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SUMMARY

The immunoglobulin-like, transmembrane Advanced Glycation End product (AGE) 
Receptor (RAGE) is a pattern recognition receptor implicated in the transduction of 
pro-inflammatory signalling and processes. Over the past decade a substantial body 
of evidence has accrued implicating RAGE in the pathogenesis of several chronic 
inflammatory and vascular diseases such as diabetes, rheumatoid arthritis, 
amyloidosis, atherosclerosis and renal failure. More recently RAGE has been linked 
to cancer progression, possibly through its role in the inflammatory process. AGE 
products have been shown to exert their intracellular effects through ligation of their 
cognate receptor RAGE and the subsequent transactivation of NFkB signalling in 
several cellular contexts. Polycystic Ovary Syndrome (PCOS) is a reproductive 
endocrine disorder characterized by hyperandrogenism, chronic anovulation and 
insulin resistance, thus increasing the risk of diabetes mellitus in these patients. 
Non-enzymatically glycated AGEs are formed at an accelerated rate and 
accumulate in tissues in conditions of high glucose and oxidative stress. 
Interestingly, young normoglycemic women with PCOS exhibit higher serum AGE 
levels and increased RAGE expression in poly-cystic ovaries. RAGE is also 
regulated through the activity of the estrogen receptor (ER). The natural cyclical 
expression of estrogen throughout the menstrual cycle is perturbed in endometriosis 
even post menopause, suggesting that RAGE could also be dysregulated. Finally 
PCOS has been implicated in increased risk to endometrial cancer progression as 
has uterine exposure to the selective estrogen receptor modulator Tamoxifen (TX) 
therefore it is plausible that RAGE has a function in this disease.

Objectives:
The principal aims of this thesis were to characterise RAGE expression for the first 
time in fertile and infertile endometriotic and PCO human endometrium, and to 
initiate RAGE characterisation in endometrium obtained from patients with 
endometrial hyperplasia and cancer. Secondly, this thesis endeavoured to elucidate 
the transcriptional mechanisms regulating RAGE in vitro in response to 17(3 estradiol 
and AGEs which are elevated in endometriosis and PCOS pathology respectively, 
and in endometrial cancer.
Methodology:
This project employed the use of real time Polymerase Chain Reaction (RT-PCR), 
Chromatin Immunoprecipitation (ChIP), Immunohistochemistry (IHC) and western 
blotting (WB).
Results:
Immunohistochemistry and RT-PCR data revealed that basal RAGE expression was 
significantly greater in PCO and endometriotic endometrium when compared to 
fertile controls, and significantly elevated in two cancer patients. RAGE was also 
characterised in endometrial cell models in which it was shown to be modulated at 
the mRNA and protein level by AGE-HSA, 17(3 estradiol (E2) and its antagonist 4- 
hydroxytamoxifen. Moreover, we have shown that RAGE is modulated by two 
distinct pathways through the estrogen receptor (ER) and NFkB. Novel ChIP results 
confirmed the presence of p65 and ER-alpha on the RAGE promoter at non- 
classical Sp1 and Ap1 sites in response to AGEs, E2 and TX.

Conclusions:
The results in this thesis may implicate endometrial RAGE expression in the 
infertility evident in women with PCOS and endometriosis. Furthermore, recent 
evidence implicates RAGE in mediating inflammation-driven tumourigenesis. Thus, 
over-expression of endometrial RAGE in PCOS and endometriosis, and in patients 
receiving tamoxifen for breast cancer treatment may predispose these women to an 
elevated risk of cancer.
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1. Introduction 

1.1 Reproductive Biology

Mammalian reproductive biology is a broad field of science encompassing 

diverse research areas linked by a central focus on sexual reproduction. 

Human reproduction is reliant on the success of several complex, precisely- 

timed and highly-regulated biological processes namely gametogenesis, 

ovulation, fertilisation, implantation, gestation and parturition of live offspring. 

Specifically, a clinical branch of reproductive biologists has been established 

in Obstetrics and Gynaecology to address female-centric factors affecting the 

outcome of clinical pregnancy. Furthermore, collaboration between surgical 

clinicians, gynaecologists and molecular biologists in this field has led 

research on the aetiology of disease in the female reproductive tract, 

gestational complications, infertility, and raised awareness of contraceptives 

and sexually-transmitted disease. This knowledge has also aided the 

development of assisted reproductive techniques (ART) such as in vitro 

fertilisation (IVF) and gamete intra-fallopian transfer (GIFT).

1.2 Physiology of the Human Female Reproductive System

1.2.1 The Ovaries and Fallopian Tubes

Ovaries are rounded sac-like bodies which are attached to the broad 

ligament, one at either side of the uterus however their position may be 

displaced during pregnancy. Ovarian tissues comprise of vessel-rich stroma, 

connective fibers and granulosa beneath a layer of squamous peritoneum 

and a cortical layer of graafian follicles which contain the ova (eggs) and 

follicular fluid. When the dominant follicle matures it nears the ovarian surface 

and ruptures to release the ovum through the outermost layer of columnar
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epithelium into the ovarian fimbria of the fallopian tube (oviduct). Passage of 

the ovum along the fallopian tube is facilitated by the inner mucosal layer of 

ciliated epithelial cells (Drake 2010).

1.2.2 The Uterine Cavity

In humans, the fully-developed uterus is a large pear-shaped organ which 

facilitates all stages of pregnancy from blastocyst implantation and a nine 

month gestational period of embryo-foetal development that ultimately ends 

with parturition. In the foetus, the uterus is located within the abdominal cavity 

and with the onset of puberty descends deeper into the pelvic region. The 

position of the uterus within the pelvic region is flexible due to its suspension 

by cardinal, uterosacral and broad ligaments. The uterine cavity comprises of 

thick muscular walls (tunica muscu/aris) surrounded by a layer of protective 

peritoneum called tunica serosa, a mucosal layer of ciliated and glandular 

epithelium (tunica mucosa), endometrium and myometrium. The ectocervix 

adjoins the cervix, the cylindrical narrowed region at the uterine base, to the 

vagina. Vaginal walls are comprised of outer fibrous, muscu/aris and inner 

protective mucosal layers which are essential to accommodate childbirth 

when both the cervix and vagina must dilate (Drake 2010).

3
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Figure 1-1 The organs of the female reproductive system in situ

Diagram of the organs of the female reproductive system in situ shows the position 

of the fallopian tubes, cervix, vagina, ovaries and endometrium in relation to the 

uterine cavity (A) http://www.artreproductivecentre.com/uterine-cervical.html. The 

highlighted schematic diagram (box) depicts oocyte development within the fallopian 

tube including the time of DNA replication at 24h post-fertilisation and blastocyst 

attachment into the thickened endometrial lining at day 6. Post-ovulation the 

ruptured follicle disintegrates to form the corpus luteum (B) 

http://www.victoriafertilitv.com/14p in-vitro fertilization.htm.

1.2.3 The Endometrium

The endometrium is the innermost lining of the uterus comprising largely of 

mesodermal-derived glandular and luminal epithelia supported by basal 

lamina and cell and blood vessel-rich stromal connective tissue (Arnold, 

Kaufman et al. 2001). The endometrial epithelium protects the opposing

muscular uterine walls (myometrium) from abrasion or self-adhesion. It is
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also the first point of contact for the fertilised blastocyst and provides an 

adhesive interface through the expression of numerous epithelial selectins 

and adhesion molecules (Horne, Lalani et al. 2005). The endometrium 

consists of two principal layers, the stratum functionate which is shed through 

menstruation and mainly comprises of columnar and glandular epithelium 

and the stratum basate from which the stratum functionate regenerates. It is 

generally accepted that during the proliferative phase, new functional 

epithelium emerges from the basal layer primed by increases in estrogen, 

vascular endothelial growth factor (VEGF) and extensive angiogenesis 

(Gargett and Rogers 2001). Stromal cells in the stratum basaie may also be 

responsible for generating paracrine signals to promote the growth and 

differentiation of the overlying epithelium (Arnold, Kaufman et al. 2001). In 

addition, the presence of small endothelial progenitor cell populations within 

this stratum basaie layer may also facilitate endometrial regeneration, 

vascularisation and new stroma (Gargett and Rogers 2001; Masuda, 

Matsuzaki et al. 2010). In the secretory phase, the endometrium undergoes 

progesterone-induced morphological changes characterised by 

decidualisation and glandular penetration of the stroma, endometrial 

thickening and increases in epithelial microvilli. Late secretory phase 

endometrium is characterised by the lack of epithelial microvilli. It is thought 

that the microvilli fuse in order to give rise to a membrane pinopod structure 

to which the blastocyst can attach and is indicative of the receptive window 

(Stavreus-Evers, Nikas et al. 2001). Consequently, successful implantation is 

dependent on adequate preparation of the endometrial epithelial interface for 

possible pregnancy. Central to this process is the cyclical proliferation,
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shedding and re-growth of the endometrial epithelium in response to 

synergistic pituitary and ovarian hormonal stimulation.

1.3 Ovarian and Menstrual Cycles

The menstrual cycle describes endometrial changes regulated by the 

hypothalamic-pituitary axis and can be described as discrete phases. The 

ovaries undergo the follicular and luteal phase, whereas there are three 

uterine phases; proliferative, secretory and menstrual orchestrated by the 

timed release of specific pituitary gonadotropins and ovarian steroids: follicle 

stimulating hormone (FSH), luteinising hormone (LH), estrogen and 

progesterone. The ovarian follicular phase (days 0-14) begins on the first day 

of the endometrial menstrual phase (day 0-5) when the ovary is stimulated to 

produce ovum-bearing follicles by the release of FSH from the pituitary gland. 

Follicle maturation releases the sex steroid estrogen as it relocates to the 

ovary surface (Strowitzki, Germeyer et al. 2006). Elevated estrogen levels, 

particularly 17(3 estradiol the most abundant circulating plasma estrogen, 

correlate with the onset of the uterine proliferative phase (day 5-14) where it 

exerts an agonistic effect on ERa and ER(3 signalling to induce endometrial 

epithelial cell proliferation (O'Brien 2006). Simultaneously, estrogen also has 

a pivotal physiological role in coordinating controlled proliferation of luminal 

epithelial cells in the breast. Specifically, cell differentiation to form terminal- 

end lobular milk-synthesising structures in the ducts is driven by 17(3 estradiol 

in preparation for lactation (Nilsson, Makela et al. 2001; Anderson 2002). 

Ovulation occurs midway through the cycle when estrogen levels peak and 

signal for the transient release of LH from the pituitary. This LH surge 

ruptures ovarian follicles to release the ovum sparking the onset of the 

ovarian luteal and endometrial secretory phases (day 14-28). During the
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follicular phase, ovules develop in the follicles until one matures to form the 

primary oocyte (ovum) which is released from the corpus luteum (ovulation) 

along with estrogen and progesterone, the iatter being in excess (Strowitzki, 

Germeyer et al. 2006). While sex steroids maintain the proliferation and 

thickening of the endometrial lining throughout the secretory phase, if 

fertilisation does not occur, the corpus luteum degrades and the levels of the 

sex steroids decrease causing shedding of the stratum functionate. 

Conversely, elevated progesterone and estrogens are disruptive of this 

systemic feedback loop regulating gonadal function and are exploited in the 

hormonal contraceptive which prevents FSH-induced follicle maturation and 

LH-induced ovulation through the down-regulation of gonadotropin-releasing 

hormone (GnR.

PITUITARY
GONADOTROPINS

ENDOMETRIUM

Figure 1-2 Diagram of the 28 day ovarian and menstrual cycles

Diagram shows main stages of ovulation (arrowed) coupled with the timed release of

pituitary hormones; LH and FSH and ovarian steroids E2 and PR. LH surge 

coincides with ovulation and the onset of the secretory menstrual phase.

7

\LH

O vu m  /  \
R e lea se  /  \

FSH O vu la tio n
, C o rp u s  

v  Luteum

/ A

OVARIAN

Y / /
Estrogen

HORMONES
P rogesterone ll it til

PHASE IN CYCLE 
DAY

M enstrual P ro liferative Secretory  
0 5 10 15 20 25



V-llCipiCl 1 ■UIll UUUlllUll

1.4 Female Infertility and Reproductive Disorders

Infertility is estimated to affect 1 in 6 couples in the United Kingdom (HFEA). 

Globally, 50-80 million are involuntarily childless equating to approximately 

10% of the global reproductive population, with a further 10-25% unable to 

have more than one child (WHO 1992; Van den Akker 2002). Consequences 

of childlessness and infertility are profound having several social, economic 

and psychological effects on both sexes. Most couples conceive within the 

first year of trying to get pregnant with the chances of success almost 95% 

after two years (Cooke 1981). Thus, infertility is defined as the inability to 

conceive after two consecutive years of unprotected intercourse. Common 

causes of infertility are extremely varied ranging from behavioural (anxiety, 

anorexia), endocrine (anovulation), sexual dysfunction (immunogenic), 

congenital (Klinefelter disease), STIs (Chylamdia/tubal disease) and cancer 

(prostate/ovarian) to name but a few (Edelmann 1998; Van den Akker 2002). 

Obesity presents an important risk factor for reduced fecundity and infertility 

in both sexes. In women, obesity is particularly prevalent amongst 

gynaecological maladies exhibiting abnormal metabolic profiles, such as 

Polycystic Ovary Syndrome (PCOS) and endometriosis. Exact mechanisms 

behind obesity-associated infertility remain elusive however current research 

has implicated dislipidemia-induced dysregulation of the hypothalamic- 

pituitary axis. Specifically, central obesity and subcutaneous fat is linked to 

hyperinsulinaemia which has been shown to decrease sex-hormone binding 

globulin (SHBG) levels, increase hyperandrogenism and excess 

steroidogenesis in ovarian granulosa cells and adipose tissue (Pasquali, 

Gambineri et al. 2006). Furthermore, follicle exposure to inappropriate levels 

of gonadotropins and hyperestrogenism may accelerate ovarian cellular
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differentiation and prevent follicle maturation for ovulation (Diamanti- 

Kandarakis and Bergiele 2001). Nevertheless, 30% of infertility cases have 

no identifiable cause attributable to either partner and are deemed to have 

‘unexplained infertility’ (UIF). In most incidences, female infertility is a 

secondary problem associated with a diagnosable pathology some of which 

are investigated in this project.

1.4.1 Polycystic Ovary Syndrome (PCOS)

Polycystic Ovary Syndrome, previously known as Stein-Leventhal syndrome 

was first described in 1935 and diagnosed based on rudimentary 

observations such as hirsutism, central obesity and amenorrhea (Stein 1935). 

Today, PCOS is the most common female reproductive endocrinopathy 

affecting 5-10% of women of reproductive age (20-45yrs). PCOS can be 

characterised by a broad spectrum of symptoms that can vary in severity 

including hyperandrogenism, oligomenorrhea, hyperinsulinaemia, sleep 

apnea, infertility, skin problems, alopecia and premenstrual syndrome-like 

symptoms (Harris 2000; Futterweit 2006). In fact, PCOS symptoms such as 

oligomenorrhea, hyperseborrhea and acne in pre-adolescents are often 

mistaken for the onset of puberty (Balen 2004). Since 2003, PCOS has been 

diagnosed based on the Rotterdam criteria which were later revised and 

published in Human Reproduction (Criteria 2004). The consensus was that 

for diagnosis, two of the three following criteria must be met; biochemical 

and/or clinical hyperandrogenism, oligo- or anovulation and presence of 

multiple ovarian cysts by gynaecologic ultrasound; and exclusion of etiologies 

with shared symptoms such as androgen presenting tumours and Cushing’s 

syndrome (Criteria 2004; Diamanti-Kandarakis 2006). The exact aetiology of 

PCOS is unknown however many studies point to underlying insulin
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resistance as the root cause (Tan, Hahn et al. 2005; Fica, Albu et al. 2008). 

PCOS arises when the ovaries are over-sensitized by excessive luteinizing 

hormone (LH) or from hyperinsulinaemia where free insulin in the blood 

stream stimulates the ovaries to overproduce androgens. Ovaries with 

several small pearl-like cysts are the classical feature of PCOS. Cysts form 

when matured egg follicles rupture upon non-release from the ovary as a 

consequence of excess hormones (Homburg 2009). Insulin resistance is a 

prominent characteristic of PCOS, with studies finding its prevalence to be 

30% and 75% in non-obese and obese cohorts respectively (Dunaif, Segal et 

al. 1989; Conway, Jacobs et al. 1990). Development of insulin resistance in 

PCOS is said to have a genetic component but is largely due to an unhealthy 

lifestyle (Diamanti-Kandarakis, Kandarakis et al. 2006). PCOS women are 

prone to hyperglycaemia and hyperinsulinaemia due to impaired glucose 

uptake mechanisms and reduced number of insulin receptor (IR) sites 

(Fornes, Ormazabal et al. 2010). Specifically, impairment or down-regulation 

of IRS-PI-3K-stimulated endocytic uptake of AGEs by macrophage 

scavenger receptor-1 (SR-A) in PCOS has been reported (Dunaif, Wu et al. 

2001; Diamanti-Kandarakis, Piperi et al. 2005). Hyperandrogenism also 

promotes an increase in estrogens which, if sustained in excess over a long 

time, can cause thickening of the endometrium (hyperplasia) and increase 

the risk of endometrial cancer. Hyperglyceamia in PCOS causes more 

glucose to be converted to glycogen by the liver and is stored as fat in 

adipose tissues. Dislipidemia in PCOS can lead to weight gain, exacerbation 

of insulin resistance and allow for increased estrogen production in the fat 

tissues. Specifically, increased levels of 17(3-hydroxysteriod dehydrogenase 

type 1 (17p HSD1) and sulfatase activity have been reported in PCO
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endometria when compared to fertile controls. These enzymes are involved 

in the pathways metabolizing androgens to E2 (Leon, Bacallao et al. 2008). 

Excess insulin and glucose in PCOS can lead to the development of diabetes 

mellitus type II (DMT2). In fact, 40% of obese women with PCOS develop 

pre-diabetes or DMT2 by the age of 26 yrs (Talbott, Zborowski et al. 2001).

1.4.2 Endometriosis
Endometriosis is a condition of unknown aetiology where endometrial-like 

tissue forms outside of the uterus. It is thought an auto-immune deficiency 

may not protect against natural retrograde bleeding through the fallopian 

tubes allowing endometrial tissue in the menstrual fluid to adhere to organs 

outside the uterine wall. It may also result from deficiencies in the signalling 

or function of scavenger cells to clear retrograde endometrial cells following 

menstruation (Garry 2004). Endometriosis can vary in severity. It is classed in 

stages according to the 1985 American Fertility Society criteria points system 

from stage I (minimal, 1-5) to stage IV (severe, >40) (Breitkopf 1993). 

Endometriotic adhesions are responsive to sex-steroid stimulation during the 

menstrual cycle and are sometimes shed in menarche. Moreover, estrogens 

are overproduced in endometriosis resulting in lesion inflammation and 

proliferation. Like PCOS patients, women with endometriosis are often 

infertile or have difficulty achieving pregnancy to full-term. This may be due to 

numerous factors such as ectopic pregnancy and miscarriage from blastocyst 

implantation on endometriotic lesions or endometriotic ovaries preventing 

ovulation.

1.4.3 Current Infertility Therapy
There are two main ‘infertility’ drugs that have been used with varying 

degrees of success for women with PCOS and UIF; Metformin and
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Clomiphene Citrate. The former was first developed to alleviate the metabolic 

aberrations of type II Diabetes and has been shown to ameliorate insulin 

resistance in PCO women (Futterweit 2006). It frequently promotes ovulation, 

weight loss and tissue sensitivity to insulin as well as slowing the release of 

glucose from glycogen stores in the liver. Specifically, Metformin is thought to 

suppress hepatic gluconeogenesis through the activation of adenosine 

monophosphate-activated protein kinase (AMPK) which inhibits production of 

lipogenic and gluconeogenic enzymes and stimulates glucose uptake by 

GLUT-4 transporters in skeletal muscle (Zhou, Myers et al. 2001; Diamanti- 

Kandarakis, Economou et al. 2010). Metformin is often used in conjunction 

with Clomiphene Citrate to aid ovulation and reduce hyperandrogenism 

(Futterweit 2006; Craggs-Hinton 2008). In cases of amenorrhea, progestogen 

is administered to induce an artificial menstrual cycle prior to Clomiphene 

Citrate treatment (Craggs-Hinton 2008). Clomiphene Citrate stimulates FSH 

gonadotropin release from the pituitary glands by sensitizing the estrogen 

receptor to bind circulating estrogens (Futterweit 2006). In fact, ovulation is 

usually restored in 80% of women administered Clomiphene Citrate and 

Metformin, however successful conception rates are only 40% after 6 months 

treatment and carry a risk of multiple pregnancies (Craggs-Hinton 2008). 

Treatment for endometriosis patients is further limited with only one approved 

drug available. Danazol is a synthetic male hormone that shrinks 

endometriotic lesions thus unblocking ovum and sperm passage to the uterus 

and improving fecundity. However over 90% of patients experience 

incapacitating side effects (Breitkopf 1993). Ultimately, there is a huge 

requirement for new infertility drugs or methods to ameliorate the 

reproductive and hormonal problems of PCOS and endometriosis.
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1.5 Potential Factors affecting Uterine Receptivity

Coincident with steroid-regulated morphological changes, several 

endometrial factors influence blastocyst apposition, attachment and invasion 

into the receptive endometrium. The initial stages of blastocyst-endometrial 

recognition are said to be facilitated by pinopode protrusions formed at the 

apical epithelial surface in response to increased serum progesterone and 

decreased glandular ERa and PR-B (Stavreus-Evers, Nikas et al. 2001). In 

addition, a plethora of cytokines, chemokines, integrins, mucins and 

cadherins have been implicated in the transformation of the endometrial 

surface to a receptive state. Specifically, potential roles in implantation for the 

leukaemia inhibitory factor (LIF), interleukins (IL) 11, 6 and 1(3, IGFBP-1, 

VEGF and transforming growth factor alpha (TGFa) and beta (TGFp) have 

been elucidated (Casslen, Sandberg et al. 1998; Dimitriadis, White et al. 

2005; Jones, Stoikos et al. 2006; Stoikos, Harrison et al. 2008). In particular 

VEGF in the stratum functionate and its receptors VEGFRI and II in the 

endothelium are markedly up-regulated during the receptive window and 

correlate with decidualisation and increased estrogen, vascular permeability 

and angiogenesis (Meduri, Bausero et al. 2000; Sugino, Kashida et al. 

2002). Increased endometrial VEGF is likely due to estrogen-induced 

recruitment of ERa to its promoter via Sp1 interaction (Koos, Kazi et al. 

2005). In addition, IL-11 is regulated by IL-1(3 and TGFp and shows maximal 

expression in decidualised stroma. It is also secreted by the trophoblast 

potentially to aid placentation. Interestingly, IL-11 is abnormally expressed in 

endometriosis (Popovici, Kao et al. 2000; Dimitriadis, Stoikos et al. 2006). 

Similarly, IL-6, also regulated by IL-1 p, is elevated during this putative 

implantation window and continues into menstruation. Like IL-11 and LIF, IL-
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6 requires gp130, a signal transduction molecule to exert its effects through 

receptor binding. Soluble gp130, an antagonist of gp130 is decreased mid- 

secretory phase in women with UIF and may lead to increased IL-6, 11, LIF 

and TNFa signalling (Cork, Tuckerman et al. 2002; Sherwin, Smith et al.

2002). Endometrial TNFa is negatively regulated by E2 and so its elevated 

expression in the receptive window coincides with falling estrogen in the 

secretory phase. During this time, TNFa, ERa and IL-1p may accelerate 

synthesis of the glycoprotein Mucin-1, the dysregulation of which is linked to 

implantation failure (Tabibzadeh, Satyaswaroop et al. 1999; Thathiah, 

Brayman et al. 2004). Furthermore, MUC1 has been shown to directly bind to 

p53, EGFR, ERa, NFicB-p65 and p-catenin in pathways that promote cancer 

cell growth by inhibition of apoptosis, up-regulation of cytokines and cell-cell 

adhesion in several cell models (Wei, Xu et al. 2005; Wei, Xu et al. 2006; 

Pochampalli, Bitler et al. 2007; Ahmad, Raina et al. 2009; Bitler, Goverdhan 

et al. 2010). Underlying endometrial inflammation could be attributed to 

repeat exposure to or over-expression of these factors and may be the root 

cause of miscarriage and elevated risk of endometrial cancer development in 

infertile women.

1.5.1 Endometrial Cancer
Most women who develop endometrial cancer present with various 

gynaecological abnormalities prior to its detection such as uterine bleeding 

post menopause, infertility, PCOS and endometrial hyperplasia which is now 

considered a cancerous prerequisite (Dobrzycka and Terlikowski 2010). 

Malignant endometrial tissue assumes either an endometrioid (type I), 

papillary serous or clear cell (type II) carcinoma and is graded according to 

the 2009 International Federation of Gynaecology and Obstetrics (FIGO)
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criteria (Bokhman 1983). Type I endometrioid carcinomas account for 70-

80% of cases and are characterised by the estrogen-dependant solid growth

of the uterine glands, p-catenin mutations and good survival prognosis 

(Bokhman 1983; Sherman 2000). In contrast, type II serous carcinomas are 

rarer, poorly differentiated, metastatic tumours presenting with micropapillae, 

p53 mutations and hormonal insensitivity (Bokhman 1983; Garg, Leitao et al. 

2010). In order to eliminate ambiguity in classification of morphologically 

indistinct carcinomas having endometrioid and serous qualities, studies have 

suggested that p16, p53, and nuclear receptor (NR) immunohistochemistry 

could be used in conjunction with histology (Alkushi, Kobel et al. 2010; 

Dobrzycka and Terlikowski 2010; Garg, Leitao et al. 2010; Prat 2010).

1.6 Advanced Glycation End products (AGE)

1.6.1 Formation and Detection of AGEs

Advanced Glycation End products (AGEs) are a heterogeneous group of 

reactive cross-linking molecules formed when circulating proteins, lipids and 

nucleic acids undergo a series of non-enzymatic glycation events known as 

the Malliard reaction. The Malliard reaction is so named after the French 

chemist Louis-Camille Malliard who, in 1912, discovered the first interactions 

between the reactive carbonyl group of reducing sugars and the amino group 

of free amino acids or proteins (Malliard 1912). The initial stage of the 

Malliard reaction begins with a condensation event unifying nitrogen in the 

amino group to a carbon within the carbonyl group to form imines; glycated 

protein intermediates termed Schiff bases (Malliard 1912). Schiff bases 

cyclise to form N-substituted glycosylamine intermediates; aldosylamines and 

ketosylamines, which are formed from the reaction between amino
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compounds and aldose (glucose) and ketose (fructose) sugars respectively. 

In the early stages of the Malliard reaction, the formation of Schiff bases is 

reversible in the presence of water (Isdale 1993); however, these 

intermediates can undergo Amadori re-arrangement or isomerisation to form 

more stable cross-linked structures called Amadori products (Hodge 1953; 

Hodge 1967; Namiki 1988). Upon further glycation and modifications such as 

dehydration and oxidation-reduction reactions, Amadori product 

intermediates become fluorescent, highly reactive and irreversibly glycated 

AGEs (Ledl 1999; Peppa 2003). The chemical nature of the reducing sugar 

and amino compound affects the rate of reaction and consequently formation 

of AGEs. Xylose, galactose and fructose are considered ten times more 

reactive than glucose, and proteins containing lysine residues, which have 

two amino groups are more likely to interact with reducing sugar carbonyl 

groups (Ashoor 1984). Many other factors affect the rate of AGE formation 

including the concentration of glucose, presence of glucose degradation 

products (GDP) and pH (Wieslander 2001). It has been suggested that acidic 

conditions (low pH) slow AGE formation due to the donation of positive 

charged protons from acids to oxygen molecules within the carbonyl group, 

thus making the sugar less reactive. One of the most studied AGE products 

NE-(carboxymethyl) lysine, or CML, has been shown to be formed at an 

accelerated rate in alkaline conditions from oxidative cleavage of Amadori 

products at the second or third carbon in the carbohydrate chain (Nagai, 

Ikeda et al. 1998). In vivo, AGEs can be loosely categorized into two types; 

those formed from protein or fatty acid oxidation such as CML and 

pentosidine, and those formed by oxidative stress precursors known as 

carbonyl compound (RCO) such as imidazolone and pyrraline (Miyata 1999;
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Miyata 2000; Bohlender 2005). AGEs form at a slow constant rate throughout 

the normal aging process beginning at embryonic development and 

increasing in environments of high glucose concentration and oxidative stress 

(Peppa 2003). Nagai, et al (1998) also showed that hydrogen peroxide, a 

free-radical indicative of oxidative stress, and iron compounds found at high 

concentration in the blood plasma, could give rise to CML production from 

glycated human serum albumin (Kato 1981). AGEs can be detected due to 

their chemical fluorescence, a property which is proportional to the stage of 

advanced glycation and provides an index for AGE quantification. Early 

studies have revealed the glycating potential of reducing sugars is dependent 

on the relative abundance of its cyclic versus the acyclic form which 

participates in glycation (Krajcovicova-Kudlackova, Sebekova et al. 2002). 

Consistent with this premise, fructation of human serum albumin (HSA) 

increases AGE-HSA fluorescence to a greater extent than glycation (Jakus, 

Carsky et al. 1998). Study of the glycation process and AGE quantification in 

clinical diagnostics has been limited due to lack of efficient analytical 

procedures (Makita 1992; Yim 2001). However, High Performance Liquid 

Chromatography and Mass spectrometry have recently been employed to 

identify glycated peptide precursors for CML, imidazolone and pyrraline in 

plasma serum (Ahmad 2008). Elevated AGE has also been detected using 

antibodies raised against AGE-specific epitopes in aging, diabetic, renal 

failure and polycystic ovary tissues (Dyer 1993).
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Figure 1-3 The chemical structures of some common Advanced Glycation End 
products.

Simplified representation of the chemical structures of two types of AGE: those 

made from lipid oxidation (CML and Pentosidine) and those formed from reactive 

carbonyl compounds (Imidazolone and Pyrraline) (B). The Malliard Reaction for the 

formation of AGEs is shown above (A).

1.6.2 AGEs and Nutrition
The Malliard reaction is an example of non-enzymatic glycation or browning 

that is accelerated when sugars are heated with lipid or proteins during 

typical food preparation and cooking methods (Uribarri, Woodruff et al. 2010). 

Studies have highlighted the contribution of highly reactive synthetic AGEs to 

our dietary and subsequent corporal intake of exogenously-formed AGEs to 

be proportional to AGE-related damage and oxidative stress (Thornalley 

1990; Koschinsky, He et al. 1997; Takeuchi, Makita et al. 2000; Peppa 2003). 

Indeed, vegetarianism increases levels of CML, an AGE implicated in the
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pathophysiology of diabetic complications and oxidative stress, due to high 

dietary intake of the reducing sugar fructose (Krajcovicova-Kudlackova, 

Sebekova et al. 2002). The level of natural AGE formation throughout the 

aging process (Peppa 2003) has been shown to be genetically pre­

determined and to be independent of genes that influence fasting glucose 

levels, (Leslie 2003) thus indicating pre-disposition to development of 

disorders such as obesity and Diabetes Mellitus Type 2 (DMT2). However, 

conditions of transient high glucose accelerate AGE formation beyond the 

pre-determined level. This is especially significant for women with Polycystic 

Ovary Syndrome (PCOS) who have increased susceptibility to DMT2 as a 

result of increased AGE levels (El-Osta 2008).

1.6.3 Removal of AGEs: Hypothesis for the AGE Receptors

AGEs are biologically characterised by their binding to AGE-specific 

receptors such as the complex of OST-48 (AGE-R1), 80K-H (AGE-R2) and 

Galectin-3 (AGE-R3) (Pricci, Leto et al. 2000), macrophage scavenger 

receptors (MSRs) SR-A I and II, SR-B I and II, CD36 (Ohgami, Nagai et al. 

2001; Ohgami 2002; llchmann, Burgdorf et al. 2010) and the Receptor for 

Advanced Glycation End products RAGE/AGER (Bierhaus 2005; Ramasamy, 

Yan et al. 2007). Despite the identification of many AGE-binding receptors, 

most do not partake in AGE-mediated signal transduction and exist as AGE 

elimination mechanisms (Thornalley 1998; Ohgami, Nagai et al. 2001; 

Rocken, Kientsch-Engel et al. 2003). Under normal physiological conditions, 

corporal AGEs are removed through kidney glomerular ultra-filtration and 

excreted in urea (Agalou, Ahmed et al. 2005). Circulating plasma AGEs are 

also locally removed by rapid cellular endocytic uptake. In animal models, 

MSRs are crucial to this process in hepatic Kupffer and endothelial cells,
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renal epithelial tubular cells and macrophages (Smedsrod, Melkko et al. 

1997; Sano 1998). Further investigation revealed that AGE endocytic uptake 

is not regulated by CD36 but is likely mediated by MSRs; class A SR-A II and 

class B SR-B I and II (Matsumoto, Sano et al. 2000; Hansen, Arteta et al. 

2002; Nakajou, Horiuchi et al. 2005). Galectin-3 is unable to anchor cell 

membranes so it associates with OST-48 and 80K-H in an AGE-receptor 

complex, the function of which is attributed to Galectin-3 following its in vivo 

knock-down in mice (Vlassara, Li et al. 1995; Pugliese, Pricci et al. 2001; 

lacobini, Amadio et al. 2003). Galectin-3, OST-48 and class A MSR 

expression inversely correlates with increased RAGE and 80K-H in diabetic 

complications. Furthermore, non-complexed 80K-H and RAGE receptors can 

mediate AGE-associated signal transduction (Pugliese, Pricci et al. 2001; 

Wendt 2003). In contrast, Galectin-3 and OST-48 may act as decoy receptors 

to confer cellular protection against the effects of AGEs (Vlassara, Li et al.

1995). Interestingly, CD36 expression is positively regulated by RAGE and 

may serve as an AGE-binding competitive inhibitor to impede AGE-mediated 

RAGE auto-regulation (Xanthis, Hatzitolios et al. 2009).

1.7 Receptor for Advanced Glycation End products (RAGE/AGER)

1.7.1 RAGE Structure and Function

Human RAGE is a 404 amino acid (aa) peptide encoded by the AGER gene 

located in the class III locus of the major histocompatability complex (MHC) 

on chromosome 6p21.3 (Sugaya, Fukagawa et al. 1994). RAGE is a member 

of the immunoglobulin superfamily of molecules and shares the closest 

homology with neuronal cell adhesion molecule (NCAM-1) an epithelial cell 

surface selectin receptor (Neeper, Schmidt et al. 1992). RAGE is antibody­

like in structure comprising a signalling peptide (22aa), extracellular domain,
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hydrophobic transmembrane region (19aa) and 41 aa cytosolic tail (Raucci 

2008). The extracellular (EC) region comprises of two constant ‘C’ and one 

variable ‘V’ immunoglobulin domains. The ‘V’ domain contains two N- 

glycosylation sites to which ligands such as AGEs bind at the N-terminus 

(Srikrishna 2002; Yonekura, Yamamoto et al. 2003). In fact, RAGE is often 

described as a pattern recognition receptor (PRR) for its ability to be liganded 

by a diverse group of molecules (Xie, Reverdatto et al. 2008). This ‘V’ domain 

is fundamental to RAGE PRR function as it does not distinguish between 

amino acid sequences but rather interacts with ligands that share 

homologous 3-D structures (Pullerits, Brisslert et al. 2006). The C-terminal 

cytosolic tail of RAGE is highly charged and is required for intracellular 

signalling through activation of extracellular signal-regulated kinases (ERK) 

(Bucciarelli 2002; Hudson, Kalea et al. 2008). RAGE is naturally expressed at 

low levels in several tissues but its exact innate functionality is unknown. 

Originally considered an essential signalling mediator in neuronal cell 

differentiation, increased neuronal RAGE was observed during human and 

rodent embryonic development (Hori, Brett et al. 1995; Wang, Li et al. 2008). 

Later, RAGE was discovered to be constitutively expressed in lung, 

specifically in pulmonary alveolar tissues; the first point of contact to airborne 

pathogens (Kreiger 2001). Consequently, as is the case with other PRRs, 

RAGE may have a role in innate immunity to recognise heterogeneous 

foreign bodies such as bacteria. Indeed, the observation that RAGE protein 

increases at sites of inflammation and oxidative stress, has lead to the notion 

that truncated RAGE isoforms may have been an evolutionary mechanism to 

combat environmental exposure to antigens (Kreiger 2001).
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1.7.2 RAGE Protein Isoforms

Several carboxyl-terminal truncated forms of RAGE receptor have been 

identified demonstrating that RAGE undergoes alternative splicing events 

following transcription (Schlueter, Hauke et al. 2003; Hudson, Carter et al. 

2008). Proteolytic cleavage of the full-length transcript encoded membrane- 

tethered form is through the action of membrane sheddases belonging to the 

ADAM family of metalloproteases (Raucci 2008; Zhang, Bukulin et al. 2008). 

Specifically, sheddase ADAM 10 cleaves transmembrane RAGE to produce 

four stable isoforms recognised in vivo at the protein level: two soluble 

sRAGEs, N-truncated RAGE and the full-length RAGE (Yonekura, 

Yamamoto et al. 2003; Ding and Keller 2005; Hudson, Carter et al. 2008). A 

fifth isoform termed endogenous secretory esRAGE is thought to arise from 

alternative splicing of exon 9 (Harashima, Yamamoto et al. 2006). The 

esRAGE isoform comprises the signal peptide (SP) and extracellular region 

(EC), lacks the transmembrane (TM) and has a unique 16aa C-terminus 

instead of the usual 41 aa intracellular region as a result of splicing at the 

mRNA level (IC). N-truncated RAGE is devoid of the SP and ‘V’ 

immunoglobulin domain of the EC region. It does however have the ‘C’ 

domains of the EC, TM and IC (Yonekura, Yamamoto et al. 2003; Raucci 

2008). Proteolytic cleavage for esRAGE by ADAM 10 leaves the IC domain 

intact. However, identification of free C-terminal fragment termed the RAGE 

intracellular domain (RICD) in the cytoplasm is thought to arise from calcium- 

dependent y-secretase degradation of the IC domain (Galichet, Weibel et al. 

