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Summary

Quantifying and monitoring vegetation distribution and change are 
fundamental to carbon accounting and requirements of national forest inventories. 
This research explores the potential of the Geoscience Laser Altimeter System 
(GLAS), launched in 2003 by NASA as the first global Earth surface satellite LiDAR 
mission. The project study site is the Forest of Dean, Gloucestershire, UK, a highly 
mixed, temperate forest with varied topography.

Methods are developed to distinguish the regions within waveforms returned 
from vegetation and ground. When compared with field measurements, estimation of 
canopy height gives a correlation of R2=0.92; RMSE=2.81m.

Waveform indices are determined and evaluated with respect to their 
potential to estimate biophysical parameters. Heights of cumulative energy 
percentiles within the waveform prove to be significant estimators. When compared 
to calculations from independent yield models, results show correlations with stand- 
level top height (R2=0.76; RMSE 3.9m) and stemwood volume (mixed composition 
stands dominated by broadleaves: R2=0.47, RMSE=75.6m3/ha; conifers: R2=0.66, 
RMSE=82.5m3/ha). Uncertainty analysis is undertaken of both waveform and yield 
model estimates.

Canopy cover is estimated for the area beneath GLAS waveforms, corrected 
for differences in reflectance for ground and canopy surfaces. These are assessed 
against airborne LiDAR estimates, validated using hemispherical photography. The 
method produces results with R2=0.63; RMSE=11% for stands with greatest 
coverage by broadleaves and R2=0.41; RMSE 16% for conifer-dominated stands.

Small footprint airborne LiDAR (AL) is widely accepted to offer valuable 
data regarding forest parameters. An evaluation of AL and GLAS results 
demonstrate that the broad GLAS footprint dimensions allow similar estimation of 
stand-level parameters (e.g. AL/yield model Top Height: R2=0.73, RMSE=4.5m). 
Direct comparison of GLAS with AL shows ground surface identification with mean 
difference of 0.32m and that elevation profiles correspond well (98th percentiles 
R2=0.76, RMSE=3.4m). Finally, prospects for use of LiDAR in carbon accounting, 
assimilation within models and for forestry applications are discussed.
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Chapter 1. Introduction and Research 
Context

Remote sensing technologies are offering increasingly more advanced 

opportunities to inform and support the environmental sciences and to increase our 

understanding of the world in which we live. This expanding awareness and 

knowledge therefore creates an exciting environment in which to explore 

possibilities offered by a pioneering satellite sensor which provides a third dimension 

to remote sensing data that had previously not been possible on such scales.

1.1 Research Environment

This project contributes to current research needs through exploring the 

potential of an innovative means of reducing uncertainty in vegetation distribution. 

The work helps to address research questions identified by the Natural Environment 

Research Council within its Climate Change priority of improving knowledge of the 

properties of forest carbon sinks.

The project also meets research interests in the field of operational forestry, in 

particular Forest Research, the research agency of the Forestry Commission. Among 

its many duties, Forest Research is responsible for conducting the British National 

Forest Inventory, for informing silviculture practices and improving understanding of



C h a p t e r  1. I n t r o d u c t i o n  a n d  R e s e a r c h  C o n t e x t

underlying production processes. This research has involved a close collaboration 

with Forest Research in order to ensure the practical relevance of the work.

In this Chapter, an outline of the need for knowledge regarding vegetation 

biophysical parameter distribution is discussed in relation to improving our 

understanding of the Earth’s processes and current conditions. Ways in which remote 

sensing, and in particular LiDAR, may address these are then presented. This 

provides the motivation for the aims and objectives of this research and the section 

concludes with a description of the structure of the thesis in order to meet these 

objectives.

1.2 Scientific Context to Research

The complex characteristics of the Earth's land surface result in great 

variability in elevation, slope, roughness, reflectance, vegetation height and 

vegetation structure, often over small spatial scales. These factors are significant in a 

broad range of Earth science disciplines and are the products of lithospheric, 

cryospheric, ecological and atmospheric processes whose combined effects have 

generated and continue to modify the Earth's ecosystems observed today. 

Identification and characterisation of these landscape parameters are necessary to 

assist in understanding the interplay between the processes leading to the formation 

and sustainability of features, to provide boundary conditions for incorporation 

within biosphere models and to improve our management and preservation of the 

environment.

Laser altimetry can potentially contribute to landsurface property descriptions 

which are currently lacking, such as improved representation of global topography,
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surface roughness and vegetation heights at different spatial resolutions to meet a 

variety of needs.

1.2.1 Carbon Accounting and Vegetation Monitoring

The importance of quantifying and monitoring changes in carbon stock has 

been recognised in international agreements such as the Kyoto Protocol to the United 

Nations Framework Convention on Carbon Change (UNFCCC) 1997, whereby 

countries are required to report annually their direct human-induced emissions and 

removal of carbon dioxide - CO2 (Broadmeadow and Matthews, 2003; UNFCCC, 

2007). Estimating this requires prior knowledge of current carbon distribution. This 

distribution is currently largely unknown; although it is thought that a considerable 

store of unaccounted carbon is contained within temperate and boreal forests. 

Vegetation is an effective carbon sink, but impacts such as disease, wildfires, 

drought, flooding or anthropogenic actions (felling, pollution, landuse change, 

afforestation or increased atmospheric CO2) can produce changes, thereby impacting 

on ecosystem processes. The significance of the role of forests in mitigating climate 

change is underlined by global initiatives, policies and incentives such as to 

encourage practices of Reducing Emissions from Deforestation and Forest 

Degradation in Developing countries - REDD (FAO et al., 2008; UNEP, 2009) and 

to report on Land Use, Land Use Change and Forestry -  LULUCF (IPCC, 2003).

The terrestrial carbon sink is thought to be greatly reduced and LiDAR 

therefore offers the opportunity of comprehensively mapping carbon stores within 

vegetation (if not litter and soils), in addition to observing vegetation regeneration 

and improving understanding of carbon flux patterns between the land, atmosphere
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and oceans over space and time (Hese et al, 2005). In fact, following discussions 

relating to an international forest monitoring network during the 2008 G8 Summit, as 

part of the Global Forest Resources Assessment 2010, optical and radar remote 

sensing are to be adopted as a means of recording distribution of forests and 

monitoring changes to forest extent (FAO, 2007). LiDAR remote sensing may offer a 

future contribution to this goal. This monitoring is fundamental as land use, forestry 

and natural vegetation responses to atmospheric CO2 have a great effect on 

greenhouse gas emissions. These in turn can be seen as being not only of global 

environmental concern but also of economic impact e.g. conservation, fuel stocks, 

sustained population levels and land use.

1.2.2 Model Improvement

Vegetation plays a significant role in global climate and biogeochemical 

cycles, particularly concerning carbon, with approximately one quarter of 

atmospheric carbon dioxide fixed annually as gross primary production. To 

accurately model this and other land surface processes in General Circulation Models 

(GCM), properties such as radiation absorption, plant physiology, surface 

characteristics and climatology are required. These multi-temporal global datasets 

are only possible from remotely sensed sources (Myneni et a l, 1997).

Biosphere Models

Computer-generated models of the biosphere provide a valuable means to 

improve understanding of the immensely complex interactions between 

interdependent systems affecting the Earth. By their very nature, models function as
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generalisations of reality and a series of component models replicating the interplay 

of systems often provide input to complex broader-themed Biosphere models.

Dynamic Vegetation Models are particularly valuable in enabling prediction 

of the carbon balance under changing ecosystem structure and composition brought 

about by climatic changes (Hese et al., 2005). Vegetation is often represented within 

each grid cell as generalised Plant Functional Types and climate-driven habitat 

changes are used to model vegetation succession and plant lifecycle. Examples 

include the Lund-Potsdam-Jena dynamic global vegetation model (Sitch et al, 2003), 

the Top-down Representation of Interactive Foliage and Flora Including Dynamics 

(TRIFFID) which provides inputs to JULES, the Joint UK Land Environment 

Simulator (Cox and Best, 1999; Cox et al, 1999; Purser and Anderson, 2000; 

JULES, 2008), and the Simple Biosphere Model modification (SiB2) (Sellers et al, 

1996a; Sellers et al, 1996b; Denning_Research_Group, 2005).

Biome-specific model parameters relating to vegetation state and phenology 

may be obtained directly from processed satellite data (Denning_Research_Group, 

2005). For example SiB land cover class biophysical parameters such as canopy 

height, leaf angle distribution and photosynthesis-related factors are considered static 

with time and are derived from literature sources and look up tables whilst the 

biophysical parameters LAI (leaf area index) and fAPAR (fraction of 

photosynthetically active radiation absorbed by vegetation) are permitted to vary 

with time and are derived from relationships with normalised difference vegetation 

index (NDVI) described by Sellers et al, (1996b); Myneni et al, (1997); Los, 

(1998).

LiDAR may potentially support models by allowing direct satellite input of 

canopy height, fractional canopy cover and light penetration parameters for example
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or by permitting comparison with NDVI-derived LAI and fPAR or relating NDVI to 

vegetation height (Los et al., submitted). Alternatively LiDAR may provide a time 

effective, non-destructive means of calculating LAI, a factor which is fundamental to 

ecosystem modelling due to its contributions to biophysical cycles (Chen et al., 

2004; Riano et al., 2004).

Radiative Transfer Models

The ability of laser altimetry to retrieve vertical height profiles of vegetation, 

additionally lends itself to applications with Radiative Transfer models which 

simulate remotely sensed data to better understand and reproduce the influence of 

vegetation structure on radiation scattering and absorption.

Vegetation structure and, from this, LAI and fPAR, are important 

determinants of vegetation productivity. The structural variation both within and 

between vegetation canopies and subsequent multi-scattering events necessitates a 

three-dimensional approach to reflectance simulation. LiDAR may provide a means 

of comparing modelled and observed three-dimensional vegetation structure and 

consequent sensitivity of reflectance.

Radiative transfer modelling has been used for six global vegetation classes 

based on vegetation structure to obtain relationships of LAI and fAPAR from 

AVHRR NDVI reflectance calculations (Myneni et al., 1997). Satellite LiDAR may 

offer a further means of validating the distribution of these vegetation canopy 

structural classes and calculated parameters.

Conversely, radiative transfer modelling may improve understanding of the 

complex interactions which determine waveform characteristics by exploring the
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sensitivity of waveforms to vegetation and ground surface structural and reflectance 

properties (Ni-Meister et al., 2001; North et al., submitted).

1.2.3 Forest Management

The research during the course of this project seeks particularly to assist the 

needs of forest management and monitoring. The management of forests in Britain is 

undertaken with consideration of multiple purposes including production of timber 

and other commodities, recreation, wildlife habitat conservation, water quality 

protection, open space preservation and as a future buffer against climate change. 

This requires reliable data regarding forest resource conditions and trends 

(Broadmeadow and Matthews, 2003; Forest_Research, year unknown).

Challenges posed by such necessities of accounting and subsequent 

monitoring of forest stocks include the costs and impracticalities associated with 

extensive application of conventional field survey methods, where uncertainties 

would nevertheless remain due to inaccessibility to privately-owned woodlands. In 

terms of timber production forecast, this may be significant as the private sector 

accounts for approximately 60% of British woodlands and currently 80% of timber 

production (ForestryCommission, 2003; Forest_Research, 2006; 

ForestryCommission, 2007).

Currently, the process of National Forest Inventory in Britain relies on large 

quantities of field measurements and photo interpretation carried out manually in 

order to delineate forest and non-forest areas (Forestry_Commission, 2003; 

Broadmeadow and Matthews, 2004; Forest_Research, 2006; Gilbert, 2007). LiDAR 

may therefore provide a means to remotely quantify vegetation for inaccessible
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private woodlands in order to incorporate within the collection of data for the 

national forest inventory. Vertical information contributed by LiDAR may assist with 

this classification and the accuracy of assessments.

1.2.4 Opportunities Afforded by Remote Sensing

Earth observation plays a significant role in enhancing the knowledge of 

vegetation distribution and its biophysical properties. Optical remote sensing has 

been shown to provide indirect associations using reflectance properties for NDVI 

(e.g. Defries and Townshend, 1994; Los et al., 1994; Sellers et al., 1994) and LAI 

(e.g. Los et al., 2000; Myneni et al., 2002) although there are difficulties associated 

with use of reflectance alone (North, 2002). More direct assessment using the 

physical properties of vegetation and interactions between canopy structure and 

photons detected by the sensor have been demonstrated through radiative transfer 

modelling (North, 1996; Myneni et al., 1997; Ni-Meister et al., 2001; Kotchenova et 

al., 2003).

Active instruments have been exploited to estimate vegetation height and 

volume using radar (Balzter et al., 2003; Gaveau et al., 2003; Tansey et al., 2004; 

Balzter et al., 2007) and, more recently, LiDAR (Light Detection and Ranging) 

systems which estimate these using physical interactions between intercepted 

surfaces and photon paths.

In terms of carbon accounting, an important limitation of remote sensing 

estimates is that direct account is only taken of above ground biomass whilst root 

systems form a substantial contribution to carbon storage. However, Jenkins et al., 

(2003) have shown a means to overcome this using USA-wide allometric equations
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for estimating above-ground biomass for broad species classes and found generalised 

relationships accounting for vegetation component biomass (root, foliage, stem bark 

and stemwood). This potential has also been demonstrated by Fang et al,  (1998) 

who have related stem volume density (m3/ha) to stand biomass (Mg/ha) comprising 

both above and below-ground biomass. Such methods may offer a means of more 

accurately mapping biomass distribution if remote sensing techniques such as 

LiDAR are able to retrieve appropriate biophysical parameter estimates from forests.

This research therefore aims to develop replicable methods for estimating 

significant forest biophysical parameters using broad vegetation classes which may 

be identified using landcover maps (Hill and Smith, 2005), forest inventory 

interpretive forest types or the Forestry Commission management database and 

which may permit further stratification or specific relationships to be explored in the 

future.

1.3 Aims and Objectives

The aim of this thesis is to assess the potential for forest biophysical 

parameter retrieval offered by satellite LiDAR remote sensing. Limitations are 

examined with respect to instrument specification, sites suitable for the application of 

approaches and capabilities presented by related available technologies.

In order to achieve this, the project objectives are:

I. To gather field data with which to assess and validate methods of 

waveform processing.
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II. To develop and evaluate techniques for deriving forest parameters from 

large footprint, satellite LiDAR waveforms.

III. To assess estimated parameters using field measurements, airborne 

LiDAR remote sensing data and forestry yield models with 

management database information.

IV. To explore capabilities of LiDAR remote sensing of vegetation in the 

context of forest inventory and management.

The research seeks to develop methods which offer means of estimating 

vegetation parameters of interest to practitioners and modellers which can be 

replicated and applied to different vegetation types and on regional to national scales. 

Results are considered with a view to determining how conventional field and 

model-based methods may be complemented or enhanced. These aspects are 

explored within the coming Chapters, as outlined below.

1.3.1 Thesis Structure

Chapter 2 introduces the context to the research with respect to current 

research gaps, information provided by alternative remote sensing systems and the 

state of the art regarding LiDAR of vegetation.

Chapter 3 discusses the principles underlying the GLAS sensor used within 

this project and the pre-processing of data which is undertaken prior to their release 

to the public.

- 10-
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The sources of data and field methods applied to validate LiDAR processing 

results are presented in Chapter 4. Methods developed to address specific research 

questions are described within the associated sections, Chapters 5-7.

Chapter 5 explores and tests methods of estimating vegetation height from 

within large footprint LiDAR waveforms. Two techniques of identifying the region 

of the waveform returned from vegetation are subsequently used throughout the 

remainder of the project.

These methods are developed further and applied in Chapter 6 in order to 

estimate vegetation top height and stemwood volume, two parameters commonly 

used within forestry.

Chapter 7 presents a comparison of satellite LiDAR results with those 

obtained using airborne LiDAR data. Situations in which the latter surpasses the 

capabilities of large footprint LiDAR systems are introduced.

Conclusions to the research are drawn in Chapter 8 which also looks to 

further prospects for ICESat/GLAS or successor sensors. Future directions for 

research and applications of the data are suggested.

- 11 -



C h a p t e r  2. LiDAR Re m o t e  S e n s in g

Chapter 2. LiDAR Remote Sensing

This Chapter begins with a historical context to LiDAR remote sensing. 

Principles common to the airborne and satellite LiDAR systems used within this 

project are introduced. Specific aspects relating to small footprint airborne laser 

scanning and large footprint, satellite LiDAR profiling are then presented. An 

overview of previous large footprint systems and future potentialities of satellite 

LiDAR missions are discussed. Finally, an overview is given of relevant LiDAR 

applications demonstrated by other authors.

2.1 LiDAR Historical Background

The technique of laser altimetry has a relatively recent history. The American 

physicist, C. H. Thomas developed the first microwave laser (MASER) in 1954, 

publishing a paper in 1958 together with A. L. Schawlow, exploring possibilities of 

laser exploitation in the visible and infrared spectrum. In 1960, fellow American T. 

H. Maiman developed the first successful optical laser using a ruby crystal. Airborne 

laser ranging was first attempted in the 1960s, however it wasn't until the early-to- 

mid 1970s that this began to be developed and, in the late 1980s, GPS developments 

permitted accurate geolocated range measurements on a larger scale. It was only 

since the mid 1990s that the first commercial systems began to appear (Wehr et al., 

1999; Earth Science Office, 2005).

- 12-



C h a p t e r  2 . L iD A R  R e m o t e  S e n s in g

The last fifteen years have seen the application of laser altimetry to the 

planetary sciences with fundamental impact: Spacebome laser ranging on the 

Clementine Mission (1994) produced global, large-scale topographic relief images of 

the Earth's moon; the Near Earth Asteroid Rendezvous Mission (1996) supported the 

Shoemaker Laser Rangefinder which provided a complete topographic map of the 

433 Eros asteroid to metre-level resolution; whilst the Mars Orbital Laser Altimeter, 

part of the Mars Global Surveyor mission (1996), generated high resolution maps of 

Martian topography, surface roughness and surface change, greatly enhancing the 

understanding of the evolution and composition of the planet (Luthcke et al., 2002b).

However, this spacebome technology has only begun to be significantly 

exploited in the last five years to advance our understanding of the Earth and the 

processes that combine and contribute to shape it. Therefore the exploration of this 

technology and its applications to improve our knowledge of the three-dimensional 

distribution of features, may offer great potential to complement and enhance current 

remote sensing approaches.

2.2 LiDAR Technical Aspects

2.2.1 LiDAR Principles

Laser is an acronym for Light Amplification by Stimulated Emission of 

Radiation (Federation_of_American_Scientists, year unknown). There are two main 

classes of laser; pulse and continuous wave lasers (Wehr et al, 1999). The technique 

of interest to this project utilises pulsed lasers which transmit very short single bursts 

of high intensity light to a target. The backscattered signal returned from atmospheric

- 13 -
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components or reflected from Earth-surface objects allows properties of those 

intercepted surfaces to be determined. The principle is similar to that of pulsed 

microwave radar, although it uses optical not microwave components to direct, 

intercept and detect the emitted radiation. LiDAR is defined as Laser-Induced 

Direction And Ranging or, more usually, Light Detection And Ranging (Charlton et 

al., 2003; Ordnance_Survey, date unknown), the shorter wavelength range offers the 

opportunity of detecting atmospheric constituents which would be beyond the 

capabilities of radar for example (Molero and Jacque, 1999).

Many of the principles of satellite laser altimetry have developed from twenty 

years experience of radar altimetry (Brenner et al., 2003). The principles have many 

similarities although significant differences occur due to different wavelengths and 

beam width, influencing the height and roughness calculations. The wider radar 

beam (10-20 km) causes surface slope to have a great effect and surface roughness 

will broaden the received pulse, meaning this often dominates the shapes of the radar 

pulse. A further complication is radar's ability to penetrate surfaces such as fim 

meaning the pulse may be returned from some depth below the surface.

In contrast, laser altimetry has a relatively smaller footprint meaning that 

returns are reflected from a more identifiable position on the surface (Figure 2.1). It 

also operates at a higher electromagnetic frequency preventing the signal from 

penetrating below the surface. This may therefore offer a more appropriate means of 

estimating topographic and vegetation properties. The characteristics of LiDAR 

systems and applications of data are discussed later in this Chapter.
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Figure 2.1 Contrast between LiDAR and Radar wavelength, beam divergence and consequent 
footprint size at the ground surface (Source: Bufton, 1989)

2.2.2 LiDAR Instruments

LiDAR instruments may be divided into DIAL, Doppler and Range Finder 

systems:

DIAL

Differential Absorption LiDAR (DIAL) can be used to assess concentrations 

of atmospheric constituents (e.g. ozone, water vapour, pollutants). Two different 

laser wavelengths are selected of which, for the component of interest, one will be 

absorbed whilst the other scattered. The concentration of the atmospheric 

components is therefore determined by the difference in intensity of the two return 

signals (Earth_Science_Office, date unknown).

Doppler

Doppler LiDAR measures the velocity of the target and is based on the 

principle that, if the laser pulse intercepts an advancing or receding target, the 

returned wavelength will be slightly modified (the Doppler shift); the wavelength
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will be shorter if the object is advancing and longer if it is receding. One example of 

such an application is the accurate remote measurement of wind velocity through 

detection of suspended dust and aerosol particles transported by the wind 

(Earth_Science_Office, date unknown).

Range Finder

Range Finders form the simplest group and are used to measure the distance 

between the LiDAR instrument (altimeter) and the target surface(s) 

(Earth_Science_OffIce, date unknown). It is this latter group of LiDAR systems 

which is of interest to this study. Within this group, satellite, airborne and terrestrial 

platforms are found, successively producing increasing data spatial resolution. The 

area illuminated by each laser pulse is known as the ‘footprint’.

2.2.3 Determining Range and Time

LiDAR range-finding involves the emission of laser pulses from the 

instrument positioned on a platform, towards a target (e.g. ground), from which it is 

reflected from the intercepted surfaces. Features further from the sensor will 

intercept the laser energy later than those closer to it.

The time for the pulse echo to reach the sensor is measured and, using the 

fact that the laser pulse travels at the speed of light, the total return distance travelled 

between the sensor and the intercepted surfaces can be calculated. The distance 

between the altimeter and the intercepted object is therefore half of this value:

R = c.t/2 (2.1)
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where R is the Range, c is equal to the speed of light (3x108 ms'1) and t is the 

time elapsed between the pulse emission and returned signal detection (Baltsavias, 

1999; Wehr etal., 1999; Abshire, date unknown).

LiDAR time units are generally in nanoseconds (ns), each being equal to 

approximately 15cm in one-way distance between the sensor and target. This permits 

the three-dimensional reproduction of Earth surface relief and above-surface object 

structures (e.g. vegetation, ice cover, atmospheric aerosols and cloud structure).

Range resolution AR is directly proportional to time resolution At and can 

therefore be derived as follows (Wehr et al., 1999):

AJ?=0.5cAt (2.2)

Time is measured by a time interval counter, initiated on emission of the 

pulse and is triggered at a specific point on the leading edge of the returned pulse. 

This position is not immediately evident and therefore is set to occur where the 

signal voltage reaches a pre-determined threshold value. The steepness of the 

received pulse (rise time of the pulse) is a principal contributory factor to range 

accuracy and depends on the combination of numerous factors such as incident light 

wavelength, reflectivity of targets at that wavelength, spatial distribution of laser 

energy across the footprint and atmospheric attenuation (Baltsavias, 1999). The 

return pulse leading edge rise time is therefore formed by the strength of the return 

signal from the highest intercepted surfaces within the footprint. This will vary with 

the nature of the surface; flat ice sheets producing abrupt returns with fast leading 

edge rises and multilayered, complex vegetation creating broad returns (Harding et 

al., 1998; Ni-Meister et al., 2001).
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The leading edge of the pulse is one of the factors explored during the course 

of this research as a contributor to uncertainty within biophysical parameter estimates 

from waveforms.

To avoid confusion of the pulses arriving at the time interval counter, pulses 

are not usually transmitted until the previous pulse echo has been received. In theory 

this could limit flight factors such as the altitude of the altimeter (i.e. for a pulse rate 

of 25kHz, the maximum range is 6km), although in practice this is rarely limiting. 

Rather, limits are often formed by laser power and beam divergence; atmospheric 

transmission; target reflectivity; detector sensitivity; increasing influence of altitude 

and attitude errors in position accuracy (Baltsavias, 1999).

2.2.4 Data Acquisition Criteria

The minimum detectable object within a laser footprint depends primarily on 

its reflectivity as opposed to its size. If, for example, a sensor is able to measure the 

distance to a flat, even surface of area A, with a reflectivity of 5%, then the minimum 

area of a detectable object with 100% reflectivity would be A/20. However, other 

factors combine to influence object detection, among which are range; laser power; 

atmospheric conditions; background irradiation; whether target reflectivity is diffuse, 

specular or a combination; terrain inclination; target three dimensional structure; 

laser wavelength; laser aperture, detector sensitivity and noise level (Baltsavias, 

1999).

GPS receivers and an Inertial Navigation System (INS) on board the platform 

plus direction in which the altimeter was pointing, together identify the precise
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geographical co-ordinates of the footprint. In the case of aircraft-mounted altimeters, 

scanning can occur at right angles to the direction of travel.

In addition to topographic lasers, emitting light in one waveband to provide 

elevation data, bathymetric lasers emit in two wavelengths, generally 1064nm and 

532nm. This would enable details of the pulse path to be determined e.g. whether 

atmospheric moisture may be present which would affect the returned signal (Wehr 

andLohr, 1999).

The minimum height at which scanning can usually be performed may be 

determined by platform specifications, .flight regulations (e.g. aircraft restrictions 

over urban areas) and eye safety range. The most sensitive detectors are available 

between 800nm and lOOOnm wavelengths, but at these optical wavelengths, eye 

safety is still a concern. Therefore if greater pulse energy is needed, wavelengths at 

which the eye is less sensitive are required. Reflectance response of the target surface 

of interest at different wavelengths is also an important consideration in relation to 

the information the mission aims to retrieve e.g. snow and ice reflect weakly at 1535 

nm (Wehr and Lohr, 1999).

With all other conditions remaining constant, the maximum range is generally 

proportional to the square roots of reflectivity and of the laser power. Best range 

performance is achieved when the atmosphere is cool, dry and clear, as shorter 

wavelengths experience greater scattering by atmospheric water vapour, CO2, dust 

particles or smoke. These conditions may occur at night rather than in bright sunlight 

(Baltsavias, 1999).

Greater sensor altitude will increase diameter in addition to reducing density 

of footprints. LiDAR footprint size is important as small footprints may 

underestimate the true canopy height (Lim et al., 2003b) due to a lower probability
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of capturing the canopy top, whilst larger footprints mean the percentage of the total 

return contributed by the canopy top is small, decreasing waveform leading edge 

steepness and therefore increasing the possibility of misallocating the beginning of 

the signal. This may be particularly the case for mature vegetation with large height 

variation.

Difficulties posed by wide footprints, if greater than the crown size of 

dominant individuals, are a resulting underestimation of upper canopy variability 

(Lefsky et al., 1999a) or topographic variation (Hofton and Blair, 2002) although 

increased point density may counteract this effect (Morsdorf et al, 2004). The GLAS 

sensor used in this research produces footprints of approximately 64m diameter 

(Abshire et al., 2005). The ability to retrieve canopy height from waveforms and to 

identify representative ground elevations are tested during the course of this research. 

Upper canopy height variability and slope are considered as a potential factors 

influencing uncertainty in large footprint LiDAR estimates.

Broad footprints (up to crown size) have the advantages of increased 

probability both of sampling canopy tops and for the laser energy to reach the 

ground. For airborne LiDAR campaigns, expense is also reduced per unit area due to 

the larger swaths at higher altitudes (Drake et al., 2002) however height estimate 

accuracy and area coverage are sensitive to LiDAR campaign specifications 

(Goodwin et al., 2006; Takahashi et al., 2008).

Many factors therefore combine to determine the accuracy and data 

specifications of LiDAR campaigns. Laser altimetry provides a relatively 

economical, time-effective means of generating accurate vertical surface information 

for both small and large areas.
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2.3 Laser Altimetry Systems

This study focuses on large footprint, full waveform, satellite LiDAR 

profiling though also incorporates a comparison with small footprint, discrete return, 

airborne laser scanning. The main principles of both are outlined below.

2.3.1 Discrete Return Laser Scanning

Laser scanners are often mounted on aircraft or helicopter platforms and 

produce a dense coverage of relatively small footprints (generally of sub-metre 

diameter) in swaths perpendicular to the direction of travel (Figure 2.2).

Footprint spacing across track is established by aircraft altitude and angular 

separation between successive transmitted pulses, itself affected by aircraft roll. 

Along-track footprint spacing is determined by pulse repetition rate, number of 

cross-track footprints, aircraft ground speed and pitch attitude (Harding et al., 1998; 

Baltsavias, 1999).

Laser altimeters are currently unable to perform several range measurements 

simultaneously, however between 2000 - 100,000 range measurements per second 

can be performed, each to a different surface location. Of the pulse returned to the 

sensor, discrete return devices often record only first and last echoes (or more 

recently some intermediate echoes). This technique allows dense point clouds to be 

produced with which processing is undertaken (Figure 2.3).
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Figure 2.2 Illustration of airborne laser scanning pattern along the direction of travel due to the 
oscillating scanning mirror plus on-board Geographical Positioning System (GPS) and Inertial 
Measurement Unit (IMU) which records aircraft motion (speed and attitude -  pitch, roll and 

yaw) to determine accurate sensor geolocation. (Image courtesy of Forest Research)

Intensity o f  these echoes is also recorded. Intensity is recognised as a 

com plex unitless param eter which is determ ined not only by target reflectivity but is 

also strongly influenced by range, object orientation, target structure and scanning 

angle (Boyd and Hill, 2007).

LiDAR cam paign specifications can be m odified to accom m odate application 

requirem ents; e.g. detailed 3D urban reconstruction or coarse resolution digital 

elevation models. During a survey flight, position and orientation system  data, the 

laser data co-ordinates, ranges and intensities, possibly with associated scan angles, 

are retrieved.
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Figure 2.3 Airborne LiDAR point cloud illustrating point density with up to four recorded 
echoes per emitted pulse producing density of approximately 25 points per square metre. Data 

are shown as unprocessed echoes using Forest Research-commissioned data for Glen Affric, 
Scotland (First, second and third echoes are shown as progressively deeper shades of green and

last returns are illustrated in white).

These geographically-registered data can be processed and incorporated 

within a map co-ordinate system. This results in a cloud o f  sem i-random ly 

distributed laser points in elevation and horizontal position. The distribution and 

density o f  these points is determ ined by the laser system scanning pattern, platform  

height, velocity, field o f  view and sam pling frequency as well as target surface 

topography (Axelsson, 1999; W ehr and Lohr, 1999; Skinner, 2002).

The raw LiDAR data points are therefore irregularly spaced. This is further 

exacerbated with airborne scanning as this occurs across the direction o f  travel. The 

m irror used to guide the outgoing beam slows to change direction at the edge o f  each 

swath. This results in a concentration o f  data points at the end o f  each scan line 

(Cobby et al., 2001; Skinner, 2002).

Data are filtered to remove noise, anom alous returns and m easurem ent errors. 

In the case o f  vegetation applications, airborne LiDAR point clouds may then be 

classified into ground (Zhang et al., 2003) and canopy returns above this surface.
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Interpolation of data to produce a digital terrain model or digital surface 

model (of the upper canopy surface) serves to resolve the irregular dispersion of 

points through producing a regular, resampled grid. However interpolation can be 

expected to have some uncertainty especially at the centre of the swath where point 

density is lower and where there is no overlap with adjacent swaths. The work for 

this project adopted this approach in the processing of airborne LiDAR data for 

canopy delineation (following Suarez et a l, 2008a) as well as utilising raw returned 

points above the interpolated ground surface for analysis of canopy metrics and 

percentage cover (Armston et al., in preparation 2008).

Airborne laser scanning offers the opportunity for retrieval of detailed 

vegetation parameters for entire forests, a task which would not be feasible using 

traditional field techniques. Generally speaking, cost restrictions limit this form of 

high point density LiDAR acquisition to relatively small areas suitable for forest- 

level data capture. The level of detail obtainable permits analysis at both a stand level 

and individual tree level and the unrivalled ability to ‘see’ beneath the forest canopy.

2.3.2 Full Waveform LiDAR Profiling

Waveform recording systems follow the same principles as discrete return 

devices only recording the entire returned signal (waveform), or a ‘window’ of which 

in the case of high altitude platforms. Rapid sampling frequencies of 1GHz (1 billion 

samples per second) permit the entire echo waveform to be stored for analysis, 

providing breakdown of vertical structure with great accuracy (GeoLas Consulting, 

date unknown).
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The entire echo waveform  o f  each individual em itted laser pulse can provide 

inform ation concerning vegetation density by height, surface slope and roughness for 

example (Figure 2.4), in addition to inferred reflectance characteristics. The latter is 

in the form o f  waveform  am plitude, but is com plicated by issues o f  com plex 

interactions with intercepted surfaces as outlined for airborne LiD AR intensity 

values above and, in particular for high altitude platform s, by signal attenuation 

through the atm osphere.

Figure 2.4 Representation of returned echo signals for different target characteristics, (left) 
Multi-echo returned signal from vegetation surfaces; (centre) returned pulse broadened from 

sloped surfaces; (right) narrow pulse width from a bare, flat surface. Source: Baltsavias, (2007)

Despite the fact that the power o f  the return signal dim inishes with increased 

canopy depth, in the case o f  large footprint diam eters, for relatively low relief, 

ground returns may be expected in almost all footprints (Parker et a l ,  2001). The 

reduction in laser energy with depth is due to reflectance and absorption through the 

canopy. Some studies have applied the M acArthur-H orn algorithm  to com pensate for 

this by w eighting a norm alised cum ulative distribution o f  waveform  energy by
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-lxln(l-closure) in order to transform this into a cumulative distribution of canopy 

area (Harding et al., 2001)

Until recently, full waveform LiDAR systems generally produced coarser 

mid-to-large footprint diameters of 10-100m spatial resolution compared with small 

footprints of discrete return devices. Nevertheless, usage was generally restricted to 

research bodies primarily due to acquisition costs and data storage limitations (Todd 

et al., 2003). The complex interactions with intercepted surfaces, and infinite 

variations of spatial distribution of these within footprint areas, create a challenging 

environment within which to form generalisations of ground and vegetation feature 

representation within large footprint waveforms (e.g. for surface classification).

Broad LiDAR footprints may be produced in swaths (e.g. SLICER -  Section 

2.3.2.1) or sequentially along the ground track -  LiDAR profiling (e.g. GLAS -  

Chapter 3). However, most recent advancements have seen the advent of small 

footprint, full waveform LiDAR (Figure 2.5) and the beginnings of multi-spectral 

LiDAR systems (Morsdorf et al., 2008), as computer processing power has become 

more advanced and able to cope with the vast volumes of data produced.

This project focuses on large footprint, LiDAR profiling using the 

Geoscience Laser Altimeter System (GLAS) and opportunities and limitations 

offered by this. The evolution of this instrument in terms of previous systems is 

summarised next.
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camera image

© GeoConsult 2004
Figure 2.5 Shown from top to bottom, an example of a transect across a vegetated site showing 

aeria! photography of varying crown roughness, a digital surface model (DSM) of the 
uppermost canopy surface derived from LiDAR data and small footprint, full waveform LiDAR 

data illustrating laser energy penetration through the canopy to the ground. Image produced 
by Geoconsult 2004, source: Baltsavias, (2007).

2.3 .2 .1  ICESat/GLAS Predecessors

The following large footprint, full waveform  LiDAR sensors m ay be regarded 

as predecessors to the GLAS sensor currently in orbit upon the Ice C loud and land 

Elevation Satellite (ICESat). A lthough specifications may differ, these instrum ents 

served to provide proof o f  concept for biophysical param eter retrieval using such 

systems.

Scanning LiDAR Imager o f Canopies by Echo Recovery

The Scanning LiDAR Im ager o f  Canopies by Echo R ecovery (SLICER) is an 

airborne laser altim eter developed within NA SA 's Goddard Space Flight C enter to 

support its Topography and Surface Change Program, Terrestrial and Ecology 

Program and the Boreal Ecosystem s A tm osphere Study (BO REA S). Experience

- 2 7 -



C h a p t e r  2 . L iD A R  R e m o t e  S e n s i n g

derived from SLICER has been incorporated in the production of the LiDAR 

Vegetation Imaging Sensor (LVIS) which has since superseded SLICER.

The pulse of SLICER differs from LVIS, the Vegetation Canopy LiDAR 

proposal (VCL) and GLAS in being of Rayleigh form as opposed to Gaussian. This 

affects the distribution of laser power across the footprint which is not consistent but 

decreases towards its edge, in practice decreasing the effective size of the footprint.

SLICER was designed to have a fast leading edge rise time and high peak 

power in order to achieve high ranging accuracy to multiple targets within the 

footprint. Aircraft supporting the altimeter generally fly at a constant altitude 

resulting in footprint diameters which vary with relief of the underlying ground.

