii. a lower non-palindrome. In this case the inductive hypothesis applies
because S99 is a proper coarsening of the reverse of vy so has length
strictly bigger than p. Hence, (xz+1)(599) is a linear combination
of (x7 + 1)-images of higher non-palindromes.

Thus, in each case, (xz + 1)(S9 %) can be written as a linear combination

of (xr + 1)-images of higher non-palindromes. This completes the proof.
O

Now in even degrees, we will show that (xp + 1)-images of an LNP or
ELP can be expressed in terms of the (xr + 1)-images of HNPs and OLPs .
Before that we need following technical results:
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Proposition 6.2.7. Let St be an even-length palindrome in degree 2n
of F, then there is an odd-length palindrome St-intintirizn sych that,

(Xf+1)(si1,...,i2n) — 2(X}_+1)(Sil,...,in+in+1,..,,izn)_i_Z(_l)kH-l(X}__I_l)(sjl,...,jk)’

where the summation is over all proper refinements Sk of Stir-inFint1,-sizn

with jla s ajk 7£ i'iy . e 'ai2n-

Proof. Let S%%n be an even-length palindrome in degree 2n of F, then
there is an odd length palindrome namely, St ~intintiizn among the proper
coarsenings of S+, And applying (Y7 — 1) to Strintintiroiz we have;

. B yeeabntind1,e 120 —_ By rintind1,--i2n _1)2n-1 12n, int1Fin,.. il
(xF—1)(S ) =-S5 +(=D™"'S

+ ) (—1)ksPik, (6.8)

where the summation is over all proper refinements S/ of Siznr-in+1+in,..i1
— Sz'l,m,in+in+1,.“,i2n. Sii1-~qin+in+1,~-~a12n is a proper coarsening of Sil,,..,ign’ in
other words, S% %~ is a proper refinement of St»intin+irizn  Hence there
is one S91-+Jk which equals S% . According to this refinement, if we
re-write the equation (6.8), then more explicitly we get:

(X]___1)(Sii,...,in+in+1,‘..,i2n) — _2Sii,...,in+in+1,...,ign+Si],...,i2n+Z(_1)ksj1,...,jk,

(6.9)
where the summation is over all proper refinements S71+Jk of St intint1s.izn
with j1,...,Jk # 1, ..., %2,. On F we know (xr+ 1)(x7 — 1) = 0, therefore,
if we apply module homomorphism (xr + 1) to both sides of equation (6.9)
and rewrite it, we have;

0= (Xf + 1)(_ZSii,.A.,inﬂ'nH,,..,ign + Sil,...,izn) + Z(_l)k(X}' + 1)(Sj1,...,jk)'
(6.10)
Consequently, by equation (6.10) we have;

(rH1)(S2) = 2ot 1) (St insinitn) L 57 (1) (et 1) (S905),

(6.11)
where the summation is over all proper refinements S71+Jk of Sti»intin+1,-i2n
with 71,..., 7% # 1,...,%2,. This completes the proof. O

Theorem 6.2.8. If e is an even-length palindrome or lower non-palindrome
in degree 2n, then (x7 + 1)(eo) can be written as a linear combination of
(xF + 1)-images of higher non-palindromes and odd-length palindromes.
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Proof. The proof is by decreasing induction on length of ey. In degree 2n,
the longest possible length is 2n, and there is only one element of length
2n, namely Shlb-obl..LLl hegide this, (7 + 1)(ShhL-obheobhly = 9(y 2 4

)(S:l Ll (14D, L11) Fand Sl L4 L1 g gn OLP Thus every word of
length greater than or equal to 2n has (xr + 1)-image that can be written
as a a linear combination of (xr + 1)-images of higher non-palindromes and
of odd-length palindromes.

Now assume that all basis elements of length strictly greater than r have
(x7-+1)-images that can be written as linear combinations of (x+1)-images
of HNPs and of OLPs. Let eg = S%+* be an LNP. By Proposition 6.2.5 we
have;

(xF + 1St = (=1) (xr + 1)(ST0) + 3 (=1 (xr + 1)(8hhe),
(6.12)
where S%% is an HNP and S™ " is a proper refinement of S %1 Every
term on the right hand side of equation (6.12) has length greater than or equal
to r. Any term of length strictly greater than r is dealt with by the inductive
hypothesis. And the only term of length r is S+ which is an HNP. Thus,
every term on the right hand side of equation (6.12) can be written as a
linear combination of (xr + 1)-images of HNPs and of OLPs.
For the remainder of the proof we need to consider where eq is an ELP. Let
eo = S¢-¢r be an ELP, by Proposition 6.2.7 we have an OLP §™ 8 *¢5+1
such that ;

(L)) = (xrH1) (285 5 ) 3 (1) (e 1) (59052),
(6.13)
where the summation is over all proper refinements S71-Jk of G5 Fe5+1r
with j1,..., 5k # c1,...,¢r, and S BT+ ig an OLP. Every term on
the right hand side of equation (6.13) has length greater than or equal to r—1.
All terms with length greater than r are dealt with by the inductive hypoth-
esis. This leaves only the terms with length 7 — 1 or r to deal with. There is
only one term with length r — 1, namely S*°87°+1"* and it is an OLP.
The length r terms can be either HNPs or LNPs. It is clear that inductive
hypothesis applies to HNPs, and we have already shown that (xr+ 1)-image
of length r LNPs can be written as a linear combination of (x = + 1)-images
of HNPs and of OLPs. Thus, every term on the right hand side of equation
(6.13) can be written as a linear combination of (xr + 1)-images of HNPs
and of OLPs.
In conclusion, whether e is an ELP or an LNP in degree 2n, (x4 1)(eo)
can be written as a linear combination of (xr + 1)-images of HNPs and of

OLPs. O
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We now will introduce a basis for Im(x = + 1).

Theorem 6.2.9. In even degrees, the image of (xx+ 1) has a basis consist-
ing of the (xr + 1) images of all higher non-palindromes and all odd-length
palindromes.

Proof. In even degrees, by Theorem 6.1.2 the image of (xr + 1) all higher
non-palindromes and of odd-length palindromes are linearly independent.
On the other hand, HNPs,LNPs, ELPs and OLPs form a basis for F.
Hence, Im(x# + 1) is spanned by (xr + 1)-image of HNPs, LNPs, ELPs and
OLPs. On the other hand, by Theorem 6.2.6 and Theorem 6.2.8 and we can
reduce this to (x# + 1)-image of all HNPs and OLPs . Hence, (x= + 1) all
HNPs and of all OLPs form a basis for Im(x+1) in even degrees of F. This
proves the theorem. O

Theorem 6.2.10. In odd degrees , the image of (xz+1) has a basis consisting
of the (x+ + 1) images of all higher non-palindromes.

Proof. In odd degrees, by Theorem 6.1.3 the (x++ 1) image of the all higher
non-palindromes are linearly independent. On the other hand, we know
HNPs, LNPs and OLPs form a basis for F. Hence, Im(xr + 1) is spanned
by the (xr + 1)-image of HNPs,LNPs, and OLPs. Moreover, by Proposition
6.2.1 and Theorem 6.2.6 we can reduce this to the (x + 1)-images of HNPs.
Hence, the (x7 + 1)-images of all HNPs form a basis for Im(x= + 1) in odd
degrees of F. This proves the theorem. O

Proof of Proposition 6.0.2. The proof is easily seen by Theorem 6.2.10 and
Theorem 6.2.9. ([

We know a basis for free submodule Im(x+ + 1). Now showing that:
Ker(xr — 1) = Im(x + 1),
we will give a basis for Ker(xz — 1).
Theorem 6.2.11. In F, we have:
Im(xr+ 1) = Ker(x7 — 1).

Proof. We first show that Im(x s+ 1) C Ker(x# — 1) in all degrees of F and
then we will consider the 2n and 2n — 1 degrees separately in the proof of
Ker(xr —1) C Im(x7 +1).
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i.

il.