2008). Over 20 human RAGE spliced variants have been described but do 

not appear to translate to protein perhaps due to a lack of sequence on exon 

1 which is important for stability. Consequently, it is thought that these
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transcripts might be made unstable by nonsense-mediated decay or perhaps 

are immediately targeted for rapid protein degradation post translation 

(Sparvero, Asafu-Adjei et al. 2009). Numerous studies have identified 

esRAGE and sRAGE soluble truncated isoforms as therapeutic targets for 

ameliorating diabetic complications through competitive inhibition and 

blockage of RAGE signalling in several tissues (Zhang, Tasaka et al. 2008). 

The levels of these protective soluble RAGE forms are significantly reduced 

in diabetics and inversely correlate with increases in circulating AGEs 

(Katakami 2005; Basta, Sironi et al. 2006; Grossin 2008).
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Figure 1-4 Schematic diagrams representing the structural domains of 
several characterised RAGE isoforms.

Indicated are the respective amino acid lengths of each protein domain, the 

positions of cleavage and glycosylation sites important for AGE binding. EC; 

extracellular domain, TM; transmembrane region, IC; intracellular domain (C- 

terminus), SP; signal peptide (N-terminus).
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1.7.3 RAGE Ligands and Signalling

In essence, RAGE ligands are heterogeneous in structure and origin. 

However, these molecules can occupy the receptor owing to common 

binding-site homology possibly (3-sheet fibrils (Yan, Chen et al. 1996; 

Huttunen 1999). Indeed, glycation induces restructuring of amino acids into 

p-sheet conformation and p-amyloid fibrils during AGE formation. These 

fibrils can refold to make a ‘cross-beta’ quarternary structure that RAGE may 

recognise (Bouma, Kroon-Batenburg et al. 2003). RAGE was first 

characterised as the receptor for AGEs in 1992 (Schmidt, Vianna et al. 1992). 

Identification of Amphoterin/High-Mobility Group Box-1 (HMGB-1) as a high 

affinity RAGE ligand lead to debate over authenticity of AGEs as the natural 

ligands. Initially, the consensus was AGEs displayed ‘accidental occupation’ 

of the receptor due to a high degree of binding site similarity to the HMGB-1 

cytokine (Hori, Brett et al. 1995). However, RAGE was characterised as a 

pattern recognition receptor when it could ligate structurally diverse p-amyloid 

peptides, lipopolysaccharide (LPS), integrin Mac-1, and S100 calgranulins 

(Hori, Brett et al. 1995; Hofmann, Drury et al. 1999; Chavakis, Bierhaus et al. 

2003; Figarola, Shanmugam et al. 2007). RAGE mediates, at least in part, 

the same signalling pathway in vivo as the Toll-Like Receptors (TLRs) 

specifically TLR2, 4 and 9 which also bind HMGB-1 and LPS (Tian, Avalos et 

al. 2007; Qin, Dai et al. 2009). In fact, convergence and augmentation of 

combined RAGE and TLR-mediated signalling is witnessed with HMGB-1 

(van Beijnum, Buurman et al. 2008). In line with a possible evolutionary role 

for RAGE in innate immunity, RAGE has been implicated in perpetuating 

inflammatory cascades in response to ligation by S100b, a member of the 

S100 calgranulin family. Recently, hyperglycaemia-induced ROS production
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has been shown to increase expression of AGEs, RAGE, HMGB-1 and S100 

calgranulins S100A8 and S100A12 in human tissues (Yao and Brownlee 

2010).

1.7.4 RAGE Gene and Polymorphisms

The RAGE proto-oncogene is located on chromosome 6 in the class III region 

of the MHC, a gene-rich region containing many overlapping genes that are 

susceptible to splicing and polymorphisms. In particular, the RAGE glycine 82 

serine polymorphism correlates with increased sRAGE in inflammation and 

breast cancer (Jang, Kim et al. 2007; Tesarova, Kalousova et al. 2007). Other 

polymorphisms are also associated with disease progression in gastric 

cancer, diabetes mellitus type II, diabetic retinopathy and cardiovascular 

problems in rheumatoid arthritis (RA)(Carroll, Frazer et al. 2007; Gao, Xu et 

al. 2007; Gu, Yang et al. 2008; Zhang, Chen et al. 2009).

1.8 AGE-RAGE axis in the pathogenesis of disease

AGE-RAGE signalling is known to induce numerous biological responses 

implicated in the development of disease, in particular chronic inflammation 

and metabolic dysfunction. The ability of AGEs to modulate the expression of 

their cognate transmembrane receptor is well characterized in a variety of 

tissues, notably in skin, kidney and lung endothelium where RAGE is 

constitutively expressed (Bierhaus, lllmer et al. 1997; Basta, Lazzerini et al. 

2002; Ramasamy, Yan et al. 2005; Sun, Liang et al. 2009). Differential 

expression of RAGE transcript has also been reported in fibroblast, 

myometrium and breast tissues to name but a few (Schlueter, Hauke et al.

2003).
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1.8.1 AGE and RAGE in Neurological Disorders

In addition to AGEs, RAGE has been identified as a receptor for amyloid Ap 

peptides thus evidence is accruing for a potential role for RAGE in the 

pathogenesis of Alzheimer’s disease (AD). RAGE positively correlates with 

Ap protein and AGE accumulation in cerebral blood vessels, neurons and 

astrocytes, and is elevated in AD hippocampus and inferior frontal cortex in 

comparison to normal brain (Lue, Walker et al. 2009). Specifically, it is 

thought to increase trafficking of Ap across the blood-brain-barrier resulting in 

p-amyloid oligomerization, neuronal plaque formation, synapse dysfunction 

and cell death (Chen, Walker et al. 2007; Origlia, Righi et al. 2008; Takeuchi 

and Yamagishi 2008). Plasma AGEs CML and pentosidine show a positive 

association with decreased cognitive impairment and may synergistically up- 

regulate neuronal p38 MAPK and NFkB with Ap proteins via RAGE-induced 

ERK 1/2 MAPK activation (Southern, Williams et al. 2007; Origlia, Righi et al. 

2008). Moreover, antibodies against the RAGE V and Ci domain prevent 

Ap-induced toxicity and ERK activation and apoptosis respectively 

suggesting that RAGE isoforms may differentially contribute to AD pathology 

(Sturchler, Galichet et al. 2008). In fact, administration of soluble RAGE 

appears to have a neuroprotective role acting as a decoy receptor for 

AGE/Ap-RAGE mediated p-amyloidosis and is found at reduced levels in 

Alzheimer’s disease (Emanuele, D'Angelo et al. 2005).

1.8.2 AGE-RAGE and Cardiovascular Disease

Cardiovascular disease (CVD) accounts for 50% of chronic kidney disease 

mortalities, with 75% of these cases resulting from coronary artery disease 

(Koyama and Nishizawa 2010). In oxidative stress or sites of localized
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inflammation, the AGE-RAGE axis is up-regulated and increased plasma 

AGEs CML and pentosidine may contribute to cardiovascular complications 

(Yan, Ramasamy et al. 2009). AGE accumulation in vasculature may induce 

arterial stiffness and expansion of the extracellular matrix by extensive cross- 

linking with integral collagen and elastin fibres (Koyama and Nishizawa 

2010). Furthermore, arteriole wall atherosclerotic plaque formation is a 

prominent feature of diabetic vasculature where AGEs and (3-amyloid 

proteins accumulate thus increasing blood pressure and risk of myocardial 

infarction (Kilhovd, Juutilainen et al. 2005; Peppa and Raptis 2008; Koyama 

and Nishizawa 2010; Nin, Jorsal etal. 2011).

1.8.3 AGE-RAGE and Diabetes Mellitus Type II

Diabetes mellitus (DM) is a chronic disease principally characterised by 

persistent hyperglycaemia and insulin resistance. Its incidence is fast 

approaching worldwide epidemic with 220 million diabetics at the time of 

writing, and is expected to reach over 336 million by 2030 (WHO). In the UK, 

the number of diabetics is 4.3% of the overall population (Diabetes UK). It is 

diagnosed based on specific parameters: fasting and non-fasting plasma 

glucose levels and glycated haemoglobin AGE-HbAiC (WHO). Early onset 

DMT1 arises from insulin production deficiency in pancreatic p-cells in the 

islets of Langerhans or loss of (3-cells by idiopathic T-cell action. Polyuria, 

polydipsia, polyphagia and rapid eyesight deterioration are symptomatic of 

diabetes. Multiple studies have reported AGE-related macular degeneration 

and increased vascular permeability in diabetic retinal endothelial cells 

(Ishibashi 1998; Barile and Schmidt 2007; Sugiyama, Okuno et al. 2007; 

Glenn and Stitt 2009; Sheikpranbabu, Kalishwaralal et al. 2009). Late onset
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DMT2 results from reduced insulin secretion and desensitisation and 

impairment of the insulin receptor (IR) to mediate cellular glucose uptake. 

Insulin resistance has been attributed to AGEs, acromegaly and 

hyperandrogenism-mediated dysfunction in insulin signalling pathways. AGE- 

RAGE signalling has been implicated in the development of diabetic 

nephropathy through the promotion of p38 phosphorylation, ERK 1/2 

activation and production of growth factors and cytokines TNFa, TGF1p and 

IL-1 p in the kidney (Adhikary 2004). Cytokine accumulation in diabetic 

glomeruli, serum and macrophage, parenchymal, fibroblast and endothelial 

cells has been linked to AGE-induced activation of the MAPK pathway in a 

multitude of studies (Daoud 2001; Hsu 2001; Yeh 2001; Adhikary 2004). 

Indeed, elevated p38 expression has been observed in diabetic human and 

murine kidney and correlated not only with renal hypofunction and fibrosis but 

also levels of glycated haemoglobin HbAic, a common serum AGE (Ulrich 

2001; Adhikary 2004). Studies in endothelial cells (HUVECs) have 

demonstrated AGE-human serum albumin (AGE-HSA) up-regulation of pro- 

inflammatory cytokines IL-6 and 8 specifically through activation of p38, ERK 

1/2, c-Jun protein kinases and NFkB (Liu, Zhao et al. 2009). Inhibition 

showed a requirement for involvement of all these pathways to activate 

NFkB target genes, however marked abrogation of cytokine transcripts were 

seen with blockage of phosphorylated p38 and NFkB suggesting that these 

are key players in mediating AGE-RAGE signalling (Liu, Zhao et al. 2009).
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Table 1. Levels of Advanced Glycation End-products (AGE) and their receptor RAGE in 
normal and PCOS women

Control Group PCOS Group 
(N=22) (N=29)

P Value 
(Means ± SE)

Serum AGE (U/m l) 511 ±016 9-81 ±016 <00001***
RAGE Expression (% +ve) 7-97 ± 2 -6 1  30 -91 ± 1 0 1 1  < 0 -0 2 *

Table 2. Levels of Advanced Glycation End-products (AGE) and oxidation products (AOPP) in 
healthy(HS) and diabetes mellitus (DM) subjects

DiabetesMellitusType 1 DiabetesMellitusType II 
(N=18) (N=34)

Healthy Subjects 
(N=24)

AGEs (AU) 3.56±0.74xl05** 3.06±0.56x10s
3 .1 5 ± 0 .6 8 x l0 5 3 .7 8 ± 0 .6 8 x l0 5* * * #

AGEs (AU/g) 4.77±1.12xl03* 4.08±0.71x10s
A.^o.sexio3 5 .1 1 ± 1 .2 5 x l0 3* * * #

AOPP(pmol/l) 136.7±69.3*** 79.80±23.72
9 7 .5 ± 3 0 .9 * 1 5 7 .5 ± 7 5 .2 * * *#

M eans ± SD * * *  p <0 .001 , * *  p <0 .005 , *  p<0 .05  vs. HS. # p <0 .005  vs. D M  Type 1

Figure 1-5 Levels of serum AGEs in PCOS women and in diabetes mellitus 
compared to normal healthy subjects

Table 1 Fig. 1-5 (reproduced from Diamanti-Kandarakis, E et al 2005) shows that 
serum AGE and monocyte RAGE expression levels in PCOS women are higher than 
in normal women. Table 2 Fig. 1-5 (adapted from Kalousova, M et al 2002 Physiol. 
Res. 51:597-604) shows serum AGE levels are greater in diabetes mellitus when 
compared to normoglycaemic subjects and are highest in type II diabetes.

1.8.4 AGE-RAGE and Diabetic Renal Dysfunction

While insulin-related dysfunction in diabetes can be monitored, it cannot be 

cured. Long-term complications arising from the metabolic imbalance 

particularly exacerbate vascular dysfunction. Removal of endogenously 

formed AGEs through the filtration across basement membranes of kidney 

glomeruli is inefficient in diabetics. In the hyperglycaemic context, kidney is a 

primary target tissue for AGE accumulation (Wendt 2003), the most prevalent 

form being l\T(carboxymethyl)lysine (CML) which is found at elevated levels 

in human renal micro vessels, mesangial matrix and glomerular basement 

membranes (Horie 1997; Schleicher 1997). Studies in streptozotocin-induced 

diabetic murine mesangial and glomerular cells exhibited increased vascular 

permeability to albumin, hyperglycaemia, increased expression of vascular
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endothelial growth factor (VEGF) and activation of NFkB (Kumar 2001; 

Sheetz 2002). RAGE is highly expressed in podocytes (glomerular 

epithelium) and it has been strongly suggested that the AGE-RAGE axis is 

responsible for albuminuria, mesangial expansion, glomerular sclerosis and 

renal dysfunction. Not surprisingly, diabetes is the lead cause of end-stage 

renal failure (Ritz 1999; Wendt 2003; Wendt 2003).

ADVANCED GLYCATION END PRODUCTS

Renal MSRs RAGE
Clearance Galactiu-5 Activation ACE Cross-linked 

Tissues

MAP Kinase 
p3S

Cdc42NAD(P)H
OxidaseeNOS activation 

NO inactivation
MAP Kinase

A NiidearlVaiiscriprtoii Factors 
I e.g.NFrB

f Transcription 
I-CAM, V-CAM, VEGF, 11̂6, NFkB, RAGE & 

TNFa

1
Functional and Structural manifestations of 

Diabetic Vascular complications

Figure 1-6 Involvement of the AGE-RAGE axis in the pathogenesis of diabetic 
vascular endothelial complications

Diagram adapted from Goh and Cooper (2008) J Clin Endocrinol Metab 93 (4): 

1143-52. Flow diagram shows how AGE products are linked to the development of 

Diabetes and the prion diseases through the activation of ROS, MAP kinases, 

inflammatory cytokines and NFkB.
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1.9 RAGE signalling in Inflammation and Cancer

RAGE mediates signal transduction for a broad repertoire of ligands 

promoting up-regulation of several pro-inflammatory cytokines, MAPKs and 

the oncogenic transcription factor NFkB in several cellular contexts. Evidence 

has accrued implicating RAGE in fuelling the initial stages of a pre-cancerous 

inflammatory state despite the fact that its immediate targets remain elusive 

(Riehl, Nemeth et al. 2009). To date, only two cytoplasmic binding partners 

have been shown to directly associate with the RAGE c-terminus; ERK, a 

member of the MAPK signalling pathway and Diaphanous-1 a RhoA effector, 

which stimulate release of Cdc42, Rac1, Src and TIF2 (Ishihara, Tsutsumi et 

al. 2003; Hudson, Kalea et al. 2008). RAGE may promote tumourigenesis 

through several means: 1) RAGE-mediated perpetuation of TNFa, IL-6, IL-1, 

TGFp, EGF and extracellular ligand secretion, 2) RAGE-mediated up- 

regulation and de novo synthesis of NFkB-p65 and 3) recruitment of myeloid 

cells, leukocytes and lymphocytes to the site of inflammation (Riehl, Nemeth 

et al. 2009). Indeed, RAGE has been characterized in several malignancies 

namely breast, ovary, prostate, melanoma, lung, colon and pancreatic 

cancers and solid tumours over-expressing s100 calgranulins, HMGB1 and 

AGEs (Gebhardt, Nemeth et al. 2006; Ellerman, Brown et al. 2007; Logsdon, 

Fuentes et al. 2007; Abe and Yamagishi 2008). In the inflammatory milieu, 

RAGE competes with cell surface TLRs for mutual extracellular stimuli to 

synergistically regulate common MAPK signalling cascades that promote 

NFkB and Ap1 activation (van Beijnum, Buurman et al. 2008; Rojas, 

Figueroa et al. 2010) as shown in Fig. 1.9. Furthermore, the presence of 

NFkB-p65 sites on RAGE may facilitate a feed-forward loop whereby the 

expression of RAGE and NFkB target genes can be sustained (see Ch 4).
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NCBI SEQUENCE f o r  RAGE p ro m o ter :  1604 bp
1604 tacttacctc atacgcagct catcttaaac caatagaatc gctcggtgga cqaqaqtqtc
1544 tgactcagat atctacctcg gaqqqagttt c tq c tac ttt agggaattat tgactgggct
1484 ttggggttga a c t t t t t t t t ttttaaagaa agaaaaagaa accctgggat cca tc tg ttt
1424 t t t t t g t tg t tg t tg ttg tt t t tg ttg ttg gtggtggtgg tggtggtggt g g ttcttaat
1364 t t t ta a t t ta gtttggggaa gtagcttgtt t t t t t t t t t a taaatatg tt g a tttc ttg t
1304 c t t t t t t t t t ta tttc tta c tttccca ta t taggggtgat agccaaaggg gttctggtaa
1244 gagaaagggg gacaaacaga actggtaaag aggcccccct ggctccaggc ctqtccatca
1184 ggaagtaaat tttacagggc accaagcttt gccccctaaa atcccttagg tg ttc t t tg t
1124 tcatgcaggc aggtttctgc cgcatttgat gtggaggcag tgaagggctt gccctgctgg
1064 cctctcatcc cccttcttcc cacaaccctt gggcagggct ggactcagta attttgagga
1004 aattgaagat gccatcttcc cctgtgagtg aca tg tc ttt a a ttt t t ta a aaaactacta

944 tttg aaaa tt ggagggggaa gaatgggaag ggagttattg ccaaatatgt taaatatggg
884 ttggggtgct tg ta ta tg ta tcttcctcaa tttccccata aatgaggtat c tttt tg tc a
824 caccaaaatc aaggggtagg gagagggagg aggttgcaaa aagccagatg tgggggaaaa
764 gtaacatcaa cactgtccca tcctcagccc tgaactagct accatctgat cccctcagac
704 attctcagga ttttacaaga ctgtcagaqt qqqqaacccc tcccattaaa gatccgggca
644 ggactgggga caggttggaa gtgtgatggg tgggggggtg ggaggcatgg gccgggggca
584 gttc tc tcc t cacttgtaaa cttg tgtagt ttcacagaaa aaaaacaaaa tgcagtttta
524 aataaagaaa t t t c t t t t t t ccctgggttt agttgagaat ttt tt tc a a a aaacatqaqa
464 aaccccagaa aaaaaatgat tttc tttc a c gaagttccaa acaggtttct ctcctgttcc
404 ccagccttgc cttcatgatg caggcccaat tgcacccttg cagacaacag tctggcctga
344 accctattga tgcaactttg cgcaatcaag atggggctcc agtgggtcac caggcagccc
284 tgatggactg atggaataaa taggatcggg ggctctgagg gaatgagacc ctagagggta
224 cactccccat cccccaggga aqtqactqta cccaqaqqct qqtaqtaccc aqqggtgggg
164 tga taa tta t ttc tc tag ta cctgaaggac tcttgtccca aaggcatgaa ttcctagcat
104 tccctgtgac aagacgactg aaagatgggg gctggagaga gggtgcaggc cccacctaqq
44 gcggaggcca cagcagggag aggggcagac agagccagga ccct
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Figure 1-7 DNA sequence and schematic representation of the human RAGE 
promoter

Characterisation of the RAGE promoter has revealed the presence of multiple 
transcription factor binding sites for Nuclear Factor Kappa B (NFkB), Activated 
Protein-1 (Ap1), Specificity protein-1 (Sp1) and ETS-1 (Protein C-ets-1). The sites 
are colour-coded according to which transcriptional factor they bind. The exact 
positions of the sites are shown within the DNA promoter sequence to which the 
genomic primers were designed for qRT-PCR after ChlP. The NFkB site at - 456/ - 
464 on the RAGE promoter was thought to be functionally inactive and does not bind 
p65 in endometrial epithelial Ishikawa or Heraklio cells.
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1.10 Role of RAGE in Polycystic Ovary Syndrome

Soluble RAGE correlates with increased AGEs in the serum of PCOS women 

(Diamanti-Kandarakis, Piperi et al. 2005). The expression of the full-length 

membrane-tethered receptor has also been shown by IHC to be elevated in 

PCO ovarian granulosa and theca cells, and to co-localise with accumulated 

AGEs and NFkB (Diamanti-Kandarakis, Piperi et al. 2007). The 

aforementioned study showed NFkB-p65 expression was greater in PCO 

granulosa cells (Fig.1.8B) when compared to normal ovaries (Fig.1.8A) 

whereas no difference in p50 expression was observed. In poly-cystic 

ovaries, NFkB-p65 expression was primarily localised to the nucleus (Fig. 

1.8C). It was therefore hypothesised that AGE-RAGE signalling could lead to 

the activation of p65 in PCO tissue and perhaps could be a mechanism 

involved in RAGE signalling in the endometrium (Diamanti-Kandarakis, Piperi 

et al. 2007).

Localisation o f  p65 in Normal (A) and PCO {B) Ovaries. Nuclear localisation (C) 

Diamanf‘-Kandarakis E. et a' 2007Histochem Cell B ;o l. (6):58U9

Figure 1-8 NFkB expression in polycystic (PCO) and normal ovaries

Immunohistochemistry shows that there is greater NFkB expression in the ovarian 

granulosa cells of PCO patients (B) than in normal ovaries (A). Strong staining for 

NFkB p65 was observed in the nucleus of PCO granulosa cells (arrowed, C).
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1.10.1 Possible implications of the AGE-RAGE signalling pathway in the 
endometrium

Diabetic pregnancies are often at risk of hypertension-related complications 

in which the AGE-RAGE signalling axis has been implicated. Serum sRAGE 

levels fluctuate throughout physiological pregnancy, peaking in the second 

trimester in healthy women. Conversely, plasma sRAGE is significantly 

decreased in same stage pre-eclampsic pregnancy, women who underwent 

pre-term labour and in diabetics (Germanova, Koucky et al. 2009; Pertynska- 

Marczewska, Glowacka et al. 2009). In addition, plasma AGEs (HbAiC), 

TNFa and IL-6 were elevated and sRAGE reduced during the diabetic third 

trimester with respect to third trimester euglycemic controls (Pertynska- 

Marczewska, Glowacka et al. 2009). AGEs, RAGE, ROS and NO-derivatives 

were also significantly elevated in full-term pre-eclampsic placenta (Chekir, 

Nakatsuka et al. 2006). Human trophoblasts isolated from aborted first 

trimester chorionic villi expressing RAGE, also exhibited increased MIP1a 

and MIPip chemokine secretion, apoptosis and significantly decreased hCG 

production in response to AGEs (Konishi, Nakatsuka et al. 2004). Thus, AGE- 

RAGE signalling may inhibit trophoblastic invasion and/or placentation by 

altering the uterine immunological profile, increasing oxidative stress and 

perhaps disrupting the trophoblast hCG feedback signals for continued 

maintenance of the endometrium by progesterone.

1.11 Nuclear Factor Kappa B (NFkB) Pathway

NFkB is a eukaryotic transcription factor that is implicated in the 

pathogenesis of a multitude of diseases through the regulation of oncogene 

transcription. It therefore plays a prominent role in apoptotic pathways and 

the progression of cancer as well as the perpetuation of the inflammatory
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response through activation of interleukins IL-ip, IL-2, 4, 6, 8, 10 and 12 and 

cytokine TNFa (Li, Schwabe et al. 2005; Tian, Nowak et al. 2005; Brasier 

2006; Fitzgerald 2007; Liu, Zhao et al. 2009). Not surprisingly, NFkB 

signalling is vast, complex and exists in most cell types. NFkB exists in a 

homodimer or heterodimer of Rel/ NFkB proteins of which five have been 

identified; p65 (also known as Rel-A), Rel-B, p50 (also known as NFkB1), 

p52 and c-Rel (Nabel 1993). Interaction of NFkB with kB DNA binding motifs 

on target genes requires dimerization of these subunits, the combination of 

which may affect binding affinity with other transcription factors (Ch. 5 section 

5.8). It is generally accepted that of these five proteins, only p65, Rel-B and 

c-Rel participate in gene transcription for they possess c-terminal 

transactivation domains. However, studies have also shown p50 is capable of 

gene activation when it is partnered with p65 as a heterodimer (Li and Verma 

2002). Consequently, studies have primarily focused on the p65/p50 protein 

subunits that are sequestered in the cytoplasm bound to an inhibitor protein 

IkB which is itself a dimerized complex of subunits; IkBoc and kBp. Under the 

influence of exogenous stimulants, activated MAPK proteins can 

phosphorylate IkB inducing a conformational change that results in the 

release of dimerized Rel subunits, most commonly the p65/p50 heterodimer 

into the cytoplasm (Tian 2003; Gilmore 2006; Perkins 2007). Subsequent 

nuclear translocation of NFkB to initiate target gene transcription has been 

demonstrated in neural and diabetic kidney endothelium, breast cancer and 

polycystic ovary tissue (Lindsey, Caughman et al. 2000; Diamanti- 

Kandarakis, Piperi et al. 2007; Panzer, Steinmetz et al. 2009; Tse, Zhu et al. 

2010) where AGEs are proposed to be accountable for this NFkB activation.
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TRAF6 4

MEK1/2

ERK1/2

Rac1/Cdc42

RAGE
mRNA

Target Gene: Transcription:
MUC1 ----------- > Mucin Over production
RAGE - - - - - - - - - - - >  RAGE, TNFa, VEGF, EGFp, IL-1 p, IL-6, IL-8

Figure 1-9 Cartoon of the potential pathways involved in AGE-RAGE-mediated 
NFkB transactivation.

Indicated in Fig. 1.9 are the signalling events mediated by the TLRs which are likely to 

show convergence with RAGE downstream signal transduction. There are two main 

molecules associated with the c-terminal end of RAGE; Diaphanous-1 and ERK 1/2 

which can activate several members of the rac and ras proteins to phosphorylate the 

MAP kinases. In turn, the MAP kinases initiate NFkB dimer dissociation from the 

cytoplasmic inhibitor protein IkB and allow for nuclear translocation. Subsequently, 

transcriptional machinery such as p300, CBP and Ap1 proteins are recruited to the
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promoters of NFkB target genes (Fig. 1.9). NFkB is an oncogenic transcription factor 

that up-regulates a plethora of inflammatory and angiogenic growth factors and 

cytokines (TNFa, TGFs and interleukins), some of which are cyclically elevated 

throughout the menstrual cycle or play a role in placental development. In disorders 

where RAGE is over-expressed such as PCOS and Diabetes, RAGE may also 

represent a molecular ‘switch’ for a pre-cancerous mechanism that amplifies 

inflammation. In fact, uterine proliferation, natural killer and leukocyte immune cell 

invasion and neovascularisation in the menstrual cycle proliferative phase are 

analogous with the initial stages of endometrial tumourigenesis.

1.12 Estrogen Receptor (ER) Pathway

1.12.1 ER Isoforms

The estrogen receptors are nuclear transcription factor receptors that 

mediate the intracellular steroidal activity of 17(3 estradiol (E2). The estrogen 

receptor, encoded by the ESR1 gene (6q25.1) and later known as ERa, was 

first sequenced in 1986 by Walter and Greene in a study investigating 

androgen regulated genes (Walter, Green et al. 1985; Greene, Gilna et al. 

1986). However, identification of a second ER encoded by the ESR2 gene 

(14q23.2) a decade later, lead to the renaming of the subtypes ERa (66kDa) 

and ERp (56kDa) (Kuiper, Enmark et al. 1996; Mosselman, Polman et al.

1996). Since then, spliced variants of the ER subtypes, termed estrogen 

related receptors (ERRs) have been discovered. Namely, two ERa isoforms 

of 36 and 46kDa and five ERp variants, some of which may be biologically 

active when co-expressed and dimerized with the full-length receptor (Moore, 

McKee et al. 1998; Shi, Dong et al. 2009). Despite extensive documentation 

of the presence of ER splice variants in breast and endometrium, little is 

known about the regulatory behaviour of these truncated proteins in 

pathogenesis of disease (Jazaeri, Shupnik et al. 1999; Fasco, Keyomarsi et 

al. 2000; Herynk and Fuqua 2004; Witek, Paul-Samojedny et al. 2007).
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Briefly, the ERs comprise of five functional domains for transactivation, DNA 

binding (DBD), anchorage, ligand binding (LBD) and agonist/antagonist 

recognition (Fig. 1.10). Despite a slight variation in size, 595 and 530 amino 

acids respectively, ERa and ERp form homodimers (aa or pp) or 

heterodimers (ap) and equally activate gene transcription due to a high 

degree of sequence homology (96%) in their DBD (Hall, Couse et al. 2001; 

Nilsson, Makela et al. 2001; Fox 2008). However, some studies have 

indicated heterodimers appear to emulate ERa-ERa function and affinity for 

classical estrogen response elements which was greater than ERp- 

ERp (Scobie, Macpherson et al. 2002; Li, Huang et al. 2004). ERa and ERp 

display distinct regulatory activity from each other in different cellular 

contexts. The popular consensus is that the respective affinities of ERa and 

ERp for, and the bioavailability of, a select faction of co-regulatory proteins 

contribute to this differential response (Shang, Hu et al. 2000; Shah and 

Rowan 2005; Romano, Adriaens et al. 2010).
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Figure 1-10 Schematic diagram comparing the protein structure of the 
estrogen receptor subtypes a and (3

Indicated are the positions of the AF 1/2 domains, % sequence homology, amino 

acid length and the areas important for dimerization, DNA binding and 

coactivator/repressor recruitment.

1.12.2 Classical and Non-Classical ER Signalling

Classically, as with most steroid receptors upon ligation, ER is released from 

chaperone HSPs enabling it to dimerize for nuclear translocation and occupy 

promoter-specific estrogen responsive elements (EREs) of target genes 

(Klinge 2001). In order to evoke tissue, cell and even gene-specific 

transcription, ER recruits additional co-regulators, the most studied of which 

are the steroid receptor family of p160 coactivators. These transcription 

factors are documented in the literature under various acronyms as follows: 

SRC-1 (Nuclear coactivator-1 (NcoA-1) [Gal-steroid receptor coactivator 1], 

SRC-2 (Nuclear coactivator-2 (NcoA-2) [glucocorticoid receptor interacting
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protein 1(GRIP)/transcriptional intermediary factor-2 (TIF-2)] and SRC-3 

(activator of the thyroid and retinoic acid receptor (ACTR) [amplified in breast 

cancer-1 (AIB1)/receptor associated coactivator-3 (RAC-3)] (Shah and Rowan 

2005). These co-regulatory proteins mediate transcription by modifying 

chromatin structure by the recruitment of histone acetylases and 

deacetylases. However many genes, of which RAGE is one, display estrogen 

responsiveness in the absence of classical promoter estrogen responsive 

elements and are targeted by way of ER protein-protein interaction. Several 

studies have shown the involvement of the activating protein (Ap1) and 

specificity protein (Sp1) transcription factor complexes at alternative non­

consensus sites (Paech, Webb et al. 1997; Saville, Wormke et al. 2000). The 

Ap1 transcription factor unit comprises of dimerized basic leucine zipper 

proteins c-Fos and c-Jun that interact with DNA via base pair hydrogen 

bonding to its consensus sequence in the DNA major groove (Glover and 

Harrison 1995; Hess, Angel et al. 2004). Similarly, Sp1 also interacts with 

DNA in the major groove through binding its consensus sequence 5'- 

(G/T)GGGCGG(G/A)(G/A)(C/T)-3 which is recognised by the triple Cys2His2 

zinc finger tandem motif in its structure (Nagaoka, Kondo et al. 2002).

1.13 Mechanisms of ER modulation in Uterus

It is widely accepted that ligand-ER binding induces conformational changes 

that facilitate its differential AF domain activation and subsequent regulation 

by co-regulatory partners. Ligand-independent and -dependent AF domains 

are located on ER at the opposite terminal ends yet can act both 

cooperatively and independently to activate gene transcription (Klinge 2001; 

Fox 2008). Several studies have observed that E2 constitutively activates 

and recruits the SRC-1 and SRC-3 coactivators to the AF-2 domain, whereas
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agonist action of TX is solely thought to be facilitated by the recruitment of the 

shared coactivator SRC-1 to AF-1 as shown in Fig. 1.10 (Glaros, Atanaskova 

et al. 2006). In fact, the AF-1 domain is critical for TX agonistic potency in the 

endometrium (Sakamoto, Eguchi et al. 2002; Scafonas, Reszka et al. 2008). 

Conversely, TX acts antagonistically on ER by actively competing with E2 for 

the LBD and promoting NcoR and SMRT corepressor occupancy of the AF-2 

domain (Tremblay, Tremblay et al. 1999; Pendaries, Darblade et al. 2002). 

Several potential mechanisms have been implicated in driving ER agonism 

within the human endometrium. It is thought that ER activation requires 

phosphorylation at the N-terminal serine residues 118 and 167, as mutation 

of serine 118 to alanine significantly reduced ER transcriptional activity and 

SRC-1 association (Kato, Endoh et al. 1995; Castano, Vorojeikina et al.

1997). Indeed, rapid phosphorylation of ERa at these serine residues by c- 

Src kinase was shown to correlate with increased SRC-1 activity and E2- 

induced ERa binding to ERE-luciferase constructs in Ishikawa and HEC1A 

endometrial cells (Shah and Rowan 2005; Acconcia, Barnes et al. 2006). 

These studies also illustrated that Src kinase-activated AKT kinase was 

essential for stabilizing ERa-ERE interaction on endometrial gene promoters 

and specifically activated SRC-1 and cAMP response element binding protein 

(CREB) transcription and not SRC-2 or SRC-3 (Shah and Rowan 2005). E2 

or TX agonist action on this c-Src complex can activate ER responsive mitotic 

genes, actin cytoskeleton remodelling and dissolution of cell-cell anchorage 

thus promoting cell motility (Acconcia, Barnes et al. 2006). Tamoxifen may 

evoke agonistic/antagonistic action on E2-mediated signalling in the uterus 

by either aiding or inhibiting ERa interaction with the SRC-1 co-activator 

(Shah and Rowan 2005; Daverey 2009). Interestingly, Ishikawa cells over­
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express SRC-1 in comparison to MCF-7 cells, whereas the latter expresses 

greater NcoR, suggesting differences in TX agonistic/antagonistic potential in 

breast and uterus could be due to the relative availability of these co- 

regulatory proteins (Sakamoto, Eguchi et al. 2002).

Altered ER coactivator/corepressor expression and/or recruitment have been 

implicated in cancer. Comparison of normal versus malignant phenotype 

endometrium revealed up-regulation of several coactivator/repressor 

proteins; SRC1, SRC2, SRC-3, NcoR and SMRT, in particular SRC-3 was 

significantly elevated in atypical hyperplasia and adenocarcinoma (Kershah, 

Desouki et al. 2004; Shah and Rowan 2005; Balmer, Richer et al. 2006). It is 

thought that E2 and TX are agonists of both ER subtypes and bind to each 

receptor with equal affinity in non-malignant and cancerous endometrial cells 

(Barsalou, Gao et al. 1998; Castro-Rivera and Safe 1998; Sakamoto, Eguchi 

et al. 2002; Blauer, Heinonen et al. 2008; Gielen, Santegoets et al. 2008). 

Investigations in non-malignant pre- and postmenopausal endometrium 

revealed that 10nM E2 and 40nM TX both induced ERa-mediated glandular 

epithelial proliferation to a greater extent in postmenopausal endometrium 

(Punyadeera 2008). Additionally, in co-culture models of pre-menopausal 

endometrium mimicking in vivo paracrine epithelial-stromal interaction, 10nM 

E2 increased cell proliferation whereas TX had no proliferative effect and 

retained its antagonism of ER (Blauer, Heinonen et al. 2008). In endometrial 

HEC1A, breast MCF-7 and cervical HeLa cells varying the E2 concentration 

affected ER subtype activation which may contribute to cell-specific selective 

estrogen receptor modulator activity. In particular, both ERs were responsive 

to saturation with 100nM E2, however only ERa was active at the 

physiological sub-saturating 10nM dose (Hall 1999; Hall and Korach 2002).
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Figure 1-11 Mechanisms of E2 and Selective Estrogen Receptor Modulator 
action on ER signalling.

Figure 1.11 shows the known mode of action for both E2 and antagonistic SERMs 

on the estrogen receptor. However, the effects of the selective estrogen receptor 

modulator Tamoxifen on transcriptional outcome are both cell-type and gene 

specific. Depending on the cellular context, Tamoxifen can either act as an 

antagonist (repressor) of gene transcription (red arrow), a partial agonist (short 

green arrow) or a full agonist (activator) of gene transcription (green arrow). The 

uterus is an estrogen-regulated tissue and therefore it is likely that most genes will 

be turned on (green arrow) following E2 stimulation.

Activation of one or both AF domains and differential recruitment of 

transcription factors may account for the cell-specific differences in ER 

signalling. Studies in endothelial cells have demonstrated that non­

consensus Sp1 sites on RAGE are responsive to 17a-ethinylestradiol (EE), 

an ERa-selective estrogen commonly found in the oral contraceptive, and E2, 

a natural circulating plasma estrogen, stimulation (Barkhem 1998; Tanaka,
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Yonekura et al. 2000; Mukherjee, Reynolds et al. 2005). It is also likely that 

E2 will have an agonistic effect on RAGE in the uterus. Based on recent 

findings, the general consensus is that TX exhibits both antagonistic and 

estrogenic-like behaviour in the uterus which may be dependent on estradiol 

concentration.

1.13.1 Selective Estrogen Receptor Modulators (SERMs)

Selective estrogen receptor modulators or SERMs define a class of non­

steroidal synthetic compounds initially designed to antagonise the cellular 

effects of estrogen through competitive ligation of ER. Later, it became 

evident that selective estrogen receptor modulators exhibit differential 

agonistic/antagonistic tissue-specific effects adding to the complexity of 

selective estrogen receptor modulator modality (Bentrem 2001). Of the 

clinically relevant selective estrogen receptor modulatorss, the active 

tamoxifen metabolite 4-hydroxytamoxifen (TX) and raloxifene (RX) are the 

best characterised (Dardes, Schafer et al. 2002; O'Regan, Gajdos et al. 