Laser Vegetation Imaging Sensor

The Laser Vegetation Imaging Sensor (LVIS) is a medium-altitude airborne 

sensor. It was developed by the NASA Goddard Space Flight Center in the late 

1990s to succeed SLICER and as a trial platform for concepts and instrumentation 

planned for the proposed spacebome Vegetation Canopy LiDAR mission. It is 

capable of operating at altitudes up to 10km and, with its 7° field of view, it can 

produce swaths up to 1km wide with 25m diameter footprints (although footprints up 

to 80m are possible). As such, coverage demonstrates the ease of acquisition over 

large areas and potential for large scale landscape mapping and monitoring. Laser 

pulses at 1064nm wavelength and of less than 10ns duration, are emitted at repetition 

rates up to 500Hz.

LVIS differs from previous air and spacebome LiDAR systems which 

calculate range to the surface using separate waveform digitisers and time interval 

units. LVIS uniquely utilises only a detector and oscillator for all roles, thus
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eliminating any inconsistencies which may exist between instruments and allowing 

the return pulse to be located precisely. The receiver is also capable of housing two 

additional detectors, thereby offering the capability of retrieving data at two 

wavelengths and polarisations.

As previously mentioned, and especially pertinent to wide footprints, 

difficulties can be posed by spatially varying energy distribution. The laser 

transmitter was designed to produce a Gaussian energy distribution and the output 

pulse is channelled through filters, allowing energy to be modified to optimise the 

strength of the return signal. Technological developments have therefore attempted 

to overcome weaknesses identified in preceding altimeters and were due to be 

incorporated into the spacebome VCL (Blair et al, 1999).

Shuttle Laser Altimeter

NASA's Shuttle Laser Altimeter (SLA) I aboard STS-72, l l th-20th January 

and SLA II upon STS-85 which was in orbit between 7th and 18th August 1997 took 

this technology into space for the Earth sciences (Carabajal et al, 1999; Luthcke et 

al, 2002a; Frawley et al, 2005).

Few spacebome LiDAR Earth Observation missions have been realised and 

the Shuttle Laser Altimeter is a modification of the Mars Observer Laser Altimeter 

(MOLA-1). Both SLA missions were of short duration, but they succeeded in 

obtaining coverage of latitudes between ±57°. The SLA produced 100m diameter 

footprints, 70m apart along the pass ground tracks, providing 342,000 geolocated 

land and 562,000 ocean surface returns (Carabajal et al, 1999; Frawley et al., 2005).

Despite the large footprint diameter, the SLA mission provided examples of 

waveforms produced by different surface types. However, their comprehensive use
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to derive estimates of vegetation distribution has been limited, largely due to the 

limited spatial and temporal coverage. However, the mission has also served to 

improve footprint geolocation accuracy in preparation for GLAS (Luthcke et al., 

2002a).

Vegetation Canopy LiDAR

The proposed Carbon-3D space mission aimed for the first time to accurately 

estimate above-ground biomass on a global scale using satellite LiDAR.

There is great potential offered by the integration of LiDAR and optical 

remote sensing and the Mission proposed to position the Vegetation Canopy LiDAR 

(VCL) and obtain measurements of Bidirectional Reflectance Distribution Function 

(BRDF) on a single platform, thereby providing both vertical and horizontal data, 

permitting a 3D perspective and quantification of above-ground carbon stocks. Co- 

located BRDF data would allow the extrapolation of LiDAR footprints for complete 

spatial coverage and identification of vegetation characteristics, whilst LiDAR 

waveform analysis would provide fine-scale vertical canopy structure and surface 

target biophysical properties (through multi-angular optical observations). As 90% of 

above-ground carbon is contained in tree stems, this would permit biomass to be 

calculated as a function of tree height (Hese et al, 2005).

The sensor configurations aimed to produce 25m diameter footprints along 

three tracks with 4km spacing between these using a swath of 8km. The satellite 

would orbit at 390-410km altitude. The spatial resolution of the BDRF multi-spectral 

data aimed to be <25m at nadir, corresponding to that of the VCL. The VCL proposal 

consisted of three near infrared laser beams capable of detecting returned signals 

from the canopy top and ground, even in dense vegetation cover.
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This proposal was not funded, but the principles remain of relevance to this 

study. A future programme of similar extent and design providing global estimates of 

carbon distribution, fluxes and stability would have clear benefits to a wide range of 

applications (Hese et al., 2005).

2.3.3 GLAS Proposed Successors

The success of the current ICESat/GLAS programme, discussed in following 

Chapters, and merit for continued future research and practical applications has been 

recognised in proposals for subsequent satellite LiDAR missions.

ICESat II is under development and proposed for launch in approximately 

2015, following the original specifications of the first ICESat mission (Dubayah, 

2008; Nelson, 2008). This would therefore allow data acquisition for monitoring 

vegetation change over an extended period of time, though is likely to result in a data 

gap between the lifespan of the current ICESat and the launch of its successor.

Different sensor specifications may produce variations in estimates which 

may be due to instrument effects as opposed to actual change. Research would 

therefore be needed to determine whether results are compatible. However, the 

following NASA sensors may prove to be more appropriate to vegetation 

applications than the ICESat missions.

DESDynl (Deformation, Ecosystems, and Dynamics of ICE) proposes to 

provide global spatially-continuous Earth observations using both multi-beam 

LiDAR profiling and L-band RaDAR data (Dubayah, 2008; Nelson, 2008). The 

LiDAR configuration under discussion would produce approximately 25m diameter 

footprints, with 25-30m spacing, thereby creating near-continuous profiles along
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track. Possibilities include 3-5 beams with longitudinal distance between them of 2- 

5km.

The mission specification for LIST (Laser Imaging for Surface Topography) 

intends to produce adjoining footprints using swath mapping (Nelson, 2008). 

Footprints would be in the region of 5m diameter and the sensor would collect 

continuous global coverage data during its five year intended lifespan.

DESDynl is proposed for launch later than ICESat II with the timeframe for 

LIST being considerably later still. All missions are planned to be underway before 

2020. Investment in these proposals demonstrates the value with which NASA 

regards obtaining repeat elevation data of the Earth’s surface and its overlying 

features, using satellite LiDAR.

2.4 LiDAR Applications for Forest Inventory 
and Operational Forestry

The use of LiDAR has been demonstrated for many applications of retrieving 

information relating to vegetation. The majority of these have been from airborne 

platforms, although recent years have seen an increasing use of terrestrial and 

spacebome LiDAR.

Forest biophysical parameter retrieval for stand level analysis has been 

demonstrated at local scales (e.g. Hyyppa et al., 2001; Naesset, 2002; Patenaude et 

al, 2004) and for ground surface relief (Jansma et al., 2001; Hofton and Blair, 2002). 

Extracting forest floor topographic data can permit archaeological remains to be 

located which would otherwise not be visible (Crow et al., 2007). Increasingly the 

benefits of data fusion, combining spectral data/aerial photography and airborne
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LiDAR data, have also been shown to aide surface-type classification (e.g. Hill and 

Thomson, 2005; Suarez et al., 2005a) and for the purposes of individual tree 

delineation (e.g. Suarez et al., 2005a; Suarez et al., 2008a) leading to its application 

to assess stand conditions using models (Morsdorf et al., 2004; Suarez et al., 2008a; 

Suarez et al., 2008b).

The ability to characterise forest structure also lends itself to analysis of 

habitat conditions and to infer bird and animal distributions (Hinsley et al., 2002; 

Hinsley et al., 2006). Uniquely, LiDAR analysis also presents the opportunity to 

identify properties of understorey vegetation (Goodwin et al., 2007; Hill, 2007) and 

therefore offers prospects for monitoring regeneration processes. Potential for this is 

also provided by LiDAR gap analysis (e.g. Gaulton and Malthus, 2008) which 

illustrates potential for the establishment of shrubs or tree saplings.

However, to date, few satellite LiDAR missions of the Earth’s surface have 

been realised (Winker et al., 1996; Zwally et a l, 2002; Frawley et al., 2005). 

Resulting studies have involved the fields of atmospheric sciences (e.g. Spinhime et 

al., 2003; Dessler et al., 2006; Yang et al., 2008); glaciology (e.g. Smith, 2003; 

Herzfeld et al., 2008; Zwally et al., 2008) and topography (e.g. Garvin et al., 1998; 

Carabajal and Harding, 2006; Atwood et al., 2007). Studies concerning the 

performance of the ICESat/GLAS satellite LiDAR mission for vegetation analysis 

are an area of research development (e.g. Lefsky et al., 2005; Lefsky et a l, 2007; 

Nelson, 2008; Simard et al., 2008; Sun et al., 2008) and this field of study is 

currently without a dedicated LiDAR campaign for this purpose. Indeed GLAS was 

designed primarily for determining ice volume changes. Such global LiDAR 

missions offer the opportunity for vegetation biophysical parameter retrieval at 

unprecedented scales (Hese et al., 2005).
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One of the principal attributes of LiDAR is the ability to estimate vegetation 

height profiles which presents opportunities of deriving further biophysical 

parameters. Of most interest to this project is the ability of LiDAR to derive 

woodland stand-level parameters for forestry or inventory purposes, particularly 

from large footprint, full waveform data. Experiences of relevant studies by other 

authors are outlined below.

2.4.1 Vegetation Height, Volume and Canopy Cover

Laser altimetry is currently the only technique capable of measuring tree 

heights in closed canopies and therefore offers a remote and non-destructive means 

of estimating vegetation volume, biomass or carbon content to account for vegetation 

distribution. This avoids difficulties posed by inaccessibility, time or cost-intensive 

field campaigns. Potential has been demonstrated for stand-level estimates in both 

tropical sites (Drake et al., 2002; Drake et al., 2003) and forests in the USA (Lefsky 

et al., 1999b; Harding et al., 2001; Breidenbach et al., 2008) with LVIS and 

SLICER, in the UK using small footprint discrete return LiDAR (e.g. Patenaude et 

al., 2004) and at a USA State-wide scale using laser profiling (Nelson et al., 2004; 

Nelson et al., 2008a).

Nelson et al., (2004) and Nelson et al., (2008b) have shown the potential for 

USA Delaware State-wide documentation of commercially viable volume and total 

above-ground biomass using first return airborne LiDAR profiling. This approach 

found best biomass results for vegetation stratified into broad vegetation groupings 

(mixed wood, R2 = 0.28, RMSE = 49.17 t/ha; hardwood, R2 = 0.30, RMSE = 115.51 

t/ha; conifers, R2 = 0.44, RMSE = 68.05 t/ha; and wetlands R2 = 0.95, RMSE = 24.16
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t/ha) using simple linear regression for mean height metrics (combined with canopy 

cover in the case of hardwoods). This method of vegetation type stratification was 

also employed for the retrieval of biomass using GLAS data (Nelson, 2008) using 

conifer, deciduous and mixed wood classes for southern Quebec, Canada. 

Consistency in use of predictive models was found to be necessary if monitoring 

changes over time as this alone accounted for 7% of apparent biomass differences.

Sun et al., (2008) compared GLAS energy waveform quartiles with the same 

from LVIS waveforms and found these to be highly correlated (50th percentile R2 =

0.83; 75th percentile R2 = 0.82). Using LVIS, these waveform indices have been 

previously found to be significantly correlated with mean diameter at breast height 

(DBH), basal area and above-ground biomass (Drake et al, 2003). These metrics are 

affected both by vertical canopy distribution and canopy cover, as more open 

canopies would allow greater laser penetration therefore reducing the height at which 

percentiles fall.

Sun et al., (2008) found tree heights from field measurements were estimated 

from GLAS waveforms with R2 = 0.57, RMSE = 4.46m. Estimates of biomass 

combining evergreen conifers and deciduous trees varied with date of GLAS 

acquisition (R2 = 0.78, RMSE = 30Mt/ha for late Autumn; R2 = 0.59, RMSE = 24.56 

Mt/ha captured in June).

LiDAR data were found in some studies to over-estimate observed ground 

level. The difficulty of obtaining accurate measurements beneath dense canopies is 

widely recognised and is dependent on sampling density, scanning angle, canopy 

density and closure as well as processing methods. Leaf litter and understorey 

vegetation, as opposed to the true ground surface, may contribute to this 

overestimation (Patenaude et al., 2004; Goodwin et al., 2006).
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In contrast, LiDAR canopy tree tops are commonly underestimated and this 

tendency is more often the case with the smaller or largest footprints as previously 

mentioned. Several factors contribute to this including canopy structure (e.g. conical 

or spherical crowns); canopy density (determining leaf or vegetation surface area, 

position in relation to illumination angle); footprint size (larger footprints have a 

greater probability o f sampling maximum height though will also reduce the 

proportion o f the signal relating to tree tops); strength and wavelength of the emitted 

signal (which affects the return signal strength); threshold detection selected and 

signal to noise ratio sensitivity.

Figure 2.6 illustrates how contiguous waveform footprints may uniquely 

represent canopy cover and volume at depths within a vegetation canopy (Lefsky et 

al., 1999a).

Waveform *itli ground return 
*nd background removed

*li • i
C um ulative  P o w e r

Open Gap Space
. A hsolute * Power 
I Threshold | Value

.Cumulative 
Power 
Threshold 
Value v

Euphotic Zone

ojo q? o* oe ae
fT V IM w j' T<m I

Closed Gap Space

Figure 2.6 Canopy crown model dem onstrating the ability to spatially represent crow n closure 
and foliage distribution within canopies using waveform  energy within height bins (Lefsky et al.,

1999a).
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Waveforms were converted to height profiles with thresholds established to 

allow classification into four canopy zones: Empty Space consisting of no canopy/ 

ground returns; Euphotic Zone comprising the upper 65% canopy closure elements; 

Oligophotic Zone forming the remaining elements; and Closed and Open Gap Space, 

the latter derived from the difference between the waveform extent and the 

maximum estimated vegetation height for each footprint. This permits the 

proportions of each class to be calculated (Lefsky et al., 1999a; Lim et a l, 2003b) 

which can be used for volume and canopy cover distribution calculations and to 

demonstrate canopy light regime. This approach may be relevant for small-mid 

diameter contiguous footprint coverage such as the planned LIST mission.

LiDAR point clouds and, in particular, waveforms can reveal distinct 

characteristics relating to canopy structure, volume and canopy cover distribution 

which can allow assumptions of shade tolerance and competition for light (Parker et 

al., 2001), indications of stand microclimate or stand developmental stage (Lefsky et 

al., 1999a; Harding et al., 2001; Skinner, 2002) to be inferred (Figure 2.7). Older 

canopies or those with high yield class generally have larger gaps and therefore 

increased probability of a ground or "side" hit. Assessments requiring comparisons of 

waveform amplitude to infer stand cover would require energy to be normalised for 

varying energy attenuation though the atmosphere (Parker et a l, 2001).

Surfaces intercepted by LiDAR include branches and stems in addition to 

foliage (Chen et al., 2004; Riano et al., 2004). This provides an estimation of plant 

area index or canopy cover as a proportion of the area under the entire waveform. 

However, estimation of transmittance profiles from signal echoes does not directly 

account for canopy absorption of laser light through the canopy. Nevertheless, at 

1064nm for example, absorption by both needle and broadleaf foliage is small
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(Parker et al., 2001). T herefore waveforms may provide direct estimates o f canopy 

cover and LAI (e.g. Parker et al., 2001; Todd et al., 2003; Riano et al., 2004).

In te rm e d ia teY o u n g Mature

20

0
0.10 00 0.10 00.10 0 0.10

F rac tio n  o f  P lan t A re a  p e r 1 m H e ig h t In terval
Figure 2.7 Age-related waveform s for deciduous broadleaf vegetation illustrating height 

variation, changes in foliage distribution and energy penetration to the ground (H arding et at.,
2 0 0 1 ).

Overview

All volume-based studies by the above authors assessed LiDAR metric 

performance against field-derived data and found significant correlations. A variety 

o f allometric equations were utilised to estimate volume, biomass or carbon content 

for the different vegetation types. The investigations suggest that relationships 

between LiDAR metrics and above-ground biomass differ between bioclimatic zones 

(Drake et al., 2002; Drake et al., 2003). This implies that consideration o f these 

relationships for distinct vegetation classes may improve biomass prediction 

capabilities for future global mapping. Significant relationships were also
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demonstrated for LiDAR estimation of LAI and light transmission through the 

canopy.

The studies suggest that a metric often exists of the optimum distribution of 

intercepted laser pulse energy representing a reliable estimation of a biophysical 

parameter. The position at which this occurs varies with canopy and crown structure, 

in addition to the biophysical property being considered (Lim et al, 2003a). The 

above studies suggest the strongest relationships apply metrics which comprise 

information regarding distribution of tree and foliage heights whilst attributing 

greater weighting to taller vegetation; this therefore represents the upper portion of 

the canopy and indicates that a weighting factor is being applied which is 

proportional to the stem diameter required to support the canopy (Lefsky et al., 

1999b; Harding et al., 2001). Additionally, seasonality may be a factor in 

determining height estimate accuracy (Sun et al., 2008). The study presented in this 

thesis uses data captured in October 2005 whilst vegetation was predominantly still 

in leaf.

This project therefore explores means of identifying indices within the 

waveform canopy return in order to develop regression relationships for the 

estimation of vegetation biophysical parameters. The thesis compares GLAS height 

metrics with small footprint airborne LiDAR data and uses a percentile-based 

approach to estimate stemwood volume using broad stratification of vegetation 

classes. As a first step, this research develops a method of estimating canopy cover 

from large footprint waveforms and evaluates them against those calculated using 

airborne LiDAR data, validated using hemispherical photography.
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2.5 LiDAR Forestry Applications and Inventory 
Summary

LiDAR data has been shown to provide valuable three-dimensional details of 

vegetation volume and structural arrangement and to relate these to vegetation life 

stage. This perspective enables the complexity of vegetation organisation to be better 

understood, opening the possibility of applying this knowledge, using satellite 

technology, for larger areas.

LiDAR technology is well-equipped to provide remote, unintrusive, geo­

referenced, three-dimensional information regarding surface elevation, vegetation 

structure and human infrastructure to an unprecedented degree of accuracy and over 

vast scales, relatively economically and time-efficiently.

Potential applications are broad ranging and span both the natural and human 

environments. Some of these capabilities are unique to LiDAR technology and as 

altimeter readings are less sensitive than some other sensors to environmental 

conditions such as sun angle, leaf state and moderate weather conditions, there is a 

relatively wide window with regard to LiDAR acquistion opportunities 

(Airbome_Laser_Mapping, date unknown; GeoLas_Consulting, date unknown).

LiDAR data capture does, however, inevitably present some limitations. 

When mapping dense vegetation, pulses are scattered by and reflected within the 

canopy, thereby obstructing the beam penetration and exit route and resulting in a 

delayed echo response than would occur from the 'true' surface directly. Radiative 

transfer modelling will help to understand the sensitivity of waveforms to surface 

properties (Ni-Meister et al., 2001; North et al., submitted). The majority of LiDAR 

systems emit in the near-infrared band, but some minerals, water (and therefore
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cloud and fog), asphalt and tar, absorb these wavelengths causing null or poor return 

echoes. LiDAR, particularly full waveform data, can also result in large quantities of 

information and therefore require sufficient processing capabilities to accommodate 

this (Airbome_Laser_Mapping, date unknown). A further important consideration is 

that laser altimetry should not be considered an imaging system as, even with high 

density laser scanning, only samples of the surface are collected (Lim et al., 2003a).

However, this emerging technology offers to improve our understanding of 

the human and physical environment across a broad range of disciplines. Vertical 

profiles of vegetation and associated parameter distribution can provide a useful 

means of improving understanding of this field.

2.6 Conclusion

This Chapter has summarised the principles of LiDAR and identified applied 

studies using airborne laser scanning and mid-to-large footprint waveform scanning 

and profiling. Comprehensive Satellite LiDAR applications for biophysical 

parameter retrieval have been identified as a field of research which has been 

undergoing recent development. Based on the positive outcomes from airborne 

platforms, potential is anticipated for diverse vegetation types over a range of scales. 

Previous and recent experiences of deriving height, volume and canopy cover 

estimates have been outlined.

Possible inputs of LiDAR-derived data have been identified for dynamic 

vegetation models and radiative transfer models. On forest management scales, 

process-based growth models or site condition simulation models (e.g. Edwards and 

Christie, 1981; Gardiner et al., 2004) require inputs of stand-level vegetation
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structural characteristics. LiDAR estimates of vegetation properties may provide a 

means of determining more representative inputs to drive models or of validating 

model-generated predictions and consequently produce more accurate simulations 

which realistically replicate processes.

Recognition is needed of the fact that LiDAR remote sensing is restricted to 

the calculation of above-ground vegetation volume and, by inference, carbon. 

However, root and soil systems represent large stores of carbon in forest systems. 

Therefore to obtain a comprehensive account of carbon stores, LiDAR-derived 

carbon estimations may need to be supplemented by field studies and modelling 

techniques in order to produce representative estimates.

Whilst airborne LiDAR data often provides high spatial density information 

during a single campaign for a targeted area, satellite platforms offer opportunities 

for systematically monitoring significantly larger areas through relatively frequent 

repeat coverage (2-3 times annually with the current ICESat mission), albeit on a 

sampling basis and at coarse resolution. The following Chapter introduces the 

principles of the GLAS instrument used in this project.
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Chapter 3. ICESat/GLAS Principles 

and Pre-Processing

This chapter aims to provide an overview of the principles of the 

ICESat/GLAS data which are used within this research and the processing of the data 

by the GLAS Science Team prior to their release to the public as data products.

3.1 Ice Cloud and land Elevation Satellite

The Ice Cloud and land Elevation Satellite (ICESat) is the first global laser 

altimetry mission (Hofton and Blair, 2002). The primary purpose is to monitor ice 

mass balance through changes in ice elevation. However, secondary objectives are of 

relevance to this project and include retrieval of land surface elevations, land surface 

roughness and multiple near-surface canopy heights over land. The mission aims to 

additionally contribute to topographic mapping and digital elevation models as well 

as detecting changes of elevation greater than one metre per year for selected 

regions.

3.1.1 Geoscience Laser Altimeter System Overview

The Geoscience Laser Altimeter System (GLAS) is a full waveform LiDAR 

profiler carried on board ICESat. The satellite orbits the Earth at an altitude of
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600km, travelling at a speed of 26,000 km per hour and emitting laser pulses at 40 

Hz, thereby sequentially producing footprints, nominally of 70m diameter, with 

172m intervals between consecutive footprint centres (Zwally et al., 2002; NSIDC, 

2003; Schutz et al., 2005). Figure 3.1 shows a ground track crossing Antartica with 

surface and cloud elevations from GLAS indicated.

GLAS consists of three lasers which function exclusively and are used 

successively, one of which currently remains operational (Kichak, 2003; Abshire et 

al., 2005). All emit pulses at both 532nm and 1064nm wavelengths, simultaneously 

acquiring details of atmospheric composition (cloud and particular aerosol 

distribution and density) in addition to surface feature characteristics (glaciological, 

topographical, oceanographic and vegetative). Quality flags indicate corrections 

applied and sources of concern such as saturated returns or significant forward 

scattering from cloud.

Whilst 70m footprints are stated as optimal for ice sheet monitoring, smaller 

diameters of approximately tree crown diameter (10-25m) are more advantageous for 

vegetation and land surface observations as less surface variation is present within 

the area illuminated by the laser pulse. However smaller footprints require higher 

pulse repetition to acquire adequate sampling of the Earth’s Surface which would 

reduce the laser lifespan and consume more power.
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Figure 3.1. Lithograph with fifty times vertical exaggeration, illustrating ICESat-derived profile
of coincident surface and cloud elevations over Antartica (Shirah and Kekesi, 2003).

The initial calibration and validation phase o f GLAS laser operation involved 

an orbit which repeated ground tracks every eight days. The m ission phase then 

consisted o f  a repeat orbit o f  91 days, with original plans to subsequently change to 

183 day repeat track cycles. This in fact d idn’t occur for reasons outlined below. The 

mission specification o f  an 183 day repeat cycle would have produced reference 

ground track spacing o f  15km at the equator and 2.5km  at its m axim um  latitude o f 

±86° (Brenner et al., 2003).

Despite the large footprint size and relatively low em itted pulse repetition 

frequency, the first laser on board ICESat failed after ju st 74 days o f  pre-launch 

operation and 36 days o f  spacebom e operation. The Independent GLAS anom aly 

Review Board assessed the failure o f  GLAS Laser 1 to be attributable to a 

m anufacturing fault in the laser diode arrays which introduced large quantities o f 

indium solder. This, together with the high tem peratures associated with high current
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requirements of the system, caused the progressive erosion of the gold conductors by 

the formation of non-conducting gold-indide (Kichak, 2003).

Consequently, a modified mission plan was adopted for the two remaining 

lasers to maximise operational life, as it was assumed that the fault may also exist 

with these. Amendments have subsequently been applied to the laser operation 

protocol to minimise future thermal stresses. The overall solution has been to adapt 

the mission plan and to operate each remaining laser at limited intervals using a 91 

day repeat orbit in order to moderate the effect of temperature and accumulation of 

gold-indide.

The three lasers forming GLAS are operated sequentially until the end of 

each laser’s life. An inclination angle of 94° is used to prevent saturation due to 

specular reflection which, particularly over ice surfaces, would result from direct 

nadir reflection to the lm diameter Beryllium telescope which captures the returned 

pulse. The intended mission lifespan was three years' duration with anticipated 

extension to five years. This objective has therefore been achieved but with 

significantly reduced data acquisition both in terms of discontinuous data capture and 

lower ground track density.

Current performance is anticipated to allow laser operation for a further 3-4 

data campaigns twice per year from 2009 (David Kom, NSIDC, pers. comms).This 

aims to coincide as closely as possible with the launch of ICESat II for which the 

intention is to revert to the original mission specification as current faults will have 

been addressed. Subsequent missions therefore aim to continue coverage for a 

combined period of fifteen years, permitting long term interpretation of LiDAR Earth 

observations. An overview of current ICESat laser campaigns to date is shown in 

Table 3.1.
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Table 3.1. Summary of laser operations and attributes (NSIDC, 2003; NSIDC, 2008). TBD 
indicates information to be determined by NASA. Laser campaign numbers indicate the laser in

operation.

Laser
campaign Start date End date Horizontal 

accuracy (m)
Vertical 

accuracy (m)

L1A 20.02.2003 29.03.2003 4.6±9.3 0.08±0.16

L2A 24.09.2003 18.11.2003 TBD TBD

L2B 17.02.2004 21.03.2004 TBD TBD

L2C 18.05.2004 21.06.2004 37.7±53.4 0.66±0.93

L3A 03.10.2004 08.11.2004 0.0±2.7 0.00±0.05

L3B 17.02.2005 24.03.2005 17.4±22.8 0.30±0.40

L3C 20.05.2005 23.06.2005 TBD TBD

L3D 21.10.2005 24.11.2005 TBD TBD

L3E 22.02.2006 27.03.2006 TBD TBD

L3F 24.05.2006 26.06.2006 TBD TBD

L3G 25.10.2006 27.11.2006 TBD TBD

L3H 12.03.2007 14.04.2007 TBD TBD

L3I 02.10.2007 05.11.2007 TBD TBD

L3J 17.02.2008 21.03.2008 TBD TBD

3.1.2 Data overview

Near global coverage of between ±86° latitude is provided by ICESat/GLAS 

acquired during its 91 day repeat orbit cycle of which GLAS is operated at intervals 

which initially captured measurements for three seasons each year and, since 2008, 

during Spring and Autumn: generally for 33 to 55 day periods during February- 

March, May-June and October-November. Data coverage for the UK is illustrated 

within Figure 3.2. Longitudinal spacing between tracks at the latitude of the UK is 

approximately 36km.
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I

Figure 3.2. National Inventory of Woodland and Trees (N1WT1) classes shown as black shading 
overlaid by ICESat/GLAS ground track passes for Britain throughout the ICESat mission. 

Figure courtesy of J. Suarez, Forest Research.
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Table 3.2. Numbers of footprints intercepting Interpretive Forest Type classes within the first 
National Inventory of Woodland and Trees (NIWT1). Table courtesy of J. Suarez, Forest

Research.

Interpretive Forest Types from NIWT1 ICESat footprints
Broadleaves 3362

Coniferous 5426

Coppice 19

Coppice with standards 10

Felled 465

Ground prepared for planting 717
Mixed 1469

Shrub 151

Young trees 1959

This intermittent operation of the lasers aims to repeat the same sub-cycle 

during each laser campaign. Repeat ground tracks or cross-over points of tracks 

therefore potentially allow changes over time to be detected (Shuman et al., 2005).

Except where stated, the following account is largely made with reference to 

Brenner et al., (2003) in their Algorithm Theoretical Basis Document.

The laser footprint is nominally 70m diameter on the surface across its 

longest axis. The transmitted laser pulse has a width of 5ns, equivalent to 75cm in 

surface elevation. Assuming a Gaussian transmitted pulse of 5ns duration, the 

expected return from a flat, highly reflective surface would also be Gaussian in form 

of 5ns duration. The returned pulse, however, will be broadened by the distribution 

of intercepted surface heights within the footprint, if the surface is sloped, rough or a 

combination of both.
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Footprints are approximated in this study as circular although reports show an 

elliptical footprint (which varies between lasers) with average equivalent circular 

area diameter of 64m (Abshire et al., 2005). For the laser operation used in this study 

(L3D), near infrared (NIR) wavelength footprints are produced with major and minor 

axes of 52m±l.l and 44.4m diameter respectively (NSIDC, 2008). As laser energy 

decreases with distance from the footprint centre, diameter is defined as the point at 

which energy has fallen to 1/e2 of peak amplitude (pers. comms. GLAS Science 

Team via NSIDC). The result of this diminishing energy towards the footprint 

margins is that returned waveforms are most representative of the features closest to 

the footprint centre. Figure 3.3 illustrates energy distribution of the transmitted pulse 

(Laser Profiling Array - LPA) as observed at the laser reference camera. The LPA 

provides pointing knowledge of the transmitted pulse and is a component of the 

Stellar Reference System which, combined with precision attitude determination 

(PAD), allows the calculation of footprint location accuracy (Schutz, 2001; Bae and 

Schutz, 2002).

Footprint horizontal geolocation (Schutz, 2002) is yet to be determined by 

NASA for L3D, however is expected to vary between 0.0 ± 2.7 metres (L3A) and 

17.4 ± 22.8 metres (L3B) (NSIDC, 2008). Field measurements for this study aim to 

take these factors into account (following Carabajal and Harding, 2001).
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Figure 3.3. Transmitted pulse laser profiling array (LPA) for footprint 885917496_0 (product 
GLA04). X and Y axes represent pixel numbers (pixel size in far field beam divergence angle is 
3.388 arcsec/pixel). Scale of the LPA image projected to the Earth’s surface (as also reported by 

Harding and Carabajal, 2005) can be considered as Laser3D mean axis dimensions of 
approximately 52x44m. The colour key shows pixel intensity indicating relative beam energy 
distribution across the footprint, where the highest value represents peak amplitude and the 

lowest value is zero energy. (Pixel size and unit of measure: pers. comms. GLAS Science Team
via NSIDC).

3.1.3 Waveform Structure

Assum ing a m inor effect o f  forward scattering by clouds and aerosols, the 

waveform echo is determ ined by the range distribution within the footprint, 

reflectivity o f  the surfaces (the average o f  which is calculated as the ratio o f  

transm itted and received energy after it has been scaled for range) and pattern o f  the 

incident beam.

Three key m easurem ents are therefore produced; the range between the 

satellite and surface footprint, the shape o f  the reflected w aveform  and the laser
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power returned from the surface. Bufton, (1989) identifies the total area under the 

received pulse, being proportional to the pulse energy, as a means of measuring 

surface albedo. Kotchenova et al., (2003) also recognise that, for vegetated areas 

having surfaces with similar reflective properties and vertical structure within a 

footprint, a larger amplitude of the return indicates a greater volume of canopy 

material.

The effect of slope (assumed to be a tilted, planar surface) or surface 

roughness is to broaden the returned waveform; however the relative contribution of 

each cannot be distinguished. Extracting estimates of surface characteristics from 

broad footprint LiDAR waveforms can therefore be challenging.

3.7.3.1 Uniform surfaces

For footprints without vegetation or complex features such as buildings, the 

interpretation of surface elevation (defined as the surface without overlying features) 

is relatively straightforward as the returned waveform (after processing discussed 

above) is simply representative of the vertical distribution of intercepted surfaces, the 

reflectance of the surfaces and the spatial distribution of laser energy across the 

footprint.

It is assumed that the return will closely resemble a Gaussian and therefore a 

Gaussian pulse is used to fit the waveform. The centroid of the Gaussian pulse is 

used to calculate the range to the mean surface, which is then corrected for 

atmospheric delays. The corrected range, position of the satellite above the footprint 

and the off-nadir pointing position are then used to calculate the surface elevation.
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3,1.3.2 Complex surfaces

Multi-modal Waveforms

Footprints which contain vegetation and other features above a sloped surface 

can produce waveforms in which signals produced by surface roughness and 

topography are combined (Figure 3.4).

Experience derived from airborne LiDAR suggest footprints over complex 

surfaces would produce multi-modal waveforms with each peak corresponding to 

distinct heights within the footprint; the final peak representing the ground level and 

the uppermost signal being that returned from the highest canopy layer for example.

With increasing surface relief (slope and roughness) and footprint size 

(creating greater variation within the footprint), the contributions to the waveform 

shape due to relief and overlying features, become increasingly more difficult to 

distinguish (Figure 3.5). In addition, with larger footprints, the problem is 

exacerbated as multiple vegetation layers are spatially averaged across the footprint 

and furthermore, representative vegetation height is harder to identify meaningfully. 

Independent knowledge is therefore necessary for direct interpretation of laser 

footprints of this extent.
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Figure 3.4 Returned waveform combining signal from ground and vegetation surfaces (above). 
Coincident airborne LiDAR point cloud for illustrative purposes (below). This figure illustrates 
the difficulty posed by identifying a ground elevation within waveforms for which terrain and 
vegetation are at similar elevations. Extent of airborne LiDAR point cloud is 70m diameter.
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Figure 3.5 GLAS waveform example for complex intercepted surfaces and airborne LiDAR 
point cloud illustrating spatial distribution of intercepted features (70m diameter subset 

coincident with the GLAS footprint). Spatial separation within waveforms of contributing 
surfaces is not possible. Local supplementary knowledge is necessary to determine whether 

waveforms are formed by purely natural or human infrastructure features.

M ultiple scattering from elem ents within the canopy will also lengthen the 

photon paths thereby delaying the return pulse and affecting the shape o f  the 

w aveform . This is dependent on laser energy wavelength and transm ission between 

the foliage (determ ined by vegetation density and three-dim ensional structure o f  

canopy com ponents). Brenner et al. , (2003) additionally suggest that literature
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evaluating LiDAR performance for retrieval of vegetation biophysical parameters 

has assumed the effects of multiple scattering on LiDAR-derived vegetation heights 

to be minimal.

Notwithstanding this, Kotchenova et al., (2003) recognise that failure to take 

multiple scattering into account may lead to interpretation errors at the lower 

portions of waveforms for near infrared wavelengths as the path for multiple 

scattered photons is lengthened, thereby delaying their return and resulting in an 

apparent large volume of low vegetation shown within the waveform.

Time dependent radiative transfer theory has been used to model LiDAR 

pulse scattering for both coniferous and closed canopy deciduous vegetation. 

Kotchenova et al., (2003) suggest that understanding and knowledge of vegetation 

type and characteristics within the footprint area is necessary for accurate 

interpretation of waveforms which would allow extinction coefficients to be used to 

adjust for shadowing effects from upper canopy structures obscuring those below. 

Sensitivity of waveform structure to vegetation properties is furthermore being 

explored using the radiative transfer model FLIGHT (North, 1996; North et al., 

submitted).

Large footprint LiDAR theory assumes that the final peak of multi-modal 

waveforms is that returned from the ground surface, whilst earlier peaks correspond 

to layers of vegetation or other features within the footprint. The centroid and 

variance from this final peak may be used to determine the mean surface elevation 

and breadth of the pulse due to slope and roughness. Additionally the maximum 

height within the footprint could be taken as the distance between the leading edge of 

the first return and the centroid of the last signal peak (Carabajal and Harding, 2001).
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There are however, some circumstances in which the last peak will not 

represent the position of the ground: stepped surface heights such as a cliff edge; 

dense vegetation preventing penetrating to the ground; low lying vegetation may 

result in a combined return with actual ground level; a large building with multiple 

sloping roofs. A method is therefore needed to account for this potential discrepancy 

and the complications posed by the large footprint diameter and combined surface 

returned signal.

Uni-modal Waveforms

Interpretation of uni-modal waveforms where no overlying features are 

present is relatively simple, using the centroid to estimate the mean surface elevation 

and assuming the breadth of the pulse to be due to the effect of surface relief.

However, uni-modal waveforms originating from footprints containing 

overlying surface features are perhaps most difficult to interpret as the heights of the 

elements contributing to the waveform cannot be differentiated (Figure 3.6). The 

position of the centroid and the Gaussian variance are due to the combined influence 

of all intercepted components within the footprint, with the additional complication 

of the density and spatial arrangement of the overlying surface features being 

unknown.
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Figure 3.6 GLAS waveform example for a site with small stature vegetation and low relief 
combined within a single-peaked waveform as modelled by the GLAS alternate fit algorithm

using Gaussian decomposition.