Proof that Im(x# + 1) C Ker(xz — 1). By the argument in the proof
Proposition 6.2.5, we know

(xr - Dxr+1)=0,

which implies
Im(xr+1) C Ker(xr — 1).

Proof that Ker(xr — 1) C Im(x +1). If z € Ker(xr — 1), then
xF(z) = x, hence (x7 + 1)(z) = 2z, so 2z € Im(xr + 1). To complete
the proof, we will show that if 2z € Im(x + 1), then z € Im(x+ + 1).
We first deal with the even degrees of F.

Let wy, ..., w,, be all the higher non-palindromes and o4, ..., 0, be all
the odd length palindromes in degree 2n, then by Theorem 6.2.9, there
are vy, ..., U distinct elements of {wy, ..., wy,01,...,0,} such that;

2z = (xr + 1)(a1v1 + agvy + - - - + avy), (6.14)

for some coefficients ai,as,...,a;x € Z. Since x5 + 1 is a Z module
homomorphism, more explicitly equation (6.14) has in the following
form:

2z = arxF41(v1) + aoxrFp1(v2) + - + arxria(ar). (6.15)
Moreover, let’s order vy, ..., v as follows
length(v) < length(vg_1) < --- < length(v,),

and so that odd-length palindromes of any length [ come after HNPs of
length I. Since {vs, ..., v} is chosen from the set {wy, ..., wn,01,...,0,}
then either vy is an odd-length palindrome or v, is a higher non-
palindrome. If vy is an HNP, then the same argument in proof of Theo-
rem 6.1 applies here so, v;, cannot occur in ay(x#+1)(v1), . . ., ak-1(XF+
1)(vk-1), and in addition vy occurs with coefficient a, on the right hand
side of equation 6.15.

On the other hand 2z € F, and F has a basis, therefore 2z can be
written uniquely as a linear combination of basis elements, so the coef-
ficients of these basis elements are even. In equation (6.15) expressing
the right hand side with these basis, one basis element has coefficient
ag, so it is even. We have established that a; is even.

If vy, is an OLP, then there can be no HNPs of the same length because
of our assumption about ordering lengths of v, ..., v. Furthermore,
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by the same argument as in the proof of Theorem 6.1.2 there is an
ELP summand in (xz + 1)(vg) of length 1 more than the length of
v with coefficient —1*+1) = 1, since k is odd. And it cannot occur
in a)(x7 + 1)(v1),...,ak—1(xF + 1)(vk—1). In addition vy occurs with
coefficient ay on the right hand side of equation (6.15).

Since, 2x € F, so in the same manner above a is even. Once we
established that whether v, is an OLP or v, is an HNP, it occurs with
an even coefficient ap, say ar = 2di, where d; € Z. By the same
argument in the proof of Theorem 5.2.3 it is easily seen that z can be
written as follows

z = (xr + 1)(d1v1 + dava + - - -+ + dxvg), (6.16)

where @; = 2a; € Zforj = 1,..., k. By equation (6.16) z € Im(x#+1).
Since we can do the same argument for all x € Ker(xz — 1), then
Ker(xz —1) C Im(x++1). By i. we know Im(xr+ 1) C Ker(x —1).
Therefore Im(xr + 1) = Ker(xr — 1) in even degrees of F.

Now let consider odd degrees of F. If z € Ker(xs — 1), in the same
manner as in even degrees, 2z € Im(xx+ 1). Then, by Theorem 6.2.10
there are distinct HNPs hy, ho, ..., hy such that;

2z = (xr + 1)(ath1 + ashy + - - - + ayhy). (6.17)

for some coefficients a1, as,...,a, € Z.

And in the same manner as in the proof for even degrees, we can see
that coefficients ay, az, . .., a, € Z occurs even in the right hand side of
equation (6.17), and we can easily see that z € Ker(xz — 1). By i. we
know Im(xr + 1) C Ker(xs — 1). Therefore Im(x + 1) = Ker(xz — 1)
in even degrees of F.

Hence, we show that Im(xr + 1) C Ker(xr — 1) in all degrees of F.
(]

Finally we give the proof of main theorem of this chapter:

Proof of Theorem 6.0.1. By Proposition 6.2.11 we have :

Im(xr + 1) = Ker(xz — 1).

It is clear that a basis for Im(xr + 1) gives also a basis for Ker(xr — 1).
Hence, by Theorem 6.2.10 Ker(x# — 1) has a basis consisting of the (x=+1)
images of all higher non-palindromes in odd degrees of F.

On the other hand, by Theorem 6.2.9 Ker(x — 1) has a basis consisting

of the (x + 1) images of all higher non-palindromes and all odd-length
palindromes in even degrees of F. This proves the theorem. O
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Now we can state the dimension for Ker(xs — 1).

Corollary 6.2.12. In the Leibniz-Hopf algebra, F, the rank of the conjuga-
tion invariants in degree m 1s:

9m—2 if m = 2n,
rank Ker(X}' - 1)m = {22n—3 _ 271—2 if m=2n-—1.

Proof. By Proposition 2.3.14, in degree 2n — 1 there are 2273 — 2"=2 HNPs,
so there are 2273 — 2"~2 elements in basis given by Theorem 6.2.10.
Similarly, in degree 2n, there are 22»~2 — 2"~! HNPs and 2"~! OLPs, so
there are 22" ~2 elements in basis given by Theorem 6.2.9. This completes the
proof. O
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Chapter 7

Conjugation Invariants in the
mod p Leibniz-Hopf Algebra

For any odd prime p, similar to ¥, we have subvector spaces: Im(xz, + 1)
and Ker(xz, — 1). Furthermore, Ker(xr, — 1) is formed by the conjugation
invariants in F.

In this chapter, using the results in the Leibniz-Hopf algebra, F, we will
show how we can take an easy approach to find a basis for Ker(xr, —1). We
now introduce the main theorem of this chapter:

Theorem 7.0.1. A basis for Ker(xr, — 1) consists of:

i. the (x5, + 1)-image of all higher non-palindromes and all odd-length
palindromes in even degrees.

i. the (xz, + 1)-image of all higher non-palindromes in odd degrees.

As theorem 7.0.1 implies, Ker(xr, — 1) coincides with Im(xr + 1), like
in F, we will now consider a basis for Im(xx, + 1) to determine a basis
for Ker(xr, — 1). To prove Theorem 7.0.1, we will first give a proof for the
following Theorem 7.0.2.

Theorem 7.0.2. For any odd prime p, in the degree n part of the mod p
Leibniz-Hopf algebra, F,, the image of (xr, + 1) has a basis consisting of:

i. the (xr,+1)-images of all higher non-palindromes and odd-length palin-
dromes, if n is even, or

i. the (xr, + 1)-images of all higher non-palindromes, if n is odd.

To give a proof for Theorem 7.0.2 , we first consider a linearly independent
set in Im(xp, + 1).
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7.1 Linear Independence

Proposition 7.1.1. In even degrees, let vq,...,vy, be all the higher non-
palindromes, and let o1, . .., 0, be all the odd-length palindromes, then (xr, +
D(v1),..., (x5 + Dn), (X7, +1)(01), ..., (x7, + 1)(0.) are linearly inde-
pendent.

Proof. We use the fact that the conjugation in F,, namely, xr, is defined as
same as xr. Beside this, in the proof of Theorem 6.1 we did not refer to the
coefficients of summands of OLPs and HNPs under xr + 1, hence, the same
argument as in the proof of Theorem 6.1 also applies here. O

Proposition 7.1.2. In odd degrees, the higher non-palindromes have linearly
independent images under (xr, +1).

Proof. Again, in the proof of Theorem 6.1.3 we did not refer to the coefficients
of summands of HNPs under xr + 1. Hence the same argument as in the
proof of Theorem 6.1.3 also applies here. O

To complete the proof of Theorem 7.0.2, we will now determine a spanning
set for Im(x 7, + 1).

