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Abstract

A significant problem faced by the aquaculture industry is the loss of stock through 
infection and disease. Cultured animals, particularly larval and post-larval stages, suffer 
increased incidences of disease primarily as a result of the high population densities at 
which they are stocked. Thus far the typical approach to bacterial pathogen control in the 
majority of commercial crustacean aquaculture facilities involves the prophylactic (and 
often incorrect) use of antimicrobials, i.e. antibiotics and chemotherapeutic agents. These 
are however costly to develop, limited in their application and most significantly are 
instrumental in creating antibiotic resistant strains.

Many current theories in crustacean pathogen control embrace a multifaceted approach, 
often combining the therapeutic use of antibiotics/chemotherapeutic agents with the 
administration of probiotic bacteria and immunostimulants and improved farm 
management. The purpose of this project was to identify any benefits and potential 
mechanisms by which probiotic bacteria may act on the health/growth parameters of the 
commercial aquaculture species, Litopenaeus vannamei and European shore crab, 
Carcinus maenas. Work was also undertaken to isolate and identify bacteria from healthy 
shrimp microbiota that may be of use as probiotics, with the possibility of commercial 
application within the industry. In vitro methods were utilised for screening potential 
probiotics for inhibitory activity against crustacean pathogens, followed by a series of in 
vivo trials to assess the effects of probiotic feed enrichment on the gut bacterial 
population and growth parameters. Molecular techniques were utilised to elucidate any 
effects probiotic administration may have on the bacterial community structure of the gut 
of L. vannamei.
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Chapter 1

General Introduction



1.1 Taxonomy and geographical distribution of species investigated

Carcinus maenas and Litopenaeus vannamei are members of subphylum Crustacea of 

the phylum Arthropoda. The subphylum Crustacea contains 38,000 known species 

and is the only major group of aquatic arthropods; it includes the crabs, shrimps, 

prawns lobsters and crayfish. The aforementioned crustaceans are all members of 

order Decapoda, which comprises ca. 25% of recorded crustacean species.

Carcinus maenas, the European green shore crab, is a member of infraorder 

Brachyura (the true crabs) of suborder Pleocyemata. It is a native European species, 

however, it is also an invasive species on the east and west coasts of the United States, 

South America, Australia and South Africa (Cohen et al, 1995; Kuris & Lafferty, 

1996; Roman & Palumbi, 2004; Ahyong, 2005). It is an intertidal species capable of 

surviving in all types of protected and semi-protected marine and estuarine habitats 

(NIMPIS, 2002).

The family Penaeidae of suborder Dendrobranchiata, is a family of prawns (often 

referred to as the penaeid shrimp) containing many species of economic importance. 

Currently, the most significant of these species is the Pacific white shrimp (also 

known as the Whiteleg shrimp), Litopenaeus vannamei. Pacific white shrimp are 

native to the eastern Pacific region, with a range extending from Mexico to Peru 

(Valles-Jimenez et al, 2004). L. vannamei are also extensively cultured in Southeast 

Asia, Indonesia and South & Central America (http://fao.org/2009).



1.2 Species biology -  Carcinus maenas

C. maenas is a littoral/sublittoral species found living on numerous intertidal substrate 

types ranging from dense, submerged aquatic vegetation to fine mud (Cohen & 

Carlton, 1995). Typically soft sediments are preferred as the animal relies extensively 

on camouflage to avoid predation and often buries itself. Studies of the cytochrome c 

oxidase I (COI) gene expressed genetic differentiation between European populations 

indicating that adult C. maenas is unable to cross areas of deeper water (Roman & 

Palumbi, 2004). Therefore, as with the majority of decapod species it relies 

principally on a pelagic larval stage for species distribution (Grosholz, 1996). There is 

the facility for the distribution of adult animals via anthropogenic means, e.g. via 

ballast water, on ships hulls and in packing materials (i.e. seaweeds). The appearance 

of C. maenas as an invasive species in Australia, South Africa and the Americas 

correlates with such human maritime activity. The species is physiologically hardy, 

being both euryhaline, tolerating salinities from 4 to 52 ppt, and eurythermic, 

surviving in temperatures from 0 to 30°C (Cohen and Carlton 1995). The species is 

adaptable, capable of surviving air exposure for 10 days, and this, coupled with a high 

fecundity and the ability to exploit numerous food sources (being an omnivorous 

scavenger) makes C. maenas a highly successful marine organism (Roman & 

Palumbi, 2004). Despite the existence of a small European fishery (ca. 1200 tonnes 

annually, predominantly in the UK and France) C. maenas is not usually regarded as a 

commercially important species (http://fao.org/2009).



1.2.1 The external anatomy of C. maenas (see Figure 1)

C. maenas possesses five pairs of thoracic appendages modified as walking legs or 

pereopods, anterior to which are an additional three pairs modified as maxillipeds. 

This arrangement is a primary morphological characteristic of decapod crustaceans 

(Ruppert & Barnes, 1994). Of the five walking legs the first pair are enlarged and 

chelated and are referred to as chelipeds. C. maenas possess a well developed finely 

granular carapace up to 60 mm long and 80 mm wide and bearing five acuminate 

antero-lateral teeth (Figure 1). The frontal region, between the eyestalks, bears three 

additional rounded, rostrum teeth. The chelipeds may also bear small black spots 

arranged longitudinally. Carapace colouration may vary from dark reddish brown to a 

matt grey green, sometimes with yellow granules present (NIMPIS, 2002). This 

colour variation has a genetic component but is largely due to local environmental 

factors (Brian et al, 2005). The reduced and flattened abdominal region is folded 

beneath the thorax (a characteristic of brachyuran crabs) and is typically a pale 

yellow/green in males and a dark brown/green in females. This abdominal colouration 

coupled with the female’s smaller size and wider abdomen can be used to distinguish 

the sexes.
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1.2.2 The internal anatomy of C. maenas (see Figures 2, 3 & 4)

The alimentary canal in brachyurans (as for the majority of crustaceans) is short, 

straight and relatively simple. It can be divided into three general regions; the fore, 

mid and hind guts (Ruppert & Barnes, 1994). The fore gut is involved in rending and 

milling ingested material and acts as a triturating stomach. The anteroventral mouth 

opens into a short oesophagus which in turn expands into a large anterior section or 

cardiac stomach containing an array of opposing chitinous ridges, denticles and 

calcareous ossicles. The function of this chamber is the maceration and 

homogenisation of ingested material (Ruppert & Barnes, 1994). The mid gut is 

responsible for the majority of digestion and absorption and comprises the posterior 

region of the stomach (also referred to as the pyloric stomach) which opens into the 

hepatopancreas via two large ducts. The hepatopancreas is a large, spongy, bi-lobed 

digestive gland composed of ducts and blind ending secretory tubules. The 

hepatopancreas performs a similar function to the vertebrate pancreas and ileum. As 

well as being the primary source of digestive enzymes, it also functions as a primary 

storage organ, containing cells responsible for glycogen, lipid and calcium storage 

(Stanier et al, 1968; Ruppert & Barnes, 1994). In C. maenas the two lobes of the 

hepatopancreas extend outwards from the digestive tract along the upper anterior wall 

of the carapace. The tubule walls of the hepatopancreas are a single-cell epithelium 

composed of four distinct cell types (Figure 2); Embryonic cells (E-cells), Fibrillar 

cells (F-cells), Blister or extrusion cells (B-cells) and Resorptive cells (R-cells) 

(Stanier et al, 1968; Correa Jr et al, 2002). These cell types occur in different lateral 

regions of the tubules; i.e. the further from the distal tip the greater the cell 

differentiation (Al-Mohanna & Nott, 1989). E-cells are located at the distal ends of



the organ’s tubules and are small and undifferentiated; they are the only cells in the 

hepatopancreas where mitoses are observed. The E-cells are generally regarded as 

precursor cells, giving rise to the Fibrillar cells (Kohler et al, 1998). The mid-region 

of the tubule contains F, R & B cells (Stanier et al, 1968) (Figure 2). F-cells contain 

large amounts of rough endoplasmic reticulum and numerous vacuoles and 

subsequently take up material for intracellular digestion and differentiate into B-cells 

(Al-Mohanna & Nott, 1989). B-cells are characterised by a single large vacuole (i.e. 

is an F-cell where smaller vacuoles have coalesced) and pinocytose material from the 

lumen for intracellular digestion (Figure 2) (Al-Mohanna & Nott, 1989). At the end 

of digestion the B-cells are then extruded into the lumen, aging B-cells are eliminated 

from the epithelium and incorporated into the faeces (Al-Mohanna & Nott, 1989; 

Kohler et al, 1998). The R-cells are responsible for absorbing soluble nutrients from 

the tubule lumen and storing reserve substances such as glycogen and lipid (Al- 

Mohanna & Nott, 1989; Kohler et al, 1998; Sousa et al, 2005). The proximal region of 

the tubule contains some aging B-cells, but is dominated by R-cells (Al-Mohanna & 

Nott, 1989). Different regions of the R-cells are active at different phases of the 

digestive cycle, early in the cycle it is believed that they take up material (i.e. 

glycogen, lipid and ions of copper, zinc, phosphorus and sulphur) from the lumen via 

diffusion (Al-Mohanna & Nott, 1989). In addition R-cells take up surplus material 

from the haemolymph, via pinocytosis and diffusion, as shown by Al-Mohanna & 

Nott (1987).

A dorsal chamber posterior to the pyloric stomach, known as the dorsal caecum, is 

also believed to produce digestive secretions. From the mid gut the ingested material 

moves into the hindgut where any remaining useful products of digestion are absorbed 

and the waste material is compacted into faeces. At this point a second chamber



branches off the hindgut, the hindgut caecum (Figure 4B), however, the function of 

this chamber remains unclear (McLaughlin, 1980). For detail on the microbiota of the 

G.I. tract of decapod crustaceans see Section 1.4.

The open circulatory system of C. maenas is extensive; the box-shaped heart is dorsal 

and anchored to the dorsal body wall/exoskeleton. Haemolymph enters the heart via 

three openings or ostia and exits via seven arteries. These arteries undergo numerous 

branching to supply the animal’s various organs and tissues. The circulatory system in 

C. maenas is an open system After the haemolymph enters the tissue sinuses it 

eventually drains into a ventral sternal sinus from which it is returned to the gills for 

oxygenation. From the gills the haemolymph is returned to the pericardium and heart 

via branchiopericardial vessels (Ruppert & Barnes, 1994).

C. maenas possess nine pairs of phyllobranchiate gills housed laterally in two brachial 

chambers; each gill is composed of a central axis along which lateral extensions are 

arranged. Each axis possesses an afferent and efferent branchial channel, haemolymph 

flows to each lamella via the afferent channel and exits via the efferent. The forward 

positioned inhalant opening in brachyuran crabs means the water takes a U-shaped 

course thorough the gill chambers. The flow of water over the lamellae is maintained 

by the beating of scapognathites or ‘gill bailers’. The haemolymph of C. maenas 

contains cells in the form of haemocytes as well as various dissolved substances such 

as gases, nutrients, metabolites, hormones, waste products and the copper-based 

respiratory pigment haemocyanin (Bachere et al, 2004). Three morphologically 

distinct types of haemocyte are present in the haemolymph of decapod crustaceans 

(Figure 3); granulocytes, semi-granulocytes and agranular hyaline cells (Bauchau, 

1981). Typically, C. maenas haemolymph possesses a total cell concentration of 2-4 x

7 110 cells ml' (Powell & Rowley, 2007). Variation in circulating haemocyte



populations can be due to numerous factors, both environmental and physiological. 

The three haemocyte types vary in their functions; the granular cells (i.e. 

granulocytes) are regarded as being involved with prophenoloxidase activity and 

cytotoxicity; hyaline cells are responsible for phagocytosis, while semi-granular type 

cells (semi-granulocytes) are regarded as an intermediate stage between these two cell 

types, with a corresponding overlap in function (Soderhall & Smith, 1983; Johansson 

et al, 2000; Vogan & Rowley, 2002; Smith et al, 2003). The majority of circulating 

haemocytes are semi-granular {ca. 80%), with the granular {ca. 15%) and hyaline {ca. 

5%) comprising the remainder (Powell & Rowley, 2007).

Both the testes and ovaries are similarly positioned in C. maenas (as is the case in 

most brachyuran crabs) and lie dorsally in the cephalothorax. The gonads are paired 

and extend outwards from the midline along the dorsal surface of the hepatopancreas.



Figure 2. Mid power photomicrograph displaying tubules o f the hepatopancreas of the shore crab 
Carcinus maenas in cross section; The arrows indicate the three cell types making up the tubule 
(excluding the embryonic (E) cells located at the distal tips of each tubule), B-cells (B), F-cells (F) and 
R-cells (R). (L) indicates the tubule lumen. (Scale bar = 100 pm). Material was fixed in Bourn’s and 
stained with haematoxylin and eosin. Micrograph courtesy o f F. Eddy

Figure 3. Wright’s stained haemocytes o f Carcinus maenas Photomicrograph displaying the three 
main haemocyte cell types; indicated by arrows, (A) granulocytes, (B) semi-granulocytes and (C) 
agranular hyaline cells. (Scale bar = 10 pm). Micrograph courtesy of F. Eddy
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1.2.3 Reproduction and life cycle of C. maenas (refer to Figure 5)

In C. maenas, as in all decapods, sperm is transmitted from male to female via 

spermatophores. Transfer is performed via ejaculatory ducts located at the base coxa 

of the last leg of the male. The male attends to the female premoult and carries her 

beneath him (ventral surface to ventral surface), releasing her during moult (which 

occurs typically in summer, although this may vary with local conditions) and 

copulating shortly there after. The males typically moult post-copulation (Ruppert & 

Barnes, 1994). During copulation the spermatophores are transferred into the female’s 

genital openings via the male’s copulatory pleopods, the female then stores the 

spermatozoa in two seminal vesicles; consequently fertilisation is internal (Crothers, 

1976; Ruppert & Barnes, 1994). The egg sac (also referred to as the plug or sponge) 

appears a few months later attached to the oviparous seta of the abdomen; the females 

bear these eggs for the several weeks prior to hatching (Crothers, 1976). An average 

female may carry up to 200,000 fertilised eggs (NIMPIS, 2002).

Shortly after hatching the prezoeal larvae undergo a moult and enter the zoeal stage. 

During this pelagic larval phase the larvae possess two distinctive, elongated spines, 

one rostral the other dorsal, which are believed to function as a deterrent to predators. 

If they survive this period as members of the zooplankton the larvae then enter a post- 

larval stage, the megalopa. During this stage C. maenas spends the majority of its time 

as part of the benthos, but is capable of swimming and may spend periods in the water 

column. At the end of the post-larval stage the megalops metamorphoses into a 

juvenile crab. The duration of the larval and megalopa stages is highly variable 

(lasting anywhere from 17 to 80 days) with the rate of development affected by 

numerous environmental factors such as temperature, salinity and food availability.



C. maenas typically attain maturity at 2-3 years of age, after multiple moults 

(NIMPIS, 2002).

Adult

Zoeal
Juvenile

Megalopa

Figure 5. Generalised diagram o f the lifecycle stages o f a typical brachyuran crab taken from Wickins 
and Lee (2002). The egg stage and carrying o f the egg sac by the female are not shown.



1.3 Species biology -  Litopenaeus vannamei

L. vannamei is a member of the penaeid shrimps and is highly abundant on muddy 

substrates extending from the shoreline to a depth of ca. 72 m (Dore & Frimodt, 

1987). As with the majority of shrimp, L. vannamei is a predominantly bottom- 

dwelling species spending the majority of its time creating shallow excavations in soft 

substrates. Pacific white shrimp are scavenging detritivores consuming most forms of 

organic detritus. Wild populations are distributed along the eastern Pacific from 

Mexico (Sonora) to Tumbes in northern Peru, with the highest population density 

occurring off the Panamanian coastline (Perez Farfante & Kensley, 1997).

L. vannamei typically requires year round water temperatures in excess of 20°C, but is 

euryhaline, tolerating salinities from 1 to 40 ppt; consequently, wild populations are 

restricted to tropical brackish/marine habitats (Allen Davis et al, 2004; 

http://fao.org/2009).

L. vannamei is currently the most commercially-cultured crustacean species on Earth. 

It surpassed the Giant tiger prawn, Penaeus monodon, as the primary species of 

shrimp aquaculture in 2004 due to the difficulty of breeding and greater susceptibility 

to disease of the latter (http://fao.org/2009). Global aquaculture production of L. 

vannamei in 2007 was estimated as ca. 2,300,000 tonnes (http://fao.org/2009).



1.3.1 External anatomy of L. vannamei (refer to Figure 6)

The Penaeidea, comprising the shrimp and prawns, contains some of the most 

primitive decapod species (Ruppert & Barnes, 1994). L. vannamei possesses a typical 

shrimp body type, characterised by cylindrical, elongated, laterally compressed 

thoracic and abdominal regions. The abdomen or pleon, comprising 6 somites or 

segments and ending in a telson and paddle-like biramous uropods, is well developed 

and heavily muscled for swimming. The large uropods and powerful abdominal 

muscles are used to generate the rapid acceleration required for backward escape 

responses and tail ‘flicks’ used to evade/discourage predators. Each somite is enclosed 

by a dorsal tergum and a ventral sternum and the sixth abdominal somite bears the 

three cicatrices. The five anterior somites each bear a pair of large fringed pleopods 

which are utilised as the principal swimming organs. The head and thorax are fused 

forming a cephalothorax exhibiting a large, anterior, keel-shaped rostrum. The 

rostrum is serrated, bearing 7-10 dorsal teeth and 2-4 (although occasionally as many 

as 8) ventral teeth. The exoskeleton is thin, flexible and translucent with a bluish hue 

over much of the animal, due to chromatophores, with higher concentrations near the 

margins of the telson and uropods (Eldred and Hutton, 1960). The animal has stalked 

laterally mobile compound eyes as well as an antennula (possessing paired 

antennules) and a highly elongated pair of antennae. Mouthparts comprise two pairs 

of mandibles and three pairs of maxipilleds. Five pairs of thoracic limbs or pereiopods 

are utilised for walking and feeding. The three anterior pairs are chelated (but not 

enlarged) and are used primarily for food handling, as well as walking and to a lesser 

extent swimming. At maturity, L. vannamei attains a maximum length of 23 cm, with 

the female commonly larger and faster growing than the male.
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1.3.2 Internal anatomy of L. vannamei (refer to Figure 7)

The general anatomy of the gastrointestinal tract varies little amongst decapod 

species; consequently the functions performed by the various regions of the 

alimentary canal in L. vannamei are virtually identical to those in C. maenas (Section

1.2.2). The gut is again divided into three main regions, the fore, mid and hind guts 

and begins with an anteroventral mouth and oesophagus. The primary differences lie 

not in the function of the regions but in their appearance, the fore and mid guts closely 

parallel those of C. maenas. The stomach or ‘gastric mill’ of shrimp, though not as 

large or as clearly differentiated into cardiac and pyloric regions as in brachyurans, 

still possesses multiple chitinous ridges and denticles. The structure and morphology 

of these ridges and denticles can vary greatly between species and may be modified to 

varying degrees by diet and food particle size (Pinn et al, 1999). The hepatopancreas 

remains the animal’s primary digestive/storage gland containing R-cells which house 

the crustacean’s glycogen, lipid and element (Cu, Zn, P & S) stores (Al-Mohanna & 

Nott, 1987). The cellular composition of the penaeid hepatopancreas is the same as 

that described for C. maenas in Section 1.2.2. The organ comprises numerous blind- 

ending tubules (that empty into the midgut) lined by a cuboidal epithelium comprised 

of E, F, B and R-cells. In penaeid shrimp F-cells are an intermediate stage between 

the E and B-cells responsible for the synthesis (and secretion) of zymogen for 

extracellular digestion during the first 2 h after feeding (Al-Mohanna & Nott, 1989). 

Consequently, the only major difference between the species is with regard to the 

organ’s gross morphology, in L. vannamei it takes the form of a large ovoid organ 

encasing the mid gut, reddish orange in colour and occupying most of the rear half of 

the thoracic cavity (MacLaughlin, 1980).



In shrimp the mid and hindguts are highly elongated due to the increased development 

of the abdomen but perform the same functions as outlined in C. maenas (Section

1.2.2). Detail on the gut microbiota of penaeid shrimp is covered in Section 1.4.

The white shrimp’s circulatory system is more complex and less open than that of C. 

maenas. The heart, located dorsally within the thorax, pumps haemolymph to the 

organs and tissues via three major arteries which narrow into a network of arterioles. 

The arteries/arterioles contain muscular sphincters which provide some control over 

haemolymph distribution. From the arterioles the haemolymph passes into a capillary­

like tubule network. The haemolymph exits this tubule network into tissue sinuses 

where it bathes the tissues; it then collects in ventral haemocoelic sinuses before being 

returned to the pericardium via the gills. The vascular system of L. vannamei exhibits 

greater differentiation and efficiency as the animal is far more active than it 

brachyuran counterpart, utilising rapid bursts of speed to escape predation. As with all 

crustaceans the total number of circulating haemocytes present in L. vannamei is 

variable, but is ca. 2.5 x 107 cell mf^Chiu et al, 2007). L. vannamei possesses the 

same haemocyte types but with slight variation to the proportions stated for C. 

maenas (granular type, ca. 70%; semi-granular type, ca. 25%; hyaline, ca. 5%; 

Montero-Rocha et al, 2006).

In common with other penaeid shrimp, L. vannamei possesses dendritic or 

dendrobranchiate gills. The gills possess a central axis that supports numerous 

secondary laminae giving rise, at right angles, to filaments divided into two branches 

near their termini (Wu et al, 2009). Each primary filament further divides into 

secondary filaments. The central axis is anchored to the wall of the cephalothorax via 

a tubular structure. The ventral margins of the carapace fit loosely against the body 

wall, allowing water to enter the brachial chamber at any point along the posterior and



ventral carapace edges (Ruppert & Barnes, 1994). The flow of haemolymph through 

the gill lamellae is unaltered from that outlined in Section 1.2.2, for C. maenas. In the 

female, ovaries are large and elongated extending from the anterior region of the 

cephalothorax (below the rostrum) into the pleon, with a highly lobed median region 

in the vicinity of the hepatopancreas (Figure 7). In comparison the testes of the male 

are considerably smaller and occupy a central position slightly posterior to the 

hepatopancreas and above the first pair of (copulatory) pleopods.
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1.3.3 Reproduction and life cycle of L. vannamei (refer to Figure 8)

Male L. vannamei become sexually mature at around 20 g and females from 28 g 

onwards, typically at an age of 6-7 months. In wild populations, the adult animals live 

and mate offshore. Breeding has been recorded occurring either throughout the year, 

or during two distinct seasons, and is instigated by the female via energetic swimming 

and ‘jumping’ behaviour, towards the end of the moult cycle. Due to the semi- 

translucent nature of the animal’s carapace it is possible to observe colouration 

changes in the ovaries in the 24 h prior to mating; from an off white to a golden or 

greenish brown (Brown and Patlan, 1974). Sperm transfer is perpetrated by an 

anterior modified (tubular) pair of copulatory pleopods. Copulation occurs with the 

animal’s ventral surfaces oriented parallel to one another, rather than at right angles as 

is the case in many shrimp species (Dali et al, 1990; Ruppert & Barnes, 1994). 

Fertilisation is external in penaeid shrimp with the male depositing spermatophores

thonto the female’s thelycum (modified ventral sternal plates on the surfaces of the 7 

and 8th thoracic somites) (Dali et al, 1990). L. vannamei is as an open-thelycum 

species; consequently, for successful fertilisation, spermatophore deposition must 

occur no more than three days (typically only a few hours) prior to the female 

spawning (Perez Farfante, 1975; Dali et al, 1990). Unlike all other decapod species, 

penaeid and related shrimp do not carry their fertilised eggs until hatching but shed 

them directly into the water column. L. vannamei weighing 30-45 g will spawn 

100,000-250,000 eggs of approximately 0.22 mm in diameter. These eggs typically 

hatch after 16 h in the water column with the animal referred to as a nauplius (Figure 

8). The larvae do not feed during this naupliar stage which lasts 24-36 h, but subsist 

off their yolk reserves. During this period larval L. vannamei undergo six nauplii



stages or instars after which they enter the protozoea stage (Kitani, 1986). This 

protozoea stage (comprising a further 3 instars) lasts 4-5 days and is followed by a 3-4 

day mysis stage (three instars) (http://fao.orR/2Q09). After the mysis stage the animal 

enters into the post-larval stage (megalops), lasting ca. 25 days. During these post- 

naupliar larval stages (protozoea, mysis and early post-larvae respectively) the animal 

remains planktonic, consuming phytoplankton and zooplankton, and is carried 

towards the shore by tidal currents. Approximately 5 days after moulting into post­

larvae L. vannamei shifts away from planktonic food sources and begins feeding on 

benthic detritus and infauna, such as worms, bivalves and crustaceans 

(http://fao.org/2Q09). The animal remains in this inshore habitat (typically in estuaries, 

mangroves and lagoons) feeding and growing into a juvenile and then sub-adult and 

attaining maturity in 180-300 days (Dali et al, 1990). A diagram o f the stages o f a 

typical penaeid life cycle can be seen in Figure 8.

O F F S H O R E   - C O A S T A L -  — E S T U A R Y
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Figure 8. A generalised diagram o f the penaeid shrimp life history taken from Bailey-Brock and Moss 
(1992).
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1.4 Gastrointestinal microbiota of decapod crustaceans with particular 

reference to that of penaeid shrimp

Since no specific information on the compositional/functional significance of gut 

microbiota in C. maenas is currently available, this will be a general discussion of 

crustacean G.I. microbiology, with specific reference to brachyurans and penaeid 

shrimps.

The microorganisms present in the crustacean G.I tract at any given time may be 

ingested transients or resident microbes (Harris, 1993). Determining the taxonomy of 

bacteria present within the G.I tract of an animal is an extremely difficult proposition, 

due to the sheer range and differing growth conditions. Relatively little is known 

about the microbial community composition and its role in the human G.I tract, and 

even less about that of aquatic invertebrates. However, distinct bacterial communities 

have been determined as being present throughout the crustacean digestive tract, from 

the oral region to the hindgut (Harris, 1993; Johnson et al, 2008). Although evidence 

exists that some Crustacea maintain permanent and consistent G.I microfloral 

communities, e.g. the prawns Upogebia africana and Callianassa kraussi, many do 

not (Harris et al, 1991; Harris, 1993). This would suggest that in many cases aquatic 

invertebrate G.I microflora is composed primarily of ingested bacteria and is therefore 

highly variable and transient in nature (Harris, 1993). Bacteria ingested by detritivores 

such as L. vannamei have also been shown to be important as viable sources of 

nutrition (Lau et al, 2002). Determining whether a microbe is a permanent or 

transitory member of the G.I microflora is, however, problematic (Peter et al, 2008). 

G.I microbial community composition will depend heavily on the animal’s habitat and 

diet. A further possible factor responsible for the highly variable nature of crustacean



G.I microbial communities is the shedding of the fore/hindgut lining and exoskeleton 

during moult (Dempsey et al, 1989). This may be a reason why many crustaceans 

consume their moults, i.e. in an attempt to re-introduce a stable, autochthonous, 

residential gut flora as well as reabsorbing nutrients (Dempsey et al, 1989; Oxley et 

al, 2002). The presence of such a stable residential gut flora was noted by Dempsey et 

al (1989) in the hindgut of penaeid shrimp. Previous studies indicate that the highest 

bacterial densities are supported by the posterior region of the G.I tract (mid & 

hindgut) (Gomez-Gil et al, 1998; Oxley et al, 2002). This is likely due to the 

disruptive grinding and filtering actions of the foregut, which also possesses a highly 

ornamented, chitinous lining, all of which would likely preclude any substantial 

bacterial colonisation (Oxley et al, 2002). The hindgut would also be more amenable 

to microbial colonisation due to the lack of any active digestion in the region (i.e. 

lower levels of enzymes, surfactants and sloughing) and the presence of high 

concentrations of substrates and nutrients (i.e. remaining products of digestion) (Lau 

et al, 2002).

The assessment of gill/gut content bacteria from seven Japanese coastal crustacean 

species (6 of them brachyurans) indicated that the vast majority (87%) of the strains 

present (both aerobic & facultative anaerobes) were members of the Vibrionaceae 

(Sugita et al, 1987). In addition the majority of isolated strains were anaerobic; 1024 

out of 1564 (Sugita et al, 1987). That the six Japanese crab species shared a similar 

habitat type and lifestyle with C. maenas is an indicator that a large portion of this 

species bacterial (gut) flora likely comprises Vibrio spp. and related forms. In 

addition, it appears that the microbial community present in the gut of penaeid shrimp 

is composed of several types, but dominated by only one or two genera (Dempsey et 

al, 1989; Moss et al, 2000; Oxley et al, 2002). In the case of L. vannamei, the aerobic



culturable G.I microbiota is dominated by Vibrio and Aeromonas spp. (Vandenberghe 

et al, 1999; Moss et al, 2000; Johnson et al, 2008) further supporting the findings of 

Sugita et al(1987).

In conclusion, it is likely that the culturable G.I bacterial community of penaeids (and 

indeed crustaceans generally) is composed of a subgroup of ingested bacteria that 

predominate due to a tolerance of the physiochemical conditions found in the gut 

(Dempsey et al, 1989; Moss et al, 2000; Lau et al, 2002). This is further indicated by 

the significantly lower species diversity of the hindgut microbial community of 

cultured L. vannamei when compared to that of the grow-out water (Johnson et al, 

2008). The composition of this subgroup will vary, both between individual 

crustaceans and species, due to numerous factors. In L. vannamei such factors likely 

include; salinity, temperature, habitat (i.e. substrate), lifecycle stage, moult cycle 

stage, health status, gut passage time and diet (Dempsey et al, 1989; Vandenberghe et 

al, 1999; Moss et al, 2000; Sakami et al, 2008). A picture of overall bacterial 

community structure in aquatic invertebrates is currently unavailable as a large 

portion of natural bacterial communities are unculturable (Zengler et al, 2002; Sakami 

et al, 2008). Culture-independent molecular techniques, such as denaturant gradient 

gel electrophoresis (DGGE) are, however, starting to be used to examine bacterial 

community diversity and composition in relation to invertebrates, but with the 

emphasis on habitat bacterial populations rather than gut microbiota (Zengler et al, 

2002; Sakami et al, 2008).



1.5 Aquaculture with particular reference to that of shrimp

Aquaculture is defined as the farming of both freshwater and saltwater aquatic 

organisms including finfish, molluscs, crustaceans and aquatic plants 

(http://fao.org/2009). Unlike fishing, aquaculture implies the cultivation of aquatic 

populations under controlled, typically intensive, conditions. Such cultivation requires 

intervention in the rearing process, to varying degrees, to enhance production. This 

intervention may take the form of regular stocking, feeding, immunisation against 

disease, treatment for parasites, protection from predators etc.

Aquaculture is not a recent concept; finfish culture was recorded in China as early as 

2,500BC, but it has only been regarded as a commercially significant source of 

aquatic organisms since the 1960’s. The contemporary rise in popularity of 

aquaculture has stemmed from the increasing scarcity and consequently price, of wild 

caught animals. The peaking of capture rates and subsequent decline in wild stocks, 

coupled with an increasing demand from a growing human population has led 

commercial aquaculture to exist on an unprecedented scale.

Aquaculture continues to be the fastest growing animal food-producing sector and 

accounted for 47% of the world’s (food) fish supply in 2006 (FAO SOFIA Report, 

2008). Aquaculture production reached 45.7 million tonnes by weight and $56.5 

Ibillion by value in 2000. By 2006, this had increased to 51.7 million tonnes by weight 

and $78.8 billion by value (FAO SOFIA Report, 2008). Worldwide, aquaculture has 

increased at an average compounded rate of 9.2% per year since 1970, compared with 

•only 1.4% for capture fisheries and 2.8% for terrestrial farmed meat production 

systems. As of 2000, just over half of global commercial aquaculture (50.3%) was of 

marine species, referred to as mariculture; the reminder was divided between



freshwater and brackish water sources (45.1% and 4.6%, respectively) (Tacon, 2003). 

The vast majority of these aquatic animals/plants are cultivated for human (or 

occasionally animal) consumption; however, some species are required for other 

purposes (e.g. ornamental). The primary focus of production of the three areas of 

aquaculture, both financial and by weight figures is the farming of finfish species. As 

of 2006, finfish comprised 63% of global aquaculture production, worth over $47 

billion. In contrast the production of crustaceans made up only 9%, but was worth 

over $18 billion (FAO SOFIA Report, 2008). Crustacean aquaculture has exhibited 

the largest increase in annual growth of any of the major species groups, both in the 

last 8 years (an average of 16% per annum) and overall since 1970 (an average of 

18% per annum) (FAO SOFIA Report, 2008).

Global crustacean aquaculture is dominated by penaeid (shrimp/prawn) farming, the 

annual production of which far exceeds that of wild capture fisheries, with over 70% 

of the shrimp produced globally sourced from aquaculture. Consequently, the 

commercial culture of penaeid shrimp is a massive global industry worth many 

billions of dollars annually. Several species of shrimp are cultured worldwide, these 

include the Western blue shrimp (Penaeus stylirostris), the Chinese white shrimp 

(Penaeus chinensis), the Kuruma shrimp (Penaeus japonicus), the Indian white 

shrimp (Penaeus indicus) and the Banana shrimp (Penaeus merguiensis). However, 

over 80% of the global shrimp aquaculture market is made up of only two species, the 

Giant tiger prawn, Penaeus monodon and the Pacific white shrimp, Litopenaeus 

vannamei. P. monodon dominated penaeid aquaculture (i.e. was the main species 

cultivated) until 2004 when it was surpassed by L. vannamei. Despite L. vannamei7s 

smaller size at maturity (compared to the Giant tiger prawn) it exhibits greater yields 

and, therefore, profit, due to its greater fecundity and resistance to disease



(http://fao.org/2009). The FAO lists the total aquaculture production for L. vannamei 

in 2007 at 2,296,620 tonnes worth an estimated $8,815,854,000. The Pacific white 

shrimp is commercially cultured in 30 countries, with the five largest producers listed 

in Table 1.

In the 1970s a shift in shrimp farming methods occurred, from subsistence style 

farming toward the more intensive practices of an export-oriented business. This 

began with the use of ‘extensive’ shrimp farms, these compensated for low yield per 

area (ca. 25,000 animals/ha) with increased pond sizes; instead of ponds of just a few 

hectares, pond sizes up to 100 ha (one km2) were used. Technological advances 

allowed the development of semi-intensive (ca. 100,000-300,000 animals/ha), 

intensive farms (ca. 300,000-1,200,000 animals/ha) and super-intensive farms 

(<1,200,000 animals/ha); with animals raised on formulated pellet feeds and ponds 

closely managed (Rosenberry, 2004). Until the mid 1980s all shrimp farms were 

stocked with wild caught post-larvae. However, when depletion of wild stocks was 

detected the industry began raising shrimp from eggs and maintaining adult shrimp 

for reproductive purposes (i.e. broodstock) in specialised hatcheries. Hatcheries can 

vary greatly in scale, but the purpose of all remains the maintenance of broodstock 

and raising of post-larval shrimp from fertilised eggs. Although some farms introduce 

post-larvae directly into ponds, typically, most possess ‘nurseries’ where the post­

larvae are housed, for approximately 3 weeks, until they have grown into juveniles. 

The juvenile shrimp then enter the ‘growout’ phase where they are transferred to large 

open ponds and fed until they reach a marketable size (or maturity if required for 

broodstock). This growout phase has a typical duration of 4-6 months.



Table 1. FAO aquaculture production figures (gross weight in tonnes) of Litopenaeus 
vannamei, for the top five producing nations in 2006 (FIGIS; http://fao.org/2009).

Production, rounded (tonnes)

China 1,242,000

Thailand 501,000

V ietnam 349,000

Indonesia 326,000

India 132,000

The shrimp aquaculture industry has been recently developing closed or re-circulation 

shrimp production systems, with low or zero water-exchange, in order to reduce 

disease and control effluent. However, such systems are expensive and a high 

proportion of farms, particularly in poorer nations, still utilise the extensive/semi- 

intensive methods. This intensive type of shrimp farming is unsustainable long-term 

and may cause significant ecological harm. There is a great deal of evidence to 

indicate the perpetration of damage to mangroves, mud flats, salt marshes and other 

forms of coastal wetland (World Bank, NACA, WWF and FAO, 2002). It is estimated 

that Thailand alone has lost 83.7% of original mangrove since 1975 (Thornton et al, 

2003). A further negative impact from such shrimp farming, experienced by 

Thailand, is the salinisation, pollution (through run off) and depletion of supplies of 

fresh ground water (EJF, 2004). Even in the more intensive systems, it is estimated 

that 30% of a farm’s pond water volume is exchanged daily (EJF, 2004). In Thailand, 

shrimp farms have been reported to discharge approximately 1.3 billion cubic metres



of effluent annually (World Resources Institute, 1998/99). In coastal areas sporting a 

high density of such poorly managed open pond systems, effluent run off can 

negatively impact on marine ecosystems. Even in well managed semi- 

intensive/intensive systems, prolonged use of a pond leads to an incremental build-up 

of organic sludge at the pond's bottom from accumulated waste products (e.g. dead 

animals and unconsumed feed) and excrement. Flushing alone is insufficient to fully 

dislodge this sludge and unless it is removed via mechanical means the pond will 

eventually have to be abandoned (typically after 2-3 years). Such irresponsible shrimp 

aquaculture leaves behind a wasteland with the soil rendered unusable for any other 

purpose due to the high levels of salinity, acidity, and potentially toxic chemicals. 

Thus, the ability to maintain good water quality and high feed conversion rates is 

vitally important for two reasons; firstly to reduce environmental impact and secondly 

to enhance animal health/growth and subsequently yield. Substantial improvements in 

both of these can be accomplished via more efficient farm management and animal 

husbandry. However, the significance of beneficial microorganisms within the 

growout water cannot be ignored (Maeda & Chiu-Liao, 1992; Ma et al, 2009; Wang 

& He, 2009)

Currently, however, the most significant problem facing modern shrimp aquaculture 

is the prevalence and control of disease (Skjermo & Vadstein, 1999). The majority of 

pathogenic infections suffered by cultured larval and post-larval L. vannamei are 

bacterial in nature; principal amongst these is luminous vibriosis, the causative agents 

being Vibrio spp. such as Vibrio harveyi and V campbellii (Selvin & Lipton, 2003; 

Jayasree et al, 2006; Soto-Rodriguez et al, 2006). Vibrio nigripulchritudo, is 

responsible for outbreaks of so-called ‘Summer syndrome’ afflicting L. vannamei 

farms in New Caledonia (Lemonnier et al, 2006; Castex et al, 2008). As well as



bacterial pathogens, L. vannamei is also highly susceptible to viral infections, chiefly 

Whitespot syndrome; a highly lethal infection capable of wiping out entire farms in a 

matter of days (Phuoc et al, 2009). Taura syndrome, also viral, was principally 

restricted to L. vannamei farms in the Americas, but has since become a global 

problem (Lotz et al, 2005; Dhar & Allnutt, 2008). The explosion in popularity of L. 

vannamei for aquaculture has contributed significantly to this problem; the worldwide 

demand for and transportation of larvae and broodstock has resulted in the rapid 

dissemination of these diseases (Dhar & Allnutt, 2008).

Since most diseases (particularly viral) suffered by cultured shrimp often cannot be 

identified quickly enough to be treated effectively, the industry's efforts are focused 

primarily on the prevention of disease outbreaks. The various approaches to disease 

control in shrimp aquaculture, as well as their benefits and drawbacks, are discussed 

in detail in Section 1.6.3.



1.6 Probiotics

Probiotics are defined by Fuller (1989) as “live microbial feed supplements which 

beneficially affect the host animal by improving its intestinal microbial balance.” This 

definition incorporates three principal tenets, firstly, that the supplement is microbial 

in nature; secondly, that it is delivered via feed and, thirdly, that it is live at the time of 

administration. Fuller’s is still regarded by most in the field as the ‘true’ definition of 

a probiotic. However, with an increasing public profile and subsequent popularity of 

probiotic products, the term ‘probiotic’ has been used to describe supplements and 

techniques outside the scope of Fuller’s definition. For example in aquaculture the 

addition of bacterial strains to growout water (as opposed to feed) to improve water 

quality and thus animal survival, has been described as probiotic, when in actuality it 

is bioremediation (Harris, 1993). In addition, the aspect of the administration of live 

micro-organisms has also been challenged by the description of killed bacteria and 

microbial products as probiotics (Diaz-Rosales et al, 2006). Whether the definition 

will be expanded to incorporate the aforementioned under the term probiotic is 

uncertain, but as far as this project is concerned the term probiotic is used as defined 

by Fuller (1989).