2002; Miki, Suzuki et al. 2009). 4-hydroxytamoxifen (TX) is best known for its 

anti-estrogenic properties in breast tissue where it actively competes with 

17p estradiol (E2) to ligand ER. Its subsequent mode of action in breast is to 

induce a conformational change that discriminates against E2-recruited 

coactivators at the AF-2 site yet promotes ER association with NcoR and 

SMRT corepressor proteins (Glaros, Atanaskova et al. 2006). It is for this 

reason that TX has long been exploited as an adjuvant therapy for ER 

positive breast cancers and after five consecutive years, has been shown to 

reduce the risk of disease return most likely through the perturbation of 

cancer cell growth (Gielen, Santegoets et al. 2008). Similarly, agonism of
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estrogenic activity in bone makes Raloxifene (RX) beneficial for the treatment 

of post-menopausal osteoporosis which is characterized by reduced bone 

mineral density in estrogen depleted tissues (Miki, Suzuki et al. 2009). 

Conversely, 4-hydroxytamoxifen is an agonist in the uterus, particularly in 

post-menopausal endometrium (Wilder, Shajahan et al. 2004). Studies have 

attributed a single point mutation of the amino acid aspartate 351 on ERa to 

induce conformational changes that promote TX agonist action. Selective 

estrogen receptor modulators TX and GW5638 both possess carboxylic acid 

side chains but unlike GW5638, the side chains of TX may interact with this 

aspartate residue rather than repel it perhaps making ERa more accessible 

to co-activator recruitment (Dardes, O'Regan et al. 2002). Current research 

has thus recognised the need to develop clinically relevant selective estrogen 

receptor modulatorss of proven antagonist behaviour in breast that do not 

elicit an agonistic response in the uterus as, over time or with repeat 

exposure, tamoxifen therapy appears to lose its antagonistic potential 

(Dardes, O'Regan et al. 2002). Alternative therapies to tamoxifen with fewer 

agonistic effects are currently being explored for clinical use. To date, 

synthetic tamoxifen derivatives EM800 and GW5638, raloxifene and 

aromatase inhibitors have been shown to possess only anti-estrogenic 

properties in murine mammary gland, uterus and human Ishikawa cells 

(Dardes, O'Regan et al. 2002; Farnell 2003).
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Figure 1-12 Chemical structures of 17(3 estradiol (E2) and selective estrogen 
receptor modulators (SERMs).

Figure 1.12 Chemical structures of 17(3 estradiol (E2), selective estrogen receptor 
modulators and their respective agonist (green), antagonist (red) and partial 
agonist/antagonist (orange) effects in breast, uterus and bone models. Tamoxifen: 
first generation triphenylethylene selective estrogen receptor modulator that 
metabolises to form 4-hydroxytamoxifen (TX) in the cell. GW5638: triphenylethylene 
tamoxifen derivative that metabolises to form active GW7604 in the cell and 
possesses a unique carboxylic acid side chain. E2: natural circulating estrogen, 
authentic ligand of ER. Raloxifene: second generation benzothiophene selective 
estrogen receptor modulator.

1.14 Tamoxifen Agonism in Uterus

Studies in Ishikawa cells have revealed that 10nM E2 and 1pM 4- 

hydroxytamoxifen induces ERa-mediated cell proliferation, Ap1 and ERE 

luciferase reporter gene activity and agonism of VEGF expression. 

Interestingly, TX lacked agonist potential in ERoc positive ECC-1 endometrial 

cancer cells yet failed to down-regulate genes involved in endometrial 

proliferation such as EGFR which may provide a mechanism for progression 

towards TX resistance (Dardes, Schafer et al. 2002). Development of

46



m apter i introauction

endometrial polyps and hyperplasic pathology in tamoxifen-treated breast 

cancer patients is reported to be as high as 36% (Gielen, Santegoets et al. 

2008). In fact, one study showed that TX agonism in endometrial cells was 

comparable to the endometrial effects of two breast cancer drugs; 

levormeloxifene and idoxifene, withdrawn from clinical use due to increased 

incidences of endometrial proliferation and polyps (Scafonas, Reszka et al. 

2008). Numerous studies have reported post-menopausal endometrium to 

have a 2-7% elevated risk of developing endometrial cancer when compared 

to pre-menopausal women (Blauer, Heinonen et al. 2008). This has been 

evidenced by increases in cell proliferation markers such as Ki67, mitotic 

genes and the nuclear receptors themselves (Blauer, Heinonen et al. 2008). 

Interestingly, experiments in ERa knockout and ERa mutant mice showed 

that E2- and TX-induced hyperplasia, nuclear expansion and proliferation of 

endometrial lumen and glands was specifically mediated through ERa 

(O'Brien 2006). Uterine weight increase is thought to be mediated by 

ERa signalling at non classical elements on candidate proliferative genes 

such as Cyclin-D2 which undergoes nuclear translocation post E2 and TX 

challenge in endometrial luminal epithelium (O'Brien 2006). These effects 

appear to be both TX and ERa specific as Raloxifene (RX) has no effect on 

endometrial proliferation due to a greater affinity to bind to ERp, which in the 

endometrium can repress ERa function by 25% (Hall 1999).

1.15 Research Aims
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The principal aim of this thesis is to present novel evidence for the 

expression of RAGE in human fertile and infertile eutopic endometrium and to 

relate these observations to key features of common reproductive 

endocrinological maladies namely PCOS and endometriosis. Secondary to 

this, was to establish in vitro models in which to study the impact of agents 

clinically relevant to PCO and endometriosis pathology on the expression of 

endometrial RAGE. In order to explore the endometrial effects of AGEs and 

17p estradiol known to modulate RAGE in other cellular contexts, a series of 

in vitro stimulation experiments for mRNA and protein analyses were 

conducted in the model endometrial cell lines. Finally, this thesis 

endeavoured to elucidate the possible mechanisms behind the regulation of 

endometrial RAGE by AGEs, E2 and its antagonist 4-hydroxytamoxifen. In 

order to achieve this, ChIP experiments were employed to identify the 

presence of candidate transcription factors NFkB and ER on the RAGE 

promoter. The work undertaken in this thesis is relevant to the aetiology of 

the PCOS and endometriosis infertility disorders which are characterised by 

elevated AGEs and estrogens respectively among other metabolic 

aberrations. Given the extensive body of evidence within the literature 

implicating RAGE in propagating chronic inflammatory signalling, this project 

aimed to establish a link between PCO and endometriotic pathology and a 

RAGE-altered uterine environment. Recent evidence has implicated RAGE in 

underlying inflammation preceding tumourigenesis. Consequently, RAGE 

may prove to be an effective therapeutic target to ameliorate the 

inflammatory complications in PCO and endometriosis patients and reduce 

the incidence of endometrial malignancy.
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CHAPTER 2
Materials and Methods
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2. Methods and Materials

2.1 Collection of Primary Cells

Endometrial tissue was isolated by way of endometrial biopsy taken from 

women admitted as outpatients to the Gynaecology Infertility and London 

Women’s IVF clinics at Singleton Hospital, Swansea. In the majority of cases 

endometrial tissue was extracted using the Pipelle catheter in a standard 

outpatient clinic procedure. In other cases or upon patient request, 

endometrial samples were obtained in theatre under general anaesthetic by 

way of dilatation and curettage (D&C). This technique uses a metal cannula, 

a rod-like instrument serrated at one end, attached to a syringe. This method 

applies a suction force to remove a small section of the endometrium cut 

away by the cannula (Oehler and Rees 2003). There were a number of 

reasons as to why women were referred to the clinic including laparoscopy as 

a sterilisation procedure or for diagnostic purposes to determine 

endometriosis, ovarian cysts, pelvic inflammation or disease. Endometrial 

biopsy specimens are usually required to investigate causes contributing to 

menorrhagia and abnormal intermenstrual vaginal bleeding or for women 

who have displayed a thicker than normal endometrium (>5mm) upon routine 

trans-vaginal ultrasound investigations (Nutis, Garcia et al. 2008). Collection 

of all primary tissues was subject to ethical approval from the Abertawe Bro 

Morgannwg University Trust Hospital Research and Ethics committee (LREC 

nr. 05/WMW02/45). Patients recruited to the study were asked for their formal 

written consent. Biopsies were grouped into four categories according to 

pathology:
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1. Control Group: Fertile Patients

2. Study Group: Infertile Endometriosis

3. Study Group: Infertile PCOS

4. Study Group: Unexplained Infertility

Endometrial tissues taken from patients classified as fertile were from women 

with proven parity and were attended theatre for sterilisation or surgery for 

reasons not relating to fertility. These biopsies were taken from women with a 

natural menstrual cycle ranging from 28-35 days. Cases of nulliparity due to a 

failure to conceive after two consecutive years, where male infertility and 

known reproductive, ovarian and tubal dysfunction were not considered 

causative, were classified as having ‘unexplained infertility’ (UIF). 

Endometriosis samples were taken from infertile women who continued to 

ovulate regularly and showed no signs of tubal dysfunction, yet presented 

with eutopic endometriosis of varying disease severity. PCOS endometrium 

was obtained from both ovulatory and anovulatory infertile women diagnosed 

according to the 2003 Rotterdam group criterion. Women with PCOS present 

with a variety of symptoms, however according to the criteria to be 

considered to have the syndrome, these patient would have two of the 

following indications: chronic anovulation/menorrhagia/oligomenorrhea,

excess free androgens (FAI) and/or the presence of pearl-like ovarian cysts. 

Women with sexually transmitted diseases, endometrial hyperplasia, 

endometrial carcinoma and polyps were excluded for the RAGE IHC and RT- 

PCR study and those selected were matched for age and BMI.
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2.1.1 Culture of Primary Cells

Biopsy material was collected in Dulbecco’s Modified Eagle Medium: Nutrient 

Mixture F-12 (DMEM/F-12) supplemented with 10% Foetal Bovine Serum 

(FBS), 1% glutamine 1.5mM, sodium bicarbonate 1mM, sodium pyruvate 

1mM and 1% antibiotic-antimycotic solution containing 10,000 pg penicillin, 

10,000 pg streptomycin, 25 pg of amphotericin B/ml utilizing penicillin G 

(sodium salt), streptomycin sulfate, and amphotericin B as Fungizone® 

Antimycotic in 0.85% saline (Gibco-lnvitrogen). DMEM/F12 media has been 

specifically formulated for the growth of human diploid cells and primary 

cultures which require lower calcium content (1.05M) to counterbalance the 

high calcium concentration within the FBS supplement. This protects against 

the toxic influx of calcium which can occur when cell membranes become 

damaged from oxidative and enzymatic processes during sub-culture1. 

Endometrial tissue was washed twice in calcium and magnesium free PBS 

(Lonza-BioWhittaker, Verviers, Belgium), sliced by scalpel (Swann-Morton 

Limited, Owlerton Green, Sheffield. UK) to a size of 1mm2 before enzymatic 

digestion in 10mL DMEM/F-12 cell media supplemented with 250pl 

collagenase type A (000.9g collagenase powder in 1mL filter sterilised PBS) 

and 250pl deoxyribonuclease type 1 (Sigma-Aldrich Company Ltd, Dorset, 

United Kingdom). Tissues were incubated for 1h at 37°C in a 5% CO2 

humidified incubator. Digested samples were centrifuged for 5 min at <1200g, 

resuspended in 10mL supplemented DMEM/F-12 as described above and 

left in culture overnight. Epithelial cells were separated from stromal and 

fibroblast cells through differential plating after 24h. All cell culture reagents 

were purchased from Gibco-lnvitrogen (Invitrogen Ltd, 3 Fountain Drive, 

Inchinnan Business Park, Paisley, United Kingdom) unless stated otherwise.
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http://www.siqmaaldrich.com/life-science/cell-culture/learninq-center/media- 

expert/ca lcium.htm I

2.2 Introduction to Endometrial Cell Lines

HEC-1 cells were originally isolated in 1968 by H. Kuramoto and colleagues 

from the well differentiated endometrial adenocarcinoma of a 72 year old 

Japanese patient. The tumour was described as a stage 1A tumour, meaning 

that, at the time of its removal, it had been restricted to the epithelial 

endometrial layer and metastases to the myometrium or cervix had not yet 

occurred (Kuramoto, Tamura et al. 1972). Despite originating from the same 

stage tumour, HEC-1 A and its sub-strain HEC-1 B exhibit morphological, 

karyotypic and functional differences. Unlike HEC-1 A, HEC-1 B cells display a 

stationary growth period whilst in culture and this causes changes to its cell 

morphology from a raised to a flattened shape with a distinct pavement 

pattern in later passages (Kuramoto 1972). HEC1A cells are diploid with a 

modal chromosome number of 49 whereas the HEC1B subline has a near 

tetraploid karyotype (Satyaswaroop, Fleming et al. 1978). The HEC-1 cells 

also differ in the expression of their nuclear receptors (NRs) for estrogen (ER) 

and progesterone (PR). HEC-1 A, described as an ER positive cell line, 

expresses both the alpha and beta isoforms of the estrogen and 

progesterone receptors (Navo, Smith et al. 2008). HEC-1 B is considered to 

be an ER negative cell line as it doesn’t express the ER alpha isoform or the 

progesterone (PR)A receptor. It does however, express the ER beta isoform 

which is expressed throughout the menstrual cycle at constant levels 

(Guseva, Dessus-Babus et al. 2005; Bombail, MacPherson et al. 2008; 

Francis, Lewis et al. 2009). These cells provide us with arguable in vitro 

model systems in which to investigate sex steroid regulation in the
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epithelium. Ishikawa is a well characterised epithelial cancer cell line 

developed from the endometrial adenocarcinoma of a 39 year old patient of 

Asian ethnicity (Nishida, Kasahara et al. 1985). It has been used extensively 

as a model for the epithelial endometrium and expresses both ER and PR. 

Heraklio, also an epithelial endometrial adenocarcinoma-derived cell line and 

sub-strain of Ishikawa, functions as an ERa and PRa negative cell line. The 

HEC-1 cell lines were purchased from the American Type Culture Collection 

(ATCC) and Ishikawa and Heraklio were purchased from the European 

Collection of Cell Cultures (ECCAC) for use in this study.

2.2.1 Culture of Cell Lines

Adherent Ishikawa, Heraklio and HEC-1A cells were cultured in plastic 

culture vessels (Falcon T25, 75, 125) in Dulbecco’s Modified Eagle Medium: 

Nutrient Mixture F-12 (DMEM/F-12) supplemented with 10% Foetal Bovine 

Serum (FBS), glutamine 1.5mM, sodium bicarbonate 1mM, sodium pyruvate 

1mM and 1% antibiotic-antimycotic solution at 37°C in a 5% CO2 humidified 

incubator. HEC-1 B cells were cultured in Basal Medium Eagle (BME) with 

1.5mM glutamine and Earle’s Balanced Salt Solution (BSS) adjusted to 

contain sodium bicarbonate 1.5mM, sodium pyruvate 1mM and 0.1 mM non- 

essential amino acids (NEAA). The cells were sub-cultured as follows 

(according to guidelines given by the ATCC and ECCAC): Ishikawa was sub­

cultured 1:5 (sub-confluent 70-80%), Heraklio sub-cultured 1:8 (sub-confluent 

70-80%), HEC-1A sub-cultured 1:8 when confluent (90-100%) and HEC-1 B 

sub-cultured also when confluent (90-100%) and the cell pellet split no 

greater than 1:6. Phosphate Buffered Saline or PBS (Lonza-BioWhittaker) 

free of calcium and magnesium was used to wash the cell monolayer to 

maintain pH, osmotic balance and to promote cell detachment. Proteins
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involved in cell attachment such as integrins and cadherins require calcium 

and magnesium for adhesion. The wash with PBS therefore, primarily serves 

to remove traces of DMEM/F12 growth media containing calcium, 

magnesium and bovine pancreatic trypsin inhibitor (BPTI) found in FBS which 

can inhibit the action of trypsin (Borjigin and Nathans 1993). Cells were 

removed from the culture substrate by incubation <5 min at 37°C with 0.25% 

Trypsin 1mM EDTA (pH 8) in Hanks' Balanced Salt Solution (HBSS) 

containing phenol red and without CaCb, MgCb, and MgSC>4 (Gibco 

Invitrogen Cat No: 25200-056). Cell detachment was confirmed by use of 

inverted light microscope. Trypsin was neutralised with 10mL supplemented 

DMEM/F12 media. Cell culture solution was aspirated from culture vessel 

and transferred to sterile 15mL centrifuge tubes (Corning) for centrifugation 

for 5 min at 1200g. Cell pellets were resuspended in 10mL supplemented 

DMEM/F12 cell media and re-incubated at 37°C in a limited 5% CO2 

atmosphere. All tissue culture reagents were sourced from Gibco-lnvitrogen 

unless stated otherwise.

2.3 Preparation of Cell Treatments

2.3.1 Advanced Glycation End Products (AGE)

Commercial bovine glycated albumin (AGE-BSA) stock at 10mg/mL was 

used in the generation of preliminary data (Cat: JM-2221-10 Caltag- 

Medsystems). Commercially available lyophilised human glycated albumin 

(AGE-HGA) 25mg was restored in 2.5mL of distilled water for a stock of 

10mg/ml_, aliquoted and stored at -20°C (Cat: A8301-25MG SIGMA). Non­

glycated human serum albumin (HA) 99% essentially fatty acid free (100mg) 

was used as negative control after being restored in 10mLs distilled water 

(10mg/mL stock) and frozen at -20°C (Cat: A3782-100MG SIGMA).
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2.3.2 170 Estradiol (E2) and 4-hydroxytamoxifen (TX)

Powdered17p Estradiol 0.2724g (Cat: E8875 >98% SIGMA) was added to 

10mL of absolute ethanol (Fisher-Scientific) and filter-sterilised using a 

0.2mm filter cap and 10mL syringe (BD Plastipak) to a concentration of 1mM, 

100|iL of 1mM stock was then added to 10mL ethanol to give a final stock of 

1jiM. Powdered 4-hydroxytamoxifen 0.3715g (Cat: T5648 >99% SIGMA) was 

added to 10mL absolute 100% ethanol, filter-sterilised using filter cap and 

syringe. 100pL of the 1mM stock was then added to 10mL of absolute 

ethanol to give a final stock of 1pM. All stocks were aliquoted and stored at - 

20°C for long-term storage in 2mL glass vials with aluminium-lined lids 

(SIGMA) to prevent leaching of the hormone.

2.4 Treatments of Cell Lines for RNA and Protein Analysis

Prior to being seeded, cell pellets were resuspended in 10mL culture 

medium. The number of cells in 1mL was counted using a glass slide 

haemocytometer designed so that the number of cells in one 16 corner 

square grid is equivalent to the number of counted cells x 10'4/mL media2. 

Counts were made on 4 separate grids on the haemocytometer and an 

average cell count calculated. The cell suspension was adjusted to a total cell 

number of 4-6 x 108 with addition of the appropriate volume of media and 

seeded into 6-well (vol. 9.6 cm2) plates (Greiner Bio-One Ltd, Stroudwater 

Business Park, UK). Ishikawa and Heraklio were seeded in 200jiL aliquots 

containing 9.2 x 104 cells, allowed to adhere to plastic substrate for 3 min 

before 1.8mL DMEM/F-12 (10% FBS) was added. HEC-1 A was seeded in 

300jliL aliquots containing 9.2 x 104 cells, allowed to attach before 1.7mL
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DMEM/F-12 (10% FBS) media was added. HEC-1 B was seeded in 600pL 

aliquots per well containing 2.7 x 105 cells, left to adhere for 3 min and 

supplemented with 1.4mL BME 10% FBS. Cells were maintained at 37°C in a 

humidified 5% CO2 atmosphere. Prior to treatment and at cellular confluence, 

cells were serum-starved for 24h to make the cells quiescent to potential 

steroidal and growth factor influence. In brief, Ishikawa and Heraklio were 

cultured in DMEM/F-12 reduced glucose (5mM) media formulated by 

combining F12 nutrient mixture with DMEM without D-glucose. No further 

adjustment was required to the working concentration of glucose (5.5mM) in 

BME media for the culture of HEC1B cells. The level of 5-5.5mM glucose that 

these media contain equates to the level of corporal blood sugar3, thus 

creating an authentic reflection of the in vivo state, in which preformed AGEs 

may exist (Tuttle, Johnson et al. 2005). HEC1A cells however became 

unhealthy, granulated and exhibited stunted growth rate in reduced-glucose 

DMEM/F12 media, only retaining structural integrity in 10mM glucose 

DMEM/F12. During exposure to experimental conditions FBS was substituted 

for 10% dextran-coated charcoal-treated foetal bovine serum (DCC-FBS, 

Gibco).2www.abcam.com/ps/pdf/protocols/haemocvtometer cell counts.pdf 

3http://www.siamaaldrich.com/life-science/cell-culture/leamina-center/media- 

expert/qlucose.html.
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Human glycated albumin (AGE-HSA) and human albumin (HSA) were added 

to cells maintained in 6 well culture plates for 4 or 24h at the following 

concentrations:

Treatment [Stock] Dilution [Final] in 2mL 
Media

AGE-HSA 10mg/mL 1:100 100jig/mL
1:200 50pg/mL
1:400 25(ig/mL

1:1000 10pg/mL
1:2000 5(ig/mL

HSA 10mg/mL 1:200 50pg/mL
1:1000 10pg/mL

Estradiol (E2) and Tamoxifen (TX) were added to cells maintained in 6 well

culture plates for 4h at the following concentrations:

Treatment [Stock] Dilution Final
Concentration

Treatment 
(p,L in 2mL Media)

E2 1pM 1:100 10nM (10'H M) 20
TX 1fiM 1:100 10nM (10 b M) 20

Media from control cultures were aspirated and replaced with 2mL fresh 

culture media supplemented with 10% dextran-coated charcoal-treated foetal 

bovine serum (DCC-FBS) and left untreated without vehicle. After incubation 

time, each cell medium was aspirated and monolayer washed twice with 

10mL Dulbecco’s Phosphate-Buffered Saline (Lonza BioWhittaker) without 

calcium and magnesium for all adherent cell types. For RNA analysis, cells 

were collected in appropriate volumes of buffer RLT (Qiagen) for direct cell 

lysis of cells grown in a monolayer according to the culture dish diameter: 

300|il for a plate or well with a diameter less than 6cm or 600|nl for a dish or 

well with a diameter between 6-10cm. Cell lysates were collected with rubber 

policeman scrappers (Greiner) and stored at -20°C. For protein analysis: cells 

were collected in appropriate volumes of RIPA buffer (SIGMA) according to 

culture dish size: 200|il per well (6 well plate) or 1mL per 1-5 x 107 cells. Cells
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were incubated in RIPA buffer on ice or at 4°C for 5 min prior to collection 

with rubber policeman then stored at -20°C. For immediate use, lysates were 

centrifuged 8,000g (12,000 rpm) at 4°C for 10 min and protein aggregates 

removed from the supernatant. If the samples were to be used for 

immunoblotting of a phosphorylated protein, RIPA buffer was substituted for 

phosphosafe buffer (EMD Biosciences, San Diego, CA, USA) which contains 

four phosphatase inhibitors; sodium fluoride, sodium vanadate, (3 

glycerophosphate and sodium pyrophosphate to help preserve the integrity of 

the protein.

2.4.1 Treatments of Cell Lines for Chromatin Immunoprecipitation

Cell lines were adjusted to a total cell number of 4-6 x 108 and seeded 

(approximately 1.5 x 107 cells when 80-90% confluent) in 14cm diameter 

sterile cell culture dishes with lid and vent (Cat: 157150 NUNC). Prior to 

treatment, cells were serum-starved for 24h as previously described, in 

media substituted with 10% dextran-coated charcoal-treated foetal bovine 

serum (DCC-FBS, Gibco-lnvitrogen). Cells were maintained at 37°C in a 

humidified 5% CO2 atmosphere. Treatments Estradiol (E2), Tamoxifen (TX), 

Human Glycated Albumin (HGA) and Human Albumin (HA) were added to 

the cells for 4h at the following concentrations:

Treatment [Stock] Dilution Final
Concentration

Treatment 
(pL in 25mL Media)

E2 1(iM 1:100 10nM (10 ° M) 250
TX 1(iM 1:100 10nM (10’a M) 250

HGA 10mg/mL 1:1000 10|ig/mL 25
HA 10mg/mL 1:1000 10^ig/mL 25

Cell media was aspirated after the 4h incubation time and the monolayer 

washed with 10mL DPBS without calcium and magnesium (Lonza
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BioWhittaker). Cells grown in confluent monolayer in 14cm culture dishes 

were fixed with 20mL serum free culture media supplemented with 0.54mL 

37% formaldehyde to give a final concentration of 2.5M (Cat No. F8775, 

SIGMA), and placed on a rotary agitator at room temperature for 10 min. 

Fixative was aspirated and cells neutralised for 5 min in 5mL Glycine Stop- 

Fix Solution: 4mL 1.25M (10X) Glycine (Active Motif Europe), 36mL distilled 

MilliQ water (Millipore). The cell monolayer was washed with ice-cold 1X PBS 

(Lonza BioWhittaker) between incubation steps to prevent carry-over of 

fixative/buffer. Cells were scraped with rubber policemen in 5mL ice-cold 1X 

PBS supplemented with 5pL phenylmethanesulfonylfluoride (serine protein 

inhibitor PMSF, 100mM), centrifuged 10 min at 5,000g at 4°C and 

supernatant discarded. The cell pellet was either used immediately for ChIP 

or frozen at -80°C with 5|liL PMSF and 5pL Proteinase Inhibitor Cocktail (PIC, 

supplied in ChlP-IT Express kit, Active Motif, Europe) to prevent degradation 

and crystallisation of cells on freezing.

2.5 Isolation and Quantification of RNA

Total RNA was isolated from confluent monolayers scrapped in RLT buffer 

according to the manufacturer’s protocol for Total RNA Isolation from Animal 

Tissues (see Appendix A). In brief, cell lysates were homogenised in 

Qiashredder spin columns, RNA isolated and purified on-column using an 

RNeasy-Plus Mini Kit including gDNA Eliminator spin columns for the 

removal of genomic DNA. The membrane in the RNeasy spin column binds 

RNAs longer than 200 nucleotides in order to isolate mRNA. In cases of high 

cell yield (>1 x 107 cells), RNeasy Mini Kit with integrated on-column DNase 1 

digestion step was used instead to prevent overloading of gDNA Eliminator

spin columns and co-purification of DNA/RNA. RNA was eluted in 30pL of
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RNase-free water into 1.5mL collection tubes (supplied in kit) and quantified 

by spectrophotometer (Nanodrop ND-1000 - Nucleic Acid program v3 1.2).

2.6 Isolation and Quantification of Protein

Protein was quantified using the Bradford assay. In brief, 1mL ready to use 

Bradford reagent (Cat No: B6916, SIGMA) was added to 100(iL sample 

diluted 1:100 in 0.15M sodium chloride (0.438g NaCI to 50ml of ddhhO) in a 

1mL cuvette (Fisher Scientific), inverted to mix and incubated for 5 min at 

room temperature. The Brilliant Blue G dye in the Bradford Reagent works by 

forming complexes with the proteins present and changing the optical 

density, determined using a Beckman DU 650 spectrophotometer, from 

^465nm to ^595nm to be proportional to the amount of protein. The 

absorbance was quantified against the optical densities of a BSA (0.5mg/mL) 

standard curve of known concentrations ranging from 0-20mg/mL (see table).

Standard BSA (iiL) NaCI 0.15M (pL) [Final] mg/mL
A 0 100 0.0
B 5 95 0.025
C 10 90 0.05
D 15 85 0.075
E 20 80 0.1

2.7 Reverse Transcription (RT) Synthesis of RNA to cDNA

RNA (12pl_ total volume) was adjusted to a concentration of lOOjig/mL in 

RNase-free water (Qiagen) and 2|iL reserved for PCR negative control (un­

transcribed template). Next, 2pL random decamers at 50pM (RETROscript, 

Ambion, UK) were added to the remaining 10pL RNA in thin-walled 0.2mL 

PCR tubes (Corning). The samples were briefly spun and heated for 3 min at 

85°C in a thermo cycler (i-cycler Bio-Rad) to allow for heat denaturation of the 

RNA. The remaining components (RETROscript, Ambion, UK) were added 

per sample: 2pL 10X RT buffer (500 mM Tris-HCI, pH 8.3, 750mM KCI, 30
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mM MgCI2, 50mM DTT), 4pL dNTP Mix containing 2.5mM of each dNTP, 1pL 

RNase Inhibitor (10 units/jiL) and 1pL Reverse Transcriptase MMLV enzyme 

(100 units/juL) to a final volume of 20jiL. Samples were heated for 1h at 44°C 

to allow for cDNA synthesis, followed by 10min at 92°C then held at 4°C until 

removed from the machine. cDNA was stored at -20°C or for long-term 

storage -80°C. Serial dilutions were made from cDNA stock in distilled MilliQ 

water (Millipore) at 1:5, 1:10, 1:100 and 1:1000 to be used for standard curve 

calibration plots. cDNA 1:10 was used as the working template for analysing 

target gene expression.

2.8 Quantitative Real Time Polymerase Chain Reaction (Q-RT-PCR)

RT-PCR was used to amplify cDNA using gene specific primers (Beacon 

Design 2.0, Premier Biosoft, USA; Primer Express v3.0 Applied Biosystems, 

USA) to a PCR product of approximately 75-150bp. Ribosomal Protein 60S 

L19 (RPL-19) was used as an internal reference (amplicon 144bp), and 

genomic DNA, RNase-free water (Qiagen) and RNA 1:10 template were used 

as positive and negative controls respectively. PCR reactions were made to a 

total volume of 20pL with 10pL of Power Sybr Green Master Mix containing 

iTaq polymerase (Applied Biosystems), 5pL of primer mix containing 2.5jllL 

sense primer and 2.5pL anti-sense primer at 4jiM, and 5jiL of sample 1:10 

cDNA. RT-PCR reactions were performed in triplicate per sample in clear 96 

well optical reaction plates (Sartedf Aktelangesellachaft & Co.) sealed in 

optical tape (Bio-Rad) and run in the MylQ5 i-cycler (Bio-Rad). Plates were 

heated for 95°C for 15 minutes to initiate the iTaq DNA polymerase enzyme 

that requires a hot start and Real Time (RT) data collected during 50 cycles 

comprising of 94°C for 15 sec, 30 sec at optimum annealing temperature for
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specific primer sets and 72°C for 30 sec to allow for primer extension. Next, 1 

cycle annealing step for 30 sec at 55°C and 1 cycle denaturation step for 30 

sec at 95°C. Melt curve data was collected after 43 cycles of 15 sec at 53°C, 

increasing the set point in 1°C increments to an end-point temperature of 

95°C. No products were amplified when using negative control RNA or 

distilled water directly in the PCR reactions.

2.8.1 Detection of PCR products using Real-Time

Quantitative Real-Time PCR allows for quantification of a specific starting 

amount of complementary DNA. Following binding to double stranded DNA, 

Sybr Green I dye produces a fluorescent emission at ^521 nm. The intensity 

of the signal is measured per cycle and increases with the extension of the 

PCR product by gene specific primers. The amplification of the PCR product 

is displayed as a sigmoidal amplification curve when fluorescence, measured 

in relative fluorescence units (RFU), is plotted against the number of cycles. 

The threshold cycle represents the number of PCR cycles the exponential 

doubling of the DNA template has reached to be detected. Threshold cycle 

values (Ct) for each sample were generated from the amplification curve in 

the analysis software where the amplification is proportional to the 

fluorescent signal. The Ct value is the cycle at which the amplification curve 

intercepts the baseline threshold and is used to calculate the starting amount 

of DNA in the PCR reaction. The baseline threshold is automatically set by 

the software at the level of the earliest detectable signal where there is no 

product amplification, usually a few cycles before the earliest signal crosses 

the threshold. Fluorescence detected beneath the baseline threshold 

represents noise e.g. non-specific signal from inefficient binding of Sybr 

Green, contamination or primer-dimer artefacts. It can also be manually set at

63



i  napier z materials anu rnemuus

the up-turn of the curve at the beginning of the log-linear phase of 

amplification (Qiagen 2010).
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Figure 2-1 Amplification plot of an Ishikawa cDNA standard curve

Figure 2.1 shows amplification plot of an Ishikawa cDNA standard curve crossing 
the baseline and demonstrating the threshold cycle (Ct) for each dilution.

Melt curves for each primer pair were checked for a single peak at the correct 

inflection for the specific amplicon that would indicate the absence of 

contamination, primer dimers or the product resulting from an incorrectly 

annealed primer.

2.8.2 Generation of a Standard Curve

Serial dilutions from 2x10 1 to 1x1 O'3 of 5pL reference cDNA were performed 

in triplicate on the 96 well plates starting at the highest concentration in the 

first row to the lowest concentration in the fourth row. Next, 15pL of Master 

Mix containing 1 OjliL Power Sybr Green with iTaq polymerase and 5piL 

specific primer at 4pM were added to each well for a total sample volume of 

20jnL. Serial dilutions were made for every gene evaluated in the experiment 

to generate a calibration curve against which Ct values for that gene could be 

plotted to quantify expression. Standard curves were generated by plotting a
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graph of the Log Starting Quantity (StQ) of each standard against its Ct 

value. The trend line function, equation for the gradient and Y-axis intercept 

were applied to the graph. The R2 efficiency of the calibration curve was 

checked for a strong correlation (between 0.95 and 1.00) and alignment of 

dilution standards with the gradient of the graph between -3.3 and -3.8. If the 

PCR is 100% efficient (R2 =1.00) then the slope of the standard curve -3.322 

which shows the PCR product is doubled with each cycle (Qiagen 2010).

Well Fluor Type
Replicate

#

Threshold 

Cycle (Ct)
Ct Mean

Ct Std. 

Dev

Starting

Quantity

(SQ)

Log

Starting

Quantity

B02 Std 2 12.99 12.98 0.039 1.000E-01 -1.000

B03 Std 2 13.01 12.98 0.039 1.000E-01 -1.000

B04 Std 2 12.93 12.98 0.039 1.000E-01 -1.000

B05 Std 3 16.34 16.34 N/A 1.000E-02 -2.000

B06 Std 4 19.81 19.81 N/A 1.000E-03 -3.000

Figure 2-2 Threshold cycle (Ct) and Log StQ values of Ishikawa samples

Figure 2.2 shows the threshold cycle (Ct) values and Log StQ values of the above 
Ishikawa samples used to make a standard curve for RPL19.

LinearTrendline♦  RPL-19 Ishikawa LG
25

20

15
y = -3.41x + 9.56  

R2 = 0 .9998 10

Log Starting Quantity

Figure 2-3 Standard curve of the above Ishikawa samples for RPL-19

Figure 2.3 shows the standard curve of the above Ishikawa samples for the RPL-19 
gene (Fig. 2.2). The equation can be used to quantify the starting amount of RPL19 
in each sample.
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2.8.3 Analysis of Quantitative Real-Time PCR Results

Relative quantification of gene expression data was determined from 

triplicate Ct values for each sample. Triplicate Ct values were copy-pasted 

into Excel worksheets as raw data. If necessary, one outlying Ct value per 

sample in triplicate was excluded from the analysis and the average Ct value 

calculated. Samples were quantified from the average Ct value and the 

known concentrations of the dilution series. The Log Starting Quantity for 

each sample was calculated using the equation of the curve:

y  = (X  - Z )/- M
Where Y  *  Log Starting Quantity 

X *  Average Ct value 
M « Slope of the Standard curve 
Z *  Curve Intercept on Y  axis

The starting quantity for each sample is calculated by using the Power (10, Y) 

function in Excel, where Y is the Log Starting Quantity. The average starting 

quantity of the target gene was normalized against the average starting 

quantity value obtained for the endogenous reference gene RPL-19. Gene 

expression was calculated as a ratio of transcript levels between untreated 

(control) and treated samples (fold expression). Standard deviation, to show 

the statistical significance of the results, was calculated from the starting 

quantities of the individual Ct values.

Primers for RT-PCR were designed using the Beacon Designer software v2.0 

from NCBI gene sequences and were purchased from Sigma-Aldrich as 

custom made oligos. Upon arrival, the appropriate volume of RNase/DNase- 

free water was added to reconstitute the lyophilised primer to a starting stock 

concentration of 100jnM. RT-PCR primers were stored at -20°C until use.
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2.8.4 Primers used for Real-Time PCR

Name Primer Primer Sequence Tm Position 
in Seq.

Amplicon

GAPDH

sense GT CC ACT GGCGT CTT C AC 54.5 291 Tm = 90.5 

Ta = 54.7 

145bpantisense CTT G AGGCT GTT GT CAT ACTT C

54.6 435

RPL-19

sense CCT GT GACGGTCCATT C 50.5 160 Tm = 91 

Ta = 54.3 

144bpantisense AAT CCT CATTCTCCT CATCC

50.8 303

RAGE

sense C AGT GTGGCT CGT GT CCTT C 58 219 Tm =89.2 

Ta = 54.8 

108bpantisense GT CT CCTTT CC ATT CCT GTT CATT G

58.2 326

Mucin-1

sense TGGTGCTGGTCTGTGTTCTG 57.1 545 Tm = 89.8 

Ta = 55 

134bpantisense CTCGCT CAT AGG AT GGT AGGT

57.5 678

ER

alpha

sense CCT CAT CCT CT CCCACAT CAG 56.5 1524 Tm = 88 

Ta = 53.5 

115bpantisense GGCGT CCAGCAT CT CCAG

56.6 1638

ER

beta

sense TGCT GAACGCCGT GACCGAT G 63.1 1286 Tm = 86.4 

Ta = 54.2 

73bpantisense AT GGATTGCT GCTGGGAGGAGA

62.5 1358

p65

sense

T CAAG AT CAATGGCT AC AC

49.0 182 Tm = 93.5 

Ta= 55.1 

235bpantisense TT GTT GTT GGT CT GG AT G 48.7 416

Figure 2-4 Table of primers used for real time PCR

2.8.5 Statistical Analysis of Real Time PCR

Triplicate normalised starting quantity (StQ) values per sample were 

analysed using a two-tailed students T-Test. Treated samples were 

compared against the untreated controls where P value <0.05 was 

considered statistically significant. Real time data for endometrial biopsies: 

Mean normalised StQ values per sample were grouped according to 

pathology. For each pathology data set the Anderson-Darling normality test 

was performed. Non-parametric Kruskall-Wallace and Mann-Whitney tests for
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categorical data were performed using the MiniTab software to compare 

inter-individual variability within, and inter-pathology variability between 

groups. P value <0.05 for the Mann-Whitney test was considered statistically 

significant.