7.2 Spanning set for Im(xz, +1)

Proof of Theorem 7.0.2

Proof of i.

By Theorem 6.0.2, in even degrees, the (xr + 1)-images of HNPs and
OLPs span Im(xr + 1). On the other hand, we know x, is same as xr.
Therefore, the (xz, + 1)-image of HNPs and the (xz, + 1)-image of OLPs
also span Im(xz, + 1). Moreover, by Proposition 7.1.1 (x#, + 1)-image of
HNPs and (xz, + 1)-image of OLPs are linearly independent, hence they
form a basis for Im(xx, +1).

Proof of ii.

By Theorem 6.0.2, in odd degrees, the (xz, + 1)-image of HNPs span
Im(xz, + 1). On the other hand, by Proposition 7.1.2 the (xr, + 1)-images
of HNPs are linearly independent. Hence the (xr, + 1)-images of HNPs form
a basis for Im(xz, +1).

Theorem 7.2.1. In the mod p dual Hopf-Leibniz algebra, we have:

Im(xr, +1) = Ker(xz, — 1).
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Proof.  i. Proof that Im(xz, + 1) C Ker(xz, +1).
Like F, F, is also cocommutative, so by Proposition 2.2.8 we have:
X7, = L.
Therefore we arrive at:
(X-Fp - 1)(X-Fp + 1) = Oa
from which we can deduce:

Im(xz, +1) C Ker(xr, — 1).

ii. Proof that Ker(xz, — 1) C Im(xx, +1).

In F, if z € Ker(xz,—1), then xz,(z) = z, hence (x5, +1)(z) = 2z, so
2z € Im(x#,+1). In that case, we need to show that if z € Im(x 5, +1).
On the other hand, if (xz, + 1)(z) = 2z, bearing in mind that the
characteristic of J,, is not equal two, we have:

(x5, +1(5) = 2,

hence z € Im(xx, + 1).

By i. and ii. the proof is complete.

We now give the proof of the main theorem of this chapter:

Proof of Theorem 7.0.1. By Proposition 7.2.1 in n degrees we have :
Im(xz, + 1) = Ker(xz, — 1).

Therefore, Theorem 7.0.2 gives the basis for the relevant degrees. This com-
pletes the proof. O

Now we can state the dimension for Ker(xz, — 1).

Corollary 7.2.2. In the mod p Leibniz-Hopf algebra, F,, the dimension of
the conjugation invariants in degree m is:

. 222, if m = 2n,
dim KGI'(X]—'p - 1)m = {22n—3 — 92 fm=92n — 1.

Proof. The proof is same as in the proof of Corollary 6.2.12. O
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Chapter 8

Correspondence between the
matrices of y Fr land x5, — 1

We first give details regarding dual basis of a given vector space, and define
dual of a given linear transformation which will be also a linear transforma-
tion. Secondly, we will introduce Theorem 8.0.3 which tells the correspon-
dence between matrices of these two linear transformations.

Definition 8.0.1. Let W be a finite dimensional vector space over the field
F with basis B = {ki, k2. .., kn}, then we can define a dual basis of B, which
is denoted by B*, and given by B* = {k{,...,k:}, where k} : W — F is
defined for each k; by the following relation :

. 1 ifi=j,
k; (k]) = p .
0 ifi#j.
When we say dual basis, we understand in the sense of Definition 8.0.1
in the following theorem of this chapter.

Definition 8.0.2. Let L : U — V be a linear transformation, where U and V'
are finite dimensional vector spaces over IF. We define the dual of L, denoted
by L*, as the map given by:

L*:V*=>U*, L'(g)=golL:V —F,

for each g € V*. This can be expressed as a commutative diagram in the
following way:
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U-L.v

f
O\,

F

It is clear from the set up that L* is a linear transformation between V*
and U*.

Theorem 8.0.3. Let L : U — V be a linear transformation, where U and
V are finite dimensional vector spaces over F. Let U = {uy,us...,u,} and
V = {ki,ka...,kn} be bases of U and V respectively. Suppose that the
matriz of L with respect to these two bases is C. Then the transpose C* is
the matriz of L* with respect to the dual bases V* = {k{, k..., k},} of V*
and U* = {uf,ul...,ur} of U*.

Proof. Let L : U — V be a linear transformation where, U, and V are vector
spaces with bases U = {uy,...,u,} and V = {ky, ..., kn,} respectively, which
are finite dimensional over F, then for a basis element u; € U, we have
L(u;) = c1k1 + cojka + ... + ¢ jkm, Where ¢;; € F. Hence the matrix of L
with respect to bases Y and V:

€11 C12 -+ Cin

Ca1 C22 -+ Cop
[C]u,v =

Cm1 Cm2 *°° Cmn

We know that the dual of L, namely L* : V* — U* is also a linear
transformation, where V* and U* are dual vector spaces with dual bases
V¥ = {ki,... .k} and U* = {u3,...,u;} respectively. We now determine
the matrix of L* with respect to these two dual bases. For to do that, we
need to write L*(k}) in terms of basis elements of U*:

n
L*(k}) = Edj’iu;, where d;; € F,
j=1

and we need to determine the scalars d;; . By Definition 8.0.1 and 8.0.2 we
have:

L*(kf)(u]) = k:(L(U])) = k;(Cl’jkl—f—Cg,ij'i“ . '+Cm,jkm) = 0+k:(01,‘7k,) = Ci,j
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from which we can deduce that the coefficient of u} in L*(k}) is ¢, hence,

n

L*(k}) = Z CijUs,

J=1

and the matrix of L* with respect to V* and U* is given by,

Ci1 €21 - Cmi

T Ciz2 C2 -+ Cm2
[C]u,v = [C]v*,u* = .

Cin Con " Cmn

O

Now in the same sense let’s consider conjugation. Both conjugations X r;
and xr, are linear transformations, so x7; —1 and x5, —1 are. By Proposition
2.6.8 xr; = (Xr)* ie., the antipode on F3 is dual to the antipode on 5.
Consequently, xr; —1 = (xr, — 1)*. In the light of this duality, lets first give
an example in even degrees and consider what the matrix of xz; — 1 tells us
about the linearly independent elements in Im(xz, — 1).

Example 8.0.4. In degree 4, let xr; — 1 : (F3)s — (F3)s be the linear

transformation, and take bases Y* in the domain and S* in the range, where
Y™ is equal S*, with these bases ordered in the lexicographical order, that is:

* *
Y = S = {S4a S3,la 52,27 52,1,1 ) S],31 SI,2,17 Sl,],Za Sl,l,l,l}-

Then, there is a matriz for x r; — 1 with respect to Y and S* which is denoted
by [xz — 1]},* g.s and is given by:

Sy S31 S22 Soin Sz Si2a Sie Sini

Sy ( 0 1 1 1 1 1 1 1

S 0O 1 0 0 1 1 1 1

Soo 0O 0 0 1 0 0 1 1

s — 1] _ Se11 | O 0 0 1 0 0 1 1
2 y*s* T G, 0 1 0 1 1 1 0 1
Si20 10 0 0 0 0 0 0 1

Sii2 {0 0 0 1 0 0 1 1

S;300\0 0 0 0 0 0 0 0

In that case, by Theorem 8.0.3 we can conclude that for the linear trans-
formation, (xz, — 1) : (Fa2)a — (F2)s, with respect to the bases: S in the
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domain and Y in the range, where S =Y, with these bases ordered in the
lexicographical order, namely:

S =Y = {54, 53,1, 82’2, 52,1,1’ 51,3, 51,2,1, 51,1,2, Sl,l,l,l},

the matriz for x 5,—1 with respect to the bases S andY', denoted by [x 7, — 1] sy
and given by:

54 83’1 52,2 S2,1,1 81’3 81’2’1 51,1,2 Sl,l,l,l

S4 0 0 0 0 0 \
53,1
52’2
S2,1,1
[X}'2 - 1]S,Y - 913
S1,2,1

81,1,2
51,1,1,1

—

= e e e = O
- O O OO OO
— = 0O O~k OO0

P T S S o Wl S
— —_= OO~ O C
— = O OO0
—_ O e O
OO O OO OO

/

—

= ([(xr, = Dlgy)" from which we can conclude that
)T

And [xr; — 1]}/*,3*
X7 — l]s,y = ([(XJ—‘; - 1)]y.,5*

Remark 8.0.5. In matriz [ng — l}y* g+» €ach column indicates (xr; — 1)-

image of a basis element in (F3)s4, and in matriz [xr, — l]g, each column
indicates (xr, — 1)-tmage of a basis element in (Fz),.