1.6.1 History of probiotics

The term probiotic is derived from the Greek “pro” meaning for and “bios” meaning 

life. Although probiotics have been consumed for centuries as natural components in 

health-promoting foods (e.g. natural yogurt, cheeses, sour cream, fermented milk and 

cured meats) they were typically only present as a by-product of fermentation or



preservation techniques (Garaiova & Muchova, 2008). Observation of the significance 

of the role played by strains of bacteria in the digestive system and the potential of 

modifying the gut flora to replace harmful strains with beneficial ones was first made 

by Ukrainian scientist and Nobel laureate, Eli Metchnikoff in 1907 (Gibson & Fuller, 

2000). Metchnikoff believed that the ageing process was speeded up by compounds 

produced by proteolytic bacteria such as Clostridia spp. present in the gut, a process 

he termed the “autointoxication effect”. He hypothesised that administering harmless 

lactic-acid bacteria (via fermented milk) would decrease the intestinal pH and that this 

in turn would suppress the growth of such proteolytic microorganisms. Metchnikoff 

isolated the bacteria present in sour milk products after observing that the Bulgarian 

peasants who consumed such products exhibited noticeably greater longevity. The 

lactic acid bacterium isolated was Lactobacillus bulgaricus (referred to at the time as 

‘Bulgarian bacillus’) and was consumed daily by Metchnikoff until his death in 1916 

at the age of 71. In the 1930’s, after the discovery that L. bulgaricus did not survive 

transit of the digestive tract, research was undertaken involving lactic acid bacteria 

isolated from human intestinal sources. This led to the isolation of Lactobacillus 

acidophilus, which was utilised in a commercial fermented milk product in the United 

States (Rettger et al, 1935). The work of Metchnikoff also inspired the research of a 

Japanese microbiologist, Minoru Shirota, who isolated possibly the most widely 

known probiotic bacterium, Lactobacillus casei strain Shirota (Garaiova & Muchova, 

2008). L. casei Shirota is utilised in a fermented milk drink produced by the Japanese 

food company Yakult Honsha Ltd., who were the first to commercialise the sale of 

live bacteria in a fermented milk drink for human consumption in 1935. In the 1960’s 

live microbial products became popular in animal agriculture as an alternative to the 

widespread, prophylactic use of antibiotics (Fuller, 1989). What followed was a



natural progression to the present day where live microbial feed supplementation is 

common place. Included within this progression were three key observations; that 

germ-free animals were more susceptible to infection than their conventional 

counterparts; that oral antibiotics actually increased an animal’s susceptibility to 

infection; and that the administration of faecal enemas may be useful in the control 

antibiotic-associated diarrhoea (Gibson & Fuller, 2000).

Characteristics required in probiotic bacterial strains include; a lack of pathogenicity 

or toxicity, a resistance to conditions encountered within the host organisms G.I. tract 

and the capacity to induce a beneficial effect in the host. Other less vital 

characteristics include the ability to adhere to intestinal mucus/cells, the facility to 

remain viable during transport/storage and to adapt to the commensal or indigenous 

microbiota (Gorbach, 2002).

1.6.2 Potential of probiotics to improve health status in terrestrial vertebrates 

(primarily humans)

Public opinion has long held probiotic supplementation to be beneficial to the health 

of humans and animals. However, these benefits, such as increased survival, reduced 

occurrences of disease, etc, are often overemphasised and difficult to attribute 

accurately due to the nature of in vivo testing in humans. Although there has been 

much investigation into in vitro activity the information regarding the in vivo 

mechanisms by which the oral administration of non-pathogenic bacteria may bolster 

the health status of a host is generalised and incomplete (Fuller, 1991; Gibson & 

Fuller, 2000; Dunne et al, 2001; Kopp-Hoolihan, 2001).
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Intestinal bacteria in terrestrial mammals number in the trillions, with the gut 

microbiota evolving in symbiosis with the host (Salminen et al, 1998). The majority 

of research into the relationship between gut microbiota and host organism has been 

conducted in terrestrial vertebrates, principally humans. Consequently, this section 

will focus on the efficacy of probiotic administration in humans. The potential of 

probiotics in aquaculture is outlined in Section 1.6.3.

Although no consensus exists as to what constitutes an “ideal” G.I. microbiota in 

humans, such a microbiota is regarded as one predominated by saccharolytic 

(carbohydrate fermenting) microorganisms such as bifidobacteria and lactobacilli 

(Figures 9 & 10) (Blaut, 2003; Anon (Yakult Ltd.), 2008). The majority of current 

probiotic bacterial strains are members of these genera, however, other bacteria 

including members of the Bacillaceae and Enterococci are also utilised (Table 2). 

There are several potential means, or ‘modes of action’ by which administration of a 

probiotic may convey a benefit to the host, as outlined in Table 3 and Figure 11. 

Recent research on the molecular biology and genomics of lactobacilli has focused on 

interactions with the immune system and the potential of these micro-organisms as 

biotherapeutic agents (Ljungh et al, 2009). The potential of these microorganisms in 

preventing colon cancer and as treatments for antibiotic-associated diarrhoea, 

travellers' diarrhoea, pediatric diarrhoea, inflammatory bowel disease and irritable 

bowel syndrome is also under investigation (Ljungh et al, 2009).

Irritable bowel syndrome (IBS) is an umbrella term used to describe a wide and varied 

range of functional intestinal disorders and should not be confused with inflammatory 

bowel disease (IBD) which involves the immune system (Baumgart & Carding, 2007; 

Jones & Lydeard, 2009). IBD encompasses several conditions including; Crohn’s 

disease, diverticulitis, pouchitis and ulcerative colitis. Symptoms of these typically

-34-



manifest as pain, diarrhoea, weight loss, tiredness and blood or mucus in the stool. 

Crohn’s disease and ulcerative colitis often present with extra-intestinal 

manifestations such as skin, liver & eye problems and arthritis; in addition, sufferers 

also have an increased risk of developing colorectal cancer (Greenstein et al, 1976; 

Hamilton, 1985).

Table 2. Microorganisms commonly used commercially in probiotic products.

Lactobacillus spp. Bifidobacterium spp. Others

L. acidophilus B. adolescentis Bacillus clausii
L. brevis B. animalis subsp. lactis Bacillus coagulans (L. sporogenes)
L. casei B. bifidum Enterococcus faecalis

Lcrispatus B. breve Enterococcus faecium
L. delbrueckii subsp. bulgaricus B. infantis Escherichia coli Nissle 1917

Lfermentum B. longum Pediococcus acidilactici
L. gasseri Saccharomyces cerevisiae var. boulardii

L. helveticus Streptococcus thermophilus
Ljohnsonii
L. paracasei
L. plantarum

L. reuteri
L. rhamnosus
L. salivarius

Tom Garaiova & Muchovd, (2008)

Despite relatively little research on probiotics as a treatment for the active disease 

(IBD is primarily treated with mesalamine (a derivative of salicylic acid) and steroids; 

Rachmilewitz, 1989; Brignola et al, 1994) some trials have reported benefits from the 

consumption of probiotics (e.g. McFarland & Dublin, 2008). Escherichia coli Nissle 

1917 was reported as effective in maintaining the remission of ulcerative colitis
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(Kruis et al, 2004). Combined probiotic treatments have also been shown to help in 

cases o f  diverticulitis (Tursi, 2007).
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Figure 9. Typical microflora found in the human gastrointestinal tract (from Blaut, 2003).
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distributed by Yakult Ltd.)
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Although IBS does not, in most cases, lead to more serious complications (unlike 

IBD) it is often a source of great discomfort and embarrassment to sufferers. IBS is 

characterised by chronic abdominal pain, discomfort, bloating, and alteration of bowel 

habits (diarrhoea or constipation may predominate) and is suffered by 10-20% of the 

UK population (Whorwell, 2009). The administration of Lactobacillus plantarum, L. 

rhamnosus, L. casei Shirota, L. salivarius and Bacillus infantis has been shown to 

alleviate symptoms of IBS (Niedzielin et al, 2001; Koebnick et al, 2003; O’Mahony et 

al, 2005; Matsumoto et al, 2006; Whorwell et al, 2006; Gawronska et al, 2007). 

Probiotics have, since their development, been utilised in the treatment of diarrhoea 

(particularly in children) through support of the commensal microbiota (McFarland,

2006). Several probiotics (including Saccharomyces boulardii, as well as mix of L. 

acidophilus and Bifidobacterium bifidum and a commercial product containing L 

casei DN-114001, L. bulgaricus, and Streptococcus thermophilus) have been recorded 

as having significant efficacy in preventing travellers', antibiotic-associated and C 

dijficile-associated diarrhoea (Hickson et al, 2007; McFarland, 2007).

Several animal and clinical trials have indicated that lactic acid bacteria may exhibit 

potential anticancer effects. Lactic acid bacteria are capable of perpetrating beneficial 

alterations in intestinal physiological conditions within host organisms, e.g. lowering 

of faecal pH (Biasco et al, 1991). Administration of L. acidophilus and L. casei 

resulted in decreased levels of faecal and urinary mutagenicity in patients suffering 

colon cancer (Lidbeck et al, 1991; Hayatsu & Hayatsu, 1993). Such anti-mutagenic 

effects are believed to be due to the ability of lactic acid bacteria to bind with 

heterocyclic amines, which are carcinogenic substances present for example in cooked 

meat and alcohol (Wollowski et al, 2001). L. rhamnosus GG, L. casei Shirota and L. 

acidophilus have all been shown to decrease the activity of enzymes P-glucuronidase
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and nitroreductase, both thought to be responsible for carcinogenic activity (Goldin & 

Gorbach, 1984; Ling et al, 1994; Spanhaak et al, 1998). However, just how these 

results pertain to using probiotics in the reduction of incidences of colon cancer in the 

wider human population is unclear, as considerable further research is required.

The bacterium Helicobacter pylori inhabits various areas of the stomach and 

duodenum. In approximately 20% of those harbouring H. pylori, the bacterium is 

responsible for a chronic low-level inflammation of the stomach lining and is strongly 

linked to the development of duodenal and gastric ulcers and stomach cancer 

(Sipponen & Hyvarinen, 1993). Probiotic administration has been investigated both as 

a preventative measure and as a treatment. Patients who received L. casei Shirota over 

a three week period displayed significant inhibition of H. pylori growth compared to 

the control group (Cats et al, 2003).

The vital role played by the gastrointestinal microbiota in the general health and well­

being of a host organism has, until recently, been considerably underestimated. 

Despite the widely held conviction that a good diet is vital to good health, the general 

public appears largely oblivious to the importance of the trillions of microorganisms 

that inhabit their G.I. tract. However, a new-found public awareness has started to 

grow from the marketing of probiotic products. Whether probiotics convey much (if 

any) benefit to individuals possessing a functional, healthy intestinal microbiota is 

unknown. What is in little doubt, however, is the benefit they provide to those 

individuals suffering from a wide range of gastrointestinal disruptions and diseases.

-40-



1.6.3 Disease control in aquaculture: probiotics, immunostimulants and vaccines

The bulk of research into the efficacy of probiotic administration in aquaculture has 

focused on their potential benefits to finfish production, principally salmonid species 

(Ringo & Gatesoupe, 1998; Irianto & Austin, 2002; Balcazar et al, 2006; Kesarcodi- 

Watson et al, 2008). Fish, despite being Tower’ vertebrates, possess an adaptive 

specific immune system similar in function to ‘higher’ vertebrates (Nakanishi et al, 

1999). The premise that probiotics should convey a wellness benefit in finfish 

aquaculture was therefore accepted relatively quickly. Fish, however, (particularly 

marine species) drink constantly for osmoregulation and this high flow of water 

through their G.I. tract ensures their intestinal microbiota is far more transitory in 

nature compared to terrestrial organisms (Cahill, 1990; Spanggaard et al 2000). This 

is supported by studies indicating that probiotics do not colonise the G.I. tract of fish 

and only persist for short periods after the cessation of administration (Joborn et al, 

1997; Gatesoupe, 1999; Robertson et al, 2000). Despite this observation, there is clear 

evidence of the benefits of probiotic administration on the health, survival and growth 

of cultured finfish. The administration of a Bacillus sp. to the common carp, Cyprinus 

carpio, resulted in a considerable increase in growth and digestive enzyme activity 

(Wang & Zirong, 2006). The feeding of a Carnobacterium sp. to Atlantic salmon 

(Salmo salar L.) fty and fingerlings resulted in a decrease in susceptibility to infection 

by Aeromonas spp. and Vibrio spp. (Robertson et al, 2000). C. maltaromaticum and 

C. divergens have been shown as beneficial to Rainbow trout (Oncorhynchus my kiss, 

Walbaum) in resisting infection by salmonid pathogens A. salmonicida and Yersinia 

ruckeri (Kim & Austin, 2006).
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A significant aspect which must be addressed when considering the application of 

potential probiotics for use in crustaceans (indeed all invertebrates) is the lack of any 

of the gut associated lymphoid tissue (GALT) as present in vertebrates (Smith & 

Chisholm, 1992; Lee & Soderhall, 2002). All teleost fish appear to possess B & T-cell 

producing GALT (Abelli et al, 1997; Foumier-Betz et al, 2000). There is believed to 

be active ‘dialogue’ between the commensal microorganisms present in the vertebrate 

gut and the host mucosal immune system (Galdeano et al, 2007). Evidence of 

probiotic-initiated immune stimulation of GALT has been gathered in humans; 

including, stimulation of intestinal proinflammatory T helper 17 (T17) cells (Chow & 

Mazmanian, 2009) and of the secretion of the antibody, polymeric IgA, important in 

protecting mucosal surfaces against harmful bacterial invasion (Forchielli & Walker, 

2005). Since crustaceans do not contain antigen-specific lymphocytes, or produce 

antibodies/immunoglobulins (Lee & Soderhall, 2002), no beneficial stimulation is 

possible via such routes. Consequently, any probiotic producing such 

immunomodulation in a vertebrate animal will not necessarily be of any benefit to an 

invertebrate host. Since fish possess an adaptive, specific immune system; vaccination 

is a viable means of preventing outbreaks of disease. However, the greatest mortality 

is suffered not by adult animals but by fry and juveniles, often too small to receive 

such vaccines. In addition, newly hatched larval fish do not yet possess a mature, 

stable intestinal microflora (Vemer-Jefffeys et al, 2003) or an active specific immune 

system (Skjermo & Vadstein, 1999). Therefore, beneficial bacteria administered via 

either feed or growout water could provide a viable means of preventing or 

minimising disease outbreaks and stock loss in such young animals (Skjermo & 

Vadstein, 1999).
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In penaeid aquaculture, stock loss through disease is a greater problem than in finfish 

culture (Moriarty, 1998; Jayasree et al, 2006; Lemonnier et al, 2006; Soto-Rodriguez 

et al, 2006; Phouc et al, 2009). The risk of disease in shrimp farming increases with 

culture intensity and high stocking densities. The replacement of polyculture with 

monoculture also facilitates the spread of disease (Kautsky et al, 2000). For example, 

the rapid, high demand for (largely wild caught) L. vannamei broodstock and larvae in 

the late 1990’s resulted in the global spread of Taura Syndrome virus in less than 10 

years (Bonami et al, 1997; Phalitakul et al, 2006). Poor water quality and insufficient 

waste removal leads to overloading of metabolites and environmental degradation, 

putting the animals under stress and increasing their susceptibility to pathogens. 

Excessive fluctuations in abiotic factors such as oxygen levels, salinity and 

temperature, also increase stress and vulnerability to disease.

There are several potential approaches to disease control in penaeid aquaculture; these 

include improved animal husbandry and farm management as well as the 

administration of immunostimulants and probiotics (including bioremediation). 

Currently, however, the most widely utilised method of penaeid disease control 

involves the use of antimicrobials, such as antibiotics and chemotherapeutic agents 

(Angulo, 1999; Report of a joint FAO/OIE/WHO expert consultation on antimicrobial 

use in aquaculture and antimicrobial resistance, Anon 2006; Ninawe & Selvin, 2009). 

Improvements in animal husbandry and farm management, such as the use of non- 

earthen ponds, improved water filtration and aeration, can be effective in reducing the 

likelihood and severity of a disease outbreak. Used in isolation, however, they are 

insufficient to prevent stock loss should an outbreak occur. Crustaceans lack the 

specific immune system of vertebrates, relying on non-specific (humoral and 

haemocyte mediated) responses such as phagocytosis, melanisation, encapsulation
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and coagulation (Smith & Chisholm, 1992; Chisholm & Smith, 1995). Haemolymph- 

borne plasma recognition proteins and non-self-recognition molecules are responsible 

for initiating and amplifying crustacean immune responses (Lee & Soderhall, 2002). 

Research also indicates the presence of a family of antimicrobial peptides, named 

penaeidins, in L. vannamei (Destoumieux et al, 1997). As stated earlier in this section, 

invertebrates do not possess lymphoid tissue or the kind of adaptive, specific immune 

system observed in vertebrates. There has, however, been conjecture as to whether 

they possess some form of adaptive immune ‘memory’, prompting debate over the 

validity of the concept of crustacean ‘vaccines’. Until lately, however, no mechanistic 

evidence supported such conjecture (Smith et al, 2003). Recent studies in lobsters 

(Mori & Stewart, 2006) and woodlice (Roth & Kurtz, 2009) have demonstrated 

specific enhancement of haemocyte phagocytosis following ‘vaccination’. Despite 

this, considerable further research is required and the use of vaccines for disease 

control in penaeid aquaculture is currently still uncertain (Rowley & Powell, 2007). 

The use of immunostimulatory compounds has been suggested as having potential for 

disease suppression in crustaceans. In many instances, however, the lines between 

immunostimulant, vaccine and probiotic are blurred, as many potential 

immunostimulants are microbial products (Irianto & Austin, 2002; Smith et al, 2003). 

Lipopolysaccarides (from Gram-negative bacteria), glucan (from yeast), 

peptidoglycans (from lactic acid bacteria) and killed bacteria have all been evaluated 

as immunostimulants in Crustacea (Smith et al, 2003). Despite this, evidence for the 

efficacy of immunostimulation in crustaceans is at best incomplete and at worst 

contradictory, with research reporting potentially beneficial and detrimental effects 

(Smith et al, 2003; Li et al, 2009).
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When used correctly, antibiotics and other chemotherapeutic agents can be highly 

effective in containing and treating bacterial disease outbreaks within shrimp farms. It 

is when they are used incorrectly, or excessively, that substantial problems arise. 

Overuse of antibiotics greatly increases the likelihood of creating antibiotic resistant 

strains of bacterial pathogens. Antibiotics commonly used in penaeid aquaculture to 

control infection by Vibrio spp., such as chloramphenicol, furazolidone, 

oxytetracycline and streptomycin, have all experienced substantial declines in efficacy 

due to irresponsible use (Farzanfar, 2006). This coupled with the time and great cost 

involved in developing new antibiotics, has led to a shortage of effective 

antimicrobials in aquaculture. Attempts within the industry are being made to reduce 

the prophylactic use of the remaining effective antibiotics; consequently these drugs 

should now only be regarded as a therapeutic and not a preventative measure. 

However, a survey of Thai shrimp farmers in 2000 indicated that 60% still 

administered antibiotics prophylactically and 20% incorrectly used them to treat viral 

infections (Graslund et al, 2002). This problem is not restricted to antibiotics, 

chlorine, used to kill zooplankton in shrimp hatcheries prior to stocking has been 

found to stimulate the development of antibiotic resistance genes in bacteria 

(Moriarty, 1999). In addition to this, the use of antibiotics and chemotherapeutic 

agents, such as chlorine, does not kill all bacteria present. Subsequently, any surviving 

microorganisms rapidly proliferate and dominate the microflora as their competitors 

for nutrients, oxygen, etc have been removed (Farzanfar, 2006). Such occurrences 

involving the domination of the microflora by Vibrio harveyi have been observed 

frequently in Thai shrimp farms (Moriarty, 1999).

The argument for the use of probiotic bacteria in combating disease outbreaks and 

improving water quality in penaeid aquaculture facilities has recently gained
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momentum. Despite the potential displayed by probiotics in agriculture and fmfish 

culture, the crustacean aquaculture industry has been slow to grasp the potential of 

beneficial microorganisms. The majority of research carried out in the 1990’s focused 

on the in vitro activity and the effects of probiotics on growth, feed utilisation and 

survival parameters (Maeda & Chiu-Liao, 1992; Moriarty, 1998; Rengpipat et al, 

1998; Gatesoupe, 1999; Verschuere et al, 2000). Only within the last decade 

(predominantly the last three years) has any noteworthy research been conducted on 

the in vivo abilities and modes of action of these microorganisms in a crustacean host 

(see Table 4) (Irianto & Austin, 2002; Gullian et al, 2004; Ravi et al, 2007; Castex et 

al, 2008; Decamp et al, 2008; Kesarcodi-Watson et al, 2008). For instance, the lactic 

acid bacterium, Pediococcus acidilactici, has been shown, under field trial conditions, 

to reduce the occurrence of Summer syndrome (V nigripulchritudo infection) (Castex 

et al, 2008). L. plantarum has been observed to induce immune modulation, improved 

immune ability and increased resistance to V alginolyticus in L. vannamei (Chiu et al,

2007). Bacillus subtilis administration has been shown effective in protecting juvenile 

L. vannamei against vibriosis (Balcazar & Rojas-Luna, 2007). As well as bacteria 

administered via feed, the addition of beneficial bacterial strains to the growout water 

can be utilised to improve water quality and remove pathogenic bacteria (Ma et al, 

2009; Wang & He, 2009). This is technically classified as bioremediation and is often 

a simpler (and cheaper) means of reducing the prevalence oTand susceptibility to 

disease causing microorganisms in shrimp aquaculture facilities. The role of the 

microflora of growout water in disease outbreaks should not be ignored; the exchange 

of water and removal of organic sludge from ponds is insufficient and must be 

combined with the establishment of a mature, stable, non-harmful microflora. This is 

especially vital in shrimp hatchery, nursery and broodstock facilities as aquatic
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organisms derive their intestinal microbiota from the water they inhabit (Harris, 

1993).

The majority of L. vannamei producing countries are developing nations for whose 

economies the massive revenue the penaeid culture industry generates is vital. A 

global estimate from one study indicated that a shrimp farm worker can earn 1 .5 -3  

times as much as in other unskilled jobs (World Bank, NACA, WWF and FAO, 

2002). Consequently, within the industry there is a constant demand for means by 

which to maximising production yields and profit while minimising stock loss. The 

role of probiotics within a multifaceted strategy for disease prevention/control in 

penaeid aquaculture is made clear by the importance of a healthy gut microbiota in 

crustaceans, particularly during larval and post larval developmental stages. The role 

of microorganisms in improving water quality and reducing aquatic pollution and 

farm running costs should also not be underestimated.



Table 4. Prospective probiotics evaluated for shrimp aquaculture.

Strain Source Evaluated for
Effective dose / 

M ode o f application Reference

Bacillus S l l Black tiger shrimp 
Penaeus monodon

Growth & survival o f  black 
tiger shrimp, Penaeus monodon .

2.5% BS11 (-1 0 1 0  CFU 
g -1 ) in 3 kg o f feed

Rengpipat et al. 
2003

Bacillus subtilis 
BT23

Shrimp
culture
ponds

Against the growth o f  Vibrio 
harveyi isolated by agar 
antagonism assay from 

Penaeus monodon

106 - 108CFU ml'1 for 
6 days

Vaseeharan & 
Ramasamy 2003

Pseudom onas sp. 
PM 11 & Vibrio 

fluvia lis  PM 17

Gut o f farm 
reared sub-adult 

shrimp

Immunity indicators o f  

Penaeus monodon
PM11 (10 3 bacteria ml'1 for 

3 days) - PM 17 (103 bacteria 

ml'1 for 7 days)

Alvandi et al. 
2004

Arthrobacter
XE-7

Isolated from 
Penaeus chinensis

Protection o f  Penaeus chinensis 
post-larvae from pathogenic 

vibrios e.g. V. parahaem olyticus 
V. anguillarum  & V. nereis

106 CFU ml'1 Li et al. 2006

B acillus subtilis 
& B. megalerium

Marine
environment

Production o f digestive enzymes 
proteases, carbohydrolases 

and lipases

Potential application 
in shrimp feeds

Solano & Soto 
2006

Paenibacillus spp. 
B. cereus & Pa. 

po ly  myxa

Seawater, sediment 
and marine fish-gut 

samples

Activity against pathogenic 
Vibrio spp. 104 and 105 CFU ml'1 Ravi et al. 2007

Lactic acid bacteria Shrimp gut
Survival o f  marine shrimp 

L. vannamei challenged with 
V. harveyi

Liquid diet supplemented 
with B6 strain (108 CFU ml'1)

Vieira et al. 
2007

Lactobacillus
plantarum

Shrimp
isolate

Immune response & microbiota o f  
G.I. tract o f L. vannamei challenged 
with V. harveyi & V. alginolyticus

1010 CFU kg'1 diet/ 
108 CFU kg'1 feed Chiu et al. 2007

V. alginolyticus 
UTM 102, Bacillus 
subtilis UTM 126, 
R oseobacter gall- 
aeciensis SLV03, 
& Pseudom onas 

aestumarina  SLV22

Gastrointestinal 
tract o f  adult 

shrimp 
Litopenaeus 

vannamei

Antagonistic activity against 
the shrimp-pathogenic bacterium, 
Vibrio parahaem olyticus PS-017

Feed supplement Balc&zar et al. 
2007

B acillus subtilis 
UTM 126

Shrimp pond 
culture

Protection against vibriosis in 
juvenile Litopenaeus vannamei 105 CFU g'1

B alc&zar & Rojas- 
Luna 2007

Bacillus
licheniformis Shrimp pond

Intestinal microbiota & immunity 

o f  the white shrimp Litopenaeus 
vannamei

B. licheniformis 
suspension o f  104 CFU 

ml'1 for 40 days

Li et al. 2007

Pediococcus
acidilactici

Strain MA 18/5M, 
CNCM

Survival o f Litopenaeus stylirostris 
against Vibriosis caused by Vibrio 

nigripulchritudo

Probiotic-coated 
pellet feed

Castex et al. 
2008

B. subtilis  , B. natto 
& B. licheniformis

N ot
stated

Growth & digestive enzyme activity 
o f  Litopenaeus vannamei
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1.7 Aims of Thesis

The aims of the studies reported in this thesis are:

• The determination of whether lactobacilli can improve the health of crabs 

(Carcinus maenas).

• The in vitro assessment of the modes of action and efficacy of commercial 

terrestrial probiotics against crustacean bacterial pathogens, with emphasis on 

their potential applications in penaeid aquaculture.

• The isolation and identification of bacteria from healthy shrimp microbiota 

that may be of use as probiotics, with the possibility of future commercial 

application.

• The assessment of the ability of non-pathogenic members of the Vibrionaceae 

for growth interference/inhibition of Vibrio pathogens of penaeid shrimp.
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Chapter 2

Investigation o f the potential o f  the terrestrial bacterium, Lactobacillus plantarum ,
a probiotic for marine crustaceans



Abstract

The terrestrial lactic acid bacterium, Lactobacillus plantarum, is utilised as a probiotic 

supplement in both humans and agricultural animals. However, its potential as a 

probiotic in marine aquaculture, specifically Crustacea, has been largely unexplored. 

The aim of the work was to investigate L. plantarum’s suitability for this role with 

regards to its viability within a marine crustacean host, the European shore crab, 

Carcinus maenas. In addition, any effects of L. plantarum administration on markers 

for the crustacean non-specific immune system were also assessed. The viability of 

the probiotic was assessed through the sampling of faeces and hepatopancreas over 

two feed trials. The effects on immune parameters were investigated via examination 

of phenoloxidase and phagocytic activity, as well as by determining total and 

proportional circulating haemocyte numbers. Oral administration of L. plantarum had 

no demonstrable effect on immune parameters of the shore crab C. maenas. In 

addition, the bacteria had no discernible effect on the growth or survival of the 

animal. The finding of greatest significance was the ability of L. plantarum to survive 

both the marine environment and transit through the gastrointestinal tract of the shore 

crab. However, maintenance of the probiotic required continual oral administration. In 

conclusion, the application of L. plantarum as a potential probiotic in marine 

crustacean aquaculture is certainly feasible; however, further investigation into 

whether it provides any benefit to the host organism is required.
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2.1 Introduction

Decapod crustaceans make up a considerable portion of the global aquaculture 

market, a market which over the last few decades has become the world’s fastest 

growing food production sector (Moriarty, 1999; Farzanfar, 2006). The global losses 

due to disease, in shrimp aquaculture alone, exceeded three billion US dollars in 2006 

(Farzanfar, 2006). As described in Chapter 1, the prophylactic administration of 

strains of probiotic bacteria is now widely perceived as potentially being one of the 

most effective ways of preventing disease outbreaks in modem intensive aquaculture 

(Verschuere et al, 2000; Irianto & Austin, 2002).

Prior to the commencement of the work outlined in this study in 2006, no evidence of 

previous research involving lactic acid bacteria supplementation in Crustacea could be 

found. Species of Carnbacterium and Lactobacillus, have, however, been tested as 

potential probiotics in marine fish with beneficial effects observed (Jobom et al, 1997; 

Robertson et al, 2000; Camevali et al, 2004; Kim & Austin, 2006).

The selection of Carcinus maenas, a species of little commercial interest, as the 

model for this study was made primarily due to the large body of research and 

expertise available with regard to its non-specific immune responses (e.g. - Smith & 

Ratcliffe, 1980 (a, b); Schnapp et al, 1996; Hauton et al, 1997 (a,b); Johansson et al, 

2000). Furthermore, a local ‘crab-farm’ (JW Aquaculture Research, Ltd.) was 

assessing the potential of C. maenas for the bait market and the company had a need 

for the development of a cheap, but effective diet based on waste fish. Initial studies 

had also examined the potential of dietary chitin as an immune stimulant in this



species (Powell & Rowley, 2007). JW Aquaculture Research closed this pilot ‘crab- 

farm’ in 2006-7. In addition, the abundance of experimental animals was also a 

significant factor in the decision, given the presence of a large, readily accessible, 

local population.

Consequently the focus of this study was the investigation of the potential of 

Lactobacillus plantarum as an orally administered probiotic in a model decapod 

crustacean, the European shore crab, Carcinus maenas. The primary aims were to 

determine whether L. plantarum is capable of surviving and colonising the 

gastrointestinal tract of C. maenas and whether supplementation has any affect on 

several markers for non-specific immunity.



2.2 Materials and methods

2.2.1 Trial 1: An initial six week Lactobacillus plantarum feed trial in Carcinus 

maenas

A preliminary study focused on determining the feasibility of adapting a 

commercially available terrestrial probiotic, L. plantarum, for use in marine decapod 

species. In this first trial, the probiotic’s potential effects on basic haemolymph 

parameters and the bacteria’s ability to survive transit through a marine decapod host, 

were examined.

2.2.1.1 Animals & experimental design

Crabs were collected exclusively from the Prince of Wales Dock, Swansea, via baited 

pots. Only adult male common shore crabs, C. maenas, of at least 55mm carapace 

width and possessing both chelipeds were selected. Control and probiotic diet groups 

were housed in 40L tanks, each tank containing 10 animals, within the re-circulating 

aquarium at Swansea University. Each group was fed 30g of formulated feed (~3g per 

animal), 4 times per week for a period of 42 days. Faecal material and haemolymph 

were sampled on a weekly basis. After 42 days, 5 animals from the probiotic group 

and four from the control were sacrificed for hepatopancreas sampling. Normal 

haemolymph sampling was suspended during week 4 in order to develop a 

phenoloxidase activity assay.
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2.2.1.2 Preparation of feed

The feed utilised for this trial comprised a gelatine embedded, partially disassociated 

haddock fillet (Melanogrammus aeglefmus) purchased fresh from a local fishmonger, 

using a method modified from that of Powell & Rowley (2007). The control group 

received the standard feed whilst the feed administered to the probiotic group 

contained 1% by mass of lyophilised pure culture of L. plantarum supplied by Cultech 

Ltd. (Baglan Industrial Park, UK).

Diet production involved the skinning and the removal of any remaining bone from 

the haddock fillet, followed by the partial disassociation of the flesh (for -30 sec) in a 

domestic food processor. In the case of the control diet, 500 g of haddock flesh was 

required to produce 1.214 kg of finished feed while in the case of the probiotic feed 

494.64 g of flesh and 5.36 g of probiotic was required to produce an equal amount of 

probiotic feed. Once weighed, 714 ml of molten 5% gelatin solution (at 35°C) was 

added to the haddock flesh. The solution comprised 35.7g of porcine type A, 300 

bloom gelatin (Sigma-Aldrich Inc. G2500-500G) dissolved in 714 ml of deionised, 

distilled water (ddL^O), in a water bath set at 40°C. In the case of the probiotic feed, 

the gelatin solution was cooled to 35°C prior to the addition of the lyophilised L. 

plantarum to maximise bacterial viability. The probiotic was mixed using a magnetic 

stirrer before the suspension was added to the haddock flesh. Once thoroughly mixed, 

the feeds were allowed to set at 4°C for a minimum of one hour before being divided 

into 30 g blocks. The blocks were then wrapped in aluminium foil and stored at -20°C 

until required. Samples of feed (2 g per week) were dispatched to Cultech Ltd. to 

determine the stability of the probiotic within the feed (see Appendix 2). To achieve 

this, the feed block was broken up and 1 g added to 90 ml of maximum recovery



diluent (MRD) (Difco™, cat# 218971). The sample was then vortexed until 

thoroughly disassociated, for ca. 5 min. A volume of 50 pi was then spread plated in 

triplicate on Lactobacillus deMan, Rogosa and Sharpe agar medium (MRS) (Oxoid 

Ltd., cat# CM0361) a medium highly specific for lactic acid bacteria. The plates were 

then incubated at 37°C for 48 h, followed by colony counts and confirmation of L. 

plantarum via testing with the API 50 CHL (V5.1) sugar fermentation test 

(BioMerieux UK Ltd., Basingstoke, UK) as per the manufacturer’s instructions.

2.2.1.3 Haemocyte counts

Total haemocyte counts (THC) were performed using a Neubauer haemocytometer 

under a Leitz Wetzlar light microscope. Haemolymph was extracted from the same 5 

individuals in each diet group on a weekly basis (individuals were identified via the 

application of coloured markings). After surface sterilisation with ethanol, 200 pi of 

haemolymph was drawn using a 1 ml syringe and 21G needle from the first joint of 

the fourth pereopod (walking leg), into an equal volume of ice cold marine 

anticoagulant (MAC) (Appendix 1; Soderhall and Smith, 1983). Haemolymph/MAC 

solution (25 pi) was then pipetted onto the haemocytometer, with counts performed 

under xlOO magnification.

Differential haemocyte counts (DHC) were performed as for THC, with 200 pi of 

haemolymph drawn into 200 pi of 7.4% formalin MAC (same composition as 

outlined previously but with the replacement of 17 ml of dcUHLO with 37% 

formaldehyde solution). Slides were then prepared by placing 100 pi of diluted cell 

suspension into a Shandon cytocentrifuge (1000 rpm; 5 min). The slides were then 

allowed to dry at room temperature before being fixed in absolute methanol and



stained using undiluted Wright’s stain (~2 min). The numbers and proportions of each 

cell type were then calculated using a minimum of 200 cells/per slide. Haemocyte 

types were identified using the morphological criteria of Bauchau (1981).

2.2.1.4 Haemolymph protein

Serum protein concentrations were determined for the remaining 5 animals in each 

group using the bicinchoninic acid assay kit (Pierce and Warriner, Chester, UK) as per 

the manufacturer’s instructions for 96 well plates. Haemolymph (500 pi) was drawn 

from each crab and centrifuged (2500 x g; 8 min; 4°C), with the serum then divided 

into 100 pi aliquots. One aliquot was then used in the determination of serum protein, 

while the remainder were stored at -80°C for use in any future testing. All samples 

were measured in triplicate using a bovine serum albumin (BSA) standard curve (100- 

2000 pg ml'1) run on the same plate.

2.2.1.5 Persistence of L. plantarum in the G.I. tract of C. maenas

Pooled faecal samples were collected from each diet group on a weekly basis, with an 

approximate volume of 125 pi of faeces drawn into an equal volume of filter- 

sterilised (0.22 pm) aquarium water. The faecal suspension was then mixed with 250 

pi of storage medium (50% glycerol, 3% sodium chloride solution) and stored at - 

20°C until the end of the trial.

Samples of hepatopancreas were also taken aseptically at the end of the trial 

(requiring the sacrifice of 5 animals from the probiotic group and 4 from the control) 

the samples were stored at -20°C, in an equal volume of the storage medium.



Post trial work on the recovery of viable L. plantarum from the faecal and 

hepatopancreas samples was conducted at Cultech Ltd. (project’s industrial sponsor). 

After manual homogenisation of each sample for 30 sec, seven xlO dilutions were 

made. After the initial round of plating, the number of dilutions required was lowered 

to three. All samples were plated in duplicate, on to five growth media; MRS agar for 

Lactobacillus, MRS agar (plus 1% sodium chloride), MRS agar (plus 3% sodium 

chloride), nutrient agar and sheep blood agar. Each dilution was pipetted, 5 x 10 pi 

equally spaced drops, onto a quarter plate. The drops were allowed to dry at room 

temperature (18°C) before the plates were incubated anaerobically at 30°C for four 

days. After four days, a colony count and preliminary colony identification was 

performed. Those colonies identified as possible L. plantarum then underwent testing 

with the API 50 CHL (V5.1) sugar fermentation test (BioMerieux UK Ltd., 

Basingstoke, UK) as per the manufacturer’s instructions.

Those colonies positively identified as L. plantarum by the API 50 CH test, were 

streaked and isolated before being store in agar slopes/stabs. This ‘recovered’ strain 

was then used as the stock supply of L. plantarum for salinity tolerance comparison 

trials.

2.2.1.6 Salinity tolerance of L. plantarum

The salinity tolerance trials required the culturing of both the original lyophilised L. 

plantarum used in the production of the crab feed and the L. plantarum recovered 

from the crab faeces under saline conditions using a method modified from that of 

Vasquez et al (2003). Adapted incubations of both ‘types’ of L. plantarum were



composed of suspensions of live bacteria in 10 ml of filter sterilised sea water. The 

concentration of live bacteria (CFUs) in the lyophilised L. plantarum incubation was 

1.58 x 1010 L'1. To minimise sources of error, the concentration of CFUs in the 

‘recovered’ L. plantarum incubation was adjusted to 1.58 x 1010 L"1. Initial time 0 

samples of the ‘recovered’ strain were drop plated in order to determine accurately the 

number of viable CFUs present at the start of the incubation. The suspensions were 

then incubated at 18°C.

Both incubations were sampled every 6 h over the course of 24 h (i.e. at 6, 12, 18 and 

24 h respectively). Sampling involved the removal of 100 pi of the incubation (after 

gentle shaking) prior to dilution with filter sterilised sea water. Eight dilutions were 

made with each subsequent dilution equating to one tenth the concentration of the 

previous, with the exception of the first. Each dilution was then drop plated in 

duplicate onto MRS agar containing 1% sodium chloride. The plates were incubated 

anaerobically at 28°C for 72 h. The L. plantarum colonies of the dilution showing an 

optimum growth pattern were counted and the CFUs present in the incubation at that 

time were calculated.

2.2.1.7 Statistical analysis

To evaluate differences in cell counts and haemolymph protein concentrations 

between diet groups an ANOVA together with a Bonferroni multiple comparisons 

post test was used. This followed the determination of normal distribution of the data 

via the application of a Kolmogorov-Smirnov test. All values are shown as arithmetic 

means ± 1 standard error of the mean (S.E.M).



2.2.2 Trial 2: An 11 week Lactobacillus plantarum feed trial in Carcinus maenas

A second, longer term feed trial focused on determining any potential effect of L. 

plantarum administration on two C. maenas immune parameters (phagocytosis and 

phenoloxidase activity). In addition, the ability of L. plantarum to persist in the 

gastrointestinal tract of crabs after the cessation of probiotic feed was also 

investigated.

2.2.2.1 Animals & experimental design

Animal selection criteria, husbandry and feeding schedule remained unaltered from 

the initial trial (Trial 1). Each diet group again consisted of 10 animals, individually 

identifiable by applied coloured markings, with each group again divided into two 

subgroups of five individuals. Sampling was conducted every two weeks (with the 

exception of week 11), in an attempt to minimise mortality due to stress. One 

subgroup was utilised for faecal sampling, the other for haemolymph samples utilised 

to assess phagocytic and phenoloxidase activity. In addition, probiotic administration 

was halted in week 7 of the trial in order to ascertain the length of time L. plantarum 

was able to persist in the decapod gastrointestinal tract after the cessation of probiotic 

feed. In week 11 (end of trial) three animals from each diet group were sacrificed, 

with hepatopancreas samples taken to attempt recovery of L. plantarum. The 

materials and methods utilised for the preparation of feed and for 

faecal/hepatopancreas microbiology remained unaltered from the previous trial.



2.2.2.2 Haemocyte phagocytic activity

The phagocytic activity of haemocytes was determined utilising stained yeast 

zymosan as described in detail previously (Mayrand et al, 2005). Diagnostic slides 

(8x8mm wells) were first washed in MilliQ water, followed by immersion in an 

ethanol bath (70%) for 1 h. They were again rinsed in MilliQ water before being heat 

sterilised at 200°C to remove any bacterial contamination.

A suspension of type A yeast zymosan in marine saline (Appendix 1) was stained in a 

5% neutral red solution and the concentration adjusted to ca. 5 x 107 zymosan ml'1. 

