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Summary

In this thesis, an element-wise locally conservative Galerkin (LCG) finite element 

method is presented. The LCG method has been shown here to be successful in solving 

equations of scalar-transport, and the incompressible Navier-Stokes equations.

The LCG approach facilitates an element-by-element solution and obtains a contin­

uous and unique nodal solution from the surrounding element contributions, via averaging. 

A simple numerical flux establishes continuity at the edges between neighbouring elements. 

This allows the system of discrete equations to be solved over each elemental sub-domain, 

greatly simplifying the solution procedure. The method explicitly establishes local element­

wise conservation, and after the averaging procedure a residual flux appears on the global 

boundary. It is this flux which gives the LCG method global conservation, regardless of 

prescribed boundary conditions.

Aspects research are: the mathematical formulation; explicit and implicit dis­

cretisations; edge flux calculation procedures; development and implementation of Petrov- 

Galerkin and characteristic based methods; and finally matrix-free LCG methods for steady 

and unsteady incompressible flows. Evaluation of all the proposed LCG methods has been 

given, showing the methods to be accurate and robust.
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Chapter 1

Introduction

1.1 The finite elem ent (FE) approxim ation

A common theme occurring in proceeding chapters of this thesis, is the use of the 

finite element approximation, to provide the general framework for the development of a 

number of novel and appealing numerical schemes. These new schemes have been shown to 

have excellent success in solving scalar variable and Navier-Stokes equations [1, 2, 3, 4, 5]. 

Before going into the full details in the following chapters, a concise account of the finite 

element (FE) approximation is given below.

1.1 .1  A  b r ie f  h is to r ica l o v e r v ie w

From a historical context, various authors have given conflicting opinions on the 

origins of the technique [6, 7, 8]. A paper by Felippa [9] researches as far back as the 1930s. 

Here, the origins of the FE method have been traced to a pre-computer tool introduced by 

an aero-elasticity group, based at the National Physics laboratory, London. The method 

underwent a period of major development from its pioneers in the 1950s [10, 11, 12, 13], 

before being coined with the name finite element by Clough [14], at a conference held in 

Pittsburgh, 1960. The FE method was further extended to the field of continuum mechanics 

by O.C. Zienkiewicz and Cheung in 1965 [15]. It was Zienkiewicz who first realised the 

general potential of the FE method outside the field of solid mechanics. Two years later
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Zienkiewicz published the first text book on the FE method for structural and continuum 

mechanics [16].

1.1.2 Som e general remarks on the FE m ethod and the standard Galerkin 

approxim ation

The use of the FE method today, is widespread in many different fields of study. 

It enjoys much popularity due to its advantages in modeling complex geometries, and its 

natural enforcement of Neumann (flux-type) boundary conditions. Of the many choices 

for the weighting function, the Galerkin method (or Bubnov-Galerkin method) [17, 18] is 

the most standard. Here, the interpolation functions are chosen as the weighting functions, 

giving symmetrical matrices for modeling self-adjoint diffusive-type problems. Zienkiewicz 

et al. note that this is a most optimal approximation, with regards to giving the minimum 

error in the energy norm [19, 20, 21, 22, 23].

1.1.3 The FE m ethod for convection-dom inated problems

It is well known, that using the standard Galerkin spatial discretisation in the 

solution of convection-dominated problems, introduces negative diffusion into the solution 

procedure [24], causing instability. The instability is due to a central-difference type ap­

proximation of the non self-adjoint convective terms. This gives non-symmetrical terms 

in the obtained discrete matrix-system, and leads to spurious oscillations in the computed 

solution. Unless the velocity is of negligible value, as in creeping flows (or zero for the case 

of Stokes flow), then a suitable method of stabilisation is needed.

There are a number of well-known stabilisation methods, commonly used in finite 

elements, which will eliminate or at least significantly reduce the oscillations caused by 

the convective-transport terms. For solving scalar-variable transport problems, using the 

FE approach, such methods include: the Petrov-Galerkin (PG) method [23, 25, 26]; the 

Streamline-Upwind Petrov-Galerkin (SUPG) method [27, 28]; the Galerkin/Least Squares 

(GLS) method [29, 30]; and the Finite Increment Calculus (FIC) method [31]. Both PG and 

SUPG methods employ a modified weighting function, that is no longer identical to the inter­

polation function. The modified weighting function introduces an additional diffusion term
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into the final discrete formulation. This extra term gives consistent convective-stabilisation, 

and is sometimes referred to as artificial or balancing diffusion [23]. The SUPG method 

is relatively superior of the two methods for two (or three) space-dimensions, as the bal­

ancing diffusion added is anisotropic - acting only in the direction of the streamlines. The 

GLS formulation produces similar results via a combination of the standard Galerkin and 

least squares approximation. The FIC procedure directly obtains the balancing diffusion 

by considering a finite length, and using a backwards Taylor series to give an extra stabil­

isation term. In more recent developments of stabilizing techniques, Hughes [32] identifies 

stabilised methods as approximate subgrid scale (SGS) models [33, 34, 35, 36], additionally 

the residual-free bubble function [37] has been implemented for advection-diffusion equa­

tions.

When time dependent equations are solved, high-order time schemes, such as the 

Taylor Galerkin (TG) method [38] and the characteristic Galerkin (CG) [39] method, are 

commonly used in FE analysis. For these latter schemes, performing a high-order time 

discretisation (which precedes the spatial one), naturally introduces a consistent balancing 

diffusion. The second-order TG method is the finite element equivalent of the original finite 

difference (FD) Lax-Wendroff scheme [40]. Here, the temporal derivative appearing in the 

governing equation, is approximated with a truncated Taylor series expansion - correct to 

second order. Higher-order variations of the TG method axe discussed in detail by Donea 

and Huerta [38, 41].

For the CG method, first introduced by Lohner et al. [39], the temporal derivative 

is discretised along the problem characteristic. This gives a semi-discrete form that is 

completely self-adjoint in nature, and thus the Galerkin spatial approximation is optimal. 

In the original paper [39], it was shown that the need for mesh updating in the CG procedure, 

can be avoided - at a cost of conditional stability, by the use of a local Taylor expansion. 

This in turn gives a simple explicit CG procedure of second-order accuracy in time. For 

the case of convection-diffusion with scalar variables, the TG and the simple explicit CG 

schemes give an identical discrete equation. Further work and applications of the simple 

explicit CG method are given in [23, 42, 43]. Additionally, a recent paper presents an 

excellent and comprehensive overview of the all the most common variations of the CG
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method(s) [44].

1.1.4 U sing the FE m ethod w ith  discontinuous interpolation

In recent years, there has been a high level of interest amongst researchers on the 

Discontinuous Galerkin (DG) Method. The DG method can be regarded as a generalization 

of the finite volume (FV) method [45], as it assumes a discontinuous approximate solution. 

The method was first introduced by Reed and Hill in 1973 [46], to model the first-order 

neutron transport equation. Its potential was recognised by La Saint and Raviart [47], who 

in the following year, published the first numerical analysis of the method for the linear 

transport equation. A grand collection of papers on the various DG methods - illustrating 

the high level of activity in this area, is given by Cockburn et al. [48]. This reference is 

singularly pointed out as a valuable introduction to the DG literature and gives a concise 

summary of the current state of the art. Key literature on the DG method(s) from this 

book, includes the works: [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], 

Motivated by the method of Bassi and Rebay [65], Cockburn and Shu have also developed 

a local discontinuous Galerkin (LDG) method [66] for solving general convection-diffusion 

problems. The method has symmetric algebraic equations, it is element-wise conservative 

and uses discontinuous basis functions - making it ideally suited for /ip-adaptivity. For 

further contributions to the LDG method and applications see references [67, 68, 69, 70, 71, 

72, 73],

Generally speaking; despite all the many favourable properties of the various DG 

methods, including: a very flexible framework for grid adaptation; local element-wise con­

servation; natural extension of the method to any order approximation; discontinuity cap­

turing at domain interfaces; and smaller equation sets to solve, the DG methods are more 

expensive than the standard global (continuous) Galerkin method. The excessive number 

of degrees of freedom and the higher cost associated with it, are often blamed for DG’s 

lack of interest within the engineering industry [74]. Thus, it is not surprising to hear that 

researchers are looking for a DG method with a structure of continuous Galerkin method, 

in an effort to increase the appeal of the DG method [75]. However it is believed that this 

approach is heading in the wrong direction of progress. Clearly, it would be easier to modify
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a continuous Galerkin structure to adopt a discontinuous path [1, 2, 3, 4, 5], rather than 

adopting DG methods to develop a global Galerkin structure. This way, existing industrial 

codes can be modified to accommodate the changes without resorting to complete revi­

sion of the codes. This would make implementation more efficient on both a practical and 

commercial scale, in turn making them more attractive to prospective industrial clients.

1.2 T he characteristic based split (CBS) schem e

As noted by Nithiarasu et al. [76], characteristic-based methods are not new to 

numerical modelling. In fact, they have received considerable research and much develop­

ment, being widely employed in the past to solve both convection-diffusion problems and 

the Navier-Stokes equations [39, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86].

The characteristic based split (CBS) scheme for compressible and incompressible 

flow problems, was first introduced into the finite element literature in 1995 by Zienkiewicz 

and Codina and co-workers [42, 87, 88]. The CBS scheme is essentially a fractional time- 

stepping algorithm, based on an original FD velocity-projection scheme for solving incom­

pressible flows by Chorin [89]. Since its introduction to the computational and numerical 

methods community, the CBS scheme has received great interest and has undergone exten­

sive research for both incompressible and compressible flows [23, 43, 44, 90, 91, 92, 93, 94, 

95, 96, 97, 98, 99].

The CBS scheme has also been extended to investigate other applications such as 

shallow water flows [23, 100], thermal and porous medium flows [101, 102, 103, 104]. More 

recently the extension has included transient flow problems [23, 96, 97, 98]; steady and 

unsteady turbulent-incompressible flows [23, 105]; problems of viscous-elastic flow [23, 106]; 

and a special matrix free fractional step method for the Stokes problem has been applied 

to solve static and dynamic incompressible solid mechanics [76]. All of which, prove the 

scheme’s robustness and applicability for different simulation scenarios. In this thesis some 

technical investigations [99, 107] are carried out, for improving the results for compressible 

flow, using the global Galerkin CBS scheme.

The basic three-step temporal scheme starts with the characteristic discretisation
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of the momentum equation components. Since each momentum equation contains more 

than one characteristic variable, the CG procedure is not easy to implement. The approach 

recommended by the original authors - and generally adopted since, is to split each mo­

mentum equation by removing the pressure-gradient term. The remaining equation for 

each velocity component is one of simple convection-diffusion for a scalar-variable, and is 

thus easily discretised using the CG method. Solving these equations gives an intermediate 

velocity field, which needs to be corrected once the pressure field is known. In the second 

step, the pressure field is solved independently, using a pressure equation based on conti­

nuity (mass conservation). Once pressure has been evaluated, the intermediate velocities 

are corrected in the third step. If other scalar variables such as temperature, concentration, 

etc. are required, then these are normally solved during a separate fourth step - allowing 

quick adaptability to different problems.

If the pressure is removed completely from the momentum equation, then the 

fractional step method introduces a first-order error into the momentum equation [108]. As 

an alternative to the recommended approach described, it is certainly possible to keep the 

pressure gradient in the momentum equation, by treating it as a source-type quantity. This 

has been shown to be a more accurate alternative [108], however its appeal has not been as 

attractive as the recommended approach. This is due to the Ladyshenskaya-Bubska-Brezzi 

(LBB) constraints [109, 110, 111], which apply when incompressibility (or near incompress­

ibility) is encountered. This is discussed in detail by Zienkiewicz et al. [23, 87] - where a 

mathematical analysis is given for the two different CBS approaches, with respect to the 

LBB condition . When the momentum equation is solved with the pressure term included, 

instability is unavoidable if equal-order interpolations (shape functions) are used for both 

the velocity and pressure fields. By removing the pressure term from the momentum equa­

tion circumvents the LBB condition, both enhancing pressure stability of the CBS scheme 

and freely allowing the arbitrary choice of interpolating functions.

For incompressible flows, an implicit solution for the pressure equation (Step 2) was 

used in the past - leading to a semi-implicit CBS scheme. Early attempts to obtain a fully 

explicit CBS algorithm for incompressible flows, were unsuccessful and suffered from severe 

time-step restrictions. A major contribution in overcoming problems in this area has been
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made by Nithiarasu [23, 96, 97, 98, 76], who has applied artificial compressibility methods, 

previously used in FD and FV techniques [112, 82, 85, 113, 114], to the finite element 

context of the CBS scheme. In the artificial compressibility (AC) method implemented, the 

sonic velocity is replaced with a locally calculated artificial compressibility‘parameter based 

on the convective and diffusive velocities. The resulting matrix free CBS-AC procedure is 

fully explicit, and has been proven to be both accurate and efficient, with manageable local 

and global time-step restrictions. Although such a scheme is only valid if a steady-state 

solution to the problem exists, unsteady flows have also been computed successfully via a 

dual time-stepping approach [23, 96, 97, 98, 76, 113, 114, 115]. The semi-discrete CBS-AC 

algorithm for the Navier-Stokes equations, is used in this thesis as the temporal stencil 

for a locally conservative Galerkin (LCG) method for solving both steady and unsteady 

incompressible flows.

1.3 Local conservation, and conservative schem es

problems. Finite volume (FV) methods are known to conserve fluxes for both a cell-centred 

volume and a dual-cell volume around a node. Additionally, discontinuous Galerkin (DG) 

methods are known to be element-wise conservative. For the general finite element (FE) 

method, there is a general feeling of ambiguity when it comes to describing its conservation 

properties.

The basic finite element (FE) form for an equation of the type dF i/dxi, may be 

written for a sub-domain surrounding a node as

For the standard global (continuous) Galerkin approximation, the sum of the derivatives of 

the weight function surrounding an inside node, a, is zero. Thus the flux is conserved locally 

at the node, making the global Galerkin FE method conservative for patch of elements 

surrounding a node. This is standard, but other definitions of conservation for the global 

Galerkin method do not seem as transparent.

Local conservation is a desirable property in the numerical modelling of engineering

( 1 .1)



A significant effort has been made by various authors to highlight the conservation 

properties of the global Galerkin method [116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 

126]. As written by Hughes et al. [125], local element-wise conservation emanates from the 

property that the weighting function can be set exactly to unity on the sub-domain of in­

terest and zero everywhere else. It is clear to see how DG methods are locally conservative, 

since their discontinuous basis functions allow them to achieve this property. However, this 

statement implies that the continuous global Galerkin FE method, is not always globally 

conservative. Only in the absence of Dirichlet boundary conditions is this statement true. 

In the above mentioned works (referenced in this paragraph), it is proposed that the con­

tinuous global Galerkin FE method can be made globally conservative by a postprocessing 

computation of flux on the Dirichlet part of the boundary. Using this flux, rather than 

strongly enforcing the Dirichlet conditions enables the continuous global Galerkin method 

to be globally conservative. The recent work of Hughes and co-workers [125, 126], has helped 

greatly in clarifying a lot of unnecessary confusion, on the global conservation properties of 

the standard global Galerkin method. More importantly though, this work has opened up 

new possibilities with regard to local element-wise conservation. A similar approach applied 

to a sub-domain or element allows the desirable property of local element-wise conservation 

to be gained by practitioners of the global Galerkin FE method.

Though the work of Hughes and co-workers rekindled the conservation issue of 

global finite element methods, element-by-element solution of the conservation equations, 

using a standard Galerkin structure was not addressed. Recently, a locally conservative 

Galerkin (LCG) scheme has been introduced by Nithiarasu [1], for solving convection- 

diffusion problems. The LCG method has similar advantages to DG methods without 

the need for solving additional variables. The previously mentioned paper proved that an 

element-by-element solution is possible via postprocessing the fluxes at every time step. The 

method uses the property of local conservation at steady state conditions in order to define 

a flux at element boundaries. This flux allows the computational domain to be broken down 

into a series of elemental domains, each with its own Neumann boundary conditions based 

on this computed flux. Although in the very first LCG paper [1] only linear elements were 

considered, and a small number of relatively simple problems solved. Its appeal prompted
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a significant research effort to be implemented in this thesis work.

A large effort has been made in this thesis in understanding how the LCG method 

works. This has included a rigorous description and analysis of the scheme, in which sur­

prising similarities were found with the global Galerkin method. Also the method has 

been applied to quadratic elements in order to improve the flux-calculation accuracy at the 

element interfaces. In addition to the above, stabilised LCG schemes have also been imple­

mented using already established methods used for the global Galerkin method. These have 

included both the SUPG and CG methods. Success in 2D convection-dominated problems 

has led to implementation of a matrix-free LCG-CBS method for the solution of incom­

pressible flow equations. Again both linear and quadratic versions have been implemented. 

Finally the problem of transient flow has been addressed by implementing a reliable dual 

time-stepping CBS procedure [96], giving a LCG-CBS scheme for unsteady flows.

1.4 O rganisation of the thesis

The major objective of this thesis, is to develop a locally conservative Galerkin 

(LCG) method for solving both scalar conservation equations and the Navier-Stokes equa­

tion. The latter, requires the implementation of the characteristic based split (CBS) al­

gorithm. As the CBS scheme with artificial compressibility (AC) played a key role in the 

development of an characteristic based LCG method for solving fluid dynamic problems, 

probationary research was carried out on the general CBS scheme and a number of small 

projects were carried out for compressible flow.

Chapter 2 introduces the governing equations for scalar transport and the general 

Navier-Stokes equations. Non-dimensional forms are given along with the Navier-Stokes 

equations for incompressible flow. The standard schemes for solving scalar equations using 

the global finite element (FE) method are then given, these include the Galerkin, Petrov- 

Galerkin, and characteristic Galerkin (CG). The Chapter closes with the discussion of the 

general CBS scheme for compressible flow.

Chapter 3 is the largest chapter of the thesis, it is solely dedicated to developing 

LCG methods for solving equations of scalar transport and incompressible flow. Here, the
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discussion of the LCG method starts with the essential fundamentals: The basic discretisa­

tion procedure is described first for explicit and implicit methods, next the numerical flux 

calculation is derived for both linear and quadratic elements, this is followed by an analysis 

of the nodal equations for the LCG method and comparisons are made to the standard 

global Galerkin method. To allow convection dominated problems to be solved by the LCG 

method, standard methods of stabilisation - discussed in Chapter 2 for the global Galerkin 

method, are applied to the LCG procedure. Chapter 3 finishes with the implementation 

of the CBS scheme (with an artificial compressibility parameter), into the LCG formula­

tion. The result is a fully explicit CBS-LCG scheme suitable for solving incompressible flow 

problems. Finally the chapter closes with a dual time-stepping approach, used to recover 

the transient solution of unsteady flow.

Chapter 4 discusses the influence of a stream-wise element-size calculation on 

the solution of compressible flow problems. Additionally, the use of a residual smoothing 

routine, is shown to allow the solutions of compressible flow simulations to be carried out on 

the same code for 0.01 < M a  < 3.00. Although this work is not directly related to the LCG 

discussion, the results of this work lead to the stream-wise element-size being applied to 

optimise the SUPG-LCG method, for convection dominated transport. Additionally, work 

on the compressible CBS code facilitated in the development of a CBS-LCG code with an 

artificial compressibility parameter.

The explicit and implicit LCG methods are evaluated in Chapters 5 and 6, for 

diffusive and convection dominated transport problems respectively. In Chapter 5, steady- 

state problems of heat conduction are solved in two and three dimensions. Problems with 

internal sources are also considered. Chapter 6 validates the implementation of the SUPG 

and characteristic Galerkin methods into the LCG procedure. This is carried out using 

a number of well know convection-diffusion problems. Chapter 6 closes with details of 

the mesh convergence properties of the explicit and implicit CG based LCG methods. The 

general convection-diffusion equation with source term is used, with convergence rates being 

evaluated on grids of linear and quadratic triangular elements.

The solution of the simplified incompressible flow equations using the CBS-LCG 

scheme, is evaluated in Chapter 7 for steady flow. A number of well know benchmark test
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cases are used to prove good performance of both linear and quadratic elements. Problems 

include: cavity flow, flow past a circular-cylinder, channel flow, and flow past a backward 

facing step. Where possible, the results have been validated by both experimental and 

numerical data.

Chapter 8 shows how the LCG method can be successfully used to solve transient 

problems. To examine the performance of the explicit characteristic based LCG method, 

the convection of a product-cosine hill in a purely rotational velocity-held is considered in 

the first section. The second section evaluates the implementation of the dual time-stepping 

CBS-LCG approach, for unsteady hows. The case of transient how past a circular-cylinder 

at a Reynolds number of 100 is solved. It is shown that the unsteady CBS-LCG scheme gives 

good performance in accurately modelling the vortex shedding at this Reynolds number. 

This is a difficult problem to solve and its use demonstrates the robustness of the LCG 

approach.

Finally Chapter 9, concludes this thesis by outlining the results of this thesis and 

discusses the potential for future work.
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Chapter 2

Governing Equations and Solution  

Procedures

2.1 Introduction

In this Chapter, details of the general governing equations modelled throughout 

the thesis are introduced. The discussion starts in Section 2.2, with the general scalar 

convection-diffusion equation. Next, the general Navier-Stokes equations are given. Here, 

non-dimensional variables are introduced into the equation set, to obtain the dimensionless 

Navier-Stokes equations for compressible flow. Section 2.2 closes with the non-conservative 

form of the Navier-Stokes equations, for incompressible fluid flow.

In section 2.3, a number of finite element discretisations are considered for solving 

the general scalar convection-diffusion equation. The global Galerkin method for spatial dis­

cretisation is applied first. Well known methods of stabilising the oscillations for convection- 

dominated problems are discussed next. These methods include the streamline-upwind 

Petrov-Galerkin (SUPG) method [27, 28], and the simple explicit characteristic Galerkin 

(CG) method [39, 42, 44]. Consideration is given for both explicit and implicit methods, 

with and without a lumped-mass matrix. The incorporation of linear and quadratic trian­

gular elements is also discussed.

Section 2.4 presents the characteristic-based-split (CBS) algorithm of Zienkiewicz
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et al. [42, 87, 88], for a general compressible flow simulation. This section firstly gives details 

on the recommended temporal discretisation and splitting procedure. Once the full four-step 

temporal scheme is discussed, details of the spatial discretisation procedure are given, to 

obtain a fully discrete form using the standard global (continuous) Galerkin method. Fully 

discrete matrix forms of the CBS scheme are given for general and inviscid compressible 

flow problems along with a shock capturing viscosity method for transonic and supersonic 

flow [91, 127]. Details of both local time-stepping and element-size calculation, are given 

next. In this section, the use of a flow dependent local element-size calculation in the 

streamline direction [128],- for computing the local (nodal) time-steps, is proposed for CBS 

calculations. Finally, in addition to the proposed stream-wise element-size calculation, this 

section concludes by addressing the issue of simulating inviscid flows at low Mach numbers 

by employing a variable smoothing approach.

2.2 G eneral governing equations

In this section the general governing equations [23, 129, 130, 131, 132] are given. 

Firstly, governing equations are stated for the general convective-diffusive transport of a 

scaler variable. Next, the most general form of the Navier-Stokes equation set is given. 

This set also includes the constitutive laws for the case of a perfect gas, so to obtain a 

closed set of equations. Finally in this section, the Navier-Stokes equations for the case of 

an incompressible fluid are given. In all cases, Einstein’s summation convention is implied 

if the equations are written in indicial notation.

2.2.1 General scalar convection-diffusion equation

The variation of a scalar variable 4> within a spatial domain D and closed surface 

T, is governed by the following scalar equation, written in conservation form:

488= 5 i (2 -1}

where f3 is a constant. Here, Iq and Si respectively represent the conservation flux com­

ponent and source term component, in the direction Xi of a Cartesian co-ordinate system.
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If source terms are negligible, the local intensity of 4> varies only through the effect of the 

fluxes from its surroundings [132]. Generally F{ consists of both convective and diffusive 

flux components, but it can also be purely diffusive in cases, for example, such as heat 

conduction. The flux term of the convection diffusion equation is defined as

F<=(^-fcS) ( 2 -2 )

where k is the diffusion coefficient and Ui are the constant velocity components.

The solution of this equation is sought over Q. To complete the initial-boundary 

value problem the following information on initial and boundary conditions is also required:

0(x, £ =  0) =  </>o(x) Vx G Q,

4> = 4> on Tff, and

Fn = niFi = F n on T f  (2.3)

Here the Dirichlet and Neumann partitions form the domain boundary, T, of fi, i.e.

r = r^ur/ (2.4)

and ni denotes the component of the unit outward normal vector to T in the the direction

Xi.

2.2.2 The Navier-Stokes equations

The conservative form of the governing equations, for the general compressible 

flow of a viscous fluid, can be written in a convenient and compact fashion as

t + g + g — »
Here

A t  =  (p, piti, pu2, pu3, pE) (2.6)
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is the vector of independent variables,

B ?  = (pui, puiUi + 8 up , pu2Ui + 52 ip, pu3 Ui + 8 3ip , Ui{pE + p)) (2.7)

is the convective flux vector, and

c ?  =  (0, -T ii, - r 2i, - r 3i, qi-T ijU j) (2.8)

defines the diffusion flux vector. Finally the vector

D T =  (0, pgi, pg2, pg3, p igm  -  qH)) (2.9)

contains the source terms.

In all the above equations p denotes the density; U{ represents the Cartesian com­

ponents of the velocity vector; E  is the total specific energy (internal and kinetic); Sij is the 

Kronecker delta function and is equal to unity when i =  j ; and zero when i 7  ̂j - p  represents 

the pressure; gi is the acceleration due to gravitational forces; qn is the heat generation per

unit mass; and qi is the heat flux. The latter is related to the local temperature gradient

by Fourier’s law of heat conduction:

Qi = -fcg; (2.10)

Here k is the thermal conductivity and T  is the temperature. The deviatoric stress compo­

nents Tij are related to velocity gradients by

-  \
Tto ^  ydx j dxi Sdxk  V

where p, is the dynamic viscosity and is dependent on the temperature 

is given according to Sutherland’s law [132] as:

1 45Ti «
M =  K T )  =  jrpY Jo  * 10- 6  (2.12)

(2 . 11)

. For air, the relation

with T  in Kelvin
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In order to obtain a closed set of equations, two further equations are required and 

these come from equations of state:

p = p(p,T), and e =  e(p,T) (2-13)

In the study of aerodynamic flow it is often assumed that the fluid (air) behaves as a perfect

gas thus allowing the perfect gas law to be applied. It is given as

p  =  pRT  (2.14)

where R  is the universal gas constant. The equation set is completed by a final equation 

that relates temperature to internal energy. For a perfect gas with constant specific heats, 

the following relation is used.

e =  cvT  (2.15)

Where e is the internal energy per unit mass and Cy is the specific heat at constant volume, 

e can be found from the total energy per unit mass, E , using

UjUjE  =  e +  (2.16)

These relations are only approximation for viscous flows since these flows are energy dissipa­

tive and as a result will always increase the entropy of the flow system. However, assuming 

isentropic conditions the speed of sound can be defined as

c 2  =  =  j p  =ryRT  (217)
dp p

where c is the speed of sound and 7  is the ratio of specific heats at constant pressure and 

constant volume, i.e.

7  =  St (2.18)
Cy

It should be noted that the transient density term in the continuity equation, may be

replaced by the relation given by Equation (2.17), under the assumption of isentropic con­

ditions, i.e.,



dt dp dt c2 dt v—

The above relation, given in Equation (2.19), is often the basis of many artificial compress­

ibility schemes for incompressible flow calculations [96, 113]. However, this approximation 

is not used in compressible flow calculations.

To complete the initial-boundary value problem, information on initial conditions 

throughout the problem domain is required.. Additionally, Dirichlet and Neumann type 

conditions are required on the respective portions of the domain-boundary: T = T ^U T f.  

The exact form of which, will depend upon the problem being simulated.

2.2.3 The dim ensionless N avier-Stokes equations for com pressible flow

The implementation of coding a computational fluid dynamics (CFD) program, is 

greatly aided when the governing Navier-Stokes equations are expressed in a non-dimensional 

format [23, 129, 132]. The choice of scales used to non-dimensionalise the Navier-Stokes 

equations vary depending on the nature of the flow. For a compressible fluid flow, the 

following non-dimensional scales are generally used:

r * _  'x±. v * _  JfL- n* = P ■ f* = tu°° • n* = P • F* =  —r i i P , p „ i H/ 2T uoo Poo L PqqUqq Uqq
p t*

C-f- e 8 *

Poo

a,II

* 2  _ C2 1
*

9 ■ Uoo
j iJi 9 » 

ulo
„ *   Qh L r p *    T C p  * 2 ___ ^ *   Q j L  *   P  7 *   ^  (cy f)A\Qh 0 7 T 2 > c  2 ? P j  9 i P > ^ i (2.20)Ko uic Poo koo

where a superscript *, indicates a non-dimensional quantity; a subscript infinity, 0 0 5  rep­

resents a reference free stream value; and L  is a reference length. Substituting the above 

scales into Equations (2.5-2.9) gives the non-dimensional form of:

Continuity
4  = ~ d4  (2 .2 1 )dt* dx* K }

Momentum
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Energy

d , d *. * * *. 1 d , * 1 d *<9T*
a F ^ >  = +*’*) + '  t o m  - ®  >

( 2 .2 3 )

In the above non-dimensional equations the mass flow fluxes are

u ;  =  p X  ( 2 -2 4 )

in addition:

=  W S  +  l d r - o ^ M  (2-25)
2  ditj
3&cj. ,

i?e and Pr  are the Reynolds and Prandtl numbers respectively and are given by

R e = ^  p r  =  ^ E  ( 2 .2 6 )
ÔO '* '00

Here, =  fi0Qf  p ^  is the kinematic viscosity. It is clear that these non-dimensional 

forms of the compressible flow equations automatically cater for both viscous and inviscid 

Euler flows by simple controlling of the value of the parameter Re, the Reynolds number. 

Applying the non-dimensional scales to the perfect gas law gives:

Equation of state

p *  =  p * R * T * ( 2 .2 7 )

where

R *  =  —  =  ( I n i ' )  ( 2 .2 8 )
cp  V 7  /

Once the dimensionless total energy, E*, has been calculated, the dimensionless tempera­

ture, T*, can be evaluated from

T* = 7  ( e * -  i u J tA ( 2 .2 9 )
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It is clear from here that when T* is known, pressure can be found from density (and 

viceversa) using Equation (2.27). Furthermore, the non-dimensional sonic velocity is found 

from

c* =  jR*T*  =  ( 7  — 1 ) T* 

and the local Mach number is given by

(2.30)

Ma = S (2.31)

2.2.4 R elations for isentropic flow at the stagnation point

In the computations of inviscid compressible-flow the following isentropic relations 

are useful in validating quantitative data retrieved for the stagnation point (s). The ratio of 

stagnation temperature, T*, to free-stream temperature, X^, is given by

r p *
O 1 +  I (2.32)

Using the perfect gas law (2.27) and the isentropic relation p* oc p*7, the stagnation to 

free-stream ratios for density and pressure

and

£o_ 
Pio

Po_ 
Pio

1 +
7 - 1

Ma
( * ) (2.33)

1 +  I ) M a 2
( * )

(2.34)

Tabulated values of gas flow functions [129] can be used in addition where the presence of 

shocks prevent the relations given by Equations (2.32) to (2.34) being used directly.