By Theorem 3.1.6, in even degrees of 73, the image of (xz; — 1) has a
basis consisting of the (xr; — 1)-images of all HNPs and all ELPs. In matrix
[XJ—'; — l]y* g+» the columns which have the highlighted coefficients refer to
these basis elements. Since they are basis elements, they are linearly inde-
pendent. Furthermore, these highlighted coefficients are witness elements to
all HNPs and all ELPs to have linearly independent elements under (xr; — 1).
As we know the matrix [Xfé‘ — I]Y*’ - 1s the transpose of Xz — 1] sy
hence the highlighted coefficients in [X F3 1] ye.5
ing the columns which have the highlighted coefficients in matrix [xz, — 1] sy
By Example 8.0.4, considering the correspondence between the columns
which have the highlighted coefficients in matrix [xz, — 1] sy and its trans-
pose. Unfortunately, we see that the matrix [X F - l]y,,’ - does not lead the
matrix [xz, — 1] sy to give a clear pattern regarding linearly independent
elements in Im(xx, — 1).

To have a clear pattern, for the linear transformation, xr; —1: (F3)s —
(F3)4, let’s take different bases which we will introduce in the following
example.

. are obtained by transpos-
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Example 8.0.6. In degree 4, let (xr; — 1) : (F2*)a = (F2*)a, be the linear
transformation, and take bases C* in the domain and B* in the range which
are ordered in the fOllO’iUan Cr = {84, 51,3, 51’2,1, 51_1,2, 51’1,1,1, 52,1,1, 53,1, 52’2},
and B* = {52,2, 51,3, 51,1’2, 51’1,1,1, 54, 53’1, 52,1’1, 81’2,1}, then there is a ma-
triz for (xz; — 1) with respect to C* in the domain and, B* in the range,
denoted by [xr; — 1}0*,3*, is given by,

Sy Sz Si21 Siiz S Soan Ssa Sao

Sz (0 0 0 1 1 1 0 0 \
Ss o 1 1 o 1 1 1 o0
S |0 o 0o 1 11 0 0
s 1] = S 000000 0 0
i ~Hees = g, o 1 1 1 11 1 1
Ss; o 1 1 1 1 o 1 o0
S lo o o 1 1 1 0 0

S22 \0 0 0 0 1 0 0 0]

By Theorem 8.0.3 we can see that for the linear transformation, (xz, — 1) :
(Fy)y — (Fa)4, with respect to bases B in the domain and C in the range,
with these bases ordered: B = {S%2,§%3, SLL2 GLLLL G4 g3.1 G211 gl211
C = {954 513, 8121 gL12 GLLLI G211 G381 G22Y ' the matriz for xz, — 1 :
(F2)a = (F2)a, with respect to bases B in the domain and C in the range,
denoted by [xr, — 1] ¢, and given by

2,2 1,3 1,1,2 1,1,1,1 4 3,1 2,1,1 1,2,1
S S S S S S S S

$¢ /0 0 0 0 0 0 0 0 )
SL3 0 1 0 0 1 1 0 0
G121 0 1 0 0 1 1 0 0
gL12 1 0 1 0 1 1 1 0
xXr —1lpe = SLLLLL 1 1 0 11 1 1
G211 1 1 1 0 1 0 1 0
S31 0 1 0 0 1 1 0 0
522 0 0 0 0 1 0 0 0 )

And [XJ:; - l]c*,B* = ([X]:Q - l]B,C)T' HGTLCQ, ([ng - 1}0*,3*)7‘ = [Xf2 - 1]B,C
Remark 8.0.7. In example 8.0.6, we did a different choice of bases.
More specifically, for any choice of basis ordering on the left hand side of

C*, we set the right hand side of C*, namely {S1111,S21,1, 531, S22} to in-
clude all ELPs and HNPs according to their lengths in non-increasing order
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so that same length of basis elements ordered in reverse lexicographical order,
where ELPs come after HNPs.

On the other hand, for any choice of basis ordering on the left hand side of
B*, we set the right hand side of B*, namely {S4, S31, 52,11, S121} to include
all OLPs and HNPs according to their lengths in non-decreasing order so that
same length of basis elements ordered in reverse lexicographical order, where
OLPs come after HNPs.

By example 8.0.6, we can now see the matrix [X}'E — 1] e B leads the
matrix [xr, — 1] B to give a clear pattern regarding linearly independent
elements in Im(x#; —1). To understand this pattern, let us consider the cor-
respondence between the highlighted coefficients in matrices [x F 1]
and [xr, — 1]3,0.

Like in example 8.0.4, the columns in the matrix ([X R = 1] o B*) which
have the highlighted coefficients refer to linearly independent elements of
(x7; — 1)-image, and these highlighted coefficients, the witness elements to
ELPs and HNPs being linearly independent under (xr; — 1)-image, form
a diagonal in [xz; — 1] .. ;.. Beside this, these witness elements are ob-
tained by transposing the columns which have the highlighted coefficients in
[XF, — 1] - Moreover, in example 8.0.6 we see that, these highlighted co-
efficients in [xz, — 1]5 ; also form a diagonal, and are also witness elements
to OLPs and HNPs to have linearly independent elements under (xz, — 1).

Precisely, let us consider the correspondence between the witness elements
in [X}'; - ].] c*.B* and [X]:2 - l]B,C . As in [X}'; - l]C* B* HNPs: 8311, 52,1,1
are witness elements to HNPs: S5, 52 having lineérly independent im-
ages under (xr; — 1), and OLPs: Sy, Sy, are witness elements to ELPs:
S3,2,51,1,1,1 having linearly independent images under (xz; — 1).

On the other hand, likewise in [sz* — 1]0*’3*, in [xz — 1]B,C, HNPs:
S31 8211 gre witness elements to HNPs: S3!, §%11 having linearly indepen-
dent images under (xz, — 1), and ELPs: $%2, S1LLL are witness elements to
OLPs: S4,8%2! having linearly independent images under (xz, — 1).

C*’B*

Remark 8.0.8. The OLPs which are witness elements in [X F - are

interchanging with ELPs being witness elements in [xx, — 1] -

on e

We can now introduce the following generalization in all even degrees.
In degree 2n, let

(xrg = 1) (FD)on = (F3)2n
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be a linear transformation, and if we take bases E* in the domain and D* in
the range, where D* is formed taking LNPs and OLPs in the given degree,
in any order followed by taking ELPs and HNPs according to their lengths
in non-increasing order so that the same length of basis elements are ordered
in reverse lexicographical order, where ELPs come after HNPs, and D* is
formed taking LNPs and ELPs in the given degree, in any order followed by
taking OLPs and HNPs according to their lengths in non-decreasing order
so that same length of basis elements are ordered in reverse lexicographical
order, where OLPs come after HNPs. Then we have a matrix for xz; —1 with
respect to E* in the domain and D* in the range denoted by [xz; — 1]
and given by:

E*,D*’

* * * *
* . %
XFor = g pr = o . . . . %10
*
*
Lok
e = 1 0 . . . .
R 10 . . . . 0]

By Theorem 8.0.3 we have a matrix for linear transformation
(X7 = 1)+ (F3)2n = (F2)2m

with basis D in the domain and E in the range which is denoted [xx, — 1]p g
and is given by

*
X7 = 1]D’E I . . . . %10
. %
"
*
. * 1 0 .
| x * 1 0 0 |
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And
[X}—; - 1:| E*,D* = ([XF2 - ]']D,E)T’

Hence for choice of bases E* and D* above, in all even degrees, we can
always get suitable bases D and, F giving the linearly independent elements
under xr, — 1. Therefore we have proved the following Theorem.

