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Abstract

This thesis is concerned with the numerical prediction of two-dimensional 
viscoelastic filaments under stretching and step-strain within cylindrical-like 
domains. A hybrid finite element/finite volume (fe/Jv) scheme has been implemented 
in this study to solve the governing equations (mass and momentum conservation 
and constitutive model). A time-stepping procedure is utilised in thefe/fv  algorithm.

A number of rheological models have been employed to stimulate the desired 
rheological response. Amongst these is the Oldroyd-B model. This is considered as a 
strong strain-hardening model being widely used due to its sound physical 
background and its ability to reproduce qualitative response of polymer melts in 
rheometrical flows. The linear version of Phan-Thien/Tanner (LPTT) and Giesekus 
models are also studied to compare simulation results for both dilute and 
concentrated polymeric systems against the Oldroyd-B model. For fluids with higher 
degree of strain-hardening, larger stress values cause a reduction in stretching period. 
In addition, Boger-like response has been represented under increasing levels of 
solvent within the system. Filament-stretching has been studied under two modes of 
stretching, exponential and linear for multi-mode and single-mode representations, 
that has included a numerical study on mesh refinement and algorithms developed 
for free-surface movement. Bead-like structure formation has been studied for a 
variety of surface tension coefficients in the absence/presence of body forces. ALE 
methods and free-surface techniques have been analysed for Volume-of-Fluid (VOF) 
mesh and Compressed-Mesh (CM) procedures. VOF mesh procedures are 
outperformed by their CM counterparts. For free-surface curvature to be determined 
precisely, a particle-tracking approach has been found to be preferable to a kinematic 
condition for surface-level. Variation of anisotropy levels and ^-parameter settings 
has been studied for the Gieskus and LPTT models, respectively.

A further chapter is included where the recently addressed subject of step-strain 
is considered, to simulate sudden cessation of stretching across the three viscoelastic 
models. Sudden decline and sharp rise in axial stress have been observed and 
interpreted alongside filament radial evolution in the context of step-strain. The 
effect of inertia has been neglected but the effect of capillary and body forces has 
been brought into consideration. Larger stress values are observed for fluids with a 
higher degree of strain-hardening, and consequently, cause an increase in the step- 
strain period. Similar dynamic trends are followed for LPTT fluids with parameter 
settings of ^={0.0,0.13} under the context of step-strain. Here, rheological 
differences would emerge in shear. A paper which has been recently submitted for 
publication is included in the appendix. There, different aspects of gradual plate halt 
are discussed.



Chapter 1

Introduction

Computational rheology encompasses design and implementation of numerical 

methods to perform computer simulation in complex geometries. A major focus is 

commonly upon the numerical prediction for viscoelastic effects with polymeric liquids.

Over the last quarter century, this complex field of research has attained relative 

maturity (see [114-119] for reviews).

Complementary theoretical approaches
Structured Polymer solutions and melts, like other Theologically complex fluids, 

display various non-Newtonian flow properties. Specifically speaking, polymeric 

solutions are identified as viscoelastic materials implying that the stress endured by a 

fluid element is a function of the deformation history experienced by that element. 

Numerous flow phenomena of scientific and industrial relevance [59] arise from
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viscoelastic properties, which need to be predicted, understood, and possibly controlled 

via a combination of numerical methods and appropriate physical models.

Flow-induced evolution of non-Newtonian fluids stems from their internal 

microstructure which constitutes their rheological properties [120]. Orientation and 

degree of stretch of the macromolecules conform the relevant microstructure of the 

flowing polymers. A large number of polymers with a statistical distribution of 

conformations are contained in each macroscopic fluid element. While the polymer 

conformations along the fluid trajectories are altered by the flow, the macroscopic stress 

carried by each material element is itself influenced by the polymer conformation 

distribution within that element. Moreover, the frozen-in microstructure, which develops 

in processing flows, plays a crucial role in the physical properties of the final product. 

Thus, rheologists encounter a complicated non-linear coupling between rheological 

behaviour, flow parameters (e.g. geometry and boundary conditions), flow-induced 

evolution of the microstructure and final product properties. Computational rheology has 

certainly a key role to play to elucidate this coupling.

Kinetic theory

For polymer solutions, kinetic theory models or melts are most naturally exploited 

numerically by means of stochastic simulation or Brownian dynamic methods [121]. 

Kinetic theory offers several levels of description of a given fluid [122]. For instance, a 

dilute solution of linear polymers in a Newtonian solvent can be described in some detail 

by a freely jointed, bead-rod Kramers chain, which is made of a number of beads (of 

order 100) connected linearly by rigid segments. A coarser model of the same polymer is 

the freely jointed bead-spring chain, consisting of a smaller number of beads (of order 

10) connected linearly by entropic springs. Finally, another even coarser model is the 

single dumbbell, namely two beads connected by a spring. Conspicuously, these models 

of kinetic theory are not intended to offer description for the chemical structure of the 

polymer. However, they do exhibit in a more or less detailed fashion the important

2
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features required to describe the evolution of polymer conformations in a macroscopic 

flow. Recent Brownian dynamics studies of rheometrical flows of Boger fluids using 

Kramers chains [123-125], bead-spring chains [126-128], and dumbbells [129-130], 

have cast fresh light on the applicability of available kinetic theory models for dilute 

polymer solutions. These numerical studies alongside the direct experimental 

observation of flow-induced conformation for single polymers [131-133], have 

significantly broadened the scope of polymer dynamics.

The most successful kinetic theory, based on the reptation model, was first proposed 

by de Gennes and further developed by Doi and Edwards [134] for concentrated 

solutions or melts of linear polymers. Since the Doi-Edwards theory predicts a non­

monotonic dependence of the shear stress as a function of shear rate it cannot be used as 

such for simulating complex flows. Recently, significant modifications have been 

proposed to rectify this and other deficiencies of the basic theory [135-139]. More 

detailed reptation models, suitable for stochastic simulations, have become available 

[140], with significant progress in extending the theory to branched polymers [141]. 

Now, reptation-based models can be effectively utilised in the numerical prediction of 

complex flows. Applying a kinetic theory model to the numerical simulation of complex 

flows, combined with the macroscopic conservation laws, constitutes the micro-macro 

approach to computational rheology.

Continuum mechanics

In the macroscopic approach of continuum mechanics [18], details of fluid 

microstructure are not explicitly taken into account. Rather, a suitable constitutive 

equation relates the stress experienced by the macroscopic fluid elements to the 

deformation history. When the constitutive model is combined with the conservation 

laws, a set of partial differential (or integro-differential) equations is gathered that can be 

solved via an appropriate numerical method, such as the mesh-based finite element

3
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technique [142]. The macroscopic approach has been the basis of a large number of 

publications in computational rheology.

Notably, most constitutive equations employed today in numerical work [64] have 

been derived from a molecular model of kinetic theory ("pom-pom" constitutive 

equation is a recent addition to the list for branched polymers [143-144]). Quantitative 

information on the distribution of polymer conformations within a macroscopic fluid 

element (in the form of averaged quantities, such as the second moment of distribution 

of conformations) can be presented through such molecular-based constitutive 

equations. Unfortunately, in the derivation of a constitutive model from kinetic theory, 

closure approximations of a purely mathematical nature are often required with 

potentially significant secondary impact [145]. Thus, with regard to closure, the link 

with the parent molecular model becomes somewhat corrupted, and explanation of 

macroscopic findings in molecular terms becomes distorted.

Rheology and computation

The viscoelastic character of any given flow is often measured through a 

dimensionless Deborah number, De, defined as the product of a characteristic 

deformation rate of the flow and a characteristic relaxation time of the fluid.

While De vanishes for Newtonian fluids, it is typically of 0(1) or 0(10) for the 

polymer flows of interest here. Developing numerical schemes to obtain accurate 

numerical solutions for the governing equations at values of De of practical interest, 

whilst implementing a physically-realistic mathematical model, is the major challenge 

for computational rheologists. Assuming an (ideal) situation, in which reliable 

computational rheology software is readily available on standard computer hardware, 

one may consider some of the numerous benefits and opportunities that arise. For 

example, theoretical rheologists would have a tool for the critical evaluation in complex 

flows of new theories, whether a constitutive equation, a molecular model, or an 

improved description of boundary conditions. Complex flows are indeed characterized

4
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by transient kinematics in the Lagrangian sense (i.e. following the fluid elements). By 

combining shear and elongational deformation, they constitute a harsh testing ground for 

any theoretical model. Theoretical rheologists would be able to use computational 

rheology tools to bridge the gap between several levels of description utilised to predict 

polymer dynamics. An example is the evaluation in complex flows of suitable closure 

approximations, invariably needed to derive a macroscopic constitutive equation from a 

molecular model. Non-Newtonian fluid mechanics studies would be most helpful in 

better understanding of mechanisms responsible for observed macroscopic flow 

phenomena (such as vortex growth [146-147] and purely-elastic instabilities [148-150]).

Benefits would abound experimentally also. For instance, experimentalists could 

perform useful computational rheometry trials alongside the experiment to interpret the 

data more accurately. That is, to translate more clearly measurement (such as torques, 

forces and deformation) into well-interpreted rheological information. Experimental 

complications (such as flow inhomogeneity and secondary motion) could be identified 

and possibly avoided, through improved design of rheometrical equipment, or explicitly 

taken into consideration at the data reduction phase. In addition, the combination of 

numerical simulation and flow experiments could be useful to characterize rheological 

behaviour in complex flows, yielding the optimal rheological model and material 

parameters for the fluid under study. Finally, and most importantly in industrial practice, 

the polymer engineer could perform detailed Computer Aided Design (CAD) studies, 

through which links may be established between molecular architecture of the raw 

material and final product properties. Improved design can provide the required tools to 

predict and partially overcome production-related complications (such as extrusion 

instabilities [151]). An on-line computational rheology model, in concert with 

appropriate control algorithms, can be a revolutionising idea to provide intelligent 

physics-based process control techniques. Unrealisable, at present, yet, significant 

collective advance has been made recently towards this goal.

5
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In summary, computational rheology has largely adopted the macroscopic approach 

since the pioneering days (circa 1975) of numerical techniques. Recently, the 

complementary micro-macro approach has become feasible, which involves the coupled 

solution of the conservation laws and a microscopic model of kinetic theory. This has 

become a possibility since computer processing capacity has advanced and pushed the 

boundaries of numerical achievements far beyond expectation.

Numerical methods and applications
In classical CFD technology, a broad spectrum of numerical algorithms is offered 

based on finite difference, finite element, finite volume, boundary integral, spectral 

methods, and combinations thereof. Modem computational rheology benefits from 

similar diversity. Yet, the range of application of a particular numerical technique may 

be problem and context dependent.

Most published works deal with finite element methods for solving two- 

dimensional steady-state flows (in the Eulerian sense), employing a differential 

constitutive equation [118,152-153]. Recently, these methods have been extended to 

transient stability analysis for complex flows [7,154-155], and the computation of 

transient problems [156-161]. During the past few years, finite volume methods have 

also been actively developed, often in combination with finite elements, to solve two- 

and three-dimensional transient problems [162-165].

Over the last decade, there has been considerable advance with methods for integral 

models, most notably through the introduction of Lagrangian finite element schemes 

[166] (wherein the mesh deforms with the fluid) and the Deformation field method [167- 

168] (which uses a fixed Eulerian grid). These techniques have paved the way for two- 

and three-dimensional time-dependent simulations using integral models. Further 

specific methods for high-Reynolds number viscoelastic flows have also been 

developed, recently [169-171] to study drag-reduction, based on spectral and finite 

difference schemes and designed for simple geometries. The development of specific

6
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iterative solvers [172] and parallel algorithms [173-176] are examples of algorithmic 

advance here.

Through the progress made in numerical technology, macroscopic simulation has 

been exploited over the last few years in two important directions. Firstly, in the 

evaluation of constitutive equations for solutions and melts within benchmark complex 

flows, often involving detailed comparison with experimental observation [2,177-188], 

Secondly, through rheological prediction, as a useful aid to experimental data reduction 

[4,14,41,189]. In this manner, computational rheology, though not mature, has already 

proven a powerful scientific branch of study.
I
i

I Specifically, this study is concerned with the simulation of viscoelastic fluid flows

I in filament-stretching and step-strain for axisymmetric configurations. Emphasis is
t
| given to interpret the flow response of constitutive models employed and relate

I differences to their rheometrical behaviour. Shear and extensional viscosity material
f

i  functions assist to provide insight into the nature of the deformation occurring in
I

complex flows. This information guides to the selection of particular material properties 

required to stimulate certain desired flow response. Filament-stretching and step-strain 

processes are present in many industrial processes, such as film blowing. They have also 

acted as a standard benchmark for testing numerical procedures. In this area, tensile 

| stress dynamics, mid-plane radial evolution and axial velocity are common problem-

specific features reported in the literature (theory/experiment) and quoted in the present 

I work.

' In numerical simulation, finite element and finite volume algorithms have proven 

their capability as powerful tools in a number of complex geometries and many areas, 

such as aircraft design, noise minimization in acoustics and computational rheology. 

Here, a scheme consisting of a hybrid formulation with finite element and finite volume 

components is employed to solve the range of flow-settings and configurations 

investigated.

7



Chapter 1 Introduction

The basic equations of fluid mechanics and rheology are introduced in chapter two. 

Explanation for rheometrical flows is given, establishing the basis for a large part of the 

analysis presented. The focus is on Oldroyd-B, Phan-Thien/Tanner (PTT) and Giesekus 

models and their material functions, describing some of the numerous modifications 

proposed for these models. Note that, additional rheological plots are included in other 

chapters when further relevant.

Chapter three deals with the numerical procedures and techniques employed, the

I hybrid finite element/finite volume (fe/fv) method, explaining the background
I
I fundamental equations. This method has been configured to satisfactorily represent
I
I viscoelastic flows. The fe/fv algorithm has been generated through the consideration of
I
| the different mathematical-type of the momentum equation (balance of forces) and the

constitutive law for stress. The capability of such an algorithm has been proven in 

solving problems with Oldroyd-B and Phan-Thien/Tanner models, amongst others.

Modelling of multi-mode viscoelastic flows is considered in chapter four for the 

three models of Oldroyd-B, LPTT and Giesekus. There, an Arbitrary 

Lagrangian/Eulerian temporal formulation is coupled with a particle-tracking procedure 

for free-surface movement. Again, the hybrid finite volume/element method is employed
I
j to analyze the transient viscoelastic response of these strain-hardening fluids. The results

for single-mode solution response have been compared between a shear-thinning 

Giesekus and a constant shear viscosity Oldroyd-B model. Hence, the rheology induced 

through shear-thinning contributions may be gathered. Surface tension and body force 

effects have been studied parametrically, showing the emergence of bead-like structures 

and asymmetries.

In chapter five, ALE methods and free-surface techniques are analysed for volume- 

of-fluid mesh and compressed-mesh procedures. Volume-of-fluid mesh procedures are 

shown to be outperformed by their compressed-mesh counterparts. When the latter are

8
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coupled to an ALE-formulation governing mesh movement, a powerful technique is 

adopted to access impressively large levels of Hencky-strain. A particle-tracking 

approach is displayed to be preferable to a kinematic condition for surface-level when 

free-surface curvature is to be determined precisely. Comparison is made between the 

results obtained in this chapter and those reported in the literature, in terms of trends and 

Trouton ratio measures, minimum radial evolution and extensional viscosity predictions.

The subject of chapter six is computational investigation of filament stretching at 

high Hencky-strain levels. Predictions are extended on the multi-mode representation 

through elevated Hencky-strains, and single-mode predictions via rheological variation. 

Additionally, linear versus exponential-stretching configurations are studied under 

Oldroyd modelling. Computational predictions are compared to theoretical solutions and 

through discrete mesh refinement for consistency. For such strain-hardening fluids, 

dominance of tension-thickening over shear-thinning properties is established. Shear 

effects are studied together with foot pinching aspects and filament mid-plane radial 

evolution, as a consequence of reduction in hardening and less extension at the filament 

centre. The importance of each mode has been addressed by comparing and contrasting 

single- versus multi-mode modelling (multi-timescale). In addition, the appearance of 

bead-like structures has been explored at elevated Hencky-strain levels.

The numerical modeling of capillary breakup procedures (CaBER) with amended 

Arbitrary Lagrangian/Eulerian (ALE) methods is discussed in chapter seven. Various 

strain-hardening fluids, fluid viscosity ratios and aspect-ratios are studied, again 

employing a hybrid finite element/finite volume spatial approach. The results are 

validated against equivalent experimental results recorded in the literature. Bead-like 

structure formations for filaments with different initial aspect-ratios and viscosity ratios 

are studied. The influence of surface tension and elastic forces upon these particular 

filament stretching flows is also explored in this chapter.

Finally, some overall concluding comments are offered in a separate chapter to close.

9



Chapter 2 

Rheology and Governing Equations

In this chapter, rheological models are presented which relate surrounding forces 

with the internal response from the fluid along with the basic equations of fluid 

mechanics. This allows for the description of motion and conservation of mass. 

Models such as Maxwell, Oldroyd-B, Phan-Thien/Tanner, and Giesekus are briefly 

explained.

2.1 Introduction

The term ‘Rheology’ founded by Professors M. Reiner and E. Bingham is part of 

physical science and is primarily concerned with the description of the flow of matter 

and its deformation. Rheology can be applied to all, materials encompassing Hookean 

elastic solids to Newtonian viscous liquids [109]. Normally, of great interest to 

rheologists is the flow of complex fluids. Any fluid whose viscosity may vary, even 

at constant temperature and pressure, is termed a non-simple fluid. Paint is a typical 

example of a non-simple fluid with variable viscosity.

Fluids can be classified as Newtonian and non-Newtonian. Since the 17th 

century, Newtonian fluids have been considered as a standard to describe general
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fluid behaviour. Viscoelastic materials are a special class of non-Newtonian fluids. 

To explain the term viscoelastic, it is appropriate to define terms of what is called 

solid and liquid. If a material does not change its shape continuously when subjected 

to a given stress, it is referred to as a solid. Alternatively, if it deforms continuously 

under the action of applied shear/extensional forces and stresses, without 

consideration of how small the stress or force might be, it is termed a fluid [109]. 

Solid-like elasticity can often be modelled by means of Hooke’s law and liquid-like 

viscous behaviour through Newton’s law. Two different Newtonian fluids may 

deform at different rates under the action of the same applied shear stress. For 

instance, water exhibits far less resistance to deformation than Glycerine. The 

Newtonian viscosity is only a function of temperature and pressure, and is 

independent of time and shear rate. Water, milk, mineral oil and sugar solutions are 

examples of Newtonian fluids. By contrast, viscoelastic materials are those which 

exhibit both solid-like and liquid-like response. A material represents viscoelastic 

properties if, following a cessation of applied stress, the time of the fluid to adopt a 

rest state (relaxation time) can be observed or measured. The viscosity of such fluids 

at a given temperature and pressure may be a function of other factors such as shear 

rate. Non-Newtonian fluids can be categorized as having time-dependent or time- 

independent behaviour. The viscosity of a non-Newtonian time-independent fluid is a 

function of temperature and pressure. Shear-thinning or pseudo-plastic fluids are 

those for which viscosity is inversely proportional to shear rate. Most non-Newtonian 

fluids are shear-thinning; examples include fruit juices, ketchup, paint, shampoo, 

colloidal suspensions and slurries. In contrast, the term shear-thickening (or dilatant) 

applies to fluids if their viscosity increases with rising shear-rate. Wet sand and 

suspensions of starch are two examples of such fluids. Shear-thinning fluids have a 

broader range of industrial application compared to their shear-thickening 

counterparts. Also, there is a special class of non-Newtonian viscous fluids which are 

termed Bingham plastics, which resist a small shear stress (yield stress) prior to the 

onset of flow. These fluids behave like Newtonian fluids above a certain yield stress

11
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value. Toothpastes, tomato paste, grease, drilling mud and clay suspensions are all 

examples of this type of fluid.

In contrast, for time-dependent non-Newtonian fluids viscosity is a function of 

temperature, shear-rate and time for which shear stress is applied. The term 

thixotropic is applied to fluids such as yoghurt and paint, which display decreasing 

viscosity in time; as opposed to rheopectic fluids, which exhibit a viscosity 

proportional to time under a constant applied force, e.g. gypsum paste.

Continuum theory, in which fluid microstructure detail is not explicitly taken 

into account, constitutes the research of the present study. Ideally, intermolecular 

distances and the alteration of properties induced by these lengths are ignored. 