After surface sterilisation with alcohol, 200 pi of haemolymph was drawn, using a 1 

ml syringe and 21G needle, from the first joint of the fourth pereopod (walking leg) 

into 800pl of ice cold marine anticoagulant (MAC). The suspension was then 

centrifuged (10,000 x g; 1 min; 4°C) before re-suspending the haemocytes in ice-cold 

marine saline. The THC was enumerated using a Neubauer haemocytometer and cell 

concentration adjusted to ca. 5 x 106 cells ml'1. Haemocyte suspension (50 pi) was 

pipetted into each well of a diagnostic slide, with two replicates performed for each 

sample. The slides were left for 10 min at RT to allow cell adhesion, before gentle 

rinsing with ice-cold marine saline to remove any unattached haemocytes. Once 

prepared, 25 pi of the yeast zymosan suspension was pipetted into each well and the 

slide placed on a filter paper soaked in marine saline (in a 90 mm Petri dish) before 

being incubated at 18°C in darkness for 1 h. Post incubation, any non-engulfed 

zymosan were washed off with ice-cold marine saline and the slides were then fixed 

for 10 min in 5% formalin before being rinsed with dctt^O and allowed to dry.

To determine the phagocytic activity, the first 100 haemocytes encountered under the 

xlOO oil immersion objective were examined for the presence of engulfed yeast



zymosan. If engulfed zymosan accounted for less than 10% of cytoplasm volume 

(equating to 0-1 zymosan) then the cell was regarded as being ‘inactive5. Phagocytic 

activity was expressed as a percentage (i.e. % phagocytic haemocytes).

2.2.23 Phenoloxidase activity

The phenoloxidase assay used was modified from that reported by Smith & Soderhall 

(1991). All glassware and unsterilised plasticware utilised was rendered pyrogen and 

endotoxin free by immersion in a 0.1% E-Toxa-Clean solution (Sigma 210-3) for a 

minimum of 2 h, followed by washing in MilliQ ddT^O. In addition, glassware was 

then heat sterilised at 200°C for 2-4 h.

After surface sterilisation with alcohol, 300pi of haemolymph was drawn, using a 1 

ml syringe and 21G needle, from the first joint of the fourth pereopod (walking leg), 

into equal volume of ice cold MAC. The number of samples required the staggering 

of incubations to minimise the effects of premature activation of the phenoloxidase 

within the haemolymph. Each incubation contained the same number of control and 

probiotic diet group samples, to prevent the introduction of additional variation.

The contents of the syringe were then carefully transferred to a 1.5 ml Eppendorf tube 

containing an additional 300 pi of ice cold MAC. The suspension was then 

centrifuged, (800 x g; 5 min; 4°C). The cells were then washed twice in cacodylate 

sucrose buffer (CSB) (Appendix 1) with care being taken not to resuspend the pellet. 

After the second wash the supernatant was drawn off and discarded and the pellet 

resuspended in 500 pi of sodium cacodylate buffer (Appendix 1). The sample was 

then manually homogenised on ice for 30 sec before centrifuging (16,000 x g; 20 min; 

4°C). The supernatant, referred to as the haemocyte lysate supernatant (HLS) was



aliquoted, 50 pi in triplicate, into a 96 well, flat-bottomed plates (Nunc® Sterile, 

prod# TKT-180-070U). Control blanks were also included where the HLS was 

replaced with sodium cacodylate buffer & dctt^O. Fifty microlitres of 0.1% trypsin 

solution was then added to each well and the plate incubated at 20°C for 30 min. 

During this period, the concentration of protein within the remaining HLS was 

determined using a bicinchoninic acid assay kit (Pierce and Warriner, Chester, UK) as 

per the manufacturer’s instructions, with a BSA standard (100-2000 pg ml'1 range). 

After 30 min, the plate was removed and 50 pi of 0.3% L-Dopa solution (Appendix 1) 

was added to each well before incubating for a further 20 min at 20 °C. Absorbance at 

492 nm was then recorded using a microplate reader (Multiscan Ascent, Dynex 

Labsystems®, Middlesex, UK).

Phenoloxidase specific activities were calculated using the formula outlined in 

Appendix 1 with results expressed as AOD 492 nm/min/mg protein.

2.2.2.4 Statistical analysis

Total haemocyte counts were only performed in the course of conducting the 

phagocytic activity assay, therefore, no statistical analysis of these data was 

conducted. To evaluate any differences in phagocytic and phenoloxidase activity 

between the diet groups, an ANOVA together with a Bonferroni multiple comparisons 

post test was used. This followed the determination of normal distribution of the data 

via the application of a Kolmogorov-Smimov test. Values were shown as arithmetic 

means ± 1 standard error of the mean (S.E.M).



2.3 Results

2.3.1 Trial 1: An initial six week L. plantarum feed trial in C maenas

2.3.1.1 Probiotic stability in feed

L. plantarum levels within the gelatinous diet stored at -20°C exhibited a gradual 

decline in the number of viable lactobacteria. The CFUs declined from 8.25 x 107 g'1 

to 5.00 x 107 g'1 during the three week period of sampling (Figure 1).
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Figure 1. Number of L. plantarum colony forming units recovered from experimental diet
(single estimation performed)
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2.3.1.2 Haemocyte counts

The results obtained in this trial are shown in Figures 2-5. Both total (THC) 

haemocyte numbers and the proportions (DHC) of the three cell types displayed a 

high degree of variability throughout the trial period. There was, however, no 

significant difference between the two diet groups with regard to either THC or DHC 

at any time point during the 6 week period (ANOVA with Bonferroni multiple 

comparison post test, P<0.05) (Figures 2-5).
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Figure 2. Total haemocyte count for control (—) and probiotic (—) diet groups over 6 week feeding
period. Mean values ± SEM, n=5
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Figure 3. Number of granulocyte-type haemocytes observed in haemolymph samples 
from control (—) and probiotic (—) crabs over the 6 week feeding period. Mean

values ± SEM, n=5
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Figure 4. Number o f  hyaline-type haemocytes observed in haemolymph samples 
from control (— ) and probiotic (— ) grps over the 6 week feeding period. Mean

values ± SEM, n=5
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Figure 5. Number of semigranulocyte-type haemocytes observed in haemolymph 
samples from control (—) and probiotic (—) grps over the 6 week feeding period.

Mean values ± SEM, n=5
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2.3.1.3 Total haemolymph protein

The total serum protein concentrations o f crabs on the control and probiotic diets were 

similar over the duration o f the trial (Fig. 6). No significant difference in serum 

protein concentration was observed between the control and probiotic diet groups, 

with the exception o f at week 2 (ANOVA with Bonferroni multiple comparisons post 

test; P<0.05).
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Figure 6. Serum [protein] (mg/ml) observed in haemolymph samples from control (—) 
and probiotic (—) crabs over the 6 week feeding period. Mean values ± SEM, n=5,

* P<0.05 compared with control
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2.3.1.4 Persistence of L. plantarum in the GI tract of C. maenas

As shown in Table 1, L. plantarum was found in faecal samples as the trial 

progressed, with CFUs increasing from 0 at week 0 (basal sample) to >1.60 x 107 g'1

7 1faeces at week 6. Trace levels (ca. 10 . g' wet weight) of L. plantarum were also 

identified in two of the control group faecal samples at weeks 1 & 5. L. plantarum 

was absent from the remaining control group samples.

Although^, plantarum was not observed in the majority of the control faecal samples, 

a second bacterial type on MRS was prevalent, characterised by small, round, 

translucent colonies. This bacterium was not further identified as it was clearly 

(through colony morphology and Gram staining) not a species of Lactobacillus. The 

hepatopancreas contained very little culturable material with very low concentrations 

of the probiotic bacteria recovered in samples from two probiotic group animals, 

yielding 0.96 x 103 and 0.40 x 102 CFUs g'1 of hepatopancreas (Table 2). L. 

plantarum was not observed in any control group hepatopancreas samples (Table 2).

Table 1. L. plantarum colony forming units present in pooled faecal samples gathered 
on a weekly basis.

Sample Number of L. plantarum CFUs recovered
period (CFU per g faeces wet weight)

(weeks) Control diet group Probiotic diet group
0 0 0
1 2.4 x 102 0
2 0 5.4 x 106
3 0 4.5 x 106
4 0 4.9 x 104
5 8.0 xlO2 >1.6 x 107
6 0 >1.6 xlO7
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Table 2. L. plantarum colony forming units present in hepatopancreas.

Number of L.plantarum CFUs recovered 
(CFU per g hepatopancreas wet weight)

Control diet group Probiotic diet group

0 0
0 1.0 x 103
0 0
0 0.4 x 102
0 0
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2.3.1.5 Salinity tolerance of L. plantarum

Incubations comparing the haline tolerances o f original lyophilised cultures o f L. 

plantarum  with those recovered from the faeces o f probiotic-fed crabs (pure cultures 

positively identified via API 50 CHL testing as L. plantarum) yielded interesting 

results. Figure 7 displays the mean CFUs derived from four replicate incubations o f 

both lyophilised and recovered faecal L. plantarum. The most significant feature was 

the apparent large drop in viability in the lyophilised population observed in the initial 

6 h. After this point, the lyophilized and faecal incubations showed no significant 

variation in survival/mortality. Colony forming units within the recovered, faecal 

incubations exhibited no significant variations over the 24 h incubation period 

(ANOVA with Bonferroni multiple comparisons post test; P<0.05) with CFUs m l'1 

varying from 1.95xl07 at 0 h, to 1.31 x l0 7 at 24 h.
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Figure 7. Survival o f original lyophilised Lactobacillus plantarum  (—) 
administered in feed compared to that recovered from crab faeces (—). Mean

values ± SEM, n=4.
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2.3.2.1 Trial 2: Phagocytic activity against zymosan

During Trial 2 mortality within the probiotic group was high, 70% over the 11 weeks 

compared to only 20% among the control crabs. The cause o f this mortality was an as 

yet unclassified rickettsia-like bacterial pathogen endemic in the local wild C. maenas 

population during late summer (Eddy et al, 2007).

To ascertain whether L. plantarum  administration affected the phagocytic activity o f 

haemocytes in C. maenas, a phagocytic activity assay was performed using zymosan 

as a test particle. There was no evidence that feeding o f L. plantarum  had any effect 

on the ability o f haemocytes to phagocytose zymosan (Figure 8). No significant 

differences were observed between the control and experimental groups at any point 

during the trial, nor was there any difference between the basal (week 1) and final 

probiotic samples (ANOVA with Bonferroni multiple comparisons post test; P<0.05).
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Figure 8. Percentage phagocytic activity o f C. maenas haemocytes over 11 week trial 
(probiotic supplement ceased in week 7). Mean values ± SEM, n=5.

- 7 0 -



2.3.2.2 Phenoloxidase activity

An assessment o f the phenoloxidase activity o f haemocyte lysate supernatant was 

performed as a further indicator o f a possible change in immune status following 

probiotic treatment.

There was a high degree o f variation in the phenoloxidase activity within each diet 

group over the trial period (Figure 9). However, as was the case with phagocytic 

activity, no significant variation between the control and probiotic groups was 

observed over the 11 week period (ANOVA with Bonferroni multiple comparisons 

post test; P<0.05).
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Figure 9. Specific activity o f phenoloxidase in haemocyte lysate supernatant obtained 
from C. maenas haemolymph over 11 week trial (probiotic supplement ceased in week

7). Mean values ± SEM, n=2-5.
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2.3.2.3 Persistence of L. plantarum in the GI tract of C. maenas

As in the initial trial, the work to recover and isolate viable probiotic from stored 

faecal material collected during this second trial was conducted at Cultech Ltd. (Table

3). L. plantarum accumulated in the faeces of those crabs fed probiotic during the 

period of its administration (up to week 7) increasing from zero CFUs at week 0 to 

1.9 x 106 CFU g'1 by week 6 (Table 3). Levels of L. plantarum in the faecal samples 

declined rapidly during the week after the switch to the non-probiotic diet, 

disappearing entirely by week 9 (Table 3). L. plantarum was identified in the week 4 

control group faecal sample, but was absent from the remaining samples.

As in the initial trial, hepatopancreas samples contained little culturable material and 

low concentrations of the probiotic were recovered from two of the probiotic-fed 

animals, yielding mean values of 0.6 x 103 and 0.1 x 103 CFU g'1 wet weight (Table

4). L. plantarum was not recovered from any control group hepatopancreas samples.

Table 3. L. plantarum colony forming units present in pooled faecal material.

Sample Number of L. plantarum CFUs recovered
period (CFU per g faeces wet weight)

(weeks) Control diet group Probiotic diet group
0 0 0
2 0 1.1 xlO 3
4 1.3 x 105 4.3 x 104
6 0 1.9 x 10s
8 0 2.1 x 104
9 0 0
10 0 80
11 0 0
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Table 4. L. plantarum colony forming units present in hepatopancreas at week 11.

Number of L. plantarum CFUs recovered 
(CFU per g hepatopancreas wet weight)

Control diet group Probiotic diet group

0 0
0 0.6 x lO 3
0 0.1 x 103
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2.4 Discussion

The majority of previous work involving the administration of potential probiotic 

organisms to marine crustacean species has focused on their gross effects with regards 

to growth and mortality (Rengpipat et al, 1998; Gomez-Gil et al, 2000; Rengpipat et 

al, 2000; Gullian et al, 2004; Balcazar et al, 2007; Wang, 2007). By comparison, until 

recently there has been relatively little investigation of the potential effects of 

probiotic bacteria supplementation may have on the immune parameters of cultured 

marine invertebrates.

This current study described in this section was primarily aimed at determining the 

potential of utilising a terrestrial probiotic, in this case Lactobacillus plantarum, for 

use in a marine decapod crustacean species. The selection of L. plantarum as the 

primary test probiotic was the result of several factors. Firstly, lactic acid bacteria 

including L. plantarum, have been used extensively and successfully as terrestrial 

probiotics for many years (e.g. Ringo & Gatesoupe, 1998; Cebeci & Gurakan, 2003; 

Coeuret et al, 2004). L. plantarum has been approved for use as a human probiotic 

within the European Union (Directive; 70/524/EEC, JLO 297:15/11/2001); (Coeuret 

et al, 2004) and is used commercially by the project’s industrial partner 

(Obsidian/Cultech Ltd., Baglan) in a number of proprietary supplements supplied to 

major companies in the U.K. Consequently, a continuous supply of homogeneous, 

lyophilised L. plantarum was available throughout the study. L. plantarum is regarded 

as a hardy microbe, capable of surviving transit through the stomach of terrestrial 

vertebrates (de Vries et al, 2006) whose potential as an aquatic/marine probiotic has 

been outlined previously (Gildberg et al, 1995, Camevali et al, 2004; Vazquez et al, 

2005; Chiu et al, 2007). In addition, lactobacilli are principally non-pathogenic (in
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mammals at least) and have been found naturally in the alimentary canal of many fish 

species (Ringo et al, 1995; Ringo & Gatesoupe, 1998; Ringo et al, 2000; Robertson et 

al, 2000).

In the current study, the effect of L. plantarum administration on four basic immune 

parameters was assessed alongside its potential to colonise the G.I. tract of crabs. No 

significant variation in total haemocyte populations, or the individual blood cell types 

between the diet groups of the initial trial was observed. Therefore, it is possible to 

regard the administration of L. plantarum over a 6 week period as having no 

discernible effect on the circulating haemocyte levels of healthy crabs. Total and 

differential haemocyte counts are sometimes considered as indicators of possible 

immune activity (Tsing et al, 1989; Johansson et al, 2000). A decrease in circulating 

haemocyte numbers is often observed in the initial stages of an infection as those 

haemocytes responsible for the production of antimicrobial peptides and cell-mediated 

responses migrate out of the haemolymph into the affected tissues (Schnapp et al, 

1996; Bachere et al, 2004). If the animal survives the initial post-infection period (ca. 

48 h), there often follows a proliferation of haemocytes as production is stimulated 

returning the circulating numbers to pre-infection level (Bachere et al, 2004). 

Therefore, a relative decrease in the granular-type (antimicrobial peptide expressing) 

cells within the haemolymph might indicate migration of these cells into the tissues 

and the instigation of an immune-stimulatory effect (Bachere et al, 2004).

Over the trial period both groups displayed a near identical pattern of haemolymph 

protein concentration, with no significant divergences observed. The sizable increase 

in the concentration of haemolymph serum protein observed in both diet groups



during the second week of the trial is likely to be due to the animals’ improved diet, as 

it persisted for the remainder of the feeding period.

L. plantarum supplementation elicited no change in either the phagocytic or 

phenoloxidase activities of circulating haemocytes. Both of these parameters are well 

established markers for non-specific immunity in invertebrates (Brookman et al, 1989; 

Rowley et al, 1990; Smith & Soderhall, 1991; Dyrynda et al, 1995; Hauton et al, 1997 

(a,b); Cerenius et al, 2008; Li et al, 2008). The high mortality suffered by the 

probiotic diet group during week 8, however, makes these results potentially 

unreliable due to the reduction in sample size. This mortality suffered by the probiotic 

diet group crabs during the second trial can be attributed to an outbreak of ‘milky 

disease’. This is a systemic infection often observed in the local C. maenas population 

during the summer, whose causative agent is believed to be an as yet unidentified 

rickettsial-like a-proteobacterium (Eddy et al, 2007).

The recovery of large quantities of L. plantarum from faeces of the probiotic fed 

animals in both trials indicates that L. plantarum survives transit through the 

crustacean gastrointestinal tract. In addition to this, the number of CFUs was shown to 

increase as the trial progressed, provided that bacterial supplementation was not 

halted. This seems to indicate that while L. plantarum did not actively colonise the 

digestive tract, as defined in Fuller (1992) it did appear capable of not only 

maintaining a stable transitory population but also proliferating whilst in transit. The 

inability of lactobacilli to colonise the GI tract is not unusual when administered to 

healthy animals (Robertson et al, 2000). However, the low levels of probiotic detected 

in two of the three hepatopancreas samples taken 4 weeks after the cessation of 

supplementation, may give an indication that low level, longer term colonisation of



the hepatopancreas may be possible. L  plantarum was detected in control group 

faecal samples on three occasions over the two trials. Given the sporadic nature of its 

appearance and extremely low levels in comparison to the equivalent probiotic 

samples, the source of the bacteria should be regarded as being due to contamination. 

This is further supported in that L. plantarum is not a natural component of the marine 

microflora and has never been isolated from the GI tract of C. maenas.

Previous studies have shown that some lactobacilli are capable of producing 

osmoregulatory proteins in order to better survive in environments with high 

dissolved solute concentrations (Piuri et al, 2003). The contribution of the proteolytic 

system peptide supply is thought to be significant in the process of osmotic adaptation 

in these bacteria (Piuri et al, 2003; Wood et al, 2001). In the current study L. 

plantarum appeared to survive well in sea water suggesting it may have some 

potential as a probiotic for marine invertebrates and vertebrates. Although no 

significant adaptation to saline conditions was observed, the fact that L. plantarum 

exhibited tolerance to haline conditions (Wood et al, 2001) and survived transit 

through a marine decapod host, were important findings and indicate the probiotic’s 

suitability for further testing.

Temperature may be a more important parameter than salinity with regard to survival 

and activity of lactobacilli (Vazquez et al, 2003). Anecdotal observation indicates that 

L. plantarum typically grows best aerobically at 30°C. Therefore, L. plantarum may 

exhibit improved survival and potential probiotic activity in a tropical decapod species 

such as the Pacific white shrimp, Litopenaeus vannamei where water temperatures are 

somewhat higher.

In conclusion, the current study has shown that oral application of the probiotic, L. 

plantarum has no demonstrable effects on a range of immune parameters in shore



crab, C. maenas. Furthermore, there were no obvious effects of the probiotic on the 

growth and survival of these crabs. Of interest was the finding that this terrestrial 

microbe survives well in sea water and transit through the GI tract of crabs, but 

requires continual administration to maintain any presence in the gut.



Chapter 3

Selection and in vitro screening o f an array o f micro-organisms for expression o f 
antagonistic activity against a panel o f  potential pathogens o f  shrimp



Abstract

This aspect of the project comprised two components; initially, the provision of a 

range of bacterial isolates (both identified and unidentified strains) in pure culture for 

the in vitro assessment of their potential as crustacean probiotics. Second to this was 

the development and optimisation of an array of screening assays designed to identify 

any anti-microbial abilities of these isolates toward a selection of potential crustacean 

bacterial pathogens. Bacterial strains were gathered from three distinct sources, (i) 

commercially utilised terrestrial probiotics (3 species of lactic acid bacteria), (ii) 

isolates from the microflora of cultured Pacific white shrimp, Litopenaeus vannamei 

(114 isolates) and (iii) Vibrio spp. with no record of pathogenicity toward marine 

organisms (seven Vibrio spp. and 4 shell disease isolates). From these sources, five 

potential probiotic strains displaying anti-pathogen activity were identified using four 

principal screening techniques (a fifth; cross-streaking, was used initially and 

discarded as ineffective). The five selected potential crustacean probiotics were; 

Lactobacillus plantarum, Pediococcus acidilactici (NCIMB 8018), a suspected strain 

of Carnobacterium maltaromaticum (isolated from L. vannamei), Vibrio alginolyticus 

(NCIMB 1339) and Vibrio gazogenes (NCIMB 2250).



3.1 Introduction

Lactic acid bacteria have been tested and utilised as probiotic feed supplements in 

humans, agricultural animals and teleost fish for many years (e.g. Gatesoupe, 1991; 

Garcia-de-la-Banda et al, 1992; Gildberg et al, 1997; Cebeci & Giirakan, 2003; 

Camevali et al, 2004; Coeuret et al, 2004; de Vries et al, 2006). In addition, both 

Lactobacillus plantarum and Pediococcus acidilactici are already licensed for use in 

animal feedstuffs within the European Union (European Commission, 2004 - 

Community Register of Feed Additives; pursuant to regulation (EC) No 1831/2003 

Rev. 44). P. acidilactici is also “generally recognised as safe” (G.R.A.S.) by the 

United States Food & Drug Administration (Salminen et al, 1998). These organisms 

had, at the time of screening, never been evaluated with regard to their potential as 

probiotics for cultured marine crustaceans.

The significance of searching for probiotic micro-organisms within the naturally 

occurring microbial flora of the host species (in this case L. vannamei) is that any 

organism isolated would already be suited for survival and colonisation of the host, in 

particular the early life stages where it would be of most benefit (Gatesoupe, 1991; 

Verschuere et al, 2000). In the case of shrimp, several probiotics have been found 

following this approach, including Vibrio alginolyticus, Vibrio spp., Pseudomonas 

spp., Bacillus spp. S ll and Thalassobacter util is, (Gatesoupe, 1999; Irianto & Austin, 

2002; Farzanfar, 2006).

Investigation of the Vibrionaceae as a source of potential probiotics also shows 

promise as previous studies have reported probiotic (anti-microbial) activity of such 

bacteria (Prasad et al, 2005; Fjellheim et al, 2007).



Studies outlined in this chapter sought to find a range of potential probiotic bacteria 

for shrimp (L. vannamei) culture. They also assessed the strengths and weaknesses of 

a range of in vitro screening assays for antagonistic activity of such bacteria against 

known bacterial pathogens of shrimp.

Thus, the specific aims of this chapter were:

• The isolation of bacterial strains from the microflora of healthy post-larval and 

juvenile Pacific white shrimp, L. vannamei, under varying growth conditions 

and media (Figure 1).

• The development and optimisation of a battery of in vitro screening assays to 

elucidate any potential, novel crustacean probiotics (Figure 1) with particular 

relevance to the direct growth interference/inhibition by either live culture or 

extracellular products.

• The in vitro screening of isolated strains, along with species of lactic acid 

bacteria and selected Vibrio spp.



Figure 1. Approaches taken in the isolation and screening of bacterial strains during
the search for potential crustacean probiotics.
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3.2 Materials and Methods

3.2.1 Sourcing of potential probiotics for Pacific white shrimp, Litopenaeus 

vannamei

3.2.1.a Commercially available lactic acid bacteria

The three species of lactic acid bacteria selected for screening for anti- Vibrio activity 

were Lactobacillus plantarum, Pediococcus acidilactici (NCIMB 8018) and 

Lactobacillus curvatus subsp. curvatus (NCIMB 9716). L. plantarum was screened 

due to its extensive use as a terrestrial probiotic supplement in numerous commercial 

products, as well as by the project’s industrial sponsor, Cultech/Obsidian Ltd. 

Consequently, large homogeneous quantities of the bacterium were available for 

experimental work and feed preparation. L. plantarum had also been isolated from the 

gastrointestinal tracts of healthy Arctic Charr (Salvelinus alpinus) indicating its 

potential as a marine probiotic (Ringo & Gatesoupe, 1998). The selection of P. 

acidilactici and L. curvatus subsp. curvatus was based on their prior history as 

terrestrial probiotics and the availability of pure cultures from NCIMB Ltd. 

(Aberdeen, UK). In addition, viable cells of P. acidilactici are the principal 

component of Bactocell PA™ a probiotic feed supplement for fish (source; European 

Food Safety Authority).

L. plantarum was obtained in lyophilised form from Cultech Ltd. Baglan, UK, (stored 

at 4°C) and grown aerobically on MRS media at 30°C, when required. P. acidilactici 

and L. curvatus subsp. curvatus were maintained on slopes of MRS media and also 

stored at 4°C. The techniques described in Sections 3.2.2.a and 3.2.2.b were utilised to
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determine whether any of the three strains possessed an ability to interfere or inhibit 

the growth of potential shrimp pathogens. The remaining assays outlined in Section

3.2.2 could not be utilised for the above bacteria as the type of media required for 

pathogen culture was unsuitable for the growth of lactic acid bacteria.

3.2.1.b Natural microflora of healthy cultured Pacific white shrimp, Litopenaeus 

vannamei

The general microflora of healthy post-larvae and gastrointestinal tract microflora of 

adult, Pacific white shrimp, Litopenaeus vannamei, were screened for potential novel 

probiotic bacterial strains.

Six post-larval L. vannamei of two size classes (weighing 0.5 ± 0.1 g and 8 ± 0.5 g, 

respectively) were sampled. Animals were obtained from the CSAR facility at 

Swansea University. In the case of the smaller animals, a homogenate of whole 

shrimp was prepared (after washing with sterile 3% NaCl solution) as their size made 

removing intact hind gut and hepatopancreas impossible. The 8 g animals were 

aseptically dissected with samples of whole hind gut, including faeces, and 

hepatopancreas taken. All animals were euthanised on ice, prior to sampling. In 

addition to the animal samples, biofilm swabs from the CSAR shrimp rearing tanks 

were also tested. Samples were placed in 1.5 ml plastic Eppendorf tubes (sterile) 

containing 500 pi of sterile 3% NaCl solution before being manually homogenised 

(30 sec). Multiple 10 fold dilutions of the homogenates were performed (up to x 

10,000) followed by spread plating, in triplicate, on the following media; TSA 

(Bacto™, cat#236920) (plus 2% NaCl) Marine agar (2216) (Difco™ cat# 212185) 

Marine agar (2216) plus 10 pg ml'1, 2,4-diamino-6,7-diisopropyl pteridine phosphate



salt (Sigma-Aldrich Ltd., Dorset, U.K. Cat#D0781) Marine agar (2216) plus 100 pg 

ml'1, 2,4-diamino-6,7-diisopropyl pteridine phosphate salt, and MRS agar (plus 2% 

NaCl). TSA and Marine agar plates were incubated aerobically at 25°C and checked 

for colony growth every 12 h. The MRS plates were incubated under aerobic and 

anaerobic conditions at 37°C for 72 h (optimum conditions for lactic acid bacteria 

growth). All visually-distinct colonies were streaked onto fresh plates. During early 

screenings the Gram type and gross colony morphology of isolates was recorded, 

according to Colome et al (1986) (Appendix 3). All isolated strains, ca. a total of 114 

were maintained on slopes of appropriate media and stored at 4°C.

The techniques outlined in Section 3.2.2 were then utilised to screen the isolates for 

indications of antagonistic activity against a panel of shrimp bacterial pathogens. A 

cross-streaking method was initially attempted to check for competitive interference 

between isolates and potential pathogens. This assay involved aseptically streaking 

first the potential shrimp pathogen and then the test isolate onto TSA (plus 2% NaCl) 

or marine agar plates before incubating at 25°C for 24 h. At the end of the incubation 

period the plate was inspected for any indication of pathogen growth interference. 

This technique was extremely unreliable and was discarded in favour of the pathogen- 

isolate in vitro co-culture method described in Section 3.2.2.b. As a consequence 

detailed methodology of this assay was not included in Section 3.2.2.

Partial identification of Gram positive isolates obtained from MRS agar plates 

displaying anti -Vibrio activity was made using the API 50 CHL (V5.1) sugar 

fermentation test (BioMerieux UK Ltd., Basingstoke, UK) as per the manufacturer’s 

instructions.



3.2.l.c The selection of non-pathogenic Vibrio species as potential probiotics

The Vibrio spp. tested were selected from those available from the NCIMB catalogue 

(NCIMB Ltd, Aberdeen, UK). A literature review was undertaken, with each species 

assessed with regard to its suitability as a potential crustacean probiotic. Factors used 

to select suitable species were; evidence of prior testing as a potential probiotic and/or 

no previous indications of pathogenicity. Particular attention was paid to those species 

originally isolated from the GI tract of marine hosts. Species with any record of 

pathogenicity toward marine animals (vertebrate or invertebrate) were immediately 

discounted. The species selected for in vitro testing were; Vibrio gazogenes (NCIMB 

2250) Vibrio mediterranei (NCIMB 13228) Vibrio natriegens (NCIMB 2273) Vibrio 

orientalis (NCIMB 2195) Vibrio proteolyticus (NCIMB 1326) Vibrio scophthalmi 

(NCIMB 13623) and Vibrio tubiashii (NCIMB 1336); based on information contained 

in Cerda-Cuellar et al (1997), de Schrijver 8c Ollevier (2000), Huys et al (2001), 

Oxley et al (2002) and Jawahar Abraham & Palaniappan (2004).

All seven micro-organisms were maintained on TSA (plus 2% NaCl) slopes stored at 

4°C. Standard Vibrionaceae incubation conditions of 25°C for 24 h were used during 

culturing. The seven selected Vibrio spp. (plus the pathogens V harveyi, V 

alginolyticus and L. anguillarum) were screened using the methods outlined in 

Sections 3.2.2.a and 3.2.2.b. Those displaying inhibitory activity toward the initial 

screening panel of V harveyi, V alginolyticus and L. anguillarum were then tested 

against the following five crustacean pathogens, V campbellii, V. nigripulchritudo, V. 

penaeicida and the Class 2 human and crustacean associated pathogens, Vibrio 

parahaemolyticus (NCIMB 1164) and Vibrio vulnificus (NCIMB 2046).



Those species which interfered with the growth of >50% of the pathogen panel were 

subjected to additional testing to investigate the nature of their inhibitory activity. 

Given that many Vibrio spp. exhibit pathogenicity toward crustaceans, plus the ability 

of bacteria to mutate/exchange plasmids, these were tested to determine whether their 

anti- Vibrio activity could be retained without the need to administer the live organism 

in feed. In addition to the potential probiotic-derived cell free culture supernatant, the 

activity of French pressed (lysed) broth culture was also assessed via the method 

described in Section 3.2.2.b. The French pressed culture material was prepared using 

a French® Pressure cell press and French® pressure cell (3/8” piston) (Sim-Aminco 

Spectronic Instruments Inc., Rochester, NY, USA). A cell pressure of 18,000 psi was 

required to successfully lyse the Vibrio spp. tested.

3.2.1.d Miscellaneous screened strains

In addition to the Vibrio spp., four unidentified bacterial strains isolated from the 

carapace lesions of edible crabs (Cancer pagurus) affected by shell disease were also 

screened. These strains were obtained during previous research projects and bear the 

prefix ‘SDF. All shell disease isolates were maintained on TSA (plus 2% NaCl) 

slopes stored at 4°C and cultured at 25°C (over 24 h). All four were tested alongside 

the Vibrio spp. listed in Section 3.2.I.e.

3.2.1.e Selection of a screening panel of putative bacterial pathogens of shrimp

Screening pathogens were selected based on prior evidence of pathogenicity against 

crustaceans, particularly shrimp. Those selected were V harveyi (NCIMB 1280) V



alginolyticus (NCIMB 1339), L. anguillarum (NCIMB 829), Vibrio campbellii 

(NCIMB 1894), Vibrio nigripulchritudo (NCIMB 1904) and Vibrio penaeicida 

(NCIMB 13386) (Hauton et al, 1997; Goarant et al, 1999; Liu et al, 2004; Gauger et 

al, 2006; Goarant et al, 2006; Lemonnier et al, 2006; Soto-Rodriguez et al, 2006). In 

addition to these, two class 2 crustacean associated pathogens were also selected for 

limited screening. These were Vibrio parahaemolyticus (NCIMB 1164) and Vibrio 

vulnificus (NCIMB 2046) (Sudheesh & Xu, 2001). Given that class 2 organisms are 

regarded as pathogenic to humans, these micro-organisms were only used to screen 

those isolates that had shown antagonistic potential against the initial six species. 

Although V vulnificus is not directly pathogenic to shrimp, it is an opportunistic 

pathogen of humans causing primary bacteraemia, gastrointestinal illness and 

infection of soft tissue, either through consumption of contaminated seafood 

(particularly invertebrates) or via open wounds (Chiang & Chuang, 2003). 

Consequently, a potential crustacean probiotic displaying antagonistic activity against 

this microbe would be extremely desirable. All pathogen cultures were obtained from 

NCIMB Ltd., Aberdeen, UK, and were maintained on TSA (plus 2% NaCl) slopes at 

4°C. The class 2 organisms were stored separately in a secure refrigerator.

3.2.2 In vitro screening processes applied to potential probiotics for evidence of 

antagonistic activity against a panel of putative shrimp bacterial pathogens

3.2.2.a Cell free culture supernatant antagonism assay

This technique, modified from that of Gram et al (1999), was utilised to determine 

whether the cell free culture supernatant of potential probiotics exhibited antagonistic



activity toward pathogenic Vibrio species.

Tryptic soy agar plates, TSA plus 2% NaCl and tryptic soy broth, TSB with 2% NaCl 

were used to culture the pathogens. Cell free culture supernatant obtained from 

incubation of the potential probiotic isolates was tested for antagonistic activity 

against selected potential pathogens. The strains of lactic acid bacteria were cultured 

in MRS broth (Oxoid™, cat#CM0359) at 30°C for 24 h, while those strains grown on 

TSA and Marine agar were incubated in TSB with 2% NaCl and Marine broth, 

respectively, at 25°C for the same period. At the end of the 24 h incubation period the 

broth cultures were centrifuged (6000 x g, 10 min at 25°C) and filter sterilisation (0.22 

pm filter) in order to render them cell free (confirmed via spread plating and 

microscopy). Supernatants were stored at 4°C for no more 24 h prior to assay 

commencement.

The potentially pathogenic Vibrio harveyi (NCIMB 1280) and Listonella (Vibrio) 

anguillarum (NCIMB 829) were cultured in TSB (plus 2% NaCl) at 25°C for 18 h. 

The cell concentration of each incubation was adjusted to ca. 2 x 109 total bacteria ml" 

Pathogen culture (100 pi) was then aseptically spread onto each plate. After 20 min 

(sufficient time for bacterial adhesion) 12 equidistant, 4 mm diameter wells were 

punched into the agar using a sterile cork borer. Forty microlitres of the probiotic cell- 

free culture supernatant was then added to each well with the three lactic acid bacteria 

represented in triplicate on each plate (i.e. 3 x 3  wells). A negative control of the 

appropriate uninoculated broth was added to the remaining three wells. Each plate 

was run in duplicate. Plates were then incubated at 25°C and inspected for evidence 

of growth inhibition/interference at 24 and 48 h.

In cases where pathogen growth interference was clearly observed, further trials were 

conducted to ascertain whether varying the incubation period and temperature of the



growth of the test probiotic impacted on activity. The effects of varying the 

incubation period were assessed by utilising cell-free supernatant produced from 

culture samples extracted daily over a 7 day incubation. The activity of cell-free 

culture supernatant (24 h) was assessed after exposure to temperatures of 65°C and 

100°C. In addition, the supernatants were also subjected to several cycles of freeze- 

thawing at -80°C.

All isolates displaying antagonistic activity against members of the pathogen 

screening panel were examined in more detail via the method described in Section

3.2.2.d

3.2.2.b Pathogen-isolate in vitro co-culturing

Modified from Pilet et al (1995), this technique was utilised to rapidly determine the 

in vitro competitive or inhibitory activity of a potential probiotic against a series of 

potential bacterial crustacean pathogens.

Twenty five millilitres of V harveyi culture, previously grown up in TSB (plus 2% 

NaCl) for 18 h at 25°C, was aseptically mixed with 475 ml of molten TSA (plus 2% 

NaCl) at 40°C. Sufficient TSA powder and NaCl were used for a 500 ml final volume. 

The agar-pathogen suspension was aseptically dispensed into twenty 90 mm Petri 

dishes. This process was repeated for V alginolyticus and L. anguillarum, with 20 

plates sufficient to test 20 isolates in duplicate. The remaining three potential Vibrio 

pathogens and the class 2 organisms listed in Section 3.2. l.e were only utilised for the 

screening of the non-pathogenic Vibrio spp. and shell disease isolates.

The potential probiotic strains were grown under the same culture conditions as the 

pathogens (TSB plus 2% NaCl; 18 h at 25°C). Fifty microlitres of isolate broth culture



was pipetted onto the surface of the pathogen inoculated plate (once set) with care 

taken to maintain the broth as a single drop. Four, 50 pi samples were equidistantly 

positioned on each plate (Petri dish marked prior to addition). Two isolates were 

screened per plate with each plate run in duplicate. Post inoculation, the plates were 

left face up for 30 min at RT to allow for bacterial adhesion. The plates were 

incubated at 25°C and checked for evidence of growth interference/inhibition at 18, 

48 & 72 h (or 24 & 96 h in the case of the non-pathogenic Vibrio spp. and shell 

disease isolates).

Any isolates displaying antagonistic activity against members of the pathogen 

screening panel were examined in more detail via the method described in Section

3.2.2.d.

3.2.2.C Nitrocellulose membrane in vitro co-culturing

The technique utilised was modified from a method described by Sambrook & Russell 

(2001). Hind guts (including faeces) and hepatopancreas were aseptically dissected 

from 2 adult Pacific white shrimp, L. vannamei (8 ± 0.5 g), obtained from the CSAR 

facility at Swansea University. Each sample was placed in 500 pi of sterile 3% NaCl 

solution and manually homogenised for 30 sec. Dilutions of x 1000 and x 10000 were 

made, with 100 pi of each dilution spread, in duplicate, onto moistened sterile, 90 mm 

nitrocellulose membranes (Millipore™ (UK) Ltd., Watford, UK; RAWP09025). The 

membranes were then carefully placed onto TSA (plus 2% NaCl) plates, with care 

taken to ensure no air was trapped between the membrane and agar. The plates were 

incubated at 25°C for 24 h.



V harveyi, V. alginolyticus and L. anguillarum impregnated TSA (plus 2% NaCl) 

plates were produced prior to the end of the incubation period, via the method 

outlined in Section 3.2.2.2.

Post incubation, the inoculated membranes were aseptically removed from the plates 

and placed on sterile, 90 mm filter papers (moistened with sterile 3% NaCl solution) 

with the contact surface facing upward. The plate surface was then photographed as a 

record of colony distribution (e.g. Figure 7; Section 3.3.2). A fresh sterile 

nitrocellulose membrane was placed onto the inoculated ‘master’ membrane (ensuring 

no trapped air between the membranes) followed by a second moisten 90 mm filter 

paper. The orientation of the membranes with regard to the original plate were marked 

before a 90 mm Petri dish was then pressed down (gently) onto the stack of 

membranes/papers, with care taken to ensure evenly distributed pressure. The filter 

papers were removed and the membranes were then carefully peeled apart using 

sterile blunt forceps. The upper ‘replica’ membrane was placed onto one of the V 

harveyi impregnated plates with care taken to avoid smearing. The aforementioned 

was then repeated for the V alginolyticus and L. anguillarum impregnated plates and 

for each subsequent ‘master’ membrane.

The plates were incubated at 25°C and checked at 8 h intervals over 24 h for colony 

formation and evidence of interference of pathogen growth. Colonies indicated as 

potential inhibitors of the pathogens were isolated from the original ‘master’ plates 

and stored on slopes at 4°C, for further conformation of activity via methods 

described in Sections 3.2.2.b and 3.2.2.d The ‘master’ membranes were stored at - 

20°C on sealed TSA plates plus 2% NaCl and 10% glycerol.



3.2.2.d Quantification of microbial growth inhibition by cell free culture 

supernatant

A positive result obtained in any of the assays outlined in Sections 3.2.2.a-c indicated 

the potential of the test bacterium to interfere with/inhibit the growth of potentially 

pathogenic Vibrio species. This ability was quantified via the use of a more sensitive 

and reproducible microplate reader-based assay.

The crustacean pathogens utilised in this were Vibrio harveyi (NCIMB 1280) and 

Vibrio alginolyticus (NCIMB 1339). Both of these species are considered pathogenic 

for a range of crustaceans (Karunasagar et al, 1994; Gomez-Gil et al, 2004; Liu & 

Chen, 2004; Lio-Po et al, 2005; Jayasree et al, 2006). V alginolyticus was selected 

over L. anguillarum for its higher viability and rate of proliferation. The pathogens 

were cultured in TSB (plus 2% NaCl) at 25°C for 12 h prior to the commencement of 

the assay. Cultures (10 ml aliquots) were centrifuged (1000 x g, 5 min at 25°C) with 

the pellet retained and re-suspended in 5 ml of sterile 3% NaCl solution; this washing 

process was repeated twice. After the final wash, the pellet was re-suspended in 1 ml 

of 3% NaCl solution. The total cell concentration was then adjusted to ca. 1 x 109 

cells ml'1.