2.2.5 The N avier-Stokes equations for incom pressible flow

For the case of incompressible flow, the fluid density remains constant. This allows 

the Navier-Stokes equations to be simplified before using non-dimensional scales. Neglecting
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source terms, the non-conservation form of Equations (2.5) to (2.8) can be written in a

detailed indicial fashion as

Continuity

dp dui dp _
d i  + pd ^  + Uid ^ - °  (2'35)

Momentum

dui dui 1 dp 1 drij
aT + u^  +  p ^ - p & -  =  0  (2'36)

dE  dE  1 d f  dT  \  ld u jp  1 d(ujT{j)

Energy

dt J dxj p dxi \  d x i)  ^  p dxj p dxj ^  ̂ ^

For an incompressible fluid the density is a constant, and the fluid is divergence free (i.e. V- 

ii =  0). Thus, assuming a Newtonian fluid with constant viscosity and thermal conductivity, 

the governing system of equations for incompressible flow simplify to the following non- 

dimensional form 

Continuity

dUi = 0  (2.38)

Momentum

Energy

where

dxj

du* du* 1  d2 u* dv*- - u * —±- 4- —  (2 39)
dt* 3 dx^ Re dx*2 dx*

dT* *dT* 1 d 2 T*
~ d F ~ ~ Ujl t e * + RePr d x f  ^

x i = ~y~> «* =  — ; i* =  ^ ; P* =  - 4 r ;  T  = %  _ T~ \  (2.41)
L  u 0o L  p i t  oq [ T w  T o o )
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are the non-dimensional scales [103] used to produce the dimensionless form of the equations. 

It is noticed at this point that, except for the pressure derivative, the simplified momentum 

equation takes on an identical format to the temperature (energy) equation. This will prove 

useful when applying a new approach discussed in the next chapter for scalar convection- 

diffusion equations to solve incompressible flow problems.

2.3 Galerkin, Petrov-G alerkin and high-order tim e schem es 

for the general scalar convection-diffusion equation

In this section, a number of discretisations are considered for solving Equation (2.1) 

for general scalar convection-diffusion problems. As a starting point, the global Galerkin 

method for spatial discretisation is applied first. This yields a discrete finite element form 

of the governing equation, and for pure diffusive problems this method is most optimal 

[19, 20, 21, 22, 23]. Using the standard global Galerkin method for convection dominated 

problems, leads to spurious oscillations in the computed solution. To overcome difficulties at 

elevated values of Peclet number, suitable stabilisation of the convection terms is required.

There are a number of well-known stabilisation methods commonly used in finite 

elements, which will eliminate or at least significantly reduce the oscillations caused by the 

convective-transport terms. Such methods include: the Petrov-Galerkin (PG) method [23, 

25, 26]; the streamline-upwind Petrov-Galerkin (SUPG) method [27, 28]; the Galerkin/Least 

Squares (GLS) method [29, 30]; and the Finite Increment Calculus (FIC) method [31]. 

More recent developments of stabilizing techniques for advection-diffusion equations, include 

the subgrid scale (SGS) model [32, 33, 34, 35, 36] and the residual-free bubble function 

method [37]. For time dependent equations, high-order time schemes, such as the Taylor 

Galerkin (TG) method [38, 41] and the characteristic Galerkin (CG) [39, 42, 44] method, 

are commonly used. In addition, there are many methods which use discontinuous basis 

functions that are suitable for convection-dominated scalar transport [48]. In this thesis 

problems will be solved using both the SUPG and CG methods. For the SUPG method, 

special weighting for transient terms is not used. In addition, for this study third and higher 

order terms are neglected. This latter point is also applies to the CG method.
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2.3.1 Standard FE spatial-discretisation (global Galerkin m ethod)

The transient term of Equation (2.1) can be discretised using a simple Euler difference to 

give the explicit semi-discrete form, which is written as

g '  + s

The standard finite element procedure involves the spatial discretisation of £1 into non- 

overlapping elements or subregions [20, 21]. The variation of the scalar variable over an 

n-node element is then approximated by:

n

0«<£ =  ^ i V o0a =  N $  (2.43)
a=l

where 4> is an approximation of the scalar quantity and subscript a indicates nodes. Using 

the method of weighted residuals, Equation (2.42) is written as:

P f  wa^r;dQ = -  f  dQ+ [  waSidSl (2.44)
Jn A t  J  n dxi Jn

where wa(x) are the n arbitrary weighting functions. In a standard Galerkin approach 

the weights, wa, are chosen to be equal to the interpolation functions Na. Performing 

integration by parts to the non-source term in the RHS of Equation (2.44) gives:

0  [  Na= ^ d Q =  [  ^ - F " d . C l -  [  NaFtndCm+ f  N j i d t l  (2.45)
Jn A t  dxi  J r  Jn

where rii are the components of the outward boundary normal. Equation (2.45) is completed 

by the assembly of the individual elemental equation systems. Using boundary conditions 

appropriate to the type of problem being solved, a continuous solution is sought over the 

domain. The explicit matrix form of Equation (2.45) is written as:

/?[M]{A$} =  A£([K]{$}n + (f}n) (2.46)

An implicit solution procedure is also possible and is obtained by treating the flux term of 

Equation (2.42) implicitly to give
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Figure 2.1: Mass lumping for linear and quadratic triangles

[f3M +  A£K] { $ } n + 1  =  [M]{$}n +  A£{f}n (2.47)

Assuming the diffusion coefficient and velocity components are all constant, the matrices in 

Equations (2.46) and (2.47) are given by

f  f  <9Nt  /  d N \
M  =  / Nt N dCt, K  =  / ——  UiN  -  k - — dVt and

Jn Jn &x i \  o x i )

f =  J  N TNdtt{Si}n -  J  ~Nt  ( u i N - k ^ p J n i d T { $ } n (2.48)

In both the explicit and the implicit form (given by Equations (2.46) and (2.47) respec­

tively), the mass matrix, M, may either be lumped, or kept as a consistent mass matrix 

during the assembly of the individual elemental equations. To avoid ambiguity between 

consistent and lumped mass matrices, a lumped mass matrix is denoted by M l

For simple linear-triangular elements M l can be found by summing up the mass- 

matrix coefficients of each row and placing along the diagonal. Lumping quadratic-triangular 

elements in this way gives zero mass terms on the matrix diagonal corresponding to the 

nodes on the element’s vertices. This prevents the inversion of the M l- Figure (2.1) shows 

a recommended lumping procedure for quadratic elements [2 1 ], which is used in this work. 

This procedure considers one quadratic element as 4 linear elements for lumping the mass 

matrix.
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2.3.2 Stream line-upwind Petrov-G alerkin (SU P G ) m ethod

The Petrov-Galerkin methodology, with wa ^  N a, was first used by Christie et 

al. [25] for the one-dimensional convection-diffusion equation, and by Heinrich et al. [26] 

for the general two-dimensional case. However, the direct application of the upwinding 

Petrov-Galerkin formulation to multidimensional problems suffers from excessive cross-wind 

diffusion perpendicular to the flow direction [23]. This problem is eliminated by the SUPG 

method of Brooks and Hughes [27, 28], where the added artificial diffusion is anisotropic 

- acting only in the direction of the streamlines. To have a consistent weighted residual 

equation, the modified weighting function is applied to all terms in the governing equation.

For SUPG stabilisation [28] in two-dimensions, the following weighting function is

used

ah m dNaWa = Na + —  —  —— 2.49)
2  |u| dxi

where for linear finite element triangles the optimal value of a  is given by

ot =  & opt =  coth (Pe) -  — (2.50)\r>e)

and the element Peclet number, Pe, is calculated from

P e = i ^  =  ^  (251)

here h is the element-size, there are a number of ways of calculating element-size. For 

a known, unchanging velocity field, the element-size can be computed in the streamline 

direction and will only need to be performed once at the pre-processing stage.

The choice of the optimal stabilizing parameters for quadratic triangular elements

follows the work of both Donea [41] and Codina [133] for one-dimensional quadratic ele­

ments. In ID, separate stabilizing parameters are calculated for centre nodes and end nodes 

of the elements. For 2D triangular finite elements, the nodes at the element’s vertices are 

treated as end nodes, and the mid-side nodes are treated as centre nodes. The optimal 

parameter for the mid-side node is the same as linear elements and is given by Equation 

(2.50). For the vertex nodes the optimal value of a is given by
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_  (2Pe -  1) +  (—6 Pe +  7)e~2Pe +  ( - 6 Pe -  7)e~4Pe +  (2Pe +  l)e~6Pe 
a °pt ~  (Pe +  3) +  ( - 7 Pe -  S)e~2Pe +  (7Pe -  3)e~4Pe -  {Pe +  3)e~6Pe  ̂ >

Using normal Galerkin weighting on the transient terms and the SUPG weighting for the 

RHS of Equation (2.44) gives

Using the same notation as in the previous sub-section and neglecting higher-order terms, 

the explicit and implicit matrix forms of Equation (2.53) are written as:

/3[M]{A$} =  A t ([K]{*r +  [Ksta b i ] « n +  {f}n +  { fstab iD  (2.54)

[/?M +  A tK ] { $ } " + 1  =  [M]{$}" +  A* ([Kstabi]{*}n +  {f}" +  {fstabi}") (2.55)

where matrices M, K, and f are defined previously. The additional matrices used in Equa­

tions (2.54) and (2.55) are

K s t o b i = X ( f S ) ^ - “^ dn  and

fstabl =  X ( - ^ R ) " a i T Ndn<Sj}n (2.56)

2.3.3 Characteristic Galerkin (CG) schem e

In the characteristic Galerkin (CG) method [39], the temporal derivative is discre- 

tised first - along the problem characteristic. A semi-discrete form is then produced that is 

fully self-adjoint, allowing the Galerkin spatial approximation to be the most optimal choice 

in FE methods [23]. Interest in characteristic based methods is huge [23, 39, 42, 44, 77, 78, 

79, 80, 81, 82, 83, 84, 8 6 , 8 8 ] and there are a number of variations of the CG method avail­

able. Here in this thesis, the simple explicit characteristic Galerkin procedure, as originally
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introduced by Lohner, Morgan and Zienkiewicz [39], is employed. This attractive version 

appears to be the most popular, as it avoids the necessity of remeshing by using a local 

Taylor expansion to return to original coordinates. It has also provided the basis of the 

characteristic-based-split (CBS) algorithm [23, 42, 8 8 ] for computational fluid dynamics. A 

recent paper by Nithiarasu et al. [44] presents a comprehensive overview of the commonest 

characteristic based methods.

The implementation of the simple explicit CG method [39] is very straightforward 

and far more flexible than the SUPG described previously. Repeating Equation (2.1) for 

convenience

d<p d f  dFi
0 d i  =  - d 7 i { Ui4' ~  t e i ) +  i =  ~ d l l  1 { ]

Temporal discretisation of Equation (2.57), using the simple characteristic based procedure, 

gives the following form for the convection-diffusion problem

Using the method of weighted residuals and neglecting higher order terms, Equation (2.58) 

is written as:

dn ( 2 -5 9 )

In this form the Galerkin weighting, wa =  N a, is optimal and will produce non-oscillatory 

results, subject to stability conditions. In this work the boundary term arising from in­

tegration by parts of the second-order differential term in Equation (2.59) was neglected 

[23]. In a familiar fashion to the previous sections, the explicit and implicit matrix forms 

of Equation (2.53) are written as:

/3[M ]{A$} =  At  ([K ]{$}n +  [Kstab2] { $ } n +  {f}" +  {fstab2} ) (2.60)
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\(3M +  AtK}{<Z> } n + 1  =  [M]{*}n +  A t  ([Kstab2 ]{^}n +  {f}n 4- {fstab2}n) (2.61)

2.4 The characteristic based split (C B S) algorithm  for com ­

pressible flow

In this section, the characteristic-based-split (CBS) algorithm of Zienkiewicz et al. 

[42, 87, 8 8 ], is given for a general compressible flow simulation. The CBS scheme is es-

scheme described by Chorin [89]. Since its original introduction to the FE method commu­

nity, the CBS scheme been proved to be a successful numerical tool for the computation of 

a wide range of flow problems of compressible and incompressible nature [23, 43, 44, 90, 91, 

92, 93, 94, 95, 96, 97, 98, 99].

This section firstly gives details on the recommended temporal discretisation and 

splitting procedure [23, 42]. The temporal scheme starts with the splitting of the momen­

tum equation - where the pressure-gradient term is completely removed. The remaining 

momentum equation for each velocity component is one of simple convection-diffusion for 

a scalar-variable, and is thus easily discretised using the CG method described previously. 

Solving these equations gives an intermediate velocity field, which is corrected using the 

pressure field. In the second step, the density/pressure field is solved independently, using 

an equation based on continuity. For the case of solving compressible flow problems, the 

isentropic approximation is avoided by solving the density field in the second step, and 

calculating pressure once both energy and density are known. In this case, after Step 2, 

the intermediate velocities are corrected in the third step, using the pressure field from the

where the new matrices are defined for the CG method as

Ndf3{Sj} (2.62)

sentially a fractional time-stepping algorithm, based on an original FD velocity-projection
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previous time-step. Also for compressible flow, the energy coupling remains and a fourth 

and final step is required to solve the energy equation. Obtaining the energy field, allows 

the temperature and pressure fields to be computed, as well as other variables such as the 

local sonic velocity and Mach number. Once the full temporal scheme is discussed, details 

of the spatial discretisation procedure are given, to obtain a fully discrete form using the 

global (continuous) Galerkin method.

The characteristic-based scheme introduces consistent convection stabilisation, 

which is similar to the other available schemes such as SUPG and GLS [134, 135, 136]. 

In the CBS scheme though, the convection stabilisation terms are controlled by the time 

step, which in turn is based on the stability criteria involving the local element-size h. De­

tails of both local time-stepping and element-size calculation, axe given next. It is not clear, 

however, whether the local element-size calculation methods have any significant influence 

on the solution. The standard element-sizes commonly employed are calculated as part of 

the pre-processing stage and stored for use during the time stepping operation. Once cal­

culated, these element-sizes are not altered during the time stepping process. This method 

of evaluating the element-sizes is computationally straight forward and inexpensive.

If only inviscid (convective) problems are considered, the time-step only needs 

to be based on the element-size in the direction of the streamline [128]. This may be 

completely different from the standard minimum h calculation [44]. In this section, the use 

of a flow dependent local element-size calculation in the streamline direction - for computing 

the local (nodal) time-steps, is proposed for calculations using CBS. Here, an updating of 

element-sizes is required at each time step during the transient stages of the calculation. 

Computing the element-size in the streamline direction is computationally more expensive 

than the standard method, especially for large scale problems. However, the advantages 

gained by using a stream lined element-size calculation, should not be overlooked. Finally, 

in addition to the effect of element-size calculation, this section concludes by addressing the 

issue of simulating inviscid flows at low Mach numbers by employing a variable smoothing 

approach.
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2.4.1 Tem poral-discretisation - the sp litting of the m om entum  equation

Dropping the asterisk, *, for clarity and ignoring source terms the non-dimensional 

Equations (2.21), (2 .2 2 ), and (2.23) respectively simplify to 

Continuity

dp 1  dp dUi
dt c2  dt dx-;

(2.63)

Momentum

dJ k  = _ J L (u.cn + (2.64)
dt dxj 3 1 dxi Re dxj

Energy

d , . I d .  . 1 d .. dT  .
d i ipE) =  ~ d ^ U3ipE +  p) +  R e ^ 3^  +  ~RePr~dxi {2M)

Direct application of the CG method to solve the momentum equation, Equation 

(2.64), is not easy to implement, since there is more than one characteristic speed. This is 

due to both the velocity and pressure variables appearing in the same equation. There are 

essentially two main alternatives given by Zienkiewicz et al. [23]. The first, is to keep the 

pressure gradient in the momentum equation, by treating it as a source-type quantity. The 

second, and most commonly used approach, is to remove it totally from the momentum 

equation and solve for an intermediate velocity field. This latter approach is taken here, 

with the explanation being based on the description of Nithiarasu et al. [44].

Rewriting the Equation (2.64) without the pressure gradient term and performing 

the CG procedure, gives an approximation for the intermediate velocity field:

U A - V l - V  .

A t 2 d f  d \ n
+  + ° ( A t )  (266)

Here, a superscript f indicates an intermediate quantity. Also third-order spatial-derivative 

terms, due to the temporal discretisation of the deviatoric stresses, are neglected. The



intermediate velocity is only an approximation, it is corrected in Step 3 with the pressure 

gradient terms being calculated. The correction equation is simply

+ d v 7 1 + 0 2  A t 2 d d v 7 1 + 0 2  

« «“ 71
with

(2.68)
OXi \OXi OXi J

Here the parameter 6 2  has a range of (0 < 6 2  < 1), where 6 2  =  0 for a fully explicit scheme,

and 6 2  > 0  for a semi implicit scheme

In the second step density is calculated. Using the continuity relation given by

Equation (2.63), density and pressure can be evaluated from

1  dUn+ei
A  p = - 2  A p = - A t ———-- (2.69)

C C/CCi

where C/ 7 l+ 0 1  =  6 iU™+l +  (1 — 0\)UJ1, and the parameter 6 1  has a range of (0.5 < 9\ < 1). 

Substituting Equation (2.67) into Equation (2.69), and neglecting high-order terms gives

Ap - ^ A p  =  —At 
cl

dUin n d A U j  A „ f  d 2p n „ d2 A p \
~ d ^ + 9 l ^ ~ ~ A t e i { d ^ ?  + 9 2 & s )

(2.70)

which is the density/pressure equation used in Step 2. It is noted here, that for compressible

flow problems, the density field is usually solved for in Step 2  - with the pressure being ob­

tained after the energy field is solved. This avoids having to make an isentropic assumption 

for compressible flow. The term containing the sonic velocity has, however, been purposely 

left in Equation 2.70, to help the description of an artificial compressibility scheme discussed 

in Chapter 3.

The calculation of the energy equation, Equation 2.65, follows Step 3. Applying 

the characteristic time discretisation gives Step 4, the final step of the scheme, as
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In summary, the steps of the CBS scheme are:

1 . Solve equation (2.66) for A U*.

2. Solve equation (2.70) for A p or A p. (In compressible flow calculations, A p is normally

solved for first and Ap after Step 4).

3. Solve equation (2.67) for A Ui.

4. Solve equation (2.71) for ApE,  then obtain T, c, etc.

2.4.2 Global Galerkin spatial-discretisation

In this sub-section Equations (2.66), (2.70), (2.67), and (2.71) are discretised in 

space using the standard global Galerkin finite element procedure. The computational 

domain is discretised into a mesh of non-overlapping elements. The variation of each of the 

variables in each element is approximated by the following standard spatial discretisation

n

e & 0  = J 2 Na8a = N 0  (2.72)
a= 1

where 9 is an approximation of a general variable 9, N  is the interpolation (shape) function, 

and subscript a indicates a nodal term. Hence

U i^ U i  = NUj, p « p  =  Np, p ^ p  = Np, pE ^p~E  = N E (2.73)

An arbitrary choice of shape function can be made for the approximation of the velocity, 

pressure/density, and energy fields. In this work, it is assumed that all variable approxima­

tions use identical shape functions.

As mentioned before, the optimal choice of weighting function for the semi-discrete 

equation is Galerkin, wa =  Na, when using a characteristic-based discretisation. The 

Galerkin weak form of intermediate momentum, Step 1 , is
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Ja NaA U ^ =  ~

+ ^  dQ (2-74)

Performing integration by parts on both second-order (stress and stabilisation) terms gives

J ^ N aA U i'd n =  -  A t J ^  dQ

J  Na(Tij)nrijdr (2.75)
+ Re j r

The boundary terms from the integration by parts of the second-order stabilizing terms in 

the above equations axe neglected as they axe equal to zero on the boundaries [42]. Replacing 

continuous velocity fields with the approximations given by Equation (2.73), leads to the 

final matrix form

[MiKAUi*} = A t  (—[Ci]{Ui}n -  {Kt }" -  [K1 ]{Ui}n +  {f,}") (2.76)

where

/Jn jJn
T  tvt j d  r v    I  ivrT d

n Jn “ T R e J n dxj
M i =  / N t N dSl, C i =  / N t — N u-jdn, K r =  —

u

d

A t LK i  =  —  j Wfc-— N —— Niijdfl fi =  —  j N  TijUjdVhi2 Jn n dxk dxj ' J x Re j r

The Galerkin weak form of density/pressure equation, Step 2 is

(2.77)

f  NaApdQ, =  [  Na^ApdQ,
Jn Jn c

( n .
Jn

-  At
in dx

Integration by parts of the RHS gives

Ui'• + ftA ld  -  Ate, ( Q - n +
O X i O X i

dtt (2.78)
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[  NaApdQ = [  Na\A pdC l
Jn Jn c2

[  ^
Jn dxi

L n •

A t u" + Si&lj? -  At6i ( +  0 2 ^
C/Xj, C7Xj

Uin + ê Ui1 - Atflj (^-n + ĥ r1)\  (JXi (JX{ J "

dtt

Hi dr

Spatial approximation leads to the final matrix form of Step 2  as

[M1]{Ap} = [M2]{Ap} = At ( c 2 ({U,}” + 9i{AU,*}) -  {f2}) 

At% ([K2] ({p}" + 02{Ap}) + {fa})

where

(2.79)

(2.80)

M2 = [  Nt N̂dfi, C2 = f  f̂ -N̂ NdQ, K2= [  -̂Nt -̂Ndti,
Jn c Jn \ 9xi )  Jn dxi dxi

f2 = ^ N TN ({U i}" + 9i{AUit})n idr, f3 = j  NT^ -N  ({p}n + ^ { A p } ) ^  (2.81)

The weak form of momentum correction, Step 3, is

[  N aAUidn =
Jn

[  NaTT- iP +  0 2 Ap) d r t - ^ J  f  Nauk 
J n  axi * Jn

and again performing integration by parts gives

/ NaAUi
Jn

At [  N a
J n

d dp 
dxk dxi

dQ, (2.82)

[  NaAUidQ = [  NaAUidSl
Jn Jn

T At  

-  A t

J d N * , - n  , o  A - w n  A* f  d N « n /  (P +  0 2  Ap) dtl -  —  /  - — uk —  dQ
Jn oxi 2  Jn dxk dxi

J  Na (pn +  0 2  Ap) riidT

(2.83)
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Inserting the spatial approximations gives the final matrix form of Step 3 as

[M1]{A U i} =  [M iKAUi*} +  At ([C2] ({p}" +  02{A p}) -  [K3]{p}" -  f4) (2.84)

where

K 3 =  ( t )  In r̂NTufĉ Ndn’ U =  / r N T N ( { P r  +  «2{4p})nj<ir, (2.85)

Finally the weak form of energy equation, Step 4,

J ^ N a A {p ~ E )d C l =  A t  J  N a ( ^ - ^ U j { { p E ) + p )  + ^ ^ { T i j U j )  + d O .

+ f  Naunk
Jn

dx3

d
RePr d x i ' dxi

2  Jn “~Kdxk 

Using integration by parts

^ - Uj((pE )+ py dPt (2 .86)

f  NaA(p~E)dQ 
J  Q

-  A t [  Na-J-Uj ( (pE)+p)ndn
Jn oxj

~  We  ( i  + 1 1  £*.(*g)<«
A t 2 f  d d ~

~ ~o~ / uk— Na— uj ( (pE)+p)ndn 
2  Jn dxk dxj

A t  f  1  dT
+ Jr N‘ {njUj + P~rk d ^ r n i d r (2.87)

Spatial approximations of the variables give 

[Mj Ka ^e } =

At ([Ci] ({pE} +  {p})" -  {K t2}“ -  [K4]{T> -  [KX] ({pE} +  {p})" -  f5)

(2 .88)

where
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RePr
(2.89)

The first Characteristic Galerkin step is always in explicit form, however Step 2

can be either explicit or implicit depending on the choice of the the parameter 6 2 . For the 

fully explicit form, (0.5 < 6 \ < 1) and 6 2  =  0, is commonly used.

Further, at very large values of R e , the diffusive terms become negligible. The 

fully explicit form for solving the Euler equation set is summarised as 

Step 1

[M ,]{ApE} =  At  ([Ci] ({pE} +  {p})" -  [K,] ({pE} +  {p})" -  {f5}) (2.93)

Where all matrices shown are the same as the terms appearing in Equations 2.76, 2.80, 

2.84, and 2.88 to solve the Navier-Stokes equation set. In both equation sets, the mass

(2.90)

Step 2

[MiKAp} =  [M2]{Ap} =  At  (C 2 ({U i}»  +  «1{A U ,t }) -  {f2})  

-  At2fl1([K2]{Pr  +  {f3}) (2.91)

Step 3

[M ,]{A U i} =  [M iKAUjt} +  At  ([C2]{p}" -  [K3]{p}n -  {f4}) (2.92)

Step 4

matrix M i is lumped, to reach a faster steady state and facilitates the practice of local 

time-stepping discussed next.
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2 .4 .3  L o ca l t im e -s te p p in g  an d  c a lc u la tio n  o f  e le m e n t-s iz e

If only a steady-state solution is required, then the efficiency of explicit time- 

stepping algorithms, such as the CBS scheme, can be greatly increased by implementing a 

local time-stepping approach [44, 8 8 ]. Here, each node in the mesh has its own individually 

calculated minimum time-step, based on local element-size and flow conditions. The process 

results in different time-step values being used at different nodes. Using local time-stepping 

gives a more rapid convergence, and fewer iterations are required, than when using a globally 

minimum time-step to reach steady-state conditions.

The local time-step at each node a, is calculated from

— S f  X m m (A tccmVeCtiom ^^dif fusion) (2.94)

here, S f  is a factor of safety which can normally vary between 0.1 and 1.0, but its value 

depends on the problem being solved and specific mesh used. For the the case of general 

compressible flow the local convective and diffusive time-steps axe calculated from

Atconvection = 1 i : (2.95)|u| +  c

and

h 2
diffusion = 7^ ;  (2.96)

respectively. Here ha is the minimum element-size value for node a. Additionally, c and u are 

sonic and fluid velocities, and Re is the Reynolds number. Generally, ha is calculated in two- 

dimensions (see Figure 2.2) as the minimum mid-height of all the surrounding connecting 

elements, e, i.e.

ha =  min (2area/oppositesidelength)e (2.97)

When solving the Euler equations, (Equations 2.90, 2.91, 2.92, and 2.93) viscous 

terms are not present. In this case the local time-step depends solely on Equation 2.95. It is 

possible in this case to improve the accuracy of the ha calculation by taking into account the
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Figure 2 .2 : Standard element-size calculation.

direction of the resultant velocity at node a, as shown in Figure 2.3. The following equation, 

given by Shakib for SUPG [128], is used to calculate ha in the streamline direction:

ha =  min I — 5----    ) (2.98)
\ Z 3n= lK V N n\ ) e

where sn is the unit vector in the streamline direction and N n is the shape function, at 

each node n of an element e. It is noted that ha is still the minimum value of element-size 

amongst the elements connected to node a, but the values of ha for each of the elements 

are influenced by the direction of the convective velocity at node a.

Using the proposed local element-size calculation, given by Equation (2.98), for 

each node should give higher accuracy than the standard element calculation since the value 

of ha may be considerably different than the minimum mid-height calculation given by 

Equation (2.97). Computing the element-size in the streamline direction is computationally 

more expensive than the standard method, especially for large scale problems. However, the 

advantage of increasing accuracy, when using a streamlined element size calculation should 

be considered.

A recommended calculation for the steady-state tolerance, is given by Nithiarasu

[44] as
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Figure 2.3: Streamline element-size calculation is based on unit vector in the streamline 
direction.

2 .4 .4  S h o ck  c a p tu r in g  v isc o s ity

At transonic and supersonic speeds, an additional shock capturing dissipation is 

necessary to capture shocks and to smooth local oscillations in the vicinity of shocks. A 

recommended shock capturing viscosity method for compressible inviscid flow problems, 

given by [91, 127], is adopted here. For a scalar variable field <f) the smoothed values, 0S are 

computed by

error
\  E “ 7 s(a » " + 1 ) 2

E nodes ( pan+1 - p an \2  
a=l I A t  > (2.99)

The above equation is non-dimensionalised using a characteristic time scale of (uqq/L) l . 

The non-dimensional tolerance is reduced to e < 10- 5  to obtain a steady state.

0 s+ 1  -  <t>n + 1  

A t
=  M J 1  ̂  (M -  M l ) 4,n (2.100)(2 .100)

Here Se is the element ’pressure switch’ and is taken to be the mean of the element nodal 

switches Si, which in turn are given by



39

=  |S e (p j - p k ) | 
E e \ p i - p k \

(2.101)

Ce is a user specified constant ranging from 0 . 0  to 2.0 and Ate is the local element time 

step.

2 .4 .5  V a r ia b le  sm o o th in g

Residual based methods been applied previously by Nithiarasu et al. [91], to 

improve the performance of a residual-based shock capturing method in the hypersonic 

region. W hat is proposed here, however, is novel. To solve compressible flow problems at 

Mach numbers M a  < 0.8, without removing the coupling between energy and the other 

transport variables, a variable smoothing procedure is used in the place of artificial shock 

capturing diffusion. This gives a flexible compressible CBS scheme which can be used in all 

flow regimes from sub-sonic to hypersonic.

The following equation defines the variable smoothing applied to the transport 

variables, on a two dimensional grid

where q is a variable smoothing parameter varies between 0 and 0.05, M  is the consistent 

mass matrix, M d  is the consistent mass matrix without non-diagonal terms and M l is the 

lumped mass matrix. By increasing a  the weighting on the node in question is decreased 

while the influence of the surrounding nodes is increased.

2.5 Sum m ary

In the present chapter, the most general form of the scaler convection-diffusion 

equation and the Navier-Stokes equation set have been given, along with constitutive rela­

tions for closure. This was followed by the presentation of non-dimensional quantities and 

parameters for obtaining the dimensionless Navier-Stokes equations for compressible and 

incompressible flow problems. In addition, relations for computing the stagnation values of 

transport variables were also given.

(2 .102)
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The second section outlined the Galerkin form of the method of weighted resid­

uals, which forms the basis of finite element analysis. First-order-time Petrov-Galerkin 

and second-order-time characteristic Galerkin global finite methods, were then reviewed for 

solving convection dominated problems.

The CBS algorithm, for solving compressible flow problems, was discussed in the 

last section. In particular, details were given for both temporal and spatial discretisation. 

This includes using a shock capturing viscosity method for transonic and supersonic flow. 

A more accurate time-step calculation based on the element-size in the streamline direction 

was discussed. Finally a direct variable smoothing procedure for low Mach number flows 

was described.
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Chapter 3

Proposed Locally Conservative 

Galerkin (LCG) M ethod for 

Solving Conservation Equations

3.1 Introduction

As mentioned in Chapter 1 , a locally conservative Galerkin (LCG) scheme has 

been recently introduced by Nithiarasu [1], for solving convection-diffusion problems. The 

LCG method described in the paper, proved that an element-by-element solution is possible 

via a postprocessing of edge-fluxes at every time step. This gives the LCG method similar 

advantages to DG methods without the need for solving additional variables. The method 

uses the property of local conservation at steady state conditions in order to define a numer­

ical flux at element boundaries. This allows the computational domain to be broken down 

into a series of elemental domains, each with its own Neumann-type boundary conditions 

based on the computed numerical flux. In the very first LCG paper [1] only linear elements 

were considered, and a small number of relatively simple problems were solved. However, 

its appeal prompted a significant research effort to be implemented in this thesis work.

