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Abstract

This thesis presents an analysis of a stochastic process characterising a parabolic 
motion with small random perturbations. This process arises from consid­
erations of the Bohr correspondence limit of the atomic elliptic state. It 
represents the semiclassical behaviour of a particle, describing a parabolic 
orbit under a Coulomb potential. By first considering the analogous classical 
mechanical system, we investigate the difference between the classical and 
semiclassical systems.

Chapter 1 begins by introducing Nelson’s stochastic mechanics as a refor­
mulation of Schrodinger’s wave mechanics. Comparisons are drawn between 
the classical and quantum Kepler problems.

In Chapter 2, we consider earlier results of Durran, Neate and Truman, 
together with a derivation of the parabolic state by considering the limit of 
the eccentricity of the semiclassical elliptic diffusion. We proceed to anal­
yse the resulting stochastic differential equation, proving the existence of a 
solution in the weak sense. A complete analysis of the trajectory and time- 
dependence of the corresponding classical system is also provided.

Chapter 3 focuses on asymptotic series solutions to more general stochas­
tic differential equations in both one and two dimensions. Methods consid­
ered are used to find the first order quantum correction to the parabolic orbit 
in terms of time-ordered products.

We conclude in Chapter 4 by applying the Levi-Civita transformation to 
the semiclassical orbit, yielding first order quantum corrections to both its 
Cartesian coordinates and areal velocity.

4



Acknowledgem ents

Firstly I would like to thank my supervisor Professor Aubrey Truman for his 
immeasurable guidance and support, both prior to and during the completion 
of this work. I would secondly like to thank my co-supervisor Dr. Andrew 
Neate for his advice, motivation and technical assistance. I would also like to 
thank past and present staff and students at Swansea University Mathematics 
Department for making my time here enjoyable and worthwhile.

I most graciously thank the Engineering and Physical Sciences Research 
Council (EPSRC) for kindly providing the financial support which facilitated 
my postgraduate studies.

I wish to thank all of the friends and family who have willingly given their 
support and encouragement (but are too numerous for individual mention). 
Finally I thank my parents; Linda Williams, for every kind of support imag­
inable; and John Williams, for providing me with inspiration during trying 
times.

5



Chapter 1 

Prelim inaries

1.1 Stochastic M echanics
Beginning with brief accounts of both quantum mechanics [18] and stochastic 
calculus [14, 21, 23, 27], we proceed to discuss in some detail the concept of 
Nelson’s stochastic mechanics [24, 25], whereby the movement of a quantum 
particle may be modelled using a diffusion process satisfying a particular Ito 
stochastic differential equation.

1.1.1 W ave M echanics
According to Schrodinger’s wave mechanics, the state of the quantum particle 
at a given time t and position x  G 1 " is completely determined by the 
complex-valued wave function ip(x,t),  where i[j : Rn x (0, oo) —> C. For a 
particle of unit mass subject to a conservative force field given by the negative 
gradient of some real-valued potential function, — VV(x), the wave function 
is postulated to satisfy the time-dependent Schrodinger equation:

=  +  y ( x ) ^ ( Xj£), ( l . l )

where A denotes the Laplacian differential operator and h = the reduced 
Planck’s constant. Throughout we consider the spin-free case.

The Schrodinger equation may be obtained by making formal operator 
substitutions in the classical identity for the Hamiltonian:

H(q,p) = i ^  + v(q),

for generalised position and momentum coordinates g ,p £  Mn.
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In quantum mechanics, observables such as position, denoted Q, and 
momentum, P, become non-commuting Hermitian linear operators acting 
on the wave function ip:

Qip(x, t) — xip(x, t) and Pip{x, t) = —ihVip(x, t).

For position and momentum operators Q = (Qi, Q2, Q3) and P = (Pi, P2 , P3 ), 
Q and P  satisfy the canonical commutation relations for j, k = 1,2,3:

• [<2 j,Qjfc] =  0 ,

• \Qj > Pfc] — ihdjkl ,

where /  denotes the identity operator and [A, B] denotes the commutator 
bracket:

[A,B\ = A B  -  BA.

The Hamiltonian operator (again for a particle of unit mass) is given by 
H  where:

/P/>(X, t) = - y A ^ ( x ,  t) +  V (x)V'(x, t).

The eigenvalues of these operators are the possible values of the corre­
sponding observable in the state ^(x , £), and in particular eigenvalues of the 
Hamiltonian correspond to possible values of the total energy E. Letting:

= exp

yields the time-independent Schrodinger equation:

for stationary states ip(x),
Born’s probabilistic interpretation of quantum mechanics states that the 

probability density p of the quantum particle in the state ip is given by:

p{x, t) = M 2 = (1-2)

which is assumed to be normalised. Using this interpretation, the expected 
value of some observable X, in the state ip may be defined:
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Consequently, the uncertainty in X , denoted A X  may be defined as fol­
lows:

(A X ) 2 =  [  ( X - ( X » W d x .
J R3

For the uncertainties in position and momentum, AQ  and A P  respectively, 
we have Heisenberg’s uncertainty principle, that is:

A Q A P  >

Since the product of the uncertainties in the operators Q and P  must al­
ways be larger than some constant, it is impossible to simultaneously measure 
the position and momentum of a quantum particle. States where equality 
holds in the above are called coherent states which have minimal uncertainty. 
The proof of Heisenberg’s uncertainty principle [18] relies on the noncommu­
tativity of the operators Q and P, hence any pair of commutative opera­
tors correspond to two simultaneously measurable observables with common 
eigenvectors.

An alternative formulation of quantum mechanics is the Heisenberg pic­
ture. According to this description, it is the observables that evolve in time 
while the states remain constant, as opposed to the time evolution of the 
states and constancy of observables represented by the Schrodinger picture. 
Given Heisenberg’s equation of motion for any observable X :

any observable which commutes with the Hamiltonian must be a constant of 
the motion.

Throughout this work, we will make much reference to the semiclassical, 
or correspondence limit of quantum mechanics. This is the notion that clas­
sical mechanics may be recovered from a quantum system as the reduced 
Planck’s constant h —> 0, while fixing some of the system’s physical quanti­
ties.

1.1.2 T he M adelung Fluid
As it is complex-valued, the wave function may be represented as
-0 =  exp(R + iS)  where R  and S  are real-valued functions of space and time.
For this representation, first note that:



V'0 =  (VR +  iVS)ip,

and consequently:

At/i =  | V fi +  i V S \ 2ip +  (A R + iAS)tp.

Given the above, the Schrodinger equation (1.1) becomes:

ih + i =  VR +  iV S | 2 +  AR +  iAS) i> + V ^ ,  

or equivalently:

r) R d 9 h2
ill—- -  h—  =  -  — (|V R |2 +  |V S | 2 +  2iV R - V S  + A R  + i AS)  + V. (1.3)

(J1/ C/ 6 ^

The continuity equation for a fluid may be obtained from the above by 
firstly noting that given ip — exp(/? +  iS),  then the density 
p(x, i) = exp(2H(x, t)). It is also necessary to introduce the velocity field 
i>(x, t) =  hVS(x , t ) .  Equating the imaginary parts of (1.3) yields:

d R  t  A S
— - - f i f V R - V 5 +  —

Substituting the above into:

gives the continuity equation:

dp dR  
dt = P~dt’

^  +  V ■ (pv) = 0. (1.4)

On the other hand, equating the real parts of equation (1.3) gives:

h^  +  j \v s \2 +  v - j (\v r \2 +  a r ) =  o. ( 1.5)

Letting S  =  hS,  the above may be written as:

dt  2  2  exp(R) ’ y 1
by also noting that:
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V(exp (R)) — V R exp(P) and A(exp(P)) =  (A R +  | V R |2) exp(2 R).

The dynamical system described by the above equations (1.4) and (1.6) 
is the Madelung fluid model. On inspection of (1.6), it is clear that this 
equation is analagous to that of the the classical Hamilton-Jacobi fluid, with 
the additional so-called “quantum mechanical potential” given by:

h2 A exp(P)
2 exp (R)

Guerra [16] shows that a particle interpretation of this fluid model is possible 
by using stochastic processes, following Nelson’s stochastic mechanics [25].

1.1.3 Ito Diffusions
Following texts by Gihman and Skorohod, [14], Karatzas and Shreve, [2 1 ], 
McKean, [23] and Oksendal, [27] , we proceed to discuss Brownian motion 
and the ltd integral, leading to the theory of stochastic differential equations. 
This provides a precursor to the discussion of Nelson’s stochastic mechanics 
in Section 1.1.4.

Brownian M otion

Brownian motion was originally observed in 1827 by botanist Robert Brown 
as the seemingly random movement of pollen grains suspended in water. 
The history of Brownian motion is discussed more extensively in Nelson’s 
Dynamical Theories of Brownian Motion, [25].

The mathematical model of Brownian motion, also called the Wiener 
process (denoted Bt(u>), or equivalently B(t,)) is a temporally homogeneous 
Gaussian stochastic process on a probability space (D,.P, P) with indepen­
dent increments. That is, the distribution of B(t)  is given by:

P(B(£) 6 (a ,6)) =  J  e -fed x ,

where P (0) =  0, (B(t  +  h) — B(h))  has the same distribution as B(t)  for 
t, h > 0 and (B(t  +  h) — B(h))  is independent of B(s)  for 0 < s < h.

The average value of the process is zero, E(B(£)) =  0, and E (B2(t)) = t. 
These results may then be used to show that the covariance of the process is 
given by:
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K(B(t)B(s))  = min (£,s).

The sample paths of Brownian motion are almost surely continuous but 
nowhere differentiable, thus it is impossible to define integration with respect 
to B(l)  in the usual manner. This led to the development of Ito calculus (ltd, 
[20] 1944), beginning with the construction of the Ito integral.

The Ito Integral

We follow the construction of the Ito integral as given in 0ksendal, [27].

Definition 1 .1 .1 . Given a probability space P), let V be a class of
functions /  : [0 , oo) such that:

• the mapping (£,cj) »—► is #([0 ,oo)) — JF-measurable.

• /(£, •) is T t adapted.

• E(/q P ( s , lj) ds)) < oo for all t > 0 .

The aim of Ito calculus is to attach a reasonable mathematical interpre­
tation to the integral:

f  /(s,u>)dBs(u;),
Jo

where B s(uj) denotes a one-dimensional Brownian motion starting at the 
origin.

As with the Riemann integral, the Ito integral is defined by a limiting 
procedure. In the case of the Riemann integral, one first, defines the integral 
of a step function and extends the definition to a larger class of functions by 
approximation. The integral of such an arbitrary function /  G V is defined as 
the limit of the integral of step functions which converge to /  in some sense. 
The definition of the Ito integral begins with elementary functions <fi G V. 
The integral is first defined for such functions, and showing tha t a function 
/  from a wider class may be approximated by these elementary functions, 
the integral of /  is defined as the limit of the integral of </> as 0  —> / .

An elementary function 0 G V has the form:

4>(t,u) = ,)(*)>
j> 0

where ej is ^ -m easu rab le  and x is the characteristic function. The Ito 
integral of an elementary function may be reasonably defined by:
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f  4>(s,u)dBs{ui) =  ^ e j ( w ) ( B ,J+I -  Btj){u>).
' 0  ,--,n

Any function /  6  V may be approximated by a sequence of elementary 
functions {(j)n} C V:

In the above definition the convergence of (1.8) is in L2(P), and the 
postulated sequence of functions {0n} exist by (1.7). By construction, the 
limit (1 .8 ) is independent of the sequence of elementary functions.

The first important property to note is that the Ito integral has zero 
mean:

respect to the canonical filtration {Ft}- 

S tochastic  D ifferen tia l E q u a tio n s

W ith a reasonable definition of the Ito integral, it is now possible to consider 
d-dimensional stochastic processes X t satisfying integral equations of the 
form:

This then allows the Ito integral to be defined as follows:

D efin ition  1.1.2. For /  G V, the Ito integral of /  is defined by:

(1.7)

(1.8)

where {0n} C V is a sequence of elementary functions such that:

as n —> oo.

The fundamental Ito isometry gives that:

E

Furthermore it is important to note that f* f  dBs(u) is a martingale with

12



X t = X 0 + f  b(Xs, s )ds  +
J 0

where the stochastic process X t is called an Ito diffusion and X Q is a determin­
istic initial condition. The above equation may be written in the conventional 
form:

d X t = b{Xu i) dt + a ( X t, t )dB(t ) ,

which is a general stochastic differential equation with drift coefficients 
6 =  (6 1 , b2, ..., bd)T and diffusion coefficient matrix a = {(Tij}, i , j  = 1 , 2 , d. 
Here, B(t) = {Bi(t), Bi i t ) , ..., Bd(t)) is a d-dimensional Brownian motion, 
where each constituent Bi is a Brownian motion independent of Bj for i ^  j.  
Thus the covariance is given by:

E ( Bi ( s ) Bj ( t ) )  =  8 i j m m ( s , t ) .

For the purposes of this work, it will be sufficient to consider stochas­
tic differential equations (SDEs) with time-homogenous drift and constant 
diffusion coefficients. That is, for e > 0, equations of the form:

dXt = b{Xt)dt  + edB(t) .  (1.9)

It is often necessary to consider functions of the process X t which satisfies 
the above SDE. Ito’s formula provides a stochastic analogue of the chain rule 
for differentiation of deterministic functions.

Proposition 1.1.3 (Ito ’s Formula). Let /  : x [0,00) —> R be a contin­
uous function, with first order derivative in t and second order derivatives in 
x. Then for X t satisfying (1.9), Yt \= f ( X t ,t) is again a stochastic integral 
defined by:

dYt =  (J-t + b - V  +  ^ A \  f ( X u i)At  +  t V f ( X u t)-  AB(t).

The forward Kolmogorov equation is a partial differential equation de- 
scriving the evolution of the transition density of a stochastic process, which 
follows directly from an application of Ito’s formula.

Corollary 1.1.4 (K olm ogorov’s Equation). Let X t satisfy (1.9). Assume 
that X t has a smooth transition density pt(y) given by:

F( Xt e A \ X0 = x) = [  pt{x,y)dy
J A

f  a ( X S)s)dB(s) ,  
Jo
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for a Borel set A C Rd. Then pt{x,y) satisfies the forward Kolmogorov 
equation:

dPt̂  = pt{y) -  V • bpt{y) with \xn\pt(x,y) = 6x(y).

E xistence and Uniqueness of Solutions

Proposition 1.1.5. If for all xpy G b : —> R d satisfies the global
Lipschitz condition \b(x) — b(y)\ < K\x  — y\ for some constant K  then the 
stochastic differential equation:

has a unique solution.

The solution of the SDE postulated by the above Proposition 1.1.5 is 
meant in the strong sense, whereby an T t adapted solution may be con­
structed on any given probability space (f2, T , P) with a given Brownian 
motion B(t),  where Tt — o(B(t)).  In contrast, the existence of a weak solu­
tion means that it is possible to find a process X t with a driving Brownian 
motion B(t)  on some particular probability space, such that the process sat­
isfies the SDE. A strong solution is also a weak solution, but the converse is 
not true in general.

The uniqueness obtained by Proposition 1.1.5 is pathwise uniqueness, 
which is said to hold for equation (1.10) if given two solutions X t and X t , 
then P[X* =  X t, Vi] =  1 on a given probability space (O,^7, P) for a given 
T t adapted Brownian motion B(t).  Thus given such a probability space and 
Brownian motion there is one and only one stochastic process satisfying the 
SDE (1.10). The corresponding uniqueness concept for weak solutions is 
uniqueness in law, which is said to hold for (1 .1 0 ) if any two weak solutions 
X t and X t (possibly on different probability spaces with different driving 
Brownian motions) are equal in law. Uniqueness in law is implied by pathwise 
uniqueness but the converse is not necessarily true. Full details may be found 
in 0ksendal, [27].

