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Abstract

In this work, we aim to study some fine properties for functional stochastic differ­

ential equation. The results consist of five main parts. In the second chapter, by 

constructing successful couplings, the derivative formula, gradient estimates and 

Harnack inequalities are established for the semigroup associated with a class of 

degenerate functional stochastic differential equations. In the third chapter, by 

using Malliavin calculus, explicit derivative formulae are established for a class 

of semi-linear functional stochastic partial differential equations with additive or 

multiplicative noise. As applications, gradient estimates and Harnack inequal­

ities are derived for the semigroup of the associated segment process. In the 

forth chapter, we apply the weak convergence approach to establish a large de­

viation principle for a class of neutral functional stochastic differential equations 

with jumps. In particular, we discuss the large deviation principle for neutral 

stochastic differential delay equations which allow the coefficients to be highly 

nonlinear with respect to the delay argument. In the fifth chapter, we discuss the 

convergence of Euler-Maruyama scheme for a class of neutral stochastic partial 

differential equations driven by a-stable processes, where the numerical scheme 

is based on spatial discretization and time discretization. In the last chapter, 

we discuss (i) the existence and uniqueness of the stationary distribution of ex­

plicit Euler-Maruyama scheme both in time and in space for a class of stochastic 

partial differential equations whenever the stepsize is sufficiently small, and (ii) 

show that the stationary distribution of the Euler-Maruyama scheme converges 

weakly to the counterpart of the stochastic partial differential equation.

Keywords: functional stochastic partial differential equation, derivative for­

mula, Harnack inequality, gradient estimate, large deviation, a-stable process, 

numerical analysis, stationary distribution, limit distribution.
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Chapter 1

Introduction

A stochastic differential equation (SDE), developed in the framework of Ito’s 

[45, 46], is a differential equation in which one or more of the terms is a stochastic 

process, resulting in a solution which is itself a stochastic process. The theory of 

stochastic differential equations (SDEs), which play an important role in many 

branches of science and industry, is one of the most beautiful and fruitful areas in 

the theory of stochastic processes. There are several excellent books on SDEs, 

e.g., Ikeda and Watanabe [44], Mao [55], Mao and Yuan [56], 0ksendal [61], 

Protter [70], and Yin and Zhu [98].

In many applications, one assumes that the system under consideration is 

governed by a principle of causality; that is, the future state of the system is 

independent of the past states and is determined solely by the present. However, 

under closer scrutiny, it becomes apparent that the principle of causality is often 

only a first approximation to the true situation and that a more realistic model 

would include some of the past states of the system. Functional differential 

equations give a mathematical formulation for such system, e.g., Hale and Lunel 

[37] and Mao [55, Chapter 5]. Examples of such application domains include 

biochemical reactions in gene regulation, where lengthy transcription and trans­

lation operations have been modeled with delayed dynamics, e.g., [1, 10, 58], 

neuronal models, where the spatial distribution of neurons can result in delayed 

dynamics, epidemiological models, where incubation periods result in delayed 

transmission of disease, e.g., [11], packet level models of Internet rate control,
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where the finiteness of transmission times leads to delay in receipt of congestion 

signals or prices, e.g., [64, 82]. The study of functional SDEs is also motivated 

by the fact that when one wants to model some evolution phenomena arising 

in physics, biology and engineering, etc., some hereditary characteristics such 

as after-effect, time-lag and time-delay can appear in the variables. For more 

details on functional SDEs, we refer to the monographs, e.g., Mao [55] and Mo­

hammed [59]. Moreover, stochastic equations, which not only depend on the 

past and the present values but also involve derivatives with delays as well as 

the function itself, have also been applied to model some evolution phenomena 

arising in physics, biology and engineering. Such equations historically have 

been referred to as neutral functional SDEs, or neutral stochastic differential 

delay equations (SDDEs), e.g., [55, Chapter 6].

Moreover, from 1960s, there is also enormous research activity on Stochas­

tic Partial Differential Equations (SPDEs) of evolutionary type, which can be 

applied to model a wide range of dynamics with stochastic influence in nature 

or man-made complex systems, e.g., Da Prato and Zabczyk [19, 20], Peszat, J. 

Zabczyk [66], Prevot and Rockner [67] and Walsh [84].

For a Hilbert space U, let W(t) be a {/-valued noise process (e.g., Wiener 

process, Poisson jump process or a-stable process) defined on some probability 

space ( Q , ^ t , ^ , P )  satisfying the usual condition. For a fixed time delay r  > 0 

and a Hilbert space (H, (•, •), || • ||//), denote Q) := D({—t , 0];//) by the family 

of cadlag functions /  : [—r, 0] > H  endowed with the uniform norm ||/||<x> : =

sup_T<0<o ||/(0)II//. Let Ch s {U»H) be the set of Hilbert-Schmidt operators from 

U to H. For a map h : [—r, oo) —► H  and t > 0, let ht G @ be the segment of 

h(t), i.e., ht(9) = h(t +  0),0 6 [—t , 0].

As described above, there is natural motivation for considering SDE on H

d{X{t)  -  G(Xt)} = F{Xt)dt + fc(Xt)dW(t), X 0 = t e ® ,  (1.0.1)

where F, G : 9  -> H  and $  : 9  -> CHs(U, H).

Let n € Z+, ^  := C([—r, 0];Rm) and, in (1.0.1), H  = Rn, G = 0, ${<p) = 

<f>(<̂ (0)) for (p G ^  and W(t)  be a d-dimensional Brwonian motion defined on
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the probability space (fl, P). Then (1.0.1) reduces to

d X(t)  = F{X t)dt +  $(X(t) )dW(t) ,  X 0 = £e<i?, (1.0.2)

where F \ —> Rn and 4> : Rn —► IRnxd. For m  G Z+ and d G Z, in Chapter 2 we

shall establish by the coupling method the derivative formulae for the diffusion 

semigroup of the degenerate case of (1.0.2) on Rm x Rd in the form

f
dX(t) =  {AX(t)  + MY(t)}dt,  

dY(t) = {Z(X(t) ,  Y(t)) + b(Xt, Yt)}dt + adB(t),
\

where B( t ) is a d-dimensional Brownian motion, a is an invertible d x d-matrix, 

A is an m  x m-matrix, M  is an m  x d-matrix, Z  : M.m x l d - > t d and b : ^  —> M.d 

are locally Lipschitz continuous.

Let A  be a unbounded linear operator generating a contractive Co-semigroup 

{eM}t>0 on a Hilbert space H , ^  := C([—r , 0];id), 6 : ^  —* H  and a : H  —> 

C//s(id, H). Assume that G = 0, F((p) = Aip(Q) + b(ip) and $ (9?) =  cr((^(0)), (p G 

^  in (1.0.1). Then (1.0.1) becomes a semilinear functional SPDE

I dX(t) =  {AX( t ) + F(Xt)}dt  + a(X(t))dW(t),   ̂^

\ x 0 = t e t f .

In Chapter 3, we shall investigate by utilizing the Malliavin calculus the Bismut- 

type derivative formulae and their applications for the semigroup generated by 

the segment process of (1.0.3) with additive noise and multiplicative noise re­

spectively.

Let := C ([-r , 0];Rn), H = IT , $  =  a : Mnxm, and W(t)  be an Tri­

dimensional Brwomian motion defined on the classical Wiener space (17, J^,P) 

in (1.0.1). In Chapter 4, we shall discuss by a weak convergence approach due 

to [16, Theorem 4.4] a Large Deviation Principle (LDP) for (1.0.1) with a small 

multiplicative noise in the form

I d[XeW -  G(Xt)] = b(XZ)dt + y /i*(X;)dW(t)t t G [0,21, c G (0,1),

| Xq = £ £ .
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In Chapter 4, under muck weaker conditions for the delay arguments we shall 

also study the LDP for neutral Stochastic Differential Delay Equation (SDDE) 

on Rn
/
d[ye(t) -  G (Y‘{t -  t ))] = b(Y‘(t), Y ((t -  r))d i 

+V~ecr(Y‘( t ) ,Y ‘( t - T ) ) d W ( t ) ,  

Y ‘(6) = m ,  e e [ - r ,o ] .

Moreover, in Chapter 4, we shall also discuss by the variational representation

of functionals of Poisson random measure [15] the LDP for a class of neutral

functional SDEs driven by jump processes 
✓

d[Z'(t) -  G{Z\)] =  b(Zt)At +  ^-(a(Zt)dW(t)

< + f z $(Z£,x)(eNe '(dtdx) — i*r(dtdx)), te [0 ,T ] ,

Z ‘0 =  £ e  'T.

Let A  be a unbounded linear operator generating a contractive Co-semigroup 

{eM}t>0 on a Hilbert space H, b : H  x H  —* H, ${<p) =  1, the identity operator 

on H  and Z(t) := W(t)  a cylindrical a-stable process with a  £ (1,2). Assume 

further that C(</?) =  G(<p(—r)), F (<p) = A</?(0) +  &(<£>(0),</?(—r)) in (1.0.1). Then 

we can rewrite (1.0.1) as

( d{X(t)  -  G(X(t  - t ) ) }  = {AX(t)  + b(X(t), X{ t  -  r))}dt  + dZ{t),

\ x ( 6 )  = s(0) e u ,  0 e [ - r ,  0 ].
(1.0.4)

In Chapter 1.0.4, we shall discuss by the semigroup approach the strong conver­

gence of an explicit Euler-Maruyama (EM) of (1.0.4) based on time-discretization 

and spatial discretization.

The last Chapter is devoted to investigating the long-term behavior of an 

explicit EM, which is also based on time-discretization and spatial discretization, 

associated with the following SPDE

dX{t) = {AX(t )  +  b{X{t))}dt + a(X(t))dW{t), X(0) = x £ H,

where a(x) := a° + cr1(x),x  £ H  with <r° £ j£?(H ) and a 1 : H  —> J T h a t  

is, in (1.0.3), r  =  0 and F = b.
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Chapter 2 

Derivative Formula and Harnack 

Inequality for Degenerate 

Functional SDEs

In this chapter, by constructing successful couplings, the derivative formula, 

gradient estimates and Harnack inequalities are established for the semigroup 

associated with a class of degenerate functional SDEs.

2.1 Introduction

In recent years, the coupling argument developed in [2] for establishing dimension- 

free Harnack inequality in the sense of [85] has been intensively applied to the 

study of Markov semigroups associated with a number of stochastic (partial) 

differential equations, see e.g. [18, 29, 52, 54, 62, 63, 86, 88, 90, 91, 92, 101] 

and references within. In particular, the Harnack inequalities have been estab­

lished in [29, 91] for a class of non-degenerate functional stochastic differen­

tial equations (SDEs), while the (Bismut-Elworthy-Li type) derivative formula 

and applications have been investigated in [36] for a class of degenerate SDEs 

(see also [93, 102] for the study by using Malliavin calculus). The aim of this 

chapter is to establish the derivative formula and (log-)Harnack inequalities for 

degenerate functional SDEs. The derivative formula implies explicit gradient
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estimates of the associated semigroup, while a number of applications of the 

(log-)Harnack inequalities have been summarized in [89, §4.2] on heat kernel 

estimates, entropy-cost inequalities, characterizations of invariant measures and 

contractivity properties of the semigroup.

Let m e  Z+ and d e  N. For r 0 > 0, let ^  := C,([-7’o, 0]; R771 x Rd) be the 

space of continuous functions from [—ro,0] into Rm x Rd, which is a Banach 

space with the uniform norm || • | |C o n s i d e r  the following functional SDE on
Rm x  .

IdX(t) -  {AX(t)  + MY(t)}dt,  ^

dy(t) =  {Z(X(t) ,  Y(t))  + b{Xu Yt)}dt +  adB(t),

where B(t) is a d-dimensional Brownian motion, a is an invertible d x d-matrix, 

A is an m  x m-matrix, M  is an m  x d-matrix, Z  : Rm x Rd —► Rd and b : ^  —> Rd 

are locally Lipschitz continuous (i.e. Lipschitzian on compact sets), {Xt,Yt)t>0 

is a process on ^  with (X t,Yt)(6) := (X(t  + Q),Y(t + 9)), 6 e  [—ro, 0]. To ensure 

that Ptf  is differentiable for any bounded measurable function /  and any t > 0, 

we will need a rank assumption on A  and M  such that the noise part of Yt can 

also smooth the distribution of X t via the linear drift terms. More precisely, we 

will make use of the following Hormander type rank condition: there exists an 

integer number 0 < k < m — 1 such that

Rank[M, AM, ■■■ , AkM] =  m. (2.1.2)

When m = 0 this condition automatically holds by convention. Note that when 

TTi > 1, this rank condition holds for some k > m — 1 if and only if it holds for 

k = m — 1.

Let V, and denote the gradient operators on Rm x Rd,R m and Rd 

respectively, and let

Lf{x ,y )  :={Ax- \ -My,V{1)f{x ,y) )  + (Z(x,y),  V {2)f(x,y)}

+ i; (x,y) € Rm x R d, f €  C2(R”  x Rd).

Since both Z  and b are locally Lipschitz continuous, due to [79] the equation

(2.1.1) has a unique local solution for any initial data (Ao,>o) £ ^  To ensure
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the non-explosion and further regular properties of the solution, we make use of 

the following assumptions:

(A) There exist constants A, / > 0 and W  G C2(Rm x Rd) of compact level 

sets with W  > 1 such that

(Al) L W  < AVK |V<2)W| < \W \

(A2) m , v w w m ) )  <  A I W O I U  € e  S ’;

(A3) \Z(z) — Z(z')\ < \ \ z  — z'\W(z')1, Zj z' G Rm x Rd, \z — z'\ < 1;

( a * )  m  -  b ( e ) \  <  aiic - e HooIi^kol. e  e *, \ \ t  -  n u  < 1.

Comparing with the framework investigated in [36, 102], where b = 0, A = 0 

and Rank[M] =  m,d  > m, are assumed, the present model is more general and 

the segment process we are going to investigate is an infinite-dimensional Markov 

process. On the other hand, unlike in [36] in which the condition | V ^ W | < AW  

is not used, in the present setting this condition seems essential in order to derive 

moment estimates of the segment process (see the proof of Lemma 2.2.1 below). 

Moreover, if |VW| < cW holds for some constant c > 0, then (A3) and (AA) 

hold for some A > 0 if and only if there exists a constant A' > 0 such that 

|VZ| < X'W1 and |V6| < \ ' \ \W \L  hold on Rm * Rd and ^  respectively.

It is easy to see that (A) holds for W(z) = 1 + \z\2, I = 1 and some constant 

A > 0 provided that Z  and 6 are globally Lipschitz continuous on Rm x Rd and 

*€ respectively. It is clear that (Al) and (A2) imply the non-explosion of the 

solution (see Lemma 2.2.1 below). In this chapter we shall investigate regularity 

properties of the Markov semigroup associated with the segment process:

a / ( 0  =  E Yt), f  e  6  V ,

where 38b&) is the class of all bounded measurable functions on ^  and 

stands for the expectation for the solution starting at the point £ G c€.  When 

m  = 0 we have X t = 0 and *€ = {0} x =  ^2  := C([—ro,0];Rd), so that Ptf
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can be simply formulated as Ptf{Q — E*f(Yt) for /  G ^ ( ^ 2),^ £ ^2- Thus,

(2.1.1) also includes non-degenerate functional SDEs. For any h = (/ii,/i2) £ ^  

and z G Rm x Rd, let and V2 be the directional derivatives along h and 

z respectively. The following result provides an explicit derivative formula for 

Pt , T  > r0.

Theorem 2.1.1. Assume (A) and let T  > r0 and h =  (^1, ^2) € ^  be fixed. 

Let v : [0,71 —* R and a  : [0,T] —» Rm be differentiable functions such that 

u(0) = 1, a(0) =  0, v(s) = 0, o(s) =  0 for s > T  — ro, and

According to [78] (see also [93, Proof of Theorem 4.2(1)]), for m > 1 the condi­

tion (2.1.2) implies that Qt is invertible with

e~sAM4>(s)ds = 0, t > T  — rQ,hi(Q)+ /  e~ M4>{s)ds = 0, t > T - r 0, (2.1.3)

where (/>(s) := v(s)h2{0) + a(s). Then for f  G

V K P r m ) = & l f ( X T , Y T) f  (AT(s), (a 'J - 'd B W ) J ,  {S '*? (2.1.4)

holds for

N(s) := CVeMZ)(X(s),Y(s ))  + (VeM ^ , Y s) - v ' ( s ) h 2(0) -a ' ( s ) ,  s e  [0,T],

where

A simple choice of v is

To present a specific choice of a, let

t > 0.

(2.1.5)

for some constant c > 0.



C orollary  2.1.2. Assume (A) and let T  > r0. I f  (2.1.2) holds for some 0 < 

k < m — 1, then (2.1.4) holds for v(s) = and

=  - S(T( f - ~ ) " )+M ’e' SA' Q^  {hm+Jo r° ~ e ~ r A M h 2 { 0 ) d r

where by convention M  = 0 (hence, a = 0) if m  = 0.

The following gradient estimates are direct consequences of Theorem 2.1.1. 

C orollary  2.1.3. Assume (A). If  (2.1.2) holds for some 0 < k < m  -  1, then:

(1) There exists a constant C G (0,oo) such that

\ mWnPrfm < Cv/iV*(!){lM0)|(l + rT-_;o)i+lA1)
+ i r ( O | |L V T A ( l  +  r 0)( ||ft|U  + ^  J }

holds for all T  > ro,£,h £ and f  G ^ f ^ ) ;

(2) Let |V ^ W |2 < 5W hold for some constant 5 > 0. If  I G [0,1/2) then there 

exists a constant C G (0, oo) such that

|V*Pr / ( 0 |  < r { P r f  log /  -  (PTf ) io g P Tf } ( 0

. a a w f  i « i ’
r  ( \ ( T  —ro )A l {(T -  r0) A l}4fc+3

9 \ -2L-■4 \  1-21
-  1‘ i a w i - + ( | * + " "  ( i h t  v :1

holds for all r > 0, T > ro, ( , / i G ^  and positive f  G ^ ( (̂ ) ;

(3) Let |V ^ W |2 < 5W hold for some constant 6 > 0. If  I = |  then there exist 

constants C , C' G (0, oo) such that

|V*iV/(f)l < r { P r / lo g /  -  (P rf ) lo g iV /} (0

l .  l " l
{(T -  r 0) A 1}4*+3

2 |( ,l 'n M 2
+ I I ^ I U ( | N L  + Tp™ ^ ) }

do/ds /or

r > C I  l|h||„ +
{ ( T - r 0)A l} 2*=+V’

all T  > r0,£,h  € ^  and positive f  e



When m = 0 the above assertions hold with \\M\\ = 0.

According to [3], the entropy gradient estimate implies the Harnack inequal­

ity with power, we have the following result which follows immediately from 

Corollary 2.1.3 (2) and [36, Proposition 4.1]. Similarly, Corollary 2.1.3 (3) im­

plies the same type Harnack inequality for smaller \ \ h \ \ comparing to T  — vq.

C orollary  2.1.4. Assume (A) and that (2.1.2) holds for some 0 < k < m  — 1. 

Let |V(2)iy |2 < SW hold for some constant 6 > 0. If  I G [0, then there exists 

a constant C G (0, oo) such that

( P r i n t +  h) < P r / p ( ? ) e x p  £  I F K  +  sh)\\x ds

+ {"n " ~ + { ( T - r 0) A l } ^ J  V UMIL )  J. 

holds for all T  > r0,p > 1,4, h G #  and positive f  G 38\>{fio). I f  m  = 0 then the

assertion holds for ||M|| =  0.

Finally, we consider the log-Harnack inequality introduced in [74, 87]. To 

this end, as in [36], we slightly strengthen (A3) and (A4) as follows: there exists 

an increasing function U on [0, oo) such that

(A3') \ Z ( z ) - Z { z ,) \ < X \ z - z ,\{W{z,)l + U { \ z - z ' \ ) } ,  z, z’ G r  x

(.44') |6(C -  biff) I < All? -  r i U l W O L  + u (  Ilf -  f lU )} , 6 V.

Obviously, if

W{z)1 < c{W(z’)‘ +  U(\z -  z'|)}, / e r x

holds for some constant c > 0, then (A3) and (A4) imply (A3') and (A4') 

respectively with possibly different A.

T heorem  2.1.5. Assume (Al), (A2), (A3') and (A4'). If  (2.1.2) holds for some 

0 < k < m — 1, then there exists a constant C G (0, oo) such that for any positive 

f  G 3$bif&\ T  > ro and 4, h G ,

P rlo g /(£  +  h) -  log Prfii)  <  C 1 j  IIW'K +  (c^ll^lloo +  ^  ^  ^ )

|ft(0)|» l|M flh (0 )p  1
( T - r o ) A l  {(T — r 0) A l}4fc+3 J 

I f m  = 0 then the assertion holds for  ||M || =  0.



For applications of the Harnack and log-Harnack inequalities we are referred 

to [89, §4.2]. The remainder of this chapter is organized as follows: Theorem

2.1.1 and Corollary 2.1.2 are proved Section 2, while Corollary 2.1.3 and Theorem 

2.1.5 are proved in Section 3; in Section 4 the assumption (A) is weakened for 

the discrete time delay case, and two examples are presented to illustrate our 

results.

2.2 Proofs of Theorem 2.1.1 and Corollary 2.1.2

Lemma 2.2.1. Assume (Al) and (A2). Then for any k > 0 there exists a 

constant C > 0 such that

E< sup W'(X(S),y(s))*<3||VK(0l^ec ‘, t > 0, £ e V
—T Q < S < t

holds. Consequently, the solution is non-explosive.

Proof. For any n > 1, let

r„:= inf{te[0,T] : |X(i)| +  |K(t)| > n}.

Moreover, let

£{s) := W {X ,Y ) ( s ) ,  s > —r 0.

By the Ito formula and using the first inequality in (Al) and (A2), we may find 

a constant C\ > 0 such that

f t A T n

C(t A Tn)k =  £(0)fc +  k /  f(s)t- 1(V<2)lV(A’>y, )(3),(7dB(s)>
Jo

f ' tA T n  (

+  k j  ( ^ - ' { L W i X ^ s )  +  (b(Xs,Ys)t V W w ( X , Y ) ( s ) )

+ -  i ) < ( « ) - V * v % ( x , y ) ( s ) | J } d s
/*tArn r t A T n

< l(0)k + k i(s)‘- 1(V(2|lf(A,r)(8),<7d5(s)) +Ci  /  sup t(r)kAs. 
Jo  Jo  re[-ro> « ]

(2 .2 .1)

Noting from the second inequality in (Al) and the Burkholder-Davis-Gundy 

inequality, we obtain that
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fSATn / pt \
kWf sup /  £(r)*-1(V<2>W'(.X-,y)(a),<7dB(r)) <  C2E« /  t(s A rn)2*ds

sG[0,t] J O  \ J  0 /

< C2E* |  (  sup̂  £(s A rn)*) ^ J  £(s A rn)fcds^ |

1 C2 f l
< -E* sup £(s A rn)k +  ~~E^ / sup £(r A rn)feds

2  sG[0,f] 2  Jo  rG[0,s]

for some constant C2 > 0. Combining this with (2.2.1) and noting that (Xo, Y0) = 

£, we conclude that there exists a constant C > 0 such that

E« sup f(aA T „)*<3 ||W '(0 ||Jo -l-CE{ [  sup £(s)*ds, t >  0.
- r 0< s < t  Jo  sG[—r0,t]

Due to the Gronwall lemma, this implies that

E€ sup £(sATn)k < 3||VF(£)||^ec t, £ > 0 , r a > l .
—ro <s <t

Consequently, we have rn |  oo as n |  oo, and thus the desired inequality follows 

by letting n —► oo. □

To establish the derivative formula, we first construct couplings for solutions 

starting from £ and £ + eh for e 6 (0,1], then let e —> 0. For fixed £ = 

(£i,6)>^ =  (hi ,h2) G let (X(t) ,Y(t) )  solve (2.1.1) with (A’ojVo) = and 

for any e G (0,1], let ( X £(t ) ,Y£(t)) solve the equation

d X £(t) =  {A X £(t) +  M Y £(t)}dt,

dY £(t) = {Z(X(t) ,  Y(t)) +  b(Xu yt)}d« + <rdB(t) (2-2.2)

+e{v'(t)h2( 0) +  a'(£)}d£

with (Xo,Vo) — £ + eh. By Lemma 2.2.1 and (2.2.3) below, the solution to

(2.2.2) is non-explosive as well.

Proposition 2.2.2. Let(j)(s) := v(s)h2(0) +  <a(s), s G [0,T], and the conditions 

of Theorem 2.1.1 hold. Then

( X £(t ) ,Y£(t)) = (X(t) ,Y(t))-heQ(t) ,  e , t >  0 (2.2.3)

12



holds for

I i f  t < 0,ew :=(©«(*), e<2>(«)):=̂
^(e^/iifO) 4- Jq e^~r ÂM4>(r)dr, (f)(t)), i f t >  0. 

In particular, (X ^ ,Y f )  = (X t ,Yt )•

Proof By (2.2.2) and noting that u(0) =  1 and v(s) = 0 for s > T  — ro, we have 

Y £(t) =  y(f) + £(j)(t) and

X £(t) = X(t )  + eeMhi{0) +  £ [  e{t~s)AM(l)(s)ds, t > 0.
Jo

Thus, (2.2.3) holds. Moreover, since a(s) = v(s) = 0 for s > T  — ro, we have 

0 (2)(5) =  <̂ (5) =  o for s > T  — ro. Moreover, by (2.1.3) we have © ^ (s) =  0 for 

s > T  — ro. Therefore, the proof is finished. □

According to Proposition 2.2.2, we have (X^,Yf.) = (X t ,Yt ). Noting that 

(.X q,Yq ) = £ + eh, if (2.2.2) can be formulated as (2.1.1) using a different 

Brownian motion, then we are able to link P r f ( 0  to Prf(^d-£h) and furthermore 

derive the derivative formula by taking derivative w.r.t. e at £ = 0. To this end, 

let

$ £(s) = Z(X(s) ,  Y(s)) -  Z ( X c(s), Y' (s))  

+ b(Xs, Y.) -  b(X ‘„  Ys‘) +  e{t)'(s)/i2(0) +  q ' (s ) }.