Rather, properties are averaged for an arbitrary large number of molecules that 

represent a fluid element adequately. The response of the element under deformation 

is obtained via energy, mass and force balances (conservation laws). These are 

applied through differential and integral operators over small volumes, yet 

sufficiently large to satisfy the continuum assumption. Real material response 

approximation in flow is performed under the context of both, rheology and 

continuum mechanics. Employment of Constitutive relations bridges the gap 

between these two fields. Since constitutive equations are typically derived from a 

molecular model of kinetic theory, they contain specific information (internal stress, 

pressure, molecular extension) which is responsible for the idealized fluids 

behaviour.

2.2 Rheometrical flows

The study of fluid behaviour in simple flows is regarded as essential in 

correlating the response of a fluid in more complex flow-settings. Simple shear and 

extensional deformation are examples of such simple rheometrical flows.

12
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2.2.1 Simple shear flow

Considering any fluid confined between two parallel planes, separated by a gap 

(height) of ‘h \  with the upper-plate moving at constant velocity U , the force per unit 

area (stress o ) necessary to maintain the constant velocity of the plate is 

proportional to the velocity gradient (shear-rate y), i.e.

v  = ri,{r)r- (2.1)

Where rjs (viscosity or resistance to flow ) is a constant coefficient of

proportionality for a Newtonian fluid. Under this type of flow, a volume of fluid is 

deformed, losing its original shape. For example, if a cubic fluid element is observed 

at any other time, the fluid volume has internal angles that may differ from 90° (see 

Fig. 2.1).

upper plate
  ' Sr_̂ T ! ^  I

u

■i ) c=t>

lower plate

Fig. 2.1. Schematic representation of simple shear flow.

Under simple shear deformation, the velocity field u = (w,v,w) and 

deformation-rate tensor d are represented as:

u ( y )  = yy  

v = 0 
w = 0

and d = l
2

0 r 0

r 0 0
0 0 0

(2.2)
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Other properties varying between Newtonian and non-Newtonian fluids are the 

first and second normal stress differences, N l and N 2, which are zero for Newtonian 

fluids and for non-Newtonian fluids, are defined as follows:

(2.3)

N2{r)=<r„-<ra =Vi{r)f, (2.4)

normally leading to relations,

iVj > 0 and » (2.5)

2.2.2 Extensional flows

In uniaxial deformation, the fluid volume is stretched in one particular direction, 

and due to incompressibility, compression occurs in the remaining axes. The fluid 

sample as depicted in

i

-r U T T
i i 

T.~r
i '

U

Fig. 2.2. Schematic representation of pure extensional deformation

Fig. 2.2 is assumed to be a cubic shape control volume at a chosen initial time 

(dotted border lines). Subsequent to stretching deformation, the fluid volume is 

extended uniaxially (x ) , whilst undergoing compression along the remaining two 

( y  , z ) axes, to preserve the original volume.

The constant deformation-rate in this elongational flow is termed the strain-rate 

or stretch-rate £ . In this particular case, lengths are modified and as there is no shear

14
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deformation, the fluid volume maintains essentially the same internal angles. The 

velocity field and deformation-rate tensor can be expressed as:

w ( jc) = e  x

v (y ) = —  ̂
w(z) = ~ j £z

£ 0 0
and d = 0 — — £ 2 C 0

0 0 — — £ 2 C

(2 .6)

The resistance or extensional viscosity can then be related to the normal stress 

differences and deformation rate through the relationship,

(2.7)

As expressed above, for Newtonian fluids, rje is constant under all strain-rates 

(stretch-rates), and the following relationship is always satisfied:

*7. = 3 ? ,. (2 .8)

In addition, at low deformation-rates, all fluids including those representing 

viscoelastic properties, satisfy(2.8), that is,

rje ( £ - > 0 )  = 3rjs ( y - > 0 ) . (2.9)

Pure extensional deformation takes place in contraction and 

contraction/expansion flows along the centreline, whilst close to the contraction a 

combination of shear and extension is present.

Trouton ratio ( T r ) is defined as the ratio of extensional viscosity to shear 

viscosities. Jones et al. [29] proposed the following definition for the Trouton ratio to 

relate y  and £ and evaluate shear and extensional viscosities:

Tr = (2.10)
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For Newtonian fluids, Tr is three for all values of £ and for viscoelastic fluids 

this ratio is anticipated to satisfy the following relation at very small deformation 

rates,

2.3 Constitutive models and basic equations

At every instant in the type of flow problems considered, the basic principle of 

mass conservation must be satisfied. This principle is expressed mathematically by 

the continuity equation (see [110]),

In equation(2.12), p  is the fluid density, u  the velocity vector and t , time. For 

incompressible flows, this reduces to

Newton’s second law of motion can be applied to a fluid element, this law states 

that the change of linear momentum in a system is equal to the sum of the forces 

acting upon it (also known as the principle of conservation of linear momentum). 

The forces acting on the system may be classified into two types: body forces acting 

on the volume of fluid, such as gravitational and electromagnetic forces, and internal 

forces, representing the friction between fluid molecules, affecting the fluid volume 

through its bounding surfaces. In differential form this is stated as [112]:

Tr ( e - >  0) = 3. (2.11)

| f  + V - ( p u )  = 0. (2.12)

V u  = 0. (2.13)

(2.14)
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where p  is the pressure, T is the stress without the hydrostatic contribution* and 

accounts for viscous/viscoelastic phenomena. Body forces, F ,  are neglected since 

contributions from gravity are less significant than those from other forces such as 

pressure or stress.

As discussed above, Newtonian fluids represent a constant viscosity in shear and 

elongational flows. Another characteristic is the instantaneous response to 

deformation. The general expression for the Newtonian (incompressible) model is,

T = 2 p d . (2.15)

Navier-Stokes equations are constructed upon substitution of equation (2.15) into

(2.14) . All flow settings in this study are assuming as under isothermal conditions

and laminar flow. In equation (2.15), the deformation-rate tensor for general flows is 

defined as,

d = -^Vu + [Vu]T). (2.16)

Constitutive or rheological models must satisfy the following basic criteria to 

adequately represent fluid response from a mathematical point of view [111].

. Determination o f stress: stress for a viscoelastic fluid is determined through the 

history of the motion of that body.

. Local action: stress at any point in the fluid is determined from the history of the 

deformation of an arbitrarily small vicinity of fluid around that point.

. Frame invariance: the form of constitutive equations must be independent of the 

coordinate system.

* Tensor <T is called the Cauchy stress tensor and is related to the tensor T by a  = — p i  + T , where 

I is the identity tensor.
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. Invariance under superposed rigid body motion: the constitutive equations must 

reflect independence of absolute motion in space; that is, if the equations are 

correct, any rigid body motion imposed on the whole fluid must not affect the 

response of the material.

2.3.1 Maxwell and Oldroyd-B models

The Maxwell model [113] is considered as the first to model viscoelastic fluids 

via a differential system of equations. The one-dimensional form of this model is 

obtained by a combination of a Hookean spring and a Newtonian dashpot in series 

(see Barnes et al. [109]).

where G0 and juQ are the elastic modulus and the viscosity, respectively. The 

relaxation time for a Maxwell fluid is defined by X = {i0/G 0 .

Applying the principles stated above, this equation (2.17) can be re-written as 

the upper-convected Maxwell (UCM) model,

(2.17)

V

T  + X T  = 2ju0d , (2.18)

or the lower-convected (LCM) form

A

T  + X T  = 2ju0d , (2.19)

V A

where for an arbitrary tensor A , the upper- ( A ) and lower- ( A ) convected 

derivatives are defined, respectively, as
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A = —-A+u-VA-(Vu)T • A - A - V u , (2.20)
d t

A = ^ - A  + u -VA + (Vu )t -A + A-V u . (2.21)
a t

The Maxwell model does not contain a term to account for solvent presence 

(purely viscous component). To overcome this, a retardation time, A} , is introduced 

in equation (2.18):

T + /tT  = 2 / ^ d  + A , d l .  (2.22)

Equation (2.22) is known as the Oldroyd-B model. However, numerical
V

(discretisation) difficulties arise when dealing directly with the term d , due to the 

presence of second-order derivatives of velocity. Hence, the model is split into two 

different equations, one for the polymeric component and other for the solvent, 

where

V

t + /It = 2//jd , (2.23)

= 2 /^ d , (2.24)

T = t , + t , //0 = / ^ + / / 2, and A, = ——— A. (2.25)

In equations (2.23)-(2.25), t  and denote the stress and zero shear-rate viscosity 

contributions from the polymeric component, respectively; in a similar fashion, t s 

and //2 are the contributions to the solvent part. The extensional viscosity predicted 

by Maxwell and Oldroyd-B models tends to infinity as the strain-rate 

approaches l/( 2A). Additionally, the shear viscosity is constant for all shear-rates
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and the second normal stress difference is zero (except for the lower-convected 

Maxwell model, which excessively predicts N 2).

A more reasonable prediction of N 2 is achieved by using a combination of

lower-convected operator and the upper-convected derivative. The Johnson- 

Segalman model introduces an operator consisting of both convected derivatives. 

Nevertheless, at low strain-rates, the extensional viscosity remains unbounded. The 

model is:

T + i T  = 2//0d , (2.26)

where, on an arbitrary tensor A, the new operator is defined as:

A = ( l - ± £ ) A + T f  A = A + ^ (V u f - t  +  t - V u ) .  (2.27)

£  is the parameter controlling the proportion of the two derivatives, and generally 

lies within the interval 0 < f < 2 ,  where N 2/N l = - ± £  and ^  = 0.2 yields 

reasonable N 2 (see reference [111]).

2.3.2 Phan-Thien/Tanner models

Phan-Thien/Tanner (PTT) constitutive equations correct the prediction of 

unphysical values of extensional viscosity with the Johnson-Segalman model. The 

creation and destruction of network junctions are considered in this model. 

Extension-hardening/softening and shear-thinning are predicted by this class of 

models, which is expressed as:

/ ( r ) T  + ̂ f  = 2 ^ d ,  (2.28)

where, the extra function /  ( t ) is,
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J exponential,

— fr(x) linear.
(2.29)

The linear form is extracted from a Taylor series expansion of the exponential form. 

Both forms predict shear-thinning behaviour and extension-hardening; strain- 

softening is anticipated for the exponential form. Alternatively, the linear form 

displays sustained hardening.

2.3.3 Giesekus model

In 1966, a class of constitutive equations was proposed by Giesekus based on 

anisotropic drag. The motivation behind adoption of the model comes from 

considering how the relaxation of an elastic dumbbell is modified when being 

surrounded by other oriented dumbbells. As such, Giesekus attempted to derive a 

theory for concentrated melts or solutions by starting from the simple dumbbell 

theory for dilute solutions. The upper-convected Maxwell (UCM) equation 2.18 is 

the appropriate constitutive equation for a dumbbell in dilute solution and can be 

expressed in the following form,

Here C, is the bead friction coefficient and the term 8k T 0 11 £  is the reciprocal 

relaxation time, 1A. The speculation of Giesekus was that anisotropic drag was 

created by the surrounding sea of oriented molecules; thus, f  becomes direction

dependent. To represent this, Giesekus replaced 8kT/321 £  by anisotropic mobility 

tensor, B / X:

(2.30)

V

2o+B  •( <t — Go) = 0 (2.31)
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B is a function of the anisotropy of the orientation of surrounding molecules and 

hence is dependent on the state of stress in the material. At equilibrium, the stress is 

isotropic, so B must be isotropic also; i.e. B = c  when a = Ga. When the stress 

becomes anisotropic, so does B. Giesekus assumed that the anisotropies in B and a 

are proportional :

Here a is an empirical constant of proportionality. The resulting constitutive equation 

can be written, viz.,

where t = a  -  G5 is a stress tensor that differs from o by the isotropic constant, 

G 8 . For compressible fluids, the stress tensor is only defined to within an isotropic 

constant, hence either 8 or xcan be used. The simple Giesekus equation, eq. (2.33); 

differs from the UCM equation by a term quadratic in stress.

The minimum and maximum anisotropies correspond to a=0 and a= l, 

respectively, a  may not lie outside this range; if it does stress magnitudes may rise 

rather than relax when deformation ceases. When a=0 (isotropic drag), the upper- 

convected Maxwell (UCM) is recovered. As a  changes from zero to unity, strain 

softening increases from that of the UCM equation, which is defined to have no 

strain-softening.

2.4 Non-dimensional form

Under isothermal conditions, the governing equations for this incompressible, 

viscoelastic flow may be written as

B - G  = a ( — - a )  = 0. 
G

(2.32)

A t + t +— t 2 = 2GAD , 
G

(2.33)
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rill
R e—-  = -Rei^.Vw -  Vp + V.(2//2d + t ) + F  , (2.34)

at g

d r  De
De-—  = -D euc.V T - f T  + 2jUld  +  D e(L 'T  + T l J ) - D e ^ ( d 'T  + T d ) - a — t -t . 

dt p,

(2.35)

Bq. (2.13) can be rewritten in the non-dimensionalized form, ‘a ’ is related to the 

Giesekus model alone and is termed as the mobility factor which is associated with 

anisotropic material response. The remaining parameter and function definitions, 

over the models in question vary, viz.,

Oldroyd-B: f - 1 ,  g=0, a=0;

LPTT: f={l+(f 'pttDe/jU])*tr(f)}', 0<£<2; cc= 0;

Giesekus: f= l, £=0, 0<a<l.

In chapter seven and following that in (Matallah, Banaai et al. 2006), for the default 

LPTT model, we use eptt=0.035, £=0 and for Giesekus, a=0.3162. When LPTT 

(^ 0 .1 3 ) is taken instead, slightly earlier shear-thinning properties are revealed, 

however, with little impact particularly for the step-strain problem. With, u, p  and T 

denoting the fluid velocity, the hydrodynamic pressure and the polymeric extra­

stress, respectively, the convective velocity is defined asuc - u - u m, where u is the 

fluid velocity, and um is the mesh velocity. The choice of mesh velocity defines the 

Arbitrary Lagrangian/Eulerian formulation employed. The total viscosity po 

comprises polymeric (jUj) and Newtonian solvent (ju2) contributions, so that 

Po=pi+P2 , d  = (L  + L } ) l2 corresponds to the rate-of-deformation tensor and 

L+ = Vm, the velocity gradient. The ratio of gravitational to viscous forces is

represented as Fg and given by Fg = (0, Fg)= (0, ^ - g ) ,  with axial coefficient
Upo

Fg=Bo/Ca. This extracts the Bond number, Bo, and the surface tension Capillary 

number, Ca. The non-dimensional group numbers such as Reynolds number (Re), 

Deborah number (De), Bond number (Bo), and capillary number (Ca) are defined as
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follows:

Re = £ £x k y De = A.So, Bo = ^ - g ,  Ca = ^ £aL° . (2.36)
Mo X X

The scales and non-dimensional variables for length, time, velocity, pressure, stress

and viscosity are defined as follows,

x = x*L, t = (£0y l t* , v =v*U , p = jU0y P \  T = //oyT *, ^  = ^ 0 /**• (2-37)
JL L/

Here, the initial filament length (L=Lo) is adopted as the length-scale and the time- 

scale is derived from the initial stretch-rate (£  o ) -  Thus, the velocity scale is yielded 

as equivalent to the initial plate-velocity (Uo- £oLq).
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Chapter 3

Numerical Techniques

3.1 Introduction

In the past decades numerical methods have constantly been in the focus of 

attention owing to their broad applications in providing solutions in scientific and 

engineering realms. Mathematical models which are able to describe the physical 

phenomena are essentially the first step in adopting numerical methods. Based on 

mathematical models appropriate equations can be constructed in terms of velocity, 

pressure, stress, temperature, viscosity and other physical parameters. These 

equations can be either in integral or differential forms, for which analytical solutions 

are desired. However, due to the non-linear nature of the governing equations 

describing the physical phenomena analytical solutions are generally unavailable.

+ The basic numerical techniques employed in this thesis are those developed already in the Institute 
of Non-Newtonian Fluid Mechanics (INNFM), Swansea group. These have been extended by 
incorporating the associated constitutive equations and algorithms discussed in this thesis.
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Hence, numerical solution is required for which schemes have been developed to 

obtain approximate solutions for systems of partial differential equations which 

describe fluid flow. Such techniques can be applied to incompressible and 

compressible flows alike, for both Newtonian and non-Newtonian fluids. Due to the 

appropriate nature of these numerical solutions, accuracy, stability and convergence 

are crucially important to ensure that numerical methodologies are as applicable and 

reliable as possible. One may classify spatial numerical techniques into three main 

methodologies; namely, Finite Difference (FD) [85], Finite Element (FE) [86] and 

Finite Volume (FV) methods [87, 88]. Each of those methods has both advantages 

and disadvantages. For example, the finite difference method is coherent and 

straightforward to implement but becomes more convoluted and less accurate for 

complex domains and stress boundary conditions, particularly in dealing with 

deforming free-surface domains. With this method the strong equation is maintained 

and point-wise difference operators approximate differential operators. 

Consequently, attention has been switched to integral-variational methods (finite 

element). A comparison between the three numerical methods has been made in [89, 

90]. Published articles of Keunings [91] and Walters and Webster [92] draw such 

comparison for non-Newtonian flows.

Ritz [93] was the first to propose an approximate method of a potential function in 

terms of trail functions with unknown coefficients for use in structural engineering 

analysis. Then, Courant [94] made a remarkable improvement over the method of 

Ritz through the idea of triangular-area discretization, defining piece-wise linear 

polynomials for each triangle. Thereafter, Turner et al. [95] and Argyris [96] applied 

the triangular element approximation to solve planar structurally stress problems. 

Having incorporated these ideas, Clough [97] introduced a fully-fledged 

development of the Finite Element method (FEM). Though the fundamental concepts 

behind the FEM were originated in mid-1950s from structural engineering analyses, 

due to its flexibility and robust mathematical basis, it has been employed in non- 

structural problems as well. Among the first to apply FEM to field problems, were
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Zeinkiewicz and Cheung [98]. They applied this method to such field problems as 

irrotational flow, involving the solution of Laplace and Poisson equations. Early 

work on viscous flows using finite element methods was published by Martin [99]. 

Afterwards, Oden [100] reported solving Navier-Stokes equations via FEM, by 

virtue of a velocity-pressure primitive variable formulation. Later, Chang et al. [101] 

used a stream-function/vorticity formulation for the same purpose. An alternative 

formulation, with split stages, is the pressure-correction scheme. This approach has 

been used widely in FEM, FV and FD discretised forms- see SIMPLE scheme under 

FV developed by Patankar & Spalding [87]. There are many reviews and 

applications of FEM which indicate the method employment in a variety of areas.

The FEM is based upon integral formulations which may be derived either from 

variational or weighted-residual methods. Rayleigh-Ritz [103] and Galerkin are two 

most popular methods used; others include sub-domain and least-squares methods. 

The Galerkin method is straightforward to implement and obtain a consistent 

approximation to the differential equation system. This method is optional for elliptic 

self-adjoint problems. In addition, it has the flexibility to accurately discretise 

complicate-shaped boundary conditions. These features have made the Galerkin 

method the most utilized and popular method, in which both weighting (test) and 

interpolation (trial) functions are chosen over the same spaces.

Unfortunately, when conventional Galerkin methods are applied to non-self 

adjoint (elliptic) equations, that may include significant convection terms, a number 

of deficiencies may emerge. Among them, one can observe spatial wiggles in 

solution or lack of monotonicity, which may appear when downstream boundary 

conditions cause rapid solution changes [105]. Negative artificial diffusion [104] is 

another disadvantage of the Galerkin method which can lead to under-diffusive 

solutions. It has been found that addition .of a suitable amount of artificial diffusion 

can lead to stabilized solutions. To overcome such deficiencies a variety of 

stabilization techniques have been introduced, including upwinding, Petrov-Galerkin
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and streamline diffusion approximations. Such techniques can be applied 

consistently, or not, and variants may appear in strong (FD-upwinding) or weak-form 

(FEM/FV). The most common forms developed have been based upon:

(i) artificial diffusion, a correction to physical diffusion,

(ii) Petrov-Galerkin techniques,

(iii) Modifications of convection terms through quadrature rules.