A large effort has been made in this thesis in understanding how the LCG method 

works. This chapter starts by dedicating Section 3.2 to give the details on basics of the
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standard LCG procedure. Here, a simple conservation equation - for general convection- 

diffusion transport, is used to illustrate the fundamentals of the LCG spatial-discretisation 

method. In the following section, Section 3.3, attention is turned towards deriving the 

numerical edge-flux calculation procedure. Local conservation plays an important role in 

developing a small post-processing calculation. This calculation, which is implemented at 

the end of each time-step, gives the required numerical flux to provide continuity between 

neighbouring elements at the next time-step. The original procedure described for linear 

elements [1 ] is expanded, along with proposals for increasing the accuracy of the flux by 

using higher-order elements. Details are given for implementing this flux in both a lumped 

and consistent form.

It was considered important, that the effective nodal equation obtained for the 

LCG method, should be analysed. In Section 3.4, a direct comparison of the nodal equation 

is made between the LCG method and the standard Global Galerkin method. Both a ID and 

a 2 D analysis of the LCG method are considered, both of which give surprising similarities to 

the global Galerkin method. When a lumped mass is used and elements are of a similar size, 

the two different methods yield an identical nodal equation - even for unstructured meshes. 

In the LCG method however, once the averaging procedure is complete, the internal edge 

fluxes cancel and a residual flux is left on the global boundary. This gives the LCG method 

explicit global conservation - even in the absence of Neumann-type boundary conditions.

Stabilised LCG schemes are implemented in Section 3.5. Established methods 

used in the global Galerkin context are considered. These include both the SUPG method 

of Brooks and Hughes [28] and the simple explicit CG method of Lohner et al. [39]. In 

Chapter 2 these methods were discussed in detail for the global Galerkin method. Here it 

is shown how they can be used in an elemental formation to give suitable stabilisation for 

solving convection dominated problems using the LCG method. Both linear and quadratic 

triangular element applications are discussed.

Before closure, the last section - Section 3.6, outlines the development of a matrix- 

free LCG-CBS method - used for the solution of the incompressible flow equations. Again 

both linear and quadratic versions are implemented. The fully explicit CBS time discreti­

sation with artificial compressibility [76, 82, 96, 97, 98, 112, 113, 114], is used to obtain a



43

semi-discrete form, before spatially discretizing the equations, using the LCG method. This 

section closes with details on addressing unsteady flows, using a reliable dual time-stepping 

CBS procedure [96, 115], giving a LCG-CBS scheme, suitable for transient flow simulation.

3.2 Locally conservative Galerkin (LCG) discretisation

In this section a novel and attractive LCG approach for spatially discretizing the 

convection-diffusion equation, is introduced. For simplicity, it is assumed that the governing 

equation is describing a diffusion-dominated problem. Thus, for this section, convective- 

stabilisation terms are not used. In addition source terms are also neglected. Details on 

using source terms and existing stabilisation methods for convection-dominated problems, 

within the LCG frame-work, is discussed in a later section of this chapter.

The governing equation for the convective-diffusive transport of a scalar variable 

(f>, is given by Equation (2.1). In the absence of source terms this simplifies to

» 5  + g - »  <">
with flux term, i7*, given (by Equation (2.2)) as

F i=  (3.2)

where k is the diffusion coefficient and Ui are the constant velocity components. A forward 

(Euler) difference replaces the LHS term of Equation (3.1) to give the semi-discrete form

J )n + l _ j )n QF .n

P At ~  ~ d ^ i  ^
The terms (n) and (n +  1) represent the current time level and the next time level respec­

tively.

The first stages of the LCG procedure for a simple convection-diffusion equation 

[1 ], follows the familiar global Galerkin method of weighted residuals, up to the point of 

global elemental assembly. However, the aim here is to obtain a discrete equation for solving 

over individual elements. Using the same approximation (given by Equation (2.43) ) for 

the global Galerkin method, the variation of the scalar variable over an element is
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n
4,^ 4, = ^  JV„<k = N * (3.4)

a=l

and a solution to the following residual equation is to be found

(3.5)

Performing integration by parts to the RHS term of Equation (3.5) gives

WaF^dTrii (3.6)

where rii are the components of the outward boundary normal. As mentioned in the pre­

vious chapter, the standard global Galerkin method uses the interpolation functions as the 

weighting functions. Element contributions of Equation (3.6) axe then assembled into a 

global matrix system and a continuous solution is retrieved.

the discrete equation system elementally. In the LCG method the variable and its fluxes 

are explicitly conserved over each of the individual elements. This is achieved through the 

calculation of an accurate flux at the element boundaries. The computed flux also ensures 

that continuity between neighbouring elements is maintained. Such a process is equivalent 

to treating the global domain as a group of elemental sub-domains; each with its own set 

of time-dependent Neumann boundary conditions prescribed at each time step.

With an accurate value of flux being available at the element edges, Equation (3.6) 

is rewritten in the LCG form for solving over an elemental sub-domain Qe as

where the subscript e, stands for an element. Here, the boundary integral term of Equation

(3.7) is approximated with a computed value of numerical-flux, F{, across the element edges.

The LCG method still uses the Galerkin approximation (i.e. wa = Na), but solves

P f  n t N — rffi. =  f  -  f  N T F?dTeni (3.7)

A simple procedure for estimating this flux is described in the proceeding section. 

The matrix form of Equation (3.7) is written as

/?[Me]{A$} = A*([Ke]{$}n + (fe}n) (3.8)
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and the system of simultaneous equations are solved over individual elements independently 

of surrounding element equation sets. Equation (3.8) is the explicit, elemental-matrix form 

of the conservation Equation (3.1). As with the global Galerkin method, an implicit solution 

procedure is obtained by treating the flux term in Equation (3.1) implicitly, thus

[/?Me +  AtKe] {$ }" +1 =  [M e]{$}n +  At{&}" (3.9)

In both the explicit and implicit form (given by Equations (3.8) and (3.9) respectively) the 

elemental mass and ’stiffness’ matrices are given as

M , =  /  NTNdS2e, Ke = [ A n  -  )  dne (3.10)
«/ fig t/ fig % \  % /

For linear and quadratic triangular elements, the maximum sizes of [Me] and [Kej are 

only (3x3) and (6 x 6 ), respectively - thus greatly reducing storage. The elemental mass 

matrix, [Me], may either be lumped, or kept as a consistent mass matrix. The mass 

lumping procedures for linear and quadratic triangular-elements were discussed in the last 

chapter, for the global Galerkin method. These lumping techniques, which are summarized 

graphically in Figure (2.1), also apply here. The definition of forcing vector, {fe}, that 

contains the numerical flux will be given in the proceeding section. It is noted here, however, 

that {fe} is always evaluated at the nth time level regardless of the time discretisation.

Due to the individual discrete equation system for each element, the nodal solution 

obtained will be non-unique. A situation of multiple solutions being calculated at global 

mesh nodes is eliminated by taking an arithmetic mean of nodal values obtained from 

different elemental contributions to a node. For a node a, connected to a number of different 

elements, ne, there will be ne elemental values of the scalar variable (p at node a. The average 

nodal value of (pa is simply

1 ne

= ^  S  ((f>a)e (3-11)
e—1

The averaging procedure is necessary, as it provides a unique continuous solution throughout 

the domain. A continuous solution is needed globally to make a post-processing step, 

(discussed in the next section) for calculating the interface flux.
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3.3 Local conservation and calculation of edge flux for the  

LCG m ethod

In this section, local conservation is used to define the numerical flux calculation 

that provides continuity between elements. The numerical flux on the element edge generally 

has two components, one convective and one diffusive. The latter is based on approximating 

the scalar variable’s gradients using a post-processing calculation made at the end of each 

time-step. When using linear elements the flux calculation is based on an element-averaged

diffusive flux. By using quadratic interpolation functions, accuracy is improved by allowing

the diffusive fluxes to be nodally calculated. This section finishes with details on how to 

simply retrieve the gradients for both linear and quadratic elements.

3.3.1 Conservation properties of th e LCG m ethod

Conservation at a local or element-wise level emanates from the property that the 

weighting function can be set exactly to unity on the element of interest and zero elsewhere 

[125]. At steady state conditions, the elemental form of Equation (3.6) reduces to:

[  waFind ren i=  f  ^ F i nd.ne (3.12)
Jr. Jn, dxi

Noting that for the LCG method, in each individual elemental sub-domain fie, we can define 

the weighting function for node a as

wa(x) - 1 x  G

u;a(x) = 0 otherwise (3.13)

a condition for conservation of 0  and its gradients is found:

[  Find reni = 0 (3.14)
Jre

A simple procedure to enforce the flux boundary condition given by Equation (3.14) at the

element edges, is to make the flux crossing a common edge, shared by two elements, to be
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Figure 3.1: Flux crossing a common edge between two elements.

equal and to act in opposing directions as shown in Figure (3.1). Using the computed edge 

flux on the element boundaries of adjoining elements, the following condition is enforced:

Feiriei = Fe2ne2 (3.15)

where Fe\ — Fe2 and ne\ and ne2 are the outward normals from the edges of the respective 

elements. The subscripts are defined in Figure (3.1).

3.3.2 C alculation o f edge fluxes

With the above condition for local conservation obtained, the numerical flux can 

be realized. All that is needed to enforce the condition given by Equation (3.15), is a small 

post-processing calculation to be made at the end of each time-step. In a previous paper 

[1 ] it was proposed that nodal values of the scalar variable, 0 , and its gradients, J^-, could 

be used to define the interface fluxes. This is possible once a globally continuous solution 

is recovered from the end of the previous time-step. As discussed in the last section, a 

globally continuous solution is obtained from Equation (3.11), which computes an average 

of the connecting element solutions for each node. The post-processing calculation uses the 

nodal values of the continuous solution and its gradients, to provide an accurate interface 

flux. It is this flux which establishes connectivity between elements at the next time-step. 

Thus in this work, we define the forcing vector appearing in Equations (3.8) and (3.9) as:
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{fe}» = -jf NTtliNdTeni{$}’* + ̂  NT*:Ndrenij0j (3.16)
A number of post-processing approaches, to evaluate the first derivative of the 

scalar variable at the node, are available. These are: (1 ) Simple averaging of gradients over 

elements connected to a node [1 ]; (2 ) Area-weighted averaging of the gradients [2 1 ]; and 

(3) Super-convergence patch recovery (SPR), which is used in adaptivity to recover nodal 

values of stresses [137]. In this work, the Simple averaging of gradients was only considered 

to evaluate the gradients. For cases where convection of the scalar variable is present, 

the convective flux component was based on nodal values of the continuous solution of </>, 

retrieved from the previous time-step n. Together the diffusive and convective components 

give a nodal flux approximation.

3.3.3 Approxim ating nodal values of gradient in linear finite elem ents

For linear triangular finite elements the gradient of the scalar variable is a constant 

within each element. In a previous paper [1], a mean average of the constant gradients, over 

the elements connected to a node, was computed to give a nodal approximation of the 

variable’s gradient. To exemplify, Figure (3.2) shows a group of linear triangular elements 

attached to a common node a. The gradient of the scalar variable at node a in Figure (3.2) 

is computed as an average of the constant elemental values connected to node a. i.e.

(g ) .^ g (S ) .
These nodal gradient values were then used to estimate the diffusive component of flux 

crossing the edges. In general the nodal fluxes, > will contain both a nodal diffusive

flux component, and a nodal convective flux component, i.e.,

d6

Once nodal values of flux are recovered, flux on an edge between linear elements was com­

puted as an average of the two nodes forming the edge. The edge flux was then used on the
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•  a

Figure 3.2: A patch of linear elements. Elem ent averaged gradient calculation of the scalar 
variable a t node a.

boundaries of an element to enforce the condition given by Equation (3.15).

It is noted th a t trea ting  the flux in a consistent form was not considered for the 

scalar convection-diffusion problems investigated in reference [1]. Only the lumping of nodal 

fluxes was used. In addition only linear triangular finite elements were used. W hen using 

linear elements the flux calculation is based on an element-averaged diffusive flux. By using 

higher-order interpolation functions it is possible to improve the accuracy of edge fluxes by 

allowing the diffusive fluxes to be nodally estim ated. This gives way to  a more accurate 

com putation of the fluxes a t each tim e-step.

3.3.4 Using q uad ra tic  finite e lem ents  to  ob ta in  nodal values of gradient

If higher-order elements are used, then the gradient, is not a constant for each 

element. In particular, for a six-node quadratic-triangular element, the gradient is given by 

Equation (3.4) as

d(j) <90
f e {Xi) f e (**

<9Nn
=  2 ^  \xi)4>t

n =  1
dxi

(3.19)

Here, the gradient varies linearly th rough the element domain, before being discontinuous 

a t the edges between neighbouring elements. An actual value of can be found at any
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Figure 3.3: A patch of quadratic elements, nodal averaged gradient calculation of the scalar
variable at node a.

point within the element, by inserting the coordinates, Xi, of the point of interest into the 

derivatives of the shape functions.

Thus, by using the nodal coordinates the gradients of the scalar variable can be 

computed at the node of interest, in each of the connecting elements. Figure (3.3) shows 

a group of quadratic elements connected together at node a in fh In order to compute an 

approximation for at node a , elemental computations are made of in each of the 

connecting elements, at the point corresponding to node a (marked grey in Figure (3.3). 

Different nodal values of are obtained for each of the connecting elements. Taking

a mean average of all the obtained nodal values from connecting elements:

gives the required nodal value that is used to compute diffusive edge flux. In Equation 

(3.20), ne is the total number of elements connected to node, a.

Figure 3.4 shows an edge of a quadratic element with the computed nodal fluxes

diffusion problem (assuming a constant velocity field and diffusivity), the flux on the edge 

of a quadratic triangle is given by

(3.20)

labeled relative to the local numbering of each edge node. For the general convection-
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F»n

Figure 3.4: Local edge node numbering for nodal fluxes and edge normal flux representation.
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(3.21)

where the numbering refers to edge nodes defined in Figure (3.4), and ledge is the length of 

the edge of the element. This flux can be simplified further. Treating the edge as a one­

dimensional quadratic element, the following lumped form can be used in the computation 

of the total interface flux along an element edge.

(3.22)ledge
6

1ooH1 (
0 1 ' ( t ) , '

\

( 4 0 4 0 rii - U i  < 0 2 > +  k <
( £ ) ,

>

. ( * ) »  ,
0  0  1

I 03V, J l \ dxiJ 3 J /
The simplified form is based on the lumped mass matrix for a one-dimensional 

quadratic element [20]. As mentioned earlier, the edge flux ensures continuity between 

elements, allowing the discrete equation to be solved element by element.

3.4 A  com parative analysis of the LCG m ethod w ith  the  

standard global Galerkin m ethod

In this section a direct comparison of the nodal equation is made between the LCG 

method and the standard global Galerkin method. The analysis is crucial in understanding



52

how the LCG scheme works. To start, a simple one-dimensional patch is considered for 

convection-diffusion problems. The matrix form of the elemental residual equation is then 

given and a final nodal equation is retrieved that includes the relation for the computed 

numerical flux. It is shown that the final nodal equation is exactly the same as that obtained 

by the standard global Galerkin method, for inside nodes. The extension to two-dimensions 

is considered next. Again it is shown that the LCG and global Galerkin methods are 

equivalent for inside nodes. The former however possesses a residual flux on the boundary 

that gives it explicit global conservation - even in the absence of Neumann-type boundary 

conditions

3 .4 .1  T h e  L C G  n o d a l-e q u a tio n  for o n e -d im e n sio n a l c o n v ec tio n -d iffu s io n

To demonstrate the equivalence of the LCG method with the standard global 

Galerkin method for inside nodes, a one-dimensional patch is considered for convection- 

diffusion problems. To simplify the presentation of the analysis, it is assumed that the 

governing convection-diffusion equation, Equation (3.1), does not contain any source terms. 

In addition the LHS mass matrix for each scheme is lumped for comparison of each method’s 

nodal-equation.

The nodal equation for node a using the standard global Galerkin method, is 

obtained after assembling elemental contributions of Equation (2.46) into a global matrix 

system. After assembly the nodal equation is written as

p  ( h \  - \ - l l 2 \  A ( j ) a  u i x  u. \  i f  ̂ “—1 (t>a f ia  , 0 +̂1  ̂ ( o  n o \

0 { - T ^ ) T r  = 2 ^ - i - ^ i ) - k { - h r - j r r i r 2 + i ^ )  (323)

The discrete form of the governing equations, using the LCG method, is given 

by Equation (3.7) - for solving over each individual element e. For a mesh of linear one­

dimensional elements, the elemental-matrix form of Equation (3.7) becomes
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Figure 3.5: A one-dimensional patch of linear elements, with common node a.

1  0 1  r1 _ - 1  - 1
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+ 1 - 1

0  1 |  A <pr J 2 + 1  + 1 \  <f>r j  he - 1 +  1

—u
- 1  0 1 <t>i r , - 1  0

/

> +  k <
0  + 1 \ f 0  + 1

\ so, j

9l

(3.24)

Here, he is the length of element e, and the subscripts I and r are used to identify the 

LHS-node and RHS-node of element e respectively.

Figure (3.5) shows an internal one-dimensional patch with an inside node - denoted 

by a. As mentioned in a previous section, at the end of each time-step there will be multiple 

solutions obtained for an inside node - one given by each of the connecting elements. A 

unique solution for each node is only obtained after the averaging process of Equation (3.11) 

is completed. In the specific case of the one-dimensional patch illustrated in Figure (3.5), 

there will be nodal equation given by each of the elements sharing node a. In element 1, 

node a is on the RHS and the corresponding nodal equation is

P  ( 2 ^ )  A<^ a  =  +  & * ) -  +  ^  -  u ^  +  k  ^3 ’

For element 2 , node a is on the LHS giving a corresponding nodal equation of

25)

(3.26)
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In both Equation (3.25) and Equation (3.26) the numerical flux term ( & ) . ap- 

pears. For ID linear elements, it is given (by Equation (3.17) ) as the average of constant 

gradients from the two elements attached to node a i.e.

For constant element-size h\ =  /1 2  =  A x, it can be seen in Equation (3.27) that the averaging 

of constant gradients procedure gives

d(p
dx = ( fe+ 2 A i ‘" 1) + ° (Al2) (3'28)

which is a second-order accurate central difference approximation for the numerical flux 

( | £ )  at node a.

Substituting the relation for the computed flux, Equation (3.27), into Equation 

(3.25) and Equation (3.26) gives

P ( 2 ^ )  ^ a ~  2  ^ a _ 1  ^  ~  hi ^ a _ 1  ^

0 a —1 “I" 4>a \  (  0 a  ~b 0 a + l

2 hi 2  h2
(3.29)

and

P = f  ~ ^a+1) ~ _  ^a+1)

+tl(0o) _ fc ( ( Z ^ j  + (z^ti-i)) (3.30)
for elements 1 and 2 respectively. Simplification gives the final equation for node a in 

element 1  as

P ^ a ~  2  ^ a~l ~ ^  ~  2 hi ^ a~l +  ^  +  2 Ji2^~^a +  ^ a+1  ̂ (3-31)

and the final equation for node a in element 2  as
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0 ~  2 ^ a ~ ^ a+1  ̂ ~ 2 h i â-1 ^  2 / ^ (_0a ~̂~ ^a+1  ̂ (3.32)

Since no assembly is carried out during the LCG process - only averaging, essentially 

0  ( 2 At) A<f>a is being approximated using

0 (4 ) ^  = (/?̂ A0a)l I  ^ ^  <3-33>
Thus after the elemental averaging procedure, the effective nodal equation at a is

Q f  h \  + ^ 2 ^ A (pa U ( \ 1 ( ( f ia-l  4>a $ a  0a+l ^ fo

13 ( - 5 — J  a r  =  2  - ^ +i) - k { - k T  - T r v 2 + ^ r )  (3-34)

Clearly it is evident, from comparing Equation (3.34) to the nodal equation obtained from 

the global Galerkin method, Equation (3.23), that the two methods are indeed identical for 

internal nodes.

3 .4 .2  A n a ly s is  o f  th e  L C G  n o d a l-e q u a tio n  in  tw o -d im e n sio n s

The extension of the analysis to two-dimensions, is made by examining the 2D 

patch of linear triangular-elements given in Figure (3.6). As can be seen, all elements share 

a common node 1 at the centre of the patch. Figure (3.6) also gives the notation definition 

for a general element e in this patch.

To start, the following elementary details [20] are recalled for a general linear 

triangular-element with local (area) coordinates: For each node a of element e, the shape 

function is given as

Na =  {Aa +  B ax +  Cay ) (3.35)

where the constants Aa, B a, and Ca are defined in terms of the coordinates of nodes b and 

c and element area Ae as



56

5

6 2
a

Figure 3.6: Left: A two-dimensional patch of linear triangular elements, sharing a common 
node at patch-centre. Right: a local general element with notations used for analysis.

A X bU c VCcUb j j  Ub Uc ^  X c %b ( 0  o a \

A  =  Ya ; =  ~2A ’ ° a =  ^ A ~  (3'36)Zi/lg Zi/lg Z/ilg

A cyclic permutation of a, 6 , c gives the values A&, Ac, B 5 , etc. On an edge between two 

element-boundary nodes a and b the components of the outwards normal are

=  ( n f ,  J  (3.37)

with Lab =  y /(xa — x\,)2 -(- (ya — y& )2 denoting the length of side a-b. Such details are 

very standard and are generally restricted to introductory texts on finite element analysis. 

However, it is important that they are included here, to aid in the analysis of the nodal 

equation obtained for Node 1 using the LCG method.

Using the basic definitions and the notation of Figure (3.6), the elemental-matrix 

form of Equation (3.7) becomes
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Table 3.1: Connectivity matrix for 2D element patch given in Figure 3.6

element a b c
1 6 2 1

2 2 3 1

3 1 3 4
4 1 4 5
5 6 1 5

Ae
3

1  0  0  

0  1  0  

0  0  1

B a Ba B a

Bb Bb Bb

Br Br Br

+ Ui

Ca Ca Ca

Cb c b c b
Cr Cr Cr

0 a

06

fie

/ BaBa BaBb BaBc ' CaCa CaCb CaCc \ 0 a

kx BbBa BbBb BbBc +  ky CbCa c bc b CbCc < <t>b

\ B cBa BcBb BCBC CcCa CcCb CcCc ) 4*c

i 2 1 0 0 0 0 2 0 1 \ (Pi)
+

Labn b̂
6

1 2 0
Lbcn.

+
6

0 2 1 Lcan?a
H------------ l—

6
0 0 0 <

\ /a

( 4  1
V 0 0 0 0 1 2 1 0 2 J . (#0C ,

(3.38)

for a linear triangular element. Here, the LHS mass matrix has been lumped, and

W - 1

I / \
0 a

' $ ) . '

\

> = - U i  < 0 6 > k i  <
( ^ ) 6

>

. ( * l . \
0 cV. / . ( £ ) „ . /

(3.39)

defines the numerical flux.
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From Equation 3.38 the nodal equation for node a in a general element is

p Gfe'i —  ( UxB a +  UyCa)  ((pa +  +  (t>cT

+

-^e  { (kx B a) ( B a<pa +  Bb4>b +  B c(pc ) +  ( k yC a ) ( C a(/)a +  Cb4>b d- C ,c0 c ) ) n

<»■*>

Using Equation (3.36) and Equation (3.37), the normals and the shape function derivatives 

are rewritten in terms of nodal coordinates to give

 ̂(iz^ ) A(^a = \ \-Ux(yb ~  Vc^ + uy(Xc ~ Xb^ ^ a + + ĉ]n

[kx(yb - yc)\ [(yb -  yc)<Pa + (yc - ya)4>b + (ya - yb)4>c]n
[ k y ( x c -  Xb)]  \ { x c -  Xb)(pa +  ( Xa ~  X C)<f>b +  (®6 “  â)</>c]n

[2 0 * 0 .+ 1 fc )J "  + [2 f t ) . + 1 f t )

[2 ftft+1 ft)I + N H  t2 ft) * + 1 ft)J
+

+

1

4A(
1

4At 
(yb - ya)

6
(ya - yc)

(3.41)

There are two more element-nodal equations for node b and node c, which are found 

by expanding out rows 2 and 3 of Equation 3.38, respectively. In Figure (3.6) a general 

patch of elements are given. For the patch of Figure (3.6), there are five element-nodal 

equations are for node 1, one given by each of the connecting elements. The exact form and 

structure of each element-nodal equation, will be different and depends on the connectivity 

for the element. The connectivity matrix for the 2D patch of triangular elements is given 

in Table 3.1. Using this connectivity matrix, the element-nodal equation for node 1, given 

by the matrix equation of element 1 , is
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{ p  =  \  [ u x ( y e  ~  2/2 ) +  u y { x 2 -  x e )] [06 +  0 2  +  0i]?

- J T -  lk x(V6 -  2/2 )] [(2/2 -  2/1 )06 +  (2/1 -  2/6)02 +  (ye -  2/2)0l]7
ei

4A f e ( ^ 2  -  X q )] [ ( x i  -  X 2 ) 0 6  +  ( x 6 -  X i ) 0 2  +  ( x 2 -  X 6 ) 0 l ] 7
ei

+

+

(2/1 -  2/2 )
6

(ye - 2/1 )
6

1[FX ) + 2 [F X

l ( F x )g +  2 ^ / i j

4-

I
+

( x 2 -  x i )

( x i  -  x 6 )

1 ( 4 ) 2 +  2 ( ^ ) 1

[lfc)„+2 (4 )J
The element-nodal equation for node 1, for element 2 is

le2
3A £

A 0 io.-s Ux ( y 2 -  2/3 ) +  U y { x 3 -  X2)] [02 +  03 +  0 i f

4A [ M 2/2 -  2/3 )] [(2/3 -  y i ) 0 2  +  (yi -  V2)<p3 +  (2/2 -  y3)0i]7
€ 2

44
[ f c y ( x 3 -  X 2 )] [ ( x i  -  x 3 ) 02 +  ( x 2 -  X i )03 +  ( x 3 -  X 2 ) 0 l ] ?

62

+

+

(yi -  y3)~ 
6

' (2/2 - 2/1 ) 
6

( x i  -  x 2 )

The element-nodal equation for node 1, for element 3 is

{p =  \  [ U x ( V 3 -  Va) +  U y ( x 4 -  X 3 ) ]  [ 0 1  +  03 + 04]n

~ T T ~  [M2/3 -  2/4 )] [(2/3 -  2/4)01 +  (2/4 -  yi)03 +  (2/1 -  2/3)04]n
63

44 [ k y ( x 4 -  x 3 )]  [ ( x 4 -  X3 )0 i +  ( x i  -  X4)03 +  (^3 -  Xi ) ( p4]n
e3

+

+

(2/3 — 2/l)
6

(2/1 -  2/4 )
6

2 IF*! + ! ( * ;

+

’ +

(xi -  x 3 )

6
(x4  -  X \ )

2 Fv ) + 1  R

6

3J

2 ( F y ) x +  1 4

The element-nodal equation for node 1, for element 4 is

(3.42)

(3.43)

(3.44)
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P  A<?!)1)  =  \  M y *  ~  y $ )  +  u y ( x $ ~  x * ) \  [0 i  +  04 +  f a ]71

~ T 7 ~  \kx(y* -  2/5 )] [(2/4 -  2/5)01 +  (2/5 -  2/1 )04 +  (2/1 -  2/4)05]”
e4

4A [fcy(x5 -  x4)] [(x5 -  a;4)0i +  (xi -  £s)04 +  (x4 -  x i)0 5]7
e4

+

+

(2/4 - 2/1 )
6

(2/1 -  2/s)
6

+

’ +

(ari -  x 4)
6

(0 :5  -  Xi)
6

The element-nodal equation for node 1, for element 5 is

 ̂(§A*) A(̂ ) = \  [Ux(yb ~  2/6) + uy(X6 ~  X5̂  + 01 + 05ln

4A [M2/5 -  2/e)] [(2/1 -  2/5)06 +  (2/5 -  2/6)01 +  (2/6 -  2/i)05]n
es

4A
[ky(x6  -  X5 )] [(x5  -  x i ) 0 6  +  (x6  -  a;5 )0 i +  0 &i -  ^ 6 )0 s]n

e5

+

+

(2/1 -  2/e)
6

(2/5 -  2/i)
6

[io?o.+2 (/o1r
[2 (̂ )1+1 (/0 J"

(x6  -  Zl)
6

(xi -  x5)
6

(3.45)

The effective nodal equation for node 1  is found from the average of the elemental-nodal 

equations obtained from the connecting elements. Here the averaging approximation is 

given as

P 3A t
A 0 i P ( -Aei +  Ae 2 +  Aes +  Ae4 +  A,

3A t
5

le5 A01

\ Y . { e
n= 1

3At A 0 i (3.47)

Examination of all the equations for node 1, clearly shows that by adding together 

Equations (3.42) to (3.46), the edge fluxes will cancel each other out. This is due to the 

local conservation of the scheme. Thus, the resulting nodal equation for node 1 is
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3A t
((Aei +  A e2 +  A e3 +  A e4 4- A e5)) A 0i —

kx
T

+  - ^  [(2 /6  -  2 / 3 ) 0 2  +  (2 /2  -  2 / 4 ) 0 3  +  ( 2/3 -  2 / 5 ) 0 4  +  ( 2/4 -  2 / 6 ) 0 5  +  ( j /5  ~  b
(2 /6  -  S/2 ) 5

Lei
+ (2 /2  -  2 /3 ) 5 + (2/3 -  2/4)'

le3
+

*(2/4 -  2/s)2'
+

A e  4

( 2/5 -  2/ e ) 5

le5
&x
T
^x
T
kx
T
kx
T
kx
T

\ ( ’(2/6 -  2/2 )(2/1 -  ye)"
+[I A e  1

[ (
’(y2 -  y3)(yi -  y2)"

+LI €̂2
\ ( ’(y3-y4)(yi -y3)"

+LI ^ 6 3

\( 11

1

+LI A e 4

\ ( (vs - ye){yi - ysY
+LI A e  5

( 2/2 -  2/ 3 )  ( 2/3 -  2/ 1 )

le2

( y 3  -  2/ 4 ) ( 2/4 -  2/ 1 )

le3
(2 /4  -  2 /5 ) (2 /5  -  2 / l )

le4

(2 /5  “  2 /6 )  (2 /6  -  2 / l )

(2 /6  -  2 /2 )  (2 /2  -  2 / l )

Lei

+  ~T [ (X3 ~  ^ 6 ) 0 2  +  (^4 “  ^2)03 +  (^5 -  £ 3 ) 0 4  +  (x6 -  X4 )0 5 +  (x2 ~O
(x6 -  x 5)ky \( ' ( x 2 -  x 6 ) 2 '

+ " ( Z 3 -  X2)2 + '(x 4 -  x 3 ) 2 ' +
~( x5 -  x4)2'

+
4 A e  1 to A e  3 Ae^

21

kx \ ( ' ( x 2 -  x 6 ) ( x 6 -  X \ )
+4 L I Ae 1

kx \ r ' ( x 3 - x 2 ) ( x 2 — X i )
+4 L I -̂ e2

kx \ ( '(x 4  -  x 3 ) ( x 3 -  X i ) '
+4 L I -̂ e3

kx \ ( '(x 5 -  x4 )(x4  -  x i y
+4 L I Ae4

kx ( xq  -  X 5 ) ( X 5 -  X i )
+4 L I A e 5

(x3 -  X2)(X! -  X3)
A

(x 4 -  rr3) ( z i  -  x 4)

le3

(x5 ~  XA) { X \  -  X5 )

( X6 -  X5 ) ( X!  -  X 6)

( X2 ~  X6 ) ( X!  -  X 2)

lei

2/2 ) 0 6 ]n
- n

01
- n

02
- n

03
' 71

04
- n

05
- n

06 

Z5)06]n
- n

4>\
- n

02
- n

03
- n

04
- n

05
- n

06

(3.48)

Equations (3.48) is identical to the nodal equation for node 1, retrieved using the global 

Galerkin method for the same 2D patch of Figure (3.6). Thus proving equivalence of the 

nodal-equations of the LCG and global Galerkin methods, in two-dimensions for inside 

nodes, when a lumped mass is used. The former however, is always locally and globally
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conservative.