2.9 Western Blotting 

2.9.1 SDS-PAGE

Polyacrylamide gels (10%) were prepared for SDS-PAGE as described 

below, adding polymerizing catalyst 10% ammonium persulphate (APS) last 

to polymerise the gel matrix in a reaction with TEMED. Gels were set 

between 1.5mm separated glass plates (Bio-Rad). 2mL 70% water-saturated 

butanol (Fisher Scientific) was used to create a flat interface between 

resolving and stacking gels and to prevent dehydration of the resolving gel 

whilst setting. Butanol was removed with distilled MilliQ water (Millipore) and 

filter paper (Whattman).

Gel Reagent Resolving Gel (10%) Stacking Gel (4%)
MilliQ Distilled Water 

(Millipore)
6mL 3mL

30% Acrylamide/Bis Solution 
37.5:1 (Bio-Rad)

5mL 650jllL

1.5M Tris, pH 8.8 3.75mL -

1.0M Tris, pH 6.8 - 1.25mL
10% SDS (Fisher Scientific) 150nL 50jj.L

10% APS (SIGMA) 75uL 25nL
TEMED (GIBCO) 15nL 5jj,L

Protein samples (30jig) were quantified as previously described (section 2.6) 

and diluted 1:2 in 2x concentrated Lamelli buffer in preparation for SDS- 

PAGE. Samples were incubated for 5 min at 95°C in a heat block to 

solubilise, denature and apply a negative charge to the protein structure. 

Equal amounts of protein (30pg) were loaded per well plus 9|iL of Dual 

Colour Protein Standards (Bio-Rad) and run on a 10% SDS-polyacrylamide

gel in ice-cold 1% SDS electrophoresis buffer for 1.5 h at 120 V or until dye-
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front reached base of gel. To make 1 litre 5% electrophoresis buffer pH 8.3 - 

Tris Base 15.1 g, Glycine 72.g, Sodium Dodecyl Sulphate (SDS) 5.0g in 

1000mL distilled water. Buffers were tested for correct pH before use.

Blotting Reagent 1X Transfer Buffer 
(1.5L)

5X Tris-Buffered Saline TBS 
(1L)

Sodium Chloride (SIGMA) - 40g
Distilled Water 1200ml_ 1000mL

Tris Base (SIGMA) 3.63g 12.1g
Glycine (Fisher Scientific) 16.8g -

Ethanol (Fisher Scientific) 300m L -

PVDF membrane with 0.2pM pore size and protein binding capacity of 150- 

160 pg/cm2 (Bio-Rad) was cut to size and activated at room temperature in 

the following a) Absolute methanol (Fisher Scientific) 15 sec b) distilled MilliQ 

water (Millipore) 5 min and allowed to equilibrate in c) Transfer buffer 10 min. 

Separated proteins were transferred by electrophoresis onto activated PVDF 

membrane in ice-cold transfer buffer for 70 min at 100 V. Membranes were 

blocked overnight at 4°C in 10mL 10% milk in 1X TBS-Tween-20 solution 

(TTBS, 200mL 5X TBS, 800mL MilliQ distilled water, 10mL Bio-Rad 10% 

Tween-20) or for antibodies not compatible with milk protein, 10% BSA in 1X 

TTBS. Membranes were placed at room temperature on a rotary agitator and 

washed five times for 5 min in 1X TTBS. Membranes were cut according to 

molecular weight of protein of interest (RAGE 46KDa, ERa 66KDa, and ERp 

56KDa) and to allow incubation of membrane in a control antibody for 

normalisation (GAPDH 37KDa). Membranes were incubated at 4°C for 2h 

with rabbit anti-RAGE polyclonal antibody (H300 sc: 5563) diluted 1:500 in 

0.5% milk-TTBS or rabbit anti-GAPDH polyclonal antibody (FL-335 sc: 

25778) diluted 1:1000 in 0.5% milk-TTBS (Santa Cruz). Immunoblots for ERa 

were incubated at 4°C for 1h with rabbit anti-ERa polyclonal antibody (HC-20
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sc: 543) diluted 1:1000 in 0.5% milk-TTBS. Immunoblots for ERp were 

incubated overnight at 4°C with goat anti-ERp diluted 1:500 (L20 sc: 6822). 

Phospho-NFKB-p65 (ser276) antibody (Cell Signalling #3037) was incubated 

in 0.5% BSA-TTBS (Sigma) as a substitute for milk that contains natural 

phosphotases. Membranes were then washed several times with 1X TTBS. 

The blots were incubated at room temperature on a rotary agitator for 1 h with 

either goat anti-rabbit or donkey anti-goat horseradish peroxide (HRP) linked 

secondary antibodies (Amersham GE Healthcare) diluted 1:1000 in 0.5% 

milk-TTBS. Membranes were washed five times for 5 min in 1X TTBS to 

reduce non-specific binding. All antibodies were sourced from Santa Cruz 

biotechnology unless stated otherwise. Protein was visualized after 2-3 min 

incubation at room temperature in enhanced chemiluminescence solution 

(Western C, Bio-Rad) and detected on the ChemiDoc System Bio-Rad 

Imager (Bio-Rad). Protein band intensity was quantified using the volume 

rectangle tool function on the Quantity One® imaging software (Bio-Rad). 

This allowed the signal of each band to be contained within equal defined 

boundaries and be adjusted against the background level of non-specific 

binding. The signal for the protein of interest per sample, expressed as a 

function of volume data (intensity/mm2) was then normalised to the signal of 

the house-keeping protein.

2.10 Chromatin Immunoprecipitation (ChIP)

Cells were collected as previously described (section 2.4.1) and ChIP 

performed using ChlP-IT Express kits (Active Motif, Europe). Cell pellets 

were thawed (if necessary), resuspended in 1mL ice-cold Lysis Buffer 

supplemented with 5 jllL Proteinase Inhibitor Cocktail (PIC) and 5pL serine
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protein inhibitor PMSF (100mM) and incubated on ice 30 min. Cells were 

transferred to a 1.7mL tube and centrifuged at 10,000g for 10 min at 4°C to 

pellet nuclei. The supernatant was discarded and pellet was resuspended in 

350pL of Shearing Buffer and placed on ice. DNA was sheared to 200-350bp 

under previously optimised conditions (see Appendix B1) using a hand-held 

probe sonicator (Vibracell VC 130, Sonics) or water tank sonicator (Bioruptor, 

Diagenode). The sonicated chromatin was centrifuged at 4°C at 18,000g for 

10 min and the supernatant containing sheared DNA was transferred to a 

1.7mL Eppendorf tube, stored at -80°C for long term storage or used 

immediately for ChIP. Before freezing, 50pL sheared chromatin was removed 

for a DNA clean-up step to assess DNA concentration and chromatin 

shearing efficiency prior to gel analysis (see Appendix B2). Following DNA 

clean-up, 1 6 jllL sheared chromatin (7-25pg) was added to 4pL 6X  loading dye 

(Bio-Rad) and loaded in two different volumes (5pL and 10pL) to a 1% TAE 

agarose (SIGMA) gel to prevent over- or under-loading. Gels were run at 100 

V for 1 h until loading dye reached 3A of the gel length. Optimal shearing 

should result in a smear at 200-1 OOObp on the gel. Efficiency of DNA 

shearing was visualised on the gel using the Chemidoc (Bio-Rad) imager.

For immunoprecipitation (IP), ChIP reactions were set up in 8-well 0.2mL 

PCR strips (SIGMA) as follows, adding the ChlP-validated antibody last: 

25jnL Protein G Magnetic Beads, lOpL ChIP Buffer 1, 1jiL PIC, Sheared 

Chromatin approx. 7jLtg (2 0 -6 0 jiL), 1 OjllL of 0.2jxg/mL specific antibody and 

MilliQ distilled water (Millipore) to total volume of 100jiL. The volume of 

chromatin per reaction was dependant on DNA quantification (see Appendix 

B2), and standardised between samples to contain 5pg.
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Figure 2.5 Gel analysis of optimal 
shearing by sonication using the 
ChlP-IT Express Kit (Active Motif, 
Europe).

E pithe lia l endom etria l H EC -1A  
(Lanes 1-4) and H EC -1B  ce lls  (Lanes 
5-8) w e re  fixed  10 m in w ith  37%  
fo rm a ldehyde  in BM E serum  free  
m edia. C hrom atin  w as sheared  w ith  5 
pu lses of 1min 40sec each a t 40%  
pow er using a V ibrace ll V C  130 
son ica to r (S on ics) in 300m L S hearing  
B u ffe r on ice.

C hrom atin  w as sub ject to c ross  link 
reversa l, R N ase A  and P ro te inase  K 
trea tm en t and purified accord ing  to 
the  m a n u fa c tu re rs ’ instructions. 
O p tim a lly  sheared sam ples p roduce 
a sm ear betw een 2 50 -1500bp. Lane 
9 con ta ins  a 100bp - 1000bp ladder 
(B io -R ad)

Figure 2-5 Gei analysis of optimal shearing by sonication using the ChlP-IT 
Express Kit

Next, 5|ig chromatin per sample (equal to the volume in the IP reaction) was 

also reserved in 0.2mL tubes to be the ‘input’ controls in PCR analysis. Input 

samples were stored at 4°C for use within 6 h or -20°C within 24 h. Tubes 

were briefly vortexed and placed on an end-to-end rotator for 4h at 4°C. 

Following a brief spin, beads were pelleted on a magnetic stand and 

supernatant discarded. Beads were washed four times with 200juL ChIP 

Buffer 1, three times with 200juL ChIP Buffer 2 and resuspended in 50pL 

Elution Buffer AM2 using a 200jaL 8 channel pipette (StarLab). Beads were 

incubated for 15 min on an end-to-end rotator at room temperature to elute 

chromatin. 50pL Reverse-Cross-linking Buffer was added and tubes 

immediately placed on magnetic stand. The supernatant containing the 

chromatin was transferred to new 8-well PCR strip tubes on ice. Reserved 

‘input’ samples were added to 2pL 5M NaCI (SIGMA) and ChIP Buffer 2 to a 

total volume of 100pL and heated for 15 min in a thermocycler at 95°C along
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with the ChIP samples. Samples were briefly centrifuged and incubated at 

37°C 1h with 2jiL Proteinase K (0.5pg/pL). The action of Proteinase K was 

stopped with 2pL Proteinase Stop Solution (100mM PMSF diluted 1:20 in 

distilled water) and samples were either stored at -20°C or purified using the 

QIAQuick PCR Purification Kit (Cat No. 28104 Qiagen) to give a final volume 

of 1 OOjllL purified DNA for use in qPCR after ChIP. All reagents were supplied 

in the ChlP-IT Express kit (Active Motif, EU) unless stated otherwise.

2.10.1 ChlP-validated Antibodies

Antibody Type Source Product
Code

Specificity 
& Target

References

Anti-ER
alpha

Rabbit
Polyclonal

Santa Cruz 
Ltd

HC-20
sc:543

(h)ER-alpha 
C terminus

Evans, R.M. 
1998

Anti-ER
beta

Rabbit
Monoclonal

Millipore Ltd 04-824
(68-4)

Full length 
ER-beta 
(h, r, m)

Zhu, Y., et al. 
2002

Anti-ER
beta

Rabbit
Polyclonal

Pierce Ltd PA1-311 55KDa ER- 
beta (h, m)

Biol. Re prod , 
60:691-697, 

1999
Anti-ER

beta
Mouse

Monoclonal
Calbiochem GR40 53KDa ER- 

beta (h)
Shughrue, 
P.J. et al. 

1998
Anti-ER

beta
Mouse

Polyclonal
Gene Tex 

Inc.
GTX70182
(7B10.7)

ER-beta
(h)

Nicole. R. 
Bianco., et 

al. 2003
(NFkB)

Anti-p65
Rabbit

Polyclonal
Santa Cruz 

Ltd
C-20 

Sc: 372
NFkB p65 
C-terminus 

(h)

Meyer, R., et 
al 1991

Secondary
Rabbit

IgG

Whole
Molecule

IgG

Rockland
Ltd

011-0102 Precipitated 
against 

Anti-Rabbit 
Serum and 

IgG

Active Motif 
Europe

Secondary
Mouse

IgG

Whole
Molecule

IgG

Rockland
Ltd

010-0102 Precipitated 
against 

Anti-Mouse 
Serum and 

IgG

Active Motif 
Europe

Figure 2-6 Table of Antibodies used for Chromatin Immunoprecipitation and 
references
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2.10.2 Q-RT-PCR post ChIP

Q-RT-PCR reactions were set up as follows: 12.5pL Power Sybr Green 

Master Mix containing iTaq polymerase (Applied Biosystems), 3.5pL distilled 

MilliQ water (Millipore), 2pL sense and 2pL antisense primer at 5|iM (SIGMA) 

per sample. Q-RT-PCR reactions were performed in triplicate in translucent 

MicroAmp Fast Optical 96-well reaction plates and run on the StepOnePlus 

Real-Time PCR Thermal Cycling Block (Applied Biosystems). Plates were 

heated for 95°C for 10 minutes to initiate the DNA polymerase enzyme that 

requires a hot start and Real Time (RT) data collected during 39 cycles 

comprising of 95°C for 15 sec and 1h at optimum annealing temperature for 

specific primer sets. Melt curve data was collected during 1 cycle of 15 sec at 

95°C, 1h at 60°C followed by a set point increase in 0.3°C increments to an 

end-point temperature of 95°C. Q-RT-PCR data was analysed on the 

StepOnePlus v2.1 Software (Applied Biosystems) and the CFX Manager v1.6 

Software (Bio-Rad).

2.10.3 Genomic Primers for Q-RT-PCR post ChIP

Specific genomic primers for NFkB (p65), Sp1 and Ap1 (ER) sites were 

designed by inputting the NCBI promoter sequence for RAGE and MUC1 into 

the Primer Express v3.0 software (Applied Biosystems, USA) and verified 

using the Beacon Design 2.0 program (Premier Biosoft, USA). Primer 

Express software design parameters were left unchanged if suitable primers 

of an amplicon length between 50-150bp could be generated with annealing 

temperature (Ta) of 60°C. If necessary, the following parameters were 

amended to avoid the formation of secondary structures and dimers: 

amplicon length, % of C&G base content (40-70%) and number of C&G
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bases at the 3’ end. It was recommended by the manufacturers of the ChlP- 

IT Express Kit, Active Motif, that the difference between the melt temperature 

(Tm) of sense and anti-sense should not exceed 3°C. Prior to use in Q-RT- 

PCR, primers were optimised for concentration against serial dilutions of 

HeLa (0.45ng/mL, Invitrogen) genomic DNA template. The standard curves 

were checked for an R2 efficiency of between 0.90 (95%) and 1.10 (110%). 

Melt curves were also checked for the absence of primer dimers at low DNA 

template concentrations and one single inflection, indicating the amplification 

of a single product (see Appendix B3).

Promoter Site Primer Primer Sequence 5’-3’ Amplicon
NFkB p65 Site 1
(-1518/-151 Obp) 

Ap1 Site 
(-1542bp)

For AT AGAAT CGCT CGGT GG ACG Tm = 77.98 

Ta = 60 

101 bp

Rev GTT C AACCCC AAAGCCC AGT

NFkB p65 Site 2
(-671/-673bp)

For AGT AACAT C AACACT GT CCC AT CCT Tm = 77.9 
Ta = 60 

99bpRev GGTT CCCCACT CT GACAGT CTT

NFkB p65 Site 3
(-467/-458bp)

For AAAAAACAT G AGAAACCCCAGAAA Tm = 76.96 
Ta = 60 
104bp

Rev AATT GGGCCT GCAT CAT GA
ER Sp1 Site 1
(-189/-181 bp)

ER Sp1 Site 2
(-172/-166bp)

For CCCCCAGGGAAGT GACT GT A
Tm = 77.3 

Ta = 60 

88bp
Rev GG ACAAGAGT CCTT CAGGT ACT AGA 

GA

ER Sp1 Site 3
(-45/-39bp)

For AATT CCT AGCATT CCCT GT GACA
Tm = 84.72 

Ta = 60 
158bp

Rev GCC AT CCT GCTT CCTTCCA

Figure 2-7 Table: Genomic primer sequences for the p65, Sp1 and Ap1 sites 
on the RAGE promoter
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Promoter Site Primer Primer Sequence 5’-3’ Position Amplicon

NFkB Site 1
(-584bp)

For GGGACAGGGAGCGGTTAG 464 93bp
Tm=80.4
Ta=53.4Rev GGCT GGAT AAT GAGTGGAC 

TAG
556

NFkB p65 Site 2 
(-444bp)

ER site 1 (-452bp) 
ER Site 2 (-432bp) 
ER Site 3 (-417bp) 
ER Site 4 (-411 bp)

For CCGCTCT GCTT C AGTGG AC 573 101 bp 
Tm=83.1 
Ta=56.7

Rev AGCCAGCT AGGT CGAGGTC 673

Figure 2-8 Table: Genomic primer sequences for the p65 and ER sites on the 
MUC1 promoter

2.11 Analysis of Quantitative Real Time PCR for ChIP

The ‘pull down’ of an antibody is defined as the amount of DNA to which the 

protein of interest has bound for a particular site, region or length of DNA 

(specified by the genomic primer). The Input sample is the same chromatin 

used in the experiment (standardized across biological samples), but does 

not undergo immunoprecipitation (IP) with the antibody. In these 

experiments, it represents the total amount of DNA at the site or defined 

region in 20pg of sheared chromatin starting material.

2.11.1 ER-alpha ChIP

Real Time Quantitative PCR Data for ER-alpha ChIP on the RAGE promoter 

was analysed on the Step One Plus Version 2.1 Software program (Applied 

Biosystems) using the analysis method provided by researchers at 

epigenetics company Active Motif Europe (Rixensart, Belgium) who 

manufacture the ChlP-IT Express kit utilised in this project. Q-RT-PCR for 

ChIP was performed in triplicate per sample as described (section 2.10.2). 

On the Step One Plus software, the threshold cycle (Ct) value for an
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individual sample on the PCR plate is calculated against an individual 

baseline threshold automatically set by the program. In order to compare the 

Ct values of the Input, Antibody and IgG samples relative to each other, the 

baseline threshold of these samples must be set the same. Therefore, the 

individual baseline threshold values of the selected Input, Antibody and IgG 

data were exported into an Excel spreadsheet to calculate the average 

baseline threshold. In the analysis, the Input, Antibody and IgG data for each 

target were highlighted and the average baseline threshold value manually 

set against the samples by deselecting the automatic default settings and 

pasting in the new baseline threshold. Once the analysis settings were 

applied, the Ct values in the well table were re-analysed automatically. The 

re-analysed Ct values are now calculated from where the amplification signal 

(measured in RFU) from the Input, Antibody and IgG sample crosses the 

average baseline threshold. The PCR Ct values were then exported into 

Excel worksheets as raw threshold cycle data for further analysis.

2.11.2 NFkB p65 ChIP

Real Time Quantitative PCR Data for NFkB-p65 on the RAGE and MUC1 

promoters was analysed on the CFX Manager Version 1.6 Software program 

(Bio-Rad) using the same analysis method as on the Step One Plus Software 

(Applied Biosystems). In the CFX analysis program, Input, Antibody and IgG 

samples were highlighted and grouped per target and an auto-calculated 

baseline threshold was assigned to the data. The auto-calculated baseline in 

the CFX software is already the average baseline threshold of all the samples 

within the group. For this reason it is not necessary to export individual 

thresholds into Excel to calculate it. In order to compare the threshold cycle

(Ct) values of Input, Antibody and IgG samples relative to each other, the
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same auto-calculated baseline threshold was applied across all biological 

samples within an experiment. In this way, Input, Antibody and IgG pull-down 

for a specific target in the untreated ChIP sample will be relative to the Input, 

Antibody and IgG pull-down for the same target in the treated ChIP sample. 

The PCR Ct values were then exported into Excel worksheets as raw 

threshold cycle data for further analysis.

2.11.3 Analysis of ChIP Data using the AACt Method

This method of analysis of Q-RT-PCR is known as the AACt method (Livak 

and Schmittgen 2001). Application of the AACt method relies on the primer 

efficiency for the Input, ChIP antibody and negative IgG samples being equal. 

To achieve this, genomic Q-RT-PCR primers were optimised for 

concentration against genomic HeLa DNA standard curves of various 

template dilutions prior to ChIP experiments (section 2.10.3). Furthermore, 

Input, Antibody and IgG samples were run under the same conditions on the 

same 96 well plate. Primers were designed to have amplicons less than 

150bp and all had an R2 efficiency value between 0.9-1.0. In this study, 

chromatin was used un-diluted in the ChIP reactions therefore the dilution 

factor is 1. The amount of target DNA (bound by protein of interest at a 

specific site) is simply subtracted from, and is relative to, the reference Input 

sample (total DNA). The formula for calculating the binding of the antibody 

and negative IgG using the AACt method, where the dilution factor is one and 

primer efficiency (E) is 100%, is as follows:
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C h IP  A n t ib o d y  P u ll D o w n  (% )

= (2 " ( ln p u t  C t - C h IP  A n t ib o d y  C t) ) *D ilu t io n  F a c to r * E  

N e g a t iv e  C o n tro l Ig G  A n t ib o d y  P u ll D o w n  (% )

= (2 A( ln p u t C t - Ig G  A n t ib o d y  C t) ) *D ilu t io n  F a c to r * E

Threshold (Ct) values for the Input, Antibody and negative control antibody 

(IgG) for each biological sample were exported into a Microsoft Excel 

spreadsheet. If necessary, one outlying Ct value per sample in triplicate was 

excluded from the analysis. The ‘pull-down’ of the antibody was calculated as 

a percentage of the DNA in the Input sample (% Input DNA) for each Ct value 

using the above formula. The average ‘pull-down’ value was calculated for 

the ChIP Antibody and IgG antibody from the individual pull down values 

generated from the individual Ct values. Average pull-down values were 

plotted on an Excel graph as a % of the Input DNA. Error bars were 

generated from the standard deviation (SD) of the individual pull-down 

values.

G4 ▼   A  j = ( 2A( C4- D4) ) * F4*100
/  B C D  E F  G H I J K L r

2 S am ple Input (Ct) AB (Ct) IgG (Ct) DF AB (%) IgG (%) M ean  AB M ean IgG SD AB SD IgG
3 A 22.325224 34.01531 38.9826 1 0.030265 0.000967 0.016104 0.001395 0 002884 0 000605
4 22.325657 34.75391 38.06927 1 0.018144 0.001823
5 22.28038 35.07597 38 43841 1 0.014065 0.001368
6 B 22.555117 33.62119 34.2614 1 0 046642 0 029927 0.044603 0.0273829 0 002884 0 003597
7 22.453661 33.65173 34.42875 1 0 042564 0 024839
8 C 23 717905 32 70681 35 10784 1 0 196821 0 037264 0.214629 0.0292178 0 028048 0 011379
9 23 710665 32 67568 35 91623 1 0 200107 0 021172
10 23 867149 32 52865 35.4-4514 1 0 246961 0 03271

Figure  2-9 Exam ple o f Q-RT-PCR ChIP data ana lys is  in Excel sp readshee t

Figure 2.9 shows an example of the analysis for Q-RT-PCR ChIP data. The equation 

in the formula bar shows the equation for the antibody pull-down calculation of the 

highlighted cell.
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2.12 Immunohistochemistry (IHC) for ERa and ERp in HEC-1 cells

Preparation of IHC slides for cultured cells was as follows: Cells were 

washed twice in 10mL DPBS in culture vessel and removed from the culture 

substrate by incubation <5 min at 37°C with 1mL 0.25% Trypsin 1mM EDTA 

(pH 8) in Hanks' Balanced Salt Solution (HBSS) containing phenol red 

(without CaCb and MgCl2). Cells were checked for detachment using an 

inverted light microscope and the trypsin neutralised with the addition of 

10mL media. Cells were centrifuged at 12,000g for 5 min at room 

temperature and 2mL basic culture medium (DMEM/F12 for HEC-1A, 

Ishikawa and Heraklio and BME for HEC-1 B) supplemented with 10% DCC- 

FBS was used to resuspend the cell pellet. 100pL of cell suspension (1 x 105 

approx.) were fixed to glass slides with 5 min cytopspin centrifugation. Slides 

were air dried and fixed 10min at -4°C in absolute (100%) methanol. Slides 

were briefly air-dried to evaporate the methanol, placed in a metal slide rack 

inside a pressure cooker to boil for 3 min in Antigen Retrieval Buffer (10mL/L 

Citrate Buffer pH 6.0 Cat. No: H3300). Slides were cooled under running 

water to room temperature and washed twice for 5 min in 1X Tris-Buffered 

Saline (TBS): 8g Sodium Chloride (SIGMA), 2.42g Tris Base (SIGMA) in 1L 

distilled MilliQ water (Millipore) supplemented with 0.5% Triton X-100 

(SIGMA). Slides were blocked for 1h at room temperature in 1X TBS (990jiL )  

with 10% (1 OjllL ) Goat serum and 1% BSA (10mg) filter-sterilised using 

0.2mm cap and 10mL syringe (BD Plastipak). IHC for ER-beta expression 

used a primary antibody raised in goat so the serum in the blocking solution 

was substituted with 10% (1 OjllL ) donkey serum. Slides were gently washed 

twice with 1X TBS with 0.5% Triton X-100 (TBSX) to remove blocking 

solution. Slides were incubated at 4°C overnight on a rotary agitator in either
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100|iL rabbit anti-ERa antibody (HC-20 sc: 573, Santa Cruz) diluted 1:100 in 

1% BSA-TBS or goat anti-ERp antibody (L-20 sc: 6822, Santa Cruz) diluted 

1:50 in 1% BSA-TBS. The following day, excess primary antibody was 

removed by gentle washes with TBSX. Slides were incubated at room 

temperature for 30 min in secondary antibody (2.5pL) diluted (1:400) in 

970pL Phosphate Buffered Saline with 0.5% Triton X-100 (PBSX) and 

goat/donkey serum (30pL). Avidin-Biotin peroxidase Complex (ABC, Vector 

Laboratories Ltd, UK) was immediately prepared (reagent A 9 jliL, reagent B 

9 jiL 1:1 in 5 0 0 jiL TBSX) in a dark room. Slides were washed briefly in TBSX 

to remove excess secondary antibody. 100pL vector ABC stain was 

administered to each slide and left to incubate for a further 30 min in the dark 

room. Slides were washed twice in TBSX for 5 min. Whilst in the last wash, 

the DAB stain solution was prepared in a fume hood: 1 drop Buffer pH 7.5 

(BSS), 2 drops diaminobenzidine (DAB) and 1 drop hydrogen peroxide 

solution (HPS) in 2.5mL distilled MilliQ water (Millipore). Slides were left in 

the dark room for 5-25 min to stain for the secondary antibody in 100pL of 

DAB stain solution. After this time, the DAB solution was removed and 

transferred into a sealed container and disposed as biohazard clinical waste 

(appropriate for carcinogenic substances). Slides were washed briefly in 

distilled water (Millipore) and stained for 1min in Haematoxylin (nuclear stain) 

followed by another brief wash in MilliQ water. Slides were washed 3 min in 

weak alkaline Scott’s tap water which acts upon the Haematoxylin stain and 

deepens it’s colour from red to reddish-brown thus aiding microscopy. To 

stain for cell cytoplasm, slides were incubated 1 min in Eosin stain, followed 

by incubation 3 min in a dilution series of 50%, 70%, 90% ethanol. Slides

were left for 5 min in 100% xylene before being air-dried and mounted with
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cover slips in a fume hood using xylene with di-n-butylphthate (DPX). Slides 

were left 2h or overnight in a fume hood before inspection under microscope.

2.12.1 Immunohistochemistry (IHC) for paraffin-embedded samples

Immunohistochemistry on archived paraffin-embedded samples was 

undertaken at Singleton Hospital, Swansea. Samples were previously fixed in 

10% formaldehyde for 24h at the time of endometrial biopsy, paraffin 

embedded and sectioned to 4pm. Sections were removed of paraffin (de­

waxed) with xylene, incubated through a series of methanol grades and fixed 

onto slides for staining with haematoxylin and eosin for the nuclear and 

cytoplasmic compartments respectively. The Ventana machine (Ventana 

Biotek Solutions, Tucson, AZ, USA) at Singleton Hospital uses a barcode 

system to recognise each slide. Slides were heated in citrate buffer CC1 

(Ventana) on a benchmark XT processor to 100°C for 1h for antigen retrieval. 

100pL of primary antibody was added per slide and incubated at a specific 

temperature and length of time according to the antibody requirements. The 

Ventana machine uses a multiple biotinated secondary antibody detection kit 

which is compatible with all primary antibodies except those raised in goat. 

Staining was visualised using the Ventana I View DAB solution that is 

sensitive to the interaction between Avidin-Biotin peroxidase Complex (ABC) 

solution and the secondary biotinated antibody. Slides were counter-stained 

1 min with 100pL Haematoxylin stain at room temperature, incubated in 

xylene 5 min, left to air-dry and mounted in DPX.
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2.12.2 Scoring and Statistical Analyses

Immunohistochemical data was generated using a scoring system where 

slides are scored simultaneously by three independent observers on a multi­

headed microscope (Lai, Shih le et al. 2005). Slides for established cell lines 

were produced in triplicate per sample and a representative area of 20 cells 

chosen per slide. Positive red-brown stain was scored for intensity where 0 is 

absent and 4 is very strong. Slides were also scored for stain distribution 

throughout the tissue section as follows: 0 - absent, 1 - less than 30%, 2 - 30- 

60%, 3 - more than 60% and 4 - 100%. Positive (human lung tissue) and 

negative (endometrial tissue lacking antibody) control sections were used for 

reference. Primary tissues exhibit non-uniform cellular staining therefore the 

tissues were scored independently for the epithelium, stroma and glandular 

lumen compartments. The sections were first scored according to the % 

distribution of positive staining across the tissue and scored again for stain 

intensity. Data was subject to the Kolmogrovov-Smirov normality test to find 

whether the stain was normally distributed (p= >0.150) or not normally 

distributed (p=<0.150). Normally distributed data was analysed using the 

ANOVA (SPSS) test for parametric data. If the data was not normally 

distributed, the scoring results for the combined data of all the samples was 

analysed using the Kruskall Wallace test followed by the Mann Whitney test 

(Margarit, Gonzalez et al. 2009). These tests will show the significance of 

differences within the whole combined data set and the significance of the 

differences between the grouped pathologies respectively.
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CHAPTER 3

Expression of Receptor for Advanced 
Glycation End products (RAGE) in fertile and 

infertile human endometrium

84



simpler j cApicssiun in len n e  anu liiiciu ic eiiuumciiium

3. Expression of Receptor for Advanced Glvcation End products in 
fertile and infertile human endometrium

3.1 Introduction

The endometrium is a complex tissue comprising of mesenchymal-derived 

stroma, glandular and luminal epithelia, vascular smooth muscle and 

leukocytes. Its unique cyclical disintegration and regeneration is closely 

regulated by pituitary-released gonadotropins and ovarian sex steroid 

hormones (Chan 2004). Consequently, the natural state of the endometrium 

is governed by factors impacting on ovarian function and may be reflected in 

the expression of RAGE. During the late proliferative and secretory phase of 

the menstrual cycle, the endometrium responds to estrogens released during 

ovum maturation prior to ovulation. Endometriosis is a disorder of the 

endometrium which can largely be attributed to abnormal or excessive 

estrogen levels causing proliferation of endometrial-like cells outside the 

uterine cavity (Garry 2004). Endometriotic and PCO endometrial cells show 

significantly greater expression of ERa than fertile controls suggesting that 

pathology-associated excess estrogen could increase transcriptional activity 

of ERa target genes (Lessey, Palomino et al. 2006; Margarit, Taylor et al. 

2010). Promoter studies of RAGE in human and bovine aortic, and human 

skin endothelial cells have identified it as an ER target gene directly regulated 

by ERa recruited by the Sp1 transcription factor (Li 1998; Tanaka, Yonekura 

et al. 2000). Studies have shown that the membrane-tethered receptor RAGE 

and its soluble form sRAGE are elevated in the ovaries and serum of women 

with PCOS (Diamanti-Kandarakis, Piperi et al. 2007; Diamanti-Kandarakis, 

Katsikis et al. 2008). In the same way endometriotic lesions respond to
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elevated levels of estrogen, PCO endometrium responds to excess 

androgens and AGEs.

Upon RAGE ligation AGEs have been shown to activate dissociation of p- 

catenin from its anchorage to E-cadherin on the cell membrane in bovine and 

human vascular endothelium (Otero 2001). Liganded androgen receptor (AR) 

has been shown to form a transcriptional complex itself with free p-catenin 

upon its release (Yang, Li et al. 2002). AGE-RAGE interaction indirectly 

stimulates ERK 1/2 MAP kinases bound to the RAGE cytoplasmic c-terminal 

domain (Ishihara, Tsutsumi et al. 2003). ERK 1/2 phosphorylates the steroid 

receptor TIF2 which post translocation assembles with the androgen/AR/p- 

catenin complex in the nucleus (Song, Herrell et al. 2003). Here, this complex 

induces chromatin remodelling, polymerase and p300 recruitment and 

initiates transcription of AR target genes including MUC1. In this way RAGE 

could potentially increase AR and NFkB transcriptional activity through the 

up-regulation of p-catenin and the MAPK pathways. Basal levels of cellular 

RAGE are influenced by levels of AGE, free androgens and expression of 

AR. Thus, it can be hypothesised that hyperandrogenism, specifically free 

testosterone, excess estrogen and elevated AGEs in infertile disorders lead 

to over-expression of RAGE and possibly MUC1, the latter perhaps being 

RAGE dependent (see Ch.4). Moreover, it could also be argued that RAGE 

displays cyclical basal expression and may reflect the estrogenic cellular 

environment during the secretory phase due to maintenance of estrogen 

levels in endometriosis (Lessey 2002). The work in this chapter aims to 

characterise basal RAGE transcript expression in endometrial epithelial cell 

lines and primary endometrial tissue and epithelial cells. Endometrial biopsy 

specimens were grouped according to menstrual cycle phase to ascertain
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whether RAGE expression is influenced by the stage of endometrial 

development. RAGE expression was also investigated at the protein level in 

glandular and luminal endometrial epithelium and endometrial stroma from 

infertile PCO and endometriotic pathology compared to fertile controls.

3.2 Clinical Data and Patient Demographics for RAGE IHC

Patient data was analysed using the statistical Anderson-Darling and two- 

tailed student T-tests (Fig. 3.1). Patients with a BMI over 40 and/or over 45 

years of age were excluded from the study. In total eighty seven (87) patients 

were enrolled into this study. 32 endometrial samples were obtained from 

patients in the proliferative phase, 41 samples were obtained during the 

secretory phase of the cycle at LH+6 and 14 samples were from patients with 

anovulatory PCOS. These samples were classified into 4 groups: fertile 

(n=21), endometriosis (n=29), ovulatory PCOS (n=23) and anovulatory PCOS 

(n=14). There were no statistically significant differences in the mean age and 

BMI between the fertile and infertile patient cohorts (Fig. 3.1).

Fertile Endometriosis Ovulatory PCOS Anovulatory PCOS

AGE 29.58 ±4.12 28.63 ± 4.55 28.72 ± 5.06 25.1 ± 4.4

P=0.727 P=0.777 P=0.267

BMI 26.70 ± 4.82 27.54 ± 3.08 26.65 ± 3.34 28.15±2.3
(Kg/m2) P=0.753 P=0.985 P=0.591

Figure 3-1 Patient demographics for human endometrial biopsy specimens

Table shows mean age and body mass index (BMI) ± SD of patients recruited 
to the study assessing RAGE expression in endometrial pathologies by IHC.
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3.3 RAGE is expressed in fertile and infertile proliferative phase 
endometrium

RAGE protein expression has previously been characterised in ovarian 

tissues from PCOS patients (Diamanti-Kandarakis, Piperi et al. 2007) and in 

ectopic endometriotic stromal cells (Sharma, Dhawan et al. 2010). However, 

at the time of writing, expression of RAGE in human eutopic endometrium 

was yet to be determined. In the following study, RAGE expression was 

investigated in 32 endometrial samples in the proliferative phase of the cycle 

and 14 anovulatory PCOS patients. Localisation of RAGE to the glandular 

and luminal epithelium and stroma of proliferative endometrium was 

confirmed using a RAGE-specific antibody. Immunohistochemistry from 

fertile, endometriosis, ovulatory PCOS and anovulatory PCOS patients were 

scored for intensity and distribution of RAGE positive red-brown stain (H- 

score) and analysed using the Mann-Whitney statistical test for non- 

parametric data. Data was determined to be non-parametric by the Anderson- 

Darling and Kruskall-Wallace normality and distribution statistical tests.
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Figure 3-2 RAGE is expressed in proliferative phase fertile and infertile 
endometrial glandular epithelium.

Box plot shows RAGE protein levels in endometrial biopsy specimens in the 
proliferative (P) phase of the menstrual cycle by IHC (A). 46 patients were 
grouped by pathology as follows: Fertile (n=9), Endometriosis (n=11), 
ovulatory (ov) PCO (n=12) and anovulatory (anov) PCOS (n=14). IHC samples 
were scored blind in triplicate by three independent observers. Values given 
are mean H-score. Data was analysed using the statistical Mann-Whitney test. 
Data shown is group P value vs. Fertile (P) group where P<0.05 is significant 
(B).

Figure 3.2A shows statistically significant elevated RAGE protein expression 

in the glandular epithelium of infertile pathologies versus fertile controls. The 

median H-score for RAGE protein expression in endometriotic glands was 4 

fold greater than levels in fertile proliferative phase glandular epithelium (Fig. 