Upwinding techniques were first introduced by Christie et al. [102] and Heinrich et 

al. [190] for 1-D and 2-D problems, respectively. Subsequently, Hughes [103] 

applied quadrature rules to convection terms and presented a method to generate 

upwinding elements. Although these techniques were effective for 1-D problems, 

they were shown lacking when applied to multidimensional instances as a result of 

crosswind-diffusion [104]. Brooks and Hughes [105] later adopted a formulation 

termed, ‘streamline-upwinding/Petrov-Galerkin’, in order to remove crosswind- 

diffusion. Despite significant advances to date, convection-diffusion problems are yet 

amongst the most challenging to numerical solution.

In recent years, FV methods have emerged as alternative spatial discretisation 

techniques in providing solutions to viscoelastic problems. The incentive behind this 

stems from the nature of the constitutive equation for stress that, in differential form, 

assumes a l st-order, space-time, hyperbolic representation. The conservation features 

of such equations may well suit FV discretisation. For the momentum-continuity 

sub-problem which is essentially of parabolic-hyperbolic type, FE formulation 

provides an optimal fit. Thus, a combination of both FE and FV methods has been 

sought, leading to the production of hybrid FE/FV methods [106,107]. Such methods 

are now well-established and play a significant role in the simulation of complex 

viscoelastic flows. A variant of hybrid FE/FV methods is used in the present work.
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3.1.1 Brief description of Galerkin finite element method

The finite element method deals with dividing the spatial problem domain 

(geometry) into a number of finite elements (mesh) over which solution is sought. As 

an example, consider the following time independent Poisson equation,

0 = / M -  (3-D

Suitable functions (typically polynomial type of first or second order) can be 

used to interpolate the unknown solution variables. The problem residuals are then 

weighted and applied to each of the finite elements belonging to the original domain. 

Interpolation per finite element takes the form,

nt

(•*)“< ’ (3-2)
i

where $  (x) are the trial functions, ut are unknown solution nodal values and nt is

the number of nodes in the generic finite element. Substituting (3.2) in (3.1) and

inserting Wj (*) as weighting functions yields,

(* )“/ ] “'; M dQ« = (3-3)
a ,a x  a.

With the Galerkin method, weighting functions and trial functions are selected from 

the same space, that is Wj (x) = (* ). Then, integration by parts yields,

d fy ix )
 tj(x)o x

Cdf i f x)  d 0 J x )  f
-k ,   J -dQe = j f ( x ^ j ( x ) d S l e. (3.4)

o d x  d xr. ae

Summation of all elemental contributions leads to system assembly over the 

geometry (£2 = Z£2e). When solution values are known at the outer domain boundary
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(Dirichlet conditions), the term evaluated on the boundary (T e) of the element is set

to zero; otherwise, it cancels out on interior elements. Neumann conditions (natural, 

weak-form) would be incorporated with the full equations. In the present study when 

velocity is imposed on boundaries, Dirichlet conditions apply; on other boundaries, 

such as free-surface, Neumann conditions apply.

In matrix notation, the full system of equations resulting from (3.4) can be 

expressed as

with nodal values contained in the column-matrix u . K and b may be evaluated 

either analytically or numerically and defined as follows,

Configuration of all elements with their contribution into a total system must 

encompass the specified boundary conditions. For instance, since certain values are 

known and imposed in this example, accordingly nodal values are specified on the 

domain boundary (T )  and may be substituted directly into the corresponding 

positions for K , b and deleted from the solution vector, u. Direct or iterative 

algebraic solution procedures are required to solve equation (3.5), depending on the 

size of the problem, which is governed by the number of elements/nodes and the 

shape functions involved.

3.1.2 Brief description of the finite volume method

With the finite volume technique, an integral expression for a conservation law 

is considered, rather than solving the differential form directly. The technique can be 

applied to the differential constitutive equation, which is integrated over an fv- 

subdomain. This can be classified as a subclass of the finite element procedure with

Ku = b, (3.5)
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weighting functions set to unity, w(x) = l .  A conservation law can be written in a 

general integral form as,

where g can be any quantity to be ‘conserved’ such as mass, momentum or energy; 

f is its flux (divisable into diffusive and convective parts), of outward unit normal 

vector n across the surface T  surrounding the volume Q ; and q , body forces or 

source terms. On each /v-cell and in cell-centred discrete form, mean values can be 

expressed as,

Applying (3.7) on a single finite volume, with mean values gt and qt yields,

faces, respectively. An advantage of the FVM is the natural conservation of variables 

in integral form on each individual /v-cell, and hence, over the entire domain.

Mean value approximation can be carried out following numerical integration 

procedures,

where nc is the number of nodes and (p. > 0 are weights of the integration procedure. 

Surface integrals can be approximated as,

(3.8)

(3.9)

where k  and T k are the number of ‘faces’ of the /v-subcell and the area of those

(3.10)
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Jf-ntdTt « ] r F 4. (3.11)
k

Fk is an approximation of f ii* and k is the number of faces of the /v-cell.

Employment of such approximations over each finite volume, including their 

contributions to represent the total domain, introduces the discretised form of 

equation (3.7). This generates a system of algebraic equations to be solved similar to 

that for the finite element approach represented by equation (3.5).

3.2 Discretisation of field equations

A time-dependent hybrid finite volume/element discretisation forms the basis to 

provide solutions to the relevant governing field equations. This scheme is a hiigh- 

order, semi-implicit, incremental pressure-correction algorithm (TGPC), applying a 

two-step Lax-Wendroff approach, and a temporal Taylor series expansion up to 

second-order. The scheme can be explained assuming a one-dimensional problem of 

the following form,

Where, u (x ,t)  is a scalar field dependent solution variable, with x  and t 

independent spatial/temporal variables, respectively.

Through operator-splitting, a three-stage system emerges, which is discretised in 

space and time, constructing a reduced fractional-staged set of equations. At stage 

one and via a predictor-corrector scheme, a non-solenoidal velocity field is computed 

(Stage la , lb). Temporal pressure-difference on the time-step is computed via a 

Poisson equation [Eq. (3.1)] at stage two. Eventually, at stage three and to complete 

the time-step loop a solenoidal velocity field is recovered. To improve temporal 

quality through an area-weighting procedure, the numerical algorithm is further 

m odified.

(3.12)
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The two-step Lax-Wendroff procedure, over time-step t e  

and?E |V,?”+1] , can be expressed as,

u"^=u"+^ht
f x f { u )

(3.13)

un+x — un + " 2  A?
i ' M

n+ \

(3.14)

Here, as elsewhere, terms with subscript n display evaluation at a specific time step 

( tn).

The resulting generalised space-time discrete matrix-vector system may be 

expressed as follows,

Stage la: \ ( U  2 - V " )  = ba(P ’',P n- \U " ,T ’',D ’') ,

Ar(Tt - T t") = b (U",Tt",D n),
A t

Stage lb: \ ( U ’ - U n) = bb(P \P " - ',U " ,U  2,T  2,D  2),
1 1 1n+— n+— n+—

± a; crt”+1 -T t")=bt (u M\ T kntl2 , D % ,

Stage 2: A2(Pn* '-  P ,') = b2( U ') ,

Stage 3: ~ U ')  = bi (P" ,P n*'), (3.15)

M
Where total stress nodal vector is comprised of its modes (T )j and
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b °  = {ftY + F gM l -  [fi2S + ReN(U)]U -  B j} "  + l I { P n+ 0l(P" -  P "~')}, 

b*  = {stX + F gM 1 -  [fi2S + ReN(U)\U  -  B j}"*112 +LT [Pn +0, (P n -  P ”' 1)},

O<0, < 1 ,

A 2 = K , b2 = — L U ', A, = — M  , and b, = -L T(P"+1 - P n).
At At

M, S, and N(U) represent the consistent mass-matrix, diffusion matrix and advection 

matrices, respectively. Boundary integral terms for surface tension are indicated via 

the (S t) '(X )  matrix-vector product whilst gravitational force is included through 

Mi-term. Note, that convection terms disappear under the ALZs-implementation. 

Utilising implied summation with repeated indicial notation over the problem 

domain £2, corresponding matrices are,

q q a

(St)s = U ^ d T  , (X)J =(<yn)J =( - pan + C a '  (i- + -L )„ )  (M ,), = U d fi . (3.16)
r ^ 1  ^ 2  q

The pressure stiffness matrix, K, and remaining matrices adopt forms:

*(, = J V ^ V ^ d Q , ^ ) ,  = (3.17)
Q a VXk Q

The additional stress-related matrices and vectors ( AJ and br ) are described below,

as they emerge, under the fv-context. The scheme becomes further implicit and 

stable as approximation of diffusion terms is carried out in the momentum equation, 

via a Crank-Nicolson discretisation over each time-step. On the parent triangular fe- 

cell, pressure is represented through linear (y / j{ x ) ) interpolation, whilst that on

velocity ( ) )  is quadratic. In nodal (j) notation, such trial space interpolation can 

be represented, viz.
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u (x ,tn) = , p (x ,tn) = Y sW jW P j” • (3.18)
j  j

No explicit assembly of system matrices (minimum storage overhead) is required 

at stages one and three as an accelerated Jacobi iteration is applied to solve the 

resulting algebraic equations. A few iterations (three to five iterations) are demanded. 

This space optimal computationally efficient element-by-element procedure 

demonstrates linear time-complexity in time-step and overall linear space-complexity 

in nodal degrees of freedom. Since the Jacobi scheme is well-suited for 

parallelisation (see Grant et al. [30]), it is an appropriate choice for these mass-matrix 

equations, according to their suitable conditioning properties. In contrast to stages 

one and three, a direct Choleski reduction scheme is employed to compute the current 

pressure-difference over the time-step at stage two. The previous time-step pressure- 

difference at stage one, serves as a back-reference for the incremental version of this 

scheme. As such, over the alternative non-incremental pressure-correction schema, 

superior uniform temporal error bounds are yielded. At the second-stage, the order of 

efficiency of the overall scheme is upheld and iterative solution is avoided via the 

choice of direct solver for the scalar pressure-difference equation. Here, severe 

practical difficulties may often arise from conditioning and is best dealt with 

independently of the remainder of the system. The symmetrical, sparse, banded 

nature of the resultant matrix leads to computational efficiency, a state that also holds 

for three-dimensional implementations, see Grant et al. [30].

3.2.1 Free-surface treatment and algorithm

3.2.1.1 Lagrangian/ALE approach (CM)

To compute free-surface movement, a particle-tracking technique is employed. 

We assume that the fluid surface located at nodes from the start of a time-step 

consists of a series of distributed particles. Typically, a fluid particle is shifted using 

an Eulerian procedure:

X ? "  = X ?  + A tu (X ? ,tn) ,
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where, a particle at location i on the free-surface, is positioned at ( X " , X ? +1) for 

times (tn,tn+1), with velocity u ( X " , t n) at positionX "and time f .  In a similar

fashion, particles and mesh-nodes are all relocated to their updated end-of-time-step 

position,

r”+7= / 1 + urAt and zn+1=zn + uzAt.

Mesh-nodes are shifted both radially and axially through application of this particular 

strategy. This lies in distinct contrast to other earlier approaches, which relied upon a 

surface height function description, h(x,t) [10] where the free-surface movement is 

assumed to be purely radial.

To solve the present problem, the dynamics for the space-time domain may be 

described through either an Eulerian or a Lagrangian frame-work. The generalised 

Arbitrary Lagrangian/Eulerian technique (ALE) has proved a powerful tool to unite 

features of both such descriptions, through the concept of a mesh velocity. A material 

time derivative of a physical quantity,0 , within the reference configuration can 

typically be expressed as,

DO 3 0
— -  = —-  + mc.VO,
Dt 31

uc = » - u m,

where uc, u and um represent the convective velocity, fluid velocity and mesh 

velocity, respectively. The particular form of the Arbitrary Lagrangian/Eulerian 

formulation employed is based on mesh velocity allocation which is purely Eulerian 

if um=0; purely Lagrangian if um-u \  with hybrid configurations adopting alternative 

choices in between. An ALE  interpretation is invoked in the present work, for which 

on all boundaries, um- u  and uc=0. Via pure lubrication, interior node movement is 

dominated by axial centreline fluid velocity (uz) and radial movement by mid-plane 

fluid velocity (vr). As such, mesh quality is maintained by re-projection of mesh- 

nodes and solution onto horizontal pure lubrication mesh-lines, coinciding with 

forward-time axial centreline nodes. Consequently, the complexity of mesh-folding
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is avoided, which may occur otherwise in the close neighbourhood of the plates 

(filament-foot extremity zone). Inclusion of additional convective correction stages 

(Stage lc) to the scheme has revealed practically that, adjustment arising from such 

approximation in um, incurs insignificant contribution for extensionally-dominated 

flow, and hence, can be discarded.

An alternative procedure is to apply an ALE-approach on the domain with two 

different strategies to track the free-surface. Since, using this technique there is radial 

mesh adjustment with free-surface movement, the procedure is termed a compressed- 

mesh (CM)-approach. In this instance, the fluid domain is stretched in the axial 

direction upon retracting the plates, and compressed radially inwards from the free- 

surface.

One procedure to govern the evolution of the deforming flow domain is to 

interpret this movement through a local kinematic condition using a height function

Here, ur is the inward radial velocity component, which diminishes at the top-plate 

and increases to a maximum at the filament mid-plane. In contrast, the axial velocity 

component, uz, reaches a maximum in absolute value on the two moving end-plates 

and vanishes at the filament mid-plane. Consequently, the free-surface is 

dynamically compressive, moving inwards radially, and the velocity and 

underpinning boundary condition at the plate-fluid interface engender shifts in fluid- 

surface position. To compensate for this, there must be a relative reset for internal 

nodal positions, in proportion to the shift in the free-surface. The height function 

restricts free-surface movement to only radial adjustment. Previous work [10] 

utilised a (CM, c^/dr)-approach with mesh redistribution but with no explicit mesh 

velocity. This method suffered from deficiencies, particularly at higher levels of 

Hencky-strain (e>1), degrading solution quality close to the fluid-plate contact 

positions.

[33], h(x, t):

dh
—  = u„ - u

dh
dz

(3.19)
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Under CAf-methodology, the various phases involved within a single Hencky- 

strain step (A tHencky) are as follows:

Step 1. Update Hencky-strain, tn+l = t n + AtHenclcy

Step 2. Fix plate-boundary conditions at tn+l

Step 3. Shift plate locations through single step (A tHencky)

Step 4. Shift free-surface nodes to updated tn+l position

Step 5. Reproject position and solution at internal /free-surface mesh nodes for 

particle-tracking method1. With height function method, use elliptic- 

mapping mesh redistribution for interior nodes in axial direction 

Step 6. Temporally update kinematic fields (velocity and pressure) on shifted 

domain(?n+;), solving fractional-stages with dynamic boundary conditions 

Step 7. Synchronise velocity, pressure, and stress fields; solving field fractional- 

staged equations, through prescribed inner/local steps, M=(AtHencky/Atinner) 

time-steps

Step 8. Verify local time of stretch (Hencky strain); if not termination time, 

go to step 1

3.2.1.2 Volume-of-Fluid (VOF) approach

The flow domain is split into two parts: one wet and another dry under the VOF-

method. Conventionally, the fluid is viewed as flowing over a fixed mesh, and

hence, the frame of reference is essentially Eulerian. This is amended in the present 

context to consider the predominant axial motion through which the mesh is moved. 

The domain is assumed to be fully wet at the outset. The interface between wet and 

dry zones is defined by the position of the free-surface. Finite element calculations 

are performed in the wet-fluid zone to obtain field variables, such as velocity, 

pressure and stress, as only there, material assignment is non-zero. When employing 

the VOF-method to model free-surface deformation, the initial rectangular mesh is

1 May adopt horizontal z-mesh lines governed independently, either by axial filament movement or 
free-surface position. Empirical evidence would favour the former, pure lubrication choice.
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stretched purely axially and the axial redistribution is performed through an elliptic- 

mapping mesh redistribution strategy (log-tanh, [34]). Based on particle trajectories, 

free-surface positions are re-established upon each Hencky-strain time-step. This is 

performed under the assumption that the free-surface boundary can be identified 

through a series of particles (not to be confused with nodal mesh points). Then, 

through a time-stepping procedure, one can track the movement of such surface- 

particles.

Once the plates have been moved at a particular Hencky-strain, via the prescribed 

velocity, surface particles are repositioned and updated according to the above steps. 

Subsequently, the newly shaped wet and dry regions are identified and the status of 

all nodes (either wet or dry) is reassigned. For part-wet elements, material properties 

are adjusted within a single element. Boundary conditions are naturally incorporated 

within the finite element calculations via assigning suitable material properties to 

each sample quadrature (Gauss) point within an element. As such, local re-meshing 

close to the free-surface would not be required since explicit boundary conditions are 

not imposed on the free-surface. Sampling precision can be enhanced through the 

number and location of quadrature points; thereby proportions of wet versus dry 

segments are depicted more accurately. After reassigning nodal status and material 

properties, velocity, pressure and stress fields are computed on the updated domain 

in an iterative fashion. A prescribed increment tolerance is met in solving the 

fractional-staged equations via a set number of local/inner steps, synchronized to 

match the (true-time) Hencky-strain step. Then, calculation advances to the next 

Hencky-strain time step, and until achieving the respective target time (Hencky- 

strain) the cycle repeats itself, or premature numerical failure (divergence) is 

encountered.

Under VOF and for a single Hencky-strain step (A tHencky), the following 

alternative sequence of algorithmic steps is used at steps 4 and 5 above:

Step 4. Via elliptic-mapping mesh redistribution, interior mesh-point axial 

locations are updated and take new positions relative to plate-

39



Chapter 3 Numerical Techniques

movement,

Step 5. Via surface tracking, updated free-surface positions are determined 

There is a choice in the VOF-instance, of the time to invoke the free-surface update, 

either immediately after plate shifting (as above), or after making correction to the 

solution at step 7. According to current experience this has made no practical 

difference. Both options have performed equally well, in free-surface profile and 

nodal solution predictions, with only a slight difference relative to the Hencky-strain 

solution-state utilised.

3.2.1.2.1 Surface particle velocity estimation

Based on empirical findings, for the accurate prediction of free-surface 

movement, precise estimation of surface particle velocity is crucial. To quantify this 

position, three different estimation techniques have been studied. With the first 

method, free-surface particle velocities are computed purely from element-nodal 

values, based upon the element to which the particle belongs, viz.

U ( X p ,tn ) = ^ j ( X np )U].  (3.20)
j

It is implied from the notation that particle p , at locationX" and tim er” , has

velocity U ( X p,tn ). U " denotes the nodal (/') . velocity values for the particular

element containing particle (p). Unfortunately, this strategy fails to predict particle 

velocities with adequate accuracy when particles migrate too close to dry (stationary) 

nodes. Thus, this method was discarded due to undesirable weighting of static nodes. 

With a second strategy, the initial particle velocity is transported along with the 

particle, and adjusted at each time-step as the front advances through the mesh. With 

such an approach, particle velocities are represented as,

U(Xp,t"H) = U(Xp,tn) + ' £ ‘Pi(X p'>(Ui - U p ) .  (3.21)
j

This procedure performed well whilst tracking free-surfaces within a dough- 

kneading scenario, where wetting/peeling occurred at fluid-solid interfaces (see
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[34]). Nonetheless, in the context of filament-stretching, this option again caused 

degradation in surface representation. Under either of these two strategies, the 

surface particle velocity is strongly influenced by dry nodal velocities. Hence, a third 

procedure has been proposed where particle velocity estimation is entirely dependent 

on wet-nodal velocities (see Fig. 3.1). Surface particles are represented in Fig. 3.1 as 

dark filled circles (•) and mesh-nodes by filled triangles. There is radial 

interconnection between horizontal mesh-lines and nodes, across the filament span- 

wise. Figure 3.1a displays a scenario where there is alignment between surface 

particles and internal nodes, whereas the converse, under misalignment is 

demonstrated in Fig. 3.1b. Moreover, in Fig. 3.1a, the two closest radial wet-nodes 

must be located at the same height level (zp) as that of the surface-particle; see for 

example, surface-particle (p), locating nodes (a) and (b). One may derive the velocity 

for surface-particle (p) through extrapolation from these (a,b) internal nodal 

velocities, assuming suitable radial variation (either linear or quadratic).

*«

(a) (b)

Fig 3.1 Schematic: internal nodes with surface particles a) aligned; (b) misaligned
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The above procedure is applicable to particles aligned with mesh nodes as in Fig. 