3 .4 .3  R em a rk s on  th e  a n a ly s is  o f  th e  L C G  m e th o d

1. For the LCG method, a post-processed flux is calculated at every time-step, for each 

node, to provide Neumann-type boundary conditions on the edge of each element 

sub-domain.

2. The diffusion portion of this nodal flux is taken as an average of gradients from con­

nected elements. It was shown for ID linear elements that the diffusive flux calculation 

is equivalent to the second-order accurate central-difference approximation in finite 

difference methods.

3. Examination of all the equations for node 1, clearly shows that by adding together 

Equations (3.42) to (3.46), the edge fluxes will cancel each other out. This statement 

is valid for any grid, whether structured or unstructured, uniform or non-uniform.

4. The approximation given by Equation (3.47) also applies to both structured and 

unstructured grids e l s  long as the elements surrounding the inside node are of equal 

size. A similar condition applies to Equation (3.33) for the ID case.

5. Assuming Equation (3.47) to be a valid approximation, the LCG method gives an 

identical nodal equation as the standard GG method for inside nodes, when a lumped 

mass is used. This is true at both transient and steady states. Although the nodal 

equations are identical, the LCG requires additional computation.

6 . If the elements surrounding an internal node differ greatly in size, then Equations 

(3.33) and (3.47) are no-longer good approximations, thus the lumped-mass LCG and 

lumped-mass global Galerkin methods are not strictly equivalent for the transient 

state.

7. Due to the coupling of nodal equations when a consistent msiss is used, it is difficult 

to prove that the LCG and global Galerkin methods are identical for inside nodes for 

transient state, when a consistent mass-matrix is employed.
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8 . After the averaging procedure, a residual post-processed flux appears along the domain 

boundary for an LCG method, regardless of the prescribed boundary conditions.

9. Not only is the LCG method locally (element-wise) conservative, but it is also globally 

conservative - even in the absence of Neumann conditions along the global boundary.

3.5 LCG m ethods for convection dom inated flows

In the previous chapter - dealing with the global Galerkin method, suitable stabil­

isation techniques were discussed for solving convection-dominated problems. It is shown 

in this section, that standard methods such as: the SUPG method [28, 41] and the Charac­

teristic Galerkin (CG) scheme [39, 42, 44], can be readily used in LCG discretisation; Thus 

providing stabilisation of the non-self-adjoint convective terms [23], at elevated values of 

Peclet numbers. The extra stabilizing or higher order terms resulting from the discretisa­

tion are treated explicitly and locally - with no global assembly.

3 .5 .1  S U P G  s ta b ilise d  L C G  m e th o d s

Incorporating the SUPG method [28, 41] into the proposed LCG formulation is

simple and straight-forward. Equation (2.42) gives the semi-discrete form of the general

convection-diffusion equation as

A>n+ 1 _  jjn BF n
0 A ^  = ~ d f i + S j  (3'49)

Spatially discretizing Equation (3.49) using the LCG method, gives a fully discrete form for 

solving over individual domains.

To obtain a SUPG stabilised LCG method, we start with the residual equation for 

an elemental-domain:

0 L ' w° ^ d a e = ~ L w a [ S ]  - §’ ) d n '  (3-5°)

The weighting function on the RHS of Equation (3.50) is given by Equation (2.49) for SUPG 

stabilisation, giving:



Here a  is a parameter, whose optimal value is given by Equation (2.50) for linear triangular 

elements. For quadratic triangular elements the optimal parameter is given by Equations 

(2.50) and (2.52) for mid-side and vertex nodes respectively. Assuming a constant velocity 

field, the element-size, fi, is best calculated in the stream-wise direction. This is done during 

the pre-processing, using the element portion of Equation (2.96). To remain consistent with 

the global Galerkin SUPG method (discussed in the last chapter), no special weighting is 

used on the LHS of Equation (3.51); i.e. wa = Na here.

To provide continuity between elements in the LCG method, the numerical flux, 

F™, is introduced by introducing integration by parts

-  /  N ^ ~  d n e = f  ^ F j ndCle ~  f  Nah d T enj (3.52)Jn. dXj dxj Jr. 3
into Equation (3.51) giving

p [  Na^ jd n e = j  ^ - F j ndne -  j  Naf? d r eni + f  Na (Sjj"dne
j  $ w r  g j  Og

Neglecting third- and higher-order terms, the explicit and implicit elemental- 

matrix forms of Equation (3.53) are written as:

/3[M J{A $}"+I =  At ([Ke]{$} +  (K |UP8 ]{$ ) +  {fe} +  {f|°urce} +  {fj-pg})" (3.54)

and

(/3[Me| +  At[Ke]) { $ } n + 1  =  [Me]{$}n +  At ([K |ups]{$} + {f;} +  +  {fe5 uP®})"
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respectively. The matrices: [Me], [Ke], and {fe} are given by Equations (3.11), and (3.16) 

respectively. The additional matrices appearing from the SUPG formulation are given by:

[ K r g ]  =  /  ^
J Qe \  2 |u| J  dxi  d x j

{f source |  =  J  N TN d ^e{Sj}n

{f|upg} = j ^ ^ ^ N dne{S j )n  (3 .56 )

As mentioned previously the above system of simultaneous equations are solved for each of 

the elements in turn - independently of surrounding element equation sets.

3.5.2 Characteristic Galerkin (CG) based LCG m ethods

The SUPG stabilised LCG methods, developed above and given by Equations 

(3.54) and (3.55), are only first-order accurate in time. A higher-order time-accurate CG 

based LCG scheme for solving convection-dominated problems can also be easily imple­

mented. This is done by using the simple explicit characteristic based procedure [39, 42, 44]. 

As with the global Galerkin method, temporal discretisation of Equation (2 .1 ) is carried 

out first. Repeating Equation (2.58) for convenience

0 n + i _ ^ n  f dF . n \ n A  t d fd F i ^  ̂ 2>

^ r ^  =  - ( ^ - 5V  + t  u^ W r Si)  + ° ( A t )  (3'57)

gives the second-order time accurate semi-discrete form. The weighted residual form of 

Equation (3.57) is written (with Galerkin weighting wa =  Na) for an elemental-domain as

0 f n Na7u dne = ~ f n N a \ l B ~ S i ) dQe + Ja N ^ UkF -  I t F  - % ) dQt
A t j>_ m

2  Uk dxk ydz;
(3.58)

Continuity between elements is established using the weak form, given by Equation (3.52). 

This allows the numerical flux, which crosses element edges, to be introduced into the 

element matrix system. Integration by parts is also used on the additional second-order
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stabilizing terms, that appear due to discretizing along the characteristics. As with the 

global Galerkin method, the boundary contribution arising from integration by parts of the 

stabilizing terms in Equation (3.58) are ignored because the original residual is zero [23]. 

Performing the above on Equation (3.58) and rearranging, gives the characteristic Galerkin 

discrete form of Equation (2.1) as

/?[Me]{A<I>r+I =  A t ([K e]{$ }  +  [K ? ]{ * }  +  { 4 }  +  {frurce} +  « * } ) "  (3.60)

GS[Me] +  Ai[K e]) {4>}n+1 =  [M .]{* }B +  At ([K J«]{*} +  { 4 }  +  { fl°urce} +  { £ * } )"

(3.61)

Give the explicit and implicit elemental-matrix forms of Equation (3.59) respectively. The 

matrices: [Me], [Ke], {4}, and {f|ource} are given by Equations (3.11), (3.16), and (3.56).

The additional matrices appearing from the characteristic Galerkin formulation are given

As with the SUPG stabilised LCG method, the element matrix equation systems given in 

Equations (3.60) and (3.61) are solved for each element in turn. The numerical flux provides 

the continuity between neighbouring elements.

(3.59)

Neglecting third- and higher-order terms

and

by:

(3.62)
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3.6 A pplication o f the LCG m ethod  for incom pressible fluid 

dynam ic problem s, using the C BS schem e and artificial 

com pressibility

The direct application of the LCG method for solving incompressible fluid dy­

namics problems is considered in this section. In the previous section it was shown how 

to obtain a second-order time accurate stabilised CG-LCG method for solving convection 

diffusion problems. On a similar lines one can produce stabilised scheme for solving fluid 

dynamic problems, using the Characteristic Based Split (CBS) temporal discretisation of 

the Navier-Stokes equations. In this work the non-conservation form of the Navier-Stokes 

equations are used.

3 .6 .1  S p litt in g  o f  th e  m o m e n tu m  e q u a tio n  an d  te m p o r a l-d isc r e t isa t io n  

u sin g  a  c h a r a c te r is t ic  b a sed  m e th o d

The non-conservation form of the Navier-Stokes equations were expressed in a 

non-dimensional format in the previous Chapter. Repeating Equations (2.38), (2.39), and 

(2.40):

Continuity

Momentum

1  dP dui /Q Rn\
=  (363)

dui dui 1  d2Ui dp
dt dxj R e d x j 2  dxi

Temperature

dT  8T  1 d2T
at = ~ UjF ] + (365)

In the above equation set the superscript asterisk, *, which was used to indicate non- 

dimensional variables, have been dropped to simplify the presentation. In addition, the 

continuity equation includes the isentropic relation of Equation (2.19). Although the speed



of sound, c, is infinite for an incompressible fluid, the inclusion allows a fully explicit CBS- 

LCG scheme to be constructed. This will be implemented by replacing c with an artificial 

compressibility parameter [23, 76, 82, 96, 97, 98, 112, 113, 114].

the momentum equation. Here the term containing pressure is dropped from the equation, 

and an auxiliary intermediate velocity field is solved for instead. The intermediate velocity 

field is corrected at a later stage, once the pressure field is obtained from a pressure (conti­

nuity) equation. An alternative approach is of course to treat the pressure term as a source 

quantity. This alternative has been shown to give slightly more accuracy in transient prob­

lems, but is considered a less flexible approach by practitioners of the CBS scheme. This 

is due to the restrictions imposed by the Ladyshenskaya-Bubska-Brezzi (LBB)condition 

[109, 110, 111], which apply when incompressibility (or near incompressibility) is encoun­

tered. Details on circumventing the the LBB condition for the CBS scheme axe given by 

Zienkiewicz and co-workers [23, 87].

To make the following CBS-LCG spatial discretisation procedure consistent to the previous

The proposed CBS-LCG approach discussed in this section, starts with splitting up

By dropping the pressure term, Equation (3.64) becomes

d u j dui 1  d2Ui
^ dxj R e d x j2

(3.66)
dt

=  —Uj

sections of this chapter, Equation (3.66) is written in a similar fashion to Equation (2.42)

i.e.

duj t 8F ,
dt

(3.67)

Noting =  0, the flux term, Fj, is defined as

(3.68)

Applying the CG temporal discretisation (see Equation (3.57) ) to Equation (3.67) gives 

the following semi-discrete form.
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This is Step 1  of the LCG-CBS scheme. As the pressure term was split from the momentum 

equation, an dagger mark, f, is used for the intermediate value of U{ at time (n +  1). The 

correct value of Uin+1 is given by

This is Step 3 of the scheme. Before the velocity correction can be applied, the 

pressure has to be calculated independently from another source in the second step. Using 

the continuity relation given by Equation (3.63), the pressure can be written as

1 A p duin+1
?  A* =  - o - ^ r  (3-71)

The Uin+1 term appearing in this equation has to be eliminated, as it is unknown. Using 

Equation (3.70) and neglecting terms higher than second-order, the pressure equation is

Equation (3.72) has been derived by assuming a pseudo density variation in the continuity 

equation. For incompressible fluid flow the sonic velocity, c, approaches infinity, and the

transient term disappears from the equation. In the absence of a transient term, the result­

ing Poisson-type equation has to be solved directly using a matrix solution method. It is 

possible to avoid this and keep the fully explicit nature of the scheme, by assuming a small 

amount of compressibility. However, even if c is finite, its value may still be very large and 

the solution procedure becomes highly restricted by severe time-step limits [23, 96, 113].

An artificial compressibility parameter, (3, that has the dimensions of speed, has 

been successfully used in the literature [23, 76, 82, 96, 97, 98, 112, 113, 114]. to replace the 

wave speed. Assuming a steady-state exists, a sufficiently low value for (3 is selected instead. 

This eliminates the restrictions imposed by c. Replacing the real wave speed in Equation 

(3.72) with j3, the pressure equation to be used for Step 2 of a fully explicit incompressible 

flow solution is

O ' )  »■">
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The value of (3 can be given as a constant throughout the domain, but the rec­

ommended approach - which is adopted here, is to calculate (3 locally - based on both 

convective and diffusive time-step restrictions [23, 76, 96, 97, 98, 113, 114]. This gives not 

only a scheme which is suitable for different Reynolds numbers but more importantly it ac­

commodates different flow regimes (convection and diffusion dominated) within a problem 

at a particular Reynolds number. In this work the relation

P = max (e, i/conv, Vdiff, vth erm ) (3.74)

is employed for a general non-isothermal fluid flow. The constant e, appearing in Equation 

(3.74), ensures that P does not approach zero, and typically takes the value of 0.1 < e < 0.5. 

Vconv is the local convective velocity Pdiff  is the local diffusive velocity, and vtherm is the 

local thermal velocity - used when the temperature field is solved for. These velocities are 

calculated from the non-dimensional relations

Vconv — y /U iU i  ^ d i f f  — h f i  g ^therm  — h P r  (3.75)

The above relations are given by Nithiarasu [96] in order keep the relations simple while 

still giving as good performance as the pre-conditioned AC schemes. Malan et al. [113] 

discuss in detail the local velocity relations given for pre-conditioned AC schemes, which 

are calculated differently.

The temperature field is calculated in the fourth and final step of the scheme. To 

start, Equation (3.65) is rewritten in the familiar form

dT  dGj n
W + d ^  = 0 (3-76)

To avoid confusion with Equation (3.68) the flux term is denoted by G j , and is given as

S  (377)
Applying the CG temporal discretisation gives the following semi-discrete form of Step 4



Summarizing, the four semi-discrete steps are:

1 . Solve for the intermediate velocity field, u j ,  using equation (3.69)

2 . Solve for the pressure field, p, using equation (3.73)

3. Solve for the correct velocity field, ui , using equation (3.70)

4. Solve for the Temperature field, T, using equation (3.78)

3 .6 .2  L C G  sp a tia l d isc r e t isa t io n  o f  th e  C B S  sc h e m e  for th e  n o n -co n serv a tio n  

form  o f  in c o m p r e ss ib le  flow  e q u a tio n s

In this sub-section Equations (3.69), (3.73), (3.70), and (3.78) are discretised in 

space using the proposed locally conservative Galerkin (LCG) finite element procedure.

As with the global Galerkin the variation of each of the variables is approximated by the 

standard spatial discretisation ( Equation (3.4) ) as

m «  Ui =  Nui, p «  p = N p, T  w T  =  N T  (3.79)

As mentioned, the LBB condition is circumvented when the pressure gradient is removed 

from the momentum equation [23, 42, 109, 110, 111]. This allows an arbitrary choice 

of shape functions to be made for approximating the velocity, pressure, and temperature 

fields. Here, all variable approximations use identical shape functions. The optimal choice 

of weighting function for the semi-discrete equations is Galerkin, wa = Na, when using a 

characteristic-based discretisation.

The elemental-residual equation for Step 1, with Galerkin weighting, is
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Performing integration by parts on the RHS of Equation (3.80) gives the following weak 

form

/ Na^ f dne = / [  NaF?drenj

-  / ,  ( f - * £ )  ( g ) ‘ *
As with before, for the LCG method for the scalar convection-diffusion equation, the bound­

ary term is replaced with a numerical flux, Fj, at time (n). The boundary terms from the 

integration by parts of the second order stabilizing terms are neglected [42]. Neglecting also 

third- and higher-order terms, the final matrix form of Step 1, to solve over each element is

[M le]{Auit}n+1 =  At ([K l.]{Uj} + [K l? ]{u ,} +  {fi,,})"  (3.82)

[m i j  =

r f At \  dNT aN
[K1° 1 = L  (t»*j dxk 3 dxj

{fie}" = - j f  NTujNdTenj{ui}n + -  ̂ NTNdren., j |^ i ]  (3.83)

The elemental-residual equation for Step 2 of a fully explicit incompressible flow 

solution is

L  "■ ( ? )  f , d a - -  - ’ L  (* ' - 41 ( S T )  '*’• <3M'

Performing integration by parts on the RHS of Equation (3.84) gives the following weak 

form
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the final matrix form of Step 2 , to solve over each element is

[M2e]{Ap}n+1 =  At ([C 2 e]{Uit} -  At[K2e]{p}" +  {f2e}) (3.86)

|M,J - 1 nT(p)"n"- ™ - L d£ m a -

IK2J . /
J Qe dxi  dxi

{f2e}» =  - j f  N TN d renj ^{uit} - A t | ^ |  )  (3.87)

The elemental-residual equation for Step 3 of a fully explicit incompressible flow 

solution is

[  NaUin+1d£le = [  NauJdQe -  At f  Na ( dQe 
Jne Jne Jne V dx% J

Performing integration by parts on the RHS of Equation (3.88) gives the following weak 

form

[  Naiitn+1dne = f  Nau iU ne +  a t f  - A t  f  N â d r eni
Jne Jne Jne uxi J r e

f  A t2 d Na ( d p \ n
Jo, 2 u h d x k (ftj dQe (3'89)

The boundary terms from the integration by parts of the second order stabilizing 

terms are neglected - also third- and higher-order terms, the final matrix form of Step 3, to 

solve over each element is

[M3e]{u,}n+1 = [M3e]{u,}t -  A t ([K 3j{p} + [K3?]{p} + {f3 e})" (3.90)
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f  f  <9Nt
[M3e] =  /  N TN  dQ.e [K3e] =  /  Ndflc

Jne JQe OXi
f  /A t  \  <9NT dN  ^

1 e l  “

{f3e}" = -  [  I^ N d T e r ^ }"  (3.91)
^re

The elemental-residual equation for Step 4, with Galerkin weighting, is

I  Na At dne -  J  n J  dg x3 'j dQe + j  N a 2 Uk 9xk (  3)  dne (3.92)
AT n + 1  _  f  „  ( d G j \  _  7 „  A t d ( dG,

Cj ,

Performing integration by parts on the RHS of Equation (3.75) gives the following weak 

form

f  A T n + i  r  a m  r

The final matrix form of Step 4, to solve over each element is

[M4e]{AT}"+1 = A t  ([K4e]{T} + [K4?]{T} + {fie})" (3.94)

[M4e] = JaN^dne
nr,.cg, _  [  ( t o  \ d N T aN
[ e 1 “  L A  2 Uk)  dxk Uid x / ne

{f4e}n =  - /  ^ U j N d T . n j i T r  + ^ -  f  N TN < f f > 4 J ^ }  (3.95)
•/Te J r  e

3 .6 .3  L oca l t im e -s te p p in g

In the previous Chapter, the use of local time-stepping was discussed for increasing 

the efficiency (viz faster convergence rates) of the global Galerkin CBS scheme for solving
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compressible flow problems. The use of local time-stepping is also possible when using the 

proposed LCG-CBS scheme with artificial compressibility. The next sub-section discusses 

how to retrieve the true transient solution when both artificial compressibility and local 

time-stepping are used.

The local time-step limitation at each node a, for the artificial compressibility 

LCG-CBS method is given by

A t0  =  (3.96)
y / lL iU i  T  p

for a viscous incompressible flow. Where ha is the local element-size at node a. The value of 

ha is given by Equation (2.95) as the minimum mid-height of all the surrounding connecting 

elements - as illustrated in Figure 2.2. The artificial compressibility parameter is calculated 

from Equation (3.74). The inclusion of P in Equation (3.96) allows the viscous wave speeds 

to be included into the local time-step limit. The calculated A ta is in practice multiplied 

by a safety factor, s / ,  where (s f  < 1.0). The actual value of s f  depends on the problem 

being simulated and the mesh used. The recommended approach [96], is to start with a 

maximum value and reduce until the scheme starts converging.

For examining the error of the solution for the AC-CBS scheme, for the global 

Galerkin method, the residual norm of the pressure residual was used [96, 97].

error =
nnode \

nnnode r , „_li r1 p n + L — p r

P2 A t
(3.97)E

i —1

where nnodes is the total number of nodes in the mesh. It is also used to examine the

convergence of the artificial compressibility LCG-CBS scheme, discussed here. The criterion 

for reaching steady-state is that this error should be reduced to a value of 1  x 1 0 -5 .

3 .6 .4  R e c o v er in g  a tr a n sie n t so lu tio n  v ia  a  d u a l t im e -s te p p in g  ap p roach

For the solution of transient incompressible-flow problems,using the proposed LCG- 

CBS scheme with artificial compressibility, a dual time-stepping procedure [115] is im­

plemented. The method has been shown to be very successful for both pre-conditioned
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artificial-compressibility finite volume schemes [113, 114], and the global Galerkin fully- 

explicit CBS scheme with artificial-compressibility [23, 76, 96, 97, 98]

Essentially, the dual time-stepping procedure transforms an unsteady flow calcu­

lation into a series of instantaneous steady states in real-time. A pseudo time-step is then 

used to iterate the solution within each instantaneous steady-state until the solution con­

verges to a desired level of tolerance. By incorporating dual time-stepping, the error in 

the transient solution, introduced by both lumping the mass matrix and using the artificial 

compressibility parameter, is considerably reduced.

In order to recover the true transient solution, a real time term is added to the 

momentum equation. The CBS temporal discretisation supports two approaches: It can 

either be added to Step 1 (Equation 3.69), or Step 3 (Equation 3.70) of the scheme. To 

remain consistent with the global Galerkin CBS scheme [76, 96, 97, 98], the latter is chosen 

here. The addition of a true transient term, { u j } T , leads to the following modified third 

step

{u iF+1 =  {Ui}t _  p y ^ r 'A i  ([K3e]{p} +  [K3'*]{p} +  {f3e})" -  ^ { A u j F  (3.98)

where A r is the real time-step. When using the dual time-stepping scheme At 

becomes the pseudo time-step. In order to get a second-order real time accuracy, {Aui}T 

is approximated with an implicit second-order backward-difference formula

{ui}r =  (3.9 9)

In Equation 3.99 { u j } m + 1  is the n th pseudo-time level value within the pseudo­

time loop. {ui}m is the steady-state solution at the last real time-step, {ui} m _ 1  is the 

steady-state solution at one real time-step before the last. Clearly both the latter vectors 

need to be appropriately stored at the end of each real time-step. Due to the implicit nature 

of the scheme, the real time-step size is unrestricted and only governed by the quality of 

the transient solution required. The pseudo time-step however, is locally calculated and 

subject to the stability conditions discussed in the last section.
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3.7 Sum m ary

In this chapter, a locally conservative Galerkin (LCG) method, has been presented 

for the solution of the scalar conservation equations and the Navier-Stokes equations.

This Chapter gives a substantial introduction to this new and appealing scheme. 

The fundamentals of the method have been clearly defined. The element edge fluxes - 

which play a crucial role in obtaining an element-by-element solution have been presented, 

along with procedures for increasing accuracy via quadratic-order elements. Strategies for 

both explicit and implicit solutions strategies were also proposed - with and without a 

lumped-mass matrix.

A continuous solution throughout the domain is retrieved at the end of each time- 

step. This avoids multiple solutions at the nodes, but more importantly allows the numerical 

flux to be calculated for the next time-step. The diffusive component of the edge-fluxes, were 

shown to be easily computed from the continuous solution. Separate procedures developed 

for linear and quadratic elements, were discussed in detail.

Both the LCG and global Galerkin method were analysed and surprising famil­

iarities were found. Particularly for the explicit lumped-mass versions of the two methods. 

Here, an identical discrete equation was obtained if the element areas are of equal size. 

The former method, however, possesses a residual flux on the global boundary after the 

averaging procedure is made. It is this residual flux, that gives the LCG method explicit 

global conservation - even in the absence of Neumann-type boundary conditions.

For convection-dominated problems and incompressible flow simulations, a number 

of LCG schemes were developed in this chapter. For convection-diffusion problems, proce­

dures for incorporating the SUPG method and the simple explicit Characteristic Galerkin 

(CG) scheme were given. A fully explicit CBS scheme - using an artificial compressibility, 

was used as the temporal stencil for an LCG method for solving incompressible flows.

Closure of this chapter was completed with details for recovering the transient 

solution. A dual time-stepping procedure was implemented into the CBS-LCG scheme. 

By incorporating dual time-stepping into the scheme, the solution of unsteady flows is 

permitted.
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Chapter 4

Influences of elem ent-size  

calculation and variable sm oothing  

on the global Galerkin CBS scheme 

for inviscid com pressible flow

4.1 Introduction

In Chapter 2 , the characteristic based split (CBS) algorithm - for solving compress­

ible flow problems, was presented. As mentioned previously, the CBS scheme introduces 

consistent convection stabilisation, via the second-order temporal discretisation. In the CBS 

scheme, the convection stabilisation terms are controlled by the time-step, which is in turn 

based on the stability criteria involving the local element-sizes. The standard element-sizes 

employed in the past [23, 42, 43, 8 8 , 90, 91, 96, 94], were calculated as part of the pre­

processing stage and stored for use during the time-stepping operation. Once calculated, 

these element-sizes were not altered during the time-stepping process. This method of 

evaluating the element-sizes is computationally straight forward and inexpensive. It is not 

clear, however, whether local element-size calculation methods [128] will have any significant 

influence on the solution.
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As discussed in Chapter 2 , if the flow problem is purely convective, i.e. inviscid, 

then the local nodal time-step depends only on the convective and sonic velocities. SUPG 

schemes [23, 28, 128], often use a directional element-size in order to obtain optimal stabili­

sation of the convective terms. It is interesting to see, if taking into account the streamline 

direction when calculating the local element-size at a node, has any positive effect on com­

puting inviscid compressible flow using CBS. Here, an updating of element-sizes is required 

at each time step during the transient stages of the calculation. Calculating the element-size 

in the streamline direction is computationally more expensive than the standard method, 

especially for large scale problems. However, the advantages gained using a streamlined 

element-size calculation should not be overlooked.

In this Chapter, therefore, the effect of using a flow-dependent local element-size 

in the streamline direction - for the calculation of local time-steps, is considered. The pro­

posed stream-wise local element-size is calculated using Equation (2.98). Investigations are 

carried out on the effect of such an element-size calculation, by solving inviscid compressible 

flow past a NACA0012 aerofoil. In addition to the effect of the element-size calculation, 

the issue of simulating inviscid flows at low Mach numbers, is addressed. This is done, 

by employing the proposed variable smoothing approach given in Equation (2.102). The 

employed variable smoothing approach, permits oscillation free solutions at a Mach number 

as small as 0.01. The variable smoothing is particulary important to both CBS schemes, 

as it allows accurate and non-oscillatory low subsonic solutions to be obtained on the same 

non-isothermal code used to perform supersonic simulations - without having to remove the 

energy coupling. With a combination of the element-sizes in the streamline direction and 

the variable smoothing, inviscid solutions are obtained for Mach numbers ranging from 0.01 

to 3.0.

4.2 Inviscid com pressible flow over a N A C A 0012 aerofoil

To investigate the performance of the local element-size calculation in the stream­

line direction (Equation 2.98) and the effect of the local variable smoothing (Equation 

2.102), an example problem of inviscid flow past a NACA0 0 1 2  aerofoil is considered in
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this section. Here, the problem has been solved for various Mach numbers in the range of 

0 . 0 1  < M a  < 3.00, using the CBS scheme. This covers all regimes - including subsonic, 

transonic, and supersonic flow. Results obtained using a CBS scheme with an element-size 

calculated in the streamline direction, are compared against: analytical solutions, bench­

mark data, and solutions obtained from the CBS scheme using a standard element-size 

calculation. The use of local variable smoothing in the CBS scheme, is applicable to both 

types of element-size calculation. In this section it is used, in the place of artificial shock cap­

turing diffusion, to solve compressible flow problems at low mach numbers (i.e. M a  < 0 .8 ), 

without removing the coupling between energy and the other transport variables.

The computational domain and mesh used in the analysis is shown in Figure 

4.1. The domain is circular with a diameter equal to 25 times the chord length of the 

NACA0 0 1 2  aerofoil. The leading edge of the aerofoil is at the geometric centre (0.0,0.0) of 

the domain. Inlet conditions are prescribed on the left half of the circular boundary, and 

exit conditions are prescribed on the right half. Standard practise [23, 132, 138] is adopted 

here on the correct implementation of boundary conditions for subsonic and supersonic 

flows. For Ma > 1.0, all velocity components and the density are prescribed at the inlet, no 

conditions axe prescribed at the exit. For Ma  < 1.0, all velocity components are prescribed 

at the inlet, and the density is prescribed at the exit. An unstructured mesh consisting 

of 7351 elements and 3753 nodes is used in the domain discretisation. A close-up view of 

the mesh in the vicinity of the aerofoil is also given in Figure 4.1(b). The mesh and other 

parameters used in the calculations are identical for both, the CBS scheme with standard 

element-size calculation and the CBS scheme with stream-wise element-size calculation.

Figure (4.2) gives the computed density contours using the proposed element-size 

calculation, for flows within the subsonic-transonic region. Results are given here, for Ma  

=  0.25, 0.50, 0.65, and 0.85. The variable smoothing parameter, a , defined in Equation 

(2.102) was activated when carrying out the computations for Mach numbers of 0.80 and 

below. Figure (4.3) gives the computed density contours using the proposed element-size 

calculation, for flows within the transonic-supersonic region, viz Ma = 0.95, 1.20, 2.00, and 

3.00. From a qualitative point of view, all results shown are in excellent agreement with the 

results obtained using the standard element-size calculation. Considering the coarseness of
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(a) Finite element mesh - whole domain

(b) Finite element mesh - detail of mesh close to aerofoil

Figure 4.1: Compressible flow over a NACA0012 aerofoil. Linear triangular finite element 
mesh with NACA0 0 1 2  aerofoil profile, 7351 elements and 3753 nodes
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(a) M a  =  0.25 (b) M a  =  0.50

(c) M a  =  0.65 (d) M a  =  0.85

Figure 4.2: Compressible flow over a NACA0 0 1 2  aerofoil. Contours of density at subsonic 
and transonic values of Ma, using proposed stream-wise element-size calculation.
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(b) M a  =  1.20(a) M a  =  0.95

(d) M a  =  3.00(c) M a  =  2.00

Figure 4.3: Compressible flow over a NACA0012 aerofoil. Contours of density at transonic 
and supersonic values of Ma, using proposed stream-wise element-size calculation.
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the mesh employed for the calculations, the contours are smooth and show good symmetry 

along the horizontal centreline that passes through the chord of the aerofoil.