3.2B, p=0.041). Individuals in the proliferative ovulatory PCO group showed

more variation in glandular RAGE expression than the anovulatory PCOS
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women. However, the median H-score of both PCO groups was 6 and 5 fold 

greater than in proliferative phase fertile glands (Fig. 3.2B, p=0.041, 

p=0.040). Stronger staining for RAGE protein in the proliferative phase 

glands can be seen in Fig. 3.6 in infertile endometrium and was particularly 

elevated in glandular epithelium of ovulatory PCO pathology.

Luminal Epithelium

1
Fertile (P)

T

Endom (P)
i

ov PCOS (P)
i

anov PCOS

Lumen Endom (P) ovPCOS(P) anov PCOS

P values. Fertile (P) vs 0.157 0.044 0.042

Fold Change 3.0 5.0 4.0

B

Figure 3-3 RAGE is expressed in proliferative phase fertile and infertile 
endometrial luminal epithelium.

Box plot shows RAGE protein levels in endometrial epithelial lumen in the 
proliferative (P) phase of the menstrual cycle by IHC (A). 46 patients were 
grouped by pathology as follows: Fertile (n=9), Endometriosis (n=11), 
ovulatory (ov) PCO (n=12) and anovulatory (anov) PCOS (n=14). IHC samples 
were scored blind in triplicate by three independent observers. Values given 
are mean H-score. Data was analysed using the statistical Mann-Whitney test. 
Data shown is group P value vs. Fertile (P) group where P<0.05 is significant 
(B).
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Figure 3.3A shows a distinct 3 fold increase in the median H-score for luminal 

epithelial RAGE expression in proliferative phase endometriosis compared to 

fertile controls. However, there was no statistical difference between the two 

groups (Fig. 3.3B, p=0.157) which may be due to greater variation between 

individuals in the endometriosis group. Basal RAGE expression was 

significantly greater in the endometrial luminal epithelium of women with 

proliferative phase ovulatory and anovulatory PCOS than in fertile controls 

(Fig. 3.3B, p=0.044, p=0.042). Compared to proliferative phase fertile 

endometrium, the median H-score for RAGE protein was 5 fold higher in the 

ovulatory, and 4 fold higher in anovulatory PCO epithelial lumen (H=2.5 and 

2.0 vs. 0.5). Some individuals within the proliferative phase ovulatory PCOS 

group displayed greater RAGE expression in the luminal epithelium than 

those who did not ovulate. With regard to the median H score across all 

infertile endometrial pathologies, the expression of glandular RAGE (Fig 

3.2A) appeared to be greater than in the lumen (Fig. 3.3A) however this has 

not been statistically proven. The results in Fig. 3.2A and Fig. 3.3A did 

demonstrate however, that the receptor was differentially expressed in fertile 

and infertile endometrial epithelium.
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Figure 3-4 RAGE is expressed in proliferative phase fertile and infertile 
endometrial stroma.

Box plot shows RAGE protein levels in endometrial stromal cells in the 
proliferative (P) phase of the menstrual cycle by IHC (A). 46 patients were 
grouped by pathology as follows: Fertile (n=9), Endometriosis (n=11), 
ovulatory (ov) PCO (n=12) and anovulatory (anov) PCOS (n=14). IHC samples 
were scored blind in triplicate by three independent observers. Values given 
are mean H-score. Data was analysed using the statistical Mann-Whitney test. 
Data shown is group P value vs. Fertile (P) group where P<0.05 is significant 
(B).

Figure 3.4A shows RAGE protein expression in proliferative phase 

endometrial stroma of women with endometriosis was reduced 0.7 fold than 

in fertile controls. However, this reduction in endometriotic stromal RAGE 

was not statistically significant from the fertile group (Fig. 3.4B, p=0.643). 

When compared to fertile epithelium, increased stromal RAGE was only
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observed in the PCO pathologies (Fig. 3.4A). The anovulatory PCOS women 

had a higher median H-score for stromal RAGE than the fertile women (1.5 

fold) however, the greatest RAGE expression was observed in proliferative 

phase ovulatory PCO stromal cells (1.7 fold vs. fertile group). Similarly, when 

compared to fertile women, RAGE also showed greater expression in PCO 

glands (Fig. 3.2A) and lumen (Fig. 3.3A). Immunohistochemical images 

demonstrated how RAGE staining was strongest in the proliferative phase 

stroma of PCO pathology, whereas proliferative phase fertile and 

endometriotic stromal cells presented weaker positive staining for RAGE (Fig. 

3.6).

66
45

31

21.5

14.5
6 5

Figure 3-5 Anti-RAGE antibody used in the RAGE IHC study on human fertile 
and infertile endometrial specimens

The mouse monoclonal Anti-RAGE antibody was specific to the extracellular 
domain of RAGE and recognises both natural and recombinant protein. This 
antibody therefore would identify the full-length membrane tethered protein as 
well as various forms of soluble and secreted RAGE that possess the protein 
N-terminal variable (V) domain.

Representative IHC images taken of fertile and infertile endometriotic and 

PCO human endometrium in Fig. 3.6 and Fig. 3.10 showed a lack of 

membrane staining for RAGE. Therefore it is likely that the mAbA11 antibody 

used in this study preferentially binds to other RAGE isoforms possessing the 

extracellular region.

RAGE in 10pg bovine luny extract 

  Recombinant truncated RAGE

Mouse Monoclonal Anti-RAGE Antibody mAbA11 (Millipore) 
Species Reactivity; M, H. B
Epitope: Extracellular V-domain of the RAGE receptor (48kDa)
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Figure 3-6 Immunohistochemical localisation of RAGE in the proliferative 
phase endometrium of fertile and infertile patients.

RAGE expression in proliferative phase endometrial glands, lumen and 
stroma of fertile women, and infertile women with endometriosis, ovulatory 
PCOS and anovulatory PCOS (as indicated). Slides were stained with negative 
purple H&E stain for the nuclear and cytoplasmic cell compartments. RAGE 
protein is indicated by positive red-brown staining. Representative IHC 
images were taken using the Axio CamHRc colour camera (Zeiss) at x20 
magnification.
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Figure 3.6 shows visualisation of RAGE protein in the proliferative 

endometrium. Epithelial RAGE staining in proliferative phase endometrium 

was stronger in infertile ovulatory PCOS, anovulatory PCOS and 

endometriosis than in fertile epithelium (Fig. 3.2A, Fig. 3.3A and Fig. 3.6). 

RAGE staining was predominantly strongest in the glands of infertile 

endometriotic, ovulatory PCO and anovulatory PCO endometrium when 

compared to luminal epithelial RAGE. In contrast, there was no difference 

between the intensity of staining for glandular and luminal RAGE in fertile 

endometrium (Fig 3.6). Increased stromal RAGE staining was evident in 

infertile PCO versus endometriotic and fertile endometrium. In addition, 

endometriotic stroma displayed weaker staining for RAGE than in fertile 

stroma (Fig. 3.4A and Fig. 3.6). Taken together, these novel results 

demonstrate that proliferative phase fertile and infertile endometrial cells 

express RAGE. RAGE was particularly elevated in ovulatory and anovulatory 

PCO endometrium across all cell subtypes in comparison to fertile controls, 

whereas endometriotic cells displayed greater epithelial RAGE and 

comparable stromal RAGE levels to fertile endometrium (Fig. 3.6).

3.4 RAGE is expressed in fertile and infertile secretory phase 
endometrium

In the following study, RAGE expression was investigated in 41 endometrial 

samples in the secretory phase of the cycle and 14 anovulatory PCOS 

patients. Localisation of RAGE to the glandular and luminal epithelium and 

stroma of secretory endometrium was confirmed using a RAGE-specific 

antibody. Immunohistochemistry from fertile, endometriosis, ovulatory PCOS 

and anovulatory PCOS patients were scored blind by three independant

95



H
-s

co
re

i - n a p i e r  j expiessiun in leruie anu linerme enuumeuium

observers for the intensity and distribution of RAGE positive red-brown stain 

(H-score) and analysed using the Mann-Whitney statistical test for non- 

parametric data. Data was determined to be non-parametric by the Anderson- 

Darling and Kruskall-Wallace statistical normality and distribution tests.

Glandular Epithelium

3.5

3.0

2.5

2.0 J

1.5-
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Fertile (S) ov PCOS (S) anov PCOSEndom (S)

B
Glands Endom (S) ovPCOS (S) anov PCOS

P values. Fertile (S )vs . 0.031 0.046 0.016

Fold Change 3.0 2.5 2.5

Figure 3-7 RAGE is expressed in secretory phase fertile and infertile 
endometrial glandular epithelium.

Box plot shows RAGE protein levels in endometrial biopsy specimens in the 
secretory (S) phase of the menstrual cycle by IHC (A). 55 patients were 
grouped by pathology as follows: Fertile (n=12), Endometriosis (n=18), 
ovulatory (ov) PCO (n=11) and anovulatory (anov) PCOS (n=14). IHC samples 
were scored blind in triplicate by three independent observers. Values given 
are mean H-score. Data was analysed using the statistical Mann-Whitney test. 
Data shown is group P value vs. Fertile (S) group where P<0.05 is significant 
(B).
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Figure 3.7A shows significantly elevated RAGE expression in secretory 

phase glandular epithelium of the infertile pathologies versus fertile controls. 

The median H-score for RAGE protein expression in secretory phase 

endometriotic glands was 3 fold greater than in fertile glands (p=0.031). In 

endometriosis, epithelial RAGE was only significantly elevated in secretory 

phase glands when compared to fertile controls (Fig. 3.7A). These results 

suggest that the elevated RAGE mRNA in secretory phase endometriotic 

epithelium (Fig. 3.14A) may only translate to an increase in glandular RAGE 

protein. In secretory phase endometriotic endometrium, glandular RAGE 

appeared to be higher than in proliferative phase endometriotic endometrium 

(H=3.0 Fig. 3.2A vs. H=2.0 Fig. 3.7A), despite a smaller fold difference (3 fold 

vs. 4 fold) when compared to fertile glands. This is likely due to elevated 

RAGE in the fertile glands during the secretory phase, however cross 

comparisons between tissue subtype and menstrual cycle stage have not 

been statistically proven. In fact, anovulatory PCOS patients were evaluated 

independently of menstrual cycle phase due to characteristic anovulation and 

amenorrhea. Glandular epithelial RAGE in the secretory phase was more 

varied amongst individuals in the ovulatory PCOS group than the anovulatory 

PCO women, with some individuals scoring highly for RAGE (H=3.5). 

However, the median H-score for both PCO groups was 2.5 fold greater than 

in secretory phase fertile glands (Fig. 3.7B, p=0.046, p=0.016). These 

findings indicate similar levels of glandular RAGE in secretory phase 

ovulatory PCO and anovulatory PCO endometrium (Fig. 3.7A, H=2.5).
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Figure 3-8 RAGE is expressed in secretory phase fertile and infertile 
endometrial luminal epithelium.

Box plot shows RAGE protein levels in endometrial epithelial lumen in the 
secretory (S) phase of the menstrual cycle by IHC (A). 55 patients were 
grouped by pathology as follows: Fertile (n=12), Endometriosis (n=18), 
ovulatory (ov) PCO (n=11) and anovulatory (anov) PCOS (n=14). IHC samples 
were scored blind in triplicate by three independent observers. Values given 
are mean H-score. Data was analysed using the statistical Mann-Whitney test. 
Data shown is group P value vs. Fertile (S) group where P<0.05 is significant 
(B).

Figure 3.8A demonstrated that the basal level of RAGE in the secretory 

phase epithelial lumen of ovulatory and anovulatory PCOS women was 2 fold 

greater than in secretory phase fertile endometrium (Fig. 3.8B, p=0.038, 

p=0.026). Overall, the median H-score for luminal RAGE expression was the

Lumen Endom (S) ovPCOS (S) anov PCOS

P values. Fertile (S) vs. 0.863 0.038 0.026

Fold Change
0.0 2.0 2.0

Luminal Epithelium

0 0

0 0
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same for secretory phase ovulatory PCOS and anovulatory PCOS (H=2.0), 

however some individuals within the ovulatory PCOS group expressed RAGE 

highly (H=3.0). There was no statistical difference between luminal epithelial 

RAGE expression in the secretory phase endometrium of fertile and infertile 

endometriosis pathology (Fig. 3.8B, p=0.86).
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Figure 3-9 RAGE is expressed in secretory phase fertile and infertile 
endometrial stroma

Box plot shows RAGE protein levels in endometrial epithelial stroma in the 
secretory (S) phase of the menstrual cycle by IHC (A). 55 patients were 
grouped by pathology as follows: Fertile (n=12), Endometriosis (n=18), 
ovulatory (ov) PCO (n=11) and anovulatory (anov) PCOS (n=14). IHC samples 
were scored blind in triplicate by three independent observers. Values given 
are mean H-score. Data was analysed using the statistical Mann-Whitney test. 
Data shown is group P value vs. Fertile (S) group where P<0.05 is significant 
(B).
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Figure 3.9A shows the median H-score for RAGE protein expression in the 

endometrial stroma of secretory phase endometriosis and ovulatory PCOS 

was twice (H=2, p=0.037) that observed in the fertile group (H=1). 

Furthermore, anovulatory PCO stroma also showed slightly greater (2.3 fold) 

basal RAGE protein expression (H=2.25, p=0.045) in comparison to 

secretory phase fertile stroma (Fig. 3.9B). These results indicate that stromal 

RAGE is elevated in the secretory phase endometrium of infertile 

endometriosis and PCOS patients with respect to fertile controls. However, 

unlike PCO stroma, endometriotic stroma only expressed significantly 

elevated RAGE during the secretory phase (Fig. 3.4A and Fig. 3.9A, B).
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Figure 3-10 Immunohistochemical localisation of RAGE in the secretory 
phase endometrium of fertile and infertile patients.

RAGE expression in secretory phase endometrial glands, lumen and stroma 
of fertile women, and infertile women with endometriosis, ovulatory PCOS and 
anovulatory PCOS (as indicated). Slides were stained with negative purple 
H&E stain for the nuclear and cytoplasmic cell compartments. RAGE protein 
is indicated by positive red-brown staining. Representative IHC images were 
taken using the Axio CamHRc colour camera (Zeiss) at x20 magnification.
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3.5 Clinical Data and Patient Demographics for RT-PCR

In total forty eight (48) patients were enrolled into this study. Whole 

endometrial tissue (epithelia and stroma) and epithelial endometrial cells 

were obtained from 16 patients in the proliferative phase. 22 samples were 

obtained during the secretory phase of the cycle at LH+6 and 10 samples 

were from patients with anovulatory PCOS. These samples were classified 

into 3 groups: fertile (n=18), endometriosis (n=20) and anovulatory PCOS 

(n=10). No PCOS patients were shown to be ovulatory and so this particular 

faction of PCOS women could not be assessed for RAGE transcript in this 

study.

Fertile Endometriosis Anovulatory
PCOS

AGE (Years) 33.27 ± 4.73 31.85 ±5.57 

P=0.510

29.13 ±6.71 

P=0.131

BMI (Kg/m2) 25.13 ±3.44 25.69 ±4.13 

P=0.678

24.14 ±3.18 

P=0.527

Figure 3-11 Patient demographics for human endometrial biopsy specimens.

Table shows mean age and body mass index (BMI) ± SD of patients recruited 
to the study used to assess RAGE mRNA in endometrial pathologies by real 
time PCR.

Patient data in Figure 3.11 was analysed using the statistical Anderson- 

Darling normality test and two-tailed student T-test. Patients with a BMI over 

40 and/or over 45 years of age were excluded due to evidence that levels of 

corporal endogenous AGEs naturally increase with time and are elevated in 

obese individuals. There were no statistically significant differences between 

the mean age and BMI of the fertile and infertile patient cohorts recruited to 

the RT-PCR study (Fig. 3.11).
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3.6 RAGE transcript is expressed in whole tissue and epithelial cells 
isolated from fertile and infertile proliferative phase endometrium

RAGE expression has been demonstrated in endometrial epithelium and

stroma of fertile women and infertile women with endometriosis and PCOS

(Fig. 3.6 and Fig. 3.10). RAGE mRNA expression was therefore investigated

in whole endometrial tissue and epithelial cells isolated from fertile,

endometriotic and PCO endometrium to determine whether RAGE transcript

varies with menstrual cycle phase or between fertilities. Upon investigation all

endometrial PCOS samples were found to be anovulatory. In total, 16 whole

and 10 epithelial samples in proliferative phase, and 20 whole and 11

epithelial samples in secretory phase were collected from patients recruited

to this study and were analysed by real time PCR (see Fig. 3.11).
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Figure 3-12 RAGE transcript is expressed in proliferative phase fertile and 
infertile human endometrium.

Box plot shows RAGE mRNA levels in whole tissue biopsy specimens in the 
proliferative (P) phase of the menstrual cycle by real time PCR (A). Values 
given are mean starting quantity (StQ) from PCR triplicates per sample 
normalised to RPL19. 16 patients were grouped by pathology as follows: 
Fertile P (n=3), Endometriosis P (n=6) and anovulatory (anov) PCOS (n=7). 
Data was analysed using the statistical Mann-Whitney test. Data shown is 
group P value vs. Fertile (P) group where P<0.05 is significant (B).

Fig. 3.12A demonstrates that RAGE transcript levels in the endometrium of 

infertile anovulatory PCO pathology were significantly greater than in fertile 

endometrium. This was reflected in a statistically significant (Fig. 3.12B, 

p=0.023) 11.2 fold increase in the median normalised StQ for RAGE 

transcript compared to the fertile group. The slight 1.5 fold increase in the 

median normalised StQ for RAGE expression, proliferative phase 

endometriotic endometrium was not statistically different from the fertile 

controls (Fig. 3.12B, p=0.897). These results indicated that RAGE mRNA
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was elevated in proliferative phase whole endometrial tissue of anovulatory 

PCOS women but not in proliferative phase endometriosis when compared to 

fertile individuals (Fig. 3.i2A). The levels of RAGE transcript were consistent 

with the significantly elevated RAGE protein expression in PCO endometrium 

and were also consistent with less prominent increases in protein in 

endometriotic tissue (Fig 3.2A, Fig. 3.3A and Fig. 3.4A). In order to assess 

the relative contribution of RAGE mRNA specifically within the epithelium, 

epithelial cells were isolated from proliferative phase endometrial tissue and 

the above experiments repeated.
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Figure 3-13 RAGE transcript is expressed in proliferative phase fertile and 
infertile human endometrial epithelium.

Box plot shows RAGE mRNA levels in epithelial endometrial biopsies in the 
proliferative (P) phase of the menstrual cycle by real time PCR (A). Values 
given are mean starting quantity from PCR triplicates normalised to RPL19. 10 
patients were grouped by pathology as follows: Fertile P (n=4), Endometriosis 
P (n=3) and anovulatory (anov) PCOS (n=3). Data was analysed using the

Epithelial E ndom etrial B iopsy

I

Fertile (P) Endom  (P)

l

Anov PCO S

Epithelial Biopsy Endom (P) anov PCOS
P values. Fertile (P) vs 0.859 0.052

Fold Change 1.4 5.6
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statistical Mann-Whitney test. Data shown is group P value vs. Fertile (P) 
group where P<0.05 is significant (B).

The results in Figure 3.13A demonstrate epithelial RAGE mRNA was 5.6 fold 

greater in proliferative phase endometrium of infertile anovulatory PCOS 

women than in fertile controls (p=0.052). In contrast, RAGE mRNA was only 

elevated 1.4 fold in proliferative phase endometriotic epithelium which was 

not statistically significant when compared to fertile controls (Fig. 3.13B, 

p=0.859). These data indicate that RAGE transcript was increased in 

proliferative phase anovulatory PCO endometrial epithelium but not in 

endometriotic epithelium. These results also correlate with the protein levels 

observed for RAGE in proliferative phase ovulatory and anovulatory PCO 

epithelial glands and lumen in the IHC experiments (Fig. 3.6).

3.7 RAGE transcript is expressed in whole tissue and epithelial cells 
isolated from fertile and infertile secretory phase endometrium

Secretory phase PCO and endometriotic endometrium expressed more 

RAGE in the epithelial glands (Fig. 3.7A) and stroma (Fig. 3.9A) than in fertile 

endometrium. In addition, secretory phase ov and anovulatory PCO 

endometrium also expressed greater luminal RAGE (Fig. 3.8A) than fertile 

women. It was therefore of interest to investigate the level of RAGE mRNA in 

secretory phase whole endometrial tissue and epithelial cells isolated from 

fertile and infertile women.
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Figure 3-14 RAGE transcript is expressed in secretory phase fertile and 
infertile human endometrium.

Box plot shows RAGE mRNA levels in whole tissue biopsy specimens in the 
secretory (S) phase of the menstrual cycle by real time PCR (A). Values given 
are mean starting quantity (StQ) from PCR triplicates per sample normalised 
to RPL19. 20 patients were grouped by pathology as follows: Fertile S (n=6), 
Endometriosis S (n=7) and anovulatory (anov) PCOS (n=7). Data was analysed 
using the statistical Mann-Whitney test. Data shown is group P value vs. 
Fertile (S) group where P<0.05 is significant (B).

Results in Figure 3.14A showed RAGE transcript levels in the endometrium 

of infertile endometrial pathology were significantly greater than in fertile 

endometrium. This was reflected in a statistically significant (Fig. 3.14B, 

p=0.008) 9.3 fold increase in the mean normalised StQ for RAGE mRNA in 

secretory phase endometriosis with respect to fertile tissue. Furthermore, the 

mean normalised StQ for RAGE mRNA was distinctly elevated 23.6 fold in 

secretory phase anovulatory PCO tissue when compared to fertile
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endometrium (Fig. 3.14B, p=0.008). These findings suggest that RAGE 

mRNA expression in endometriosis may be influenced by the menstrual 

phase as significantly elevated RAGE mRNA was only observed in secretory 

endometriotic endometrium (Fig. 3.14A).
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Figure 3-15 RAGE transcript is expressed in secretory phase fertile and 
infertile human endometrial epithelium.

Box plot shows RAGE mRNA levels in epithelial endometrial biopsies in the 
secretory (S) phase of the menstrual cycle by real time PCR (A). Values given 
are mean starting quantity from PCR triplicates normalised to RPL19. 11 
patients were grouped by pathology as follows: Fertile S (n=5), Endometriosis 
S (n=3) and anovulatory (anov) PCOS (n=3). Data was analysed using the 
statistical Mann-Whitney test. Data shown is group P value vs. Fertile (S) 
group where P<0.05 is significant (B).

Finally, the expression of RAGE transcript in secretory phase endometrial 

epithelium was assessed. The results in Figure 3.15A demonstrated RAGE 

mRNA was greater in secretory phase endometrial epithelium of infertile

Epithelial Endometrial Biopsy
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"■ ------ 1--
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Epithelial Biopsy Endom (S) anov PCOS
P values. Fertile (S) vs 0.036 0.036

Fold Change 2.9 7.4
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pathology than in fertile controls. RAGE mRNA was significantly increased 

2.9 fold in secretory phase endometriotic and 7.4 fold in anovulatory PCO 

endometrial epithelium (Fig. 3.15B, p=0.036) when compared to fertile 

controls. As observed in whole endometrial tissue, endometriotic epithelial 

cells showed elevated RAGE mRNA in secretory but not proliferative phase 

epithelium (Fig. 3.13A and Fig. 3.15A). Despite limited epithelial sample 

numbers, an increase in RAGE transcript was evident across all secretory 

phase infertile endometrial pathologies (Fig. 3.15A).

3.8 RAGE transcript is expressed in human endometrial epithelial cell 
lines

This work has characterized RAGE expression for the first time in eutopic 

human endometrium at different stages of endometrial development in vivo. 

In other studies, RAGE expression has recently been demonstrated in 

ectopic ovarian endometriotic stroma (Sharma, Dhawan et al. 2010). It was 

not feasible to obtain sufficient primary endometrial samples to investigate 

the mechanisms behind RAGE regulation in in vivo experiments. Thus, 

RAGE mRNA expression was determined in four epithelial cell lines derived 

from endometrial adenocarcinoma to provide in vitro experimental models in 

which to continue further studies.
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1.2  T * *

HEC1A HEC1B ISHIKAWA HERAKLIO

Figure 3-16 RAGE is expressed in endometrial epithelial adenocarcinoma cell 
lines.

Bar graph shows RAGE transcript levels in four endometrial epithelial cell 
lines derived from two well-differentiated stage 1 adenocarcinomas; HEC1 
(HEC1A, HEC1B) and Ishikawa (Ishikawa, Heraklio) by real time PCR. 
Untreated cells were grown to confluent monolayers in 6 well culture plates. 
RNA was collected using the RNeasy Mini Kit (Qiagen) according to 
manufacturer’s instructions. RNA was reverse transcribed and analysed by 
real time PCR as described in materials and methods (Ch2 section 2.7). Values 
given are the mean starting quantity (StQ) normalised to RPL19 ± STDEV from 
triplicate values. Data was analysed using a two-tailed students T-test ** P< 
0.01 vs. HECIAcells.

Real time PCR revealed that RAGE transcript was expressed in the selected 

cell line models (Fig. 3.16). Ishikawa (ERa positive) and Heraklio (ERa 

negative) cells displayed 1.6 and 2.8 fold greater basal RAGE mRNA

1 1 0
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compared to HEC1A cells, which expressed the lowest level of RAGE 

transcript in the four cell lines tested. Basal RAGE mRNA was significantly 

greater in HEC1B than all other cell lines, and had 18 fold higher RAGE 

transcript than HEC1A from which it was derived. Interestingly, basal RAGE 

transcript was greater in both HEC1B and Heraklio which did not express 

ERa in comparison to their counterpart ERa positive parent strains HEC1A 

and Ishikawa. The possibility of endometrial RAGE modulation by the ER 

receptors a and p was further explored in HEC1A and HEC1B cell lines in 

Chapter 5.

3.9 Discussion

Prior to this work, RAGE expression in eutopic endometrium had only been 

demonstrated at the mRNA level in a small cohort of fertile women (n=4) 

(Fujii, Nakayama et al. 2008). RAGE expression in fertile and infertile eutopic 

endometrium and its tissue subtype localisation was still undetermined when 

this work was undertaken. RAGE expression in anovulatory PCO 

endometrium could not be assigned to a specific stage in the menstrual cycle 

due to the chronic anovulation and irregular menses of the patients. 

Nevertheless, immunohistochemistry revealed that irrespective of tissue 

subtype localisation or menstrual cycle phase, RAGE protein expression was 

consistently elevated 1.7 fold or more in ovulatory and anovulatory infertile 

PCO endometrium when compared to fertile controls. However, differential 

RAGE expression in the endometrium of fertile and infertile PCOS women 

was most apparent in proliferative phase glands (Fig. 3.2A, >5 fold vs. fertile). 

In addition, RAGE mRNA was significantly elevated in whole tissue (11.2 and 

23.6 fold) and epithelial cells (5.6 fold and 7.4 fold) isolated from infertile

anovulatory PCO endometrium when compared to fertile controls, particularly

1 1 1
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in secretory phase (Fig. 3.12-15). In contrast to PCOS where RAGE was 

overexpressed in all endometrial tissue compartments, significantly elevated 

RAGE expression was confined only to proliferative phase epithelium (>3 

fold) and secretory phase glands (3 fold) and stroma (2 fold) in endometriosis 

patients when compared to fertile women. Luminal RAGE expression in 

endometriotic endometrium was not significantly different from fertile controls. 

However, infertile endometriotic endometrium had greater RAGE transcript 

levels than fertile controls irrespective of menstrual cycle phase (Fig. 3.12- 

3.15. These novel results indicated that endometrial RAGE may be over­

expressed in endometriosis and PCOS throughout the menstrual cycle, with 

particularly high levels of RAGE in infertile endometrium of ovulatory PCO 

pathology. Furthermore, these results suggest that RAGE expression at the 

protein level may be influenced by or fluctuate with the menstrual cycle in 

endometriotic tissue.

Finally, RAGE transcript was differentially yet notably expressed in four cell 

models of the endometrial epithelium, with distinctly high basal expression 

observed in HEC1B cells, thus indicating that these cells models were 

suitable for the study of RAGE. It can be hypothesised that pathology-specific 

endocrine factors mediating RAGE expression may lead to an altered uterine 

environment. Central to this hypothesis is the observation that RAGE is 

elevated in endometriotic and PCO endometrium in comparison with fertile 

controls, both at the transcriptional (Fig. 3.12-3.15) and protein level (Fig. 3.2- 

3.4 and Fig. 3.7-3.9). It is my hypothesis that RAGE is over-expressed in the 

endometrium of infertile anovulatory and ovulatory PCOS and endometriosis 

patients potentially as a result of altered hormonal profiles, elevated AGE and 

possible NFkB activation, which is further explored in Chapters 4 and 5.
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3.10.1 RAGE expression is elevated in eutopic endometrium of infertile 

ovulatory and anovulatory PCOS women

Elevated RAGE positively correlates with the level of AGEs in the serum and 

ovarian tissues of infertile PCO women in comparison to fertile controls 

(Diamanti-Kandarakis, Piperi et al. 2007). AGE-RAGE interaction positively 

regulates RAGE expression in an auto-regulatory feedback loop likely 

mediated by NFkB activation (Tanaka, Yonekura et al. 2000). Importantly, 

increased NFicB-p65 occupation of RAGE positively correlated with AGE 

treatment in endometrial epithelial cells (Ch. 4, Fig. 4.8). While these findings 

did not provide direct evidence, NFkB was potentially implicated as being 

upstream of RAGE. In fertile endometrial glands, phosphorylated (ser276) 

NFkB-p65 expression was significantly increased, and cytoplasmic restriction 

of RAGE activator TNFa lifted during the secretory phase suggesting nuclear 

translocation (Saegusa, Hashimura et al. 2007). Notably, TNFa is also 

elevated in PCO serum and monocytes (Sayin, Gucer et al. 2003; Gonzalez, 

Rote et al. 2006). Therefore, one possibility for the significantly elevated 

endometrial RAGE in PCOS could potentially be due to activated NFkB 

signalling. Studies have also shown ERa is elevated in PCO endometrium 

with respect to fertile women (Villavicencio, Bacallao et al. 2006; 

MacLaughlan, Palomino et al. 2007; Margarit, Taylor et al. 2010). This may 

provide an explanation for higher RAGE protein levels in proliferative phase 

ovulatory PCOS with respect to anovulatory PCO and fertile controls, 

correlating with the rise in E2 (Fig. 3.2-4). Elevated endometrial RAGE in 

anovulatory PCOS may be principally regulated by AGEs, as is the case in 

the ovary (Diamanti-Kandarakis, Piperi et al. 2007) or perhaps by increased

estrogens synthesised from excess androgens in PCO adipose tissue (Wang,
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Lu et al. 1998; Kaaks, Lukanova et al. 2002). Hyperinsulinaemia stimulates 

ovarian and adrenal hyperandrogenism and exacerbates hyperglycaemia- 

induced AGE formation in PCOS which may up-regulate RAGE in vivo 

(Zhang and Liao 2010). It can therefore be speculated that excess androgens 

and estrogens could elevate RAGE expression in PCOS.

3.10.2 RAGE is elevated in endometriotic eutopic endometrium of 
infertile women

Nuclear ERa expression and 17p estradiol are significantly elevated in 

eutopic endometriotic endometrium (Lessey, Palomino et al. 2006; Margarit, 

Taylor et al. 2010). Notably, RAGE was transcriptionally regulated by 17(3 

estradiol in HEC-1 endometrial epithelial cells expressing both ERa and 

ERp receptors (Ch.5 Fig. 5.3). However, only ERa appeared to actively 

regulate RAGE at the protein level, as concluded in other studies (Tanaka, 

Yonekura et al. 2000, Ch.5 Fig. 5.4). Furthermore, increased ERa occupation 

of Sp1 and Ap1 sites on RAGE was observed in response to E2 treatment in 

ERa positive HEC1A endometrial cells (Ch.5 section 5.5). Uterine ERa and 

ERp expression is elevated during the proliferative phase mimicking the pre­

ovulation increases in estrogen (King, Critchley et al. 2001). This may 

correlate with the greatest RAGE expression being observed in proliferative 

phase endometriosis (Fig. 3.2A, 3.3A). In the mid-luteal phase however, ERa 

levels decline due to its down-regulation by elevated progesterone and 

potentially, according to several reports, reciprocal down-regulation of ERa 

by ERp (Weihua, Saji et al. 2000; King, Critchley et al. 2001; Weyant, 

Carothers et al. 2001; Trukhacheva, Lin et al. 2009). Immunohistochemistry 

revealed that RAGE expression remains elevated in secretory phase
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endometriotic epithelial glands (Fig. 3.7A) and stroma (Fig. 3.9A) with respect 

to same phase fertile controls. Similarly, with respect to fertile controls, 

markedly elevated RAGE mRNA in endometriotic whole tissue and epithelial 

cells was observed in the secretory phase (Fig. 3.14-15). Coincidently, it has 

been reported that ERa is dysregulated in endometriotic endometrium 

remaining elevated during the secretory phase (Lessey, Palomino et al.

2006). Sustained elevated RAGE in endometriotic endometrium could 

perhaps be attributed to dysregulation of several secretory phase-specific 

factors; ERa signalling, NFkB and a plethora of decidua-secreted agents. In 

particular, abnormal dysregulation of TGF(31, IL-6, and IL-1pand constitutive 

NFkB signalling which are implicated in RAGE signalling in several cellular 

contexts, have been reported in eutopic and ectopic endometriosis 

(Bergqvist, Bruse et al. 2001; Boulanger, Grossin et al. 2007; Dimitriadis, 

Stoikos et al. 2006; Sato, Wu et al. 2009; van Zoelen, Yang et al. 2009; 

Rasheed, Akhtar et al. 2011). In addition, RAGE, sRAGE and VEGF, which 

have been shown to be up-regulated by E2 in the endometrium, were 

reportedly elevated in the tissue and follicular fluid of women with ectopic 

ovarian endometriosis and adenomyosis (Mueller, Vigne et al. 2000; Tanaka, 

Yonekura et al. 2000; Fujii and Nakayama 2010; Sharma, Dhawan et al.

2010). Thus, elevated endometrial RAGE could perhaps be attributed to the 

highly estrogenic milieu of endometriosis and potentially contributes to the 

pathological process through perpetuating underlying hormone-dependent 

inflammation.
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Chapter 4

AGEs regulate RAGE expression in human 
endometrial epithelial cells through the NFkB

pathway
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4. AGEs regulate RAGE expression in human endometrial epithelial 
cells through the NFkB pathway

4.1 Introduction

It is widely accepted that following engagement of RAGE by AGEs, a 

signalling cascade is activated that positively regulates not only its 

expression but also that of other NFkB target genes through the activation of 

p65 and the NFkB pathway (Kislinger, Fu et al. 1999; Singh 2001). The 

popular hypothesis of this positive feed-forward loop that sustains the 

expression of RAGE and NFkB has been linked to the perpetuation of 

inflammatory responses particularly in diabetic vasculature where AGEs 

accumulate (Schmidt, Yan et al. 1999; Evans, Goldfine et al. 2002; Gao, 

Zhang et al. 2008). Female infertility disorders have also been characterised 

by impaired insulin tolerance and hyperglycaemia, in particular Polycystic 

Ovary Syndrome (PCOS) and endometriosis (Dickerson, Cho et al.; Toprak, 

Yonem et al. 2001; Garry 2004; Fica, Albu et al. 2008; Caglar, Oztas et al.

2011) making these women especially susceptible to endothelial dysfunction, 

CVD and the onset of diabetes (Zargar, Gupta et al. 2005; Kelestimur, 

Unluhizarci et al. 2006; Beckman, Goldfine et al. 2007; Amini, Horri et al. 

2008; Jayaraman, Subrahmanya et al. 2009; Soares, Vieira et al. 2009). 

Elevated AGEs have been shown to co-localise with RAGE in polycystic 

ovaries and have also been shown to correlate with elevated levels of RAGE 

in circulating monocytes of PCO women (Diamanti-Kandarakis, Piperi et al. 

2005). Recently, insulin resistance and hyperinsulinaemia have been linked 

to increased expression of phosphorylated ERK 1/2 MAPK kinase in PCO 

endometrium compared to normal endometrium. Furthermore, PCOS women 

with endometrial hyperplasia or carcinoma irrespective of fertility status had
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significantly greater activated ERK 1/2 protein levels than normal 

endometrium (Song, Zhang et al. 2010). Hyperinsulinemic PCO 

endometrium, in comparison to normoinsulinemic PCO and control 

endometrium without this metabolic defect, exhibits lower epithelial insulin 

receptor substrate (IRS-1) and diminished GLUT-4 protein expression 

despite having comparable levels of Insulin Receptor (IR) at the cell surface 

(Fornes, Ormazabal et al. 2010). This suggests that while epithelial 

endometrial cells possess the machinery to maintain glucose homeostasis, 

deficiency in glucose transportation could increase the availability of free 

glucose, AGE formation and occupation of RAGE in PCO endometrium 

(Rosenbaum, Haber et al. 1993; Fornes, Ormazabal et al. 2010; Johansson, 

Feng et al. 2010). Diminished GLUT-4 and IRS-1 expression in glandular 

epithelial endometrium has also been reported following testosterone 

stimulation mimicking the androgenic milieu of PCOS. This effect however 

was partially reversed using AGE-inhibitor Metformin (Zhang and Liao 2010). 

Furthermore, metabolic aberrations arising from transient high glucose, 

impaired IR signalling and elevated AGEs have more recently been 

implicated in complications associated with infertility and pregnancy such as 

preeclampsia, foetal-maternal inflammation and preterm birth particularly in 

diabetic and PCO women where the affects of AGEs are prevalent (Amini, 

Horri et al. 2008; Hajek, Germanova et al. 2008; Harsem, Braekke et al. 

2008; Germanova, Koucky et al. 2009; Noguchi, Sado et al. 2010).Taken 

together, the aforementioned studies highlight the importance of elucidating 

the possible effects of an endometrial AGE-RAGE axis on NFkB activation, 

expression of RAGE and its potential downstream target MUC1 that may 

perhaps impact on fertility and progression towards endometrial cancer in
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female infertility disorders. The effect of AGEs on the transcriptional 

regulation of endometrial RAGE is, at the time of writing, still yet to be 

determined. With this in mind, the work in this chapter investigates the effects 

of glycated human serum albumin (AGE-HSA) treatment on the expression of 

RAGE in epithelial endometrial cell lines both at the transcriptional and 

protein level. The effect of AGE-HSA on the levels of phosphorylated p65, a 

transcriptional factor involved in the modulation of RAGE in other cell 

systems, was also explored in Ishikawa and Heraklio endometrial cells. 