3.1a. Further adjustment procedures are required (see Fig. 3.1b) for surface particles, 

misaligned with mesh-lines and nodes. For such a contingency, the pseudo-particle 

location (o) on the free-surface must first be located via assessment of the point of 

intersection between the surface and the horizontal mesh lines connecting the interior 

nodes. Interpolation along a surface line segment can provide a good estimation for 

the velocities of the particles lying between two such neighbouring pseudo-particles 

(pi ) and (p2)- Therefore, the order of axial-oriented interpolation (linear/quadratic) 

controls the resultant nature of the free-surface movement and accordingly, its 

curvature. Linear interpolation provides linearity in shape, whilst quadratic 

interpolation is less restrictive. The quadratic option chosen allows greater freedom 

of independent particle movement, hence permitting more general surface-curvature 

capture.

3.2.2 Sub-cell fin ite  volume stress discretisation

To update the nodal solution, cell-vertex jv -schemes are utilised for stress which 

distribute control volume residuals based on an upwinding technique (fluctuation 

distribution). Rewriting and rearranging the stress constitutive equation (2.35) in 

terms of flux (R) and source (Q), yields:

| p - R  + Q, (3.22)

R  = « V x ,  (3.23)

Q = ~ ( 2 / u ld -  f i )  + ( L- z  + z - C ) - ^ { d - z  + T - d } - — t - t .  (3.24)
De /jr

Each scalar stress component, t  , is assumed to act over an arbitrary volume of £2, 

whose alteration is controlled via flux and source component fluctuation, R  and Q ; 

respectively, as below,

42



Chapter 3 Numerical Techniques

(3.25)

Based on the strategy of choice, the flux and source alterations are evaluated over 

each finite volume triangle, and distributed the same to its three cell vertices. The 

update to a given node I is obtained by summing contributions from its control 

v o lu m e ^ ,, which is composed of all/v-triangles surrounding node /, as in Fig. 3.2,

see [10]. Flux and source residuals may be evaluated over different control volumes. 

Namely, over the fv-triangle T (R t ,Q t) and/or the median dual cell (mdc), associated 

with a given node I within the fv-cell T C R ^cQ ^). Median-dual-cell zones are non­

overlapping regions defined per node /, an area one-third of the base triangular cell 

over which it is constructed (see Fig.3.2 once more).

Taking eq. (3.15) into account, a consistent distributional approach, exposed in 

Webster et al. [10], may be expressed in a generalised form, for stage lb  with

The parameters, ST and S ldc are mutually linked and complementarily exclusive,

class of schemes, see [10,31] for schemes CTi, i=0-3. For example, 5T =1 and 

6mdc = 0 reverts, to a pure fluctuation distribution form, pertinent to present 

extension-dominated needs. This scheme is temporally modified on the Ihs, using 

a j  area-weighting.

V  STaJbT + V  S T. a T. bl
jL-tMT, T 1 Ti L u 'im d c ,  mdc tndc w (3.26)

where

bT/ - ( - R t+ Q t), blmdc = (~Rmdc + Qmdc)1,

^FD “  2/r, , and £2mdc — Zmdc, ^mdc^z1 •

^mdc = ^ - S T, and may be established to provide a powerful categorization of this
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Fluctuation distribution coefficients a j , may be provided via an appropriate

choice of scheme: for example, LDB, Lax-Wendroff, or PSI. Here, we focus on a 

single linear version (Lax-Wendroff), satisfying the property of linearity- 

preservation, but not positivity. It is spatially-centred and second-order accurate in 

space. In addition, it contains a dissipation term, designed to control oscillations in 

the neighbourhood of discontinuities, thus conferring second-order accuracy in time. 

For this Lax-scheme, the distribution coefficients aJ  may be expressed as:

where, At  is a time-step size, a an averaged cell-advection velocity, and n[ a scaled

inward-pointing normal vector to an edge of triangle T, opposing node /. Importantly, 

the closer the advection velocity a is to being parallel to a cell boundary, the larger 

the contribution to the downstream node at that boundary (see Fig. 3.2).

(3.27)

b)

Fig 3.2: a) fe with four f V  sub-cells, and b) mdc area for node I
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3.2.3. Numerical discretisation fo r  multi-mode vs single-mode

Here, a semi-implicit transient decoupled hybrid finite volume/element scheme is 

employed to discretise and solve the related non-linear system of field equations with 

appropriate initial and boundary conditions. Comprehensive discretisation detail with 

system and component matrices is provided in reference [61], thus only a concise 

summary is given here. A two-step Lax-Wendroff scheme is the base with a Taylor 

series approximated up to 0(At2). Pressure is incremented through a Pressure- 

Correction strategy (TGPC) [28], rendering a three-stage scheme structure. Stress 

and non-solenoidal velocity fields are both updated in the first stage. Then, the 

pressure is updated at the second stage. At a final third stage, the velocity field is 

updated. Spatial discretisation of the full system is performed via a finite-element 

approach on a triangular tessellation with piecewise-continuous linear interpolation 

for pressure and quadratic for velocity. The stress equations are discretised within the 

velocity element, through a sub-cell finite volume method of cell-vertex form (linear 

interpolation). To achieve this, the pressure/velocity element is sub-divided into four 

sub-cells for stress. Finite volume fluctuation distribution on time and space 

derivatives is taken through a Lax-scheme, which confers second order accuracy in 

both temporal and spatial manner [61]. An algebraic system is obtained and to solve 

such a system a Jacobi-iterative method is employed for velocity (using mass- 

iterations of number three to five), and a direct Choleski decomposition scheme for 

pressure. Via the resulting diagonalised fv-stencil, the stress is directly evaluated, 

yielding explicit nodal evaluation.

3.2.3.1 A L E  strategy, mesh and free-surface movement applied to multi-mode vs 

single-mode

For the multi-mode vs. single-mode study, advances are made as those pursued in 

reference [61], discarding the inferior surface height function description, h(x,t) [10]. 

This height function approach, which provides for purely radial free-surface 

movement, has been employed likewise by others [3,4]. Instead, a particle-tracking 

procedure for free-surface movement (an Euler scheme), with freedom of movement

45



Chapter 3 Numerical Techniques

in both axial and radial directions has been chosen, see section for 3.2.1.2.1. This is 

found to be particularly helpful in elements containing filament-plate contact.

3.2.3.2 Procedure through time fo r  multi-mode vs single-mode

The scheme employed for single-mode simulations has been validated through a 

number of both steady and transient studies [10,61]. This scheme can be extended to 

accommodate multi-mode modelling. Two important new issues are involved here. 

The first is handling a range of different relaxation time-scales, for which improved 

time-implicitness treatment upon the constitutive equation is required. The second 

aspect is related to dealing with the near-Maxwellian form of the momentum 

equation, as solvent viscosity is largely absorbed within the individual modes. The 

outcome represents significant progress towards equitable time-steps for both multi- 

mode as well as single-mode implementations.

Some modifications are made to the single-mode procedure of [61] under the 

multi-mode context described below. For any single Hencky-strain step (AtHencky),

the following sequences of algorithmic steps are followed:

Step 1. Hencky-strain is updated, tn+1 = t n + AtHencky.

Step 2. Plate-boundary conditions are fixed at tn+l.

Step 3. Through a single step (A tHencky), plate locations are shifted.

Step 4. Free-surface nodes are shifted to updated tn+l position [61].

Position of interior/domain nodes governed by ALE-scheme is 

readjusted, as above [61].

Step 5. First, kinematics is updated through single-mode modelling, gathering 

current pressure and velocity field on the shifted domain, solving 

fractional-stages, with dynamic boundary conditions.

Step 6. Next, the stress state is synchronously evolved forward for each mode 

to coincide with the kinematics.
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Step 7. Finally, the pressure/kinematics is corrected, to ensure consistency

with the updated total multi-mode stress.

Step 8. Stopping criteria: local time of stretch is determined; if not at

terminating time, go back to Step 1 and continue.

An elliptic-mapping mesh distribution for interior nodes (Thompson algorithm mesh 

distribution [34]) is used for the initial mesh (t=0). On specific steps, some further 

detail is in order. At Step 5, pressure and velocity field solutions are determined, with 

frozen stress and solvent viscosity weighting ( jus = jUQ-  jux), equivalent to the

single-mode context, in the ratio, jus / ju0, that is some two orders larger than that in

the multi-mode representation. This is performed to a specified iterative tolerance 

[10] over each Hencky-strain step. The extremely efficient iterative sub-time-steps 

demanded at this stage are termed inner-steps. They are based upon the current 

domain state and the intrinsic velocity-pressure solver [66,60] and are of linear time- 

space complexity. Through Step 6, primary variables (v, p, x) are evaluated 

simultaneously, so that, the total number of steps employed (M) matches the ratio of 

the Hencky-strain step AtHmcky to the local inner time-step At inner. Each stress mode

(i) is solved subject to its own polymeric viscosity (jut). At Step 7, (v, p)  are

calculated with frozen multi-mode stress x, employing the actual solvent viscosity

(A  = A ) - Z , A ) -

3.2.4 Step-strain discretisation procedures

3.2.4.1 Field equation solution

Filament deformation occurs in the field-domain throughout the dynamic step- 

strain process. A hybrid fe/jv, time-splitting semi-implicit formulation has been 

employed per time-step. This formulation consists of an incremental pressure- 

correction scheme, defined through a pressure-term weighting factor ranging from 

zero to unity (0<$/< l) detail of which is given in section 3.2.
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3.2.4.2 Free-surface tracking and A L E  implementation fo r  step-strain

In the step-strain study, the filament undergoes two different stretching modes. 

Throughout the first phase, the filament is continuously stretched by retracting the 

end-plates under a controlled scenario say exponential rate) the details of which are 

discussed in section 3.2.1.1. During a second phase, the plates undergo a sudden halt, 

and filament is subject to radial thinning as time evolves. An ALF-technique with an 

Euler particle tracking procedure is applied on the domain to trace out the free-
„ , i

surface path. In the next time-step (t ), the surface-particles and their associated 

nodes are shifted, depending on their local nodal velocities, to updated locations for 

which the details are described in section 3.2.1.1.

During continuous stretching, the mesh and fluid move simultaneously, so, axial 

extension and inward radial compression are carried out via an ALE  approach. On all 

boundaries, um=u and uc=0. Nevertheless, applied directly this may stimulate 

premature mesh-folding as a result of imposing the fluid velocity (um=u) on interior 

nodes close to the filament foot-zones (filament-plate contact zone). To avoid such 

undesirable mesh-folding, internal mesh redistribution adjustment is deployed based 

on a re-projection of intemal/free-surface nodes onto pure lubrication lines. Firstly, 

the free-surface movement is determined via the local fluid velocity. Secondly, 

filament centreline nodes are shifted according to pure lubrication fluid velocity. 

Then, the intersections lie between the horizontal lubrication lines, emerging across 

the filament through newly positioned centreline nodes, and the free-surface 

segments. Free-surface nodal attributes are adjusted as forward time-step position 

and velocity are updated. Likewise, projection of interior nodes takes place onto 

these pure lubrication lines, generated by the centerline axial fluid velocity (uz). 

Radial movement occurs uniformly on each time-step, being consistent with the mid­

plane radial fluid velocity, Ur. Due to mesh quality preservation over the time-step, 

the resultant mesh velocity reflects miniscule disparity from the true fluid velocity.

During phase two, in which step-strain takes place, the plates are subject to sudden 

halt and consequent commencement of the thinning-down process (to). This advances 

just prior to filament failure until a final time (tf), where the least attainable filament
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mid-plane radius emerges (equivalent to achieving a maximum element aspect-ratio 

criterion). Employing the continuous-stretching ALZs-approaches (full-ALE), as 

described above, tending towards dominant axial shift, has been observed to perform 

element suction away from the mid-plane (drainage to feet). Hence, vigorous element 

migration towards the end-plates arises, which eventually causes larger mesh aspect- 

ratios in the mid-plane filament section and quality degradation of final predicted 

filament surface shapes. Thus, implementation of an amended procedure is 

demanded. This is termed radial-AZJs. In this fashion, centreline nodes alongside 

their connected horizontal mesh lines (see above) may now be fixed and the axial 

distance between node-pairs (8z) remains unchanged. All other ALE  schema re­

projection procedures remain unaltered.

The two phases described above can be summarized as below within a single 

Hencky-strain step (AtHencky )•

Phasel:

Step 1. Hencky-strain is updated, tn+j = tn+AtHencky

Step 2. Plate-boundary conditions are set at tn+i

Step 3. Plate locations are moved through single step (Atnencky)

Step 4. Free-surface nodes are relocated to updated tn+i position

Step 5. Position and solution are relocated at internal /free-surface mesh nodes.

Step 6. Kinematic fields (velocity and pressure) are updated over the new domain 

(tn+i), via fractional-stages solutions to a prescribed tolerance with dynamic 

boundary conditions.

Step 7. Field fractional-staged equations are solved for velocity, pressure, and stress 

fields through prescribed inner/local steps, M=(EtHencky /A W r) time-steps. 

Step 8. Hencky-strain is verified, if not termination time, go to Step 1 and continue

Phase 2:

Under the second phase, following adjustments/amendments are made in the above 

sequence of algorithmic steps:
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Step 1. 

Step 2.

Step 8.

Time is updated, tn+j = tn+At.

Plate velocity is set at Upiate=0.

Step 3 is skipped as there is no plate movement.

Steps 7 (M =l), 4 and 5 are performed, as of Phase 1.

Step 6 is skipped as there are no dynamic boundary conditions.

Time is verified, if not termination time (tf), go to Step 1 and continue.
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Chapter 4 

Modelling Multi-Mode Viscoelastic Flowsf

In this chapter the transient viscoelastic response of strain-hardening fluids in 

filament stretching flows is analyzed. An Arbitrary Lagrangian/Eulerian temporal 

approach (ALE) is utilised, coupled with a particle-tracking procedure for free- 

surface movement and a hybrid finite volume/element method upon the domain. 

Findings between Oldroyd, Giesekus and linear Phan-Thien/Tanner models are 

contrasted and between single and multi-mode implementations. In addition, the 

impact that greater severe strain-hardening has in this transient flow context can be 

identified. By comparing single-mode solution response between a shear-thinning 

Giesekus and a constant shear viscosity Oldroyd-B model, rheology induced 

through shear-thinning contributions may be gathered. A parameteric study has 

been carried out on body force and surface tension effects, where the occurrence of 

asymmetries in the flow under certain conditions, leading to the onset and 

formation of bead-like structures is isolated. Hence, the specific localised influence

t Material of this chapter has been shaped in the paper “Modelling filament stretching flows with 
strain-hardening models and sub-cell approximations” by H. Matallah, M.J. Banaai, K.S. Sujatha 
and M.F. Webster and published in Journal o f Non-Newtonian Fluid Mechanics, Vol. 134, Iss. 1- 
3, pp. 77-104.
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can be shown that surface tension and gravitational forces have upon some 

stretching filament flows.

4.1 Introduction

There are a variety of different ways under which filament stretching can be 

conducted. In the present study, a liquid bridge is initially formed between two 

concentric circular disks, and then, extended by pulling one or both of the end-plate 

fixtures apart at an exponential rate. The resulting flow kinematics in the liquid 

column should mainly approximate ideal uniaxial elongational flow. Under such 

circumstances, the desired extensional viscosity as a function of time may be 

determined from the axial force at the end-plates and the Hencky strain applied to 

the material is computed from the total stretch imposed on the sample.

Free-surface deformation and non-deforming end-plates are the two aspects to 

which the principal practical complications arising in filament stretching are 

related. The balance of applied forces during the free-surface deformation leads to 

necking. Non-deforming end-plates at the feet of the filament, cause significant 

shear due to the imposed no-slip boundary conditions. This leads to filament 

deformation, dominated by elongation, yet with some presence of shear flow. 

Particular techniques specifically designed to tackle free-surface deformation under 

these circumstances have been developed.

In this type of work, strain-hardening like response is an issue of particular 

relevance. The influence of strain-hardening can be observed through some typical 

aspects such as: the sharp rise in tensile stress encountered; the adjustment in slope 

governing mid-point filament radial evolution; and the tendency towards axial 

uniformity in the distribution of the filament radius. All these features are detected 

and the form of strain-hardening behaviour predicted in the present study has been 

found to be in good agreement with that in the open literature.

Nowadays, many nonlinear constitutive models have been introduced to 

describe the rheology of interest here. The Giesekus model has been chosen as our 

base-case [1], in both single and multi-mode form which is contrasted against
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Oldroyd and Phan-Thien-Tanner (PTT) models. Since the Giesekus model can fit 

both linear and nonlinear shear rheology of most concentrated polymeric solutions, 

it is commonly used to represent weakly strain-hardening fluids. As an example, 

the Giesekus model has already been used by different authors, such as Li et al. [2] 

and Yao et al. [3]. In their work, Li et al. employed a higher-order-discrete-elastic- 

viscous-stress (hp-DEVSS) finite element method to solve an axisymmetric 

stagnation flow. In contrast, Yao el al. [3] investigated the transient viscoelastic 

behaviour in filament stretching devices under uniaxial stretching, following the 

cessation of stretching via the application of a commercial software package, 

POLYFLOW.

In a number of instances including a variety of different approaches, the 

numerical solution of viscoelastic filament stretching flows has been studied, 

employing Lagrangian and Eulerian treatments with integral and differential 

constitutive laws [4-7]. For instance, Sizaire and Legat [4] considered the two- 

dimensional finite element simulation of filament stretching by applying a 

differential FENE-CR model to substantiate strain-hardening/constant shear 

viscosity material response in an Eulerian configuration (L2 extensibility coefficient 

of 4325.5). A surface height function ‘h’ defined as the normal displacement to the 

initial surface position, has been used to determine free-surface movement. In this 

work, a moving grid algorithm was employed, in conjunction with a Thompson 

conformal mapping, to avoid distorted elements. With this approach, FENE-CR 

field results were presented up to Hencky-strains of 2.56, reportedly failing earlier 

than equivalent experiments. An alternative treatment is that adopted in the work of 

Hassager and co-authors [5-7], where a Lagrangian formulation is preferred, 

coupled to an integral constitutive relationship. Typically, in the article of Bach et 

al. [5], the non-linear constitutive equation was a modified form of the K-BKZ 

version of the molecular stress function (MSF) model of Wagner et al. [8], which 

describes a range of strain-hardening response. Remeshing and solution 

reprojection are demanded periodically in this Lagrangian approach throughout the 

filament evolution process. Such work is relevant to the present study through its 

attention to the growth of non-axisymmetric/three-dimensional disturbances in the 

flow (physical instability), and circumstances of both failure and non-failure within
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polymeric liquid filaments. Multi-mode PTT modelling (exponential version, 5 and 

9-modes) was also applied by Langouche and Debbaut [9]. Shear, dynamic and 

transient stretching characteristics were successfully fitted using a broad relaxation 

spectrum. Within a semi-analytical framework, excellent agreement was found 

between experimental data and predictions at moderate Hencky-strains for 

instantaneous extension and step-strain recovery experiments. Yet, beyond a 

Hencky-strain of 2.0, predictions overestimated the experimental data. 

Subsequently, to extend the analysis into two-dimensions, a finite element scheme 

was implemented. This allowed for the consideration of boundary conditions, 

surface tension and inertia, and succeeded in identifying the occurrence of inertial 

oscillations during start-up.

In the current study, we have implemented a novel hybrid finite volume/element 

scheme (hy-fV ) developed in [10] and employed here specifically within the 

transient viscoelastic free-surface context. The scheme is centred about a number of 

main features. First, it is a time-stepping procedure of fractional-stage form on each 

Hencky-strain step, combining incremental pressure-correction stages with Lax- 

Wendroff/Taylor-Galerkin time-splitting. Second, a Compressed-Mesh (CM) 

spatial implementation is used as opposed to that of a Volume-of-Fluid (VOF) 

scheme, as an Arbitrary-Lagrangian-Eulerian (ALE) treatment is preferred to a pure 

Eulerian alternative. Third, to determine the motion of the filament free-surface, the 

superiority of particle-tracking (dx/dt) over height function (dhld t)  methods will be 

discussed in chapter five. Fourth, domain spatial discretisation is based on a finite 

volume sub-cell approximation for stress, with finite element technology adopted 

for velocity and pressure. ALE  implementations are frequently used schemes to 

track complex free-surface shapes that retain freedom of mesh movement. In such 

procedures, the mesh is relocated with a suitable mesh velocity. Noh [11] and Hirt 

et al. [12] introduced the ALE-formulation in the finite difference domain. This was 

further developed into the finite element domain by Hughes et al. [13] for 

incompressible viscous flows.