3.1.4 Data Pre-processing

A number of operations are performed to facilitate waveform understanding 

for further processing (Brenner et a l 2003). There are four stages to the initial 

processing undertaken by NASA in order to produce products available for use by 

the scientific community:

1. Signal Detection

II. Waveform Digitisation
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III. Gaussian Decomposition

IV. Elevation and Surface estimations

3,1.4.1 Waveform Characterisation

Signal Detection

For each transmitted laser pulse, the GLAS instrument will collect 

approximately 4,500,000 one ns samples. To reduce this to a manageable amount to 

enable it to be transmitted to Earth, of the entire laser echo returned to the spacecraft, 

only a limited Range Window of 544 data bins is recorded and used within data 

products.

On-board processing takes place using an algorithm which aims to maximise 

the chance of including the return from the Earth’s surface. This uses an onboard 

SRTM-derived 90m resolution Digital Elevation Model (DEM) to indicate the region 

of the returned pulse where elevations relating to the earth’s surface and overlying 

features are likely to be located in order to identify the maximum and minimum 

values of the Range Window.

The digitised waveform within this window is then passed through six filters 

which check for a viable signal and increase the probability of detecting echoes from 

sloped or rough terrain and reduce that of selecting those from clouds. Filter size 

starts with the smallest filter (4ns) which is increased progressively until a signal 

region is detected. The signal flag is set to zero (or one if no signal region is found).

The waveform is then smoothed using a Gaussian filter with a sigma equal to 

that of the filter. Signal start and end positions are then determined as the first and
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last positions at which the waveform amplitude is greater than the mean noise value 

plus a multiple of the standard deviation of the noise (set at 4.5 x a).

Finally, a noise threshold is determined for each filtered waveform. The 

surface echo is searched backwards in time to identify the last local maximum 

exceeding the threshold which is assumed to represent energy returned from the 

ground.

Waveform Digitisation

Using this reference point, the returned pulse from the surfaces is digitised 

within range bins. 544 range bins are designated for data retrieved over land. For 

laser operations LI A and L2A the waveform was recorded entirely within Ins data 

bins (~15cm) allowing an elevation difference of 86.1 metres to be recorded. 

However on occasion, this resulted in the waveform being truncated where the 

vertical extent of the returned waveform exceeded the recorded waveform. 

Therefore, for subsequent data acquisitions, the uppermost 152 gates were recorded 

at 4ns resolution (91.2m) whilst the lower 392 gates remain sampled at Ins 

resolution (58.8m). This produces a 1000ns waveform relating to a 150m Range 

Window.

Positions of indices within the waveform are provided as a negative number 

indicating the distance in metres from the lowest elevation within the Range 

Window. Further details are found in Brenner et al, (2003); NSIDC, (2003); Harding 

and Carabajal, (2005); NSIDC, (2008).

Gaussian Decomposition

The transmitted pulse is Gaussian and, if the surface topography is flat with 

Lambertian reflectivity, the return is also expected to be Gaussian in form. Over
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complex surfaces, the waveform is represented mathematically as a sum of 

Gaussians plus a bias (noise level). The modelled waveform can therefore be 

represented by the following equations:

ytf)=*+YZiW. (3-D

Wm ~ Ame 2al (3-2)

where

w(t) is the amplitude of the waveform at time t 

Wm is the contribution from the mth Gaussian 

Np is the number of Gaussians found in the waveform 

Am is the amplitude of the mth Gaussian 

e is the bias (noise level) of the waveform 

tm is the Gaussian position

g2ot is the \fe half-width (standard deviation) of the mth Gaussian

Nonlinear least squares are used to calculate the model parameters 

[p,Am,tm and crm) by fitting the theoretical model to the observed waveform.

Parameters driving the algorithm for the land product are designed to achieve 

waveform fitting whilst preserving the peaks present. The results of this processing 

are then used to calculate L-1B GLA06 and L-2 GLA12-15 products which are 

presented in the following Chapter.

An overview of Gaussian decomposition of waveforms is provided below. 

This model fit to the waveform (the sum of six Gaussian peaks in the case of

-61  -



C h a p t e r  3 . IC E S a t /G L A S  P r i n c ip l e s  a n d  P r e -P r o c e s s i n g

waveforms for land) aims to simplify the complexities of the raw waveform whilst 

retaining the dominant trends in order to facilitate interpretation.

The second derivative of the smoothed waveform is used to identify the 

peaks; this is positive between peaks, negative at peaks and zero at the inflection 

points. Therefore when the second derivative changes from positive to negative, this 

indicates the first inflection point [Tf\ identifying a Gaussian, the end point of which 

(second inflection point [72]) is marked by the second derivative reverting from 

negative to positive. The estimated Gaussian amplitude is the maximum smoothed 

waveform amplitude within [Tj, T2].

For all but the maximum amplitude (Amax) Gaussian, the estimated Gaussian 

width is the smaller of \Tj -  Tm\ and \T2 — Tm\. When the waveform is affected by 

saturation or forward scattering, the Gaussian width cannot be accurately estimated 

using inflection points and therefore the width of the maximum amplitude Gaussian 

is calculated using Tjjo and T2jo plus Tjji and T2jj  (the times before and after Tm 

at which Wm is 80% or 60.653% of Am respectively). Definitions are as above.

Once all Gaussians have been identified, those with amplitudes less than the 

minimum peak amplitude (Amin) are removed and those which are closer than the 

determined minimum interval are combined with their closest neighbour. The 

Gaussians are then ranked by their area, the smallest of which are combined with 

their closest neighbour until the number of Gaussians does not exceed the maximum 

permitted (six in the case of the land product).

Elevation and Surface estimations

Interpretation of returns over land is complicated by the varied structures of 

the land surface and the small scales over which these can fluctuate. The effects of
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these characteristics on the performance of laser altimeters is considered by Gardner, 

(1992) who identifies the centroid of the received pulse as being the most effective 

technique for estimating range when the pulse shape is unknown.

Harding et a l, (1994) explain this further. The centroid of the received pulse 

(Ts) is the mean round-trip time-of-flight range to surface features within the laser 

footprint, weighted by the reflectivity and area extent of the features. The pulse 

centroid is determined by integrating the received signal strength over a range gate of 

time duration Tq and the measured precision of Ts is a function of the time interval 

unit resolution (A t):

where t is time and P is signal strength.

Due to the distinct requirements of the GLAS land product (i.e. using the 

description of the waveform and independent knowledge to permit interpretation 

regarding elevation, slope, roughness and heights of vegetation or other features), a 

'land-specific range1 is used. This is generally the centroid of the received waveform 

signal between the defined signal start and end points and is used to determine the 

final geolocated latitude and longitude and the footprint vertical location. This aims 

to provide a representative elevation of the signal, used as a point of reference for 

other waveform parameters.

Range offsets from this land-specific range can be used with the laser 

pointing vector to calculate the highest and lowest features detected within the 

footprint (when nadir-pointing, the range offsets will be equal to the elevation

(3.3)
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offsets). The Land Range Offset parameter (.Ld RngOff) is used within this study to 

position the waveforms vertically in space.

The stages involved in pre-processing the GLAS waveform data in order to 

produce ICESat/GLAS data products are summarised below.

3 .7.4.2 Overview o f waveform pre-processing

I. Characterise the transmitted pulse and calculate the time for beginning the 

range calculation

II. Characterise the received waveform to determine if there is a signal and to 

determine the point on the waveform to be used to estimate the range and the 

preliminary footprint location on the Earth

III. Interrogate the database to determine the type(s) of surface at the footprint 

location

IV. Smooth the waveform and determine initial estimates for parameters

V. Fit the waveform:

a. Use zero-crossing o f the second derivative to identify waveform peaks

b. Merge peaks which are very close together (the initial number of 

peaks is a measure o f waveform complexity and is stored in i_nPeaks

c. Use the five peaks with the largest areas plus the peak furthest from 

the spacecraft as ‘seeds ’ to determine initial Gaussian spacing, width 

and amplitude

d. Carry out iterative least squares adjustment o f the Gaussian 

positions, width and amplitude to minimise RMSE between Gaussian 

sum model and raw waveform

e. For Gaussian amplitudes below a threshold (set very low), set 

amplitude to zero

f. Report number o f Gaussians (with non-zero amplitudes) in i_numPk

VI. Calculate range to the mean surface and surface elevation distribution

VII. Calculate atmospheric delay and tidal values (Phillips et al, 1999; Herring 

and Quinn, 2001)
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VIII. Calculate a corrected range to the mean surface correcting for atmospheric 

delay and instrument effects

IX. Correct time for travel time

X. Calculate precise geolocation and mean surface elevation (Schutz, 2002)

XI. Apply the tides to the mean surface elevation

XII. Calculate region-specific parameters e.g. land, ice, ocean
(Brenner et aL, 2003 pages 36-37; pers. com ms GLAS Science Team via NSIDC)

3.1.5 Data Limitations and Sources of Uncertainty

This section summarises the main known sources of uncertainty in GLAS 

waveform measurements and assesses the impacts on subsequent waveform 

interpretation and extraction of parameters which will be undertaken in this thesis. 

Error estimates derived from pre and post-launch validation exercises are discussed.

3,7.5.7 Instrument effects

Satellite LiDAR detector saturation has been previously known to cause 

truncation of returns and 'ringing' which is an artificial dip and peak after the 

returned signal (Carabajal et al., 1999). To assist in overcoming these effects, 

waveform pre-processing selects either the centroid of the maximum amplitude 

Gaussian or the centroid of the returned signal to represent the elevation reference 

parameter for each waveform (to avoid the possibility of identifying the 'ringing' for 

this reference position). Additionally, fitting is carried out to the pulse leading edge 

to reduce the effect of truncated peaks. An amendment made to the original 

processing procedure to digitise the returned signal within a 150m Range Window 

further reduces the risk of waveform truncation.
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Although prior to the launch of the ICESat mission, it had been possible to 

test the algorithms and make necessary modifications to the SLA-02 mission 

specification and adapt principles of large footprint airborne LiDAR, anticipated 

validation from the proposed VCL mission was not possible. Additionally, the GLAS 

instrument differs from those previously flown.

Harding et al, (1994) underline how pointing errors would lead to a LiDAR- 

derived waveform being assigned to the nadir-oriented anticipated footprint rather 

than the actual illuminated location. A principal difficulty of geo-locating the 

relatively small laser footprints (in comparison with radar) relies on accurately 

determining the off-nadir angle; this is solved using star cameras and laser spot 

imaging. Bufton, (1989) identifies surface slope of the footprint area as further 

aggravating the knowledge of pointing angle and associated error (Figure 3.7). 

Further information regarding geolocation and laser pointing is discussed by other 

authors: Schutz, (2002); Fricker et al, (2005); Harding and Carabajal, (2005); 

Luthcke et al, (2005); Martin et al, (2005); Schutz et al, (2005). However it is 

anticipated that discrepancies are not excessive and therefore will not prevent 

adequate field validation and land surface assessment (Table 3.1). Detailed 

descriptions of determining and minimising uncertainty in precision orbit and 

spacecraft attitude are provided in Bae and Schutz, (2002); Rim and Schutz, (2002).
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Figure 3.7. Effect of footprint surface slope broadening the pulse returned to the sensor and 
affecting footprint coverage on the ground and reflected energy. 0 represents off-nadir pointing

angle and S  is slope (Bufton, 1989).

Potential sources of error and limitations of GLAS data are highlighted by 

Brenner et al., (2003). Harding et al., (1994) and Gardner, (1992) assess potential 

elevation accuracies from satellite laser altimetry considering the effects of slope and 

roughness. Their conclusions are summarised below.

The centroid of a narrow pulse can be more accurately determined than for a 

broad pulse and therefore, given the same total received energy, with greater pulse 

spreading due to surface complexity, the potential for range errors will increase. This 

is due to a lower signal to noise ratio (Harding et al., 1994).

However, possible problematic waveforms caused by GLAS instrument 

effects can be identified as information regarding the quality of the data is provided 

in the form of flags, set to zero if no problem was present or to one if a problem was 

encountered in calculating any of the parameters for a product.
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3,1.5.2  Surface Properties

All algorithms used to create GLAS products assume a Gaussian distribution 

of surface undulations. Deviations from this, plus sudden surface irregularities, will 

produce an uncertainty among slope, roughness and surface elevation calculations. 

For complex land surface returns, the issue of intricate waveform structure is 

addressed by fitting a simplified model to the waveform, determined as the sum of 

Gaussian peaks. However, interpretation of the fitted Gaussians (i.e. contribution of 

surface elevation, slope, roughness plus vegetation and other overlying features) 

relies on understanding the waveform shape (uni- or multi-modal) plus independent 

knowledge or assumptions about the land-cover type within the footprint.

The impacts on the waveform of assumptions relating to slope, roughness, 

surface elevation and reflectivity are discussed below.

Slope

Slope is assumed to be linear and planar, whilst the ground truth may be quite 

different. Significant error could be caused by a mound positioned at the centre of the 

footprint for example. Harding et al., (1994) found that, for an individual pulse, 

predicted range error was predominantly dependent on slope and therefore suggests 

an average of subsequent measurements are taken. This however, would not allow 

for the detection of change and could be only meaningfully used in areas of stable 

elevation.

Harding and Carabajal, (2003) confirm the anticipated difficulty of vegetation 

and ground return mixing in areas of steep terrain. As previously mentioned, slope 

additionally contributes to the pointing uncertainty effect on the pulse centroid and
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Harding and Carabajal, (2003) identify independent information regarding footprint 

location and ground slope as requirements for interpretation.

Roughness

As the laser beam has a near-Gaussian energy pattern, the centre of the 

footprint receives more energy; therefore the surface roughness calculation is most 

representative of this area.

If most variation is present towards the edge of a footprint, the roughness 

estimated from the waveform will tend to underestimate the ground truth. This is 

because pulse spreading is determined by the elevation profile within the footprint 

weighted by the normalised cross-section of the laser beam. As a result, roughness 

surrounding the footprint centre will be assigned smaller weighting and will therefore 

cause the pulse to spread less (Gardner, 1992).

Harding et al., (1994) conclude that, at low slopes (~1°) range errors are 

predominantly due to roughness. However as slope increases, elevation variation as a 

result of roughness is insignificant compared to elevation change due to sloped 

surfaces. Therefore smaller footprints produce more accurate results due to smaller 

surface variation within footprints. Gardner, (1992) also finds that range errors are 

generally less sensitive to surface roughness or reflectivity variations. The sensitivity 

of waveform shape to vegetation and ground surface characteristics is an area of 

current development (North et al., submitted).

Surface elevation

Sampling of the same area at time intervals would allow observation of 

surface dynamics. This occurs at GLAS ground track crossover points (where 

ascending and descending passes cross) and for repeat orbits. However, at crossover
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locations, interpolation could be needed as data sampled areas are obtained 

approximately 172m apart with a locational error of several metres due to pointing 

knowledge. Furthermore, even when the satellite path repeats a previous ground 

track, the illuminated section of the ground may be different as footprints will not 

necessarily fall upon the same point along the track. Brenner et al, (2003) identify a 

research need to investigate repeatable results for detecting elevation changes.

Reflectivity and Scattering Events

A further potential error may be due to the assumption of Lambertian 

scattering (equal in all directions) of all components within a footprint, whilst in 

reality surfaces are likely to differ from this (Gardner, 1992; Brenner et al., 2003).

Multiple scattering of photons within vegetation canopies will delay the pulse 

being returned to the sensor and thereby produce an artificially low trailing edge to 

the waveform. The effects of this and sensitivity to other vegetation parameters can 

be accounted for through radiative transfer modelling (North, 1996; North et al, 

submitted).

3.1.5.3 Atmospheric Influence

The near infrared LiDAR wavelength causes the laser signal to be affected to 

a degree by atmospheric conditions producing signal attenuation; dense cloud may 

prevent or severely reduce energy penetration to the ground producing a highly 

distorted returned signal, whilst thinner clouds or aerosols produce forward 

scattering. This effect can be observed in Figure 3.8.
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Figure 3.8. (left) Time lapse photograph illustrating ICESat pulses taken from the Mojave 
Desert, California. The blurred appearance of the stars is due to the Earth's motion during 

image exposure, (right) Scattering of green light photons (532nm) from thin cloud above Santa 
Rosa, New Mexico, seen as broad blocks of colour to the left of the laser pulses (NSIDC, 2003).

Forward scattering by clouds and atmospheric particles broadens the pulse 

and has been previously discussed. Corrections are applied to GLAS data to account 

for this (Herring and Quinn, 2001). However, these effects need to be recognised and 

reference made to quality flags to identify any potential error as a result.

3.2 Summary

This chapter has introduced the principles and limitations o f  ICESat/GLAS 

satellite LiDAR data and the pre-processing which is undertaken in order to create 

the GLAS Data Products which are used in this project. These products are presented 

in the following Chapter.

Satellite LiDAR datasets are challenging to interpret due to complex 

interactions with surface features and production o f  multiple waveform indices 

which require considered analysis. However, in contrast with estimates using optical
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systems, GLAS data offer a unique opportunity to directly measure parameters based 

on the physical structure and properties of vegetation on scales which have 

previously been unfeasible. This data source provides a new opportunity to explore 

the proof of concept for analysis of vegetation using satellite LiDAR remote sensing.
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Chapter 4. Data Sources and 

Methodology

This chapter introduces the sources of satellite and airborne LiDAR data used 

within this research and their formats and products as supplied to the end user. An 

overview of data processing tools is also provided.

The Forestry Commission and its Forest Research Agency have offered 

considerable support throughout the project. Their role in British forestry, forest 

organisational structure and data management tools are presented. The research study 

site is also managed by the Forestry Commission and a description is given of forest 

characteristics and management undertaken.

Finally, the field techniques which are used for ground-truth validation in this 

study are presented in detail. These measurements aim to incorporate both 

intercepted features represented within waveforms and biophysical parameters used 

within forestry.
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4.1 Lidar Data Description and Products

4.1.1 Satellite LiDAR

The data source used within this study is the Geoscience Laser Altimeter 

System (GLAS), a full waveform LiDAR profiling system which is carried on the 

Ice, Cloud and land Elevation Satellite (ICESat), launched in January 2003.

4.1.1.1 ICESat/ GLAS Data Products

Fifteen ICESat/GLAS data products are publicly available from the National 

Snow and Ice Data Center (NSIDC) which distributes the data on behalf of NASA. 

Data products are divided into two Levels and those of relevance to this project are 

L-1A (GLA01), L-1B (GLA05-06) and L-2 data (GLA14). The product information 

which follows is summarised from information available from NSIDC, (2003).

Products contain the transit time of the pulse in Universal Co-ordinated Time 

referenced from noon on 1st January 2000 (J2000 UTC). One record consists of 

approximately one second of data, sampled at 40 shots second1. Each record is 

assigned a unique record index, based on the time of the Level-0 Header records after 

conversion to J2000 UTC. Thirty-nine delta times are provided which are added to 

the full UTC of the first transit time in each record to calculate the 40 laser shot 

times. Following accepted IDL convention, numbering of laser shots begins at zero. 

Therefore frame references consist of the unique record index (e.g. 885917496), the 

pulse number (0-39) plus J2000 UTC for each laser pulse. These allow cross 

reference between data products particularly since geolocational information is not
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present within GLA01 (it contains a predicted orbit) and therefore spatial searching 

is not possible when ordering data for this product.

For GLA05, GLA06 and GLA14, orbits start and stop at the same 

demarcation position of ±50°. Each numbered track begins and ends at the ascending 

Equator crossing with Track 1 being closest to the Greenwich Meridian Line. The 

pass crossing the study site used within this research has track reference 1288 and 

was acquired at 08:28 on 22nd October 2005.

Data are available in the form of granules from the Search ‘N Order Web 

Interface (SNOWI) or the Warehouse Inventory Search Tool (WIST); (NSIDC, 

2003). If ordering data in this way, product GLA01 must be searched separately 

using acquisition times from higher products as reference criteria.

Data granules of each product vary in size and composition. GLA06 granules 

are approximately 7MB and contain 23 minutes of data (% orbit split at ±50°) with 

56 granules being obtained per day. In contrast, GLAM granules contain 14 orbits 

with a single data granule being obtained each day of laser operation. These can be 

209MB in size.

For relatively small areas, a subsetter tool (NSIDC, 2003) can be used to 

restrict data searches for select products to the region of interest. For each laser 

operation, performing a search in this way returns a single file for each data product 

which combines all passes crossing the search area. The subsetter tool was mainly 

used within this project.

-75  -



C h a p t e r  4. D a t a  S o u r c e s  a n d  M e t h o d o l o g y

GLAS Product Summaries

GLA01 is the Global Altimetry Data product and was not originally intended 

for use by the general science community. It contains the raw waveforms and is also 

used to assess instrument health and data quality. Both received and transmitted 

pulses are provided in un-calibrated counts in nanoseconds (ns) and therefore must 

be converted to distance units in order to combine with parameters within higher 

products. The ordering of the received echo is in time-reversed order i.e. the value of 

the first sample is for that furthest from the spacecraft in time. The transmitted pulse 

is in time order.

GLA05 consists of Global Waveform-Based Range Corrections Data and 

contains the information necessary to characterise the waveform. This is used with 

GLA01 to create the L-1B (GLA06) and L2 (GLA14) elevation products. This 

product was also not originally anticipated for end users as the intention was that L- 

1B and L-2 products should contain all necessary information.

L-1B (GLA06) and L-2 regional products (GLAM) are at full 40 shots 

second'1 resolution. These data are geolocated to the centre of the footprint and 

GLA06 is therefore used to identify ICESat/ GLAS footprint positions. GLA06 is the 

Global Elevation Data product and is used in conjunction with GLA05 to create the 

regional products GLA12-15.

Each L-2 regional product is written with an algorithm specific to each 

surface type (Ice Sheet; Sea Ice; Land; Ocean) in order to provide relevant surface 

elevation data i.e. different algorithms calculate the elevations in their respective 

products. Surface type masks define which data are written to each product and if 

any data within a record fall within a mask, the entire record is written to that product 

(therefore a Land product may contain Sea Ice data for instance).
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GLAM forms the Global Land Surface Altimetry product. Due to the 

complexities inherent in the returned waveform, a model fit to the returned signal is 

provided within this product, comprising the sum of six Gaussian peaks. This aims to 

retain the dominant features of the raw waveform in order to facilitate interpretation.

In addition to the above, quality flags are provided which indicate corrections 

and sources of concern regarding the data such as if the received return is saturated 

or if significant forward scattering is present which would misrepresent the surface 

characteristics and affect the accuracy of elevations.

Visualisation and Product Expansion Tools

As this data source cannot be read using conventional remote sensing 

software, tools are provided to enable users to work with the products (NSIDC, 

2003). These are IDL-based and operate using both the full IDL licence and the 

freely available IDL Virtual Machine™ (ITTVIS, 2008). Specific use of tools to 

extract data for processing is discussed in subsequent chapters and an overview of 

their function is provided here.

The NSIDC GLAS Altimetry elevation extraction Tool (NGAT) allows 

information to be read from GLAS products GLA06 and GLA12-15. The following 

fields are exported in ASCII format: record reference; date; time of acquisition 

(Hours: Minutes: Seconds: fraction of seconds); latitude; longitude; elevation and 

elevation of the ICESat/GLAS ellipsoid above that of WGS-84 (the i gdHt 

parameter is provided as a positive number with the ICESat elevations being greater 

than WGS-84). Co-ordinates and elevations have been converted to decimal degrees 

and to metres respectively. An important fact to note is that records are filtered, 

meaning that, where quality concerns are present, information is not extracted for all 

laser shots. However, as the shot reference is not output and time of day is reported
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as opposed to J2000 UTC, co-ordinates must be used to relate information to 

parameters extracted using other GLAS tools.

IDL Readers are also available to expand each GLAS product and output 

variables as ASCII files. Extracted data are listed sequentially according to record 

and laser shot reference number and can then be queried using a programming 

language. Three sets of routines are available. The first of these extracts the raw 

waveform from product GLA01; the second expands elevation information from 

product GLA06 along with reference SRTM DEM data; and the final routine extracts 

all variables contained within each product.

Both the IDL Readers and NGAT require a control file to be edited which 

calls relevant program files and specifies input and output files plus contains user- 

defined conditions.

An alternative to these tools is the ICESat/GLAS Visualizer software which 

uses a graphical user interface and was designed within the NASA/Goddard Space 

Flight Center Science Computing Facility. Whilst data analysis is limited within this 

application, the Visualizer tool enables users to gain an immediate visual impression 

of the data and to export parameters of interest for external processing. Waveforms 

can be previewed and overlaid with indices (e.g. beginning or end of the detected 

signal). The trend of indices along a ground track can be displayed at record-level 

resolution providing an indication of elevation change along a pass (i.e. representing 

the first shot of each series of 40). Additionally, basic calculations using these 

indices can be displayed. The most significant waveform parameters can be exported 

in ASCII format at full resolution of 40 laser shots second'1 although other 

parameters remain at only record-level resolution. For relatively small areas such as
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that used within this project, this tool can readily provide a visual indication of 

trends.

4.1.1.2 Pre-Release ICESat Vegetation Product

The forthcoming ICESat Vegetation Product (IVP) aims to directly provide 

an estimation of mean canopy height and related parameters from ICESat/GLAS 

waveforms to address end-user needs for vegetation analysis. The algorithm for this 

product (Lefsky et al., 2007) is under review and development, but it has been made 

available with the kind permission of the product developer, Professor Michael 

Lefsky, Colorado State University, USA.

4.1.2 Airborne LiDAR

The airborne LiDAR data which were used in this study were acquired using 

the Optech Airborne Laser Terrain Mapper 3033 (ALTM-3033), a discrete return 

laser scanner recording first and last pulses. The instrument was flown by the 

University of Cambridge, Unit for Landscape Modelling (ULM, year unknown) on 

behalf of the Natural Environment Research Council Airborne Research and 

Surveying Facility (ARSF, 2005). The data collection was commissioned by the 

Forestry Commission and the survey was flown using the Piper Chieftain Navajo 

(PA31) aircraft during August 2006.

Survey parameters are shown in Table 4.1. The instrument emits laser pulses 

at 1064nm wavelength with beam divergence of 0.2-1.0 mrads. Footprints of 

approximately 20cm diameter are produced with average point spacing of 45 cm.
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Table 4.1. Airborne LiDAR Survey Parameters

Laser Repetition Rate 33,000 Hz

Scan Frequency 29 Hz

Scanning half angle 15°

Mean flying altitude aslm 1050m

Flightpath overlap 65%

Resulting elevation data have an absolute RMS accuracy of better than 

±15cm at 1200 metres flying altitude and horizontal placement of better than 53cm, 

calculated as 0.0005 xaltitude (ULM, year unknown).

Data are supplied in space-delimited ASCII format using the British National 

Grid co-ordinate system with field order as follows: Eastings, Northings, Elevation, 

Intensity (last pulse), Eastings, Northings, Elevation, Intensity (first pulse). Before 

distribution, the Unit for Landscape Modelling aggregated data into 2km by 2km 

tiles, irrespective of flightpath sequence.

(R)Airborne LiDAR data were analysed using the IDL based Queensland 

Remote Sensing Centre (QRSC) in-house LiDAR processing tools developed by 

John Armston, Department of Natural Resources and Water, Indooroopilly, Australia 

(Armston et al., in preparation 2008). QRSC software allows all aspects of data 

classification, calculation of canopy metrics, terrain and vegetation statistics, plus 

output formats for visualisation and further analysis within most GIS software 

packages. Additionally Terrascan, a Bentley Microstation computer aided design 

plug-in, was used with the kind permission of Forest Research. Terrascan permits
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greater user control over point classification. However analysis is not possible and 

classified data point clouds must therefore be exported for further processing.

4.2 Forestry Commission Data Sources

The Forestry Commission is the UK government department responsible for 

forestry. It is tasked with managing forest and non-forest resources (farmland, open 

mountain-tops, heathland, estuarine and riparian habitats) on behalf of the public. 

The management structure of this is outlined in Table 4.2 (Forestry_Commission, 

2006; Forest_Research, year unknown).

Table 4.2. Forestry Commission Land Management Hierarchy.

GB-wide Forestry Commission-managed land

Forest Districts 

GB divided into 30 districts

Blocks
Discrete woodland areas/  design plans

Compartments 
Delineated by ‘permanent ’features e.g. roads/ rivers

Sub-compartments

Discrete, relatively uniform areas within a 
compartment, determined by land-use or crop 

composition. Boundaries may vary over time due to 
crop felling, replanting, thinning, etc.

Components
Up to nine distinct constituents o f a sub-compartment

e.g. dispersed species, two-storey crop and site 
attributes. Components are not spatially defined within 

sub-compartments.
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The distribution o f  Forest Districts and the location o f  Forest Research 

remote sensing ‘super sites’, where acquisition o f  remote sensing datasets is focused, 

are seen in Figure 4.1.
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Figure 4.1. Forestry Commission management structure at a Forest District level. Remote 
sensing ‘super sites’ are indicated with red borders and are a focus for airborne remote sensing 

data acquisition and monitoring using field measurements (Source: Forest Research).
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4.2.1 Forest Research

This project has been carried out in collaboration with Forest Research, the 

research agency of the Forestry Commission of Great Britain. Forest Research, and 

in particular Juan Suarez of the Northern Research Station, Roslin, Midlothian, have 

kindly provided access to data, processing software and expert advice regarding 

growth and process-based models, field techniques and airborne LiDAR data 

analysis.

4.2.2 Sub-compartment Database

The majority of publicly accessible woodland in Britain is managed by the 

Forestry Commission of Great Britain, a division of which, Forest Enterprise, 

maintains a sub-compartment database of inventory data for the Forestry 

Commission forest management units throughout Britain (Table 4.2). These sub­

compartments are comprised of discrete, irregularly dispersed components with 

known species, physical conditions and management criteria (Forestry_Commission, 

2006). Figure 4.2 shows an example of a 0.5km x 0.5km area of the Forest of Dean 

with the sub-compartment boundaries shown in red. The distribution and varying 

height of vegetation components within sub-compartments is visible in the aerial 

photography beneath.
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Figure 4.2. Forestry Commission sub-compartment boundaries in red overlaid on an aerial 
photograph for a 0.5km x 0.5km area of the Forest of Dean. Sub-compartments may contain 
several components of different species, ages or canopy structure for example whose spatial 

distribution is not recorded. Components within sub-compartments are visible within the aerial
photograph.

Whilst sub-compartments may have a mixed composition, their definition 

means that they should not be spilt by features such as roads, rivers or open space 

and should be relatively uniform in terms o f  relative mix o f  tree species and age 

classes, presence o f  canopy storeys, tree spatial distribution, yield class and habitat 

type (Forestry_Commission, 2006). Information contained in the sub-compartment 

database and associated component database files (.dbf) are listed in Tables 4.3 and

4.4.

- 8 4 -



C h a p t e r  4. D a t a  S o u r c e s  a n d  M e t h o d o l o g y

Table 4.3. Component information fields (Forestry_Commission, 2006).

Component crop-level data

Land-use 

Storey 

Species 
Origin 

Propagation 

Planting year 

Yield class 

Percentage area (of sub-compartment) 
[Area]

Rotation

Mixture

Windthrow hazard class

Initial planted spacing

Stems per hectare

Stems per hectare date

Habitat code

Habitat condition
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Table 4.4. Sub-compartment database fields (Forestry_Commission, 2006).

Sub-compartment site-level data 

[Area]

Forest Park 

Conservation Code 

Forestry Commission Conservation Code 

Ancient Woodland status 

Soil type 

Cultivation 

Altitude

Terrain: condition, roughness, slope

Mixed composition sub-compartments occur in several ways: Sometimes 

felled areas are left to regenerate naturally, in which case Silver birch will often 

establish. Alternatively, when stands are ready for felling, they are offered out to 

tender as ‘standing wood’ for companies to bid for. When they are subsequently 

felled, the broadleaf species are often left standing as they are of little commercial 

value; in this situation the irregular distribution of components within sub­

compartments is more incidental than deliberate. On occasion, the Forestry 

Commission will fell areas directly for sale as cut timber and in this case it may be 

more of an active decision to retain broadleaf components within stands. 

Furthermore, stable, broadleaf species may be retained along pathways to act as wind 

breaks and to protect exposed areas of young saplings or mature stands prior to 

felling. These factors can result in several species being dispersed among stands 

containing commercially planted crops (pers. comms. Judith Lack, Forest of Dean 

District Office).
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4.2.3 Yield Models

Forestry Commission yield class models (Edwards and Christie, 1981) 

project a mean growth trend over time; this will vary between species and within 

species groups according to habitat conditions e.g. Figure 4.3. These models assume 

that tree density and stand composition at the time o f  planting remain constant and 

therefore do not take account o f  competitive suppression or dominance, nor o f  

mortality due to natural or external factors e.g. wind-throw.

Yield Hodel Stenuood Volune
— ,----------------------- 1 1 1-------

Douglas Fir; yield class 18 
Sycanore, Rsh, Birch; yield class 08
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Figure 4.3. Non-dynamic yield models depict a mean trend by age group in order to predict 
biophysical parameters e.g. volume, top height, number of trees and basal area. Species, yield 

class, thinning regime and initial crop spacing are used as input parameters to select a model to
apply.

The yield models were produced using plot-level data from thinning and 

spacing experiments collected since 1919. Each model was produced for a single 

thinning regime and therefore the actual use o f  a single management regime must be 

assumed in order to apply these models. Anticipated rate o f  growth for the given site 

conditions is determined by the yield class assigned to the crop (Edwards and 

Christie, 1981). At the time o f  their design, field data for old stands were not
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available meaning that the trend of the model was extended beyond the validation 

data (Woodland Surveys, Forest Research, pers. comms.). Therefore greater potential 

discrepancies with actual growth patterns are to be expected in older stands.

Sub-compartment-level information is available as polygon shapefiles and an 

associated database file (.dbf) which can be linked with the related Component Area 

.dbf field within a Geographical Information System. ArcGIS 9.2 was used for this 

purpose. Species, yield class, thinning practice, initial spacing and planting year were 

extracted to refer to associated yield models whose names are formed as follows:

SP 06 IZ 14
Species code Yield class Thinning regime Spacing (decimetres)

whereby thinning management practices and species codes are referred to as 

presented within Table 4.5 and Table 4.6 respectively.

Table 4.5. Forestry Commission thinning regime codes used to select yield models

Thinning Code Thinning regime

IZ Intermediate thinning no delay

IF Intermediate thinning five years delay

IT Intermediate thinning ten years delay

LZ Line thinning no delay

LF Line thinning five years delay
LT Line thinning ten years delay
CZ Crown thinning

NO No thinning

T X User-defined thinning regime
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Table 4.6. Forestry Commission species codes used to select yield models

Species
code Common name Botanical name Broadleaf/

conifer
AH Ash Fraxinus excelsior B
AR Alder Alnus spp B

AUP Austrian pine Pinus nigra var 
nigra C

BCH Bird cherry Prunus padus B
BE Beech Fagus sylvatica B
BI Birch Betula spp B

BIP Bishop pine Pinus muricata C
CAR Common alder Alnus gultinosa B
CLI Common Lime Tilia europaea B

CP Corsican pine Pinus nigra var 
maritima C

DF Douglas fir Pseudotsuga
menziesii C

EEM English elm Ulmus procera B
EL European larch Larix decidua C
EM Elm Ulmus spp B

ESF Silver fir Abies alba C
GAR Grey alder Alnus incana B
GF Grand fir Abies grandis C

HAZ Hazel Corylus avellana B
HBM Hornbeam Carpinus betulus B

HCH Horse Chestnut Aesculus
hippocastanum B

HL Hybrid larch Larix leptolepis C

JCR Japanese cedar Cryptomeria
japonica C

JL Japanese larch Larix kaempferi C

LC Lawsons cypress Chamaecyparis
lawsoniana C

LEC Leyland cypress Cupressocyparis
leylandii C

LI Lime Tilia spp B
LLI Large-leaved lime Tilia platyphyllos B
LP Lodgepole pine Pinus contorta C

MAP Maritime pine Pinus pinaster C
MB Mixed broadleaves B
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MC Mixed conifers C

MCP Macedonian pine Pinus peuce C
MOP Mountain pine Pinus uncinata C
NF Noble fir Abies procera C

NOM Norway maple Acer platanoides B
NS Norway spruce Picea abies C
OK Oak Quercus spp B

OMS Omorika spruce Picea omorika C
PDP Ponderosa pine Pinus ponderosa C
PO Poplar Populus spp B

RAN Raoul Nothofagus procera B
RAP Radiata pine Pinus radiata C
RAR Red alder Alnus rubra B
RC Western red cedar Thuja plicata C

ROK Red oak Quercus borealis B
RON Roble Nothofagus obliqua B

RSQ Coast redwood Sequoia
sempervirens C

SC Sweet chestnut Castanea sativa B
SEM Smooth-leaved elm Ulmus carpinifolia B
SU Small-leaved lime Tilia cordata B
SP Scots pine Pinus sylvestris C
ss Sitka spruce Picea sitchensis C
SY Sycamore Acer pseudoplatanus B

VAR Green alder Alnus viridis B
WCH Wild cherry, Gean Prunus avium B
WEM Wych elm Ulmus glabra B
WEP Weymouth pine Pinus strobus C
WH Western hemlock Tsuga heterophylla C

WSQ Wellingtonia Sequoiadendron
giganteum C

XB Other broadleaves B
XC Other conifers C
XF Other firs (abies) Abies spp C
XP Other pines Pinus spp C
xs Other spruces Picea spp C
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Yield class models therefore incorporate many aspects of forest management 

but are not available for all species or combination of factors. Where this situation 

was found, models for species with similar growth patterns or models most closely 

matching the required factors were used (priority was given to yield class, followed 

by thinning regime and spacing). For Lime, Common Alder, Sweet Chestnut and 

Mixed Broadleaf, the Sycamore/Ash/Birch model was used whilst European Larch 

was used for Mixed Coniferous stands as a conservative estimate previously applied 

to the Forest of Dean (Alan Walmsley, Forestry Commission, pers. comms.).