A quantitative analysis of the results obtained using the proposed element-size cal­

culation is made by examining the coefficient of pressure, given in Appendix A by Equation 

A.l, along the surface of the aerofoil. Figures (4.4) and (4.5) display the computed Cp plots 

corresponding to the flows given in Figures (4.2) and (4.3) respectively. The results have 

been compared with results obtained - using the same input data, from the CBS scheme 

with a standard element-size calculation. Where possible, the computed Cp plots for both 

CBS schemes have been supported by benchmark data from Hirsch [132] and Pulliam et al. 

[139],

In most cases, both the CBS schemes - with proposed and standard element-size 

calculations, closely agree. The exception is at the transonic region, particularly at Ma = 

0.85. Here the standard CBS scheme is clearly more diffusive than the CBS scheme with the 

proposed element-size calculation, for the same specified input-parameters. It is obvious, 

from the comparison between the benchmark structured grid data given by [132] and present 

solution that the element-size calculation in the streamline direction substantially improves 

the results obtained at Ma  =  0.85. Here, however, the influence of the interaction between 

the shock-capturing diffusion and element-size calculation is not ruled out, especially close 

to the shock. The general conclusion is that the element-size in the stream line direction 

gives optimal shock capturing viscosity and second order convection stabilisation. However, 

it is difficult to individually quantify the effects of these terms.

A detailed comparison of the density, temperature, and pressure variables - at the 

leading edge stagnation point, has been made for the CBS scheme, using both proposed and 

standard element-size calculations. The results of which axe presented in Table (4.1). In 

addition, Table (4.1) gives the analytical values for the leading edge stagnation point. These 

are calculated using Equations (2.32) to (2.34), and tables of perfect gas flow functions - 

involving shock waves [129].

For convenience, the variation of stagnation values of density against the Mach 

number is shown in Figure (4.6). Here it can be seen quite clearly that superior accuracy 

over the standard CBS scheme is achieved when an element-size in the streamline direction



85

o.s

0

-0.5

o.s0 0.2 0.4 0.6

1

0.5

0

0 0.2 0.4 0.6 O.S

(a) M a  =  0.25 (b) M a  =  0.50

05

0

0 0.2 O.S0.4 0.6 1

0

-0.5

0 0.6 0.80.4

(c) M a  =  0.65 (d) M a  - 0.85

Figure 4.4: Compressible flow over a NACA0012 aerofoil. Cp distribution at subsonic and 
transonic values of Ma  using the proposed stream-wise element-size calculation, compared 
with results obtained from using the standard element-size calculation.
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Figure 4.5: Compressible flow over a NACA0 0 1 2  aerofoil. Cp distribution at transonic and 
supersonic values of Ma  using the proposed stream-wise element-size calculation, compared 
with results obtained from using the standard element-size calculation.
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Figure 4.6: Compressible flow over a NACA0012 aerofoil. Plot of the density variable at 
the leading edge stagnation points as a function of Ma. Comparisons made with calculated 
values from the proposed and standard element-size calculations, and analytical solution.
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using variable smoothing, compared with the Cp distribution obtained from using zero 
smoothing.



is used, especially when the Mach number is above unity. The improvement in results 

at supersonic speeds may be attributed to the changes introduced by the time steps in 

the higher order stabilizing terms (Equations (2.66),(2.70),(2.67) and (2.71)) and shock 

capturing viscosity (Equation (2.100)). However, it has been shown previously that the 

value of shock capturing viscosity employed is almost nil at the stagnation points [91]. It is, 

therefore, conveniently argued that the second order terms of Equations (2.66),(2.70),(2.67) 

and (2.71) are responsible for the improved stagnation values. Among these terms, the 

second order pressure term (Equation (2.70)) multiplied by the time step directly influences 

the stagnation density values.

To illustrate the effectiveness of the variable smoothing at low Mach numbers, the 

solutions obtained at a Mach number of 0.25 with and without the variable smoothing, 

have been compared in Figure 4.7. For both results, the element-size calculated in the 

streamline direction was used. Without variable smoothing the non-isothermal code failed 

to give an accurate solution even with additional shock capturing, second-order diffusion. 

However, with variable smoothing an accurate oscillation free solution was obtained (see 

also the result in Figure 4.2(a)). As seen the smoothed solution is accurate and the solution 

without smoothing is oscillatory and wrong. It should be noted here, that smoothing is also 

required to get a non-oscillatory result at this Mach number when a standard element-size 

calculation is employed in the CBS scheme.

4.3 Sum m ary

Compressible inviscid flow over a NACA0012 aerofoil, was simulated in this chap­

ter. For inviscid flow, the local time-step criteria depends only on the local element-size

and the sonic and convective velocities. This allows the standard element-size calculation, 

to be made more accurate by taking in to account the nodal stream-wise direction.

As a result, a comparative study was carried out in this chapter, to evaluate the

performance of two local element-size calculations - used in the CBS algorithm. It was 

found that the proposed modification in the local element-size calculation, based on the 

streamline direction, improved accuracy, especially in the transonic region.
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Table 4.1: Compressible flow over a NACA0 0 1 2  aerofoil. Analytical and computed values of 
density, temperature, and pressure at the leading edge stagnation point. Computed results 
given for the CBS scheme using proposed element-size calculation and standard element-size 
calculation.

Ma Po
Exact

T0 Po Po
S.line h 

To Po Po
Std. h 

T0 Po
3.00 4.2970 0.7818 0.9611 4.2797 0.7705 0.9422 4.1796 0.7587 0.9277
2.50 3.7724 0.9028 0.9738 3.7680 0.8769 0.9438 3.6723 0.8514 0.8934
2 . 0 0 3.1321 1.1295 1.0105 3.1064 1.1181 0.9924 2.9789 1.1406 0.9708
1.50 2.3493 1.6147 1.0838 2.3538 1.6027 1.0778 2.2349 1.6331 1.0428
1 . 2 0 1.8653 2.2380 1.1931 1.8689 2.2292 1.1819 1.8135 2.2472 1.1675
1 . 1 0 1.7146 2.5686 1.2577 1.7099 2.5486 1.2451 1.7261 2.4771 1.2216
1 . 0 0 1.5770 3.0025 1.3536 1.5782 2.9606 1.3407 1.5796 2.9182 1.3170
0.95 1.5140 3.2742 1.4159 1.5179 3.2244 1.3984 1.5141 3.2048 1.3864
0.90 1.4550 3.5895 1.4929 1.4517 3.5628 1.4777 1.4630 3.4903 1.4590
0.85 1.4010 3.9654 1.5868 1.4018 3.9077 1.5651 1.4319 3.7943 1.5523
0.80 1.3510 4.4102 1.7020 1.3489 4.4506 1.7152 1.3479 4.3141 1.6614
0.75 1.3051 4.9467 1.8451 1.3081 4.9858 1.8634 1.3103 5.0028 1.8729
0.70 1.2630 5.6071 2.0233 1.2656 5.6497 2.0429 1.2673 5.6687 2.0526
0.65 1.2250 6.4201 2.2468 1.2264 6.4750 2.2689 1.2276 6.4964 2.2786
0.60 1.1900 7.4514 2.5317 1.1915 7.5389 2.5644 1.1928 7.5562 2.5752
0.55 1.1580 8.7686 2.9020 1.1638 8.9143 2.9642 1.1655 8.9417 2.9777
0.50 1.1300 10.500 3.3914 1.1357 10.659 3.4587 1.1369 10.692 3.4731
0.45 1.1040 12.852 4.0529 1.1118 13.036 4.1411 1.1130 13.073 4.1573
0.40 1.0820 16.125 4.9866 1.0895 16.326 5.6823 1.0904 16.368 5.0775
0.35 1.0620 20.919 6.3499 1.0700 21.119 6.4569 1.0710 21.167 6.4752
0.30 1.0460 28.278 8.4524 1.0535 28.497 8.5776 1.0540 28.552 8.5953
0.25 1.0320 40.000 11.943 1.0410 40.861 12.154 1.0412 40.796 12.137
0 . 2 0 1 . 0 2 0 0 63.000 18.358 1.0280 63.390 18.631 1.0311 63.327 18.657
0.15 1 . 0 1 1 0 112.27 32.811 1 . 0 2 2 0 111.67 32.254 1.0227 1 1 2 . 2 0 32.785
0 . 1 0 1.0050 250.50 71.929 1.0150 251.41 72.429 1.0159 251.28 72.940
0.05 1 . 0 0 0 1 1 0 0 1 . 0 286.29 1.0073 1 0 0 2 . 2 288.42 1.0071 1001.9 288.30
0 . 0 1 1 . 0 0 0 0 25000. 7142.9 1.0014 25008. 7155.6 1.0026 24963. 7142.9
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A variable smoothing algorithm was also introduced and shown to aid both schemes 

to enable efficient subsonic flow simulations. With the flow variable smoothing activated for 

Mach numbers of 0.80 or less, the scheme was able to produce results without oscillations. 

The success of using the variable smoothing procedure, was particulary important. This 

allowed the full range of flow types: 0.01 < M a  < 3.00, to be investigated using the same 

compressible code. For subsonic flows, the only other change to the CBS code was turning 

on a small subroutine that prescribed density along the exit boundary when Ma  < 1 .0 0 . 

This was automatic, preventing any major inconvenience.



Chapter 5

The LCG M ethod for Problem s of 

Pure Diffusion

5.1 Introduction

In Chapter 3, a locally conservative Galerkin (LCG) method, was discussed. The 

LCG method allows an element-by-element solution to the discrete equations. Formulations 

were presented for both linear and quadratic triangular elements. When using linear ele­

ments the flux calculation is based on an element-averaged diffusive flux [1]. It was proposed 

in Chapter 3, that increased accuracy in the flux calculation may be obtained if higher-order 

elements are used. Using the quadratic interpolation functions, enables the diffusive fluxes 

to be nodally calculated along the element edges. This approach gives a more accurate 

computation of flux at each time-step, which is not possible when using linear elements.

In this chapter, a direct validation of the LCG formulation, is carried out for 

problems of pure diffusion. Here the implemented approaches for both linear and quadratic 

elements are thoroughly tested for problems of steady-state heat conduction. The robustness 

of the LCG methods are proved by performing tests on both structured and unstructured 

grids. Solutions and convergence data are given, using both linear and quadratic triangular 

finite elements. Additionally, the performance of both the implicit and explicit variations of 

the proposed LCG approaches are considered, all with and without a lumped mass matrix.
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The application of the LCG method in more than two space dimensions is proved 

by considering the same heat conduction problem in 3D. Unstructured meshes of linear 

tetrahedral elements are used. Again, the validation of both the implicit and explicit vari­

ations of the proposed LCG approaches, with and without a lumped mass matrix, is given. 

This chapter closes with a 2 D analysis of the LCG methods’ performance when a source 

term is present in the governing equation.

5.2 S teady-state heat conduction

In this section, the LCG methods are analysed for their competency in solving 

linear heat conduction problems, in two- and three-space dimensions. For problems of heat 

conduction [140], the scalar variable 0 in Equation (3.1) is replaced by the temperature 

T, and the coefficient /? is replaced with pep - the product of density and specific heat at 

constant pressure. The flux is defined by Fourier’s law as

F* = - fcS  <5 i >

with k representing the thermal conductivity .

5 .2 .1  T w o -d im e n sio n a l s te a d y -s ta te  h ea t c o n d u c tio n

The first problem considered in this chapter, is the solution of the steady-state 

temperature distribution within a unit-square plate - subject to Dirichlet boundary condi­

tions on all its four sides. The problem definition is shown Figure 5.1. A temperature of 

500° C is prescribed along the top edge of the plate. On the other three sides, a constant 

temperature of 100°C is enforced. The thermal conductivity, density and specific heat are 

all assumed to be equal to unity in this problem. An analytical solution for this problem 

exists and is given by Holman [141] as

T  T s id e  +  (T to p  Tside) /  S lT l  ( )  ( m c H \  ( ^ - 2 )7T ^  n \ w J S in h{m— )
7 1 = 1  \  W  /
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500°C

100°C 100°C

T(x, t=0) = T0 = 0°C

100°C

lm

Figure 5.1: Steady-state heat conduction in a square plate. Geometry and isothermal 
boundary conditions

where w is the width, H  is the height of the plate, Ttop is the temperature at the top edge 

and Tside is the temperature at the other sides of the plate.

Two meshes were used in this study, these are shown in Figure 5.2. The first, Mesh 

A, is a uniform structured mesh with 200 triangular elements. Mesh B, is an unstructured 

mesh with 266 triangular elements. The initial temperature of the plate is assumed to be 

at 0 °C, and the steady-state solution is obtained through time-stepping to a prescribed 

residual error tolerance of e < 1  x 10-09. Here e is the error in the solution and can be 

calculated using [103]

T IT lT lo d c  | rj~i77,-J-1 J

(5-3)A t K J
1 L

In this study, solutions were obtained from both using linear and quadratic element 

formulations on each mesh. For each formulation, three different methods were tested: 

LCG (explicit), LCG (implicit), and global Galerkin (explicit). In addition, for each of 

the three methods, computations were carried out for both consistent-mass and lumped- 

mass variations. This produced twelve different solution strategies for each mesh, giving an 

excellent examination of the performance of the proposed LCG schemes, with comparisons 

being made to the global Galerkin method.
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(a) Mesh A (b) Mesh B

Figure 5.2: Steady-state heat conduction in a square plate. Details of the structured and 
unstructured meshes used

Results obtained from each method, on structured Mesh A, are shown in Figure

5.3 for linear elements, and in Figure 5.4 for quadratic elements. Figure 5.5 and Figure 5.6 

give the computed solutions, using unstructured Mesh B, for linear and quadratic elements 

respectively. An initial glance at the computed results, shows that the methods axe all 

generally in close agreement with each other. At this level of grid coarseness, an additional 

advantage of using quadratic elements, for all methods, is immediately seen. For each 

method, the temperature field obtained using quadratic elements is much smoother than 

the temperature field, obtained using same method, with linear elements.

Closer inspection of the results using linear elements on Mesh A (Figure 5.3) and 

Mesh B (Figure 5.5), show that the best solutions were given by the lumped mass versions 

of each scheme, with good symmetry along the mid-vertical centreline. This is confirmed 

by examining the graphs shown in Figure 5.7. Here, for each method, the temperatures - 

computed along the mid-horizontal and mid-vertical centre-lines of each mesh, have been 

plotted against the exact solution given by Equation (5.2). All lumped-mass methods show 

excellent accuracy for linear elements. The graphs of temperature along the mid-horizontal 

line, illustrate the high symmetry of the solutions computed by the lumped-mass methods. 

It was found in the calculations, that the performance of each method was reduced when a
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(a) Explicit LCG 

(consistent mass)

(b) Implicit LCG 

(consistent mass)

(c) Explicit Galerkin 

(consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin 

(lumped mass) (lumped mass) (lumped mass)

Figure 5.3: S teady-state heat conduction in a square plate. T em perature contours obtained 
for each scheme using Mesh A and linear elements.

(a) Explicit LCG 

(consistent mass)

(b) Implicit LCG 

(consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin

(lumped mass) (lumped mass) (lumped mass)

Figure 5.4: S teady-state heat conduction in a square plate. T em perature contours obtained 
for each scheme using Mesh A and quadratic elements.

(c) Explicit Galerkin 

(consistent mass)
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(a) Explicit LCG 

(consistent mass)

(b) Implicit LCG 

(consistent mass)

(c) Explicit Galerkin 

(consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin 

(lumped mass) (lumped mass) (lumped mass)

Figure 5.5: S teady-state heat conduction in a square plate. Tem perature contours 
for each scheme using Mesh B and linear elements.

obtained

(a) Explicit LCG 

(consistent mass)

(b) Implicit LCG 

(consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin 

(lumped mass) (lumped mass) (lumped mass)

Figure 5.6: S teady-state heat conduction in a square plate. Tem perature contours obtained 
for each scheme using Mesh B and quadratic elements.

(c) Explicit Galerkin 

(consistent mass)
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Figure 5.7: Steady-state heat conduction in a square plate. Comparison of temperature 
along centre-lines with exact solution for meshes A and B, using linear elements
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Figure 5.8: Steady-state heat conduction in a square plate. Comparison of temperature 
along centre-lines with exact solution for meshes A and B, using quadratic elements
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Figure 5.9: Steady-state heat conduction in a square plate. Convergence history of all 
schemes to a residual error of 1  x 1 0 - 0 9
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Table 5.1: Steady-state heat conduction in a square plate. Comparison of temperature 
calculated at the centre of the plate

Method (Mesh A) Linear Quadratic
Explicit LCG (consistent mass) 193.80°C 202.36°C

Explicit LCG (lumped mass) 200.00°C 200.00°C
Implicit LCG (consistent mass) 201.59°C 201.07°C

Implicit LCG (lumped mass) 201.69°C 200.74°C
Explicit global Galerkin (consistent mass) 197.77°C 204.98°C

Explicit global Galerkin (lumped mass) 200.00°C 2 0 0 .0 0 °C
Method (Mesh B) Linear Quadratic

Explicit LCG (consistent mass) 195.44°C 201.42°C
Explicit LCG (lumped mass) 200.28°C 200.03°C

Implicit LCG (consistent mass) 201.26°C 200.75°C
Implicit LCG (lumped mass) 201.28°C 200.49°C

Explicit global Galerkin (consistent mass) 199.29°C 203.42°C
Explicit global Galerkin (lumped mass) 200.65°C 199.51°C

Table 5.2: Steady-state heat conduction in a square plate. Comparison of CPU times for 
preprocessing and iterations

Method (Mesh A) Linear Quadratic
Explicit LCG (consistent mass) 0.64s 5.75s

Explicit LCG (lumped mass) 0.19s 1.70s
Implicit LCG (consistent mass) 0 .1 1 s 0.78s

Implicit LCG (lumped mass) 0 .1 0 s 0.81s
Explicit global Galerkin (consistent mass) 1.33s 51.20s

Explicit global Galerkin (lumped mass) 0.13s 1.30s
Method (Mesh B) Linear Quadratic

Explicit LCG (consistent mass) 1.17s 12.77s
Explicit LCG (lumped mass) 0.71s 4.81s

Implicit LCG (consistent mass) 0.17s 1 .2 2 s
Implicit LCG (lumped mass) 0.14s 1.28s

Explicit global Galerkin (consistent mass) 2.92s 154.67s
Explicit global Galerkin (lumped mass) 0.23s 1.91s
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consistent mass matrix was used in the calculations. The consistent-mass results were not 

as accurate and symmetrical as their corresponding lumped-mass counterparts. Figure 5.7 

shows that the implicit LCG method gave the most accurate and symmetric solution, out 

of the three methods, when a consistent mass was used with linear elements.

The solutions obtained for each method, using quadratic elements, are given in 

Figures 5.4 and 5.6, for meshes A and B respectively. Additionally, the temperatures 

computed along the mid-horizontal and mid-vertical centre-lines of each mesh have been 

plotted against the exact solution, and are shown in Figure 5.8. It can be seen quite clearly, 

that all lumped-mass versions of each method, all possess high symmetry, and are all in 

excellent agreement with the exact solution on both Meshes. For quadratic elements the 

explicit global Galerkin method, with consistent-mass, was found to be the least accurate 

on both meshes. On Mesh A, the contours produced by this version are unsymmetrical. 

Non-symmetry is also seen in the solutions obtained by using the consistent-mass version of 

the explicit LCG method, but to a much lesser extent. Here, there is a strong improvement 

in accuracy and symmetry of results obtained, when quadratic elements are used, compared 

to the results obtained with linear elements. The results obtained from using the consistent- 

mass version of the implicit LCG method are again the most accurate of all the consistent- 

mass versions, with a good symmetry along the mid-vertical centreline.

The temperature at the centre of the plate, is given by Equation (5.2) as 200.00°C. 

For convenience, Table (5.1) gives the computed temperatures obtained from the different 

versions, at the centre of the two meshes. For unstructured Mesh B, the recorded temper­

atures have all been interpolated. Table (5.2) gives the relative CPU times to converge to 

a residual error of 1  x 10-09. This time includes pre-processing and iterations. CPU times 

are given for all six variations on both meshes A and B, using both linear and quadratic 

elements.

There are a number of fast iterative techniques available, for inverting large ma­

trices [142]. However, in this work simple LU decomposition was used for both the implicit 

methods, and also for the consistent-mass version of the explicit global Galerkin method. 

One advantage of using the consistent form of the explicit LCG method, instead of the 

global Galerkin version, is that the LHS mass matrix can be inverted by hand and written
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into the source code. This is reflected in much lower CPU costs, as shown in Table (5.2). 

As expected, both of the implicit LCG methods were the fastest. Using these methods, 

steady-state results were given in under a tenth of a second for both meshes with linear ele­

ments, and at around a second for both meshes with quadratic elements. The lumped-mass 

version of the explicit global Galerkin was relatively faster than the explicit LCG method 

with a lumped-mass. This is expected, as the LCG method solves the system of equations 

element by element and a flux calculation step is required at each time-step in the LCG 

method.

Figure 5.9 gives the complete convergence histories, to a residual error of 1 x 10—09, 

for both lumped- and consistent-mass versions of each method. For Mesh A, the convergence 

histories are given in Figure 5.9(a), for linear elements, and in Figure 5.9(b), for quadratic 

elements. Figures 5.9(c) and 5.9(d) give the convergence history on Mesh B, for linear 

and quadratic elements respectively. The procedure adopted during the calculations, was 

to start with a large value for the time-step, and reduce incrementally until the method 

started converging. For each method the maximum allowable time-step for convergence was 

used.

During the computations, it was found, from using this procedure, that the lumped- 

mass explicit LCG method allowed a larger value of time-step, than the equivalent explicit 

global Galerkin method with lumped-mass. This was found to be true on both meshes, 

and for both linear and quadratic elements. On Mesh A, the largest time-step values for 

the explicit lumped-mass LCG method were 2.5 x 10-03 and 4.7 x 10 04 for linear and 

quadratic elements respectively. Whilst on the same mesh, the largest time-step values for 

the explicit lumped-mass global Galerkin method were 2.8 x 10~04 for linear elements, and

1.0 x 10-04 for quadratic elements. On Mesh B the time-steps were 9.5 x 10-04 (linear) and

2.1 x 10-04 (quadratic) for the explicit lumped-mass LCG method; and 1.3 x 10~04 (linear) 

and 7.5 x 10-05 (quadratic) for the explicit lumped-mass global Galerkin method. The 

advantage of the explicit lumped-mass LCG having a larger allowable time-step is seen in 

Figures 5.6(a) to Figures 5.6(d), as the explicit LCG method with lumped-mass converges 

to the desired level of tolerance at a faster rate than the explicit global Galerkin method 

with lumped-mass.
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The convergence rates of the lumped-mass and consistent-mass implicit LCG meth­

ods were, for both meshes, very fast, and at almost similar rates to each other for both 

meshes and element-types. For linear elements the consistent-mass explicit LCG method 

was faster than the consistent-mass global Galerkin method on both meshes. However, the 

latter method is slightly faster on each mesh, when quadratic elements are used. Using 

quadratic elements instead of linear element on each mesh increased the number of iter­

ations required for convergence, for each method. This is expected, since a lower stable 

time-step limit is imposed on each method, for each mesh, when quadratic elements are 

used.

5 .2 .2  T h re e -d im e n s io n a l s te a d y  s ta te  h e a t c o n d u c tio n

The direct extension of the LCG spatial-discretisation to three-dimensions, is sim­

ple and quite straight forward. This section illustrates the application of the LCG method in 

three dimensions, and validates the diffusive flux calculation for linear tetrahedral elements. 

Both explicit and implicit LCG methods axe considered here, with both a lumped-mass and 

consistent-mass matrix.

The 3D diffusive problem considered in this section, is the steady-state heat con­

duction within a cube. The problem statement is given by Figure 5.10. This is a direct 

extension of the 2D heat conduction problem defined by Figure 5.1, in the last section. As 

seen, the geometry has been extended in the third-dimension by lm. The top, bottom and 

side boundaries are subjected to isothermal boundary conditions as in the 2D problem. To 

preserve the two-dimensionality of the problem, the two extra surfaces - appearing at the 

front and back, are subjected to a no-heat flux condition. Two unstructured 3D meshes 

were generated for this study, and are shown in Figure 5.11. Mesh C is relatively coarser of 

the two meshes used, and contains 892 linear tetrahedral finite elements. Mesh D is much 

finer, with 66534 linear tetrahedral finite elements. Both meshes were created from the 

fl i te  software, developed by Hassan, Morgan and Weatherill [143] at Swansea University, 

and made available within the School of Engineering.

For each mesh, computations were carried out using both the explicit LCG, and
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Insulated face

T(x, t=0) = T0 = 0°C
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Figure 5.10: 3D Steady-state heat conduction in a square cube. Geometry and boundary 
conditions

(a) Mesh C (b) Mesh D

Figure 5.11: 3D S teady-state heat conduction in a square cube. U nstructured meshes of 
linear te trahedral finite element
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(a) Explicit LCG (consistent mass) (b) Explicit LCG (lumped mass)

(c) Implicit LCG (consistent mass) (d) Implicit LCG (lumped mass)

Figure 5.12: 3D S teady-state heat conduction in a square cube. Tem perature contours 
obtained for each scheme using Mesh C.
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(a) Explicit LCG (consistent mass) (b) Explicit LCG (lumped mass)

(c) Implicit LCG (consistent mass) (d) Implicit LCG (lumped mass)

Figure 5.13: 3D S teady-state heat conduction in a square cube. Tem perature contours 
obtained for each scheme using Mesh D.
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Figure 5.14: 3D Steady-state heat conduction in a square cube. Convergence history to a 
residual error of 1  x 1 0 “ 0 9

Table 5.3: 3D Steady-state heat conduction in a square cube. Comparison of temperature 
calculated at the centre (0.5,0.5,0.5) of the cube

Method Mesh C Mesh D
Explicit LCG (consistent mass) 203.40°C 201.02°C

Explicit LCG (lumped mass) 200.35°C 199.89°C
Implicit LCG (consistent mass) 201.63°C 200.97°C

Implicit LCG (lumped mass) 201.04°C 200.63°C
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Table 5.4: 3D Steady-state heat conduction in a square cube. Comparison of CPU times 
for preprocessing and iterations

Method Mesh C Mesh D
Explicit LCG (consistent mass) 0.98s 3047.83s

Explicit LCG (lumped mass) 0.50s 2200.81s
Implicit LCG (consistent mass) 0.30s 1639.84s

Implicit LCG (lumped mass) 0.30s 1624.84s

the implicit LCG methods. The effect of lumping was also considered for each method, and 

results are given using both a consistent and lumped mass matrix. Figure 5.12 gives the 

computed temperature distribution, for each scheme on Mesh C. As can be seen, all four 

solutions are in very good agreement with each other. Despite the coarseness of the mesh, 

the solutions obtained are physically meaningful, with the temperature distribution, in the 

plane perpendicular to the third-dimension, being the same as the 2D problem considered in 

the last section. This is more easily seen in Figure 5.13, where solutions, obtained for each 

method on Mesh D, are much smoother. The element-sizes in Mesh D are small enough not 

to influence the temperature contours significantly. It can be seen here, that there is little 

variation in temperature in the third dimension.

Table (5.3) gives the computed temperatures obtained from the different methods, 

interpolated at the geometric centre (0.5,0.5,0.5) of the two meshes. The explicit lumped- 

mass LCG scheme, was shown to be the most accurate method on both meshes. For Mesh 

C and Mesh D, accuracy was at 99.83% and 99.94% respectively.

The convergence histories obtained, for each scheme on the 3D meshes, are given 

in Figure 5.14(a) - for Mesh C, and Figure 5.14(b) - for Mesh D. Of all the methods, the 

lumped-mass and consistent-mass implicit LCG methods were the fastest, with very similar 

rates of convergence on each mesh. As with the 2 D analysis of the last section, the maximum 

value of time-step allowed for convergence, was used in each scheme. The implicit lumped- 

mass LCG method allowed the highest maximum time-step, with values of 2.8 x 10- 0 2  and

6.5 x 10- 0 3  for Mesh C and Mesh D respectively. The scheme with the lowest allowable 

time-step was the consistent-mass explicit LCG scheme with values of 8.5 x 10 0 4  (Mesh
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C) and 2.9 x lO- 0 5  (Mesh D).

Table (5.4) gives the relative CPU times for preprocessing and iterations to a

second of CPU time, even for the explicit LCG method with consistent mass. For Mesh D 

the CPU times are significantly longer. The quickest was the implicit lumped-mass LCG 

method with a CPU time of around 1624 seconds. The slowest was the consistent-mass 

explicit LCG scheme, with a CPU time of 3048 seconds. For this particular scheme, the 

error converged to 1  x 1 0 - 0 8  and timed-out at 1 2 , 0 0 0  iterations.

5.3 D iffusion w ith  internal source term s

In this section, the analysis of solving diffusive problems is extended to include 

problems with internal sources. The analysis is limited to two-dimensional spaces. However, 

this is sufficient for illustrating the competency of the LCG schemes for solving diffusive 

problems when internal diffusive sources are present.

5 .3 .1  T w o -d im e n sio n a l s te a d y -s ta te  h ea t c o n d u c tio n  w ith  h ea t sou rce.

The final diffusion problem considered in this chapter, is heat conduction in a 

square plate. The problem definition is described in Figure 5.15. The domain is unit 

square, and the bottom and top extremities are insulated. The temperature, T, on the LHS 

is 0°C, and on the RHS, T  is at 1°C. The thermal conductivity k , density p, and specific 

heat cp are all assumed to be equal to unity in this problem. The domain is subjected to 

an internal heat source that produces negative heat generation within the plate’s domain.

residual error of 1 x 10 09. For the coarse mesh (Mesh C), solutions are obtained within a

The governing equation for this problem, is of the type

(5.4)

with flux

(5.5)

and source-term
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Insu lated

0°C 1°C

T (x , t=0) =  T 0 =  0°C

Insu la ted

lm

Figure 5.15: Steady-state heat conduction with heat source. Geometry and boundary 
conditions

Si = —5ul2kxi2 (5-6)

The Kronecker delta function, (equal to unity when i = j  and zero when i ^  j)  is used in 

Equation (5.6), so that the source-term only acts in the xi-direction. The inclusion of this 

internal heat source makes the temperature distribution along the x-direction non-linear. 

The exact solution to this problem is simply

T  = X!4 (5.7)

allowing a comparison of the accuracy of each scheme to be made.

Figure 5.16 shows the two meshes used for solving this problem. Mesh E is uniform

in structure with 512 elements, and Mesh F is an unstructured grid of 674 elements. Initially,

the plate temperature was 0°C, and a solution was found by time-stepping to steady-state 

conditions. For this problem steady-state conditions were assumed when the residual error 

e, given by Equation (5.3), reached a tolerance of e < 1  x 10-10.