1.1.4 N elson ’s Stochastic M echanics
From the continuity equation for the Madelung fluid (1.4):

(1.10)
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^  = v  • ( - hex p( 2 R) VS )  = V • Q v e x p (2 f l)  -  hexp(2R)V{R + S)

( 1 .11)
Given that the density p =  exp(2 /?), the above equation recapitulates the 
forward Kolmogorov equation (detailed in Corollary 1.1.4) for a stochastic 
process with drift b = HW(R +  S) and diffusion coefficient e:

where e2 = h.
Since it is possible to obtain the forward Kolmogorov equation directly 

from the Schrodinger equation, this implies that given any solution to the 
Schrodinger equation (the wave function in the form exp(/? +  iS*)), it should 
be possible to construct a corresponding diffusion process:

d X[t)  =  b(X{l) , t )dt  + edB(t).  (1.12)

Equivalently to wave mechanics, the movement of the quantum particle of 
unit mass may be modelled by the above diffusion process, with X(t )  being 
the position of the particle at time I. This is known as the Nelson diffusion, 
the foundation of the theory of Nelson’s stochastic mechanics [25].

Since the sample paths of the Nelson diffusion are nowhere differentiable, 
it is necessary to define the mean forward and backward derivatives of a 
function of X(t )  as follows:

D±s i x m ) - . = X( t )
MO y i / l

An application of Ito’s formula gives the mean forward derivative as:

D+f(X( t ) , t )  =  (1  +  ft . V +  ^ a )

The mean forward velocity is defined as the mean forward derivative of the 
process X(t )  itself, which is just given by the drift of the Nelson diffusion:

b+(X(t) , t )  :=D+X( t )  = b(X(t), t) .

Partial integration then implies the mean backward derivative is given by:

D - f ( X ( t ), t) = ( |  +  b+ -  e2 In p ■ V +  ^ a )  t),

15



which allows the mean backward velocity to be defined as follows:

6 - (X (0 ,0  := D . X ( t )  =  b+{X(t) , t )  -  e2V]np(X( t ) , t ) .

Since it is necessary to have a notion of second derivative for processes 
such as (1.12), Nelson conventionally defines the stochastic acceleration to 
be the following combination of operators acting on X(t):

a(X(t ) , t )  = \ ( D +D .  + D-D+)X(t ) .

It follows that:

/  Qy c2 \
a(X(t ) , t )  = I —  +  (v • V)u -  (u • V)u -  (X(t) , t ) ,  (1.13)

where u is called the osmotic velocity and v the current velocity, defined as 
follows:

u : = \ ( b+ ~ b-)  and v := \ ( b+ + b-)- 

From (1.11), the drift, and hence the mean forward derivative of the Nel­
son diffusion may be written explicitly in terms of the real-valued functions R 
and 5, as e2V(/? +  S). It follows that the mean backward derivative is given 
by b_ =  e2V { R  — S ), with u = e2V R  and v = e2 VS'; the respective osmotic 
and current velocities. Note that the current velocity of the Nelson diffusion 
is the same as the velocity field of the Madelung fluid as given in the previous 
section, with e2 =  h. Substituting the osmotic and current velocities into the 
above expression for the stochastic acceleration (1.13) yields:

a(X(i),  t) = - V  ( - e 2g  +  ^ ( |V f l | 2 +  A R -  |V S |2) )  (X(t),  t). (1.14)

Recall, that after writing the wave function in the form exp(R -MS') and 
equating real parts of the Schrodinger equation (1.5), we have:

f)Q f 2
V  = - e 2—  + - ( \ V R \ 2 + A R - \ V S \ 2), (1.15)

with V  being the potential function from the Schrodinger equation. Substi­
tuting (1.15) into (1.14) finally gives:

a(X(t ) , t )  = - V V ( X ( t ) ) .
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The above equation is the Nelson-Newton law for a particle of unit mass. 
Since the stochastic acceleration is equal to the negative gradient of some 
potential function, this provides a stochastic analogue of Newton’s second 
law for classical mechanics.

1.2 The Kepler Problem
We begin by considering the two-dimensional classical Kepler problem by 
first discussing the conic sections [31] which constitute the basic trajectories 
arising from it. The classical problem [15, 19] outlines the mechanics that 
should be regained by taking the correspondence limit of the quantum Kepler 
problem [18], which is discussed thereafter.

1.2.1 Conic Sections
In polar coordinates, relative to the focus as the origin, any conic section 
may be represented as the locus of points (r, 9) for which:

r = ------  r ,  (1-16)1 — e cos 9
where k > 0  is a simple scale factor governing the size of the conic, and e
is a parameter known as the eccentricity, which determines the shape of the
curve. In the case that:

• e =  0 , equation (1.16) defines a circle (since the radius r = k and is 
therefore constant),

• 0  < e < 1 the equation defines an ellipse,

• e =  1 the equation defines a parabola,

• e > 1 the equation defines a hyperbola.

The eccentricity may be thought of as a measure of how deviant a conic is 
from the circular case.

The conic sections have particular importance in astronomy, since Kepler 
first noted that the orbits of all planets about the sun are elliptic. New­
ton later generalised this, modelling trajectories of other celestial bodies as 
generalised conic sections.

Equivalently to the polar form (1.16), an ellipse may be defined relative 
to the centre as the origin in Cartesian coordinates by:

17



y

> X

Figure 1.1: The foci and directrices of an ellipse.

-  +  V-  =  1 (1 17)a2 b2 ( ’
where a and b are the lengths of the semimajor and semiminor axes of the 
ellipse respectively, as shown by Figure 1.1.

The two foci of the ellipse are labelled Fi and F2, which are equidistant 
from the centre C, which we take as the origin of the coordinate system, with 
the axes parallel to the axes of the ellipse. The lines D\  at x =  —a/e  and D2 
at a; =  a /e  are known as the directrices of the ellipse. For each focus-directrix 
pair, Fi and Di} and any point P  on the ellipse, the distance between and 
P  is e times the perpendicular distance between P  and the directrix D*. That 
is, \PFi\ =  e\PDi\ for for i = 1 , 2 . The chord perpendicular to the major 
axis through either of the foci is known as the latus rectum, with its length 
denoted by 21. In this representation of the ellipse, the eccentricity is defined 
to be the ratio of the semimajor axis to the distance between the centre 
and one of the foci, hence this distance is given by ae. The coordinates 
of the point L are thus (ae, l). Substituting this point into the Cartesian 
representation of an ellipse, (1.17) gives:
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2 I2 ,
6  +  P _ 1 ’

so we may represent the length of the semiminor axis by:

I
(1.18)

y/l — e2
The distance property states that for a given point P  on the ellipse:

\PFi\ + \PF2\ = 2a.

Since the point B  is equidistant from each of the foci, the distance between 
B  and either of the foci must be a. Pythagoras’ Theorem then gives:

b2 +  (ae) 2 =  a2.

Substituting (1.18) into the above yields the following expression for the 
length of the semimajor axis:

a — T~~2-  (1-19)1 — e*
As with the ellipse, the parabola has an equivalent Cartesian representa­

tion:

y2 =  4 ax. (1-20)

The parabola has just one focus-directrix pair, the point (a, 0) and the 
line at x = —a when defined by the equation above with the origin of the 
coordinate system is at the apex of the parabola. (Figure 1.2.)

The parabola is the locus of all points for which their distance from the 
focus and perpendicular distance from the directrix are equal; a special case of 
the above property for the ellipse with e = 1. The parabola may be thought 
of as an ellipse with one of its foci at infinity, since the above expression 
for the length of the ellipse’s semimajor axis (1.19) tends to infinity as the 
eccentricity tends to 1 .

1.2.2 T he Classical K epler Problem
The classical Kepler problem is a special case of the two-body problem in 
classical mechanics which arises from applying the universal law of gravita­
tion and Newton’s second law to the motion of a planet around the sun.

According to the universal law of gravitation, any two particles attract 
each other with a force that is directly proportional to the product of their
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D I

Figure 1.2: The focus and directrix of a parabola.

masses and inversely proportional to the square of the distance between them. 
Given two particles with masses m A and m B and position vectors and 
respectively, the force exerted on particle A due to particle B  is given by:

^ m Am B( r A -  rB)
-t1 AB  | to 5

\rA ~  r s F
where 7  is the universal constant of gravitation. The term |r ,4 — r# | appears 
cubed in the denominator since the numerator contains (rfi — r^).

We work in the sidereal reference frame, the inertial frame where the 
sun is fixed at the origin and axes are determined by distant gravitating 
masses. Due to spherical symmetry and radial mass dependence, we may 
treat a planet as a gravitating point mass subject to a force according to 
the universal law of gravitation. Since the mass of the planet is so small 
compared to the mass of the sun, the force exerted on the sun by the planet 
may be considered negligible. Letting r  be the position vector of the planet, 
applying Newton’s second law gives:

m nr = —
/ymsm pr

for m p and m s,being the respective masses of the planet and the sun and 
r =  |r|. Dividing by m.p yields:
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f  =  - g ,  (1.21)

the equation of motion for the Kepler problem where fi = 7 m s is the constant 
known as the gravitational mass of the sun. Note that the scalar potential 
for the Kepler problem is the Coulomb potential:

V(r) = - ^ .
r

Kepler’s Laws of planetary motion may then be derived by integrating 
the above equation of motion. Firstly note that for r 2 =  r • r, differentiation 
with respect to time gives:

r • r =  rr. (1.22)

Taking the scalar product of (1.21) with r, the equation of motion becomes:

. . .  fir • r f irf  fir
fjn 3

by using the identity (1.22). Integrating the above, we see that:

dt V 2 r )
hence:

ij^ - - r = E ' C1-23)
a constant which gives the energy per unit mass of the planet. Next, taking
the vector product of r with (1 .2 1 ) automatically implies the constancy of
the angular momentum vector. Note that r x r =  0, which integrates to give:

d , .
_ ( r x r )  =  0 .

Hence L =  r x r, the angular momentum per unit mass of the planet is a 
constant vector. This in turn implies that the areal velocity:

d A _  | L |
~dt ~  T ’

is constant.
Taking the vector product of the equation of motion (1.21) with the an­

gular momentum L then gives:
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which integrates to give:

From the above equation we see that

r
is also a constant vector. This is the Lenz-Runge vector, which points in the 
direction of the orbit’s major axis. Taking the scalar product of Z with the 
position vector r  leads to the polar equation for the planet’s orbit since:

for L = |L|. On the other hand r  • Z — r Z cos 9, where Z  = |Z|, and 9 is the 
angle between the vectors r  and Z, which is equal to the polar angle of the 
position of the planet since the Lenz-Runge vector is parallel to the orbit’s 
major axis. Hence r Z  cos 9 = —L2 +  fir, and the polar equation of the orbit 
may be written in the form:

This is the polar equation of a conic section, where we have set the ec-

previous section, we know that we may classify the shape of conics according 
to the value of the parameter e. We may now relate this parameter to the 
conservation laws for the orbits as follows:

Hence in terms of the angular momentum and energy constants L and E  and 
the gravitational mass of the sun, an orbit’s eccentricity is given by:

r - Z  =  r - ( L x r  +  — ) =  —L2 +  fir, 
r

-  — 1 — e cos 9. 
r

(1.24)

centricity e — ^  and the length of the semilatus rectum I = From the

r
therefore:

(1.25)
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The above equation shows that for bound periodic orbits E  < 0 is re­
quired, since this value would allow 0 < e < 1. The zero energy state gives 
e =  1, and thus a parabolic orbit, and values of E  greater than 1 will define 
hyperbolic orbits with e > 1 .

1.2.3 T he L evi-C ivita Transform ation
The Levi-Civita transformation provides a connection between the two most 
fundamental problems in classical mechanics by simplifying the two-dimensional 
Kepler problem into a simple harmonic oscillator.

The transformation requires the position vector in the Kepler problem to 
be represented as a time-dependent point in the complex plane 
z{t) = x(t) +  iy(t). The new coordinate system used is a complex number iu, 
defined by w2 — z. A full account of the technicalities of the transformation 
may be found in either Arnold, Kozlov and Neishtadt, [1] or Steifel and 
Schiefele, [32].

Throughout, t will denote the physical time variable, with i  =  - f̂. The 
new time variable required is defined by

Letting \z\ =  r, the derivatives with respect to physical time may be com­
puted in terms of the fictitious time derivatives as follows:

Substituting in the derivatives, the above Kepler problem (1.26) becomes:

Now defining w2 =  z, differentiation with respect to time variable s gives:

This is the so-called fictitious time variable and will be denoted by z' . 
In terms of the complex variable z, the Kepler problem is:

(1.26)

d z dz ds z'
ds dt r

and:

rz" — r' z' + fiz = 0 . (1.27)
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z' =  2ww' and z" =  2(w/)2 +  2 ww”.

In terms of w, (1.27) becomes:

r(2w'  +  2  ww") — 2r'ww' -f fiw2 = 0 . (1.28)

Since r = |z| =  \w\2, then r = ww,  where w denotes the complex conju­
gate of w. The product rule for differentiation then yields r' = w'u) +  ww2. 
These expressions for r and r' may then be substituted into the above ex­
pression (1.28), finally yielding:

Recall the energy conservation for the Kepler problem, (1.23). In terms

Replacing z' by 2ww' gives energy conservation in terms of w as follows:

Given that the above expression (1.30) is a constant, note tha t the coeffi­
cient of w in equation (1.29) is then equal to the constant —f .  Hence (1.29) 
may be written in the form:

z to w, the equation of motion for the Kepler problem has been reduced to 
a simple harmonic oscillator in the above form, provided E  < 0. The effect 
is to transform bounded motion on an ellipse into simple harmonic motion. 
The result of the transformation is unbounded motion for both E  = 0 and 
E > 0 .

1.2.4 T he Q uantum  K epler Problem
The quantum Kepler problem is the quantum mechanical problem describ­
ing the interaction between the nucleus and single electron in the hydrogen 
atom due to the Coulomb potential V(r) = — ̂ , for some force constant [j, and

(1.29)

of z:

w" +  <jJ 2 w  =  0 ,

where w2 =  — y
Therefore under the well-defined time change and change of variable from
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r = |x| for a three-dimensional vector x. The stationary (unit mass) Schrodinger 
equation for this problem is:

- y A ^ ( x )  -  ^ ( x )  =  £ty(x). (1.31)

Finding the eigenvalues of the Hamiltonian:

H  = “ A ^(x) -  - ^ ( x ) ,
I r

gives the permissible values of E  in the above equation (1.31). These values 
are the so-called spectrum of hydrogen given by the Balmer formula:

F  =  L _
2  h V

where multiplicative constants may be assumed equal to 1 and n  is a param­
eter known as the principal quantum number, to be defined below.

Quantum mechanical angular momentum may then be defined as 
L = Q x P  where in explicit component form:

L  =  ( Q 2 P 3 — Q 3 P 2 ,  Q d P 1 ~  Q i ^ 3 ) Q 1 P 2  ~  Q 2 P i ) .

The commutation relations above for the operators Q and P  then imply the 
commutation relations for the angular momentum (j, /c =  1,2,3):

• ihtjkiQi,

• \Ej 1 Pk\ — ifctjki Ph

• [Lj, Z/fc] =  ihtjkiLi,

by using the permutation tensor of three indices tjki■ In more generality, any 
three operators which satisfy the third relation in the above may be called 
angular momentum operators.

It is also necessary to define the total angular momentum L2 by 
L\  +  L\  +  L\. Each component of the angular momentum Lj for j  = 1,2,3 
commutes with the total angular momentum operator, and therefore it is 
possible to simultaneously measure total angular momentum and one of its 
components.