Theorem 8.0.9. Let vy, ..., v, be all the higher non-palindromes with even
degree, and let 01, ...,0, be all the odd length palindromes with even degree.

Then (XJ"2 - 1)(01)’ SRR (XFz - 1)(Um), (XF2 - 1)(01)a SRR (XF2 - 1)(02) are
linearly independent.

Bearing in the mind that there is no ELP in odd degrees, one can adapt
the generalization in even degrees for odd degrees taking E* and D* in the
same order with considering only HNPs. Therefore we have proved the fol-
lowing Theorem.

Theorem 8.0.10. In odd degrees, the higher non-palindromes in F, have
linearly independent images under (xz, — 1).

Now let’s introduce the dimension of Im(xz, — 1).

Theorem 8.0.11. In the mod-2 Leibniz-Hopf algebra, F3, the dimension of
the Im(xr, — 1) in degree m is equal to the dimension of Im(xp; — 1), i.e,

. 2n-2 if m = 2n,
dim Im(xz, = Lm = {22n—3 — "2 ifm=2n— 1.

Proof. Using the fact that for each positive integer n,
(X7 — 1) : (Fo)n = (F2)n,
is a linear transformation on finite vector space, namely (F3),, we know:
dimIm(x 7, — 1) =: rank of (xz, — 1).

Furthermore,
rank of (xr, — 1) = rank of (xz, — 1)¥

Beside this, since (F3), is a finite dimensional vector space, (F3), is also a
finite dimensional vector space. On the other hand, by Theorem 8.0.3

rank of (xz, — 1)7 = rank of (xr; — 1),

where

(X}'z* - 1) : (‘F;)n - (]:;)na
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is a linear transformation on finite dimensional vector space, namely (F3 ).
So we have:
rank of (xz, — 1) = rank of (xx; — 1).

Similarly,
dim Im(xz; — 1) =: rank of (xz —1).
Hence,
dim Im(xr, — 1) = dim Im(x 7 — 1),
And, the remainder of the proof is easily seen by Corollary 3.2.9. O

Theorem 8.0.12. In even degrees, the image of (x5, — 1) is spanned by the
(x5, — 1)-images of of all higher non-palindromes and all odd-length palin-
dromes.

Proof. In even degrees, by Theorem 8.0.9 (x 7, — 1)-images of all HNPs and
OLPs are linearly independent. Beside by Proposition 2.3.14 the number
of all HNPs and OLPs exactly matches dimIm(xz, — 1) which is given by
Theorem 8.0.11. Hence, (xz, — 1)-image of all HNPs and OLPs also span
Im(xz — 1). O

Theorem 8.0.13. In odd degrees, the image of (xz, — 1) is spanned by the
(xF, — 1)-images of all higher non-palindromes

By the theorems above we established a linearly independent set and a
spanning set for Im(xx, — 1) in all degrees. Hence we proved the following
theorem.

Theorem 8.0.14. In the mod 2 Leibniz-Hopf algebra, F,, in degree n, Im(x 7, —
1) has a basis consisting of:

i. the (xx — 1)-images of all higher non-palindromes and, odd-length
palindromes if n is even, or

it. the (xx, — 1)-tmages of all higher non-palindromes, if n is odd.
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Chapter 9

Conjugation Invariants in the
mod 2 Leibniz-Hopf Algebra

In this chapter, for prime two, we have also subvector spaces: Im(xx,—1) and
Ker(x s, — 1) of F5. Moreover, Ker(xr, —1) is also formed by the conjugation
invariants in J,. Using the results in the previous chapter, we will show that
how we can take an easy approach to find a basis for Ker(xz, — 1). We now
introduce the main theorem of this chapter:

Theorem 9.0.1. A basis for Ker(xz, — 1) consists of:
i. 1n even degrees, (xx, — 1)-image of all higher non-palindromes and all

odd-length palindromes

it. in odd degrees, (xr, — 1)-image of all higher non-palindromes and p-
image of all odd-length palindromes.

Here p denotes the sum of ” right refinement”, which we will fully define
in the following section.

Before giving a proof we will first introduce the dimension of Ker(xz, —1)
in the following theorem.

Theorem 9.0.2. In the mod 2 Leibniz-Hopf algebra, the dimension of the
Ker(xr, — 1) in degree m is equal to the dimension of Ker(xp; — 1), i.e,

' 2Mm=2 if m = 2n,
dim Ker(xfz - 1)m = {22n—3 4+ 2 ifm=2n—1.

Proof. By Rank and nullity Theorem, and Theorem 8.0.11, one can easily
see that
dim Ker(xr, — 1) = dim Ker(xz; — 1).

The remainder of the proof can be seen by Corollary 3.2.10. O
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Now we will first give a basis for Ker(xg, — 1) in even degrees.
Corollary 9.0.3. In even degrees, Ker(xr, — 1) = Im(xp, — 1).

Proof. The proof of Corollary 3.1.7 can easily adapt to this case without
difficulty. O

Now we will give a basis for Ker(xz, —1). Firstly, we need to give technical
results and introduce a new terminology,” p.”

Definition 9.0.4. Let S-@k+1 be an odd-length palindrome. Define the
p-image to be

where summation is over all refinements jy, ..., 7 of 4g41,. .., 4241 that have
. ik
125

Example 9.0.5.
p(S%32) = §23:2 | GBI 4 G212 | G221L1

Remark 9.0.6. By mod 2 reduction of the equation 6.2 in the Proposition
6.2.1 in odd degrees, we can easily see that p-image of all OLPs in Ker(xr, —

1).

Theorem 9.0.7. In odd degrees, let pi1,...,p, be all the odd-length palin-
dromes, and let hy,...,hs be all the higher non-palindromes. Then p(p1),
(), (Xm — 1)(h1), - -, (X, — 1)(hs) are linearly independent.

Proof. Let pq,...,p, are all the odd-length palindromes in odd degrees, and
let hy,...,hs be all the higher non-palindromes in odd degrees. Suppose
D1, .- ., D are some distinct elements of {py,...,p.} and hy, ..., h; are some
distinct elements of {hy,..., hs} with the property that:

p(p1) + -+ por) = (xr7, — D(R1) + -+ + (X7, — 1) (M) (9.1)

Moreover, let’s order these elements according to their lengths in a non-
increasing order, i.e,

length(pi) < length(px_1) < --- < length(p:), (9.2)

and
length(h)) < length(hi—1) < --- < length(h;). (9.3)

Let m be the length of pp, then by definition 9.0.4, the only length m
summand in p(pg) is px, namely py itself. On the other hand, by the ordering
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assumption (9.2), there can be other OLPs that have length m on the left
hand side of equation 9.1. To be more precise, let ¢ be the smallest index
such that p; has length m, then similarly, in p(p;), there is only summand
of the same length as p;, namely p; itself. Consequently, the only length m
summands in p(p;) + -+ + p(px) will be those p; that have length m, i.e.,
Di, Dit1s - - - s Pk—1, Pk And py,...,p;—1 will have length strictly greater than
m.

Beside this, since py,...,px are all distinct, p;,piy1, ..., Pr—1,Pr cannot
cancel, so the minimal-length summands on the left hand side of equation
(9.1) have length m and are palindromes.