Cell free culture supernatants of the probiotic isolates were prepared via the method 

outlined in Section 3.2.2.a. Those supernatants obtained from lactic acid bacteria 

cultures were determined as having a pH of ca. pH 4 (Coming, Inc. ®, Model 10 pH 

meter, New York, USA). Aliquots of these supernatants were adjusted to pH 6.2 (that 

of uninoculated MRS broth) using 1M & 6M solutions of sodium hydroxide and were 

tested alongside the original supernatants. Consequently, the potential role of acid pH



in the anti- Vibrio activity of these lactic acid bacteria was also investigated during this

assay.

Fifty microlitres of pathogen suspension was incubated with 100 pi of cell-free 

culture supernatant at 25°C with shaking for 30 min, in flat-bottomed, 96-well plates 

(Nunc® Sterile, prod# TKT-180-070U). All combinations of cell free culture 

supernatant and pathogen were included and run in triplicate on each plate, alongside 

positive and negative controls. For the positive control, the cell free culture 

supernatants were replaced by sterile 3% NaCl solution, while in the negative 

controls, the pathogen suspensions were replaced by sterile 3% NaCl solution. During 

the 30 min incubation a second 96-well plate was prepared, with corresponding wells 

flooded with 200 pi of sterile TSB (plus 2% NaCl). Post incubation, 50 pi from each 

well of the first plate (incubation) was transferred aseptically to the 3 corresponding 

wells of the second plate. The optical density of the second plate at 550 nm was 

recorded at 60 min intervals over a 24 h period (at 25°C) via a microplate reader 

(Multiscan Ascent, Dynex Labsystems®, Middlesex, UK).

Any isolate whose cell free culture supernatant showed antagonistic activity against V 

harveyi and V alginolyticus via this method was selected for further (in vivo) 

pathogenicity check testing as described in Chapter 4.

3.2.3 Statistical analysis

To determine any significant differences in optical density and consequently pathogen 

growth profiles in experimental and control incubations, an ANOVA together with a 

Bonferroni multiple comparisons post test was used. This followed the determination



of normal distribution of the data via the application of a Kolmogorov-Smirnov test. 

All values are shown as arithmetic means ± 1 standard error of the mean (S.E.M).



3.3. Results

3.3.1 In vitro antagonistic activity of selected lactic acid bacteria against Vibrio 

harveyi, Vibrio alginolyticus and Listonella anguillarum

3.3.1.1 Cell free culture supernatant antagonism assay

The cell-free culture supernatants of L. plantarum and P. acidilactici completely 

inhibited the growth of V harveyi and L. anguillarum (Table 1) producing 1.5 - 3mm 

diameter zones free of growth around every well (Figure 2A). The supernatant of L. 

curvatus subsp. curvatus produced only weak, intermittent interference of L. 

anguillarum growth, over 48 h. Consequently, it was decided not to undertake further 

testing of L. curvatus subsp. curvatus.

Table 1. Antagonistic activity of lactic acid bacteria cell free culture supernatant 
against Vibrio harveyi and Listonella anguillarum; no interference/inhibition (-), 
indication of interference/inhibition (+).

Crustacean pathogen

Vibrio harveyi Listonella anguillarum
24 h 48h 24 h 48h

Lactobacillus plantarum + + + +

Pediococcus acidilactici + + + +

Lactobacillus curvatus subsp. curvatus - - +

The ability of L. plantarum and P. acidilactici cell-free culture supernatants to inhibit 

the growth of V harveyi and L. anguillarum was undiminished by heating or freeze- 

thawing (Figure 2B; Tables 2 and 3). Regions of pathogen growth inhibition around 

wells containing the heat treated and frozen supernatants were consistent with those 

around wells containing untreated supernatant (Figure 2B).

-96-



Figure 2. (A) Cell free culture supernatant antagonistic activity assay against V harveyi Positive result 

observed using cell free supernatant from L. plantarum (i). Supernatant in the remaining wells (from 

isolate ‘L2’) displayed no antagonistic activity. (B) Cell free culture supernatant antagonistic activity 

assay against V alginolyticus. Positive results observed using cell free supernatant from L. plantarum 

subjected to freezing/thawing and heating (ii & iii).

No alteration in the antagonistic activity o f the cell free culture supernatant o f L. 

plantarum  or P. acidilactici was observed with variation o f  culture age. Supernatants 

collected over the 7 days produced zones o f pathogen growth inhibition comparable 

with the 24 h samples, i.e. zones o f inhibition o f  1 - 2 mm radius. Minor differences in 

these zones resulted from variation in agar distribution and therefore plate thickness.

Table 2. Antagonistic activity o f lactic acid bacteria cell free culture supernatant 
against Vibrio harveyi and Listonella anguillarum , after heat exposure; no 
interference/inhibition (-), indication o f interference/inhibition (+).

Temperature (°C)

Bacterium

Vibrio har\>eyi Listonella anguillarum
Lactobacillus plantarum 65 +

Lactobacillus plantarum 100 + +

Pediococcus acidilactici 65 + +

Pediococcus acidilactici 100 + +
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Table 3. Antagonistic activity of lactic acid bacteria cell free culture supernatant 
against Vibrio harveyi and Listonella anguillarum, after freeze-thaw cycles; no 
interference/inhibition (-), indication of interference/inhibition (+).

Number o f freeze- Bacterium

thaw cycles Vibrio harveyi Listonella anguillarum

Lactobacillus plantarum 1 + +
Lactobacillus plantarum 3 + +
Pediococcus acidilactici 1 + +
Pediococcus acidilactici 3 + +

3.3.1.2 Quantification of microbial growth inhibition by cell free culture 

supernatants of selected lactic acid bacteria against Vibrio harveyi and Vibrio 

alginolyticus

As initially indicated by the results shown in Section 3.3.1.1, cell free culture 

supernatant obtained from L. plantarum and P. acidilactici inhibited the growth of 

both V harveyi and V alginolyticus over 24 h, under optimum Vibrio growth 

conditions (Figures 3-6). No detectable bacterial growth was observed in any of the 

wells containing unaltered cell free culture supernatant at pH 4. Growth did, however, 

occur in wells containing the pH adjusted (pH 6.2) cell free supernatant of both lactic 

acid bacteria. This growth was, however, less than that observed in the appropriate 

positive controls (pathogen plus MRS broth; pH 6.2). In the case of pH adjusted L. 

plantarum culture supernatant, V harveyi displayed a slight, but not statistically 

significant decline in growth/cell number after 15 h, when compared with the positive 

(bacteria-only) control. The effects were more pronounced for V alginolyticus, where 

growth was statistically significantly lower over the incubation period in wells 

containing the pH adjusted cell free supernatant (pH 6.2) in comparison with that in 

the bacteria-only control (Figure 4).
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Figure 3. Growth profile of Vibrio harveyi in the presence of culture supernatant from 
iMctobacillus plantarum. V. harveyi and cell free supernatant of L. plantarum at pH 4 

(—), V. harveyi and cell free supernatant of L. plantarum at pH 6.2 (—), V. harveyi and 
MRS broth only (—). Mean ± S.E.M, n=5.
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Figure 4. Growth profile of Vibrio alginolyticus in the presence of culture supernatant from 
Lactobacillus plantarum. V. alginolyticus and cell free supernatant of L. plantarum at 

pH 4 (—), V alginolyticus and cell free supernatant of L. plantarum at pH 6.2 (—),
V alginolyticus and MRS broth only (—). Mean ± S.E.M, n=5, *P<0.()5 compared to V 

alginolyticus and cell free supernatant of L. plantarum at pH 6.2.

The pH adjusted cell free culture supernatants o f P. acidilactici and L. plantarum  

appear equally ineffective in inhibiting the growth o f V harveyi (Figures 3 & 5). 

However, both were far more effective in their inhibition o f  V alginolyticus 

producing statistically significant growth inhibition (Figures 4 & 6). The antagonistic
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capacities o f the cell free culture supernatants o f these two bacteria appeared very 

similar.
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Figure 5. Growth profile of Vibrio harveyi in the presence of culture supernatant from 

Pediococcus acidilactici. V. harveyi and cell free supernatant of P. acidilactici at pH 4 
(—), V. harveyi and cell free supernatant of P. acidilactici at pH 6.2 (—), V. harveyi 

and MRS broth only (—). Mean ± S.E.M, n=5.
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Figure 6. Growth profile of Vibrio alginolyticus in the presence of culture supernatant 

from Pediococcus acidilactici. V. alginolyticus and cell free supernatant of P. 
acidilactici al pH 4 (—), V. alginolyticus and cell free supernatant o f /5, acidilactici at 
pH 6.2 (—), V. alginolyticus and MRS broth only (—). Mean ± S.E.M, n=5, *P<0.05 

compared to V alginolyticus and cell free supernatant of L. plantarum at pH 6.2.
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3.3.2 Screening of the microflora of the Pacific white shrimp, Litopenaeus 

vannamei for potential novel probiotics

Despite 172 potentially different bacterial strains being isolated initially (Table 4) 

only 114 o f these were recoverable prior to screening. The in vitro screening o f these 

114 isolates sourced from L  vannamei suggested only four isolates that exhibited 

potential antagonistic activity toward the selected target Vibrio pathogens (Table 5). 

In particular, the anaerobic bacteria isolated on MRS media failed to grow after 

exposure to aerobic conditions, i.e. were obligate anaerobes. All methods described in 

Section 3.2.2 were utilised, a cross-streaking co-culture assay was attempted as an 

initial screen, but proved ineffective and was discarded in favour o f the pathogen- 

isolate in vitro co-culturing assay (Section 3.2.2.b). Isolates ‘G-B’ and ‘HP-BT were 

isolated on MRS agar (plus 2% NaCl) and screened using the cell free culture 

supernatant antagonism assay (Table 5). Isolates ‘G1-I3’ and ‘G1-I7’ were initially 

isolated using the nitrocellulose membrane in vitro co-culture assay (Figure 7).

Figure 7. Nitrocellulose membrane in vitro co-culture (against V harveyi) shown after 
removal o f ‘replica’ membrane, areas o f bacterial isolate growth along with regions o f 

apparent interference/inhibition o f V harveyi growth are visible.
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Table 4. Summary of bacterial isolates derived from the Pacific white shrimp 
Litopenaeus vannamei, including culture tank biofilm (see also Appendix 3).

Number of isolates
Source Marine agar Marine agar TSA MRS
animal (plus Vibriostatic agent) (plus 2% NaCl) (plus 2% NaCl)

(Aerobic) (Aerobic) (Aerobic) (Aerobic) |(Anaerobic)

Post-larvae 6 2 20 0 6

Juvenile 41 11 50 17 14

Tank biofilm ND* ND* ND* 1 4

ND* = not determined.

Table 5. Bacterial isolates derived from the Pacific white shrimp Litopenaeus 
vannamei, which displayed potential antagonistic activity against shrimp pathogens; 
no interference/inhibition (-), indication of interference/inhibition (+), potential 
growth interference (P).

Antagonistic activity against pathogens 
Cell free supernatant Pathogen-isolate in vitro co-culturing

 V. harveyi L anguillarum V alginolyticus V harveyi L anguillanm V alginolyticus
■ Camobacterium maltaromaticum (G-B) + + Incompatible media
Qmiobacteriimimllaromatiam (HP-B1) + + Incompatible media
| Isolate Gl-B - P P
( Isolate G1-I7 - - P
I--------------------------------------------------------------------------------------------------------------------------
if

Cell free culture supernatants of only two of these isolates displayed any quantifiable 

anti- Vibrio activity when tested using the method described in Section 3.2.1.2 

(Figures 7-10). The isolates ‘G-B’ and CHP-B1’ were subsequently tentatively 

identified using the API 50 CHL (V5.1) sugar fermentation test as the lactic acid 

bacterium, Carnobacterium maltaromaticum (97.7% match). As was the case with L. 

plantarum and P. acidilactici, the cell free culture supernatants of C. maltaromaticum 

isolates were found to be strongly acidic (pH 4) and initially inhibited the growth of 

both V harveyi and V alginolyticus (Figures 8 & 9). This inhibition was not total,



however, with pathogen growth occurring after 12 h in the case o f V. harveyi and 18 h 

in the case o f V. alginolyticus. pH-attenuated cell free culture supernatant (pH 6.2) o f 

C. maltaromaticum  did not appear to interfere with the growth o f  V harveyi but 

significantly reduced the growth rate o f V alginolyticus (Figure 8). Due to the lack o f 

antagonistic activity displayed by the isolates ‘G1-I3’ & ‘G1-I7’ (Figures 9 & 10) 

only the suspected C. maltaromaticum  was selected for further in vivo testing.
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Figure 8. Growth profile of Vibrio harveyi in the presence of culture supernatant from 
suspected Camobacterium maltaromaticum. V. harveyi and cell free supernatant of 

C. maltaromaticum at pH 4 (—), V. harveyi and cell free supernatant of C. maltaromaticum at 
pH 6.2 (—), V. haiveyi and MRS broth only (—). Mean ± S.E.M, n=5.
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F igure 9. Growth profile o f Vibrio alginolyticus in the presence o f culture supernatant from suspected 
Camobacterium maltaromaticum. V. alginolyticus and cell free supernatant o f C. maltaromaticum at pH 4 
(—), V. alginolyticus and cell free supernatant o f C. maltaromaticum at pH 6.2 (—), V. alginolyticus and 

MRS broth only (—). Mean ± S.E.M, n=5, *P<0.05 compared to V alginolyticus and cell free supernatant o f
C. maltaromaticum at pH 6.2.
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Figure 10. Growth profile of Vibrio harveyi in the presence of culture supernatant from shrimp isolates G1-I3 
& G 1-17. V. harveyi and cell free supernatant of shrimp isolate G1-I7 (—), V. harveyi and cell free supernatant 

o f shrimp isolate G1-I3 (—), V harveyi and tryptic soy broth only (—). Mean ± S.E.M, n=3.
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Figure 11. Growth profile o f  Vibrio alginolyticus in the presence o f  culture supernatant from shrimp 
isolates G1-I3 & G1-I7. V. alginolyticus and cell free supernatant o f  shrimp isolate G1-I7 (—), V. 

alginolyticus and cell free supernatant o f  shrimp isolate G1-I3 (— ), V. alginolyticus and tryptic soy
broth only (—). Mean ± S.E.M, n=3.

3.3.3 Screening of selected non-pathogenic Vibrio species and shell disease 

isolates for evidence of in vitro competitive inhibition of bacterial pathogens of 

crustaceans

Antagonistic activity toward selected crustacean pathogens was exhibited by two o f 

the screened Vibrio species, V gazogenes (NCIMB 2250) and V alginolyticus 

(NCIMB 1339) (Tables 6 & 7; Figure 12A-D). No pathogen growth interference was 

noted for any o f these test m icrobes’ cell free culture supernatants (Table 6). 

Consequently, only V gazogenes and V alginolyticus were selected for further 

testing, in vivo (see Chapter 4).
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Figure 12. (A) //7 v/7ro co-culturing of V alginolyticus against V. harveyi, with clear zone of 

inhibition of V harveyi growth indicated by arrow; also (B) close up view of area o f growth 

inhibition. (C) In vitro co-culturing o f V. gazogenes against V harveyi, with zone of inhibition of V. 

harveyi growth indicated by arrow; also (D) close up view of area of growth inhibition. (E) Plate 

displaying antagonistic activity o f French pressed (killed) V. gazogenes culture material against V 

harveyi (indicated by arrow). (F) Plate displaying absence o f antagonistic activity o f French pressed 

(killed) V alginolyticus culture against V. campbellii (indicated by arrow).
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French pressed culture material of V gazogenes (i.e. lysed bacteria) retained its 

antagonistic activity (in the form of growth inhibition/interference) towards all 

screened pathogens with the exception of L. anguillarum and V penaeicida (Table 8 

& Figure 12E). Activity displayed was lower than that of live culture V gazogenes; 

however, the material retained its activity despite filter sterilisation. The French 

pressed culture material of V alginolyticus displayed no such anti -Vibrio activity 

(Table 8 and Figure 12F).

Table 8. Antagonistic activity of French pressed V gazogenes and V alginolyticus 
cultures against Vibrio pathogens; no interference/inhibition (-), indication of 
interference/inhibition (+).

Crustacean pathogen NCIMB# In vitro antagonistic activity displayed during co-culturing 
Vibrio alginolyticus Vibrio gazogenes

L. anguillarum 829 - -
V. alginolyticus 1339 +

V. cam pbellii 1894 - +
V. harveyi 1280 - +

V. nigripulchritudo 1904 - +
V. parahaem olyticus 1164 - +

V. penaeicida 13386 - -
V. vulnificus 2046 - +



3.4 Discussion

The three sources of micro-organisms yielded five potentially probiotic bacterial 

strains for further testing; Lactobacillus plantarum, Pediococcus acidilactici, 

suspected Camobacterium maltaromaticum, Vibrio alginolyticus and Vibrio 

gazogenes. All five exhibited antagonistic activity towards selected potential 

crustacean bacterial pathogens, either in the form of inhibitory compounds released 

into the culture media (the three lactic acid bacteria) or via direct competitive 

inhibition (V. alginolyticus and V gazogenes). There are numerous potential

mechanisms by which bacteria can inhibit the growth of competing microorganisms. 

For example, in the case of some Vibrio spp. (e.g. V harveyi) it takes the form of the 

production of bacteriocin-like inhibitory substances (BLIS) (Prasad et al, 2005). Most 

species of lactobacilli are capable of producing hydrogen peroxide, which can be 

toxic to bacteria incapable of producing H2O2 scavenging enzymes (Eschenbach et al, 

1989). Another potential factor involved in (growth) competition within the 

microbiota is the requirement for iron, an element vital for the growth of the majority 

of bacteria (Dhungana et al 2007). Lactic acid bacteria (in particular Lactobacillus 

plantarum ATCC 14917) show no decline in growth or proliferation rates when 

subjected to iron deprivation (Pandey et al, 1994). A characteristic of most bacterial 

pathogens is the possession of highly efficient haem uptake mechanisms in order to 

provide them with iron for growth within host body fluids and tissues, an ability 

directly linked to their virulence (Stojiljkovic et al, 1999). Therefore, any non- 

pathogenic species unaffected by iron deprivation could theoretically have a major 

competitive advantage over such pathogens and could be regarded as a potential 

probiont. On an additional note the production of the red pigment, prodigiosin, by V



gazogenes was a further useful characteristic in allowing the easy identification of the 

potential probiotic in samples/assays (Allen et al, 1983).

The main active component in the inhibitory activity displayed by the lactic acid 

bacteria was pH, as a result of the release of lactic acid into the microbe’s immediate 

environment. In addition to this, however, there appeared to be a secondary 

components) to the displayed inhibition. The pH-adjusted cell-free culture 

supernatant of all three strains significantly inhibited the growth of V alginolyticus 

compared to the bacteria-only controls. The inhibition exhibited was considerably 

reduced compared to that of the original supernatants, but the presence of a secondary 

inhibitory component was indicated. Indeed, strains of all three species have been 

found to produce antimicrobial peptides or bacteriocins in addition to lactic acid 

(Suma et al 1998; Verellen et al, 1998; Blom et al, 2001; Calderon-Santoyo et al, 

2001; Jamuna & Jeevaratnam, 2004; Gursky et al, 2006; Martin-Visscher et al, 2008). 

The cell-free culture supernatant of suspected C. maltaromaticum displayed less 

inhibitory ability toward potential pathogens than that of L. plantarum or P. 

acidilactici. Despite this, the fact that it is a novel strain, isolated from the host 

species, makes it worthy of further testing. Whether suspected C. maltaromaticum, L. 

plantarum and P. acidilactici cultures can maintain their inhibitory potential in vivo 

and benefit the host animal is the key question. There is little likelihood of these 

micro-organisms being able to reduce the pH of the G.I. tract of a crustacean host to a 

level where other potentially pathogenic bacteria are inhibited. If this were possible, 

however, such a reduced pH may in fact be detrimental to the host, e.g. causing a 

reduction in digestive efficiency.

With regard to the anti- Vibrio activity of V alginolyticus, the lost of activity resulting 

from the killing of the bacterium indicates that the inhibitory ability of this micro-



organism is solely reliant on the presence of live cells. This may indicate that the 

components of inhibition are either extremely short-lived (i.e. they breakdown 

rapidly) and therefore need to be constantly produced, or are associated with cell 

structures such as the cell wall/membrane. The inhibitory ability of V gazogenes, 

however, does not rely on the presence of live cells. The French pressed and filter 

sterilised V gazogenes whole broth culture still retained anti- Vibrio activity, although 

less than that observed for the live culture. Given that numerous strains of V 

alginolyticus exhibit pathogenicity toward crustaceans (Lee et al, 1996; Liu et al, 

2004; Wang & Chen, 2005; Jayasree et al, 2006) coupled with the fact that any 

supplemented feed would need to contain live cells, makes it unlikely that this strain 

of V alginolyticus would ever be licensed for use in aquaculture feedstuffs. For 

completeness, however, the pathogenicity of this strain was assessed along with the 

suspected C. maltaromaticum and V gazogenes in Chapter 4.

The screening strategy adopted in this study focussed purely on the ability of the test 

micro-organisms to directly interfere with/inhibit the growth of potential crustacean 

pathogens. This, as stated in greater detail in Chapter 1, is only one of several possible 

modes of action of a potential probiotic bacterium (Balcazar et al, 2006). The 

production of inhibitory substances (against pathogenic bacteria) is, however, the 

most widely studied and well documented mode of probiotic action (Kesarcodi- 

Watson et al, 2008). The stages of isolation and screening followed by in vivo 

pathogenicity testing of isolates exhibiting inhibitory activity are part of a well 

established methodology for the identification of potential novel probiotics (Decamp 

& Moriarty, 2006; Kesarcodi-Watson et al, 2008). The battery of assays employed in 

this chapter were all optimised from widely used methods for the screening of 

bacteria for the production of inhibitory compounds and competitive interactions



(Pilet et al, 1995; Gram et al, 1999; Sambrook & Russell, 2001; Hjelm et al, 2004). 

Ideally, additional approaches would have been undertaken to investigate the isolates 

for other probiotic modes of action, however, this was not possible within the scope of 

the project. In addition the examination of other bacterial groups, in particular 

members of the Bacillaceae, is another aspect worthy of further exploration.



Chapter 4

Safety assessment o f  potential crustacean probiotics; the determination o f  the 
pathogenicity o f suspected Camobacterium maltaromaticum , Vibrio gazogenes and 

Vibrio alginolyticus towards the Pacific white shrimp, Litopenaeus vannamei



Abstract

Any micro-organism intended for use in consumer products and feedstuffs destined 

for human or animal consumption, must be assessed with regards to the potential 

danger they may pose to the host. The benefits conveyed via the administration of 

such micro-organisms must outweigh any negative effects. Bacterial strains 

displaying unacceptable levels of pathogenicity towards a host are hence unsuitable 

for use as probiotics. The pathogenicity of three selected micro-organisms towards the 

Pacific white shrimp, Litopenaeus vannamei, were assessed via the intramuscular 

injection of live bacteria. These micro-organisms were; Vibrio alginolyticus (NCIMB 

1339), Vibrio gazogenes (NCIMB 2250) and a suspected strain of Camobacterium 

maltaromaticum isolated from cultured L. vannamei. The mortalities incurred were 

recorded and tissue samples retained for histopathology. V. alginolyticus displayed 

unacceptably high levels of pathogenicity towards L. vannamei and was therefore 

discarded as a potential probiotic. Both V gazogenes and suspected C. 

maltaromaticum displayed some pathogenicity towards L. vannamei, but considerably 

less than that of V. alginolyticus. Suspected C. maltaromaticum was, however, 

disregarded as a candidate probiotic due to its lower anti-bacterial activity compared 

to other candidate lactic acid bacteria and its colonisation of the culture system 

biofilm. The V gazogenes strain was selected for further dietary testing (alongside the 

two commercial species of lactic acid bacteria) due to its mode of anti-bacterial 

activity and low level of pathogenicity towards L. vannamei.



4.1 Introduction

Prior to oral administration of new potentially probiotic bacterial strains to an 

aquaculture species, particularly those intended for human consumption, it is prudent 

to assess the pathogenicity of that micro-organism (in the event of infection) towards 

the host species. Any bacterial isolate displaying significant pathogenicity towards its 

target host species would be unmarketable as a commercial supplement, regardless of 

its probiotic potential.

It was regarded as unnecessary to subject L. plantarum and P. acidilactici used in 

Chapters 2 & 3 to such testing since they are already approved as probiotic 

supplements in animal agricultural. Both micro-organisms are currently listed as 

authorised probiotics in animal feeding stuffs within the European Union (European 

Commission, 2004 - Community Register of Feed Additives; pursuant to regulation 

(EC) No 1831/2003 Rev. 44; Balcazar et al, 2006). P. acidilactici is also ‘generally 

recognised as safe’ (G.R.A.S.) by the United States Food & Drug Administration 

(Salminen et al, 1998) and both have been regarded as having ‘Qualified Presumption 

of Safety’ (Q.P.S) status by the European Food Safety Authority (EFSA). Therefore, 

the likelihood of either of these species being sufficiently pathogenic toward L. 

vannamei was deemed low enough for them to proceed directly to the feed trial stage. 

Indeed once a micro-organism is deemed safe, e.g., awarded QPS status by the EFSA 

or GRAS status by the FDA, no further assessment of safety for the target species, the 

consumer and the wider environment is required by that body, only of the commercial 

product’s efficacy (Sanders et al, 2007). Consequently, this chapter covers the in vivo 

challenge of L. vannamei, via intramuscular injection, by suspected C. 

maltaromaticum, V. gazogenes and V alginolyticus.



While no specific guidelines exist with regard to the trial criteria/test dosages 

involved in the pathogenicity assessment of potential probiotics, there is a general 

consensus that such an assessment is a requirement (Verschuere et al, 2000; Decamp 

& Moriarty, 2006; Sanders et al, 2007; Kesarcodi-Watson et al, 2008). The licensing 

of microbial animal feed additives for use within the E.U requires the producer to 

provide evidence of safety, i.e. to show qualified presumption of safety (Q.P.S) (von 

Wright, 2005; Balcazar et al, 2006). Despite this, the European Commission 

legislation (Council Directive 70/524/EEC) and the agency (European Food Safety 

Authority) responsible for the regulation of these feed additives merely lists a series 

of ‘opinions’ suggesting that potential probiotic strains should be non-pathogenic and 

non-toxic, but defines no specific safety parameters (European commission, 2003; 

Directorate C -  Scientific opinions, “On a generic approach to the safety assessment 

of micro-organisms used in feed/food and feed/food production”). Human probiotic 

foods, however, are not governed under any specific European Commission 

regulatory framework (von Wright, 2005). Consequently, the dosages used were 

derived from literature on previous Lactobacillus safety assessments and those 

indicating the LD50 doses of pathogenic Vibrionaceae (Lara-Villoslada et al, 2007; 

Liu et al, 2004; Phuoc et al, 2009).
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The aims of this chapter were:

• To assess the degree of pathogenicity displayed by suspected C. 

maltaromaticum, V gazogenes and V alginolyticus toward the crustacean 

target host, L vannamei.

• To determine which of the above should be selected, alongside L. plantarum 

and P. acidilactici, for later in vivo feed trials in L vannamei (Chapter 5).



4.2 Materials & Methods

4.2.1 Assessment of pathogenicity of potential probiotics suspect C. 

maltaromaticum, V gazogenes and V alginolyticus towards Pacific white shrimp 

L. vannamei

Post-larval Pacific white shrimp, L. vannamei, obtained from the CSAR facility at 

Swansea University were subjected to in vivo challenge by suspected C. 

maltaromaticum, V gazogenes (NCIMB 2250) and V alginolyticus (NCIMB 1339). 

Challenges were conducted to determine the degree of pathogenicity the organisms 

displayed towards a crustacean host and thus their viability as potential probiotics. 

The suspected C. maltaromaticum isolate and V gazogenes were regarded as being 

sufficiently safe for testing within a small closed system at the CSAR facility 

(Swansea University). Suspected C. maltaromaticum was originally isolated from a 

healthy animal raised in one of the CSAR systems; consequently, it was regarded as 

posing little danger to the resident L. vannamei population. V gazogenes has no 

history of pathogenicity towards any marine species and has been isolated from the 

gastrointestinal microflora of healthy, wild and cultured Banana prawn, Penaeus 

merguiensis (Oxley et al, 2002). However, given that several strains of V 

alginolyticus are pathogenic to shrimp (Selvin & Lipton, 2003; Wang & Chen, 2005; 

Li et al, 2008), coupled with the possibility of contamination of the main L. vannamei 

culture system, it was decided that V alginolyticus (NCIMB 1339) required testing in 

a system that could be sterilised, such as those employed at the CEFAS research 

facility, Weymouth, UK.



4.2.1.1 Vibrio alginolyticus (NCIMB 1339) challenge

Three treatment groups each containing 12 animals (L. vannamei:; 4 ± 1 g) were 

housed in 3 x 40 1 tanks at the CEFAS research facility, Weymouth, UK. Animals of 

the first group, designated the control, were administered an injection of 100 pi sterile 

3% NaCl solution, intramuscularly, between the second and third pleomeres. The 

remaining groups were injected with an equal volume of suspensions of V 

alginolyticus. These suspensions comprised a low dose of ca. 3 x 106 total cells ml'1
O 1

and a high dose of ca. 3 x 10 total cells ml' modified from the methods of Liu et al 

(2004). V. alginolyticus was cultured in TSB (plus 2% NaCl) at 25°C for 24 h prior to 

centrifuging (1000 g 5 min at 25°C). The resulting pellet was re-suspended in 1 ml 

sterile 3% NaCl solution and its concentration adjusted to provide the required 

suspensions.

No feed was administered during the trial, the animals were checked at 1, 18, 24, 30 

& 44 h post-injection with all mortalities removed and recorded. Three moribund 

animals from the high dose group were sampled for histological examination at 1 h 

post administration. At 24 h post-administration; two live animals from the low dose 

group were sacrificed for tissue samples (none of the high dose group survived at this 

point). The trial was ended at 44 h with no further mortality observed in the control or 

low dose groups post 18 h. At this point, 2 animals from both groups were sacrificed 

for tissue samples. All live animals sampled were killed via injection of ca. 5 ml of 

Bourn’s seawater fixative. Thoracic and abdominal sections (containing the site of 

injection) of each animal were retained in excess volume of fixative, at room 

temperature for later histopathology (Section 4.2.1.4). An estimate of the 50%



endpoint of the challenge (estimated 50% lethal dose; est. LD50) was determined 

using the method outlined in Reed & Muench (1938).

4.2.1.2 Vibrio gazogenes (NCIMB 2250) challenge

Three treatment groups each containing 20 animals (L. vannamei 4 ± 1 g) were 

housed over 6 x 30 1 tanks of a closed, re-circulating system at the CSAR facility, 

Swansea University. Animals of the first group, designated the control, were 

administered an inoculation of 100 pi sterile 3% NaCl solution, intramuscularly, 

between the second and third pleomeres. The remaining groups were injected with an 

equal volume of suspensions of V. gazogenes. These suspensions comprised a low 

dose of ca. 3 x 106 total cells ml’1 and a high dose of ca. 3 x 108 total cells ml'1 

modified from the methods of Liu et al (2004). V gazogenes was cultured in TSB 

(plus 2% NaCl) at 25°C for 24 h prior to centrifuging (1000 g 5 min at 25°C). The 

resulting pellet was re-suspended in 1 ml sterile 3% NaCl solution and its 

concentration adjusted to provide the required suspensions.

No feed was administered during the trial, however, the animals were checked at 24 h 

intervals, with all mortalities removed and recorded. At 12 & 24 h post 

administration; two animals from each group were sacrificed for tissue samples. In 

addition, after 24 h those animals that had received V. gazogenes (once euthanised on 

ice) were transversely bisected at the join between the first and second abdominal 

segments (pleomeres). The cut surface was repeatedly touched onto two TSA (plus 

2% NaCl) plates, these were incubated at 25°C (24 h) before being checked for V 

gazogenes growth (V. gazogenes colonies produce a distinctive pink/red pigmentation 

on TSA). Thoracic sections (containing gill and hepatopancreas) and abdominal



sections (containing the site of injection) were retained in excess volume of Bouin’s 

seawater fixative, at room temperature for histopathology. The samples retained for 

histopathology were processed and examined as stated in Section 4.2.1.4. The trial 

was terminated after 6 days due to a lack of mortality across the groups in the 

preceding 72 h. Twenty four hours after the cessation of the trial, samples of tank 

biofilm were taken and plated (TSA plus 2% NaCl) to ascertain whether V gazogenes 

had become a component of the system microbiota. An estimate of the 50% endpoint 

of the challenge (estimated 50% lethal dose; est. LD50) was determined using the 

method outlined in Reed & Muench (1938).

4.2.1.3 Suspect strain Carnobacterium maltaromaticum challenge

Post larval L. vannamei weighing 1 ± 0.2 g (two groups of 10 animals) were housed in 

two, 30 1 tanks within a closed re-circulating system at the CSAR Tropical quarantine 

facility, Swansea University. Animals of the first group, designated the control, were 

administered an intramuscular injection of 100 pi sterile 3% NaCl solution, 

intramuscularly between the second and third pleomeres. The remaining group was 

injected with equal volume of a suspension of suspect strain C. maltaromaticum. 

Suspect strain C. maltaromaticum was cultured in MRS broth (plus 2% NaCl) at 25°C 

for 24 h before centrifuging (1000 g 5 min at 25°C). The pellet was re-suspended in 1 

ml sterile 3% NaCl solution and its concentration adjusted to ca. 1 x 108 cells ml'1 

(Lara-Villoslada et al, 2007).

No feed was administered during the trial, however, the animals were monitored at 12 

h intervals, with any mortalities removed and recorded. At 24, 72 and 96 h post­



injection; two shrimp from each group were sacrificed for haemolymph and histology. 

The size of the animals made obtaining a haemolymph sample via needle impossible. 

Consequently, the animals (once euthanised on ice) were transversely bisected at the 

join between the cephalothorax and first abdominal segment (pleomere). The cut 

surface of the abdominal section was touched onto two MRS agar (plus 2% NaCl) 

plates, the ca. 50 pi of haemolymph deposited was aseptically spread and the plates 

incubated at 25°C (72 h) before being checked for growth. The highly selective nature 

of MRS media toward lactic acid bacteria, combined with the low abundance of such 

bacteria in the microflora of L. vannamei (Section 3.2.2 & Appendix 3) the majority 

of colonies recovered can be regarded as belonging to suspect strain C. 

maltaromaticum. Given that the volume of haemolymph plated was unknown, CFU 

ml'1 could not be determined; hence data were recorded as CFU per plate. Abdominal 

sections of both control and infected animals (around the site of injection) were 

retained in an excess volume of Bourn’s seawater fixative (Appendix 1) at room 

temperature for histopathology. These tissue samples were processed and examined as 

stated in Section 4.2.1.4. The trial was ended after 96 h due to high cumulative 

mortality within the group administered the suspect strain C. maltaromaticum. 24 h 

after the cessation of the trial samples of tank biofilm were taken and plated (MRS 

agar plus 2% NaCl) to ascertain whether suspected C. maltaromaticum had become a 

component of the system microbiota.

4.2.1.4 Histopathology

The fixed tissue samples were dehydrated using progressive, graded alcohol washes 

(70, 80, 90 and 100% analytical grade ethanol) 1 h per grade. Tissues were then



cleared via two immersions (4 h total) in Histoclear (Fisher Scientific Ltd, 

Leicestershire, UK). Samples were then submerged in molten paraffin wax (3 

changes) for 6 h, before embedding in wax. After a minimum of 24 h (to ensure 

adequate hardening of the wax) 10 pm sections were cut and stained using Cole’s 

haematoxylin and eosin (Gretchen & Humason, 1979) (Appendix 1). 

Photomicrographs were taken using an Olympus BX50 binocular microscope and 

digital camera (Olympus Optical, London, UK).



4.3 Results

4.3.1 Vibrio alginolyticus (NCIMB 1339) challenge

Vibrio alginolyticus (NCIMB 1339) displayed a high degree o f pathogenicity towards

7 1juvenile L. vannamei (Figure 1). The high dose group (ca. 3 x 1 0  bacteria shrimp" ) 

experienced 50% mortality within 1 h o f administration and 100% mortality within 18 

h. The low dose group {ca. 3 x 1CP cells shrim p'1) displayed a cumulative mortality o f 

29% at the cessation o f  the trial. The data collected allowed the determination o f an 

estimate o f  the 50% endpoint o f  the trial and an estimated LD50 o f  ca. 9.1 x 106 

bacteria shrimp"1.
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Figure 1. Cumulative mortality of Pacific white shrimp, Litopenaeus vannamei, over 44 hr post 
administration of ca. 3 x 107 cells shrimp'1 of Vibrio alginolyticus (—), ca. 3 x 105 cells shrimp'1 

of Vibrio alginolyticus (—) or 3% NaCl solution control (—).

Histological examination o f gill samples from moribund animals o f  the high dose 

group (1 h post administration) displayed early nodule formation in the primary blood

-  123 -



vessels o f the gill lamellae (Figures 2A-D). Samples o f  muscle from the area 

surrounding the injection site (high dose group) displayed no such histopathology. No 

evidence o f nodule formation in the gills was noted in samples from the low' dose 

group, however, samples from 44 h showed evidence o f haemocyte infiltration in 

muscle tissue in the vicinity o f the injection site (Figure 3A & B). V. alginolyticus 

was not recovered from any o f  the samples taken o f the culture system’s biofilm.

Figure 2. (A) Low power micrograph of a transverse section o f gill lamellae from Lilopenaeus 

vannamei 1 h after receiving high dose o f V alginolyticus, arrows indicating haemocyte nodule 

formation (Scale bar = 250 pm). (B) Mid power view o f a transverse section o f gill lamellae of 

Litopenaeus vannamei 1 h after receiving high dose of V alginolyticus, arrows indicating early 

haemocyte nodule formation (Scale bar = 100 pm). (C) Low power micrograph o f a transverse 

section of gill lamellae o f Litopenaeus vannamei 1 h after receiving saline, displaying absence of 

haemocyte nodules (Scale bar = 250 pm). (D) Mid power view of a transverse section o f gill 

lamellae o f Litopenaeus vannamei 1 h after receiving saline, displaying absence o f haemocyte 

nodules (Scale bar = 100 pm).
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Figure 3. (A) Low power micrograph of a transverse section of the abdominal region of Litopenaeus 

vannamei displaying muscle and external cuticle 44 h after receiving low dose of V alginolyticus. 

The area shown is in the immediate vicinity of the injection site. Arrows indicate regions of 

haemocyte infiltration o f the muscle tissue (Scale bar = 200 pm). (B) Mid-power micrograph 

displaying the enclosed area in (A), arrows indicate regions of haemocyte infiltration of the muscle 

tissue (Scale bar = 50 pm). (C) Low power micrograph of a transverse section o f the abdominal 

region of Litopenaeus vannamei displaying muscle and external cuticle 44 h after receiving low dose 

of V. alginolyticus. Area shown is on the opposite side of the body to the site o f injection; i.e. 

displays no indication of haemocyte infiltration o f the muscle (Scale bar = 200 pm). (D) Mid power 

micrograph displaying the enclosed area in (C), exhibiting no evidence o f haemocyte infiltration 

(Scale bar = 50 pm).
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4.3.2 Vibrio gazogenes (NCIMB 2250) challenge

Vibrio gazogenes (NCIMB 2250) exhibited pathogenicity towards L. vannamei only 

when administered at the high dose of, ca. 3 x 107 total bacteria shrimp' 1 (Figure 4). 

No mortality was observed in the control or low dose groups during the 144 h 

observation period. In the high dose group, a cumulative mortality o f 94% was 

recorded, lower than that for V alginolyticus under the same trial conditions. The 

mortality data allowed for the determination o f an estimate o f the 50% endpoint o f  the

7 * i * ltrial and an estimated LD50 o f ca. 1.6 x 10 bacteria shrimp' .
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Figure 4. Cumulative mortality o f Pacific white shrimp, Litopenaeus vannamei, over 148 hr post 
administration o f ca. 3 x 107 bactena shrimp’1 o f  Vibrio gazogenes (—), ca. 3 x 105 bacteria shrimp'1 

o f Vibrio gazogenes (—) or 3% NaCl solution control (—).

The presence o f live V gazogenes in the tissues surrounding the site o f  injection was 

confirmed in all high dose animals sacrificed at 24 h, via touch plating (Figure 5).
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Figure 5. (A) Transversely bisected juvenile Litopenaeus vannamei sacrificed 24 h post­

administration o f ca. 3 x 107 Vibrio gazogenes (NCIMB 2250) shrimp’1 Arrows indicate localised 

presence of V. gazogenes (exhibiting pink pigmentation). (B) External view o f a juvenile 

Litopenaeus vannamei sacrificed 24 h post-administration o f ca. 3 x 107 cells shrimp’1 of Vibrio 

gazogenes (NCIMB 2250); arrow indicates localised presence o f V. gazogenes (exhibiting pink 

pigmentation). (C) Plate inoculated with haemolymph from animal shown in (A) via touch plating, 

clearly indicating presence o f viable V. gazogenes (areas o f red pigmentation).