In the present work, the rheological response of a range of different models in 

this complex extensional flow setting of Oldroyd-B, Giesekus and Phan-
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Thien/Tanner models are analysed, following Yao et al. [14]. Under the current 

parameter settings, the linear P IT  version (LPTT) is useful due to its larger 

transient extensional response than that associated with the Giesekus model, hence 

reflecting the effect of this particular dynamical feature. The focus is primarily on 

single-mode approximations, with a Deborah number (De) chosen as 1.89, and an 

initial filament aspect-ratio of 0.54 (see below). Higher Hencky-strain levels above 

three and around four plus units have been achieved. Furthermore, the numerical 

scheme is extended to accommodate a multi-mode implementation, relying upon 

previous PTT multi-mode experience derived for steady-state wire-coating flows 

with three to seven-modes [15,16].

Within the larger Hencky-strain range, s>3.0, the specific, competing and 

separate impacts may be investigated of gravitational and surface tension forces 

upon deformation-states and evolving filament forms. Hence, it is possible to 

isolate the onset of asymmetries and exhibit the growth of single to multiple bead­

like structures, attributing this to the rheological properties of the fluids in question. 

Other researchers have observed such phenomena [17-23], Bazilevsky et al. [18], 

Stelter et al. [19], and Tripathi et al. [20] reported studies via the capillary-driven 

thinning of a liquid filament as a rheometric device for quantifying the behaviour 

of complex extensional flows. The liquid bridge formed between two coaxial 

cylindrical disks was stretched beyond its static stability limit by being subjected to 

a uniaxial step-strain. Subsequently, the liquid-bridge underwent a capillary 

thinning process, which eventually led to break-up, as a result of the combined 

effects of capillary pressure, gravity, viscous and elastic stresses. The temporal 

mid-filament radial evolution was noted employing high-speed video imaging. 

Entov and Hinch [21] conducted a detailed study of the evolution of a viscoelastic 

fluid undergoing capillary-induced break-up. Findings, from this and the above 

mentioned studies, indicate that during the stretching process, there can be a period 

when gravitational and viscous forces are negligibly small, whilst capillary and 

elastic forces balance one another. During this interval, the local extension-rate in 

the mid-filament section of the liquid-bridge remains constant and the filament 

radius decreases at an exponential rate. Under such circumstances, the
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characteristic relaxation time of the fluid may be determined based upon the 

measurement of the mid-plane filament radius thinning rate. In this regard, the data 

obtained by Anna and McKinley [17] employing extensional rheometers has 

quantitatively corroborated the observations of Entov and Hinch [21].

4.2. Problem specification

In this problem, the extensional deformation is considered of a viscoelastic 

filament between two coaxial plates, pulled apart in time at an exponential rate. 

The context is one where, in the first instance, it is reasonable to ignore the gravity 

effects. Inertia, represented through the Reynolds number (O(10'3)), has practically 

negligible impacts throughout these flows studied. Also, the problem is limited to 

one initial aspect ratio of A 0 = 0 .5 4 , following Yao et al. [3]. Tables 4.1 and 4.2

show the selected material and operating parameters for the single-mode (Oldroyd, 

LPTT and Giesekus), and multi-mode Giesekus, LPTT models.

3-modes
Mode 1 Mode 2 Mode 3

A  (s'1) 0.421 0.0563 0.00306

Mi (Pa.s) 25.8 7.71 1.37

a i (Giesekus) 0.3162 0.2422 0.0993

Eptt (PTT) 0.035 0.035 0.035
0.13 0.13 0.13

Dei 1.886 0.252 0.014
ps(solvent viscosity) (Pa.s) 0.069 ,

2-mode
Dei 1.886 0.252
Insolvent viscosity) (Pa.s) 1.439
single-mode
Dei 1.886
Insolvent viscosity) (Pa.s) 9.149

Table 4.1: Material properties for single and multi-mode models
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Re (Reynolds number)
A0 (initial aspect ratio)
Ro (initial radius) (m)
Lo (initial length) (m)
% (surface-tension coefficient) (Nm'1) 
p  (density) (Kg.m'3)

(zero shear viscosity) (Pa.s)

4.7*10'4
0.54
3.50* 10'3
1.89*10 
30.0* 10'3

r3

£o (initial stretch or extension rate) (s'1) 
Ca (Capillary number)
Bo (Bond number)__________________

1030
34.949
4.48

9.86
1.2

Table 4.2: Filament and fluid characteristics

The geometric domain and boundary conditions considered are illustrated in 

Fig. 4.1. On velocity, Dirichlet-type boundary conditions are applied on all but the 

free-surface. Vanishing shear stress is imposed on the filament central axis and an 

ambient pressure level is set on the free-surface. In addition, initial conditions are 

taken as quiescent, with the exception of those on the moving-plates, where the

initial impulsive velocity is taken as (V0 = ± L 0 £ o / 2 ) .  This provides an appropriate

characteristic velocity scale, U =VQ, with a length scale of the initial filament

length, L = Lq. Primarily, single-mode predictions are considered, but also with

some multi-mode preliminary solutions for two Hencky-strain levels of £ = 0.2 

and £ = 1 . 0 . Hence, the consequence of drawing upon multi-mode physical 

representation, as implemented for the first time through the proposed hy-fV 

scheme.

Fig 4. la: fe with fourf V  sub-cells, and mdc area for node I
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To perform present computations, a typical rectangular initial mesh of 20 x 100 

elements, with 8241 nodes and 4000 triangular elements, is used. This mesh choice 

was adopted after an intensive mesh refinement study, the details of which are 

reported in [33]. Being stretched and
Vr = 0 
Vz = Vz(r)
top-plate

free-surface : b.i 
p  = po (ambient pressure)

Fig 4.1b: Dom ain o f  filament, full length m odel with boundary conditions

distorted, the mesh movement is controlled by the time-step and remeshing 

algorithm and accordingly must adjust in time, see [34,10].

Calculation of the normal force (Fz) exerted at the moving end-plates is 

conducted through the integral of stress over the end-plate area A, viz.,

Fz(t)=  \(Ta + p )dA , (4.1)

where =2jus(Dzz- D rr) + (Tzz- T rr) represents the total stress, summing 

viscous and polymeric components. The Trouton ratio (Tr) is defined by
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(4.2)

where j j f  represents the extensional viscosity (type IB, as defined by Yao et al. 

[14]), through which the Trouton ratio is compared with corresponding 

experimental data. The extensional viscosity is functionally specified as,

Here, the notation employed implies an extension rate (£o), surface tension 

coefficient (%), and the mid-plane filament radius (Rmid)- The term 0 (F i,Fg)

represents correction arising from imposed inertial and gravitational forces. This 

term may be neglected in the present study.

4.2.1 Fluid characterization

In the present problem and following the analysis of Yao et al. [3], the data for 

a 5.0 wt% solution is considered of a narrow distribution, high molecular weight 

polystyrene. The viscometric characterization for this test fluid is described in Li et 

al. [2]. In Fig. 4.2a, the measured steady-state shear viscosity is plotted compared 

to that for the Giesekus model: covering instances of single, two and three-mode 

representations. It is observed that the single-mode model well predicts the 

experimental shear viscosity up to a shear-rate of 0(10) s '1 (as arising in the range 

of filament stretching deformation rates). Subsequently, due to the large 

contribution of the solvent viscosity, the shear viscosity deviates to a plateau level 

of ps (see on). Such deficiency in the single-mode model may be accounted for by 

adopting either a multi-mode approximation, or alternatively, a single-mode White- 

Metzner form. We appeal to the former instance. Parameter values for the Giesekus 

model are tabulated in Table 1, extracted from Li et al. [2], and used by Yao et al. 

in the filament stretching context [3]. The single-mode model is identified by

F
^ —  + 0 ( F i ,Fg). (4.3)
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adopting the largest of the relaxation time modes, with the corresponding p* 

absorbing the partial-viscosities of the discarded modes.

In Fig. 4.2b, steady elongation data only differentiate between Giesekus and 

LPTT models at large deformation-rates, where LPTT exceeds Giesekus in more 

excessive strain-hardening. Noting the single-mode model properties in shear, yet, 

one observes that this model effectively ignores the shorter relaxation times 

response. This will in turn, give rise to more rapid generation and initial growth in 

transient stress, noted in the extensional data (see on to Fig. 4.9). By contrast, the 

two- and three-mode models being exposed to lower relaxation time response 

accommodate a wider range of time-scales. This is indicated in the further 

moderated start-up sequence of the multi-mode instance (see below Fig. 4.2).

Li et al. [2] have commented on suitability of respective rheological models for 

present purposes, including Giesekus, PTT and PTT-WM. In shear, the 3-mode 

Giesekus model was observed to provide the best representation for both steady 

second-normal stress difference and flow inception. This is moderated by its 

inability to independently fit extensional data, being found to under-predict 

uniaxial extensional viscosity for shear-thinning solutions. In contrast, the PTT 

model offers the ability to adjust extensional viscosity predictions over a broad 

range of deformation rates, yet suffers from the well-known setback of the Gordon- 

Showalter derivative in shear flow (£□)). The preferred choice of Li et al. was a 

PTT-WM model, being adjustable for extensional data and matching shear data 

well, although it proves suspect in transient flow [35]. Implementation revealed 

that the PTT-WM model was certainly more computationally efficient than a multi- 

mode alternative. The present case study is intended to shed further light on both 

LPTT and Giesekus predictions.
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4.3 Results and discussion

Computational results can be outlined for the weakly strain-hardening 

polystyrene solution data described above. It is clear from the shear viscometric 

material properties o f the test fluid that the single-mode fit provides a reasonable 

approximation over a reduced range o f shear rates. Comparative numerical 

predictions for Oldroyd, Giesekus and LPTT models, primarily based on the single­

mode representation will be presented. Subsequently, a discussion on the 

implications o f  a multi-mode representation is presented. That is with the 

knowledge that in contrast to a single-mode, a three-mode Giesekus model 

provides an improved fit over a broader range o f shear-rates.

4.3.1 Single-mode predictions

The principal comparison basis throughout this work is taken against the data 

o f  Yao et al. [14] who used two Deborah numbers (De) o f 1.97 and 1.89. The 

single setting o f De= 1.89 is adopted in this work. Also, the length scale (L0) is 

chosen as the initial filament length, so that Ro= Rpiate= (Lo /A0) as in Yao et al. 

[14]. Critical levels o f  Hencky-strain achieved (ecrit) prior to observing numerical 

failure in the stretching procedure are referred to throughout.
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4.3.1.1 Early Hencky-strain predictions: spatial comparison (g=1.0)

We begin with a comparative review of Oldroyd-B, LPTT and Giesekus fluid 

kinematic/stress results, covering spatial plots at a specific Hencky-strain of unity 

(z=0). We comment that as the mobility factor a  in the Giesekus fluid tends to 

zero, the structure of the Oldroyd-B model is recovered. By examining the 

kinematics along the mid-plane (scaled by Rmid) and centreline axes (scaled by Lp) 

of the filament, it is observed that the most important differences in results between 

the three models lie near the free-surface zone. Through the radial velocity Vr along 

the mid-plane in Fig. 4.3a, one may observe that velocity profiles depart around a 

radial value of about r=0.1 units. This has a pronounced impact on stress 

development, as can be seen below. Vr-maxima for the Giesekus model are larger 

than those for LPTT and the Oldroyd-B models (0.65 compared to 0.60 and 0.55 

units). Across the three models, this position causes the most rapid compression 

towards the centreline under the Giesekus results. In contrast, along the centreline 

axis, where the axial velocity Vz is dominant, no major differences in profiles are 

detected among the models (see Fig. 4.3b).

In Fig 4.3c, the stress component t zz is plotted along the mid-plane of the 

filament. Here for the Giesekus model, t zz is elevated in value from 3.5 units to 

about 4.0 units for LPTT, and 5.5 units for the Oldroyd-B model. In Fig. 4.3d, the 

axial stress t zz is shown along the centreline of the filament. Again, across the 

three models trends are similar. Stress is minimal near the end-plates, increasing 

towards a maximum at the mid-plane of the filament, achieving values of 4.5 units 

for Oldroyd-B, 3.5 units for LPTT and 3.0 units for Giesekus instances, 

respectively. These findings are cosistent with expectation due to the differences in 

extensional behaviour for these respective models.
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Once more, along the axial direction and for velocity gradient, Dzz, greater 

departure is observed between results for Oldroyd-B, LPTT and Giesekus models 

near the centre of the filament (see Fig. 4.3f). The more excessive flattening of the 

Oldroyd Dzz-profile lies alongside the tendency towards more uniformity and 

cylinder-like shape in filament column radius and greater influence of strain- 

hardening. Along the radial direction at the filament mid-plane, the Giesekus model 

generates larger Dzz-values than with LPTT and Oldroyd-B models (see Fig. 4.3e). 

This is expected, since the currently selected material parameters lead to a 

Giesekus fluid model with weak extensional properties. For all three models over 

the range r/Rmid<0.5, Dzz sustains a constant level (about 1.2 units for Oldroyd, 1.3 

for LPTT, and 1.4 for Giesekus). Then, Dzz increases to reach a value of about 1.35 

units for Oldroyd, 1.45 for LPTT, and 1.6 units for Giesekus at the free-surface. 

The reason for this is that at the filament mid-plane, axial velocity change, between 

filament layers is faster for the Giesekus than the Oldroyd-B model. This implies 

that in the Giesekus form, particles at the mid-plane (particularly near the free- 

surface) move faster in the axial direction (z). Hence, the filament is more easily 

extended in the case of the Giesekus model fluid than equivalently for the Oldroyd- 

B representation.

4.3.1.2 Temporal predictions at larger Hencky-strains (0.2 <£<3.0)

In Fig. 4.4, the development of the mid-plane filament radius (Rmid) is 

considered as a function of Hencky-strain. The anticipated overall trend of radial 

decrease with filament stretch is observed. Up to a Hencky-strain of two, radial 

evolution for the Giesekus model overlaps that for approximate lubrication theory 

(e'0-75e curve, Newtonian, fixed-end-plates result). Lubrication theory overestimates 

Rmid beyond this level of e=2, with the true mid-plane radius decreasing more 

rapidly, following a nori-linear-logarithmic representation. In contrast, Rmid for the 

Oldroyd-B model departs from lubrication theory (e'°'75e curve) around 6=1.2, 

retarding the rate thereafter, approaching the curve representative of homogeneous 

deformation in uniaxial elongational flow (e'05e curve). Similar findings were
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reported by Yao et al. [14]. In Rmid, it has been found that up to a Hencky-strain o f  

three, the LPTT model response is closer to that for Oldroyd-B than Giesekus, 

being captured between these two extremes. From Oldroyd to LPTT results, there 

is slight reduction noted in filament radius. Beyond 8=3, the pattern begins to 

adjust dramatically, so that Rmid begins to increase (reversal o f  decreasing trend) 

with local minima appearing off the centreline, a behaviour unseen with other 

constitutive models. This may be attributed to the larger transient elongational 

viscosity response attained with the LPTT model. The consequence o f this rise in 

mid-plane radius, alongside a highly localised adjustment in filament shape 

thereabouts, lies in the formation o f  a bead-like structure in the filament.

Oldroyd-B

LPTT -0.75t;"S 10

Giesekus

Hencky-strain e

Fig 4.4: Developm ent o f  Rmid, increasing s , three models: curve e'0Sfifor 
hom ogeneous deformation, uniaxial elongation; curve e'0 75e for lubrication 
approximation

To analyse the flow kinematics for the three models o f Oldroyd-B, LPTT and 

Giesekus, axial profiles for velocity gradient Dzz along the centreline o f  the 

filament are displayed in Fig. 4.5. Barely any difference is detected across these 

models at lower values o f  Hencky-strain up to 8= 0 .2 . The overall trend is that the 

axial velocity gradient increases from a vanishing value at the end-plates to a 

maximum at the filament mid-plane, where the largest axial stretching occurs. For 

8>1 and in accordance with the literature, the Oldroyd-B model displays flatter
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centralised profiles with less thinning at the mid-plane than arises with LPTT and 

Giesekus representations. This trend is reversed near the end-plates where larger 

extension is encountered with Oldroyd-B results. At the elevated Hencky-strain o f  

8=3, the solution for the LPTT model begins to show non-symmetric structure, and 

D zz-maxima shift away from the mid-plane to a location in the upper-half o f the 

filament. This response is due to the competition between opposing influences o f  

shear-thinning and extreme strain-hardening, typical o f  force imbalance, commonly 

encountered between body force and surface tension effects, see below. In contrast, 

the less hardening Giesekus results retain their symmetrical form, with Dzz-maxima 

located at the filament mid-plane once again.
TT

0.4 b) 8=1.00 4
a) 8=0 .2

0.202

-0.2  Oldroyd-B
  Giesekus
—  LPTT

-02
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0.4c) s=2 .00.4 d) 8=3 .0
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z /L

' N
- 0.2- 0.2
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  Giesekus
 LPTT — Giesekus

-  LPTT-0.4-0.4

■1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 40.5 2.5 3.5 4-0.5

D/y D77

Fig. 4.5: Dzz- profiles r=0, rising e, three models: a) s= 0 .2 , b) 8=1.0, c) 8=2.0 and d) 8=3.0
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To clarify the position even more clearly, the relative axial velocity V2/ F / ,  

taken along the filament axial-centreline against plate axial velocity, V _p is 

displayed in Fig. 4.6. The overall pattern in Vz depicts minima at the bottom-plate 

and maxima at the top-plate, vanishing at the filament mid-plane. Around Hencky- 

strains o f unity, discrepancy between models commences. The difference between 

the Giesekus result and that for the two alternative models reveals itself as the 

filament is subject to further stretching, whilst at this stage the symmetrical 

behaviour across models is sustained. However, with the LPTT model at Hencky- 

strains o f s>3, symmetry is disturbed, and the axial velocity vanishes in the upper-

0.40.4

 Oldroyd-B
  Giesekus
 LPTT

 Oldroyd-B
  G iesekus
 LPTT

0.20.2 -

-0.2-0.2 -

-0.4-0.4
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Fig. 4.6: V z-profiles, n=0, rising e, three models: a) 8=0.2, b) e = l .0, c) 8=2.0 and d) 8=3.0
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half of the filament instead of at the mid-plane. This does not occur in the case of 

the Giesekus model with the filament maintaining symmetry throughout the 

stretching period.

As a consequence, analysing the development of the xzz axial stress component 

along the filament axial-centreline for different Hencky-strain steps can be helpful. 

In Fig. 4.7(a-d), snapshots for 0.2<e<3.0; with scrit=2.6 for Oldroyd-B results are 

illustrated, whilst LPTT survives up to £crit=3.6 and Giesekus up to 8crit=4-0. These 

findings are rationalised through the extremes of stress and deformation observed 

in each case. Overall, all models provide similar trends up to e=2.6. The axial stress 

relaxes at the end-plates, increasing in value towards the filament mid-plane. The 

difference lies in Tzz-maxima reached for each model. Beyond a Hencky-strain 

level of 8=0.2, the largest axial stress magnitudes are yielded for Oldroyd-B 

solutions, followed by those for LPTT, and finally those for the Giesekus model. 

This may be attributable unambiguously to the transient elongational viscosity 

properties for these three alternative models. In comparison to Giesekus, the LPTT 

model begins to demonstrate more bizarre flow structure and stress response at 

extreme levels of Hencky-strains, 8 >3. For the LPTT model, maxima in stress 

gradually shift into the filament upper-half. Then, axial stress decreases at the mid­

plane, to increase thereafter in the filament lower-portion, prior to vanishing at the 

bottom-plate. This trend is replicated and amplified at still larger Hencky-strain 

measures up to 8=3.6. xzz-maxima range from 0.3 units at 8=0.2, to 100 units at 

8=3.6 (see Fig. 4.7(a-f)). Correspondingly for the Giesekus model, xzz-maxima 

range from 0.3 to only 15 units. One may realise that these magnitudes are much 

lower than for the LPTT choice, due to the large differences in transient 

elongational properties between these two model forms. The Oldroyd-B model 

equations are computationally more complicated to solve when compared to those 

for the LPTT or Giesekus models. This is demonstrated through attained levels of 

ecrit. Thus, for example, with this particular aspect ratio and solvent-polymeric 

ratio, and when employing an identical Hencky-strain step (AtHencky=10"3), reaching 

the level of ecrit=2.6 only with Oldroyd-B has been achievable. To stretch the 

filament somewhat further, a smaller Hencky-strain step would be necessary.
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Temporal variation in stress-maxima, xzz and xra, for Oldroyd, LPTT and 

Giesekus is displayed in Fig. 4.8a, the variation o f deformation rates (in shear and 

extension) with strain (time) is illustrated in Fig. 4.8b,c. Stress fields and profiles 

show that the extensional component o f  polymeric stress xzz increases 

exponentially with the strain level. At any particular strain level, say for example 

8=2.5, Oldroyd-B being the most strain hardening fluid provides the largest value 

of stress (80 units). This is to be compared to LPTT (20 units), which is followed 

by Giesekus results (10 units). The shear stress component, is much smaller in 

comparison to its extensional counterpart. At 8=2.6, x̂ . for Oldroyd-B is about 6%
100

80
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tzz
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Giesekus
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_  max _ _  j  max i \  r-v m ax \ t-v maxTrz and X y , 5 b) D z z  ■> w  Drz

70



Chapter 4 Modelling Multi-Mode Viscoelastic tlow s

of xzz. Deformation rates Da  and indicate similar response patterns to each 

other. For the Oldroyd-B fluid, D .̂ (3 units) is larger when compared to Dzz (1.3 

units) at a Hencky-strain of 2.0. In contrast, for the Giesekus model declines to 

small values at 8=2.0 (around 0.2 units).