As for the classical system, the total angular momentum is a constant of 
the motion since both L2 and L3 commute with the Hamiltonian H.  Hence 
given the operators L2, L3 and / / ,  it is possible to find a common eigenstate 
of all three, the state in which they may be simultaneously measured.
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Analogously to the concept introduced for the classical problem in Section
1.2.2, another constant of the motion, the Hamilton-Lenz-Runge vector, is 
defined by:

z  =  ( z l l Z 2>Z3) =  1 ^ P x t - l x P  Q
V = 2 E  V 2  \Q\

where E  is the total energy, the eigenvalue of the Hamiltonian. Moreover:

[ Z i ,  Z2] — ih L s ,  [Z2, L3] — i h Z \ , [L3 ,  Z\ \  — H1Z2.

Therefore the constants of the motion Zi, Z 2 and L3 form a set of angular 
momentum operators.

Due to the spherical symmetry of the Coulomb potential, it is possible to 
separate variables into spherical polar coordinates (r, 6, <f>) so that the wave 
function becomes xfj =  # (r)0 (0 )$ (0 ). After rewriting the above Schrodinger 
equation in terms of spherical polars, it is possible to find its solution, a wave 
function written in the form:

^n,l,m = R ( r ) Y r ( d ^ )

where the function Y™ is a spherical harmonic of degree /. The numbers n, 
I and m  denote the principal quantum number, orbital angular momentum 
and magnetic quantum number respectively (with n E N, / =  0,1, ...n — 1 
and 771 =  —i , T h e s e  numbers are defined by the following eigenvalue 
relations:

T  ^ n,l,m — & ^(^4"1 ) ^ n , l , m i  T 3 2/ ^77^

for the operators L2, L3 and // ,  the commutativity of which assures the 
attainability of their simultaneous eigenvalues.

These concepts will be required in our subsequent consideration of specific 
Schrodinger wave functions, namely the atomic circular and atomic elliptic 
states.
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Chapter 2

Introduction to the  
Two-Dim ensional Parabolic 
N elson Diffusion

2.1 A Review  of the D ivine Clockwork
In the publication The Divine Clockwork [9] by Durran, Neate and Truman, 
Nelson’s stochastic mechanics (as detailed in Section 1.1.4) is used as a con­
text in which to analyse the Bohr correspondence limit of the atomic elliptic 
state for the Coulomb potential. This representation of the semiclassical 
limit allows for investigation of particle trajectories which are then shown to 
converge to Keplerian motion on an ellipse, thus obtaining Kepler’s laws of 
planetary motion in a quantum mechanical setting.

2.1.1 T he W ave Function for the A tom ic E lliptic S tate
Following the results of an earlier work by Lena, Delande and Gay [5], Durran, 
Neate and Truman use the Schrodinger wave function for the atomic circular 
state in M3 to obtain the wave function for the atomic elliptic state. Recall 
that is the Schrodinger wave function for the Hamiltonian with the
Coulomb potential with force constant fi:

with Q and P  being the respective position and momentum operators for 
the orbiting quantum particle, and n, I and m  the principal, orbital angular 
momentum and magnetic quantum numbers. Consistent with this notation,
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Figure 2.1: The probability density |'Fn n_ l n_i |2 of the atomic circular state 
in the plane z =  0.

the atomic circular state is denoted 'Fnin_l n_1. For this state it follows that:

for the angular momentum operator L = (L \ , L2 , L3). Recalling the quantum 
Hamilton-Lenz-Runge vector Z  — (Z ] ,Z 2.Z 3) (see Section 1.2.4), for the 
state Vl/n.n-i.n-i-

Since only one component of angular momentum has a nonzero expected 
value, the associated classical motion occurs in a plane. Given that the 
classical Hamilton-Lenz-Runge vector is proportional to the eccentricity of 
the Kepler orbit, 'Fri)n_]in_1(x) corresponds to the orbit with eccentricity 0, 
a circle. The probabilty density |T n>n_i,n_i |2 is shown to be concentrated on 
concentric circles in Figure 2.1.

The state considered in The Divine Clockwork is the atomic elliptic state:

( h )  = (L2) =  0 and (L3) =  h(n -  1),

(ZY) = (Z2) = (Z3) -  0.

where exp ( — is a unitary operator acting on the wave function with 
some parameter 9. (Here e2 = h.) For the state T £>n:

(L3 ) = e2(n — 1) cos 9 and {Z\) =  e2(n — 1) sin 9,

with:
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Figure 2.2: The probability density |T fin|2 for the atomic elliptic state in the 
plane 2  =  0.

(Li) = (L2) = (Z2) = <Z3) =  0.

Given the above relations, corresponds to a classical elliptic trajec­
tory, with eccentricity given by e =  sin 0. The probability density | ^ £,n |2 
is concentrated on the ellipse, as shown in Figure 2.2. A clever argument 
from [5] using coherent state representation and the Kustaanheimo-Stiefel 
transformation yields:

and x =  ( x , y , z )  G M3, c2 = h, A =  ne2 and £ n_i denotes a Laguerre 
polynomial, dehned consistently with Buchholz [3]:

with the exponential function denoted ex.

(2 .1)

where:

(2 .2 )
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2.1.2 The N elson  D iffusion for the A tom ic E lliptic S tate
By writing T£jn =  exp(Re>n + iSe,n) for real-valued Rt,n and SCtU, as in Section 
1.1.4, it is possible to construct a Nelson diffusion associated with the atomic 
elliptic state. .The diffusion X ên satisfies:

The wave function \&£)n satisfies the time-independent Schrodinger equa­
tion in the form:

where En = — ̂ 2 , the eigenvalue of the Hamiltonian. We may then define:

Using equations (2.1) and (2.2) from the previous section, in Cartesian coor-

Figure 2.3, its trajectory converging rapidly to an ellipse.

2.1.3 The Lim iting W ave Function
The Bohr correspondence limit of the wave function T £)fl is its limit as n —* 0 0  

and e —> 0, while fixing A =  ne2 as a real number to ensure the energy level 
and angular momentum remain fixed. The limiting wave function is found 
by first defining the Bohr correspondence limit of the function Ze>n (equation
(2.3)) as follows:

d X €in(t) = be>n(XetTl(t)) dt +  ed B(t)

with:

be,n — £2 V  (Re}n +  Se,n)-

(2.3)

Note that the drift of the Nelson diffusion may be given by:

&£,n =  Re(Zc,n(x)) -  Im(Z£,n(x)).

dinates:

The time evolution of the Nelson diffusion defined above is simulated in
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Figure 2.3: Simulation of the Nelson diffusion X ttU for the atomic elliptic 
state in three dimensions.

Zo,oo(x) := lim Ze>n(x).n|oo,e|0
A=n£2

Due to the dependence of Ze>n on Laguerre polynomials, we require the fol­
lowing lemma from [9]:

L em m a 2.1.1. Let Cn(x) denote the nth Laguerre polynomial and A be a 
fixed real number. Then:

lim £ h i M  = _
nT°°.«io Cn-i(niy) 2A=nez

Proof. For Laguerre polynomials:

A-iM _ n ~  1 _ n -  1 Cn- 2(v)
Cn-\(y)  V V £ n- l ( v ) '

Setting v = nv\

lim J z i M  =  I _ I  lim A , - » M
nToo,«io Cn-i\nif) v v ntoo.eioA=ne2

If the limit:
Cn- 2{nv)

V — hm —---- —̂ -"Too.eiO Cn-\{nv)
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exists and is non-zero, then p satisfies:

i - ( 2 - ! / )  +  p =  0, (2.5)
V

due to the recurrence relation for Laguerre polynomials:

nCn(v) -  (2n -  1 -  v)Cn-i(y)  +  (n -  1 )Cn- 2(v) =  0 .

Solving the quadratic (2.5) for p yields the result.
□

Applying the above result to the expression for ZttTl in Cartesians, (2.4) 
gives:

= u [ 1 + y 1 ~ l ) ^ \  + v T e { 1 ~ \ 1 ~ l j (i’ - v T z r ? -°)- 

The limiting wave function is the formal wave function satisfying:

ry f \ ■ 2V̂ (X)
°'oo( } =  !£ - 9 W '

which is given by:

* e =  ^  f 1 +  J l  -  i V V‘ exp ( -  A l x l  +  ^  ( l  -  , / T iv J  \ Ae2 2 e2 \ V v

It is important to note that as this wave function corresponds to Bohr’s limit, 
it is only an approximate solution of the Schrodinger equation. Comparing 
Figures 2.2 and 2.4, note that the density \tpe\2 is highly concentrated on the 
ellipse.

2.1.4 The Lim iting N elson  D iffusion Process
It is now possible to construct the limiting Nelson diffusion process X e cor­
responding to the wave function T £. As given by equation (2.3), for 

=  exp (i?,e -I- iSe):

Zo,oo(x) =  £2 V (5e -  i R t).

The drift term of the diffusion process X t is given by:
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Figure 2.4: The probability density |T f |2 of the limiting elliptic diffusion in 
the plane z = 0.

b‘ (x) = 62 V (fif + S,) = Re(Z0,oo(x)) -  Im(Z0 ,oo(x)).
Finally, the limiting Nelson diffusion process corresponding the limiting wave 
function satisfies:

d X l (t) = be( X t ( t ) )dt  + edB( t ) ,  
where in Cartesian coordinates, x  =  (x , y , z ) and b = (b'r , C , bez ) with:

6J(x) =  ^  +  P -  1)^ -  (a +  P  +  1) j^j j  ,

6»(X) =  2\  ( (“  '  0 ' "  (Q + 0  +  1 }r )  ’

Ki*) = - 2^(a  +  ^  +  ^ j x j ’
and:

1 I (e|x| -  x -  ^ ) 2 +  (1 -  e2)y2
a  =

(e|x| — x )2 +  (1 — e2)y2

1 (e lx | 
+  2  —

^ ) 2 +  (1 -  e2)y2 - 4A4e 2

[e|x| — x ) 2 +  (1 — e2);y
( 2 .6 )
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a =  - 2A2e y T ^ y _____
P ^ ( ( I x l - ^  +  f l - e V ) " '

Note that for as defined by equation (2.2):

4
1 ------=  a  +  ip.

v
By first defining:

liyyj 1 -  e2
a

=  ( |x| ~  f )  and  ~0  = - X2e
the functions R e and Se may be given explicitly:

Rt — ^-^(ln(d :2 +  /32) +  21n((l +  a ) 2 +  (32) +  (1  — di)d +  (3(3) — >

5C =  ^  ^arg(Q +  i/3) +  2 arg(l +  q +  i(3) +  ^/3(1 -  a) -  i / 3d 

Moreover:

Vfl, =  - 2 ^ 2  ( ( !  +  “ ) g  +  ((! -  « ) , / 9 V T ^ ,0 ) )  , (2.8)

and:

v ‘Se =  _ 2 a ^ ( R  + (“ '3’ ( 1 _ a ) ' / r : r ? ’0)) -  (29)

2.2 The Lim iting Parabolic Diffusion
As demonstrated in The Divine Clockwork [9], the limiting Nelson diffusion 
process corresponding to the limiting wave function for the atomic elliptic 
state satisfies the stochastic differential equation:

dX(t)  = be{X{t) )dt  + edB(t) ,  (2.10)

where e is a small quantum mechanical parameter, and Bit)  is a multi­
dimensional Brownian motion.

Henceforth we will be working in two dimensions, and so we begin by con­
sidering the restriction of the limiting Nelson diffusion to the putative plane
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Figure 2.5: Simulation of the limiting elliptic diffusion process X e in three- 
dimensions.

Figure 2.6: Simulation of the limiting elliptic diffusion process in two dimen­
sions.
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of motion z =  0, as discussed by Durran, Neate, Truman and Wang, [10]. A 
simulation of this process is shown by Figure 2.6. We consider the general 
stochastic differential equation above, (2 .1 0 ), with the two-dimensional drift 
be(X(t)) = (bex{X(t)) ,bey(X(t)))  fully defined by the following:

K w m  = yx  (<“ + n  -  x> h -  (“ + 13+ -  t2-11)

V t l  a , \ V 1 -  e2 , , a , ,sV= f x  -  P  -  V — e («  +  /? +  W - )  . (2-12)

where X(t )  =  (x(t),y(t))  in Cartesian coordinates with r as the length of 
the vector (x(t),y(t)),  the functions a  and (3 are defined by equations (2 .6 ) 
and (2.7) (with |x| =  r), e is the eccentricity of the elliptical orbit, fi is the 
force constant and A is a positive constant defined by the relation:

a = — , (2.13)

where a denotes the length of the semimajor axis of the elliptic orbit.
It has been shown in [9] that the limiting Nelson diffusion defined accord­

ing to the above equations (2.10) to (2.12) characterises Keplerian motion 
on the Kepler ellipse. We now investigate the behaviour of this motion in 
two-dimensions as the eccentricity e tends to 1 from below, the value which 
characterises a parabolic orbit in a classical situation. We fix /, the semi-latus 
rectum of the elliptical orbit, and for clarity, we may choose suitable units 
which allow y, = 1. Using (2.13) and the relation from Chapter 1:

I
1 - e

we have:
A2 =

1 — e2
A2 =  — L - .  (2.14)

As in Section 2.1, by defining:

(2 J5 )

a simple calculation shows that:

1 — — = a + i(3. (2-16)
v
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Substituting (2.15) into (2.16) yields:

a + id = J 1 -

so we see that as e —> 1 :

4A2
a + i P - + \ l  1 ---------- . (2.17)

r  — x

We will deal with the limit of A2 later, however it is evident from (2.14) 
that A2 —► oo as e —► 1. Therefore the imaginary part of (2.17) is going to be 
dominant in the limit, forcing the real part a to be 0. Then using relation 
(2.14), we see that the imaginary part must tend to:

4A2 2A 2 VI
r — x y/r -  x y/1 -  e2ypr x

We are now able to substitute these limits for a  and (3 into the expressions 
for the components of the elliptic drift bex{X(t))  and by(X(t)) (equations 
(2 .1 1 ) and (2 .1 2 )), by setting:

a = 0 and 0 = ^ = J ^ -= ,  (2.18)
V i — el \Jr — x

which yields:

m m  -

(  2 Vi + 1 \ £ \
I \ / l  — e2 y/r — x J  t  

1 y/l  — e2 x xy/1  —
ey/r -  x 2 ey/l Ty/r -  x 2r \ f l

Finally, taking the limit as e —► 1:

bl(X(t))  - j L =  -  (2.19)
y/r — x r\Jr — x r

Again setting:

2  Vl
a  =  0 and j3 =

y/l — e2 y/r — x ’
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we have:

_  V T = e >  ( (  —2V i , \ V T
y{ ( )) 2Vi )

(  2 Vi \ * \
y/1  — e2y/r — x I t

— y/ 1 — e2 1 — e2 y ry/ l
eyjr -  x 2ey/l r / r ~ x 2 ry/l

Taking the limit as e —* 1:

b‘y(X(t))  -  - M = .  (2.20)
ry/r — x

For the two-dimensional restriction of the limiting elliptic diffusion dis­
cussed in Section 2.1.4, be = e2X ( R t -I- 5^), where, given (2.8) with fi = 1 :

1 f  ex
( “  +  l i 3 ' + / , v r r p ) .\ r r /2 eAe2 V r r

Once again using the limits of a and (3 given by (2.18), and the relation 
defining A, (2.14), we have:

V*‘ = - v S f -  + 1'- + ̂ )-(° '°>  - <2-21>2e\e2y/l \ r  r y/r -  x )

evidently.
We may also write b = e2 V (/?+ 5) where R  and S  are the respective limits 

of (2.8) and (2.9) for the two-dimensional restriction. Since from (2.21), the 
limit of V/2 is the zero vector, we must have that b = e2V S ,  for some 
S  : M2 —> R. We return to this in Section 2.3.1.

The expressions (2.19) and (2.20) will henceforth be referred to as bx(X(t))  
and by(X(t))  respectively, the components of a drift b(X(t)) of the stochastic 
differential equation which we will investigate throughout this work:

dX( t )  =  b(X(t)) d t +  £ dB(t)  (2 .2 2 )

where X( t )  = (x(i),y(t))  and B(t) = (Bx(t), B y(t)), a two-dimensional Brow­
nian motion.
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It is important to note at this stage that due to the ambiguity of the square 
root throughout it is necessary to multiply both bx(X(t))  and by(X(t))  by 
sgn(y) which denotes the signum function:

( - 1  if y < 0 ,
. sgn(y) =  < 0 if y = 0, (2.23)

[ 1 if y > 0 .