Chromatin immunoprecipitation was employed to determine p65 binding to 

the RAGE promoter and the promoter of MUC1 in order to give evidence for 

the involvement of the NFkB pathway in the regulation of RAGE by AGE- 

HSA.

4.2 Effect of AGE on RAGE transcript expression in human 
endometrial epithelial cells

The RAGE receptor was originally thought to exist to mediate signalling that 

aided neuronal cell differentiation however it is found naturally in a variety of 

tissues expressed at low basal levels. RAGE expression can be influenced 

by numerous factors including increased androgens, free p-catenin, ROS and 

cytokines; all characteristic of diabetic and endocrine metabolic aberrations, 

the most documented of which are the AGEs (Otero 2001; Csiszar and 

Ungvari 2008; Pertynska-Marczewska, Glowacka et al. 2009; Diamanti- 

Kandarakis, Lambrinoudaki et al. 2010). Cellular exposure to AGEs is 

hypothesised to activate the proto-oncogenic MAPK kinase pathway which 

orchestrates the nuclear translocation of phosphorylated NFkB subunits and 

subsequent activation of genes involved in chronic inflammation and disease 

(Csiszar and Ungvari 2008; Liu, Zhao et al. 2009; Liu, Liang et al. 2010). It is
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the popular hypothesis that engagement of the RAGE receptor by AGEs is 

required for these signalling events to occur, however this association 

remains unverified in human endometrium. For this study, human epithelial 

endometrial adenocarcinoma cells were used to assess the effect of AGE- 

HSA on RAGE transcript levels in the uterus. HEC1 cells have been shown to 

be model cell lines for the epithelial endometrium and have previously been 

used to further explore mitogenic activity of growth factors and their outcome 

on endometrial cell proliferation and apoptosis (Bergman, Talavera et al. 

1997; Connor, Talavera et al. 1997; Kurarmoto, Hamano et al. 2002; Cong, 

Gasser et al. 2007). Furthermore, Ishikawa and Heraklio (ERa negative 

Ishikawa) cells have been extensively exploited to investigate the effect of 

sex steroid and protein kinase signalling on uterine dysfunction, proliferation 

and blastocyst implantation failure (Hata and Kuramoto 1992; Nishida 2002; 

Guo, Wei et al. 2004; Guo, Wei et al. 2006; Lessey, Palomino et al. 2006; 

Schaefer, Fischer et al. 2010). These cell lines therefore provide appropriate 

models for investigating an AGE-RAGE signalling cascade that may affect 

uterine receptivity.

HSA is the most abundant protein in human serum. Its structure is a protein 

chain of 585 amino acids coupled by 17 disulphide bonds (Peters 1996) and 

has been studied alongside haemoglobin - another commonly glycated 

serum protein in diabetic conditions (Thornalley 2000; Ulrich 2001; Ahmed 

2005). In in vitro experiments mass spectrometry has been used to 

investigate the specific glycation of the commercially available glycated HSA 

used in this study (~95% protein and 99% pure HSA glycated in vitro, giving 

8.0 mol modified sites per mol protein, Sigma Aldrich, St. Louis, M.O) (Wa

2007). This in vitro glycation models the formation of AGEs from HSA in
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plasma and serum in vivo (Gugliucci 1996; Lapolla 2005). Lysine residues 

159, 212, 286,413 and 432 and arginine residues 81, 114 and 218 were 

shown to be the primary sites targeted for glycation. Glycation at these 

specific sites gives rise to different forms of glycated HSA (Wa 2007; 

Barnaby, Wa et al. 2010). For example, glycation at lysine residues 159 and 

286 gave rise to the AGEs pyrraline and CML-HSA respectively (Wa 2007). 

Therefore, the effect on RAGE transcript seen in this study occurs through 

exposure to multiple HSA-derived AGE isoforms. The physiological impact of 

AGE-HSA on RAGE transcript levels in other cell models has previously been 

characterised (Fujita; Cortizo 2003; Yamagishi, Matsui et al. 2008; Sourris 

and Forbes 2009; Tanikawa 2009; Koyama and Nishizawa 2010). Studies 

leading up to this project using AGE-BSA showed that AGE could induce 

RAGE transcript in two endometrial epithelial cell lines HEC1A and HEC1B 

(Fig. 4.1). Briefly, AGE-BSA was generated by incubating 2g BSA with 10mL 

1.5M D-glucose in 50mL 0.1M PBS pH 7.4. The BSA solution was filter 

sterilized and incubated at 37°C for 9 weeks in a CO2 monitored incubator 

before use to allow for the glycation process as described in Tanaka et al 

2000.

1 2 1
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Figure 4-1 AGE-BSA induces RAGE and MUC1 expression in HEC-1 
endometrial epithelial cells.

Bar graphs show the effect of varying AGE-BSA concentrations on RAGE and 
MUC1 transcript levels in HEC1A (A, B, C) and HEC1B (D, E, F) by real time 
PCR. HEC-1 cells were treated with 50, 100, 200 and 500|ig/mL AGE-BSA for 4 
and 24h. Data shown is from singular experiments. Values given are mean 
starting quantity (StQ) normalised to GAPDH ± STDEV from StQ triplicates. 
Data was analysed using a two-tailed students T-test *p=<0.05, **p=<0.01 vs. 
Control (C).

RAGE transcript was not induced by AGE-BSA in HEC1A cells at 4h. In fact, 

AGE-BSA at concentrations exceeding 100pg/mL significantly reduced
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RAGE expression at 4h (Fig. 4.1 A). In contrast lOOjig/mL AGE-BSA induced 

RAGE transcript by 1.6 fold after 24h in HEC1A (Fig. 4.1B). MUC1 transcript 

levels were induced 1.9 fold 24h post challenge with AGE-BSA in HEC1A 

(Fig. 4.1C). AGE-BSA at 100|ig/mL induced RAGE transcript 1.6 fold in 

HEC1B and transcript levels remained elevated at 200pg/ml_ (1.57 fold) and 

200|ig/mL (1.59 fold) after 4h (Fig. 4.1 D). RAGE induction with 100|Lig/mL 

AGE in HEC1B was reduced (1.2 fold) after 24h. Concentrations in excess of 

100jig/ml_ appeared to repress the system at 24h (Fig. 4.1E). MUC1 

transcript levels were also induced 1.6 fold 4h post AGE-BSA challenge in 

HEC-1 B (Fig. 4.1F). These rapid responses to AGE-BSA have been 

demonstrated in skin and umbilical cord HMVECs with RAGE transcript 

increasing after just 2h and reaching a peak around 8h (Tanaka, Yonekura et 

al. 2000). In line with this observation most research investigating RAGE and 

potential RAGE-dependent NFkB target gene transcription has been 

undertaken within the window of 2 to 24h following RAGE-specific ligand 

stimulation (Tanaka, Yonekura et al. 2000; Ge, Jia et al. 2005; Cai, He et al. 

2008; Zhang, Tasaka et al. 2008). The following in vitro studies investigate 

the effect of 10jig/ml commercially sourced AGE-HSA (Sigma-Aldrich) 

treatment on the expression of RAGE in human epithelial endometrial cell 

lines after 4 and 24h. Real time PCR was utilised to detect the expression of 

full length RAGE transcript of the membrane-bound isoform which recognises 

AGEs at the cell surface.
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Figure 4-2 Effect of AGE-HSA on RAGE transcript levels in HEC1A 
endometrial epithelial adenocarcinoma cells.

Bar graphs show the effect of varying AGE-HSA concentrations on RAGE 
transcript levels after 4h (A) and 24h (B) by real time PCR. HEC1A cells were 
grown to confluent monolayer in 6 well culture plates and were either left 
untreated or treated with 5, 10, 50 and 100|xg/mL AGE-HSA. Unmodified HSA 
(10pg/mL) was used as a biological negative control. Experiments were done 
in triplicate and typical results are shown. Values given are mean starting 
quantity (StQ) normalised to RPL-19 ± STDEV from StQ triplicates. Data was 
analysed using a two-tailed students T-Test *P<0.05, **P<0.01 vs. untreated 
control.
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Preliminary studies in Figure 4.2A revealed that treatment with AGE-HSA for 

4h had no significant effect on the level of RAGE transcript in HEC1A cells. 

RAGE mRNA expression remained unchanged despite stimulation with 

higher concentrations (100pg/mL) of AGE-HSA (Fig. 4.2A). However 

modulation of RAGE transcript by AGE-HSA was observed after 24h, with a 

statistically significant upregulation of RAGE expression (4 fold vs. control) 

occurring at the 10pg/mL dose (Fig. 4.2B). Whilst the effect of HSA was also 

statistically significant, the fold increase in RAGE expression was only 1.5 

fold (Fig. 4.2B). High concentrations of AGE-HSA 50pg/mL and 100pg/mL 

(data not shown) however did not induce RAGE mRNA after 24h. From this, it 

could be suggested that RAGE modulation by AGE at the transcriptional level 

could be concentration dependant or perhaps involves AGE clearance 

mechanisms that protect the cell against AGE-induced oxidative stress or 

cytotoxicity. Overall, the levels of induced RAGE are higher in HEC1A cells 

(Fig. 4.2B) in comparison to HEC1B cells (Fig. 4.3A). The induction of RAGE 

transcript occurred later in HEC1A at 24h compared to the response to AGE- 

HSA seen at 4h in HEC1B and is likely to be a cell line specific observation 

(Fig. 4.1 B, D, 4.2B, 4.3A).
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Figure 4-3 Effect of AGE-HSA on RAGE transcript levels in HEC1B endometrial 
epithelial adenocarcinoma cells.

Bar graphs show the effect of varying AGE-HSA concentrations on RAGE 
transcript levels after 4h (A) and 24h (B) by real time PCR. HEC1B cells were 
grown to confluent monolayer in 6 well culture plates and were either left 
untreated or treated with 5, 10, 50 and 100p,g/mL AGE-HSA. Unmodified HSA 
(10p.g/mL) was used as a biological negative control. Experiments were done 
in triplicate and typical results are shown. Values given are mean starting 
quantity (StQ) normalised to RPL-19 ± STDEV from StQ triplicates. Data was 
analysed using a two-tailed students T-Test *P<0.05, **P<0.01 vs. untreated 
control.
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In contrast to its parent cell line HEC1A (Fig. 4.2A), incubation of HEC1B 

cells with AGE-HSA for 4h resulted in the modulation of RAGE transcript with 

a statistically significant up-regulation of RAGE mRNA (2 fold vs. control) 

occurring at the 10pg/mL dose (Fig. 4.3A). HSA showed no effect on RAGE 

transcript levels after 4h in these cells (Fig. 4.3A). However, following 24h 

AGE-HSA treatment, RAGE transcript levels were comparable with the 

untreated HEC1B cells at the inducing-concentration of lOjig/ml (Fig. 4.3B). 

AGE-HSA treatment for 24h at higher concentrations; 50jig/ml and 100jig/ml 

significantly reduced RAGE transcript levels 0.6 fold and 0.4 fold respectively 

when compared to the untreated control (Fig. 4.3B). In both HEC-1 cell lines, 

it appears that there may be a threshold dose that must be exceeded for 

induction to occur, and that excess AGE-HSA may repress the system. While 

previous studies in different cell models have noted similar effects, it cannot 

be ruled out that RAGE repression at high concentrations of AGE could be 

attributed to AGE-induced cytotoxicity (Tanaka, Yonekura et al. 2000; 

Cassese, Esposito et al. 2008). Basal levels of endometrial RAGE transcript 

were 18 fold greater in HEC1B than in HEC1A cells as described (Ch. 3, Fig. 

3.16). For this reason, there is a possibility that the already high basal levels 

RAGE mRNA in HEC1B cells may mask AGE-HSA-mediated induction 

causing the AGE response to be more rapid (4h) yet less pronounced in this 

cell line than HEC1A in which induction occurs after 24h (Fig. 4.2B). In 

contrast, RAGE transcript is expressed at a low basal level in HEC1A cells 

(Fig. 3.16). The experimental data in Fig. 4.2B and Fig. 4.3A show for the first 

time that AGE products derived from HSA, a major protein component of 

serum (Peters 1996; Frolov and Hoffmann 2010) can induce the levels of 

RAGE mRNA in two in vitro models of the human epithelial endometrium.
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Figure 4-4 AGE-HSA up-regulates RAGE transcript levels in epithelial 
endometrial adenocarcinoma cells.

Bar graphs show the effect of varying concentrations of AGE-HSA on RAGE 
transcript levels in Ishikawa at 4h (A) and 24h (B) and Heraklio at 4h (C) and 
24h (D) by real time PCR. Ishikawa and Heraklio cells were grown to confluent 
monolayers in 6 well culture plates and treated with 5, 10 and 50 pg/mL AGE- 
HSA and 100p.g/mL in 24h samples (B, D). Unmodified HSA (10p.g/mL) was 
used as a biological negative control. Experiments were done in triplicate and 
typical results are shown. Values given are mean starting quantity (StQ) 
normalised to RPL-19 ± STDEV from triplicates. Data was analysed using a 
two-tailed students T-Test *P<0.05, **P<0.01 vs. untreated control.
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Results in Fig. 4.4 demonstrated that 4h AGE-HSA treatment could modulate 

RAGE transcript levels in Ishikawa (A) and Heraklio (C) cells with the 

greatest statistically significant induction occurring at the 10jig/mL dose in 

both cell lines. 10|ng/mL AGE induced RAGE transcript in Ishikawa (4.8 fold 

vs. control) and Heraklio (3 fold vs. control) to similar levels suggesting that 

these cell lines respond to AGEs to the same degree (Fig. 4.4A, C). In 

comparison, 4h treatment with unmodified HSA did not induce RAGE in 

Ishikawa cells to the extent of the glycated form (1.9 fold). In Heraklio, HSA 

showed no effect on RAGE transcript levels. In both cell lines, AGE-HSA 

treatment had no real effect on RAGE mRNA expression after 24h. Transcript 

levels were not significantly altered from the levels observed in untreated 

cells (Fig. 4.4 B, D) which may indicate that AGE-induction of RAGE is a 

transient event, and the effect on its transcription is attenuated after 24h 

(Tanaka, Yonekura et al. 2000). Furthermore, the inducibility of RAGE 

appeared to be reduced at 4h and abolished after 24h at high AGE 

concentrations i.e 100jig/mL. This suggested either a dose-dependant 

response where high AGE saturated or repressed the system, or was due to 

a cell response to stress/toxicity (Fig. 4.4). These observations reveal for the 

first time that AGE-HSA can induce RAGE transcript levels in vitro in a 

second set of epithelial endometrial cells. Ishikawa and Heraklio cells 

displayed similar rapid responses to AGE-HSA treatment at 4h and were able 

to be cultured in media with lower glucose content thus limiting the level of 

exogenously formed AGEs in the environment. Utilisation of these cells was 

therefore favoured to the HEC-1 cells to further explore AGE-RAGE 

signalling in the endometrium.
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4.3 Effect of AGE on RAGE protein expression in human endometrial 
epithelial cells

Levels of AGEs and full-length RAGE are elevated in diabetes and PCOS. 

These are disorders characterised by hyperinsulinaemia, insulin resistance 

and in the latter case, excess androgens which can augment AGE-RAGE- 

mediated activation of MAPK and regulation of androgen receptor (AR) and 

NFkB target genes (Csiszar and Ungvari 2008) including RAGE itself. 

Increased RAGE could possibly impact on fertilised blastocyst adhesion at 

the endometrial epithelial cell surface (Carson, Julian et al. 2006) through up- 

regulation of inflammatory cytokines and MUC1. Having determined that 

AGE-HSA up-regulates RAGE transcript levels at a concentration of 10(ig/mL 

in endometrial cells it was important to determine whether this AGE-HSA 

concentration translates to an increase in RAGE protein.
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Figure 4-5 AGE-HSA up-regulates RAGE protein expression in endometrial 
epithelial cells.

Immunoblots show the effect of AGE-HSA treatment on RAGE protein in 
relation to untreated controls at 4, 12 and 24h in Ishikawa (panels A-C) and 
Heraklio (panels D-F). Confluent cells were incubated for 4, 12 and 24h with 
10|ig/ml AGE-HSA and harvested in RIPA protein buffer (SIGMA). 
Immunocomplexes were separated by SDS-PAGE followed by immunoblotting 
with RAGE specific (H300: sc-5563) and GAPDH specific (FL-335: sc-25778) 
rabbit polyclonal antibodies (Santa Cruz) as described in methods (Ch 2 
section 2.9). Bands corresponding to the un-truncated RAGE membrane- 
tethered protein were detected at 46kDa.

GAPDH
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Band Density (BD) was determined using the Quantity One software (Bio-Rad) 
using the volume rectangle tool for signal intensity/area mm2. BD is displayed 
as the fold expression relative to 4h untreated control (Panels C and F) 
normalised to respective GAPDH samples (Panels B and E). Experiments were 
done in triplicate and typical results are shown.

Protein blot analysis revealed that treatment with 10jig/ml AGE-HSA resulted 

in an increase in membrane-bound RAGE protein in both endometrial cell 

lines examined. Following AGE-HSA treatment in Ishikawa, RAGE protein 

levels were 2.5 fold that observed in the respective untreated control at 4h 

(Fig. 4.5 panels A, C). RAGE protein is initially induced 2 fold after 4h in 

Heraklio cells also pinpointing a rapid response to cellular AGE exposure and 

is comparable with the effect seen in Ishikawa at 4h (Fig. 4.5 panels D, F). 

Protein levels further increased under in vitro conditions at 12 and 24h post 

AGE challenge. However, this later increase in RAGE is likely to be mediated 

by factors independent of AGE as RAGE inducibility is also observed in cells 

untreated with AGE. This is consistent with the observation that high levels of 

AGE may function to repress RAGE (Fig. 4.4 D). It is likely that further 

increases in RAGE protein past 4h are due to cellular factors not cleared from 

the cells in the closed nature of the experimental set-up or perhaps is a 

response to cellular stress. This notion is reinforced by the observation that 

untreated cells express RAGE at lower levels than cells treated with 

exogenous AGE at 4h after transfer to new media. Thus, the 4h time point is 

optimal for investigating the AGE regulation of RAGE within this system.
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4.4 AGE products increase levels of phosphorylated NFkB-p 65 in 
human endometrial epithelial cells

Several studies have highlighted the phosphorylation and probable 

involvement of p38 and ERK 1/2 Mitogen-Activated Protein Kinase (MAPK) in 

the up-regulation of RAGE and subsequent increased NFkB activity following 

AGE treatment (Yeh 2001; Li 2004; Yoon, Kang et al. 2008). This was 

proposed due to the attenuation of AGE-induced NFkB activity (measured by 

EMSA) with the use of p38 and ERK MAPK inhibitors in human THP-1 

monocytes (Yeh 2001) and endothelial progenitor cells (Sun, Liang et al. 

2009). Consistent with this premise, activation of AGE-induced pERK 1/2 is 

also repressed with the use of truncated sRAGE, neutralizing anti-RAGE 

antibody and ERK 1/2 MAP kinase inhibitors in epithelial kidney cells (Li 

2004). In other cell systems, following the initiation of the NFkB signalling 

cascade, p65 is phosphorylated at numerous sites, some of which have been 

shown to be targeted independently of IkB, as is the case at serine residue 

536 (Sasaki, Barberi et al. 2005). However, p65 phosphorylated at serine 276 

is a site targeted almost immediately by protein kinase A (PKA) following 

p50/p65 dissociation from inhibitor complex IkB and is dependent on ERK 1/2 

activation which can potentially be initiated by AGE-RAGE association 

(Zhong, Voll et al. 1998; Larsen, Storling et al. 2005). Phosphorylation of p65 

specifically at serine 276 has also been shown to be essential for NFkB-p65 

mediated cellular signalling by LPS, a ligand of RAGE and Toll-Like receptors 

(TLRs) shown to synergistically activate NFkB with AGE products (Okazaki, 

Sakon et al. 2003; Wijayanti, Naidu et al. 2008; Furusawa, Funakoshi-Tago 

et al. 2009; Liu, Zhao et al. 2009). In vascular endothelial cells, glycated 

bovine serum albumin (AGE-BSA) has been shown to induce RAGE
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expression to activate pro-inflammatory mediators such as interleukin 1p and 

tumour necrosis factor alpha TNFa (Tanaka, Yonekura et al. 2000; Gao, 

Belmadani et al. 2007; Gao, Zhang et al. 2008). TNFa is positively regulated 

by NFkB activation and contains active binding sites for the transcription 

factor p65 on its promoter (Goldin, Beckman et al. 2006). Studies leading up 

to this project also revealed TNFa can modulate RAGE transcript in 

endometrial Ishikawa cells. Induced RAGE transcript levels were further 

augmented when TNFa treatment was administered in conjunction with AGE- 

BSA (data not shown). This novel observation gives some evidence for NFkB 

involvement. AGE-activated cellular stress signalling through the MAPK, 

RhoA, p21 ras or c-Jun pathways ultimately lead to downstream NFkB 

activation and RAGE regulation in other tissues, most notably ovarian tissue 

from PCO patients (Diamanti-Kandarakis, Piperi et al. 2007). Therefore, the 

possibility of AGE activating this pathway in endometrial cells was 

investigated. Previous studies have shown kB signalling is rapid and 

increases in cellular phosphorylated ERK 1/2 and p65 are apparent within 10 

to 30 minutes (Bierhaus, lllmer et al. 1997; Lander 1997; Yeh 2001; Chan 

and Murphy 2003). Based on these previous observations, Ishikawa and 

Heraklio cells were treated with 10jig/ml AGE-HSA for a period of 30 minutes 

and levels of p65 protein phosphorylated at serine 276 subsequently 

analysed at 5 min intervals.
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Figure 4-6 AGE-HSA increases phosphorylated p65 protein levels in epithelial 
endometrial adenocarcinoma cells.

Immunoblots show the effect of AGE-HSA treatment on phosphorylated p65 
(serine 276) protein relative to untreated control over a 30 min period in 
Ishikawa (panels A-C) and Heraklio (panels D-F).

Confluent cells were incubated for 5, 10, 15, 20 and 30 min with 10pg/ml AGE- 
HSA and harvested in Phosphosafe buffer (EMD). Immunocomplexes were 
analysed by SDS-PAGE followed by immunoblotting with phospho-NFicB-p65 
serine 276 specific (Cell Signalling, #3037) and G3PDH specific (Santa Cruz, 
FL-335: sc-25778) rabbit polyclonal antibodies as described in methods (Ch. 2 
section 2.9). Bands corresponding to the p65 protein phosphorylated at the 
276 serine residue were detected at 65kDa. Band Density (BD) is displayed as 
fold expression relative to untreated control (Panel C and F). Experiments 
were done in triplicate and typical results are shown normalised to G3PDH 
(Panel B and D).
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AGE-HSA treatment increased phosphorylated/activated p65 protein levels in 

a time dependent manner in Ishikawa with a small 1.5 fold increase in protein 

levels detected after 20 min (Fig. 4.6A). In Heraklio cells, AGE-HSA 

treatment had an effect on activated p65 protein levels after 5 min (Fig. 4.6D), 

however only a small 1.25 fold increase in protein levels was observed (Fig. 

4.6F). The levels of GAPDH protein remained unchanged in response to 

10(ig/mL AGE-HSA and provided an internal reference (Fig. 4.6B, E). These 

results are suggestive of AGE-activated NFkB activity in human epithelial 

endometrium. In control cells at time 0 phospho-p65 was detected in both cell 

lines indicating that despite serum starvation for 26h, NFkB-p65 is 

constitutively activated in these cells. This is consistent with a previous 

suggestion that the endometrium essentially undergoes an inflammation 

cycle (Clancy 2009; Sharma, Dhawan et al. 2010). Nevertheless, positive 

increases in p65 protein phosphorylated at serine 276 in response to AGE 

were observed in both cell lines.

4.5 Modulation of endometrial RAGE by AGE is NFkB dependent

Despite extensive studies of the downstream effects of the ERK 1/2 and p38- 

activated MAPK pathway on dominant effector NFkB subsequent to AGE- 

RAGE association, this signalling cascade has not yet been investigated in 

the human endometrium. Bierhaus and associates have described acute 

activation of ERK1/2 MAPK to stimulate IkB degradation and NFkB p65 

nuclear translocation where degradation initiates de novo synthesis of IkB to 

act as an auto-regulatory feedback mechanism (Bierhaus 2001). However, in 

the hyperglycaemic state, possible sustained activation of the MAPK pathway 

due to excessive or prolonged AGE-RAGE interaction may lead to IkB
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independent transcription of p65 and p65-DNA binding (Bierhaus 2001; 

Cortizo 2003). In order to further understand the mechanisms involved in the 

regulation of RAGE, previous research has employed the use of HMGB1 and 

lipopolysaccharide (LPS), alternative ligands of RAGE and TLR2 and 4 (van 

Beijnum, Buurman et al. 2008; Liu, Zhao et al. 2009; Qin, Dai et al. 2009; van 

Zoelen, Yang et al. 2009). In particular, LPS has been used to perform 

RAGE-luciferase reporter gene assays in bovine endothelial and rattus 

vascular smooth muscle cells (Li 1997). Transfection of 5’ chimeric deletion 

constructs identified the region spanning -1543/-587 of the RAGE promoter 

containing three candidate NFicB-like consensus sequences 

(GDRRADYCCC) at -1519/-1510, -671/-663 and -467/-458 to be important in 

the regulation of RAGE. Upon DNase 1 footprinting and EMSA assays 

however, it was revealed that only the sites starting at -1519 and -671 were 

functionally active in response to LPS stimulation (Li 1997) . Site directed 

mutation of the NFkB site at -671 on the RAGE promoter was shown to 

abolish inducibility of both AGE-BSA and TNFa- mediated NFkB and RAGE 

luciferase reporter gene activity in human micro vascular endothelial 

(HMVEC) from skin, and the umbilical vein cell line ECV304 (Tanaka, 

Yonekura et al. 2000). Nuclear extracts from HMVEC and ECV304 cells 

exposed to AGE-BSA or TNFa for 4h showed that the DNA binding complex 

on the -671 site comprised of p50 and p65 NFkB proteins (Tanaka, 

Yonekura et al. 2000). In addition, murine sRAGE itself can stimulate rapid 

NFkB p65/p50 nuclear translocation after just 2h (Pullerits, Brisslert et al. 

2006). Studies in renal endothelial cells also reported biphasic NFkB  

activation following RAGE ligand stimulation peaking early on at 3h to 6h and 

again after 48h (Panzer, Steinmetz et al. 2009). Supershift analysis revealed
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the activated NFk B at 3-6h was comprised of p65/p50 heterodimers whereas 

after 48h, N Fk B largely consisted of p50 homodimer, thus highlighting the 

involvement of p65 in transient NFkB signalling (Panzer, Steinmetz et al.

2009). Consistent with these findings, Chen-Hsiung Yeh and associates 

showed a RAGE-dependent 1.7 fold increase in p65 transcriptional activity 

after 4h treatment with AGE Nr-(carboxymethyl)lysine-HSA (CML-HSA) in 

human monocytes (Yeh 2001). It has also been confirmed by EMSA and 

western blotting that synthetic anti-sense RAGE oligonucleotides can abolish 

AGE-HSA-induced NFk B binding activity in endothelial cells due to 

suppressed translocation of NFk B proteins to the nucleus (Bierhaus, lllmer et 

al. 1997). Given these previous observations that NFk B is regulated by the 

action of AGE, and that p65 is further activated in endometrial cells following 

AGE treatment, the direct regulation of NFk B was investigated. Chromatin 

immunoprecipitation (ChIP) was used to determine site specific p65 

occupancy of the RAGE promoter following 10pg/mL AGE-HSA treatment in 

Ishikawa and Heraklio cells at the 4h time point identified in Figure 4.4 A, C.

Figure 4-7 Schematic diagram of the RAGE promoter showing the position of 
the NFkB-p65 sites investigated using ChIP

Tioiisciiplioii
St.nt

r

138



m a p ie i  h- a u c  p ru u u iis  re ^u ia ie  i \ / \ o n  express ion

<
*
I
t/1

B

*
<
on
LU
I

inina
>JQ
vc
30A
<
Z
o
5  0.04
ac
XT

vVf

0.12

0.1

0.08

0.06

0.02

0.12

incoa
>13
13
C
30
13
<
Z
G
5  0.04
ac

0.08 -

0.06

0.02  -

C AGE HSA

NFkB (-1522/-1512)

* *

C AGE HSA 

NFkB (-1522/-1512)

C AGE HSA

NFkB (-677/-669)

C AGE HSA 

NFkB (-6777-669)

Figure 4-8 AGE-HSA increased total p65 binding at two NFkB sites on the 
RAGE promoter.

ChIP shows total p65 binding at two NFkB sites -1522/ -1512 and -677/ -669 
respectively on the RAGE promoter after 4h in A) Ishikawa and B) Heraklio 
epithelial endometrial adenocarcinoma cells.
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Bar graphs illustrate recruitment of p65 to NFkB sites on RAGE following 4h 
treatment with 10pg/ml AGE-HSA or 10pg/ml unmodified HSA as a negative 
control. ChIP experiments were performed in triplicate and representative 
results are shown. Experiments for a negative control mouse IgG detecting 
non-specific signal at each site were run in parallel per sample. Data 
presented is the mean background subtracted binding level of p65 ± STDEV of 
triplicates and is shown as a % of Input DNA at the site bound by p65 antibody 
following immunoprecipitation. Data was analysed using a two-tailed students 
T-Test *P<0.05, **P<0.01 vs. untreated control.

Treatment with 10pg/ml AGE-HSA for 4h resulted in a significant increase in 

p65 recruitment to the RAGE promoter at NFkB sites in human epithelial 

endometrial cells in vitro. This effect was likely to be AGE specific as 

treatment with unglycated HSA had no statistically significant effect on NFkB- 

DNA binding from that exhibited in untreated endometrial cells (C, control) as 

observed in other cell models (Yeh 2001). In Ishikawa cells (Fig. 4.8A), 

enrichment of p65 at NFkB site 2 (-6771-669) was more than twice that 

observed at NFkB site 1 (-1522/-1512) following AGE-HSA treatment. 

Conversely, in Heraklio cells (Fig. 4.8B) p65 occupancy was greater at NFkB 

site 1 than at the second site which has been shown to be responsive to 

AGE-BSA treatment in skin endothelial cells (Tanaka, Yonekura et al. 2000). 

Under unstimulated conditions, p65 is present at NFkB sites in both Ishikawa 

and Heraklio cells, suggesting that NFkB may regulate basal RAGE 

expression in the endometrium. DNA fragmentation by sonication leads to the 

generation of fragments in the size range 500-1 OOObp. ChIP analyses the 

native state of transcription factor binding, therefore occupancy of adjacent 

binding sites or indeed dynamic chromatin structure will influence the 

observed NFkB occupancy within different cellular contexts. Hence, in these 

experiments, NFkB binding may be influenced by the binding of other 

transcription factors and vice versa. Heraklio and Ishikawa cells differ in ERa
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expression status. One possible explanation for the preferential binding of 

p65 to the RAGE promoter at NFkB site 2 in Ishikawa could be due to an 

ERa-recruited Activated Protein 1 (Ap1) transcriptional complex occupying 

the Ap1 site (-1542/-1535) that is in close proximity to the NFkB site 1 (-1522/- 

1512) (arrowed, Fig. 4.7). Indeed ERa recruitment to the Ap1 site on the 

RAGE promoter has been demonstrated in epithelial endometrial HEC1A 

cells (Ch.5 Fig. 5.7). ERa expression in Ishikawa could therefore be limiting 

yet not abrogating p65 binding at NFkB site 1 through steric hindrance. Direct 

ERa and p65 interaction has been shown in the nuclei of human osteoblastic 

cells (Quaedackers 2007). Thus one could speculate that ERa actively 

competes with NFkB sites to bind phosphorylated p65 and perhaps, having 

greater affinity to complex Ap1, recruits p65 to Ap1 sites to aid ER signalling 

(Hodgkinson, Laxton et al. 2008; Chiu, Chen et al. 2010; Lin, Chang et al. 

2010). This would have the added effect of decreasing the localised 

availability of p65. No occupancy of p65 was observed at a third NFkB site 

(located at -464/-456, Fig. 4.7) in either untreated or 10|ng/ml AGE-HSA 

treated Ishikawa and Heraklio cells (data not shown). This site was also 

unbound by p65 in endothelial cells prior to and post challenge with LPS thus 

may be functionally inactive (Li 1997).

4.6 Modulation of endometrial MUC1 by AGE is NFkB dependent

MUC1 glycoproteins can confer either adhesive or anti-adhesive properties to 

the endometrial apical surface. Thus, MUC1 deficiency or dysregulation may 

lead to altered endometrial receptivity and potentially blastocyst implantation 

failure. Previous research has demonstrated that MUC1 expression can be 

regulated by sex steriods, anti-estrogenic compounds, TNFa and p65
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through the action of the ERs and NFkB signalling in normal and cancerous 

breast, lung epithelia and uterine tissues (Hanson, Browell et al. 2001; Koga, 

Kuwahara et al. 2007; Lagow 2002; Croce, Isla-Larrain et al. 2003; 

Paszkiewicz-Gadek, Porowska et al. 2005; Brayman, Julian et al. 2006; 

Zaretsky, Barnea et al. 2006). Lung tissue not only constitutively expresses 

RAGE but is rich in endothelial cells where AGE-RAGE association may 

activate NFkB-DNA binding activity (Sternberg, Gowda et al. 2008; Zhang, 

Tasaka et al. 2008). The importance of the MUC1 promoter region spanning - 

598/-485 in activating expression had previously been investigated in breast 

cancer MCF-7 cells (Abe and Kufe 1993; Kovarik, Peat et al. 1993). Deletion 

mutants of the 5’ flanking gene sequence cloned into vectors and further site 

directed mutagenesis identified a putative NFkB site located at -589/-580. 

EMSA of T47D nuclear extracts revealed p65 bound to this NFkB site and its 

involvement in mediating TNFa and IFN-y-activated MUC1 transcription in 

breast cancer (Lagow 2002). MUC1 has previously been characterised in 

human epithelial endometrium and may potentially be a downstream target of 

NFkB signalling (Hey, Meseguer et al. 2003). Experiments were therefore 

conducted to investigate the possibility of any direct NFkB-p65 occupancy of 

the MUC1 promoter in endometrial cells following AGE-HSA treatment.

Figure 4-9 Schematic diagram of the MUC1 promoter showing the position of 
the NFkB sites investigated in ChIP
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Figure 4-10 AGE-HSA increases total p65 binding to two NFkB sites on the 
MUC1 promoter.

ChIP shows total p65 binding to two NFkB sites at -584/-575 and -444/-435 
respectively on the MUC1 promoter after 4h in A) Ishikawa and B) Heraklio 
endometrial epithelial adenocarcinoma cells.

Bar graphs illustrate recruitment of p65 to NFkB sites on MUC1 following 4h 
treatment with 10pg/ml AGE-HSA or 10pg/ml unmodified HSA as a negative 
control. ChIP experiments were performed in triplicate and representative 
results are shown. Experiments for a negative control mouse IgG detecting 
non-specific signal at each site were run in parallel per sample. Data
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presented is the mean background subtracted binding level of p65 ± STDEV of 
triplicates and is shown as a % of Input DNA at the site bound by p65 antibody 
following immunoprecipitation. Data was analysed using a two-tailed students 
T-Test *P<0.05, **P<0.01 vs. untreated control.

Following 4h exposure to 10jng/ml AGE-HSA, recruitment of p65 to the MUC1 

promoter in human endometrial cells was increased. AGE-HSA-induced p65 

binding was observed in both Ishikawa (Fig. 4.10A) and Heraklio (Fig. 4.1 OB) 

and could perhaps indicate a role for possible AGE-stimulated NFicB-p65 in 

the regulation of endometrial MUC1. In Ishikawa cells, only binding of p65 to 

NFkB site 1 (-584/-575) was observed. No significant increase in p65 binding 

following AGE-HSA treatment at NFkB site 2 (-444/-435J was observed (A). 

In contrast, AGE-induced p65 recruitment in Heraklio occurred at both NFkB 

sites 1 and 2 (B). In both cell lines, unglycated HSA had no effect on the 

levels of p65 binding at either site (Fig. 4.10 A, B). ERa may also affect 

localised binding of p65 to the MUC1 promoter in the same way it may affect 

its binding to RAGE (Fig. 4.8 A, B). Steric hindrance by ERa binding in close 

proximity to NFkB site 2 at -444 is supported by the identification of a cluster 

of four ERE sites spanning the region -452/-411 on the MUC1 promoter 

(arrowed, Fig. 4.9).

4.7 Discussion

The work presented in this chapter has taken a step towards elucidating an 

AGE-RAGE signalling pathway in the human epithelial endometrium. This 

research brings to light the possible involvement of this pathway as a factor in 

the infertile aetiology of PCOS and endometriosis. It also provides initial 

evidence for the proposed role of AGE in inflammation and potentially in the 

progression to endometrial cancer through the possible activation of RAGE
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by NFkB as described in Chapter 3 (section 3.10). The principal discovery in 

this chapter was that 10pg/mL AGE-HSA could transiently up-regulate RAGE 

in the endometrium despite relatively low basal expression in this tissue (Ch. 

3 Fig. 3.16). Significant increases in RAGE transcript were observed at 4h 

falling to basal levels after 24h. However, inducibility was significantly 

reduced and even repressed at high AGE concentrations, suggesting dose- 

dependent saturation or more likely as a result of oxidative stress and 

cytotoxicity, increased AGE clearance. RAGE protein however remained 

highly expressed at 24h perhaps increasing independently of AGE in the 

experimental model. This is particularly significant, as the endometrium is 

targeted in women with PCOS and endometriosis by excess ROS, AGEs, 

androgens; estrogens (Ch.5 Fig 5.4-5) and inflammatory cyto/chemokines 

which in turn potentially enhance RAGE expression (Tanaka, Yonekura et al. 