In Fig. 4.9, Trouton ratio predictions are plotted against effective Hencky- 

strain, seff (as by common convention, see [14] for definition), and against the 

available experimental and numerical data o f Yao et al. [14]. The numerical results 

are in good agreement with the experimental data at low Hencky-strains of 

O(unity); this being continued likewise for the Giesekus model at larger Hencky- 

strain levels. The departure between Giesekus and LPTT-predictions occurs around 

8=1.2, beyond which stage the LPTT-Trouton ratio rises at a greater rate than that 

observed for the Giesekus model. This is in accordance with the dynamic 

extensional properties of each model.

10'

o•aca
e2

10°
[1] Giesekus
[2] LPTT
[3] Exp
[4] Yao et al.

1 2 3
Effective Hencky-strain eefr

4 5

Fig. 4.9: Trouton ratios vs seff; two models, experimental and numerical data, Yao 

et al. [14]
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Filament shapes for the different models at 8=2.6 are plotted in Fig. 4.10 to 

interrogate filament structure globally and within the zone o f  the filament foot. In 

the filament-foot zone and near the end-plates the Oldroyd-B filament shape is 

more pinched towards the axial-centreline o f the filament than is apparent for 

LPTT and Giesekus instances. In contrast, the Giesekus model filament-foot limits 

lie outside those for LPTT or Oldroyd-B; so that in this zone, the Giesekus fluid is 

less stretched along the centreline axis than for the LPTT instance. Yao et al. [14] 

reported the same trend for Oldroyd-B and Giesekus models. In contrast, at the 

filament mid-plane, the Oldroyd-B fluid is least stretched along the centreline axis 

with the Giesekus fluid being most stretched and the LPTT fluid lying in between. 

Once more, this finding can be attributed to the nature and differences between the 

elongational properties o f these particular three fluids. Hence, as the elongational 

viscosity gets larger, it becomes more difficult to stretch the fluid along its axis, the 

region o f  largest extension where the fluid will resist compression most.

0.4
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Oldroyd-B
Ol_l LPTT

Giesekus
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-0.4
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Fig. 4.10: Filament structure and foot zone: 8=2.6, three models
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4.3.1.3 Quarter-domain vs half-domain problem

For the purpose of verifying mesh convergence and validating non- 

symmetrical results, a quarter-domain problem (half-length) was employed 

alongside the default half-domain case (full-length filament). Here, only a quarter 

of the filament domain is retained physically and solved for in a symmetric 

manner, effectively doubling the mesh-density of the original problem. In this case, 

on the filament mid-plane (now lower boundary), symmetry boundary conditions 

with no-shear must be explicitly imposed. Such a setting effectively removes the 

development of asymmetrical features in the evolving flow, and in the comparison 

against the full-length filament representation quantifies the numerical impact on 

emergence of asymmetry.

In Fig. 4.11, minimum filament radius at the mid-plane axis (Rmid) and 

filament-centre stress are plotted against increasing Hencky-strain for Oldroyd-B 

and LPTT models. Results are presented for Oldroyd and LPTT instances, as the 

former provides premature ecrit <3.0, whilst the latter transcends e=3.0 and 

illustrates bead-like structures with localised minima. The minimum radius in Fig. 

4.11a,b for the quarter-domain problem overlaps that corresponding to the full- 

length case, exactly for Oldroyd-B, with slight departure noted in LPTT around 

e~3.0. According to Yao et al. [14], the radius continually decreases as the filament 

is stretched up to e=4, in accordance with our full-length problem Giesekus results. 

For the development of Tzz across fluids and the two problem-domain instances, 

similar agreement is observed in Fig. 4.11c,d. Stress rises monotonically to a 

maximum for the Oldroyd-B model (scrit=2.6 full-length case, scrit=2.8 quarter- 

domain problem); for LPTT fluids, increases to a maximum, beyond which a 

decline is detected thereafter (eCnt=3.6 full-length case, ecrit=3.4 quarter-domain 

problem). Such findings are in agreement with the trends observed with mesh 

refinement.
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Fig. 4.11: Temporal evolution of Rmid, and (r=0, z=0) for a,c) Oldroyd-B and b,d) 

LPTT models Ca 1=0, Fg=0.

Quarter-domain solutions consistently report differing 8crit as opposed to their 

full-length counterparts. The Oldroyd position would display that increased 

refinement has helped in elevating 8crit- Under LPTT, reduction in ecrit is possibly a 

consequence o f  approaching asymmetry. In specific local conditions about the 

symmetry mid-plane, the marginal solution discrepancies noted are subtle and their 

discrete treatment comes into effect. Through detailed investigation on this issue it 

has been revealed that reflected meshing about the filament mid-plane (to impose 

symmetry conditions numerically), physically retained, or virtually imposed (as 

with the quarter-domain problem), itself may be the cause o f some numerical
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anomalies. The issue here is manifested via solution (velocity-) gradient 

representation across such a flow station, and when treated as a domain boundary 

or not, as the case may be. As employed elsewhere by default [36], asymmetrical, 

continuous structured meshing across the mid-plane retains the discrete property of 

superconvergence. This is reflected in the invoked computational stencils and the 

high quality of velocity gradients extracted thereby. For reflected meshing which 

may display false local minima in normal gradients (producing a reflected 

oscillation in Dzz) the same statement cannot be disclosed on passing normally 

across the mid-plane. This anomaly is negligibly small in extent and natural for 

such a domain periphery location, where degradation in accuracy is to be 

anticipated in the quarter-domain problem, be an aspect often overlooked in some 

flow problems with symmetry boundaries, for example, in cross-slot flow or flow 

past a sphere. Undoubtedly, its significance is heightened along a purely 

extensional symmetry flow line, where steep velocity gradients are anticipated. For 

example, simply capping the maxima in Dzz with a plateau across the mid-plane 

corresponds to a crude finite-difference stencil approximation. In this fashion, an 

undershoot in Dzz would effectively be avoided but the true maxima will fail to be 

captured accurately. Nontheless, in the context of seeking representation for 

physical disturbances and non-symmetrical solutions, this is a point of detail to 

recognise, which has had influences in our inclination towards the full-length 

problem representation with the superconvergent choice of continuous structured 

meshing, non-reflective across the filament mid-plane.
t

4.3.2 Inclusion of gravity and surface tension (LPTT)

The influence of both surface tension and axial gravity inclusion in separate 

phases is plotted, noting results for LPTT by default, against which other fluids

I may be compared below. Low Hencky-strain predictions are discussed first.
!
i

! 4.3.2.1 Surface tension effects, e<2.0

First, with surface tension alone, quantified through the inverse capillary 

number, denoted by Ca'1, covering a range of values from 0.0, 0.1, 0.5 and 1.0 (nb. 

Yao et al. [14] employed Ca’^0 .1). Trends of localised xzz maxima which develop 

at the position of minimum radius, are demonstrated for e=1.0 (see Fig. 4.12b),
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whilst filament shape remains symmetrical. Local stress magnitude can be 

exaggerated at Ca‘1=1.0 by as much as 10% above that corresponding to the 

equivalent scenario devoid of surface tension influence. These local maxima are 

absent at the earlier time of 8=0.2 (see Fig. 4.12a). At larger levels o f Hencky- 

strain o f 2.0 (see Fig. 4.12c) and above, one would observe that solutions in x^  

begin to distort for capillary numbers higher than Ca ‘=0.5, an effect that becomes 

quite marked by the level o f Ca' =1.0. These findings reflect the sensitive nature of 

the solution to this particular physical effect. Correspondingly, up to Hencky- 

strains o f 2.0 (see Fig. 4.12d) filament shape is barely affected.
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4.3.2.2 Influence o f  gravity and surface tension combined, £<2.0

At s=1.0 and when g r a v i t a t i o n a l  f o r c e s  (imposed axially) are brought into 

consideration alongside surface tension effects, 0.1<Ca'l<1.0, with a base level o f  

body force factor o f Fg=0.122, distortion is revealed in filament shape and surface 

tensile stress distribution. This distortion is moved towards the lower half-filament, 

where the minima in filament radius and local stress maxima now are detectable 

(see Fig. 4.13). Once more at the more elevated Hencky-strains o f s=1.6 and 2.0 

this position is observed. Here, to identify the restoring role o f  surface tension 

forces (at Ca‘^0.1 level) surface tension which acts to counterbalance against
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gravitational forces is removed. As such, local stress maxima are shifted backwards 

towards the filament centre.

4.3.2.3 Large Hencky strain results, e>2.0

At large Hencky strains above 2.0, various conflicting influences are

encountered, so that richness is observed in alternative flow structures generated,

depending upon the particular configuration involved. This includes the formation

of bead-like structures and asymmetries in shape, alongside redistribution and

replication o f local stress maxima. Filament shape can be commented on, via

profiles and full filament representations, and on tensile stress (izz) and/or axial

deformation rate (Dzz) likewise. For the characteristic instance involving surface

tension (at Ca i=0 .1) and gravitational forces (with Fg=0.122), see Fig. 4.14 with

the LPTT fluid, disruption in the filament shape from its symmetrical orientation

above s=2.8 is noted, so that at c=3.0 there is a slight indentation around the

8=3.2 
maxi 12.3

8
n

8= 2.0 
max 16.7

J

Fig. 4.14: Full filament, LPTT, with body force and surface tension, e>2.0: filament shapes
and izz field contours
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8= 2.8  
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filament centre. Further development in this trend is observed up to the critical 

levels o f Scrit=3.2 with filament mid-plane xzz-maxima o f 112 units, producing two 

small bulges (beads) on either side o f  the filament mid-plane. In addition, 

counterpart stress patterns are demonstrated in Fig. 4.14, indicating that there are 

local extremes in stress corresponding to these bulges, o f relative size some 

0(20% ) o f the mid-plane maxima. For Hencky-strain values o f  (2.0, 2.4, 2.6, 2.8, 

3.0, 3.2}, the corresponding mid-plane x^-maxima vary through values o f {16.7,

24.2, 28.4, 37.3, 55.0, 112.3} units.

One would also be able to extract further information here when tracing the 

temporal evolution o f these point-wise maxima, in stress (xzz and Xrz (Fig. 4.15a)} 

and deformation rates (D zz and Drz (Fig. 4.15b)}. This is indicative o f the relative 

dominance between extensional and shear components o f stress within the system. 

Comparing this information against that presented earlier for the case devoid o f  

surface tension and body force (see Fig. 4.8), it is apparent that the stress and 

deformation rate maxima patterns follow similar behaviour in both scenarios (stress 

rises and deformation rates decline with time).
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In switching attention to the instance devoid o f  surface tension, and solely 

subject to g r a v i t a t i o n a l  f o r c e s ,  we are now able to advance up to a critical Hencky 

strain o f 8crit=3.4. In Fig. 4.16, with results provided up to 8=3.4, one may be able 

to make direct comparison against the previous configuration with surface tension. 

Now, only a single bulge-bead structure appears and this is shifted away from the 

centre o f the filament towards its lower-portion. Here, compared to the instance 

when surface tension is present there is less radial pinching about the bulge, so that 

it is more disperse. The Tzz-maxima o f 93.4 units (see Fig. 4.16) emerges in the 

lower filament half with bead-extrema representing some 0(30% ) o f this. To 

quantify and for Hencky-strain magnitudes once more in the range 2.0<e<3.4, the 

corresponding xzz-maxima vary through values o f (15.8, 22.2, 25.4, 31.3, 45.0,

83.3, 93.4} units.7 c = 2  A8=3.4 
max 93.4
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Fig. 4.16: Full filament, LPTT, with body force alone, s>2.0: filament shapes

field contours and
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Within the isolated scenario o f s u r f a c e  t e n s i o n  yet without body forces, critical 

Hencky strain returns to 8crit=3.2; a common attainable level across all instances. 

The asymmetrical response appears in the formation o f bead-like structure and its 

build-up beyond 8=3.0, switches to influence only the upper half- filament. This is 

in complete juxtaposition to that observed for the instance with body force alone 

(see Fig. 4.17). The xzz-maxima o f  81.1 units emerges in the lower filament portion 

slightly off-centre with bead-extrema representing around 16% of this. 

Corresponding x^-maxima over the Hencky-strain range 2.0<e<3.2, now vary 

through the range o f  values o f  {15.9, 22.6, 26.7, 31.8, 41.3, 81.1} units - following 

closely those for the case with body force alone.
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Fig. 4.17: Full filament, LPTT, with surface tension alone, e>2.0: filament shapes and

izz field contours
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field contours

82



Chapter 4 Modelling Multi-Mode Viscoelastic Flows

In contrast, the idealised scenario devoid of gravitational and surface tension 

influences (Fig. 4.18) retains symmetry without formation of any bead-like 

structure up to around 8=3.0. The significant feature is that Tzz-maxima are located 

lower in the filament here than in the above cases at 8=3.0, only reaching values of 

0(35 units).

However, there are signs that stress maxima are splitting around the mid-plane 

area beyond e=2.8. For example, at 8=3.0, the mid-plane value is some 26 units, 

being 25% lower than the actual off-plane maxima. In this scenario, the Giesekus 

model realised a ecrit=4.0, with a xzz-maxima on the mid-plane of about 12 units, 

indicating no bead-like or asymmetrical features (see Fig. 4.19).

4.3.2.4 LPTT and shear-thinning adjustment, e>3.0

The effect of adjustment in shear-thinning properties of the LPTT modelling 

has also been investigated by switching between LPTT (£=0.13) (as in Li et al. [2]) 

and LPTT (£=0). The experimental data on shear viscosity are more faithfully 

reflected by the adjustment to LPTT (£=0). At the same time, this removes the 

inclusion of convective derivative combinations and the complications that may be 

posed by the Gordon-S ho waiter derivative. Practically, the extensional rheology 

remains unchanged, if anything, with the elongational viscosity being slightly 

larger for the £=0.13 instance. In the absence of surface tension or gravitational 

influences and at Hencky-strains (e<3), solution evolution is observed to be similar 

in trend between both LPTT-forms. At e>1.0, departure is noted. In particular 

around 8=3.0, where bead-like structures were noted above with £=0.13, now with 

delayed shear-thinning present in the model (£=0), these features are suppressed. 

With such rheological adjustment, the LPTT model reflects the solution response 

as previously observed with the Giesekus model, of long slender cylindrical 

filament shape development up to the relatively elevated value of ecrit=4.4. Notably, 

symmetry is preserved throughout all Hencky-strain levels. This corroborates the 

notion of exaggerated filament foot curvature changes for the more strain- 

hardening LPTT over the Giesekus model and the tendency to less thinning across 

the filament-column span-wise. Stress maxima keep lying at the filament mid-
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plane. The elevation and temporal evolution of stress maxima is such that LPTT 

(£=0.13) solutions reach 0(80 units), whilst Giesekus values reach 0(10 units) at 

8crit=4.0; equivalently, being 0(100 units) for LPTT (£=0) at £crit=4.4. The dynamic 

viscometric extensional properties would bear testament to this. Here, limitation on 

attainable strain is not restricted so much by stress elevation as by spatial resolution 

(stretching of the finite element aspect ratios). Moreover, the manifestation of 

physical anomalies, such as asymmetries or bead-like structures, are stimulated by 

the interaction of more excessive shear-thinning under severe extension conditions.

The axial stress (t zz) maxima remain located at the filament mid-plane region 

up to a Hencky-strain of e=3.8 under the surface tension influence alone. At this 

level, a bead-like structure emerges in the specified region. As the filament is 

stretched further, xzz shifts from the mid-plane accordingly. The symmetry of the 

problem is preserved at all Hencky-strain levels. Yet, with the supplementary 

addition of gravitational forces, symmetry is retained once more throughout all

j stratification levels of stretching. At e=4, only one bead commences to form at the
[

filament mid-plane region. Features and trends in axial stress development in this 

case resemble those realised under the influence of surface tension effects alone.

4.3.3 Multi-mode predictions

The aim of this section is to shed some light practically upon the departure 

detected between solutions predicted for single-mode and multi-mode model 

approximations (2-modes), ignoring the effects of body force and surface tension. 

Differences may arise on account of the larger solvent viscosity incorporated into 

the single-mode case, and the wider spectrum of relaxation times represented in the 

multi-mode instance. With the multi-mode representation, shorter response times

| will have some bearing upon the solutions obtained. The predicted Trouton ratio at
I
1 the mid-plane governed by Eq. 4.3 is plotted in Fig. 4.20 to display solution
i
| response for shorter times. The Newtonian solvent component is
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Fig. 4.20: Trouton ratio vs s; LPTT: single- vs multi-mode results

dominant as the polymeric component is negligible at the outset o f the stretching 

process with the single-mode model. Consequently, larger initial Trouton ratio 

values are generated and elevated at a constant rate thereafter upon further 

stretching. In contrast for a t w o - m o d e  model, the viscous contribution is miniscule 

compared to its polymeric counterpart. This change in component dominance will 

come into view through the total stress that governs the development o f the axial 

force, and also influences the temporal evolution o f the multi-mode Trouton ratio. 

Here, Trouton ratio commences from a smaller initial value than for its single­

mode counterpart, and rises monotonically at an increased rate over the single­

mode instance, as observed also by Yao et al. [3],

4.3.3.1 Kinematic state and stress solutions

Solution profiles are plotted in Fig. 4.21 for LPTT (-P) and Giesekus (-G), 

single and multi-mode approximations, along the filament centreline axis at 8=0.2. 

At this level o f  Hencky-strain, barely any difference is detected in the axial velocity 

component o f  Fig. 4 .21a
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Fig. 4.21: Solution profiles, r=0, single- and multi-mode, increasing s, LPTT and 
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86



Chapter 4 Modelling Multi-Mode Viscoelastic Flows

Giesekus LPTT

Fig. 4.22: Field contours, 8=0.2, (----- ) single- and (— ) multi-mode; lhs Giesekus and rhs

LPTT G iesekus, a) V r, c) V z, e) LPTT, b) V r, d) Vz, f)

e-mode

multi-mode
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between the single and multi-mode velocity predictions. In contrast, the axial stress 

component xzz indicates signs of adjustment between the single- to multi-mode 

instances (see Fig. 4.21c, d). General spatial distributions in all xzz modes follow 

those of single-mode solutions, reaching their maxima at the filament mid-plane. 

As apparently shown in Fig. 4.21c, centreline xzz is subject to proportional 

reduction in the single-mode over the multi-mode case. In the absence of the 

shorter relaxation times, the total stress is dictated by the largest mode only. This in 

turn neglects the effect of shorter times, substantiated through the increase in multi- 

mode xzz. Similarly, the radial stress component, Xrr, demonstrates similar 

behaviour to that in xzz (see Fig. 4.21c,d); yet, Xrr-mid-plane maxima are reduced in 

comparison to that in xzz. Velocity and stress indicate minor discrepancy elsewhere 

throughout the domain, across single and multi-mode solutions. This state at e=0.2 

is revealed through field contours illustrated in Fig. 4.22(a-c) for Giesekus, and 

Fig. 4.22(d-f) for LPTT, where minimal solution differences are principally located 

near the free-surface region. The notation identifies comparable contour levels for 

direct comparison between the single- and multi-mode fields.