Set

R e(s) =  exp

and

— f  (a 1<fr£(r),dB(r)) — f  \a 1<b£(r)\2dr 
Jo  2  Jo

B £(s) = B(s) + f  cr 1$ e(r)dr.
Jo

Then (2.2.2) reduces to

d X £(t) = { A X £(t) +  M Y £{t)}dt, 

d Y £(t) = { Z ( X £( t ) ,Y £( t ) ) + b ( X f , Y £)}dt + adB£(t).

According to the Girsanov theorem, to ensure that B £(t) is a Browanian motion 

under Qe := R£(T)F, we first prove that R£{t) is an exponential martingale.

13
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Moreover, to obtain the derivative formula using the dominated convergence 

theorem, we also need ^ ~ 1}ee(o,i) t°  uniformly integrable. Therefore, we 

will need the following two lemmas.

Lemma 2.2.3. Let (A) hold. Then there exists £q > 0 such that

sup E[££(s) Iog££(s)] < oo, 
s€[0,T],ee(0,eo)

50 that for each £ G (0,1), (i?£(s))se[0ir] is a uniformly integrable martingale. 

Proof. By (2.2.3), there exists £q > 0 such that

£0|© W I< 1 , t e [ - r 0,T\. (2.2.5)

For any £ G [0,£o]> define

rn := inf{t > 0 : |X (i)| +  \Y{t)\ + \Xe(t)\ + |Y£(*)| > n}, n > 1.

We have rn |  oo as n T oo due to the non-explosion. By the Girsanov theorem, 

the process {Re(sArn)}s€[0,r] is a martingale and { £ £(s)}se[o,TATn] Is a Brownian 

motion under the probability measure Q£)n := R6(T A rn)F. By the definition of 

R£(s), we have

E[£e(5 A rn) log Re(s A rn)\ =  EQe n[log££(5 A rn)]
i pTATn (2.2.6)

< ^ Qe, / o \ a ~ ^ ( r ) \ 2dr.

By (2.2.5), (A3) and (A4),

< ce2\\W(Xl,Y!) \& ,  (2.2.7)

holds for some constant c independent of e. By the weak uniqueness of the 

solution to (2.1.1) and (2.2.4), the distribution of (A’e(5),yre(s))a€[o17’Ar„] under 

Qe>n coincides with that of the solution to (2.1.1) with (J^o^o) = £ + eh up to 

time T  A rn, we therefore obtain from Lemma 2.2.1 that

E [££(sA rn) log££(sA rn)] < c|| W (£+ £/i)||^, f  ectdt < oo, n > 1,£ G (0,e0).
Jo

Then the required assertion follows by letting n —> oo. □
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Lemma 2.2.4. If  (A) holds, then there exists £q > 0 such that

^ ( R £{ T ) ~  1 R£{ T ) - l \
sup E I ------------- log-------------  < oo.

e€(0,eo) V £ £ J
Moreover,

lim RC{T) ~  1 -  f T ( ( V eMZ ) ( X ( s ) ,Y ( S))
£~ °  e  Jo  ( 2 . 2 . 8 )

+ (Ve.& )(* „ n )  -  «'(s)/i2(0 ) -  a '(s), (<r*)-1dB(s)).

Proof. Let So > 0 be such that (2.2.5) holds. Since (2.2.8) is a  direct consequence 

of (2.2.3) and the definition of R‘ (T), we only prove the first assertion. By [36] 

we know that

RC(T) -  1 R‘ (T) -
£

Since, due to Lemma 2.2.3, { B £ ( t ) } t e\o,T] i s  a Brownian motion under the prob­

ability measure Qe R£(T)P, and

logR £(T) = - J ^  (<7_1$ e(r),dJ3(r)) j  |cj_14>£(r)|2dr

= ~Jq (<7_1$ eM>dJ3€(r)) +  |cr-14>£(r)|2dr,

it follows from (2.2.7) that

E ( R‘ { T ) - l  R‘ { T ) - l
\  £ E

< e ( 2 - a , .

/  7"1 v 2 / ^

(<T_1$E(r )>d'Be(r ) ) )  + ^ E q ,( /  k _1$ 'M |2dr 

<4 / EQ,|<T-1<f-£(r)|2dr+  ̂/ EQ,|<7-1$t(r)|4dr
£ Jo £ Jo

[  \t.\\W(X‘r,Yr‘)\\*<ir
Jo

»T
<  C

holds for some constant c > 0. As explained in the proof of Lemma 2.2.3 

the distribution of (A f, y / ) sG[o,T] under Qe coincides with that of the segment 

process of the solution to (2.1.1) with (Ao, Yo) = €+£h, the first assertion follows 

by Lemma 2.2.1. □
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Proof of Theorem 2.1.1. Since Lemma 2.2.3, together with the Girsanov theo­

rem, implies that {j9e(s)}sG[o,r] is a Brownian motion with respect to Qe := 

R £(T)F, by (2.2.4) and (XT,YT) = (X!f,Yf)  we obtain

P r f t i  + eh) = EqJ ( X ^  Y ‘) = E{R£(T ) f ( X T, YT)}. (2.2.9)

Thus,

PTf { t  + eh) -  PTf ( i )  = ER£(T ) f (X T, YT) -  E f ( X T, YT)

= E [ ( R ' ( T ) - l ) f ( X T,YT)}.

Combining this with Lemma 2.2.4 and using the dominated convergence theo­

rem, we arrive at

V/,Pr/(£,r?) = lim + ^ )  -  P r /(C

[.m E [ ( f l* ( r ) - i ) / ( x T,y r )]
£->0 £

*T

e | f(XT,YT)Ĵ  {A rW .fcT T 'dSW }!.

□

Proof of Corollary 2.1.2. It suffices to verify (2.1.3) for the specific v and a. 

Since when m = 0 we have hi = M  =  0 so that (2.1.3) trivially holds, we only 

consider m > 1. In this case, (2.1.3) is satisfied since according to the definition 

of 4>(s) and a(s) we have for t > T  — ro,

»t pT—rof e sAM^>(s)ds = f e sAM(f)(s)ds 
Jo Jo

r T - r o  /  p T - r 0

= J  v(s)e-’AMh2{0)ds -  QT- n QT-rAhi(0) + j  v(s)e-“AMh2(0)ds

= —*i(0).

□

2.3 Proofs of Corollary 2.1.3 and Theorem 2.1.5

To prove the entropy-gradient estimates in Corollary (2) and (3), we need the 

following simple lemma which seems new and might be interesting by itself.
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Lem m a 2.3.1. Let £(t) be a non-negative continuous semi-martingale and let 

t ) be a continuous martingale with ^#(0) = 0 such that

di{t) < dJ%(t) + cttdt ,

where c>  0 is a constant and £t := sups€[0,t] ^(s)- Then

Eexp f l A  < erf<0>+1(Ee2‘3<-*><r >)1/2, T , e >  0. 
Jo  JTel+cT

Proof. Let JCt := supse[0 t] M{t) .  We have

^£t + c f  I sds > I t — £{0).
Jo

Thus,

£ r  -  m  Z ^ T+j I t,d t -  (1 -  e-<I+- M 0 )

=  J  +  c f  ^Sds^ 1  — ( l  — e _ *1+cT*)^(0)

= £ e-<r' ‘+c),d ^ i  + £ e- {c+T~l)tl d t -  (T-1 + c) £ %  + cj^ I.ds'j jd t 

-  (1 -  e“(1+<!r))«(0)

< M r  + £  e - {c+T~l)t{ c i t -  (T-1 + c)(e, -  e(0)) jd t -  (1 -  e-<1+cT>)̂ (0)

V + 5 f /  ^ d t

Combining this with

E e ^ t  <  E e ! + e ^ ( T )  <  e ( E e * 2( ^ ) ( T ) £ / 2 ^

we complete the proof. □

C orollary 2.3.2. Assume (A) and let |V ^ W |2 < 5W hold for some constant 

S > 0. Then there exists a constant c > 0 such that

E* exp 

< exp

L2||«
o , t W'fcffl) ! r0\ \ w m <

|<r||25Te1+cT 2||cr||2JT2e2+2cT_
, T  > r 0.
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Proof. By (A) and the Ito formula, there exists a constant c > 0 such that

dW(*,y)(s) < <v<2>VK(x,y)(s),<7dB(s)) + c||iy(x.1y,)||00ds.

Let

^ ( t ) : =  [  (V™W(X,Y)(s),odB(s)) ,  l(t) := W ( X ,Y ) ( t ) , 
Jo

and let e = (2||cr||2£T,e1+cT)~1 such that

=  2|kii v .Te1+cT

Then by Lemma 2.3.1 and |V ^ W |2 < 5W,  we have

£ I - .. - ^ 0 ) + l ^ e2£2<^)(T)jl/2

1/2

E* exp
Te1+cT

< e1+£‘(0)^E«e2£2lkl|2«/„r r.d^ '  = e 1+',(0) f e e 3 ;r f ^ ' J'»r ‘““y '

By using stopping times as in the proof of Lemma 2.2.1 we may assume that

exp
Te1+cTfJo

hdt < oo

so that

E* exp /Jo
ltd t < e2+2d(0)

Te1+cT
This completes the proof by noting that

•T r „ | |W K ) H
2||(t||2<5T

OO £

2\\a\\28T2e2+2cT Te l+cT Fl t d t .
Jo

□

Proof of Corollary 2.1.3. Let v and a  be given in Corollary 2.1.2. By the semi­

group property and the Jensen inequality, we will only consider T  — ro € (0,1].

(1) By (2.1.5) and the definitions of a  and v , there exists a constant C > 0 

such that

W(s)h2{0) +  ot(s)\

< .  € [0,T],

|e(5)| < c |M O )IO  + p ^ j L i ) .  s 6 (°>r ]- 

II M|| • |MQ)K

(2.3.1)

II©s oo —<c + { T - r 0)2k+1) '  S 6 [°’T1-

18



Therefore, it follows from (A3) and (A4) that

+ c ( i w , + ||M|| • |h(0)| (2.3.2)

(T — r0)2fe+1

holds for some constant C > 0 . Combining this with Theorem 2 .1.1 we obtain

|v 4 iV /« ) l  < c ^ p i o ( e ( j  |w (s)|2ds

< C v ^ f f l { l M o ) | ( i  +  f r ^ L )

+

1 + ( T -  ro)2k+i

\ m  ■ w ) \ \ {  f TE i m X 3 M dSy y
( T - r 0y M J \ J 0

This completes the proof of (1) since due to Lemma 2 .2.1 one has 

& \ \ W ( X „ Y . ) C  < 311^(011^°*, s € [0,T]

for some constant C > 0.

(2) By Theorem 2.1.1 and the Young inequality (cf. [3, Lemma 2.4]), we 

have

|V „ P r/l©  < r{PTf  log f  -  (PTf) logPTf } ( 0

+ t P t /(?) logEfe  ̂ r  > o.

Next, it follows from (2.3.2) that

(2.3.3)

E* exp

exp

r Jo 
2||^_1||2 rT

< exp Ci\h(0)\
»•- JO

2

/  I JVC®)!5Jo
ds

, \W \?  \
ro (T -  r0)ik+3J

x E^ exp  i ( \\ui|2 , 1|M 1121MQ)12
,2 \  Wn \\oo t -  p  _  r o )4fc+2

C l
r 2

) J  IIW ( X S,

(2.3.4)

for T  G (rojl + 7"o] holds for some constant C\ G (0,oo). Since 21 G [0,1) and 

T  < 1 +  ro, there exists a constant C2 G (0,0 0 ) such that
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2 .  21oo
2 ||<7 ||26T2e2+2oT +  C2/Jt̂  A l )  1-21, /3 > 0.

Taking

and applying Corollary 2.3.2, we arrive at 

'T
E* exp

x [ Ê  e

0 J  ||W (X.i y,)||“ d« < exp c 2/3t^ (]!M “ a i ) ~ ‘

1 r  WW&.'YJWnds2||<7||m P e* ™  J0

IIAII

< exp g { p i l L l l ^ ) I U  + ( \ M l  + ( ^ r  v i)

for some constant C3 E (0,oo) and all T  E (r0, 1 +  r 0]. Therefore, the desired 

entropy-gradient estimate follows by combining this with (2 .3 .3 ) and (2 .3 .4 ).

(3) Let C' > 0 be such that r > C ' ( ||/i||oo + ^ implies

r.2

1

\" ( T - r 0)4k+2J ~ 2\\<j \\28T2q2+2cT'

so that by Corollary 2.3.2

E€exp 2 , HM||2|h(0)|
rv* I*

< ^E^ exp

< exp

(T -  r0)4fc+2 

1

Ys)\\2Jods

2\\a\\2ST2e2+2cT
c \ m m <

) J o  l lW (X ”
/  ||w (x„y .)IU d « ' \  ° j

Jo

)
2 . IOT|ft(0)|
rv-4 Ir* \" (T — r0)4k+2

holds for some constant C > 0. Then proof is finished by combining this with

(2.3.3) and (2.3.4). □

Proof of Theorem 2.1.5. Again, we only prove for T  E (r0, 1 +  r0]. Applying 

(2.2.9) to e = 1 and using log /  to replace / ,  we obtain

P r l o g f { Z  +  h ) = E { R l ( T ) l o g f { X T , Y T)}

< lo g /’r / t O + E ^ 1 log fl'K T).
(2.3.5)
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Next, taking e — 1 in (2.2.6) and letting n |  oo, we arrive at

J o

By (A3'), (A4'), (2.3.1) and the definition of we have

(T — r 0) 2 (T — r0)4(fc+1)

for some constant C\ > 0. Then the proof is completed by combining this with

(2.3.5), (2.3.6) and Lemma 2.2.1 (note that (X^fs), T ^ s)) under (Qfi solves the

2.4 Discrete Time Delay Case and Examples

In this section we first present a simple example to illustrate our main results 

presented in Section 1, then relax assumption (A) for the discrete time delay 

case in order to cover some highly non-linear examples.

Exam ple 2.4.1. For a  E C{[—ro,0]; M), consider functional SDE on M2

fdX(*) =  - W * )  + y(*)}d*

( d r ( t )  =  dB{t) + { -  e Y 3(t) +  Y(t  -  ro) + f ° ro a(9)X(t  +  0)dtf}d«

with initial data £ =  (£i,£2) G C([—ro ,0];R2), where e > 0 and n E N are 

constants. For 2: = (x,y) E R2, let W(x,y) = 1 + \x\2 + \y\2 and set Z{z) = — y3 

and &(£) = f®rQ a(6)£i(6)d9 +  £2(—̂o)- By a straightforward computation one 

has for x, y E K

LW(x, y) = 1 — 2x(x + y) — 2ey2n < 2>W(x, y) 

and for £ E C([—r 0, 0];R2)

same equation as (Xs, Ŷ ,) under P). □

(&(O,v(2)vn«(0))}<2| f° a(e)U9)de + u-ro) |6 (o)|
J —ro
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Then conditions (Al) and (A2) hold. Next, there exists a constant c > 0 such 

that for any z = (x,y) and z' = (x\  y1) G R2,

|Z(z) -  Z (z ')| = sly3 -  y'3\ < c\y -  y'\(\y'\2 + \y ~ v ' W  

Finally, for f  e C ([ - r0,0];K2),

m ) - b ( 0 \ < V 2 (  f  | a ( 0 ) | d 0  V l ) | | € - C ' l l o o -
J -ro

So, (A3) holds for / — 1 whenever \y — y'\ < 1 and (A4) holds for any I > 0. 

Moreover, (A3') and (A4') hold for U(\z\) = \z\2,z  G R2. Therefore, Theorem 

2 .1.1 , Theorem 2.1.5 and Corollary 2.1.3 hold.

To derive the entropy-gradient estimate and the Harnack inequality as in 

Corollary 2.1.4, we need to weaken the assumption (A). To this end, we consider 

a simpler setting where the delay is time discrete. Consider 
/

^ X ( t )  = {AX(t)  + MY{t)}dt,  

dY{t) =  Z(X(t) ,Y( t) )  +  b(X(t  -  r 0), Y ( t  -  r0))dt +  crdB(t),\

with initial data £ G where Z, 6 : Rm+d —» Rd. If we define &(£) = &(£(—ro)) 

for £ = (£1,^2) € then equation (2.4.1) can be written as equation (2.1.1). 

For (x , y ), {x\ y') G Rm x Rd, define the diffusion operator associated with (2.4.1) 

by

X W { x ,y , x ' , y ' )  = LW(x ,y ) + (b{x ' ,y ' )M 2)W(x,y)).

T heorem  2.4.2. Assume that there exist constants a , / ? , 7  > 0 with j3 > 7 , 

functions W  G C2(Rm+d) with W  > 1 and U G C'(Rm+d;R +) such that for 

(,x , y ), (x ' , y') G Rm x Rd

& W { x ,y \ x \ y ' )  < a{W(x,y )  + W(x',y ')} -  pU{x,y)  + 7 U(x\y').  (2.4.2)

Assume further that there exists v > 0 swc/i that for z = (x,y),z '  = {x',y') G 

Rm+d with \z — z'\ < 1

|Z(z) -  Z(z' ) |2 V  |6(z) -  b{z')|2 < i/|z -  z'l2W(z'). (2.4.3)
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Then for 5 := (ar0 + l)||Jy(£)||oo + 7fo||tl(0lloo and t >  0

E(W(X{t) ,Y ( t) )  < Se2at, (2.4.4)

and

|V*ft-/«)| < c  11*(0) | (l + (r_ g L Al) +r-0i ||H'(0||i||ft||oo

+ |f t ( 0 ) |^ ( T A ( l  +  r 0) ) ( l  +  p r ^ A L — ) }  

(2.4.5)

for all T  > r0,£ ,/i G and f  G where C > 0 is some constant.

I f  moreover there exist constants K , \ i  > 0,z =  1,2,3,4, with \ i  > X2 and 

A3 > A4, functions W  G C2(Rm+d) with W  > 1 and U G C'(Rm+d;R+) such that 

for (x, y ), (x', y') G Rm x Rd

^ M i ^ < K - W ( x , y) +  W , V )
w ix >y) (2.4.6)

- \ 3U(x,y) + \ 4U (x \y ' )y

then there exist constants 5o,C > 0 such that for r > Sq/ ( T  — ro)2fe+1,£, h G ^

and positive f  G ^ b (^ )

iVfcPr/IK)

< r{P T/ l o g /  -  (PTf )  log P r /} ( 0

+  ^  "‘ " - ( f f T Z u i  +  U T - l Z ’ n ^  +  " r ( a l - ' " )2r \ 11 1100 V(T — ro) A 1 {(T -  r0) A l} 4̂  ^  ^ llo o 'u ; (2 4  ?)

+ ( V o l W « l l ~  +  V oll& K JIU

+ / c r  +  iog iyK(o))'

Proof By the ltd formula one has for any t > 0

E*W(X(t) ,Y(t ) )  < W(£(0)) +  aE« f  {VF(^(s),y(s)) + W ( X (s  -  r0),y(s -  r0))}d<
Jo

- f m f  [  U(X(s),Y{s))ds + j E ( f  U ( X ( s - r 0) , Y ( s - r 0))ds 
Jo Jo

/0 rO
W (X(s) ,Y(s) )ds  + ~f U(X(s),Y(s))ds

■ro J —ro

+ 2aE5 /  VK(X(s),y(s))ds 
Jo

< 5 + 2aE* [  W(X(s),Y(s)ds.
Jo
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Then (2.4.4) follows from the Gronwall inequality.

By Theorem 2.1.1, for T  — r0 G (0,1] and some C > 0 we can deduce that

j________ /  f T  \  1/2
|VAF r /K ) |< C 'v/ f t 7 5 (? )(E 4 yo |Af(s)|2dS)  ,

where for s G [0, T]

N(s)  := (We(s )Z )(X(s) ,Y (s ))HVeis-ro)b)(X(s -ro)^Y(s -ro)) -v \s )h2(0 ) -a ,(s).

Recalling the first two inequalities in (2.3.1) and combining (2.4.3) yields that 

for some C > 0

|VhP r /(« | < c ^ n 7 H T ) l ( J o + a'(s)|2ds)

+  [  \Q(s)\2W (X (s ) ,Y ( s ) )d s )  '

+  ( &  £  \ e ( s - r 0)\2W ( X ( s - r o ) , Y ( s - r o ) ) d s ^  }

(T -  r0)2fc+

+ i ft( ° ) i ( i + ( r 3 ^ L )  ( £  1/2

This, together with (2.4.4), leads to (2.4.5).

Due to (2.3.3) and (2.3.4) we can deduce that there exists C > 0 such that 

for arbitrary r  > 0 and T  — r0 G (0,1]

I V f t P r / K O  <  r { P T / l o g /  -  (Prf) l og  Prf  } ( f )
rPTf(0 f c\hm * ( i  \\Mf  \  c | m i v y ( Q | U m  ,

2  \  r2 \ T - r 0 { T - r 0)ik+3J r2 (2A 8)

+ iog ^ exp r ^ d + i i ^ i i 2;: ; : : ; 2 ^/  n ' ( i w , y ( s ))ds
Jor2(T -  r 0)4fe+ 2 

Moreover, since for s G [0, T\

W(X(s) ,Y(s))exp ( -  r ^ n X ( r ) , Y ( r ) , X ( r - r 0) , Y ( r - r 0)) ;
1 W  W '  \  i o  W (X(r) ,Y(r) )

is a local martingale by the Ito formula, in addition to W  > 1, we obtain from
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(2.4.6) that

exp

< E  ̂exp

< E  ̂exp

(A, -  A2) [T W(X(s),Y(s))ds  -  A2r 0 | |W (Olloo  
Jo

j  (a,VK(A:(s), Y ( s)) -  A2W (X(s  -  r0), K(s -  r0)))ds

K T fJo
S?W(X(s),Y(sy ,X(s  -  r0),Y(s  -  r0)) ds

- A  3 /  U(X(s),Y{a))da + Xt [  U{X(s -  r0) ,Y(s  -  r0))ds 
Jo Jo

(2.4.9)

<exp ( \ t r0\\U(Z)\\oo + K T )&

x  exp - /Jo

W{X{T),Y(T))

J?W(X(s),Y(s);  X(s  -  r0), Y(s -  r0)) ds
r0 W(X(3),Y(8))

< exp(A4ro||C/(C)IU + KT)W{£$))•

Combining (2.4.8) and (2.4.9), together with the Holder inequality, yields (2.4.7).

□

The next example shows that Theorem 2.4.2 applies to the equation (2.4.1) 

with a highly non-linear drift.

Exam ple 2.4.3. Consider delay SDE on R2 

d X(t) = ~{X( t )  + Y{t)}dt

dY{t) = dB(t) +  { -  Y 3{t) + i y 3(< -  r0) + ^X(t) -  y(t)}d<

with initial data £ G C([-ro,0];R2). In this example for 2 = (x,y),z'  = {x\y') G 

R2 let Z(z) = \ x  — y — y3 and b(z') = |y /3. For W(x,y) = 1 +  x2 + y4 it is easy

to see that

J f  W(x, y;x’, y') =  —2x(x + y) +  4y3 {^x  -  y -  y3 + ^y'3)

< - x 2 + y2 -  4y4 -  4y6 4- y3y'3 + 2y3x

< y2 -  4y4 -  ^y6 +  ^y'6.

Then (2.4.2) holds for (3 = § , 7  = \  and U(x,y) = y6. Moreover for z = 

(x, y),z' = (x', y') G R2 there exists c > 0 such that

|Z(z) -  Z(z')l2 V |b(z) -  b(z')|2 < c\z -  z'\2{\y -  y' |4 + |y'|4)-
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Thus condition (2.4.3) holds, Therefore, by Theorem 2.4.2 we obtain (2.4.5).

To derive (2.4.7), we take w(x,y) = \ ( x 2 + yA) +  j$xy and set W(x,y ) = 

exp(w(x,y) — infw). Compute for {xyy ,x \ y ' )  £ R4

i f w  _ 1
—j — (x ,y ,x \y ' )  =  j f l o g W ( x , y )  +  - \dy log W \2(x, y)

W  4

-  ~(lx + Yoy) (x + y) + (yS + hx)( l x ~ y - y3 + M
+ V  +  - ( y3 + -  z ) 2 

2 2 \  10  /
< 0.5((0.35)2/e +  1.4) 2 -  (0.2325 -  t)x2 

-  0.5y4 -  0.175y6 +  0.1375j/6,

where e > 0 is some constant such that 0.2325 — e > 0. Then condition (2.4.6) 

holds. Therefore, by Theorem 2.4.2 we obtain (2.4.7), which implies the Harnack 

inequality as in Corollary 2.1.4 according to [36, Proposition 4.1].
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Chapter 3 

Bismut Formulae and 

Applications for Functional 

SPDEs

In this chapter, by using Malliavin calculus, explicit derivative formulae are 

established for a class of semi-linear functional SPDEs with additive or multi­

plicative noise. As applications, gradient estimates and Harnack inequalities are 

derived for the semigroup of the associated segment process.

3.1 Introduction

The Bismut-type formulae, initiated in [7], are powerful tools to derive regular­

ity estimates for the underlying Markov semigroups. The formulae have been 

developed and applied in various settings, e.g., in [20] for SPDEs driven by cylin­

drical Wiener processes and [25] for semi-linear SPDEs with Levy noise, using 

a simple martingale approach proposed by Elworthy-Li [28]; in [89] for linear 

stochastic differential equations (SDEs) driven by (purely jump) Levy processes 

in terms of lower bound conditions of Levy measures; in [4, 36] for degenerate 

SDEs with additive noise, using a coupling technique; in [31, 69, 93, 102] for 

degenerate SDEs using Malliavin calculus.

However, there are few analogues for functional SPDEs (even for finite-
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dimensional functional SDEs) with multiplicative noise. In this chapter we aim 

to establish explicit Bismut-type formulae for a class of functional SPDEs with 

additive or multiplicative noise. Noting that for functional SDEs the martingale 

method used in [28] does not work due to the lack of backward Kolmogorov equa­

tion for the segment process, and the coupling method developed in [2, 4, 36, 92] 

seems not easy to apply provided the noise is multiplicative, we will mainly make 

use of Malliavin calculus.