Histological sections from animals in the high dose group displayed evidence o f 

localised muscle necrosis in the region surrounding the injection site, but no evidence 

o f pathology in the gills. No evidence o f haemocyte nodule formation was observed in 

the blood vessels o f the gill lamellae, which would have been indicative o f the early
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stages o f a systemic bacterial infection (Figure 6 ). Necrotised muscle tissue, localised 

around the site o f injection was observed in abdominal sections from animals in the 

high dose group (Figures 7 A & B). In addition, evidence was found indicating the 

possible presence o f a secondary yeast-like infectious agent (Figure 8A). No such 

pathology was observed in the animals administered the lower dose o f V. gazogenes. 

However, the presence o f  what appeared to be bacteria was noted within the muscle 

o f  one animal administered the low dose o f V. gazogenes (Figure 8B).

V gazogenes was not isolated from any samples taken o f  the culture system’s biofilm.

Figure 6. Low power micrograph o f a transverse section of gill lamellae taken from L. vannamei 

sacrificed 24 h post-administration of ca. 3 x 107 Vibrio gazogenes shrimp'1, showing no indication 

of haemocyte nodule formation observed (Scale bar = 100 pm).
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Figure 7. (A) Low power micrograph of a transverse section of the abdominal region of Litopenaeus 

vannamei showing muscle 12 h after receiving the high dose of V gazogenes. Area shown is in 

vicinity of the injection site; the black arrows indicate regions of necrotic muscle tissue (Scale bar = 

200 pm). (B) High power micrograph of a transverse section of abdominal muscle from the animal 

displayed in (A), arrows indicating regions of muscle necrosis (Scale bar = 10 pm). (C) Low power 

micrograph o f a transverse section o f the abdominal region of a control group animal 12 h post­

injection, displaying healthy muscle with no evidence o f necrosis (Scale bar = 200 pm). (D) High 

power micrograph of a transverse section o f abdominal muscle from the animal displayed in (C) at 

greater magnification (Scale bar = 10 pm).
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Figure 8 (A) High power micrograph of a transverse section o f the abdominal region o f 

Litopenaeus vannamei displaying muscle fibres and yeast-like organisms denoted by arrows 

(Scale bar = 10 pm). (B) High power micrograph of a transverse section o f the abdominal region 

o f Litopenaeus vannamei displaying muscle fibres 12 h after receiving the low dose o f V 

gazogenes, arrows indicate position of a cluster o f bacteria within the muscle (Scale bar = 10 pm).

4.3.3 Suspect strain Carnobacterium maltaromaticum challenge

The suspected C. maltaromaticum  isolate displayed a higher than anticipated 

cumulative mortality o f 64% when administered at ca. 1 x 107 bacteria shrim p'1 

(Figure 9). Despite this, no visible evidence o f bacterial infection was found upon 

histological examination o f  muscle samples taken from the area around the injection 

site.

The biofilm samples collected from the tanks containing the suspected C. 

maltaromaticum  administered animals were positive for the presence o f lactic acid 

bacteria 24 h after the end o f  the trial.
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Figure 9. Cumulative mortality o f  Pacific white shrimp, Litopenaeus vannamei, over 
96 hr post administration o f  1 x 10 suspected strain Camobacterium  

maltaromaticum  shrimp"1 (—) or 3% NaCl solution control (—).

Table 1. Mean CFU o f lactic acid bacteria recovered from ca. 50pl o f  haemolymph 
obtained from juvenile Litopenaeus vannamei administered sham saline or ca. 1 x 107 
cells shrimp’1 suspected C. maltaromaticum. n=2.

Time (h) post 
administration

Average CFUs of lactic acid bacteria recovered from haemolymph (per plate) 
Control (saline) suspected C. maltaromaticum group

24 0 1313
72 0 1536
96 10 460

-  131 -



4.4 Discussion

The fundamental question when selecting a potential probiotic is whether or not it is 

of benefit to the host organism (Fuller, 1992). Consequently, any candidate micro­

organism displaying an unacceptable level of pathogenicity towards the host could not 

be forwarded as a probiotic and would certainly never gain license for commercial use 

(Decamp & Moriarty, 2006; Kesarcodi-Watson et al, 2008). Of the three micro­

organisms assessed in this chapter, only Vibrio gazogenes (NCIMB 2250) displayed 

sufficiently low lethality when administered intramuscularly to L. vannamei, to allow 

its continuation to the feed trial stage of testing.

Vibrio alginolyticus (NCIMB 1339) exhibited a high level of pathogenicity towards L. 

vannamei, both in terms of cumulative mortality and the rapidity of death. In addition, 

the estimated LD50 value and the presence of moribund animals in the lower dose 

group, further reinforced the conclusion that this strain was indeed pathogenic to 

shrimp by injection and therefore probably unsuitable for use as a crustacean 

probiotic. The estimated LD50 value of ca. 9 x 106 bacteria shrimp'1 determined in this 

trial was very similar to values obtained for other pathogenic strains of V. 

alginolyticus (Selvin & Lipton, 2003) and V campbellii (Phuoc et al, 2009). The 

presence of haemocyte nodules within the blood vessels of the gill lamellae is 

indicative of a haemocyte-mediated immune response to a systemic infection. The 

lack of any visible muscle damage around the site of injection (when compared to the 

samples from V. gazogenes infected animals) was most likely a result of the speed 

with which the animals succumbed to the infection (i.e. before any muscle necrosis 

became apparent).



On initial examination of the data, the suspected Carnobacterium maltaromaticum 

appeared to be the least pathogenic of the three micro-organisms towards L. 

vannamei, with a cumulative mortality of 64% (for a dosage of ca. 1 x 10 cells 

shrimp'1). However, the trial of suspected C. maltaromaticum was the first conducted 

and was, in hindsight, ended prematurely. Arguably therefore, in all likelihood the 

final mortality could have been higher than the recorded 64%. A further factor against 

the selection of this strain as a potential crustacean probiotic was its persistence 

within the culture system. It was the only micro-organism of the three tested that was 

found to have colonised the biofilm of the tanks and filter. In addition, the anti­

bacterial activity of suspected C. maltaromaticum was considerably less than that 

observed for the two commercial lactic acid bacteria, L. plantarum and P. acidilactici. 

As a consequence, the decision was made not to select the suspected strain C. 

maltaromaticum for feed trial testing in L. vannamei. As a footnote, stock of 

suspected strain C. maltaromaticum lost viability shortly after the conclusion of this 

pathogenicity trial and currently remains un-recovered, despite several attempts to re- 

isolate from L. vannamei.

It should be noted that although V. gazogenes displayed pathogenicity towards L.

• 7 1vannamei when administered at the higher concentration of ca. 3 x 1 0  cells shrimp", 

it remained non-pathogenic at the lower dosage of ca. 3 x 105 cells shrimp'1. 

Histopathology of samples from those animals which received the higher dose 

strongly indicated that the bacteria remained localised in the muscle around the 

injection site, i.e. the infection was probably not systemic as with V. alginolyticus. 

Given the ‘scientific opinion’ of the European Commission that micro-organisms 

utilised in products and feedstuffs should be non-pathogenic, all of the micro­

organisms tested should be dismissed as potential crustacean probiotics. However,



given the method of administration and the doses used in these trials there is little 

likelihood that any micro-organism administered in this fashion would be entirely 

non-pathogenic toward L. vannamei. Consequently, the validity of selecting this 

method of in vivo challenge to test a potential probiotic is debatable. By definition 

probiotic micro-organisms are administered orally via feed or culture water (Fuller, 

1987; Irianto & Austin, 2002). The administration of a high dose of live bacteria 

directly into a host animal’s body via intra-muscular injection is not a realistic 

simulation of a chance infection and therefore cannot yield a true assessment of the 

micro-organisms pathogenicity. The scenario is not realistic as it circumvents the 

crustacean primary defence against parasitic/pathogenic invasion; the cuticle. 

Consequently, this method of testing takes no account of the primary infectivity of the 

three micro-organisms, i.e. their ability to gain entry into the host’s body, and thus 

requires the assumption that all strains tested possessed equal and universal infectivity 

towards the host, which is not the case (Ishibashi & Yamazaki, 2001). Despite this, 

the activity and lethality of the micro-organisms once present in the host’s tissues is 

still a noteworthy factor in determining their suitability as potential probiotics.

It has recently been noted that species of lactic acid bacteria have been observed 

associated with human infections and 180 cases of Lactobacillemia and 6 cases of 

Bifldobacteremia have been recorded over the last 30 years (Sanders et al, 2007). The 

majority of these incidents involved opportunistic secondary wound infections 

(Ishibashi & Yamazaki, 2001). However, only two cases of Lactobacillus infection in 

humans have been linked with probiotic consumption and no increase in infection rate 

has been noted with the increase in probiotic consumption (Sanders et al, 2007). Even 

though safety assessment is not required by the European Food Safety Authority for



micro-organisms already holding QPS status, in hindsight, the decision not to assess 

them for pathogenicity towards L. vannamei may have been an error.

In conclusion, of the three strains tested only V. gazogenes (NCIMB 2250) was 

selected for further in vivo assessment, via oral administration. Despite displaying a 

degree of pathogenicity towards L. vannamei it remained, alongside L. plantarum and 

P. acidilactici, the most likely candidate for a novel crustacean probiotic. The fact that 

V gazogenes did not conform to the European Commission’s opinion of a viable 

micro-organism for use as a probiotic was due more to the testing methods employed. 

The absence of standardised safety testing criteria for commercially utilised bacteria 

within Europe (partially relieved by the introduction in 2004 of the European Food 

Safety Authority’s ‘Qualified Presumption of Safety’ system) should ensure that 

thorough dietary trials of V gazogenes should be sufficient to demonstrate the micro­

organism as safe for use as a crustacean probiotic (Balcazar et al, 2006). However, the 

degree of pathogenicity displayed by V alginolyticus (NCIMB 1339) coupled with 

the high number of known pathogenic strains of V alginolyticus (Lee et al, 1996; 

Selvin & Lipton, 2003; Wang & Chen, 2005) would make it practically impossible to 

license and market the organism as a crustacean probiotic.



Chapter 5

In vivo assessment o f the probiotic potential o f Vibrio gazogenes and Lactobacillus 
plantarum  in the Pacific white shrimp Litopenaeus vannamei



Abstract

Selected potential probiotics were assessed with regards to their in vivo effects on 

Litopenaeus vannamei. Work undertaken involved the oral administration of Vibrio 

gazogenes and Lactobacillus plantarum via feed to post-larval and juvenile shrimp 

over four feed trials and the subsequent analysis of various physiological parameters. 

An initial short-term feed trial was conducted to consider the safety of V. gazogenes 

for oral administration to L. vannamei. A 28 day trial to assess for any benefit to 

shrimp growth, survival or feed utilisation conveyed by L. plantarum was also 

performed. These were followed by two longer term trials (8 and 6 weeks, 

respectively) which examined the effects of the potential probiotics on circulating 

haemocyte populations, nutritional status and hindgut microfloral diversity. Alongside 

spread plating, terminal restriction fragment length polymorphism (T-RFLP) analysis 

was used to detect any alteration in hindgut microbial diversity. The oral 

administration of potential crustacean probiotics V. gazogenes and L. plantarum 

resulted in no discernible enhancement of the health/nutritional status of juvenile L. 

vannamei. In addition, L. plantarum administration had no discernible effect on the 

growth rate, feed conversion rate or survival of post-larval Pacific white shrimp. 

Animals receiving V gazogenes did, however, show some indications of modulation 

of the microbial community of the mid and hindguts. The administration of the 

potential immunostimulant, chitin, also appeared to reduce the levels of Vibrio-Mks, 

organisms in mid/hindgut contents of L. vannamei.
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5.1 Introduction

Shrimp aquaculture is a massive industry, comprising the bulk of global crustacean 

aquaculture, with a current annual worth of $50-60 billion (EJF, 2004). In 2001, the 

UK imported 83,196 tonnes of shrimp worth over £353 million (BBC News website). 

With the UN FAO estimating that half of the world’s seafood demand will need to be 

met by aquaculture sources by 2020, any means of improving production yields must 

be investigated (Moriarty, 1999). Currently the shrimp aquaculture industry is 

focussed in Southeast Asia, where the majority of shrimp farms take the form of open 

air ponds hacked out of pristine mangroves and wetland habitat. It is estimated that 

Thailand has lost 83.7% of original mangroves since 1975 (Thornton et al, 2003). If 

the increased requirement for cultured shrimp is to be met then a shift in culture 

methods must occur, from open air farms to more economic and environmentally 

sustainable ‘closed’ recirculation systems. Such systems would allow greater stocking 

densities and therefore higher yields while also eliminating the need to relocate farms 

after only 2-3 years.

With increased stocking densities, however, comes the increased likelihood of serious 

disease outbreaks particularly in hatchery/nurseiy facilities. The causative agents in 

the many disease outbreaks in shrimp aquaculture facilities are bacterial, particularly 

luminous Vibrio harveyi (Moriarty, 1998, 1999). Administration of antibiotics is a 

highly effective means of pathogen control, but it is far from ideal. In the majority of 

cases, a mandatory waiting period is required prior to harvesting to allow the 

antibiotic to clear the animals system, during which the animal may be susceptible to 

infection. Antibiotics are extremely expensive both to develop and license and with 

irresponsible use there is the risk of creating antibiotic-resistant strains. No



chemotherapeutic agent is 100% effective and a small proportion of microorganisms 

will always survive exposure; these may then proliferate and dominate the culture 

system. If these microbes happen to be shrimp pathogens, then the likelihood of a 

disease outbreak and subsequent stock loss is exponentially increased.

A different approach must therefore be considered for the control of bacterial 

pathogens within shrimp aquaculture facilities. Probiotics have been used extensively 

in agriculture with great success, particularly in intensively reared animals such as 

chickens and pigs (e.g. Jin et al, 1997; Kyriakis et al, 1999; Patterson & Burkholder, 

2003). The idea of administering probiotic bacteria to aquaculture species in an 

attempt to reduce mortality through disease is not a recent one. Probiotics have 

several advantages over chemotherapeutic agents such as antibiotics; they can be 

administered continually (up to harvesting), they are cheap to produce and will not 

generate resistance in target microorganisims. Probiotics have been extensively tested 

and commercially utilised in finfish aquaculture for many years (Ringo & Gatesoupe, 

1998; Gatesoupe, 1999; Balcazar et al, 2006; Kim & Austin, 2006). Only in recent 

years, however, has any meaningful research been carried out into the potential of 

probiotics in invertebrate aquaculture (Rengpipat et al, 2000; Chiu et al, 2007; Castex 

et al, 2008). The bulk of this research has focused on the effects of probiotic 

administration on growth parameters, feed utilisation and overall survival (Moriarty, 

1998, 1999; Wang, 2007; Farzanfar, 2006).

The work described in this chapter primarily investigates the effects of administration 

(via feed) of potential probiotics on the diversity/ecology of the hindgut microflora of 

L. vannamei. Any increase in gastrointestinal microfloral diversity triggered would 

likely benefit the animal by reducing the chances of an opportunistic bacterial 

pathogen dominating the microflora and thus causing disease. The theory that a



balanced and diverse microflora benefits the host is widely accepted for vertebrates 

(Patterson & Burkholder, 2003). The increased efficacy and availability of rDNA 

sequencing techniques such as terminal restriction fragment length polymorphism (T- 

RFLP) and denaturing gradient gel electrophoresis (DGGE) affords the ability to gain 

snap shots of the G.I. microfloral ecology of animals receiving probiotics. This is 

extremely useful as determining the in vivo effect of probiotic administration is 

somewhat problematic. The selection of T-RFLP over DGGE for these experiments 

was made for purely practical reasons, as the skills and equipment required for T- 

RFLP were available in the university.

Specific aims of this chapter were:

• The assessment of effects, following the oral administration of Vibrio 

gazogenes and Lactobacillus plantarum, on circulating haemocyte populations 

and nutritional status (hepatosomatic index) in post-larval and juvenile 

Litopenaeus vannamei.

• The examination and analysis of 16S terminal restriction fragment profiles 

obtained from samples of whole hindgut of L. vannamei, for variation in 

microbial diversity/ecology following administration of potential probiotics V 

gazogenes and L. plantarum.

• The elucidation of any growth/feed utilisation benefits to L. vannamei 

following administration of a commercial feed supplemented with L. 

plantarum.



The determination of the safety of V gazogenes for oral administration to L.

vannamei.



5.2 Materials and Methods

5.2.1 Assessment of the safety and effectiveness of selected potential probiotics 

administered orally via feed to Pacific white shrimp, Litopenaeus vannamei

Four feed trials were conducted involving the administration of formulated feeds 

containing Lactobacillus plantarum and Vibrio gazogenes (NCIMB 2250) either in 

isolation, or combination as a multi-species supplement (see Table 1). An initial V 

gazogenes feed safety trial of 15 days duration was conducted to confirm that the 

strain was indeed safe for oral administration to L. vannamei (Trial 1). The 15 day 

trial was also utilised for the development and optimisation of sampling protocols 

employed in the later studies. The safety assessment was then followed by an 8 week 

feed trial conducted to investigate the effects of orally administered V gazogenes 

(alongside powdered chitin, utilised as a potential cryo-stabilising agent) on the 

growth and gut microflora of L. vannamei (Trial 3). Also a 28 day trial investigating 

the effects of orally administered L. plantarum on the growth and feed utilisation by 

post-larval L. vannamei was conducted (Trial 2). These were then followed by a 6 

week ‘multi-species’ trial (Trial 4) where feed containing both V gazogenes (plus 

chitin) and L. plantarum was assessed against a ‘control’ feed containing only V 

gazogenes (plus chitin).
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5.2.1.1 Trial Is An initial 15 day feed trial to assess the safety of orally 

administered Vibrio gazogenes (NCIMB 2250) in Litopenaeus vannamei

5.2.1.l.a Animals & experimental design

Forty five juvenile L. vannamei, 4 ± 0.5 g, were housed in six, 30 1 tanks of an open- 

flow low-volume system at the CSAR facility, Swansea University. The animals 

were divided into 3 groups each comprising 15 individuals housed over 2 tanks (tanks 

randomly assigned) with each group receiving a different diet. These diets were a 

control, consisting of a commercial shrimp maturation feed, a chitin only 

supplemented diet and a probiotic/chitin supplemented diet. The latter diets comprised 

the commercial feed top coated with sterile powdered chitin and sterile powdered 

chitin impregnated with live V gazogenes culture, respectively (details of diet 

formulation and production are outlined in Section 5.2.1.l.b).

The limited duration of the trial was a result of its primary aim, that of establishing the 

safety of V gazogenes for oral administration. Animals were fed twice daily with the 

feed amount equivalent to 5% of tank biomass per day (ca. 1.5 g per tank d'1). Prior 

to feeding, all faeces and uneaten feed were removed and the animals examined in situ 

for signs of distress/ill health.

After 15 successive days of feeding the trial was ended and the animals sacrificed 

(euthanised on ice) and utilised in the development of the sampling methodologies 

employed in the following longer term feed trials. The optimisation of these 

techniques required numerous modifications and unfortunately due to this, no data 

were obtained for the animals in this trial aside from a record of survival/mortality.
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5.2.1.1.b Preparation of feed

As stated in Section 5.2.1.1.a, the control group diet used was a commercial shrimp 

maturation pelleted feed (Dragon Feeds Supreme™) supplied by Dragon Feeds Ltd., 

Port Talbot, UK. This feed was also the main constituent of the two experimental 

diets administered. The probiotic group was fed a diet of Dragon Feeds Supreme™ 

top coated with chitin powder (Sigma-Aldrich; Cat# 417955-1KG) impregnated with 

live V gazogenes culture. V gazogenes was cultured in TSB (plus 2% NaCl) at 25°C 

for 24 h, prior to centrifuging (3255 x g, 12 min, RT). The pellet was retained and its 

weight determined before being mixed, aseptically, with an equal quantity of sterile 

powdered chitin. The function of chitin was to act as a potential cryo-protectant 

during drying and storage of the feed, as a characteristic of the Vibrionaceae is an 

ability to bind chitin and research indicates that Vibrio spp. can tolerate greater 

variations in environmental parameters, such as temperature, when associated with 

chitin (Nalin et al, 1979; Amako et al, 1987). A powdered (insoluble), rather than a 

soluble form of chitin was selected as the chitin/bacteria was required to remain 

associated with the feed in order to be ingested by the animals. The mixture was left 

in a covered 90 mm Petri dish for 24 - 48 h at 25°C to allow for the adhesion of the 

bacteria to the chitin particles. The final feed formulation contained a mass of the 

probiotic/chitin mixture equivalent to 1% of the total (final) mass of feed. The 

probiotic/chitin mix was added to sunflower oil (Tesco Value; volume equivalent to 

5% of the final mass of feed) and manually homogenised until a universally consistent 

suspension was obtained. This suspension was then added to a quantity of Dragon 

Feeds Supreme™ equivalent to 94% of the required mass of finished feed and mixed 

by hand until consistent. The feed was then spread onto foil and allowed to air dry at
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RT for 24 -  48 h, before being stored at 4°C. The feed administered to the chitin only 

diet group was produced as a stated above, but with sterile 3% NaCl solution in place 

of the spun down V. gazogenes culture material.

The viability of the probiotic/chitin mixture was elucidated via standard dilution and 

spread plating techniques as containing ca. 3 x 109 CFU g*1 (equating to an estimate 

of ca. 3 x 107 cells g"1 of feed). The latter is merely an estimate, however, as no viable 

CFU could be recovered from the final feed.

5.2.1.2 Trial 2: A 28 day Lactobacillus plantarum feed trial in Litopenaeus 

vannamei

5.2.1.2.a Animals & experimental design

Two diet groups each containing 54 post-larval L. vannamei (0.5 ± 0.05 g) were 

utilised to assess the short term effects of the oral administration of L. plantarum on 

growth, survival and feed utilisation (feed conversion ratio; FCR) in Pacific white 

shrimp. Each diet group was housed over three randomly assigned, 30 1 tanks (18 

animals per tank) in an open flow low volume system at the CSAR facility, Swansea 

University.

The first group was fed an un-supplemented diet and designated the control diet 

group; the remaining animals received a diet top-coated with L. plantarum culture and 

were designated the probiotic diet group (details of diet formulation and production 

are outlined in Section 5.2.1.2.b). The animals were fed twice daily with the feed 

amount equivalent to 11% of tank biomass per day {ca. 1 g per tank d'1). Prior to
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feeding, all faeces and uneaten feed was removed from the tanks, the unconsumed 

feed was collected separately from the faeces, dried at RT and weighed. Five 

randomly selected animals from each tank were weighed weekly; these values were 

used to estimate the biomass of each tank and thus the amount of feed required for the 

subsequent 7 days. Accurate tank biomass determinations were made, via the 

weighing of all animals, at the start of the trial, after 14 days of feeding and at the end 

of the trial (28 days). From these data average values for each tank for; individual 

animal weight, weight gain per day, percentage growth and specific growth rate 

(SGR), were determined. In addition, the biomass values along with the mass of feed 

consumed (calculated by subtracting the amount of un-consumed feed from the 

amount administered) were used to estimate the feed conversion ratio (FCR). 

Percentage survival was also recorded for each group.

5.2.1.2.b Preparation of feed

As for Trial 1 (see Section 5.2.1.1) a commercial shrimp maturation diet (Dragon 

Feeds Supreme™) was utilised as the basis for the supplemented diets. The control 

and L. plantarum diets were produced using the same ratio of constituents and method 

of top-coating outlined in Section 5.2.1.1.b. In the case of the L. plantarum 

supplemented diet, the V gazogenes culture/chitin mix was replaced by a powdered 

mix of lyophilised L. plantarum culture and skimmed milk powder (with the latter 

performing the role of cryo-protectant). The lyophilised powder was supplied by the 

project’s industrial sponsor, Cultech Ltd. Baglan, UK and contained L. plantarum at a 

concentration of ca. 1.6 x 1011 CFU g’1. The viability of the final feed was estimated 

via standard dilution and spread plating techniques as ca. 2 x 108 CFU g'1.



The control feed was produced as described in Section 5.2.1.1.b, but with the chitin 

powder (plus 3% NaCl solution) replaced by skimmed milk powder (also obtained 

from Cultech Ltd.). All feed was stored in sealed containers at 4°C until required, in 

order to preserve maximum viability of the probiotic. Fresh feed was produced every 

14 days.

5.2.1.3 Trial 3: An 8 week Vibrio gazogenes (NCIMB 2250) feed trial in 

Litopenaeus vannamei

5.2.1.3.a Animals & experimental design

The experimental design utilised in the 8 week feed trial was based largely on that 

used for Trial 1 (Section 5.2.1.1.a) but expanded in scope. Whereas the aim of Trial 1 

was merely to assess the survival and mortality of L. vannamei when fed V 

gazogenes, the principal purpose of this third trial was to investigate the effects of V 

gazogenes administration on the mid/hindgut microflora of L. vannamei, using 

microbiological and molecular biology techniques. In addition, the nutritional status 

of the diet groups were assessed via determination of the hepatosomatic index (HSI). 

Haemocyte counts were also performed to assess the effect of V gazogenes 

administration on circulating haemocyte populations. Three diet groups were 

established, as for Trial 1 these were a control diet group, a chitin (only) 

supplemented diet group and a V gazogenes!chitin supplemented diet group. Forty 

animals (juvenile L. vannamei; 10.5 ± 2.5 g) were allocated to each diet group at the 

start of the trial (120 shrimp total); these animals were housed over twelve, 25 1 tanks
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of a closed, recirculation system at the CSAR Facility, Swansea University. Only 30 

animals were required for sampling per group, however, given the duration of the trial 

it was thought prudent to maintain a surplus of animals in the event of mortality. The 

commencement of feeding (i.e. trial start time, TO) was staggered for each diet group, 

by 2 days, this allowed sufficient sampling time whilst maintaining comparability 

between the diet groups results.

The animals were fed twice daily with the feed amount equivalent to 4% of the tank 

biomass per day {ca. 4 g per tank d'1 for the first week). Ten randomly selected 

animals from each diet group were weighed weekly to gain an estimate of the average 

biomass per tank and therefore the amount of feed required for the following seven 

days. Prior to feeding, faeces, uneaten feed and any mortalities were removed from 

the tanks. In addition to this, the tank filters were cleaned and 50% water exchanges 

performed daily, to maintain water quality.

Fifteen animals were sacrificed for baseline samples at the commencement of the trial 

(Section 5.2.1.3.c to 5.2.1.3.e); these animals were not members of the diet groups, 

but were collected from the CSAR main facility at the same time as the trial animals. 

Fifteen animals from each diet group (selected at random over the four tanks) were 

sacrificed and sampled as detailed in Section 5.2.1.3.c-e, 4 weeks into the trial. The 

selected animals were removed from the tanks 3 h after receiving their morning feed. 

The remaining animals in each diet group were then combined and redistributed over 

a suitable number of tanks {ca. 10 animals per tank) to minimise variation due to 

reduced stocking densities. At the end point of the trial (after 8 weeks of feeding) a 

further 15 animals from each diet group, again randomly selected from the remaining 

tanks, were sacrificed and sampled.
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5.2.1.3.b Preparation of feed

The control diet used was a commercial shrimp maturation feed (Dragon Feeds 

Supreme™) obtained from Dragon Feeds Ltd., Port Talbot, UK. The chitin only and 

the chitin plus V gazogenes culture feeds were produced and stored as described in 

Section 5.2.1.1.b.

5.2.1.3.C Haemocyte counts

As stated in Section 5.2.1.3.a sampling of the three diet groups was staggered and 

separated by a 2 day interval. The control diet group was sampled first, followed by 

the chitin diet group and finally the V gazogenes!chitin diet group. Sampling was, 

however, carried out at the same time of day.

After weighing and numbering, 5 (of the fifteen) animals were partially anaesthetised 

on ice for ca. 3 min to minimise movement Haemolymph was drawn into a 2 ml 

syringe containing 500 pi of sterile, ice cold shrimp MAC (Appendix 1; Chiu et al, 

2007). The animals were bled from the main ventral vessel at the second/third 

abdominal segment, using a sterile 21 gauge needle. The volume of haemolymph 

extracted was recorded for use in calculating the dilution factor (require for 

determining the total haemocyte count (THC)). Five hundred microlitres of the 

contents of the syringe were then transferred to a 1.5 ml Eppendorf tube containing 

500 pi of isosmotic formalin solution (Appendix 1) and used to perform the 

differential haemocyte counts (DHC). The remaining contents of the syringe were 

then transferred to a second sterile 1.5 ml Eppendorf tube and placed on ice until the 

remainder of the samples were collected. Twenty five microlitres of the
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haemolymph/MAC suspension was pipetted onto a Neubauer haemocytometer and 

cell counts performed under x40 magnification, using a Leitz Wetzlar light 

microscope.

Differential haemocyte counts were performed on slides prepared using a Shandon 

cytocentrifuge. One hundred microlitres of the formalin fixed haemolymph/MAC 

suspension was centrifuged (1000 rpm; 5 min) and the slides allowed to dry at room 

temperature, before being fixed again in absolute methanol and stained using 

undiluted Wright’s stain (~ 2 min). Once dry, the numbers and proportions of each 

haemocyte type were determined using a minimum of 200 cells per slide. Cell types 

were identified using morphological criteria modified from that outlined by Bauchau 

(1981).

5.2.1.3.d Mid/hindgut and faecal microbiology

The following methods were utilised to determine the total number of aerobic colony 

forming units and the number of colony forming units of VibrioASks bacteria present 

in the faeces and mid/hindgut contents of L. vannamei. The function of this was to 

investigate whether the administration of V gazogenes and/or chitin affected the total 

number of bacteria and/or the relative proportion of Vibrio-like organisms in the 

mid/hindgut.

The 5 animals from which haemolymph samples were collected in Section 5.2.1.3.c 

were euthanised on ice {ca. 10 min) and their mid/hindguts aseptically removed. The 

mid/hindguts were stripped of faeces and discarded; the faecal material collected from 

each animal was then transferred (aseptically) to sterile 1.5 ml Eppendorf tubes. The 

mass of faeces was determined by subtracting the mass of the empty tube from its
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mass when full, the tubes having been numbered and weighed prior to sampling. One 

millilitre of sterile 3% NaCl solution was then added to each tube and their contents 

mixed by a combination of manual homogenisation and vortexing (ca. 1 min). A 

x2,000 dilution was performed and 100 pi of the dilutant aseptically spread onto a 

TSA (plus 2% NaCl) plate and duplicate plates were produced for each sample. The 

plates were then incubated aerobically at 27°C for 24 h and colony counts performed. 

The number of colony forming units per gram of faeces (wet weight) was then 

calculated for each animal. For an estimate of the number of colony forming units of 

Vibrio-\iks bacteria per gram of faeces, 100 pi of undiluted faecal suspension was 

aseptically spread onto plates of thiosulfate citrate bile salts sucrose agar (TCBS agar) 

(BD-Difco; Cat# 265020). TCBS agar is regarded as being specific for Vibrio-like 

species of bacteria (Castex et al, 2008). The TCBS plates were also incubated 

aerobically at 27°C for 24 h after which colony counts were performed.

5.2.1.3.e Hepatosomatic index and mid/hindgut sampling for molecular analysis

The remaining 10 animals were weighed and numbered before being euthanised on 

ice (ca. 10 min). Mid/hindgut and whole hepatopancreas were aseptically removed; 

the mid/hindgut was stripped of faeces which was collected and weighed as described 

in Section 5.2.1.3.d before being stored, at -20°C, for later molecular analysis (Section 

5.2.1.5) This method was modified for the week 8 sampling, where the whole 

mid/hindgut (plus faeces) was used rather the faeces alone; this modification was 

incorporated into the sampling for all subsequent trials. The wet weight of 

hepatopancreas was determined and along with the whole shrimp weight used to



calculate the animal’s hepatosomatic index (HSI), via the method used by Castex et 

al. (2008).

5.2.1.3.f Statistical analysis

To determine any significant differences between the diet groups an ANOVA together 

with a Bonferroni multiple comparisons post test was used. This followed the 

determination of normal distribution of the data via the application of a Kolmogorov- 

Smimov test. In cases where the standard deviation of the data was not equal between 

groups, a Kruskal-Wallis test (nonparametric ANOVA) with a Dunn’s multiple 

comparison post test was utilised. All values are shown as arithmetic means ± 1 

standard error of the mean (S.E.M).

5.2.1.4 Trial 4: A 6 week multi-species, Vibrio gazogenes (NCIMB 2250) plus 

Lactobacillus plantarum feed trial in Litopenaeus vannamei

5.2.1.4.a Animals & experimental design

Two diet groups were utilised for this trial; a control group, fed a diet supplemented 

with the V. gazogenes!chitin mix and a multi-species group receiving a diet containing 

both the V gazogenes!chitin mix and lyophilised L. plantarum. Each diet group 

contained 35 animals (10 ± 2 g), housed over three, 25 1 tanks of a closed, 

recirculation system at the CSAR facility, Swansea University. All feeding procedures 

and animal husbandry tasks were conducted as outlined in Section 5.2.1.3.a; sampling
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and statistical analysis was conducted using the methods described in Sections

5.2.1.3.c-f. Molecular analysis of faecal and mid/hindgut samples was performed as 

described in Section 5.2.1.5. As for Trial 3, the commencement of feeding (i.e. trial 

start time, TO) was staggered for each diet group, by 2 days.

Baseline (TO) samples were obtained from 10 additional animals collected from the 

CSAR main culture system at the commencement of the trial. The intention was to 

sample 15 animals from each group after 3 and 6 weeks of continuous feeding, 

however, both diet groups experienced unexpectedly high mortality due to issues 

associated with culture water quality, consequently only the 6 week sampling could be 

performed.

5.2.1.4.b Preparation of feed

Immediately prior to this trial the opportunity arose to formulate and produce pellet 

feed containing the required probiotic supplements rather than simply top-coating a 

commercial feed. The principle benefits of this were the homogeneity of the 

supplements within the feeds and their guaranteed consumption by the animals.

The base composition of the feeds was as follows; (required to produce ca. 1 kg of 

feed) 260 g fish meal 66, 260 g polychaete meal, 100 g wheat gluten, 260 g wheat 

starch, 10 g vitamin mix, 0.8 g Stay C powder (stabilised vitamin C), 20 g CaSC>4, 20 

g alginate, 20 g dicalcium phosphate powder, 50 g fish oil, 20 g of probiotic 

supplement/s and ca. 300 ml of water. In the case of the control feed the 20 g per kg 

of supplement was composed of 10 g skimmed milk powder and 10 g of the V 

gazogenes!chitin mix (produced as outlined in Section 5.2.1.1.b). The multi-species
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feed contained 10 g per kg of the V gazogenes!chitin mix and an equal mass of the 

lyophilised L. plantarum powder, described in Section 5.2.1.2.b.

Production of the feed involved the weighing and thorough mixing of the dry 

components, both by hand and electric whisk. This was followed by the addition of 

the fish oil and sufficient water to render the mix, dough-like. Water was added in 

small volumes whilst mixing in order to achieve the required consistency for milling. 

The feed was then milled and extruded using an E l2 Meat mincer (Bertolini Spa, 

Reggio Emila, Italy) fitted with a 3 mm mincer plate and placed on trays in 

preparation for drying. The feed was then placed in a 200 litre drying oven (GenLab 

Ltd. Widnes, UK; Model #OV/200/F) at 45°C for ca. 36 h. Once dry, the strands of 

feed were placed in a kitchen food processor and processed until pellets of ca. 5 mm 

length were obtained, the feeds were then stored at 4°C until required.

The viability of the feeds was determined through the dilution and spread plating of 

homogenised samples. L. plantarum was present at a concentration of 2 x 106 CFU g’1 

of the multi-species diet, V. gazogenes, however, was unrecoverable from either feed.
Q 1

The V gazogenes!chitin mix originally contained 1 x 10 CFU g ' , therefore a cell 

concentration of 1 x 106 cells g'1 can be inferred for both diets.



5.2.1.5 Molecular analysis of mid/hindgut and faecal samples obtained from L. 

vannamei

The molecular technique employed in the analysis of the microbial ecology of faeces 

or whole mid/hindgut of animals sampled in the feed trials described in Sections

5.2.1.3 & 5.2.1.4, was terminal restriction fragment length polymorphism (T-RFLP). 

The methodology used was slightly modified from that described by Gregory (2008) 

and is detailed in Sections 5.2.1.5.a-f.

5.2.1.5.a DNA extraction

Samples of whole mid/hindgut and/or faeces obtained as outlined in Sections 5.2.1.3 

& 5.2.1.4 were paired and pooled prior to extraction. Therefore, the 10 animals 

sampled from each diet group at each sampling period, yielded 5 distinct samples for 

DNA analysis. The samples were pooled in this fashion to ensure that a sufficient 

quantity of microbial DNA was present for extraction and amplification.

The pooled samples were then manually homogenised for ca. 1 min before extracting 

the DNA using a fastDNA SPIN kit for soil (Q-Biogene, Cambridge, UK). Post 

homogenisation, the sample was added to a lysing matrix tube, followed by 980 pi of 

sodium phosphate buffer and 120 pi MT buffer. The lysing matrix tubes were then 

placed in a FastPrep® Instrument and processed at speed setting five for 2 x 30 sec. 

The tubes were then centrifuged (13,000 rpm; 5 min at RT). The supernatant was then 

transferred to a sterile 1.5 ml Eppendorf tube and 250 pi of PPS (protein precipitate 

solution) was added. The contents were then gently mixed by inverting the tubes 10 

times, by hand. The tubes were centrifuged (13,000 rpm; 1 min at RT) before the



supernatant was transferred to a sterile 15 ml tube containing 1 ml of binding matrix 

suspension. After 2 min of gentle mixing, the silica matrix in the tubes was allowed to 

settle for ca. 3 min. At this point, 500 pi of the supernatant was carefully removed and 

discarded. The remaining binding matrix was resuspended and transferred to a SPIN™ 

filter it was then centrifuged (13,000 rpm; 1 min at RT) to capture the matrix-bound 

DNA. The bound DNA was then washed (13,000 rpm; 1 min at RT) with 500 pi of 

SEWS-M (salt/ethanol wash solution; DNase-free). An additional centrifugation was 

performed to remove any remaining SEWS-M from the filter before eluting the DNA 

into a fresh catch tube using 50 pi ddtEO and centrifuging for 1 min at 13,000 rpm. 

The samples were stored at -20°C until required, DNA quantifications were carried 

out using a NanoDrop® ND-1000 spectrophotometer (NanoDrop® Products, 

Wilmington, USA).

5.2.1.5.b Polymerase chain reaction

DNA (0.5 pi) was added to a PCR mix comprising lxGoTaq® flexi buffer, 1.25U 

GoTaq® Hot Start Polymerase, 200 pM each dNTP, 0.25 pM each primer, 1.25 mM 

MgCE (all PCR mix components supplied by Promega UK, Southampton, UK). The 

forward primer for PCR reactions was labelled with a Beckman D3 dye (Sigma- 

Aldrich Genosys). Details of the primers used can be found in Table 2.

Polymerase chain reactions were performed in triplicate using a PTC-200 DNA 

Engine (M.J. Research Inc., Waltham, USA). The three PCR products produced from 

each sample were pooled prior to analysis to minimise PCR amplification bias. A no 

template reaction (negative control) with DNA replaced by dctt^O was always carried 

out.
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Table 2. Universal eubacterial primers targeting 16S rDNA.

Gene Primer name Sequence Reference

16S rDNA WellRED D3 5'[D3]-AGA GTT TGA (Lane, 1991)
labelled 27f TCMTGG CTCAG-3'

16S rDNA 1387r 5-GGG CGG WGT GTA (Marchesi et al., 1998)
CAA GGC-3'

16S rDNA PCR program:

• Initial denaturation at 95°C for 5 min followed by 30 cycles of; 

o Denaturation (95°C for 30 sec)

o Annealing (65°C for 45 sec) 

o Extension (72°C for 75 sec)

• Final extension step of 72°C for 10 min.

5.2.1.5.C Agarose gel electrophoresis

The PCR products were checked visually using gel electrophoresis; 0.8 % w/v gels 

were used to visualise the 16S rDNA. Fifty or 100 ml gels were produced by the 

addition of the appropriate mass of agarose powder (Fisher Scientific UK Ltd., 

Loughborough, UK) to lxTBE electrophoresis buffer (Appendix 1). Half a microgram 

ml"1 of ethidium bromide was added after melting the agarose in a microwave. Three 

microlitres of PCR buffer was mixed with 1 pi bromophenol blue loading dye (Fisher 

Scientific UK Ltd.) and run for ca. 30 min at 100 volts. DNA was visualised using a 

Bio-Rad UV transilluminator (Bio-Rad Laboratories Ltd., Hemel. Hempstead, UK) at 

245 nm.
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5.2.1.5.d Restriction endonuclease digestions

Standard enzyme digests were carried out over a duration of five hours, or overnight, 

at 37°C using the following mixture; 15 pi sample DNA, 5 pi digestion buffer, 1 pi of 

Hphl enzyme (New England Biolabs, USA) and 34 pi dcttLO.