Yield class is determined by the maximum mean annual volume increment 

(m3 ha'1) for a stand and is given to the nearest even number. Thus a stand with 

maximum annual volume increment of 13.2 m3 ha'1 during its growth cycle is 

assigned yield class 14. It should be noted that the time at which maximum growth is 

reached will vary considerably between species.

Currently the closest maximum increment curve to which a given stand is 

performing (and therefore yield class assigned) uses a known relationship between 

top height and cumulative volume production, dividing this by the stand age to 

derive mean annual increment. LiDAR estimates may provide an opportunity of 

improving this process either through confirmation of Top Height predictions (which 

can be determined from maximum canopy height) or volume estimates from LiDAR 

waveforms. A basis of this study is therefore to assess the potential of ICESat/GLAS 

for future validation or improvement of models of forest growth based on height 

estimates or as an indicator of vegetation distribution to complement conventional 

methods of forest inventory.

Using details within the Forestry Commission sub-compartment database and 

corresponding yield models (Edwards and Christie, 1981; Forestry_Commission,
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2006), Top Height predictions were calculated for sub-compartments in which 

ICESat footprints are located. In several instances, footprints extended across 

adjacent sub-compartments. Use of Top Height predictions were explored for the 

principal component of the sub-compartment in which the footprint centre was 

positioned, for the principal component of all sub-compartments crossed and for all 

components within all sub-compartments encompassed by each footprint.

4.3 Research Study Site

4.3.1 The Forest of Dean

The study site used within this research is the Forest of Dean, 

Gloucestershire, UK, a highly heterogeneous, temperate forest within England and 

which borders south Wales (Figure 4.4). This has been identified by Forest Research 

as a remote sensing ‘supersite’ (Figure 4.1).

The Forest of Dean is classed as a semi-ancient forest and extends for an area 

of approximately 11,000 hectares (Forest_of_Dean_Partnership, 2006). The forest is 

unusual in terms of the United Kingdom, containing approximately 50% broadleaf 

and coniferous species, the majority of which are within planted, managed stands. 

The Forest of Dean also encompasses areas of non-intervention, classed as ancient 

woodland. These are predominantly oak stands which have been noted for their 

ecological importance and are protected as Sites of Special Scientific Interest (SSSI). 

Examples of these are Symmonds Yat, Speech House and Cannop Valley. These 

areas are fenced to prevent public access and no management is undertaken unless 

sites become dangerous (pers. comms. Judith Lack, Forest of Dean District Office).
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o i l i n i l i u h ,
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F igure 4.4. M ap o f  Forestry C om m ission  w oodland in cen tra l and sou thern  E nglan d  w ith  the  
Forest o f  Dean ind icated  (M A giC , 2007).

The ICESat ground-track crossed the Forest between latitude 51.74° N and 

51.88° N and longitude 2.54° W and 2.51° W. A section o f  the pass is seen in Figure

4.5. O f  the stands sampled by ICESat/GLAS footprints, the most commonly 

occurring species were Norway Spruce (Picea abies), mixed broadleaf species, Oak 

(Quercus spp), Corsican Pine (Pinus nigra var maritima), Douglas Fir (Pseudotsuga 

menziesii), Scots Pine (Pinus sylvestris) and European Larch (Larix decidua). 

Vegetation was largely still in leaf at the time o f  GLAS data acquisition. Only 

footprints falling within the contents o f  the Forestry Commission sub-compartment 

database were used within this study and additionally, those footprints which 

partially or entirely traversed urban developments were excluded as both natural and 

unnatural surface features would contribute to waveform structure and could not be

isolated from returned signals. This resulted in a total o f  89 waveforms analysed.
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Thus for each footprint location, the associated sub-compartment and 

constituent components permit reference to be made to relevant yield models 

(Edwards and Christie, 1981). This enables prediction o f  vegetation parameters for 

the given conditions.

□  0.611503212
□  0.611503212-1
□  1.000000001-2
□  2.000000001-3
□  3.000000001-4
□  4.000000001-5
□  5.1300000001-7.5
■  7.500000001 - 10
■  10.00000001- 11 
■  11.00000001-12
■  12.00000001 - 13 
SB 13.00000001 - 14
■  14.00000001 - 15
■  15.00000001 - 16
■  16.00000001 - 17
■  17.00000001 - 18 
H  18.00000001 - 19
■  19.00000001-20
■  20.00000001-21 
■  21.00000001 -22
■  22.00000001 - 23
■  23.00000001-24
■  24.00000001 -25
■  25.00000001 - 26
■  26.00000001 -27
■  27.00000001 -23
■  28.0*3000001 - 29
■  29.00000001 -30
■  30.00000001 -31
■  31.00000001-32
■  32.00000001 -33
■  33.00000001 - 34
■  34.00000001-35

Figure 4.5. (left) A eria l ph otograp hy (R G B ) and (righ t) co in cid en t a irb orn e L iD A R  C anopy  
H eight M odel (C H M ) sh ow ing  an area o f 1x3 km  w ith in  the F orest o f  D ean. K ey illustrates  

height in m etres for the canopy height m odel. B lue c ircles rep resent IC E S at/G L A S  footprin ts  
w ith  centres d istanced  at 172m  intervals. M in im um  and m axim um  E astings and N orth in gs are  

respectively  363000, 209000  and 364 ,000 , 212000 .
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4.3.2 Fieldwork 

4 3 ,2 .1  Objectives

Fieldwork was undertaken to allow an assessment to be made as to whether 

meaningful estimates of vegetation height could be extracted from large footprint 

LiDAR waveforms and to determine the accuracy of these estimates against 

measurements on the ground.

The principle underlying this was that conventional field methods of 

conducting stand-level assessments within forests rely on field surveys carried out 

for sample plots within stands to allow mean parameters to be estimated e.g. top 

height, an average of trees with largest DBH. This assumes that these measurements 

represent the mean stand conditions. Since GLAS footprints replicate this 

distribution of sample areas, should estimates of vegetation height derived from 

GLAS waveforms prove to give similar accuracy to field data, not only would this 

potentially allow a more frequent assessment of forest conditions to be made with 

repeat satellite passes, but would additionally provide the basis for developing 

methods of identifying indices within the region of waveforms returned from 

vegetation, which can be used for the estimation of further biophysical parameters.

The fieldwork was designed to measure the vegetation height and spatial 

variability for delineated footprint areas which coincide as closely as possible with 

the areas captured within GLAS waveforms. Particularly for such a heterogeneous 

site, this approach was taken to reduce error sources which would be introduced if 

using mean parameters estimated by stand-wide sampling.
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To achieve this, adaptations were made to conventional field methods 

(Matthews and Mackie, 2006) in that measurements were confined to footprint 

boundaries yet the approach retains the accepted methodology of recording 

vegetation parameters of trees with largest diameter at breast height. This method 

may therefore be regarded as a modification of that used to calculate top height. In 

restricting field data to GLAS footprint areas, estimated vegetation height from 

waveforms could be directly evaluated against ground truth.

4.3.2.2 Field Measurements

Waveform-derived canopy height estimations were compared with field 

measurements of canopy height taken at nineteen footprint locations along the pass. 

A further four sites were visited and field observations were made although site 

access restrictions or felling operations prevented the fieldwork protocol from being 

followed. Field investigations were conducted in June 2006, creating an eight month 

discrepancy between satellite data acquisition and fieldwork. However, most of this 

period lies outside the growing season and only limited new growth could be 

observed.

Priority was given to sites classed by the Forestry Commission as principally 

evergreen, coniferous vegetation with high percentage cover within the first 

component of the sub-compartment in which the footprint centre is located. These 

were selected due to lower anticipated change in canopy cover during the eight 

month period October 2005 to June 2006 and aimed to permit more meaningful 

comparisons with yield model estimates as a result of less ambiguity from unknown 

distribution of components. However, by the heterogeneous nature of the site, almost
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all ICESat/GLAS footprints sampled sub-compartments containing more than one 

component and several also crossed sub-compartment boundaries. In addition to the 

above, some sites with atypical waveform features were selected in order for this to 

be explored.

Where a discrepancy was identified between Forestry Commission 

classification and vegetated/non-vegetated status suggested by waveform estimates, 

field measurements at a further six sites were made during a second period of 

fieldwork during February 2007. This made field validation data available for a total 

of 25 footprint sites.

For areas of footprints where public access was prevented or where footprint 

areas crossed residential sites preventing comprehensive field measurements, site 

observations were made as well as limited field measurements. Accessibility via 

public rights of way was also a consideration for site selection for both health and 

safety reasons and due to access restrictions as a result of highly developed 

undergrowth. This may have produced a bias in field measurements as a 

disproportionate number of footprints areas measured may have crossed footpaths or 

clearings resulting in lower fractional cover in comparison with the study area mean. 

This in turn will be represented within returned waveform shape.

4.3 .2.3 Fieldwork Protocol

At each site, eight height measurements (Tl-8) were recorded of those trees 

with largest diameter at breast height (DBH), one within each 45° segment of 35m 

radius about the footprint centre, illustrated as below (Figure 4.6). In addition, nine
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hemispherical photographs (A-I) were taken to record canopy cover at each site 

(Figure 4.7). This was carried out as follows, using the equipment listed in Table 4.7.

N

NW y S \  NE

/ \  T8 T1 / \

/  77 \ /  72 \

\  76 / \  T3 /

\  /  T5 T4 \  /

SW \ SE

S
---------------------  70 metres-----------------------

Figure 4.6. IC E Sat footprint tree height m easurem ent p rotoco l. T ree height, d iam eter  at breast 
height (D B H ), d istance and bearing from  the footprint cen tre  w ere record ed  o f  the tree w ith  

largest DBH w ithin  segm en ts (T1 - T 8 ) .

N

NENW

W

■V'1

SESW

S
----------------------  70 metres ---------------------

Figure 4.7. H em ispherical photograph reference positions at the foo tp rin t cen tre  and at a 
distan ce  o f  20m  from  this location and estim ated  coverage, assu m in g  a 20m  d iam eter  v iew in g

area.
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Table 4.7. Equipm ent used for field m easurem ents.

Field equipment

Handheld GPS 

‘Chains’ to delimit area 

Trundle wheel 

50 metre tapes 

Two ranging poles 

Clinometer 

‘Table top’ camera tripod 

Digital SLR camera with fish eye lens 
Spirit level 

Compass 

Ordnance Survey 1:25,000 map

A handheld Global Positioning System (GPS) was used to locate the stated 

ICESat/GLAS footprint centre. Firstly, a hemispherical photograph was taken at this 

position before further equipment was set out. A low-standing ‘table top’ tripod was 

used meaning that the camera lens was positioned at approximately 35cm above the 

ground. This aimed to remove the effect of a dense grass or undergrowth layer which 

would adversely affect hemispherical photograph calculations, whilst retaining the 

full canopy profile which would be represented within waveforms. A bidirectional 

spirit level was used to ensure that the camera was as level as possible. The method 

aimed to take photographs during overcast conditions to reduce the intensity from the 

sun as fieldwork was undertaken throughout the day and so photographs could not be 

limited to low sun angles. The photograph number and reference location were then 

recorded.
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A ranging pole was then placed at the footprint centre as the field site 

reference point. The first sector was delineated by placing ‘chains’ along 0° and 45° 

bearings from the footprint centre to a distance of 35 metres. Further hemispherical 

photographs were taken at a radius of 20 metres along these lines as described above. 

If this position fell at a tree or on unstable ground, the closest possible position was 

used.

Within the delineated sector, diameter at breast height - DBH (defined as 

1.3m above the ground surface) of the broadest trees were systematically measured 

from the footprint centre to the field site boundary. A second ranging pole was 

placed beside the tree with the current largest diameter. When all possible contenders 

had been tested, the height of the tree with the largest DBH was measured as follows.

Tree height was measured using the tangent method of calculation. This is 

illustrated in Figure 4.8 where

Tree _ Height = H\ +H2 (4.1)

tana = H jD  so //, = tanaxD  (4.2)

tanb = H2lD  so H2 = tanbxD  (4.3)

therefore Hx + H 2 = Z)(tan<z+tan&) (4.4)

The inclinometer used allowed direct height readings of Hj and H2 and using 

angles to the tree top and tree base from eye level at horizontal distances of either ten 

or fifteen metres from the tree.
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Distance m (D)
Figure 4.8. Calculation of tree height as the sum of HI and H2 where these Opposite sides are 

calculated through trigonometry. Figure adapted from Skinner, (2002)

Where a slope was present, tree height measurements were taken along the 

slope contour where possible to allow calculation to be carried out as for level 

ground. To facilitate the identification of the tree crown top, where canopy density 

permitted, height measurements were carried out from a distance of 15m. Hj, H2, 

distance and bearing of this tree from the footprint centre were recorded.

The first ‘chain’ was then rotated to a bearing of 90° from the footprint centre 

and the procedure was repeated. This was continued until 360° coverage had been 

completed.

Site observations were then made of species present, an approximation of 

percentage coverage of species (as a broad comparison with the sub-compartment
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database records), single or multiple storey canopies, approximate height of any 

undergrowth, any litter or debris (which may indicate recent management that may 

explain any differences in waveform and field results). Where a slope was present, 

angle and approximate slope length were measured using ranging poles, inclinometer 

and 50 metre tape.

This protocol was repeated for each selected ICESat/GLAS footprint field 

site. Field measurements and Forestry Commission yield model and sub­

compartment database calculations of Top Height are summarised in Table 4.8.
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Table 4.8 Outline of field data collected and Top Height calculated from yield models for 
twenty-five ICESat/GLAS footprint locations at the Forest of Dean.

Maximum height (m) Canopy cover
( / o )

Footprint
reference Latitude Longitude Field

measurements Top Height Hemispherical
photographs

885917496_10 51.860584 -2.510985 20.25 15.78 91

88591749611 51.859039 -2.511374 26.5 19.16 -

885917496_18 51.848198 -2.514125 3 0 -

88591749619 51.846652 -2.514519 4 0 -

885917496_20 51.845108 -2.514911 6 0 -

885917496_22 51.842022 -2.51569 8 0 -

885917496_25 51.837399 -2.516834 6 10.9 -

885917496_26 51.835858 -2.51721 7.75 10.9 -

885917496_29 51.831216 -2.518329 17.25 18.58 89

885917496_36 51.820426 -2.520955 27.75 22 83

8859175060 51.81427 -2.522491 26.5 25.1 89

885917506_6 51.804989 -2.52487 29 26.36 -

885917506_8 51.801901 -2.525664 23.5 20.7 90

885917506_9 51.80036 -2.52606 23.75 20.7 90

885917506_13 51.794195 -2.527646 28.25 22.86 91

885917506_14 51.792651 -2.528042 31 28.56 90

88591750615 51.791106 -2.528435 31.5 28.56 89

88591750616 51.789558 -2.528826 30.25 28.56 88

88591750618 51.78646 -2.529599 26.25 22.66 89

885917506_19 51.784913 -2.529979 28 27.2 86

885917506_30 51.767937 -2.534066 28.25 27.34 84

885917506_32 51.764845 -2.534813 28 27.9 92

885917506_33 51.763297 -2.53519 28 26.3 78

885917516_4 51.746315 -2.539473 26 22.66 93

885917516_5 51.744763 -2.539875 24.75 23.9 90
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4.4 Data Discussion and Error Assessment

The accuracy of inclinometer measurements accounting for both instrument 

error and distance measuring error stated within equipment documentation is better 

than ±1-1.5%. However Larsen et al., (1987) note a tendency to underestimate tree 

height measurements using the tangent method, although they found 80% of 

measurements to be within 4.2% of actual height. With an average maximum canopy 

height of 26.6m found at the Forest of Dean, expected mean error may therefore be 

within 1.1m.

Assuming a circular area of radius 10m is captured by the hemispherical 

photographs, this sampling density is anticipated to provide adequate coverage of the 

footprint area (Figure 4.7).

Varying vegetation cover obscuring satellite reception resulted in GPS 

location accuracy ranging from 2m to 17m with mean accuracy of 10 metres. ICESat 

footprint location accuracy for the laser operation L3D used for this study, has yet to 

be released although is anticipated to be within several metres. This suggests a high 

degree of overlap between ICESat footprints and the areas sampled. Additionally, the 

major axis of laser 3D NIR elliptical footprint has resulted in length and standard 

deviation of 52.0 ±1.1 metres (NSIDC, 2008) whilst earlier operations of laser 3 

have produced ellipsoidal footprints of average size 47 x 61m. The field sample area 

of 70m diameter (following Carabajal and Harding, 2001) aims to compensate for 

location uncertainty and variation in footprint dimensions. The intention of 360° 

sampling was to record possible spatial variations in vegetation properties that would 

be represented within the returned waveform. The greatest of these field height
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measurements for each site were used in comparison with waveform-derived 

estimates of maximum canopy height.

ICESat/GLAS coordinates and elevations are given with reference to the 

same ellipsoid used as TOPEX/Poseidon and Jason-1 which is approximately 70cm 

smaller than the WGS-84 ellipsoid. When comparing with co-ordinate systems used 

for other sources of data, this needs to be taken into account. Horizontal 

displacement of several centimetres is well within the uncertainty of footprint 

location mentioned above and is therefore ignored, however vertical differences are 

significantly larger and so the ICESat ellipsoid was converted as discussed in later 

Chapters to allow comparison with WGS-84 elevations (NSIDC, 2003).

As NASA continuously apply improvements and corrections to the pre­

processing of GLAS data prior to their incorporation within ICESat products, new 

data releases are frequently announced. This research has made use of data release 

V026, since which, release 28 has been made available and re-processing by NASA 

for release 29 is currently in progress.

4.5 Summary

This chapter has introduced the study site, data sources and field 

measurements used within this investigation. The following chapters provide a 

description and evaluation of the research undertaken in the course of this project.
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Chapter 5. Isolating the Waveform 

Canopy Return

This Chapter aims to ascertain whether estimates of vegetation height can be 

extracted from large footprint, satellite LiDAR data. Waveform height indices are 

compared with field-measured vegetation heights from coincident areas with a view 

to developing straightforward, repeatable methods which can be applied to large 

areas.

Two methods are developed. The first uses the limits of the waveform signal 

and requires a supplementary DTM dataset corresponding to the same area. The 

second method utilises parameters derived entirely from waveforms. Contributions to 

uncertainty within both of these methods are explored. Calculations within this 

research were carried out using the statistics package R, Version 2.3.1.

The results of these studies are further developed within research discussed in 

subsequent Chapters.

5.1 Vegetation Height Waveform Processing

Initial processing was undertaken before methods of estimating vegetation 

indices could be developed. The raw waveforms (GLA01) in the form of return time 

(ns) from the spacecraft to the intercepted surfaces were converted to one way
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distance in metres so relative distances between features could be calculated. 

Following Carabajal and Harding, (2001), the alternate ‘signal begin’ and ‘signal 

end’ (GLA14), determined by exceeding a background noise threshold, were taken as 

estimates of the highest and lowest intercepted surfaces within a footprint. Using the 

terminology of Lefsky et al., (2005), this distance is referred to as waveform extent 

(WE). For flat surfaces, vegetation typically produces a bimodal LiDAR waveform 

with a narrow abrupt peak indicating the ground return and a relatively broader, more 

complex return from the canopy (Figure 5.1). Thus, in keeping with Carabajal and 

Harding, (2001), the distance between ‘signal begin’ and a location within the 

waveform corresponding to the ground is assumed to be indicative of maximum 

canopy height.

Positions within waveforms are provided as negative offsets in metres with 

reference to the furthest gate from the spacecraft within the recorded range window 

(Section 3.1.4). In order to convert these to elevation, the following process must be 

followed:

Elevationparameter = d_elev + d_lndRngOff- Offset parameter -  d_gdHt
(5.1)

where d_elev is the waveform reference elevation; dJndRngOff is the offset 

location of this within the waveform; Offsetparameter is the offset of the parameter 

whose elevation is to be calculated; and d_gdHt is the geoid correction factor.

All methods were assessed against validation data collected in the field and 

discussed in Section 4.3.2.
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5.1.1 Waveform Extent/ Terrain Index Method

The first method uses the limits of the waveform (Waveform Extent), 

together with a calculation of terrain extent in order to estimate vegetation height.

To account for the contribution of topographic relief on waveform structure, a 

terrain index (77) for each footprint location was calculated. This was formed by the 

difference in metres between the highest and lowest elevations contained within a 

7x7 subset of the Ordnance Survey (OS) Land-Form PROFILE 10m resolution 

Digital Terrain Model - DTM (Ordnance Survey, 2006) centred on the footprint co­

ordinates. The matrix of elevations corresponds to the approximate ICESat/GLAS 

footprint area and therefore represents elevations contained within footprint 

boundaries.

This method is adapted from that of Lefsky et al., (2005) and offers a means 

of removing the contribution of ground relief from the waveform leaving elevation 

due to overlying features.

Two approaches were explored. The first involves the subtraction of the 

terrain index from the waveform extent, thus removing the terrain extent from that of 

the returned signal (Equation 5.2). The second assumes a typical ground elevation 

can be calculated as a proportion of surface elevation difference. This uses a multiple 

linear regression to determine the relationship between waveform extent and the 

terrain index, calibrated with field-measured vegetation height (Equation 5.3).

GLASht = WE - 77 (5.2)

GLAShl = a x WE + ft* TI (5.3)
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where GLASht represents maximum vegetation heights estimated using GLAS 

data, WE is Waveform Extent (m), 77 is the Terrain Index (m) and a and /? are 

coefficients applied to WE and TI respectively.

5.1.2 Gaussian Decomposition Method

The second method aims to derive estimates of vegetation height solely from 

returned waveforms using the structure of the returned signal to determine indices. 

The form of the returned waveform varies considerably depending on the 

characteristics of intercepted surfaces and their spatial arrangement (as laser energy 

diminishes towards the margins of the footprint). Thus the waveform represents 

returned energy from the ground surface and overlying features. In more open 

vegetation canopies, the majority of returns may be anticipated from the ground so 

forming the greatest amplitude peak within the returned waveform. However, for 

denser canopies, reduced laser penetration and energy attenuation through the canopy 

(Harding et al, 2001; Parker et a l, 2001) would result in a less pronounced ground 

return in the waveform.

Therefore, given that the waveform maximum amplitude may be located 

within the canopy as opposed to a return from the ground, an alternative means of 

distinguishing the ground surface is required.

The possibility of developing an automated method of identifying the ground 

return signal from parameters provided within the GLAS products and the 

appropriateness of using this in order to estimate canopy height was explored. These 

parameters were also compared with height estimates from manual identification of
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the ground return using visual inspection and local site knowledge. The suitability of 

approaches were then assessed using field validation data.

Gaussian decomposition provided within product GLA14 was used to achieve 

this. The ICESat processing software iteratively fits six Gaussian curves to the 

waveform as a means to summarise its complexity whilst retaining the dominant 

features of the original (Figure 5.1 - right). Several Gaussian fit parameters were 

compared as possible indicators of the ground return and these were evaluated with 

respect to their ability to estimate canopy height. These comprise the waveform 

reference elevation {d elev), defined as the algorithm pick of the surface (NSIDC 

pers. comms.) and predominantly representing the centroid of the fitted waveform 

(Equation 5.4) and GLA14 Gaussian peaks 1 and 2, being of lowest elevations within 

the waveform (Equation 5.5). This is illustrated in Figure 5.1 which shows the 

ground return represented by the first fitted Gaussian peak in this instance.

GLASht -  SB - d_elev (5.4)

GLASht = SB — CntQpi;2 (5-5)

where SB is the elevation of the Signal Begin parameter, djelev is that of the 

land elevation parameter and Cntopi;2 is centroid elevation of Gaussian Peak 1 or 2, 

or a function of these. Maximum canopy height was thus estimated as the elevation 

difference between SB and the above parameters within waveforms.

5.2 Uncertainty Assessment

The work described in this section aimed to identify sources of error and to 

qualify their relative contribution.
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Several factors are anticipated to contribute to error in waveform-derived 

height indices from large footprint LiDAR. These are discussed below. To quantify 

contributions to the small errors found in height estimates, multiple regression 

models were developed, to explain variation in error for both methods of estimated 

vegetation height from waveforms:

Error = a Varca„opy + fispecies + yTopography + 8height + scover (5.6)

Where Error is the difference between waveform estimates and field 

measurements, Varcanopy is upper canopy variability, species is species heterogeneity, 

Topography is accounted for using the Terrain Index, height is vegetation height and 

cover is canopy cover. Using field measurements, this aims to determine the 

coefficients a, (3, y, 8, e, applied to the variables in order to predict error for the 

remaining footprints.

Uncertainty in estimates was calculated using the difference between 

waveform-derived estimates and field measurements, expressed as a percentage of 

field-measured vegetation height. Percentage error was used as an indicator of the 

significance of error; for example, a 2m discrepancy for a 30m tall tree being less 

critical than for a tree of 4m with regard to monitoring and inventory purposes (J. 

Suarez, pers. comms.).

Vegetation parameters derived from airborne LiDAR data were used to 

illustrate error dispersal and to calculate factors contributing to error. The processing 

of these data is presented in Chapter 7.
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5.2.1 Field Measurement Uncertainty

Following the study by Larsen et al, (1987), and taking account of both 

inclinometer and user error, field measurements are anticipated to be within ±4.2% 

of actual tree heights. Potential errors in tree heights measured in the field were 

therefore calculated according to this value.

5.2.2 Vegetation Height Variability

Height variability towards the upper part of the canopy is a potential source 

of error as the surface area of intercepted energy will vary with canopy surface 

roughness due to crown shape and individual tree heights comprising a stand. This 

will influence the energy returned and therefore the gradient of the start of the 

waveform signal.

Two indices of height variability at the uppermost canopy surfaces were 

explored as indicators of canopy roughness. The first follows the method of Lefsky 

et al, (2007) to calculate the leading edge of the waveform. The leading edge is 

defined as the distance between the beginning of the signal and the highest position 

within the waveform at which the signal strength is half that of the maximum 

amplitude above background noise.

The second approach used the elevation difference between the beginning of 

the waveform signal and the greatest amplitude within the canopy return (domiant 

canopy height) as a proportion of GLAS-estimated maximum canopy height. The 

dominant canopy height was calculated as the centroid with maximum amplitude of
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Gaussian peaks 2-6 if the first Gaussian is classified as the ground or of peaks 3-6 if 

the second Gaussian peak represents the ground.

Both methods aim to represent the gradient at the waveform leading edge and 

therefore indicate confidence in threshold detection.

5.2.3 Species Heterogeneity

Species heterogeneity, particularly for such a mixed composition forest, will 

affect waveform structure due to canopy shape, reflective properties and associated 

photon interactions (North et a l, submitted). Using the stand-level species mix from 

the Forest Enterprise sub-compartment database, the number of individual species 

comprising every stand covered by each footprint was used to take account of this.

5.2.4 Topography

A greater slope will broaden waveforms and increase the chance of 

vegetation and terrain signals being merged within the returned waveform. In order 

to incorporate this potential source of error, the terrain index (described in Section 

5.1.1) was used to represent elevation difference of the ground surface within 

footprints.

5.2.5 Vegetation Stature

Vegetation stature has been found to influence the ability to estimate 

vegetation height from waveforms (Nelson, 2008). Estimates of vegetation height
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from GLAS waveforms using both methods described within Sections 5.1.1 and 

5.1.2 were used to investigate this.

5.2.6 Canopy Cover

Previous studies have also found canopy cover to affect estimates of 

vegetation height from large footprint LiDAR (Nelson, 2008).

This was tested using projected plant cover calculated from airborne LiDAR 

data for each footprint using return point counts above the interpolated ground 

surface. Canopy cover was estimated as the number of all vegetation points 

expressed as a fraction of total returns.

5.3 Results

5.3.1 Method using Waveform Extent and a Terrain Index

Using the difference between Waveform Extent (WE - elevation difference 

between signal begin and signal end) and Terrain Index (TI - difference between 

maximum and minimum DTM elevations within a 7x7 10m resolution subset) as an 

indicator of height of overlying features, produced R2 of 0.89 and RMSE of 2.99m 

when compared with field measurements (n=19):

Fieldm = 0.91*(IF£-77) + 4.86 (5.7)

coefficient significance p<0.001; intercept significance p>0.01. The Terrain 

Index varied over the site from 0.7m to 20m.
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This offers itself as a simple method of estimating vegetation height from 

satellite LiDAR irrespective of the complexities of waveform structure. However a 

significant magnitude intercept is produced and this approach requires terrain data of 

appropriate resolution.

Following the method of Lefsky et al, (2005), multiple regression was used 

to assess whether this could further improve the relationship between the Waveform 

Extent and Terrain Index with field measurements of maximum canopy height. The 

equation

Fieldn, = 1.0208* 0.7310*77 (5.8)

gave R2 = 0.90, RMSE of 2.86m for n=19. Both coefficients are statistically 

significant in excess of 99.9% and the intercept was not significant and so could be 

removed forcing the trend through the origin as would be anticipated in the case of 

no vegetation cover. This method of regressing WE and TI against field 

measurements is subsequently referred to as R wt.

5.3.2 Gaussian Decomposition

Vegetation height from waveforms was firstly calculated manually by 

visually identifying a ground return within the signal and estimating vegetation 

height as the difference between this position and the beginning of the signal. 

Estimates of vegetation height using the difference between a number of GLA14 

waveform parameters and the Signal Begin parameter were then compared with these 

manual estimates. This aimed to develop an algorithm using waveform parameters 

available within product GLA14 which would enable a ground return to be estimated 

using waveform structure. The relationships are shown in Figure 5.2.
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Determining parameters for height estimation 
using ground identification

Height estimates using waveform parameters (m)

Figure 5.2 Relationships between m axim um  canopy height estim ates using visual identification  
o f the ground return (y axis) and estim ates using w aveform param eters w here □ represents 

height estim ates using CLA 06 d elev as the ground position; +  uses Gaussian Peak 1; X is with 
G aussian Peak 2 and O  shows height estimates using the position of either Peak 1 or 2 

determined by whichever has the greater amplitude.

The GLA06 land range offset position resulted in poorest correlation with 

maximum canopy height estimates using manual identification of the ground peak. 

Some points fall close to the 1:1 line and this is likely to be due to the fact that this 

parameter is predominantly located at the waveform centroid but is occasionally 

positioned at the echo peak which may correspond to the ground.

Use o f Gaussian Peak 1 and 2 positions produced improved results with R2 

values o f 0.90 and 0.70 respectively. However, it was recognised that a minor ground 

return from a surface below that of the majority o f the footprint area may be 

unrepresentative and therefore use o f Peak 1 may subsequently, on occasions, result 

in an over-estimation of canopy height.
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A solution to this was explored and, compared with maximum height 

estimates using the manually identified ground surface, highest correlation of R2 = 

0.91 was achieved using the location within the waveform of either Gaussian Peak 1 

or 2, whichever demonstrated the greater amplitude. This is hereafter abbreviated to 

GPMaxAmp. The result of this is as follows:

ManualHt =1.01* GP MaxAmp (5.9)

RMSE=2.56m; coefficient significance p<0.001; intercept not significant.

The procedure was also repeated incorporating Peak 3, however this resulted 

in a reduced R2 of 0.83 due to the probability of this Gaussian occurring within the 

canopy return signal rather than that corresponding to the ground surface.

Similar results were obtained when comparing waveform-derived estimates 

with field measurements of maximum canopy height. The GPMaxAmp method 

produced the highest correlation with R = 0.74 and RMSE 4.53m; coefficient 

significance p<0.001, intercept not significant:

Field Ht =1.05* GPMaxAmp (5.10)

In this instance, additionally incorporating Peak 3 reduced R2 to 0.59.

These results indicate the potential of estimating maximum vegetation height 

directly from returned satellite LiDAR signals using characteristics of the waveform 

structure.

5.3.3 Evaluation using Field Measurements

In order to identify the ground surface within waveforms, the Terrain Index 

procedure (Rwt) excludes a proportion of topographic limits from the Waveform

-  118 -



C h a p t e r  5 . I s o l a t in g  t h e  Wa v e f o r m  C a n o p y  R e t u r n

Extent whilst the method using ground identification {GPMaxAmp) uses the elevation of 

the dominant ground signal. Both were found to produce statistically significant 

estimates of maximum canopy height.

A comparison of results for all approaches is detailed in Table 5.1 and Table 

5.2. For this site, the GPMaxAmp method improves on the concept often stated in the 

literature which assumes that the final Gaussian corresponds to the ground surface. 

The results of the Rwt method further improve on this, producing the highest 

correlation and lowest RMSE. Both methods prove the capability of estimating 

vegetation in a simple manner using GLAS data.

Table 5.1. A comparison of correlations produced by different methods of estimating maximum 
canopy height. Calculations compare estimates with nineteen coincident field measurements.

Method of Intercept
vegetation height R2 Level of RMSE (m)

estimates significance

GLA06 d_elev 
ground 

identification
0.0828

19.49
p <  0.001

8.7579

GLAM Pkl 
ground 

identification
0.6242 Not statistically 

significant 5.5036

GLAM Pk2 
ground 

identification
0.4931 Not statistically 

significant 6.8615

GPMaxAmp 0.7407 Not statistically 
significant 4.5264

Waveform Extent 0.8927
4.86

2.9949-  Terrain Index p<0.01
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Table 5.2 Regression equation results relating Waveform Extent and Terrain Index to field 
measurements using nineteen sites (Rwr)- Both coefficients are statistically significant (p < 0.001)

R2 Intercept Coefficient a Coefficient b RMSE

Not
0.9003 statistically

significant
1.0208 -0.7310 ' 2.8643

5.3.4 Uncertainty Analysis

Error calculated for waveform estimates by multiple regression indicate 

absolute error as a function of vegetation height variability, number of species within 

footprints, terrain index, vegetation height and canopy cover. Absolute error 

explained by equations 5.11 and 5.12 was 32% and 36% respectively for the two 

methods and so further factors are also expected to play a role. Coefficients are 

reported to two decimal places.

RwrErrorAbs= -0.56Varca„opy + 0.08species + OAOTopography - O.Olheight + 

\.\1  cover + 1.02 (5.11)

GPM axAmpErrorAhs = 2.90Varcanopy + 0.55species + 0.\5Topography -

O.Olheight + 3.47cover - 1.68 (5.12)

Due to the primarily-managed nature of the Forest of Dean, numbers of 

instances of low canopy cover and tree height for example are too small to enable 

statistical analysis of effects; however their influence is nominally supported by data

comparisons. The distribution of error in waveform vegetation height estimates as a

function of the factors anticipated to play a role in uncertainty is illustrated within 

Figure 5.3, Figure 5.4 and Figure 5.5. In general, it can be seen that lower vegetation 

heights, greater slope and less dense canopy cover produce a larger error range.
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Error in canopy height estimations as  a function of tree height
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Figure 5.3. Illustration o f  error  in waveform -derived estim ates o f  vegetation height as a 
function o f  tree height.  AL indicates a irborne L iDAR -derived estimates.  Error bars indicate  

standard deviation within five metre interval he ight bins.
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Error in vegetation height estimations a s  a function of s lope
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Figure 5.4. Il lustration o f  error in w aveform -der ived  estim ates o f  vegetation he ight as a 
function o f  slope. A L  indicates a irborne L iD A R -derived estimates.  Error bars ind icate  standard  

deviation within five degree interval s lope data bins.
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Error in canopy height estimations 
as  a function of canopy cover
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Figure 5.5. Illustration of error in waveform-derived estimates of vegetation height as a 
function of canopy cover. AL indicates airborne LiDAR-derived estimates. Error bars indicate 

standard deviation within 20% interval canopy cover data bins.

Sensitivity o f  waveform shape to structural and optical properties o f  

vegetation and terrain are discussed in detail within North et al., (submitted). This is 

illustrated within Figure 5.6 and Figure 5.7.
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885917516.04

Rau returned uaveforn 
Model alternate fit 

Signal Segin - alternate fit 
Signal End - alternate fit
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c

BI 20
u
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Figure 5.6. GLAS waveform returned for a relatively flat site indicating signal beginning and 
end positions, the raw waveform and the model fit to the waveform.Steep gradients at the 

beginning and end of the signal allow the signal begin and end positions to be located with more
certainty.

885917516.05

Rau returned uaveforn 
Model alternate fit 

Signal Begin - alternate fit 
Land Range Offset - alternate fit 

Gaussian Peak 2 
Gaussian Peak 1 

Signal End - alternate fit

k

0.25 0.75
Volts

Figure 5.7. GLAS returned waveform for a vegetated footprint with terrain index of 18m. Signal 
beginning and end positions, the raw returned waveform and model fit to the waveform are 

indicated. Additionally, parameters explored as possible ground surface elevations are shown -  
Gaussian peaks 1 and 2 and the Land Range Offset (elevation of d elev). Combined ground and 

vegetation signals mean a ground return cannot be visually determined.

Figure 5.8. shows the returned GLAS waveform for a site o f  low relief and 

relatively uniform vegetation height. The modelled effect o f  increasing slope (S),
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carried out by Dr. P. North, Swansea University, shows the influence on the ability to 

estimate vegetation height. Simulated waveforms are for slopes of 0°, 10° and 20°.