Thus we have the drift of the Nelson diffusion fully defined by:

b = {bx, by) = L n{y)^ E i , - y ^ m ,  (2.24)
\  r ry/r — x J

and the stochastic differential equations for the Cartesian coordinates are 
given by:

dx(£) =  ^ s g n (y )^ ^ —̂  dt + edBx(t)

and:

dy(0 =  \  dt + edBy{t).
\  r v r ~ x )

In the subsequent section we will see that in the absence of the noise 
term, the above Nelson drift determines a parabolic trajectory. Follow­
ing the approach of Wentzell and Friedlin [13], we may view the random 
process (2 .2 2 ) as a result of random pertubations of the classical system 
dX{t)  =  b(X(t)) dt. Hence we would expect that the Nelson diffusion would 
characterise a parabolic motion with small random pertubations due to the 
infinitesimal parameter e. (From [9], we have that e =  y/h, with h being the 
reduced Planck’s constant.) The simulations shown by Figure 2.7 support 
this conjecture.

As in [13], we will throughout represent the solution X(t )  = (x(t),y(t)) 
of (2 .2 2 ) as an asymptotic series in the parameter e:

X { t ) = X »  + eXl  + e2X 2t +.. .

where we also have x(t) =  x® +  ex] +  e2x\  + ..., and y(t) — +  ey\ +  e2yf  + ...
with X\  =  (a:J, y\) for i = 0 ,1 ,2 ,... The zeroth order approximation 
X °  =  (x° , y°) corresponds to the classical system which will be discussed 
later in this chapter.
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Figure 2.7: Simulations of: the semiclassical parabolic diffusion; the semi- 
classical diffusion compared with the classical trajectory; multiple sample 
paths of the diffusion process.

2.2.1 A nalysis of the Parabolic N elson  D iffusion
On inspection, we see that both components bx and by of the above drift 
(2.24) are singular at the origin, and it appears that by is also singular on the 
whole positive x-axis due to the term yjr — x  in the denominator. However, 
writing by in polar coordinates:

sgn(y) sin 6
y/ rV  1 — cos#’

then using the identities sin/9 =  2 sin ( |)  cos ( |)  and cos(9 =  2 cos2 ( | )  — 1 
respectively in the numerator and denominator of the above:

by —

sgn(y)\/2 cos ( |)

which shows by only has a singularity where r = 0. Therefore the drift of 
the parabolic Nelson diffusion is only locally unbounded at the origin. It is 
exactly this singularity that presents us with problems when attempting to 
show existence and uniqueness of solutions to (2 .2 2 ).

Since we have seen above that the Nelson drift has a singularity, we look 
to some known results on existence and uniqueness of solutions to stochastic 
differential equations with locally unbounded drift. The relevant literature 
refers to equations of the form:

dX(t )  = b(t, X{t))  d£ +  a(t, X( t ))  d B(t)  (2.25)

We first consider a result of Portenko [28] which proves the existence and 
uniqueness in law of solutions to the above if we have b G Lp([0, T] x K n) for 
some p > n +  2 , in addition to some assumptions on a.
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Firstly note that, from (2.24), we may express bx as follows:

sgn(y) \ / l  — cos 6

Given this and the similar expression for by:

To apply the result of Portenko we require that b £ L4. However:

2tt

which is clearly unbounded as 6 J, 0 , so the required condition is not satisfied. 
This result is generalized by Gyongy and Martinez in [17], where for equations 
of the form (2 .2 2 ) it becomes:

T h eo rem  2.2.1. If \b(X(t))\  < K +  F(X(t ) )  for a constant K  > 0 and some 
non-negative function F  £ Ln+1 (M+ x Rn), then a weak solution to (2.22) 
exists.

Fixing Ft > 1, note that if r < R, then:

where X b r {o) denotes the characteristic function of the ball centred at the 
origin with a fixed radius R > 1. This guarantees |6 (X(£))| < K  +  F(X(t ) )  
in all cases. In the two-dimensional case Ln+l becomes L3. F(X(t ) )  £ L3 is 
guaranteed by:

by the above bound (2.26) and for r > R > 1, we have:

f = <  2,
Vr

Thus we may take K  = 2 and:

F(X(t ) )  -  -j =x b r{o), (2.27)

POO

/  |F (X (f)) |3r d r
J 0
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Hence a solution to the SDE governing the parabolic Nelson diffusion 
(2.22) exists in the weak sense. However the corresponding result for exis­
tence and uniqueness of the strong solution requires that the Nelson drift 
b £ T ^ +2, and so obviously does not hold.

We now consider the n-dimensional Bessel process R t , the real-valued 
process given by the Euclidean length of an n-dimensional Brownian mo­
tion B(t) = B2{t) , ..., B n{t)) where Bi , . . . ,Bn are independent one­
dimensional Brownian motions. That is:

. i= 1

As defined above, Rt satisfies the stochastic differential equation:

d Rt =
Zrit

fit being an arbitrary one-dimensional Brownian path. Thus in two dimen­
sions, we may use the Bessel process to describe the diffusion of a particle 
on a plane just in terms of its distance Rt from the origin, which satisfies:

dRt =  dt +  dfit .Zixt
It is clear to see that the drift of the above SDE has a singularity where 

Rt = 0, at the origin. However it can be shown (McKean [23], Karatzas 
and Shreve [2 1 ]) that this process reaches the point Rt = 0 in finite time 
with probability 0. This suggests that we should attem pt to determine the 
parabolic Nelson diffusion in terms of its radial parameter by finding an 
appropriate SDE, in order to investigate whether the process reaches the 
origin in finite time.

N onattainability  of the Origin by the Parabolic N elson Diffusion

Prom (2.22) and (2.24) we have that the parabolic Nelson diffusion in the 
correspondence limit X(t )  =  (x(t),y(t)) is completely defined by some initial 
condition x(0 ) ,y(0 ) and:

dx(t) = bx(X( t ) )d t  + edBx(t), (2.28)

d y(t) = by{X( t ) )dt  + edBy{t). (2.29)

We begin by defining a new stochastic process r(t) governing the time 
evolution of the polar radius r = y j x 1 +  y2. Using Ito’s formula:
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d r( i) =  ( ' ^ ± ^ i + l l dJ +
r  2  r

x dB x(i) +  y d B y(t)
(2.30)

where factors of e have been omitted for clarity since the subsequent analysis 
does not depend on their influence. Given the parabolic drift components in 
polar coordinates:

bx = sin ^ Q sg n (y ) and by = - y ^ c o s  ^ 0 sgn(j/), 

a simple calculation yields:

sm 2
xbx +  yby =  y/2r

This may be substituted into (2.30) to give:

sgn (y).

dr(t) - S . H I -
1

sgn(y) +  — I dt + d Br(t) (2.31)

where Br(t) is a one-dimensional Brownian motion with:

g  ^  _  x Bx(t) +  yBy(t)
r

Given the SDE for r(£), (2.31) we are now able to show that the process 
does not reach the origin in finite time, thanks to a result by David Williams 
[33]. We first require a preliminary result.

L em m a 2 .2 .2 . The stochastic differential equation:

dp(t) = c(p(t)) d£ +  dB(t)

with:

< p) = - \ J l + Y P

and p(0 ) a deterministic point, has a pathwise unique solution with:

P [p(t) > 0 , \ft] = 1 .
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Proof. Let p(0) G (a,/?) C (0,oo), then we have p(t) defined up to 
r[a,P\ := inf{t > 0 : p(t) £ (a,/?)}.

Due to a result from Gihman and Skorohod, [14], the probability that the 
process p{t) starting at p(0) G (a, (3) reaches the point (3 before the point a 
is given by:

for u satisfying:

-u"(x)  +  c(x)u'(x) =  0 .

First defining:

'x ^4\/2srx 4 Vis
Ia( x ) : = C   ds,

J a S
then solving the above equation for u' via the integrating factor method we 
have:

u(p(0)) -  u(a)  =  Ia{p(0 )) 
u(P) -  u(a) Ia(P)

for some finite multiplicative constant C. Letting a  j  0, both integrals in 
the above tend to infinity at the same rate, and so:

P[p(r[0,/3]) =  P] = 1 ,

for an arbitrary value of p.
□

T heo rem  2.2.3. With probability 1, the radius r(t) of the parabolic Nelson 
diffusion satisfies r(t) > 0  for all t.

Proof. Consider the radial equation for the parabolic Nelson diffusion given 
above:

dr(£) -- su n - sgn(y) +  — j dt +  dB(t) =: br(r(t)) d t +  dB{t).

Compare this with the equation for p(t) from the above lemma. With the 
same starting point p(0) =  r(0), and the same driving Brownian motion, we 
have:
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r(t) -  p(t) = [  (6r (r(s)) -  c(p(s))) ds.
Jo

Also note that when p(t) = r(t), br(r(t)) > c(p(t)), so that for some small 
6, we have r(u) > p(u) for 0  < u < 5.

Now suppose that there exists a time v > 6 where p(v) > r(v). Let T
be the infimum of such times so that p(T) = r(T).  For small 7  > 0 with
T  — 7 < u < T,  p(u) and r(u) are close to p(T) and r(T)  respectively, and 
for such times u, br(r(u)) > c(p(u)). Hence:

(r(T) -  p(T)) -  (r(T -  7) -  p{T -  7 )) =  [  (br(r{u)) -  c(p(u))) du >  0.
J T - 7

However, by definition of T, r(T) = p(T) and r (T — 7 ) > p(T — 7 ).
The above contradiction establishes that r(t) > p{t) for all t > 0. The 

theorem follows, given the previous lemma.
□

2.3 The Classical Case
We now focus on the classical analogue of the problem outlined in Section
2.2, that is, equation (2.22) in the absence of the noise term. By utilising 
the usual conservation laws of energy and angular momentum, we are able 
to extract information about this dynamical system from the aforementioned 
differential equations.

2.3.1 Investigating th e  M otion
As in the previous section, for X(t )  =  (x(t),y(t)),  we have the drift field 
defined by:

x(t) = bx(x, y) = sgn(y)--r  (2.32)
r

and:
y(t) = byix.y) = M ,  (2.33)

r y r  — x

for r = y j x2 + y2.
From equation (2.23), we first note that for y ^  0:

d , N d 
d i sgn^  = a ^ sgn(!/) =  °-
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Therefore it is sufficient to treat sgn(y) as a constant in the following:

dbx d f  y/r -  x \  ysgn{y)(2x -  r)
~dy ~  ~dy { ' * '

Similarly:

dby d (  y sgn(y) \  ysgn(y)(2x - r )  dbx
dx dx  ^ ry/r — x )  2rz \Jr — x dy  ̂ ^

This implies that the drift b should be the gradient of some function S.

L em m a 2.3.1. The vector b(x,y) = (bx(x,y) ,by(x,y))  defined according to 
equations (2.32) and (2.33) is a gradient, that is b = V S  for:

S(x,y)  =  - s g n (y)y/r -  x,

where y ^  0 .

Proof. Partial differentiation of S  yields:

dS  . y / r  — x
^  =  sgn (V)— ^— .

and:
dS  _  ysgn(y)  
dy ry/r — x

□
P ro p o sitio n  2.3.2. With the drift b(X(t))  defined according to equations
(2.32) and (2.33), the solution X(t )  to the ordinary differential equation 
dX(£) =  b(X(t ))dt  satisfies:

X( t )  =  V
l*MI

with energy E  = 0 and therefore the trajectory of X(t )  corresponds to Kep- 
lerian motion on a parabola.

Proof. Since X( t )  = b(X(t)),  we have:

- , . (  dbT d&,
X(t )  =

d t d t

By the chain rule for differentiation we see that:
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dt, dx  dt dy dt
Firstly using the definitions of bx and 6y, and then observation (2.34) we 

obtain from the above that:

dbx dbx , dbx , dbx , dbv ,
- 3 7  =  +  -T^by = ~ b X + by.
d t dx dy dx dx

Now given that |6 |2 =  b2x + b2, observe that we have:

dbx _  d (\b\2\  and dby _  d f \ b \2
d t dx \  2  J  dt dy \  2

by a similar computation to the above. Hence:

\b\2
X( t )  = —VV for a potential function V =  — — .

Using the explicit expressions for bx and by given by equations (2.32) and
(2.33), we find:

x 2 +  y2 r — x y2 (r — x )2 + y2 1 1

t 2 r 2 2r2(r — x) 2r2(r — x) r \X(t)\

Thus showing that the trajectory of X( t )  satisfies Newton’s laws in the pres­
ence of the Coulomb potential function. Recalling from Chapter 1, the equa­
tion for an orbit’s eccentricity:

/ 2 L2E
e ~ f  + — '

we see that e =  1 <=> E = 0. Note that the system’s kinetic energy:

\b\2
T = ]-t t  = - V .2

Thus, by energy conservation we have E = T  +  V  =  0, the zero energy state 
which corresponds to motion on a parabola.

□
Knowing that we have motion on a parabola, we now replace the param­

eter e by 1 in the polar coordinate equation for a conic section, so that:

r = -------------    becomes r  = ----- -— -.
1 +  e cos 6 1 +  cos 6



Using the identity 1 +  cos# =  2 cos2 (f) ,  we arrive at:

r = l-  sec2 ( 0  =  d sec2 ( 0 , (2.35)

where d = |  is known as the apsidal distance. Substituting (2.35) into 
x = r cos 9 and y = r sin 9 we respectively obtain:

( 3  “ ■*’ |2 j 5 )

and:

y =  dsec2 ( ^ j sind. (2.37)
n2 .

Using the identity sin^ =  2 sin ( | )  cos ( |)  in (2.37):

s in( f )  f  9 \  . .
y =  2d =  2d tan ( -  ) =  2dr, (2.38)

cos (f) \ 2J

where we have defined t  = tan ( |) .  To obtain a similar expression for x
in terms of r , we replace the secant and cosine terms in (2.36) by the the
identities:

1 -  tan 2 (-)
sec2 9 = 1 +  tan2 9 and cos 9 = -----------

1 +  tan ( | )
respectively, yielding:

x = d( 1 +  t 2) |  r 2). (2.39)

Rearranging (2.38) gives:

V
T 2d'

We then substitute the above into (2.39) to obtain:

,2

Rearranging this yields:

y2 =  4d(d — x ),

which is the equation of the parabola on which this motion occurs in terms 
of the Cartesian coordinates and the apsidal distance d.
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Figure 2.8: Streamlines of the parabolic drift field.