Let (# ,(•,•), II • IIh ) he a real separable Hilbert space, and {W(t))t>o a 

cylindrical Wiener process on H  with respect to a complete probability space 

(£2, «^,P) with the natural filtration {<^t}t>o- Let J£(H)  and be the

spaces of all linear bounded operators and Hilbert-Schmidt operators on H  re­

spectively. Denote by || • || and \ \ - \ \h s  the operator norm and the Hilbert-Schmidt 

norm respectively. Let r  > 0 be fixed and let ^  := C([—r, 0] —> H), the space of 

all //"-valued continuous functions /  : [—r, 0] —» // ,  equipped with the uniform 

norm | | / | | := sup_r<0<o \\f(0)\\H- For a map h : [-r ,o o ) —► H  and t > 0, let 

ht G ^  be the segment of h{t), i.e. ht{9) = h(t + (9), 6 6  [—r, 0].

Consider the following semi-linear functional SPDE 
/

d X(t)  = {AX(t)  +  F{X t)}dt +  a(X(t))dW(t) ,
< (3.1.1)
x0 = £e<if,V

where

(Al) A is a linear operator on H  generating a contractive Co-semigroup {etA)t>o-

(A2) F  : ^  —> H  is Gateaux differentiable such that V . /  : i f  x i f  -+ H is 

bounded on ^  x ^  and uniformly continuous on bounded sets.

(A3) a : H  —> ^ ( H )  is bounded and Gateaux differentiable such that V .<7 : 

H  x H  —> J£h s {H) is bounded on H  x H  and uniformly continuous on 

bounded sets, and a(x) is invertible for each x  G H.

(A4) f* s _2a ||eSi4<j(0)||^iSds < oo holds for some constant a  G (0, | )  and all 

t > 0 .
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For specific examples of A  and F  satisfying (Al), (A2) and (A4) we may take 

e.g. A  a negative definite self-adjoint operator with discrete spectrum {—An}n>i 

such that ijr < 00  holds for some constant S G (0,1), a = I  and the

Nemytskii type non-linear drift (see [73, Section 9.3.4]) F (f) =  / ° T/ ° f ( s ) d s

for some /  G R).

Recall that a mild solution is a continuous adapted process (X( t ) ) t>-T on H

such that

* ( t)  = e Mf ( 0 ) +  / e^ - 3)AF{Xs)ds + /  e(‘" sM0-(A:(s))dVF(s), * > 0

with the initial condition Xo(9) — X(6) = £(9) for 9 G [—r, 0]. By (Al) — (A4), 

equation (3.1.1) has a unique mild solution (see Theorem 3.4.1), denoted by 

(X^(£))t>o, the solution with Xq = £ G . Let

where ^ ( # )  is the class of all bounded measurable functions on clo. We remark 

that due to the time-delay the solution (X^(t))t>0 is not Markovian, but its

Markov semigroup on ^ ( ^ ) .

The following two theorems are the main results of this chapter, which pro­

vide derivative formulae for Pt with additive and multiplicative noise respec­

tively.

T heorem  3.1.1 (Additive Noise). Assume that (Al)-(AA) hold with constant 

a G Jzf(H). Then for any T  > r  and C l -function u : [0,0 0 ) —> R such that 

u(0) =  1 and u(t) = 0 for t > T  — r,

Ptfd) ■■= e f(xl),  i > 0, 5 e s f , / e

segment process (Xt)t>o admits the strong Markov property, so that Pt is a

(V ,P r /)(C  =  E

(3.1.2)

holds for all £,77 G & and f  G Cliftf), where
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T heorem  3.1.2 (Multiplicative Noise). Assume that (A1)-(A4) hold. Le tT  > t  

and C l -function u : [0, oo) —> R be such that u(t) > 0 for t G [0, T  — r), u(t) = 0 

for t > T  — r, and

6P \= inf {p + (p — l)u '(t)} > 0 
y t€(o.r-T] L J

hold for some p > 1. Then for any £,77 G c€:

(1) The equation

dZ(t) =  {AZ(t )  + ((V Zt)P(X«) -  f $ ) i (0iT_T)(t)}di

+ ((V z(1)<7)(X«(t)))dlV(t), (3.1.3)

^0 = 77,

has a unique solution such that Z(t) = 0 for t > T  — r.

(2) If  \W-\^)\\ < c(l + \\ ■ Ŵ ) holds for some constants c,q > 0 , then

V „ P r/« )  =  E ( / ( * « )  £  (<r-1( * < ( t ) ) { f | | l , 0,r -T)(t)

holds for f  G

A simple choice of u for Theorem 3.1.1 is u(t) = , while for The­

orem 3.1.2 one may take u(t) — (T — r  — t)+ such that 0P = 1 for all p > 1. 

Both theorems will be proved in Section 3.2. In Section 3.3 these results are 

applied to derive explicit gradient estimates and Harnack inequalities of Pt. Fi­

nally, for completeness, in Section 3.4 we address the existence and uniqueness 

of mild solution to equation (3.1.1) under (A1)-(A4), and the existence of Malli­

avin derivative DhX^(t) along direction h and derivative process Vr?A’̂ (t) along 

direction 77 as solutions of SPDEs on H.

3.2 Proofs of Theorems 3.1.1 and 3.1.2

For the readers’ convenience, let us first explain the main idea of establishing 

Bismut formula using Malliavin calculus. Let be the class of all adapted
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process h — {h(t))t>o on H  such that P-a.s.

Hi)  — [  h(s)ds, t G [0,T]
Jo

holds for some bounded L2([0, T] —» H; dt)-valued random variable h. For e > 0 

and h G //*, let X^,eh(t) solve ( 3 . 1 . 1 )  with W(t)  replaced by W(t)  + eh(t), i.e.,

d X<-th(t) = { A X ^ ‘h{t) + F(X$'th) + e a ( X ^ h(t))h(t)}dt

+ a(X^ lh(t))dW(t), ( 3 . 2 . 1 )

X ^ h = { e ■r.

If for h e  Hi

DhX l  := *
e=0

exists in L1+r(Q —> ^ ;P )  for some r > 0, we call it the Malliavin derivative of 

X}  along direction h. Next, let

e=0

(3.2.2)

be the derivative process of X f  along direction 77 G If

DhX% = V t a . s . ,  

then for any /  G C j(c&)

(V ,P r ) / (0  =  E(V„/)(X«) = E ( v VijXs/) (X |.)

=  E ( v DfcXs / ) ( X |) = E £ » ft/(X «).

Since by the Girsanov theorem the distribution of X ^ eh under ReP coincides 

with that of X?  under P, where

Re := exp ~ £ Jq (Ht),dW(t))  - S— \\h(t)\\2Hdt ,

we have

PTm  = E [ R J ( X ^ h)] 

and that (i?e)£G(0,i) is bounded in Lp{P) for any p > 1 . So,

0 = = E [ ( i 4 - > * * } + w x b

= E[Dhf ( X (T) } - E \ f ( X (T) f  (h(t),AW(i)) .

31



That is

E[D 4 / ( X « ) ] = e [ / ( X |. )  [  (h(t),dW(t)) .
L Jo

Combining this with the integration by parts formula for Dh, we obtain

(V „ i¥ ) /(0  =  E ( f ( X (T) j \ h ( t ) ,  d W ( t ) ) ) .

In conclusion, the key point of the proof is, for given T  > r , £,77 E *€ and 

/  € C'b1(^7), to construct an h £ Hi  such that (3.2.2) holds.

We are now in a position to complete the proofs of Theorems 3.1.1 and 3.1.2.

Proof of Theorem 3.1.1. Let h(0) = 0 and

h(t) = -  u(t)e,An(0)}, t > 0 .

By (A \ ) and u € (^([OjT — r]), we see that h € H*. Moreover, T (t) solves the 

equation

dT(t) =  {AT(t)  + (VT,F ) (Xf)  -  ah(t)}dt, t > 0 ,
(3.2.3)

To- ry .

On the other hand, by Theorem 3.4.2, when Vcr =  0, V^X^(t) — DhX^(t) also 

solves this equation. Since it is trivial that (3.2.3) has a unique solution, we 

conclude that

V ,X {(t) - .D * X « (i)= T (t) , « > 0 .

Thus, V nX ^  = DhXj. as =  0 according to the choice of u. Therefore, the 

desired derivative formula holds as explained above. □

To prove Theorem 3.1.2, we need the following lemma. Since (V .F)(Xf)  : 

^  —► H  and (V.n)(X^(t)) : H  —> J£h s (H) are linear and bounded, (3.1.3) has 

a unique strong (variational) solution for t E [0 ,T  — r).

Lem m a 3.2.1. In the situation of Theorem 3.1.2, let (Z(t))ts[o,T-r) solve (3.1.3). 

Then for any p > 0 there exists a constant C > 0 such that

E sup I I Z ^  < CM So, V e v .
te[0,T -r)
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d\\Z(t)\\2H = {2( z ( t ) ,A Z ( t )  + (VZiF)(Xf)  -  | ^ )  + ||(Vzw <7)(X<(t))|fts }dt

Proof. It suffices to prove for p > 4. By Ito’s formula and the boundedness of 

V F  and Vcr, there exists a constant C\ > 0 such that

z jo
i («)

+ 2<Z(t),(Vz(i,a(X«(t)))dlV(t))

+ 2(Z(i),((V Z(0 <r)(X<(t)))dW'(f)> 

holds for t € [0,71 — r). So, for p > 4 there exists a constant C2 > 0 such that 

d\\Z(tWH = d(\\Z(t)fH)i

-  { f  liz(f)||£-2d||z(<)ll2„

+ f(p -2 ) ||^ W ||? T 4||( (v Z(l)<7)(x<(t))), z ( t ) | |U d t
(3-2.4)

+ Pp(f)ll?T2<Z(<),((Vz(()<r)(X<(t)))dlV(t)>

>(*)

+ p\\Z(t)rH- 2(Z(t), ((Vz(t)c,)(Xt(t)))dW(t))

holds for t € [0 , T -  r). Since ||(Vz(t)cr)(^(;£))||//s < c||Z(£)||// holds for some 

constant c > 0, combining this with the Burkhold-Davis-Gundy inequality, we 

arrive at

E sup \\Z(s)\\pH < ll̂ HSo + ca [  E sup \\Z(s)\\pHdO, t € [0,T 
sG[-T,t] Jo se[-r ,0 ]

- t )

for some constant C3 > 0. The proof is then completed by the Gronwall lemma.

□

Proof of Theorem 3.1.2. (1) Due to (Al) — (A4), it is easy to see that (3.1.3) 

has a unique solution for t £ [0, T  — r). Let

Z(t) = Z(*)l[_Ttr - T)M, t > - t .

If

lim Z(t) = 0, (3.2.5)
t ]T  — T
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then it is easy to see that (Z(t))t>o solves (3.1.3) and hence, the proof is finished. 

By Ito’s formula and (3.2.4) we can deduce that

=  — L -d ||z ( t ) i ij ,  -  (p -  i)H W M M l!"d t
l l P ~ l { t )  v P ~ l ( t )  11 v U H  v ’  V P ( t )

< ~̂ Zy iH<it + c1\\z(t)\\zodt
+ ^ ^ \ \ Z { t ) \ \ ^ 2(Z(t), ((Vz(0<r)(Jf<(t)))dW'(t)>

for some constant C\ > 0. Combining this with Lemma 3.2.1 we obtain

for some constant C2 > 0, and due to the Burkhold-Davis-Gundy inequality

\\Z(s)\\p
sef0y . T) u»-H«)

Since u(s) [ 0 as s  ̂ T  — r , the latter implies (3.2.5).

(2) Let

h(t) =  r < 7- 1( X « ( s ) ) { ^ l ,o , r - T)(s) +  t > 0 .

We first prove that h € H i  According to the boundedness of ||VF|| and using 

Holder’s inequality, we arrive at

e £  \ m r „ d t  < ® j y  1

+ c e  [ T
J T - t

<  ( E ^ T | | a - l ( ^ ( < ) ) | | ^ d « ) V

for some constant C > 0 . Combining this with (3.2.6), ||<r l (x)\\ < c(l + ||z||3/), 

Lemma 3.2.1 and Theorem 3.4.1, we conclude that E \\h(t)\\2Hdt < 0 0 ; that 

is, h e H i

Next, we intend to show that =  DhX£, which implies the desired

derivative formula as explained in the beginning of this section. It is easy to
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see from Theorem 3.4.2 and the definition of h that F(t) := V vX^(t) — DhX^{t)

solves the equation 
/

dr(t) =  {yir(t) +  (VrtF)(X*) -  f$ l[o .r-r)(t) -  (VZtF)(X i{) l |r_r,n (i)}d i 

< + ((V r(1)<T)(x«(i)))dpy(t), t e  [o ,t]

To =  T).

Then for t G [0, T],
/

d(r(i) -  Z(t)) =  {A(r(t) -  Z(t)) +  (V r,-Z,)F(X <)}dt 

+ ((V r(o-Z(«)<r)(X«(t)))dWr(t),

r0 -  z0 = o.

By Ito’s formula and using (A1)-(A3), we obtain

d||r(t) -  Z ( t ) fH < C||r, -  ZtWldt + 2 ( m  -  Z(t),

for some constant C > 0 and all t G [0,T]. By the boundedness of ||Vcr| | / /5  and 

applying the Burkhold-Davis-Gundy inequality, we obtain

E sup ||r(s) -  Z{s) fH < C  [  E sup ||r(a) -  Z(s)\\2Hdr, t € [0,T]
s€[0,t] JO sG[0,r]

for some constant C' > 0. Therefore T{t) =  Z( t ) for all t G [0, T). In particular, 

Tt  = Zt . Since Zt  = 0, we obtain = DhXj.. □

R em ark  2.1. Our main results, Theorem 3.1.1 and Theorem 3.1.2, are es­

tablished under the assumption that the infinitesimal generator A generates a 

contractive Co-semigroup. Replacing A  and F(x)  by A -  a  and F(x) +  ax  for 

a positive constant a > 0, they also work for A  generating a pesudo-contractive 

Co-semigroup, i.e., ||eM|| < eat.

3.3 Gradient Estim ate and Harnack Inequality

In this section we give some applications of Bismut formulae for Pt with additive 

and multiplicative noise respectively.
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T heorem  3.3.1 (Additive Noise). Assume that (Al) — (A4) hold with constant 

a € J£(H). Then there exists a constant C > 0 such that

(1) For any T  > G ^  and f  6

l(V „Pr/)(0 |2 <

(2) For any T  > t ,£ ,tj € and positive f  €

l(V ,/V /)(O I < S{PT( f \ o g f )  -  (Prf)  lo g P r /} (0
i2 (3.3.1)

Proof. By the Jensen inequality and the semigroup property of Pt , it suffices 

to prove for T  — r  E (0,1]. Let u(t) = . By Theorem 3.1.1, the proof is

then standard and similar to that of [36, Theorem 4.2]. We include it below for 

completeness.

(1) Note that u(t) =  Due to the definition of T (t) and the boundedness

of \\VF\\ it follows that

||(V t,P )(4 )II2h < C M l

for some constant C > 0. By (3.1.2), Holder’s inequality and the boundedness 

of ||<7-1 || we have

l(V„Pr/)(OH2 < 2PTf m £  {W r- 'dV r .FK X D U l

+ (3-3.2)

for some constant C > 0 and all T  € (r, t  +  1].

(2) For f e [0, T  — r], let

M[t)  := + j A ^ ^ w ) ^ ^ ) ) ,

which is a mean-square integrable martingale, with quadratic variation process 

■■= £  ^ " ‘ ( ( V t .P ) ^ )  + ? i —e*‘4̂ (0 ))|^ds < C\Ml;
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for some constant C > 0. In the light of (3.1.2) and Young’s inequality [3, 

Lemma 2.4], we have that for any 8 > 0 and positive /  G

l(V„Pr/)(OI < <5{Pr(/log/) -  ( i ¥ / )  log/¥ / } ( « )

+ tPrfiC)  logEexp (^ M (T  — r ) ) .

Moreover, by the exponential martingale inequality, the boundedness of ||VF|| 

and the definition of Ys,

E e x p ^ T - r ) )  <  (Eexp ( J  +  ^ L - e ^ ( O ) )  ||2dt) ) 4

c
- e x p U r - r P W ~ ).82(T — r ) 2

holds for some constant C > 0 and all T  G (r, r  +  1]. Therefore, the proof is 

finished. □

According to [36, Proposition 4.1], (3.3.1) implies the following Harnack 

inequality. Applications of these inequalities to heat kernel estimates, invariant 

probability measure and Entropy-cost inequalities can be found in e.g. [74, 87, 

89].

C orollary  3.3.2. Assume that (Al) —(A4) hold with constant <j G Then

there exists a constant C > 0 such that

IP r f \a( 0  < exp [-■■ — f f j N ”  n ] P r | / r ( g  +  v), / € « » ( * ) ,L ( o - l ) { ( T - r ) 2 Al}J  (3 .3>3)

T  > T,€,rj e t f  

holds for any a > 1 .

Next, we consider the multiplicative noise case. For simplicity we only con­

sider the case where ||o’- 1 ||00 := supx€H ||cr—1 (rc)|| < oo. The case for a~l having 

algebraic growth is similar, where the resulting estimate of ||V P t/|| will be no 

longer bounded for bounded / ,  but bounded above by a polynomial function of

I I C I I o o .

T heorem  3.3.3 (Multiplicative Noise). Let (A1)-(A4) hold and assume further 

that Her*-1 ||oo < oo. Then for any p > 1 there exists a constant C > 0 such that
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i ( v „ J ¥ / ) ( o r  < 1 ^ ll- r r P T m i ) ' f  e  3§^ ’T  > T•€.*?€ *■

In particular, Pt is strong Feller for t > T  — r.

Proof. It suffices to prove for T  e  (r, r  + 1]. Let u(t) = (T — r  -  t)+, t > 0. We 

have 9P —  1. Since cr~l is bounded, for any p > 1 and rj G it follows from

(3.1.4) that

|V „ - P r / |^ ( e

( P r i m & t i )
T  . p

< E  J  (<T-1( ^ ( S) ) { f g l [o,r-T)(s) +  (Vz.F )(X « )l|r_T,r](S) } ,d ^ ( S))

< ( M | I i i |0i7. . r)(4) + ||z (| |^ i |T_r,r](t ) )d t)  2<," 1,

holds for some constants C\,C2 > 0 and all T  € ( r , r  + 1], where the second 

inequality follows from the Burkholder-Davis-Gundy inequality: for any q > 1 

there exists a constant Cq > 0  such that

E sup |Af(t)|* < C ,E(M )f(T)
t€[0,T)

holds for any continuous martingale M(t)  and T  > 0. Then the proof is com­

pleted by combining this with (3.2.6) with u(0) = T  — r  and Lemma 3.2.1. □

R em ark  3.1. Prom Corollary 3.3.2 and [36, Proposition 4.1], we know that 

entropy estimation (3.3.1) plays a key role in establishing the Harnack inequality. 

However, the entropy estimation seems to be difficult to obtain for the multi­

plicative noise case. Hence we can not adopt the same method as in the additive 

noise case to derive the Harnack inequality. In order to establish the Harnack 

inequality for the multiplicative noise case, one may use coupling method as 

in Wang [8 8 ], and Wang and Yuan [91]. Since the derivation of the Harnack 

inequality for functional SPDEs with multiplicative noise is very similar to that 

of [91], we omit it here.
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3.4 Appendix

In this section we give two auxiliary lemmas, where one concerns the existence 

and uniqueness of solution of equation (3.1.1) under (A1)-(A4), and the other 

one discusses not only the existence of Malliavin directional derivative but also 

the derivative process with respect to the initial data. To make the content 

self-contained, we sketch their proofs.

T heorem  3.4.1. Let (A1),(A4) hold, and let F  : ^  —> H, a : H  —> 

be Lipschitz continuous. Then for any p > 2 and initial data £ G LP(Q. —► 

c£ , c? q,W), equation (3.1.1) has a unique mild solution {X^(t))t>0, and the solu­

tion satisfies

E sup p T ^ c o o ,  T >  0.
*e[o,r]

Proof. Obviously, (A4) remains true by replacing a  with a smaller positive num­

ber. So, we may take in (A4) a  G (0,^). Then, by [19, Proposition 7.9] with 

r = 2 e (1> to), ^  any To > 0 there exists a constant Co > 0 such that for any 

continuous adapted process T(s) on H ,

-T
E sup 

te[o,T]
[  e{t- s)Aa(Y(s))dW(s) < C0E [  ||a (y (s) ||pds (3.4.1)

Jo H Jo

for any T  G [0, To]. Using this inequality, the desired assertions follow from the 

classical fixed point theorem for contractions. Denote by the Banach space 

of all the if-valued continuous adapted processes Y  defined on the time interval 

[—r, T] such that Y(t) = £(t),t G [—r, 0], and

m , : = ( E  sup ||y(t)||p„)
V KEl-r.r] '

P -
<  OO.

Let

|£(£), if £ G [—r, 0],

[eM^(0) +  / ot e ^ - )AF(y.)d5 + / ot e ^ -^ (y (a ) )d W '(« )> if £ G (0,T].

By (3.4.1) and the linear growth of F  and a, we conclude that maps 3 ^  into 

Jtfp. For the existence and uniqueness of solutions, it suffices to show that the
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map JT  is contractive for small T  > 0. By the Lipschitz continuity of F  and cr, 

and applying (3.4.1) for <j(Yi(s)) — a(Y2(s)) in place of a(Y(s)),  we obtain

U ^ Y 1) -  JT(Y 2)||p <  CT\\Yl -  Y2 ||J, Y \  Y2 G

for some constant C > 0 and all T  € [0,To]. Choosing sufficiently small T  

such that CT  < 1 we can conclude that JY  is contractive. In what follows, we 

consider (3.1.1) on intervals [T, 2T], [2T, 3T] • • • [ |T /T ] f ,  ( |T /T J + l ) f ]  respec­

tively, where [T/T\  denotes the integer part of T /T ,  and then (3.1.1) admits a 

global mild solution on the time interval [0 , T]. □

T heorem  3.4.2. Assume that (A\), (A2) and (A3) hold, and let £,77 E and 

h e  H i

(1) (DhX(t ) ) t>0 exists and is the unique solution to the equation
/

da(t) =  {Aa(t) + (V tt,F)(Xf)  + o(X<(t))h(t)}dt 

a 0 =  0.

(2) (Vr)X(t) ) t>0 exists and is the unique solution to the equation

=  { A m  + (VAF)(X«)}dt +  ((Vw )cr)(X«(i)))dVY(«),

[ f a  =  T).

Proof. We only prove (1) since (2) can be proved in a similar way. The argument 

of the proof is standard in the setting of semi-linear SPDEs without delay. The 

only difference for the present setting is that one has to estimate the sup over 

time for the norm of the error process for small e G (0 , 1)

Ae(t) := X*'eh(t) -  X c(t) -  ea(t), t > 0,

where X ^ ,eh is the mild solution to (3.2.1).

(a) There exists a constant C > 0 such that

E sup -  X l \ \ l  < e2ec <T+1>E P  ||/i(t)||2„d t, T  > 0. (3.4.2)
te[o,T] J o
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Indeed, by (Al), (A2) and (A3) we have the following Ito’s formula for ||A^,e/l(t) -

x m i n  ■

d||X«’t'*(t) -  X s(f)||?, =  2{X('cK(t) -  X ( ( t ) ,A(X(*h(t) -  X ( (t))

+ F(X!*h) -  F ( X ,£) +  e a ( X ^ h(t))h(t))dt 

+ \\o(Xt’‘h(t)) ~  v i X H m l s d t  

+ 2( X ^ h(t) -  X«(t), (a(X('el,(t)) ~  <r(X<(f)))dVK(f)>. 

Noting from (j41) , (A2) and (A3) that 

{X('eh(t) - X ( ( t ) ,A(X(',h(t) - X ( {t))) < 0,

||F (X p '1) -  F{Xf )  + e<r(X^(t))kt)\\H < C1(||X«'<'“ -  X«|U + e||ft(i)IU). 

and by the Burkhold-Davis-Gundy inequality

E sup f \ x ^ h(s) -  X  s(s), (a (X('lh(s)) -  u(X<(s)))dlY(s)> 
te[0,T] Jo

< C , E  ( I  IIX<’‘h(s) -  X<(s)tHds

< ^E sup ||X*‘*(t) -  X<(t)f„ + ^ E  f T I I X ^ M  -  X«(s)||2„ds 
* te[o,r] z Jo

for some constant C\ > 0, we obtain

E sup IIXp'* -  X«||L < c 2e2 f T \\h(t)f„dt +  C2 /  E sup | |X |^  -  X fl^ d t
t€[0,T] JO JO s€[0,f]

for some constant C2 > 0. This implies (3.4.2).

(b) To prove DhX^(t) — a(t) it suffices to show

l i m- E sup ||Ae(t A rn) | | / /=  0, n > 1, (3.4.3)
ei° e te[o,T]

where rn := inf{t > 0, ||X* ||oo > n} |  oo as n |  oo. Indeed, by (3.4.2), (3.4.3) 

and the definition of A£ we have

lim sup4-E ||A £(tA rn)||^  < lim sup -i-(E||A£(t Arn) | |H) 5 (IE|| Ae(t Arn)\\2H) 5 =  0,
e|0 £ 2  e|0 £ 2

So that by (3.4.2),

lim sup -i-E||Ae(t)||j^ < lim sup4-E[||A £( t) ||^ l{rri<f}]
e|0 £ 2  e|0 £ 2

< lim sup (E|| A£(t)||#) *P(rn < t) < < c(t)F(rn < t)*
e | 0  £ 2
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holds for some constant c(t) > 0 and all n > 1. Letting n —> oo we arrive at

lim
£ — ►O

—  7 -  - o(<)||* = lim4rE||A£(t)||i = 0,
£ H  ej.0 £ 2

(3.4.4)

that is, DhX^(t) = a(t).