The departure between the single and multi-mode stress fields becomes more 

prominent at the free-surface region (see Fig. 4.23) when the filament is stretched 

further up to a Hencky-strain of 8=1.0. There, curvature adjustment is more 

extreme in the multi-mode form, being more stretched along the filament centreline 

axis than with the single-mode version. The multi-mode representation is observed 

to generate deeper stress penetration across the filament span-wise than in the 

corresponding single-mode case. Thus, at 8=1.0, higher stress levels are detected 

near the mid-plane and free-surface region across the domain in the multi-mode 

case.

The evolutionary state of deformation rates is reviewed in Fig. 4.24. At the 

Hencky-strain level of 8=0.2, and along the centreline axis of the filament, barely 

any difference is observed in the axial extension rate, Dzz, between single- and 

multi-mode representations. This holds true for both models, LPTT and Giesekus,
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Fig. 4.23: Field contours, e-1.0, (-----) single- and (—) multi-mode; lhs Giesekus
and rhs LPTT: Giesekus, a) Vr, c) Vz, e) th; LPTT, b) Vr, d) Vz, f) x 7J,
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as shown in Fig. 4.24a. By contrast, as the filament stretching advances further and 

Hencky-strain rises to 8=1.0, difference in Dzz arises more apparently between 

single- and multi-mode approximations, and between LPTT and Giesekus models, 

see Fig. 4.24b. A slightly larger elongation rate about the filament mid-plane is 

yielded via the multi-mode representation than its single-mode counterpart. 

Regarding the discrepancy in response between LPTT and Giesekus models, the 

larger axial elongation rate, D ^ ,  belongs to the LPTT model. This in turn has an 

impact upon the axial stress component, as can be seen in Fig. 4.21.
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Fig. 4.24: D^-profiles, r=0, single- and multi-mode, LPTT and Giesekus: a) 8=0.2, b) 

8= 1.0

Generally, a better match to the material functions would be anticipated to be 

provided via the multi-mode representation, throughout a broader range o f
•  3 1\  •deformation rates up to 0 (10  s' ). For the present problem, however, the single­

mode approximation has proved itself quite respectable, capturing the salient 

features o f the solution; particularly as shear-rates are relatively restricted to within 

a range up to 0 (10  s'1) and extensional data are fairly well represented over the 

relevant range o f Hencky-strains. This position and the computational efficiency o f  

the single-mode implementation greatly commend its choice, as opposed to the 

multi-mode version.
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4.4 Conclusions
The present transient filament stretching in this chapter has advanced upon the 

earlier work in this area in dealing with Oldroyd fluids, to consider more realistic 

extensional flow response through Giesekus and LPTT models. The adopted 

scheme of ALE-hy-fV  has proven itself quite capable in handling such a harsh 

numerical challenge, grasping sharp differences in filament curvature and flow 

structure throughout flow evolution. A single-mode approximation has proven its 

adequacy to represent the principal features of the flow, as they emerge and within 

the range of deformation rates of interest. Full filament and quarter-domain 

problem analyses have confirmed the quality of solutions generated. If anything, 

multi-mode approximation at larger Hencky-strains has revealed deeper stress 

penetration across the filament span and reinforces single-mode predictions for 

Trouton ratio (so, extensional viscosity also).

At Hencky-strain levels higher than three, bead-like formation is observed with 

the more strain-hardening LPTT (£#)) fluid, features being absent in the equivalent 

Giesekus instance. Notably, the bead-like features are absent in the improved 

shear-thinning fit with single convected derivative form, LPTT (£=0); thus, 

detecting the cause of this disturbance. The Oldroyd-B fluid could not reach such 

large levels of Hencky-strain for the current choice of problem aspect and viscosity 

ratio. The effect of gravitational body force is to create a directional bias to the 

filament shape and to counterbalance surface tension influence. The inclusion of 

such forces both with and without surface tension, has been analysed for the LPTT 

model, to judge their relative and localised significance. Current findings reflect 

close agreement with the literature in measures of Trouton ratio, filament mid­

plane radius and field evolution in stress and deformation-rates.
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Chapter 5

ALE Methods and Free-Surface Techniques 
(CM and VOF)

The dynamics of filament stretching for viscoelastic liquids is considered in 

this chapter. The consequences of utilising both fe  and jv  spatial discretisations are 

investigated within an incremental pressure-correction scheme, considering various 

mesh-movement and free-surface tracking techniques. For the momentum and 

continuity equation, finite element discretisation is implemented, whilst for the 

hyperbolic stress equation, a pure-upwinding cell-vertex finite volume 

representation is employed. Volume-of-fluid mesh procedures are outperformed by 

their compressed mesh counterparts. Hence, when compressed mesh procedures are 

coupled to an ALZs-formulation governing mesh movement, a powerful technique 

to access impressively large Hencky-strains is provided. A particle-tracking 

approach is demonstrated to be preferable to a kinematic condition for surface-level 

when free-surface curvature must be determined precisely. Results of this chapter 

agree closely with the literature in terms of trends and Trouton ratio measures, 

minimum radial evolution and extensional viscosity predictions.

1 Material of the present chapter has been shaped in the paper “ Computational predictions for 
viscoelastic filament stretching flows: ALE methods and free-surface techniques (CM and 
VOF) “ by K.S. Sujatha, H. Matallah, MJ. Banaai and M.F. Webster and published in Journal o f  
Non-Newtonian Fluid Mechanics, Vol. 137, Iss. 1-3, pp. 81-102
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5.1. Introduction

5.1.1 General background

The filament stretching is an extensionally-dominated problem, considered 

here under simultaneous retraction of opposing disks controlled by exponential rate 

movement. Over the last decade or so, the filament stretching rheometer has 

become known as a novel device to measure the extensional properties of liquids 

(Sridhar, Tirtaatmaja et al. 1991; Tirtaatmaja and Sridhar 1993) and the last few 

years have witnessed a rapid growth period in the development of this technique. In 

a typical filament stretching apparatus, a cylindrical sample of fluid is injected 

between two coaxial, diametrically opposed circular plates. Then, one, or both, 

plates are pulled apart at a preset speed usually under rate-control, either at a fixed 

exponential rate (providing constant extension rate) or under constant velocity 

(providing variable extension rate). Under the context of constant extension rate 

and at the filament centre, the resulting deformation approaches ideal uniaxial 

elongation. Engineering such kinematics is non-trivial, this being ensured by axial 

elongation of the sample at an exponential rate, whilst synchronously reducing the 

filament diameter at the mid-filament section. Nonetheless, experiments and 

numerical predictions practically reveal that, as a result of necking and end-effects 

(Sizaire and Legat 1997; Yao and McKinley 1998), significant departure away 

from uniaxial extension is observed. Necking directs the filament to extreme 

slenderness in the central region of the liquid bridge, whilst end-effects lead to 

significant shearing within the near-plate zones (filament-feet). Consequently, 

purely extensional deformation is disturbed and the predicted viscosity 

approximates the true extensional viscosity, commonly termed as apparent 

extensional viscosity. To overcome such experimental deficiencies, a variety of 

techniques have been proposed in the literature, one such being the velocity 

compensation technique utilised by Tirtaatmaja and Sridhar (Tirtaatmaja and 

Sridhar 1993). Despite these shortcomings, there is a need for a better 

understanding of the flow nature in such apparata, and to determine if, and when, 

the deformation approaches pure uniaxial elongation.
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Subsequent to the recent flourishing interest in filament stretching 

instrumentation, much theoretical and numerical research has been performed 

targeting the study of complex extensional deformation experienced by viscoelastic 

liquids in viscometric devices. Early numerical methods applied in filament 

stretching flows were performed by Shipman et al. (Shipman, Denn et al. 1991) 

employing a finite-element method with an Oldroyd-B constitutive model. Notably, 

small Hencky-strain levels (£<1) could only be sustained with the computational 

procedures adopted and available resources. More recently, higher Hencky-strain 

levels have been achieved via finite element methodology, invoking Lagrangian 

procedures with integral constitutive equations (Kolte, Rasmussen et al. 1997; 

Hassager, Kolte et al. 1998) and adaptive Eulerian formulations for differential 

viscoelastic constitutive equations (Sizaire and Legat 1997; Yao, McKinley et al. 

1998; Yao, Spiegelberg et al. 2000). Alternatively, Gaudet and McKinley [42] 

applied a boundary element method for an Oldroyd-B model predicting the 

temporal evolution for the liquid interface, the resultant force on the stationary end- 

plates and the extensional viscosity. These predictions were tightly substantiated 

against the experimental results of Spiegelberg et al. [43]. Stochastic formulation 

has also been conducted by Grande et al. [44] utilising a hybrid Brownian- 

dynamics/finite element algorithm (CONNFFESSIT). Here, an Eulerian treatment 

was employed for the fixed-grid solution of the conservation equations, whilst 

molecular models (invoking Brownian dynamics) were used for stress and free- 

surface computations. Through this strategy, the basic concept of the Volume-of 

Fluid (VOF) method [12] was combined with particle tracking procedures. To 

corroborate algorithm correctness in [12], free-surface profiles were verified for an 

Oldroyd-B model against the results from the established commercial finite 

element software-code, “POLYFLOW”, see [3] for example. To represent the 

deformation for the same model, Olagunju [45] derived a one-dimensional slender- 

rod theory. The results for this 1-D approximation demonstrate that radial 

alterations are relatively negligible, with the exception of flow near the end-plates, 

where two-dimensional shear flow arises on account of axial curvature and end- 

effects. Despite this limitation, these estimates illustrate that slender-rod equations 

may offer a reasonable approximation for the full filament stretching problem.
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McKinley and Sridhar [46] have provided a comprehensive overview of the 

flow dynamics within a filament-stretching rheometer for non-Newtonian fluids. 

Their work encompasses fluids that display strain-hardening properties, the physics 

of rapid deformation in dilute polymer solutions, and the various representative 

constitutive equations employed to model such flows. As reported by McKinley 

and Sridhar [46], much work remains to be carried out to fully comprehend the 

dynamics of the viscoelastic free-surface instabilities that eventually lead to 

filament failure at large Hencky-strains. For Boger fluids, reflecting constant shear 

viscosity and prominent strain-hardening in uniaxial extension, the overall 

dynamical response within elongating liquid-filaments is now well-reported in the 

open literature. Regarding slenderness and breakup of filaments, a comprehensive 

review on the break-up phenomena in Newtonian fluid filaments and jets was 

presented by Eggers [47], including experimental results, numerical predictions, 

and similarity solutions for the approach to break-up. Later, Anna and McKinley 

[17] studied the transient dependence of the filament diameter and the time to 

break-up with variation in the molecular weight. This information is compared 

against the theory for failure of thin viscoelastic filaments.

5.1.2 Computational methodology

In the present work, the main focus is on the methodology to track the free- 

surface, which implies consideration of whether the mesh is dealt with as attached 

to or detached from the fluid. Hence, reviewing the recent literature on free-surface 

modelling is appropriate. A major motivation behind this research has been to 

corroborate predictions against experimental evidence for free-surface profiles 

computed through two alternative strategies, namely: a volume-of-fluid scheme 

(VOF), and an Arbitrary Lagrangian Eulerian, compressed-mesh scheme 

(ALE/CM). With the VOF-scheme, the fluid is allowed to flow over a background 

mesh. Alternatively with the CM-scheme, the mesh is tied to the fluid movement 

and compressed alongside the free-surface development. The TOF-scheme, has 

considerable flexibility in allowing choice over the assignment of material sample 

points and surface-particles method. This aids in more precise description of the 

physics of the problem. However under equitable comparison, the CM-method has
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proved to far out-perform optimal TOF-implementation, with the capability to 

achieve impressively high critical Hencky-strain levels of #=0(4.4 units). For this 

particular flow situation, lack of stability and poor performance of the VOF-scheme 

is shown to be attributable to the relatively poor mesh aspect-ratios experienced by 

elements within the plate/free-surface (solid/fluid) contact zone. Though the VOF- 

method seems suitable for general free-surface movement problems, it may prove 

deficient for scenarios involving both free surface and solid/fluid contact, 

particularly where large curvature adjustment is anticipated.

In a variety of industrial applications such as mould filling and metal forming, 

Eulerian methods have successfully been applied, such as the pseudo-concentration 

approach [48, 49], a variant of the VOF-method. Here, in order to track free-surface 

movement, a hyperbolic transport equation is solved for volume fraction. There is 

no specific requirement to explicitly prescribe boundary conditions because the 

free-surface is treated as an internal domain interface. In a conventional VOF- 

formulation, the volume fraction of liquid is considered as a step function, 

reflecting a value of zero in the void region and unity in the wet areas. The 

periphery zone of control volumes, that demarcates the boundary between wet-dry 

zones, is treated in various manners. Control volumes over half-full are taken as 

wet in its crudest (averaged) form, whilst the remainder are treated as dry. This 

feature will be commented upon below, with regards to hierarchical levels of 

improvement towards use of these periphery volume functions and accurate 

determination. The original VOF-model was formulated within the framework of 

finite volume method [50]; alternatively finite element variations are now available 

in the literature [51]. When VOF-type, methods require fine grid resolution and 

higher-order interpolation [49,52], prescribed boundary conditions on the surface 

need to be accurate for certain applications. This occurs, for example, in situations 

where surface-tension effects are dominant, to capture the curvature of the free- 

surface accurately. To solve unsteady non-Newtonian free-surface flows, a volume- 

tracking method was employed by Tome et al. [53, 54] based on the marker-and- 

cell (MAC) scheme. This utilises a finite difference technique based on staggered 

grids and virtual particles for flow visualisation. To illustrate and validate their 

implementation, a variety of free-surface problems were undertaken in this fashion.
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Arbitrary Lagrangian Eulerian (ALE) formulations for which the freedom of 

mesh movement offered is appealing have now become commonplace, for many 

industrial flow problems with complex free-surface forms. With ALE- techniques, 

the mesh itself is moved with a mesh velocity, a suitable choice of which represents 

one of the major aspects involved. For instance, this technique has been employed 

successfully for water-wave problems. Noh (Noh 1964) and Hirt et al.(Hirt, 

Amsden et al. 1974) introduced the ALE-method in the finite difference domain. 

Hughes et al. (Hughes, Liu et al. 1981) also introduced finite element ALE- 

formulations for incompressible viscous flows. The free-surface falls on the 

boundary of the computational domain in Lagrangian or ALE-approaches. Hence, 

no additional difficulty is posed via such methods in applying complex boundary 

conditions. Nevertheless, these methods suffer the deficiency of requiring frequent 

remeshing. The choice of Lagrangian/ALE-method, as opposed to TOE-variants, is 

mainly based on the type of problem and degree of precision to which the resulting 

free-surface is to be determined.

In the context of filament stretching, viscoelastic flows with free-surfaces have 

been considered in a number of papers (Sizaire and Legat 1997; Yao and McKinley 

1998; Rasmussen and Hassager 1999; Bach, Rasmussen et al. 2002). In these 

instances, simulations have been performed through Lagrangian formulations in 

two dimensions (Sizaire and Legat 1997; Yao and McKinley 1998) and three 

dimensions (Rasmussen and Hassager 1999; Bach, Rasmussen et al. 2002). In the 

current work, a high degree of accuracy is demonstrated in the viscoelastic scenario 

when employing a Lagrangian/ALE-scheme as opposed to a refined VOE-scheme 

to track the free-surface. In particular, findings are corroborated against the specific 

results of Yao and McKinley [3]. In this moving boundary problem, a free-surface 

tracking procedure is demanded in addition to a robust transient algorithm and an 

appropriate choice of constitutive model. We utilise a variety of instances of the 

Oldroyd fluid model and a Lagrangian/ALE-method, in which the mesh of the 

computational domain moves with the fluid-velocity. To solve the interior domain 

field problem, a hybrid finite element/ finite volume (fe/fv) scheme is adopted. This 

methodology comprises a time-stepping procedure that combines a finite element 

discretisation (semi-implicit second-order/pressure-correction) for momentum
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balance and continuity equations, with a cell-vertex finite volume scheme for 

stress, and functional space compatibility addressed through a localised recovery 

scheme [15]. This effective combination is implemented as a fractional-staged 

formulation within each time-step. Each single, parent finite element triangular cell 

is divided into four finite-volume triangular sub-cells. On the parent-/<?-cell, the 

interpolation is quadratic for velocity and linear for pressure. The interpolation for 

stress on the sub-cell is of linear form. An important aspect of the discretisation is 

that, with stress variables located at the vertices of the finite volume cells, no 

interpolation is required to retrieve finite element nodal stress values, hence this 

source of projection error is avoided. In the most recent advanced form of stress 

nodal update, a combination of fluctuation distribution contribution over the fv- 

triangle and a uniform distribution over the median-dual-cell have been proposed. 

This is appropriate for problems with significant non-localised shear within the

flow. Various schemes may be derived ({CTi|i=0 3 }, see (Aboubacar and Webster

2003; Webster, Matallah et al. 2003; Webster, Tamaddon-Jahromi et al. 2003), by 

combining fluctuation distribution and median-dual-cell contributions. 

Nevertheless, the current problem is an extensionally-dominated flow, which 

demonstrates some of the numerical difficulties involved in solving more 

generalised viscoelastic flows, where both source and flux terms may contribute 

equally. Yet, the extensional-domination and free-surface prohibit any 

consideration of median-dual-cell (mdc) contributions. In a previous work on 

filament stretching, the inclusion of mdc-terms was found to degrade the evolving 

solution, see [10]. The discrepancy was greater at the free-surface and the central 

region, where the velocity gradient d^, rose sharply from a constant value to a 

peak. In regions where such sharp change in gradient occurs, the strength of the 

source terms can be high and the flow can be greatly convective in character. 

Hence in this scenario, a pure fluctuation distribution scheme has been favoured 

(no median-dual-cell constructs). With a Lax-temporal construction (Jv) that is 

second-order accurate in space and time, the Jv time-term (left-hand side (Ihs) term 

of the stress equation) is modified via area-weighting factors (a / T), see (Webster, 

Matallah et al. 2003).
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5.2. Problem description

A viscoelastic filament between two co-axial plates which undergoes 

extensional deformation is considered. The problem is itself extensionally- 

dominated, driven by simultaneous retraction of opposing plates at an exponential 

rate. Axial stretching, inwardly-directed free-surface progression and fluid-solid 

contact planes are all encompassed in the problem. In the first instance, one may 

disregard the effects of surface tension, inertia and gravity (considered 

subsequently). The plates are pulled apart consistent with the following 

relationships, on filament length (Lp) and plate-velocity (Uzplate):

length: Lp (t ) = ±(L0 / 2) exp(£0 t) (5.1)

velocity: U pzlate(t) = ±(e0 L0 I2)exv(e01) , Ur (t) = 0 (5.2)

Here, L q is the initial length of the filament and eQ is an enforced initial stretch-rate. 

The aspect-ratio of the liquid-bridge is defined as A q= L (/R o, where R q is the initial 

filament radius. Two settings of filament aspect-ratios, Ao= {2/3,1/3} have been 

chosen to be reported on, following reference (Yao and McKinley 1998). For 

comparison purposes, two high-polymeric/low-solvent {j3=jJ,2/jJo=0.262) and low- 

polymeric/high-solvent (/3=fJ,2/jM)=0.915) viscosity ratios described by the Oldroyd- 

B model together with a Newtonian fluid are utilised. The set of operating 

parameters are tabulated in Table 5.1.