2.3.2 C alculating Explicit T im e D ependence
To attem pt to find the parameters r, 9, x and y as functions of time, we begin 
by using the fact that the angular momentum L of this dynamical system 
is constant, and that in this general case L =  r29. Also, for motion on a 
parabolic orbit we have I = A-, where once again for clarity we equate y  to 
1. Since Proposition 2.3.2 shows that we have motion on a parabola, we use 
the polar coordinate equation for a conic section in the form r = As

shown by (2.35), by using an appropriate identity we find r = - sec2 ( |) ,  and 
therefore:

L = 4 sec4(£)
which implies an ordinary differential equation for 9:

Separation of variables in the above ODE yields:

LlSeC4̂ ) d4, = J o fdS’ ( 2 '4 0 )
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where Oq is an initial condition; one of the polar coordinates specifying the 
position of a particle at time 0. By virtue of the identity sec2 6 = 1 + tan2 6, 
the above equation (2.40) becomes:

Integration yields:

4Z/£ n  ̂ f  6 \  2   ̂ 3 f  6 \  / 6q\  2  3 I (7q

P 2 t a n U J  +  3 tan U J ~ 2tan  U J “ 3 tan U J '  (241)

Now let T(t,0o) be a function such that:

4LT  4Lt  „ /0 O\  2 , / 0 O\_  =  _  +  2 t a n ( y j + - t a n  ( y j ,  (2.42)

then it is clear from (2.41) that in terms of 6:

T = k (2tan(l) + | tan3 (§
From above, we see that L2 =  I and the apsidal distance d = as given in 

Section 2.3.1. By making the appropriate substitutions in the above equation 
we see that:

T  = V 2d3 | tan 1 ^ 1 + ^  tan3
V V2/  3 V2

Rearranging yields a reduced monic cubic in tan ( |) :

tan3 g ) +  3 tan g )  - - g =  = 0 (2.43)

which may be solved using Cardan’s Solution as outlined in Ferrar [12]. Due 
to the absence of a quadratic term, we already have a cubic equation in 
the form z 3 +  3H z + G = 0 as necessary, where z =  tan | . Since we need 
not concern ourselves with complex roots, the real root of (2.43) is given by 
z = p + q where:

P

and

=  y J \ ( ~ G  + V G 2 + 4H3) (2.44)
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Q =
- H

V
(2.45)

By inspection, we see that in the above cubic equation (2.43):
- 3  T

H = 1 and G =
V2d

Substituting these values into the above expression for p, (2.44) yields:

V = \
3 T

2V2<P +  2
1 I f  3T  V

2  V V v ^ ;
, 3/ 3T2+  4 — \ — -p== +

2v/2d3
9 T 2 
8d3

+  1. (2.46)

Since H = 1, we have from (2.45) that q = — By writing p = (a -f 6 )3  

where:

9T2
8 ^ + 1

we are able to write - in the form:p

and

( a - 6 )

b =
3 T

2 V 2 w

(a — b) (a +  b)
From the above definitions of a and 6, direct computation gives:

q t 2 9 T 2
(a + b)(a — b) = a2 — b2 = -7-77- +  1 — -7-77- — 1,

8 d3
thus simplifying the above expression for 4 to:

8d3

1 / ^  3/ - 3T2 ,-  =  ( a  -  6)3 =  4 /  — — =  +
V V 2\/2d3

9T2
8 ^

+ 1. (2.47)

Therefore substituting (2.46) and (2.47) into z =  p +  q, the solution to the 
original cubic equation (2.43) is given by:

tan
3 T2

+
■3 T 2

+
9T2

2 /  V 2V252 V 8d3 V ' V 8d3
where from (2.42) we see that as a function of t and 90:

+ 1

T(L, 60) = t +  ^tan i  tan3 • (2-48)

This allows us to state the following theorem:
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T h eo rem  2.3.3. For T(t,do) from (2.48), the polar and Cartesian coor­
dinates of the classical parabolic orbit as functions of time and the initial 
condition are given by:

r ( ^ ° )  1 +  cos0(£, #o) ’

x{t, do) = r ( t , do) cos d(t, do)

and:

y(t,d0) =  r(t, do) sind(t, do).

Note that, if required, the initial coordinate r 0 is given by 1+c*s9q • Initial 
Cartesian coordinates follow from this.

2.3.3 T he Burgers V elocity Field for the Parabolic M o­
tion

In vector form:

6 (* (t) ) = (  (2.49)\  r r y r  — x J
We proceed to show that the above drift field, obtained by taking the

limit of a the semiclassical elliptic drift has zero divergence and satisfies the 
inviscid form of Burgers’ equation, [4]. These results may then be used to 
show that a fluid moving with this velocity field has a constant density and is 
therefore incompressible. Moreover, the function S  of which b is the gradient 
(Lemma 2.3.1) may be shown to satisfy the classical mechanical Hamilton- 
Jacobi equation.

L em m a 2.3.4. For the vector field b(X(t)) defined by (2.49), div(6) =  0.

Proof. As in the proof of Lemma 2.3.1, where y ^  0, we treat sgn(y) as a
constant for the purposes of the following, and so we have:

^  =  A  (sgn (y) ^ i  =  - s g n ( y P  +  ~
dx dx \  r J 2r3y/r —x
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Similarly:

dby _  d 
dy dy V ry/r -  x J 

(r + 2x)(r — x) dbx
2 r3y/r — x dx

and we thus have:

□
From Proposition 2.3.2, we have already seen that for the potential energy 

function:

Consider the inviscid Burgers equation, that is Burgers equation with no 
viscosity coefficient:

By setting the Burgers fluid velocity v(X(t))  = b(X(t )), given (2.51), we see 
that b(X(t))  is a stationary state solution of the inviscid Burgers equation 
(2.52). That is, b(X(t)) is a solution of (2.52) since =  0. Moreover, using 
the fact that div(6) =  0 from Lemma 2.3.4, we may prove that this Burgers 
fluid is incompressible. We will begin the proof as for a three dimensional 
fluid, and then restrict motion to a plane to give the two-dimensional result.

T h eo rem  2.3.5. A fluid moving in two dimensions with the parabolic Burg­
ers velocity field b(X(t)) has a constant density, hence the field b(X(t)) de­
termines an incompressible flow.

Proof. Consider a fluid moving in three dimensions with vector-valued veloc­
ity v(X(t))  and scalar density p(X(t)).  For an arbitrary volume T, the total 
fluid mass in that volume is given by:

and Nelson drift b(X(t)) (defined according to (2.49)):

(2.50)

Differentiating the above gives:

(6- V)6 +  X V  = 0. (2.51)

—  +  (v ■ V)v  = — VK (2.52)
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M(t) = j ^p{X { t ) )A 1

where (I7  denotes integration with respect to the volume element. The rate 
of change of this mass is obviously:

m  = j v% d7- (2.53)

This flow of mass per unit time is also given by the flow across the boundary
dr:

M{t) =  — j pvdY, — — j div(pu)d7 , (2-54)
Jd r J r

where integration dS is with respect to the outward normal unit, and the 
latter equality is due to the divergence theorem. Equating (2.53) and (2.54) 
gives:

l { i + div(H) d7=a
Since the volume T was arbitrary, we have for all fluid velocities and 

densities:

^  +  div(pu) =  0 , 

the continuity equation for fluids, which is equivalent to:

%  +  Vp • v +  pdiv(u) =  0.
01

For the density p to be constant we require | f  =  0, hence requiring that 
div(u) =  0. In particular, when the position vector X(t)  of an element of 
the fluid is restricted to a two-dimensional plane, the condition retains its 
validity. Setting v(X(t))  = b(X(t)),  the above stationary state solution to 
the inviscid Burgers equation satisfies the condition required for constant 
density, since div(5) =  0 by Lemma 2.3.4.

□
We may further prove that the function S  given by Lemma 2.3.1 satisfies 

the Hamilton-Jacobi equation with the Coulomb potential.

P ro p o sitio n  2.3.6. The function S  = —sgn(y)y/r — x  is a Hamilton-Jacobi 
function satisfying the Hamilton-Jacobi equation:
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+ //(9, vs, <) = o.
for the Hamiltonian:

H{q, VS) =  ®  +  V{q)

with the Coulomb potential V , where q = (x denote generalised
position coordinates.

Proof. Prom equation (2.50):

]T  + V  = °-

Since b = VS (Lemma 2.3.1), the above becomes:

I f U i ' . o ,

which is exactly the above Hamilton-Jacobi equation given that:

dt ~

□

55

31



Chapter 3

The First Order Correction to  
the Parabolic Diffusion

Following the methods and results of Wentzell and Friedlin, [13] we attem pt 
to find methods for solving general stochastic differential equations of the 
form:

d X t = b(Xt)d t  + edB(t)  (3.1)

in both one and two dimensions for some small parameter e. We initially 
consider equations with arbitrarily differentiable drift fields. Since the two- 
dimensional semiclassical parabolic Nelson diffusion discussed in Chapter 2  

is of the above form, we may use the resulting methods to find its solution 
correct to first order in e on domains where its drift is suitably differentiable.

The approach we take is to expand the solution X t as an asymptotic series 
in e:

X t = X °  + eXl  + e2X 2 + ...

where methods are provided in [13] for finding the coefficients X°, X I  etc. 
The convergence of the asymptotic series is ensured by Theorem 2.2 from 
Chapter 2 of Wentzell and Friedlin, [13] for the n-dimensional case of (3.1):

T h eo rem  3.0.1. Suppose the drift coefficients (&i, 6 2 , bn) of (3.1) have 
bounded partial derivatives up to order k + 1  inclusive. Then for the solution 
X t, we have the series expansion X t = X t° +  eX} +  ... +  ekX f  +  Rk+i(t) and 
the remainder term satisfies the inequality:

sup E(|/?fc+1(^)|2)^ < Cek+l C < 0 0 .
0 <t< T
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3.1 One-Dim ensional Stochastic Differential 
Equations

Given a one-dimensional stochastic differential equation of the form:

d X t = b(Xt)d t  + tdB(i ) ,  (3.2)

we may attem pt to solve it by representing the solution X t as the following 
asymptotic series in powers of e:

X t =  X°t +  t X I  +  e2X 2 +  ... (3.3)

where in both (3.2) and (3.3), e represents some small quantity. We replace 
X t with its asymptotic expansion in (3.2), formally yielding:

d(X° +  tX]  +  ...) =  6(X° +  eXi  +  ...) d t - fe d  B(t).  (3.4)

By assuming the differentiability of the drift function 6, we may expand 
the b(X® +  eX* +  ...) term in (3.4) as a Taylor series around the zeroth order 
term X^\

b(Xt) =  b(X?) +  -  X?) +  -  X,0)2 +  ... (3.5)

We may also write X t — X t° =  eX} +  e2X 2 +  ... due to (3.3), so by 
substituting the Taylor expansion (3.5) into (3.4), we have:

d(X? + eX} + e2X l . . )  = b(X°)dt  

+ b̂ p - ( e X }  + e2X? + ...)dt 

+ b- ^ ( e X }  + e2X 2 + ...)2dt. 

+ b̂ ± ( i X ;  + e2X? + ...)*dt 

+ b- ^ p - ( t x l  + t2x ?  + ...)4dt 

+  . . .

+ ed  B(t).  .(3.6)

We are now able to obtain separate first order differential equations in 
Xf*,X}, X 2 and so on, by comparing coefficients of e°, e1, e2 and higher order
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terms respectively in the above expression (3.6). On inspection, we arrive at 
the trivial equation for the zeroth order term X t°:

d * °  =  i>(*t°)d« (3.7)

which may be solved by simple integration. Equating coefficients of e in (3.6), 
we can easily see that:

dX] = b'{X?)X} dt +  d B{t). (3.8)

Since At° is calculable from (3.7) and b is the known drift function, we 
may find a solution to the above equation by means of the integrating factor 
method, which will be detailed later. At present, we look for a methodical 
approach to finding the ODEs defining the terms of the asymptotic expansion,
(3.3) of the solution to the SDE (3.2). If we attempt to find such an ODE for 
X 2, we must equate coefficients of e2. By looking at expression (3.6), we see 
that we have an e2 term arises in both the second and third lines resulting 
from the quadratic term (eX})2. Thus the ODE for X 2 becomes:

dX 2 =  (b’(X?)X? + dt.

However, we can see from (3.6) that in attempting to find coefficients of e3 
on the right hand side, cross terms from the expansion of (eX} +  c2X f  + ...)3 
will occur. Anticipating that as the power of c increases, the coefficents will 
become more complex, we must be able to calculate them in order to set 
up the recursive sequence of ordinary differential equations defining Xtn for 
n > 2. This results in an excursion in combinatorics.

3.1.1 A  C om binatorial Problem
By simply observing (3.6) and attempting to find all coefficients of relevant 
powers of e, we have:

M  =  W ) X * +  ® ) (x ‘)*, (3.9)

=  b’(X?)X f  + ^ 1 ( 2 X lt X?)  +  (3-10)

and:
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H Y 4
= b'(X°)X?

+ ^ Y ^ ( ( X ? ) 2 + 2Xt1Xj>) 

, W ( X f ) . „ v U 3 v i ,
(3 (X})*Xf)

6

‘"‘V / ) 4- (3.11)b{4)(X?),vu 4
24

Notice that in each differential equation for X?,  the coefficient of each 
term b(j)̂ *^ for j  =  l ,2 , . . . ,n  are sums of multiplicative combinations of 

In each of these combinations, the indices of X}, . . .^X^  form a 
partition of n with the powers mi, ...,m n determining how many times each 
index appears as a summand in the partitions. Also, terms in the coefficient

b(j)  f j j f O ' i
of each — have powers such that mi + ... +  mn =  j ,  and so correspond to 
partitions of n with j  parts. The numerical coefficients are consistent with 
the number of ways in which each n can be partioned into the particular 
combinations of j  summands. To make this approach more rigorous we can 
use the multinomial theorem, which states:

 __ . ~ m i r m 2 ~ m n
(X\ +  X2 +  ... +  Xny  =  j\  ■ * 2-  ^-r, (3-12)

mi!m2!...mn!
m i+ m 2  +  . . .+m n= j

where j, n, m i , . . . ,  m n G N. This may be applied to expanding brackets of the 
form (eX} +  e2X f  +  ...)J in (3.6) as follows:

 _ (c Yl\mi ( ,2 y2\m2
(eX} + e2X? + . . . y =  £  J'1 i (3'13)

mi +7712 + . ~=j

For a fixed value of n we are looking for the coefficient of en which will 
involve only the X},.. .,  X™ terms. In particular the powers of any terms 
Xtn+1, X ™+2, ... will just be 0. By setting mn+i =  m n+2 = ... =  0 accordingly 
in (3.13), we may make the following refinement:

( e X } + ^ + . . . + m y  =  e
m 1!m2!...mn!

m i  + 7 7 1 2  +  . .  . m n ^ J

where we have used the convention that 0! =  1. From the above:
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(eXl + ( I |  +  ... +  e"X")3 =
mi+2m2+.--+nmn (

v  i ie ' ...............w r - ( - y « 2)m,- W ) m“ f314)
7711+7712 +  . ..mn=3

Given (3.14) we may find the coefficient of en by setting
mi +  2rri2 + ... 4- n m n = n. Thus the coefficient of  ̂ in the ODE for X™ 
is given by:

^  m d m ^ .- .m jmj+m2 + ...+mn=J 
m j -j-277i2 T ... 4*7177171,= n

The ODE for each n > 2 contains a term for each j  = 1,2,..., so we may 
write it in the form:

y ,  bW(X°) y
' 7 ! ' mi!mo!...mn!j = \ J mi4m2 + ...+mn=:;

771 J  4 - 2 7 7 1 2  4" - • . 4 - 7 1 7 7 ln  =  71

Y '+ w o - ,  V  (X(1)"*>(.y?)'"’ - - -W ),b*
2 ^ b {Xt)   m i!mJ!...mB!--- ’
J  =  1 771 !  4“ 7712 4“ • - • 4“ 771 T i =  3

7711 4-27712 4- . - .  4” 717717T, = 7 1

(3.15)

The summation constraint mi +  2 m 2 +  ... +  nm n = n forces the powers 
of X}, X?, ...Xt to form a partition of n, (mi, m 2 ,..., mn), where each rrik 
is the number of summands in the partition equal to k. Partitions with j  
parts, or summands correspond to terms in the coefficient of b ^ (X f°) due
to the constraint mi +  m 2 +  ...mn = j.  This is consistent with the above
observations of equations (3.9) to (3.11). However it remains to find the 
partitions occurring in (3.15).

The Partitioning A lgorithm

When attempting to partition a natural number 71, we are actually looking 
for all solutions to the equation:

mi +  2 m2 +  3m3 +  ... +  n m n =  n, (3.16)

where mi, m 2 , m3, ..., m n 6 No := N U {0}. The vector valued solution 
m =  (mi, m 2 , m 3, ..., mn) then forms a partition of n since each rrik is the

dX?  
d t
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number of summands in the partition equal to k. (For example, when n = 4, 
m = (2,1,0,0) corresponds to the partition 4 =  1 +  1 +  2.) From (3.16) it is 
clear to see that theoretically, for any given k < n, the largest possible value 
of rrik would be given if rrij = 0 for all j  ^  k. This reduces (3.16) to:

krrik = n.