To prove (3.4.3), we observe that
f tA T n

A‘{t A r„) =  I e ^ A{F(X</h) -  F(X<) -  eVa.F(Xj)
Jo
+ e(o(X^ch(s)) -  a(X^(s)))h(s)}ds

f tA T n

+ /  e(‘- s)'V (X « 't',(s))-CT(X<(s))
Jo

-  eVaW<r(X«(s)))dVY(s).

Let

7 n(s) := sup ||VF(^) — V F (77)||oo+ sup ||Vcr(a?) -  V a(2/)||//S.
I k l l o o  <41,11̂ -771100 < s IM I<n,||x-i/||<s

By (A2) and (A3) we have 7 n(s) I 0 as s J, 0 and 7 „(oo) < 0 0 . Then

s2 7ti(°o)
« 7 n ( s )  <  7 n ( \ / e ) s  + s > 0 .

^  ’

Therefore, there exists a constant C\ > 0 such that 

||F (X < '7  -  F(X«) -

<  I I V F | |„ | |A 'I U  +  \\x^  -  X<| |0O7 » ( l |X f e'‘ -  x i \u

< CillA'iu + 7(v )̂l|A:|'e'* - xfIU + - xfiiL.

tiKa^w) - a(*«: :::„< t2\\h(s)\\i+cjx^w - x«(S)n2„,
and by the Burkhold-Davis-Gundy inequality

E sup 
te[o,T]

p t / \  Tn

/  e<‘- s> -V (X < 7s)) -  <r(X4(s)) -  e(Vail)a)(X^s) ))dW(s)
Jo

< ^E sup ||Ae(t A rn)||// + 7 n(v/e)E sup \\X*'eh{t / \ rn) -  X*(t ATn)\\H

H

*e[o,7l *€[0,71

Ilf+  7 n ^ ° ^ E  su p  \\X^’eh(t A r n )  —  X^(t  A r n )

V € *€[0,71
pTATn .

+ <7,1 J  (||Ae(s)||ff +H 7„(v^)l|X4'e*W -  X«(s)||„

+  T ^ ~ ) | | X f,eft(s ) _ X < ( s ) ||2f) ds
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Combining this with (3.4.2) and (3.4.4) we obtain

E sup ||Ae(t A Tn ) | | / j  < C 2 [  E sup ||Ae(s A rn)||//ds 
te[o,T] Jo se[o,<]

+  C (T )(7 „ ( v ^  + ^ )

for some constant C2 > 0 and

C(T) := eC2(1+T) ( l  + E /  | |/ i ( t ) || |d t) , T >  0.

Due to the Gronwall inequality, this implies (3.4.3). □
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Chapter 4 

Large Deviation for Neutral 

Functional SDEs with Jumps

In this chapter, we apply the weak convergence approach to establish a LDP 

for a class of neutral functional SDEs with jumps. In particular, we discuss the 

LDP for neutral SDDEs which allow the coefficients to be highly nonlinear with 

respect to the delay argument.

4.1 Introduction

Large deviation principle (LDP), concerning with the asymptotic computation 

of small probability events on an exponential scale, has being extensively stud­

ied beginning with the fundamental formulation of Donsker and Varadhan’s [26], 

and been applied to stochastic differential equations (SDEs), e.g., [8 , 23, 30, 83]. 

The weak convergence approach due to Dupuis and Ellis [27] has also been 

proved to be effective in establishing the LDP for various stochastic dynamics 

driven by Brownian motions, e.g., in [71, 104] for finite-dimensional SDEs, and 

in [53, 72, 76] for infinite-dimensional stochastic partial differential equations 

(SPDEs). The main advantage of this approach is that time-discretization and 

large calculations in showing the exponential-type estimates can be avoided. 

For SDEs and SPDEs driven by jump processes, most work focuses on the cases 

of additive Levy noise, e.g., in [21] for finite-dimensional jump diffusions with
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bounded coefficients through a time-discretization argument, in [75] for stochas­

tic evolution equations, and in [96] for 2-D stochastic Navier-Stokes equations. 

However, it seems hard to apply the approach introduced in [75] to SDEs and 

SPDEs with multiplicative Levy noise. Recently, [15] gave a variational rep­

resentation for functionals of Poisson measure plus an independent Brownian 

motion, which cover many continuous time models. Just like the variational 

representation of functionals of Brownian motion [16], this representation also 

proves to be effective in the study of LDP for stochastic models with jumps, 

e.g., [15] and [94] discussed the LDP for SDEs and multivalued SDEs with mul­

tiplicative Levy noise respectively, where the drift and diffusion coefficients are 

imposed to be bounded. For the variational representation of functionals of 

Poisson random measures, we can also refer to [57, 103].

For stochastic systems with memory, there are only a few results on LDP. 

For example, Scheutzow [80] studied the topic of LDP for SDDEs with additive 

noise, and Mohammed and Zhang [60] provided the upper and lower large de­

viation estimates for SDDEs driven by multiplicative Brownian motion noise. 

We also point out that [60] and [80] adopted time-discretization arguments. 

However, for functional SDEs, time-discretization schemes, even the simplest 

Euler-Muruyama scheme, are relatively complicated, which thus brings a lot of 

troubles for the exponential-type estimates.

While there are few results on LDP for functional SDEs (FSDEs), in partic­

ular for neutral FSDEs, where a differential equation is called neutral if, besides 

the derivatives of the present state of the system, those of the past history are 

also involved. Motivated by the previous literature, in this chapter we shall 

apply the weak convergence approach [15, 16] to establish the LDP for a class of 

neutral FSDEs driven by multiplicative noise. In particular, we discuss the LDP 

for neutral stochastic differential delay equations which allow the coefficients to 

be highly nonlinear with respect to the delay argument, where the global Lips- 

chitz condition, especially with respect to the delay argument, is imposed in [60] 

and [80]. Also, the boundedness of drift and diffusion coefficients imposed in 

[15, 94] is relaxed. Moreover, some tricks are adopted to overcome the difficulties
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caused by the neutral part and functional coefficients.

The organization of this chapter is as follows: We establish the LDP for a 

class of neutral FSDEs in Section 4.2, discuss the LDP for neutral SDDEs in 

Section 4.3, which in particular allow the coefficients to be highly nonlinear with 

respect to the delay argument, and in Section 4.4 we generalize the results in 

Section 4.2 to the case of neutral FSDEs with jumps.

4.2 LDP for Neutral FSDEs Driven by Brown­

ian Motions

Let (Rn, (•,•), | • |) be the Euclidean space and ||j4||tfs := i/trace(A M ), the 

Hilbert-Schmidt norm for a matrix A , where A* is its transpose. Fix r  > 0, 

which is referred to as the delay, and T  > 0, a finite time horizon. Let W(t) 

be an m-dimensional Brownian motion defined on the classical Wiener space 

P), i.e., Q := Co(R+;Rm), the space of Rm-valued continuous functions 

u  on R+ vanishing at time 0, with the locally uniform convergence topology, 

T  is the d-algebra generated by coordinate mappings W(t ,u)  = u;(£), P is the 

Wiener measure on Q. Let ^  := C{{—r, 0]; Rn), the space of continuous functions 

/  : [—r, 0] »-> Rn, endowed with a uniform norm ||/||oo := sup_T<0<o 

For a map tp : [—r, oo) •—► Rn, let ipt £ ^  be the segment of <p(t) such that

ipt{0) = <p(t + 6), 6 e [ - r , 0 ] , t  >  0.

Consider a neutral FSDE on Rn 
/

d[X(t) -  G(Xt)} = b(Xt)dt +  a ( X t)dW(t),
< (4-2.1)

X o = t e V .

Throughout this chapter we shall assume that

(HI) G : i—> Rn with a  := 10(0)1 < oo and there exists k E (0,1) such that

I O (0  -  0(r7)| < k||£ -  TyUoo,

(H2) b \ So t—> Rn, satisfying a local Lipschitz condition, o \ Rnxm with
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f3 \= ||cr(0)Hz/s' < oo, and there exists A > 0 such that for £,77 G ^

< ( « 0 )  -  m ) - (0(0 -  G(v)), 6(f) -  6fo)> V | | a ( f ) -  a ( r , ) f HS  <  A ||f  -  q f c ,

and

<f(0)  -  < 3 ( 0 , 6(f)) < A ( 1  +  Ilf IIL).

Remark 4.2.1. Note from (HI) and (H2) that

\G(0\ +  lk(OII/*s < {(« + A) V (o + /9)}(1 +  IÎ Hoo), £ G (4.2.2)

Under (HI) and (H2), for any initial data £ G ^  Eq. (4.2.1) admits a unique 

solution {X{t)}te\o,T}-

To establish the LDP for the law of small perturbation associated with Eq.

(4.2.1), we need to recall some notions and notation in a general framework.

Let § be a Polish space (i.e., a separable complete metrizable topological 

space), and {F£, e G (0,1)} a family of §-valued random variables defined on the 

probability space (fl,.F,P).

D efinition 4.2.1. A function I  : § 1—► [0,0 0 ] is called a rate function if it is 

lower semicontinuous. A rate function I  is called a good rate function if the 

level set { / G § : 1(f) < a} is compact for each a < 0 0 .

D efinition 4.2.2. Let ^  be the law of {Te,e G (0,1)} in S. The sequence 

{ Y e,e G (0,1)} is said to satisfy the LDP with rate function I  if for each A G 

«^(§) (Borel cr-algebra generated by all open sets in §)

— inf 1(f) < liminf e\og fie(A) < limsupe log//(A ) < — in f / ( / ) ,  
f € A °  e->0 €_ o  f € A

where the interior A 0 and closure A are taken in S.

The starting point of the weak convergence approach for stochastic dynamics 

driven by Brownian motion is the fact that the LDP is equivalent to a Laplace 

principle (LP) if the underlying space S is Polish.

D efinition 4.2.3. The sequence {T£,e G (0,1)} is said to satisfy the LP on S 

with rate function /  if for each bounded continuous mapping g : S h-> R

lim elogE^exp -  ) = - inf {g(f)  + /( /)} .
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To give sufficient conditions such that the LP holds, we also need to introduce 

some additional notation. Define the Cameron-Martin space H by

: =  j / i : [0, T] *  Rm h{t) = j  h(s)ds, t e  [0,T],
(4.2.3)

and J  |/i(s)|2ds < ooj,

which is a Hilbert space, equipped with the norm \\f\\u := (Jq |/(s) |2ds) 2 , where 

the dot denotes the generalized derivative. Set

SN := {h £ H : \\h\\E < N}, N  > 0, (4.2.4)

i.e., the ball in HI with radius iV, and

A n '■ =  {h : [0, T] > Rm|h is an J-t — predictable process such that 

h(' ,u)  £ <Sat,]P — a.s.}.

R e m a r k  4.2.2. By [51, Theorem III. 1], Sn  is metrizable as a compact Polish 

space under the weak topology in HI.

Let {Qe : C := C([0, X1]; Mm) S, e £ (0,1)} be a family of measurable 

mappings and

Z£ := g €(y/eW). (4.2.5)

Assume that there exists a measurable mapping Z° : HI 1—> S such that

(i) For any N  > 0, if the family {/ie,e £ (0,1)} C A n  (as S^-valued random 

variables) converge in distribution to an h £ A n (as 5^-valued random 

variable), then Qt(y/eW +  h€) —► Z°(h) in distribution in S as e —> 0.

(ii) For any N  > 0, the set JCn := {Z°(h) : h £ Sn } is a compact subset of S.

We next recall an equivalent relationship due to [16, Theorem 4.4] between 

the LDP and the LP whenever the underlying space S is Polish.

Lem m a 4.2.1. Let Z e be defined by (4.2.5) and assume that {Ge,e £ (0,1)}

satisfy (i) and (ii). Then the family {Z e,e £ (0,1)} satisfy the LP (hence LDP) 

on S with the good rate function defined by

/ e S - (4-2-6)Z { h e M , f = Z ° ( h ) }

where the infimum over the empty set is taken to be 0 0 .

48



Remark 4.2.3. For a Polish metric space S, /Cv is a compact subset of § if for 

a sequence hn E § there exists a convergent subsequence Z°(hnk). On the other 

hand, the rate function I  defined in Lemma 4.2.1 is a good rate function if Kn 

is a compact subset of §.

For t E [0,T],6 E (0,1), consider the small perturbation of Eq. (4.2.1)

dpO(t) -  G{Xfi] = b(X*t )dt + v M * ? ) d W(t),
< (4.2.7)

x i  =  He  ,
\

which admits a unique solution X c := {Y£(£)}tG[0)T]. By Lemma 4.2.1, to estab­

lish the LDP for the law of { X e,e E (0,1)}, it is sufficient to choose the Polish 

space S, construct measurable mappings Qe : C t—► § and Z° : IE § respec­

tively, and then show that (i) and (ii) are satisfied for the measurable mapping

In the sequel, let § := C'([0,T];Rn) be the family of continuous functions 

/  : [0, T) I—► Rn, which is a Polish space under the uniform topology. By the 

Yamada-Watanabe theorem there exists a unique measurable functional Qt : 

C i—> § such that

x £(t) = Ge{y/~eW)(t), t E [0,Tj. (4.2.8)

Then, for h€ E A n (as Syv-valued random variables), by the Girsanov theorem, 

(4.2.7) and (4.2.8), we conclude that

:= P i V i W  +  hc)(t), t € [0,T], 

solves the following equation
f

d[X‘'k‘(t) -  G (X‘t ,h')] = b{Xl'h')dt +  a (X tx )li‘(t)dt 

< +Vea(Xt'h')dW(t),  (4.2.9)

Xg'11" =£<=’*’.

For any h E H, we also introduce the skeleton equation associated with Eq.

(4.2.1)

( d[X*(t) -  G(X*)] =  b(X^)dt + *(X*)h(t)dt,
< (4.2.10)
[X f  = « € « ’.
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and define

X°(h) := X h, h e n .

To verify that Qt defined by (4.2.8) satisfies (i) and (ii), we need to prepare 

the following several auxiliary lemmas. Throughout this chapter, C > 0 is a 

generic constant whose values may change from line to line.

Lem m a 4.2.2. Let (HI) and (H2) hold. For he E A n  (as 5^-valued random 

variables), h E Sn  and p >  2, there exists C > 0 such that

sup |X fc(0 |p V E f sup |X e,fc‘(*)|p)  <C.
- r < t < T  '  - r < t < T  '

Proof. Recall the fundamental inequality: for any q > 1, J > 0 and a, b E R

\a + b\q < [1 + + \b\y6), (4.2.11)

and set

M{t):= X l'h\ t ) - G { X l ’h‘), t e  [0,T], (4.2.12)

By the inequality (a + b + c)p < 3p“*(|a|p +  |6|p +  |c|p) for a,b,c 6 R and (HI),

we have

|M (i)|p < 3P~ V  + (1 +  «P)||X(<’,1'||£0). (4.2.13)

Applying (4.2.11) and taking into consideration (HI) yields that

| x <,,l<(s )P ’ <  ( i  +  ^ y » - 1 ( L<p y  )|P +  | M ( s ) | p)

< (1 +<5rT)p- 1( i { ( l  +  3 r T)p- 1( i |G ( X ^ )  -  G(0)|p 

+ |G(0)|p) }  + |M (s)|p)

< ( i + s f ' f - 1 ( £  { a + ^ r 1 ( f  i i ^  n t

+ |G(0)|p) } +  p) .

Letting
/  «2(p-n \ p - i  /  k  \ p ~ 1

51 = I -------—— I and 52 = (   I ,
' I  — / 2̂(p-l) / \1 An/

one has

|X {,,*‘(s) |p < C + +  (1 -  K ^ ) 1- p|M (s)|p.
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This further implies that

e ( sup < C  + «S(p)( sup |M (s)|p) ,  (4.2.14)
\ - T < S < t  /  V0<S<t /  V '

where 5(p) := (1 — k 2̂ ~^)1~p /  {1 — yfH). Next, by the Ito formula, (HI), (H2) 

and (4.2.13), we arrive at

*T
E (  sup |M (t)|») < C  + CE [  H X ^ I^ d t

0 < £ < T  /  Jo

+ E / i ( T ) + e (  sup |/2(()|),
\  0 < t.< T  J

(4.2.15)

where

and

h (T )  := p  /  |M (s)|p- 2|(M(s),<r(X‘''*I)ft<(s))|ds1 
Jo

h(t) := p [  \ M ( s ) r 2(M(s) ,e(X‘,'h')dW(s)).
Jo

Note from (4.2.2), (4.2.13) with p replaced by p — 1, the Holder inequality and 

the Young inequality that

E /i(T ) < C N  + C®( /  ||X4a ‘||£d t) 5e (  £  |/i‘(t)|2d t ) *

< C N  + C N e (  sup \X‘'h'(t)\v f  sup |X‘1',,(s)|pdt')i
- t  <t<T Jo —T<s<t (4.2.16)

^ CJV + 4 5 R E ( _ - P r ^ ' ' “ WIP)

+ C2N 2S(p) f  e (  sup |X e’/‘‘(s)|pW
J O  ^ —T < S < t  'r0

where we have used that he e  Sn,  and by the Burkhold-Davis-Gundy inequality

that

® ( “ p . |* w |) ^  C E ( £  m s ) \ 2̂ M X ‘/ ‘)\ \ is d s f

<cn( sup |M (s)|p f  \ M ( s ) r 2M X ‘/ ‘)\\2Hsd s ) k2
x 0 < t < T  J o  / (4.2.17) 

< C  + - e ( sup |M(t)\A
* '  n<t<T /



Substituting (4.2.16) and (4.2.17) into (4.2.15) leads to 

E( sup \ M ( t ) \ A < C  + C  E (  sup
0 < t< T  ' J o ' —T < s < t  '

+ « 5 E ( . S S r 'r ‘' c ' l ' )

Combining this with (4.2.14), we obtain that
pT

E( sup < C  + C /  Ef sup |X e''‘‘(s)|p')dt.
'  ~ r < t < T  '  Jo  V ~ r < s < t  '

Thus the desired assertion follows from the Gronwall inequality, and the uniform 

estimate of X h(t) can be obtained similarly. □

Lem m a 4.2.3. Under (HI) and (H2), the set Kn  := {X°(h) : h G Sn}  is a 

compact subset of S.

Proof. For any hn G Sn,  there exists a subsequence, still denoted by hn, which 

converges weakly in H to some h G Sn,  i.e., / QT |hn{s) — A(s)|2ds —► 0, due to 

the fact that Sn  is weakly compact by Remark 1.1. Denote by X hn and X h the

solutions of Eq. (4.2.10) with the controls hn G Sn  and h G Sn  respectively. In

view of Remark 4.2.3 it is sufficient to show that X hn —> X h in S. Let

M(t) ■= X h"{t) -  X h(t) -  (G(Xthn) -  G(X*))t t G [0,11. (4.2.18)

Note from (4.2.11), (HI) and Xq" =  X q that

sup IX ^ ( t ) ~ X h(t)\2 < — 1— 5 sup |M (t)|s (4.2.19)
0 < t < T  (1  — K)  o < t< T

and

\M(t)\ <  |X '‘" ( t ) - X '1(l)| +  |G(Xt'‘" ) -G (X !'1)| < (I +  k J H ^ - ^ I U .  (4.2.20) 

From the chain rule, (HI), (H2), (4.2.20) and Lemma 4.2.2, we derive by follow-
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ing the argument of (4.2.16) that

|M(«)|2 =  2 [ \M (s ) ,b (X i ' ' )  -  b(X?))ds 
Jo 

+ 2 f  {M (s ), a ( X ^ ) ( h n(s) -  h(s)) +  (v (Xsh") -  a(X^))h(s))di 
Jo 

< C  f  sup |X*”(r) -  X fc(r)|sds
JO 0< r < s

+ C f  sup \Xhn(r) -  X /l(r)||hu(s) -  h(s)\ds
J o  0 <r< s

+ C f  sup \X hn(r) — X h(r)\2\h(s)\ds
J o  0< r < s

< C  f  sup \Xhn(r) — X h(r)\2ds + f  |hn(s) — /i(s)|2ds 
J o  o< r < s  J o

+ Cn ( f  sup
'  J o  0< r < s  J

< C  f  sup \Xhn(r) — X h(r)\2ds + j  \hn(s) — h(s)\2ds 
Jo  0 < r < s  Jo

where Xq" = X q and h G Sn have also been utilized. Putting this into (4.2.19) 

leads to
r-T r T

\Xhn( t ) - X h(t)\2 < C  I
0 < t< T

Then the Gronwall inequality gives that

sup \Xhn(t)—X h(t)\2 < C [  sup \X hn(r)—X h(r)\2ds+C [  \hn(s)—h(s)\2ds. 
) < t< T  Jo 0 < r < s  Jo

sup |X hn{t) -  X h{t)|2 < C  [  |hn{t) -  h{t)\2dt,
0 < t< T  Jo

and the desired assertion follows from that hn converges weakly to h G Sn  in 

M. □

Lem m a 4.2.4. Let (HI) and (H2) hold. Assume further that the family {/i€, e G 

(0,1)} C A n  (as SW-valued random variables) converge almost surely in 1HI 

to h G A n  ( a s  S^-valued random variable). Then X e,ti€ —> X h converges in 

distribution in S.

Proof. It is sufficient to show that X e,h£ —> X h in probability in § since conver­

gence in probability implies convergence in distribution. Let M{t) be defined by
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(4.2.18) with X e,/lt replaced by X hn. Note that (4.2.19) and (4.2.20) still hold 

with X hn replaced by X c'h\  Applying the Ito formula, we have

|M (i) |2 =  2 f  {M(s),b(Xl-h‘)~b(X!))ds  
J o  

+ 2 f  (M(s),<7(Xl-h’)(h‘(S) -h ( s ) ) )d s  
J o

+ 2 (a(X‘/ ‘) -  o(X*))h(s))ds (4-2-21)
J o

+ £ f  b { X ‘s’h' ) fHsds + 2^1 f { M ( s U { X l ’h')dW{s))
J o  J o

=: Ji(t) + J2(t) +  Jaft) + J îj) +  Js{t)- 

In light of (H2 )

sup |J,(0l < c  [  l l ^ - ^ l l L d i ,  (4.2.22)
te[o,r] J o

and, by the Holder inequality and the Young inequality, for h G Sn one has

sup \ U t ) \ < c (  f T \\Xfh‘ -  X ^ t d t f  (  [ T \h(s)\2ds)^  
t e [ o , T )  ' J  o J  x J o  ;

< . - Kl . sup \ x c'h‘{t) - X h(t)\2 (4.2.23)
2 o < t < T

+ C  f  \Xe’K‘(t) - X h{t)\2dt.
J o

Substituting (4.2.22) and (4.2.23) into (4.2.21) and recalling (4.2.19), we deduce 

from the Gronwall inequality that

sup |X t,he(t) -  X h(t)\2 < c \  sup |«72M | + sup |J4 (t)| + sup |J5(0l)*
0< t < T   ̂ t€[0,T] t e [ 0 , T ]  t€[0,T] J

Observe from Lemma 4.2.2, (4.2.2), (4.2.20) and the Burkhold-Davis-Gundy 

inequality that

sup 11/4(^) | +  sup |«/5(t) |) —> 0 as e J, 0.
'te[o,T] te[o,T] '

Therefore

sup | + sup \J^(t )̂| —► 0 in probability as e J. 0.
te[o,T] te[o,T]

To obtain the desired assertion, it is sufficient to show that

sup |^2(^)| -> 0 in probability as e I 0. (4.2.24)
te[o,r]
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For any S > 0, notice that 

P( sup |J2(«)|><5) = p (  sup 2 /  {M(s),a(Xl 'h‘){h‘{s) -  h{s)))ds > s)
'  £€[0,T] '  M€[0,T] J 0 '

< p (  ;; ■ > l )

< p ( a (T) |/i‘(s) — ft(s)|2ds > 11),

where A(T) := / or (|M (s)|||a (X |’ft£)||//s)2ds. On the other hand, for arbitrary 

R >  0

f ( a (T) J *  M s ) - h ( s ) \ 2d s > j )

<p( /  |A '(s ) -f t( s ) |2d s >  ^ ,A ( T )  <fi) + p (a (T ) > . r )

<  p ( j T  |ft'(s) -  A(s)|2ds > + P (A (T ) > R).

By (4.2.2), (4.2.20) and Lemma 4.2.2, it is easy to see that

EA(T) < CE f { \ \ X l ' h‘ -  ^ l l ^ d l ^ l l ^  +  l)}ds <  C.
J o

Next, using the Chebyshev inequality, for any e £ (0,1) we choose Ro > 0 

sufficiently large such that

p (a (T ) > Ro) < J -EA(T)  < § - < * ■

For fixed R 0, due to hJ —> h a.s. in H, it then follows that

\h€(s) ~ Hs ) \ 2d s > - > 0  ase 10.

Consequently, (4.2.24) holds due to the arbitrariness of e € (0,1). □

We now state our first main results.

T heorem  4.2.5. Under (HI) and (H2), X e satisfies the LDP on § with the 

good rate function 1(f)  defined by (4.2.6), where X°(h)  solves Eq. (4.2.10).

Proof. The proof is standard while we outline the argument for the sake of 

completeness. By Lemma 4.2.1 it is sufficient to show that (i) (in Lemma 4.2.1) 

holds since (ii) is true by Lemma 4.2.3. Assume that {/ie,e £ (0,1)} C A n
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(as ^ -v a lu ed  random variables) converge in distribution to an h G A n  (as an 

Sat valued random variable). Noting that {/i£, W}  is tight in Sn  x C by recalling 

that Sn  is compact from Remark 1.1 and the law of W  is tight, we assume that 

the law of {he,W }  converges weakly to some f i  on S n  x  C. Thus by the Skorohod 

representation theorem [19, Theorem 2.4, p33] there exist a probability space 

(Q, F>) and stochastic processes {/ie, We} and {h, W}  such that

W c}) = i f  ({h£, W } \  i f  {{h, W}) = n (4.2.25)

and

{he, W e} -+ { h ,W } t P — a.s. (4.2.26)

Note that Lemma 4.2.4 still holds when W  and h in Eq. (4.2.9) are replaced by 

W  and h respectively. Hence we have

Qt(y/eW + h€) —► X h in distribution (4.2.27)

due to the fact that hc —► h, P-a.s. by (4.2.26). Moreover observing that 

{h£,e € (0,1)} converge weakly to h and the law of {he,W }  converges weakly 

to some / i ,  we obtain from (4.2.25) that

i f  (h) = Jf(h) = n(-,C)- (4.2.28)

Combining (4.2.25), (4.2.27) with (4.2.28) implies (i), as required. □

Remark 4.2.4. Applying a time-discretization argument, Mohammed and Zhang 

[60] establish a LDP for stochastic systems with constant delay. For func­

tional differential equations, time-discretization schemes, even the simplest EM 

scheme, are relatively complicated, which bring a lot of troubles for the exponential- 

type estimates. While this has been avoided by the weak convergence approach.