60

40

E 20

LU 0

S=20

-20 >

S=10
S=0

-4 0 1 
0.00 0.05 0.10

Radiance (normalised)
0.15 0.20

Figure 5.8. Simulated changes in waveform shape due to increasing slope (S) for 0,10 and 20 
degrees. Waveform amplitude is suppressed with increasing slope, limiting the presence of a 

distinct ground peak and reducing the gradient of leading and trailing edges to the waveform. 
The accurate identification of these three parameters is key to accurately estimating vegetation 

height Source: North etaL , (submitted)

5.3.5 Development of Results

The greatest divergence between estimates from waveforms and Forestry 

Commission Top Height predictions was seen for sub-compartments in which 

Forestry Commission records suggest no vegetation is present.

This may be explained if no formal planting has taken place in a felled or 

unmanaged area in which any invading species remain unaccounted for. 

Additionally, for flat reflective surfaces such as grassland, a 5ns emitted pulse would 

be expected to produce a 5ns return pulse to the sensor. An alternative explanation 

for apparent waveform elevations may be due to an unexpected effect of laser pulse 

width whereby the returned pulse width is greater than anticipated.
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An investigation of this discrepancy using six footprints classified within the 

sub-compartment database as un-vegetated was carried out in February 2007. This 

revealed that the elevations suggested within the waveforms were in fact representing 

above-surface features present within the footprint areas, such as buildings, isolated 

trees and shrubs. For these footprints, deviations from conditions suggested within 

the sub-compartment database were not due to error within GLAS waveforms. 

Observed maximum heights for these locations were between approximately three 

and eight metres and mean offsets were produced of -1.07m and +1.32m for 

maximum height estimates using R w t  and GPMaxAmp methods respectively.

Incorporating these additional field validation measurements resulted in the 

following revised results (Table 5.3) which confirm the ability to estimate vegetation 

height from GLAS waveforms by either identifying the ground surface using 

waveform structure or through use of an independent DTM. As previously, the Rwt 

method showed the best correlation and lowest RMSE. This suggests that, where a 

suitable DTM is available, this may offer the most reliable method of estimating 

vegetation height. Since the OS 10m DTM has country-wide coverage, this relatively 

simple method could be applied nationally. Equally, the GPMaxAmp method has 

demonstrated that, for similar conditions and where such a DTM is not available, 

there is sufficient information within the waveform structure to permit vegetation 

height to be estimated solely from GLAS waveforms.

Table 5.3 Revised results of R WT and GPMaxAmp methods. Coefficients are statistically significant 
(p < 0.001). NS indicates, ‘Not Significant’.

Method R2 Intercept Coefficient a Coefficient b RMSE (m)

R wt 0.9235 NS 0.96209 -0.52849 2.81

OP Max Amp 0.8426 NS 1.06 - 3.83
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Vegetation height estimates from 
Satellite LiDAR: R_WT Method

R2 = 0.922

H - -

*w3>

ix

10 20-10 0 30 40

waveTorm estim ates ofvegetatior neignt (m)

Figure 5.9. Potential error for field measurements (combined instrument and user error) and 
waveform estimates of vegetation height using the waveform extent and terrain index method 

{Rwt)> Waveform-derived estimate error is calculated as a function of slope, vegetation 
heterogeneity, upper canopy variability, vegetation stature and canopy cover,

Vegetation Height Estimates from 
Satellite LiDAR: MaxAmp_GP Method
R2 = 0 8426

40

30
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0
mn

Waveform estim ates of vegetation height (m)

Figure 5.10. Potential error for field measurements (combined instrument and user error) and 
waveform estimates of vegetation height using the Gaussian decomposition method {GPMaxAmp). 
Waveform-derived estimate error is calculated as a function of slope, vegetation heterogeneity, 

upper canopy variability, vegetation stature and canopy cover,
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Representation of uncertainty within the revised results (Section 5.3.4) is 

shown through error bars in Figure 5.9 and Figure 5.10.

An overview of differences between waveform-derived estimates and field 

measurements is provided in Table 5.4. The Table clearly demonstrates the benefits 

of using the GPMaxAmp method over either the first or the second Gaussian (GP1 and 

GP2). This method marginally underestimates vegetation height which, as previously 

discussed, is typical of both small footprint and large footprint LiDAR systems. As 

waveform structure is used to identify the ground surface, this is likely to be due to 

misallocation of the start of the waveform signal. The Rwt method is shown to 

produce the smallest mean error and range of error. This disregards waveform 

structure, enabling vegetation height to be estimated as with discrete first and last 

return LiDAR plus a supplementary DTM. The overestimation is likely to be the 

result of the ground elevation being assigned below the true surface due to error of 

the end of the waveform signal. This is analysed further in the Discussion section.

Both methods demonstrate that, for forest-wide assessment, mean estimates 

of vegetation height obtained from waveforms compared with field measurements 

may be expected to be within approximately half a metre.

Table 5.4 Error range for GLAS estimates of vegetation height in comparison with ground truth 
data (GLAS -  field measurements). Parameter d_elev is the algorithm pick of the surface, GP1 

and GP2 are Gaussian peaks 1 and 2 respectively. The GPMaxAmp uses amplitude of Gaussian 1 or 
2 to identify the ground surface and the R WT method uses regression of the waveform extent and 

a terrain index. NB method R WT is calibrated using field measurements.

Method Mean (m) Minimum (m) Maximum (m)

d_elev -7.88 -23.96 5.97

GP1 1.00 -6.76 12.76

GP2 -2.48 -15.00 7.35

GPMaxAmp -0.55 -7.37 7.35

R wt 0.41 -6.73 4.88
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5.3.6 Comparison of Results

The methods of estimating maximum canopy height from waveforms 

described in this Chapter have been found to produce good relationships with field 

measurements. Figure 5.11 illustrates vegetation height differences along the 

ICESat/GLAS pass crossing the Forest of Dean. All estimates can be seen to 

similarly replicate height variation between footprints throughout the pass.
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The ability of satellite LiDAR to retrieve data for such a complex and diverse 

area further indicates the potential of this technique for both carbon accounting and 

forest management.

5.4 Discussion

5.4.1 Method Intercomparison

Data from the Geoscience Laser Altimeter System aboard the Ice Cloud and 

land Elevation Satellite offer an unprecedented opportunity for canopy height 

retrieval at a regional to global scale. In addition, the data provide useful information 

for forest stand level assessment at coincident locations. In this Chapter, height 

indices from LiDAR waveforms were explored as a means of extracting canopy 

height; these were examined with reference to a mixed temperate forest in 

Gloucestershire, UK, containing planted stands with mean age of 51 years and mean 

maximum height of 26.6m.

Results have shown a mean underestimation of vegetation height from GLAS 

waveform structure {GPMaxAmp) of 0.55m (R2 = 0.84; RMSE = 3.83m). A likely 

explanation may be the misplacing of the beginning of the signal either due to spatial 

distribution of vegetation (e.g. Figure 5.12) as laser energy diminishes towards the 

margins of footprints or as a result of a low intercepted foliage surface area failing to 

trigger the waveform amplitude threshold immediately.
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Figure 5.12 Waveform and corresponding airborne LiDAR point cloud covering three 
management components with the following predicted Top Heights: Common Alder 10.9m 

(observed heights were approximately 6-8m) and Scots Pine (16.5in and 27.2m). The beginning 
of the signal appears to partially miss taller vegetation towards footprint boundaries. Colours of 

the airborne LiDAR point cloud indicate elevation differences.

A predisposition o f  broad footprint LiDAR to under-predict vegetation 

heights is supported by Lefsky et al., (1999a) who note an underestimation in upper 

canopy variability, whilst Harding et al., (1998) and Ni-Meister et al., (2001) also 

discuss the effects o f  this on determining signal begin and end positions. A tendency 

to underestimate canopy height has also been noted for small footprint airborne 

LiDAR (Chapter 2).
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Within-footprint slope magnitude is anticipated to most influence height 

estimations which identify the ground surface using the shape of the returned 

waveform. Where relatively dense vegetation is present upon steep slopes, there is a 

greater likelihood for the returned signal from ground and canopy surfaces to be 

combined within the waveform. This may increase the possibility of wrongly 

identifying the Gaussian peak relating to the ground surface. For the Forest of Dean, 

where the within-footprint terrain index ranged from 0.7m to 20m, with a mean 

difference of 6.9m, this rarely prevented the presence of a distinct ground peak. 

However, the method of estimating vegetation height using waveform extent 

(elevation limits of intercepted features) plus an independently sourced DTM {R w t) ,  

could avoid this potential difficulty.

Nevertheless, the GPMaxAmp method avoids the necessity of using a 

supplementary dataset and so is suitable where topographic data may not be 

available. A further benefit of this method is that is aims to overcome possible errors 

in ground surface identification if a prominent ‘tail’ is present within waveforms by 

using the Gaussian amplitude to determine the most probable ground elevation.

In their study of Northern China, Sun et al., 2008 found correlations between 

field measurements and vegetation height estimated from GLAS with R2 = 0.57 and 

residual standard error of 4.46m for N=84. Their field method measures vegetation 

within footprint areas on the ground however the approach differs from that of this 

research. The Sun approach differs additionally in estimating vegetation height from 

GLAS as the elevation difference between the beginning of the waveform signal and 

the centroid of the final Gaussian peak. The results presented in this Chapter improve 

on this approach by aiming to assign a more representative ground elevation using 

dominant amplitude of the lowest two Gaussians.
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Conversely the R w t  method presented in this Chapter has shown a minor 

positive bias of 0.41m (R2 = 0.92; RMSE = 2.81m). This is likely due to the trailing 

edge of the waveform being extended through multiple scattering and resulting in the 

estimated ground elevation using a terrain index being below that of the footprint 

mean.

The accuracy of this method is dependent on the resolution of the available 

DTM and how well this may be expected to represent the ground elevation range 

within footprints of ~64m diameter. For example, Ordnance Survey provide a 10m 

resolution DTM nationwide for Britain whilst for the USA, the SRTM DEM is at 

30m. However beyond this, publicly available SRTM data are only at 90m accuracy 

which, for the purposes of identifying terrain within LiDAR footprints of ~64m, may 

be insufficient.

The R w t  method does not rely on a clear ground signal being distinguished as 

it only requires the waveform limits to be determined (the equivalent of discrete first 

and last return LiDAR). However, accuracy of these indices is most sensitive to local 

conditions as vegetation structure will influence the ability to assign the beginning of 

the waveform to the elevation of the highest vegetation and multiple scattering will 

extend the waveform tail.

Results of the R w t  method compare favourably with those of Lefsky e t  a l . ,  

(2005) in which maximum R2 value achieved was 0.68 and lowest RMSE of 4.85m 

(the most comparable site to this study was composed of temperate, coniferous forest 

of Douglas Fir and Western Hemlock of between near zero to 65m maximum canopy 

height and had mean slope greater than 18%. Results for this study area in Oregon, 

USA produced R2 of 0.64 and RMSE 12.66m for N=24). It should be noted that it is 

not possible to draw direct conclusions by comparing results at the Forest of Dean
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and findings in the above paper due to differences in slope and vegetation height. 

Field measurements undertaken in the above study are coincident with GLAS 

footprints however the method differs from that undertaken in this research. 

Additionally, the finer resolution DEM, described in this paper, provides a more 

detailed representation of terrain variation than the 3x3 subset, 30m SRTM DEM for 

Oregon. The inclusion of lower vegetation height observations and waveform 

estimates also had the effect of improving correlation in the case of the Forest of 

Dean.

Of the 89 footprints considered, on four occasions, the difference between 

Waveform Extent and Terrain Index resulted in a negative value. This ranged from 

-0.4 to -6.2m, the latter of which occurred at a site used for field measurements and 

represents a hilltop with low vegetation growth but devoid of tree cover. A number 

of sources of error are possible: algorithm misidentification of signal begin and 

signal end, error in footprint location, discrepancy between the DTM subset used to 

calculate Terrain Index and the ellipsoidal footprint dimensions or the effect of 

diminishing laser energy distribution towards the edge of the footprint resulting in 

less effect of extremes of slope in this region of footprints.

It should be noted that field measurements may not correspond to the height 

of the tallest tree as many species extend their height disproportionately before 

broadening their trunk. Waveforms can be seen to reveal distinct height profiles of 

illuminated stands. Where footprints covered more than one sub-compartment with 

distinct mean vegetation heights, this vertical complexity could be observed as a 

stepped canopy return within the waveform (Figure 5.12).

No differentiation has been made between mixed and pure stands as only six 

footprints covered a single, pure sub-compartment. These footprints contained
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species of similar heights and therefore conclusions for homogeneous vegetation 

cover could not be determined for this site.

Work undertaken at Monks Wood National Nature Reserve, Cambridgeshire, 

UK in 2000 (Patenaude et al., 2004), using airborne LiDAR data resulted in tree 

canopy height mean offset of -2.12m and error range between -5.23 and +0.11m. In 

the study presented here, ICESat/GLAS estimates resulted in a low mean offset 

(0.41m and -0.55m), but they produced a greater error range (-6.73m to +4.88m and - 

7.37 to +7.35m for maximum height estimates using R wt and GPMaxAmp methods 

respectively). Errors may be potentially greatest for low stature objects situated 

within an indentation below the mean footprint ground surface.

The RMSE of ~2.8-3.8m found for vegetation height during this research, 

suggests that estimates from GLAS waveforms may be insensitive to short term 

vegetation growth. However, Sun et al, (2008) have demonstrated the mean of 

vegetation heights from near coincident passes, separated by 60m, to be 17.75m for 

19th June 2005 and 18.22m for 24th June 2006. This implies that mean calculations 

over large areas may permit vegetation change to be detected. However a relatively 

low R2 of 0.46 and RMSE of 4.87m produced for vegetation height estimates of the 

two dates raises some concern and suggests the need for further work to explore this.

5.4.2 Quantification and Assessment of Uncertainty

The combined contribution of terrain elevation difference, species 

heterogeneity, vegetation surface roughness, vegetation height and canopy cover 

explained approximately a third of the variance in error between field-measured
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canopy height and waveform-derived estimates. The significance of each is expected 

to vary considerably according to local conditions.

Areas of little vegetation cover may be subject to greater error in estimations 

from large footprint LiDAR due to the relatively small intercepted area for low 

fractional cover causing a delay in triggering the threshold for determining the 

beginning of the signal. Additionally, for low stature vegetation, there is a greater 

probability of signals from the ground and vegetation being combined even with 

relatively low relief.

Canopy surface roughness and slope are both addressed by Lefsky et al, 

(2007) in their estimation of mean canopy height. In the study described in this 

Chapter, use of the leading edge of the waveform helped explain error in height 

estimates less well than the elevation of the dominant canopy layer. However, as 

noted by the authors above, the leading edge parameter demonstrates an indirect 

relationship with the correction factor applied to the waveform to compensate for 

height variability.

Where vegetation height is relatively consistent and spatially dispersed, the 

gradient and characteristics of the start of the signal will reflect the terrain in addition 

to canopy roughness (Lefsky et al., 2007). Where vegetation of uniform height 

follows the contours of the terrain, in fact it may be necessary to estimate tree height 

as the difference between the beginning of the signal and the highest ground surface 

as opposed to the centre of the ground peak (P. North, pers. comms.). However, often 

vegetation distribution is related to topography (vegetation obtaining shelter and 

stability within valleys for example or clearing occurring on more level ground) and 

so the representation within the waveform is complicated further.
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The simulated waveforms from FLIGHT (North et al., submitted) illustrate 

the considerable effect of varying slope whilst keeping all other input values 

constant. The influence on both methods of estimating vegetation height can be 

inferred. Gaussian decomposition of the waveform to identify the ground surface 

becomes more problematic with increasing slope and may lead to a Gaussian being 

mistakenly allocated to this classification. This is because variation in waveform 

amplitude is less pronounced and therefore the ground return becomes less defined. 

Similarly, the waveform is broadened by increased slope and, although the use of the 

waveform extent and a terrain index utilises an independent DTM to compensate for 

this, if vegetation follows the ground surface, the signal amplitude will be 

suppressed, causing greater potential error in identifying the beginning of the signal. 

Additionally, multiple scattering will cause the assigned ground elevation using this 

method to be positioned below that of the actual ground surface.

Nevertheless, uncertainty produced within waveform-derived estimates of 

maximum canopy height remains relatively small and has not prevented valid 

estimations.

5.5 Conclusion

This Chapter is closely based on the contents of Rosette et al, (2008c) and 

Rosette et al., (submitted). The study has explored the use of the ICESat/GLAS 

satellite LiDAR for tree height retrieval over a semi-ancient, managed, mixed 

temperate forest of varied relief. Use of a Terrain Index to adjust the Waveform 

Extent provided the least dispersed estimates of canopy height when compared with 

field height measurements at footprint locations {R w t-  R2 = 0.92, RMSE = 2.81m). In
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the absence of a DTM, maximum canopy height estimates using an automated 

approach to ground identification based on iterative fitting of Gaussian peaks to the 

waveform (GPMaxAmp) explained 84% of variance (RMSE = 3.83m) when compared 

with field measurements. The results suggest that maximum canopy height estimates 

from ICESat/GLAS can provide a reliable indicator of actual canopy height for a 

mixed temperate forest.

Contributions to the error in waveform estimates of vegetation height 

estimates using large footprint Satellite LiDAR are formed by complex interactions 

between many factors with the physical and optical properties of the intercepted 

features. These have been shown to include vegetation stature, upper canopy surface 

roughness, canopy cover, slope and species heterogeneity. Greater understanding is 

needed of the effects of topography and canopy properties on waveform 

composition. Radiative transfer modelling by Dr. P. North using FLIGHT has been 

shown to simulate this. For direct interpretation of waveform structure for footprints 

containing diverse features, local knowledge may be helpful due to the complex 

representation of intercepted surfaces combined within the waveform. Despite this 

complexity, estimates of vegetation height closely relate with those of validation 

field measurements, thereby supporting the opportunity for assimilation within forest 

growth models, vegetation monitoring and quantification of large areas to be 

achieved using Satellite LiDAR.

This Chapter aimed to determine whether the signal representing vegetation 

could be identified within waveforms returned from the broad dimensions of GLAS 

footprints. The study has presented two straightforward, repeatable methods for 

reliably extracting maximum vegetation height estimates for a mixed temperate 

forest.
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This in itself may be of interest for complementing field assessment of stands, 

for spatial representation of vegetation distribution for vegetation monitoring or as 

observed inputs to Dynamic Vegetation Model components of General Circulation 

Models. The following Chapter further applies these methods to develop potential 

approaches for estimating vegetation top height and stemwood volume.
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Chapter 6. Forest Parameter 

Estimation

Carbon accounting requires prior knowledge of dispersal and, as an effective 

carbon sink, understanding distribution of vegetation volume and quantifying and 

monitoring changes. For the purposes of forest management, quantifying timber 

volume is of importance for commercial viability and assessing stand processes such 

as regeneration (Forest_Research, 2006; UNFCCC, 2007).

Additionally, top height is an important parameter used to assess stand-level 

properties. The ability to successfully estimate this will provide meaningful 

information for forestry practitioners, managers and the operational research 

community. This parameter is also incorporated within yield models (Edwards and 

Christie, 1981; Forestry Commission, 2006) and provides an input for process-based 

models of stand growth and risk factors.

Methods of estimating top height and stemwood volume have therefore been 

developed and explored in this Chapter. The objectives of this study are to evaluate 

the use of ICESat/GLAS data for sampling-based forest inventory and to develop 

uncomplicated, replicable methods for estimating vegetation top height and 

stemwood volume that can be applied to regional and national scales. In particular, 

an examination is undertaken of how existing methods for top height and stemwood
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volume estimation based on yield models compare with estimates derived from 

satellite LiDAR remote sensing.

The study described here uses the methods presented in the previous Chapter 

to identify the region of the waveform attributable to vegetation. Several possible 

approaches of estimating top height and stemwood volume from GLAS waveforms 

are subsequently explored and compared with predictions from Forestry Commission 

yield models. Maximum canopy height and functions of this, height of cumulative 

energy percentiles, dominant canopy height and area under the waveform were 

considered as potential estimators. Top height was calculated for all GLAS footprints 

coincident with stands within the sub-compartment database. Stand-level stemwood 

volume was estimated for a single species and for the mixed composition stands 

found at the Forest of Dean.

6.1 Biophysical Parameters

Forestry Commission yield models are empirically-derived and estimate 

growth over time accounting for habitat conditions and consequently differing 

growth characteristics between and within species groups. Initial spacing of 

individuals, species, yield class (defined as an annual increment in m3/ha/year) and 

management (e.g. thinning regime) are used for each model to estimate vegetation 

parameters which comprise top height, individual tree volume, volume per hectare 

and mean diameter at breast height by age.
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6.1.1 Top Height

Top Height is an important vegetation parameter used within forestry and 

estimated within yield models. Where diameter at breast height is measured at 1.3m 

above ground level, Top Height is defined as

the average height of a number of ‘top height trees’ in a stand

where a ‘top height tree’ is the tree of largest breast height

diameter in a 0.01 ha sample plot. (Edwards and Christie, 1981)

Using the Forestry Commission sub-compartment database and 

corresponding yield models (Edwards and Christie, 1981; Forestry_Commission, 

2006), Top Height predictions were calculated for sub-compartments in which 

ICESat footprints are located. The majority of ICESat/GLAS footprints contained 

multiple management components (Chapter 4) and in several instances, extended 

across adjacent sub-compartments.

Top Height predictions were calculated as an indicator of vegetation 

distribution throughout the satellite pass. The following approaches were explored:

I. using the largest management component of the sub-compartment in 

which the footprint centre was positioned

II. for the largest-sized management component within all sub­

compartments covered by the footprint

III. using all components within all sub-compartments encompassed by 

each footprint.

As components are not regularly dispersed, this aimed to examine the 

probability of a component species being present within a footprint. Top height
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calculated from yield models was assumed to be representative of the ground truth. 

Heights of waveform percentiles of cumulative energy were explored as possible 

estimators of this.

6.1.2 Vegetation Stemwood Volume

Forestry Commission yield models were used to calculate stemwood volume 

coincident with ICESat footprints. Stemwood volume is defined by Edwards and 

Christie, (1981), as living tree over-bark volume (m3/ha) which, for coniferous 

species, includes main stem timber of 7cm diameter or greater. This was estimated 

for sub-compartments sampled by each ICESat/GLAS footprint making reference to 

the sub-compartment database and relevant yield models. Two measures of 

stemwood volume are used in this study:

6.1.2.1 Single Species Stemwood Volume

Only six GLAS footprints crossing the Forest of Dean sample sub­

compartments which contain a single species and, furthermore, several footprints 

cross more than one sub-compartment. In the absence of sufficient pure stands at the 

study site to permit reliable analysis, waveform indices were compared with yield 

model stemwood volume calculated for the tallest species within each footprint as 

determined from the sub-compartment database. This approach was based on the 

principle that the returned signal from the tallest species could be identified within 

the waveform (i.e. Rwt and GPMaxAmp estimates), and aims to indicate the potential 

for stemwood volume estimation within pure stands. Footprints were then
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distinguished according to whether the tallest species was broadleaf or coniferous in 

order to determine whether this would result in an improved correlation using 

waveform parameters.

6.1.2.2 Mixed Composition Stemwood Volume

The second measure represents the mixed composition of stands and uses a 

weighted stemwood volume calculation, taking account of the percentage 

distribution of species within all components of each sub-compartment covered by 

footprints. Footprints were then discriminated according to whether broadleaf or 

coniferous species formed the greatest percentage cover and relationships with 

waveform indices were calculated.

6.2 Method

Top Height is a significant parameter in forestry used in the assessment of 

stand-level properties and as driving data for process-based models. Similarly, 

knowledge of tree volume is a useful means of assessing the economic potential of 

stands as well as quantifying the distribution of woodland which is necessary for 

national forest inventory. Therefore methods of estimating these parameters using 

remote sensing techniques can offer a useful opportunity to complement 

conventional field methods and inform model development.

Conventional field methods routinely gather stand-level data, central among 

which is the calculation of top height (Edwards and Christie, 1981), estimated as the 

mean height of trees with the largest diameter at breast height (and therefore a
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function of maximum canopy height). Tree volume is a function of both height and 

DBH (Edwards and Christie, 1981; Matthews and Mackie, 2006), the latter 

determining basal area and so stability of the stem. For a given species, a positive 

relationship is expected with a greater diameter permitting the stem to be extended 

proportionally whilst maintaining stem stability. Since DBH is additionally a 

function of height, vegetation height and functions of this are anticipated to show a 

relationship with stand-level volume. This theoretical basis has been demonstrated 

through LiDAR-derived estimates of volume or related parameters (biomass or 

carbon) using height metrics (e.g. Lefsky et al., 1999b; Hyyppa et al., 2001; Nelson 

et al., 2004) or the square of these (Lefsky et al., 2002; Lefsky et al., 2005).

Therefore, in order to estimate forest parameters, a number of indices using 

height metrics and waveform area, which may contain information relating to top 

height and stemwood volume, were defined and extracted from GLAS waveforms. 

Regression relationships were then explored for these using estimations of top height 

and stemwood volume calculated from yield models and information contained 

within the Forestry Commission sub-compartment database.

Yield models intrinsically contain a degree of error in their predictions as 

forest growth is influenced by many factors throughout their lifespan which may 

differ from initial model input conditions. Therefore, an assessment is made to 

indicate potential uncertainty within stemwood volume estimates derived from yield 

models. This is achieved through the sum of individual tree volume calculations 

using parameters obtained from airborne LiDAR crown delineation (discussed fully 

in the following Chapter).

Finally the Chapter concludes with an evaluation of results and a discussion 

of the implications of findings.
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6.2.1 Waveform-Derived Indices

The research within this chapter aims to identify indices from waveforms 

which may produce consistent relationships with forest parameters that are useful for 

inventory and management purposes. The intention is to derive methods applicable 

for easily-obtainable forest-type classes which could therefore be applied to large 

areas.

The following waveform parameters were explored as potential indicators of 

top height and/or stemwood volume:

I. Maximum canopy height estimates {R wt ̂ 6 .  GPMaxAmp)

II. Heights of cumulative energy percentiles

III. Dominant canopy height

IV. Waveform area

6.2.1.1 Maximum Canopy Height Estimates

Use of maximum canopy height estimations {R wt and GPMaxAmp) presented 

previously were examined. The square of these values were also considered for 

stemwood volume estimates as an improved relationship had been previously 

achieved by Lefsky et al., (2005). NB the aforementioned authors used squared 

height in the absence of calculated canopy structure indices applied in airborne 

studies (i.e. energy quartiles) and so although the use of a squared height lacks a 

theoretical foundation as to why a relationship with volume might be expected, 

testing this parameter allows the results to be compared.
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6.2.1.2 Heights o f Cum ulative Energy Percentiles

R wt and GPMaxAmp methods were used to locate the portion of the waveform 

representing the vegetation return. Within these regions of the waveform, percentiles 

of cumulative energy (adapted from Harding et al, 2001) were calculated and the 

heights at which percentiles occurred were compared as potential estimators of top 

height and stemwood volume.

6.2.1.3 Dominant Canopy Height

Dominant canopy height was earlier defined as the height above the ground 

surface to the position of the maximum amplitude within the canopy return. This was 

considered to offer possible information relating to volume as it may be more

representative of mean stand conditions than maximum canopy height which, by its

nature, is formed by one or few trees.

This approach used Gaussian decomposition to identify ground and canopy 

return maxima and estimated the dominant canopy height as the difference between 

these.

6.2.1.4 Waveform Area

An alternative means of attributing waveform structure to volume of 

intercepted vegetation was investigated using the area under the canopy return signal. 

Waveform amplitude is, in part, attributable to the intercepted surface area which is 

expected to be positively related to volume.
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Two ways of removing the ground surface contribution from the waveform 

were explored, based on the two methods of estimating maximum canopy height

(Rwt and GPMaxAmp)•

The first approach calculated the area beneath the waveform between the 

alternate fit signal begin position to the upper limit of the Terrain Index elevation.

The second approach assumes the canopy return area to be the sum of areas 

under Gaussian peaks 2-6 if peak 1 had been identified as the ground peak or the 

total of areas under Gaussian peaks 3-6 if the ground position was designated as the 

centroid of peak 2.

6.2.2 Analysis of Yield Model Uncertainty

An assessment was made of potential uncertainty within yield model 

stemwood volume predictions using estimates of stand-level volume calculated using 

the following:

I. A data subset within the Forest Research Environmental Database 

(FRED) kindly made available by the Forestry Commission.

II. Canopy delineation from airborne LiDAR data (presented in the 

following Chapter), which provided estimates of individual tree crown 

areas, heights and locations.

III. Field measurements taken within ICESat/GLAS footprint areas 

(Section 4.3.2)

The uncertainty analysis involved the following steps:
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I. Extract regression relationships from FRED in order to estimate DBH 

from crown width and tree height.

II. Identify GLAS footprints with known species distributions.

III. Calculate crown width for each tree from crown area (identified using 

airborne LiDAR delineation).

IV. Apply the regression equations (I) to estimate DBH for each 

individual tree.

V. Use trigonometry to calculate radius at the base of each tree.

VI. Determine individual tree volume as a right-circular cone using tree 

height and radius at each tree base.

VII. Estimate GLAS footprint volume as the sum of individual tree 

volumes within footprint boundaries. Extrapolate this value in order to 

estimate stand-level stemwood volume (m /ha).

Estimation o f Diameter at Breast Height

The Forest Research Environmental Database (FRED) contains in excess of 

15,000 entries from field data taken throughout Britain. Data are at an individual tree 

level and comprise key vegetation indices including species, co-ordinates, tree 

height, DBH and crown width.

Using a method also presented by Suarez et al., (2008a), allometric 

relationships were developed to estimate DBH as a function of vegetation height and 

crown width using ground truth data within an area of 200 x 200km, centred on the 

Forest of Dean. This area is anticipated to have relatively comparable climatic 

conditions and therefore similar growth responses.
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Six footprints were selected to assess yield model uncertainty, based on the 

ability to identify species, performance of the canopy delineation algorithm and for 

which field measurements had been taken. This is discussed in further detail in the 

following chapter.

For the species within these footprints, the regression models that were 

developed estimated DBH for Douglas Fir with R2 = 0.92, RMSE = 0.05m; Norway 

Spruce R2 = 0.85, RMSE = 0.06m and Oak R2 = 0.88, RMSE = 0.05m (Figure 6.1, 

Figure 6.2 and Figure 6.3). This suggests that these provide reasonable relationships 

to estimate DBH from tree height and canopy width.

These estimates of DBH were validated against field measurements. An 

underestimation of DBH for Oak was found (ground truth ~0.6m). Therefore a 

correction was applied by removing the intercept of -0.10m.

Douglas Fir Regression Model: 
Forest Research Environmental Database
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Regression using height and width (m)

Figure 6.1 Regression model for Douglas Fir, estimating DBH from tree height and canopy 
width. The model was developed using individual tree-level field measurements contained 

within the Forest Research Environmental Database for an area of 200x200km, centred on the
Forest of Dean.
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Norway Spruce Regression Model: 
Forest Research Environmental Database
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Figure 6.2 Regression model for Norway Spruce, estimating DBH from tree height and canopy 
width. The model was developed using individual tree-level field measurements contained 

within the Forest Research Environmental Database for an area of 200x200km, centred on the
Forest of Dean.

Oak Regression Model: 
Forest Research Environmental Database
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Figure 6.3 Regression model for Oak, estimating DBH from tree height and canopy width. The 
model was developed using individual tree-level field measurements contained within the Forest 

Research Environmental Database for an area of 200x200km, centred on the Forest of Dean.
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Airborne LiDAR tree delineation, (Chapter 7), was used to represent ground 

truth of individual tree dimensions. This provided estimates of tree location, height 

and canopy area (Areaca„opy) from which canopy width (Widthcan0py) was estimated, 

modelling crowns as being circular (Equation 6.1).

Widthcanopy 2V(Areacanopy/ Tt) (6.1)

A correction was made to compensate for a 5% negative bias observed in 

airborne LiDAR estimates of individual tree height. Using regression equations 

derived from FRED for each species, DBH was estimated for trees identified within 

the footprint boundaries. Species within footprints could not be discriminated within 

the scope of this study and therefore priority in calculations was firstly given to 

footprints for which field measurements had been taken (allowing the delineation to 

be validated) and then those containing a single species, with large percentage cover 

by one species or crossing sub-compartments containing single species.

Calculation of Tree Base Radius

Using trigonometry, the radius at the base of each tree was calculated using 

estimated DBH with the following stages:

TanA = °™ J±  (6.2)
h -  1.3

hose = hTanA (6.3)

Where A is the angle formed at the top of a right-angled triangle in a vertical 

plane, with opposite side at 1.3m (height of DBH) and adjacent side passing through 

the centre of the tree stem; DBH is diameter at breast height estimated using 

regression equations, h is the adjusted estimated tree height from airborne LiDAR 

data and rbase is the radius at the base of the tree (Figure 6.4).
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h-1.3

1.3m
0.5 DBi

f"base

Figure 6.4 Calculation of the radius of the tree base from trigonometry using Diameter at 
Breast Height (DBH 1.3m above the ground surface) and tree height.

Stemwood Volume Estimation

Stemwood volume for each individual tree (SWvoli„J) was estimated as a 

right-circular solid cone and therefore assumes a regular taper along the stem:

SWvolind= Vs 71 rbase2h (6.4)

This procedure was repeated for all delineated trees within the footprint 

boundaries, applying a 5m buffer within ArcGIS in order to include trees whose 

outer canopies crossed the footprint border. The sum of these estimates indicates the 

footprint-level stemwood volume and, assuming this sample area is representative of 

the stand mean, this sum (0.38ha) was multiplied to estimate the stemwood volume 

per hectare (SWvolsta„d m3/ha):

SWvolstand = I  SWvolind * 2.598 (6.5)
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These stand-level estimates were subsequently compared with stemwood 

volume calculated from yield models.

6.2.2.1 Yield Model Uncertainty Assessment Results

For all six footprints, stemwood volume calculated using airborne LiDAR 

canopy delineation produced a lower estimation with respect to yield model 

estimates. This ranged from 14-22% for footprint areas positioned within the centres 

of stands. Those footprints crossing footpaths produced discrepancies from yield 

model estimates of 44-55%.

The validity of this assessment is dependent on the accuracy of the airborne 

LiDAR canopy delineation, however the results suggest that yield model predictions 

used to assess waveform-derived stemwood volume estimates may prove to be an 

over-estimation.

6.3 Results: Biophysical Parameter Estimates

6.3.1 Top Height

When comparing Forestry Commission yield model estimates of top height 

with field measurements, highest correlation of R2 = 0.96, RMSE of 1.90m, was 

found using the greatest of predicted Top Heights (TH) for all components contained 

within all sub-compartments encompassed by each footprint (equation 6.6). This 

suggests that the species that comprises a component is generally well dispersed 

within subcompartments.
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F i e l d H , - 1.09*77/ (6.6)

coefficient significance p<0.001, intercept not significant.

This relationship is illustrated in Figure 6.5. This approach was therefore 

used as a reasonable indicator of top height ground truth throughout the pass.

Top Height Estimation using Waveform Canopy Metrics

The above calculation of Top Height was therefore used to assess the ability 

to extract estimates of the same using GLAS waveform indices.

Greatest correlation was found for percentiles towards the uppermost part of 

the canopy (Table 6.1) although little difference in strength of the relationship and 

RMSE is seen among the highest percentiles.

Relationship between field measurements and 
and Forestry Commission top height
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Figure 6.5 Relationship between Forestry Commission Top Height predictions from yield 
models and field measurements. FieldHt = 1.09*TH; R2 = 0.96, RMSE = 1.90m, coefficient 

significance p<0.001, intercept not statistically significant.

-  156 -



C h a p t e r  6. F o r e s t  P a r a m e t e r  E s t im a t io n

A degree of error is expected among yield model estimates of top height 

particularly due to the heterogeneous nature of the forest but nevertheless, 

waveform-derived indices succeeded in estimating this parameter. This supports the 

possibility for direct observation-based estimates to be applied in support of forest 

management.

Table 6.1 Waveform estimates of Top Height. NS indicates not significant, coefficients are
significant p<0.001

Method Percentile R2 Intercept Coefficient RMSE (m)

Max. height 0.76 NS 0.89 3.9

R w t 99th 0.75 NS 0.95 4.01

98th 0.75 NS 0.98 4.06

Max. height 0.73 NS 0.95 4.4

OPKfaxAmp 99,h 0.73 NS 1.01 4.5

98th 0.72 NS 1.04 4.5

The Rwt method produced the highest correlation for estimating Top Height. 

Due to the association between Top Height and maximum height, both Rwt and 

C P  Max Amp methods found that maximum canopy height provided the best estimates of 

Top Height as opposed to lower height percentiles of cumulative energy { R w t  R 2 =  

0.76, RMSE 3.9m; GP\faxAmp R2 = 0.73, RMSE 4.4m). These correlations are seen in 

Figure 6.6. This is in contrast with the typical findings using airborne LiDAR for 

which percentiles in the high 90s tend to produce the most robust estimates (e.g. 

Doce et al., 2008).