Now, let’s consider the right hand side of equation (9.1). Let n be the
length of hy, then the only length n summands in (xz, — 1)(h;) are h; and its
reverse, which is an LNP. Again, by the assumption of ordering (9.3), there
can be other HNPs that have length n on the right hand side of equation
9.1. Let j be the smallest index such that h; has length n, then in the same
manner, the only length n summands in (x5 — 1)(h;) are h; and its reverse.
Following this, the only length n summands in (xz, — 1)(h1) + ...+ (x5, —
1)(hy) are hj, hjq1, ..., and the reverse of those HNPs. And hi,...,hj;
will have length which is strictly greater than n.

Furthermore, since hy, ..., h; are all distinct, hj, hjy1,..., hy and the re-
verse of those HNPs cannot cancel, so the minimal-length summand on the
right hand side of equation (9.1) have length n and are HNPs and LNPs. In
other words these n length summands are non palindromes.

Finally, we see that, the minimal-length of summands on the left hand side
of equation (9.1) are palindromes, whereas the minimall-length of summands
on the right hand side of equation (9.1) are non-palindromes. This leads to a
contradiction which shows that equation (9.1) cannot hold unless both sides
are zero. Therefore,

,0(,’01), v ,P(pk)’ (sz - 1)(h1)v e (X]'-Q - 1)(hl)

are linearly independent. This completes the proof.
O

Theorem 9.0.8. In odd degrees, (xr,—1)-images of all higher non-palindromes
and p-images of all odd-length palindromes form a basis for Ker(xx, — 1).

Proof. In F, we have:
(X7 —1)o(xr—1) =0,

so the (x, — 1)-image of all HNPs are in Ker(xz, —1). On the other hand,
in odd degrees, by remark 9.0.6 the p-image of an odd-length palindrome
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is also in Ker(xz, — 1). Moreover, by Theorem 9.0.7 the (xz, — 1)-image of
all HNPs and p-image of all OLPs are linearly independent. Beside this, by
Proposition 2.3.14 the number of all HNPs and OLPs is:

(22n—3 _ 2n—2) + 2n—1 — 22n—3 + 2n—2,

which is exactly dim Ker(xz, — 1). Hence, (x7, — 1)-image of all HNPs and
p-image of all OLPs also span Ker(xr, — 1). Therefore, (xz, — 1)-image of all
HNPs and p-image of all OLPs form a basis for Ker(xz, — 1) in odd degrees
of F: 2. O

We can give a proof for the main theorem of this chapter.

Proof of Theorem 9.0.1. In even degrees, by Corollary 9.0.3 we have:
Ker(xp — 1) = Im(xr, — 1).

Therefore a basis for Im(xx, — 1) is also a basis for Ker(xx, — 1), and by
Theorem 8.0.14 the image of (xz, — 1) has a basis consisting of the (xz, —1)-
images of all higher non-palindromes and all odd-length palindromes. Hence
this basis is also a basis for Ker(x s, — 1). The remainder of the proof can be
easily seen by Theorem 9.0.8. O

Corollary 9.0.9. In odd degrees, p-images of all the odd-length palindromes
form a basis for Ker(xx, — 1)/Im(xz, — 1).

Proof. Suppose that there are some odd-length palindromes py,...,pr such
that;

p(p1),- .-, p(pr) € Ker(xz, — 1)/Im(xz, — 1)
with the property that:
p(p1) + -+ p(pk) =0 mod Im(xz, — 1),

which means p(p;) + - - + p(px) € Im(xx, — 1). And by Theorem 8.0.14 we
know that, in odd degrees, (xz, — 1)-image of higher non-palindromes form
a basis for Im(xz, — 1) which implies that there are higher non-palindromes
hi, ..., hy with the property that:

pp1) + -+ pwk) = (x5 — 1(h) + -+ (xm — D). (94)

But by the same argument in the proof of Theorem 9.0.7, equation (9.4)
cannot hold unless both sides are zero, so it is a contradiction. Therefore,
the p-image of all OLPs are linearly independent mod Im(xx, — 1).
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On the other hand, since J; is of finite type, so we have:
dim(Ker(xz, — 1)/Im(xz, — 1)) = dim Ker(xz, — 1) — dimIm(xx, — 1),
in each degree. Therefore, by Theorem 8.0.11 and Theorem 9.0.2 we have:
dim(Ker(xx, — 1)/Im(xx, — 1)) = 2"

Beside this, by the Proposition 2.3.14 the number of OLPs in 2n—1 degrees is
2"~ Hence,the p-images: p(p1),. .-, p(pk) also span Ker(xz, —1)/Im(xx, —
1), so the p-image of all odd-length palindromes form a basis for Ker(xrs —
1)/Im(xr; — 1).

O

Corollary 9.0.10. In degree m, the quotient Ker(xz, —1)/Im(xz, — 1), i.c.,
the Tate cohomology of Z/2 acting on F» by conjugation, has dimension

dim Ker(xs, = 1)m\ _ [0, if m=2n,
Im(xs, — Dm /2% ifm=2n-1

Proof. It can maybe seen by Corollary 9.0.3 and by Corollary 9.0.9. O
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Appendix A

Calculations in the dual
Leibniz-Hopf Algebra

In this Appendix the (x - £ 1)-image of all degree 4 and 5 basis elements are
listed. In particular the summands of these basis elements under Im(x - £1)
are listed according to non-increasing length order. The given tables can also
be used for the mod p dual Leibniz algebra.

A.1 Table list in degree 4

(x7 — 1)(basis for 7*) | RESULT

(x7- = 1)(S4) —28,

(xF- = 1)(S3,1) —S31 + S1,3+ Sa

(X7 — 1)(S22) Sy

(xF+ — 1)(S13) —S13+ 831+ Ss

(X7 — 1)(S2,1,1) —S2,1,1 — S1,1,2 — S22 — S13 — S

(xrF- = 1)(S1,2,1) —285121 — S3,1 — S1,3 — Sy

(X7 — 1)(S1,1,2) =S11,2 = 82,11 — 831 — S22 — 54

(xF = 1)(S11,1,1) So11+ 5121+ S112+ Si13+ S31+ S22+ 54
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(x7- + 1)(basis for F7*) | RESULT

(xF+ 4+ 1)(S4) 0

(X7 +1)(S3,1) Sz + S13+ Sa

(X7 +1)(S22) 2835 + Sy

(xF+ +1)(S1,3) S13+ 831+ 54

(xF+ +1)(S2,11) So11 — Si12— So2— S13— Sa

(X7 + 1)(S1,21) —S31— 813 — 54

(X7 +1)(S1,1,2) S11,2 = S2,1,0 — 31 — S22 — Sa
GO N Rt
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A.2 Table list in degree 5

(xr+ — 1)(basis for F*)

RESULT

(xF+ = 1)(Ss)
(xFr = 1)(Sa,1)
(xF+ = 1)(S14)
(xF+ —1)(S3,2)
(xF+ —1)(523)
(X7 — 1)(S3,1.1)
(xF+ = 1)(S221)
(xr= = 1)(S2,1,2)
(xF+ = 1)(S131)
(xr+ = 1)(S12,2)

(xF= = 1)(S1,1,3)

(x7 = 1)(S2,1,1,1)

(xF= = 1)(S1,2,1,1)

(xF — 1)(S1,1,2,1)

(xF+ = 1)(S1,1,1,2)

(xF = 1)(S1,1,1,1,1)

—28;5

=841+ 514+ S5

—S14+ 841+ Ss

—S32+ 523+ S5

~S823+ S32+ S5

—S83.1,1 — 51,13 — S1,4 — 523~ S5
~S221 — S1,22 ~ 532 — 514~ S5
—28212— 823~ S32— S5
—2813,1— 811 — S14 — S5
—=951,22 = 9221 — 911 — 523~ 95
—S1,1,3 — S3,11 — 84,1 — 532 — S5