So we obviously have the inequality:

0 < m k < (3-17)

However since for all k < n, rrik € No, the maximum value that m* may 
assume is [^], the integer part of We rely on this fact in the following 
algorithm for finding all possible partitions of n.

S tep  1. First note that m n G {0,1} from the above relation (3.17). In the 
case that m n =  1, the equation (3.16) becomes:

mi  +  2m2 +  3m3 +  ... +  n = n

which implies that m,i = m,2 = ... = m,n_i =  0, giving the trivial solution to
(3.16):

m =  (0 , 0, 1).

For the case that m n = 0 proceed to the next step.

S tep  2. Since m,n =  0, (3.16) becomes:

777,1 +  2 m 2 +  3t77,3 +  ...(77, -  l)777.n_1 =  77,.

Assume for the purposes of demonstration that 77 > 2, so that [^ - ]  < 1, and 
mn_i G {0,1}. The above equation can be written in the following form:

nil +  27772 +  37773 +  ...(77 -  l)(777n_i -  1) =  1.

Assume the case where 777n_i =  1, which automatically implies that 
7772 = = ...777n_2 =  0 and ?77i — 1, giving the solution to (3.16):

777 =  (1,0, ..., 1,0).

The case m,n_i = 0 is then dealt with in the next step.
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By the kth step, the equation (3.16) will have reduced to:

mi +  2m 2 + ... +  (n -  k +  l)m n_fc+i =  n 

which may always be written in the form:

mi +  2m2 +  ... +  (n -  k +  l)(m n_fc+i -  k +  1) =  k -  1.

Then, using the relation m.k < [f] to find all possible values of mn_fc+1 , we 
may substitute these values into the above and solve each equation to give 
a different solution to the original equation (3.16). At the nth  step, the 
equation simply becomes mi =  n, corresponding to the solution:

3.1.2 T he Integrating Factor M ethod
When representing the solution to the one-dimensional stochastic differential 
equation (3.2) as an asymptotic series (3.3), we are now able to define the 
terms up to nth order by the differential equations (3.7), (3.8) and (3.15). 
As previously stated, (3.7) may be solved by simple integration. It remains 
to outline a method for solving the equations for the higher order terms. To 
solve the SDE (3.8), we use the integrating factor method by first writing it 
as:

m =  (n, 0,..., 0). 

This corresponds to the trivial partition:

' v '
n times

dX,1 -  Xlb'(X°t )d t  = d B(t). (3.18)

Define:

and then multiply (3.18) by eF^ \  giving:

eF{t) d x }  +  em X}b'(X?)  dI =  em  dB(t).  

Observing tha t d{eF(tl) — — eF^b'{X^)  dt, the above becomes:

eF(t)dX]  -  d(eF(1)) =  em dB(t).
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Then using the product rule for differentiation:

<1(6™ X}) = eF(t)d B(t),

or:

em X l  -  X l  =  [  eF(s)d B(s).
Jo

Finally, we are able to determine the first order term of the asymptotic 
expansion:

X]  =  e~m  G ,]  +  J  eF<s) dB(s)

where we look to the methods of McKean [23] to evaluate the stochastic 
integral. The same method may be employed in finding the higher order 
terms of the asymptotic expansion from the ordinary differential equations 
defined by (3.15) since each equation has a known coefhcent of X tn.

3.2 Two-Dim ensional Stochastic Differential 
Equations

We now consider two-dimensional stochastic differential equations of the 
form:

d X t = b(Xt)d t  + edB{t),  (3.19)

where X j  =  {xt ,y t) and bT = (6X, by) is a two-dimensional drift with 
bx — bx(xt ,y t) and by = by(xt ,y t). Here, B(t) denotes a two-dimensional 
Brownian motion, B2(t))T. By writing (3.19) as two simultaneous
one-dimensional SDEs in x t and we may then attem pt to find solutions 
as asymptotic expansions as in the one-dimensional case (3.2). In this case 
we have:

dxt = bx(xt ,y t)d t  +  edBi(t),  (3.20)

and:

dyt = by(xt,yt)dt + edB 2(t). (3.21)

Given the asymptotic representations x t = x® + ex\ +  e2xf... and 
yt — yi +  eVt +  e2y?..., (3.20) and (3.21) become:
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d(xQt +ex\ + e2x\-{-...) =  bx(x®+exl+62x ‘f + . . . ,yt+6yl+e2yt+...) dt+edBi(t) ,
(3.22)

and:

<%?■+■cy}+'t2Vt +■•■) =  by(x° + ex,1+.t2x2t + ..., y°t + 1cy\+,t2yf  + ...) d t + 1 dB, (t).
(3.23)

By assuming appropriate differentiability of the drift functions bx and 6y, 
we may expand the relevant terms in the above as a Taylor series in two 
variables about the point (x?,;(/?):

fc tf ,  y») = bi(x°, rf) + (x, -  +  {yt -  yof-h^yh + ... (3.24)

correct to first order, for i G {x , y}. Note that x t — x Qt =  ex] -f e2:r2 +  ..., and 
similarly yt — y° =  ey\ +  e2y2 +  .... Substituting the Taylor expansion (3.24) 
up to first order into (3.22) and (3.23) yields:

dx, =  ( w * ? ,r f )  +  K  +  + (tvl + + ...) d4

+  edBi(t) ,  (3.25)

and:

dy, =  ( W y ? )  +  K  +  . . . ) ^ M ^  +  iey] +  . . . ) ^ ? )  +  ...)  dt

+ t d B 2(t). (3.26)

Equating coefficients of e° in the above gives the trivial equation for the 
zeroth order terms:

dX? = b(X?)dt,  (3.27)

where X t° =  (a;°, y®). However we are mostly interested in the first order term
X]  =  (x\,y}). We may find differential equations for x\ and y] by equating
coefficients of e1 in equations (3.25) and (3.26) respectively:

1 (  i d b ^ x ^ y ? )  j &*(£?,2/?^ ^
1 = ^  dx  Vt  fry )  d t + d B ^ 1̂
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and:

dyl dx dy

The above may be summarised as the following matrix equation:

ax} =0(t)x}at+ a B(t),
where the matrix 0(t ) is given by:

m  =

(  dbI (x},yf) dbx(x°t ,y}) \  
dx dy

dby(x°t ,y°t ) dby(x°t ,y°t )
dx dy /

(3.28)

(3.29)

We may attem pt to solve the matrix equation (3.28) to find the first order 
term X } using a method analogous to the integrating factor method used for 
differential equations of one variable, as in Section 3.1.2. This first requires 
a generalisation of the exponential function as a time-ordered product.

3.3 Time-Ordered Products
In this section we define the time-ordered product of some time-dependent 
matrix as the infinite sum of increasingly repeated integrals. From [6], we 
see that the time-ordered product (also called the time-ordered exponential) 
has equivalent representation as a product integral, ensuring its convergence 
in matrix norm. We are then able to use time-ordered products in solving 
matrix stochastic differential equations such as (3.28) in the previous section.

D efin ition  3.3.1. For a given time-dependent n x n  matrix D(t), define the 
time-ordered product T+ as:

T+ (  [ ‘ D(s ) d s ]  = 1 +  [  D(l.1) d t1 + f  f  D(t2) D ( h ) d t1dt2 + ...
\ J o /  Jo Jo Jo

where I  is the n x n  identity matrix.

3.3.1 P roduct Integration
The time-ordered product defined above may be equivalently represented as 
the product integral of the function D : [a, b] —> Cnxn for some interval
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[a, b] E M and where Cnxn denotes the space of n  x n matrices with complex 
entries. Following the results of [6], we may define the product integral 
by a limiting procedure using step-functions analogous to those used in the 
definition of the ordinary integral.

Letting P = {so, s i , s n} be a partition of the interval [a, 6], the corre­
sponding point-value approximant, Dp  of D : [a, 6] —► Cnxn is the (matrix­
valued) step-function taking value D(s i) on [so,Si], D(s2) on (s i ,s 2], con­
tinuing until D(sn) on (sn_ i,sn). For continuous (and therefore uniformly 
continuous) D, we have that the point-value approximant, Dp converges 
uniformly to D since:

where denotes the mesh of the partition P.
For some general step function F?, we let Bk denote the value of B  on 

(sfc_i,Sfc] and A Sk := s* — Sfc-i- (Although A usually denotes the forward 
difference operator, we use notation consistent with Dolland and Friedman, 
[6].) We may define Ep as follows:

which allows us to define the product integral according to the following 
theorem from [6]:

T h eo rem  3.3.2. Let D : [a, 6] —> Cnxn be continous and let {Dn} be any 
sequence of step-functions converging to D. Then the sequence {Ep>n} con­
verges uniformly on [a, 6] to a matrix called the product integral of D over 
[a,x], denoted:

Since for continous D we have a sequence of point-value approximants 
converging to D , we have in the previous notation:

/z(PH olim Dp(x) =  D(x) for x e  [a,b\.

' e (x-so)Bi

g(x-si)B2gAsiBi
if X e  [s0,Si], 
if x e  (s i , s2],

E b (x ) =  <

e (x sn)Bn ^e As2B2e As iB i  if £ E  (sn- l ,  Sn]

X

g D{s)ds

a

b n
A  (sfc)D (sfc)
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Having suitably defined the product integral, we now concentrate on func­
tions D mapping some interval [0, t\ onto the complex-valued matrices. Still 
following the notation of [6], for such D we recursively define a sequence of 
functions {Jn(Q,t)} as follows:

Jo(0,0 =  /

and:

</n(0, t) =  f  D(s) Jn_i(0, s) ds for n > 1.
Jo

In this notation we may then write the time-ordered product from Definition
3.3.1 as:

T+ (  f  D (s )ds )  = f ] M  0,t).
^ 0 J k=0

From the following theorem (proved in [6]), we see that the this time-ordered 
product is equivalent to the product integral of the matrix D over the interval 
[0, £], therefore ensuring the convergence of the series representation in the 
matrix norm.

T heorem  3.3.3. Let D : [0, t] —> Cnxn be continuous. Then:

t oo

0 k=0
the series on the right converging uniformly.

3.3.2 U sing Tim e-O rdered P roducts
Note that in the above definition of the time-ordered product, Definition 
3.3.1, 0 < t\ < t2 < ... < t, so that the arguments of the matrices in 
products of the form D(tn)...D(ti) are in decreasing order. Since in general 
such matrices will not commute, we must consider a similar notion where the 
time arguments are arranged increasingly:

D efin ition  3.3.4. Define the reversed time-ordered product XL as:

T . (  f  D(s) d s )  = I + T  £>(*!) d i ! +  f  f 2 D{tl )D{t2) d t l dt2 + ...
\ J o  /  Jo Jo Jo

67



Then by definition, we have:

T + ( — [  D (s)ds^  = 1 -  f  D ( t i ) d t i+  [  [  D(t2)D(ti)dtidtr< 
\  Jo J Jo Jo Jo

and:

T_ ( -  f  D ( s ) d s ) = I -  f  D{tl ) d t 1+ [  P  D(t1)D(t2) d t 1dt2 -  ...
\  Jo J Jo Jo Jo

Using these definitions and observations we may now find solutions to 
matrix SDEs. We first require a preliminary lemma.

L em m a 3.3.5. The multiplicative matrix inverse of T_(— D(s) ds) is 
r +( /0‘ D (s)ds).

Proof. First, note that:

D ( s ) d s \  =  D(t) + D ( t ) ( j ‘ D(t1) d t l ' \ + . . .

Similarly:

^ ( - { D (s) d , ) = - T _ ( - { D (s) d , ) D W .

Define T_(—) := T_(— f* D(s)), and 7+(+) := T+{Jq D(s) ds). Using the 
matrix product rule for differentiation:

f t T . ( - ) T +(+) = - T 4 - ) D ( t ) T +(+) + T . ( - ) D ( t ) T +(+) 

=  T . ( - ) ( - D ( t )  + D(t))T+(+)
=  0.

Hence the product T_(— f* D(s) ds) T+(f* D(s ) ds) is constant with respect 
to time. Setting t = 0 gives T+(0) =  T_(0) =  /, hence for all t > 0:

T_ j f  D(s) ds^ T+ Q f  D(s) ds^ =  /.

□
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We now use the above defined time-ordered products analogously to ex­
ponentials in solving matrix SDEs using a generalisation of the integrating 
factor method. The solution is then given in terms of time-ordered products.

P ro p o sitio n  3.3.6. Given the matrix stochastic differential equation:

d X t = D(t)X t d t+  d B(t),  

the solution in terms of time-ordered products is:

X t = T+ ( J  D(s)ds

Proof. Premultiply the above SDE by T_(— / 0* D(s) ds) to give (using the 
above shorthand):

T - ( - )  d X t -  T - ( —)D (t )Xt = T(- )  dB(t).

Again using that ) =  —T_(—)D(£), and the product rule for matrix
differentiation, this becomes:

d (T _ (-)X t) =  T _ ( - )d £ (0 ,

or:

T _ ( - ) X t = / V ( - ) d B ( s ) .
./o

To find the solution X t we must premultiply by the inverse of T_(—), 
giving:

T _  - D(s) ds ) dB{u)

X t = ( t _  { - f 0 D ( s ] d s ) )  J ! t ~ ( _ i " D ( s ) d s ) d B ( u ) '

Finally we may invert the time-ordered product using the result from Lemma 
(3.3.5), giving the solution:



3.4 The First Order Correction to the Parabolic 
Orbit

Consider equation (3.28) from the previous section. We are now able to 
calculate the first order term in the asymptotic expansion of its solution in 
terms of time-ordered products. From Proposition 3.3.6, the first order term 
is given by:

X l  = T + ( jT /? ( s ) d s )  j f  71 ( - £ p ( s )  d s )  dB(u),  (3.30)

where the matrix (3(t) is given above by (3.29). Also, from (3.2-7),
dX(° =  b(Xf)dt .  Thus the solution to (3.28) correct to first order is given
by:

Xt = f o b(X’)ds+eT+ ( J  /J (s )d s) J ^ T .  ( -  J  0{s )d s )  dB ( u )+ 0 { t2).

(3.31)
We may now apply this method to finding the first order correction to the 

semiclassical parabolic Nelson diffusion from the previous chapter, defined by 
equations (2.22) and (2.24). Given calculations from Section 2.3, the matrix 
of derivatives of the drift b — (bx, by) is:

(  dbx(x,y) dbx(x) y) \  
dx dy

dby(x,y) dby(x, y)
\ dx

/  — (r +  2x)(r — x) y(2x — r) \

=  sgn(y)

dy /

2r3y/r — x 
y{2x -  r) 

\  2 r 3 yjr — x

2 r3y/r — x 
(r +  2 x)(r — x)

2r 3v/r  — x I

where we work on domains avoiding its singularity at the origin and jump 
discontinuity at y = 0 due to the signum function.

Given the zeroth order terms xq and yo defined by equations (2.3.3) and
(2.3.3) respectively, for the parabolic diffusion:

P(t) = sgn(yo)

(  -{rQ + 2x0)(rQ- x 0) y0(2x0 -  r0) \
2r$y/r0 -  x Q 
2/o(2x0 -  r 0)

2r§>/ro -  Xq 
(r0 +  2x0)(r0 -  x 0)

\ 2tq\ / tq -  x 0 2r%y/r0 -  x 0

Hence the first order correction to the parabolic diffusion is:
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X lt = T + ^ J ‘ p{s)ds' \ j  T _ ( - £ 0 ( s ) d s \  d B(u), 

in terms of time-ordered products of the matrix jd(t) defined in Section 3.3.