Discrepancies can be observed among the lowest Top Height estimates. As 

discussed in the Chapter 5, for some footprints, heights detected within waveforms 

are formed by buildings or unmanaged vegetation which is not accounted for within 

the sub-compartment database.
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Estim ation of FC Top Height; 
GLAS R WT m ethod

Estim ation of FC T op Height; 
GLAS G Pm axam p m ethod
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Figure 6.6 Estimation of Forestry Commission Top Height using maximum canopy height from 
GLAS waveforms. R wj method: R2 = 0.76, RMSE 3.9m; GPMaxAmp method: R2 = 0.73, RMSE 

4.4m; coefficient significance p<0.001, intercept not statistically significant.

6.3.2 Stemwood Volume

6.3,2.1 Single Species Stemwood Volume

R wj Method

A summary of the results of the regression analysis using waveform indices 

and yield model stemwood volume estimates are shown in Table 6.2. Groups include 

common footprints classified as un-vegetated. NB when calculating waveform 

indices for estimating stemwood volume, the number of footprints used differs from 

the GPMaxAmp method due to discrepancies between Waveform Extent and estimated 

maximum height (i.e. two anomalies in which estimated vegetation height was 

negative were excluded from the analysis).
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Table 6.2 Tallest species stemwood volume estimates using the R wt method. Coefficients and 
intercepts are statistically significant (p < 0.001) except where stated. NS indicates not

significant

Waveform
parameter

Tallest
species R2 Intercept Coefficient RMSE

(m3/ha) Number

Maximum Conifers 0.63 NS 13.8 90.3 53
canopy
height Broadleaf 0.62 NS 8.27 70.2 17

( R w t ) Combined 0.56 NS 12.8 100.2 67

Conifers 0.57 94.7
p>0.001 0.37 96.4 53

( R w t)2 Broadleaf 0.54 NS 0.31 82.5 17

Combined 0.51 83.4
p>0.001 0.36 105.2 67

Height of 
95th

Conifers 0.59 NS 16.2 93.9 53

percentile Broadleaf 0.64 NS 9.59 68.7 17
cumulative

energy Combined 0.52 NS 15.0 103.7 67

This exercise has simulated the situation in pure stands by using yield model 

predictions of stemwood volume for the tallest intercepted tree species and has 

demonstrated the ability to estimate this volume from waveforms by extracting 

information relating to the maximum canopy height. This illustrates the potential for 

estimates of volume for homogeneous forests to be made using ICESat/GLAS 

waveforms.

Estimated maximum canopy height ( R wt)  produced the best relationship with 

stemwood volume for the tallest species within all footprints with R2 of 0.56 and 

RMSE of 100.2m3/ha. Top height (as a function of maximum height) is an input for 

model estimation of volume and therefore explains the correlation found for this 

parameter. Differentiating between broadleaf and coniferous species improved the
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correlations to R2 of 0.64, RMSE of 68.7 m3/ha and R2 of 0.63, RMSE of 90.3 m3/ha 

respectively. These relationships are illustrated in Figure 6.7.

Neither heights of cumulative energy percentiles nor the square of maximum 

canopy height improved upon these estimates of stemwood volume. Using other 

waveform parameters (waveform area, dominant canopy height or multiple 

regressions combining variables) did not produce statistically significant results or 

showed weak correlations (Table 6.6).

In fact, a non-linear relationship such as a quadratic fit may produce an 

improved correlation. However the use of linear regression analysis using GLAS is 

supported within the literature (Nelson, 2008; Nelson et al., 2008a). Furthermore, the 

two clusters of high and low volumes make it difficult to evaluate non-linearity, 

particularly considering the uncertainty among yield model estimates of the lower 

volumes.
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Figure 6.7 Relationship between stemwood volume predictions from yield models and volume 
estimates using (left) Maximum Canopy Height R ^t, for coniferous species, R2 = 0.63, RMSE 

90.3 m3/ha and (right) 95th percentile for broadleaf species, R2 = 0.64, RMSE 68.7 m3/ha.
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G P M ax A mp J b lc tH o d

Regression analysis was also carried out using GPMaxAmp method waveform 

indices against yield model stemwood volume estimates for the tallest species within 

each footprint. Results are outlined in Table 6.3.

Estimated maximum canopy height produced the best relationship with R2 of 

0.59 (RMSE 100.8 m3/ha). Differentiating between coniferous and broadleaf species 

() did not significantly improve the estimation of stemwood volume for conifers 

where using the height of the 99th percentile of cumulative energy produced R2 of 

0.59 (RMSE 98.3 m3/ha). Considering broadleaf species in isolation however, 

resulted in a substantial improvement in correlation of R2 = 0.75 and RMSE of 59.1 

m3/ha using height of the 98th percentile of cumulative energy.

This provides further proof of concept for the capability of estimating 

stemwood volume for homogeneous forests using indices from GLAS waveforms.

GLAS GPMaxAmp stemwood volume 
estim ates for tallest spec ies (conifers)
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Figure 6*8 (left) Stemwood volume estimates from height of 99th percentile of cumulative energy 
for footprints where the tallest species is coniferous; R2 = 0,59, RMSE 98.3 m3/ha (right) 

Stemwood volume estimates using height of 98th percentile of cumulative energy for footprints 
where tallest trees are broadleaves; R2 = 0.75 and RMSE 59.1 m3/ha
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Table 6.3 Tallest species stemwood volume estimates using the GPMaxAmp method. Coefficients 
and intercepts are statistically significant (p < 0.001) except where stated. Groups include 

common footprints classified as un-vegetated.

Waveform
parameter

Tallest
species R2 Intercept Coefficient RMSE

(m3/ha) Number

Maximum Conifers 0.59 NS 15.55 99.0 55
canopy
height Broadleaf 0.75 NS 9.39 61.0 19

(GP MaxAmp) Combined 0.59 NS 13.76 100.8 69

Conifers 0.51 108.19
PO.OOl 0.39 109.5 55

(GPjyiaxAmp) Broadleaf 0.71 NS 0.42 63.2 19

Combined 0.53 84.64
p>0.001 0.40 107.4 69

99th Conifers 0.59 NS 15.48 98.3 55
percentile

98th
Broadleaf 0.75 NS 10.33 59.1 19

percentile

99th Combined 0.58 NS 14.63 100.5 69
percentile

Other waveform indices or multiple regression analysis incorporating

waveform area or dominant canopy height did not improve results further.

6.3.2.2 Mixed Composition Stemwood Volume 

R wj Method

Using the same waveform parameters, regression analysis was repeated for 

the mixed stand weighted stemwood volume estimates. Results are summarised in 

Table 6.4 below. As previously, groups include common footprints classified as un­
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vegetated and those with no dominant vegetation type. Two waveforms with 

anomalous ‘negative’ height estimates were excluded.

Table 6.4 Mixed stand stemwood volume estimates using the R wt method. Coefficients and 
intercepts are statistically significant (p < 0.001) except where stated. NS indicates not

significant.

Waveform
parameter

Predominant
species R 2 Intercept Coefficient RMSE

(m3/ha) Number

Maximum Conifer 0.49 NS 9.83 99.8 56
canopy
height Broadleaf 0.46 NS 5.69 76.4 23

( R w t) Combined 0.36 NS 8.90 107.5 67

Conifer 0.46 NS 0.36 103 56

( R w t)2 Broadleaf 0.43 NS 0.21 78.5 23

Combined 0.33 51.9
p>0.05 0.25 110.2 67

Height of 
95th 

percentile 
cumulative 

energy

Conifer

Broadleaf

Combined

0.55

0.46

0.42

NS

NS

NS

11.7

6.82

10.6

93.8

76.3

103.1

56

23

67

Correlation was found to be lower for estimates of mixed stand stemwood 

volume than for the single species estimates above. However, inaccuracies within 

yield model predictions are compounded by uncertain species distribution and 

footprint location. The height of the 95th percentile of cumulative energy produced 

the best relationship with R2 of 0.42, RMSE 103.1 m3/ha for all footprints sampled.

Footprints were then distinguished according to whether the predominant 

vegetation cover consisted of broadleaf or coniferous species. The 95th percentile 

achieved respectively R2 of 0.46, RMSE 76.3 m3/ha for broadleaf species and R2 of 

0.55, RMSE 93.8 m3/ha for conifers. These relationships are shown in Figure 6.9.
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The results of other waveform parameter analyses are outlined in Table 6.4 and 

Table 6.6.

This supports the principle that waveform structure can provide additional 

information regarding biophysical parameters representing the composition of the 

species contained within intercepted stands. This is of importance for the assessment 

of natural forests where monocultures are less likely to predominate.

GLAS RWT stemwood volume estim ates 
for conifer-dominated mixed stands

GLAS RWT stemwood volume estim ates 
for broadleaf-dominated mixed s tan d s
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Figure 6.9 Relationship between weighted stemwood volume predictions and volume estimates 
using height of the 95th percentile of cumulative energy for footprints with greatest percentage 
cover by: (a) coniferous species, R2 of 0.55, RMSE 93.8 m3/ha and (b) broadleaf species, R2 =

0.46, RMSE 76.3 m3/ha.

Gi^MaxAmp C tllO  (I

Weighted stemwood volume estimates accounting for the mixed species 

composition of stands were then used to regress waveform-derived indices using the 

GPMaxAmp method. Table 6.5 outlines the results.

Positions within the canopy return of the waveform for the GPMaxAmp method 

also offer closer correlations with mixed stand composition calculations of volume 

than those provided by maximum canopy height estimates. This furthermore supports 

the opportunity of widely applying satellite LiDAR estimates of stemwood volume.
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Table 6.5 Mixed stand stemwood volume estimates using the GPMaxAmp method. Groups include 
common footprints classified as un-vegetated and those with no dominant vegetation type. 
Coefficients and intercepts are statistically significant (p < 0.001) except where stated. NS

indicates not significant.

Waveform
parameter

Tallest
species R2 Intercept Coefficient RMSE

(m3/ha) Number

Maximum
canopy

Conifers 0.63
-84.46
p>0.05

14.34 86.6 58

height
(GPMaxAmp)

Broadleaf 0.46 NS 5.97 76.6 24

Combined 0.46 NS 9.65 102.1 69

Conifers 0.62 NS 0.43 87.9 58

(GP MaxAmp) Broadleaf 0.37 NS 0.22 84.1 24

Combined 0.41 42.93
P>0.05 0.31 105.3 69

95th
percentile Conifers 0.66

-63.22
P>0.01

15.76 82.5 58

98th
percentile Broadleaf 0.47 NS 6.66 75.6 24

95th
percentile

Combined 0.5 NS 11.41 97.8 69

Greatest correlation was seen for all mixed stand weighted stemwood volume 

estimates using the height of the 95th percentile of cumulative energy. This produced 

R2 of 0.50 and RMSE of 97.8 m3/ha. Height of the 95th percentile of cumulative 

energy also produced the best estimates when only considering coniferous species 

(R2 of 0.66 and RMSE of 82.5 m3/ha). However, considering broadleaf species 

separately produced a poorer correlation with R2 of 0.47 and RMSE of 75.6 m3/ha 

for height of the 98th percentile of cumulative energy. These relationships are seen in 

Figure 6.10.
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GLAS GPMaxAmp stemwood volume estim ates 
for conifer-dominated mixed stands

GLAS GPMaxAmp stemwood volume estim ates 
for broadleaf-dominated mixed s tan d s

OO<£)
Ooin
oo

OO(N
OO

O

100 200 300 400 500 6000
GLAS GPMaxAmp stemwood volume estimate 

(using 95th percentile)

oo<£>
ooin

oo

oo<o
oo(N

XX
oo

o

o 100 200 300 400 500 600
GLAS GPMaxAmp stemwood volume estimate 

(using 98th percentile)

Figure 6.10 Relationship between mixed stand stemwood volume estimates and volume 
estimated by (left) height of 95th percentile of cumulative energy for footprints dominated by 

conifers; R2 = 0.66, RMSE 82.5 m /ha. (right) height of 98th percentile of cumulative energy for 
footprints dominated by broadleaf trees; R2 = 0.47 RMSE 75.6 m3/ha.

Further regression analysis relationships

Relationships using multiple regression with height indices and area under 

the canopy return of the waveform or dominant canopy height did not significantly 

improve correlations and coefficients were not statistically significant. These 

parameters alone were not statistically significant when estimating either stemwood 

volume approach using both Rwt ox GPMaxAmp methods of identifying the waveform 

canopy return. For reference, the results of these correlations are summarised in 

Table 6.6. The lack of correlation using these indices may represent the 

heterogeneous nature of the Forest of Dean study site and therefore an inconsistent 

contribution to waveform structure.
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Table 6.6 Additional correlation ranges. Parameters shown were not found to be statistically 
significant or produced weak correlations. Ranges stated are for both stemwood volume

methods.

Waveform parameter R2 range RMSE range m3/ha

Dominant canopy height 0.05-0.34 100.2-143.4

Waveform canopy area 0.08-0.19 98.9- 149.7(Gaussian peaks)

Waveform canopy area (to 
upper terrain index limit) 0.05 -  0.24 93.4-140.1

6.4 Discussion: Biophysical Parameter 
Estimation

Approaches of estimating vegetation top height and stemwood volume using 

large footprint LiDAR may provide a future means of assessing actual against 

predicted growth using yield models, without the necessity of more costly and time- 

consuming field measurement validation. This may permit timber volume for stands 

to be quantified more efficiently to assist with carbon accounting and could 

additionally have implications for timber income predictions. Currently, to achieve 

accurate quantification, field measurements are taken prior to felling operations as 

actual volume may differ significantly from yield model predictions.

6.4.1 Top Height

Cumulative energy percentile heights were used to estimate top height 

estimated from yield models. Using both Rwt and GPMaxAmp methods of identifying 

the vegetation return from waveforms, the estimated maximum canopy height 

provided the best estimate of top height (R2 = 0.76, RMSE 3.9m and R2 = 0.73,
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RMSE 4.4m respectively). The greater variability among top height compared with 

estimates of field measurements may be at least in part due to deviations between 

yield model predictions and ground truth. Error is known within yield models and is 

anticipated to be particularly evident among older stands such as those found within 

the Forest of Dean.

A field measurement validation of top height could quantify this error. For 

each GLAS footprint-sized area, this would require the mean to be calculated of ‘top 

height trees’ within 38 lOxlOm plots within each stand. For mixed composition 

stands such as at the Forest of Dean, this method would need to be modified 

(Matthews and Mackie, 2006).

Attempts to combine ICESat/GLAS estimates with Forestry Commission top 

height data did not result in a significant improvement of predictions of field 

measurements for this study of the Forest of Dean. Forestry Commission yield 

models are not dynamic and therefore have some limitations as they depict a mean 

trend devoid of any natural disturbance. For old stands this assumption is unrealistic 

which may be the case for the Forest of Dean sub-compartments sampled by GLAS, 

as mean stand age of principal components is 51 years.

The measurements also differ from the method employed by the Forestry 

Commission in which Top Height is an average of ‘top height trees’ for a stand. The 

Forestry Commission method could not be replicated precisely due to the 

heterogeneity of the sites sampled, the necessity of limiting measurements to the 

footprint area and the requirement for future work of representing canopy height 

variation within footprints.

Pure stands may produce smaller errors as laser penetration would be 

expected to differ between species. As an indicator of this, a comparison between
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GLAS maximum canopy height estimates using Rwt with Forestry Commission Top 

Height predictions, showed mean offset for pure stands was reduced from 1.89m to 

1.52m. NB Top Height is a function of maximum canopy height and therefore is not 

directly comparable.

6.4.2 Stemwood Volume

Using the heights of the percentiles of cumulative energy plus waveform 

parameters such as dominant canopy height and area under the waveform allowed 

different canopy return indices to be considered with respect to their ability to 

estimate stemwood volume as predicted by independent calculations derived from 

yield models. It is anticipated that, whilst higher waveform positions are largely the 

result of returns from the tallest species within footprints, returns from lower canopy 

elevations might better represent the mixed species composition within stands. The 

UK National Inventory of Woodland and Trees (NIWT) provides class distinctions 

for broadleaf species and conifers, therefore indicating that methodologies to 

estimate volume using such broad classes could be applied regionally or nationally.

Due to expected deviation in relationships between conifers and broadleaf 

species, these groups were first analysed together as a sample forest population 

before being considered in isolation. Nelson et al., (2004) found estimates of volume 

and biomass using their Portable Airborne Laser System (PALS) to be significantly 

more accurate for conifers than for their hardwood grouping. This study found 

conifers to be better estimated than broadleaf species for mixed composition volume 

calculations but conversely was able to estimate volume of the tallest broadleaf 

species with greater correlations using the GPMaxAmp method.

- 169-



C h a p t e r  6. F o r e s t  P a r a m e t e r  E s t im a t io n

RMSE is lower for broadleaf-dominated footprints. However, mean values of 

stemwood volume for vegetated stands are 327.7 m3/ha and 174.7 m3/ha for 

coniferous and broadleaf species respectively and therefore a lower RMSE would be 

anticipated for the latter as a result of this alone. The results of this study suggest that 

differentiation may be necessary between conifers and broadleaves in order to use 

generalised relationships for broader scale stemwood volume estimates.

Maximum canopy height is, by its nature, determined by little foliage of one 

or few trees of the tallest trees within the stand. Higher elevations within the canopy 

return of the waveform therefore demonstrated a potential means of estimating 

stemwood volume for pure stands.

Particularly for mixed stands, positions within the waveform and 

characteristics of the canopy return are anticipated to better represent the combined 

contribution of the canopy elements for the diverse species present within footprints. 

GP Max Amp mixed stand estimates show marginally greater correlations at higher 

percentiles of cumulative energy for stands predominantly containing broadleaf 

species than for conifers, possibly due to canopy structure and leaf area affecting 

laser penetration.

Area under the waveform canopy return was not a statistically significant 

estimator of stemwood volume and multiple regressions using this failed to 

significantly improve estimates of stemwood volume. A contributory factor could be 

the considerable variation in reflectivity that may be expected between species. 

Therefore, for such a species-diverse forest, the principal reason for differing 

waveform amplitude may be reflectivity as opposed to intercepted surface area 

(anticipated to be related to volume). The validity of the methods using waveform 

canopy area are dependent on the degree to which reflectance between species differs
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at the measured wavelength (1064 nm) in addition to the effects of canopy profile on 

multiple scattering events and their representation within waveforms.

However the probable explanation for waveform area lacking relationships 

with volume is due to the fact that returned signal strength is mainly determined by 

atmospheric transmission and therefore area under the waveform can vary greatly as 

a result of cloud cover which can fluctuate at local scales. Waveform area therefore 

needs to be normalised to permit this to be assessed.

The results suggest that, for such highly mixed stands, if a relationship does 

exist with dominant canopy height, the broad distinction between broadleaf and 

coniferous coverage is insufficient or that values are inconsistent due to variation in 

species structure, reflectivity or atmospheric transmittance.

Dispersion among smaller volume values is observed and may be attributable 

to unmanaged re-growth or the effect of the 5 ns emitted pulse width producing an 

artificial minimum elevation difference even for flat surfaces. It is recognised that 

differences in relationships between maximum canopy height or percentiles of 

cumulative energy and stemwood volume within both coniferous species and 

broadleaf species groups are likely to contribute to a proportion of the variation 

observed. Investigation of a more homogenous site may reveal improved correlation 

and a possible significant contribution of other waveform parameters.

Forestry sub-compartments that were listed by the Forestry Commission but 

classified as unpopulated (i.e. zero anticipated stemwood volume) were included in 

comparisons and the incorporation of these lower values will have improved 

correlations. Additionally, the study refers to relationships using waveform data 

acquired whilst vegetation was predominantly still in leaf. Correlation may be 

anticipated to vary with seasonal differences in LAI as noted by Sun et a l, (2008).
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6.4.2.1 Method Inter-Comparison

The R w t  method requires a two-stage process, deriving maximum canopy 

height from a multiple regression using the Waveform Extent (distance between 

Signal Begin and Signal End) plus a terrain index (using a DTM centred on the 

footprint co-ordinates) and calibrating against field measurements of within-footprint 

tree height. These estimates are dependent on the accuracy and availability of field 

measurements and the DTM in addition to how representative the selected footprints 

are of the complete pass and the stand mean.

Overall, results using the GPMaxAmp method produce better correlations than 

the R w t  method. However, this may be partly a result of two footprints being 

excluded in the R w t  analysis due to height errors produced by this method. 

Stemwood volume estimates using the GPMaxAmp method for the tallest species within 

footprints are considerably better for broadleaf species than for conifers (a possible 

effect of upper canopy shape), whilst for mixed stand estimates, greater correlation is 

seen for stands with greatest cover formed by conifers than by broadleaf species.

However, the Gaussian decomposition method offers improvements for 

stemwood volume estimates for the tallest broadleaf trees (from R2 of 0.64, RMSE 

68.7 m3/ha using R Wt  to R2 of 0.75, RMSE 59.1 m3/ha using G P MaxAmp]) and for 

mixed stands dominated by conifers (from R2 of 0.55, RMSE 93.8 m3/ha ( R w t )  to R2 

of 0.66, RMSE 82.5 m3/ha (GPMaxAmp))- Methods which do not necessitate an 

additional source of information may simplify the process of waveform 

interpretation, potentially allowing broader application where supplementary data are 

not available.
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The stemwood volume results presented in this Chapter are comparable with 

those obtained by other authors in similar studies. Lefsky et al., 2005 applied their 

method of using Waveform Extent and a Terrain Index to estimate above ground 

biomass in Santarem, Brazil. Using the square of maximum estimated height, they 

found R2 of 0.73, RMSE 58.3 Mg/ha for N=19.

Sun et al., 2008 identified the vegetation return as the difference between the 

beginning of the waveform signal and the centroid of the lowest Gaussian and 

applied this to estimate biomass in Northern China. For their sites combining 

evergreen conifers and deciduous species plus data from late Autumn and early 

Summer GLAS campaigns (N=84), they found correlations with R2 of 0.68 and 

residual standard error of 29.35 Mt/ha. A higher correlation (R2 of 0.78 and residual 

standard error of 30.58 Mt/ha) was found when considering data from late Autumn 

alone (leaf off conditions). This cannot be attributed solely to date of acquisition as 

this data subset (N=44) contains considerably less deciduous species. When 

deciduous trees were considered alone for data obtained in early Summer, the 

relationship with field estimated biomass produced R2 of 0.59 and residual standard 

error of 24.56 Mt/ha for N=40.

6.4.2.2 Yield Model A ccuracy

Limitations of estimating top height and stemwood volume using yield 

models to assess the potential of using waveform-derived parameters are recognised. 

Forestry Commission yield models are not dynamic and therefore do not take 

account of changes in growth or stand composition due to competition, damage 

affliction or mortality. Forest Research, (2009), citing a Forestry Commission
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internal report, state that the yield models developed for use in Britain (Edwards and 

Christie, 1981) “are based on an extensive permanent sample plot network 

maintained across the UK and are considered to be robust. However, a recent study 

has highlighted possible deficiencies in the predictions of volume development made 

by the models, particularly for the latter stages of a rotation typical in the UK at 

present (Matthews, 2003).” Estimates for coniferous stands for example, have been 

found by the Forestry Commission to overestimate actual volume. The canopy 

delineation yield model uncertainty analysis carried out within this study suggests 

that this may be the case for the Forest of Dean.

Stemwood volume estimates used in this study include some common stands 

which were contained within the sub-compartment database but not listed as planted. 

These zero volume values may have improved the relationships and may go some 

way to explaining the spread among lower waveform estimates: initial observations 

at footprints locations have revealed the presence of unmanaged trees, shrubs or 

buildings in some cases which are contributing to waveforms.

An assumption is also made in the calculation of stemwood volume for mixed 

stands, that components are regularly distributed within sub-compartments rather 

than individuals forming clusters or being dispersed along a linear feature such as a 

footpath.

Deviations from actual stand volumes are anticipated due to errors inherent in 

yield model predictions as individual stands may not perform in accordance with 

expectations. If stand performance and management treatments differ from the yield 

model assigned or if habitat anomalies are present, long-term forecast production for 

an individual stand may vary from actual production by 20% (Edwards and Christie,
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1981). This is also supported by the 15-22% discrepancy found between canopy 

delineation and yield model stemwood volume estimates found during this study.

However, updates are made to the sub-compartment database annually and 

two-three stand performance assessments based on field measurements are made 

during the lifetime of each crop to revise projected growth if necessary. Therefore 

the yield models demonstrate a mean trend representing the best available estimates 

of current conditions. Recent work conducted by the Forestry Commission at a stand 

level using yield model estimates calibrated with field measurements, produced 

vegetation height accuracy of 98% whilst, in the course of this study, a comparison 

of greatest field height measurements within footprints with corresponding yield 

model estimates of Top Height for the tallest species revealed R2 of 0.94. Since Top 

Height is used within yield models they may therefore be anticipated to provide a 

reasonable indication of the vegetation present.

Error Analysis

Discrepancies within yield models are expected to vary between species and 

with stand age. Within-footprint diameter distribution measurements may provide a 

more accurate assessment of actual volume present and yield model error. 

Uncertainty assessment was undertaken in order to validate yield model estimates of 

stemwood volume and quantify any discrepancies. An alternative estimation of 

stand-level stemwood volume was therefore calculated using airborne LiDAR 

canopy delineation as a surrogate for tree-level field data.

This was used to estimate diameter distributions within footprints, from 

which stand-level volume estimates were calculated in order to compare with yield 

model predictions. This method is not without its own error: Calculations were 

limited to sites in which field validation of delineation results was possible and, as
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species identification was beyond the means of this study, stands were selected 

where any different species could be easily distinguished or where they comprised a 

small percentage of total area. Small differences in drawn sub-compartment 

boundaries will also affect the accuracy of this approach. A lower performance of 

the delineation algorithm was noted for shorter trees and therefore sites used to 

assess yield model estimates took account of this. These criteria limited the number 

of footprints used for the analysis. However this may partially account for lower 

volume estimates if shorter trees were not identified by the algorithm or were 

obscured by higher canopies. Additionally, field-measured footprints often contain a 

lower percentage cover due the necessity of access via rights of way. For these sites, 

calculations were found to significantly underestimate the stand mean.

Although the regression equations using FRED take no account of soil type, 

aspect, drainage, etc., the large number of field measurements selected from the 

database aim to indicate a mean trend for an appropriate area surrounding the study 

site.

Deviations may be expected from a regular decline in diameter along the tree 

stem, which would influence the accuracy of volume estimates. Therefore for more 

refined individual tree volume estimates, species-specific taper functions could be 

applied (Matthews and Mackie, 2006). The method is also highly sensitive to tree 

height using airborne LiDAR data. This was found to underestimate field-measured 

heights and therefore a calibration was applied. However a small inaccuracy in 

estimated height may have a great influence on the calculated volume.

Despite these sources of error, the exercise supports Forestry Commission 

suggestions of an overestimation in stemwood volume by yield models. This
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assessment would need to be extended to determine whether there is a systematic 

trend and also the accuracy of volume estimates using canopy delineation.

Nevertheless, the Forestry Commission database and yield models are widely 

used in forest management and have provided the best available indication of 

vegetation volume distribution for the diverse stands throughout the Forest of Dean. 

They have therefore formed useful points of reference against which to explore 

methods of estimating stemwood volume from GLAS waveforms.

6.5 Conclusion

The contents of this Chapter are based on work presented within two papers: 

Rosette et al., (2008a); Rosette et al., (2008b). Despite known challenges within 

yield models and the Forest Enterprise sub-compartment database, GLAS waveform 

estimates of top height succeeded in explaining 76% and 73% of variance in model 

predictions for the Rwt and GpMaxAmp methods respectively. The RMSE of 3.9/4.4m 

may not be dissimilar to possible error in field measurements compounded by the 

numerous plot-level measurements needed in order to calculate top height. Further 

field work would be required to confirm this.

LiDAR stemwood volume estimates with accuracy in excess of 60-70% are 

anticipated to be welcomed by forestry practitioners to contribute to national forest 

inventory -  NIWT (Forestry Commission, 2003; Forest_Research, 2006). The 

results of this study suggest that for homogeneous sites, this can be achieved. Best 

results produced R2 = 0.75, RMSE = 59.1m3ha'' for broadleaf species and R2 = 0.63, 

RMSE = 90.3m3ha'1 for conifers.
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However, to consistently reach this threshold for areas with more complex 

species composition and to reduce error to an acceptable level would require greater 

refinement. Highest correlations found were R2 = 0.47, RMSE = 75.6m3ha'1 for 

stands dominated by broadleaf species and R2 = 0.66, RMSE = 82.5m3ha'1 for 

greatest coverage by conifers.

Estimates of stemwood volume were found to be similar to recent studies of 

related parameters by other authors using the GLAS sensor. The work of Sun et al., 

2008 suggests that date of data acquisition in relation to leaf on/off conditions may 

play a role in quantifying vegetation distribution. This provides a sound foundation 

from which to further develop stand assessment techniques to complement forest 

management and provide inputs to process-based models (e.g. Gardiner et al., 2004).

The results suggest the potential for satellite LiDAR estimates of top height 

and volume to be extended to regional and national scales and that drawing a similar 

broad distinction between broadleaf or coniferous species for volume estimates may 

assist the quantification of vegetation distribution for the requirements of forest 

inventory. The use of such broadly-defined classes is consistent with the definitions 

of interpretive forest types used within NIWT (Forestry_Commission, 2003; 

Broadmeadow and Matthews, 2004; Forest Research, 2006). Furthermore, the fact 

that relationships were improved using such broad classes suggests the potential for 

these to be further refined by developing more specific regression models using 

individual species or stratification by species groups. Future approaches might also 

involve exploring the use of multiple waveform indices. The capability to spatially 

map the distribution of vegetation volume has been shown using sampling-based 

LiDAR profiling. This could assist in addressing needs of vegetation distribution
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uncertainty, locating deforestation and assessing Land Use and Land Use Change in 

Forestry (IPCC, 2003; FAO et al., 2008; UNEP, 2009).

Using satellite LiDAR waveforms, this Chapter has developed means of 

determining indices of biophysical parameters of interest to carbon accounting and 

vegetation monitoring, model requirements and for forest management and 

assessment. The following Chapter evaluates the GLAS dataset with respect to 

airborne LiDAR data which are able to represent a finer spatial resolution of 

intercepted surfaces and whose value is acknowledged for vegetation application 

purposes and analysis.
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Chapter 7. Airborne and Satellite 

LiDAR Comparison

This Chapter provides a comparison of remote sensing technologies using 

small footprint, discrete return, airborne laser scanning and large footprint, full 

waveform, satellite LiDAR profiling.

Capabilities of the two systems are explored with regard to their estimation of 

stand-level parameters suitable for management and forest inventory purposes. 

Airborne LiDAR is already a well-established field of commercial and operational 

forestry applications which has developed beyond the purely research and 

development stage. Therefore, in particular, the performance of satellite LiDAR data 

is evaluated against airborne platforms to establish whether challenges posed by the 

large footprint dimensions, signal convolution and atmospheric transmittance, etc. 

result in degradation of the ability to derive useful biophysical parameters.

In addition, the facilities offered by airborne LiDAR for the derivation of 

individual tree-level properties and their application for forest management and 

process-based modelling are explored and evaluated.
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7.1 Method

The above aims are met in this Chapter as follows:

Firstly the motivation for exploring satellite LiDAR profiling for forest 

parameter retrieval is justified based on previous work using airborne laser scanning. 

An overview of the two systems is provided and processing of the airborne LiDAR 

data is presented. Subsets were created of airborne LiDAR data for a circular area of 

35m radius surrounding GLAS footprint co-ordinates. Estimates within these 

coincident areas could then be compared. Subsets were also taken of similar areas 

offset from published footprint centres in order to investigate possible misplacing of 

footprints and the effect of this.

Analysis was undertaken for GLAS footprints for which there was airborne 

LiDAR coverage (N=59). As previously, this excluded footprints which intercepted 

urban areas as solid-surface features will contribute to waveform structure differently 

than porous vegetation plus two sites where elevation was known to have changed 

between GLAS, airborne LiDAR and field data acquisition. These comprised an area 

where a quarry was present and a second site where construction of a recreational 

facility had taken place.

Canopy height metrics and detected elevation limits using both systems were 

compared. Estimates of ground surface elevation, Top Height and Stemwood 

Volume using GLAS waveforms are evaluated with respect to those obtained from 

airborne laser scanning. A method is developed to estimate canopy cover from 

satellite LiDAR and is evaluated using airborne LiDAR estimates of the same, 

validated using hemispherical photography.
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Further processing of airborne LiDAR data then enabled the delineation of 

individual tree crowns and the extraction of parameters which would be beyond the 

capabilities of sampling-based techniques e.g. using satellite LiDAR profiling or 

field plot measurements. This delineation was evaluated using field measurements 

and has been applied in the validation of yield model estimates of stemwood volume 

presented in the previous Chapter.

This Chapter concludes with a discussion of the opportunities and limitations 

offered by both LiDAR systems.

7.2 Stand Level Analysis

Conventional methods of assessing stand-level parameters within forestry in 

the UK require field measurements within sample plots of 1 Ox 10m to determine 

stand mean data (Matthews and Mackie, 2006). Airborne LiDAR has been shown to 

provide useful data for the management, assessment and quantification of forest 

stands, particularly at local scales and has also demonstrated that such small plot 

areas may be insufficient to accurately represent stands.

A study within Forest Research investigated the use of airborne LiDAR data 

‘windows’ of differing sizes in order to identify optimal sampling areas for the 

estimation of stand-level parameters (Doce et al, 2008). The 99th percentile of a 

normalised canopy height model (CHM), discussed in Section 7.3, was used as an 

approximation of top height. The study demonstrated that window sizes of 30x30m 

and above produced stand-level estimations of top height with approximately 95% 

accuracy (Figure 7.1). In fact this suggests that the conventional field plot size may
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pose the risk o f unrepresentative stand assessment if the number and locations o f  

sample areas do not adequately measure the full variation present.

Window size (m)

Figure 7.1 (left) Effect of the size of airborne LiDAR subset ‘windows’ on (r igh t) the estimation 
accuracy of top height (Doce et al., 2008). This demonstrates that LiDAR subsets of equivalent 

dimensions to GLAS footprints can proyide accurate estimations of stand level parameters.

The results therefore support the use o f LiDAR subsets o f  comparable size to 

ICESat/GLAS footprints for stand-level assessment. Despite challenges o f  such 

systems, this study therefore considers whether large footprint satellite LiDAR data, 

may nevertheless provide comparable results to LiDAR data from airborne platforms 

for the estimation o f  forest parameters.

—  W indows

CHM
Value

High 39 .52

105-

7.2.1 Data processing

For reference, specifications o f the two LiDAR systems are outlined in Table 

7.1. Both systems emit pulses at the same wavelength eliminating this as a source o f  

discrepancies. The airborne LiDAR footprint spacing and diameter allows near 

continuous spatial coverage thereby effectively sampling the GLAS footprint areas.
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Table 7.1. Specification overview of the airborne and satellite LiDAR systems

Platform Airborne Satellite

Instrument Optech ALTM GLAS

LiDAR system Discrete return Full waveform

Spatial coverage Laser scanning LiDAR profiling

Footprint diameter ~0.2m ~64m

Footprint spacing 0.45m 172m

Wavelength 1064nm 1064nm

7,2.1.1 A irborne Lidar A nalysis

The Optech Airborne Laser Terrain Mapper-3033 is a discrete return LiDAR 

system recording first and last echoes only for each emitted laser pulse. These echoes 

represent the highest and lowest elevations at which the energy returned to the sensor 

exceeds a designated threshold.

The footprint diameter of approximately twenty centimetres allows the 

penetration of gaps between foliage and woody biomass and therefore, whilst some 

first echoes may be returned from the uppermost canopy surface, others fall within 

the tree crown or may reach the ground. Conversely, last return echoes may be 

intercepted within the canopy before reaching the ground surface. Therefore filtering 

of last returns is necessary to remove points at elevations above the ground surface in 

order for the topography to be accurately identified and represented for further

analysis. The data were therefore processed as follows using the Queensland Remote

(£)Sensing Centre (QRSC) IDL based in-house LiDAR processing tools with the kind 

permission of John Armston, Department of Natural Resources and Water, 

Indooroopilly, Australia.
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The raw, unprocessed airborne LiDAR data are supplied as ASCII files, 

formatted as eight fields representing Easting, Northing, Elevation and Intensity for 

last and first returns respectively (Table 7.2) enabling processing to be undertaken 

according to echo type.

Using the open source GNU AWK programming language 

(Free_Software_Foundation, 2006), data in the vicinity of ICESat footprints were 

subset in order to allow their import into the QRSC LiDAR software tool. The QRSC 

tool enables ASCII format data to be imported and converted into industry-standard 

binary LAS format (http://www.lasformat.org/).

Table 7.2 Sample of raw data acquired by the airborne LiDAR flight campaign. Int. represents 
intensity. Data are provided in ASCII format.

Last Return First Return

Eastings Northings Elevation Int. Eastings Northings Elevation Int.