Both the explicit and implicit LCG schemes, and the explicit global Galerkin 

scheme, were investigated for this problem. As with previous examples in this chapter, 

the use of lumped- and consistent-masses were considered. Additionally, both linear and
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(a) Mesh E (b) Mesh F

Figure 5.16: Steady-state heat conduction with heat source. Triangular finite element 
meshes used

quadratic basis functions were used. This gave twelve solution methods to be considered 

on each mesh.

The computed temperatures for Mesh E, are shown in Figures 5.17 and 5.18, 

for linear and quadratic elements respectively. Figures 5.19 (linear) and 5.20 (quadratic) 

give the results on Mesh F. Additionally, Figures 5.21 (linear) and 5.22 (quadratic) give 

the computed temperatures, from both meshes, along the mid-horizontal and mid-vertical 

lines. As can be seen, the general agreement with the analytical solution is good, and all 

methods perform reasonably well on both meshes, using both linear and quadratic elements. 

The consistent mass versions of the explicit LCG and global Galerkin schemes, are a little 

over-diffusive when linear elements are used. However, the quality in solution is improved 

for these methods, when quadratic basis functions are used. The improvement in accuracy 

of these methods is more clearly seen, when examining Figures 5.21 and 5.22.

Figures 5.23(a) and 5.23(c) show the convergence history of the methods - using 

linear elements, on meshes E and F respectively. Figures 5.23(b) and 5.23(d) give the 

convergence histories on both meshes when quadratic elements are used. All graphs show 

a similar pattern. The fastest methods are again the implicit methods - both lumped and 

consistent versions. As for the linear diffusion problems considered in the last section, the 

maximum possible time-step for convergence was used. It was also found here, that the
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(a) Explicit LCG (b) Implicit LCG (c) Explicit Galerkin 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin

(lumped mass) (lumped mass) (lumped mass)

Figure 5.17: S teady-state heat conduction with heat source. Tem perature contours obtained 
for each scheme using Mesh E and linear elements.

(a) Explicit LCG (b) Implicit LCG (c) Explicit Galerkin 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin

(lumped mass) (lumped mass) (lumped mass)

Figure 5.18: S teady-state heat conduction with heat source. Tem perature contours obtained 
for each scheme using Mesh E and quadratic elements.
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(a) Explicit LCG (b) Implicit LCG (c) Explicit Galerkin 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin 

(lumped mass) (lumped mass) (lumped mass)

Figure 5.19: S teady-state heat conduction with heat source. Tem perature contours obtained 
for each scheme using Mesh F and linear elements.

(a) Explicit LCG (b) Implicit LCG (c) Explicit Galerkin 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Explicit Galerkin 

(lumped mass) (lumped mass) (lumped mass)

Figure 5.20: S teady-state heat conduction with heat source. Tem perature contours obtained 
for each scheme using Mesh F and quadratic elements.
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(c) Implicit LCG (consistent mass)
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(e) Explicit Galerkin (consistent mass)
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(b) Explicit LCG (lumped mass)
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(d) Implicit LCG (lumped mass)
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(f) Explicit Galerkin (lumped mass)

Figure 5.21: Steady-state heat conduction with heat source. Comparison of temperature 
along centre-lines with exact solution for meshes E and F, using linear elements
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(c) Implicit LCG (consistent mass)
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(e) Explicit Galerkin (consistent mass)
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(b) Explicit LCG (lumped mass)
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(f) Explicit Galerkin (lumped mass)

Figure 5.22: Steady-state heat conduction with heat source. Comparison of temperature 
along centre-lines with exact solution for meshes E and F, using quadratic elements
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(b) Mesh E, quadratic elements
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(d) Mesh F, quadratic elements

Figure 5.23: Steady-state heat conduction with heat source. Convergence history to a 
residual error of 1  x 1 0 - 1 0
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Table 5.5: 2 D Steady-state heat conduction with heat source. Comparison of CPU times 
for preprocessing and iterations

Method (Mesh E) Linear Quadratic
Explicit LCG (consistent mass) 2 .0 0 s 30.63s

Explicit LCG (lumped mass) 0.50s 8.92s
Implicit LCG (consistent mass) 0 .2 0 s 3.89s

Implicit LCG (lumped mass) 0 .2 0 s 3.89s
Explicit global Galerkin (consistent mass) 5.78s 689.78s

Explicit global Galerkin (lumped mass) 0.33s 4.69s
Method (Mesh F) Linear Quadratic

Explicit LCG (consistent mass) 5.16s 100.95s
Explicit LCG (lumped mass) 1 .2 2 s 22.36s

Implicit LCG (consistent mass) 0.30s . 8.06s
Implicit LCG (lumped mass) 0.28s 7.28s

Explicit global Galerkin (consistent mass) 27.80s 1977.34s
Explicit global Galerkin (lumped mass) 0.47s 10.99s

lumped mass version of the explicit LCG method allowed a higher value of time-step than 

the lumped mass version of the explicit global Galerkin method. The CPU times on each 

mesh, for all methods, using both linear and quadratic elements, are summarised in Table

5.5

5.4 Sum m ary

To compare the performance of the LCG method with the standard global Galerkin 

method, a number of steady-state heat conduction problems, were considered in this chapter. 

Both implicit and explicit versions of the LCG scheme were tested, on both structured and 

unstructured grids. These examples gave an excellent validation of the diffusive portion of 

the numerical flux and LCG methods. It is the flux which allows an element by element 

solution of the discrete equations, and so it was important that these examples were carried 

out in-order to provide numerical evidence of its validity.

The application to three space-dimensions was illustrated in this chapter, by solv­
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ing a steady-state heat conduction problem in 3D. Linear tetrahedral-elements were used. 

Using the example given, it was shown that both the diffusive-flux calculation and averaging 

procedure, were both valid in 3D. This was a key investigation, as it sets the foundations for 

further study of the LCG method in 3D, particularly in solving 3D fluid dynamics problems.

In the final sections of this chapter, it was shown that the LCG method could 

be applied to solve diffusive-problems, that included internal source terms in the governing 

equations. Excellent results were obtained for both explicit and implicit LCG methods. 

The proceeding chapter continues the analysis of the LCG method for scalar variables, by 

considering problems of convection-diffusion.



119

Chapter 6

The LCG M ethod for 

Convection-Diffusion Problem s

6.1 Introduction

In Chapter 5, a validation of the proposed explicit and implicit LCG methods 

(discussed in Chapter 3) for purely diffusive problems, was presented for both linear and 

quadratic elements. Solutions were computed on both structured and unstructured grids, 

with results given for both consistent-mass and lumped-mass matrix alternatives. The 

nature of the problems studied allowed the chapter to solely focus on the validation of 

the diffusive edge-flux approximation and to investigate the benefits of using non-linear 

elements. In the last chapter for diffusion problems, it was shown that using quadratic- 

based shape functions instead of linear, increased the solution quality and accuracy on the 

same grid. Although good results were produced when using linear elements, accuracy in 

the calculation of edge-fluxes is improved by using high-order elements. This is because the 

gradients of the scalar variable, which form the edge-fluxes, are computable at the edge- 

nodes - a process which is not possible when using linear elements [1 ], where the gradient 

is constant throughout the element.

This chapter continues the validation of the LCG formulation with the extension 

being made to general convection-diffusion problems. To overcome the difficulties encoun­
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tered in convection-diffusion problems when convective terms dominate, suitable stabilisa­

tion methods are incorporated into the LCG formulation. Proposed convection-stabilised 

LCG formulations were discussed in Chapter 3, where details were given on incorporat­

ing both the Streamline-Upwind Petrov-Galerkin (SUPG) method [28] and the simple ex­

plicit characteristic Galerkin (CG) [39] method. Although reference [1] presented a simple 

stabilised Petrov-Galerkin LCG method using linear elements, the method only applied 

convection-stabilisation in one-dimension.

This work presents the first examination of stabilised Petrov-Galerkin LCG meth­

ods in two dimensions - using the SUPG method, as well as the first application of the 

characteristic based stabilised LCG method. The latter method has the additional advan­

tage of producing a stabilised LCG method that possesses second-order time accuracy. It 

was shown in Chapter 4, that a stream-wise influenced element-size gave better perfor­

mance over a typical standard element-size calculation. The only drawback being that the 

need for updating is required every time-step, for a changing velocity field. For the simple 

convection-diffusion problems considered here, the velocity field is constant and element- 

sizes only need to be calculated once at the beginning of the program. Thus Equation (2.98) 

can be efficiently used here to optimise the SUPG stabilised LCG method.

This chapter validates both stabilised LCG methods, via a number of classic 

convection-diffusion problems. As with the previous chapter, results are presented for both 

explicit and implicit schemes, with and without a consistent mass matrix. In addition, 

results are given for both structured and unstructured grids, and comparisons are made 

with the standard global Galerkin method. Again, both linear and quadratic elements are 

employed in the examples. Before closing, this chapter gives a detailed investigation into 

the mesh convergence properties of each of the CG stabilised LCG methods.

A general analysis is given for a problem which includes source terms in the govern­

ing equation. Mesh convergence data is computed for employing both linear and quadratic 

basis functions.
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/ / / / / / / / / / / / / / / / / / / /

(a) Mesh A (b) Mesh B

Figure 6 .1 : Stabilised LCG methods for convection-diffusion problems. Structured and 
unstructured triangular finite element meshes used.

6.2 Problem s involving convection-diffusion transport

A number of classic convection-diffusion problems are considered in this section to 

examine the stabilised LCG schemes discussed in Chapter 3. The meshes used are shown in 

Figure 6.1. Mesh A is a structured mesh with 800 elements and Mesh B is an unstructured 

mesh with 1228 elements. In all the examples considered in this section, a steady-state 

solution is assumed when the residual error e, reaches a tolerance of e < 1  x 10-°9. The 

residual error was computed from [103] as

nnnode
= E

i= 1

n+ 1 <t>7
A t

(6 .1 )

6 .2 .1  S im p le  c o n v e c tio n -d iffu s io n  tr a n sp o r t  in  a  sq u are ch an n el

The first example considered in this section is defined in Figure 6.2. It is a classic 

problem of simple convection-diffusion in a square channel, with Dirichlet-type boundary 

conditions applied at the inlet and exit. Here, the value of 0 at the inlet is assumed to be 

zero, and 0 is taken as equal to unity at the exit. No-flux boundary conditions are prescribed 

at the top and bottom channel walls. The convection velocity is in the x \ direction and is 

assumed to be constant throughout the domain. The initial value of 0 inside the domain
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<t>= 1 lm

V

Figure 6.2: Convection-diffusion problem in a square domain. Problem geometry and 
boundary conditions

is zero everywhere, and the steady-state solution is obtained through time-stepping to the 

prescribed residual error tolerance. The solution at aq, along any constant value of X2 , can 

be compared with the exact analytical one-dimensional solution, given by [28, 41] as:

mn
1 — e k

<!>= -----^ 7T (6 -2 )
1  — e k

here, L represents the total length of the domain in the x\ direction. For this problem, 

the SUPG stabilised LCG methods were used. Both explicit and implicit forms were tested 

against the explicit standard global Galerkin, and results were given for lumped and con­

sistent mass matrices - using linear and quadratic elements, on each mesh.

The results for Mesh A are shown in Figures 6.3 and 6.4, for linear and quadratic 

elements respectively. The results for Mesh B are given in Figure 6.5 for linear elements 

and in Figure 6 . 6  for quadratic elements. In all figures, the computed nodal distribution of 

(f) is plotted against the exact solution, given by Equation (6.2), for a number of different 

convection velocities including: u =  0.1, 1, 10, and 50. For the case of examining the nodal 

results on the unstructured grid Mesh B, the nodal solution is plotted for all nodes along 

x\ that lie in the range 0 .4 5 <£ 2 < 0.55.
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Figure 6.3: Convection-diffusion problem in a square channel. Nodal solutions of the scalar
variable distribution, along the mid-horizontal line ( y  =  0.5) of Mesh A. Results given for
SUPG stabilised LCG and global Galerkin methods, using linear basis functions.
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Figure 6.4: Convection-diffusion problem in a square channel. Nodal solutions of the scalar
variable distribution, along the mid-horizontal line ( y  =  0.5) of Mesh A. Results given for
SUPG stabilised LCG and global Galerkin methods, using quadratic basis functions.



125

Explicit LCG Schem e (Consistent M ass) Explicit LCG Schem e (Lum ped M ass)

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.80.6 1

exact 
u =  0.1 
u =  1.0 

u =  10.0 
u = 50.0

1 #  9 6 S - 0  BCE)OO-OCKBOB'*'

Horizontal Distance

0.4 0.6

Horizontal Distance

(a) Explicit LCG (consistent mass)
Im plicit LCG Schem e (Consistent M ass)

(b) Explicit LCG (lumped mass)
Im plicit LCG Schem e (Lum ped M ass)

u =  10.0 
u = 50.00.6

>
0.4

0.2

#  835-1

0.80 0.2 0.4 0.6
Horizontal Distance Horizontal Distance

(c) Implicit LCG (consistent mass)
Explicit CG Schem e (Consistent M ass)

(d) Implicit LCG (lumped mass)
Explicit CG Schem e (Lum ped M ass)

exact - - - - 
u =  0.1 
u = 1.0 

u =  10.0 
u = 50.0 °

0.2 0.4 0.6

Horizontal Distance

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8
Horizontal D istance

(e) Explicit Galerkin (consistent mass) (f) Explicit Galerkin (lumped mass)

Figure 6.5: Convection-diffusion problem in a square channel. Nodal solutions of the scalar
variable distribution, along x (for nodes in the range 0.45<y< 0.55) of Mesh B. Results
given for SUPG stabilised LCG and global Galerkin methods, using linear basis functions.
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Figure 6.6: Convection-diffusion problem in a square channel. Nodal solutions of the scalar
variable distribution, along x (for nodes in the range 0.45<y< 0.55) of Mesh B. Results given
for SUPG stabilised LCG and global Galerkin methods, using quadratic basis functions.
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In general, the implemented SUPG stabilisation was successful (at elevated Peclet 

numbers), in preventing oscillations from polluting all the results obtained. However, when 

using linear basis functions on meshes A and B, it was found that the consistent-mass version 

of each scheme did not give the same level of nodal accuracy as their respective lumped- 

mass counterparts. When a consistent-mass matrix was used, Figure 6.3 and Figure 6.5 

show that the implicit LCG method performed the best. Both explicit consistent-mass 

versions of the global Galerkin and LCG method were considerably inaccurate at higher 

velocities. A significant improvement is made in the results, obtained for each scheme - 

using a consistent-mass, when quadratic basis functions are used. As can be seen in Figures 

6.4 and 6 .6 , the improvement in quality is remarkable - even for the explicit schemes.

For lumped-mass versions of each scheme, results were excellent on both meshes 

A and B, whether using linear or quadratic elements. As with the purely diffusive results 

obtained in Chapter 5, both the lumped-mass versions of the explicit LCG and explicit 

global Galerkin gave identical results for Mesh A and Mesh B - thus providing further 

experimental proof of their equivalent nodal equations (discussed in Chapter 3).

6 .2 .2  2 D  c o n v e c tio n -d iffu s io n  tr a n sp o r t o f  d isco n tin u o u s  in le t  d a ta

The second convection-diffusion problem examined in this section is depicted in 

Figure 6.7. This problem is both well known and widely used for illustrating the qualities of 

various finite element schemes [41]. It is used here to further demonstrate that LCG method 

can be readily used with established stabilisation methods, without any detrimental effect 

on the solution.

As shown in Figure 6.7, the computational domain is a unit square and the flow 

is uni-directional and constant. However, the convection velocity direction is at an angle 6 

to the xi axis. Additionally, the inlet boundary data presents a discontinuity in the scalar 

variable, and natural downwind boundary conditions are placed at the outlet. Solutions to 

this problem are considered at angles of 9 = 30° and 45° with fc =  l x  10- 4  and \U\ = 1. As 

with the first convection-diffusion example, the problem is solved on both structured and 

unstructured meshes, using Mesh A and Mesh B. However, quadratic basis functions are 

used throughout. For this problem, suitable stabilisation of convective terms is required
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</) (X, t = 0 ) = 0
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Figure 6.7: Convection of discontinuous inlet data skew to the mesh. Problem geometry 
and boundary conditions

to prevent oscillations polluting the computed solutions that are obtained from each of the 

six versions. Here, results are presented for both the LCG and global Galerkin methods - 

using the simple explicit characteristic Galerkin (CG) method of Lohner et al. [39] and the 

SUPG stabilisation method, introduced by Brooks [28] et al..

The results computed for structured Mesh A, are given in Figures 6 . 8  and 6.9 for 

the CG and SUPG stabilised methods respectively. It can be seen that: for the case of 

9 = 45°, the quality of all twelve solutions are high and differ very little from one and other. 

This is primarily due to the element-orientation of Mesh A. Here, the discontinuity - present 

in the convected inlet data, travels along a natural discontinuity between elements on its 

path, and is strongly captured as the flow travels downstream.

At 9 = 30° however, the convected discontinuity travels through the elements and 

the computed contours at this angle of skew axe not as sharp as the solutions computed at 

9 = 45°. For the CG stabilised methods shown in Figure 6 .8 , the consistent mass implicit 

LCG method gave the most diffused solution for 9 — 30°. The other five versions give better 

quality solutions and are in close agreement with each other. The same case is found for 

the results in Figure 6.9 - computed using SUPG stabilisation. As can be seen for each
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(a) Explicit LCG (b) Implicit LCG (c) Galerkin explicit 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Galerkin explicit

(lumped mass) (lumped mass) (lumped mass)

Figure 6.8: C haracteristic Galerkin stabilised steady-state solutions using Mesh A for the 
2D convection of discontinuous inlet d a ta  skew to mesh (9 =  30°, 45°).

(a) Explicit LCG (b) Implicit LCG (c) Galerkin explicit 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Galerkin explicit

(lumped mass) (lumped mass) (lumped mass)

Figure 6.9: SUPG stabilised steady-sta te  solutions using Mesh A for the 2D convection of 
discontinuous inlet d a ta  skew to mesh (9 =  30°, 45°).
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(a) Explicit LCG (b) Implicit LCG (c) Galerkin explicit 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Galerkin explicit 

(lumped mass) (lumped mass) (lumped mass)

Figure 6.10: C haracteristic Galerkin stabilised steady-sta te solutions using Mesh B for the 
2D convection of discontinuous inlet d a ta  skew to mesh (9 =  30°,45°)-

(a) Explicit LCG (b) Implicit LCG (c) Galerkin explicit 

(consistent mass) (consistent mass) (consistent mass)

(d) Explicit LCG (e) Implicit LCG (f) Galerkin explicit 

(lumped mass) (lumped mass) (lumped mass)

Figure 6.11: SUPG stabilised steady-sta te  solutions using Mesh B for the 2D convection of 
discontinuous inlet d a ta  skew to  mesh (9 =  30°, 45°).
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quadratic elements
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_1°, using SUPG stabilisation and quadratic



133

Table 6.1: 2D convection of discontinuous inlet data skew to mesh. Comparison of CPU 
times for preprocessing and iterations to a residual error of 1 x 10-10, using Characteristic 
Galerkin stabilisation and quadratic elements

Method Mesh A, 9 = 30° Mesh A, 9 = 45°
Explicit LCG (consistent mass) 2.73s 5.81s

Explicit LCG (lumped mass) 0.77s 1 .6 6 s
Implicit LCG (consistent mass) 2.80s 3.13s

Implicit LCG (lumped mass) 0 .8 6 s 1.70s
Explicit global Galerkin (consistent mass) 121.77s 120.33s

Explicit global Galerkin (lumped mass) 0 .8 8 s 1 .1 2 s

Method Mesh B, 6 =  30° Mesh B, 9 =  45°
Explicit LCG (consistent mass) 7.78s 7.19s

Explicit LCG (lumped mass) 2.41s 2.25s
Implicit LCG (consistent mass) 5.16s 4.70s

Implicit LCG (lumped mass) 1.97s 1.78s
Explicit global Galerkin (consistent mass) 376.83s 360.89s

Explicit global Galerkin (lumped mass) 1.31s 1.36s

Table 6.2: 2 D convection of discontinuous inlet data skew to mesh. Comparison of CPU 
times for preprocessing and iterations to a residual error of 1  x 10-10, using SUPG stabili­
sation and quadratic elements

Method Mesh A, 9 =  30° Mesh A, 9 =  45°
Explicit LCG (consistent mass) 5.63s 12.39s

Explicit LCG (lumped mass) 1.92s 2.75s
Implicit LCG (consistent mass) 8.73s 13.23s

Implicit LCG (lumped mass) 1.91s 4.67s
Explicit global Galerkin (consistent mass) 1 2 0 .1 2 s 127.01s

Explicit global Galerkin (lumped mass) 1.45s 3.05s

Method Mesh B, 0 =  30° Mesh B, Q =  45°
Explicit LCG (consistent mass) 10.39s 1 0 .0 2 s

Explicit LCG (lumped mass) 2.50s 2.45s
Implicit LCG (consistent mass) 11.83s 11.23s

Implicit LCG (lumped mass) 2.92s 3.05s
Explicit global Galerkin (consistent mass) 389.14s 381.61s

Explicit global Galerkin (lumped mass) 2.06s 2.31s
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method, the results obtained using SUPG stabilisation are similar to the corresponding 

results obtained using the characteristic Galerkin method (Figure 6 .8 ).

The solutions obtained on Mesh B, are given in Figure 6.10 for CG stabilisation and 

Figure 6 . 1 1  for SUPG stabilisation. Generally the results on this mesh are more diffused, but 

considering the unstructured nature of the mesh, good non-oscillatory results are obtained. 

It was also found on Mesh B, that the results obtained at 9 = 30° and 9 = 45°, for each 

method using the CG stabilisation (Figure 6.10), are both very similar to the corresponding 

result using the SUPG stabilisation, shown in Figure 6.11. Closer inspection shows that all 

the lumped mass variations gave slightly less diffused contours.

The convergence histories for each method were recorded for both types of stabil­

isation. In Figure 6.12, the convergence histories are given using CG stabilisation, for both 

skew angles on both Mesh A and Mesh B. Figure 6.13 gives the corresponding convergence 

histories recorded, using SUPG stabilisation. Generally the lumped-mass versions gave the 

fastest convergence rates. It should be noted that the explicit lumped-mass LCG method 

converged faster than the equivalent explicit lumped-mass global Galerkin method. This 

is similar to what was found in Chapter 5 for pure diffusive problems and is due to the 

explicit lumped-mass LCG method permitting a higher maximum time-step. The various 

CPU times recorded for each method, using Characteristic Galerkin stabilisation, are given 

in Table 6 .1 . The recorded CPU times for each method using using SUPG stabilisation are 

given in Table 6.2. In general, the lumped-mass versions of each scheme give the fastest 

computations.

6.3 M esh convergence properties o f th e explicit and im plicit 

CG based LCG m ethods

This section gives an analysis of the mesh convergence properties of the explicit 

and implicit CG based LCG methods. To examine the properties of each LCG scheme, the 

solution of the general convection-diffusion equation with a source term is solved.

The solutions computed on a number of different meshes, are used to obtain a 

graph of solution error as a function of mesh element-size. From this graph, the order of



(a) Mesh C (b) Mesh D (c) Mesh E

Figure 6.14: L 2 rates of mesh convergence of the LCG methods, at various Peclet numbers 
for the general convection-diffusion equation with source term. Structured triangular finite 
element meshes used.

each particular scheme is easily obtained. The effect of mass lumping is taken into account 

by giving results for each method with and without a consistent-mass matrix. Additionally, 

both linear and quadratic elements are investigated, and all results are compared with the 

benchmark data of Donea et al. [144].

6 .3 .1  A n a ly s is  for lin ea r  a n d  q u a d ra tic  tr ia n g u la r  e le m e n ts

The order of mesh convergence describes the behavior of the solution error E  as a 

function of mesh element-size h. Abanto et al. [145] give the error as

E  =  Chq +  H.O.T. (6.3)

If high-order terms are neglected, it is clear that by plotting a curve of Log(£) as a function 

of Log(h), the mesh convergence rate, q, can be obtained from the slope of the curve.

In this convergence study, both the explicit and implicit CG based LCG methods 

are investigated for the general convection-diffusion equation with source term. The gov­

erning equation for this type of problem is given by Equation (3.57). For each scheme the 

Z/2  error for various Peclet numbers, is computed on a number of structured meshes and 

plotted against h. The analysis considers the use of both linear and quadratic triangular 

elements. To determine the effect on the convergence characteristics of each scheme by
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the lumping procedure discussed in Chapter 2 (see Figure (2.1), both lumped-mass and 

consistent-mass versions are investigated.

A similar problem definition to the one described in the previous section by Figure 

6.2, is used. The domain is a unit square channel, with Dirichlet-type boundary conditions 

of 0 = 0 and 0 = 1  applied at the inlet and exit respectively. On the top and bottom channel 

walls, a no-flux boundary condition is prescribed. Only the velocity in the x\ direction was 

varied to obtain the desired Peclet number, with k equal to unity and U2 equal to zero being 

assumed over the whole domain.

In addition to the above, the following source term is used

Si = Su(4uiXi3 -  12kxi2) (6.4)

where the Kronecker delta function ensures that the source-term only acts only in the 

aq-direction. The inclusion of the internal source gives an exact solution to this problem of

0(x) =  x j4 (6.5)

This solution is always the same, regardless of the value of Peclet number used. The source 

term, for the LCG methods, is applied to the RHS forcing vector of the elemental equation 

sets. The error E  along the mid-horizontal line was calculated by

"L
E 2 =

, x i = 0
[  ( 0  -  <t>)2dx i (6 .6 )

J xi = 0

The above integral was evaluated numerically using the trapezium rule. Sufficient sampling 

points were created along the mid-horizontal line until the calculated value of E  converged 

to an accuracy of 4 decimal places.

Structured Mesh A, shown in Figure 6.1 for the previous examples, was used in 

this study. Additionally three other structured meshes, of similar structure are employed. 

These are shown in Figure 6.14. Mesh C has 200 elements, Mesh D has 1800 elements, 

and Mesh E is the finest with 3200 elements. An initial value of 0 = 0 is used everywhere 

inside the domain, and the steady-state solution is obtained through time-stepping until
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the prescribed residual error tolerance defined in Equation (6.1), reaches a tolerance of 

e < 1 x 1 (T10.

The study considers the use of linear triangular elements first, for different values 

of Peclet number, Pe. Figure 6.15 shows the graphs of convergence rates computed for each 

of the explicit and implicit LCG methods, using linear basis functions. The values of Pe 

selected are: 0, 10, 25, and 50. The results at Pe =  0, correspond to the standard LCG 

procedure (Equation 3.7). In addition to Figure 6.15, the convergence rates for each method 

is summarised in Table 6.3, for each Peclet number. For the Pe =  0 case, each scheme in 

Figure 6.15 is shown to have second-order accuracy. For Pe > 0, all CG based LCG schemes 

have convergence rates of 2.00 or higher. Table 6.3 also gives the mesh convergence rates 

for using SUPG stabilisation computed by Donea et al. [144]. As can be seen, second- 

order accuracy is obtained for the Pe =  0 case, however the rate of convergence reduces to 

first-order as the problem becomes convection dominated.

Computations performed using quadratic elements, for the LCG methods, axe 

discussed next. Figure 6.16 shows the convergence rates, computed for the explicit and 

implicit LCG methods with quadratic basis functions. For comparison, the same values of 

Pe used for linear elements are chosen and Table 6.4 summarises the convergence rates at 

each Peclet number, for each variation. As can be seen, both consistent-mass versions of 

the explicit and the implicit LCG method gave a third-order convergence rate for the purely 

diffusive case of Pe =  0, with q ^  3.02 and 3.03 respectively. This is consistent with the rate 

of q = 3.00, obtained by Donea et al [144] for quadratic elements using the global Galerkin 

method. As the Peclet number increases, the convergence rate decreases. At Pe = 50 the 

mesh convergence rates are q =  2.20 and q =  2.31 for the consistent-mass explicit LCG 

method and the consistent-mass implicit LCG method respectively. However both these 

rates were higher than the mesh convergence rate of q = 2.15, which is given by Donea. 

A lumping procedure, frequently used for quadratic triangular elements [2 1 , 42, 8 8 ], was 

discussed in Chapter 2 . It was revealed that lumping the quadratic element mass matrix in 

this way, had an adverse effect on the mesh convergence rate for both the explicit and the 

implicit CG based LCG schemes. The convergence rate dropped from third-order to second 

order for the Pe = 0 case. As the problem became convection dominated, the computed
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Table 6.3: Calculated L 2 rates of mesh convergence for Pe =  0, Pe =  10, Pe =  25 and 
Pe = 50, using linear triangular elements

Method Pe =  0 Pe =  10 Pe = 25 Pe = 50
Explicit LCG (consistent mass) 2.19 2.16 2.17 2 . 1 1

Explicit LCG (lumped mass) 2.07 2.06 2.05 2 . 0 1

Implicit LCG (consistent mass) 2.25 2.17 2.16 2 . 1 2

Implicit LCG (lumped mass) 2.18 2.17 2.16 2.14
Donea et al (SUPG) [144] 2 . 0 0 0.95 0.94 0.93

Table 6.4: Calculated L 2 rates of mesh convergence for Pe =  0, Pe =  10, Pe =  25 and 
Pe =  50, using quadratic triangular elements

Method Pe = 0 Pe =  10 Pe =  25 Pe =  50
Explicit LCG (consistent mass) 3.02 2.85 2 . 2 2 2 . 2 0

Explicit LCG (lumped mass) 2.09 1.84 1.55 0.99
Implicit LCG (consistent mass) 3.03 2.81 2.79 2.31

Implicit LCG (lumped mass) 2.08 1.83 1.64 1 . 2 0

Donea et al (SUPG) [144] 3.00 2 . 2 2 2.16 2.15

rates reduced further, becoming first-order convergent for Pe =  50.

6.4 Sum m ary

In this Chapter, SUPG stabilised LCG methods and characteristic based LCG 

methods were validated. Both explicit and implicit approaches, were shown to give good 

performance for solving general convection-diffusion problems. Results using the global 

Galerkin methods were also shown, to provide a comparison in some of the problems.

During the analysis, the robustness of the explicit and implicit LCG methods have 

been illustrated in 2D, on both linear and quadratic triangular elements. For these methods, 

the effect of mass lumping was also considered, with results being given for using both a 

lumped-mass and a consistent-mass matrix.

Comparisons of the LCG method clearly showed that the solutions obtained are
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Figure 6.15: L 2 rates of mesh convergence at various Peclet numbers, for the general 
convection-diffusion equation with source term. Rates given for the LCG methods using 
characteristic based stabilisation and linear triangular elements
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Figure 6.16: L 2  rates of mesh convergence at various Peclet numbers, for the general 
convection-diffusion equation with source term. Rates given for the LCG methods using 
characteristic based stabilisation and quadratic triangular elements
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at least as good as global Galerkin methods. Additionally, the LCG method has the further 

advantage of solving smaller equation sets and provides element-wise and global conserva­

tion.

Mesh convergence rates for the explicit and implicit LCG methods were computed. 