5.2.1.5.e PCR product purification

A QIAquick™ PCR purification kit (Qiagen Ltd., Crawley, UK) was used to remove 

excess primers from the PCR product. PCR samples were mixed with five times the 

volume of binding buffer PB, before the mixture was added to a QIAquick™ spin 

column. The column was then centrifuged (13,000 rpm; 1 min at RT) in order to bind 

the DNA to the silica membrane. The flow-through was discarded and the DNA 

washed via further centrifugation (13,000 rpm; 1 min at RT) with 750 pi of wash 

buffer PE. The flow-through was again discarded and the column further centrifuged 

(as previously) to remove any remaining wash buffer. The DNA was eluted via the 

addition of 30 pi DNase/pyrogen free water to the centre of the membrane. The 

column was allowed to stand for 1 minute before being transferred to a fresh, sterile 

1.5 ml Eppendorf tube and centrifuged (13,000 rpm; 1 min at RT). The eluted DNA 

sample was then ready for fragment analysis.

5.2.1.5.f Fragment analysis

Three microlitres of the purified DNA eluant was mixed with 37 pi of sample loading 

solution (Beckman Coulter UK Ltd., High Wycombe, UK). Fragment analysis was



performed using Beckman CEQ 8000 capillary electrophoresis, utilising a 640 base 

pair standard (Beckman Coulter UK Ltd.). Analysis was performed using a capillary 

temperature of 50°C and the following program settings;

• Denature: 120 sec

• Injection: 2 kV for 45 sec

• 1° separation: 5 kV ramp duration 2 min

• 2° separation: 5 kV, start time 10 min, ramp duration 5 min

• Total separation time: 75 min

In order to minimise the false reporting of background noise, the cut-off level for peak 

recognition was set at 5 percent. This method of fragment analysis is known to 

produce “shoulder peaks” around the main product, to eliminate these T-RFLP 

profiles were edited by eye. The moving average function of the software program T- 

Align (Smith et al., 2005) was then utilised in the identification of common 

fragments. The resultant fragment groupings were then also edited by eye to minimise 

the miss-grouping of peaks. Multivariate statistical package (MVSP) (Kovach 

Computing Services, Anglesey, UK) was used to conduct principal component 

analysis on the T-RFLP data set. However, the T-RFLP relative abundance data was 

first transformed using a chord transformation (Ramette, 2007), to make it both 

suitable for linear PCA analysis and to avoid over representation of changes in rare 

terminal restriction fragments. The scores of the first two principal components were 

used to determine any differences between the T-RFLP sample profiles of the various 

diet groups.



5.3 Results

5.3.1 Trial 1: An initial 15 day feed trial to assess the safety of orally 

administered Vibrio gazogenes (NCIMB 2250) in Litopenaeus vannamei

No mortality was recorded in any of the three diet groups during the 15 days of this 

feed safety trial. Despite the lack of useful data, the sampling performed at the end of 

this trial was regarded as successful as it allowed the development and optimisation of 

the techniques described in Sections 5.2.1.3.c-e.

5.3.2 Trial 2: A 28 day Lactobacillus plantarum feed trial in Litopenaeus 

vannameiI

No statistically significant differences were observed between the control and L. 

plantarum supplemented diet groups for any of the feed utilisation or growth 

parameters assessed (P<0.05) (Table 3). Although the L. plantarum supplemented 

group exhibited greater mortality over the course of the trial, compared to the control 

group (Figure 1) this difference was also not statistically significant (P>0.05).

Table 3. Feed utilisation and growth data obtained for post-larval Litopenaeus
vannamei fed a commercial shrimp maturation diet and the equivalent diet

[ supplemented with the probiotic bacterium, Lactobacillus plantarum, for 28 days.
! Values displayed as mean ± SEM.

Average initial Average final Average mass Average mass Feed Specific
Diet Group animal animal gain per animal of feed consumed Conversion Growth

mass (g) mass (g) over trial (g) per animal (g) Ratio Rate (%)

Control 0.49 ± 0.03 1.63 ±0.06 1.13 ±0.03 2.00 ± 0.07 1.77 ±0.09 4.27 ±0.18

L. plantarum supplemented 0.50 ± 0.04 1.66 ±0.08 1.15 ±0.05 2.14 ±0.07 1.86 ±0.08 4.26 ± 0.26
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Figure 1. Cumulative mortality of post-larval Pacific white shrimp, Litopenaeus vannamei, 
over 28 day feed trial assessing effects of Lactobacillus plantarum  administration on feed 

utilisation and growth parameters. Mean values ± SEM, n = 3.

5.3.3 Trial 3: An 8 week Vibrio gazogenes (NCIMB 2250) feed trial in 

Litopenaeus vannamei

5.3.3.a Haemocyte counts

Statistically significant differences were observed among the total and differential 

haemocyte counts obtained for the baseline, control and experimental diet groups over 

the 8 week feeding period (Figures 2-5). The total number o f control group 

haemocytes, more specifically, the number o f control granulocyte-type haemocytes 

and hyaline cells at week 4 were significantly higher than the corresponding baseline 

values (Figures 2 & 3). At week 8, however, there were no statistically significant 

differences in total circulating haemocyte numbers and granulocyte-type cell numbers 

between the baseline data and the three diet groups. The only statistically significant 

variation displayed by the chitin diet group occurred in the week 4 data for 

granulocyte-type cell numbers (Figure 3). The week 8 counts for the V gazogenes

- 161 -



plus chitin diet group semi-granulocyte and hyaline cells were significantly higher 

than those o f the baseline and corresponding control (Figures 4 & 5).
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Figure 2. Total haemocyte numbers observed in haemolymph samples from baseline animals 
as well as those from the control, chitin only and chitin plus Vibrio gazogenes diet groups 
at 4 week intervals over an 8 week feeding period. Mean ± SEM, n=5, * P<0.05 compared

with baseline.
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Figure 3. Number of granulocyte type haemocytes observed in haemolymph samples from 
baseline animals as well as those from the control, chitin only and chitin phis Vibrio gazogenes diet 
groups at 4 week intervals over an 8 week feeding period. Mean ± SEM, n=5, * P<0.05 compared

with baseline.
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Figure 4. Number o f hyaline type haemocytes observed in haemolymph samples from baseline 
animals as well as those from the control, chitin only and chitin plus Vibrio gazogenes diet groups 

at 4 week intervals over an 8 week feeding period. Mean ± SEM, n=5, * P<0.05 compared 
with baseline; * P<0.05 compared with control at same time period.
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Figure 5. Number o f semigranulocyte type haemocytes observed in haemo lymph samples from 
baseline animals as well as those from the control, chitin only and chitin plus Vibrio gazogenes 

diet groups at 4 week intervals over an 8 week feeding period. Mean ± SEM, n=5, * P<0.05 
compared with baseline; * P<0.05 compared with control at same time period.
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5.3.3.b Mid/hindgut content microbiology

As can be seen from Table 3 there was a great deal of variation in both total and 

Vibrio-like, counts in the baseline samples. For example total bacterial counts ranged 

from 0.93 -  22.89 x 107 g'1. Analysis of the colony forming unit data obtained for 

Vibrio-like, mid/hindgut bacteria indicated statistically significant differences between 

the chitin and V gazogenes plus chitin diet groups and those of the baseline values 

(Table 3). At week 8, the samples from both groups receiving chitin supplemented 

diets exhibited a significantly reduced proportion of bacteria displaying Vibrio-like, 

growth characteristics compared to the baseline (Table 3). As well as this, the chitin 

only group exhibited a statistically significant difference compared to the 

corresponding control samples (in week 8). In addition, at week 4, the diet group 

receiving V gazogenes also displayed significantly reduced Vibrio-like bacteria 

compared to control group samples.

Table 3. Total aerobic bacterial and aerobic Vibrio-like bacterial colony forming units 
present in samples obtained from the mid/hindgut of Litopenaeus vannamei receiving 
control, chitin or chitin plus Vibrio gazogenes diets. (Mean ± SEM, n=5, * P<0.05 
compared with baseline; * P<0.05 compared with appropriate control at same time 
period).

Diet
type

administered

Period 
of feed 

administration

Total bacterial 
content of hindgut 

(CFU g*1 wet weight)

Vibrio -like bacterial 
content of hindgut 

(CFU g’1 wet weight)

% of total culturable 
bacteria with Vibrio -like

growth characteristics

Controlf Baseline (0 wk) 6.78 ± 2.38 x 107 5.73 ± 3.60 x 106 4.3 ± 1.5

Controlf 4 weeks 3.77 ± 0.76 xlO7 0.66 ± 0.29 x 106 2.4 ± 1.3
Chitin 4 weeks 3.06 ± 0.66 xlO7 0.40 ± 0.17 x 106 1.5 ±0.6

V gazogenes plus chitin 4 weeks 2.28 ± 0.31 xlO7 0.11 ±0.05 xlO6** 0.5 ±0.2**

Controlf 8 weeks 2.25 ± 0.57 xlO7 0.38 ± 0.14 xlO6 3.9 ±2.5
Chitin 8 weeks 2.99 ± 0.36 xlO7 0.13 ± 0.05 xlO6* 0.5 ±0.1**

V gazogenes plus chitin 8 weeks 5.15 ± 0.77 xlO7* 0.42 ± 0.08 x 106 0.7 ±0.1 *

f  Dragon Feeds Supreme™.
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5.3.3.C Hepatosomatic Index

A statistically significant difference was observed between the hepatosomatic index 

values obtained for the control diet group (at week 4) and those o f the baseline 

samples (Figure 6). A significant difference was also noted between the week 4 

samples o f the control diet group and those o f  the chitin only and the chitin plus V 

gazogenes diet groups (Figure 6). However, no such variations were evident in the 

sample data gathered during week 8.
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Figure 6. Hepatosomatic index o f  baseline animals as well as those o f  the 
control, chitin only and chitin plus Vibrio gazogenes diet groups at 4 week 

intervals over the 8 week feeding period. Mean ± SEM, n=10, * P<0.05 
compared with baseline; * P<0.05 compared with appropriate control at

same time period.
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5.3.3.d 16S rDNA T-RFLP analysis of microflora of faeces and/or whole 

mid/hindgut of L. vannamei

The abundance and size distribution o f 16S rDNA terminal restriction fragments 

(TRFs) obtained from faecal and whole mid/hindgut samples during the feed trial 

exhibited significant variation both between samples (pairs o f animals) and diet 

groups (Figures 7 & 8). The samples collected from all three diet groups at week 4 

exhibited a fragment distribution profile similar to that displayed by the baseline 

(Figures 7 & 8). There was no apparent divergence in peak distribution between the 

diet groups after 4 weeks o f feed administration, as indicated by principal component 

analysis; no clustering o f sample data was observed (Figure 9). All three diet groups 

displayed the highest abundances o f fragments at 104, 107 and 306 base pairs, the 

control and chitin only diet groups also exhibited larger peaks at 667 base pairs 

compared to those o f the baseline and V gazogenes plus chitin samples.
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Figure 7. Size distribution profiles o f T-RFLP fragments from baseline faecal samples 
(B1-B3) collected from the mid/hindgut o f  Pacific white shrimp Litopenaeus

vannamei
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Figure 8. Size distribution profiles o f T-RFLP fragments obtained from faecal 
samples collected from the mid/hindgut o f  Pacific white shrimp, Litopenaeus 
vannamei, after 4 weeks receiving; (A) a control diet (C1-C5); (B) a chitin 
supplemented diet (CFI1-CFI5); (C) a Vibrio gazogenes plus chitin supplemented diet 
(P1-P5).
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Figure 9. PCA ordination o f bacterial T-RFLP peak height data for week 4 faecal 
samples from control, chitin supplemented and V gazogenes plus chitin supplemented

diet groups (baseline samples included).

11•  • •
%Q2 •  -0.01 0.-0.05 -0.04 '|p  0.01 •  0.(J 0.04 0.05 0.06

#  Principal component 1 (59%)

100
90

80

70

w  60 
8
i  50 ~o
i  40 

30 

20 

10 

0

TRF size (base pairs)

Figure 10. Size distribution profile o f T-RFLP fragments obtained using restriction 
endonuclease Hph\ for potential probiotic Vibrio gazogenes.

- 168-



Small abundance peaks for a TRF of 114 base pairs (the same fragment size displayed 

in the V gazogenes TRF profile obtained using Hphl enzyme digest; Figure 10) were 

observed in samples PI, P4 and P5 of the V gazogenes supplemented diet group 

samples (Figure 11C). Such peaks were absent from the sample profiles of the chitin 

supplemented diet group (Figure 11B) but were observed in a baseline sample, Bl, 

and in week 8 control group sample, C5 (Figures 7 and 11A). At week 8, all three diet 

groups exhibited the highest abundance of TRF at 126 and 306 base pairs; they also 

displayed smaller peaks at 607 base pairs, although not consistently over all samples 

(Figure 11). The control and chitin supplemented diet groups exhibited the greatest 

abundance (averaged at 65%) of fragments at 306 base pairs (Figure 11A & B). The 

group receiving V gazogenes exhibited the greatest abundance of fragments 

(averaged at 57%) at 126 base pairs (Figure 11C). A separate PCA was performed on 

the week 8 T-RFLP peak height data as the samples collected during week 8 were of 

whole mid/hindgut as opposed to merely mid/hindgut contents as was analysed from 

week four. The baseline values were excluded from the week 8 sample analysis for 

the same reason. The peak height (% abundance) values and PCA analysis both 

indicated a difference between the mid/hindgut microflora of the V gazogenes plus 

chitin diet group and those of the control and chitin supplemented diet groups, at week 

8; indicated by the apparent separation and clustering of the probiotic fed group 

(Figure 12). In addition, the PCA illuminated no discernible (statistically significant) 

differences triggered by the variables represented by the first two principal 

components in the TRF distribution profiles of the control and chitin supplemented 

diet groups (Figure 12).
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Figure 11. Size distribution profiles o f T-RFLP fragments obtained from faecal 
samples collected from the mid/hindgut o f  Pacific white shrimp, Litopenaeus 
vannamei, after 8 weeks receiving; (A) a control diet (C1-C5); (B) a chitin 
supplemented diet (CH1-CH5); (C) a Vibrio gazogenes plus chitin supplemented diet 
(P1-P5). Arrow indicates 114 base pair fragment size corresponding to the V 
gazogenes profile.
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5.3.4 Trial 4: A 6-week multi-species, Vibrio gazogenes (NCIMB 2250) plus

Lactobacillus plantarum feed trial in Litopenaeus vannamei

5.3.4.a Haemocyte counts

No statistically significant variation in total circulating haemocyte numbers was 

detected between the mono-strain (V  gazogenes) and the multi-species ( V gazogenes  

& L. p lantarum )  diet groups after 6 weeks o f feed administration (Figure 13). Nor 

were any significant differences observed between the experimental diet groups’ data 

and the baseline THC values.

Figures 13 through to 16 also illustrate that no statistically significant differences 

(P>0.05) existed between the two diet groups, or between the diet groups and the 

baseline data, with regard to the proportions o f different circulating haemocyte types.

Mono-strain (V. gazogenes)
Multi-species (V. gazogenes plus L. plantarum) 
Baseline

Time (wk)

Figure 13. Total haemocyte numbers observed in haemo lymph samples from baseline 
animals as well as those from the mono-strain (Vibrio gazogenes only) and multi-species 

(V  gazogenes plus Lactobacillus plantarum) diet groups after 6 weeks. Mean ± SEM, n=5.

- 172



20-,

a>Q.
CD̂ 15-

o  10-

(0
05

Mono-strain (V. gazogenes)
Multi-species (V gazogenes plus L. plantarum) 
Baseline

Time (wk)

Figure 14. Number of granulocyte type haemocytes observed in haemolymph samples from 
baseline animals as well as those from the mono-strain (Vibrio gazogenes only) and 

multi-species (V. gazogenes plus Lactobacillus plantarum) diet groups after 6 weeks.
Mean ± SEM, n=5.
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Figure 15. Number of hyaline type haemocytes observed in haemolymph samples from 
baseline animals as well as those from the mono-strain ( Vibrio gazogenes only) and 

multi-species ( V. gazogenes plus Lactobacillus plantarum ) diet groups after 6 weeks.
Mean ± SEM, n=5.
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Figure 16. Number of semigranulocyte type haemocytes observed in haemolymph samples 
from baseline animals as well as those from the mono-strain ( Vibrio gazogenes only) and 
multi-species ( V. gazogenes plus Lactobacillus plantarum) diet groups after 6 weeks.

Mean ± SEM, n=5.
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5.3.4.b Mid/hindgut content microbiology

Statistically significant differences were observed in the total mid/hindgut content 

CFU data, however, no such differences, between any of the diet groups, were present 

amongst the Vibrio-like, mid/hindgut CFU values (Table 4). Average total colony 

forming units present in the 6 week mid/hindgut content samples of the mono-strain 

diet group were significantly lower (PO.05, Kruskal-Wallis test with Dunn’s multiple 

comparisons post test) than those observed for the baseline and multi-species diet 

group samples. There was, however, no corresponding statistically significant 

decrease in the mean Vibrio-like mid/hindgut CFU values (P>0.05). Consequently, 

the proportion of the total colony forming units with Vibrio-like growth characteristic 

was significantly higher (P<0.05, Kruskal-Wallis test with Dunn’s multiple 

comparisons post test) in the mono-strain diet group than in the baseline and multi­

species diet groups (Table 4). No statistically significant variation in colony forming 

unit values was detected between baseline samples and those of the multi-species diet 

group.

Table 4. Total aerobic bacterial and aerobic Vibrio-like bacterial colony forming units 
present in mid/hindgut contents obtained from Litopenaeus vannamei receiving 
mono-strain {Vibrio gazogenes) or multi-species (V gazogenes plus Lactobacillus 
plantarum) diets. (Mean ± SEM, n=5, * P<0.05 compared with baseline; * P<0.05

Diet
type

administered

Period 
of feed 

administration

Total bacterial 
content of hindgut 

(CFU g'1 wet weight)

Vibrio -like bacterial 
content of hindgut 

(CFU g'1 wet weight)

% of total culturable 
bacteria with Vibrio -like

growth characteristics

Commercialf Baseline (0 wk) 3.41 ± 0.75 x 108 0.3610.11 x 106 0.0810.02

Mono-strain 
(V. gazogenes only)

6 weeks 0.5310.07 xlO8* 0.1810.05 xlO6 0.3710.10*

Multi-species (V. gazogenes 
&L. plantarum)

6 weeks 2.31 ± 0.52 x 108* 0.5210.29 x 106 0.1510.05*

f  Dragon Feeds Supreme™.
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5.3.4.C Hepatosomatic Index

Both the mono-strain and multi-species diet groups exhibited higher hepatosomatic 

index values (at week 6) than those recorded during the baseline sampling. Despite 

this, these differences and those between the two diet groups were not statistically 

significant (Figure 17).

M ono-strain (V. gazogenes)
M ulti-species ( V gazogenes  plus L. p lan tarum ) 
Baseline

5-i

Time (weeks)

Figure 17. H epatosom atic index o f  baseline animals as well as those o f  
the m ono-strain {V ibriogazogenes  only) and multi-species (V  gazogenes  

plus Lactobacillus p la n ta ru m )  diet groups. Mean ± SEM, n=10.
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5.3.4.d 16S rDNA T-RFLP analysis of whole mid/hindgut microflora of L. 

vannamei

The terminal restriction fragment abundance profiles for baseline, mono-strain (K 

gazogenes) and multi-species (V gazogenes plus L. plantarum) diet groups all 

exhibited peaks at fragments sizes of 114, 126, 306 and 607 base pairs (Figures 18A- 

C). The largest of these in the baseline and mono-strain samples were for TRFs of 126 

and 306 base pairs. Three of the mono-strain samples displayed small peaks at 104/5 

base pairs; these were not present in either the baseline or multi-species samples. The 

multi-species samples exhibited the greatest TRF abundance at 130 base pairs as well 

as a secondary peak at 275 base pairs (neither of which were detected in samples from 

the other groups) (Figure 18C). The absence of peaks for TRFs of 130 and 275 base 

pairs indicated that the mid/hindgut microfloral ecology of the multi-species diet 

group had been altered and was noticeably different to that of the baseline and mono- 

strain diet group. This is further reinforced by the results obtained for the principal 

component analysis, which showed a distinct clustering of the multi-species group 

samples away from those of the baseline and mono-strain group (Figure 20). The TRF 

peaks at 130 and 275 base pairs correspond to the T-RFLP peak abundance profile for 

L. plantarum (Figure 19).

- 177-



100 
90 
80 
70 

£ 60

-N 50
J 40

30
20

1 0

0

|

y ~  .  U$--j -------mW -----------UH H P -------
 ̂ h  u  h   ̂ n  n  h  n  i j j <? n  »

T R F  s i z e  ( b a s e  p a i r s )
B1 □ B2 ■ B3

B

100
90
80
70

«•£  60
50 
40 
30 
20 

10 
0 — . i t  L q » —
» t  ̂ s s s n  ? s s ? i  s ? ? # # i  o  j n  #

T R F  s i z e  ( b a s e  p a i r s )
Mo 1 □  Mo2 ■ Mo3 □  Mo4 ■  Mo5

100
90
80
70
60
50
40
30-
2 0 -

1 0

tS b X k 9 n  n  n  i n  # n  n
Mu 1 □ Mu2 ■ Mu3 □ Mu4 □ Mu5

T R F  s i z e  ( b a s e  p a i r s )

Figure 18. Size distribution profiles o f T-RFLP fragments obtained from faecal samples 
collected from the mid/hindgut o f  Pacific white shrimp, Litopenaeus vannamei:; (A) 
baseline (B1-B3); (B) after 6 weeks receiving a Mono-strain (V  gazogenes) diet (M ol- 
Mo5); (C) after 6 weeks receiving a Multi-species (V  gazogenes & L. plantarum) diet 
(M ul-M u5).
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Figure 19. Size distribution profile o f T-RFLP fragments obtained using restriction 
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5.4 Discussion

The assessment of the in vivo efficacy and mode/modes of action of potentially 

probiotic micro-organisms is often extremely problematic (Verschuere et al, 2000; 

Irianto & Austin, 2002). As described in Chapter 1, potential probiotics may benefit 

the host organisms via one, or more, methods. Consequently, in this chapter the 

sampling protocols were optimised to collected data on a wide range of parameters 

which could theoretically be used to elucidate as many potential modes of action as 

possible. It was impractical, however, to include the examination of growth and feed 

utilisation parameters within a feed trial necessitating the sacrifice of animals for 

tissue samples, for the simple reason that the former requires that the animals remain 

alive for the duration of the trial. Thus, several feed trials were required to assess the 

effects on L. vannamei upon the administration of V gazogenes and L. plantarum.

Trial 1

The first trial undertaken was preliminary with regards to methodology and scope 

(Sections 5.2.1.1 & 5.3.1). Its primary function was to ascertain whether V gazogenes 

was safe for oral administration to L. vannamei. In addition, at the cessation of the 

trial the animals were then utilised in development of sampling methods used in later 

trials. The success of the trial in its primary aim is undetermined, as no V. gazogenes 

colonies were recovered from samples of the top-coated diet. Consequently, there is 

no evidence to indicate the animals actually ingested live V. gazogenes. Initial 

screening work on V. gazogenes (Chapter 3, Section 3.3.3), however, indicated that V. 

gazogenes retained a significant proportion of its Vibrio antagonistic potential when 

dead. Therefore, it was concluded that viable V. gazogenes were not required in order
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to potentially elicit an effect in L. vannamei. Furthermore, the definition of a probiotic 

has been extensively expanded from that outlined by Fuller (1987) and now 

encompasses the products, derivatives and components of microorganisms as well as 

the organisms themselves (Kesarcodi-Watson et al, 2008). Accordingly, the decision 

was taken to proceed with feed trials using a top-coated V. gazogenes diet despite 

being unable to recover viable CFU from said feed. It was also decided to continue 

the administration of powdered chitin, as a second variable, alongside V gazogenes in 

future feed trials. Although chitin was originally included in the diet in an attempt to 

stabilise and maintain the viability of the potential probiotic, it is suggested to have 

the capability to purge potential bacterial ( Vibrio spp.) pathogens as it transits the 

crustacean G.I tract (Powell & Rowley, 2007). The effects of chitin administration on 

the microbial diversity of the crustacean mid/hindgut had never been assessed via 

molecular means, such as T-RFLP.

Trial 2

Trial 2 (Section 5.3.2) investigated whether the oral administration of L. plantarum 

(via top-coated feed) conveyed any benefit to post-larval L. vannamei with regards to 

growth and/or feed utilisation. None of the variations observed in the recorded 

parameters between the control and L. plantarum diet groups over the 28 day feeding 

period were statistically significant. However, it is likely that any benefits wrought by 

L. plantarum would be cumulative and gradual and therefore may only become 

apparent over longer-term administration. In conclusion, the length of Trial 2 may 

have been insufficient for the detection of any growth benefit to L. vannamei. The 

trial period of 28 days was selected after the review of a previous study (Balcazar et 

al, 2007) which indicated that probiotic administration significantly enhanced growth
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and feed conversion rates in L. vannamei. Supplementation with L. plantarum had 

also been shown to increase resistance to the pathogen Vibrio alginolyticus in shrimp, 

after only 7 days administration (Chiu et al, 2007). In conclusion, however, the results 

obtained for L. plantarum in this trial do not mirror those observed for the probiotics 

utilised by Balcazar et al (2007) with regard to enhancement of short-term growth 

performance in L. vannamei.

Trial 3

The aim of the third trial (Trial 3; Section 5.3.3) was to determine whether the 

administration of a feed top-coated with powdered chitin, impregnated or not, with V. 

gazogenes produced any change in circulating haemocyte populations, the microbiotal 

ecology of the mid/hindgut or the health/nutritional status (hepatosomatic index) of L. 

vannamei. As in the first feed trial, live V. gazogenes was unrecoverable from the 

finished feed. A statistically significant variation in the total circulating haemocyte 

population was observed occurring in the control diet groups at the four week sample 

point. At week 4 the control group displayed significantly higher numbers of 

circulating granulocyte-type haemocytes and hyaline cells than were observed in the 

baseline animals (to). These haemocyte cell populations were not, however, 

significantly elevated in the control group data gathered in week 8. The week 4 count 

data for the chitin and V. gazogenes diet groups displayed no significant variation 

when compared to the baseline values with one exception; the week 4, chitin group 

granulocyte-type cell count was significantly elevated compared to the baseline. The 

week 8 chitin diet group haemocyte counts were higher than those of the baseline and 

corresponding control, but were not significantly so, indicating that the administration 

of chitin had no discernible effect on circulating haemocyte populations. Overall,
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although there were some significant changes in haemocyte numbers, there is no clear 

evidence of any systematic effect of either chitin or V gazogenes. This is unlike other 

reports, where the oral administration of L. plantarum was observed to significantly 

lower THC in L. vannamei (Chui et al, 2007) and in Li et al (2008) where injection of 

shrimp with V alginolyticus produced a similar effect.

The control diet group also displayed a statistically significant lower average HSI 

value at week 4 when compared to the baseline samples and the chitin and V. 

gazogenes (plus chitin) diet groups. This difference was not observed at week 8 

however. Other studies have shown that probiotic supplementation affects HSI values 

(e.g. Castex et al, 2008). Castex et al (2008) showed the administration of P. 

acidilactici over 5 weeks increased the HSI of juvenile L. vannamei by 10%. 

Examination of the bacterial population of the mid/hindgut was undertaken via two 

methods. Firstly, basic microbiological techniques were used to determine the number 

of viable total and Vibrio-Vks microorganisims present in the faeces. Of greatest 

significance were the variations in the proportion of CFU with Vibrio-like, growth 

characteristics between the diet groups. By week 8 both experimental diet groups (i.e. 

animals receiving chitin or chitin plus V. gazogenes) displayed statistically significant 

decreases in the proportion of Vibrio-like microbes present in samples of mid/hindgut 

contents, compared to the baseline samples. In addition, in week 4 the V. gazogenes 

diet group also exhibited a significantly lower proportion of Vibrio-like, CFU than the 

corresponding control samples. Therefore, it could be concluded that the chitin 

ingested by the animals in the two experimental diet groups performed a ‘purge’ of 

Vibrio-like microorganisms from the G.I. tract, confirming the findings of Powell & 

Rowley (2007) who performed a similar experiment in the shore crab, Carcinus 

maenas. A further observation of note with regard to the mid/hindgut content
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microbiology data was an apparent decrease in the variability of the proportion of 

Vibrio-Vks microorganisms within those diet groups receiving chitin when compared 

to the baseline and corresponding control groups. This may indicate that the 

administration of chitin may also reduce the variability of the gut microflora of 

shrimp receiving such a diet. This appears at least partially supported by the TRF 

profiles for week 8 (Section 5.3.3.d) where the majority of DNA fragments were of 

two sizes (126 & 306 base pairs). However, care must be taken in drawing such a 

conclusion as the sample collection methodology used in the T-RFLP analysis was 

altered between weeks 4 and 8.

A more detailed picture of mid/hindgut bacterial ecology was produced via T-RFLP 

analysis. The peak size distribution profiles of 16S terminal restriction fragments 

gives an indication of the microbial diversity within a sample, simply, the greater the 

number of fragments (peaks) the greater the microbial diversity (Marsh, 1999; Kitts, 

2001). The TRF distribution profiles obtained in Trial 3 displayed little variation in 

the number of fragment sizes (peaks) present at each sample period; the greatest 

variation occurred with regard to the relative abundance (i.e. size) of these peaks. 

Microbial diversity appeared to be highest in the week 4 samples compared to those 

from week 8. However, this is likely the result of the change in sampling protocol, i.e. 

the analysis of whole mid/hindgut (including contents) in week 8 as opposed to solely 

extruded gut contents in week 4. Examination of the peak size distribution profiles of 

T-RFLP fragments obtained from mid/hindgut samples coupled with principal 

component analysis (PCA) indicated variation in the mid/hindgut bacterial ecology of 

the diet groups. PCA conducted on the week 4 data indicated no evidence of 

clustering of individual diet groups and no significant variation from the baseline TRF 

profile. However, the PCA conducted on the 8 week mid/hindgut samples, showed the



points representing the V. gazogenes diet group clustered separately from those of the 

control and chitin groups, on the first principal component axis. This indicated that 

the mid/hindgut microflora population ecology of animals in the V gazogenes group 

was significantly different compared to the control and chitin diet groups after 8 

weeks receiving the V gazogenes supplemented diet. In addition, three of the five 

TRF profiles representing the V gazogenes diet group samples exhibited a minor peak 

at 114 base pairs; this peak corresponded to the 16S fragment size for the V 

gazogenes TRF profile (for the Hphl enzyme digest). Superficially, this would seem 

to indicate the presence of a limited amount of V gazogenes in the samples. However, 

other closely related bacteria share this 16S fragment size, for example V vulnificus 

and Listonella anguillarum (formerly Vibrio anguillarum). Both of these bacteria 

have also been observed in gut/gill microbiota of penaeid shrimp (Lightner, 1983; 

Vaseeharan & Ramasamy, 2004; Ruangpan & Kitao, 2006; Longyant et al, 2008). 

The presence of 114 base pair fragments in very similar abundances in the profiles of 

baseline and week 8 control group samples, ‘B l’ and ‘C5’, coupled with the inability 

to recover live V gazogenes from the feed, would suggest that the peaks observed in 

the V gazogenes diet group profiles may also represent one or more of these related 

species. The week 8 TRF profiles of the three diet groups exhibited a very similar 

pattern with regard to peak distribution, however, the V gazogenes diet group 

displayed a noticeable difference in the weighting between these peaks, with regard to 

fragment abundance. It was this variation that was detected by the week 8 PCA and 

resulted in the separate clustering of the V gazogenes diet group. Subsequently, given 

the absence of live V gazogenes in the feed and apparent absence or limited presence 

of the microorganism’s DNA profile from the T-RFLP analysis, it is impossible to 

determine what factor/s resulted in this variation. This is a weakness of the approach



taken, using T-RFLP rather than, for example, denaturing gradient gel electrophoresis 

(DGGE). With DGGE there is the ability to obtain sequence data (and therefore 

taxonomic information) from bands (DNA fragments) cut from the gel. The week 8 

PCA did not indicate any significant variation in mid/hindgut bacterial diversity 

between animals receiving the control and chitin supplemented diets. Surprisingly, the 

statistically significant drop in the proportion of Vibrio-Wke microorganisms present 

the in mid/hindgut contents, detected using standard plate counting, for those animals 

receiving supplemental chitin, did not result in a separate clustering of the chitin diet 

group data during PCA. This may be due to the variations in the sampling 

methodology. The samples utilised for the week 8 T-RFLP were of whole 

mid/hindgut, where as those used for the faecal microbiology work were of extruded 

mid/hindgut contents. Consequently, it could be argued that given the chitin binding 

tendencies of Vibrio spp. (Powell & Rowley, 2007) such organisms in the gut 

contents would exhibit increased binding to the fragments of supplemental chitin 

present, thereby reducing the proportion of Vibrio-like organisms available to 

colonise the media. This would of course also occur in the whole mid/hindgut 

samples; however, the overall impact would be lessened by the presence of Vibrio 

spp. adhered to the chitinous hindgut wall.

In conclusion, T-RFLP may not be an optimum method for assessing the variations in 

the G.I microbial populations of animals receiving microbial supplements. The 

technique has both strengths and weaknesses with regard to the microbial community 

analysis attempted in Trials 3 & 4. T-RFLP can be extremely effective when used to 

compare the microbial community composition of different samples without the need 

to culture (Thies, 2006). This was particularly useful in this project given the number 

of samples and the limited time frame. Therefore, a key weakness of the technique is



its inability to often distinguish between related taxa (Thies, 2006). Consequently, the 

addition of large quantities of microbial DNA (i.e. in the form of a probiotic 

bacterium) will of course alter the microbial composition (TRF profile) and such an 

alteration would be illuminated by the subsequent PCA. The grouping of related taxa 

and the displaying of the terminal restriction fragments detected as relative 

abundances (rather than discrete empirical values) ensures that the removal of the 

peak/s appearing to corresponding to a specific microorganism (i.e. a probiotic) is 

impossible without the potential removal/alteration of the profiles of other closely 

related naturally occurring species. The removal of such related taxa would also likely 

result in significant differences between sample profiles (compared to baseline or 

controls) being (falsely) detected, thereby negating any potential advantage in 

attempting to remove peaks appearing to corresponding to the probiotic/s. To 

summarise, T-RFLP is a powerful technique in determining differences in microbial 

community composition between samples where the grouping variable is non- 

microbial in nature, e.g. a potential immunostimulant of non-microbial origin such as 

chitin, or an abiotic factor such as temperature, media composition, pH, etc. The 

efficacy of T-RFLP in assessing the effects of bacterial supplementation on G.I. 

bacterial community composition is, however, more questionable.

Trial 4

The final feed trial (Trial 4) was conceived as a preliminary study examining the 

potential of using mixtures of beneficial microorganisms (multi-strain/species 

supplements) as opposed to a single or mono-strain supplement. Previous research has 

given strong indication that the probiotic potential (and thus benefits) of multi- 

strain/species supplements may be far greater than that of bacterial strains
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administered singularly (Timmerman et al, 2004). Given that this trial was a direct 

comparison and that the effects of a V gazogenes plus chitin diet had already been 

assessed alongside a chitin supplemented and control diet, only mono-strain (V  

gazogenes) and multi-species (V. gazogenes plus L. plantarum) diet groups were 

assessed. This strategy was also selected due to tank space in the CSAR Facility being 

highly restricted at the time the trial was undertaken. No statistically significant 

variation in circulating haemocyte numbers/populations or in nutritional status (HSI) 

was observed between the diet groups or between the diet groups and the baseline 

samples. This was unexpected as Castex et al (2008) showed a significant increase in 

the HSI of L. stylirostris of the same weight administered the lactic acid bacteria, P. 

acidilactici, after only 5 weeks of feeding. However, the trial described in Castex et al 

(2008) was conducted in a commercial pond setting rather than in a closely monitored 

re-circulation system. It is therefore likely that the animals assessed in the Castex and 

co-authors trial did not, at the commencement of feeding, possess a health or 

nutritional status equal to that of animals raised in the CSAR facility. The current 

THC data also appear to contradict that of Chui et al (2007) who indicated that L. 

plantarum administration in similar concentrations resulted in a significant decrease 

in total circulating haemocyte numbers in adult A vannamei.

The mid/hindgut content microbiology data collected showed a large amount of 

variation in the total bacteria counts of the mono-strain diet group. However, the 

numbers of Vibrio-like CFU present in the mono-strain diet group samples were not 

significantly different to those of the baseline and multi-species groups. Given that a 

V gazogenes supplemented diet administered in the previous trial initiated no such 

decline in total mid/hindgut CFU, this variation is likely due to variables introduced 

during the collection and processing of the samples. In addition the data collected did
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not support the findings of Castex et al (2008) which showed a significant drop in 

both total and Vibrio CFU after only three weeks of P. acidilactici supplementation. 

The administration of L. plantarum which exhibited very similar in vitro anti- Vibrio 

activity to P. acidilactici in Chapter 3 resulted in no such reduction. The data are, 

however, partially supported by Vieira et al (2008) who found no significant changes 

in total digestive tract bacterial counts in L. vannamei after administration of L. 

plantarum. Vieira et al (2008) did, however, find that the numbers of culturable 

Vibrio spp. present in the G.I. tract decreased significantly after receiving L. 

plantarum.

T-RFLP and subsequent PC A indicated that the composition of the mid/hindgut 

bacterial community of animals receiving the multi-species diet, was different from 

the baseline and mono-strain diet communities. This was indicated by a definitive 

clustering of the multi-species group separate from the baseline and mono-strain 

groups on the first principal component axis. The PCA of the mono-strain group 

appears to conflict with the data obtained in Trail 3. In this trial the mono-strain and 

baseline profiles are not clustered separately as in Trial 3. This deviation could be a 

result of numerous factors including; the different production techniques used and/or 

subtle variations in diet composition, which may have affected the microbial content 

of the feed. The absence of V. gazogenes from the mid/hindgut samples was indicated 

by the small and variably distributed peaks (at 114 base pairs) in the mono-strain and 

multi-species TRF profiles. The presence in the baseline profiles of peaks of the same 

size at 114 base pairs, gives further indication that V. gazogenes DNA was not 

represented in the diet group samples. Peaks for TRF’s of 130 and 275 base pairs 

were restricted to the sample profiles of the multi-species diet group and corresponded 

to those observed in the TRF profile for pure culture L. plantarum. These peaks were
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absent from the mono-strain and baseline profiles and accounted for a significant 

proportion of the 16S TRF. The PCA conducted on the TRF profiles of the diet 

groups and baseline samples indicated that there was no statistically significant 

variation in the mid/hindgut bacterial community compositions of the baseline and 

mono-strain diet groups. It did, however, show the multi-species diet group samples 

were clustered away from those of the baseline and mono-strain groups on the first 

principal component axis. This indicated that the composition of the mid/hindgut 

bacterial communities present in samples from the multi-species diet group were 

significantly different to those of the baseline and mono-strain samples. As outlined 

previous for Trial 3, however, a weakness of the T-RFLP technique and its analysis, is 

the inability to differentiate between profile differences caused by the presence of the 

probiotic supplement (in this case L. plantarum) or the effect the presence of said 

supplement has on bacterial community composition.

Conclusions

The main findings of this chapter are as follows:

1. The oral administration of the probiotic, L. plantarum, over a short (28 day) 

period, had no discemable effect on growth rate, feed conversion rate or 

survival in post-larval Pacific white shrimp, L. vannamei. In addition, the 

administration of L. plantarum in conjunction with V. gazogenes produced no 

significant change in the health/nutritional status of juvenile shrimp.

2. L. vannamei receiving the potential probiotic, V gazogenes, showed no 

indications of enhancement of health/nutritional status, although there were
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some indications of the modulation of the microbial community of the animals 

mid and hindguts.

3. The administration of chitin reduced the levels of Vibrio-like organisms in 

mid/hindgut contents of L. vannamei.

4. The use of T-RFLP in determining changes in the diversity of gut bacterial 

communities following the administration of probiotics was the primary 

weakness in this chapter. The inability to discern between changes wrought by 

the activity of the probiotics, and those brought about by their simple 

presence, was the major drawback to this technique. In hindsight the use of 

temperature gradient gel electrophoresis (TGGE) or denaturing gradient gel 

electrophoresis (DGGE) would have been more applicable and would have 

allowed for the possible sequencing/identification of the genera present.
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Chapter 6

General discussion and future directions



General discussion

As described in Chapter 1, the primary problem facing intensive, penaeid aquaculture 

is the loss of stock (and subsequent profit) through disease (Skjermo & Vadstein, 

1999). The main causative agents of disease outbreaks in juvenile and adult L. 

vannamei populations are viral, predominantly white spot syndrome virus (WSSV) 

and Taura virus syndrome (TVS) (Flegel, 1996; Phuoc et al, 2009; Lotz et al, 2005). 