3.4.1 T he Radial Equation for the Parabolic Orbit
An alternative approach to finding the first order correction to the parabolic 
Nelson diffusion is by firstly finding a stochastic differential equation govern­
ing the time evolution of the polar radius of the parabolic orbit,
(r(t) =  \ / x 2(t) -f y2(t) in Cartesian coordinates) as in Section 2.2.1. Given 
equations (2.22) and (2.24), the parabolic Nelson diffusion 
X(t)  = (x(t),y(t)) may be completely defined by:

dx(t) =  bx( X (£)) dt + e dBx(t),

and:

dy(t) = by(X(t)) dt +  e dBy(t).

Since r = r ( x ,y ), Ito’s formula gives:

, , N dr . dr , 9A r .d r ( 0  =  _ d .T + _ d ! / + e _ d (.

After evaluating derivatives of r  and substituting in the above expressions 
for dx(t) and dy(t), we have:

+  e2 j_ j  df { ,x d B x(t) + y d B y(t)
2 r )  r

A simple calculation using (2.24) shows that:

xbx +  yby =  ~ ^ r ~  'Tsgn(y).

Therefore the radial equation becomes:

dK 0  =  ^ \ / f s in ( 0 sgn^  +  e2^  dt + edBr(t),

where Br(t) is again a one-dimensional Brownian motion.
Firstly, it is important to note that:

dx(t) +  dr(t) = — dt + e( d Bx(t) +  d Br(t)).
2 r

71

dr(i) =
xbx +  yby



Then defining a new variable, C(t) =  x(t) +  r(t):

VC =  ( -  +  1, -r r
since:

dr x dr y
—  = -  and —  =  - .
dx r dy r

Conveniently for the two-dimensional Brownian motion B(t) = (Bx(t)} By(t)), 
V C ■ B(t) =  Bx(t) +  Br(t), so setting Bc(t) = VC-  B(t) for V C  a unit vector 
in the direction of VC, we have the following SDE for C(t):

f o e  e2
dC(t) = e J — dBc (t) + — dt.

V r Ir
Expanding C(t) as an asymptotic series in e as follows:

C(t) =  C,° +  tC] +  e2Cf  +  ... 

we see that the zeroth order term Ct° is constant, and:

for rf the zeroth order (classical) value of r(t). The above equation implies:

dBc (s)
ro

Therefore correct to first order in e:

Cl =  s /2Cf  f
J 0

C{t) = Cf + e s /2C°W c ( J ‘ ^  +  o(e2),

for a time-changed Brownian motion W c , which is possible due to a result 
from McKean [23]:

T heo rem  3.4.1. Consider a stochastic integral based upon a non-anticipating 
Brownian functional e:

I ( t ) =  f  edB(t)  with r(t) := f  e2 dt < oo (t > 0).
Jo Jo

Then I(t) =  B2(r(^)) for a new Brownian motion B2.
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Analogously to the above, we may define D(t) = r(t) — x(t), and attem pt 
to find a corresponding SDE. Correct to first order in e:

dD(t) =  - — —r—-sgn(y) dt +  e(dBr(t) -  dBx(t)).

Noting that :

V D = ( ^ - 1’r) With ™  = \ / t '
and then that V D • B(t) — Br(t) — Bx(t), we have:

d D(t) = -  2- - — Xsgn (y) dt +  € \ j ^ - d B D(i), 
r V r

where Bo{t) = V D  ■ B ( t ), and as above V D  is a unit vector parallel to VD.
Finding the first order corrections to both C(t) and D(t) would allow us 

to calculate explictly the first order corrections to the Cartesian coordinates 
of the parabolic diffusion. However we may obtain such corrections via a 
more elegant method by using the Levi-Civita transformation, as detailed in 
the next chapter.
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Chapter 4 

The Levi-Civita Transformation 
for the Parabolic Orbit

We return to the parabolic Nelson diffusion which was obtained in Chapter 
2 by taking the limit of the eccentricity parameter in the Nelson diffusion for 
the atomic elliptic state from [9]:

As usual, B(t) = (Bx(t), By(t)) is a two-dimensional Brownian motion and 
the drift b is given by:

From Chapter 2, we have seen that in the absence of the noise term, the 
above Nelson drift determines a parabolic trajectory. After some analysis of 
the Nelson diffusion, we follow the approach of Wentzell and Friedlin [13], 
using asymptotic expansions in e to calculate the first order corrections by ap­
plying the Levi-Civita transformation detailed in Chapter 1 to the stochastic 
parabolic orbit.

By letting the coordinates of the parabolic Nelson diffusion (x(t), y(t)) be 
the respective real and imaginary parts of a complex variable 
z(t) = x(t) +  iy(t), we may make the Levi-Civita transformation to new 
coordinates (u(t),v(t)) where w(t) = u(t) + iv(t) and z(t) = w2(t). First 
note that:

d X(t)  = b(X(t))dt  + edB(t). (4.1)

• J r - x  ysgn(y)
(4.2)

w = u+iv  = (x + iy )1//2 =  (re16)1̂ 2 -= r ^ e * 2 = r 1//2 +  i sin

Hence in polar coordinates we have:
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Since w = z 1!2 is a regular function of z  with a simple branch point at the
origin, the Cauchy-Riemann equations imply that A u = A v  = 0. Applying
Ito’s formula to equation (4.1) gives:

du(X(t))  = Vu • b(X(t))  dt +  eVu  • dfl(f), (4.4)

and similarly for v:

dv{X{t)) = Vu • b(X(t)) dt +  eVu • dB(t). (4.5)

Recall for standard polar coordinates we have:

dr x dr y d9 y d6 x
dx  r  ’ dy r  ’ dx r2 & dy r 2 ’

so given (4.3), we may calculate the gradient of u as follows:

_  1 x ( 6 \  r 1/ y f 6 \  1 y ( 9 \  r / x .
Vu =  „ , -  cos I -  I H— -— - sin -  , -  cos I -  I ----- -— - sin -2 r1/2 r \ 2 / 2 r2 \ 2 ) 2 r1/2 r \ 2 / 2 r2 V 2

1
x  cos -  +  y sin -  , y cos -  — x  sin

2 r 3 / 2  V  \ 2 J  V2 /  V 2 /  V 2

c o s f f U n f f l Y  (4.2rV2 y V 2 /  ’ V 2

Similarly for v :

= 2^72 ( - sin ( | )  -cos ( f ) )  > (4-?)
also noting that:

In polar coordinates, the drift of the parabolic Nelson diffusion (4.2) is 
given by:

b = ( b x,by) =  f  y^sgnQ /) sin , -y ^ s g n (y )  cos J .

It follows that:
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Vu -6= w  ( sin ( £ ) ' — (£>)■ ( cos (£ ) ■sin ( £ ) ) = °-
Substituting the above in the SDE for u, (4.4) gives:

where Bu(t) = V u  • B ( t ), is a one-dimensional Brownian motion and Vit is 
a unit vector in the direction of Vu. For a time-changed Brownian motion 
Wu, this is equivalent to:

due to the result from McKean [23] stated previously (Theorem 3.4.1).
We may obtain a similar SDE for the coordinate v by first noting that:

V v . b = _ 5 H r tO ) .
y/2 r(t)

Substituting this into the above SDE for v, (4.5), yields:

=  ~ ^ dt + 2 ^  dBv<'t ') '

where using similar conventions as for u, Bv(t) = Vu • B(t). Again, using 
Theorem 3.4.1, for a time-changed Brownian motion Wv:

= dt + L dWy(  f  . (4.9)
V2r(t) 2 \ J 0 r(s)J  y 1

From Theorem 2.2.3, we know that the two-dimensional parabolic Nelson 
diffusion does not reach its singular point at the origin in finite time. Hence 
the time change from physical time t to fictitious time r:

T{t) = J ^ 7 )  (410)
is well-defined almost surely. From equations (4.8) and (4.9), in terms of the 
time variable r, we now have:

dii(r) =  ^ dWu(r) and dv(r) =  — d r +  ^ dWv(t ), (4.11)
2 yj 2 2
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where Wu and Wv are independent one-dimensional Brownian motions.
The above stochastic differential equations (4.11) define the Levi-Civita 

transform of the parabolic Nelson diffusion process. Although the drift of 
the equation for v (t ) rapidly oscillates due to the sgn(y) term, it is bounded 
and hence both equations have pathwise unique solutions as a result of the 
random time change.

In what follows we shall assume that y(0) < 0 (the initial y coordinate of 
the diffusion) and let f  =  inf{ 5  > 0 : y(s) > 0}. Clearly for all times t < f, 
y(t) < 0. Since y(t) has a definite sign for this time interval, we may simplify 
our SDE for v(r):

M t ) =  ^ dWv{r). (4.12)

4.1 The Quantum Correction to the Levi-Civita  
Transformation

We now look at the quantum corrections to the u and v coordinates by 
first calculating the correction to fictitious time r . We begin by writing the 
variables as asymptotic series in increasing powers of e ,  u = uo+eui+e2u2-h.., 
v = Vq +  evi +  e2v2 +  ... and r  =  r0 +  et\ +  e2r2 +  .... Here, the values w0, 
vq and To correspond to classical values of each variable. The cancellation 
of the drift terms in the SDE for u in the previous section implies that the 
classical value u0 must be constant, which we return to later.

We define the quantum correction to u, 5u := eui +  e2u2 +  ..., the difference 
between the classical and quantum values. Similarly, the quantum corrections 
to v and r  will be denoted 5v and 5r respectively.

Integrating the SDEs for u(t ) and u(r), (4.11) and (4.12), gives:

u(t ) = u(0) +  ^ W u(t ) and v(r) = u(0) +  -^= +  |fW (r) , (4.13)

for deterministic values of w(0) and v(0). The quantum corrections are then 
given by:

r
5u(t ) = |w « ( t )  and S v ( t ) =  +  | w w(r),

where we allow 8u and Sv both to be 0(e) to obtain the first order correction 
to r.
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Given that (u + iv )2 =  x + iy , we have x = u2 — v2 and y = 2uv. A simple 
calculation then gives for the polar radius r = u2 -fiu2. Substituting this into 
the above definition of r  (4.10):

/ \ ds - i  / \ dsT(t)=I m+wr WIth To{t)=L mrwr
The quantum correction to r  is then given by:

6 T  T  T °  L  ( u 2 ( s ) +  u 2 ( s )  u § ( s )  +  v g ( s ) )  d 5 '

Correct to first order in e:

[ l uq5u +  v 08v
OT = — 2 I --------2-------ds,./o r0

<5r being 0(e). The quantum correction to r , correct to first order in e is 
then given by:

5t  = ~ 2 L ^ I  + V o { ^  + \ W v(r))) ds-
Equivalently:

• \ / 2 v 0 u qW u (t ) +  vqW v(t )
o r  H ^— d r  =  - e --------------- 5---------,*o ro

where 8r denotes differentiation with respect to the physical time t. This 
equation may be solved to find the quantum correction 8r by first multiplying 
by the integrating factor:

exp(/^ T ds)'
Finally correct to first order in e:



where the Brownian motions Wu and Wv have been evaluated at the classical 
value r0, the value of which may be found as follows:

\ f 1 ds f 1 r0(s)9(s) r o(s)0(s) 1
r°W = 2 a ds = /  r T I ro(-6)de’Jo ro(s) Jo r0(s)9(s) Jo L ^  Je{o)

(4.15)
where the penultimate equality is due to the fact that for a classical system, 
the angular momentum Tq9 — L, a constant. Given that the underlying 
classical system is a parabolic orbit, as discussed in Chapter 2:

— =  1 +  cos 9 and I =  L2,
ro

for semi-latus rectum I, recalling that we work in suitable units allowing the 
force constant fi to equal 1. Prom the above equations:

L  =  2  cos2 ( D - . n . - L  sec2 ( 0 ,  (4.16)

which may be substituted into (4.15) to give:

roW = I J m sec2 G) de = L (tan (? ) "tan (? )) ' (417)
Further computation will require us to calculate the values of u 0 and v q .  

After the Levi-Civita transform, given equations (4.3), we have that:

1/2 ( 9u0 = rQ' cos I -

Again using the relations for the classical parabolic orbit (4.16):

L2 1 L2
— =  1 +  cos 9 => —
rQ 2 \ 2

Therefore:

L

a constant. Given (4.13), note that the initial condition u(0) =  uq. Similarly:

Vo = T2 tanG ) -
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Since v0 = v(0) +  ^  from (4.13), we have:

L ( mu(0) =  —j=. tan '
V2 \  2

using the expression for r0, (4.17).
We now evaluate the quantum correction dr by first evaluating the inte­

grating factor term:

exp -
Jo

V2vo{s) 
To (s )

ds =  exp

Therefore:

- I

1 y/2v0(s)0(s)
L

ds

I  a / 2  \
=  exp — — / vq(9 )  d 6

\  L Je{o) /

exp >/2vo (s) 
ro(s)

ds 1 =  exp —
■*(0

r0(O)
tan I -  I d0

cos ( )̂
cos

A similar calculation shows that:

^ rt y/2v0(s)
exp

'o rg(s)
ds —

cos ( m

COS (^ )
Given the above calculations, we may now write the quantum correction 

to r, equation (4.14), as:

Sr(i) =  — e
cos (^ )
COS ( M )

'O(t)

’ 6 ( 0 )
m  d<9,

with:

80



Recalling that the classical value uq — ^=, a constant:

s r { t ) = ( 

M(*i)

(^ )
COS (I)

c°s (f)

We have u(t) correct to first order in e as follows:

Wu ( tan ( -  J -  tan

t a n ^tan ( -  J Wv I tan I -
V 2 J d 9.

tan (?) (4.18)

by:
Given the first order correction to t , v(t) correct to first order is given

tan ( M )  +  e^ Wv ( ta n  ( M )  _  tan ( M  

j r  f m  (  cos (O f )  2 /  /

cos (I) 

+  tan ( - ) d »  (1.19)

To simplify subsequent calculation, we will assume that 0(0) ~  0. so that:



and:

d0.

Setting a new variable T  = tan ( |) ,  the classical value Vo becomes 
and we have a simple expression for the quantum correction to u:

a remarkable simplication occurs since for the quantum correction to v:

Since Wu and Wv are two independent one-dimensional Brownian mo­
tions, 6u and 5v are obviously Gaussian by linearity, and have zero mean. 
We are now able to calculate the joint distribution of 6u and 8v, which in 
turn implies to joint distribution of 8x and dy, the quantum corrections to 
the original Cartesian coordinates of the diffusion process.

Note that for 5u and Sv as given above by (4.20) and (4.21):

Thus the covariance matrix of the random variables 5u and 5v is given by:

6u(T) =  e ^ - W u(T). (4.20)

Observing that:

6V(T) = t —̂ - W v(T) — tV~Lcos2 ( - ; p )  f  (Wu(s) + sWv(s)) ds

E(5u) =  E(Sv) = 0.

(4.22)

where:
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E(5u2) =  i± L ^ ( w l ( T ) )  = e- ^ T .

Similarly, due to independence of the Brownian motions Wu and Wv:

E{Su5v) =  - ^ C 2 [  E{Wu(T)Wu{s)) As =  - ^ C 2 f  sAs,
* Jo * Jo

using the notation C = cos . We will similarly denote sin ^  by S in the 
following:

E(Su6v) = ~ ^ C 2T 2 =  ~ ^ S 2. (4.23)

Finally:

E ( ^ 2) =  ^ E ( W ; 2(T)) -  t 2LC 2 f  sE(Wv{T)Wv{s)) As

pT  r T
'2 r /̂ »4+ e'LC4 / /  E(Wu(s)Wu(a)) + saE(Wv(s)^(<7))d<7ds.