When linear elements are used, the characteristic based LCG schemes gave second-order 

convergence. For consistent-mass LCG methods, the mesh convergence rate was shown to 

increase for each scheme when quadratic elements were used. However, using the lumping 

approximation described in Figure 2.1 for quadratic elements, was shown to reduce mesh 

convergence.
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Chapter 7

The LCG-CBS Scheme for 

Incom pressible Flow Problem s

7.1 Introduction

Chapter 6  showed that the characteristic based LCG methods gave excellent per­

formance for convection dominated transport problems. This chapter extends the evaluation 

of characteristic based schemes, to solve problems of incompressible flow.

In this chapter, the characteristic based split, locally conservative Galerkin (CBS- 

LCG) method is evaluated using a number of known incompressible flow problems. The 

first problem solved is the flow inside a lid-driven cavity [23, 90, 95, 96, 97, 98, 108, 114, 

146, 147, 148]. Both Stokes flow and Navier-Stokes flows are considered. Grids of linear 

and quadratic elements are employed, and results are compared to benchmark data [146]. 

The effect of using a lumped edge flux is also investigated.

The next problem considered in this chapter, is the solution of flow past a circular 

cylinder at low values of Reynolds number. The results of physical experiments for this 

classic problem are well known and have been reported by many authors [149, 150, 151, 

129, 152]. Additionally, this problem is often used in numerical methods - as a benchmark 

problem, and detailed computed results have been given for analysis [108, 153, 154, 155, 

156, 157]. In this example, test cases are performed, using the LCG-CBS scheme, for a
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range of Reynolds numbers between Re = 1 and Re =  40.

In the final section, problems of laminar incompressible-flow through two-dimensional 

channels are solved using the LCG-CBS scheme. The first problem considered, is the devel­

opment of simple Poiseuille-flow through a rectangular channel. This problem is employed 

to clearly demonstrate that mass conservation is satisfied for open systems, when the linear 

and quadratic CBS-LCG schemes are used. The second channel-flow problem considered in 

this section, is the flow over a downstream-facing step in a two-dimensional channel. This 

type of channel flow problem has been investigated extensively in the literature, both ex­

perimentally [158, 159, 160], and as a benchmark test for evaluating accuracy of numerical 

algorithms [23, 57, 92, 96, 97, 105, 113, 114, 147]. The problem involves regions of flow 

separation and subsequent reattachment, as well as a recirculating flow behind the step. 

This mixture of flow regimes make it a tough benchmark problem for validating numerical 

schemes. The step-design is based on an original experiment conducted by Denham and 

Patrick [158], and thus allows a quantitative comparison to be made with the available 

experimental data. Results are given for structured and unstructured grids.

7.2 Incom pressible flow inside a lid-driven square cavity

The first problem considered in this chapter is the incompressible flow of an isother­

mal fluid in a lid-driven cavity. The problem is investigated for a range of Reynolds numbers 

including the case of Stokes flow (Re =  0). Qualitative results are given using both lin­

ear and quadratic elements, additionally comparisons of the velocity profile are made with 

reliable benchmark data [23, 146].

Incompressible flow inside a lid-driven cavity is a well known benchmark problem.

It has been studied by many authors and is frequently used in validating new CFD source- 

codes [23, 96, 90, 114]. The most notable of these works is the detailed investigation of Ghia 

et.al [146] which is often used as the standard to provide benchmark data for this problem.

There are many descriptions of the cavity problem given within the literature. 

The most popular type is studied here to allow comparisons to be made with the standard 

benchmark data of Ghia and co-workers [146]. The cavity geometry and boundary con-
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U | =  1 ,  112 =  0

U] = 0 , Ui = 0 .

Ui = 0, U2 = 0

Figure 7.1: Flow in a square cavity. Geometry and boundary conditions
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(a) Mesh A (b) Mesh B

(c) Mesh C (d) Mesh D

Figure 7.2: Flow in a square cavity. S tructured  meshes of linear and quadratic elements, 
used in the com putations.
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ditions are shown in Figure 7.1. It is unit square in size and sealed so that no fluid may 

enter or leave its boundaries. No-slip boundary conditions are applied to the cavity walls 

and the flow of the fluid inside the cavity is generated by the motion of the top surface, 

which travels in the horizontal direction. As the cavity is non-leaky the top two corners 

of the cavity are considered to be part of the walls instead of the lid and the velocity is 

zero at these points. This is often referred to as ramp conditions in the literature [23]. The 

singularities at the top two corners make this problem difficult to solve.

Solutions have been obtained for the diffusive case of Stokes flow, as well as for the 

range of Reynolds numbers: 10 < Re < 3200. This gives an assessment of the performance 

of the LCG-CBS schemes for a full range of problems from purely diffusive to convection 

dominated. For this problem type, Re is based on both the lid-velocity and its length.

A number of linear and quadratic structured meshes were used in this study and 

are shown in Figure 7.2. Mesh A is a uniform structured mesh of 20000 linear elements 

and it has a nodal resolution of 10201 nodes. Mesh B is also a uniform structured mesh, 

but consists of 3200 quadratic elements and has 6561 nodes. Mesh C is a non-uniform grid, 

with 1521 linear elements and 2888 nodes. Mesh D is the coarsest of the grids used, it has 

only 200 quadratic elements and 441 nodes.

The case of Stokes flow is considered first, with all meshes being used in the study. 

Nithiarasu [96] notes that many artificial compressibility (AC) schemes have difficulties 

in solving viscous flows. The AC-CBS scheme developed for the global Galerkin method 

[23, 96, 97, 98, 76], suffers from no such problems. However, since the CBS-LCG method 

used here also employs an AC parameter (see Chapter 3) it is important to show that this 

scheme is also compatible for Stokes flow.

In order to model Stokes flow: the convection and characteristic terms in Step 1 

(Equation 3.82) and the characteristic term in Step 3 (Equation 3.90) were switched off, also 

Re was set to unity. Step 2 was unaltered - retaining second-order pressure stabilisation. 

The above changes give a matrix free fractional time-stepping scheme, similar in structure 

to that described by Nithiarasu for incompressible solid mechanics [76]

The results for Stokes flow are shown in Figures 7.3 to 7.7. Figure 7.3 gives the 

pressure contours computed on each mesh. The qualitative results are all of good quality,



(a) Mesh A (b) Mesh B

(c) Mesh C (d) Mesh D

Figure 7.3: Stokes flow in a square cavity. Comparison of computed pressure contours 
meshes A-D for Stokes-flow
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(a) Mesh A (b) Mesh B

(c) Mesh C (d) Mesh D

Figure 7.4: Stokes flow in a square cavity. Comparison of stream-traces of computed flow 
using meshes A-D for Stokes-flow
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Figure 7.7: Stokes flow in a square cavity. Comparison of the vertical velocity component 
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with no non-physical oscillations appearing in the solutions. All solutions are in excellent 

agreement and the negative and positive singularities in the top left and right corners, are 

predicted. Additionally, the contour at zero pressure value coincides with the mid-vertical 

centreline - even for the coarse grid (Mesh D).

To provide a comparison of the accuracy of the pressure solution, the pressure along 

the mid-height, horizontal-line has been plotted in Figure 7.5 for each mesh. Additionally 

the benchmark solution of Zienkiewicz et al. [23] has also be plotted. As seen there is 

strong agreement with the solutions obtained on Meshes A, B, and C. Comparing with the 

benchmark solution, Meshes A and B give the most accurate results. The pressure results 

on Mesh D are the least accurate. This is due to the grid coarseness.

The stream-traces of the velocity field computed for each mesh, are shown in 

Figure 7.4. Here, Meshes A - C are seen to give similar flow patterns. To compare the 

velocities computed on each mesh, the vertical and horizontal velocity components have been 

plotted on the horizontal and vertical centrelines respectively in Figures 7.6 and 7.7. Again 

the results show that the results on Meshes A, B, and C are in excellent agreement with 

each other. Additionally, comparisons made with the benchmark solution of Zienkiewicz et 

al. [23] show that the results on these meshes are also highly accurate. For the velocity 

components, the solution on Mesh D is very good.

The lid-driven cavity problem is now modelled at different values of Reynolds 

number. Here, the selection: Re =  10, 100, 400, 1000, 2000, 3200 is used. Both Mesh A 

and Mesh B are employed here to illustrate the performance of the CBS-LCG scheme, for 

both linear and quadratic elements.

The qualitative results for the selected Reynolds numbers, are given in Figures 7.8 

to 7.15. The first pair, show the contours of the horizontal velocity component at different 

values of Re. Fifty contours were used in the plot and solutions using linear elements are 

shown in Figure 7.8. The corresponding results for quadratic elements are shown in Figure 

7.9. All the results are excellent, and there is good agreement between the solutions obtained 

using linear elements and the solutions obtained using quadratic elements. Figures 7.10 and 

7.11 give the computed vertical velocity fields, on Mesh A and Mesh B respectively. Again,
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(a) u\ velocity, Re — 10 (b) u i velocity, Re =  100 (c) ui velocity, Re =  400

(d) u i velocity, Re =  1000 (e) u\ velocity, Re — 2000 (f) u\ velocity, Re =  3200

Figure 7.8: Flow in a square cavity. Contours of horizontal velocity com ponents a t different 
values of Re,  using linear elements and Mesh A

(a) in  velocity, Re =  10 (b) «i velocity, Re =  100 (c) ui velocity, Re =  400

(d) u i velocity, Re =  1000 (e) u\ velocity, Re =  2000 (f) U\ velocity, Re =  3200

Figure 7.9: Flow in a square cavity. Contours of horizontal velocity com ponents at different 
values of Re,  using quadratic elements and Mesh B
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(a) U2 velocity, Re =  10 (b) U2 velocity, Re — 100 (c) U2 velocity, Re =  400

(d) U2 velocity, Re — 1000 (e) U2 velocity, Re — 2000 (f) U2 velocity, Re =  3200

Figure 7.10: Flow in a square cavity. Contours of vertical velocity com ponents a t different 
values of Re, using linear elements and Mesh A

(a) U2 velocity, Re =  10 (b) U2 velocity, Re =  100 (c) U2 velocity, Re =  400

(d) U2 velocity, Re =  1000 (e) U2 velocity, Re =  2000 (f) U2 velocity, Re =  3200

Figure 7.11: Flow in a square cavity. Contours of vertical velocity com ponents a t different 
values of Re, using quadratic elem ents and Mesh B
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(d) Re =  1000 (e) Re =  2000 (f) Re =  3200

Figure 7.12: Flow in a square cavity. Stream-traces at different values of R e , using linear 
elements and Mesh A

(a) Re =  10 (b) Re =  100 (c) Re =  400

(d) Re =  1000 (e) Re =  2000 (f) Re =  3200

Figure 7.13: Flow in a square cavity. Stream-traces at different values of R e , using quadratic 
elements and Mesh B
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(a) Re =  10 (b) Re =  100 (c) Re =  400

(d) Re =  1000

Figure 7.14: Flow in a square cavity, 
using linear elements and Mesh A

(e) Re = 2000 (f) Re = 3200

Com puted pressure contours a t different values of Re,

(a) Re =  10 (b) Re =  100 (c) Re =  400

(d) Re =  1000 (e) Re =  2000 (f) Re = 3200

Figure 7.15: Flow in a square cavity. Com puted pressure contours a t different values of Re, 
using quadratic elements and Mesh B
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Figure 7.16: Flow in a square cavity. Comparison of the velocity components along the 
centrelines, with the benchmark data of Ghia et al. Results shown at different values of Re, 
using linear elements and Mesh A
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Figure 7.17: Flow in a square cavity. Comparison of the velocity components along the 
centrelines, with the benchmark data of Ghia et al. Results shown at different values of Re, 
using quadratic elements and Mesh B
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Figure 7.18: Flow in a square cavity. Convergence history of the pressure residual on each 
mesh, for the LCG-CBS schemes. Results given for lumped and consistent forms of the 
numerical edge-flux



157

Table 7.1: Flow in a square cavity. Comparison of CPU times for preprocessing and itera­
tions. Results given for lumped and consistent forms of the numerical edge-flux.

Mesh A Lumped-flux Consistent-flux
Re =  10 1941.97s 2030.53s

Re =  100 2376.41s 2519.19s
Re =  400 3388.38s 3401.52s
Re =  1000 6489.52s 6615.44s
Re =  2000 7231.64s 7443.48s
Re =  3200 7547.97s 7759.12s

Mesh B Lumped-flux Consistent-flux
Re =  10 507.84s 571.25s

Re =  100 616.61s 1035.79s
Re =  400 757.23s 1180.95s
Re =  1000 1420.80s 2404.45s
Re =  2000 2122.17s 3211.40s
Re -  3200 2627.33s 3795.53s

the results on both meshes are in excellent agreement with each other.

The stream-traces at different values of Re, are given in Figure 7.12 for Mesh A, 

and Figure 7.13 for Mesh B. Both meshes also give good agreement here. For Re = 100 

secondary vortices are shown at the bottom corners. As Re increases, these vortices grow 

larger. At Re > 2000, the flow is shown to have separated near the top left-hand corner. 

Here, a third vortex appears.

The pressure fields are shown in Figures 7.14 and 7.15. Generally, good results 

are given by both meshes for the range of Reynolds numbers considered. At Re — 3200 

though, some minor oscillations occur at the top left corner. However, these oscillations 

are concentrated to just within the locality of the singularity and do not pollute the entire 

solution.

For a quantitative evaluation of the performance of the CBS-LCG schemes, the 

velocity components along the mid centrelines are compared with the benchmark solution 

by Ghia et al. [146]. The velocity distributions at various Reynolds numbers are given in 

Figures 7.16 and 7.17 for Mesh A and Mesh B respectively. At lower Re, the comparison 

with Ghia et al. for both Mesh A and Mesh B is excellent. At Re =  3200, a small amount
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of deviation occurs.

During the computations, the effect of lumping the numerical edge-flux was con­

sidered. Implementing a lumped flux approximation, was discussed in Chapter 3. However 

its effect - bad or good, was not clear. Here, in Figures 7.16 and 7.17, it can be seen that 

lumping the edge-flux has a negligible effect on the computed solution. Furthermore, in 

Figure 7.18, the convergence histories - recorded on each mesh for both flux approxima­

tions, show that using a lumped edge-flux does not alter the convergence profiles for the 

the same input data.

Using a lumped edge-flux, does not therefore have any adverse effect on the solution 

procedure. It does however, have the advantage of requiring less computation. For linear 

elements the number of computations needed for the edge-flux are reduced from four to two 

and for quadratic elements the computations are reduced from nine to three. As shown in 

Table 7.1, using a lumped edge flux reduces calculation costs. The reduced cost, which for 

longer calculations, can lead to significant savings in CPU time.

7.3 Flow past a circular cylinder at low R eynolds numbers

In this section, the flow past a circular cylinder is solved for an incompressible 

and viscous fluid, at low values of Reynolds numbers. Here, the Reynolds number is based 

on the free-stream inlet velocity, UaQ, and the diameter of the cylinder, D. The results 

of physical experiments for this classic problem are well known, and have been reported 

by many authors [149, 150, 151, 129, 152]. Additionally, this problem is often used in 

numerical methods as a benchmark problem, and detailed computed results have been 

given for analysis.

In this example, test cases are performed using the LCG-CBS scheme for Reynolds 

numbers in the range: 1 < Re < 40. Within this range, a steady flow occurs that is 

symmetrical with respect to the horizontal axis passing through the centre of the circle. At 

around Re = 6 , the flow separates from the cylinder surface, and two symmetrical eddies are 

formed behind the cylinder. These eddies become progressively larger with further increases 

of Re, until they become unstable at around Re =  40. For Re > 40, periodic shedding of
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, D

Symmetry

4D 12D

Figure 7.19: Steady flow past a circular cylinder. Geometry and boundary conditions

vortices occurs, and the flow becomes unsteady. A transient LCG-CBS scheme for solving 

unsteady flows, is tested for such vortex shedding problems in Chapter 8 .

Figure 7.19 gives the problem statement and geometry. The computational domain 

is 16 D in length and 8 D in width. The centre of the cylinder is located at a distance of 

4D from the inlet, along the centre line. As standard with incompressible subsonic flows, 

two boundaries conditions are required at the inlet and one boundary condition at the exit 

[132]. At the inlet boundary, the horizontal and vertical velocity components are prescribed 

as unity and zero respectively. At the exit, the pressure is set to zero. Slip conditions 

are imposed at the top and bottom extremities. The only solid surface in the domain is 

that of the cylinder and no-slip conditions are prescribed on its surface. At t = 0, the 

initial conditions everywhere are: horizontal velocity is unity, and the vertical velocity and 

pressure are both zero.

Two different unstructured meshes were used in this study. Details of each mesh, 

in the vicinity of the cylinder, are given in Figure 7.20. Mesh A (Figure 7.20(a)) is an 

unstructured grid of 20,960 elements. Although Mesh A has good mesh resolution through­

out the domain, the mesh-size has been further refined in areas around the cylinder and in 

the wake region. Mesh B is shown in Figure 7.20(b). It is also an unstructured grid, but 

has only 12,223 elements. This mesh is coarse throughout the domain, apart from a small
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(a) Mesh A (b) Mesh B

(c) Close up detail of Mesh B around cylinder

Figure 7.20: S teady flow past a circular cylinder. Close up detail of the elements in the 
vicinity of the cylinder on each of the unstructured  meshes used.
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(a) tii velocity, Re =  1 (b) tii velocity, Re =  5 (c) tii velocity, Re =  7

(d) tii velocity, Re =  10 (e) u i velocity, l?e ;

Figure 7.21: Steady flow past a circular cylinder 
com ponent at different values of Re, using Mesh A

20 (f) tii velocity, Re =  40

C ontours of the horizontal velocity

(a) ti2 velocity, Re =  1 (b) ti2 velocity, Re — 5 (c) U2 velocity, Re =  7

(d) ti2 velocity, 7?e =  10 (e) U2 velocity, Re =  20 (f) U2 velocity, Re =  40

Figure 7.22: Steady flow past a circular cylinder. Contours of the vertical velocity compo­
nent a t different values of Re,  using Mesh A



162

(a) Re — 1 (b) Re =  5 (c) Re =  7

(d) Re =  10 (e) Re =  20 (f) Re =  40

Figure 7.23: Steady flow past a circular cylinder. Com puted pressure contours a t different 
values of R e , using Mesh A

(a) Re =  1 (b) Re — 5 (c) Re =  7

(d) Re =  10 (e) Re =  20 (f) Re =  40

Figure 7.24: Steady flow past a circular cylinder. P lo tted  stream -traces at different values 
of R e , using Mesh A
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(a) tii Velocity (b) Pressure

Figure 7.25: Steady flow past a circular cylinder. Close up detail of the com puted 
and pressure contours on Mesh B, around the vicinity of the cylinder, a t Re  =  40.
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Figure 7.26: Steady flow past a circular cylinder. Convergence history of the pressure 
residual for the LCG-CBS scheme on bo th  Mesh A and Mesh B



164

Comparison of the drag coefficient at different Reynolds number
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Figure 7.27: Steady flow past a circular cylinder at low Reynolds numbers. A Comparison 
of the computed drag coefficient at different values of Re using the LCG-CBS scheme on 
Mesh B, with numerical results and experimental data obtained in the literature.
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Table 7.2: Laminar steady flow past a circular cylinder; CPU times for preprocessing and 
iterations for the pressure residual to reach a tolerance of 1  x 1 0 - 1 0

Reynolds number Mesh A Mesh B
Re =  1 847.97s 2008.44s
Re =  5 891.44s 1656.30s
Re =  7 1096.75s 1585.95s

Re =  10 1055.44s 1490.47s
Re =  20 797.36s 1087.55s
Re =  40 1259.04s 841.51s

hexagonal sub-region that surrounds the cylinder boundary. The vast majority of elements 

are concentrated within this sub-region, where the element-size is greatly reduced to being 

considerably fine at the cylinder boundary (Figure 7.20(c)). Mesh B allows more accuracy 

in quantitatively computing the pressure and stresses at the cylinder surface, but at a cost 

of loss in contour quality outside the hexagonal sub-region.

The performance of the LCG-CBS scheme for solving this problem, is first made by 

examining the quality and symmetry of the solutions obtained on the unstructured meshes. 

Figures 7.21 through to 7.24, show the contours of the velocity components, pressure and 

stream-traces, at different Reynolds numbers on Mesh A. As can be seen, the computed 

solutions are excellent, and have good symmetrical properties with respect to the centreline 

of the domain. For comparison, the solution computed on Mesh B for the case of Re =  40, 

is shown in Figure 7.25. As can be seen, the results computed on this mesh are also highly 

symmetric and smooth.

Figure 7.23 gives the computed pressure for different values of Reynolds number, 

on Mesh A. As shown, the LCG-CBS scheme gives excellent pressure stabilisation, with the 

computed pressure contours being highly smooth and non-oscillatory. Closer examination 

of the stream-traces given in Figure 7.24 for Mesh A, show the flow is still attached to the 

cylinder at Re =  5. This is in good agreement with experimental data [149]. At Re > 5 the 

flow separates from the cylinder before reaching the rear stagnation point and a pair of eddies 

start to form in the wake behind the cylinder. These eddies become progressively larger 

as the Reynolds number is increased further. For Re > 40, the flow in the wake becomes
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Table 7.3: Steady flow past a circular cylinder at low Reynolds numbers. Tabulated values 
of the computed drag coefficient (Cd) using the present LCG-CBS scheme on Mesh B and 
published results obtained from the literature for various Reynolds numbers up to Re = 40

Scheme Re 1.0 Re 2.0 Re 4.0 Re 5.0 Re 7.0 Re 10.0
c d c d c d c d c d

Hamielec et al. [153] 10.970 6.830 4.520 - - 2.750
Takami et al. [154] 10.283 6.637 4.437 - 3.291 2.754
Dennis et al. [155] - - - 4.116 3.421 2.846
Tuann et al. [156] 14.013 - - 4.661 3.849 3.177
Ding et al. [157] - - - - - 3.070

Nithiarasu et al. [108] - - - - - 2.850
LC G -C BS (linear) 13.604 7.854 4.870 4.236 3.477 2.870

Scheme Re 15.0 Re 20.0 Re 25.0 Re 30.0 Re 35.0 Re 40.0
c d c d c d c d c d c d

Hamielec et al. [153] 2.270 - - 1.588 - -

Takami et al. [154] 2.266 2.003 - 1.717 - 1.536
Dennis et al. [155] - 2.045 - - - 1.522
Tuann et al. [156] - 2.253 - - - 1.675
Ding et al. [157] - 2.180 - - - 1.713

Nithiarasu et al. [108] - 2.060 - - - 1.564
LC G -C BS (linear) 2.356 2.076 1.896 1.770 1.675 1.603
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unstable and a steady-state solution could not be obtained. A steady-state solution was 

considered when the pressure residual, given by Equation (3.97), reached a tolerance of 

1 x 10-10. In Figure 7.26, the convergence histories of the pressure residual are given on 

each mesh for different values of Reynolds number. Additionally the recorded CPU times 

are given in Table 7.2.

To quantitatively examine the accuracy of the LCG-CBS scheme, the coefficient 

of drag at different levels of Re has been computed for the cylinder using Mesh B. Table 7.3 

gives the computed drag coefficient, c .̂ As can been seen, comparisons of the computed C& 

have been made with other numerical results for this problem [108, 153, 154, 155, 156, 157]. 

Furthermore, for convenience, the tabulated results have been plotted graphically with 

experimental data published by Tritton [149, 150], and are shown in Figure 7.27. Generally, 

the results are in excellent agrement with the other reported results..

7.4 Tw o-dim ensional channel flow

In this section, problems of laminar incompressible-flow through two-dimensional 

channels are solved using the LCG-CBS scheme. The first problem considered is the devel­

opment of Poiseuille flow through a rectangular channel. Although relatively simple, this 

problem is excellent in illustrating the schemes ability in modeling boundary layer flow - 

caused by the retardation of a viscous fluid next to (no-slip) solid walls. Additionally, if the 

channel is of sufficient length, then the fully-developed velocity profile can be compared with 

the analytical solution of Poiseuille. Also, the conservation of mass can be easily confirmed, 

by comparing the volume flow-rate at the exit with the inlet volume flow-rate.

The second channel flow problem considered in this section, is the flow over a 

downstream-facing step in a two-dimensional channel. This type of channel flow problem 

has been investigated extensively in the literature, both experimentally [158, 159, 160], 

and numerically [147, 92, 113, 114, 96, 97, 105, 57]. The problem involves regions of flow 

separation and subsequent reattachment, as well as a recirculating flow behind the step. 

This mixture of flow regimes make it a tough benchmark problem for validating numerical 

schemes. The expansion ratio chosen is 2:3, this seems to be the most popular choice within
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the revelent literature, and experimental data is available for the case of Re = 229 [158]. 

Again a qualitative and quantitative assessment of the LCG-CBS scheme is given.

7.4.1 Flow through a tw o-dim ensional rectangular channel

The first test-case considers the flow in a straight channel between two flat parallel 

walls. This classical problem is well known in fluid mechanics studies [150, 151, 129, 152, 

161]. As the fluid passes into the channel from the inlet, it is immediately retarded in the 

vicinity of each wall, becoming zero at the wall-surfaces. As a result of this, a momentum 

boundary layer is formed on the walls. The boundary layer thickness grows as the fluid 

passes further downstream. To conserve volume-flow, a decrease of flow near the walls is 

compensated by a corresponding increase along the axis of the channel. Eventually at some 

point downstream, the two boundary layers merge into each other, and the velocity profile 

asymptotically transforms into the parabolic distribution of Poiseuille flow.

Steady-state solutions were solved by the LCG-CBS scheme, using both linear and 

quadratic elements. The Reynolds number for this problem is 100. The problem geometry 

and boundary conditions are given in Figure 7.28. The channel is 10L x 1 L, where L is the 

width of the channel. For this problem type, the Reynolds number is based on both the 

inlet velocity and the channel width. At the inlet section, non-dimensional values of unity 

and zero were prescribed for the horizontal and vertical velocity components respectively. 

No-slip conditions are applied on both parallel walls. At the exit, a constant pressure value 

(p =  0) is applied. In order for the latter condition to be valid along the exit boundary, a 

sufficiently long domain is used. This is to allow the flow to reach a fully developed state 

well before the exit boundary, so that the pressure varies only in the horizontal direction 

[103],

Figure 7.29 gives a closeup view of the structured and unstructured meshes, used 

in the computations. Mesh A is a structured grid of 32000 linear elements. Mesh B is 

unstructured, and much coarser, with only 6720 linear elements. Finally, Mesh C is a 

structured grid of 8000 quadratic elements. Due to its higher-order elements, Mesh C offers 

the same nodal resolution as Mesh A.

The computed horizontal velocity contours, are shown in Figure 7.30. As can be
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N o  slip  
U| =  u2 =  0

Inlet 
u, =  1 
u2 =  0
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N o  slip
U I =  U 2 =  0

10L

Figure 7.28: Lam inar flow through a two-dimensional rectangular channel. Geometry and 
boundary conditions

■ y - y :-

(a) Mesh A

(b) Mesh B

(c) Mesh C

Figure 7.29: Lam inar flow through a two-dimensional rectangular channel. Closeup views 
of the structured  and unstructured  meshes, used in the com putations.
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Figure 7.30: Lam inar flow through a two-dimensional rectangular channel. Com puted 
horizontal velocity contours.
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(c) Mesh C

Figure 7.31: Lam inar flow through a two-dimensional rectangular channel. Com puted 
pressure contour d istribution along the channel.
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Figure 7.32: Laminar flow through a two-dimensional rectangular channel. Comparison of 
velocity profiles, at various distances along the channel, for each mesh.
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Comparison o f pressure along the mid-horizontal height o f  the channel

Fully developed flow: p = -0.12x +1.2 (constant pressure gradient) 
Pressure along mid-horrizontal on Mesh A 
Pressure along mid-horrizontal on Mesh B 
Pressure along mid-horrizontal on Mesh C
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Figure 7.33: Laminar flow through a two-dimensional rectangular channel.
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Figure 7.34: Laminar flow through a two-dimensional rectangular channel. Convergence 
history of the pressure residual to a tolerance of 1 x 10-20, for the LCG-CBS scheme on 
each mesh
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seen, the results on all meshes are in excellent agreement with each other. The results from 

Meshes A and C are almost identical to each other. The results obtained on the structured 

grids give the best quality, with high symmetry and smoothness. Mesh B, despite being 

relatively coarse and unstructured, still gives a good quality solution. Figure 7.31 gives the 

computed contours of pressure for each mesh. Again, the solutions obtained on Mesh A 

and Mesh C, are almost identical. The results on the unstructured mesh, Mesh B, are non- 

oscillatory, but are not as smooth as the structured meshes. The use of a finer unstructured 

mesh would give a much smoother pressure field.

A detailed analysis of the computed results of each mesh is carried out by exam­

ining the velocity profiles at various sections along the channel. Additionally, a comparison 

is made of the pressure distribution, computed on each mesh along the channel, with fluid 

mechanics theory. Figure 7.32 gives the the velocity profiles for each mesh, at 1  x L  intervals 

along the channel, from the inlet to the exit. As can clearly be seen, the solutions given by 

each of the three meshes, agree excellently with each other.

Initially at the start of the boundary layer formation, the flow’s velocity profile is 

characterized by two peaks of velocity near the walls, and a lower velocity at the centre. 

This is explained by Panton [151], as being caused by the streamlines following a curved 

path as the fluid enters the channel. The pressure on the outside of a curved streamline 

is higher than the pressure on the inside of the streamline. From Bernoulli’s equation, a 

low pressure implies high velocity and vice versa, giving the horned profile seen. This effect 

can last between 1  — 2  channel widths downstream until the streamlines become parallel. 

At the exit boundary, the fully developed profile is parabolic in nature with a maximum 

velocity of umax =  1.500 at the centre. Noting that the area of a parabola is two-thirds 

that of enclosing rectangle, it can be seen that the average velocity, uavg, at the exit is 

unity, thus demonstrating that the proposed LCG-CBS scheme satisfies mass conservation 

for open systems.

In Figure 7.33, the pressure computed along the mid-horizontal has been plotted 

for each mesh. The computed pressures obtained on the linear and quadratic meshes are 

identical. The results obtained using Mesh B differ slightly to the results of Meshes A and 

C, near the inlet section. However, the solution is in excellent agreement with the structured
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Table 7.4: Laminar flow through a two-dimensional rectangular channel. CPU times for 
preprocessing and iterations for the pressure residual to reach a tolerance of 1  x 1 0 - 2 0

Mesh CPU time
Mesh A 9911.02s
Mesh B 1038.17s
Mesh C 6719.09s

meshes after a distance of 2.5L, with only tiny deviations - due to its coarse unstructured 

nature. Where the pressure gradient becomes linear, indicates the point at which a fully 

developed stage has been reached. The developing or entry length, Ze, i.e. the distance 

from the inlet for the flow to become fully developed, depends on the problem’s Reynolds 

number. Schlichting [152] gives an approximate relation for the non-dimensional developing 

length as le = 0.04L  x Re, which gives le = 4L. A derived relation given by Massy [129], is 

more conservative and accurate with a relation of le =  0.057L x Re, which for Re =  100, 

gives a le at a distance of 5.7L. For a fully developed flow, the non-dimensional pressure 

gradient is given as [161]

dp
dx i

For the convenience of the reader, the solution to Equation (7.1), for Re =  100, has been 

plotted in Figure 7.33. It is clear from examining Figure 7.33, that the computed pressures 

appear to become identical to the analytical solution, at x\ > 5.5L, indicating a fully 

developed flow has been reached at this point. This is consistent with the relation of Massy

[129].