4.3 LDP for Neutral SDDEs

In this section we discuss the LDP for a class of neutral SDDEs. Consider the 

following equation on R:

d[Y (t ) — 2 Y 2(t — r)] =  [sin(y (t )) +  Y(t — r)]dt 

< + Y 3( t - r ) d W ( t ) ,  (4-3.1)

Y ( 0 ) = m >  O z [ - T ,  0],
\

where W(t)  is a scalar Brownian motion on the probability space (Q,^7, P). 

Since G(£) = 2£2(—r) and <j(£) = 3£3(—r) for £ G ^  do not satisfy (HI) and 

(H2), we can not apply Theorem 4.2.5 to Eq. (4.3.1), although which has a 

unique solution (see Remark 4.3.3). In order for Eq. (4.3.1) satisfies LDP, we 

shall establish a new theorem.

Consider a neutral SDDE on Rn
t

d[y(t) -  G(Y(t  -  t))] = b(Y(t), Y( t  -  r))dt 

' + a ( Y ( t ) ,Y ( t - T ) ) d W ( t ) ,  (4-3.2)

y ( 0 ) =  $(0 ), o € [—r,o],
\

where G : Rn —► Rn, b : Rn x Rn —► Rn a : Rn x Rn —» Rnxm, W(t)  is an 

m —dimensional Brownian motion. Assume that there exist A3, A4 > 0 such that

(Al) 1(7 (2;) -  G(y)| < X^Vi(x,y)\x -  y\, x ,y  G Rn.

(A2) For xu yi G Rn, i = 1,2,

\Kx ^Vi)  — 6(^2,2/2)1 V \\<r(xi,yi) -  <7(2:2,t/2) ||/ /s

<  A4(|2;i -2 :2 1  +  ^2(7/1,7/2)12/1 — 3/2I),

where Vi : Rn x Rn i-> R+ such that

Vi(x,y) < Ai(l + |2:|9i + \y\qi), x ,y  G Rn 

for some A* > 0  and ^  > 1 , i =  1 , 2 .

Remark 4.3.1. Eq. (4.3.1) satisfies (Al) and (A2).
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Remark 4.3.2. By (Al) and (A2), there exists C > 0 such that

|G(a;)| < C { l  + \x\qi+1), x  G Rn,

and

\b(x, y ) | +  ||a(x, y)\\Hs  <  C{\  +  |z | +  \y\q2+1), x, y  G Rn.

Remark 4.3.3. For t G [0, r], Eq. (4.3.2) reduces to stochastic integral equation

Y(t) = m  + G(Z(t -  r)) -  G (Z(-t )) +  t  b (Y (sM (s  ~ r))ds
Jo

+ [  a (Y (s ) ,d (s -T ) )dW (s ) .
Jo

Let Y(t)  := Y(t) — G(£(t — r)). Then the previous integral equation can be 

rewritten as

Y(t) = Y(0) +  f b ( Y ( s )  + G(t(s -  r ) U ( s  -  r))ds 
Jo

+ /  f f T O  + G K ( s - r ) ) , ( ( s - r ; ; " " ; . ; .
Jo

This is an SDE without the delay argument and the neutral term, and (A2) 

guarantees the existence and uniqueness of the solution {y(t)}te[o,r] such that 

E^sup0<t<r |y ( t) |9̂  < oo for any q > 1. Repeating this argument we deduce 

that Eq. (4.3.2) admits a unique global solution on [0,T].

For e G (0,1) consider the small perturbation of Eq. (4.3.2)

d[Y€(t) -  G(Ye(t -  r))] =  b(Y£(f), Y £(t -  r))dt

+ y ^ a ( Y ‘(t), Y e(t -  r))dW(t),  (4.3.3)

Y ‘(ff) = m ,  ® e[-T,0].

By the Yamada-Watanabe theorem there exists a unique measurable functional 

Q£ : C i—► § such that

Y e(t) = Ge{V~eW)(t), t G [0,T]. (4.3.4)

Then, for h£ G A n (as Syv-valued random variables), by the Girsanov theorem,

(4.3.3) and (4.3.4)

Y ‘'h'(t) -.= g ‘( V iW  + he)(t), t € [0 , T]
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solves the following equation

d[V‘*fe‘(i) -  G(Ye'h‘(t -  r))] =  b(Ye'h‘{t),Y<-h'(t  -  r))d i 

+a(Y t X {t)yY t'h‘(t -  r))h‘(t)dt
<

+Ji<r(Y‘’h’( t ) ,Y ‘’h‘(t -  r))dW(t),

Y ‘-h‘( 6 ) = m ,  « G (- r ,0 ] .

For any h 6 H, we introduce the skeleton equation associated with Eq. (4.3.2)
/

d[F'*(t) -  G (Yh(t -  r))] =  b(Yh(t), Y h(t -  r))dt 

< +<r(Yk( t ) ,Y k( t -T ) )h ( t )d t ,  (4-3.5)

Y h{ 6 ) = m ,  f le [-T ,0 ].

Define

Y°(h) := Y h, h e  H.

Following the argument of that of Theorem 4.2.5, we need to prepare the 

following lemmas.

Lem m a 4.3.1. Let (Al) and (A2) hold. For any he e  A n (as Syv-valued random 

variables), h e S n and p > 2, there exists C > 0 such that

sup |yr/i(s)|p v e ( sup |y e>/l£( s ) r )  < C .
—T< s < T  ' - t < s < T  '

Proof. Let q := (9i + l) V fe  +  l) and M(t)  := Y e'h*{ t ) -G (Ye'be( t - r ) ) , t  e  [0,T]. 

Applying the Ito formula, together with the Holder inequality and the Young 

inequality, we obtain that

|M(t)ip <  ; " ; : ; ; p +  c  /  |M(s) ipds
J o

+ c [ {|6(ye'',‘(s),yt''‘'(s-T))|»’
J o

+ \\a(Y‘’h‘ (s), Y ‘-h‘ (s -  r)) | |^ } d s  (4.3.6)

+ C N ( f  |M (s)|2(’,- 1)||tr ( y a ‘( s ) ,y <''‘‘(s -  r ) ) | | ^ d s ) 5

+ pV i |M (s)|p_2(M(s), a ( Y e'h‘(s), Y ‘'h' (s -  r))diy(s)>,
J o

59

33



where we have also used h£ G A n (as SW-valued random variables). Note from 

Remark 4.3.2 that

sup |y <'',‘(s)|p < 2p- 1 sup f|M (s)|p + |G(y<''*‘( s - r ) ) |p)
0< s < t  0 < s < t  '  '

< c ( l  + ^ ||p<’‘+1>+ sup |M(s)|p (4.3.7)
\  n < s< t

+ sup ly ^ 'ts
0 <S<t  — T

Thus, by (4.3.6), together with Remark 4.3.2, we derive from the Burkhold- 

Davis-Gundy inequality and the Young inequality that 

*1

e (  sup \M(t)\A < - e (  sup |M (f)|p)  + c ( l  + E /  |y £’*‘(s)|pds
o < s < <  '  2  V 0 < s < t  '   ̂ J  o

+  E J  |y e’'*‘( s - T ) |p<,,1+1)ds + E ^  |y <-'>‘( s - r ) |pte+1)ds},

that is,

e (  sup |M (i)|p') < 2 c { l + E  [  |y t'',‘(s)|pds
0 < s < t  '  f J o

+  E j ‘ -  r)|p̂ ,1+1)ds +  E |y e-4‘(s -  T)|p(?2+1>ds}.

This, together with (4.3.7), yields that

e ( sup |ye’'*, (s)|p) < c j i  +  Ef sup |y e-',‘(s)|p«) + /  E |y‘'',‘(s)|pdsj.
' 0  < s < t  '  f ' 0 < s < t —r '  J q ''0

Thus, by the Gronwall inequality, one has

e ( sup |y ,'/*'(s)|p) < c { i  +  e (  sup ly ^ C s jH } . (4 .3 .8 )
V o < s < t  '   ̂ 0 < S < t —T '  >

In particular, for any m > 1 sufficiently large

e (  sup |y ‘’','(s ) |p,m') <c,
^ 0  <S<T 7

due to the arbitrariness of p > 2 in (4.3.8). This further implies that

E (  sup < C l  1 + E (  sup |Ye,fc4{ a ) r m) )  < C .
0 < s < 2r  ' f  0 < s< t ' >

Consequently, the desired assertion follows from an induction argument. □
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Lem m a 4.3.2. Under (Al) and (A2), JCn {^°(h) : h G Sn } is a compact 

subset of S.

Proof. It is sufficient to show Y hn —► Y h in §, where Y hn and Y h are the solutions 

of Eq. (4.3.5) with the controls hn G Sn and h G Sn respectively. Let

M(t)  := {Yhn(t) -  Y h(t)) -  (G (Yhn{t -  r)) -  G{Yh{t -  r)) ) ,  t G [0,T].

By (Al), Lemma 4.3.1 and the property of Vi, we arrive at

sup \Yhn(s) - Y h(s)\2
0 < s < t

< 2 {  sup |M (s)|2 +  sup V?(YK*(t)i Y h(t))
f  0 < s < t  0 < s < T - t

x sup |y * " ( s ) -y * ( s ) |a
0 < S < t  — T

< c {  sup ;;2 + sup |y ',”( s ) -y '* ( s ) |2 j..
0 < s < t  0 < S < t - T  *

Applying the chain rule and Lemma 4.3.1, and using (Al) and (A2), we derive
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that

\M{t)\2

= 2 [  (M(s),b(Yh’' ( s ) ,Yh”( s - T ) ) - b ( Y h(s ) ,Yh( s - T ) ) ) d s  
Jo

+ 2 f  {M(s) ,a(Y," '(s) ,Yh''(s - r ) ) ( h n(s) -  h(s))
Jo

+ (a (Y hn(s), Y h"(s — t))  — a ( Y h(s), Y h(s — r)))A(s))ds

< c  f  { (|y ',,' ( s ) - y ' ‘(s)| +  y i(y '‘’' ( s - r ) 1y ',( s - r ) ) |y '* " ( s - r ) - y '* ( s - r ) | )
Jo

x ( ly ^ fs )  -  y h(s)| +  V2(Yh"(s -  t ), Y h{s -  r ) ) |y '“"(s -  r )  -  Y h(s -  r)|)}ds

+ c  f  ( |y ',’'( s ) -y '* ( s ) | +  y1(y '“’' ( s - r ) , y ' ‘( s - r ) ) |y '* " ( s - r ) - y '* ( s - r ) | )  
Jo

X {(1 + ly'-Mi + ly^ts -  r)|«+l)|/»„(s) -  h(s)I + (|y*"(a) -  y"(s)|+

+ V2(Yh' ( s  -  T) ,Yh{s -  r ) ) |y ',”(s -  r) -  Y h(s -  r)|)|fc(s)|}ds

< c f  sup |y A”(r) — y h(r)|2ds + C f  sup ly ^ f r )  — y*(r)| ■ |/i„(s) —/i(s)|ds
J o  0< r < s  J o  0<r<s

+ C f  sup \Yhn(r) — Y h(r)\2 • |/i(s)|ds
J o  0< r < s

< C  f  sup \Yhn(r) — Y h(r)\2ds + f  \hn(s) — h(s)\2ds 
J o  o< r < s  J o

+ 5 sup \Yhn( s ) - Y h{s)\2i
0 < s < t

where G (0,1) is some constant sufficiently small such that C5 G (0,1) with 

C > 0 appearing in (4.3.9). Substituting this into (4.3.9) gives that

sup |y**(t) -  Y h(t)\2 < c {  sup -  y ^ s ) !2 + f  |/i„(s) -  h(s)\2ds}
0<3<t  t 0<S<t  — T JO '

+ c  f  sup l y ^ M - y V ^ d s .
Jo  0 < r < s

Then the Gronwall inequality gives that

sup i r ^ O O - y ^ s ) ! 2 < c {  sup \Yhn( s ) - Y h(s)\2+ f  \hn(s) -  h(s)|2d s), 
0 < s < t  t 0 < s < t —t  J o  '

and the desired assertion follows by an induction argument and noting that hn 

converges weakly in H to h G Sn - □

Carrying out similar arguments to those of Lemma 4.2.4 and Lemma 4.3.2 

we can also deduce the following result.
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Lem m a 4.3.3. Assume that the family {h£,e £ (0,1)} C A n (as ^-va lued  

random variables) converge almost surely in H to h E A n (as S at valued random 

variables). Then Y t,hC —> Y h converges in distribution in S.

Our second main result is:

T heorem  4.3.4. Under (Al) and (A2), Y £ = {Te(t)}tG[0)T], the solution of 

Eq. (4.3.3), satisfies the LDP on § with the good rate function 1(f )  defined by

(4.2.6), where Y°(h) solves Eq. (4.3.5).

Proof Since the proof is similar to that of Theorem 4.2.5, we omit the details 

here. □

Remark 4.3.4. Mohammed and Zhang [60] established the LDP for stochastic 

systems with memory, where the drift and diffusion coefficients need to satisfy 

a global Lipschitz condition, while our result allows the coefficients to be highly 

nonlinear with respect to the delay argument.

Remark 4.3.5. The theories established can also be generalized to the cases of 

neutral functional SDEs with infinite delay and neutral functional SPDEs in 

infinite-dimensions, which will be reported in the forthcoming papers.

4.4 LDP for Neutral FSDEs with Jumps

In the previous section, we discuss the LDP for neutral FSDEs driven by Brow­

nian motion, while in this section we shall study the LDP for neutral FSDEs 

with jumps. To this end, we need to recall from [15, p727 and p735-736] some 

notions and notation.

For a locally compact Polish space K, denote by A4f(K) the family of all 

measures v on (K, «^*(K)) such that v(K)  < oo for every compact K  C K. 

Note from [15, p727] that A4f(§) is a Polish space under the weakest topology. 

For a locally compact space X and fixed T  > 0, let Y := X x [0, oo),Yr := 

[0,T] x Y,M := A4f(Yj’). Let W := C([0,T];Mm), which is a Polish space 

under the uniform topology, and V : = W x M ,

Let IP be the unique probability measure on (V, «^(V)) such that
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(i) The canonical map W  : V W, W{w,m) w is a standard Brownian 

motion.

(ii) The canonical map N  : V M, N(w,m) := m  is a Poisson random 

measure with intensity measure Vt x A^ with v t  := At x  i/, where 

At and Aqq are Lebesgue measures on [0, T] and [0, oo) respectively, and 

v G M f (X).

(iii) For A G &{Y)  such that (v x Xoo)(A) < oo, W(t)  and iV((0,t] x A) — 

Pt((0,£] x A) are ^-martingales, where

gt :=  a{N((0,s] x A) : 0 6 (0,t],A G # (¥ )} .

Let T t be the completion under P. Denote by V  the predictable cr-field on 

[0,T] x V with the filtration {•Ft}te[o,T’] on (V, ^(V )). For X t := [0,T] x X, let

A  := {y>: X t x  V —> [0, oo)|v? is (P <g) ^(X))\«^([0, oo)) — measurable},

Since (V, «^(V),P) is the underlying probability space, following the standard 

convention, we will suppress the dependence of tp(t, x,u>) on u, and simply write 

ip(t,x) for (ttx tuj) G X t x V. For <p G A, define a counting measure N * on X t 

by

m
oo

l(o,„(»,*)](r)lV(dsdxdr), t £ [0,T], U £ ^ (X ).

(4.4.1)

N* is called a controlled random counting measure, with <p selecting the intensity 

for the points at location x and time s. Moreover, for some 0 > 0 and any 

( s , x , l j ) G X t x V, if <p(s,x,u>) = 9 , then we write N * as N e.

Remark 4.4.1. Recall that, under the probability measure P, N  is a Poisson 

random measure with intensity measure Vt . It then follows from (4.4.1) that 

N 6{{0, t] x U) — 6tv(U) is an T t -martingale for U G <^(X).

Let (f) : (0, oo) ► [0, oo) be a mapping such that

4>(r) := r  logr — r + 1, r G( 0 ,  oo). (4.4.2)
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Let U  : =  IHI x A,  where H is defined by (4.2.3). For u := (/i, cp) G U , define

M u) : = 5 M h +  £ t (¥>). (4-4.3)

where

JxT
Note from [15, p728] that 0 is the rate function for the standard Poisson process. 

For N  > 0 define

S n {v? ( X t ^  [0, oo)| Lt {<p) < A}.

By [15, Line 1-4, p736], : <p G <Sw} is a compact subset of M := .M f(X t)

under the weak topology, where

Uj<(A) := I  <p(s, x)i/r(dsdx),
Ja

Moreover, since a function ip G S n  can be identified with a measure */£ defined

above, S n  is also a compact space through this identification. Let S n  ■ =  S n  x

S n , where Sn  is defined by (4.2.4), § := (Jw>i Sn  and

U N  := {u = (h, <p) G U \ u(-, u) G P — a.s.}.

Denote by {Qe, e G ( 0 , 1)} the family of measurable functions from V : = W x M  

to HJ, where HJ is a Polish space. Let {Z€, e G (0 ,1 )}  be the space of all U-valued 

random variables defined on the probability space (V, «^(V),P) by

Z£ — G ^yfeW .eN ^1). (4.4.4)

To establish the LDP for the family { Z £,e G (0,1)}, Budhiraja, Dupuis and 

Vasileios [15] formulate the following sufficient condition:

Assume that there exists a measurable mapping Q° : V i—» HJ such that

(i) For any A” > 0, if the family {ue =  (h€,ipe),e G (0,1)} C U N  (as S n ~ 

valued random variables) converge in distribution to u = (h, <p) G U N  (as 

^ -v a lu ed  random variable), then Q€(y/eW -I- he,cN e~lip£) —> G°(h,Uj.) in 

distribution in U as e —► 0.
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(ii) For any N  > 0, the set JCn := {G°(h, Uj) : (fi, </?) G Sn } is a compact 

subset of HJ.

Lem m a 4.4.1. ([15, Theorem 4.2]) Under (i) and (ii), the family {Ze, e G (0,1)}, 

defined by (4.4.4), satisfies the LDP with rate function given by

I{4>) := inf Lt (u), (4.4.5)
u = ( h , i p ) £ § , j >

where Lt  is defined by (4.4.3), and := {u =  (h, ip)\(j) =

In this section, we shall apply Lemma 4.4.1 to establish the LDP for neu­

tral FSDEs driven by multiplicative Levy noise. Consider a neutral functional 

differential equation on Rn

i d [ Z ( t ) - G ( Z t)} = b(Zt)dt, t G [ 0 , n

( z 0 = £ g ^ ,

and the associated perturbed neutral FSDE 
/

d[Z<(t) -  G{Zfl) =  b{Zl)dt +  yfea(Zt)dW(t)

< + f z $ { Z t ,x ) ( e N e~1 (dtdx) — vT{dtdx)), t e[0,T],

Z eQ = ^ e ^ ,
<

where W  and N e 1 are the Brownian motion and the Poisson process defined 

on the probability space (V, <^(V),P, Tt)  respectively.

In what follows, we still assume that {HI)  and {H2) hold. For 4> : Rn x X »—► 

Rn, we further assume that

(Bl) 4> : Rn x X Rn is bounded and there exists an L > 0 such that 

|4>(^,a:) — ${z',x)\ < L\z — z'\, z ,z '  G Rn,z  G X.

(B2) For some compact subset K  C X, $(z ,x )  = 0 for (z, x) G Rn x K c.

Let U := D([0,T];Rn), the space of all cadlag paths from [0,T] into Rn, 

equipped with the uniform convergence topology. By the Yamada-Watanabe 

theorem, there exists a measurable map Qt : V ■—» U such that

Z£ - a £(v^VF,eyVe_1).
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Then for ue (he,ipe) G UN (as Sn -valued random variables)

Z e'u* := g e(yfiW + he,eN€~1,fit)

uniquely solves the following equation

d [ z ^ e(t) -  G ( z r *)] =  \b{Ẑ ) + a i z ^ w m t  + ^ ia (Z l 'ut)dW[t)

+ f x $(Zf'u ,x)(eNe ^ '(d tdx) — I'ridtdx)),

ZquC = £ G
(4.4.6)

For u = (/i, ip) G S, we introduce the skeleton equation for t G [0, T]

d[Zu(t) -  G(Z,«)] -  [b(zr) + C7(z?)h(t)]dt
+ -  l)i^r(dtdi), (4.4.7)

ZZ = t e  V,

and define

g ° ( h , 4 ) - - Z u. (4.4.8)

Lem m a 4.4.2. Under (HI), (H2) and (Bl), for u ' := (hc,ip‘) € UN (as Sti- 

valued random variables) and u  := (ft, ip) £ Siy, there exists C > 0 such that

sup |Z“(t)|4 V E ( sup \Zu'(t)\4)  <C.
- r < t < T  '  ~ r < t < T  '

Proof. Let M(t)  be defined by (4.2.12) with Z£,/l* replaced by Z e,ut and note 

that (4.2.14) still hold. By the Ito formula, one has

\M(t)\2 = |M (0)|2 +  f {2 {M {s ) ,  b ( Z ^ )  + a ( Z ^ ) V ( s ) )  +  e \ \a (Z^) \\2HS}ds 
Jo

+ f  f  { ( e m Z ^ \ x ) \ 2 + 2 ( M ( s ) ^ ( Z ^ \ x ) ) ) ^ ( s , x )
Jo Jx

-  2 ( M ( s ) M Z i u\ x ) ) } v T(dsdx) + U t )  + j 2(t), 

where J\{t) := 2yfi (M (s),cr(Z|’u<:)dVF(s)) and

M t )  := T  f  {e2m z t ’u\ x ) \ 2 + 2e(M {s)M Z l 'u\ x ) ) }
Jo Jx
(Ne ‘^(dsdz) — e V £(s, x)vr{dsdx))
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In light of (HI), (4.2.2), (4.2.13) and (Bl)

sup iM(f)i2 < c + c  [ T{\h<(t)\ + (i + m m z r ' w D d t
0 < t< T  Jo

+ c  [  / ( i  + \\z\-u' (t,x)uT((.Mx)
JO J x  

+ sup | J i W | +  sup
0 < t < T  0 < t< T

Note from the definition of A IfTO  and the compact property of X that v(X) < 

oo. Due to u£ are -SW-valued random variables and (f)(r) > r -f 1 — e, r 6 [0, oo), 

with 4> defined in (4.4.2), we have

< N  and j  <pe(t,x)i'T(dtdx) < N  + (e — l)i/(X). (4.4.9)
J x T

It then follows that

sup \M(t)\2 < C +  sup |Ji(t)\ + sup | j 2(T)|
0 < t< T  0 < t < T  0 < t < T

f T ( f  \  « (4.4.10)
+  C /  ( l  + |/i£(£)| +  /  y?£(£,a:)) sup |Z e,w*(s)|2di.

Jo  '  J x  /  0 < 5 < t

Now substituting (4.2.14) with p = 2 into (4.4.10) and using (4.4.9) leads to 

sup \M(t)\2 < C  + sup |Ji(t)| +  sup IJ2WI
0 < t < T  0 < t < T  0 < t< T

+ C [  ( l  + |/ie(£)| + [  (pc(t ,x)]  sup |M (s)|2d£.
Jo  '  J x  J 0<3<t

Then, by the Gronwall inequality, we arrive at

sup \M(t)\2 < ( c +  sup |J i ( i ) |+  sup |J2(T)|)
0 < t < T  '  0 < t< T  0 < t < T  '

x exp ( c  j  ^1 + \he(t) \ -I- f  ipe(t,x)v(dx)^d.t^.
J 0 t/ x

This, together with (4.4.9), gives

sup \M(t)\2 < c ( l  + sup |J i(i)| +  sup |J2(r ) |Y
0 < t < T  '  0 < t < T  0 < t < T  '

Hence

e (  sup \M(t)\4') < c ( l  +  e (  sup |Ji(£)|2) + e (  sup |J2(T)|2) ) .  (4.4.11)
' 0 < t < T  ‘ '  ' 0 < t < T  '  ' 0 < t< T  '  '
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Next taking into account the Doob inequality and the Ito isometry, we obtain 

from (4.2.2) and (4.2.13) that

»T

(4.4.13)

e (  sup IJiM I2') < 16eE f  {M (s) ,a (Z \u' ) m ( s ) )
' 0  < t < T  '  Jo

< i6eE / T ;- ;;2| |a ( z ^ £)||2̂ d s (4 .4 .12)
J o

< C e E [  (l +  H Z ^ II^ d s ,
J o

and by (4.2.7) and (Bl) that 

e (  sup |J2W |2)
'  0< t < T  '

< 4 E  f  f { t 2 \ $ { Z ‘ » \ x ) \ 2 +  2 e ( M { s ) , < S > { Z r \ x ) ) }
J o  J x

x ( Ne ^ (d s d z )  — e~1(p£(s, x )vt(As&x))

=  4eE f  / { e |$ (Z ‘'“\ x ) | 2 
J o  J x

+ 2(M(s), x))}2(p‘(s,x)uT(dsdx)

< CeE f  [ (1  +  l l z r l ^ V ' ^ x K ^ d z ) .
J o  J x

Putting (4.4.12) and (4.4.13) into (4.4.11), and using (4.2.14) with p = 4 and 

(4.4.9) implies that

e (  sup \Z'»’(t)\4) < C  + C<E [ T W Z ^W ld s
0 < t < T  * J o

+ Cee [  f  ||Zsc’u£| | ^ e(s,:r)^T(dsd:r)
J o  J x

< C  + C ( E l ( T +  f  j  (p'(s,x)(Y(dsdx))
J  0 */ X

x (  sup \Zui{t)\A) \
0 < t< T  '  J

< C  + C(T + N ) t E (  sup |Z“‘(t)|4V
' 0  < t < T  J

Consequently, the second assertion follows by choosing e > 0 sufficiently small, 

and the first assertion holds by applying the chain rule and following the argu­

ment of that of (4.4.10). □
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Remark 4.4.2. In fact, following the argument of Lemma 4.4.2 we can also verify 

that

sup \Zu(t)\p v l (  sup \Zu'(t)\p) < C
- r < t < T  '  - r < t < T  ‘

for any p > 2. While we only show the case p = 4 in Lemma 4.4.2, which is 

enough for later purpose.