364568.97 216000.29 166.25 59 364568.79 215999.96 172.53 5

364570.17 216000.23 165.69 23 364569.89 215999.73 174.41 9

364571.17 216000.14 165.44 23 364570.8 215999.54 176.81 1

364572.01 216000.07 165.47 12 364571.64 215999.49 176.22 12

364579.35 216000.23 173.09 38 364579.35 216000.23 173.11 38

Due to sensor time limitations in distinguishing and registering returns, 

elevation differences between first and last returns of less than five metres were 

disregarded as effects of noise and therefore considered to be a single return. Subsets 

of coincident airborne LiDAR data were then created within a radius of 35m about 

the geo-located ICESat/GLAS footprint locations (allowing for footprint position 

uncertainty and eccentricity) in order to compare the surfaces detected by the two 

LiDAR systems and field measurements.
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Topography Estimation

An elevation filter was then applied, using the QRSC LiDAR tools, to 

eliminate non-ground points from the last returns. This method is based on the 

algorithm of Zhang et a l, (2003) in order to identify and remove non-ground LiDAR 

returns from ‘porous’ surfaces like vegetation and solid surface structures such as 

buildings. Initial identification of ‘seed’ ground points is undertaken using the lowest 

detected elevation within cells whose size is determined by average LiDAR point 

spacing. An elevation difference threshold (using slope present at the study site) is 

utilised to preserve gradually-increasing topographic features whilst identifying 

abrupt elevation changes assumed to be associated with buildings and vegetation. 

This factor aims to prevent excessive filtering of ground points and artificial 

lowering of the estimated ground surface. A series of iterations is performed to apply 

a progressively larger search area ‘window size’ to the airborne LiDAR data to 

enable detection of non-ground objects of varying sizes. This removes returns from 

trees and objects which are less than the window size whilst retaining those above it 

(maximum window size is set as maximum tree crown diameter for the study area).

The software requires the following input parameters for this process: Initial 

disk radius (m) is usually set to equal the average return spacing which was 

calculated for each footprint area; mean return point spacing was 0.45m with a range 

of 0.41m to 0.51m. Expected maximum crown radius was entered as seven metres 

for all footprints to take account of wide crown dimensions of broadleaf species 

observed during fieldwork. Within-footprint slope was estimated using elevation 

difference within the coincident 10m resolution OS Land Form Profile DTM 

described previously and expressed as a percentage with respect to the subset area 

diameter of 70m. Relative elevation accuracy was set to the system specification
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accuracy of 0.15m. The classification of ground/vegetation points resulting from 

processing using the above input parameters was then displayed within the 3D 

viewer (QRSC LiDAR tools adapted from Streutkers, 2008) in order to visually 

determine whether non-ground returns had been satisfactorily filtered.

Since points were regularly distributed with little variation across the study 

area, ground class surface models for each footprint area were created using linear 

interpolation with Delaunay triangulation (creating a Triangulated Irregular Network 

-TIN).

Table 7.3 QRSC LiDAR Tools input parameters

QRSC Parameter Value

Initial disk radius (m) 0.45

Mean return point spacing (m) 0.45

Expected maximum crown radius (m) 7

Maximum slope (%) 28.6

Relative elevation accuracy (m) 0.15

Stand-level Vegetation Analysis

Return count height percentiles and maximum canopy height above this 

interpolated ground surface were calculated using 15cm height bins. This is 

comparable with the Ins resolution within GLAS waveforms.

Some approaches to processing airborne LiDAR data consider first and last 

return echoes separately. Within this study, all returns (first, last and single) were 

used for data processing with the aim of better estimating the continuous profile of 

returned energy from throughout the canopy seen within full waveforms.
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Figure 7.2 presents a 0.5m resolution digital terrain model (DTM) produced 

following filtering o f non-ground last returns.
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Figure 7.2. (left) 0.5m resolution DTM with shaded relief illuminated from the northwest 
showing a 0.5km x 2km area of the Forest of Dean and (right) coincident DSM derived from 

airborne LiDAR data. Colour scales represent elevation in metres.

The image to the right is a digital surface model (DSM) o f  first returns, 

thereby representing the spatial distribution of the upper canopy surface. The images 

show a region o f  0.5km by 2km covering a section o f the study area within the Forest
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of Dean. Both models were created with TIN interpolation using Golden Software 

Surfer 8.

Differences between the highest intercepted canopy surface and lowest 

ground elevation within airborne LiDAR subsets were calculated in order to compare 

these with ICESat/GLAS waveform extent. This was carried out with the aim of 

assessing whether the effect of footprint size, energy distribution or atmospheric 

transmittance would result in significant deviations between detected surface limits.

Using the airborne LiDAR ground class, mean slope within footprints was 

calculated in order to assess the extent to which any differences observed between 

estimates from the two systems or field measurements may be a function of slope.

Projected plant cover (Armston et a l, in preparation 2008) was calculated for 

each footprint using return point counts above a linearly-interpolated ground surface 

as described above. A 0.5m height threshold was used to exclude the effects of low 

cover by ferns, brambles or grass to prevent artificial estimates of cover but to 

include energy distribution throughout the canopy in order to be comparable as far as 

possible with the GLAS waveform energy profile. As previously, 0.15m height bins 

were used for consistency with waveform resolution. Using these criteria, canopy 

cover was estimated as the number of all canopy points expressed as a fraction of 

total returns. During this process, a ground/canopy reflectivity ratio was calculated 

using the mean intensities of the ground class from last returns and canopy class 

using first returns.
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7.2.1.2 ICESat/GLAS Data

Vegetation Height Metrics

The methods described in previous Chapters were used to identify the region 

of the waveform estimated to be returned from the vegetation (Rwt and GPMaxAmp) 

and to calculate percentiles of cumulative energy for this area. Heights of these 

percentiles were subsequently used in comparison with airborne LiDAR return count 

height percentiles. Both methods of estimating vegetation height from GLAS were 

evaluated.

Waveform Extent (the difference between the beginning and end of the 

waveform signal) was also compared with elevation limits within coincident GLAS 

footprint subsets of airborne LiDAR data.

Assessment o f Sensitivity to Geolocation Accuracy

Horizontal geolocation accuracy mean and standard deviation have varied 

between laser operations: LI A 4.6±9.3m; L2C 37.7±53.4m; L3A 0.0±2.7m; L3B 

17.4±22.8m. Position accuracy for other laser operation periods, including L3D used 

in the study, has yet to be determined by NASA.

Therefore an exercise was carried out to assess the effect of possible footprint 

offsets for L3D using subsets of airborne LiDAR data. Taking the stated footprint 

centre co-ordinates, subsets of airborne LiDAR data were created for circular areas 

of 70m diameter, at a distance of 20m and at 45° intervals about this position. This 

distance was selected as a mid-way point between minimum and maximum reported 

location uncertainty for GLAS laser 3 campaigns.
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Maximum canopy height and percentiles were estimated from the airborne 

LiD AR data subsets for each offset direction. The resulting range of height estimates 

were incorporated to assess the potential error in ICESat/GLAS-derived vegetation 

height due to geolocation uncertainty. Although there may be some drift during the 

course of a laser operation (approximately one month), the three second duration 

needed to cross the Forest of Dean suggests that the assumption is reasonable that 

any offset would be systematic.

Vegetation Canopy Cover

The concept of Gaussian decomposition to identify the vegetation return was 

also applied to estimations of canopy cover using the returned waveforms: if 

Gaussian Peak 1 was previously found to have greater amplitude than Gaussian 2, 

peak 1 was assumed to represent the ground return and the sum of areas under 

Gaussian Peaks 2-6 to indicate the returned energy from intercepted canopy surfaces. 

Similarly, if Peak 2 had the greater amplitude, both Gaussian Peaks 1 and 2 were 

estimated to represent the returned terrain signal whilst the area under Gaussian 

Peaks 3-6 gives that returned from the overlying vegetation.

Given that waveform amplitude is a function of both surface area of 

intercepted features plus returned energy from those surfaces, the effect of 

differences in reflectivity between canopy elements and ground surfaces needs to be 

accounted for. Therefore a method is needed to isolate and remove this influence, 

normalising the waveform structure for intercepted surface area alone. Possibilities to 

achieve this are offered by optical data or airborne LiDAR remote sensing.

Aerial photography was obtained at the same time as the airborne LiDAR 

data and therefore presented the opportunity of using this to apply a correction for 

reflectivity differences. However, several effects introduce error:
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I. Mixed pixel values combine the reflectivity from different surfaces.

II. Pure ground pixels are expected to be either entirely in sun or shade.

III. Vegetation pixel reflectivity is likely to be from the canopy surface 

rather than within the crown.

IV. Differences in wavelength.

V. Colour infrared imagery did not extend across all areas covered by 

ICESat and airborne LiDAR. Therefore an assumption would need to 

be made for reflectivity beyond this.

Therefore the decision was made to correct the waveform amplitude o f  

vegetation and ground components directly using airborne LiDAR intensity (Figure

7.3).
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Figure 7.3. Example of intensities of ground and vegetation classes using a subset of airborne 
LiDAR data for GLAS footprint 558917506_18. For each footprint this was used to remove the 

effect of differences in intensity for ground and vegetation from GLAS waveform amplitude
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This approach offers the following advantages:

I. Differentiating between ground and vegetation airborne LiDAR point 

classes allows these to be considered entirely separately.

II. Using the airborne LiDAR classification previously discussed, ground 

point intensities are identified irrespective of whether they are located 

beneath the forest canopy or in clearings.

III. Likewise, vegetation class intensities upon the canopy surface and 

within the crown are both included.

IV. The airborne LiDAR intensity record is expected to correspond most 

closely with the effects of energy differences within waveforms due to 

the properties of intercepted features.

V. Both systems emit pulses at the same wavelength.

Therefore the adjustment to modify the area under the waveform canopy 

signal was carried out using the ground/canopy intensity ratio from classified 

airborne LiDAR points. Please refer to Figure 7.3 for an example of how intensities 

of ground and vegetation classes differ at 1064nm. Discussions relating to this ratio 

are also provided by other authors (Harding et al, 2001; Ni-Meister et al, 2001). A 

comparison was made between reflectance ratios calculated using first returns and all 

returns to assess the sensitivity to echo type. R2 of 0.96 was found and therefore the 

assumption was made that echo type would not significantly alter results.

Waveform amplitude from the canopy (area beneath Gaussians 2-6 or 3-6 as 

above) was multiplied by this ratio to remove the influence of reflectivity (intensity) 

differences from the returned waveform amplitude. This was designed to leave the 

waveform amplitude remaining which is representative of the intercepted surface
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profile. It is based on the assumption that the ratio is determined by the reflectivity of 

intercepted surfaces alone. Footprint canopy cover was then estimated by expressing 

the modified canopy area as a fraction of total modified waveform area.

Ground Surface Identification within Waveforms

Elevations of the estimated ground positions within waveforms were 

calculated in order to explore the degree to which a representative ground surface 

could be identified using large footprint LiDAR and to assess the ability of each 

ICESat/ GLAS method (R ^and GPMaxAmp) to estimate ground elevation with respect 

to airborne LiDAR and Ordnance Survey Land Form Profile 10m DTM mean 

elevations. Waveform ground surface elevations were calculated as follows:

Ground = d_elev + dJdJRngOff- dJSigBegOff-Rfvr- djgdHt
(7.1)

Ground = d_elev + d_ld_RngOff- d_SigBegOff- GPmoxAwp ~ d_gdHt
(7.2)

where djelev is the reference elevation of the ellipsoid which is generally the 

centroid of the standard fit waveform though on occasion is the waveform maximum; 

the land range offset, d_ld_RngOff, indicates the offset position within the waveform 

of d_elev; d_SigBegOff provides the offset of the beginning of the waveform signal; 

R^rand GP̂ axAmp are estimated maximum vegetation heights; d_gdHt is the height of 

the WGS-84 geoid below that of the ICESat ellipsoid.

All waveform parameters used are from product GLAM as original units 

converted to metres. Waveform offset positions are provided as a negative number 

with reference to the final bin furthest from the spacecraft recorded in each 150m 

‘window’ and indicate the distance from this position in metres.
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7.2 .1.3 Hemispherical Photography

As described in detail within Section 4.3.2, fifteen ICESat footprints were 

sampled using hemispherical photography with the aim of assessing the mean 

footprint fractional cover. For each footprint, nine photographs were taken: at the 

footprint centre and, using a radius o f  20m from this point, at 45 degree intervals 

from the North position. Hemiview 2.1 processing software was then used to 

estimate fractional cover for each photograph.

The calculation boundaries were manually placed around the circular limits 

o f  each photograph and a threshold was visually applied to create a classification o f  

sky/non sky areas (Figure 7.4). The validity o f  the binary classification is dependent 

upon having high contrast photographs in which canopy elements are consistently 

darker than the sky and yet avoiding glare from the sun through foliage.

Figure 7.4 (left) Example of a hemispherical photograph taken for footprint 885917496_36. 
(right) A sky/non-sky threshold is applied visually and the resulting classification is divided into 

sky sectors (yellow lines). These sectors are weighted for the proportion of sky represented, 
enabling canopy cover to be estimated.
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In practice, processing hemispherical photographs involves a compromise 

between overestimating large canopy clearings near the zenith and underestimating 

small canopy gaps near the horizon.

The angular area of each sky sector is calculated for its associated bounding 

zenith and azimuth angles (0, a). The software enables gap fraction to be calculated, 

based on the percentage of visible sky, weighted for the proportion of the hemisphere 

which each sector of the photograph represents:

vicQi™ = Sky Gap 9a x SolidAnga x PixValid9a /
/  y 'iSolidAng9 x PixValid9a

/  (5, a)

(7.3)

where:

- VisSkye)Ct is the proportion of visible sky in a given sky sector, relative to 

the entire hemisphere of sky directions, excluding areas ignored using 

threshold allocation

SkyGape!Ct is the gap fraction for the sky sector

SolidAnglee is the angular area of the sky sector on a hemisphere of unit 

radius

PixValide,a is the proportion of the sector which is not ignored

(HemiView2.1, 1999)

Canopy cover was then estimated from the hemispherical photographs as 1- 

[proportion of visible sky]. The mean of the nine calculations for each footprint was 

used to assess the validity of airborne LiDAR canopy cover estimates.

- 196-



C h a p t e r  7. A ir b o r n e  a n d  Sa t e l l it e  L iD A R  C o m p a r is o n

7.2.2 Results

7.2.2.1 Height Percentiles

An analysis of the relationship between airborne LiDAR and field 

measurements of maximum canopy height produced R2 of 0.83 and RMSE 4.2m for 

N=25; the intercept was not statistically significant (Figure 7.5). This is below that 

achieved using GLAS waveform estimates but is due to an outlier.

Comparison of Airborne LiDAR 
and field heights

co ~
E

CM ~JSc0)
E
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wTO<D5
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5 10 15 20 25 30 350

AL Maximum Canopy Height (m)

Figure 7.5. Relationship between estimated maximum canopy height from airborne LiDAR 
(AL) and field measurements. R2 = 0.83, RMSE 4.2m, intercept not significant.

The canopy metrics calculated for the airborne and satellite LiDAR data 

showed strong associations, particularly with the GPMaxAmp method of estimating 

canopy height (Table 7.4). Maximum canopy height estimations from satellite 

LiDAR explained 68% of variance from airborne LiDAR estimates, RMSE 4.4m 

(seen in Figure 7.7). For the upper percentiles, strong correlations were found which 

decreased with greater depth through the canopy below the 95th percentile.

- 197-



C h a p t e r  7. A i r b o r n e  a n d  Sa t e l l it e  L iD A R  C o m p a r is o n

Of particular interest was the relationship with the 98th and 99th airborne 

LiDAR height percentiles which often correspond with Top Height estimations 

within forestry. These percentiles were estimated with R of 0.76 (RMSE 3.4m) and 

R2 of 0.75 (RMSE 3.5m) respectively.

This demonstrates that, despite the large differences in scale, satellite LiDAR 

waveforms and coincident airborne LiDAR point clouds can be seen to similarly 

represent canopy profiles, particularly among the upper region of the canopy. 

Airborne LiDAR is becoming more widely used and accepted in operational forestry. 

The correspondence found between results from satellite and airborne platforms 

suggests the prospects for future practical applications for satellite LiDAR remote 

sensing.

Table 7.4. Comparison of airborne and satellite LiDAR percentiles using areas covered by 
stated GLAS footprint co-ordinates. N=59

Position GPM axA m p R2 (RMSE) Rwt R2 (RMSE)

Maximum height 0.68 (4.4 m) 0.61 (4.9m)

99th percentile 0.75 (3.5 m) 0.70 (3.9m)

98th percentile 0.76 (3.4 m) 0.71 (3.8m)

95 th percentile 0.75 (3.5 m) 0.69 (3.9m)

90th percentile 0.67 (3.8 m) 0.63 (4.1m)

85th percentile 0.65 (3.8 m) 0.59 (4.2m)

80th percentile 0.63 (3.9 m) 0.56 (4.3m)

75 th percentile 0.61 (3.9 m) 0.50 (4.4m)

50th percentile 0.54 (3.8 m) 0.34 (4.7m)

This is further supported by the similar estimations of Top Height produced 

using both systems. For this diverse site, the 98th airborne LiDAR percentile 

estimated Top Height with R2 of 0.73; RMSE 4.5m (Figure 7.6). Whilst the satellite
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LiDAR maximum canopy height using the GPMaxAmp method explained 77% of 

variance from yield model Top Height estimates (Chapter 6).

Top Height estimation from airborne LiDAR

CO

E
JCO)<D
I
Q_OI-

CM -

C  CN -  O 
"</>W ID _
E
E
O °  -
m
2> ID  -
o

LL

0 5 10 15 20 25 30 35

Airborne LiDAR 98th percentile (m)

Figure 7.6. Estimation of Top Height using Airborne LiDAR 98th height percentile. R2 = 0.73;
RMSE 4.5m, intercept not significant, coefficient significant p<0.001. N=59

Although there is high correspondence between airborne and satellite LiDAR 

vegetation height estimates, the dispersal which is seen may be a result of high 

species heterogeneity within the Forest of Dean, meaning that a small discrepancy in 

footprint location or shape could produce significant deviations.

An analysis was undertaken of correlations with offset airborne LiDAil point 

clouds. Given the high spatial variability in species distribution within some stands, 

offsetting the footprint area about the stated co-ordinates of footprints revealed 

potential height differences of up to -18m and +20m (Figure 7.7).
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Vegetation height d ifferences

0 5 10 15 20 25 30 35
ICESat/GLAS maximum vegetation height (m)

Figure 7.7. (left) Airborne LiDAR and GLAS maximum height estimates with error bars 
representing canopy height differences within 20m of stated footprint co-ordinates; N=59. 

(right) Illustration of subset areas, offset from the footprint centre, for which local heterogeneity
was determined.

The optimum fit o f  the nine trials suggests that the GLAS pass used for this

study may in fact be positioned approximately 20m to the northeast o f  published 

locations (revised maximum canopy estimates: R“ = 0.79, RMSE 4.0m, Figure 7.8; 

improved from R 2 = 0.68, RMSE 4.4 m).

Relationship between offset airborne lidar and 
waveform-derived maximum canopy heights

o
C O

o<NJ

o

to

o

15 20 25 30 350 5 10

Waveform maximum canopy height estimates (m)

Figure 7.8. Comparison of maximum canopy height estimates from ICESat/GLAS and subsets 
of airborne LiDAR data, 20m to the northeast of 59 stated GLAS footprint co-ordinates.
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7.2,2,2 Ground Surface Detection

The difference between the uppermost and lowest detected surfaces from 

GLAS (Waveform Extent) demonstrated a close correlation with coincident airborne 

LiDAR elevation limits, producing R2 of 0.71 and RMSE of 5.0m with no significant 

intercept (Figure 7.9).

Relationship between airborne lidar 
and waveform elevation limits

E,
CO

'E o _
co■j=i
CD
>

<1>
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0 10 30 4020

ICESat/GLAS Waveform Extent (m)

Figure 7.9. Comparison of detected surface limits between airborne LiDAR (difference between 
lowest ground elevation and highest canopy surface) and satellite LiDAR (Waveform Extent)

for 59 GLAS footprint areas.

Figure 7.10 shows estimations of within-footprint mean ground elevation 

using Ordnance Survey Land-Form Profile 10m resolution DTM, mean ground class 

elevation using airborne LiDAR and ICESat/GLAS estimated ground surface using 

both GPMaxAmp and Rwt methods. Estimates can be seen to correspond closely 

throughout the pass with the differences found in Table 7.5.
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Along with the allocation of the beginning of the waveform signal, the ability 

to identify the elevation of the ground surface within waveforms is a key factor in 

estimating vegetation height. Assessment of this is therefore important for 

identifying sources of error within estimates.

The use of waveform structure to identify a ground elevation (GPMaxAmp) has 

resulted in the closest estimate to both the reference OS DTM and the fine spatial 

resolution estimate obtained from the airborne LiDAR dataset. In contrast, the R wt 

method relies on the representation of the independent DTM and the accuracy of the 

signal end position but nevertheless has succeeded in estimating the ground surface 

with mean bias of approximately one metre.

The distribution of error found with LiDAR data in relation to the OS DTM 

reference dataset is illustrated in Figure 7.11 and statistical relationships are 

presented in Table 7.5. The Gaussian decomposition method (GPMaxAmp) 

underestimated mean ground elevations of airborne LiDAR by 0.32m and the 

Ordnance Survey DTM (OS) by 0.10 m. By comparison, the R w t  method shows a 

greater range of error however also produces a relatively small mean bias from OS 

data of -0.83m (-1.05m with AL mean elevation).

Table 7.5. Comparison of estimated ground surfaces using Ordnance Survey and LiDAR data.

Comparison (m) A L - O S R w t  “O S G P a m p  “O S R w t- A L G P a m p- A L

Mean offset 0.22 -0.83 -0.10 -1.05 -0.32

Max. difference 3.05 12.07 9.05 9.02 11.47

Min. difference -2.95 -10.43 -6.98 -9.64 -7.36

Standard Deviation 1.28 3.92 2.21 3.66 2.26
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Analysis of he ig h t estim ate e rro r

I AL_m ean_ground ■  RWT_ground nM ax_A m p_grotind
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Error (m)

Figure 7.11 Distribution of error in estimates of the ground surface using GLAS R WT and 
GPMaxAmp methods and airborne LiDAR mean ground surface with respect to mean OS DTM 

elevation within ICESat/GLAS footprints.

When compared with airborne LiDAR ground surface, mean slope calculated 

from the airborne LiDAR ground class explained 39% and 0.5% o f  the percentage 

error using GPMaxAmp and R wt estimates o f  the ground surface respectively (Equation

7.4). The ground elevation difference within footprints using airborne LiDAR data 

explained 38% and 1% o f  the percentage error using GPMaxAmp and R wt methods 

respectively. This suggests that the Rwr method has succeeded in removing the effect 

o f  terrain as an error source.

AbsError (G LAS grd- A L
(7.4)

where GLASgrct is the estimated elevation o f  the ground within GLAS 

waveforms (Section 2.2.1); and ALgrd and ALsiope are the mean elevation and the 

calculated slope respectively for GLAS footprint subsets using airborne LiDAR 

ground class points.
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7.2.2.3 Stemwood Volume

Single Species Stemwood Volume

For all vegetated footprints across the study site, estimations of stemwood 

volume for the tallest species within footprints using the 98th airborne LiDAR 

percentile produced R2 of 0.60 and 103.4 m3ha_1 RMSE with no significant intercept.

Differentiating between stands with greatest coverage provided by broadleaf 

or coniferous species improved the relationships as follows. The 75th percentile 

showed the best relationship when estimating stemwood volume for broadleaf 

species with R2 of 0.80, RMSE of 55.95 m3ha_1. The 99th percentile best estimated

2 3 1conifer stemwood volume with R of 0.63, RMSE of 98.55 m ha' . Intercepts were 

not statistically significant. These correlations are seen in Figure 7.12.

Airborne LiDAR stem w ood volume estim ates 
for tallest sp ec ies (conifers)

Airborne LiDAR stemwood volume estim ates 
for tallest spec ies (broadleaves)
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Figure 7.12. Estimation of stemwood volume for the tallest species within stands using airborne 
LiDAR. (left) relationship for conifers R2 = 0.63, RMSE 98.55 m’ha'1 (right) correlation for 

broadleaf species; R2 = 0.80, RMSE 55.95 m3ha‘'

Mixed Composition Stemwood Volume

Stemwood volume estimates for all vegetated footprints taking account of the 

mixed composition of stands produced R2 of 0.46, RMSE of 102.9 m3ha_1. Whilst 

considering broadleaves and conifers separately produced R2 of 0.53, RMSE of 79.93
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m3ha_1 for broadleaf species and R2 of 0.59, RMSE of 92.22 m3ha'' for conifers. In 

all cases the intercept was not statistically significant. Correlations for broadleaves 

and conifers are seen in Figure 7.13.

Airborne LiDAR stemwood volume estim ates 
for conifer-dominated mixed stan d s

Airborne LiDAR stemwood volume estim ates 
for broadleaf-dominated mixed s tan d s
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Figure 7.13. Estimation of stemwood volume for the mixed composition of stands using airborne 
LiDAR. (left) relationship for conifers R2 = 0.59, RMSE 92.22 m3ha‘1 (right) correlation for 

broadleaf species; R2= 0.53, RMSE 79.93 m3ha'1

For reference, Table 7.6 shows a comparison of stemwood volume estimates 

for both LiDAR systems. Greatest similarity in analysis trends is seen between 

estimates using airborne LiDAR data and the GLAS GPMaxAmp method. This higher 

correspondence could be due to fact of the latter method using waveform structure to 

isolate the canopy return which more similarly replicates the airborne LiDAR 

method of calculating height percentiles above the classified ground surface.

The ability of GLAS waveform indices to estimate stemwood volume 

similarly to airborne LiDAR data supports the potential to apply large footprint 

LiDAR estimation of biophysical parameters more widely.
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Table 7.6. Comparison of stemwood volume estimate correlations using airborne and satellite
LiDAR

Species type
Tallest species R ' (RMSE 

mVha)

M ixed stand R2 (RM SE 

m 3/ha)

Broadleaves 0.8 (55.95) 0.53 (79.93)

Airborne LiDAR Conifers 0.63 (98.55) 0.59 (92.22)

Combined 0.6 (103.4) 0.46 (102.9)

Broadleaves 0.64 (68.7) 0.46 (76.3)

GLAS Rwt Conifers 0.63 (90.3) 0.55 (93.8)

Combined 0.56 (100.2) 0.42 (103.1)

Broadleaves 0.75 (59.1) 0.47 (75.6)

GLAS G Pmaxamp Conifers 0.59 (98.3) 0.66 (82.5)

Combined 0.59 (100.8) 0.5 (97.8)

An example o f  mixed stemwood volume estimates along the satellite pass

crossing the Forest o f  Dean using both LiDAR systems and yield model calculations 

is seen in Figure 7.14. Gaps in estimations are found where ICESat/GLAS footprints 

cross urban constructions or do not fall within Forestry Commission sub­

compartments. Airborne LiDAR data are not available for the entire extent o f  the 

Forest o f  Dean.

— A — AL 75th percentile volume estimation R_WT 90th percentile volume estimation
—h—Yield model mixed stemwood volume

«  500

«= 400

® 300

o 200

5 100

0
CCCM CCM MCMMMCCCCBCCBCC B C C C M C C C C C C C B C C C C C C C C B C C  BBMMMBBCMCBCBC C CCC MCC

S p e c ie s  group

Figure 7.14 Mixed composition stand stemwood volume estimates using airborne LiDAR data, 
GLAS R wt method and calculations from Forestry Commission yield models. X-axis categories 

indicate the dominant species group for each GLAS footprint: C=conifer, B=broadleaf and 
M=mixed stands of approximately equal composition.
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7.2,2.4 Canopy cover

Canopy cover provides an indication of stand regeneration potential, stage in 

stand succession (greater cover is often seen with younger stands once established, 

which decreases with competition and mortality) and suitable conditions to promote 

biodiversity (light penetration permitting multi-storey or sub-canopy vegetation 

growth).

Despite the small data range, hemispherical photography estimates of canopy 

cover produced a strong linear relationship with airborne LiDAR cover calculations 

(R2=0.77; RMSE=0.02) thereby supporting their use as an indication of ground truth 

across the entire area (Figure 7.15).

Canopy cover method comparison
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Figure 7.15. Estimates of canopy cover from hemispherical photograph and airborne LiDAR 
vegetation class points as a percentage of total returns. A strong correlation is found for field- 

sampled footprints using hemispherical photography despite the small data range, thereby 
supporting the use of airborne LiDAR estimates.
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Large and small footprint LiDAR 
estimated canopy cover
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Figure 7.16. (above) Direct comparison of airborne and satellite LiDAR. estimates of canopy 
cover, (below) Gaussian decomposition of the anomalous waveform for the encircled outlier.

Figure 7.16 shows ICESat/GLAS and airborne LiDAR system canopy cover 

relationships. The example raises an interesting situation in which the waveform 

(below) representing the extreme outlier indicated, is broadened by a low stature,
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lone tree on a gentle slope meaning the Gaussian fit has placed the greatest amplitude 

for the 3rd peak causing the ground surface to be misclassified as canopy.

Multiple linear regression using waveform-derived cover and vegetation 

height addresses the error source though produces R2 of just 0.32 (RMSE 0.16):

Cover = aAreacanopy + $Rwr (7.5)

Where Cover is the estimate of fractional cover calculated from airborne 

LiDAR data; Areacanopy is the modified area beneath the canopy return as a 

percentage of total modified area beneath the GLAS waveform; Rwr is maximum 

vegetation height estimated from GLAS; a and p are coefficients applied to the 

variables.

Distinguishing greatest coverage by conifers or broadleaf species improved 

relationships to R2 0.41 (0.16 RMSE) and R2 0.63 (0.11 RMSE) respectively (Figure 

7.17). The use of multiple regressions combining dominant canopy height or 

percentile associated with volume were explored, however these did not further 

improve estimates of canopy cover.

Conifer canopy cover estim ates

i ----------- 1----------- 1----------- 1----------- r
0.0 0.2 0.4 0.6 0.8 1.0

Broadleaf canopy cover estim ates
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GLAS canopy cover modified waveform area plus height Canopy Cover GLAS maximum canopy height

Figure 7.17. Canopy cover estimates for broadleaf and conifer-dominated stands using multiple 
regression for GLAS waveform area (modified for reflectance differences and to express canopy 

area as proportion of total area) and estimated vegetation height in comparison with canopy 
cover estimated from airborne LiDAR data.
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7.3 Crown Delineation and Canopy Level 
Analysis

Irrespective of along-track footprint frequency and ground-track 

concentration, individual tree level vegetation analysis is beyond the capabilities of 

large footprint LiDAR applications as the aggregation of returned energy from the 

intercepted surfaces within the footprint area cannot be spatially differentiated. 

Small footprint LiDAR therefore exceeds the potential of large footprint systems in 

this respect as the distribution of intercepted surfaces and estimated parameters can 

be spatially represented and analysed at finer scales than those possible with the 

former.

Individual tree dimensions and volume are important factors for carbon 

accounting and forest management. Additionally, topographic relief and shielding 

from adjacent vegetation need to be considered when modelling susceptibility to 

wind. Quantifying vegetation distribution and providing inputs to inform process 

modelling will not only identify and allow appropriate management of site-specific 

risks but also permit optimum and targeted felling of stands or individuals. Airborne 

LiDAR data enables the locations, heights and canopy dimensions of individual trees 

to be mapped and therefore addresses many of the data requirements for assessing 

vulnerability to wind damage and uprooting during storm events (Suarez et al., 

2008b).

In this Section, a method of delineating canopies based on object-orientated 

analysis is explored which not only demonstrates the capabilities and applications of 

airborne LiDAR data, but also provides a means of assessing yield model stemwood 

volume estimates from the previous Chapter.
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7.3.1 Data Processing

Following the method of Suarez et al., (2008a), a ground return class was 

determined from last return echoes using Terrascan 007.008 Software, an extension 

application for Bentley Microstation V8 2004. This ground class and all first return 

data were subsequently exported as LAS files within 0.5x0.5km grids covering the 

Forest of Dean and converted into regular 0.5m resolution raster geotiffs using 

Delaunay triangulation with linear interpolation within the QRSC LiDAR processing 

software. A canopy height model (CHM) was calculated as the difference between 

the digital terrain model (DTM) created from the ground class and the digital surface 

model (DSM) from the first return data using ArcGIS 9.2. An example area of this is 

seen in Figure 7.18 (right).

Definiens Developer 7.0 was used to delineate individual tree canopies solely 

from the LiDAR-derived 0.5m resolution CHM. Conditions relating to the study site 

which may influence the performance of algorithms within this software are outlined 

below.

When delineating canopies, interlocking crowns can pose difficulties in 

distinguishing foliage between adjacent trees. This may be particularly so for 

broadleaf species where crown structure may not produce such distinct local 

elevation minima between crowns as seen with conifers. This may therefore be a 

challenging factor for the Forest of Dean. Additionally, the nature of sensors 

observing from above can obscure suppressed vegetation meaning that dominant and 

co-dominant trees are best represented at the expense of others. Furthermore, 

delineation algorithms need to restrict crown shape to prevent possible expansion 

into intra-crown spaces producing elongated or irregularly-shaped crowns.
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Figure 7.18. (left) Aerial photography (RGB) and (right) coincident airborne LiDAR Canopy 
Height Model (CHM) showing an area of 1x3 km within the Forest of Dean. Key illustrates 

height in metres. Minimum and maximum bounding co-ordinates: 363000, 209000 and 364,000,
212000.

For some sites with distinct and widely differing vegetation properties, it may 

be necessary to apply segmentation, e.g. using stand boundaries, in order to adjust 

algorithm parameters to suit vegetation characteristics. The method used within this
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study aims to account for different crown properties by vegetation height, allowing 

the algorithm to assign broader crowns to taller trees and to distinguish individual 

regularly-shaped crowns within closed canopies.

Process o f Tree Crown Delineation

The algorithm used to achieve this is based on site-specific refinements made 

to a Definiens ruleset which was developed by Juan Suarez, Forest Research, 

Northern Research Station.

This ruleset performs a series of routines to identify tree tops and crown 

boundaries using the LiDAR canopy height model. Modifications were made to this 

in order to provide optimum classification for target GLAS footprint areas for which 

field measurements had also been taken.

Firstly the CHM was smoothed using a Gaussian blur of 5 in order to reduce 

the effect of clumping and height variability within crowns. Local maxima were then 

identified, located and classified as tree tops. Areas of ground or understorey 

vegetation below a 2m threshold, plus canopy ‘edges’ were identified using local 

minima and used as boundaries to prevent further canopy extension.

The algorithm was subsequently run to extend tree tops radially until they 

either met an adjacent crown or designated boundaries. A mask was applied to limit 

irregularly shaped polygons producing a more natural shape (e.g. Figure 7.19).

Tree top locations were then saved as point shapefiles and polygons 

representing individual canopies were also exported with associated maximum crown 

height, crown area, maximum and minimum radii, width and polygon centroid co­

ordinates.
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Figure 7.19. An example of canopy delineation of vegetation within footprint 885917506_13 
(blue circle -  diameter 70m). Colour key illustrates height in metres for the canopy height 

model. Calculated tree crown boundaries are outlined in red; blue points represent the highest 
elevation (tree top) within each tree crown.

7.3.2 Crown Delineation Analysis and Results

The validity o f  the above delineation was tested using field data. In order to 

be able to calculate individual tree volume (Chapter 6), six footprints were selected 

for which field measurements had been made and which contained a high percentage 

o f  a single species or species with known spatial distribution (Table 7.7). This 

enabled a species-specific regression equation to be applied for the calculation o f  

DBH using individual tree height and crown dimensions.

Using the eight field-measured tree heights recorded within each footprint 

area, heights and locations o f  these were compared with those extracted from the 

crown delineation for coincident areas. NB footprint 885917506 14 showed a 

discrepancy between the area measured (located using a standard hand-held GPS) 

and the actual GLAS footprint area identified using footprint co-ordinates. For this 

site, the delineation was therefore verified using the area measured.
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Table 7.7 Species composition of stands used to verify airborne LiDAR delineation. Some areas 
of sub-compartments are unplanted and therefore the sum of components need not equal 100%. 

DF represents Douglas Fir, LI is Lime, OK is Oak and NS indicates Norway Spruce.

GLAS Footprint Species: Sub-compartment 1 Species: Sub-compartment 2

885917506_13 96% DF 2% LI - -

885917506_14 90% DF 10% OK 80% DF -

885917506_15 90% DF 10% OK - -

885917506J6 90% DF 10% OK - -

885917516_04 85% NS - - -

885917516_05 100% DF - 100% OK -

The result of this analysis found that positions of trees were located to within 

three metres and delineation of the canopy height model underestimated individual 

tree height by a mean value of 5% (range = -22% to 22.5%). Tree heights for 

delineated trees were therefore adjusted to compensate for this mean 5% height 

underestimation. The accuracy of this investigation was comparable with that found 

by Suarez et al., (2005a) and so estimates using this method were accepted as a 

useful surrogate for field measurements for the stands listed in Table 7.7.

The algorithm was found to perform better for trees above approximately 

12m in height than for shorter trees. Below this height, tree tops were identified but 

the algorithm failed to adequately delineate crowns. Closed canopies did not prevent 

individual trees above this height from being identified and located. Use of canopy 

delineation to provide surrogate ground truth validation data would require 

segmentation of analysis by vegetation height, in order to produce reliable canopy 

representation for all tree heights. Additionally, the use of differential GPS for field 

measurements would assist with accurately placing field plots and locating trees 

within this.
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7.4 Discussion

7.4.1 Stand-Level Parameters and Forestry Applications

This study has explored the relationships between canopy metrics derived 

from small footprint, discrete return airborne laser scanning and large footprint full 

waveform LiDAR profiling from a spacebome platform. Previous studies using 

airborne LiDAR have shown data subsets of comparable size to ICESat/GLAS 

footprints to provide a good representation of stand characteristics. This suggests 

that, where GLAS footprints are coincident with forestry management units, stand 

characteristics could be estimated from returned waveforms.