Figure 7.34 gives the convergence histories for the pressure residual - computed on 

each mesh using Equation 3.97, to steady-state. In this example, iterations were carried out 

until an error tolerance of 1  x 10- 2 0  was reached. The associated CPU times for each mesh 

are given in Table 7.4. It can be seen that the quadratic mesh - Mesh C, despite having 

the same number of nodes as Mesh A, takes a lower number of iterations and CPU time to 

reach the tolerance level.

1 2  x uavg

L 2 x Re
(7.1)
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36S

Figure 7.35: Laminar flow over a downstream-facing step in a channel, Re = 229. Problem 
definition and geometry

7 .4 .2  L am in ar  flow  over  a  d o w n str e a m -fa c in g  s te p  in  a  ch an n el

The next problem considered, is laminar flow though a channel with a sudden 

single-plane expansion. This problem is commonly referred to as flow over a backward 

facing step, due to an abrupt step that expands the channel-width, at some point along 

the channel in the stream-wise direction. This problem has been investigated by many 

authors, both experimentally [158, 159, 160], and as a benchmark test for testing numerical 

algorithms [147, 92, 113, 114, 96, 97, 105, 57]. Unlike the previous problem of flow in a 

straight rectangular channel, this problem exhibits a complex flow regime. The sudden 

change in geometry causes flow separation at the upstream step corner and subsequent flow 

reattachment on the channel-wall, further downstream. The flow separation is caused by 

an adverse pressure gradient, and gives rise to a vortex formation immediately behind the 

step face.

The specific problem modelled in this study is the flow past a downstream facing 

step, with an expansion ratio of 2:3. The problem definition and geometry is given in Figure 

7.35. The step design is based on an original experiment conducted by Denham and Patrick 

[158], and thus allows a quantitative comparison to be made with the available experimental 

data. The inlet is situated at a distance 45 upstream of the step, where S  is the step height 

as shown in Figure 7.35. The inlet section is twice as high as the step. The channel extends 

from the step a further distance of 365 downstream, giving the total length of the channel
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to be 405. The Reynolds number for this case is Re =  229, and is based on the step height.

Apart form the inlet and exit boundaries, all other boundaries are solid walls, in 

which a no-slip boundary condition is applied. At the inlet, a velocity profile constructed 

from velocity measurements recorded by Denham and Patrick [158], was used for the hor­

izontal velocity component. To allow the recorded velocities to be superimposed on an 

arbitrary mesh, a sixth-order polynomial curve was created to fit the experimental data:

ui = 0.6624y6 -  7.5547y5  +  33.900y4 -  75.283y3 +  83.368y2 -  37.793y +  2.6959 (7.2)

It was important to match the experimental data as closely as possible, as even the 

smallest differences here, will be amplified further down stream. However, even with curve 

of this order, it was not possible to match the profile exactly with the recorded values, and 

some inherent inaccuracy will remain. At all times, a vertical velocity of zero was assumed 

at the inlet. At the exit boundary, a value of zero was prescribed for the pressure. The 

length of the channel is sufficient for the disturbance, created by the recirculation zone in 

the vicinity of the step, to be stabilised by the time the flow reaches the exit, making this 

exit boundary condition valid. All computations are started with initial conditions of u\ 

equal to unity and U2 and p equal to zero, at all points inside the domain.

A number of structured and unstructured meshes were used in this study. Close-up 

images of each mesh, in the vicinity of the step, are shown in Figure 7.36. Mesh A is a non- 

uniform structured mesh of 8092 linear elements. Meshes B and C are unstructured grids 

of 22257 and 47359 linear elements respectively. Mesh B is refined near the boundaries, but 

becomes very coarse away from the walls. Mesh C offers better resolution throughout the 

domain with the elements being rather uniform in the channel section downstream of the 

step. Mesh D is uniformly structured throughout, and is made up of only 116 quadratic 

elements. The aspect ratio of all the elements in this grid is 1:2, with the smallest side of the 

element being equal to the step height. Although too coarse to give an accurate solution, 

it was interesting to see how much detail can be picked up from a mesh of this resolution, 

when quadratic elements are used.

Figures 7.37 and 7.38 give the computed solutions, for the horizontal velocity and



(a) Mesh A

(b) Mesli B

(c) Mesh C

(d) Mesh D

Figure 7.36: L am inar flow over a downstream -facing step in a channel, Re  =  229. S tructured  
and unstructu red  meshes used in the com putations.
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(a) Mesh A

(b) Mesh B

c) Mesh C

(d) Mesh D

Figure 7.37: Lam inar flow over a downstream -facing step in a channel, R e  =  229. Com puted 
contours of the horizontal velocity component.

(a) Mesh A

f

(b) Mesh B

(c) Mesh C

I 'EZ:
(d) Mesh D

Figure 7.38: Lam inar flow over a downstream-facing step in a channel, R e  =  229. C om puted 
pressure contours obtained for each mesh.
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Convergence history for flow over a downstream-facing step

Mesh A 
Mesh B 
Mesh C 
Mesh D

0.01

2
0.001

CL, 0.0001

le-05

le-06
0 5000 10000 15000 20000 25000 30000

Time steps

Figure 7.39: Laminar flow over a downstream-facing step in a channel, Re = 229. Compar­
ison of the pressure residual convergence histories, on each mesh.

pressure field, on each mesh. As can be seen in Figure 7.37, a similar flow pattern is obtained 

on each of the meshes. All solutions show the flow separation and subsequent reattachment 

downstream. It is seen in Figure 7.38 that the best solutions were computed by Mesh A 

and Mesh C, with the former mesh producing the smoothest pressure contours. A good 

solution was also computed on Mesh B, however the contours produced are not as smooth. 

The pressure field is also marked with minor oscillations in regions where the element-size 

is large. Good results, were also obtained from Mesh D. Despite having a size of only 3 x 40 

elements, the major features of this problem were predicted. The flow is shown to separate 

at the step corner and a recirculating flow is captured in the vicinity behind the step. The 

pressure singularity is also captured at the step corner.

Figure 7.39 gives the pressure residual convergence, for each mesh. A steady-state 

tolerance of 1 x 10—6, was used in order for the time-stepping to terminate. The fastest 

solution retrieved, was in under 2000 iterations by Mesh D. Mesh A was the next fastest, 

with a converged solution obtained after 15000 time-steps. Both unstructured meshes had 

the slowest convergence rates, with Mesh C taking twice as long as Mesh A to reach the 

same level of convergence, and Mesh B even longer.
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(a) Mesh A
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(b) Mesh B
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(c) Mesh C
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(d) Mesh D

Figure 7.40: Laminar flow over a downstream-facing step in a channel, Re =  229. Compar­
ison of computed velocity profiles with experimental data.
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To quantify the accuracy of the LCG-CBS scheme for solving this problem, the 

velocity profiles have been computed at appropriate sections of the geometry, and compared 

with the experimental data of Denham and Patrick [158]. Figure 7.40 gives the velocity 

profiles computed on each mesh. As expected the linear structured grid (Mesh A) gave 

the best accuracy. The two unstructured meshes also gave comparable accuracy, with only 

slight differences further downstream. As already mentioned, good performance was found 

from Mesh D. It can be seen here, despite having oversized elements, the reverse flow behind 

the step is captured. Clearly, the use of quadratic elements is advantageous for this problem 

type - where the flow is parabolic. It is shown here, that the linear and quadratic element 

versions of the LCG-CBS schemes give good performance for open systems, with stable 

computed pressure and mass conservation across open boundaries being satisfied.

7.5 Sum m ary

The accuracy of CBS-LCG scheme has been evaluated in this chapter, for a number 

of well known incompressible flow problems. The method has been shown to be robust on 

both structured and unstructured grids.

Flow in a square cavity was solved first and results showed good performance for 

this type of problem. Here, the use of a lumped numerical edge-flux was investigated for 

linear and quadratic basis functions and shown to be efficient.

The benchmark case of flow past a cylinder was tested next on unstructured grids. 

It also gave excellent accuracy. Quantitative data on the drag coefficient was shown to be 

highly accurate.

The last section considering the CBS-LCG scheme, was to solve channel flow prob­

lems. Accurate results were obtained here, for the development of Poiseuille flow and the 

flow past a backward facing step. The computed results on linear and quadratic elements 

compared well to both analytical and experimental data. In conclusion, it has been shown 

that the CBS-LCG scheme is a robust approach for solving incompressible flow problems.
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Chapter 8

Extension of the LCG M ethod for 

Solving Transient Problem s

8.1 Introduction

This chapter presents an evaluation of characteristic based LCG methods for solv­

ing transient problems. Two different schemes are investigated. The first method is con­

sidered in Section 8 .2 . It is the explicit characteristic LCG scheme for hyperbolic (purely- 

convective) scalar transport. Here the LCG method is used to solve 2 D pure convection of 

a product-cosine hill in a circulating flow [23, 38, 41]. In the absence of natural diffusion, 

the governing equation type is hyperbolic and describes a propagation phenomenon. The 

characteristic based LCG method used gives a LCG equivalent to the Lax-Wendroff method 

[40].

Section 8.3 presents an evaluation of the characteristic based split, locally conser­

vative Galerkin (CBS-LCG) method for solving unsteady flow problems. In Chapter 2, a 

dual time-stepping procedure [23, 76, 96, 97, 98, 113, 114, 115] was implemented for the 

CBS-LCG scheme. This procedure essentially transforms an unsteady flow calculation into 

a series of several instantaneous steady-states in real-time. A pseudo time-step is used to 

iterate the solution within each instantaneous steady-state until the solution converges to 

a desired level of tolerance. In order to recover the true transient solution, a real time
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term was added to the momentum equation of the CBS temporal scheme, before being 

spatially discretised by the LCG scheme. By incorporating dual time-stepping, the error 

in the transient solution, which is introduced by both lumping the mass matrix and using 

the artificial compressibility parameter, is considerably reduced. This chapter evaluates 

the performance of the dual time-stepping approach in the CBS-LCG method for unsteady 

flows. The problem considered, is unsteady flow past a circular cylinder at Re =  100. At 

this Reynolds number, a complex and time-dependent flow pattern is found with periodic 

vortex shedding occurring behind the cylinder.

8.2 The rotating cone problem

In Chapter 3, an explicit characteristic based LCG method was described for gen­

eral convection-diffusion problems. The same methodologies also apply to pure-hyperbolic 

problems. In this case, there is no need to evaluate a diffusive edge-flux component as the 

problem is purely convective. Thus the edge-flux is always evaluated at the edge-nodes, 

even for linear elements.

In this section, the explicit characteristic based LCG method is evaluated for solv­

ing two-dimensional problems of pure convection. The governing equation for this problem 

is still described by Equation (3.1). However, for the purely convective transport of scalar 

variable 0 , the flux term, F*, is given as

Fi =  (ui<j>) (8 .1 )

where U{ are the velocity components.

The specific problem studied here, is the convection of a product-cosine hill in 

a purely rotational velocity-field. This classical problem is frequently used to test two- 

dimensional convection schemes [23, 38, 41]. Here, the problem statement described by 

Donea et al [41] is used. The problem domain is unit square with the origin located at the 

geometric centre. The initial data for this problem is
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0.86753 
0.80556' 

I— J 0.74359' 
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■  0.37179!
■  0.30983.'
■  0.24786;
■  0.18589:
■  0.12393: 

|  0.06196;

(b) 40 x 40 triangular finite element mesh

Figure 8.1: Convection of a cosine hill in a pure ro tation  field. Details of the problem
statem ent and structu red  mesh used.
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</>(x, 0) = ^ (1 +  cosnXi) (1 +  cosirX2 ) i f  X 2 +  X 2 < 1

0(x,O) =  0 i f  X 12 + X 22 >1  (8.2)

where X = (x — xo) /a .

The initial position of the centre and the radius of the cosine hill are xo and cr, 

respectively. In the examples they are chosen as xo =  (g, g) and a =  0 .2 . The convection 

field is a purely rotational with unit angular velocity, thus uo =  (—x2j x\). On the boundary 

I>, <f> =  0 for all t. A uniform 40 x 40 structured mesh of 3200 elements is used in the 

calculations. The original configuration and mesh used are shown in Figure 8.1.

As mentioned, the explicit characteristic based LCG method was used for this 

problem. A lumped-mass matrix was employed, giving a LCG equivalent of the Lax- 

Wendroff method. A time-step of A t = 2tt/200 was used and solutions were computed 

at: t =  50, 100, 150, and 200. The results for each time interval axe given in Figures 

8.2, 8.3, 8.4, and 8.5 respectively. For comparison, results obtained using the equivalent 

global Galerkin method are also given for each time interval. Additionally, the maximum 

and minimum values of $ computed, have been given in Table 8.1. As can be seen the 

global Galerkin and LCG results are identical at each time interval. This is quantitatively 

confirmed in Figure 8 .6 . Here the computed scalar variable along (x, l / 6 ) and (1/6, j/) 

have been plotted for each method. As shown the LCG and global Galerkin methods give 

identical solutions.

8.3 U nsteady flow past a circular cylinder

In Chapter 7, the problem of viscous steady-flow past a circular cylinder was 

solved for an incompressible fluid. Solutions were obtained for Reynolds numbers in the 

range: 1.0 < Re < 40.0. Since all flows within this flow regime possessed a steady-state 

solution, the fully explicit LCG-CBS scheme (with an artificial compressibility parameter) 

was suitable for its investigation. It was shown that excellent performance and solution 

accuracy was achieved, when the flow is steady.
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(a) LCG (b) global Galerkin

Figure 8.2: Convection of a cosine hill in a pure ro tation  field. Com parison of com puted 
solutions for the characteristic based LCG and global Galerkin m ethods a t t =  50
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0 .7 7 5 7 7 2 0 .7 7 5 7 7 2

0 .7 1 0 1 8 60 .7 1 0 1 8 6
0 .6 4 4 6 0 1 0 .6 4 4 6 0 1
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0 .5 1 3 4 3 0 .5 1 3 4 3

0 4 4 7 8 4 50 .4 4 7 8 4 5
0 .3 8 2 2 5 9 0 .3 8 2 2 5 9
0 .3 1 6 6 7 4 0 .3 1 6 6 7 4
0 .2 5 1 0 8 8 0 .2 5 1 0 8 8
0 .1 8 5 5 0 3 0 .1 8 5 5 0 3
0 .1 1 9 9 1 8 0 .1 1 9 9 1 8
0 .0 5 4 3 3 2 3 0 .0 5 4 3 3 2 3
0 .0 1 1 2 5 3 1 0 .0 1 1 2 5 3 1

(a) LCG (b) global Galerkin

Figure 8.3: Convection of a cosine hill in a pure ro tation  field. Com parison of com puted
solutions for the characteristic based LCG and global Galerkin m ethods a t t  =  100
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(a) LCG (b) global Galerkin

Figure 8.4: Convection of a cosine hill in a pure ro tation  field. Comparison of com puted 
solutions for the characteristic based LCG and global Galerkin m ethods at t =  150
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(a) LCG (b) global Galerkin

Figure 8.5: Convection of a cosine hill in a pure ro tation  field. Com parison of com puted
solutions for the characteristic based LCG and global Galerkin m ethods a t t  =  200
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(a) Plot of computed scaler field 0  along —1/2 <  x  <  1/2 at y  =  1 /6 , for the LCG 

and global Galerkin methods
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(b) Plot of computed scaler field 0  along —1/2 <  y  <  1/2 at x =  1 /6 , for the LCG 

and global Galerkin methods

Figure 8 .6 : Convection of a cosine hill in a pure rotation field. Comparisons of the computed 
scaler field 4> with the exact solution, for the explicit lumped-mass, LCG and global Galerkin 
methods
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Table 8.1: Convection of a cosine hill in a pure rotation field. Comparison of computed 
maximum and minimum values of <f) at various time intervals, for both LCG and global 
Galerkin methods.

t fim a x /m in LCG global Galerkin

c-l- II Cn O (frmax 0.992218 0.992218
t = 50 tfimin -0.051444 -0.051444

t =  1 0 0 (fimax 0.972528 0.972528
t =  1 0 0 (frmin -0.076839 -0.076839
* =  150 fim ax 0.950017 0.950017
* =  150 fim in -0.100572 -0.100572
t =  2 0 0 $ m a x 0.918992 0.918992

cf. II to o o 4*m in -0.112779 -0.112779

In this section the analysis is extended for unsteady flows with Re > 40. As 

already discussed in Chapter 3, the LCG-CBS scheme in its fully explicit nature is only 

suitable for steady-state solutions. However, the true transient solution is recovered here by 

using a dual time-stepping method [23, 76, 96, 97, 98, 113, 114, 115], which is incorporated 

into the LCG-CBS scheme.

The ability of the fully explicit LCG-CBS scheme (with dual time-stepping) to 

simulate transient flow is illustrated here by computing the vortex shedding in the wake of 

flow past a circular cylinder at Re =  100. This has been a popular test case for validating 

the transient part of numerical schemes [23, 96, 97, 108, 114, 148]. The problem definition 

is standard and Figure 8.7 gives the problem statement and geometry. The computational 

domain is 16D in length and 8 D in width, the centre of the cylinder is located at a distance 

of 4D from the inlet, along the centre line. As before, for the steady flow problems, the 

Reynolds number is based on the free-stream inlet velocity, Uoo, and the diameter of the 

cylinder, D. At the inlet boundary, the horizontal and vertical velocity components are 

respectively prescribed as unity and zero. At the exit, the pressure is also set to zero. The 

top and bottom extremities are treated as slip walls. The only solid surface in the domain is 

that of the cylinder, here no-slip conditions are prescribed. At t =  0, the initial conditions 

everywhere are: horizontal velocity is unity, and the vertical velocity and pressure are both
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S ym m etry

N o slip  on cy linder surface 
u i = 0, U2 — 0

Inlet:

Sym m etry

4D 12D

Figure 8.7: Unsteady flow past a circular cylinder a t Re  =  100. Problem  domain and 
boundary conditions

Figure 8.8: Unsteady flow past a circular cylinder a t R e  =  100. U nstructured meshes used 
in the com putations.



Pr
es

su
re

 
re

si
du

al
 

Pr
es

su
re

 
re

si
du

al

191

Convergence history for unsteady flow past a circulpr-cylinder(a)

1  1-----------------------------1-----------------------------1---------------------------- 1-----------------------------1---------------------------- r

le-08 -

le-09 ------------------------1------------------------1------------------------1------------------------1------------------------ 1------------------------1------
0 200000 400000 600000 800000 le+06 1.2e+06

Pseudo time steps

(a) Full pseudo time-step history

Convergence history for unsteady flow past a circular-cylinder(b)
0.0001

le-05

le-06

le-07

le-08
le+06 1.005e+06 1.0 le+06 1.015e+06 1.02e+06 1.025e+06 1.03e+06 1.035e+06 1.04e+06 1.045e+06 1.05e+06

Pseudo time steps

(b) Zoom of pseudo time-step history at a periodic state

Figure 8.9: Unsteady flow past a circular cylinder at Re =  100. Convergence history of the 
pressure residual as a function of the cumulative pseudo time-step number
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(a) Pressure contours

(b) ui velocity contours

(c) u2 velocity contours

Figure 8.10: U nsteady flow past a circular cylinder a t R e =  100. C om puted solution at a 
non-dimensional real tim e of 150
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(a) Pressure contours

(b) u\ velocity contours

(c) U2 velocity contours

Figure 8.11: U nsteady flow past a circular cylinder a t R e  =  100. C om puted solution a t a 
non-dim ensional real tim e of 200
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(e) t =  30 (f) t =  50

Figure 8.12: Unsteady flow past a circular cylinder at R e  = 100. Flow stream-traces at 
different values of real-time for 1 < t <  50.
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(b) t =  100

m

(d) t =  120

Eo;

(e) t =  150 (f) t = 200

Figure 8.13: Unsteady flow past a circular cylinder at R e =  100. Flow stream-traces at 
different values of real-time for 75 < t < 200.
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Figure 8.14: Unsteady flow past a circular cylinder at R e — 100. Computed coefficients 
of the drag and lift, and computed vertical velocity component at central exit point. All 
plotted as a function of the non-dimensional real time
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set equal to zero.

A single unstructured mesh was used in this study and it is shown in Figure 8.8. 

It has 46,433 elements and 23,452 nodes. This mesh has been designed using previous 

knowledge on the formation of the unsteady wake and subsequent vortex shedding [129, 

152, 151]. Thus the elements are very refined within this area. A fixed homogeneously fine 

mesh is expensive and so non-smoothness of contours in coarser areas of the domain, may 

be expected. The real time-step size chosen for this problem is 0.1, and simulations were 

carried out for a real non-dimensional time of 200. For each physical real time step the 

pressure residual, given by Equation (3.97), reached a tolerance of 1 x 10-7. The maximum 

number of iterations allowed is 10,000 and the lowest is 100. Figure 8.9(a) provides a full 

simulation analysis of the convergence histories for each real time step on the mesh. As 

can be seen, once the initial transient stage has passed, the simulation settles down to an 

almost periodic convergence pattern. This can be seen more clearly in Figure 8.9(b). Here, 

a criss-cross mark has been employed to mark every 100 pseudo time-steps. After the initial 

transient it takes roughly 600-700 pseudo time-steps to reach this tolerance, for every real 

time-step.

The qualitative results are shown in Figures 8.10 and 8.11. Here, the contours of 

pressure and horizontal and vertical velocities are shown, for the real non-dimensional times 

of 150 and 200 respectively. All results are of high quality with no non-physical oscillations. 

A description of the flow pattern, at various values of real-time, is given by plotting stream- 

traces. The stream-traces are shown in Figure 8.12 for 1 < t  < 50 and Figure 8.13 for 

75 < t < 200.

A quantitative analysis of the results was also conducted and are shown in Figure 

8.14. Here, the real-time history of both the lift and drag coefficients are given, along 

with the variation of the vertical velocity component at the central exit point. Generally, 

all the results shown for the CBS-LCG scheme are in good agreement with the results of 

Nithiarasu et al. [108] - obtained using a global Galerkin matrix-free CBS scheme for the 

non-conservation form of the incompressible flow equations.

Figures 8.14 (a) and (b) show the coefficient of drag, q ,  computed over the cylinder 

surface as a function of time. The full temporal history of Cd for 1 < t < 200 is given in
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Figure 8.15: Unsteady flow past a circular cylinder at R e =  100. Plot of q in the steady- 
periodic region at 120 < t  <  130.

Figure 8.14(a). Figure 8.14(b) shows a zoom of the Cd for 120 < t  < 130. Here, the results of 

Nithiarasu et al. [108] have been included for comparison. As seen, despite using a coarser 

mesh for the CBS-LCG scheme, the difference is quite small between the two results. Details 

of the coefficient of Lift, q, are shown in Figures 8.14 (c) and (d). The former gives the 

full real-time history and the latter gives a comparison with Nithiarasu et al. [108], at 

110 < t < 140. As seen the agreement here is excellent. The final set, Figures 8.14 (e) 

and (f), give the real time history of the vertical velocity component - computed at the 

centre-point on the exit boundary. In Figure 8.14 (f), the comparison with Nithiarasu et al.

[108] is small and may be due to a coarser mesh distribution being employed downstream 

of the cylinder at the exit in the present study.

After the initial transient, each variable develops a periodic variation. This is due 

to the periodic shedding of vortices from behind the cylinder. The nondimensional frequency 

of this oscillation is defined by Panton [151] as the Strouhal num ber S t. In Figure 8.15, the 

lift coefficient is plotted in the steady-periodic region at 120 < t  < 130. Taking the two 

adjacent peaks in Figure 8.15), gives a nondimensional wavelength of 6. This in turn gives 

S t  = 0.1666, which agrees excellently with other numerical methods [114, 148].
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8.4 Sum m ary

This chapter firstly evaluated the explicit characteristic based LCG method, for 

transient hyperbolic problems. The rotating cosine-cone problem was used to demonstrate 

the LCG method was suitable for this application. Additionally, comparisons made with 

the global Galerkin method show that the two methods give identical solutions, when a 

lumped-mass matrix is used. The results of this small investigation are important for 

further applications, particularly in computational electro-magnetics, where an element­

wise solution strategy would be cost effective.

It has also been shown in this Chapter that the matrix-free CBS-LCG scheme, 

based on the artificial compressibility method, has been successful in simulating unsteady, 

incompressible flows past a circular cylinder. The scheme was based on the non-conservation 

form of the equations, and a dual time-stepping approach was employed to recover the 

transient solution. Results were pressure stable and in good agreement with other schemes. 

The method has been proved to be robust in dealing with unsteady laminar incompressible 

flows.



200

Chapter 9

Conclusions and Future Work

9.1 G eneral conclusions

A locally conservative Galerkin (LCG) procedure has been presented in this thesis. 

The basic concept introduced by Nithiarasu [1], has been thoroughly investigated and as a 

result, a family of LCG schemes have been developed. These schemes have been shown to 

be successful in solving a wide range of physical problems, from simple scalar transport to 

more complex problems such as the transient solution of unsteady Navier-Stokes flow.

The methodology presents an appealing alternative to the global Galerkin based 

methods, and finds a compromise between continuous and discontinuous Galerkin methods. 

Using a LCG approach, a continuous solution is obtained, but the solution procedure is 

element-wise. Additional benefits of the LCG method include both explicit element-wise 

and global conservation.

As practitioners of the discontinuous Galerkin are aware, the flexibility of solv­

ing the discrete equations elementally comes at a price of establishing continuity between 

neighbouring elements. In this work it is shown that a relatively cheaper numerical-flux 

procedure can be used in the LCG schemes to obtain accurate results.

Due to the nature of the research effort in this thesis, new codes were written to 

test all the LCG schemes. However, the procedures developed here can be incorporated 

into existing codes without complete revision. This is an additional benefit which makes
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the method more appealing to industry.

Another important issue was the ease in which established global Galerkin schemes 

for convection-dominated problems could be incorporated into the LCG framework. This 

thesis gave details on the successful implementation of SUPG and characteristic based LCG 

methods. Benchmark numerical problems were solved to illustrated the LCG methods’ 

accuracy.

The major objective of this thesis was to finally produce a LCG method for solving 

incompressible Navier-Stokes equations. The fully explicit characteristic based split (CBS) 

algorithm, provided the temporal template in which to spatially discretise using the LCG 

scheme. The resulting CBS-LCG method which uses artificial compressibility, was success­

fully evaluated for a number of steady-state problems and was shown to give good results. 

For unsteady flow the CBS-LCG scheme was adapted to incorporate dual time-stepping. It 

was shown to be successfully in giving the real transient solution.

9.2 Further work

The pioneering work presented in this thesis is only the beginning for research and 

development of the LCG method. This work has provided the foundations for numerous 

further investigations, all of which will hopefully give an even greater insight on this novel 

and interesting approach. A number of possible research routes are suggested:

1. Discontinuous Galerkin methods enjoy both element h — and/or polynomial p — re­

finement and/or a combination of both. It was shown in this thesis, that the LCG 

method also enjoys the refinement of element-size to obtain a more accurate and 

smoother solution. It was also shown that a increase in accuracy could be gained 

without refining h by using higher-order elements, viz  using quadratic elements in­

stead of linear elements. In the examples shown however, p —refinement was made 

to all elements in the domain. The LCG method supports an element-wise solution. 

It therefore is possible to exploit this approach by using combination of h— and p — 

refinement to obtain accuracy where it is needed and save CPU costs where accuracy 

and solution smoothness is not as important. It is proposed here, that work should
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be carried out to investigate the use of mixed-order elements, within the same domain 

for the purpose of grid-adaptivity.

2. The numerical edge-fluxes discussed in this thesis are relatively cheap. This is one of 

the benefits of the LCG approach. It should not be ruled out however, investigating 

other methods of performing the edge-flux calculation. A number of possible routes 

could be taken here, especially for the diffusive terms. Though, if the original phi­

losophy of the LCG approach is to be adhered to, then cost-effectiveness should be a 

priority.

3. It was shown that the LCG method could be applied to three-dimensions for diffusive 

problems. The 3D edge-flux calculation was evaluated and shown to be accurate. It 

is suggested that this should be extended to 3D convection-diffusion problems with 

the intension of extending the approach further, to solve 3D fluid dynamics problems.

4. The characteristic based LCG method was also evaluated for pure convection prob­

lems. The results obtained were found to be identical to the global Galerkin method. 

Time restrictions prevented further research into using LCG methods for solving hy­

perbolic problems. It is suggested here, that further research on incorporating es­

tablished high-order temporal schemes into the LCG framework should be carried 

out. This area of research may be more favourable to areas of computational electro­

magnetics, where improving the phase and minimising dissipation is crucial for tran­

sient electro-magnetic scattering solutions.

5. Finally, in this thesis the LCG method was combined with the CBS temporal scheme, 

to successfully solve fluid mechanics problems. The CBS-LCG method developed, 

solved the non-conservation form of the incompressible Navier-Stokes equations. Two 

lines of possible research stem from this work: Firstly it is suggested that a CBS-LCG 

method should be developed for the conservation form of the incompressible flow 

equations. Secondly, artificial compressibility was employed in the CBS-LCG scheme 

developed in this thesis. It is reasonable to presume that the CBS-LCG method could 

potentially be applied to solve compressible flow problems.
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A p p en d ix  A

P ostp rocessing

A . 1 Coefficient of pressure

The local coefficient of pressure, Cp, is defined as

=  (A .l)
2 P oc^oo

\where p  is the pressure, p is the density, u  is the velocity, and a subscript oc indicates a 

ffree stream  (inlet) value. The denom inator Poo^oc2) is the dynam ic pressure [129].

A .2 Coefficient o f drag

Figure A .l shows fluid flowing past a solid body. The resu ltan t force, F , on the 

Ibody, due to the fluid flowing past it, can be resolved into two com ponents. The force acting

Lift

Drag

IFigure A .l: Definition sketch for lift and drag forces on a solid body, as fluid flows past it.



221

in the horizontal direction is the drag force, and the force acting in the vertical direction is 

the lift force.

Generally the drag force is characterized by the coefficient of drag, Cd, which is

given by

frontal area of body in the flow direction. The total drag force is the sum of both the 

pressure (form) drag and friction drag in the direction of the flow i.e.

For a two dimensional problem, the solid wall boundary may be a line or a curve

and approximated by an edge of an element. In this case D p  and D f  may be calculated as 

follows [103]: The force due to pressure for each element edge along the solid boundary, is 

approximated as the average pressure of all the element’s nodes that are on the boundary, 

multiplied by the length of the element’s edge that lies on the boundary. This pressure force 

is multiplied by the direction cosine in the flow direction, to obtain the local pressure drag 

contribution for that element. Integration of all the element contributions along the solid 

boundary gives the drag force due to pressure D p. The viscous drag force D f  is calculated 

by integrating the viscous traction in the flow direction along the solid boundary. Adding 

the both integrals gives the total drag along the solid surface edge as

where the components n \ and n 2 make up the surface normal n along the solid boundary.

A f  2 Poo^oo^
(A.2)

Here D  is the total drag force exerted on body by the fluid flowing past it, and A f  is the

D  = D p  + D f (A.3)

f  [ ( - p  +  n i )  n i +  ( r n )  n 2] dA, (A.4)
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