J o  J o

Rewriting the third term as follows:

E ( ^ 2) =  (W 2(T)) -  t 2LC2 [  sE(VK„(T) VK„(s)) ds
4 Jo

+ 2c2LC4 f  [  E{Wu{s)Wu{cr)) + saE(Wxl{s)Wv{a))AaAs,  
Jo Jo

allows us to evaluate the expectation terms since s > a. After integration, 
we have:

E(<5u2) =  t 2L  ---------- + --------- +
2, _  2r i 'T  C 2T 3 , C4T 3 : 2C4T 5\

l 5 ~ )
, T  T S 2 C S 3 2 T S4\

-  T  3  ̂ 3 ' 15~ /  ’
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4.2 The Quantum Correction to the C arte­
sian Coordinates

As with the (u,v) coordinates, we define for the Cartesian coordinates, 
x = xo +  e x i  +  e2x 2 +  ... and y =  yo +  ^V\ +  e2y2 +  ••• Recalling that under 
the Levi-Civita transformation, w =  u +  iv, where w2 = z = x  +  iy:

z = {u -f zu)2 =  (u2 — v2) +  2uvi,

so that:

.r =  u 2 — u2 and y =  2 uv.

Then:

£ =  («o +  ^ ) 2 ~ (vo +  Sv)2 = Uq +  Vq +  2uq8u — 2v0Sv,
where the latter equality is correct to first order in e, given the first order 
corrections Su and Sv. Similarly:

y  =  2u0Vo +  2u0Sv +  2 v q 6 u ,

finally giving the first order quantum corrections to x  and y as the following 
zero mean Gaussian random variables:

dx =  2 u q 5 u  — 2 vq5 v  and Sy =  2 uqS v  +  2 vqSu . (4.24)

Therefore, given the joint distribution of Su and Sv, we may compute the 
joint distribution of Sx and Sy as follows:

E (Sx2) =  4('UqE(5u2) -|- VqE>(Sv2) — 2 u q V q E ( 5 u  Sv)), (4.25)

E (Sy2) = 4(uq E(6u2) +  Uq E(£u2) +  2uoVo E (Su Sv)), (4.26)

E (Sx Sy) =  4(u0vq E(Su2) — uov0 E(£u2) +  (u§ — Vq) E(£u Sv)), (4.27)

since u0 and vq  are deterministic, and:

L LT
«o =  - ^  and v o = j = .

After substituting the quantum corrections to the (u , v) coordinates given 
by equations (4.20) and (4.21) into the above equations (4.24), we may state 
the following theorem:
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T h eo rem  4.2.1. The first order quantum corrections to the Cartesian co­
ordinates of the semiclassical parabolic orbit defined by equations (2.22) and 
(2.24) are zero mean Gaussian random variables given by:

tz/2 /  oT  f T \
Sx(t) =  hW U(T) -  T W V(T) + J  (W„(s) +  sWv(s)) d sj ,

and:
L3/2 /  2 f T \

6y(t) = e-j=r \ W V(T) + T W U(T) -  J  (Wu(s) + sWv(s)) d sj .

where T  =  tan ^  for the polar angle 6, L is the angular momentum con­
stant of the corresponding classical parabolic orbit, and Wu and Wv are two 
independent one-dimensional Brownian motions.

Again the fact that:

E(<5x) =  E(£y) == 0

is guaranteed by the linear dependence of Sx and Sy on the Wiener processes 
Wu and Wv. We may then find the joint distribution of Sx and Sy in terms 
of its covariance matrix.

T h eo rem  4.2.2. The covariance matrix of the quantum corrections Sx and 
Sy, as stated in Theorem 4-2.1 is given by:

E (Sx2) E(6x6y) \

E (SxSy) E (Sy2) / ’
Cov(Sx,Sy) r  ̂ 2>

with:

and:

E(<5x2) =  e2L3 ( T S 2 + ! L  + ? I f l ( S i - T 2) + ,

E ( ^ 2) =  £2L3 ( - T S 2 + T .  + ? f ( C S  - T )  + ,

E ( ^ ^ )  =  e2L 3 ( 5 ( T 2 - l )  +  ^ ( T - 5 2) +  ^ ) .

where S, C , and T  denote the respective sine, cosine and tangent functions 
Of I-

The above explicit forms of E(&r2), E (Sy2) and E (SxSy) have been found 
by substituting the entries of the covariance matrix of (Su, Sv) into the above 
equations (4.25) to (4.27).
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4.3 Quantum Areal Velocity
Given the above equations for du(t) and dv(t), we may now begin to calcu­
late the quantum correction to the areal velocity, which is equal to a constant, 
A q in the classical setting, discussed in Chapter 1. For Cartesian coordinates 
(z,y):

\ x d y - y d x \  1 ^ ^   ̂
dA0 = ------- -------- =  -%{zdz)

for z =  x +  iy. Again, setting w2 =  2 , implying z — w2 and dz =  2wdw. 
Therefore:

dAo — ^-^s(w22w dw) = |iu|2S(iDdiu),

for a classical system.
We now turn our attention to the areal velocity for the stochastic me­

chanical system defined under the above Levi-Civita transformation. For
w = u + iv:

w2 =  (u2 — v2) +  2 uvi =  2 ,

so that:

dz dz
—  = 2 u + 2 vi and —  =  —2v +  2 ui.
ou ov

From Ito’s formula, we obtain:

dz dz I f  d u d z d z
dz — —  du -(- —  dv +  -  7—  du du +  2  du dv -f 7- — dv dv

du dv 2 \ d u z dudv dvz

From the above expressions for u(t) and v(t), equations (4.18) and (4.19), 
observe tha t dudv = 0  and dudu  and dvdv  are both of order e2, and so:

dz = 2u du — 2v dw +  (2 u du +  2v du)i — 2(u +  iv)( du +  i dv) =  2 w dw. 

Hence for quantum areal velocity A q \

d Aq =  |iu|2 S(iDdiu), (4.28)

as for the classical case, with no additional terms.
We may now find a stochastic differential equation for A q to first order 

in t. Again we set:
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u(t) =  uo(t) +  Su(t) and v(t) =  v0(t) +  Sv(t),

so that:

du(t) = (uo(t) -f Su(t)) d t and dv(t) = (v0(t) +  Sv(t)) d t.

Given (4.28) from above:

d A q  =  (u2 +  v2)(u dv — v d u ), 

so omitting terms of order e2,

dA q  =  (lip -I- Vq +  2 u q 5 u  +  2 vqSv ) (u qVq — vqUq +  u qS v — vqS u  +  S uvq — Sv u q ) d t ,

where we formally write d (Su) = Sudt  etc.
Observing that dAo = (itjj +  Vq) ( u q v0 — ^oiio) d t ,  then:

dAn =  dA0 ro(u0Sv — vq Su)  dt-\-ro(Suvo — Smio)  dt +  ^ u°^u ~t.— 2— -dy40.
ro

Finally since u0 is constant, u0 = 0, and d /\0 =  f  d t for the classical angular 
momentum L:

d(JA) := d ( A q  — /10) =  ro (Suvo  +  uqSv  — vq Su)  d t  H (uqSu  +  vq Sv )  d t ,
ro

or equivalently:

d(5i4) =  roUo d (Sv) — vqVq d(5it) +  roSud(vo) +  — {uoSu +  v0Sv) dt. (4.29)
ro

Recalling from the above Section (4.1):

L , L f 6 ( t ) \  LT
“ „ =  7 I  and Vo = T 2 t a n \ — )  = T 2 '

since the most convenient time variable is T  = tan Hence:

d^0 =  —?= dT. 
v 2
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Given equation (4.20) from above:

5u = t f L Wu{T),

and from equation (4.21):

5 v  =  t ^ Y W v ( T )  ~ ^  J q (VFu(s) + sVFw(5))ds,

where we have replaced cos2 by given that 1 +  tan2^  = sec2'0.
We may now calculate d(5?/) and d(<Su) as follows:

A(&u) =  J ± W * { A T )

and:

d (fo) =  e f f - W v ( d T )  -  e j ^ ( W u( T ) + T W v(T ) )d T

+ ( 7  Wu(s) +  sWv(s) d s )  AT.

As discussed in Chapter 1, for the classical polar radius r 0:

_ I 
T° 1 + cos 9 ’

where the semilatus rectum may be written I = L2 since we have allowed the 
force constant fi = 1 throughout. Hence using the identity 
cos 9 — 2 cos2 ( | )  — 1:

ro = y sec2( 0  = y (1+r2) (43°)
in terms of T  = tan ( |) .

We may now use the above expressions to evaluate the differential equa­
tion for 6A, (4.29). For the first term:

r0u0 d(fo) =  rou o e f f w v{dT) -  r0u0t ^ + - ( W u{T) +  T W V{T)) AT
I  1 +  1

+  r 0 u 0 e y / L ^  _ j ^ 2)2 (^ J Q ( W u ( s )  +  s V F ^ s ) )  d s ^  d T .



Then observing that:

L3
roU° - ^ { l + T 2 ) '

we have:

L 7 /2  r 7/2
r 0n0d(fo) =  e - ^ = ( l  + T 2)Wv( d T ) - e —^ ( W u{T) + T W v(T ))d T

L7/2T
+  e-V 2 ( l  +  T2)

The second and third terms from (4.29) are given by:

LV2T

(Wu(s) + sWv(s ) )d s \  d r . (4.31)

- r 0n0d((5n) =  - e ^ - ^ ( l  +  r 2)Wu(d r ) ,  (4.32)
4y2

and:

L 7/ 2

rQSu<iv(1 = t ^ = ( \  + T 2)WJT)d .T .  (4.33)
4y2

To evaluate the final terms of (4.29), first note that:

dT 0 2 { B\ L 2
-TT =  ^ sec U  = i i 3 ( 1 + T ). (434 )dt 2 V 27 2r§

given that due to classical angular momentum conservation we have 6 = 4 -r0
Then given the above expression for r 0 in terms of T, (4.30):

so that (4.34) becomes:

Since:

and:

r o =  “j“ (l +  T 2)2,

/ 3
d t =  —  (l +  T 2)dT.

z

— d t = L2 dT, 
r0
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L 3/ 2 TjT ( J J  J T  r T
u06U+v06v =  t - W u(T)+t- j=  I Y W . c n  -  Y P p  J  (W.(») +  s w v(s)) ds

the final term in (4.29) becomes:

r 7/2 / 1 t  T  f T \
e~7T \ 2  Wu{T) +  2 Wv(T) ~  l T r *  Jo (W«(*) +  *W ,(«))dsJ dT. (4.35)

Adding (4.31), (4.32), (4.33) and (4.35), due to cancellation in the the first 
and final terms, the differential equation (4.29) for the quantum correction 
to the areal velocity becomes:

[ 7 / 2

d(M ) =  e— ^=(1 + T 2)(WU( T ) dX +  Wv(dT) -  T W u(dT)).
4\/2

We are now able to state the following theorem:

T h eo rem  4.3.1. The first order quantum correction to the areal velocity of 
the semiclassical parabolic orbit corresponding to the Nelson diffusion defined 
by equations (2.22) and (2.24), is given by the zero mean Gaussian random 
variable:

r 7/2 r T
5A(t) = e— -j= /  (1 +  s )(iy„(s) ds +  VV„( ds) — sWu( ds)) (4.36) 

4y2  Jo

where T  = tan for the polar angle 9, L is the angular momentum
constant of the corresponding classical parabolic orbit, and Wu and Wv are 
two independent one-dimensional Brownian motions.

The linear dependence of 5A on the Brownian motions Wu and Wv ensure 
its Gaussianity and hence it has the zero mean property. All that remains is 
to calculate its variance.

We begin by writing:

M (i) =  e ^ ( r I +  r 2 - r 3),

with:

r 1 =  f  { i +  s2) w u(s)ds,
Jo
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and stochastic integrals:

r2 =  [ (1 + s2) dW ^s) and r3 = [  s (l +  s2)dH ^(s).
Jo Jo

Due to the zero mean property of 5A and independence of the Brownian 
motions Wu and Wv, the variance is given by:

var(M(f)) =  E(M2) = e2^  (E(r2) + E(r2) + E(r2) -  2E(r1r3) ) . (4.37)

Firstly:

E(r?) =  f  [  ( I +  s2){l + a2)V.(Wu{s)Wu(o)) do As 
Jo Jo

= 2 f  f  (1 +  s2)(u +  u3) du ds 
Jo Jo

rpO 3  rp5 rp7

"3" +  To" +  14'
(4.38)

Both E(T2) and E(Tg) may be evaluated using the fundamental Ito isometry 
(Chapter 1) as follows:

E ( r2) =  E ^ ( J o (l +  s2)d w ,(s )  

and:

f T , 2n2 , ^  2T 3 T 5
I  0  + s2)2ds = T  + —  +  _ ,

(4.39)

E(r2) = E s ( l  +  s 2) dW„(s)) j  =  j T  s2( l + s 2)2 ds =  T̂ +̂ +T[
(4.40)

Evaluating E (P ir3) requires us to use Theorem 14.4 from Simon [30], which 
implies that for suitably integrable deterministic functions /  and g:

E (  [  / W d 5 ( a )  /  g(s )B(s)ds]  = f f  f(<?)g(s) duds.
\ J 0 Jo J Jo Jo

Therefore:
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E ( r i r 3) = I  [  cr(l +  <r2)(l +  s2) dads,
Jo Jo

T 3 3 T 5 T 7
~  T  +  lo ~  +  28' (4'41)

Combining equations (4.37), (4.38), (4.39), (4.40), and (4.41), we may
state the following theorem:

T h eo rem  4.3.2. The variance of the first order quantum correction to the 
areal velocity of the semiclassical parabolic orbit given by Theorem is
given by:

j 7 /  T 7'
va.i(SA(t)) =  e—  ( t  +  T3 H -  I- —

where T  = tan for the polar angle 9, and L is the angular momentum 
constant of the corresponding classical parabolic orbit.

Note that all of the above Theorems 4.2.1, 4.3.1 and 4.3.2 depend on the 
finiteness of the tangent function. The variable T  = ta n ( |)  becomes infinite 
for 9 = 7r. However our earlier restriction to the lower half plane ensures
9 ^  7T for t > 0, and therefore T  remains finite.
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A ppendix A 

Sim ulating Diffusion Processes

We have simulated the diffusion processes from Chapter 2 using Mathematica 
by first simulating their driving Brownian motions, and then using an Euler 
scheme [22]. For example, we simulate the parabolic diffusion by first defining 
the drift field as follows, with bx ~  bx and by rsj by.

bx[x_, y_] := Sign[y] Sqrt [Sqrt [x~2 + y~2] - x]/Sqrt[x~2 + y~2]
by[x_, y_] := -y Sign[y]/(Sqrt[x~2 + y~2] Sqrt[Sqrt[x~2 + y~2] - x])

We then use the following Euler scheme with step length 0.05 to generate a 
table of the coordinates X and Y of a sample path of the diffusion at each 
discrete time between 0 and T.

SeedRandom[123456]
X[0] = -1; Y[0] = 1; h = 0.005; T = 30; k = T/h; s = 0.1;
Do [
Zl[i] = RandomReal[NormalDistribution[0, 1]];
Z2[i] = RandomReal[NormalDistribution[0, 1]];
X[i + 1] = X [i] + bx[X[i], Y [i] ] h + sSqrt [h] Z1 [i] ;
Y[i + 1] = Y[i] + by[X[i], Y[i]] h + sSqrt [h] Z2 [i] ;
{i,0,k>]
PD = Table [{X[i], Y[i]>, {i, 0, k>]

The command ListLinePlot then plots the coordinates, interpolating inter­
mediate times linearly.

Sample paths of the driving Brownian motions of the parabolic diffusion 
may also be generated by the following, where Bx ~  W1 and By ~  W2.

W1 [0]=0; W2 [0]=0
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Figure A.l: A simulated Brownian motion.

Do [
W1 [i+1] =W1 [i] + Sqrt [h] Z1 [i] ;
W2[i+l]=W2[i] + Sqrt [h] Z2 [i]  ;
{ i ,0 ,k}]
BM=Table[{i, W 1 [i]} ,{ i,0 ,k } ]

Again the command L is tL in eP lo t will generate a simulation of W1 (shown 
by Figure A .l) by linearly interpolating between the numerical values tabu­
lated by the above.
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