2000; Csiszar and Ungvari 2008; Xanthis, Hatzitolios et al. 2009; Zhang, Park 

et al. 2009). Indeed, basal RAGE transcript and protein levels are higher in 

infertile PCO and endometriotic endometrium in comparison to fertile controls 

(Ch. 3 Fig. 3.6, 3.10, 3.12-15) as is the expression of MUC1 transcript (data 

not shown). Additionally, increased ovarian follicular and plasma RAGE has 

been reported to correlate with CML-AGE and VEGF in patients with 

endometriosis (Fujii, Nakayama et al. 2008). Infertility disorders are also 

characterised by metabolic dysfunction in the insulin receptor pathway thus 

promoting accelerated generation of AGEs that can perpetuate RAGE- 

mediated chronic inflammation and progression towards the diabetic state 

(Fica, Albu et al. 2008; Fornes, Ormazabal et al. 2010). Circulating AGEs 

have been implicated in female fecundability odds, and links between the 

deleterious effects of persistent hyperglycaemia and complications in diabetic
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pregnancy are well documented (Hjollund, Jensen et al. 1999; Harsem, 

Braekke et al. 2008; Bals-Pratsch, Grosser et al. 2011). Moreover, recent 

studies have shown diabetic PCOS women have a significantly greater risk of 

(sub) infertility, preeclampsia and miscarriage (Boomsma, Fauser et al. 2008; 

Hart 2008). AGEs accumulate in human chorionic villi from women who 

miscarried in their first trimester (6-10 weeks) correlating with increases in 

RAGE, chemokine secretion and apoptosis of placental trophoblasts. 

Increased AGEs may also alter the foetal-maternal interface by inhibiting 

human chorionic gonadotropin (hCG) secretion which is thought to prime 

placentation (Konishi, Nakatsuka et al. 2004). Studies in women with pre­

eclampsia have shown elevated placental RAGE and nitric oxide-derived 

(ROS) AGEs in serum. RAGE-mediated cytotoxicity induced by AGE could 

be suppressed with NFkB inhibitors. AGEs may fuel a state of oxidative 

stress in pre-eclampsia leading to uteroplacental dysfunction - a leading 

cause of perinatal mortality (Chekir, Nakatsuka et al. 2006). Insulin 

sensitising AGE inhibitors such as metformin and clomiphene citrate have 

already been proven to ameliorate diabetic complications such as insulin 

resistance, levels of plasma IL-6, AGEs and endothelial RAGE expression 

(Ouslimani, Mahrouf et al. 2007; Diamanti-Kandarakis, Economou et al. 

2009; Luque-Ramirez and Escobar-Morreale 2010). Furthermore, metformin 

reduces the prevalence of gestational diabetes, oligomenorrhea and 

anovulatory infertility arising from characteristic excess androgens and AGEs 

in PCO women, thus highlighting the potential for RAGE as a therapeutic 

target (Glueck, Wang et al. 2001; Glueck, Goldenberg et al. 2008; Begum, 

Khanam et al. 2009; Palomba, Pasquali et al. 2009). Metformin has recently 

been linked to improvements in ovulation and clinical pregnancy rates in
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PCOS, however this has not been shown to correlate with successful birth 

rate indicating that an endometrial defect may be accountable for PCOS 

infertility (Tang, Lord et al. 2010). Substantial evidence from a variety of 

tissues has shown us the importance of numerous protein kinases, in 

particular key-players of the MAPK pathway p38 and ERK 1/2, in the 

activation of NFkB (Yoon, Kang et al. 2008; Sun, Liang et al. 2009; Liu, Liang 

et al. 2010).This research concentrates on the possible effects of AGE 

products on RAGE and on the downstream effector of the aforementioned 

pathway, NFkB. Flere; AGE-HSA has been shown to increase, albeit 

modestly, the levels of activated p65 phosphorylated at serine 276 in the 

human epithelial endometrium (Fig. 4.6 A, D). This is further supported by 

ChIP experiments that demonstrate the presence of NFkB-p65 at two NFkB 

sites on endometrial RAGE (Fig. 4.8 A, B) and two NFkB sites on endometrial 

MUC1 promoters (Fig. 4.10 A, B) from which we hypothesise that RAGE and 

MUC1 are probably modulated in part through the NFkB pathway. Following 

treatment with 10pg/mL AGE-HSA, the level of p65 recruitment to these sites 

increased whereas no binding increase was seen with HSA treatment alone. 

This indicates that NFkB-p65 is likely to be activated by AGEs and that 

endometrial MUC1 transactivation could possibly be RAGE dependant. 

Taken with recent findings that ERK 1/2 MAPK protein is increased in 

endometriotic, hyperinsulinemic PCO and hyperplasic endometrium we 

suggest that putative NFkB activation is likely to be mediated by the MAPK 

pathway in this tissue (Song, Zhang et al. 2010). Recent studies have 

highlighted the elevation of RAGE in endometriotic stroma and its 

contribution to underlying inflammation in the pathophysiology of the disorder 

(Pertynska-Marczewska, Glowacka et al. 2009; Sharma, Dhawan et al.
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2010). While RAGE has a role in the perpetuation of the inflammatory 

response, MUC1 has a role in blastocyst attachment into the endometrial 

epithelium and its expression can influence the receptivity of this tissue 

(Carson, Julian et al. 2006). It could therefore be speculated that over­

expression of MUC1 from sustained AGE-RAGE-mediated NFkB 

transactivation is a potential causative factor of implantation failure and high 

miscarriage frequency evident in women with PCOS who have no known 

endometrial defect. These women also have a known risk of developing an 

endometrial cancer which perhaps could be attributed to enhanced RAGE 

signalling impacting on the expression of oncogenes, cytokines, and 

apoptotic pathways (Lim, Park et al. 2008; Kang, Tang et al. 2009; Chen, 

Song et al. 2010; Rasheed, Akhtar et al. 2011). Consistent with this premise, 

AGE products are also known to correlate with the release of p-catenin and 

loss of E-cadherin which is indicative of the metastatic environment (Ebert, 

Yu et al. 2003; Juhasz, Ebert et al. 2003; Rojas, Figueroa et al. 2010). 

Interestingly, loss of E-cadherin and p-catenin also allows a transcriptional 

complex comprising of ERK 1/2 MAPK-activated TIF2, p-catenin and 

androgens to target downstream AR regulated genes, one of which is MUC1 

(Otero 2001). To conclude, increases in endometrial epithelial RAGE and 

MUC1 during the window of blastocyst implantation could be modulated 

through the AGE-RAGE axis, perhaps in combination with androgens found 

in excess in infertile disorders.
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CHAPTER 5

17(3 Estradiol and 4-Hydroxytamoxifen 
modulate RAGE expression through the ER 

pathway in human endometrial epithelial cells
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5. 17B Estradiol and 4-Hvdroxvtamoxifen modulate RAGE expression 
through the ER pathway in human endometrial epithelial cells

5.1 Introduction

The discovery that AGEs, elevated in PCO and endometriosis pathology, 

exhibited RAGE agonistic potency in human endometrium prompted the 

investigation of other RAGE modulators. Endometrial receptivity to estrogenic 

action is fundamental in preserving its functionality. Specifically, the cyclical 

sloughing and proliferative regeneration of the endometrium requires the 

precisely-timed regulation of a specific subset of estrogen-controlled genes in 

a manner likened to an inflammatory response. 17(3 estradiol (E2) is the most 

abundant natural estrogen found in the circulation of premenopausal women 

(Barkhem 1998). E2 has previously been shown to induce RAGE expression 

in human micro vascular endothelial cells (HMVECs) (Tanaka, Yonekura et 

al. 2000; Mukherjee, Reynolds et al. 2005) however, at the time of writing, E2 

modulation of endometrial RAGE was yet to be determined. The effects of E2 

and selective estrogen receptor modulators (SERMs) such as 4- 

hydroxytamoxifen (TX) in the endometrium are thought to be both gene and 

cell-specific (Farnell 2003). Agonistic action of TX on ERa has been reported 

in non-malignant uterus and endometrial cell lines Ishikawa and HEC1A, yet 

in contrast, TX had no effect on cell proliferation or ERE-luciferase reporter 

gene activity in ERa positive ECC-1 cells (Dardes, Schafer et al. 2002; Shah 

and Rowan 2005). Contrasting evidence for selective estrogen receptor 

modulator action may be due to gene-and promoter-specific differential 

transcription factor recruitment by the ER a/p subtypes, both of which are 

expressed throughout the menstrual cycle (Critchley and Saunders 2009; 

King, Collins et al. 2010). Estrogen receptor (ER) signalling has been
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extensively studied in a multitude of tissues, most notably in breast where E2 

agonism of ER has been linked to an accelerated disease state (Anderson 

2002). Several studies in T47D and MCF-7 cells have highlighted that ERa is 

the dominantly expressed ER subtype in breast cancer however normal 

breast tissue expresses very little (Herynk and Fuqua 2004). Similarly, 

greater expression of ERa has also been observed in myometrium and 

endometrial glands, lumen and stromal cells relative to ER|3 (Punyadeera 

2008). In non-malignant endometrium, E2 down regulates ERp which is 

readily targeted for degradation and leads to stabilisation and reciprocal over­

expression of the ERa isoform (Johnson, Maleki-Dizaji et al. 2007). However, 

in ectopic endometriotic stromal cells, E2-induced ERp can bind to the ERa 

promoter via non-classical Ap1 (-237/-19) and Sp1 (+298/+591) and a 

classical ERE (-839/-709). This has lead to the hypothesis that ERp 

represses ERa in endometriosis leading to the subsequent down-regulation 

of its target PR, increasing the risk of progesterone resistance and cell 

proliferation (Trukhacheva, Lin et al. 2009). ERp however may have a 

physiological role in mediating the biological actions of estrogen in cells 

negative for ERa expression such as HEC1B (Hall 1999). In cell lines where 

both isoforms are co-expressed, ERp signalling may be achieved through 

directly targeting genes or indirect regulation through the modulation of ERa 

action (Villablanca 2009). Unlike many other estrogen responsive genes, no 

classical estrogen response elements sites have been identified in the RAGE 

promoter (Tanaka, Yonekura et al. 2000). However, a study in endometrial 

Ishikawa and HEC1A cells found that pS2 and c-myc could be up-regulated 

by E2 and TX via a non-consensus ERE believed to be an Ap1 site (Shah
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and Rowan 2005). It was therefore hypothesised that RAGE modulation 

involved ER occupation of non-classical sites where recruitment was 

dependent on Ap1 or Sp1 proteins, much like Cyclin-D1(Castro-Rivera, 

Samudio et al. 2001). In this chapter, endometrial adenocarcinoma HEC1A 

and HEC1B cells were characterised for ER expression at the mRNA and 

protein level. The modulation of endometrial RAGE by 17p estradiol and 4- 

hydroxytamoxifen was investigated at the level of mRNA and protein after 4h 

to explore the possibility that RAGE is an early estrogen response gene. In 

order to gain evidence for the involvement of the ER pathway in this 

regulation of endometrial RAGE, ChIP assays were performed to 

demonstrate direct interaction of E2 and/or TX-liganded ERa on the RAGE 

promoter. In endometriotic and PCO endometrium in vivo, RAGE expression 

would be influenced simultaneously by hormonal action and elevated AGEs 

which have also been shown to positively regulate RAGE probably through 

the NFkB pathway (Ch.4 Fig. 4.5, 4.6 and 4.8). From this, one may infer that 

cross-talk may exist between the ER and NFkB pathways with the potential to 

alter cellular levels of RAGE. This possibility of potential ER-NFkB 

interference on the level of ERa recruitment to the RAGE promoter was also 

investigated following co-treatment of E2 or TX with AGE-HSA in ERa 

positive HEC1A and Ishikawa cells.
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5.2 Estrogen Receptor expression in human endometrial epithelial 
HEC-1 cells at the mRNA and protein level

Pivotal to the cyclical disintegration, regeneration and function of the 

endometrial epithelium is the modulation of a diverse subset of endometrial 

expressed genes in response to an estrogenic stimulus. It is widely accepted 

that ERa is the dominantly expressed ER subtype in human endometrial and 

myometrial tissue however it appears that the ERa/ERp expression ratio may 

fluctuate between cellular compartments (Punyadeera 2008). In order to 

assess the likely hormonal regulation of endometrial epithelial RAGE 

expression, two cell lines, HEC1A and HEC1B, were chosen for their 

contrasting ERa expression status (Fig. 5.1). HEC1A has been previously 

characterised as an ER positive cell line expressing both receptor subtypes; 

ERa in excess of ERp. HEC1B has been described as not expressing the 

dominant subtype ERa, however due to positive ERp expression it provides 

us with model in which to investigate the ERp-selective effects on RAGE. 

One report noted the presence of ERa only in the cytoplasm of HEC1B cells 

deemed it to therefore be transcriptionally inactive (Punyadeera 2008). It was 

therefore necessary to confirm the relative expression of the ER isoforms 

both at the mRNA and protein level in these experimental models.
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Figure 5-1 Estrogen receptors ERa and ERp are differentially expressed in 
HEC1 epithelial adenocarcinoma cell lines.

Bar graphs show ER isoform transcript levels in HEC-1 A and HEC-1 B cells 
determined by real time PCR analysis.

HEC-1 cells were grown in confluent monolayers in 6 well plates and left 
untreated to assess basal ER transcript levels. Values given are mean starting 
quantity (StQ) normalised to GAPDH ± STDEV from StQ triplicates. Data was 
analysed using a two-tailed students T-test *p=<0.05, **p=<0.01 ERa vs. ERp.

Figure 5.1 shows the relative expression of the two ER isoforms in HEC1A 

and HEC1B endometrial cells. HEC1A cells expressed both receptor 

subtypes however the expression of ERa was 4.4 fold greater than ERp. 

HEC1B cells showed essentially no expression of ERa (ERp 120 fold vs. 

ERa) and expressed 3.5 fold greater ERp transcript than HEC1A. HEC1A 

cells are therefore an appropriate model in which to investigate the impact of 

ER signalling on RAGE, as the expression ratio of ERa to ERp transcript is 

comparable with endometrial epithelium in vivo.
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HEC-1 A HEC-1 B

Figure 5-2 Expression of ERa and ERp proteins in HEC-1 human endometrial 
epithelial cells

Images show basal ERa (A, B) and ERp (C, D) protein expression in untreated 
HEC1A and HEC1B cells by immunohistochemistry. Images were taken using 
the AxioCam HRc camera (Zeiss) fitted to a light microscope at x100 
magnification. Slides were stained with haematoxylin and eosin (H&E) for the 
nuclear and cytoplasmic compartments.

Figure 5.2 shows strong positive staining for ERa protein expression (A) in 

comparison to weak positive staining for ERp (C) and reflects the greater 

relative expression of ERa mRNA in HEC1A cells (see Fig. 5.1). ERa protein 

expression appeared to be both nuclear and cytoplasmic in positively staining 

HEC1A cells (Fig. 5.2A). In contrast, HEC1B cells did not stain for 

cytoplasmic or nuclear ERa protein (Fig. 5.2B) whereas strong positive 

staining for ERp (Fig. 5.2D) again correlated with transcript levels (Fig. 5.1). 

However due to dense cell seeding and low magnification it was not possible 

to determine the distribution of ERp protein in either cell line (Fig. 5.2C, D). 

HEC1 cells incubated with secondary antibody only as a negative control 

showed no non-specific staining for either ER (data not shown).
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Figure 5-3 Expression of ERa and ERp protein in HEC-1 human endometrial 
epithelial cell lines

Immunoblot data shows ERa protein (A) and ERp protein (D) expression after 
4h in HEC1A and HEC1B cells.

Confluent cells were either left untreated (control, C), or treated with 10nM 17p 
estradiol (E2) or both 10nM 17p estradiol and 10nM 4-Hydroxytamoxifen 
(E2+TX) for 4h (A). Proteins were separated by SDS-PAGE followed by 
immunoblotting with ER (ERa HC-20: sc-543, ERp L-20: sc-6822) and GAPDH 
specific (FL-335: sc-25778) polyclonal antibodies (Santa Cruz). Bands 
corresponding to ERa 66kDa and ERp 56kDa were detected. Non specific 
binding (NSB) was also detected at 91kDa as indicated by ERa antibody data 
sheet. Band Density (BD) was determined using Quantity One software (Bio- 
Rad) using the volume rectangle tool for signal intensity/area mm2. BD is 
displayed as the fold expression relative to either control (C) or HEC1A (F) 
normalised to respective GAPDH samples (shown B, E).
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Fig 5.3A shows that ERa protein expression was up-regulated 2.5 fold with 

17(3 estradiol (E2) treatment in HEC1A after 4h. This increase in ERa was 

reduced to 1.7 fold increase combined with 10nM 4-hydroxytamoxifen (A). No 

ERa was expressed in HEC1B cells even after E2 treatment, however ER(3 

protein expression was 3 fold greater in HEC1B than in untreated HEC1A 

cells (Fig. 5.3 D, F).

5.3 17(3 Estradiol and 4-Hydroxytamoxifen modulate RAGE transcript 
in human endometrial epithelial cells

RAGE is elevated in the endometrial tissues of women with endometriosis

and PCOS and therefore may play a role in the pathogenesis of these

infertility related disorders. RAGE expression was significantly elevated in

proliferative phase PCO endometrium coinciding with pre-ovulatory increases

in estrogen levels (Ch. 3 Fig. 3.2-3.4). Previous studies have shown that 17(3

estradiol can transcriptionally regulate RAGE expression in skin endothelial

cells (Tanaka, Yonekura et al. 2000; Mukherjee, Reynolds et al. 2005).

Numerous studies have demonstrated that TX orchestrates agonistic effects

on specific subsets of genes independently of E2 action in the epithelial

endometrium (Blauer, Heinonen et al. 2008; Gielen, Santegoets et al. 2008).

In fact, analysis of endometrium from TX users vs. matched controls revealed

that several genes were specifically and differentially regulated in the

endometrium via TX including NFkB, EGFR, MUC1, TP53 and p-catenin

(Gielen, Kuhne et al. 2005). These genes are collectively involved in

mediating apoptotic and cell-cell adhesion signalling through pathways

common to RAGE, suggesting that RAGE may also be implicated in

endometrial proliferation (Ch.4 Fig. 4.6 and 4.8). Furthermore, TX agonism of

ERa mediated signalling on cell proliferation has been observed in murine
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uterus (Stygar, Muravitskaya et al. 2003). In Ishikawa, TX was also shown to 

up-regulate the expression of c-myc, a gene which has been associated with 

endometrial cell proliferation and malignancy, through recruitment of the ERa 

coactivator SRC-1 between 2-4h (Shang and Brown 2002). Cell line models 

HEC1A and HEC1B positive and negative for ERa expression respectively 

were used to assess the impact of physiological (10nM) and saturating 

(100nM) concentrations of 17p estradiol with and without 10nM TX on 

endometrial RAGE transcript. In addition, RAGE expression was assessed in 

these cells post-challenge with 10nM TX to ascertain whether TX could 

assume an agonistic role independent of estrogen in the uterus. The 

following experiments demonstrate not only differential modulation of RAGE 

by the ER isoforms but also suggest that the ability of 4-hydroxytamoxifen to 

antagonise E2-mediated responses is influenced by E2 bioavailability and 

ERa status in these experimental models.
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Figure 5-4 17(3 estradiol and 4-hydroxytamoxifen modulate RAGE transcript 
levels in HEC-1 endometrial epithelial cells

Bar graphs show the effects of physiological and high dose 17(3 estradiol and 
4-hydroxytamoxifen on RAGE mRNA after 4h in HEC1A (A) and HEC1B cells 
(B) by real time PCR.

HEC1A and HEC1B cells were grown to confluent monolayers in 6 well culture 
plates and treated with 10 or 100nM 17(3 estradiol (E2) with or without 4- 
hydroxytamoxifen (TX) and with 10nM TX alone (no estrogen priming) for 4h. 
Cells were left untreated in cell culture medium for the negative control. 
Experiments were done in triplicate and typical results are shown. Values 
given are mean starting quantity (StQ) normalised to RPL-19 ± STDEV from 
StQ triplicates. Data was analysed using a two-tailed students T-Test *P<0.05, 
**P<0.01 vs. untreated control.
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Figure 5.4 demonstrates the differential effects of 10nM E2 and TX treatment 

on the expression of RAGE transcript between the two HEC1 cell lines (A, B). 

In HEC1A, RAGE transcript was induced 1.5 fold with 10nM E2 and 2.5 fold 

with 100nM E2 treatment after 4h when compared to untreated control. 

RAGE mRNA was down-regulated when HEC1A cells were treated with E2 

and TX combined treatment at 10nM and was further attenuated at higher 

(100nM) TX concentrations. This demonstrates that TX can act as an 

antagonist against E2-induced RAGE in this experimental model. However at 

high, non-physiological concentrations of E2 (100nM), TX was not able to 

antagonise E2 action in HEC1A cells (Fig. 5.4A). Fig 5.4B showed that 10nM 

E2 treatment up-regulated RAGE mRNA to a greater level (2.8 fold) in 

HEC1B than in HEC1A cells (1.5 fold) when compared to their respective 

controls. This suggests that in HEC1B, E2 was more effective at mediating 

signalling through ERp in the absence of ERa. However, unlike HEC1A, 

higher concentrations of E2 (100nM) had a less marked effect than 10nM E2 

on RAGE mRNA (1.4 fold vs. control) in HEC1B. Furthermore, RAGE mRNA 

remained up-regulated (2.5 fold) when HEC1B cells were challenged with 

10nM E2 and TX in combination. This suggests that at a physiological 

concentration of E2, TX does not inhibit E2-induced RAGE expression in 

HEC1B cells and therefore potentially exerts an agonistic effect on ERp. 

Conversely, TX regains its antagonistic potential at high concentrations 

(100nM) and can completely abolish the E2-mediated induction in HEC1B, 

evidenced by lower transcript levels (0.25 fold) than in untreated cells (Fig. 

5.4B). Interestingly, in the absence of E2, TX displays significant agonistic 

potency in endometrial cells and possesses affinity for binding both ERs (Fig. 

5.4). RAGE transcript was significantly up-regulated (11.2 fold) in HEC1A and

160



i^napter d i / o nstracnoi ana ^-nvaroxiamoxnen moauiate k a u c

5.9 fold in HEC1B cells when challenged with 10nM TX alone for 4h. These 

results suggest that TX is a potent inducer of endometrial RAGE and may 

also have an adverse effect on the endometrium in a low or non-estrogenic 

setting which could be likened to post-menopausal tissue. Taken together, 

these results indicate that 17p estradiol induces RAGE transcript via either 

ERa or ERp receptors and that 4-hydroxytamoxifen differentially modulates 

this response in two endometrial cell lines. If ERa is assumed to be the 

predominant factor in HEC1A, this study also begins to uncover the 

differential roles of the two ER isoforms in RAGE regulation in the 

endometrium.

5.4 17p Estradiol and 4-Hydroxytamoxifen can modulate RAGE protein 
in human endometrial epithelial cells

It was important to see if the dual antagonistic/agonistic effects of tamoxifen 

at the mRNA level translated to altered RAGE protein levels in the 

endometrium. In vivo, endometrial glands, lumen and stroma show 

significantly greater ERa expression relative to ERp thus it is likely that most 

genes, RAGE included, are predominantly regulated via ERa in this tissue 

(Punyadeera 2008). Previous immunoblot and EMSA analyses in skin 

endothelial cells revealed 10nM E2-induced RAGE was mediated solely 

through ERa whereas ERp had no effect on RAGE protein expression after 

4-6h, indicating that RAGE rapidly responds to hormonal simulation via the 

ER pathway (Tanaka, Yonekura et al. 2000; Mukherjee, Reynolds et al. 

2005). RAGE protein expression was therefore investigated in the HEC-1 

cells stimulated for 4h with either 10nM E2 or 10nM TX and compared to 

untreated counterparts.
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Figure 5-5 17(3 estradiol and 4-hydroxytamoxifen regulate RAGE protein 
expression in HEC-1 human endometrial epithelial cells.

Immunoblots show the effect of 10nM 17(3 estradiol (E2) or 10nM 4- 
hydroxytamoxifen (TX) treatment on RAGE protein levels after 4h in HEC1A 
(A) and HEC1B (D).

Confluent cells were harvested in RIPA protein buffer (SIGMA). 
Immunocomplexes were separated by SDS-PAGE followed by immunoblotting 
with RAGE (H300: sc-5563) and GAPDH specific (FL-335: sc-25778) rabbit 
polyclonal antibodies (Santa Cruz). Protein bands corresponding to the un­
truncated RAGE membrane-tethered protein were detected at 46kDa. Band 
Density (BD) was determined using the Quantity One software (Bio-Rad) using 
the volume rectangle tool for signal intensity/area mm2. BD is displayed as the 
fold expression relative to 4h untreated control (Panel C and F) normalised to 
respective GAPDH samples (Panel B and E).
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Figure 5.5 shows that basal RAGE protein was expressed at relatively low 

levels in both endometrial cell lines (Fig. 5.5 A, D). Basal RAGE expression 

was higher in HEC1B than in HEC1A which reflects the relative mRNA levels 

in these cells (Ch. 3 Fig. 3.17). The doublets seen in the immunoblots reveal 

the presence of a truncated RAGE isoform as well as the full-length receptor 

in both HEC-1 cell lines. However, expression of the truncated isoform 

appears to be greater than the full-length RAGE protein in HEC1A (A) 

whereas in HEC1B cells the expression of both RAGE isoforms appear 

comparable (D). In HEC1A, RAGE protein is induced 2 fold in cells treated for 

4h with 10nM E2 (Fig. 5.5 A, C). The same concentration of TX also 

increased RAGE protein levels 1.85 fold after 4h in these cells. In contrast, 

HEC1B cells showed no increase in RAGE protein expression after 4h with 

either 10nM E2 (0.9 fold) or TX treatment (1.1 fold) (Fig. 5.5 D, F). Potentially, 

this could be due to differences in the regulation of RAGE by ERa and ERp. It 

may also be possible that the effects of these treatments at the protein level 

are seen at a later time however this is still to be investigated.

5.5 17p Estradiol increases ERa recruitment to the RAGE promoter via 
Sp1 and Ap1 sites

RAGE is an estrogen responsive gene the expression of which can be 

modulated transcriptionally through both ERa and ERp in endometrial cells. 

However, up-regulation of RAGE at the protein level after 4h is only observed 

in ERa positive HEC1A cells, suggesting that RAGE is regulated via ERa at 

this time (Fig. 5.5A, D). Previous characterisation of the RAGE promoter 

revealed the presence of several non-classical estrogen response elements. 

In particular, Sp1 sites located in the region spanning -189 to -45 on the
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RAGE promoter were shown to be responsive to E2 treatment after 4h in 

skin-derived HMVECs. Two Sp1 sites at -189/-181 and -178/-172 were both 

shown to be involved in the transcriptional regulation of RAGE following 

systematic deletion of the promoter in RAGE-luciferase reporter constructs 

(Tanaka, Yonekura et al. 2000). Furthermore, in HMVECs only ERa was 

recruited to Sp1 sites at -189 and -172 on the RAGE promoter after 4h 

(Mukherjee, Reynolds et al. 2005). In addition, the selective synthetic ERa 

agonist 17-a-ethinylestradiol (EE) increased ERa occupancy at the Sp1 sites 

5 fold more than 17-epiestriol, an estrogen metabolite with selective ERp 

agonistic potency (Mukherjee, Reynolds et al. 2005). ERa recruitment to the 

RAGE promoter specifically at these Sp1 sites is yet to be determined in 

endometrial cells. In the following ChIP experiments, ER occupation of the 

two Sp1 sites and a novel singular Ap1 site on the RAGE promoter was 

assessed prior to and 4h post challenge with 10nM E2 in HEC1A.

Figure 5-6 Schematic diagram of the RAGE promoter showing the position of 
the two Sp1 and Ap1 sites investigated

Ti<)ii$tii|Mion 
St.lit
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Figure 5-7 Effect of 17p estradiol with or without 4-hydroxytamoxifen on ERa 
binding at Sp1 and Ap1 sites on the RAGE promoter.

The data presented shows ERa binding to Sp1 and Ap1 sites at -189/ -172 and 
-1542/ -1535 on the RAGE promoter in HEC1A epithelial endometrial 
adenocarcinoma cells. Bar graphs illustrate the recruitment level of ERa to the 
RAGE promoter following 4h treatment with A; 10nM 17(3 estradiol (E2) alone 
or B; combined treatment of 10nM 17(3 estradiol (E2) and 10nM 4- 
hydroxytamoxifen (TX). ChIP experiments were performed in triplicate and 
representative results are shown.
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Binding to an ERE located at -13351/-13217 on the XBP1 promoter was 
assessed as a positive control using the same experimental samples. ChIP 
reactions for a negative control mouse IgG detecting non-specific background 
signal at each site were run in parallel per sample. Data presented is the mean 
background subtracted binding level of ERa ± STDEV of triplicates and is 
shown as a % of Input DNA at the site bound by antibody following 
immunoprecipitation. Data was analysed using a two-tailed students T-Test 
*P<0.05, **P<0.01 vs. untreated control.

Figure 5.7 shows that 4h treatment with 10nM E2 resulted in increased 

recruitment of ERa protein to the RAGE promoter in HEC1A cells. ERa 

recruitment to a region on the RAGE promoter containing two Sp1 

transcription factor sites starting at -181 and -172. In HEC1A cells following 

E2 treatment, the level of ERa binding to the two Sp1 sites increased by 1.9 

fold (p=0.01) and by 2.4 fold (p=0.02) at a single Ap1 site located further 

upstream at -1542/- 1535 on the RAGE promoter (Fig. 5.7). In control 

experiments ERa binding increased 16 fold (p=0.02) to the classical ERE on 

the XBP1 promoter (-13351 /-13217). It appears that ERa is recruited to both 

Sp1 and Ap1 sites in endometrial HEC1A cells however the exact 

composition of the ERa recruitment factors remains to be determined. The 

Ap1 transcriptional complex recruited by ERa can exist as a hetero- or 

homodimer of Fos and Jun proteins, of which there are several identified 

combinations. However, ERa is more likely to recruit a complex containing 

both c-Fos and c-Jun proteins to the Ap1 site on RAGE due to preferential 

heterodimerization of Fos proteins (Ryseck 1991; Chinenov 2001; Matthews 

2006). Figure 5.8 demonstrates that ERa recruitment to the RAGE promoter 

following E2 (10nM) and TX (10nM) treatment at two Sp1 sites (-189/-172) 

was similar to the recruitment observed with 10nM E2 treatment alone in 

HEC1A cells (Fig. 5.8). In comparison with untreated HEC1A, 10nM E2 and 

TX increased ERa recruitment to Sp1 and Ap1 sites by 2.3 fold (p=0.01) and
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2.2 fold (p=0.02) respectively after 4h (Fig. 5.8). These results indicate that 

binding of ERa to RAGE is not antagonised by TX but may be sustained; 

however this does not result in a repression of RAGE transcript levels in 

HEC1A (Fig. 5.4A). Thus, TX-complexed ERa may recruit co-repressors to 

the RAGE promoter. In contrast, ERa binding to the XBP1 enhancer 1 ERE (- 

13351 /-13217) was decreased by almost 50% (0.56 fold) compared to 10nM 

E2 stimulation alone (16.7 fold vs. control). These findings suggest that TX 

antagonises E2-mediated ERa recruitment to the XBP1 consensus ERE but 

not to the Ap1 or Sp1 sites on RAGE suggesting the presence of promoter- 

specific recruitment mechanisms of transcriptional machinery(Shang, Hu et 

al. 2000). In addition, these data indicate the possibility of a differential 

response between classical ERE and non-classical estrogen regulated sites. 

The observations in HEC1A cells are in accordance with other studies which 

have shown that TX, when administered in conjunction with E2, can inhibit 

the agonistic effects mediated by E2 in endometrial models. In addition, 

genes that displayed an early response to E2 stimulation were principally 

regulated at non-consensus ER sites whereas after 48h, the majority of E2 

responsive genes were regulated via classical estrogen response elements 

(Johnson, Maleki-Dizaji et al. 2007). E2 exerts a biphasic effect in uterus with 

a specific early response window observed between 1-4h and later after 24h 

(O'Brien 2006). Therefore, RAGE can be identified as an early E2 responsive 

gene regulated by ERa in the endometrium.
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5.6 4-Hydroxytamoxifen increases ERa recruitment to the RAGE 
promoter via Sp1 and Ap1 sites

In earlier experiments, TX was shown to be a potent inducer of RAGE at the

mRNA level in both HEC1A and HEC1B (Fig. 5.4 A, B). Additionally, in ERa

positive HEC1A cells, 10nM TX induced a 1.9 fold increase in RAGE protein

after 4h which was comparable to the effect of 10nM E2. Interestingly, no

increase in RAGE protein was observed in HEC1B cells when challenged

with 10nM TX (Fig. 5.5A, D). From these findings it was inferred that ERa

was likely to be the predominant factor mediating RAGE expression in

HEC1A. However, a study investigating gene regulation in breast cancer

revealed that ERp can interfere with the transcriptional activity of ERa.

Incorporation of an ERp expression plasmid into T47D cells reduced the

recruitment of Ap1 transcription factor components c-Jun and c-Fos to

estrogen responsive promoters as well as reducing E2-induced ERa protein

expression by 50% (Matthews 2006). Consequently, it should not be ruled out

that ERp could indirectly affect the outcome of the subsequent results.

Nevertheless, it was of interest to establish whether TX at a concentration of

10nM could mimic the E2-induced recruitment of ERa to the Sp1 and Ap1

sites on the RAGE promoter after 4h (Fig. 5.7 A, B).
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Figure 5-8 Effect of 4-Hydroxytamoxifen on the recruitment of ERa to Sp1 and 
Ap1 sites on the RAGE promoter

Bar graphs illustrate the level of ERa recruitment to Sp1 and Ap1 sites at -189/ 
-172 and -1542/ -1535 respectively on the RAGE promoter in HEC1A epithelial 
endometrial adenocarcinoma cells.

The data presented is the level of ERa binding to the RAGE promoter before 
(C) and after 4h treatment with 10nM 4-hydroxytamoxifen (TX). ChIP 
experiments were performed in triplicate and representative results are 
shown. Binding to an ERE located at -13351/-13217 on the XBP1 promoter was 
assessed as a positive control. ChIP reactions for a negative control mouse 
IgG detecting non-specific background signal at each site were run in parallel 
per sample. Data presented is the mean background subtracted binding level 
of ERa ± STDEV of triplicates and is shown as a % of Input DNA at the site 
bound by antibody following immunoprecipitation. Data was analysed using a 
two-tailed students T-Test *P<0.05, **P<0.01 vs. untreated control.
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Figure 5.8 shows treatment of HEC1A cells with 10nM TX alone increased 

the level of ERa recruitment to the RAGE and XBP1 promoters after 4h. The 

level of ERa binding at the Sp1 sites (-189/-172) following 10nM TX 

treatment was 15 fold (p=0.01) greater than in untreated HEC1A, and 7.9 fold 

greater than with E2 alone (Fig. 5.7). There appears to be preferential binding 

of ERa to the Ap1 site (-1542/-1535) on RAGE following both E2 (Fig. 5.7) 

and TX stimulation. TX at a concentration of 10nM increased promoter Ap1 

occupation by 18 fold vs. untreated HEC1A (p=0.0004) and 1.7 fold in 

comparison to Sp1. This may reflect greater affinity for TX/E2-bound ERa to 

form complex with Ap1 rather than Sp1 proteins in this cell model. The fact 

that TX induced 7.6 fold greater ERa binding at the Sp1 sites and 7.9 fold at 

the Ap1 site in comparison to E2 suggests that TX is a more potent ligand of 

ERa binding activity in HEC1A endometrial cells. Similarly, TX mediated ERa 

recruitment to the classical ERE on the XBP1 was increased by 59 fold with 

respect to untreated controls (p=0.0008).

5.7 A Clinical Case Study of RAGE expression in hyperplasic and 
tamoxifen treated endometrium

Hyperplasia is a risk factor for the development of endometrial 

adenocarcinoma with over 1 in 5 cases advancing towards malignancy and is 

particularly prevalent amongst PCO women (Kurman, Kaminski et al. 1985; 

Balen 2001; Pillay, Te Fong et al. 2006; Villavicencio, Bacallao et al. 2006). 

PCO women express significantly greater levels of endometrial epithelial and 

stromal RAGE in comparison to fertile women (Ch.3 Fig. 3.2-3.9). A 

substantial body of evidence has implicated RAGE and RAGE ligands in the 

underlying inflammatory micro-environment that precedes tumourigenesis in
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several cellular contexts including endometrium (Dougan and Dranoff 2008; 

Sparvero, Asafu-Adjei et al. 2009; Rojas, Figueroa et al. 2010). Furthermore, 

endometrial RAGE can be up-regulated potentially via increased ERa-DNA 

binding in response to E2 and/or TX treatment (Fig. 5.4-5.8) and possibly 

through AGE-induced NFicB-p65 (Ch.4 Fig. 4.5-4.8). In addition to excess 

androgens and AGE, estrogens and ER have been shown to be elevated in 

PCO pathology and may promote proliferation of the endometrium (Leon, 

Bacallao et al. 2008; Diamanti-Kandarakis, Piouka et al. 2009; Homburg 

2009; Margarit, Taylor et al. 2010). Thus, it was of interest to investigate 

RAGE expression from a clinical perspective.