Little can be done to curtail such viral outbreaks once established; however, the 

frequency of such outbreaks may be reduced via improvements in farm management 

and animal husbandry. Such improvements may include enhanced water quality, 

better feed utilisation and a reduction in physiological stress due to variations in water 

temperature, salinity, O2 content, etc (Kautsky et al, 2000). Larval and post-larval 

shrimp, however, have increased susceptibity to bacterial pathogens compared to 

animals at later lifecycle stages (Hameed, 1993). A significant contributing factor in 

this increased susceptibility is likely the lack of the stable, healthy, established gut 

microbiota displayed by older animals (Timmermans, 1987; Skjermo & Vadstein, 

1999; Hong et al, 2005). The usefulness of probiotic bacterial strains in increasing the 

health status of aquaculture species has been exhibited in finfish (Ringo & Gatesoupe, 

1998; Irianto & Austin, 2002; Balcazar et al, 2006) and to a lesser extent in 

crustaceans (Rengpipat et al, 2003; Balcazar et al, 2006; Chiu et al, 2007). Although 

the primary efficacy of probiotics in a host appears to lie in countering bacterial 

pathogens (i.e. via competitive exclusion; Verschuere et al, 2000; Hong et al, 2005; 

Farzanfar, 2006; Van Hai et al, 2009), they may also have a role in lessening the 

frequency of viral outbreaks via improvement of the culture environment (i.e. 

bioremediation; Ninawe & Selvin, 2009) and in improving feed conversion rates (i.e.
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via increased digestive efficiency; Castex et al, 2008; Gomez & Shen, 2008). 

Probiotics and immunostimulants are two of the most promising avenues for disease 

prevention currently available in penaeid aquaculture (Ninawe & Selvin, 2009). The 

problems associated with antimicrobials, primarily antibiotics, in shrimp aquaculture 

(outlined in Chapter 1) means that they can no longer be relied upon as a preventative 

measure with regard to bacterial disease outbreaks (Moriarty, 1999; Farzanfar, 2006). 

They remain, however, a viable method for the treatment of outbreaks once the 

pathogen has been identified. Therefore, the most practicable approach to disease 

management in an intensive, commercial, penaeid aquaculture facility appears to be a 

multifaceted one. Such an approach would encompass improved farm management 

techniques (i.e. better training and education of staff in the causes and means of 

disease prevention in shrimp, polyculture with detritivorous fish, use of pond liners, 

etc), in addition to the application of probiotics and immunostimulants (both in 

culture water and feed), bioremediation and the judicious use of effective 

antimicrobials (to treat bacterial disease outbreaks as and when they occur).

The data gathered during this project has displayed the {in vitro) ability of several 

species of bacteria to inhibit/interfere with the growth of potential penaeid, bacterial 

pathogens (Chapter 3). It has also indicated that a likely source of potential shrimp 

probiotics resides within the non-pathogenic Vibrio spp. and in those microbes 

previously utilised as terrestrial probiotics (e.g. Bacillus spp, Lactobacillus spp, 

Pediococcus spp, etc; Hong et al, 2005; Farzanfar, 2006; Chui et al, 2007; Castex et 

al, 2008). The inability during the project to derive a suitable, potential probiont from 

the pre-existing G.I. microflora of adult L. vannamei may be the result of the source 

of the animals screened rather than a general lack of such bacteria in shrimp 

microflora. The animals in question were hatched and raised in a closed recirculation
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system; such systems contain depurated water with no contaminants or toxins and are 

continuously disinfected to eliminate potential pathogens (http://www.umbi.umd.edu/ 

2009). Consequently, such a system will have a significantly less diverse microfloral 

community compared to that of L. vannamei’s natural habitat or an open pond (farm) 

environment. The G.I. microflora of an aquatic invertebrate appears greatly 

influenced by the microorganisms present in their feed and environment (Harris, 

1993; Moss et al, 2000). Accordingly, the microfloral diversity of animals raised in 

such a highly regulated system would be considerably limited; thereby reducing the 

likelihood of isolating potential probionts. In hindsight, a more successful strategy 

may have been to screen the G.I. microflora of pond farmed/wild captured shrimp 

rather than those raised in such a system. However, the temporal and financial 

constraints of the project and the location of such farms (i.e. in the America’s and S.E. 

Asia) made this impractical. This aspect also made the in vivo assessment of the 

efficacy of potential probionts problematic. The animals used in the trials described in 

Chapter 5 were raised and housed in the CSAR Facility (recirculation) systems; 

consequently, they were well fed and in excellent health at the commencement of in 

vivo testing. Any beneficial affects the potential probiotics/chitin may have had on the 

nutritional status (hepatosomatic index), immune parameters (THC & DHC) and 

indirectly via modulation of gut microbiota, would likely have been substantially 

mitigated by the animals initial excellent condition. However, there is little likelihood 

of closed/recirculation systems being widely adopted in commercial penaeid 

aquaculture (Dierberg & Kiattisimkul, 1996). The expense of such systems (both in 

terms of setup capital and running costs) coupled with the relatively low market return 

on farmed shrimp (compared to other aquatic animals), would be prohibitive. 

Consequently, closed/recirculation systems are largely restricted to research facilities,
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or the smaller scale production of high value ornamental shrimp species (Calado et al, 

2003). Any future in vivo research focused on the efficacy of 

probiotics/immunostimulants should be performed in a farmed pond setting (or a 

system setup to mimic the conditions found in such an environment). This is a 

weakness of the in vivo work conducted in this project, when compared to similar 

research in the current literature (i.e. Castex et al, 2008). An additional advantage in 

conducting such trials in a pond setting versus a recirculation system would be the 

increased space and abundance of experimental animals available as one of the 

primary constraints experienced during this project was a lack of available tank space 

within the CSAR facility. As well as the wider screening of microflora of pond 

farmed shrimp, further examination of non-pathogenic Vibrio spp. would also be 

merited given the anti-Vibrio activity exhibited by V alginolyticus and V gazogenes 

described in Chapter 3. A more detailed assessment of the probiotic activity of non- 

virulent strains of V alginolyticus could also prove fruitful, given the high level of 

anti- Vibrio activity displayed by the strain assessed in this project and previous 

research indicating the species potential as a shrimp probiotic (Austin et al, 1995; 

Gomez-Gil et al, 2002). Any additional in vitro screening could also encompass 

members of the Bacillaceae for potential aquatic probionts (Hong et al, 2005). Future 

trial work would likely be rendered more robust by also having available the ability to 

challenge animals receiving probiotic/immunostimulant supplementation (Castex et 

al, 2008).

The nature of the aquatic invertebrate G.I. tract makes the administration of bacterial 

supplements via feed less effective than in terrestrial animals and finfish (Gatesoupe, 

1999; Skjermo & Vadstein, 1999). The apparent transient nature of the G.I. microflora 

of many species of crustacean would indicate that the administration of beneficial
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bacteria via culture water would likely be a more efficient (and cost effective) means 

of supplying beneficial microorganisms (Harris, 1993; Gatesoupe, 1999). By 

supplying probiotics via culture water a constant, uniform presence could be 

maintained within the animal’s G.I. tract. The link between microbial activity, water 

quality and disease control in aquaculture systems is well established (Ninawe & 

Selvin, 2009). The effects of such microfloral management would likely be magnified 

in hatchery and nursery facilities where larval and post-larval animals display the 

greatest mortality due to bacterial pathogens (Nogami & Maeda, 1992; Garriques & 

Arevalo, 1995). Indeed, the different host/microbiota interactions in aquatic animals 

have led many scientists to advocate the expansion of the definition of probiotic to 

encompass the addition of autochthonous bacteria to tanks and ponds (Moriarty, 1999; 

Verschuere et al, 2000; Ninawe & Selvin, 2009). Undeniably it makes sense to have 

separate definitions of what comprises terrestrial and aquatic probiotics, due to the 

radical differences in the natures of the two environments.

In conclusion, probiotic bacteria used in conjunction with effective non-microbial 

immunostimulants and improved farm management techniques (e.g. poly culture and 

use of lined ponds) could form an extremely viable, cost effective and 

environmentally sound means of controlling disease (and effluent) in commercial 

penaeid aquaculture (Dierberg & Kiattisimkul, 1996). This has been reflected in the 

amount of research into the efficacy of numerous species of bacteria as shrimp 

probiotics published in the last two years (Li et al, 2007; Vieira et al, 2007; Chiu et al, 

2007; Balcazar et al, 2007; Balcazar & Rojas-Luna, 2007; Castex et al, 2008; Gomez 

& Shen, 2008). However, probiotics should not be considered a ‘silver bullet’; even 

an optimally managed facility, correctly utilising probiotics, immunostimulants and 

therapeutic anti-microbials will still be susceptible to disease outbreaks, such is the
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nature of intensive aquaculture. It has been hypothesised (and widely accepted) that 

many of the Vibrio spp. associated with shrimp disease are opportunistic pathogens 

and only cause mass mortality when animals are in poor condition or stressed 

(Lightner, 1993; Ruangpan & Kitao, 1991). Consequently, a well managed facility 

with a diverse microflora (not overtly dominated by the Vibrionaceae) should 

experience a vastly reduced incidence of disease outbreaks. Considerable further 

investigation is required to increase the level of understanding of what constitutes 

healthy penaeid microflora. In particular the use of molecular techniques in examining 

microbial diversity/composition at the community level is important given that many 

marine bacterial endosymbionts are unculturable on available media (Zengler et al, 

2002: Sakami et al, 2008).

-197-



References



Abelli, L., Picchietti, S., Romano, N., Mastrolia, L., Scapigliati, G., 1997. 

Immunohistochemistry of gut-associated lymphoid tissue of the sea bass Dicentrarchus 

labrax (L.). Fish & Shellfish Immunology 7,235-245.

Ahyong, S.T., 2005. Range extension of two invasive crab species in eastern Australia: 

Carcinus maenas (Linnaeus) and Pyromaia tuberculata (Lockington). Marine Pollution 

Bulletin 50, 460-462.

Al-Mohanna, S.Y., Nott, J.A., 1987. R-cells and the digestive cycle in Penaeus 

semisulcatus (Crustacea, Decapoda). Marine Biology 95,129-137.

Al-Mohanna, S.Y., Nott, J.A., 1989. Function cytology of the hepatopancreas of 

Penaeus semisulcatus (Crustacea: Decapoda) during the moult cycle. Marine Biology 

101,535-544.

Alexopoulos, C., Karagiannidis, A., Kritas, A., Boscos, C., Georgoulakis, I.E., Kyriakis,

S.C., 2001. Field evaluation of a bioregulator containing live Bacillus cereus spores on 

health status and performance of sows and their litters. Journal of Veterinary Medicine. 

48, 137-145.

Allen Davis, D., Samocha, T.M., Boyd, C.E., 2004. Acclimating Pacific White Shrimp, 

Litopenaeus vannamei, to Inland, Low-Salinity Waters, Southern Regional Aquaculture 

Centre publication. SRAC, USA.

- 198-



Allen, G.R., Reichelt, J.L., Gray, P.P., 1983. Influence of environmental factors and 

medium composition on Vibrio gazogenes growth and prodigiosin production. Applied 

and Environmental Microbiology 45,1727-1732.

Alvandi, S.V., Vijayan, K.K., Santiago, T.C., Poomima, M., Jithendran, K.P., Ali, S.A., 

Rajan, J.J.S., 2004. Evaluation of Pseudomonas ssp. PM 11 and Vibrio fluvialis PM 17 

on immune indices of tiger shrimp, Penaeus monodon. Fish & Shellfish Immunology 

17, 115-120.

Amako, K., Shimodori, S., Imoto, T., Miake, S., Umeda, A., 1987. Effects of chitin and 

its soluble derivatives on survival of Vibrio choleras 01 at low temperature. Applied 

and Environmental Microbiology 53,603-605.

Angulo, F., 1999. Use of antimicrobial agents in aquaculture: potential for public health 

impact, Public Health Service. In: Department, of, Health, and, Human, Services (Eds.). 

CDC.

Anon, 1998/99. Farming Fish - the Aquaculture Boom. World Resources Report 1998- 

99 [www.igc/wri/wr-98-99/fishfarm.htm]. World Resources Institute.

Anon, 2006. Report of a Joint FAO/OIE/WHO expert consultation on antimicrobial use 

in aquaculture and antimicrobial resistance. FAO/OIE/WHO, Seoul, Republic of Korea, 

pp. 107.

- 199-



Anon, 2008. SOFIA: The State Of World Fisheries and Aquaculture, 2008. Fisheries 

and Aquaculture Department; FAO [FOOD AND AGRICULTURE ORGANIZATION 

OF THE UNITED NATIONS], Rome, pp. 176.

Anon, 2008. Probiotics in health and disease. In: Gibson, G.R. (Ed.), Science for 

Health: Scientific Information. Yakult Ltd., pp. 20.

Austin, B., Stuckey, L.F., Robertson, P.A.W., Effendi, I., Griffith, D.R.W., 1995. A 

probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by 

Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. Journal of Fish 

Diseases 18, 93-96.
i

Bachere, E., Gueguen, Y., Gonzalez, M., De Lorgeril, J., Gamier, J., Romestand, B., 

2004. Insights into the anti-microbial defense of marine invertebrates: the penaeid 

shrimps and the oyster Crassostrea gigas. Immunological Reviews 198,149-168.

Bailey-Brock, J.H., Moss, S.M., 1992. Penaeid taxonomy, biology and zoogeography. 

In: Fast, A.W., Lester, L.J. (Eds.), Marine Shrimp Culture: Principles and Practices.
j
| Elsevier Science Publishers, Amsterdam, pp. 9-28.
|
I
iI

Balcazar, J.L., Rojas-Luna, T., 2007. Inhibitory activity of probiotic Bacillus subtilis 

UTM 126 against vibrio species confers protection against vibriosis in juvenile shrimp 

(Litopenaeus vannamei). Current Microbiology 55,409-412.

- 2 0 0 -



Balcazar, J.L., Rojas-Luna, T., Cunningham, D.P., 2007. Effect of the addition of four 

potential probiotic strains on the survival of pacific white shrimp (Litopenaeus 

vannamei) following immersion challenge with Vibrio parahaemolyticus. Journal of 

Invertebrate Pathology 96,147-150.

Balcazar, J.L., de Bias, I., Ruiz-Zarzuela, I., Cunningham, D.P., Vendrell, D., Muzquiz, 

J.L., 2006. The role of probiotics in aquaculture. Veterinary Microbiology 114, 173- 

186.

Bauchau, A.G., 1981. Crustaceans. Academic Press, New York, 386-420 pp.

Baumgart, D.C., Carding, S.R., 2007. Inflammatory bowel disease: cause and 

immunobiology. Lancet 369, 1627-1640.

Biasco, G., Paganelli, G., Brandi, G., Brillianti, S., Lami, F., Callegari, C., Gizzi, G., 

1991. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum on rectal cell 

kinetics and faecal pH. Italian Journal of Gastroenterology 23,142.

Blaut, M., 2003. Influence of food components on intestinal microbiota composition, 

Inside Story, pp. 7-18.

Blom, H., Katla, T., Nissen, H., Helge, H., 2001. Characterization, production and 

purification of Camocin H, a bacteriocin produced by Carnobacterium 377. Current 

Microbiology 43,227-231.

- 2 0 1  -



Bonami, J.-R., Hasson, K.W., Mari, J., Poulos, B.T., Lightner, D.V., 1997. Taura 

syndrome of marine penaeid shrimp: characterization of the viral agent. Journal of 

General Virology 78, 313-319.

Brian, J.V., Fernandes, T., Ladle, R.J., Todd, P.A., 2005. Patterns of morphological and 

genetic variability in UK populations of the shore crab, Carcinus maenas Linnaeus, 

1758 (Crustacea: Decapoda: Brachyura). Journal of Experimental Marine Biology 329, 

47-54.

Brignola, C., De Simone, G., Belloli, C., Iannone, P., Belluzzi, A., Gionchetti, P., 

Campieri, M., Barbara, L., 1994. Steroid treatment in active Crohn's disease: a 

comparison between two regimens of different duration. Alimentary Pharmacology and 

Therapeutics 8,465-468.

Brookman, J.L., Rowley, A.F., Ratcliffe, N.A., 1989. Studies on nodule formation in 

locusts following injection of microbial products. Journal of Invertebrate Pathology 53, 

315-323.

Brown Jr., A., Patlan, D., 1974. Color changes in the ovaries of penaeid shrimp as a 

determinant of their maturity. Marine Fisheries Review 36,23-26.

Cahill, M.M., 1990. Bacterial flora of fishes: a review. Microbial Ecology 19,21-41.

Calado, R., Narciso, L., Morais, S., Rhyne, A.L., Lin, J., 2003. A rearing system for the 

culture of ornamental decapod crustacean larvae. Aquaculture 218, 329-339.

- 2 0 2 -



Calderon-Santoyo, M., Mendoza-Garcia, P.G., Garcia-Alvarado, M.A., Escudero- 

Abarca, B.I., 2001. Effect of physical factors on the production of bacteriocin from 

Pediococcus acidilactici ITV 26. Journal of Industrial Microbiology & Biotechnology 

26, 191-195.

Camevali, O., Zamponi, M.C., Sulpizio, R., Rollo, A., Nardi, M., Orpianesi, C., Silvi, 

S., Caggiano, M., Polzonetti, A.M., Cresci, A., 2004. Administration of probiotic strain 

to improve seabream wellness during development. Aquaculture International 12, 377- 

386.

Castex, M., Chim, L., Pham, D., Lemaire, P., Wabete, N., Nicolas, J.-L., Schmidely, P., 

Mariojouls, C., 2008. Probiotic P. acidilactici application in shrimp Litopenaeus 

stylirostris culture subject to vibriosis in New Caledonia. Aquaculture 275,182-193.

Cats, A., Kuipers, E.J., Bosschaert, M.A.R., Pot, R.G.J., Vandenbroucke-Grauls, 

C.M.J.E., Kusters, J.G., 2003. Effect of frequent consumption of a Lactobacillus casei- 

containing milk drink in Helicobacter /?y/or/-colonized subjects. Alimentary 

Pharmacology & Therapeutics 17,429-435.

Cebeci, A., Gurakan, C., 2003. Properties of potential probiotic Lactobacillus 

plantarum strains. Food Microbiology 20, 511-518.

Cerda-Cuellar, M., Rossello-Mora, R.A., Lalucat, J., Jofre, J., Blanchi, A., 1997. Vibrio 

scophthalmi sp. nov., a New Species from Turbot {Scophthalmus maximus). 

International Journal of Systematic and Evolutionary Microbiology 47, 58-61.

-203 -



Cerenius, L., Lee, B.L., Soderhall, K., 2008. The proPO-system: pros and cons for its 

role in invertebrate immunity. Trends in Immunology 29, 263-271.

Chiang, S.-R., Chuang, Y.-C., 2003. Vibrio vulnificus infection: clinical manifestations, 

pathogenesis, and antimicrobial therapy. The Journal of Microbiology, Immunology and 

Infection 36, 81-88.

Chisholm, J.R.S., Smith, V.J., 1995. Comparison of antibacterial activity in the 

hemocytes of different crustacean species. Comparative Biochemistry and Physiology 

110A, 39-45.

Chiu, C.-H., Guu, Y.-K., Liu, C.-H., Pan, T.-M., Cheng, W., 2007. Immune responses 

and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus 

plantarum. Fish & Shellfish Immunology 23, 364-377.

Chow, J., Mazmanian, S.K., 2009. Getting the bugs out of the immune system: do 

bacterial microbiota "fix" intestinal T cell responses? Cell Host & Microbe 5, 8-12.

Coeuret, V., Gueguen, M., Vemoux, J.P., 2004. Numbers and strains of lactobacilli m 

some probiotic products. International Journal of Food Microbiology 97,147-156.

-204-



Cohen, A.N., Carlton, J.T., 1995. Nonindigenous Aquatic Species in a United States 

Estuary: A Case Study of the Biological Invasions of the San Francisco Bay and Delta. 

Report to the U.S. Fish and Wildlife Service and the National Sea Grant College 

Program, Connecticut, pp. 262.

Cohen, A.N., Carlton, J.T., Fountain, M.C., 1995. Introduction, dispersal and potential 

impacts of the green crab Carcinus maenas in San Francisco Bay, California. Marine 

Biology 122,225-237.

Colome, J., Cano, R., J., Kubinski, A., Mark, Grady, D., V., 1986. Laboratory Exercises 

in Microbiology, Thomson Brooks/Cole, 283 pp.

Correa Jr., J.D., Farina, M., Allodi, S., 2002. Cytoarchitectural features of Ucides 

cordatus (Crustacea Decapoda) hepatopancreas: structure and elemental composition of 

electron-dense granules. Tissue and Cell 34, 315-325.

Crothers, J.H., 1976. The biology of the shore crab Carcinus maenas (L.). 2. The 

background anatomy, growth and life history. Field Studies 2,407-434.

Dali, W., Hill, B.J., Rothlisberg, P.C., Staples, D.J., 1990. The Biology of Penaeidae. 

In: Blaxter, J.H.S., Southward, A.J. (Eds.), Advances in Marine Biology. Academic 

Press, London.

- 2 0 5  -



de Schrijver, R., Ollevier, F., 2000. Protein digestion in juvenile turbot (Scophthalmus 

maximus) and effects of dietary administration of Vibrio proteolyticus. Aquaculture 

186, 107-116.

de Vries, M.C., Vaughan, E.E., Kleerebezem, M., de Vos, W.M., 2006. Lactobacillus 

plantarum - survival, functional and potential probiotic properties in the human 

intestinal tract. International Dairy Journal 16,1018-1028.

Decamp, O., Moriarty, D., J., W., 2006. Probiotics as alternative to antimicrobials: 

Limitations and potential. World Aquaculture 37, 60-62.

Decamp, O., Moriarty, D.J.W., Lavens, P., 2008. Probiotics for shrimp larviculture: 

review of field data from Asia and Latin America. Aquaculture Research 39,334-338.

Dempsey, A.C., Kitting, C.L., Rosson, R.A., 1989. Bacterial variability among 

individual penaeid shrimp digestive tracts. Crustaceana 56,267-278.

Destoumieux, D.B., Bulet, P., Rodriguez, J., Bachere, E., 1997. P4 2:30 The 

antimicrobial defense of penaid crustaceans: Characterization of a new family of 

anitimicrobial peptides in the shrimp Penaeus vannamei. Developmental & 

Comparative Immunology 21, 206.

-206-



Dhar, A.K., Allnutt, F.C.T., 2008. Taura Syndrome Virus, Encyclopedia of Virology. 

Elsevier Ltd., USA, pp. 1-8.

Dhungana, S., Anthony, C.R., Hersman, L.E., 2007. Effect of exogenous reductant on 

growth and iron mobilization from ferrihydrite by the Pseudomonas mendocina ymp 

strain. Applied and Environmental Microbiology 73, 3428-3430.

Diaz-Rosales, P., Salinas, I., Rodriguez, A., Cuesta, A., Chabrillon, M., Balebona, 

M.C., Morinigo, M.A., M.A., E., Meseguer, J., 2006. Gilthead seabream (Sparus aurata 

L.) innate immune response after dietary administration of heat-inactivated potential 

probiotics. Fish & Shellfish Immunology 20,482-492.

Dierberg, F.E., Kiattisimkul, W., 1996. Issues, impacts, and implications aquaculture in 

Thailand of shrimp. Environmental Management 20, 649-666.

Direkbusarakom, S., Yoshimizu, M., Ezura, Y., Ruangpan, L., Danayadol, Y., 1998. 

Vibrio spp., the dominant flora in shrimp hatchery against some fish pathogenic viruses. 

Journal of Marine Biotechnology 6,266-267.

Dore, I., Frimodt, C., 1987. An Illustrated Guide To Shrimp Of The World. Osprey 

Books, Huntington, NY, U.S.A, 229 pp.

-207-



Due, L.H., Hong, H.A., Barbosa, T.M., Henriques, A.O., Cutting, S.M., 2004. 

Characterization of Bacillus probiotics available for human use. Applied and 

Environmental Microbiology 70,2161 -2171.

Dunne, C., O'Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O'Halloran, S., 

Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O'Sullivan, G.C., Shanahan, 

F., Collins, J.K., 2001. In vitro selection criteria for probiotic bacteria of human origin: 

correlation with in vivo findings. The American Journal of Clinical Nutrition 73, 386S- 

392S.

Dyrynda, E.A., Pipe, R.K., Ratcliffe, N.A., 1995. Host defense mechanisms in marine 

invertebrate larvae. Fish & Shellfish Immunology 5, 569-580.

Eddy, F., Powell, A., Gregory, S., Nunan, L.M., Lightner, D.V., Dyson, P.J., Rowley, 

A.F., Shields, R.J., 2007. A novel bacterial disease of the European shore crab, 

Carcinus maenas - molecular pathology and epidemiology. Microbiology 153, 2839- 

2849.

EJF, 2004. Farming The Sea, Costing The Earth: Why We Must Green The Blue 

Revolution. Environmental Justice Foundation, London, UK, pp. 77.

Eldred, B., Hutton, R.F., 1960. On the grading and identification of domestic 

commercial shrimps (Family Penaeidae) with a tentative world list of commercial 

penaeids. Quarterly Journal of the Florida Academy of Sciences, 89-118.

-208-



Eschenbach, D.A., Davick, P.R., Williams, B.L., Klebanoff, S.J., Young-Smith, K., 

Critchlow, C.M., Holmes, K.K., 1989. Prevalence of hydrogen peroxide-producing 

Lactobacillus species in normal women and women with bacterial vaginosis. Journal of 

Clinical Microbiology 27, 251-256.

European, Comission, 2003. Opinion on the use of certain micro-organisms as additives 

in feedingstuffs. In: networks, C.-M.o.s.c.I.s.c.-o.a. (Ed.). Health & consumer protection 

directorate-general, pp. 1-8.

European, Comission, 2004. List of the authorised additives in feedingstuffs (1) 

published in application of Article 9t (b) of Council Directive 70/524/EEC concerning 

additives in feedingstuffs. Official Journal of the European Union 50, 144.

Farzanfar, A., 2006. The use of probiotics in shrimp aquaculture. Immunology & 

Medical microbiology 48, 149-158.

Fjellheim, A.J., Playfoot, K.J., Skjermo, J., Vadstein, O., 2007. Vibrionaceae dominates 

the microflora antagonistic towards Listonella anguillarum in the intestine of cultured 

Atlantic cod (Gadus morhua L.) larvae. Aquaculture 269, 98-106.

Flegel, T., 1996. A turning point for sustainable aquaculture: the White Spot virus crisis 

in Asian shrimp culture. Aquaculture Asia 1,29-34.

-209-



Forchielli, M.L., Walker, W.A., 2005. The role of gut-associated lymphoid tissues and 

mucosal defence. British Journal of Nutrition 93, S41-S48.

Fournier-Betz, V., Quentel, C., Lamour, F., Leven, A., 2000. Immunocytochemical 

detection of Ig-positive cells in blood, lymphoid organs and the gut associated lymphoid 

tissue of the turbot (Scophthalmus maximus). Fish & Shellfish Immunology 10, 187- 

202 .

Fuller, R., 1987. A review: probiotics in man and animals. Journal of Applied 

Bacteriology 66, 365-378.

Fuller, R., 1989. Probiotics in man and animals. Journal of Applied Bacteriology 66, 

365-378.

Fuller, R., 1991. Probiotics in human medicine. GUT 32,439-442.

Fuller, R., 1992. History and development of probiotics. In: Fuller, R. (Ed.), Probiotics 

The scientific basis. Chapman & Hall, London, pp. 1-8.

Galdeano, C.M., de Moreno de LeBlanc, A., Vinderola, G., Bibas Bonet, M.E., 

Perdigon, G., 2007. A proposed model: mechanisms of immunomodulation induced by 

probiotic bacteria. Clinical and Vaccine Immunology 14,485-492



Garaiova, I., Muchova, J., 2008. The role of natural components in prevention and 

therapy of disease. In: Durackova, Z. (Ed.), Nature and human health. Slovak Academic 

Press, Bratislava, pp. 1-14.

Garcia-de-la-Banda, I., Chereguini, O., Rasines, I., 1992. Influence of lactic bacterial 

additives on turbot (Scophthalmus maximus L.) larvae culture. Boletin del Instituto 

Espanol de Oceanografia 8,247-254.

Garriques, D., Arevalo, G., 1995. An evaluation of the production and use of a live 

bacterial isolate to manipulate the microbial flora in the commercial production of 

Penaeus vannamei postlarvae in Ecuador. In: Browdy, C.L., Hopkins, J.S. (Eds.), 

Aquaculture *95 - Swimming through troubled water. Proceedings of the Special 

Session on Shrimp Farming. World Aquaculture Society, Baton Rouge, USA., pp. 53- 

59.

Gatesoupe, F.J., 1991. The effect of three strains of lactic bacteria on the production rate 

of rotifers, Brachionus plicatilis, and their dietary value for larval turbot, Scophthalmus 

maximus. Aquaculture 96, 335-342.

Gatesoupe, F.J., 1999. The use of probiotics in aquaculture: Review. Aquaculture 180, 

147-165.

- 2 1 1  -



Gauger, E., Smolowitz, R., Uhlinger, K., Casey, J., Gomez-Chiarri, M., 2006. Vibrio 

harveyi and other bacterial pathogens in cultured summer flounder, Paralichthys 

dentatus. Aquaculture 260,10-20.

Gawronska, A., Dziechciaz, P., Horvath, A., Szajewska, H., 2007. A randomized 

double-blind placebo-controlled trial of Lactobacillus GG for abdominal pain disorders 

in children. Alimentary Pharmacology & Therapeutics 25,177-184.

Gibson, G.R., Fuller, R., 2000. Aspects of in vitro and in vivo research approaches 

directed toward identifying probiotics and prebiotics for human use. The Journal of 

Nutrition 130, 391S-395S.

Gildberg, A., Johansen, A., Bogwald, J., 1995. Growth and survival of Atlantic salmon 

(Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid 

bacteria during a challenge trial with Aeromonas salmonicida. Aquaculture 138, 23-34.

Gildberg, A., Mikkelsen, H., Sandaker, E., Ringo, E., 1997. Probiotic effect of lactic 

acid bacteria in the feed on growth and survival of fry of Atlantic cod - Gadus morhua. 

Hydrobiologia 352, 279-285.

Goarant, C., Merien, F., Berthe, F., Mermoud, I., Perolat, P., 1999. Arbitrarily Primed 

PCR to type Vibrio spp. pathogenic for shrimp. Applied and Environmental 

Microbiology 65,1145-1151.

- 2 1 2 -



Goarant, C., Ansquer, D., Herlin, J., Domalain, D., Imbert, F., de Decker, S., 2006. 

"Summer Syndrome" in Litopenaeus stylirostris in New Caledonia: Pathology and 

epidemiology of the etiological agent, Vibrio nigripulchritudo. Aquaculture 253, 105- 

113.

Goldin, B.R., Gorbach, S.L., 1984. The effect of milk and lactobacillus feeding on 

human intestinal bacterial enzyme activity. American Journal of Clinical Nutrition 39, 

756-761.

Gomez-Gil, B., Roque, A., Turnbull, J.F., 2000. The use and selection of probiotic 

bacteria for use in the culture of larval aquatic organisms. Aquaculture 191,259-270.

Gomez-Gil, B., Rogue, A., Velasco-Bianco, G., 2002. Culture of Vibrio alginolyticus 

C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri. 

Aquaculture 211,43-48.

Gomez-Gil, B., Tron-Maye'n, L., Roque, A., Turnbull, J.F., Inglis, V., Guerra-Flores, 

A.L., 1998. Species of Vibrio isolated from hepatopancreas, haemolymph and digestive 

tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 163,1-9.

Gomez-Gil, B., Soto-Rodriguez, S.A., Garcia-Gasca, A., Roque, A., Vazquez-Juarez, 

R., Thompson, F.L., Swings, J., 2004. Molecular identification of Vibrio harveyi-roiatQd 

isolates associated with diseased aquatic organisms. Microbiology 150,1769-1777.

- 2 1 3 -



Gomez, G.D., Shen, M.A., 2008. Influence of probiotics on the growth and digestive 

enzyme activity of white Pacific shrimp (Litopenaeus vannamei). Journal of Ocean 

University of China (English Edition) 7,215-218.

Gorbach, S.L., 2002. Probiotics in the third millennium. Digestive and Liver Diseases 

34, S2-S7.

Gram, L., Melchiorsen, J., Spanggaard, B., Huber, I., Nielsen, T.F., 1999. Inhibition of 

Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of 

fish. Applied and Environmental Microbiology 65, 969-973.

Graslund, S., Karlsson, K., Wongtavatchai, J., 2002. Responsible Use of Antibiotics in 

Shrimp Farming. Aquaculture Asia 7,17.

Greenstein, A.J., Janowitz, H.D., Sachar, D.B., 1976. The extra-intestinal complications 

of Crohn's disease and Ulcerative Colitis: A Study of 700 Patients. Medicine 55, 401- 

412.

Gregory, S.P., 2008. Microbial community analysis of constructed wetlands treating 

effluent from a land-based marine fish farm. Swansea University, Swansea.

- 2 1 4 -



Grosholz, E.D., 1996. Contrasting rates of spread for introduced species in terrestrial 

and marine systems. Ecology 77,1680-1686.

Gullian, M., Thompson, F., Rodriguez, J., 2004. Selection of probiotic bacteria and 

study of their immunostimulatory effect in Penaeus vannamei. Aquaculture 233,1-14.

Gursky, L.J., Martin, N.I., Derksen, D.J., van Belkum, M.J., Kaur, K., Vederas, J.C., 

Stile, M.E., McMullen, L.M., 2006. Production of piscicolin 126 by Carnobacterium 

maltaromaticum UAL26 is controlled by temperature and induction peptide 

concentration. Archives of Microbiology 186, 317-325.

Hameed, A.S., 1993. A study of the aerobic heterotrophic bacterial flora of hatchery- 

reared eggs, larvae and post-larvae of Penaeus indicus. Aquaculture 117, 195-204.

Hamilton, S.R., 1985. Colorectal Carcinoma in patients with Crohn's Disease. 

Gastroenterology 89, 398-407.

Harris, J.M., 1993. The Presence, Nature, and Role of Gut Microflora in Aquatic 

Invertebrates: A Synthesis. Microbial Ecology 25, 195-231.

Harris, J.M., Seiderer, L.J., Lucas, M.I., 1991. Gut microflora of two saltmarsh 

detritivore Thalassinid prawns, Upogebia africana and Callianassa kraussi. Microbial 

Ecology 21, 63-82.

- 2 1 5 -



Hauton, C., Hawkins, L.E., Williams, J.A., 1997. In situ variability in phenoloxidase 

activity in the shore crab, Carcinus maenas (L.). Comparative Biochemistry and 

Physiology 117B, 267-271.

Hauton, C., Williams, J.A., Hawkins, L.E., 1997. The effects of a live in vivo 

pathogenic infection on aspects of the immunocompetence of the common shore crab, 

Carcinus maenas (L.). Journal of Experimental Marine Biology and Ecology 211, 115- 

128.

Hayatsu, H., Hayatsu, T., 1993. Suppressing effect of Lactobacillus casei administration 

on the urinary mutagenicity arising from ingestion of fried ground beef in the human. 

Cancer Letters 73,173-179.

Hickson, M., DeSouza, A.L., Muthu, N., Rogers, T.R., Want, S., Rajkumar, C., Bulpitt, 

C.J., 2007. Use of probiotic lactobacillus preparation to prevent diarrhoea associated 

with antibiotics: randomised double blind placebo controlled trial. British Medical 

Journal 335, 80-83.

Hjelm, M., Bergh, O., Riaza, A., Nielsen, J., Melchiorsen, J., Jensen, S., Duncan, H., 

Ahrens, P., Birkbeck, T.H., Gram, L., 2004. Selection and identification of 

autochthonous potential probiotic bacteria from Turbot larvae (Scophthalmus maximus) 

rearing units. Systemic and Applied Microbiology 27, 360-371.

- 2 1 6 -



Homma, H., Shinohara, T., 2004. Effects of probiotic Bacillus cereus toyoi on 

abdominal fat accumulation in the Japanese quail (Coturnix japonica). Animal Science 

Journal 75, 37-41.

Hong, H.A., Due, L.H., Cutting, S.M., 2005. The use of bacterial spore formers as 

probiotics. FEMS Microbiology Reviews 29, 813-835.

Humason, G.L., 1979. Animal Tissue Techniques. W. H. Freeman & Co, San Fransico, 

USA, 661 pp.

Huys, L., Dhert, P., Robles, R., Ollevier, F., Sorgeloos, P., Swings, J., 2001. Search for 

beneficial bacterial strains for turbot (<Scophthalmus maximus L.) larviculture. 

Aquaculture 193,25-37.

Hyronimus, B., Le Marrec, C., Urdaci, M.C., 1998. Coagulin, a bacteriocin-like 

inhibitory substance produced by Bacillus coagulans 14. Journal of Applied 

Microbiology 85,42-50.

Irianto, A., Austin, B., 2002. Probiotics in aquaculture: Review. Journal of Fish 

Diseases 25, 633-642.

Ishibashi, N., Yamazaki, S., 2001. Probiotics and safety. The American Journal of 

Clinical Nutrition 73,465-470.

-217-



Jamuna, M., Jeevaratnam, K., 2004. Isolation and partial characterization of 

bacteriocins from Pediococcus species. Applied Microbiology and Biotechnology 65, 

433-439.

Jawahar Abraham, T., Palaniappan, R., 2004. Distribution of luminous bacteria in semi- 

intensive penaeid shrimp hatcheries of Tamil Nadu, India. Aquaculture 232, 81-90.

Jayasree, L., Janakiram, P., Madhavi, R., 2006. Characterization of Vibrio spp. 

associated with diseased shrimp from culture ponds of Andhra Pradesh (India). Journal 

of the World Aquaculture Society 37, 523-532.

Jin, L.Z., Ho, Y.W., Abdullah, N., Jalaludin, S., 1997. Probiotics in poultry: modes of 

action. World's Poultry Science Journal 53, 351-368.

Jobom, A., Olsson, J.C., Westerdahl, A., Conway, P.L., Kjelleberg, S., 1997. 

Colonization in the fish intestinal tract and production of inhibitory substances in 

intestinal mucus and faecal extracts by Car nobacterium sp. strain Kl. Journal of Fish 

Diseases 20, 383-392.

Johansson, M.W., Keyser, P., Sritunyalucksana, K., Soderhall, K., 2000. Crustacean 

haemocytes and haematopoiesis. Aquaculture 191,45-52.

- 2 1 8 -



Johnson, C.N., Barnes, S., Ogle, J., Grimes, J., 2008. Microbial community analysis of 

water, foregut, and hindgut during growth of Pacific white shrimp, Litopenaeus 

vannamei, in closed-system aquaculture. Journal of the World Aquaculture Society 39, 

251-258.

Jones, R., Lydeard, S., 1992. Irritable bowel syndrome in the general population. British 

Medical Journal 304, 87-90.

Kamei, Y., Yoshimizu, M., Ezura, Y., Kimura, T., 1988. Screening of bacteria with 

antiviral activity from fresh water salmonid hatcheries. Microbiology and Immunology 

32, 67-73.

Karunasagar, I., Pai, R., Malathi, G.R., Karunasagar, I., 1994. Mass mortality of 

Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. 

Aquaculture 128, 203-209.

Kautsky, N., Ronnback, P., Tedengren, M., Troell, M., 2000. Ecosystem perspectives 

on management of disease in shrimp pond farming. Aquaculture 191,145-161.

Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L., 2008. Probiotics in 

aquaculture: The need, principles and mechanisms of action and screening processes. 

Aquaculture 274, 1-14.

- 2 1 9 -



Kim, D.H., Austin, B., 2006. Cytokine expression in leucocytes and gut cells of 

Rainbow trout, Oncorhynchus mykis Walbaum, induced by probiotics. Veterinary 

Immunology and Immunopathology 114, 297-304.

Kingamkono, R., Sjogren, E , Svanberg, U., 1999. Enteropathogenic bacteria in faecal 

swabs of young children fed on lactic acid-fermented cereal gruels. Epidemiology and 

Infection 122,23-32.

Kitani, H., 1986. Larval development of the white shrimp Penaeus vannamei Boone 

reared in the laboratory and the statistical observation of its naupliar stages. Bulletin of 

the Japanese Society of Scientific Fisheries 52, 1131-1139.

Kitts, C.L., 2001. Terminal restriction fragment patterns: A tool for comparing 

microbial communities and assessing community dynamics. Current Issues in Intestinal 

Microbiology 2,17-25.

Koebnick, -.C., Wagner, -.1., Leitzmann, -.P., Stem, -.U., Zunft, -.H.-J., 2003. Probiotic 

beverage containing Lactobacillus casei Shirota improves gastrointestinal symptoms in 

patients with chronic constipation. Canadian Journal of Gastroenterology 17, 655-669.

Kohler, A., Lauritzen, B., Jansen, D., Bottcher, P., Teguliwa, L., Kruner, G., Broeg, K., 

1998. Detection of P-gly coprotein mediated MDR/MXR in Car anus maenas 

hepatopancreas by immuno-gold-silver labelling. Marine Environmental Research 46, 

411-414.

- 2 2 0 -



Kopp-Hoolihan, L., 2001. Prophylactic and therapeutic uses of probiotics: A review. 

Journal of the American Dietetic Association 101, 229-241.

Kruis, W., Fric, P., Pokrotnieks, J., Luka, M., Fixa, B., Kascak, M., Kamm, M.A., 

Weismueller, J., Beglinge, C., Stolte, M., Wolff, C., Schulze, J., 2004. Maintaining 

remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as 

effective as with standard mesalazine. GUT 53, 1617-1623.

Kuris, A.M., Lafferty, K.D., 1996. Invasion of Californian estuaries by the 

nonindigenous green crab Carcinus maenas: Assessment of impact and geographic 

spread, Biennial report of completed projects 1992-94., California Sea Grant, La- Jolla, 

USA., La- Jolla, USA.