—S2111+ 81112+ 5212+ S12251,13+ S2.3
+S14+ 532+ 55

= S12,11+ S1,121 + 82,21 + 51,31 + S1,1,3+
So3+ S1,4+ 541+ S5

- S11,21+ 81,211 + 531,10 + 51,31+ S1,2,2 + S3.2
+ S14+ 841+ Ss

= S11,1,2+ 521,11 + 831,10 + 5221+ S2,1,2 + 53,2
+ S23+ 841+ S5

- 2811111 — S2,1,1,0 — S1,2,1,1 — S1,1,21 — S1,1,1,2
— 5221 —5212— 51,22 — 5311 — 51,31 —51,1,3
— 832 —823—S514— 541~ 55
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(xr- + 1)(basis for F*)

RESULT

(x7= +1)(Ss)
(xF+ 4+ 1)(S41)
(xF+ + 1)(S14)
(X7 +1)(53.2)
(xF+ +1)(52;3)
(xr+ +1)(S3,1,1)
(xF= +1)(S2,2.1)
(xr= + 1)(S2,1,2)
(xF= +1)(S1,3.1)
(xr+ +1)(S12,2)

(xr7 +1)(S1,1,3)

(xF+ +1)(S2,1,1,1)

(x7 +1)(S1,2.1,1)

(xF+ +1)(S1,1,2,1)

(xF +1)(S1,1,1,2)

(x7 +1)(S1111,1)

0

S41+ S14+ Ss

S14+ 841+ S5

S392 4+ S23+ S5

Sa23+ S32+ S5

85311 — 51,13 — S1,4 — S23— S5
S2,21 — 81,22 — 83,2 — S1,4 — S5
—823—S32— S5

—S41— 514 — S5

S1,22 — 52,21 — 541 — S2,3 — S5
51,13 — S3,1,1 — S4,1 — S32 — 55

S2,1,1,1 + 511,12 + 52,12 + 51,2,251,1,3 + 52,3
+ 81,4+ 832+ 55

S1,2,1,1 +S1,1,21 + S2.21 + S1,31 + S1,1,3+
So3+S14+ 841+ S5

S11,21+ 81,211 + 531,10 + 51,31+ S1,22+ 532
+ S14+ S11+ S5

S1,1,12 + 821,11 + S3,1,1 + 2,21 + S2,1,2 + 53,2

+ S23+ Ss,1+ S5

—821,1,1 — S1,2,1,1 — S1,1,2,1 — S1,1,1,2
— 82921 —S5212—S1,22— 531,10 — 51,31 — S1,1,3
—8392—523—514—S841— 55
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Appendix B

Calculations in the mod 2 dual
Leibniz-Hopf Algebra

In this Appendix the (xz; — 1)-image of all degree 4 and 5 basis elements
are listed.

B.1 Table list in degree 4

(x7; — 1)(basis for F;) | RESULT

(XF, — 1)(Sa) 0

(x7; — )(S31) S31+ S13+ 54

(xr; — 1)(S2.2) Sy

(x7; —1)(S13) S13+S31+ Sy

(x7; — D)(S2,11) So11+S112+ S22+ S13+ 54

(x7; — 1)(S1,21) Ss1 4+ S1.3+ S

(x7 — D(S11,2) S112+ S211+ S51+ Saa+ Sy

(xr; — 1)(S1111) So11+ S121+S1,12+S13+ S31+ S22+ Sa
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B.2 Table list in degree 5

(xFy — 1)(basis for F3)

RESULT

(xF; — 1)(S5)
(xrz —1)(S41)
(xr; — 1)(S14)
(xr; — 1)(S32)
(xr; — 1)(523)
(xr; — 1)(S,1,1)
(xr; — 1)(S2.21)
(xr; — 1)(S2,1,2)
(xF; — D(S13.1)
(xr; — D)(S1.2.2)

(xF; — D(S1,1,3)

(x73 — 1)(S2,1,1,1)

0

S41+ 514+ S5

S14+ 841+ S5

S32+ S23+ Ss

S23+ 532+ Ss

S311+ S1,13+S1,4+ S23+ S5
S2.2.1+ S22+ S32+ 514+ S5
S23+ S32+ Ss

S41+ S1,4+ Ss

S1,22+ 82,21+ 841+ S2.3+ S5
S1,1,3+ 831,10 + S4,1 + S32 + S5

So1,11+S11,12+ S212+ S1,22+S1,1,3+ So3
+ S14+ 532+ S5
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B.3 Table list in degree 5

(xr; — 1)(basis for ;) | RESULT

S2,1101 +S1,1,12+ 5212+ S122 + 51,1,3 + S2,.3
(xz; — D(S2,1,11)

+S1,4+ S32+ S5

Si12,1,1+ S1,1,21 + S221 + S1.31 + 51,13+
(X}‘; - 1)(51,2,1,1)

52’3 + 51,4 + 54,1 + S5

S1,121+ 81211 + 83,11 + 51,31+ S1,22 + S32
(xr; — D(S1,1,2,1)

+ 814+ S41+Ss

St11,2+ 821,11 + 5311 + S221 + S2.1,2 + 532
(x7; — D(S1,1,1,2)

+ 8523+ S41+ S5

So1,1,1 + 81211 +S1,1,21 + S111,2 + S221 + S2.1.2
(xF; — D(S11,111) + S122+ 5311+ S1,31+ S1,13+ S32+ So3

+ 81,4+ 541+ S5

basis for Ker(xr; —1)/Im(xr — 1)

/\}_3 (51,1,1,1,1)

Sl,l,l,l,l _l__SZ,l,l,l +Sl,2,1,1
3,1,1
+ 5%
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Appendix C

Calculations in the
Leibniz-Hopf Algebra

In this Appendix the (x7 & 1)-image of all degree 4 and 5 basis elements
are listed. In particular the summands of these basis elements under Im(x+1)
are listed according to non-decreasing length order. The given tables can also
be used for the mod p Leibniz algebra.

C.1 Table list in degree 4

(x7 — 1)(basis for ) | RESULT
~ 28+ §3! + 5§22 — §2LT 4§13 — gLl
(xr = 1)(5%) _ ghl2 gy gLl
(xr — 1)(5%) G314 §13 — §121 _ g1z 4 ghi
(xr — 1)(5*%) —GPLL — gh12 4 gLLL1
(X}_ _ 1)(52,1,1) _52,1,1 _ 51,1,2 + Sl,l,l,l
(XJ: _ 1)(8’1,3) _51,3 + S3,l _ 52,1,1 _ 81,2,1 + Sl,l,l,l
(xF— 1)(S¥>h) —25121 4 gLLL
(xx = 1)(S"%) —§12 — gLl 4 GLLLL
(xF = D)(SHHH) 0
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(x + 1)(basis for F) | RESULT

(xr + 1)(S%) e
(xr+ 1)(53,1) §31 4§13 _ gi.21 _ gLL2 4 gLLLl
(xF + 1)(S*?) 9§22 _ G211 _ gL12 4 gLill

(xF +1)(S%41) G211 _ gLL2 4 GLLLL

(xx +1)(5"?) S13 4§31 _ g2l _ gl21 4 gLLLlL
(xr +1)(S*?') ShibL

(xr + 1)(SM2) SL12 _ G211 4 gLLL

(xF + 1)(SHH1 25111
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C.2 Table list in degree 5

(xr — 1)(basis for 7) | RESULT

_ 255 + S4,1 + S3,2 _ 53,1,1 + S2,3 _ 52,2,1
(X}_ _ 1)(55) . S2,1,2 + 52,1,1,1 + Sl,4 _ 51,3,1 _ 51,2,2+
Sl,2,1,1 _ 51,1,3 + 51,1,2,1 + Sl,1,1,2 . Sl,l,l,l,l

. _ 84,1 + 81,4 . Sl,3,l _ Sl,2,2 + 81’2’1’1
(xr — 1)(5*) _ gh13 4 gll2l 4 1112 _ glLLLLl