A preliminary IHC study of two isolated cases of endometrial hyperplasia was 

undertaken. Biopsy specimens were taken from two patients; the first, a 35 yr 

old otherwise fertile woman (parity=2) having spontaneously developed 

endometrial hyperplasia which progressed to cancer (Fig. 5.9A), and a 

second patient receiving on-going tamoxifen treatment for breast cancer. The 

latter presented with abnormal bleeding at the time of the first biopsy which 

was later found to be early stage hyperplasia (ESH, Fig. 5.9B). Three months 

later after continued bleeding, a second biopsy confirmed atypical 

hyperplasia (LSH, Fig. 5.9C). IHC images of fertile endometrium (controls) 

are presented for comparative purposes and were discussed previously in 

chapter 3 (Fig 3.10). Slides in Fig. 5.9 were stained using standard 

Haematoxylin and Eosin (H&E) staining for the nuclear and cytoplasmic 

compartments respectively. Red-brown stain indicated RAGE expression as 

targeted by Anti-RAGE mouse monoclonal antibody (mAbA11, Millipore).
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Glands Lumen

Figure 5-9 Glandular and luminal RAGE expression in hyperplasic 
endometrium

Panel A: Endometrium from a patient not receiving hormonal therapy who 
developed spontaneous hyperplasia (SH). Panel B: Initial endometrial biopsy 
taken from a patient receiving tamoxifen treatment for breast cancer (ESH). 
Panel C: Biopsy taken 3 months later from the same breast cancer patient in 
panel B showing confirmed hyperplasia (LSH). Slides were stained with purple 
(negative) H&E stain for the nuclear and cytoplasmic cell compartments. 
RAGE protein was identified using the Anti-RAGE monoclonal antibody 
mAbA11 (Millipore) and is indicated by positive red-brown stain. IHC images 
were taken using the AxioCam HRc camera (Zeiss) at x20 magnification.
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Figure 5.9A demonstrates distinct over-expression of RAGE protein in 

hyperplasic endometrial epithelium and stromal cells. In particular, the 

epithelial glands showed intense staining for RAGE and irregular morphology 

characteristic to hyperplasia (Kurman, Kaminski et al. 1985). Luminal RAGE 

expression was also distinctly elevated and almost all stroma cells stained 

positively for RAGE. In the tamoxifen-treated breast cancer patient, an initial 

biopsy diagnosed as ‘normal proliferative’ endometrium showed increased 

epithelial RAGE expression with more intense staining in the lumen than at 

the glandular surface (Fig. 5.9B). Despite no signs of glandular 

transformation as seen in 5.9A, the stroma not only stained for elevated 

RAGE but appeared to show nuclear expansion which may be indicative of 

early stage hyperplasia (ESH). In later stage hyperplasia (LSH) from the 

same patient, endometrial RAGE was distinctly over-expressed in the glands 

and lumen when compared to ESH (Fig. 5.9C). Furthermore, the endometrial 

stroma had proliferated and the glands appeared to exhibit irregular 

morphology comparable to the hyperplasic endometrium which progressed to 

cancer in Fig. 5.9A. These preliminary findings suggest that RAGE may be 

elevated in hyperplasia and correlate with disease severity. Moreover, it may 

implicate tamoxifen in the development of hyperplasia due to its known 

agonistic effect on ER signalling which drives uterine proliferation and up- 

regulates endometrial RAGE.

5.8 Cross talk between the ER and NFkB pathways may alter RAGE 
expression in ERa positive human endometrial epithelial cells

Experiments in this chapter have demonstrated that E2 and TX are potent

inducers of endometrial RAGE expression. These results, taken together with

the finding that AGE-HSA up-regulates endometrial RAGE suggest receptor

modulation through two distinct putative signalling pathways namely ERa and
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NFkB. Several studies have investigated cross-talk between the ER and 

NFkB pathway on gene expression in various cell systems. Inhibitory 

reciprocal ER-NFkB interference has been demonstrated in human liver 

HepG2 cells co-transfected with ERa expression vector and ERE-luciferase 

constructs. Introduction of cytokine NFicB-agonists and p65 itself attenuated 

ERa occupation of the ERE mediated by E2 (Evans, Eckert et al. 2001). 

Direct ER-NFkB association in osteoblastic U20S cells was shown to be 

specific to ERa and p65 either as a homo- (p65/p65) or heterodimer 

(p65/p50) in co-immunoprecipitation and luciferase reporter deletion assays, 

whereas no interaction was observed between ERp or p50/p50 

(Quaedackers 2007). Furthermore, studies investigating ER-NFkB cross-talk 

in human aortic smooth muscle and liver cells have evidenced reciprocal 

repression may involve competition for p300 or co-recruitment of CBP 

leading to formation of inactive or unstable complexes (Harnish, Scicchitano 

et al. 2000; Speir, Yu et al. 2000). More recently, the impact of functional 

interference between ER and NFkB has been assessed in endometrial 

tissue. Interestingly, both synergistic and inhibitory cross-talk between ERa- 

agonist E2 and NFKB-agonist IL-1 p was observed between immortalised 

endometrial and Ishikawa cells. In normal epithelial endometrium, co­

treatment had an additive effect on ER-ERE occupation, c-myc and 

prostaglandin gene expression, whereas in Ishikawa cells, no synergistic 

effect was observed after 24h (King, Collins et al. 2010). However, other 

endometrial studies have reported that NFkB activation significantly 

repressed E2 action on several genes (Feldman, Feldman et al. 2007; 

Guzeloglu-Kayisli, Halis et al. 2008) In contrast, simultaneous binding of
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ERa and p65 to an ERE was required to synergistically up-regulate 

prostaglandin-E expression in breast cancer cells (Frasor, Weaver et al. 

2008). These observations lead to the supposition that ER-NFkB cross-talk is 

both cell- and gene-specific (King, Collins et al. 2010). The subsequent 

experiments assess ERa RAGE occupation after 4h 10nM E2 or TX and 

10pg/mL AGE treatment in ERa positive HEC1A and Ishikawa cells in order 

to give some possible preliminary evidence for cross-talk that could influence 

RAGE regulation in the endometrium.
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Sp1 ( -1 8 9 /-1 81 , -1 7 8 /-1 72)
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Ap1 ( -1 5 4 2 /-1 53 5 )

Figure 5-10 AGE-HSA inhibits 17(3 estradiol and 4-Hydroxytamoxifen-recruited 
ERa binding to Sp1 and Ap1 sites

Bar graph illustrates ERa recruitment to the RAGE promoter following 4h 
treatment with either 10nM E2 or TX in combination with 10|ig/mL AGE-HSA in 
HEC1A cells. ChIP experiments were performed in triplicate and 
representative results are shown. ChIP reactions for a negative control mouse 
IgG detecting non-specific background signal at each site were run in parallel 
per sample. Data presented is the mean background subtracted binding level 
of ERa ± STDEV of triplicates and is shown as a % of Input DNA at the site 
bound by antibody following immunoprecipitation. Data was analysed using a 
two-tailed students T-Test *P<0.05, **P<0.01 vs. untreated control.
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Figure 5.10 reveals the E2-induced ERa occupation of Sp1 site(s) at -189/- 

181 and -178/-172 on the RAGE promoter was significantly inhibited when 

compared to basal levels after 4h AGE treatment (reduced 0.2 fold vs. 

control, p=0.0003). Similarly, ERa occupation of the Ap1 site at -1542/-1535 

was significantly reduced in comparison to control levels following E2 and 

AGE-HSA treatment (0.6 fold vs. control, p=0.0002). Furthermore 10pg/mL 

AGE-HSA significantly reduced TX-induced ERa occupation with respect to 

untreated controls at both Sp1 site(s) (0.5 fold vs. control, p=0.05) and the 

Ap1 site (0.4 fold vs. control, p=0.01). These results suggest that possible 

NFkB-ER cross talk alters ERa-RAGE interaction at the promoter, and 

perhaps also influences RAGE regulation at the transcription level (Fig. 5.11).

0 . 1 4  1

0.12

Figure 5-11 AGE-HSA inhibits the induction of RAGE transcript by 17(3 
estradiol and 4-hydroxytamoxifen

Bar graph shows the effect of 17(3 estradiol (E2) and 4-hydrotamoxifen (TX) in 
combination with AGE-HSA on RAGE expression in HEC1A cells by real time 
PCR. HEC1A cells were treated with either 10nM E2 or 10nM TX with 10pg/mL 
AGE-HSA for 4h. Values given are mean starting quantity (StQ) normalised to 
RPL19 ± STDEV from StQ triplicates. Data was analysed using a two-tailed 
students T-test.
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Figure 5.11 simply demonstrates no significant difference between RAGE 

mRNA expression in HEC1A cells challenged for 4h with either E2 or TX 

(10nM) and 10pg/mL AGE-HSA and untreated cells. These results suggest 

AGE-HSA may abrogate E2 and TX-induced RAGE transcript, and potentially 

indicate that these agents modulate RAGE through opposing regulatory 

pathways.
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Figure 5-12 AGE-HSA inhibits ERa binding to two Sp1 sites and one Ap1 site

Bar graph illustrates recruitment of ERa to the RAGE promoter following 4h 
treatment with 10jig/mL AGE-HSA in Ishikawa endometrial epithelial cells. 
Unmodified HSA (10pg/mL) was used as a biological negative control. ChIP 
experiments were performed in triplicate and representative results are 
shown. ChIP reactions for a negative control mouse IgG detecting non­
specific background signal at each site were run in parallel per sample. Data 
presented is the mean background subtracted binding level of ERa ± STDEV 
of triplicates and is shown as a % of Input DNA at the site bound by antibody 
following immunoprecipitation. Data was analysed using a two-tailed students 
T-Test *P<0.05, **P<0.01 vs. untreated control, C.
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Figure 5.12 shows the effect of 10|ig/mL AGE-HSA treatment on ERa 

recruitment to the RAGE promoter in a second endometrial cell line, 

Ishikawa. In comparison to untreated Ishikawa cells, 10pg/mL AGE-HSA 

reduced ERa recruitment to the region on the RAGE containing two Sp1 sites 

however this decrease in binding was not significant (0.4 fold vs. control, 

p=0.08). Thus, AGE-HSA does not affect occupation of Sp1 sites by ligand 

activated ER when the cells are treated with 10jig/mL AGE-HSA alone. 

Furthermore, ERa recruitment to the Sp1 sites following 10pg/mL unmodified 

HSA treatment remained altered from ERa occupation observed in control 

samples (p=0.18). In untreated Ishikawa, more ERa is bound to the Ap1 site 

after 4h than at the two Sp1 sites combined, suggesting that ER may have a 

greater affinity for Ap1 proteins or the site itself. ERa recruitment is 

significantly inhibited after lOpg/mL AGE-HSA treatment (0.1 fold vs. control, 

C) at the Ap1 site. The same concentration of unmodified HSA also reduced 

ERa occupation by 0.53 fold at this site however it was not found to be 

significantly different from the control sample (p=0.06). These results indicate 

that in two ERa positive cell line models of endometrial epithelium, the 

ambient concentration of AGEs or the possible activation of the NFkB 

pathway may affect the regulation of RAGE by the ER pathway.

5.7 Discussion

This chapter has endeavoured to elucidate the mechanisms behind the 

modulation of RAGE by 17(3 estradiol and 4-hydroxytamoxifen, and provides 

the first evidence of ERa and ERp in mediating E2 and TX agonist action on 

endometrial RAGE expression. Importantly, these results demonstrate that
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endometrial RAGE is induced by E2 at physiological and high concentrations 

at the mRNA (Fig. 5.4 A, B) and protein level (Fig. 5.5 A, C), and that 

administration of 10nM TX differentially modulated the E2-induced response 

in HEC-1 cells. For the most part, TX exhibited an antagonistic effect on E2- 

induced RAGE transcript in estrogen stimulated cells (Fig. 5.4). However, 

when cells were treated solely with 10nM TX in the absence of estrogen or 

low estrogenic milieu, RAGE mRNA was distinctly up-regulated in both 

HEC1A (11.2 fold) and HEC1B cells (5.9 fold) indicating that TX conferred ER 

dependent agonistic potency in the endometrium (Fig. 5.4). ChIP 

experiments revealed that 10nM E2 increased ERa occupation on the RAGE 

promoter at Sp1 and Ap1 sites in ERa positive HEC1A cells (Fig. 5.7A) but 

not in HEC1B (data not shown). Similarly, 10nM TX treatment increased ERa 

recruitment to the RAGE promoter and the level of ERa enrichment at both 

Sp1 and Ap1 sites was significantly greater than in E2-treated cells (Fig. 5.7, 

5.8). TX partially antagonised E2-induced ERa recruitment, slightly reducing 

the level of binding in comparison to E2 treated cells, however more ERa 

was bound to the Sp1 and Ap1 sites than in untreated controls (Fig. 5.7B). 

Furthermore, preferential binding of E2 and TX-liganded ERa to the Ap1 site 

on the RAGE promoter is a novel observation (Fig. 5.7, 5.8). Based on 

previous observations (discussed in Fig. 5.13) differential availability and/or 

recruitment of ER coactivators/repressors may mediate the dynamic effects 

of TX in the uterus. The principal findings in this chapter have perhaps 

highlighted that the low estrogenic milieu post menopause may render the 

endometrium susceptible to potent ER agonist action in women taking 

tamoxifen treatment for ERa positive breast cancers. Consequently, we may

have exposed this specific cohort of women receiving tamoxifen treatment to
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a secondary risk of endometrial cancer due to its agonism of RAGE 

signalling. RAGE has been implicated in the perpetuation of pro-inflammatory 

responses allied to tumourigenesis in several cell systems most notably in 

lung and pancreatic cancer, and hypothetically could also mediate pre- 

cancerous mechanisms that advance endometrial malignancy (Hiwatashi, 

Ueno et al. 2008; Kang, Tang et al. 2009; Sparvero, Asafu-Adjei et al. 2009; 

Rojas, Figueroa et al. 2010). Moreover, this suggestion was reinforced with 

the discovery that endometrial hyperplasia that materialized both 

spontaneously and under tamoxifen stimulus, stained extensively for RAGE 

(Fig. 5.9). However, larger cohorts of patients with endometrial hyperplasia 

and tamoxifen-treated breast cancer would need to be recruited to this study 

in order to further implicate RAGE in endometrial cancer development. 

Finally, several studies have reported reciprocal inhibitory cross-talk between 

ERa, NFkB and their respective pathways in a variety of cellular contexts 

(Harnish, Scicchitano et al. 2000; Evans, Eckert et al. 2001; Chadwick, 

Chippari et al. 2005; Kalaitzidis and Gilmore 2005; Guzeloglu-Kayisli, Halis et 

al. 2008). These preliminary results imply that endometrial RAGE expression 

may be influenced by the interplay of NFKB-and ER-mediated stimuli, which 

perhaps could provide a means of exploiting RAGE as a therapeutic target 

and may be of particular importance for women with PCOS, endometriosis 

and tamoxifen-treated breast cancer.

Figure 5.13 depicts E2 as an agonist in the uterus recruiting specific subsets 

of p160 co-activators to E2 responsive genes: SRC-1, SRC-2, SRC-3, [CBP 

and HDAs] in MCF-7 breast and [endometrial ECC-1 and Ishikawa cells] (Fig. 

5.13A) (Shang, Hu et al. 2000; Shang and Brown 2002).
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Figure 5-13 Diagram to illustrate the possible mechanisms behind the ER 
modulation of RAGE in the endometrium

In contrast, TX is a known ER antagonist in breast where it recruits co­

repressors NcoR and SMRT to ERa (Fig. 5.13B) (Shang, Hu et al. 2000). 

However in uterus, TX is an agonist or antagonist depending on the gene in 

question. For example, TX is an ER agonist recruiting SRC-1, SRC-3 and 

CREB to the c-myc promoter yet behaves as an antagonist recruiting NcoR 

and SMRT to the cathepsin D promoter in Ishikawa (Fig. 5.13B, C) (Shang 

and Brown 2002). In the HEC1A models, TX acted antagonistically on ER(a) 

when in conjunction with E2, yet when the cells were treated with TX alone, it 

acted agonistically on ER(a) to induce RAGE (Fig. 5.4, 5.7, 5.8) (Scafonas, 

Reszka et al. 2008). It could therefore be hypothesised that E2 and TX may 

utilise mechanisms similar to those depicted in Fig. 5.13E and F to induce 

RAGE in the endometrium. Further adding to the complexity of ER signalling, 

ERa enrichment at Sp1 and Ap1 sites on RAGE is likely to be representative 

of both ERa/ERp and ERa/ERa dimers (Fig. 5.7, 5.8 and 5.13G) which may 

dictate coactivator/repressor recruitment (Li, Huang et al. 2004).
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6. Thesis Summary and General Conclusions

6.1 Thesis Summary

The novel results described in this thesis have served to characterise the 

expression of the AGE receptor in human eutopic endometrium. RAGE was 

shown to be significantly elevated in PCOS, endometriosis, hyperplasia and 

cancer. In addition, this project served to provide evidence for the 

transcriptional mechanisms involved in RAGE modulation using endometrial 

cell line models. Specifically, this project addresses the role of AGEs, 17(3 

estradiol and the anti-estrogen 4-hydroxytamoxifen on the transcriptional 

activity of RAGE. The following discussion begins with a brief synopsis of the 

work accomplished in this project in order to give an overall representation of 

the AGE-RAGE axis in the endometrium. Thereafter, potential roles for the 

AGE-RAGE axis in female infertility and gynaecological malignancies are 

discussed.

Immunohistochemistry results in chapter 3 demonstrated for the first time that 

RAGE is expressed in both fertile and infertile human endometrium. 

However, RAGE exhibited differential expression in the glandular, luminal 

and stromal endometrial compartments between the fertile and the infertile 

PCOS and endometriosis women. RAGE was found to be significantly 

elevated in both ovulatory and anovulatory PCO endometrial glands, lumen 

and stroma with respect to fertile endometrium. Greatest RAGE expression 

was observed in the proliferative phase ovulatory PCOS patients across all 

endometrial cell subtypes, whereas secretory phase ovulatory PCO 

endometrium had comparable levels of RAGE to anovulatory patients. In 

addition, infertile endometriotic endometrium showed significantly greater 

RAGE protein localized solely to the glandular epithelium, and secretory
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phase stroma when compared to fertile controls. In contrast, no difference in 

luminal RAGE expression was observed between endometriotic and fertile 

endometria irrespective of menstrual cycle phase. The level of RAGE 

transcript was assessed in whole tissue and epithelial cells isolated from 

endometrial biopsy. Real time PCR results revealed that 

RAGE mRNA levels were significantly higher in anovulatory PCO whole 

endometrial tissue and cultured epithelial cells when compared to fertile 

controls. Increases in RAGE transcript in proliferative phase endometriosis 

did not reach significance over proliferative phase fertile controls either in 

whole endometrial tissue or the isolated epithelial cells. In contrast, RAGE 

mRNA was significantly greater in whole tissue and epithelial cells of 

secretory phase endometriotic endometrium. Finally, RAGE transcript was 

evaluated in endometrial epithelial adenocarcinoma cell lines; Ishikawa, 

Heraklio, HEC1A and HEC1B, the latter having the greatest expression. This 

allowed for the work in the subsequent chapters to be undertaken in these 

cell lines as appropriate in vitro models of the endometrial epithelium. Using 

these in vitro models, endometrial RAGE expression was investigated at the 

mRNA and protein level following stimulation with its ligand AGE.

Chapter 4 endeavoured to investigate whether endometrial RAGE could be 

manipulated in the in vitro models with the introduction of ligand. RT-PCR 

results conducted in the four cell lines revealed that RAGE transcript could be 

significantly up-regulated by AGE-HSA in a time- and dose-dependent 

manner. AGE-HSA at a concentration of 10pg/mL had the greatest effect on 

RAGE mRNA levels whereas the same concentration of HSA negative 

control did not. Using 10mg/mL AGE-HSA, RAGE protein levels were also 

up-regulated in Ishikawa and Heraklio cells after 4h however, at later times
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increases in RAGE were observed that were likely due to factors acting 

independently of the exogenous AGE input. AGE-HSA treatment at lOjig/mL 

slightly elevated phosphorylated NFicB-p65 levels in Ishikawa and Heraklio 

after 15 min. However, within the confines of the experimental set up, 

phosphorylated p65 appeared to be constitutively active. Importantly, ChIP 

data in chapter 4 demonstrated the involvement of NFkB in the transcriptional 

regulation of RAGE. ChIP results revealed that post 4h challenge with AGE- 

HSA, occupation of NFx:B-p65 at NFkB sites on the RAGE promoter was 

significantly increased in Ishikawa and Heraklio cells. Furthermore, AGE- 

induced NFkB-p65 recruitment was also observed at NFkB sites on the 

MUC1 promoter, a known NFkB target gene in the endometrium and breast 

(Lagow and Carson 2002; Thathiah, Brayman et al. 2004). It was thus 

demonstrated for the first time the existence of an AGE-RAGE axis in the 

endometrium involving the transactivation of NFkB-p65 signalling (Ch.4). 

NFkB pathway aside, very little was known about additional pathways 

involved in the modulation of RAGE. Given that endometrial tissue function is 

largely dependent on its responsiveness to sex steroids, experiments in the 

subsequent chapter attempted to elucidate a role for 17(3 estradiol.

The data presented in chapter 5 indicated that RAGE could be targeted 

through the ER pathway in the epithelial endometrium. RT-PCR, western Blot 

and IHC confirmed the expression of the ERa and ERp receptors in the cell 

line models; HEC1A as ERa positive and HEC1B as ERa negative. 

Significantly, RAGE transcript was revealed to be induced by 10nM E2 in 

both cell lines after 4h. Conversely, RAGE appeared to be differently 

regulated at higher E2 concentrations. The effects of E2 and TX treatment in
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these two cell lines also indicated differential agonism/antagonism of E2- 

induced RAGE expression specific to the two ER subtypes, thus TX 

differentially modulated RAGE mRNA in a cell line ER subtype- and E2 

concentration-specific manner. Moreover, these results also indicated that in 

addition to E2, TX was also a potent inducer of RAGE expression in the 

endometrium. Despite greater basal RAGE expression at the protein level in 

HEC1B, consistent with greater mRNA levels in this cell line, no induction of 

RAGE was observed post challenge with E2 or TX. In contrast, RAGE protein 

was up-regulated by E2 and TX in HEC1A cells under the same conditions. 

From this, it was inferred that ERa was the predominant factor facilitating 

RAGE regulation in the endometrium, or that any ERp driven RAGE protein 

accumulation may occur at a later time. Finally, ChIP experiments using an 

ERa-specific antibody revealed that ERa recruitment to the RAGE promoter 

was by way of protein-protein interaction with Ap1 and Sp1 transcription 

factors. ERa recruitment to Sp1 and Ap1 sites on the RAGE promoter was 

increased with 10nM E2 and furthermore increased with 10nM TX treatment 

when compared to untreated controls.

6.2 Significance of elevated RAGE in endometriosis and PCOS

The work in this thesis has demonstrated that endometrial RAGE is regulated 

at the mRNA and protein level by AGEs and E2 which are elevated in PCOS 

and endometriosis pathology respectively. Hyperandrogenism, particularly 

excess dihydrotestosterone (DHT), in combination with elevated AGEs, 

increase formation and activity of the p-catenin/pTIF2/AR transcription 

complex in HMVECs (Otero 2001). The activity of this AR complex is 

increased in the presence of estrogen, and AR itself can even be liganded 

and activated by estrogens in Ishikawa endometrial cells (Lovely, Appa Rao
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et al. 2000; Truica 2003). Interestingly, endometrial epithelial P-catenin 

displays transient nuclear localisation during the estrogenic secretory phase 

(Saegusa, Hashimura et al. 2007). This AR/p-catenin complex targets and 

initiates transcription of AR genes one of which is MUC1 (see Figure 6.1). In 

addition, liganded-RAGE activates ERK1/2 MAPKs and NFkB which in turn 

directly up-regulate both RAGE (and MUC1) via p65-DNA binding (Yeh 2001; 

Li 2004; Thathiah, Brayman et al. 2004; Ahmad, Raina et al. 2009; Liu, Liang 

et al. 2010). One possibility is that RAGE could potentially act as an 

upstream effector of MUC1 which is up-regulated during a period of maximal 

receptivity termed the ‘window of implantation’(Hey, Graham et al. 1994). 

MUC1 is thought to prime endometrial epithelium for blastocyst apposition. 

Specifically, the large MUC1 ectodomain acts as a scaffold in glandular 

epithelia for the recruitment of adhesive carbohydrates that ligand L-selectin 

expressed on the blastocyst apical surface (DeLoia, Krasnow et al. 1998; 

Carson, Julian et al. 2006; Margarit, Gonzalez et al. 2009). Inefficient 

clearance or altered MUC1 expression be it up or down regulation has been 

implicated in implantation failure and infertility (Hey, Graham et al. 1994; 

Horne, Lalani et al. 2005; Margarit, Taylor et al. 2010). Immunohistochemical 

appear to reflect over expression of RAGE and MUC1 in secretory 

endometriotic and proliferative anovulatory PCO endometrium, however the 

data sets are limited and more patient samples would be needed to provide 

more conclusive results.

6.3 Elevated RAGE expression presents a risk of endometrial cancer 
for women with PCOS, endometriosis and patients receiving 
tamoxifen for breast cancer

RAGE has been implicated in the development of several cancers particularly

lung, colorectal, gastric and cervical metastasis (Tsuji 2008; Srikrishna and
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Freeze 2009). Tamoxifen, has proven to be a very effective antagonist in 

breast and has been used for the treatment of breast cancer for years. 

However, tamoxifen has been phased out in favour of aromatase inhibitors 

and is no longer administered to post-menopausal breast cancer patients due 

to concern that it possesses estrogenic properties in the uterus that induce 

proliferation. Nevertheless, RAGE is distinctly up-regulated by TX and its 

expression in hyperplasic endometrium appears to correlate with progression 

towards endometrial cancer. Therefore, it could be speculated that enhanced 

RAGE expression could promote an altered endometrial pro-inflammatory 

cytokine profile which fuel tumourigenesis. RAGE, elevated by 

hyperestrogenism in endometriosis or by hyperandrogenism and AGE in 

PCOS, can potentiate pERK, NFkB and pro-inflammatory cytokines (Roberts, 

Luo et al. 2005; Honda, Barrueto et al. 2008; Sharma, Dhawan et al. 2010; 

Song, Zhang et al. 2010). Chronic anovulation and hyperestrogenism 

increase the risk of endometrial hyperplasia or carcinoma development in 

these patients due to prolonged action of ‘unopposed’ estrogens (Acconcia, 

Barnes et al. 2006; Giudice 2006; Zhu and Pollard 2007). Estrogen (17(3- 

estradiol) has also been shown to up-regulate IL-6 and IL-8 promoting 

epithelial ovarian cancer through the MAPK/NFkB and ERa (Yang, Wang et 

al. 2009). AGE-RAGE can also up-regulate p-catenin which is implicated in 

promoting endometriotic cell survival and the /tefls-differentiation of 

endometrial cells to a cancerous state (Otero 2001; Saegusa, Hashimura et 

al. 2007; Banu, Lee et al. 2009).
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6.4 The AGE-RAGE axis: Potential altered uterine environment 
through the transactivation of MUC1

Figure 6.1 shows a potential positive feedback loop mechanism whereby

RAGE could indirectly up-regulate several uterine genes that are downstream

targets of NFkB. This pro-inflammatory signalling pathway may act as a pre-

cancerous mechanism that, if over-stimulated, may not only increase the risk

of developing cancer but also lead to an altered uterine environment which

could impact on blastocyst implantation. The menstrual cycle involves the

cyclical coordinated proliferation driven by various growth factors and

cytokines. It is my hypothesis that in PCO and endometriotic endometrium,

this signalling pathway is constitutively enhanced due to pathology-specific

excessive RAGE stimuli (i.e. AGEs, E2 and TNFa). Inflammatory cells, such

as macrophages at the site of localised inflammation produce several RAGE

ligands (S100, HMGB1, AGEs) which activate intracellular NFkB signalling

(6.1.B) via RAGE binding (6.1.A). NFkB signalling involves the MAPK ERKs

that phosphorylate IkBoc to release p65/p65, p65/p50 to bind to RAGE and

other target genes such as MUC1 (6.1.C) which invariably results in

increased RAGE and MUC1 expression at the uterine surface. What’s more,

activation of NFkB leads to generation of several oxidative stress compounds

(ROS) which can lead to accelerated AGEs formation to create a systemic

inflammatory cycle through perpetuation of RAGE activation (6.1.D,E,F).

Secondly, as previously stated, AGEs have been shown to induce E-cadherin

dissociation and increased formation of the AR/p-catenin complex which can

transactivate MUC1 which has not only been implicated in infertility but also

acts as an oncogene in breast, colon and prostate cancers (6.1.H, I, J, K, L).

There is a possibility that this signalling is promoted in PCOS and
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endometriosis, characterized by excess AGEs and hyperandrogenism and 

excess estrogens respectively, (6.1.M) and could perhaps explain the 

observed over-expression of RAGE in the PCO, endometriotic, hyperplasic 

and cancerous endometrial specimens in this project.

E-cadherin

NFkB target gene

promoter

AR target gene

promoter

Figure 6-1 Putative positive feedback loop for RAGE regulation and its 
potential downstream targets
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6.5 RAGE as a therapeutic target

This identification of RAGE expression in the endometrium may be significant 

for women with PCOS, endometriosis and endometrial cancer. Inflammatory 

processes involving RAGE could play an important role in these 

gynaecological diseases. The initial findings reported here on the regulatory 

pathways underlying RAGE modulation in the endometrium may present an 

avenue for exploitation towards the development of potential RAGE targeted 

therapeutics, or management of current treatment regimes through the use of 

RAGE as a clinical biomarker cf. Breast cancer and Tamoxifen. Expansion of 

the current study to a larger scale cohort of patients will confirm the 

importance of RAGE in these diseases. Furthermore, investigation into 

existing chemical entities such as RAGE, NFkB and ER modulators in our 

endometrial model will further elucidate the contribution and cross-talk of 

these pathways.

6.6 Study Limitations and Future Work

This study primarily focuses on the use of chromatin immunoprecipitation to 

show direct ER and NFkB protein-RAGE promoter interaction. While the 

ChIP experiments demonstrate that these proteins bind directly or indirectly 

via recruitment of other transcription factors to RAGE itself, this technique 

does not show the effect of these associations on transcriptional outcome. 

Neither does ChIP provide direct evidence of these proteins being up-stream 

of RAGE despite mRNA analysis suggesting that the NFkB and ER pathways 

are involved in its modulation in the endometrium. In order to strengthen 

these findings, future work would aim to combine these ChIP experiments 

with RAGE-luciferase reporter gene construct assays to measure promoter 

activity and expression in response to 17(3 estradiol, 4-hydroxytamoxifen and
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AGE stimulation. In order to better characterise the candidate molecules of 

the NFkB and ER pathways that mediate the cellular response to AGEs and 

estrogen respectively, specific siRNA inhibitor/gene knock-down experiments 

could also be carried out. Moreover, future work could utilise confocal 

microscopy to assess RAGE expression prior to and post challenge with AGE 

in fertile and infertile PCO endometrium. Confocal studies in endometrial 

cells would also have the potential to show reputed AGE-induced NFkB 

nuclear translocation in line with previous work undertaken in PCO granulosa 

cells (Diamanti-Kandarakis, E. et al. 2007). Further limitations to this study 

are the known apoptotic effects of AGEs and more recently, the discovery 

that selective estrogen receptor modulator tamoxifen can induce apoptosis 

through an ER independent mechanism. In glioma cells not expressing ER, 

tamoxifen-induced cytotoxicity strongly correlated with a 4 fold increase in 

NFkB activity, cytosolic calcium influx and up-regulation of antiapoptotic 

genes. Conversely, inhibition of the NFkB pathway sensitized the cells to 

tamoxifen insult and lead to apoptosis (Hui, A-M et al. 2004). It is therefore 

important to recognise that the AGE- and tamoxifen-induced up-regulation of 

RAGE in the endometrium may not be solely due to ligand-receptor 

engagement or ER signalling but could also involve other factors arising from 

increased cellular toxicity and oxidative stress. In the future, AGE and TX 

dose experiments could perhaps be perfomed alongside caspase/cell death 

ELISA or MTT assays to ensure observed changes in RAGE expression are 

unrelated to reduced cell integrity, stress signals or cell death.
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APPENDIX

A: RNA Protocol for RNeasv Kit Qiaqen 

Procedure:

1. Cells grown in a monolayer (do not use more than 1 x 107 cells): Cells can be 
either lysed directly in the cell-culture vessel (up to 10 cm diameter) or trypsinized 
and collected as a cell pellet prior to lysis.

2. Disrupt the cells by adding Buffer RLT. For pelleted cells, loosen the cell pellet 
thoroughly by flicking the tube. Add the appropriate volume of Buffer RLT (see Table 
5). Vortex or pipet to mix, and proceedto step 3.

3. Pipet the lysate directly into a Q IAshredder spin column placed in a 2 ml 
collection tube, and centrifuge for 2 min at full speed. Proceed to step 4.

4. Add 1 volume of 70% ethanol to the homogenized lysate, and mix well by 
pipetting. Do not centrifuge.

5. Transfer up to 700 pi of the sample, including any precipitate that may have 
formed, to an RNeasy spin column placed in a 2 ml collection tube (supplied). Close 
the lid gently, and centrifuge for 15 s at _8000 x g (_10,000 rpm). Discard the flow­
through.

6. Add 700 pi Buffer RW1 to the RNeasy spin column. Close the lid gently, and 
centrifuge for 15 s at _8000 x g (_10,000 rpm) to wash the spin column membrane. 
Discard the flow-through.

7. Add 500 pi Buffer RPE to the RNeasy spin column. Close the lid gently, and 
centrifuge for 15 s at _8000 x g (_10,000 rpm) to wash the spin column membrane. 
Discard the flow-through.

8. Add 500 pi Buffer RPE to the RNeasy spin column. Close the lid gently, and 
centrifuge for 2 min at _8000 x g (_10,000 rpm) to wash the spin column membrane.

9. Optional: Place the RNeasy spin column in a new 2 ml collection tube (supplied), 
and discard the old collection tube with the flow-through. Close the lid gently, 
andcentrifuge at full speed for 1 min.

10. Place the RNeasy spin column in a new 1.5 ml collection tube (supplied). Add 
30-50  pi RNase-free water directly to the spin column membrane. Close the lid 
gently, and centrifuge for 1 min at _8000 x g (_10,000 rpm) to elute the RNA.

11. If the expected RNA yield is >30 pg, repeat step 10 using another 30 -50  pi 
RNasefree water, or using the eluate from step 10 (if high RNA concentration is 
required). Reuse the collection tube from step 10.

If using the eluate from step 10, the RNA yield will be 15-30%  less than that 
obtained using a second volume of RNase-free water, but the final RNA 
concentration will be higher.
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B: Chromatin Immunoprecipitation (ChIP)

B1: Optimization of Chromatin Shearing by Sonication
Prior to immunoprecipitation, shearing conditions to yield chromatin suitable 

for use in ChIP were optimised during a six month secondment at Active Motif 

Europe, Rixensart, Belgium. Five aliquots of fixed chromatin in 350jllL 

Shearing Buffer were subject to sonication of different pulse number (5 or 10 

times), pulse length (30 sec, 1 min 40 sec, 2 min 30 and 3 min 20) and power 

(30% or 40% amplitude), using a hand-held probe sonicator with a 3mm 

stepped micro-tip (Vibracell VC 130, Sonics). Chromatin was efficiently 

sheared on ice to 200-300bp using 5 intermittent pulses of 40% amplitude 

lasting 1 min 40 sec. Shearing conditions for the use of the Bioruptor 

sonicator (Diagenode) maintained at a constant water temperature of 4°C 

were previously optimised at Swansea University to be 30 sec pulses (on) 

with 30 sec rest (off) between each pulse for a total period of 30 min. All 

reagents were supplied in the ChlP-IT Express kit (Active Motif) unless stated 

otherwise.

B2: DNA Clean up and Quantification

50jiL aliquots of sheared chromatin reserved from each sample were thawed 

(if necessary). 150pL of distilled MilliQ water (Millipore) and 10|nL of 5M NaCI 

(SIGMA) were added to all samples and heated overnight at 65°C in a water 

bath or thermocycler to reverse cross-links. Samples were re-incubated at 

37°C for 15 min with 2pL RNase A, and 42°C for 1.5 h with 10jiL Proteinase 

K to remove RNA and protein respectively that may be bound to the 

chromatin. To determine DNA concentration by spectrophotometer, samples 

were precipitated in 200pL phenol/chloroform 1:1 (pH8) or with isoamyl 

alcohol in a ratio of 25:24:1 (SIGMA), briefly vortexed and centrifuged at 

maximum rpm for 5 min. Supernatant was transferred to 1.7mL tube and 

supplemented with 20pL 3M Sodium Acetate pH 5.2 (SIGMA) and 500pL of 

100% Ethanol (Fisher Scientific), vortexed thoroughly and placed at -80°C for 

1 h. Samples were centrifuged maximum speed at 4°C for 10 min, 

supernatant discarded and pellet left undisturbed. 500mL 70% Ethanol was 

added to the pellet and centrifuged at 4°C for 5 min. Supernatant was 

removed and pellet allowed to air dry. The chromatin was then resuspended

in 30mL distilled MilliQ water and quantified by OD at ^260nm on the
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Nanodrop Spectrophotometer (Thermo). The amount of chromatin to be used 

in ChIP was adjusted per sample to 5pg. All reagents used for DNA clean up 

procedure were supplied in ChlP-IT Express Kit (Active Motif) unless stated 

otherwise.

B3: Optimisation of ChIP Primers
Promoter Primer Set Optimal [Primer] Efficiency Slope Y R2

Dilution (pM) (%) Intercept

A RAGE p65 Site 1 
ER Ap1 Site

1:20 5.0 96.971 -3.397 14.735 0.999

B RAGE p65 Site 2 1:100 0.2 101.02 -.3.298 16.88 0.999

C RAGE p65 Site 3 1:100 0.2 100.76 -3.304 17.146 0.999

D RAGE ER Sp1 Site 1 
ER Sp1 Site 2

1:20 5.0 94.071 -3.473 15.931 0.996

E RAGE ER Sp1 Site 3 1:100 0.2 92.99 -3.505 17.561 0.999

F MUC1 p65 Site 1 1:100 0.2 95.62 -3.641 19.672 0.991
G MUC1 p65 Site 2 1:100 0.2 97.35 -3.598 18.447 0.990

F igure  7-1 Table  to  show  the  p rim e r e ffic ien c ie s  and w o rk in g  co nce n tra tio n s  
o f the  genom ic  p rim e rs  des igned  fo r  ChIP on the  RAGE and MUC1 p rom oters.

C: M elt C urves fo r genom ic  RT-PCR p rim ers

b r -

D

F igure  7-2 M elt cu rves o f the  genom ic  p rim ers  fo r the  NFk B, Ap1 and Sp1 s ites  
on the  RAGE p rom o te r used in ChIP.

The m e lt cu rves  A-E above co rre sp on d  to  the  p rim er in fo rm a tio n  show n in 
F igure  7-1 in sec tion  B3 o f the  A ppend ix . These m elt cu rves  show  no 
in d ica tio n  o f p rim er d im e r fo rm a tio n  and a m p lify  a sp e c ific  s in g u la r p ro du c t at 
the  requ ired  PCR tem pera tu re  (60°C).
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