Lem m a 4.4.3. Under (HI), (H2), (Bl) and (B2), the set K m := {£°(h, v*) : 

(h, ip) E Sm} is a compact subset of U.

Proof. The argument is similar to that of Lemma 4.2.3, while we give an outline 

to point out some differences. For un := (hn,<pn) and u := (h,<p), denote by 

Z Un and Z u the solutions of Eq. (4.4.7) with the controls un € Sm and u G Sm 

respectively. Let M(t) be defined by (4.2.18) with hn and h replaced by un and 

u respectively. By the chain rule, we have from Eq. (4.4.7) that

\M(t)\2 = 2 f ( M ( s ) M Z ^ ) - b ( Z ^ ) ) A s  
Jo 

+ 2 f  m s ) .  a(z^)(h-{s)  -  h(s)) + (a(Z^)  -  <7(Z,k))ft(s)>ds
Jo

+ 2 f  [ ( M ( s ) M Z ^ ,x )  - H Z ^ , x ) M d x ) d s  
Jo Jx

+ 2 [  [ (M(s),($(Z%n,x) -  ^(Z^x)))ip(s,x)iy{dx)ds  
Jo Jx

+ 2 [  f  (M{s) ,$ (Z“n,x)){<pn{s,x) -  (p(s,x))i/(dx)ds 
Jo Jx

—• h{t)  + h(t)  + h(t )  + I  tit) + h(t)- 

A computation shows from (HI) and (Bl) that

|/3(0I +  lAWI [ { l + f x f (s ,x)u(dx)) \ \Z^ -  Zf\ \ lds.  

Following the argument of that of Lemma 4.2.3, we obtain that



By the Gronwall inequality and (4.4.9), one has

sup \ZUn(t) -  Z u(t)\2 < c (  sup \h{t)\ + f  \hn(t) -  h(t)\2dt).
0<t<T '  0<t<T Jo '

Moreover, due to (4.2.13), (Bl) and Lemma 4.4.2, (M(s), 4>(Z“n, x)), s G [0,T], 

is uniformly bounded. Then, by [94, Lemma 3.4], sup0<t<T |/5(t) | —» 0 as n —► 

oo. Then the conclusion follows from that hn —► /i, n —► oo, in H, as required. □

Lem m a 4.4.4. Let (HI), (H2), (Bl) and (B2) hold. Assume further that the 

family {ue = (he, <£>e), e G (0,1)} C Un (as ^ -v a lu ed  random variables) converge 

almost surely in HI to u = {h,cp) G Un (as ^ -v a lu ed  random variable). Then 

Ze-u£ —> Z u converges in distribution in S.

Proof. It is sufficient to show that Ze,u£ —» Z u in probability in S. Let M(t) 

be defined by (4.2.18) with Z £,ut and Z u replaced by Z hn and Z h respectively. 

Applying the ltd formula, we obtain from (4.4.6) and (4.4.7) that

\M(t)\2 -  2 f { M { s ) , b ( Z 1;'1') ~b{Z:))ds  
Jo

+  2 f  f  < M ( S ) , { $ ( ^ , x ) - $ ( Z ^ s ) } K ( d z d * )
Jo Jx

+ 2  [ \ M ( s ) , ( a ( z ‘/ ‘‘) - a ( z : : : : : : :ds  
Jo

+ 2 [  [ (M(s),(4>(ZstlUt,x) -  $ ( Z “,x)))(p(s,x)vT{dxds)
Jo Jx

+ 6 f  \\a(Z‘̂ ) f HSds + 2^1 f ( M { s ) ^ ( Z T ' ) d W ( s ) )
Jo Jo

+ e f  (  |$(ZJ,U<, x)\2ipe(s,x)vT(dxds) (4.4.14)
J 0 «/X

+  f  f  { S \ H Z l ’'‘\ x )\2 + 2 e { M { s ) M Z r ' , x ) ) }
Jo Jx

x (Ne lv?£(dxds) — e~1tpevr(dxds))

+ 2 / ‘(M W , <r(Zl'u')(h<(8) -  h(s)))ds 
Jo

+ 2 [  f  ( M ( s ) ^ ( Z ts'u\x)((pt (s,x) - ip(s,x)) )uT(dxds)
Jo Jx

—• Ji{t) +  J2{t) T ^ (O  + J$(f) + J${t) + J§{t)

+ Jiit) +  j&{t) +  «/g(0*
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By (H2) and (Bl), it is easy to see that

This, combining (4.2.19) with (4.4.14) and applying the Gronwall inequality, 

yields from (4.4.9) that

sup \Ze,ue(s) -  Z u(s)\2 < c (  sup IJ5W I+  sup | J 6 ( t ) |  + sup
I< t < T  '  0< t < T  0< t < T  0< t < T

+ sup \Js(t)\  + sup IJ9

Furthermore, due to Lemma 4.4.2 and the Burkhold-Davis-Gundy inequality, 

we have

In view of (4.4.9), (Bl) and Lemma 4.4.2, it thus follows that 

sup | c/e( )̂ | —̂ 0  in probability as e |  0 .
0 < t < T

Observe by the Chebyshev inequality, (4.4.13) and (4.4.9) that for any 8 > 0

0 < t < T 0 < t < T

For arbitrary R  > 0 and 5 > 0, note that

ipc(s,x)vT{dxds) >

sup |J 7(t)| > S )  < sup | J 7 W I 2 )

0 < t < T  '  0 ' 0 < t < T  '

< j e / 7 x(1 + k[  / ( I  +  ||Zj,“€||̂ 0)^e(s, x)vT(dsdx) 
Jo Jx

Hence

sup | —* 0 in probability as e J. 0.
0 < t < T

Recall from (4.2.24) that

sup |«/8(t) | —>■ 0 in probability as e J, 0.
0 < t < T

Then the desired assertion follows from [94, (23)]. □
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Theorem  4.4.5. Let (HI), (H2), (Bl) and (B2) hold. Then satisfies the LDP 

on § with the good rate function 1(f)  defined by (4.4.5), where Q° is defined by

(4.4.8).

Proof. The proof can be complete by following the argument of that of Theorem 

4.2.5. □

Remark 4.4.3. The boundedness of drift and diffusion coefficients are imposed in 

[15, 94] to study the LDP, while in this chapter this condition has been relaxed.

Remark 4.4.4. Following the approach adopted in Section 3, we can also gener­

alize Theorem 4.3.4 to the cases of neutral SDDEs with jumps, which allow the 

coefficients to be highly nonlinear with respect to the delay argument.
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Chapter 5 

Numerical Analysis for Neutral 

SPDEs Driven by a-stable 

Processes

In this chapter, we discuss the convergence of EM scheme for a class of neutral 

SPDEs driven by a-stable processes, where the numerical scheme is based on 

spatial discretization and time discretization.

5.1 Introduction

Numerical approximations of SPDEs driven by the Gaussian or Poisson-jump 

noise is well understood, e.g., in [33, 34, 41, 47, 48, 49, 50] for Gaussian case, in 

[41, 42] for Poisson-jump case. However, most of the existing papers cannot cover 

an important class of SPDEs driven by a-stable Levy motion with a  E (0,2). 

Note that Wiener noise and Poisson-jump noise have arbitrary finite moments, 

while a-stable noise only has finite p-th moment for p E (0, a). This therefore 

brings a lot of difficulties in discussing SPDEs driven by a-stable processes. For 

additive cases, [68] investigated the structural properties of mild solutions such 

as strong Feller properties, irreducibility and invariant measure, [24] discussed 

Markovian solutions of stochastic 2D Navier-Stokes equations, and [95] studied 

trajectory property of stochastic Burgers equations. On the other hand, there
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are few papers on the numerical analysis of explicit schemes of neutral SPDEs, 

although there are some papers on successive approximations of neutral SPDEs, 

e.g., [6 , 9]. Motivated by the previous papers, in this chapter we shall discuss 

the convergence of EM scheme for a class of neutral SPDEs driven by a-stable 

processes, where the numerical scheme is based on spatial discretization and 

time discretization.

Let (H, (•, •)//, || • ||h) be a real separable Hilbert space, and Z(t) a cylindrical 

a-stable process, a G (0,2), defined by
OO

z (t) := &nZm(£)em,
m= 1

Here {em}m>i is an orthogonal basis of H , {Zm(t)}m>i are independent, real­

valued, normalized, symmetric a-stable Levy processes defined on stochastic 

basis (Cl, &,  o, E), and {Pm }m>l is a sequence of positive numbers. Recall

that a random variable rj is said to be stable with stability index a G (0,2), scale 

parameter a  G (0, oo), skewness parameter P  G [—1,1], and location parameter 

/i G (—oo, oo) if its characteristic function is

4>v(u) = Eexp(iur)) =  exp{—t7a |u|a (l — i/3sgn(u)$ + ifiu}, u G R,

where $  = tan(7r a /2 ) for a  ^  1 and $  =  —(2 / 7r) log |u| for a  = 1. We call 77 

is strictly a-stable whenever n = 0 , and if, in addition, P =  0 , rj is said to be 

symmetric a-stable. For a real-valued normalized (standard) symmetric a-stable 

Levy process z(t), a  G (0,2), it has the characteristic function

Eexp (iuz(t)) = e-1^ * , « G l ,  (5.1.1)

and the Levy measure Aa(dz) := >x  € M — {0}, where ca is some constant.

For fixed r  > 0, consider the following neutral SPDE driven by a-stable 

process

( d{X(t)  -  G(X(t  - r ) ) }  = {A X ( t ) +  b(X(t ) ,X(t  -  r))}dt  + dZ(t), 

[ X ( 6 ) = m e H ,  0 G [—r , 0],

(5.1.2)

where G : H  H  with G(0) =  0 and b : H  x H H.

Throughout this chapter we assume that
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(Al) A is a self-adjoint operator on H  such that —A has discrete spectrum 

0 < Ai < A2 < • • • Am |  oo with corresponding eigenbasis {em}m>i of H. 

In this case A  generates a compact Co-semigroup etA,t  > 0, such that

(A2) There exists L\ > 0 such that

\ \b (xuyi) -b(x2,y2)\\H < ^ i( ||^ i — 272||// + II2/1 — y2 ||//), x u x2,yi,V2 e  H. 

(A3) There exist kG (0,1) and L2 > 0 such that

| | ( - A ) » ( G ( x )  -  G(y))\\H < L2\ \ x  -  y\\H, x ,y  G H.

(A4) There exists 6 G (0,«) such that a6 G (0,1) and <5 := ]T)m= 1 < °°.
A771

Note from (A4) that = J2m=i ^  due to the non_

decreasing property of {Am}m>i. For t G [0,r ] ,  (5.1.2) reduces to an SPDE 

without the delay argument and the neutral term. By [6 8 , Theorem 5.3], under 

(A1)-(A3), (5.1.2) has a unique mild solution X(t)  on the time interval [0, r]. 

Carrying out a similar procedure, (5.1.2) has a unique global mild solution X(t)  

on [0,T], that is, there exists a predictable //-valued stochastic process X(t)  

such that

where A^ represents the Laplace operator, H k(0 ,7r), /c =  1,2, represents Sobolev 

spaces, and Hq(0 ,7r) is the subspace of H 1(0 ,7r) of all functions vanishing at 

0 and 7r. Note that A is a self-adjoint negative operator in H, and Aem =

X(t)  =  eM{?(0) -  G («(-r))}  + G(X(t  -  r))

e«-.M d Z(s).

(5.1.3)

Example 5.1.1. Let H — L2(0,7r) and A  be given by

Ax :=

V(A) — H 2{0,7r)nH^(0,7r)
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—m2ern,m  G N, where em(£) = (2 / 7r)1//2 sinm £,m  G N ,( G [0,7r]. Let. Z(t , £)

E ” =1 rnPZm^em (£), where ap G (0,1) and {Zm(t)}m>i is an independent, 

real-valued, normalized, symmetric a-stable process sequence. It is trivial to 

see that 5 =  - Due to a P e  (°> !)> one has 1 < 2 -  pa < 2.

Hence there exists 6 G (0, k) such that 1 < 2(1 — a 6) — pa < 2, and therefore 

 ̂~  Em=i m2(i—L?)-pa < oo- In other words, (A4) holds for such case.

Remark 5.1.1. We remark that by [6 8 , Theorem 5.3] (5.1.2) has a unique mild 

solution under 2m =i < oo, which is weaker than (A4). While the a little 

bit stronger condition (A4) is just imposed for later numerical analysis. On the 

other hand, [43, Example 4.1] satisfies (A3) with k = \ .

For any n > 1, let 7rn : H —> Hn := span{ei,--- ,en} be the orthogonal

projection, that is, 7inx = for x G H. Define Gn := 7rnG, An :~

7TnA,bn := 7rn6 , and Zn \= nnZ.

Consider the following finite-dimensional SDE on Hn 
/

d {X "( t)  -  Gn(X"(t -  r ) ) }  = {A„Xn(t)

< +bn{Xn(t), X n{t — r ) ) } d t  + dZn(t), (5.1.4)

X n( 9 ) = * „ m ,  0 e [ - r , O ] ,

which admits a unique solution X n(t) on Hn due to the fact that Anx+bn(x, y) ,x ,y  G 

Hn: satisfies Lipschitz condition.

Let A := jj G (0,1) for some sufficiently large integer N.  For any integer 

k > 0, compute the discrete EM approximations Y n(kA) «  X n(kA) by forming

f
Y n((k +  1)A )  := Gn(Yn{(k +  1)A -  r))  + eAA*{Yn{kA) 

- G n(Yn(kA  -  r ) )  +  AnGn(Yn(kA -  r ) ) A
<

+bn(Yn(kA ) ,Y n(kA -  t) )A + AZ%}, 

Y n(6) :=irn£(0), ^  [ - r ,  0],

where A Zg Z((k + 1)A) — Z(kA), and define the continuous EM scheme

77



associated with (5.1.4) by

Y n(t) := Gn(Yn(t -  t ) )  + eM"{y'"(0) -  G „(yn( - r ) )}

+ / 01e(‘-W*‘4’,A„Gn(y "(|sJ  — r))ds 

< + / 0‘ e<1-W>yl"6„ (y ’, ( [ s J ) ,y ’* (L sJ-r))d s  (5-1-5)

+  J0t e(‘“ LsJ,-4"dZn(s),

Y n(e) :=nnm ,  « 6 [ - r ,0 ] ,
\

where [tj := [t/A] A with [t/A] denoting the integer part of t / A .  By a straight­

forward computation, we have Y n(kA) = Y n(kA), k > 0, that is, the continuous 

scheme Y (t ) coincides with the discrete approximate solution at the gridpoints.

Throughout this chapter, C > 0 is a generic constant whose values may 

change from line to line. Our main result in this chapter is as follows.

T heorem  5.1.2. Let (A1)-(A4) hold and a  E  (1,2). Assume further that there 

exists L3 > 0 such that

l|£(0i) ~  £($2)||// < Ls\6i — 02\, 0i,$2 € [—t, 0]. (5.1.6)

Then, for arbitrary T  > 0 and p E (1,Q;),

sup (E||X(f) -  Y n{t)\\PH)1/P < C { \ - {iK- 0)A0) + A (1- 0)a0}, (5.1.7)
0 < t < T

where C > 0 is a constant dependent on p, a, 6, T , but independent of n and A.

Remark 5.1.2. Kloeden et al. [50] presented an error analysis of EM scheme for 

semilinear stochastic evolution equation on H — L2([a, b]d)

d X(t)  = [~AX{t)  + F(X(t))]dt +  d W(t), X(Q) = x, (5.1.8)

where the Burkhold-Davis-Gundy inequality, which is controlled by quadratic 

processes, is one of the vital tools to cope with the noise term. The approach in 

[50] does not work for (5.1.2), even for the case G = 0 and r  =  0 , since a-stable 

noise only has finite p-th moment for p E  (0, a), where a  E (0, 2).

Remark 5.1.3. For SPDEs driven by multiplicative //-valued a-stable Levy mo­

tions, there are few papers on this topic as stated in [6 8 ]. Therefore, in this
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chapter we only discuss the additive noise cases. On the other hand, some tricks 

have been utilized in dealing with the neutral term, and, by following these 

tricks, Theorem 5.1.2 can be extended to the cases of neutral SPDEs driven by 

additive Wiener processes and multiplicative Poisson jumps.

Remark 5.1.4. In this chapter, we only discuss the convergence of numerical 

scheme for the case p £ (1 , 2 ), while the counterpart for the case p £ (0 , 1] is still 

open even for the case G = 0 and r  =  0. Priola and Zabczyk [68] discussed the 

existence and uniqueness of (5.1.8) with W{t) replaced by //"-valued a-stable 

process Z(t) whenever F  is bounded. Even for such simple case, the invariant 

measure of numerical scheme is still open. Therefore, there are still a lot of 

work to do to investigate the numerical analysis of SPDEs driven by a-stable 

processes.

In Section 2 we give two auxiliary lemmas, and in Section 3 we complete the 

proof of Theorem 5.1.2.

5.2 Auxiliary Lemmas

To end the proof of Theorem 5.1.2, we prepare the following two lemmas. 

Lemma 5.2.1. Under the assumptions of Theorem 5.1.2,

sup (E ||X (t)-X (L tJ)||Jr)1/,’ < C A (1-*)A,> p e ( l , a ) ,  (5.2.1)
0 <t<T

where C > 0 is a constant dependent on p, a, 0, T  but independent of A.

Proof. For any t £ [0,T], it is easy to see from (5.1.3) that 

X(t) - X ( l t J )  =  e^ (e< '-W )-4 -  1){£(0) - G ( f ( —r))}
/■W ft

+ /  (e^-W)-4 -  l)e<W-sMdZ(s) + /  e(‘- ,,4dZ(s)
Jo J\t\

+ G ( X { t - T ) ) - G { X ( \ t \ - r ) )  
rvn

+ / (e<‘-WM _  i)eW - ^ AAG(X(s -  r))ds
Jo

f \ t \
+ /  (e^-WM _  l)e(LtJ- sM&(X(s),X(s -  r))ds 

Jo
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+ f  A ‘ - s )a A G ( X ( s  -  r))ds +  [ ‘ A ‘- ,)Ab(X(s), X ( s -  r))dsAn An
- E « * ) -

m = 1

Since (E|| • ||PH)1/P, p e  (1 , or), is a norm, it then follows that

(E||X(t) -  X ([ t \W Hy/» < E ( E | |U t W „ ) 1,p- (5.2.2)
771=1

Recall from [65, Theorem 6.13, p74] that

\ \( -A)5letA\\ < Ct~s\  ||(-i4)-*a(l -  eM)|| < Ct6\  (5.2.3)

for arbitrary <$i > 0 , 82 G [0 , 1], and that

{ - A ) Q+(}x =  ( - A)a{ - A f x , x e £>((-A)7), (5.2.4)

for any a,/? € R, where 7  := max{a, /?,a  + 0}. In the sequel, 9 € (0,k) is the 

constant such that (A4). By (5.2.3) and (5.2.4)

HAMIIzr

=  -  G ({ (-r))} ||*

< \ \(-A)~ee ^ A\\ . _  ! j || (5.2.5)

x | | ( - ^ ) { € ( 0 ) - G K ( - t ) ) } | | h

< C\\(-A)-*\\ . ||A{£(0) -  G{Z{-t ))}\\h A M ,

where we have also used the boundedness of (—A )~6, e.g., [65, Lemma 6.3, p71], 

and the contractive property of etA due to (Al). We point out that the following 

idea is taken from that of [6 8 , Theorem 4.4]. Let {rm}m>i be a Rademacher 

sequence defined on a new probability space (Q', {* /̂}t>o> POi he., rm : 17' —>

{1 , - 1} are independent and identically distributed with P '(rm =  1) =  IP r̂™ =

— 1) = 1/2. By the Khintchine inequality, i.e., for a sequence of real numbers

{cm}m>i and any q > 0 , there exists cq > 0  such that

1/2

E &  ^  E '
V.771>1

E T mC-r 
m> 1

9 \  l/<7
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Set
/•iai

/„ (():=  /  { - A ) ee ^ - ^ AAZ(s) = Y j Ki(t)eu
A  i=i

where Am(t) := (5m\ 6me~Xrn̂ ~ s^&Zm{s). By the Fubini theorem

/  OO „  [ t j

E ||/9(t)||?, =  E ( | | / 9 ( ( ) | |2h )» /2 =  E I E  ( /  / 3 m ^ - A"‘<W-s>dZm(S))
\  771=1 ®

p / 2

< c£EE' ^   ̂rmAm(t)
771=1

= c£E'E ^   ̂rmAm(t)
771=1

771=1

Recall the inner clock property of stable stochastic integral, i.e., for deterministic 

function /  : [0,t] —» R+ such that f a(s)ds < oo, there exists a symmetric 

a-stable process Z' such that JZ’(Z') = -Z’(Z) and /* /(s)dZ (s) = Z '(rt), where 

«£?(Z) denotes the law of Z and r t f* f a(s)ds. Thus, for any u G R, by

(5.1.1) and the independence of {Zm(t)}m>i
oo oo

Eexp (iu y !  r77iAm(t)^ — Eexp(zurmAm(t))
771=1 

OO
= Eexp(zusgn(rm)sgn(rm)rmAm(t))

771=1 

OO
= Y l  exp ( -  |usgn(rm)|a

771=1

r \ t \  \
x J  (sgn(rm)rm/3m\ eme Am(W s))adsJ

/  ^  /*L*J x
= exp ( -  \u\Q ^ 2  PmXm J  C aAmSdsJ

771=1 ®

due to sgn(rm)rm = 1. Thus, in view of [6 8 , (3.2)] we arrive at

E
771=1

P /  OO

=  C a , p  |  P ™ a \ l - o 6 ^  ~
\m =  1 m

p / a

j Ô m |_ij

where the explicit form of ca<v is given in [77, p l8 ], and therefore

n \ h m rH < &«,„(*/° )p,a-

According to (5.2.3) and (5.2.6), one thus has

E||/2MII5r - E||(-,4)-V WM -  l)/9(t)||*

< C A P*.

(5.2.6)

(5.2.7)
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Noting that, for arbitrary 7 E (0,1) there exists c7 > 0 such that

\e~x -  e~y\ < c^\x — yp, x ,y  > 0, (5.2.8)

and following the argument of that of (5.2.6), we deduce that

/ .°°, r̂  \ p/oi
E | | / j ( t ) l & < c ( £ / %  I

771=1 W

= c (  j r  _  e- “Am!) ) p/“
V™ i 'm = l

OO /QOt /

^  c (  E  £ v ^ aA”*)w ) ” ” 7  6  (°-
771 =  1

In particular, taking 7  = a# E (0,1) gives

Ell^sWlltf < C<5(c7a“9- 1)',/“A'"'. (5.2.9)

Recall from [38, Theorem 202] the Minkowski integral inequality:

(e | J ‘F(s)ds\py /p < f  (E |^(s)|”) 1/',ds, t e [0,T], (5.2.10)

where F  : [0,T] x Q, —» R  is measurable. The previous inequality, combining

(Al) with (5.2.3) and (5.2.4), gives that for 6 E (0, k)

i > n / » w n  « )i/p
5

rW
/  ||( -A )"0(e(t-W ^  -  1)|| • W e M - ^ - A ) 1- " *

Jo

771=5

•l«J
<

x ||(E||(—̂ 4)KG(A'(s — r))||jf)1̂ pds 
/■W

+  /  H M r V '- w * - 4 -  i)ii
Jo  (5.2.11)

x || ( - ^ ) seu,J- s)/1|| (E||5(X(s)) I P ^ d s

+ / '  ||(->l)1-'te<t-^ ||(E ||( -J4)-G(Jt{S -  r))||^)l/"ds 
■7 L'l

+  f  (E\\b(X(s))rH)l'”ds 
Jin

< c ( l +  sup (E IIX W II^ U '',
'  0 < t < T  '
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where we have also utilized (A2) and (A3). Substituting (5.2.5), (5.2.7), (5.2.9) 

and (5.2.11) into (5.2.2), we arrive at 

(E|| X(t) —X ([ tj)Hjj)1',p <  C (  1+ sup (E||X(i)Hh)1̂ ) A (1_6*Ae + (E ||/4(()
v 0 < t < T  '

Furthermore, in the light of (A3) 

(E ||/4(i)||p )‘/p =  (E ||( - / l ) - '1(- .4 r(G (X (l -  r)) -  G(X(L«J -  t ))Wh ) ^  

< || (—A)- " 11̂ 2 (E|| AT (i -  r )  -  X(LtJ -  T)fHylf .  

Hence we arrive at 

(E\\X(t) -  X { y t \ ) f „ ) ^  < c ( l  +  sup (E|| X(t) ||h )1/p) A (l_<,)Ae
'  0 < t < T  '

+ ||(-> l)-'t ||L2(E||A:(t -  r) -  X([t\  -  

By (5.1.6), one has 

sup (E||X(t) - X ( m \ PH)1/p < c ( l  +  sup (E ||^ (0 ||? f)I/,>)A<1- <'^ e.
0<*<T \  0 < t < T  '

In the sequel, an induction argument yields that 

sup (E||X(t) -  X{[ t \W H)Vp < g ( i  + sup (E ||X (t)||pH)1/’’)A<1- e»Ae.
te[o,r] v o<t<T /

Thus, the desired assertion follows from Lemma 5.2.2 below. □

Lem m a 5.2.2. Under (A1)-(A4),

sup (E||JC(t)ll?,)1/p v sup (E[|V"(0II?,)1/P < c ,  (5.2.12)
0 < t < T  0 < t < T

where C > 0 is a constant dependent on p , a, 9, T  but independent of A. 