Kyriakis, S.C., Tsiloyiannis, V.K., Vlemmas, J., Sarris, K., Tsinas, A.C., Alexopoulos, 

C., Jansegers, L., 1999. The effect of probiotic LSP 122 on the control of post-weaning 

diarrhoea syndrome of piglets. Research in Veterinary Science 67, 223-228.

La Ragione, R.M., Casula, G., Cutting, S.M., Woodward, M., 2001. Bacillus subtilis 

spores competitively exclude Escherichia coli 070:K80 in poultry. Veterinary 

Microbiology 79,133-142.

Lane, D., 1991. 16s/235 rRNA sequencing. Nucleic Acid Techniques in Bacterial 

Systematics. In: Stackebrandt, E., Goodfellow, M. (Eds.). John Wiley & Sons, New 

York, USA, pp. 115-175.

- 2 2 1  -



Lara-Villoslada, F., Sierra, S., Diaz-Ropero, M.P., Olivares, M., Xaus, J., 2007. Safety 

assessment of the human milk-isolated probiotic Lactobacillus salivarius CECT5713. 

Journal of Dairy Science 90, 3583-3589.

Lau, W.W.Y., Jumars, P.A., Armbrust, E.V., 2002. Genetic diversity of attached 

bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa 

californiensis (Decapoda: Thalassinidae). Microbial Ecology 43,455-466.

Lee, K.K., Yu, S.R., Yang, T.I., Liu, P.C., Chen, F.R., 1996. Isolation and 

characterization of Vibrio alginolyticus isolated from diseased kuruma prawn. Letters in 

Applied Microbiology 22, 111-114.

Lee, S.Y., Soderhall, K., 2002. Early events in crustacean innate immunity. Fish & 

Shellfish Immunology 12,421-437.

Lemonnier, H., Herbland, A., Salery, L., Soulard, B., 2006. "Summer syndrome" in 

Litopenaeus stylirostris grow out ponds in New Caledonia: Zootechnical and 

environmental factors. Aquaculture 261,1039-1047.

Li, C.-C., Yeh, S.-T., Chen, J.-C., 2008. The immune response of white shrimp 

Litopenaeus vannamei following Vibrio alginolyticus injection. Fish & Shellfish 

Immunology 25, 853-860.

- 2 2 2 -



Li, J., Tan, B., Mai, K., 2009. Dietary probiotic Bacillus OJ and

isomaltooligosaccharides influence the intestine microbial populations, immune 

responses and resistance to white spot syndrome virus in shrimp (.Litopenaeus 

vannamei). Aquaculture 291, 35-40.

Li, J., Tan, B., Mai, K., Ai, Q., Zhang, W., Xu, W., Liufu, Z., Ma, H., 140-147., A., 

2006. Comparative study between probiotic bacterium Arthrobacter XE-7 and 

chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic 

vibrios. Aquaculture 253, 140-147.

Li, K., Zheng, T., Tian, Y., Xi, F., Yuan, J., Zhang, G., Hong, H., 2007. Beneficial 

effects of Bacillus licheniformis on the intestinal microflora and immunity of the white 

shrimp, Litopenaeus vannamei. Biotechnology Letters 29, 525-530.

Lidbeck, A., Allinger, U.G., Orrhage, K.M., Ottova, L., Brismar, B., Gustafsson, J.A., 

Rafter, J.J., Nord, C.E., 1991. Impact of Lactobacillus acidophilus supplements on the 

faecal microflora and soluble faecal bile acids in colon cancer patients. Microbiology 

Ecology in Health and Disease 4, 81-88.

Lightner, D. V., 1983. Diseases of cultured penaeid shrimp In: Crustacean Aquaculture. 

In: McVey, J.P. (Ed.), Handbook of Mariculture. CRC Press, Boca Raton, FL, pp. 289- 

320.

- 2 2 3  -



Lightner, D.V., 1993. Diseases of cultured shrimp. In: McVey, P.V. (Ed.), CRC 

handbook of mariculture. CRC Press, Boca Raton, pp. 393-486.

Ling, W.H., Korpela, R., Mykkanen, H., Salminen, S., Hanninen, O., 1994. 

Lactobacillus strain GG supplementation decreases colonic hydrolytic and reductive 

enzyme activities in healthy female adults. Journal of Nutrition 124, 18-23.

Lio-Po, G.D., Leano, E.M., Penaranda, M.M.D., Villa-Franco, A.U., Sombito, C.D., 

Guanzon, N.G., 2005. Anti-luminous Vibrio factors associated with the 'green water' 

grow-out culture of the tiger shrimp Penaeus monodon. Aquaculture 250,1-7.

Liu, C.-H., Chen, J.-C., 2004. Effect of ammonia on the immune reponse of white 

shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish & 

Shellfish Immunology 16, 321-334.

Liu, C.-H., Cheng, W., Hsu, J.-P., Chen, J.-C., 2004. Vibrio alginolyticus infection in 

the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 

16S rDNA sequencing. Diseases of Aquatic Organisms 61,169-174.



Ljungh, A., Wadstrom, T., Tsakalidou, E., Huys, G., Pot, B., Reid, G., Keohane, J., 

Ryan, K., Shanahan, F., Iyer, C., Versalovic, J., Demeria, D., Madsen, K., Lorca, G.L., 

Font de Valdez, G., Antikainen, J., Korhonen, T.K., Kuparinen, V., Toba, T., Roos, S., 

Norin, E., Jemberg, C., Nilsson, H.-0., Engstrand, L., Van Pijkeren, J.-P., O'Toole, 

P.W., 2009. Lactobacillus molecular biology: from genomics to probiotics. Caister 

Academic Press, Sweden, 206 pp.

Longyant, S., Poyoi, P., Chaivisuthangkura, P., Tejangkura, T., Sithigomgul, W., 

Sithigomgul, P., Rukpratanpom, S., 2008. Specific monoclonal antibodies raised 

against Taura syndrome virus (TSV) capsid protein VP3 detect TSV in single and dual 

infections with white spot syndrome virus (WSSV). Diseases of Aquatic Organisms 79, 

75-81.

Lotz, J.M., Anton, L.S., Soto, M.A., 2005. Effect of chronic Taura syndrome virus 

infection on salinity tolerance of Litopenaeus vannamei. Diseases of Aquatic Organisms 

65, 75-78.

Ma, C.-W., Cho, Y.-S., Oh, K.-H., 2009. Removal of pathogenic bacteria and nitrogens 

by Lactobacillus spp. JK-8 and JK-11. Aquaculture 287, 266-270.

Maeda, M., Chiu Liao, I., 1992. Effect of bacterial population on the growth of a prawn 

larva, Penaeus monodon. Bulletin of National Research Institute of Aquaculture 21, 25- 

29.

- 2 2 5 -



Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Wade, 

W.G., 1998. Design and evaluation of useful bacterium-specific PCR primers that 

amplify genes coding for bacterial 16S rRNA. Applied and Environmental 

Microbiology 64, 795-799.

Marchesi, J.R., Sato, T., Weightman, A.J., Martin, T.A., Fry, J.C., Hiom, S.J., Wade, 

W.G., 1998. Design and evaluation of useful bacterium-specific PCR primers that 

amplify genes coding for bacterial 16S rRNA. Applied and Environmental 

Microbiology 64, 795-799.

Marsh, T., 1999. Terminal restriction fragment length polymorphism (T-RFLP): an 

emerging method for characterizing diversity among homologous populations of 

amplification products. Current Opinion in Microbiology 2, 323-327.

Martin-Visscher, L.A., van Belkum, M.J., Gameau-Tsodikova, S., Whittal, R.M., 

Zheng, J., McMullen, L.M., Vederas, J.C., 2008. Isolation and characterization of 

camocyclin A, a novel circular bacteriocin produced by Carnobacterium 

maltaromaticum UAL307. Applied and Environmental Microbiology 74,4756-4763.

Matsumoto, K., Takada, T., Shimizu, K., Kado, Y., Kawakami, K., Makino, I., 

Yamaoka, Y., Hirano, K., Nishimura, A., Kajimoto, O., Nomoto, K., 2006. The effects 

of a probiotic milk product containing Lactobacillus casei strain Shirota on the 

defecation frequency and the intestinal microflora of sub-optimal health state 

volunteers: A randomized placebo-controlled cross-over study. Bioscience and 

Microflora 25, 39-48.

- 2 2 6 -



Mayrand, E., St-Jean, S.D., Courtenay, S.C., 2005. Haemocyte responses of blue 

mussels (Mytilus edulis L.) transferred from a contaminated site to a reference site: can 

the immune system recuperate? Aquaculture Research 36, 962-971.

McCracken, V.J., Chun, T., Baldeon, M.E., Ahrne, S., Molin, G., Mackie, R.I., Rex 

Gaskins, H., 2002. TNF-{alpha} sensitizes HT-29 colonic epithelial cells to intestinal 

Lactobacilli. Experimental Biology and Medicine 227, 665-670.

McFarland, L., 2006. Meta-analysis of probiotics for the prevention of antibiotic 

associated diarrhea and the treatment of Clostridium difficile disease. The American 

Journal of Gastroenterology 101, 812-822.

McFarland, L., 2007. Meta-analysis of probiotics for the prevention of traveler's 

diarrhea. Travel Medicine and Infectious Disease 5, 97-105.

McFarland, L.V., Dublin, S., 2008. Meta-analysis of probiotics for the treatment of 

irritable bowel syndrome. World Journal of Gastroenterology 17,2650-2661.

McLaughlin, P.A., 1980. The Comparative Morphology of Recent Crustacea. W. H. 

Freeman and Co.

-227-



Meyer, A.L., Elmadfa, I., Herbacek, I., Micksche, M., 2007. Probiotic, as well as 

conventional yogurt, can enhance the stimulated production of proinflammatory 

cytokines. Journal of Human Nutrition and Dietetics 20, 590-598.

Montero-Rocha, A., McIntosh, D., Sanchez-Merino, R., Flores, I., 2006.

Immunostimulation of white shrimp (Litopenaeus vannamei) following dietary 

administration of Ergosan. Journal of Invertebrate Pathology 91,188-194.

Mori, K., Stewart, J.E., 2006. Immunogen-dependent quantitative and qualitative 

differences in phagocytic responses of the circulating hemocytes of the lobster Homarus 

americanus. Diseases of Aquatic Organisms 69,197-203.

Moriarty, D., J., W., 1999. Disease control in shrimp aquaculture with probiotic 

bacteria. In: Bell, C.R., Brylinsky, M., Johnson-Green, P. (Eds.), 8th International 

Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, 

Halifax, Canada.

Moriarty, D.J.W., 1998. Control of luminous Vibrio species in penaeid aquaculture 

ponds. Aquaculture 164, 351-358.

- 2 2 8 -



Moss, S.M., LeaMaster, B.R., Sweeney, J.M., 2000. Relative abundance and species 

composition of Gram-negative, aerobic bacteria associated with the gut of juvenile 

white shrimp Litopenaeus vannamei reared in oligotrophic well water and eutrophic 

pond water. Journal of the World Aquaculture Society 31,255-263.

Nakanishi, T., Aoyagi, K., Xia, C., Dijkstra, J.M., Ototake, M., 1999. Specific cell- 

mediated immunity in fish. Veterinary Immunology and Immunopathology 72, 101- 

109.

Nalin, D.R., Day a, V., Reid, A., Levine, M.M., Cisneros, L., 1979. Adsorption and 

Growth of Vibrio cholerae on Chitin. Infection and Immunity 25, 768-770.

Niedzielin, K., Kordecki, H., Birkenfeld, B., 2001. A controlled, double-blind, 

randomized study on the efficacy of Lactobacillus plantarum 299V in patients with 

irritable bowel syndrome. European Journal of Gastroenterology & Hepatology 13, 

1143-1147.

NIMPIS, 2002. Carcinus maenas habitat & survival. In: Hewitt, C.L., Martin, R.B., 

Sliwa, C., McEnnulty, F.R., Murphy, N.E., Jones, T., Cooper, S. (Eds.). National 

Introduced Marine Pest Information System.

- 2 2 9 -



Ninawe, A.S., Selvin, J., 2009. Probiotics in shrimp aquaculture: Avenues and 

challenges. Critical Reviews in Microbiology 35,43-66.

Nogami, K., Maeda, M., 1992. Bacteria as biocontrol agents for rearing larvae of the 

crab Portunus triruberculatus. Canadian Journal of Fisheries and Aquatic Sciences 49, 

2373-2376.

OMahony, L., McCarthy, J., Kelly, P., Hurley, G., Luo, F., Chen, K., O'Sullivan, G.C., 

Kiely, B., Collins, J.K., Shanahan, F., Quigley, E.M.M., 2005. Lactobacillus and 

bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to 

cytokine profiles. Gastroenterology 128, 541-551.

Oxley, A.P.A., Shipton, W., Owens, L., McKay, D., 2002. Bacterial flora from the gut 

of the wild and cultured banana prawn, Penaeus merguiensis. Journal of Applied 

Microbiology 93,214-223.

Pandey, A., Bringel, F., Meyer, J.-M., 1994. Iron requirement and search for 

siderophores in lactic acid bacteria. Applied Microbiology and Biotechnology 40, 735- 

739.

- 2 3 0 -



Panigrahi, A., Kiron, V., Puangkaew, J., Kobayashi, T., Satoh, S., Sugita, H., 2005. The 

viability of probiotic bacteria as a factor influencing the immune response in rainbow 

trout Oncorhynchus mykiss. Aquaculture 243, 241-254.

Patterson, J.A., Burkholder, K.M., 2003. Application of prebiotics and probiotics in 

poultry production. Poultry Science 82, 627-631.

Perdigon, G., Vintini, E., Alvarez, S., Medina, M., Medici, M., 1999. Study of the 

possible mechanisms involved in the mucosal immune system activation by lactic acid 

bacteria. Journal of Dairy Science 82, 1108-1114.

Perez Farfante, I., 1975. Spermatophores and thelyca of the American white shrimps, 

Genus Penaeus, Subgenus Litopenaeus. Fishery Bulletin 73,463-486.

Perez Farfante, I., Kensley, B., 1997. Penaeoid And Sergestoid Shrimps And Prawns Of 

The World. Keys And Diagnoses For The Families And Genera. Memories Du Museum 

National D'Historie Naturelle, Paris, France, 233 pp.

Peter, H., Sommaruga, R., 2008. An evaluation of methods to study the gut bacterial 

community composition of freshwater zooplankton. Journal of Plankton Research 30, 

997-1006.

- 231  -



Phalitakul, S., Wongtawatchai, J., Sarikaputi, M., Viseshakul, N., 2006. The molecular 

detection of Taura syndrome virus emerging with White spot syndrome virus in penaeid 

shrimps of Thailand. Aquaculture 260, 77-85.

Phuoc, L.H., Corteel, M., Thanh, N.C., Nauwynck, H., Pensaert, M., Alday-Sanz, V., 

Van den Broeck, W., Sorgeloos, P., Bossier, P., 2009. Effect of dose and challenge 

routes of Vibrio spp. on co-infection with white spot syndrome virus in Penaeus 

vannamei. Aquaculture 290, 61-68.

Pilet, M.-F., Dousett, X., Barre, R., Novel, G., Desmazeaud, M., Piard, J.-C., 1995. 

Evidence for two bacteriocins produced by Carnobacterium pisicola and 

Carnobacterium divergens isolated from fish and active against Listeria 

monocytogenes. Journal of Food Protection 58, 256-262.

Pinn, E.H., Nickell, L.A., Rogerson, A., Atkinson, R.J.A., 1999. Comparison of gut 

morphology and gut microflora of seven species of mud shrimp (Crustacea: Decapoda: 

Thalassinidea). Marine Biology 133,103-114.

Piuri, M., Sanchez-Rivas, C., Ruzal, S.M., 2003. Adaptation to high salt in 

Lactobacillus', role of peptides and proteolytic enzymes. Journal of Applied 

Microbiology 95, 372-379.

- 2 3 2 -



Powell, A., Rowley, A.F., 2007. The effect of dietary chitin supplementation on the 

survival and immune reactivity of the shore crab, Carcinus maenas. Comparative 

Biochemistry and Physiology 47,122-128.

Prasad, S., Morris, P.C., Hansen, R., Meaden, P.G., Austin, B., 2005. A novel 

bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. 

Microbiology 151,3051-3058.

Rachmilewitz, D., 1989. Coated mesalazine (5-aminosalicylic acid) versus

sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. British 

Medical Journal 298, 82-86.

Ramette, A., 2007. Multivariate analyses inmicrobial ecology. FEMS Microbial 

Ecology 62,142-160.

Ravi, A.V., Musthafa, K.S., Jegathammbal, G., Kathiresan, K., Pandian, S.K., 2007. 

Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios 

in marine aquaculture. Letters in Applied Microbiology 45, 219-223.

Reed, L.J., Muench, H., 1938. A simple method of estimating fifty percent endpoints. 

The American Journal of Hygiene 27,493-497.



Rengpipat, S., Phianphak, W., Piyatiratitivorakul, S., Menasveta, P., 1998. Effects of a 

probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. 

Aquaculture 167, 301-313.

Rengpipat, S., Rukpratanpom, S., Piyatiratitivorakul, S., Menasveta, P., 2000. Immunity 

enhancement in black tiger shrimp {Penaeus monodon) by a probiont bacterium 

{Bacillus S ll). Aquaculture 191, 271-288.

Rengpipat, S., Tunyamum, A., Fast, A.W., Piyatiratitivoraku, S., Menasveta, P., 2003. 

Enhanced growth and resistance to Vibrio challenge in pond-reared black tiger shrimp 

Penaeus monodon fed a Bacillus probiotic. Diseases of Aquatic Organisms 55, 169-173.

Rettger, F., Levy, M.N., Weinstein, K., Weiss, J.E., 1935. Lactobacillus acidophilus 

and its therapeutic application. Yale University Press, New Haven, USA.

Ringo, E., Gatesoupe, F.J., 1998. Lactic acid bacteria in fish: a review. Aquaculture 

160, 177-203.

Ringo, E., Strom, E., Tabachek, J.-A., 1995. Intestinal microflora of salmonids: a 

review. Aquaculture Research 26, 773-789.

- 2 3 4 -



Ringo, E., Bendiksen, H.R., Wesmajervi, M.S., Olsen, R.E., Jansen, P.A., Mikkelsen, 

H., 2000. Lactic acid bacteria associated with the digestive tract of Atlantic salmon 

{Salmo salar L.). Journal of Applied Microbiology 89, 317-322.

Robertson, P.A.W., ODDowd, C., Burrells, C., Williams, P., Austin, B., 2000. Use of 

Carnobacterium sp. as a probiotic for Atlantic salmon {Salmo salar L.) and rainbow 

trout {Oncorhynchus mykiss, Walbaum). Aquaculture 185, 235-243.

Roman, J., Palumbi, S.R., 2004. A global invader at home: population structure of the 

green crab, Carcinus maenas, in Europe. Molecular Ecology 13,2891-2898.

Rosenberry, B., 2004. About Shrimp Farming, Shrimp News International. 

http://www.shrimpnews.com.

Roth, O., Kurtz, J., 2009. Phagocytosis mediates specificity in the immune defence of 

an invertebrate, the woodlouse Porcellio scaber (Crustacea: Isopoda). Developmental 

and Comparative Immunology.

Rowley, A.F., Powell, A., 2007. Invertebrate immune systems - specific, quasi-specific, 

or nonspecific? The Journal of Immunology 179, 7209-7214.

- 2 3 5  -



Rowley, A.F., Brookman, J.L., Ratcliffe, N.A., 1990. Possible involvement of the 

prophenoloxidase system of the locust, Locusta migrator ia, in antimicrobial activity. 

Journal of Invertebrate Pathology 56, 31-38.

Ruangpan, L., Kitao., T., 1991. Vibrio bacteria isolated from black tiger shrimp, 

Penaeus monodon Fabricius. Journal of Fish Diseases 14, 383-388.

Ruangpan, L., Kitao, T., 2006. Vibrio bacteria isolated ffirn black tiger shrimp, Penaeus 

monodon Fabricus. Journal of Fish Diseases 14, 383-388.

Ruppert, E.E., Barnes, R.D., 1994. Invertebrate Zoology. Saunders College Publishing, 

1056 pp.

Sakami, T., Fujioka, Y., Shimoda, T., 2008. Comparison of microbial community 

structures in intensive and extensive shrimp culture ponds and a mangrove area in 

Thailand. Fisheries Science 74, 889-898.

Salminen, S., Von Wright, A., Morellic, L., Marteaud, P., Brassarte, D., De Vosf, 

W.M., Fondeng, R., Saxelinh, M., Collinsi, K., Mogensenj, G., Birkelandk, S.-E., 

Mattila-Sandholmb, T., 1998. Demonstration of safety of probiotics - a review. 

International Journal of Food Microbiology 44, 93-106.



Sambrook, J., Russel, D.W., 2001. Molecular Cloning, a laboratory manual. Cold 

Spring Harbor Laboratory Press.

Sanders, M.E., Gibson, G.R., Gill, H.S., Guarner, F., 2007. Probiotics: Their Potential 

to Impact Human Health. Council for Agricultural Science and Technology (CAST) 

Issue paper 36, 1-20.

Schnapp, D., Kemp, G.D., Smith, V.J., 1996. Purification and characterization of a 

proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the 

haemocytes of the shore crab, Carcinus maenas. European Journal of Biochemistry 240, 

532-539.

Selvin, J., Lipton, A.P., 2003. Vibrio alginolyticus associated with white spot disease of 

Penaeus monodon. Diseases of Aquatic Organisms 57, 147-150.

Selvin, J., Huxley, A.J., Lipton, A.P., 2004. Immunomodulatory potential of marine 

secondary metabolites against bacterial diseases of shrimp. Aquaculture 230, 241-248.

Sipponen, P., Hyvarinen, H., 1993. Role of Helicobacter pylori in the pathogenesis of 

gastritis, pepticulcer and gastric cancer. Scandinavian Journal of Gastroenterology 28, 

3-6.

-237-



Skjermo, J., Vadstein, O., 1999. Techniques for microbial control in the intensive 

rearing of marine larvae. Aquaculture 177, 333-343.

Smith, C.J., Danilowicz, B.S., Clear, A.K., Costello, F.J., Wilson, B., Meijer, W.G., 

2005. T-Align, a web-based tool for comparison of multiple terminal restriction 

fragment length polymorphism profiles. FEMS Microbial Ecology 54, 375-380.

Smith, V.J., Ratcliffe, N.A., 1980 (a). Cellular defence reactions of the shore crab, 

Carcinus maenas: in vivo hemocytic and histopathological responses to injected 

bacteria. Journal of Invertebrate Pathology 35, 65-74.

Smith, V.J., Ratcliffe, N.A., 1980 (b). Host defence reactions of the shore crab, 

Carcinus maenas (L.); clearance and distribution of injected particles. Journal of the 

Marine Biological Association of the United Kingdo 60, 89-102.

Smith, V.J., Soderhall, K., 1991. A comparison of phenoloxidase activity in the blood of 

marine invertebrates. Developmental and Comparative Immunology 15, 251-261.

Smith, V.J., Chisholm, J.R.S., 1992. Non-cellular immunity in crustaceans. Fish & 

Shellfish Immunology 2,1-31.



Smith, V.J., Brown, J.H., Hauton, C., 2003. Immunostimulation in crustaceans: does it 

really protect against infection? Fish & Shellfish Immunology 15, 71-91.

Soderhall, K., Smith, V.J., 1983. Separation of the haemocyte populations of Carcinus 

maenas and other marine decapods, and prophenoloxidase distribution. Developmental 

and Comparative Immunology 7, 229-239.

Solano, J.L.O., Soto, J.O., 2006. The functional property of Bacillus for shrimp feeds. 

Food Microbiology 23, 519-525.

Soto-Rodriguez, S.A., Simoes, N., Roque, A., Gomez-Gil, B., 2006. Pathogenicity and 

colonization of Litopenaeus vannamei larvae by luminescent vibrios. Aquaculture 258, 

109-115.

Sousa, L.G., Cuartas, E.I., Petriella, A.M., 2005. Fine structural analysis of the 

epithelial cells in the hepatopancreas of Palaemonetes argentinus (Crustacea, 

Decapoda, Caridea) in intermoult. Biocell 29,25-31.

Spanggaard, B., Huber, I., Nielsen, J., Nielsen, T., Appel, K.F., Gram, L., 2000. The 

microflora of rainbow trout intestine: a comparison of traditional and molecular 

identification. Aquaculture 182,1-15.



Spanhaak, S., Havenaar, R., Schaafsma, G., 1998. The effect of consumption of milk 

fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune 

parameters in humans. European Journal of Clinical Nutrition 52, 899-907.

Stanier, J.E., Woodhouse, M.A., Griffin, R.L., 1968. The fine structure of the 

hepatopancreas of Carcinus maenas (L.) (Decapoda Brachyura). Crustaceana 14, 56-66.

Stojiljkovic, I., Kumar, V., Srinivasan, N., 1999. Non-iron metalloporphyrins: potent 

antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. 

Molecular Microbiology 31,429-442.

Sudheesh, P.S., Xu, H.-S., 2001. Pathogenicity of Vibrio parahaemolyticus in tiger 

prawn Penaeus monodon Fabricius: possible role of extracellular proteases. 

Aquaculture 196, 37-46.

Sugita, H., Ueda, R., Berger, L.R., Deguchi, Y., 1987. Microflora in the gut of Japanese 

coastal Crustacea. Nippon Suisan Gakkaishi 53, 1647-1655.

Suma, K., Misra, M.C., Varadaraj, M.C., 1998. Plantaricin LP84, a broad spectrum 

heat-stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple 

glucose broth medium. International Journal of Food Microbiology 40, 17-25.



Tacon, A.J., 2003. Aquaculture Production Trends Analysis, FAO Fisheries circular 

886: Review of the State of World Aquaculture. FAO [FOOD AND AGRICULTURE 

ORGANIZATION OF THE UNITED NATIONS], Hawaii, USA., pp. 29.

Thies, J.E., 2006. Measuring and assessing soil biological properties. In: Uphoff, N. 

(Ed.), Biological approaches to sustainable soil systems. Taylor & Francis Group, Boca 

Raton, FL., USA., pp. 655-670.

Thornton, C., Shanahan, M., Williams, J., 2003. From Wetlands to Wastelands: Impacts 

of shrimp farming. Society of Wetland Scientists 20,48-53.

Timmerman, H.M., Koning, C.J.M., Mulder, L., Rombouts, F.M., Beynen, A.C., 2004. 

Monostrain, multistrain and multispecies probiotics - A comparison of functionality and 

efficacy. International Journal of Food Microbiology 96,219-233.

Timmermans, L.P.M., 1987. Early development and differentiation in fish. Sarsia 72, 

331-339.

Tsing, A., Arcier, J.-M., Brehelin, M., 1989. Hemocytes of penaeid and palaemonid 

shrimps: morphology, cytochemistry, and hemograms. Journal of Invertebrate 

Pathology 53, 64-77.



Tursi, A., 2007. New physiopathological and therapeutic approaches to diverticular 

disease of the colon. Expert Opinion on Pharmacotherapy 8,299-307.

Urdaci, M.C., Bressollier, P., Pinchuk, I., 2004. Bacillus clausii probiotic strains: 

antimicrobial and immunomodulatory activities. Journal of Clinical Gastroenterology 

38, S86-S90.

Valles-Jimenez, R., Cruz, P., Perez-Enriquez, R., 2004. Population genetic structure of 

Pacific White Shrimp (Litopenaeus vannamei) from Mexico to Panama: microsatellite 

DNA variation. Marine Biotechnology 6, 475-484.

Van Hai, N., Buller, N., Fotedar, R., 2009. The use of customised probiotics in the 

cultivation of western king prawns {Penaeus latisulcatus Kishinouye, 1896). Fish & 

Shellfish Immunology 27, 100-104.

Vandenberghe, J., Verdonck, L., Robles-Arozarena, R., Rivera, G., Bolland, A., 

Balladares, M., Gomez-Gil, B., Calderon, J., Sorgeloos, P., Swings, J., 1999. Vibrios 

associated with Litopenaeus vannamei larvae, postlarvae, broodstock, and hatchery 

probionts. Applied and Environmental Microbiology 65, 2592-2597.

Vaseeharan, B., Ramasamy, P., 2003. Control of pathogenic Vibrio spp. by Bacillus 

subtil is BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. 

Letters in Applied Microbiology 36, 83-87.

- 2 4 2 -



Vaseeharan, B., Ramasamy, P., 2004. Effect of probiotics, antibiotic sensitivity, 

pathogenicity, and plasmid profiles of Listonella anguillarum-\ikQ bacteria isolated 

from Penaeus monodon culture systems. Aquaculture 241, 77-91.

Vazquez, J.A., Gonzalez, M.P., Murado, M.A., 2005. Effects of lactic acid bacteria 

cultures on pathogenic microbiota from fish. Aquaculture 245,149-161.

Vazquez, J.A., Cabo, M.L., Gonzalez, M.P., Murado, M.A., 2003. Survival of Lactic 

Acid Bacteria in Seawater: A Factorial Study. Current Microbiology 47, 508-513.

Verellen, T.L.J., Bruggeman, G., Van Reenen, C.A., Dicks, L.M.T., Vandamme, E.J., 

1998. Fermentation optimisation of plantaricin 423, a bacteriocin produced by 

Lactobacillus plantarum 423. Journal of Fermentation and Bioengineering 86,174-179.

Vemer-Jeffreys, D.W., Shields, R.J., Birkbeck, T.H., 2003. Bacterial influences on 

Atlantic halibut Hippoglossus hippoglossus yolk-sac larval survival and start-feed 

response. Diseases of Aquatic Organisms 56, 105-113.

Verschuere, L., Rombaut, G., Sorgeloos, P., Veerstraete, W., 2000. Probiotic bacteria as 

biological control agents in Aquaculture. Microbiology and Molecular Biology Reviews 

64, 655-671.

- 2 4 3 -



Vieira, F.D.N., Pedrotti, F.S., Neto, C.C.B., Mourino, J.L.P., Beltrame, E., Martins, 

M.L., Ramirez, C., Arana, L.A.V., 2007. Lactic-acid bacteria increase the survival of 

marine shrimp, Litopenaeus vannamei, after infection with Vibrio harveyi. Brazilian 

Journal of Oceanography 55, 251-255.

Vieira, F.D.N., Neto, C.C.B., Mourino, J.L.P., Jatoba, A., Ramirez, C., Martins, M.L., 

Barracco, M.A.A.M., Vinatea, L.A., 2008. Time-related action of Lactobacillus 

plantarum in the bacterial microbiota of shrimp digestive tract and its action as 

immunostimulant. Pesquisa Agropecuaria Brasileira 43, 763-769.

Vogan, C.L., Rowley, A.F., 2002. Effects of shell disease syndrome on the haemocytes 

and humoral defenses of the edible crab, Cancer pagurus. Aquaculture 205, 237-252.

von Wright, A., 2005. Regulating the Safety of Probiotics - The European Approach. 

Current Pharmaceutical Design 11, 17-23.

Wang, L., Chen, J., 2005. The immune response of white shrimp Litopenaeus vannamei 

and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish & Shellfish 

Immunology 18,269-278.

Wang, Y., 2007. Effect of probiotics on growth performance and digestive enzyme 

activity of the shrimp Penaeus vannamei. Aquaculture 269, 259-264.



Wang, Y., Zirong, X., 2006. Effect of probiotics for common carp (Cyprinus carpio) 

based on growth performance and digestive enzyme activities. Animal Feed Science and 

Technology 127, 283-292.

Wang, Y., He, Z., 2009. Effect of probiotics on alkaline phosphatase activity and 

nutrient level in sediment of shrimp, Penaeus vannamei, ponds. Aquaculture 287, 94- 

97.

Whorwell, P., 2009. Probiotics - Growing evidence to support their use in irritable 

bowel syndrome. CN Focus 1,22-25.

Whorwell, P.J., Altringer, L., Morel, J., Bond, Y., Charbonneau, D., O’Mahony, L., 

Kiely, B., Shanahan, F., Quigley, E.M.M., 2006. Efficacy of an encapsulated probiotic 

Bifidobacterium infantis 35624 in women with irritable bowel syndrome. The American 

Journal of Gastroenterology 101, 1581-1590.

Wickins, J.F., Lee, D.O.C., 2002. Crustacean Farming Ranching and Culture. Blackwell 

Science, Paris, 446 pp.

Wollowski, I., Rechkemmer, G., Pool-Zobel, B.L., 2001. Protective role of probiotics 

and prebiotics in colon cancer. American Journal of Clinical Nutrition 73,451S-455S.



Wood, J.M., Bremer, E , Csonka, L.N., Kraemer, R., Poolman, B., van der Heide, T., 

Smith, L.T., 2001. Osmosensing and osmoregulatory compatible solute accumulation 

by bacteria: Review. Comparative Biochemistry and Physiology Part A 130,437-460.

World Bank, NACA, WWF, FAO, 2002. Shrimp Farming and the Environment. A 

World Bank, NACA, WWF and FAO Consortium Program "To analyze and share 

experiences on the better management of shrimp aquaculture in coastal areas". 

Synthesis report. Work in Progress for Public Discussion. World Bank, Network of 

Aquaculture Centres in Asia-Pacific, World Wildlife Fund and Food and Agriculture 

Organization of the United Nations Consortium Program on Shrimp Farming and the 

Environment, pp. 119.

Wu, J.-P., Chen, H.-C., Huang, D.-J., 2009. Histopathological Alterations in Gills of 

White Shrimp, Litopenaeus vannamei (Boone) After Acute Exposure to Cadmium and 

Zinc. Bulletin of Environmental Contamination and Toxicology 82,90-95.

Yasui, H., Kiyoshima, J., Hori, T., 2004. Reduction of influenza virus titer and 

protection against influenza virus infection in infant mice fed Lactobacillus casei 

Shirota. Clinical and Diagnostic Laboratory Immunology 11,675-679.

Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E.J., Short, J.M., Keller, M., 

2002. Cultivating the uncultured. Proceedings of the National Academy of Sciences 

(PNAS) 99, 15681-15686.

- 2 4 6 -



Web based references:

(http://www. umbi. umd. edu/2009)

(http://fao.org/2009)

(http://news.bbc.co.uk/2009)



Appendices



Appendix 1



Marine anticoagulant

Sodium chloride (NaCl) 26.3 g
Glucose (C6Hi20 6) 19.0 g
Trisodium citrate (Na3C6H507.2H20 ) 8.8 g
Citric acid (CeHgCb.IEO) 5.4 g
EDTA (CioHi6N208) 3.7 g
Distilled deionised H20  1 L

Shrimp marine anticoagulant

Trisodium citrate (Na3C6H507.2H20 ) 8.8 g
Sodium chloride (NaCl) 19.8 g
EDTA (CioHi6N20 8) 3.0 g
Glucose (CeHnOe) 1.1 g
Distilled deionised H20  1 L

Isosmotic formalin solution

Formalin (40% by volume CH20) 250 ml
Glucose (CeHnOe) 1.1 g
Distilled deionised H20  750 ml

(Sodium) Cacodylate buffer

Sodium chloride (NaCl) 1.3 g
Sodium cacodylate (CH3)2AsNa0 2.3H20 ) 1.0 g
Trisodium citrate (Na3C6H507.2H20 ) 11.0 g
Distilled deionised H20  500 ml

Cacodylate sucrose buffer

Sodium cacodylate (CH3)2AsNa0 2.3H20 ) 1.3 g
Sucrose (Ci2H220 n ) 43.0 g
Calcium chloride (CaCl2.2H20 ) 7.5 g
Distilled deionised H20  500 ml

L-Dopa solution

L-p-3,4-Dihydroxypheny lalanine 
MilliQ water

(C9H„N04) 3 mg 
1 ml



Marine saline solution

Sodium chloride 
Potassium chloride 
Calcium chloride
Tris (hydroxymethyl)-methylamine 
Sodium dihydrogen orthophosphate 
MilliQ water 
(Attenuated to pH 7.4)

(NaCl) 33.7 g
(KC1) 1.0 g
(CaCl2) 3.0 g
(C4H11NO3) 6.0 g
(NaH2P04.2H20) 0.1 g

1 L

Seawater Bouin’s fixative

Seawater saturated picric acid 
Formalin
Glacial acetic acid

Cole’s haematoxylin (Humason)

1% iodine in 95% ethanol
10% haematoxylin in 100% ethanol
1.2% potassium aluminium sulphate

(C6H3N3O7) 75 ml
(40% by volume CH20) 25 ml
(C2H402) 5 ml

(IinC 2H5OH) 2 ml
(Ci6Hi40 6 inC2H50H) 11 ml
(KA1(S04)2.12H20)

Alcoholic eosin

Eosin 0.1 g
70% ethanol (C2H5OH) 100 ml
Glacial acetic acid (C2H402) 0.5 ml

Tris-borate-EDTA (TBE) buffer

Tris (hydroxymethyl)-methylamine 
Boric acid
Distilled deionised H20  
0.5 M EDTA 
Distilled deionised H20

(GiHnNCh)
(H3BO3)

(Ci0H16N2O8)

54.0 g 
27.5 g 
900 ml 
20 ml 
80 ml

Formula for the calculation of phenoloxidase (PO) specific activity:

Result of the assay, i.e. PO specific activity, is expressed as units of absorbance at 492nm.per 
min. per mg of protein (@492/min/mg protein) and is calculated thus;

Specific Activity (SA) = Abs. at 492nm x dilution factor
([Protein] of HLS (mg/ml) x Time incubated 

x Volume of proPO extract (ml))

Dilution factor = HLS + Trypsin + L-Dopa = 1 
HLS + Trypsin + L-Dopa
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Isolate
ID. Gram 

(+ or -)

Cell
morphology Size (|im) 

Length Width
Gross colony morphology 

Form Margin Elevation
LI - Short rod 1.8 1.2 Circular Entire Raised

LI - 1 - Coccoid 1.2 - Spreader Undulate Flat
LI -2 - Short rod 1.2 1.8 Circular Entire Raised
LI -3 - Rod 1.8 0.6 Circular Entire Raised
LI -4 - Rod 1.8 0.8 Circular Entire Flat
LI -5 - Coccoid 1.2 - Circular Entire Raised
LI -6 - Coccoid 1.8 - Circular Entire Convex
LI -9 - Short rod 1.6 1.2 Circular Entire Convex

L2 - Short rod 2.0 1.2 Circular Entire Raised
L 2 - 2 - Short rod 1.2 1.8 Spreader Undulate Flat
L 2 - 7 - Coccoid 1.2 - Circular Entire Convex
L 2 - 8 - Short rod 1.5 1.0 Circular Entire Convex
L 2 - 9 - Rod 2.4 1.0 Circular Entire Convex

L3 - Short rod 1.8 1.0 Circular Entire Raised
10L1 - Coccoid 1.0 - Circular Undulate Flat
10L2 + Coccoid 0.6 - Circular Entire Pulvinate
G1 - Rod 2.4 0.6 Circular Entire Convex
G2 - Rod 2.4 0.6 Circular Entire Convex
G3 - Rod 3.6 1.2 Circular Entire Convex

G3 - 1 - Rod 2.4 1.0 Circular Entire Convex
G4 - Rod 1.8 0.4 Circular Entire Convex

G 4- 1 - Coccoid 1.2 - Circular Entire Convex
G 4 -2 - Coccoid 1.2 - Circular Entire Convex

G5 - Rod 2.4 0.8 Circular Entire Convex
G5 -1 - Rod 1.8 0.8 Circular Entire Convex

G6 - Rod 2.4 1.2 Circular Entire Raised
G 6- 1 - Short rod 1.5 0.6 Circular Entire Convex

G7 - Short rod 1.2 1.8 Circular Entire Convex
G7- 1 - Rod 2.4 1.0 Circular Entire Convex
G 7 - 2 - Coccoid 1.2 - Circular Entire Convex
10G1 - Rod 1.8 0.4 Circular Entire Flat
10G2 - Coccoid 1.2 - Circular Undulate Pulvinate
10G3 - Rod 3.0 1.2 Circular Entire Convex
10G4 - Thin rod 2.4 0.5 Circular Entire Raised
10G5 - Rod 2.4 1.2 Circular Undulate Convex
10G6 - Thin rod 2.4 0.5 Circular Entire Raised
C-G2 - Rod 1.2 0.3 Circular Undulate Flat
HP1 - Rod 1.2 0.4 Circular Entire Raised

HP1 - 1 - Coccoid 1.2 - Circular Entire Convex
HP2 - Rod 1.2 0.6 Circular Entire Raised

HP2- 1 - Short rod 1.8 0.8 Circular Entire Raised
HP4 - Rod 1.5 0.6 Circular Entire Raised
HP5 - Short rod 1.8 0.8 Circular Entire Raised
HP6 - Short rod 1.2 0.4 Circular Entire Raised
HP8 - Coccoid 0.6 - Circular Entire Convex
HP 13 - Spherical 1.2 - Circular Entire Convex
HP14 - Short rod 1.5 1.0 Circular Entire Convex

100HP1 - Short rod 2.2 1.4 Circular Undulate Flat
C-HP2 - Coccoid 1.2 - Irregular Undulate Raised
C-HP3 + Coccoid 0.6 - Circular Entire Convex