_ 53,2 4+ 52,3 _ 52,2,1 ;= S2,1,2 + S2,1,1,l
(xr — 1)(5%?) 1,1,3 1,1,2,1 1,1,1,2 01,1,1,1,1
J— S 1y _+_ S YLyl _+_ S sty S yLytsly

Y _ g4 gl _ g3L1 _ G221 4 2111
(xr — 1)(S™) — gLl gLzl 4 glL2l _ gLLLll

_ G234 §32 _ g3Ll _ G212 | 2111

2,3
(xF = 1)(8*%) —gL22 4 gl2ll | gLLL2 _ gLLLll

(X]: _ 1)(53,1,1) _ 53,1,1 _ 51,1,3 4 Sl,1,2,1 4 51,1,1,2 _ Sl,l,l,l,l
(X]: _ 1)(82,2,1) _ 82,2,1 + _51,2,2 + 51,2,1,1 + Sl,1,1,2 L Sl,l,l,l,l
(X]__ _ 1)(52,1,2) _ 252,1,2 + 52,1,1,1 4 Sl,1,1,2 - Sl,l,l,l,l

(XJ: _ 1)(51,3,1) _ 251,3,1 + 81'2’1’1 + Sl,1,2,1 _ Sl,l,l,l,l

(X}_ _ 1)(51,2,2) _ Sl,2,2 _ 52,2,1 + 52,1,1,1 + Sl,l,Z,l _ Sl,l,l,l,l

111




(xr — 1)(basis for F)

RESULT

(xF = 1)(S19)

(xr = 1)(5>+)
(xr — 1)(S™H)
(¢ = 1)(8412%)
(e = 1)(SHH12)

(= 1)(S13)

_ 51,1,3 o 53,1,1 + 32,1,1,] + 51,2,1,1 _ 51,1,1,1,1
_ 82,1,1,1 + 31,1,1,2 _ Sl,l,l,l,l
_ 51,2,1,1 + 51,1,2,1 . Sl,l,l,l,l
— gL121 4 gl211 _ gLlLll
_ 51,1,1,2 + Sz,1,1,1 _ Sl,l,l,l,l

_9gL1LL1
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(x+ + 1)(basis for F)

RESULT

(xz +1)(5?)

(xF + 1)(5*)

(xr +1)(5%?)

(xF +1)(S™)

(xF + 1)(5*3)

(s +1)(S)
(xr +1)(5?21)
(xr +1)(S*?)
(xr +1)(8")
(xr +1)(512?)
(xF +1)(S"1?)
(xr + 1)(S*)
(xr + 1)(S>)
(xr +1)(S421)
(xr +1)(S12)

(X}_ + 1)(5’1,1,1,1,1)

S4,l + S3,2 _ S3,1,1 + 82’3 . S2,2,1 _ 52,1,2
+ 52,1,1,1 + 51,4 _ 51,3,1 _ 81,2,2 + 81’2’1’1
_ L3 4 gl121 4 glLL2 . _ ¢l1lL1

g4l 4 g4 _ gLl _ gl22 | gl211 _ gll3
4+ ghl2l 4 ghLl2 _ gLLLL1

S3,2 + S2,3 _ 32,2,1 _ 82’1’2 + 52,1,1,1 _ 51,1,3
4 81,1,2,1 + 51,1,1.2 _ 51,1,1,1,1

G4 4 g4l _ g3l _ 221 4 G211l gl3l
4+ ghaLl | ghl2l _ glllll

S2,3 + 53,2 _ 53,1,1 _ S2,1,2 + 52,1,1,1 _ 51,2,2
+ 51,2,1,1 + S1.1,1,2 _ Sl,l,l,l,l

83’1’1 _ 51,1,3 +Sl’1’2’1 + 51,1,1,2 _ Sl,l,l,l,l
5221 _ gl22 L g2l 4 g1112 _ gLLLL1
82’1’1’1 + Sl,1,1,2 _ Sl,l,l,l,l
Sl,2,1,1 + 51,1,2,1 . Sl,l,l,l,l
81,2,2 _ 52,2,1 + 82,1,1,1 + 51,1,2,1 _ Sl,l,l,l,l
Sl,1,3 _ 83’1’1 + 52,1,1,1 4 51,2,1,1 _ Sl,l,l,l,l
52,1,1,1 + Sl,1,1,2 _ Sl,l,l,l,l
51,2,1,1 + Sl,1,2,1 _ Sl,l,l,l,l
51,1,2,1 + Sl,2,1,1 _ Sl,l,l,l,l
51,1,1,2 + 32,1,1,1 _ Sl,l,l,l,l

0
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Appendix D

Calculations in the mod 2
Leibniz-Hopf Algebra

In this Appendix the (xz — 1)-image of all degree 4 and 5 basis elements are
listed.

D.1 Table list in degree 4

(x5, — 1)(basis for F;) | RESULT

(xr — 1)(SY) S:;jlff ;ﬁ:l + G134 gl
(xr — 1)(S®) §31 4 Gl3 4 glal | gli2 o gLl
(e, — 1)(522) Sy g2 4 g

(X7 = D(S2H) 521 4§11 4 g

(xm — 1)(S1?) L3 4 g3l 4 g211 4 gl2l | gLill
(xF, — 1)(SH21) GLLLI

(xF, — 1)(St1H?) SLL2 4 g2L1 4 gLLLL

(xz — 1)(SVELY) 0
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D.2 Table list in degree 5

(x5, — 1)(basis for F3)

RESULT

(sz - 1)(55)

(xz — 1)(S*)

(xz — 1)(5*?)

(xz — 1)(S™)

(xm — 1)(5*9)

(xr — 1)(S*M)
(xr, — 1)(5**1)
(xr — 1)(5*12)
(xr, = 1)(SH)

(xz — 1)(S"*?)

S4,1 + 83’2 + S3,1,1 4 52,3 + 52,2,1
+ 52,1,2 + S2,1,1,1 + 51,4 + 51,3,1 + 81’2’2+
51,2,1,1 +Sl,1,3 +Sl’1’2’1 +Sl,1,1,2 +Sl,1,l,1,1

S4,l + 51,4+Sl,3,1 +Sl,2,2+51,2,1,1
+ Sl,1,3 + 51,1,2,1 + Sl,1,1,2 + Sl,l,l,l,l

53,2 +S2’3+52’2’1 +S?,1,2+ 82’1’1’1
+ 81’1’3 + 51,1,2,1 + Sl,l,l,? + 51,1,1,1,1

St 4 g4l 4 gLl | G221 4 G211
4+ gL31 4 gLl L gLzl 4 gLLLLL

G23 4 §32 4 G3L1 4 G212 4 G211l
4+ §L22 4 gl2ll 4 gLLL2 | GLLLLL

§3L1 4 gLl3 4 ghl2l | glLL12 4 glLLLL1
G221 4 gl22 4 gl2ll 4 glLLl2 L glLLLL1
52,1,1,1 +Sl,1,1,2 + 81’1’1’1’1
gL2Ll 4 gLl L glLLLLl

4+ §h22 4 g221 4 g21LL1 | gLl21 4 gLLLL]
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(x7 — 1)(basis for F,)

RESULT

(7 = ()

(X7 = 1(844%)
(s = 1(5%21)
(7, = 1(8™21)
(s = 1(54412)

(xz — D(SHHLY)

31,1,3 +S3’1’1 +SZ,1,1,1 +Sl’2’1’1 _|_Sl,1,1,1,1
S2,1,1,1 +Sl,1,1,2+81,1,1,1,1
51,2,1,1 +Sl,1,2,1 _'_Sl,l,l,l,l
81,1,2,1 +Sl,2,1,1 +Sl,1,1,1,1
81,1,1,2 4+ 52,1,1,1 +Sl,l,1,l,1

0

basis for Ker(xz, — 1)/Im(xx, — 1)

,0(.5']’]’1’1'1)

Sl,l,l,l,l
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