Vegetation Height Estimation

Airborne LiDAR data estimated field measurements of maximum canopy 

height with R2 = 0.83, RMSE = 4.2m. Disregarding the effect of an outlier, airborne 

LiDAR estimates of maximum vegetation height corresponded closely to field 

measurements (R2 0.94, RMSE 2.4m). A similar degree of accuracy was found 

between estimates of field height derived from both airborne and satellite LiDAR 

systems.

Greatest correlation in height percentiles between satellite and airborne 

LiDAR is observed in the uppermost canopy, particularly between the 95th and 99th 

percentiles (Table 7.4). This may be due to the increased influence of changes of 

intensity for shaded foliage and leaf angle distribution with greater depth through the 

canopy (waveform amplitude being a function of both surface area and intensity 

relationships by elevation), or the effects of crown structure and its interaction with 

airborne laser scanning angle. The higher correlation between airborne LiDAR
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vegetation height estimates and the GLAS method using Gaussian decomposition 

may be due to both similarly underestimating vegetation height.

Ground Surface Identification

This study has shown the ability to identify a representative ground surface 

from satellite LiDAR waveforms. For the Forest of Dean, the method using Gaussian 

decomposition to estimate ground elevation within the waveform ground peak 

(GPMaxAmp) produced the smallest mean error in comparison with both airborne 

LiDAR and Ordnance Survey Land Form Profile DTM mean ground elevations. 

Slope was identified as a contributory factor for the minor negative offset using 

Gaussian decomposition whereas this had been successfully addressed using the 

Waveform Extent/Terrain Index method (Rwr)- Use of a terrain index may similarly 

reduce the effect of slope on percentage error for the former method however would 

defeat the object of deriving estimates entirely from waveforms. A means to account 

for this may be using the width of the ground peak return as an indication of slope. A 

further explanation may be offered by the fact that the model fit is produced by the 

sum of Gaussian peaks and therefore the centroid of the Gaussian Peak with greatest 

amplitude may not always represent the most common ground elevation. Use of the 

largest amplitude inflexion point within the ground return may address this small 

error.

Assuming the OS DTM to be an accurate indication of ground truth, for both 

GLAS methods, a small negative bias is seen in the estimation of the ground surface. 

This amounts to a mean error of less than one metre. For the method, this may be 

a result of the waveform ‘tail’ extending below the true lowest ground surface. The 

airborne data differs from the satellite system in marginally overestimating the
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ground surface, possibly as a result of detection of ground-cover vegetation although 

error range is significantly smaller (within approximately 3m) than using the large 

footprint LiDAR.

The results suggest that, for situations such as the Forest of Dean in which 

dense canopy cover or extreme slope do not prevent a representative ground surface 

from being detected, Gaussian decomposition may offer the most appropriate means 

of estimating ground elevation. Furthermore, GLAS estimations of ground elevation 

have shown high consistency across different laser operations. Sun et al., (2008) 

compared 260 waveforms, covering a distance of approximately 4.5km, captured 

during the laser 2A campaign (September-November 2003) and laser 3F operation 

(May-June 2006). Footprint pairs were positioned at a mean distance of 82.6m apart 

(range 75.4m-89.8m). The relationship between ground surface elevations of these 

near repeat passes produced R2 = 0.997 and RMSE 4.1m. This strongly supports the 

ability to consistently estimate ground elevation beneath vegetation from GLAS 

waveforms.

The strong relationship between elevation limits found by airborne and 

satellite LiDAR suggests that issues of varying atmospheric transmittance, footprint 

size or energy distribution have not prevented intercepted surfaces from being 

similarly detected.

Site Complexity

On a single footprint basis, direct interpretation of waveform structure can be 

challenging without local site knowledge. Figure 7.20 shows two footprints with 

complex terrain and vegetation distribution. The canopy height and ground surface 

estimates for these sites are found in Table 7.8.
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This demonstrates how the broad ICESat/GLAS footprint may be problematic 

for sites such as this whereby the canopy signal may be broadened and signals from 

ground and vegetation surfaces may be combined. In the case of 885917506 30, the 

distribution of terrain and above-surface features has not deterred a representative 

estimation of vegetation height. The example of 885917506 33, however, 

demonstrates the advantage of airborne LiDAR to estimate vegetation height above a 

moving ground surface. For this footprint, both satellite LiDAR methods 

overestimate vegetation height due to the necessity of attempting to select a single 

ground elevation which is representative of complex ground topography and the 

difference from the highest intercepted surface (Signal Beginning). Nevertheless, 

when considering a series of estimates across a forest as shown in this study or 

potentially for significantly larger areas, overall errors can be small.

Table 7.8. Example estimates for footprints with complex spatial distribution of features shown 
in Figure 7.20. WF indicates waveform, AL represents airborne LiDAR and OS is Ordnance

Survey.

Footprint 885917506_30 885917506_33

Field maximum height (m) 28.25 28

WF R  wt height (m) 27.64 31.82

WF G P MaxAmP (m) 27.52 35.35

AL max height (m) 27.46 28.14

Mean OS DTM (m) 114.1 112.0

WF R w t  ground (m) 112.9 111.8

WF G P MaxAmp ground (m) 113.1 108.3

AL mean ground elevation (m) 115.7 109.4
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Figure 7.20. GLAS waveforms and coincident airborne LiDAR point clouds (70m horizontal 
extent) for two challenging sites. In both cases the spatial distribution of features and similar 

elevations of ground and vegetation may influence the ability to estimate vegetation height.
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Biophysical Parameter Estimation

For forestry purposes, the ability to estimate top height (98th/99lh percentile) 

may indicate the broader applicability o f  large footprint LiDAR profiling (Figure 

7.21). Furthermore, other authors have demonstrated how these principles may be 

extended to biophysical parameter estimates for significantly larger areas (Nelson et 

al., 2004; Nelson et al., 2008a).

Figure 7.21. Representation of LiDAR profiling using airborne LiDAR subsets of GLAS 
footprints. Footprint centres are distributed at 172m intervals. Regular sampling in this way 

effectively samples forest variability in a similar way to conventional field techniques.

Stemwood volume estimates using satellite LiDAR are similarly estimated 

using airborne LiDAR, particularly with regard to the GPMaxAmP method where use o f  

the waveform structure replicates the airborne LiDAR classification closer. Although 

this suggests that estimates using satellite waveform indices has not degraded 

estimates o f  volume, a considerable RMSE is found in all cases which may be the 

result o f  errors within yield model calculations or an indication that further 

refinements are needed to estimate stemwood volume from LiDAR data.

Canopy cover is a challenging parameter to estimate using both systems. 

Figure 7.22 shows an example o f  a cross section o f  multiple echo, high density (35 

points/m ) airborne LiDAR data for an area o f  Glen Affric, Scotland, showing laser 

penetration throughout the canopy. For areas such as the Forest o f  Dean, with less 

dense footprint coverage, the recorded points may most represent the upper canopy 

surfaces. This may affect estimates o f  canopy cover, although use o f  canopy point 

counts o f  all echo types as a proportion o f  total points aims to account for this.
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Figure 7.22. An example of high density airborne LiDAR data for Glen Affric, Scotland 
(illustration produced using Bentley MicroStation and Terrascan software). This cross section 

shows laser energy penetration throughout the canopy. Lower point densities are likely to 
represent lower portions of the canopy profile less well.

Estimates o f  canopy cover from hemispherical photography are based on the 

subjective judgement o f  the threshold applied to classify sky/non-sky sectors o f  the 

photograph. The sensitivity o f  this threshold to resulting estimates o f  gap fraction 

was explored and was not found to cause significant differences in estimations if the 

threshold used was not extreme. The use o f  the mean o f  nine calculations for each 

footprint also serves to reduce the effect o f  any misjudgement.

Correlations o f  R2 = 0.41 (RMSE 16%) and R2 = 0.63 (RMSE 11%) are 

observed between satellite and airborne LiDAR estimates o f  canopy cover for conifer 

and broadleaf-dominated stands. The factors which may explain the dispersal seen 

amongst estimates are varied. This may be due simply in part to seasonal variability 

for the ten month discrepancy in data capture between the LiDAR systems. 

Additionally, spatial heterogeneity and the nature o f  sampling using laser scanning 

and the continuous signal obtained from the full waveform can further explain 

differences seen. The latter may provide a possible explanation o f  the greater gap 

fraction observed from the GLAS waveforms with respect to the airborne LiDAR 

counts.
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A further explanation may be found in the complex interactions between 

canopy structure, leaf orientation or surface reflectivity and the returned intensity of 

airborne LiDAR points which was used to modify the amplitude of the GLAS 

waveforms. Intensity is an uncalibrated and unitless record which, as yet, requires 

greater understanding. As well as the influence of reflectivity, it is been shown to 

vary due to laser scanning incidence angle, range between emitter and target, echo 

type, signal pre-processing, beam divergence and atmospheric attenuation. 

Vegetation attributes such as leaf area, leaf angle inclinations, species and tree 

density can also affect intensity (Boyd and Hill, 2007; Kaasalainen et al., 2007; 0rka 

et al., 2007). For the purposes of this study, airborne LiDAR point class intensities 

are considered to be entirely the result of interception by the classified surface. 

However, sub-footprint gaps may also control the ratio in addition to the reflective 

properties of the surfaces (J. Armston, Pers.Comms.) hence the relationship may be 

affected by canopy volume, density, clumping and foliage size.

Despite these issues, the correction to waveform amplitude is applied using 

intensity records from airborne LiDAR, a related system which additionally emitted 

pulses at the same wavelength. A ratio of simultaneously-acquired, class-related 

intensities is used rather than attempting to infer properties from absolute values. The 

airborne LiDAR data are coincident with the GLAS footprints and so canopy 

structure and interactions with surface features are consistent as far as possible. 

Likewise, when footprints are differentiated between dominance by broadleaf or 

coniferous species, clearer relationships are found, supporting this approach to 

estimating canopy cover.

Limitations to airborne LiDAR systems’ ability to distinguish small distances 

between first and last echoes may hinder the assessment of low-lying vegetation,
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although system improvements and the wide use of small footprint, relatively high 

density specifications may compensate for this (e.g. Hill, 2007). However, the profile 

throughout the canopy provided by full waveform LiDAR overcomes this. In 

addition, full waveforms more closely match radiative transfer theory to LiDAR. 

This enables biophysical parameters to be directly estimated from remote sensing 

techniques using interactions with the surfaces under investigation (Maltamo et al., 

2007; Reitberger et al., 2007; Wagner et al., 2007).

7.4.2 Tree-Level Parameters and Forestry Applications

There are applications for which small footprint LiDAR exceeds the 

applications of the aggregated surface information derived from large footprint 

waveforms. The identification of a dynamic topographic surface and spatial 

distribution of vegetation returns allows individual trees to be located. These can 

then be related to the ground surface underlying the canopy and adjacent vegetation 

in order to generate model inputs to assess competition indices and wind risk or slope 

stability. This offers a unique means of producing detailed DTMs beneath forest 

layers which can be used to determine access routes or appropriate management 

approaches for forestry applications, to identify hydrological systems or areas of 

subsidence. The spatially represented point cloud allows forestry practitioners or 

other interested parties to ‘virtually’ return to a field site as frequently as necessary to 

assess conditions at the time of data capture. This format and presentation can also be 

intuitively interpreted by those not familiar with LiDAR data and principles.

The potential applications of tree-level parameters are multifold. This study 

has demonstrated how field validation data can be used to develop allometric
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relationships using tree dimensions such as height, crown width and DBH. Suarez et 

al., (2008b) demonstrate one such application using mean canopy width and tree 

heights to provide inputs to the forest wind risk model, ForestGALES (Geographical 

Analysis of the Losses and Effects of Storms in Forestry). This is a process-based 

model which enables risk of wind damage to be assessed for different management 

scenarios and with changing conditions due to stand growth (Gardiner et al., 2004; 

Forestry Commission, 2008; Suarez et al., 2008b). Given local site characteristics, 

the model therefore identifies the wind speed at which windthrow will occur. 

Reconstruction of the location and dimensions of individual trees permits the risk of 

windthrow to be mapped for specific trees and therefore provides a more meaningful 

analysis of risk than stand mean data (Suarez et al., 2008a).

In addition, canopy delineation methods can be applied to estimate stand- 

level mean parameters e.g. fractional cover, crown dimensions, vegetation height etc. 

which may provide input parameters such as for the radiative transfer model 

FLIGHT (North, 1996) in order to link to forest light regime and photosynthesis.

This study has shown the ability to determine individual tree-level parameters 

from airborne LiDAR remote sensing. These estimates were verified using 

coincident field data. The delineation has therefore been applied as a substitute to 

comprehensive field measurements in order to calculate stand volume presented in 

the previous Chapter. This illustrates the potential offered by small footprint airborne 

LiDAR data which enable the detailed reconstruction of a forest.
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7.5 Airborne and Satellite LiDAR Conclusion

As previously discussed, challenges can arise from the broad GLAS 

footprints as returned signals from the vegetation upon sloped ground surfaces can be 

combined within waveforms. Additionally, issues of atmospheric transmittance may 

distort the returned waveform, either by way of breadth or amplitude, which may 

influence the detection of the beginning of the waveform signal returned from the 

uppermost intercepted surface.

However, the near-global sampling of ICESat/GLAS LiDAR has the 

potential to estimate important forest parameters for regional-national scales. The 

sampling pattern of ICESat also offers the opportunity for inventory or validation 

estimates supplementary to field measurements at a spatial and temporal frequency 

that may not be economical or feasible using conventional field techniques or 

frequent acquisitions of airborne LiDAR.

The research discussed in this chapter contains work presented in Rosette et 

al., (accepted for publication) and Rosette et al., (submitted). The crown delineation 

and canopy level analysis represent the further application of techniques used in the 

preparation of Suarez et al., (2008a).

This Chapter has compared the estimation of vegetation properties derived 

from coincident small footprint, discrete return airborne LiDAR scanning data with 

those extracted from large footprint, full waveform LiDAR profiling using GLAS. 

Airborne LiDAR return point count height percentiles were compared against 

satellite LiDAR heights of cumulative energy percentiles. Maximum canopy height 

estimates produced a relationship with R2 of 0.68 (RMSE 4.4m). A comparison of 

98th and 99th percentiles (comparable with top height estimates in forestry) explained
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76% and 75% of variance with RMSE of 3.4m and 3.5m respectively. Satellite 

LiDAR estimates of field measurements and Top Height or stemwood volume 

derived from yield models were comparable with those achieved using airborne 

LiDAR.

Detection of surface elevation limits corresponded well between the two 

systems, producing R2 of 0.71 and 5m RMSE. ICESat/GLAS estimates of ground 

elevation succeeded in producing a offset of -0.32m when compared with airborne 

LiDAR mean ground class elevation and -0.10m from mean surface using a 

coincident Ordnance Survey Profile 10m DTM.

Waveform-derived canopy cover explained just 32% of estimates obtained 

from airborne LiDAR data. This improved to 41% and 63% when differentiating 

between greatest coverage by coniferous or broadleaf species respectively.

The results presented suggest that the broad ICESat/GLAS footprints can 

provide estimates of mixed vegetation biophysical parameters which are comparable 

to those obtained from relatively high density airborne LiDAR data.

Airborne LiDAR estimates at a stand level have been shown to produce 

comparable or improved results to conventional or field measurements at other sites 

e.g. Maltamo et al, (2007) demonstrate that, for Finland, in addition to mean plot 

level tree heights, area-level basal area estimations allowed optimum felling time to 

be identified whilst tree-level diameter distributions are often important model 

inputs. Due to the near vertical perspective of LiDAR incidence scanning angle, both 

basal area and diameter parameters are estimated using indirect relationships with 

height percentiles and the same might be possible from satellite systems for stand 

level analysis. Therefore field measurements may be used to complement satellite 

LiDAR waveform indices in order to develop suitable regression models with
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indirect factors such as DBH, basal area and crown properties for model input where 

precise locations of individual trees are not necessary.

The methods presented in this Chapter have been tested for a highly diverse, 

mixed forest for which a small difference in location may potentially produce larger 

errors than more homogeneous stands. However, the high degree of footprint overlap 

with anticipated maximum offsets and use of field methods to take account of 

possible location differences appear to address discrepancies. The high consistency 

between GLAS and airborne LiDAR retrieval, in particular for percentiles of 

estimated canopy height and detected surfaces, suggests that the broad footprint 

dimensions produced by ICESat/GLAS can nevertheless produce comparable results 

to the use of relatively high density airborne LiDAR data.

Where repeat orbit satellite LiDAR profiling stands apart is in its potential to 

comparatively estimate vegetation parameters at a stand level or above for large 

areas which would be unfeasible or too costly using conventional field techniques or 

repetitive airborne LiDAR surveys. This further supports the application of satellite 

laser altimetry for vegetation applications at scales ranging from forest management 

requirements of assessing mean stand conditions to national forest inventory; global 

estimates for model assimilation or to reduce uncertainty in vegetation distribution.
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Chapter 8. Conclusions

This Chapter provides a summary of the research undertaken during this 

project and the relevance of the key findings to the fields of carbon accounting, 

environmental modelling and forestry. Advantages and limitations of Satellite 

LiDAR data and research methods are considered and opportunities offered by 

alternative small footprint LiDAR technologies are discussed. Directions for future 

research are suggested with respect to proposed missions, prospects for extending 

applications and development of methods. The thesis concludes with an outline of 

the principal aspects of the project results relating to satellite LiDAR data analysis of 

vegetation.

8.1 Research Summary and Original 
Contributions

This research has explored the potential offered by satellite LiDAR data for 

carbon accounting and vegetation monitoring, model applications and forest 

management operations.

Chapters 1 and 2 have provided an introduction and given the scientific 

context of the research. An evaluation was presented of the state of the art of forest 

parameter retrieval using LiDAR remote sensing. Chapter 3 described the
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pioneering GLAS instrument and pre-processing of the data used during the course 

of this research.

New material has been presented in Chapters 4-7. The principal original 

contributions are discussed below:

Chapter 4 defined the methods developed to address the project research 

questions and presented the data sources used. Yield models, data and forest 

management systems maintained by the Forestry Commission were described, along 

with characteristics of the project study site. These sources have been used in support 

of the work throughout the project with the kind permission of Forest Research. Field 

methods used to gather data for sites coincident with ICESat/GLAS footprints were 

discussed in detail. These results were subsequently used to validate waveform 

estimates.

Chapter 5 investigated potential means of extracting maximum canopy 

height from large footprint satellite LiDAR waveforms. Two methods were identified 

as offering reliable estimates of the region of the waveform signal returned from 

vegetation. The first requires the use of a supplementary DTM dataset to account for 

ground relief within footprints. Multiple regression using waveform limits plus a 

coincident terrain index were used to form vegetation height estimates. Field data are 

required to calibrate the regression equation. This adaptation of the Lefsky et al., 

(2005) method, produced improved results and succeeded in removing the 

contribution of slope from uncertainty in estimates.

The second method derives estimates entirely from the returned signal, using 

waveform structure to identify a representative ground surface and estimating 

vegetation height as the difference between this elevation and the beginning of the 

waveform signal. The accuracy of this method is dependent upon the strength of the
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signal returned from the ground. This new approach demonstrated the possibility of 

estimating maximum canopy height exclusively from returned waveforms although 

resulted in a slightly lower correlation than the method above. It is concluded that, 

for the Forest of Dean, the broad footprint dimensions rarely prevented a ground 

return within waveforms.

The two methods defined in Chapter 5 were applied and further developed in 

Chapter 6 in order to estimate Top Height and Stemwood Volume. Estimates were 

evaluated and compared with those from the Forestry Commission sub-compartment 

database and associated yield models. An exercise was undertaken using airborne 

LiDAR canopy delineation (Chapter 7) to calculate potential error within yield model 

estimates. This demonstrated that the assumption of stationarity within yield model 

predictions may overestimate stemwood volume by up to 22%.

Height percentiles using airborne LiDAR data have previously been found by 

other authors to offer useful estimators of forest parameters in the UK (e.g. 

Patenaude et al, 2004; Suarez et al, 2005b). A method was therefore devised using 

GLAS waveforms to extract equivalent heights above the allocated ground surface of 

cumulative energy percentiles. These were used as waveform vegetation height 

indices for the estimation of both Top Height and Stemwood Volume.

This approach enabled Top Height to be extracted from large footprint 

waveforms. This parameter is significant in terms of forestry as an input to model 

predictions for stand-level assessment of growth, wind exposure and timber 

potential. The ability to estimate this variable for large areas therefore offers 

prospects for regional or national UK forest monitoring. Additionally, analysis using 

waveform percentiles demonstrated the ability for estimates of stemwood volume to
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be derived from GLAS data. This supports the potential of their future application for 

large area estimation of biomass distribution and carbon accounting.

In Chapter 7 methods were developed to compare vegetation parameter 

estimates from large footprint, full waveform satellite LiDAR and discrete return, 

airborne laser scanning data. Subsets of airborne LiDAR data were created, 

coincident with GLAS footprints. This aimed to consider whether the challenges 

posed by possible combined signals from ground and vegetation would impede the 

estimation of vegetation indices. Maximum canopy height estimates and detected 

surface elevation limits of both airborne and satellite systems were evaluated. 

Airborne LiDAR height percentiles were used to estimate Top Height and Stemwood 

Volume in order to assess any deterioration in capabilities using large footprint data. 

A high degree of correspondence was found in all cases, substantiating the wider use 

of large footprint systems for forestry purposes.

Subsets of airborne LiDAR data were also used to indicate possible offsets in 

ICESat/GLAS footprint locations. This exercise concluded that actual geo-location 

of GLAS co-ordinates for the laser campaign crossing the Forest of Dean are likely 

to be offset by approximately 20m to the northeast of published locations. For highly 

mixed sites, uncertainty in footprint location may result in significant discrepancies 

between field measurements and waveform estimates due to this fact alone.

Using coincident elevations from within the Ordnance Survey 10m resolution 

DTM as a validation dataset, an assessment was made of the ability to identify a 

representative ground surface within GLAS waveforms and from airborne LiDAR 

ground class data. The airborne data differ from estimates using the satellite system 

in marginally overestimating the ground surface (mean difference = 0.22m, standard 

deviation = 1.28m), possibly as a result of detection of ground-cover vegetation. The
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results suggest that, for situations such as at the Forest of Dean in which dense 

canopy cover or extreme slope do not prevent a representative ground surface from 

being detected, Gaussian decomposition of GLAS waveforms offers an appropriate 

means of estimating ground elevation (mean difference = -0.10m, standard deviation 

= 2.21m).

An approach to calculating canopy cover from GLAS waveforms was 

developed and evaluated against estimates using airborne LiDAR data. The latter 

were verified using hemispherical photography. The agreement found provides the 

grounds for further exploration of regeneration potential or calculations of leaf area 

index using large footprint laser profiling.

Finally, the investigation of the capabilities of airborne LiDAR data was 

extended to the extraction of individual tree-level parameters. The delineation 

method of Suarez et al., (2008a) was adjusted for the Forest of Dean in order to 

identify tree locations and heights (validated using field measurements) plus crown 

dimensions. Such capacity far exceeds that of large footprint sampling for the 

reconstruction of forests and parameterisation of process-based growth, quality and 

wind-risk models.

8.2 Implications of LiDAR Remote Sensing

The monitoring of biophysical parameters at scales required to understand 

global environmental processes are only available through remote sensing. Passive 

optical data provide a two dimensional view of surface features enabling indirect 

indications of vegetation quantity using reflectance properties of objects e.g. NDVI 

and fAPAR.
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LiDAR remote sensing, however, offers the possibility of systematic 

sampling of the Earth’s surface, providing a vertical aspect to land cover classes 

using physical interactions with the target surfaces and thus producing a vertical 

profile of intercepted surfaces.

8.2.1 Satellite LiDAR

Large footprint satellite LiDAR data offer a unique opportunity of assessing 

elevation profiles of both topographic and above-surface features at global scales. 

The limitations and advantages of such systems, illustrated by ICESat/GLAS, have 

been explored throughout this thesis and are outlined below. Satellite LiDAR data 

uniquely provide remote, geo-referenced elevation data to a high degree of accuracy 

on a global scale. Returned waveforms are produced using the physical interactions 

between photons and the structural and reflectance characteristics of the intercepted 

features. This has enabled canopy profile estimations to be extracted from 

waveforms which can be applied to derive vegetation height and canopy cover 

parameters and a non-destructive means of estimating vegetation volume. Such 

estimates are not directly obtainable at these scales using other means.

The innovative GLAS system provides an unprecedented opportunity to 

derive global topographic and above-surface elevation data for an extended period of 

time. The system is not optimally configured for vegetation analysis, as a dedicated 

LiDAR system would likely produce greater density of footprints with diameter on a 

par with tree crown width. Nevertheless, ICESat/GLAS has provided data which 

have enabled this research to be undertaken to assess the potential of satellite LiDAR 

in this respect and in support of a sensor designed for this purpose.
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ICESat/GLAS data are freely available from the NSEDC. The seasonal 

repetition of data acquisition offers a unique means of quantifying vegetation change 

on a relatively frequent basis without incurring excessive costs associated with 

airborne LiDAR campaigns. Equally, this degree of field survey sampling would be 

cost and time-intensive and would not be viable to repeat for large areas with such 

frequency.

Some characteristics of large footprint LiDAR systems by their nature may 

impede forest parameter estimations. Broad footprint diameters increase the chance 

for signals from the ground and vegetation to be combined within the returned 

waveform. For low vegetation, this may be the case even with minor surface relief. 

In such situations, accuracy of determining the waveform canopy return is likely to 

be reduced.

Due to the premature failure of laser 1, GLAS campaign specifications were 

modified to extend the life of the remaining lasers. For the UK, this has reduced 

longitudinal ground track density to approximately 36km. This sparse coverage is 

further exacerbated as data capture is dependent on atmospheric conditions, since 

scattering from cloud will affect data quality of returned waveforms. This may 

interrupt continuity along the footprint profile and obstruct the assessment of 

vegetation change.

There is some uncertainty with respect to footprint locations which has varied 

between GLAS laser campaigns. Additionally, imprecise footprint repetition along 

ground tracks and varying footprint eccentricity between laser campaigns would 

require interpolation between waveform estimates to be made or assumptions 

regarding stand-level representation of these. The accuracy of this will depend on 

forest homogeneity.
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8.2.2 Airborne LiDAR Systems

Airborne LiDAR data can fulfil and surpass the capabilities of conventional 

field measurements and data provided by large footprint LiDAR profiling. These 

latter approaches are currently limited to analysis of mean stand-level parameters 

using sampling techniques.

Airborne laser scanning can provide high resolution elevation data to 

accurately reproduce a scene to a degree and extent which would usually be 

unfeasible using conventional field methods. This technique has the advantage of 

enabling a site to be ‘revisited’ by practitioners and re-processed for different 

purposes e.g. producing a DTM for access, slope stability assessment and 

archaeological identification or classifying vegetation returns to analyse for forestry 

applications. Additionally, the point cloud visualisation techniques provide an 

intuitive, recognisable scene which is possible for non-specialists to understand and 

navigate.

Uniquely, canopy analysis permits delineation of individual trees, enabling 

their height, volume and canopy dimensions to be estimated. In this way, a forest 

may be accurately reconstructed and trees placed in the context of topography, 

infrastructure and proximity to neighbours. Furthermore, these permit the simulation 

of competition and growth indices and risk factors such as wind to be calculated 

through inputs to process-based models.
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8.3 Future Prospects of Satellite LiDAR

Three sensors are currently proposed for future satellite LiDAR remote 

sensing: ICESat II is anticipated for launch in approximately 2015, following the 

original specifications of the first ICESat mission. A debate is currently in progress 

regarding the emitted pulse duration of ICESat II. A lengthening of the pulse may 

produce waveforms which are less sensitive to vegetation than is currently the case 

and this may have implications for the continuity of biophysical parameter estimation 

using comparable systems.

However, if alternative system designs such as DESDynl and LIST are 

realised, these aim to offer more pertinent data for the estimation of vegetation 

parameters. DESDynl proposes to combine multi-beam, 25m footprint LiDAR 

profiling and L-band RaDAR data. The LiDAR element of this system is deemed 

more appropriate for vegetation analysis than ICESat/GLAS as footprint diameters 

aim to maximise the probability of intercepting the canopy top whilst lessening 

challenges posed by combined ground and vegetation signals within waveforms. This 

dual sensor platform would provide the opportunity to explore the different 

absorption properties of intercepted surfaces at microwave and near-infrared 

frequencies.

The LIST proposal would produce continuous global LiDAR coverage using 

swath mapping with 5m diameter footprints. This density of elevation profile data 

and medium footprint size may offer surface evaluation more on a par with airborne 

techniques and reduce uncertainties associated with assumptions of sampling through 

LiDAR profiling.
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Both DESDynl and LIST are intended for launch before 2020 although 

system specifications are subject to change. The considerable investment in the 

development of global vegetation LiDAR systems demonstrates the potential for this, 

recognised by NASA.

8.3.1 Implications for Carbon Accounting and Monitoring

This research has shown large footprint LiDAR profiling to contribute to 

reducing the uncertainty in vegetation distribution. This is achieved by systematically 

sampling the Earth’s surface. Height variability is recorded within waveforms which 

directly represents intercepted surfaces within the illuminated areas. The analysis of 

waveform energy indices has additionally illustrated the ability for information to be 

extracted relating to vegetation profile plus canopy properties such as fractional 

cover. This has demonstrated the contribution offered by satellite LiDAR for 

improving knowledge of the properties of forest carbon sinks. These capabilities 

therefore contribute to key research questions identified by the UK Natural 

Environment Research Council (NERC).

The RMSE for waveform-derived height estimates of approximately 2.8- 

3.8m may signify that estimates are not sensitive enough to permit year on year 

growth observation, however longer term periodic quantification and monitoring of 

changes in carbon stock are feasible. If this is to be applied, Nelson, (2008) notes the 

importance of consistency in the use of regression models, as considerable 

discrepancies in estimates may result from using different models alone.

Additionally, this project has demonstrated how large footprint LiDAR offers 

a suitable means of detecting more significant changes in vegetation height along the
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satellite ground track. This may suggest LiDAR profiling as a future additional 

remote sensing technique which could contribute to global forest resources 

assessment (FAO, 2007) for the Reduction of Emissions from Deforestation and 

Forest Degradation in developing countries -  REDD (FAO et a l, 2008; UNEP, 

2009) and assist with reporting on Land Use and Land Use Change in Forestry 

(IPCC, 2003).

The specifications of future mission proposals will further improve the 

contributions to carbon accounting and monitoring which may be offered by satellite 

LiDAR remote sensing.

8.3.2 Model Contributions

Satellite LiDAR data offer a means of providing a third dimension to land 

cover maps which has previously only been inferred indirectly using optical sensor 

reflectance properties. Biophysical parameter estimates using footprint-based 

sampling, such as demonstrated through this project, have the potential to be 

extrapolated using cartographic classifications of vegetation type and coverage. This 

approach provides a means of enhancing global landcover maps by attributing spatial 

variability of biophysical parameters to generalised plant functional types offering 

more representative input characteristics for Dynamic Vegetation Models (e.g. 

Sellers et al, 1996a; Sitch et a l, 2003; JULES, 2008).

The ability to apply methods of estimating vegetation height from GLAS 

globally has been shown by Los et a l, (submitted) who illustrate correlations with 

NDVT and use estimates to model the role of land use change on drought severity. 

The spatial variation in GLAS-derived vegetation height RMSE is likely to vary
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considerably, however the work provides proof of concept of the global modelling 

applications for biophysical parameters derived from this dataset.

The use of radiative transfer modelling has also been used during the course 

of this research by North et al., (submitted) to explore the sensitivity of GLAS 

waveforms to optical and structural properties of vegetation. Further application in 

this field aims to assist the understanding and interpretation of large footprint LiDAR 

waveforms and the uncertainty among estimates.

8.3.3 Forestry Applications

For forest operations and management, conventional methods rely upon 

aggregated statistical data gathered within numerous field plots to produce mean 

stand-level parameters. ICESat/GLAS footprint distribution may be regarded as 

effectively replicating this sampling technique which is used both at stand-level and 

at national scale for forest inventory.

Where footprints are coincident with stands, this work has shown large 

footprint LiDAR profiling to offer equivalent stand-mean information for vegetation 

top height and volume predicted from independently-derived yield models plus a first 

step to investigating canopy cover. These estimates were additionally found to be 

comparable with those from airborne LiDAR data, the use of which is supported by 

the work of many other authors for local scale studies (e.g. Lefsky et al., 1999b; 

Hyyppa et al., 2001; Parker et al., 2001; Naesset, 2002; Lefsky et al., 2005).

The sparse sampling provided by the ICESat mission currently does not offer 

a reliable substitute for intensive and expensive stand-level field surveys for forest 

management. Nevertheless, this research has shown satellite waveform estimates to
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complement field-acquired data, indicating the potential of future proposed sensors 

providing greater footprint density, such as LIST.

Additionally, methods developed during this research of estimating mean 

stand-level vegetation biophysical parameters have the potential to provide input 

parameters for data assimilation within processed-based models of stand conditions. 

The ability to estimate top height has been demonstrated within this thesis whilst 

further potential is suggested by airborne LiDAR results which indirectly estimate 

DBH from LiDAR percentiles. This may permit observed parameters to be applied 

nationally to offer inputs to models such as to assess wind-throw risk (Gardiner et 

al, 2004; Suarez et a l, 2008b). Estimates may furthermore assist with production 

forecasting as the ability to determine top height may allow the yield class assigned 

to forest stands to be validated.

Large footprint LiDAR profiling offers a means of complementing national 

forest inventories by supplying data sampling of forests at a density which may not 

be cost or time-effective using field surveys. Additionally, the seasonal repetition of 

ground tracks may allow more frequent updating of inventories than would be 

possible by others means. Fundamentally, LiDAR profiling offers a means of 

reducing uncertainty for private woodland within the UK national forest inventory 

for which access is often not permitted nor data available for monitoring purposes 

(Forestry_Commission, 2003; Broadmeadow and Matthews, 2004; 

Forestry_Commission, 2007).

The benefits of LiDAR data for forest inventory are beginning to be 

implemented in several countries. In particular, Norway, Finland and Ehime 

Prefecture Japan have begun to investigate discrete return airborne LiDAR systems 

for this purpose (e.g. Ene et al, 2007; Maltamo et al, 2007; Tsuzuki et al., 2008).
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However, flight campaigns of such large extent are costly. The ffeely-available 

satellite LiDAR data may offer a suitable option for nation-wide vegetation 

quantification.

8.4 Conclusion

In the absence of spacebome missions designed specifically for vegetation 

analysis, the innovative GLAS sensor has provided a valuable opportunity to assess 

the potential of full waveform, satellite LiDAR profiling for vegetation applications.

This thesis has developed and evaluated methods for identifying the signal 

returned by vegetation and biophysical parameter retrieval from GLAS waveforms. 

Vegetation heights estimated from GLAS waveforms corresponded well with field 

measurements taken at coincident areas at the Forest of Dean, Gloucestershire, UK. 

A relationship of R2 = 0.92, RMSE = 2.81m was found.

Heights of cumulative energy percentiles within the waveform canopy return 

were used as estimators of key forestry parameters calculated from Forestry 

Commission yield models, in particular Top Height and Stemwood Volume. Top 

Height estimates produced R2 = 0.76, RMSE = 3.9m and may permit adjustment or 

verification of yield model predictions. Stemwood volume estimates were improved 

through differentiation using broad vegetation classes which reflect interpretive 

forest type classes used within the National Forest Inventory in Britain. The 

stemwood volume estimates distinguished trees solely according to whether stands 

contained conifer or broadleaf species. Highest correlations of stemwood volume 

estimates for the tallest species within stands showed R2= 0.75, RMSE = 59.1m3ha‘l 

for broadleaves and R2 = 0.63, RMSE = 90.3m3ha_l for conifers. Taking account of
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mixed species composition produced R2 = 0.47, RMSE = 75.6m3ha'1 and R2 = 0.66, 

RMSE = 82.5m3h a 1 for stands containing predominantly broadleaf and coniferous 

species respectively. Further stratification of analysis using more refined species- 

type segmentation may allow regression models with still higher correlations to be 

developed.

Estimates of canopy cover from waveforms may offer a means of 

determining regeneration potential of forest stands. Multiple linear regression using 

waveform-derived canopy cover estimates and vegetation height produced R2 0.63, 

11% RMSE for broadleaf-dominated stands and R2 0.41, 16% RMSE for those 

containing mostly conifers.

These results have demonstrated the unique potential for national or global 

scale biophysical parameter estimation using full waveform, satellite LiDAR 

profiling. Such data have filled a gap in previous research capabilities through 

provision of a third dimension to remotely sensed data. Prospects for applications in 

carbon accounting, model improvement, forest management and inventory are 

supported by the strong relationships found between estimates developed using 

GLAS waveforms with coincident field measurements, yield model predictions and 

comparisons with airborne laser scanning data. More advanced satellite LiDAR 

systems designed specifically for vegetation applications will further exploit the 

potential for this field of research.
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