Proof. Also, due to the fact that (E|| • IISf)1/p,P 6  (1 , cx), is a norm, we derive 

from (A1)-(A3) and (5.2.10) that 

(EIIXWIIW1/" < Ilf(0) -  G (f(-r)) |U  + ||(-> l)- 'sL2 ||(E ||X (t -  t ) ^ ) 1/” 

+  CL2 f \ t  -  s ) - ‘1- '!)(E||X(s -  ■7-)||?f)1/pds 
Jo

+ C f  {1 +  (E ||X(s)||p)1/p + (E ||X(s -  r ) ||p)lj/p}ds 
Jo

+ (e || e{t~s)Ad Z ( s ) ^ y /P.
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Following the argument of (5.2.6), one has
^  »■> '    g  O c X m t  ^  p / a

E

Hence

J e«-*AdZ(s)fH <  ̂CrMaXW.
 ̂ m> 1 m

(E\\X(t)r„)l'P < c { l  +  (E||A-(i -  T ) ^ ) 1' ” +  / t(E ||X (s)||p)1̂ pds

+ ^ 1(i - s )- <1- 't)(E ||X (S - r )||Jf)1/pds}, t 6  [0 ,X]. 

Applying the Gronwall inequality leads to

sup (E||^C(J)||f,)1/p < C.
0 < t < T

Then, the first assertion of (5.2.12) follows by an induction argument and the 

second assertion also holds by noting that Ax = Anx for x E Hn and that

- A Y G n(x)\\„ =  |  x ;  K l(Gn(x),em)„em
771=1

771=1

<  I K - y i m * ) ! ! , , ,  x z h .

H

(5.2.13)

□

Remark 5.2.1. For p E (1, o:), applying, in general, the Holder inequality yields 

that

/  e (*-L»JM»J4BG n ( y n (L«J - r ) ) d «
JO

< a1 P( !-"> \ ( P _ 1 )/P
(;t - s ) p-i ds) J  ||Tn([sJ — r )llffds.

 ̂  p(l — «)
Thus, to guarantee that the integral J0(t — s)~ p-1 ds is finite, it is sufficient to 

require 1/k < p < a. While by the argument of Lemma 5.2.2, (5.2.12) holds for 

all p E (1, a).

5.3 Proof of Theorem 5.1.2

By Lemma 5.2.1 and Lemma 5.2.2, in the sequel we shall complete the proof of 

Theorem 5.1.2.
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Proof of Theorem 5.1.2. By (5.1.3) and (5.1.5),

X(t)  -  Y n(t)

= elA(l -  7r„){f(0) -  G (? (-r))}  + eu {G„(7r„€ (-r)) -  G„(£(-t))} 

+ G (Yn(t -  r)) -  Gn(Yn(t -  r)) + G(X(t  -  r)) -  G(Yn(t -  r))

L
L
I
I
L
I
L
I.
J j

elt~‘)AA{G(,X(s -  r)) -  Gn(X(s  -  r))}ds 

e ^ A{b(X(3),X(s -  r)) -  6„(X(s),X(a -  r))}ds 

e ^ AA{G„(X(s -  r)) -  G„(X(|s| -  r))}ds 

e<‘- s>-4{6n(X(S),X (S -  r)) -  i>„(X(Ls|),X(k| -  r))}ds 

e<l- s>'4>l{Gn(X(LsJ -  r)) -  G„(yn(|sJ -  r))}ds 

e<‘- ^ { M * ( k l ) > * ( k l  - r ) )  -r ))}d s

ctt->)AA { i _  e(*-W>'4}G„(yn(LsJ -  r))da

_ e(*-WM}jn(y m (^ j)iy»(|_sj _ r))ds

,(t-s)A _  e(‘-l»J)^}dZ"(«) +  [  e(t- ,)Ad(Z(s) -  Z n(s))
Jo

= = £ + . « •
m— 1

Noting that (E|| • \\pH)l p̂ is a norm, one has

(E||X(t) - V'Tl(0IISr)1/p < jtmUtWH)1'*-

+ I \e'

14

(5.3.1)
771=1

Due to (Al), a straightforward computation shows that
1/2

\\{1 -  nn)x\\H = (
m = n + l  

oo ,

=  (  J 2■Â ( a:>e™)ff)
1/2 (5.3.2)

771=77+1

< — \\Ax \\h , x e H
An.

by recalling that {Am}m>i is nondecreasing and observing from (Al) that

i: 'ii^H h  =  \\A [
771=1 771=1
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By (Al), (A3) and (5.2.13)

l|eM{G„(£(-T)) -  G„(7r„£(-T))}||H

< | | M ) - | |  ■ l l ( -^ r{ G (f ( ~ r ) )  -  G ( ^ ( - r ) ) } | | „  (5.3.3)

< L 2| | ( - > t r i M I ( l - ? r n ) « —r) ||„ .

Moreover notice that for fi G [0,«) and x G Hn

\ \ { - A r { G ( x ) - G n(x)}\\H
OO

= ( £  A ;« A £ < G 0 z ) ,e m>?,)
(5-3.4)

00 1/2

C " “" ^ ( G ( i ) , e m) i j 1/2
777= 77+ 1

< A;(« - ,) (  £  \%(G{x),em) l )
m = n + l

<  A ^ I K - A r G M I l H  <  L 2 \ ~ ^ \ \ x \\h .

Applying (5.3.4) with fj, = 0 and taking into consideration (5.3.2) and (5.3.3), 

we get

^ ( E | | J m(f)|rH)>/'> <  £ .  (5.3.5)
7 T l= l  n

Thanks to (A3)

IIUt) \ \H < L2\\{-A)~kW . ||X(t -  r) -  Y n(t -  r)\\„.

Next, by (5.2.3), (5.2.10), (5.2.12), (5.2.13) and (5.3.4) it follows that

E m  u m pH)1/p
771=5

*4 a 0 / zn o . . . . . , o 'I P /2 \  VP
/ t 10

{t -  « )1_ s ( e {  J2  A - ^ ’A%(G(X(s-T)),em)%} )
771=71+1

r^ /  f  1 p / 2 \  i /p
+ / e_A"<1_s) (e { ^  (6(A"(s),X(s -  r)),em) ^ |  )  ds

* '°  771=71+1

f t  \  1/p
<  C A ;!'1- 9) J  (t -  s )1- 9(E ||(-A ) ''G (A :(s  -  r))II? ,))

+ f  e_An*1_s)(E||6(JA(s), JA(s -  
Jo

f t  \  1/p
< CA;!'1-") ]  (t -  s)1-®(E||AC(s -  r)||J,))

+  r + (E||X(S)r„)1/'> + (E||X(s -  r)||jf)1/,p}ds 
Jo

< GAr(K- 9>.
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Applying (A1)-(A3), (5.2.3) and (5.2.1) one has 
10

£ ( E | | + , M I I ^ ) 1 / p

m —7

< C [\t -  E||X (S -  t)  -  X (|a | -  tW h )Up^  
Jo 

+ C f \ ( E \ \ X ( S) - X ( [ s m PH)1/p 
Jo

+ ( E \ \ X ( s - T ) - X ( [ s l - T ) r H)1/p}ds

+ C f \ t  -  s)1_K(E||X(|sj -  r) -  K"(LsJ -  
Jo 

+ c  /'{(E||x(Lsj) - y n(LsJ)||?,)1/p
Jo

+ (E||X(|sJ -r ) -y " (L « J  - r ) | |p )I/p}dS 

< CA(1-9)a9 + C f  (t- s)1_*(E||X(|sJ -  r) -  y n(L«J -  T)||?,)1/Pds
Jo

+ c  A (E iW L«j)-yn(UJ)ii?,)1/p
Jo

+ (E||X(LSJ - r ) - y ’*([Sj - r ) | | p )1/p}dS.

Carrying out a similar argument to that of (5.2.11), we derive from (5.2.12) that

(E||JI1(t)||p,)1/p + (E||J12(i)||p,)1/p < CAS.

Furthermore, also following the procedure of (5.2.6) and utilizing (A3) gives that
p / aE\\Jn(t)Y„ <c(jr0m J  - e- A” <»-W))“dS) ‘

771=1 ®

/ , n , \ P/a
= C ( J 2 l % l  (A ^e-aAm(1- s))A-a9(l -  e- A"<*-W))“ds)

771=1 ^

< CA”9 ( ] T  /3“ J ‘ s ) P/a
771=1 ®

< C A pe

where we have also used 1 — e-Am̂s - l-s0 < Ce\em(s — |_sj)0 by (5.2.8), and that
/  r f *  \ P / o t  /  ^ 8 . f l a  \ p / a



As a results, putting (5.3.5)-(5.3.6) into (5.3.1) gives that

(E\\X( t)-Y"( t) \ \pl )1/p 

< C( \~e + + A(1-9)a9)

+ L2\\ (-A)-Km \ X ( t  -  r) -  Y n(t -

+ C f \ t -  s)1"', (E||X(LsJ -  r)  -  y n(LsJ -  tW ^ A s 
Jo

+ c  A(Eiix(Uj)-y"(k])iiptf)I/p
Jo

+ (E ||X ([a\ -  r) -  y " (W  -  r) ||p )l/p}ds.

Hence

p \i/psup (E ||X (s )-y " (s ) ||^ )
0  < s < t

< c { ( a ; 9 + a;**-"’ + a<1- 9'a«)

+ sup H(E||X(s) -y"(s)H 5,)1/p
— T < s < t  — T

+ C f  (t -  s)1'*  sup (E||X(r) — Y n(r)\\pH)l^ds
J q —T < r < s—T

+ C [^{ sup ( E | | X ( r ) - y » | | p )1/p
J o  0 < r<s

+ sup (E ||X (r)-y"(r)||p )1/p} d 4 .
—r < r < s —t  '

Finally, (5.1.7) follows from an induction argument and the Gronwall inequality.



Chapter 6

Numerical Approximation of 

Stationary Distribution for 

SPDEs

In this chapter, we discuss (i) the existence and uniqueness of the stationary dis­

tribution of explicit EM scheme both in time and in space for a class of stochastic 

partial differential equations whenever the stepsize is sufficiently small, and (ii) 

show that the stationary distribution of the EM scheme converges weakly to the 

counterpart of the SPDEs.

6.1 Introduction

Numerical (approximate) schemes of stochastic partial differential equations 

(SPDEs) are becoming more and more popular nowadays since there are only 

a few SPDEs which have explicit formulae. There are extensive literature on 

approximate solutions of SPDEs. Under a dissipative condition, Caraballo and 

Kloeden [17] showed the pathwise convergence of finite-dimensional approxima­

tions for a class of reaction-diffusion equations. Applying the Malliavin cal­

culus approach, Debussche [22] discussed the error of the Euler scheme ap­

plied to an SPDE. Greksch and Kloeden [32] investigated the approximation 

of parabolic SPDEs through eigenfunction argument. Gyongy [35], Shardlow
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[81], and Yoo [99] applied finite differences to approximate the mild solutions of 

parabolic SPDEs driven by space-time white noise. Hausenblas [39, 40] utilized 

space discretization and time discretization, including implicit Euler, explicit 

Euler scheme and Crank-Nicholson scheme, to approximate quasi linear evolu­

tion equations. Higher order pathwise numerical approximations of SPDEs with 

additive noise was considered in [47]. For the Taylor approximations of SPDEs, 

we refer to the monograph [48].

Most of the existing literature is concerned with the (strong or weak) conver­

gence of numerical approximate solutions of SPDEs. We also point out that Bao 

et al. [5] investigated the existence and uniqueness of stationary distributions 

of analytic mild solutions for a class of SPDEs, while the stationary distribution 

(or stability) of numerical solutions of infinite-dimensional SPDEs is seldom dis­

cussed. Motivated by the papers above, for the explicit EM (6.2.7) based on 

the time-discretization and spatial discretization, two questions are natural to 

be put forward, i.e.,

• For what choices of the stepsize does the numerical scheme (6.2.7) have a 

unique stationary distribution;

• Will the stationary distribution of EM scheme converge weakly to some 

probability measure whenever the dimension of finite-dimensional approx­

imation is sufficiently large and the stepsize is sufficiently small ? If so, 

what’s the limit probability measure ?

In this chapter, we shall give the positive answers to these two questions one- 

by-one.

It is also worth pointing out that, for finite-dimensional case, Yuan and Mao 

[100] studied the invariant measure of EM numerical solutions for a class of 

SDEs, and Yevik and Zhao [97] discussed by the global attractor approach the 

existence of stationary distribution of EM scheme for SDEs generating random 

dynamical systems. While, for the mild solutions of SPDEs, the explicit EM 

schemes are much more complicated than those for finite-dimensional SDEs, 

and moreover the diffusion coefficient in our case is not Hilbert-Schmidt, which
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leads to be unavailable of the ltd formula. Therefore, our approaches are different 

from those of [97, 100]. What’s more, Brehier [12] investigated the existence of 

invariant measure for semi-implicit Euler scheme (in time), and discussed the 

numerical approximation of the invariant measure for a class of parabolic SPDEs 

driven by additive noise, where the drift coefficient is assumed to be bounded.

The organization of this chapter goes as follows: In Section 2, we give the 

explicit EM scheme both in time discretization and in spatial discretization, and 

show the existence and uniqueness of stationary distribution of EM scheme under 

the properties (PI) and (P2); To make the result more applicable, sufficient 

criteria for (PI) and (P2) are provided in Section 3; In the last section, we reveal 

that the limit probability measure of stationary distribution for EM scheme is 

in fact the stationary distribution of the exact mild solution.

6.2 Stationary Distribution for EM Scheme

Let (//, (•, •)//, || • ||h ) be a real separable Hilbert space, and W(t) an //-valued 

cylindrical Wiener process defined on some complete probability space (Q, «^, P) 

equipped with a filtration { ^ t } t>o satisfying the usual conditions. Denote by 

(.£?(//), || ■ ||) and (J£hs{H)> II • Whs) the family of bounded linear operators and 

Hilbert-Schmidt operators from H into H , respectively.

Consider SPDE on H

dX(t) = [AX (t) + 6(X(*))]d* + a(X(t))dW(t)  (6.2.1)

with initial value X(0) — x E  H. Here b : H —> H,a(x) := a0 + cr1(x),a: E  H , 

where a0 E J£{H) and a1 : H  —» J£hs{H).

Throughout this chapter we impose the following assumptions:

(HI) A is a self-adjoint operator on H  generating a Co-semigroup {etA}t>o> such 

that ||eM|| < e~at for some a > 0. In this case —A  has discrete spectrum 

0 < Ai < A2 < • • • < lim^oo Xi =  00  with corresponding eigenbasis {e*}j> 1 

of H.
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(H2) There exist 0\ G (0,1) and G (0,oo) such that Jjj ||(—A)9' esAa°\\2HSds <

$1 for any t > 0, where (—A) 6l ^2k>i A I1 (ek ® e*,) denotes the fractional 

power of the operator —A.

(H3) There exist Li, L2 > 0 such that

\\b(x)-b{y)\\H < Li\\x-y\\H and ||cr1(x)—cr1̂ ) < L2\\x-y\\H, x ,y  G H.

(H4) There exists 7  G M such that

2{x -y ,b (x )  -b{y))H + \ \a\x) -  c r ' i y ^ s  < - 7 II* -  y \\2H, x ,y  G H.

(H1)-(H3) imply the existence and the uniqueness of the mild solution to

(6.2.1), that is, for any x G H  there exists a unique H-valued adapted process 

X(t)  such that

X(t) =  e‘Ax +  f  e(1~s)/l&pf(s))ds + f  e(‘-<’)/V(*M)dW,(s). (6.2.2)
Jo Jo

Remark 6.2.1. In fact, under (HI), (H3) and f* ||eai4(7°||^5ds < 82 for any t > 0 

and some S2 > 0, (6.2.1) also admits a unique mild solution on H. While (H2) is 

just imposed for the later numerical analysis. Let cr° = 1, an identity operator, 

and Ax := d2x for x G V(A)  := H 2{0 ,7r) D Hq(0,tt). Then A is a self-adjoint 

negative operator and Aek = — k2ek, fcGN, where ejt(£) '■= (2/7r)1/,2sin A;£, £ G 

[0,7r], k G N. A simple computation shows that
p t  0 0  p t  -1 ° °

/  I K - i t ^ f e s d a  = £ ( * “)“ • /  e -2t\ i s < i £ ; ( f c 2)2(,‘- 1-
J° k= 1 J° 1 k= 1

Then (H2) holds with 81 = ± E ^ / c 2)2*1" 1 for 91 G (0,1/4).

Remark 6.2.2. By (H3), it is easy to see that

\\b(x )\\2H + Ik 1 WIIhs < U 1 + 11*11 n)> x e H ,  (6.2.3)

where L := 2({L\ + L|) V //) with /i := ||6(0)||// + Ĥr1 ( 0 ) Moreover, by (H4) 

one has

2(x,b(x))H + \\cr1(x)\\2HS

= 2(x,b(x) -  6(0))// + Hcr1̂ )  -  cr1(0 ) ||^
(6.2.4)

+ 2(z, 6(0))// + 2{cr1{x) -  ax(0), <rl (0))Hs + II^WIIj/s 

< - ( 7  -  e)lkll// + 2(L2 + 1 + e)/i€_1, e G (0,1), x € H,
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where (T, S)Hs := Y Z i ^ S e ^ n  for S ,T  e ^ h s (H).

For any n > 1, let 7rn : H  —» Hn := span{ei,--- ,en} be the orthogonal 

projection, that is, 7rnx = 5T"=i(a;> ei)tfen ^ := KnA,bn := irnb and

(Jn := 7rn(7. Consider SDE on

that

Anx = Ax, eMnx = etAx and (x, 6n)tf = (x,b)H, x G / /n. (6.2.6)

By (H3) and the property of the projection operator, we have

Hence (6.2.5) admits a unique strong solution {Xn(£)}*>o on Hn under (HI) and

For a stepsize A G (0,1) and each integer k > 0, compute the discrete EM 

approximations Y n(kA) «  X n(kA) by setting Y n{0) := nnx and forming

Y n((k + 1)A) := eAi4n{yrn(A;A) -f bn(Yn{kA))A + an(Yn(kA))AW k}, (6.2.7)

where A Wk := W((k  + 1)A) — W(A;A), and define the continuous EM approx­

imate solution associated with (6.2.5) by

d X n(t) = [.AnX n(t) + bn{Xn{t))}dt + ffn(X"(0)dW ,(t),

X n(0) = 7Tn X .\

Due to 7rnAx = 7rnA^ ~ S U f c ,  ^iiHKeiX G Hn, it follows

II An{x - y )  + bn{x) -  bn(y)fH + ||^ (x )  -  ^ f e ) | |^ 5

< 2||An(x -  y)\\2h + 2||6n(x) -  bn{y)\\2H +  ||crj(x) -  a ln{y)\\2HS

< 2 \2n\\x -  y\\2H + 2||6(x) -  b(y)\\2H + [^ (x )  -  c t^ H h s

< 2(An + L i + L l ) \ \ x - y \ \ 2H, x , y e H n.

(H3).

^n(yn(W ))d ^ (S)

■an(y"(L«J))dWFW

(6 .2 .8)
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due to (6.2.6), where [t\ := [i/A]A and [t/A] denotes the integer part of t / A. 

For 0 < s < t, it is easy to see from (6.2.8) that

By y n(0) =  F n(0), we deduce from (6.2.7) and (6.2.8) that Y n(kA)  =  Y n(kA),

Remark 6.2.3. For the finite-dimensional case, the discrete EM scheme and the 

continuous EM scheme are standard, e.g., [56, (4.3) and (4.5), pll3]. While the 

ideas of constructing schemes (6.2.7) and (6.2.8) go back to, e.g., [12, equation 

(13)], [22, equation (2.9)] and [50, equation (8)].

For each integer A; > 0, x  G Hn and T G 38 (Hn), define

Following the argument of that of [100, Theorem 1.2], we deduce that { y n(A;A)}fc>o 

is a homogeneous Markov process.

Lem m a 6.2.1. {Pn(/cA)}fc>o is a homogeneous Markov process with the tran­

sition probability kernel Pn,A(x, T).

We still need to introduce some additional notation and notions. For Hilbert 

space (K, || • ||/c), denote by V{K)  the family of all probability measures on K.

For P\,P2 £ V(K)  define the metric di, as follows:

where L := { / : K  —> R : \f(u) -  f(v)\ < ||u -  v\\K and |/(-)| < 1}.

Remark 6.2.4. It is known that the weak convergence of probability measures is 

a metric concept. In other words, a sequence of probability measures {Pfc}fc>i C 

V(K)  converges weakly to a probability measure P0 G V(K)  if and only if 

lim d^(Pk, Pq) = 0.

^n (F n(|rJ))dVF(r)

that is, Y n(t) coincides with the discrete approximate solution at the gridpoints.

pn’A(z,r) := P(yn(A) e r |y n(o) = x)

and

P£iA(x,r) := p(?n(fcA) € r|y(o) = x).

dL(-Pi, -̂ 2) := Sup f  /(w)Pi(du) -  f  f (u)P2{du) ,
JK JK
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To highlight the initial value, denote by {yn,x(A:A)}jfc>o the EM approximate 

solution of (6.2.7), starting from the point x at the gridpoint 0.

Definition 6.2.1. For a given stepsize A and arbitrary x G Hn, {yn,x(A:A)}fc>o 

is said to have a stationary distribution 7rn,A G V{Hn) if the fc-step transi-

Definition 6.2.2. {yn,x(&A)}fc>o is said to have Property (PI) if

su p E ||yn,x(fcA)||^- < oo, x G U, 
k> o

while it is said to have Property (P2) if

lim E ||y n,a:(A:A) — Y n'v(hA)\\2H = 0 uniformly in x ,y  E U,k—*oo

where U is a bounded subset of Hn.

Theorem  6.2.2. Under (PI) and (P2), for a given stepsize A and arbitrary 

x G Hn, { y n’x(A;A)}fc>o has a unique stationary distribution 7rn,A G V(Hn).

Proof. Note that Hn is finite-dimensional. Following the argument of that of 

[100, Lemma 2.4 and Lemma 2.6], we deduce that

uniformly in x ,y  G Hn, and that, together with Lemma 6.2.1, there exists 

nn,a £ 'P(Hn) such that

Then the desired assertion follows from (6.2.10), (6.2.11) and the triangle in­

equality

tion probability kernel P£’A(:r,-) converges weakly to 7rn,A(-) as k 

lim dL(P^’A(x, •), 7rn,A(•)) = 0.

lim dL(P£’A(:r, -),Pfc’A(2/,')) =  0 (6 .2 .10)

lim dL(P^A(0,-),7r"’A(-)) =  0. ( 6 .2 .11)

□
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6 .3  Sufficient Condition for Properties (PI) and

In the previous section we show that { Y n'x(kA)}k>0 has a unique stationary 

distribution under (PI) and (P2). To make Theorem 6.2.2 more applicable, in 

this section we intend to give some sufficient condition such that (PI) and (P2) 

hold. In what follows, C > 0 is a generic constant whose values may change 

from line to line. Let

Lem m a 6.3.1. Under (H1)-(H3), then,

E ||Z " W -Z " (L iJ ) |& < /3 iA (l +  E||Z"(LiJ)||2„), t > 0 ,  (6.3.1)

where f3t := 3{(A2 +  2L) V (2L(1 +  ||( - /1 ) -9' H2̂ ))} .

Proof. Observe from (6.2.8) that

(P2)

Y n(t) ■.= [  e(,- w)/1<T“diy(s) and Z n(t) := Y n(t) -  Y n(t).

+ f  elt- ^ l)A<T1n(Y n{[s\))dW(s).
(6.3.2)

Jo

This further gives

Z n{t) = e{t-M )AZ n([t\) +  f  e(' - LsJ)j46n( r n(L5j))ds

Then, by the Holder inequality, the Ito isometry and (HI), one has 

E\\Zn(t) -  Z n([t\)\\2H

—: 3{Ii(t) + I2{t) + h{t)}-
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Recalling the fundamental inequality 1 — e y < y , y  > 0, we get from (HI) that

2

l)x ||
£ ( <
i = l H

IH(1  e~An(t—

< A2 A 2||x ||^, x 6 Hn.

(6.3.4)

Therefore we arrive at

/,(<) < A2A 2E||Z"([«J)||?,. (6.3.5)

(6.3.6)

/', ||(_ ^ . e«-»)V||2,sdS <
J o

(6.3.7)

Observe from the Ito isometry, (HI) and (H2) that

Elli^W II2, =  f  \ \ e ^ Ae ^ Aa l f HSd a 
J o

< f u - A r ^ i - A Y ^ - ^ J l s d s
J o

<II(-A 1 ) - 9'" 2 ^

Thus, by (6.2.3) and (6.3.6) it follows that

h(t) + I3(t) < AE{||6(y"(L<j))||?, + lkl(y"(W))UL}
< 2ZA{i+e||z’*(l«J)||2„ + E||y»(Ltj)||J,}
< 2IA{1 + ||(-A)-9‘||2ii + E||Z"(W)||2„}.

As a result, (6.3.1) follows by substituting (6.3.5) and (6.3.7) into (6.3.3). □

T heorem  6.3.2. Let (H1)-(H4) hold and assume further that 2ck + 7  > 0. If 

A < min{l, (2a + t ) 2/(4p\)}, then there exists C > 0 independent of A such 

that

su p E iiy -w u 2, < c ,  (6 .3 .8 )
t >  0

where pi \= 2 +  (|14a — 7 |2/64 +  2L +  114a; — 7 | / 8 )/?i +  2(1 +  (3i +  A2L). Hence 

Property (PI) holds whenever the stepsize A is sufficiently small.

Proof. Note that (6.3.2) can be rewritten in the differential form

d Z n(t) = {A Z n(t) + e{t- [tl)Abn(Y n(\t\))}dt
(6.3.9)

+ e{t~ ^ )Aa ln(Y n([t\))dW(t)
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with Z n(0) = 7rnx. For any v > 0, applying the Ito formula we deduce from

(6.3.9) and (HI) that

E te l^ M H 2,) < |M|2„ + E  t  el/s{u\\Z’'(s)\\2H + 2{Zn(s), AZ"(s))h  
Jo  

+ 2(Zn(s),e^A>i)AbniY ’‘([s\)))H

+ ||e<s- l» J > ^ (y " (k |) ) ||L } d s
( (6.3.10)

< ||x ||2„ + E  /  e“{—(2a -  v)\\Zn(s)fH 
Jo

+ 2(Z'l(S),e‘’-W>/l6n(y"(LSJ)))„

+  l k ( y ”(W ))llis}d»-
Since

ii^-miis, = \ \ z - ( m \ \ + ^ z nm i z n{ t ) - z nm ) ) H  ,c ,  ^
(6.3.11)

+ \\z"(t) - z nm \ \ i ,
and

(Zn(t) ,e«A W bn(Ynm ) ) ) H = (Y * ([ t \)M Y n{[t\)))H + ( z ^ t )  -  Z \ { t \ ) ,b ( Y nm ) ) ) H

-  {Yn( \ t \ )M Y nm ) ) )H  

+ (Zn(t), (e<‘-W)'4 -  l)6n(y"(LlJ)))/f,

it follows from (6.3.10) that 

E ^ H  Z n(t) fH)

< M i  + E f e ” { - ( t e - ' ' ) \ \ Z n( l s m l  + \Wl (Yn( l s m H S 
J o

+ 2(r"(LsJ),6(K"([SJ)))ff -  2(2a -  v)(Zn([s \) ,Z n(s) -  Z"(l«J)>*

-  (2a  — u)\\Zn(s) -  Z n([s\)fH + 2 { Z " (s ) -Z " ( ls \ ) ,b (Y n(ls\)))H

-  2<5>n(LsJ)), fr(yn(|sj))>tf +  2 < Z » ,  (e<s-W>4 -  l)ft.,(y”(LaJ))>ff}dS.

This, together with (6.2.4), yields that

E(e*||2»Wll2,)

< ||®||jf — (2a  + 7  — e — i/)E /V ||2 " ( |a |) | |3 ,d s
J o

+ E f  e"*{-2(2a -  v)(Z"( |s j ), Z n(s) -  Z n([s\))„
J o

-  (2a  -  v)\\Z”(s) -  Z n(ls \)\ \2H 

+ 2(Zn(s) -  Zn(LsJ),6(yn(LsJ)))„}ds
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+ 2E [ ‘ e''s(Zn(s), (e(s-W)^ -  l)6n(y"(|sj)))„ds 
Jo

+ e J ^ ‘{2(L + 1 + r  V " 1 -  2(Y"( |s j ), b(Y"( LsJ ))>„ (6 312)

-  2(7 -  0 < r* (k l), Z " ( [ S \ ) ) H  -  (7 -  < o r n(kl)l& }ds

=: J\{t) -f Jiit) + Js{t) +

By the elemental inequality: 2ab < ko? + 62/«, a, b 6 M, «: > 0, and (6.3.1), we 

arrive at

J2(t) <M J ‘ e ^ { A i \ \ Z n([si)\\l + 2 -1L - 1Ai\\b(Y’‘([s\))fH

+ {(|2a -  u\2 + 2L)A'5 + \2a -  i/|}||Z n(s) -  Zn(LsJ)||?,}ds

< E jT'e*"{2A i||2 ”(LsJ)||?, + 2- JA* + A s||r>(kl)ll? ,

+  {(|2a -  i f  + 2L)A“5 +  |2a -  ^ |}||2-(s) -  L«J)ll?r}ds,

where in the last step we have used (6.2.3). Combining (6.3.1) with (6.3.6), we 

thus obtain that

M t)

< J  e‘'s^{2 + ( \2 a -u \2 + 2L + \2 a -u \ )0 1}AiE\\Zn([ti)\\2H (6.3.13)

+ {1 + ||(—yl)- ®1 ||2<Si + (|2a -  u\2 + 2L + |2a -  I'DAJA^jds.

On the other hand, we deduce from (6.2.3), (6.3.4), (6.3.6) and (6.3.11) that

M t )

<  E /V*{A§||Z"(W)lltr + 2A5(Z"(KJ). Zn(t) ~ Zn([tl))n
JO

+ A5||Z"(f) -  Zn([t\)fH + A-5||(e<»-W>'4 -  l)fc„(V'"(LSJ))||?f}dS 

< E  /V * { 2 A i||Z ”(LtJ)||?f + 2A i||Z ”( t ) - ^ n(LtJ)|||r (6-3.14)
Jo

+ A-%e<»-WM _ i)6n(y»(LsJ))||?,}dS

<  / V { 2 ( 1  +  A  +  X2nL ) A ^ \ \ Z n ( \ t \ ) f H
Jo
+ 2 (A + A2L(1 + ||( -A )-ei||2A))A=}ds.
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Furthermore, due to (6.2.3) and (6.3.6), for arbitrary k > 0 one has

M t)  < E / '  em{2(L + 1 + <T V 1 +  2 ||K"( k | ) ||h l | 6 ( K n (  W )) II*
Jo

+  2 |7  -  e|  • r " ( W ) l l « l l ^ ( W ) I U  +  | 7  -  e |  • l | r " ( k l ) l l *  }d<>

< E / V ’{2(L + 1 + .TV"1 + k"1 ||V̂ (M)IlSr + kIIH^W))!!*
Jo

+ |7 -  e |V 1ll?B(W)llff + «l|2"(W)llSr +  |7 -  t| •

< [  eI/5{/cZ + (ft-1  + 2 /cL + |7  -  e|2/c_1 + |7  -  c |)||(--4)_fll||2<Ji 
Jo
+ 2(L + 1 + e_1)/xe_1 + (1 + 2L)/dE||Zn(|A|)||2,}ds.

In particular, taking e = v = (2a + j )/8 and k = (2a + 7 )/(4 (l + 2L)) yields 

that

M t)  < f  eus{A-l (2a + 1)E\\Zn([s\)\\2H + C}ds. (6.3.15)
Jo

Putting (6.3.13)-(6.3.15) into (6.3.12), we deduce that

E(e1 Z»(t)||i,) < Mlg -  20 + 7 2 2f>" ^  E /  e"S (SJ)H f f +  C J ‘ e"Ms-

For A < (2a + 7 )2/ ( 4p2), it is trivial to see that 2a + 7 — 2p iA 2 > 0. Thus we

have

E(||Z“(i)|&)<C.

Finally, (6.3.8) follows by recalling Z n(t) = Y n(t) — Y n(t) and (6.3.6). □

Let Y n,x(t) and Y n,y(t) be the continuous EM schemes defined by (6.2.8) and 

starting from the points a: and y at time 0 respectively.

Theorem  6.3.3. Let the assumptions of Theorem 6.3.2 hold. If A < min{l, (2a+ 

7)2/(4^)}> then

lim E||V'n’x(£) — Y n'y(t)\\2H = 0 uniformly for x ,y  E U, (6.3.16)
t —>oo

where P2 := 6 (A2 F T)(|2a — 7 I F 1) + 3 +  7L + A2L + 6 A2 with L := L2 + L 

Hence Property (P2) holds whenever the stepsize A is sufficiently small.
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Proof. Let

Zn'x'y(t) := Y n'x(t) -  Y n,y(t).

Note from (6.2.8) that

z n'x'y(t) -  z n’x’y([t\) =  (ef'-W)-4 -  l ) Z n-x'y([t\)

+ I  e<‘- w )-4(6n(y" 'I ([s j)) k l)))d s
J Ltj

+ f  e<*-WMW(V,,w,( M ) ) - a 1(lm*(W)))dlV(«).

Following the argument of that of (6.3.1), we derive that

E|| Zn'x'y(t) -  Zn'x'y{[ t \)fH < 3(A  ̂+  L)AE\\Zn'x'y([t\)\\2H. (6.3.17)

For v := (2a + 7)/2, by the Ito formula it follows from (6.2.8), (HI) and (H4) 

that

E(e'/t\\Zn'x'y(t)\\2H) 

< \\x -  y\\2H + i/E [  e,'a\\Zn'x'y{ s ) \ \ 2H d iS  + E f  eU3{2{Zn'x'y(s),AZn'x'y(s))H
Jo Jo

+  2 {Z " ™ {  |*J), 6(y"'*(|sJ)) -  b(Y*» (  L*J ) ) )h

+ lk 1(^ n'I ( W ) ) - ^ ( ^ - t (W ))ll2flS 

+ 2 {zn™{s) -  zn’a:'!'([sj),6(r"'I(Lsj)) -  6(r*-»(Lsj))>/f
+  2 ( Z n^ ( s ) ,  (e<s-WM -  l X M l ^ t k l ) )  -  6„(y",!,(LsJ)))>/f}ds

< \ \ x - y \\2H - ( 2 a  +  ' y -u ) E  /V llZ '^ X k D I & d s
Jo

+ E f  eus{ —2(2a — v)(Zn'x'y([s\), Zn,x'y(s) — Zn'x'y([s\))H 
Jo

- ( 2 a - v ) \ \ Z n̂ ( s ) - Z ^ ’y{ys\)fH 

+ 2 -  Zn™ ([s |),fc(rn'I (|sJ)) -  6(y"'»(LsJ)))«}ds

+ 2E [ ‘ e ^ y z ^ y y s ) ,  (e< -w *  - l X M ^ d A l ) )  -  6„(yn’s,(LsJ))))ffds 
Jo

= :  Ji(t) +  Ĵit) +

where we have also used the (6.3.11) with Zn(t) replaced by Zn,x'y(t). By (H3)



and (6.3.17), one has

Ut) < E f  e^{Ai\\Z^y([sm2H + Ai||6(ŷ*(LSJ)) -6(i™*(W))||J,
Jo

+  {|2a  -  u\ +  (\2a -  i/| +  l )A -^ } ||Z " ^ (s )  -  Z n^(LsJ)||?,}cls  

< {6(A  ̂+ L){\2a -  v\ + 1) + 1 + L}A?E f  ews\\Zn-x'y(Ys\)fHAs.Jo
On the other hand, carrying out a similar argument to that of (6.3.14) leads to

J3(t) < 2 E  [  e " {A 5 | |Z n^ ( s ) - Z n,I'<'(lsJ)||2J Jo
+ A l*(Zn'x-y(s) -  Z x-y([s \) ,Z n'x'y([s\))H 

+  A *uzn« '(k l) l l»

+ A -* ||(e‘- w ^  -  i ) ( M ^ ( W ) )  -  M ^ k l ) ) ) ! ^

< (2 + AIL  + exl + 6L)A§E f* e ‘/s\\Zn'x'y( [s j) ||«ds.
JO

Hence we arrive at

E(eyi\ \ Z ^ y(t)\\2H) < ||x -  y ||^  -  2°  + 7 ~ 2 ftA *E ^ V l Z " ^ ( k l ) l f e d S,

and then the desired assertion (6.3.16) follows by A < min{l, (2a + 7)2/(4p\)}.

□

6.4 Limit Distribution

In the previous section we give some sufficient conditions such that (6.2.7) has 

a unique stationary distribution 7rn,A G V{Hn) for fixed n and sufficiently small 

A. In this section we proceed to discuss the limit behavior of 7Tn,A G V{Hn) and 

give positive answers to the following questions:

• Will the stationary distribution 7rn,A(*) converge weakly to some probabil­

ity measure in V(H) whenever n —> oo and A —> 0 ?

• If yes, what is the limit probability measure ?

Denote by -{Wx(£)}*>o the mild solution of (6.2.1) starting from the point 

x at time t = 0, which is a homogenous Markov process. For any subset Y C
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3§{H), let Pt(a;,r) be the probability measure induced by X x(t),£ > 0, that is, 

Ft(x,T) = F{Xx( t ) e r ) .

Definition 6.4.1. X x(t) is said to have a stationary distribution 7r(-) G V(H)  if 

Pt(x, •) converges weakly to 7r(>) e V { H )  as t —> 00  for every x G U, a bounded 

subset of H , that is, lim dL(Pt(a;, •), 7r(*)) = 0.
t —* o o

To reveal the limit behavior of 7rn,A(-), we first give several auxiliary lemmas.

Lemma 6.4.1. Let (H1)-(H4) hold and assume further that 2a + 7  > 0. Then 

the mild solution X x(t) of (6.2.1) has a unique stationary distribution 7r(-) G 

V(H).

Proof. We remark that [5, Theorem 3.1] investigates the stationary distribution 

of (6.2.1) with cr° =  0, that is, the diffusion coefficient there is a Hilbert-Schmidt 

operator. For a0 ^  0, note that a is not Hilbert-Schmidt. Therefore [5, Theorem 

3.1] is unavailable for (6.2.1). Let

Z(t) := f  e^~s)AaQdW(s) and X(t)  := X(t) -  Z(t). 
Jo

Then (6.2.1) can be rewritten in the form

d X{t) = [AX(t) +  b{X{t))]dt +  a 1(X(t))dW (t). (6.4.1)

To be precise, (6.4.1) is first meant in the mild sense. But under (H1)-(H3) 

it also has a unique variation solution, and therefore the Ito formula applies 

to 11̂ (4)115,. Carrying out similar arguments to those of Theorem 6.3.2 and 

Theorem 6.3.3 respectively, we deduce that

supE||J>f(t)||2 < C  (6.4.2)
t >  0

and

lim E ||X X(£) — X v{t)\\2h = 0, uniformly for x ,y  G U.i—»00

Then [5, Theorem 3.1] yields the desired assertion. □

Lemma 6.4.2. Let (HI) and (H2) hold and assume further that there exists 

62 > 0 and 02 E (0,1) such that

||esV | | 2„ s dS < i 2Afc. (6.4.3)I0
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Then

supE||Z(<) -  Z(\t\)\\2H < C A e■A*  (6.4.4)
t> 0

where C > 0 is a constant independent of A.

Proof. Recall from [65, Theorem 6.13, p74] that there exists C\ > 0 such that

\\(-A)a'etA\\ < C\t~ai, \\(-A)~a2{l -  etA)\\ < C ^ 2, (6.4.5)

for arbitrary oti > 0 , a2 G [0,1], and that

(- A ) a3+a4x = ( - A)az{ -A )QAx , x G P ( ( - A ) 7), (6.4.6)

for any 0 3 , 0:4 G R, where 7 := max{0:3, 0:4 , 0:3 + 0 :4}. In the light of Ito’s 

isometry and (HI)

•L*J 

ro

/•w
E||Z(t) -  Z(L<J)H?, < 2 /  ||(e(,- LlJM -  l)e (L1J- s)V | |? , sds

J o

+ 2 f  \\e{t- s)Aa°\\2Hsds-
J [ t \

This, combining (H2), (6.4.3), (6.4.5) with (6.4.6), yields that

E \ \ z ( t ) - z ( m \ 2H
'I t\r i l  J

< 2  ||(—̂ l)-®1 (e(t-LtĴ  -  1)||2 • | |( - ^ ) e‘e(L,J- s>-4<r0|||fsds
J o

+ 2 t  ||e‘V | | 2„ sdS
Jo

fit J
< 2  Cl A 26' /  ||(-A )<,1e"V||5i,sds + 2152A''2

J o

< 2(Cf$i + 62)A e^ e\

and therefore the desired assertion follows. □

Remark 6.4.1. Let <r° =  1 and A be the Laplace operator defined in Remark

6.2.1. A straightforward computation shows that

j ( A = I g l ( l - e - 2fc!A). (6.4.7)

Recall that for arbitrary 5 G (0,1) there exists c$ > 0 such that

\e~x — e~v\ < cs\x — y\s, x ,y  > 0. (6.4.8)
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It then follows from (6.4.7) and (6.4.8) that

» A

'0

/ “ A  ° °  i

J  \\eSA\\Hsds < 2S~1CsAS - ^ y .
k =  1

Hence, (6.4.3) holds with 52 = 25~lcg YlkLi and 02 = 5 e  (0,1/2).

Lem m a 6.4.3. Let the assumptions of Lemma 6.4.1 hold and

r  := + (2a)~1/2L2 e  (0,1). (6.4.9)

Then

supE||X (t) -  Yn(t)f„ < C{A;(9iA1/2) +  A e>A82},
t >  0

where C > 0 is a constant independent of n and A.

Proof. By (6.2.3) and (6.4.2), it follows that

supE||6(X(*))|& + supEHcr1 (X(£)) 11̂ 5 < C. (6.4.10)
t > 0 t > 0

Note that (E|| • H//)1/2 is a norm and recall from [38, Theorem 202] the Minkowski 

integral inequality:

(e | J  F(s)ds|2) 1/2 < J  (E |F (s)|2) 1/2ds, t > 0,

where F  : [0, oo) x fi, —> R  is measurable and locally integrable. Then, applying 

the Ito isometry and using (HI), we obtain from (6.2.2) that

<  \\e ^ A { e ^ )A -  l } z | | „

/•IAI
+ /  (E ||e(W -)'4{e<‘-W)'4 - l} 6 (X (s ) ) | | | , ) 1/2ds

/ /dll \ 1/2 (6.4.11)
+ ( J  E||e<W-s>-4{e<‘-W»-4 -  l}<Tl (^(«))ll/fsds)

+ f  (E\\b(X(s))\\2H)1̂ 2ds + (  f  E||(r1(A'(s))|||,s d s )1/2
J \ t \  '  J \ t \  J

=• Fi{t) + F2(t) + Fs(t) +  F^t)  +  Fs(t).
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Let p := (#i A B2)/2. In view of (6.4.5), (6.4.6), (HI) and the boundedness of 

(—A)~^~p̂ 2\  one has

Fi(t) = ||( -J4)-(1-',/2)et‘J'1(-4l)-'>/2{e<t- W)'1 -  l}(-/4)x|&

< | | ( - J4 )-<1- ',/2)ew'4||2 • \\(-A)-<‘l2{ e ^ ii)A -  l } ( - A ) x f H

< C||(-A)-<1- '’/2>||2 ■ ||/la:||?,A".

Also, by (6.4.5) and (6.4.6), we obtain from (6.4.10) that for 9 € (0,1)

! > * «
k = 2

fit}
< C A 1/2 + C \\(-A)peê - s)A\\ • ||e(1- 0̂ LtJ-s)i4||

J o
* ||(-A )- ',{e<‘-W>'4 -  l}||ds

a UJ ||(_^4)/°e^(UJ-s) |̂|2 . ||e(i-<9)(UJ-s) |̂|2 (6.4.12)

\  1 /2
x ||(-A )“/J{e(t_[tJM -  l} ||2dsj

r\t\
< C A l/2 + C A P /  ( ^ ) - pe"Q(1- e)sds

J o

+ CA"  (  / llJ ( f f s J -^ e -^ '-^ 'd s )  V2.

Observe that

/ • I A I  -  f°°
/ j-Oe-“(1-*>*ds < (a(l -  «))'’“* /  s^ e-d s = (a(l -  0))''“1r(l -  p),

J o  J o

and similarly

r[t\
/ s- 2Pe- 2«(1-»)>ds < (2a(l -  0))2',- 1r(l -  2p),

J o

where T(-) is the Gamma function. Hence

4

Y ^ F k(t) < c A^6iA02)/2.
k — 2

This, together with the estimate of Fi(t), gives that

supE||X(*) -  X{[t\)\\2H < C A e' Ad2.
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Noting that X(t) — X(t )  — Z( t ) and utilizing (6.4.4), one has

supE||X(£) — X([t\)\\2H < C A 6lA°2. (6.4.13)
t> o

Since
2

||(1 -7rn){-A) 6lx\\2H =  || Y 2  h ei{x,ek)Hek
k = n + 1

H

<  K 26' \ \ x \\2h > x <e H }

we arrive at

| |( l - 7 r n)( -A )-9' | |2 < A;2e‘. (6.4.14)

By virtue of the Ito isometry, (H2), (6.4.14), (6.4.5) and (6.4.6), it follows that

K \ \Z ( t ) - Y n(t)\\%

< 2  f  \\e‘A(l -  nn)a0\\2HS<is 
Jo

+ 2 f  ||( -A )-* > (l-e (,‘ l*JM )(-A ),,,e<‘-*M<7Sllffsd«J  o

— 2||(1 — nn)(—A)~011|2 f ‘ \\(-A)e'e’Aa°\\%sds (6.4.15)
Jo

+ C A 2S‘ f  \\(-A )e'e’Aal\\2HSds 
Jo

< 0(11(1 -  *n)(-A )-° '\\2 + A 2*') j f  I K -A ^ e ^ H ^ d s

< C(A;2Si + A 291).

Following the argument of (6.4.11), we have

(E||X(t) -  Z n(t)fH)I/2

< ||e14(l -  irn)x\\H

+ f  ||e<‘- ^ ( l  -  fl’„)||(E||!>(X(s))||^f)1''2ds 
Jo

+ ( f  I k ^ t l  -  ir.)||2E ||a l (Jf(«))||Jrsd* )1/a

+ [ ‘ ||e<‘->-*||(E |M X M ) -  i>„(X(|sJ))||?,)1/2ds 
Jo

+ f  ||e(‘“*M II (E||6„(Ai( |s j )) -  6n(F"( [«J)) Il«)1/2ds 
Jo
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+ ( f  -<r‘(y”(Uj))H5,sds) 1/2

+ £  ||e<‘-*^{ l -  e(*-W)A}||(E||6(V'n(L*J))l||r)1/ads

/ rl \ 1/2 (6.4.16)
+ ( J  ||e(t—)A{1 _ c<—W^JI^EII^CV-CLsJWIlJrfyds)

9

= : £ > « •
i= 1

A straightforward computation shows that
OO

||eM(l — 7Tn)x\\2H = ^  e~2Xit{x i ei)2H-
t = n + l

This further gives that

||eM(l — 7rn)||2 < e~2Xnt (6.4.17)

and that

^  e~2Xit. o. . o \ 1/2

i=n+l 1

by recalling that {Ai}i>i is a nondecreasing sequence. By (6.4.10) and (6.4.17), 

one has

/ *2  ̂ P~2Xit x 1/2
Gift) < ( J 2  <*>*>») ^  (6.4.18)

G2(t) + 6 3̂ (0

1/2

(6.4.19)
<c[  ||e<‘-»)-4(l-7r„)||ds + c ( j (  lle'̂ tl - ir„)||2dS)
< G J ‘ e - ^ ' - ^ d s  + c( J  e_SA"(‘"*)ds) 1/2 

jCCfA^ + A;1/2).

Taking (HI), (H3) and (6.4.13) into account gives that

G4 (t) + Gij(t')

< CA(«IA82)/2| P  ||e*t_,̂ ||ds + ( j f  ||e(,-sM||2ds)1/2} (6.4.20)

< C A ^ lA02)/2.
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Next, note from (HI) and (H3) that 

Ge(t) + Gj(t)

< f  ||e“-^||(E||i(Jf(LaJ)) -  6 (r “(k |))||2„)1/2cU 
J o

+ ( f  ||e<‘->'‘||2E||<r1(X(L*J)) - ̂ (r-fWJJHJrsds)171
< su p (E ||6 (X (W ))-6 (y '* (U J)) ||2„ ) 1/2 f  \ \ e ^ A\\ds

0< s < t  J o

+ sup (Ellu'^CLsJ)) -  ^ ( r ^ k l ) ) ^ ) 1̂  f  ||e<l-» '4||2d s )1/2 (6.4.21)
0 < s < t  \ J  0 '

< a ' 1 sup (E||6(A-(Lsj)) -  fc(V»(L*J))ll2r)l/a
0 < 3 < t

+ (2a)-'/» sup (E||<7*(X(L«J)) -
0<s<t

< r sup (E||2C(s) — ^"(s)H^)1̂ 2
0< s< t

< r  sup (E||X(s) -  Z n{s)\\2h )1/2 + T  sup (E||Z(s) -  Y n{s)\\2H)1/2,
0 < s < t  0< s < t

where r  € (0,1) is defined by (6.4.9). Following the argument of (6.4.12) leads 

to

G8(t) + Gg(t) < C A (0lA02)/2. (6.4.22)

Substituting (6.4.18)-(6.4.22) into (6.4.16) yields that

sup(E||X(J) -  Z n{t)fH)V2 < C(A;1/2 +  A<‘’lA‘W 2)
t >  0

due t o r e  (0,1). Consequently the desired assertion follows from (6.4.15). □

T heorem  6.4.4. Let (H1)-(H4) and (6.4.3) hold. Then, for any e > 0, there 

exist n > 0 and e > 0 such that

dL(7rn,A(-),7r(-)) < £•

Proof. Fix x G H  and let e > 0 be arbitrary. By Lemma 6.4.3 there exist 

A* e (0,1) and sufficiently large n > 0 such that

dL(PfcA(x,-),Pj'A(x„,-)) < e /3 , A s  (0,A*).
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For the previous n > 0, by Theorem 6.2.2, there exist A 0 £ (0,1) and Ti > 0

such that

dL(P*'A0 w U " ’A(-))< e /3

whenever A E (0, Ao) and /cA > T\. Furthermore, due to Lemma 6.4.1 there 

exists T2 > 0 such that

dL(Pi(z, -),7r(-)) < e, t > T 2.

Let T  := 7i V T2 and k = [T/A] + 1 for any A < A* A Ao- Then the desired 

assertion follows from the triangle inequality

dL(7rn,A(-), tt(-)) < dL(PfcA(a:, •). ^(0) + dh(FkA(x, •), P^,A(xn, •))

+ dL(P£’A(:rn, •), 7rn,A(-)).

□

Remark 6.4.2. For the finite-dimensional case, finite-time convergence of numer­

ical scheme is enough to discuss the limit of stationary distribution of numerical 

solution [56, Theorem 6.23, p266]. While for the infinite-dimensional case, we 

need the uniform convergence of EM scheme (6.2.8) to reveal the limit behavior 

of 7rn,A, which is quite different from the finite-dimensional cases, and therefore

(6.4.9) is imposed. On the other hand, for the finite-time convergence of EM 

scheme (6.2.8), condition (6.4.9) can be deleted by checking the argument of 

Lemma 6.4.3 and combining with the Gronwall inequality.

Remark 6.4.3. By following the procedure of this chapter, numerical approxi­

mation of stationary distribution of SPDEs with jumps can also be discussed, 

which will be reported in forthcoming paper.
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