Fig. 4.1a illustrates the boundary conditions on respective variable and fluid 

domain considered. Except the free-surface boundary, Dirichlet-type boundary 

conditions are applied everywhere. Theoretically, the extensional stress component 

ẑz evolves on the axis, based on a pure-extension symmetry line assumption, upon 

which Trz may be taken to vanish. With the exception of the moving-plates, initial 

conditions are taken as quiescent, where an initial driving velocity is adopted of

(y 0 = ± L0 e j 2). Through independent scales on length (L-Lo), velocity (U-Vo), 

and viscosity (jliq), non-dimensional groups of Reynolds (Re), Deborah (De), Bond
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High-polymeric Low-polymeric Newtonian
viscosity fluid viscosity fluid fluid

p (density) (kg m'3) 1030 894 1006
Lo (initial length) (m) 12.7* 10‘3 12.7* 10'3 1.27*10‘3

- . ~ 'X
Ro (initial radius) (m) 19.05* 103 (19.05* 103, 

38.1*10'3)
19.05*10

Initial aspect ratio (Ao) 2/3 2/3, 1/3
'l

2/3

X (surface-tension coefficient) 
(NnT1)

30.0* 10'3 28.5* 10'3

P2  (solvent viscosity)(Pa.s) 9.08
AT O

43.2
a r\

Pi (polymer viscosity) (Pa.s) 25.8 4.0
47.2Po (zero shear viscosity) (Pa.s) 34.880

a a r\ 1
47.2
a C/l

Relaxation time (^i) (s) 0.421 2.54

Reynolds number (Re) 0.08
1.89

0.006
5.08

0.006

Deborah number (De)
C a 1 0.007 0.02

Table 5.1: Filament dimensions and fluid properties

(Bo) and capillary (Ca), are introduced. These provide dependent scales on 

time (U U ), pressure and extra-stress (jUqU/L). Adopting a surface tension 

coefficient, Xt group numbers are mathematically expressed, viz.,

R e = ^ , D e = ^ , B o = M , C a = / ^ .
Ao L X  X

Under isothermal flow conditions, the governing non-dimensional equations may

now be given for incompressible, viscoelastic flow, articulated as

V.h = 0 ,  (5.3)
,du 
~dt

Re(—  + m.Vm) = -V p + V.(2 ju2d  + r)  + Fg , (5.4)

De(—  + m.Vt ) = - t  + 2fad  + D e(L.z + r .V ) .  (5.5)
dt

Here, u, p  and r  represent the fluid velocity, the hydrodynamic pressure and the 

polymeric extra-stress, respectively. The zero-shear-rate viscosity jUo consists of 

Newtonian solvent (/£) and polymeric (jUi) contributions, so that 

d = (L + V ) / 2 corresponds to the rate-of-deformation tensor and L+ = Vm, the
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velocity gradient. Below, total stress (T) is referred to as the sum of polymeric and 

solvent contributions, where T = T+lfed. Fg represents the ratio of gravitational to

can be expressed as Fg=Bo/Ca.

Both material and spatial references are dynamic, there being a constant state 

of motion in both temporal and spatial domains. Hence, the material time 

derivative of any physical property O within the reference configuration may be 

expressed as

Where w, uc, and um are the fluid velocity, the convective velocity and the mesh 

velocity, respectively. The Arbitrary Lagrangian/ Eulerian formulation is defined 

based on the choice of mesh velocity. The framework is Eulerian if um=0; if um=u, 

it is Lagrangian; hybrid configurations are defined via alternative choices. In the 

present study, an ALE  interpretation is adopted, for which um=u, and uc=0 on all 

boundaries. This procedure in particular, determines the forward time-step location 

of all exterior boundaries, including the free-surface, accounting simultaneously for 

both extension and compression of the overall domain. Applying the fluid velocity 

alone (um=u) on interior nodes was found to expose premature mesh-folding close 

to the exterior extremity of the filament-foot (filament-plate contact zone). This 

problem may be resolved out by adjusting internal mesh redistribution according to 

a re-projection of intemal/free-surface nodes onto pure lubrication lines. The re­

projection procedure is adopted as follows. First, the shift of the free-surface 

boundary segments between time-steps is determined by the fluid velocity. Second, 

the centreline shift is determined similarly for centreline mesh nodes, yet governed 

by fluid velocity, but now of pure lubrication nature. Then, one would be in a 

situation to position the intersection between the horizontal lubrication lines, drawn 

span-wise across the filament through updated centreline nodes, and the free- 

surface segments. This makes the correction to the free-surface nodal updates, in

T
viscous forces given by Fg = (0, Fg)= (0,—— g), the axial component equivalently

- U - U (5.6)
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position and velocity. Likewise, interior nodes are projected onto the pure 

lubrication lines (using centreline axial fluid velocity Vz), taking radial movement 

over the time steps in harmony with the radial fluid velocity along the mid-plane 

(maintaining uniform distribution). The corresponding mesh velocity proves to be 

only an insignificant adjustment to adopting the actual fluid velocity, yet mesh 

quality is safeguarded over the time step. Through such an implementation of the 

ALE-technique, one is able to correct for this adjustment by introducing another 

fractional stage governing correction for convection (see [28]). In practice, it is 

noted that such a correction step has trivial impact upon the evolving solution.

5. 3 Results and discussion

5.3.1 Results fo r  Compressed-Mesh (ALE/CM) scheme
To verify mesh independence in the solutions generated spatial refinement has

been undertaken. The employed meshes, M l, M2 and M3, are illustrated in Fig.

5.1(a-c). Simulations are conducted for a default initial filament aspect-ratio of

Ao=2/3 on an Oldroyd-B fluid (0=0.915). Between solutions in any variable across

two consecutive refined meshes a discrepancy of one percent is tolerated. The

detailed mesh characteristics, alongside stress maxima, critical Hencky-strain

achieved, ecriu and filament minimum radii, obtained (at £=1.0 units) are

recorded in Table 5.2. The adequacy of mesh quality is checked by the solutions

captured, even on the coarser mesh (M l). Nonetheless, premature termination of

computations upon mesh-Ml and mesh-M2 has been observed, at Hencky-strains

of £=1.6 and 2.8 units, respectively. This was believed to be caused by the larger

mesh aspect-ratios encountered near the filament mid-plane region. In contrast,

Mesh-M3 has proved to tolerate relatively high Hencky-strain levels, up to a

critical value of 4.4 units, in close agreement with the observations reported by

others (Yao and McKinley [3]). Hence, mesh-M3 is chosen below.
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c)
Fig. 5.1 Mesh refinement: a) Mesh-Ml; b) Mesh-M2; c) Mcsh-M3

Meshes Elements Nodes Tzz Scrit Rniin
Mesh-Ml 960 2025 0.2955 1.6 0.724
Mesh-M2 1920 3993 0.2951 2.8 0.721
Mesh-M3 4000 8241 0.2948 4.4 0.721

Table 5.2: Mesh refinement: i^-max, 8mt and R^n

5.3.1a d h /  d t  vs dx/dt results and free-surface profiles
Findings under the employment o f two different methods for tracking free-

surfaces are compared with one another. The first procedure ( d h / d t )  utilises the

kinematic condition, via a height function, h(x, t) o f Eq. (3.33). Particle tracking

methodology termed dx/dt o f Eq. (3.34) is employed in the second approach. Free-

surface profiles depicted in Fig. 5.2a correspond to a typical Hencky-strain level o f

unity, utilising both ( d h / d t )  and (dx/dt)-procedures. In contrast to the literature,

these results apparently show that (d/i/d/)-profiles degrade in the plate-zone near
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the filament feet, for which filament volume has risen considerably. The additional 

volume under the ( d h / d t  )-employment is 0(20% ), whilst correspondingly the 

(dx/dt)-technique would seem to preserve the volume naturally (0(1% ) gain). 

Therefore, under the ( d h / d t  )-approach greater care is demanded to sustain 

filament volume. An approach to achieve this is performing a global volume 

conservation check, by invoking ( d h  / d t  )-recalibration repeatedly until filament 

volume is preserved. The drawback to this procedure is its tendency o f  

exaggerating the necking process and subsequently yielding overestimates for the 

minimum filament radius declination rate ( R m m )- There is an alternative procedure 

termed “local-disc movement” [10], through which filament volume over each 

local sub-section is conserved. This procedure aids in conserving volume and 

maintaining accuracy via /?wm-control. However, here once more at higher strain 

levels, say e> l, solution quality is degraded, but now in the filament-foot zone (see 

Fig. 5.2b). Thus, clear preference is established upon the (dx/dt)-choice, for which 

close agreement is observed with the literature in free-surface profiles at selected 

Hencky-strain levels, as demonstrated in Fig. 5.2a.

In the following sections, the detailed discussion employs the preferred choice 

o f the scheme, ALE (dx/dt). One o f the important features in a filament stretching

dx/dt (CM)
Yao & McKinley [3] F

0.4 0.6 0.80.2 rt Rmln

ah/a
Local-disc

dx/dt

Fig. 5.2 Free-surface profiles, s=l; dx/dt, d h /  d t  and Yao & McKinley [3]; 
a) full plot, b) zoom of profiles at filament foot
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rheometer, is the progression and adjustment o f surface curvature. The free-surface 

deforms noticeably during the stretching history as a result o f  the pinning 

conditions at the end-plates.

In Fig.5.3 for the default initial aspect-ratio A0 = 2 /3 ,  typical filament shapes 

are comparatively illustrated with free-surface deformation histories for a high- 

solvent content Oldroyd-B fluid (/M I915, lower) and a Newtonian fluid (upper).

Newt
e=4.0

Newt
8=4.4

Newt
8= 1.0 Old-B

8= 1.0

Newt
8= 2.0 Old-B

8= 2.0

Newt
s=3.6

Old-B
8=3.6

Newt
8=3.0 Old-B

8=3.0

Old-B
8=4.0

Old-B
8=4.4

Fig. 5 .3 Free-surface shapes: levels of strain 1.0<e<4.4, 
CM/ALE (dx/dt), Newtonian v Oldroyd-B

Beyond a certain level o f Hencky-strain o f  about £=2.0 units, the Oldroyd 

liquid bridge begins to exhibit considerable strain hardening. Hence, necking in the 

central part o f the filament is delayed and this leads to uniform cylindrical 

filament-shape (constant diameter). Having reached the Hencky-strain o f £=3.0 

units (see Fig.5.3), this phenomenon has become visibly perceptible in qualitative 

agreement with the experimental data o f  Tirtaatmaja and Sridhar (Tirtaatmaja and 

Sridhar 1993), and quantitative conformity with the numerical findings o f Yao and 

McKinley [3], Up to £=2.0 units, free-surface orientation reflects no major
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disparity between Newtonian and viscoelastic fluids; yet subsequently, the 

departure is severe (see Fig.5.3). Critical Hencky-strain magnitudes are s = 5.2 and 

£=4.4 units for the Newtonian and the Oldroyd fluids, respectively. For the 

Newtonian fluid the filament diameter decreases along the filament length from the 

plate to mid-plane region. This phenomenon is particularly pronounced in the 

filament foot-zone near the end-plates. There, at larger strain levels, greater 

pinching arises for the Oldroyd fluid compared with its Newtonian counterpart. 

The zoomed illustration o f Fig. 5 .4a for this region indicates such subtle structural 

differences.

A n = l/3Oldroyd-B

Newtonian

8= 2.8

Fig. 5.4 Filament feet curvature, a) Newtonian v Oldroyd-B; 
Oldroyd: b) two aspect ratios, c) two viscosity ratios

Similar observations on filament-foot curvature can be made for solutions 

covering polymeric:solvent viscosity ratios (J 3 ) variation and shortertaller initial 

filament shapes (A0) (see Fig. 5.4b and Fig. 5.4c). At the early Hencky-strain o f  

^=2.8 units, such curvature for the high-solvent/low-polymeric Oldroyd fluid, 

compares somewhat to that for a Newtonian fluid at £=4.4 units. The more extreme 

the pinching effect encountered at the feet, the harder it becomes to elongate to 

longer times. This event corresponds to larger polymeric stress levels across the
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foot-zone, circumstances that cause premature numerical termination. Such 

dynamics leads to slender boundary layers with sharp gradients over which further 

fineness of meshing is demanded. For the shorter initial filament of low aspect- 

ratio (A 0=l/3, £rit =3.7 units) which encounters relatively larger curvature at the 

feet than occurs with the taller/higher aspect-ratio ( A0=2/3, £brit =4.4 units) similar 

comments can be made.

5.3.1b Rate o f  deformation, stress and velocity development
It is informative to trace the temporal evolution in velocity components, along

the free-surface (Fo) in ur and along the central filament-axis (r=0) in uz. The 

patterns taken up by ur on To (Fig.5.5a) are seen to give the filament free-surface 

shape, so

that by £= 2.0 units, at left and right-hand ends, a foot-shape has emerged that 

becomes rather thin by £=3.0 units and above. The flattening of the wr-profile from 

£=2.0, is a sign of the onset of strain-hardening. Employing suitable common 

scaling, one would observe the evolutionary structure in uz along the central 

filament-axis in Fig. 5 .5b. An additional turning/inflexion point in the profile of the 

upper-half o f the filament between 2.0<£<3.0 is gathered, and this causes a 

complete reversal by £=4.0 units about the 45° line-of-slope.

Oldroyd-B, A0=2/3 Oldroyd-B, A0=2/3
0

-0.4 -0.2 0 0.2 0.4
2 /L p

Fig. 5.5 Velocity profiles: a) Ur along f 0; b) Uz along r=0 axis
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The deformation history o f  the liquid bridge can be characterized through 

extensional strain and shear-rate experienced by the fluid-elements. Figs. 5.6-5.8 

display typical spatial and temporal variations o f d z z  and d n  for the Newtonian and 

Oldroyd-B models. For the Oldroyd-B model (see Fig. 5.7), extensive non­

homogeneity

8= 0.2 
max 1 5

a) d̂ .

8= 1.0 
max 1.59

'

s=1.6 
max 1.46

mm

8= 2.0 
max 1.54

s=0.2 
max 1.89

b) dr

8= 1.0 
max 1.15

8= 1.6 
max 0.73

8= 2.0 
max 0.61

Fig. 5.6 d^ and drz-field evolution: Newtonian; 0.2<e<2.0
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a) dz

b) dr

1

i
8= 0.2
max 1.5 8— 1.0 

max 1.59

8= 1.6 
max 1.38

8= 0.2 
max 1.62 g=1.0

max 1.15

8= 1.6 
max 0.7

1.500

1.333

1.167

1 000

0.833

0.667

0.500

0.333

0.167

0.000

2.000

1.556

1.111

0.667

0.222

- 0.222

-0.667

- 1.111

-1.556

- 2.000

8= 2.0 
max 1.22

8= 2.0 
max 0.63

Fig. 5.7 dzz and drz-field evolution: Oldroyd; 0.2<e<2.0

is detected in strain-rate throughout the liquid bridge and over the early stretching 

stage, at Hencky-strain levels as low as 8=0.2 up to 8=1.0. Nevertheless, the non­

homogeneity gradually disappears as strain grows and by £=2.0 units a 

homogeneous deformation zone is established at the central section o f the filament. 

This homogeneous deformation zone expands continually towards the outside and 

subsequently upon further stretching towards the two end-plates, as strain- 

hardening commences to take effect. The contours o f illustrate that significant 

shearing is generated at small strain levels. In the central region o f the filament, the 

shear rate is negligible, being largest near the pinned surface at the end-plates.
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These plots also exhibit that the d r z  decays rapidly with increase o f strain (time), 

and more so than in d ^ ,  see ahead to Fig. 5.13a. From £“=0.2 units, m axim a-^and  

d z z  are o f the same order o f  0(1 .5), but as time advances strain-rates dominate, 

becoming twice (for Oldroyd) to three times greater (for Newtonian) at s =  2.0 units.

-O ldroyd-B e=1.0

1.4 -

1 . 2  -

£=1 . 6 e=i

0 . 6  -

0.4

0 . 2

-0 . 2-0.4 0 . 2 0.4
z/L.

■p

'  Oldroyd-B e=0.2
e=1.1

£=1 . 6

e = 2.0

0 . 6  r

0.4 -

0 . 2  -

0 . 2 0 . 60.4 0 . 8
r/R,‘min

e = 2.0

E=1
£=0 . 2

0.4 -

0-2 Newtonian

0 . 2 0.4 0 . 6 0 . 8

e = 2.0

£=1 . 6

£=1 . 0

0 . 6

0.4

0 . 2 Newtonian

-0 . 2 0 . 2 0.4-0.4
z/L,

‘p

Fig. 5.8 d^-profiles, increasing e, 0.2<s<2.0: Oldroyd v Newtonian; 
r=0 axis(a),(c); (z=0) axis (b),(d)

Contrasting Newtonian to Oldroyd fluid deformation fields at equivalent levels

o f  Hencky-strain up to £=2.0 units in Figs. 5.6 and 5.7, one realises that shear
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patterns in are practically identical, both in peak values and distribution. 

Correspondingly, up to Hencky-strains o f unity in extensional deformation (<d zz), 

such patterns are almost impossible to be discerned, noting the lack o f  uniformity 

in profile patterns across the filament mid-plane (width, z=0 axis). Beyond this 

time, differences appear with maxima spreading across the filament central-span in 

a uniform manner, see also profiles o f Fig. 5.8. Along the filament axis (r=0), 

Oldroyd maxima monotonically decline from 1.5 at £=0.2 to 1.22 at £=2.0 units, 

with attendant flattening o f the profile. The Newtonian centreline maxima 

nonlinearly decrease from 1.5 at £=0.2, to 1.3 at £=1.0, reversing to 1.46 at £fT.6 

and rising further to 1.54 at £=2.0 units. No profile flattening is apparent here, so 

that Newtonian centreline magnitudes (1.54 units) surpass their Oldroyd 

counterparts (1.22 units). s=2.0

Oldroyd-B 
m ax 1 5

Newtonian 
max 1.6

Newtonian 
max 3.20

Oldroyd-B
m ax  3 21

Oldroyd-B 
max 6.74

Newtonian 
max 3 11

Fig. 5.9 Tzz-field evolution: Newtonian vs Oldroyd-B; s=0.2, 1.0 and 2.0
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Such dynamics is mirrored through total stress fields o f Figs. 5.9 and 5.10, and 

profiles in Figs. 5.11 and 5.12, so that stress (Tra and Tzz) between Newtonian and 

Oldroyd fluids is practically indistinguishable up to £=1.0 units. Here, we may 

gather that solvent contributions entirely dominate polymeric counterparts. As 

extension increases, roles reverse and polymeric stress dominates. This behaviour 

is evident in Fig. 5.13a,b. Even though d z z  (Fig. 5.13a) reduces slightly as strain 

rises, maxima (Fig. 5.13b) increases sharply due to polymeric contributions. By 

means o f relative demonstration at s  o f unity, maxima in are 0 (3 .2  units) and 

are 0 (1 .2  units). Beyond unity in Hencky-strain, Oldroyd-Tzz maxima increase 

exponentially to 0(98  units) at £=4.0 units, whilst Newtonian values idle about 0(3  

units) level (see Fig.5.12). In a quantative fashion, stress and deformation patterns 

up to £=2.0 units match those displayed in Yao and McKinley [3], noting the 

obvious difference in shear data (Fig. 5.7b) owing to their single-plate movement 

procedure. e=2.0

Oldroyd-B
max 3 .5

Newtonian 
max 3 .6

T

s= 0 .2

8= 1.0

Oldroyd-B 
max 1.17

Newtonian 
max 1.2

f

Oldroyd-B
max 0.87

Newtonian 
max 0 .51

Fig. 5.10 Trz-field evolution: Newtonian v Oldroyd-B; 8=0.2, 1.0 and 2.0
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Fig. 5.11 T^-profiles, increasing e, 0.2<e<2.0: Oldroyd v Newtonian, 
r=0 axis(a),(c); z=0 axis (b),(d)

In Fig. 5.14, the stress Tzz-profiles, along the principal axes at the high 

Hencky-strain level o f  s = 3 .8  units, show the extreme differences in solution 

response across the different instances o f i n i t i a l  f i l a m e n t  a s p e c t  r a t i o .  Greatest 

impact is observed along the filament mid-plane (z=0) and over the sector tending 

towards the free-surface. Such values in Tzz vary from 50 units for (A o = l/3 )  to 215 

units for (A o = l/3 )  at the free-surface itself. Hence, there is some four-fold 

difference. Steep stress boundary layers build up at the plates in the short-height 

initial aspect-ratio instance (A o = l/3 )  along the alternative filament central-axis
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(r=0). Yao and McKinley [3] reported similar graphical data by providing direct 

validation o f present solutions,
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Fig. 5.12 Tzz-profiles, Oldroyd vs Newtonian; r=0 axis a) c); z=0 axis b), d)

both in values and trends. This also extends to temporal data for Newtonian and 

Oldroyd fluids across Hencky-strains o f  £={0.2, 2.0, 3.8} units for the aspect-ratio 

(A0=l/3), see Fig. 5.15(a-c). There is close quantitative agreement between 

Newtonian and Oldroyd data overlapping at low Hencky-strain levels o f ^ 0 .2  

units. By £=2.0 units, maxima in Oldroyd -Tzz (5.5 units) have nearly doubled those 

for Newtonian-Tzz(2.8 units). At £=3 .8 units, Oldroyd -Tzz maxima increase to (48 

units), whilst Newtonian-Tzz remain around 0 (3  units).
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5.3.1c Rmi„ estimation and Trouton ratio evaluation
Temporal development o f the minimum filament radius as a function o f

Hencky-strain is illustrated in Fig. 5.16a. Apparently, in figure o f R m in ( t )  (scaled 

with initial radius R o ) ,  there are two obvious regions. Since the slope o f  the curve is 

greater at lower strain levels (^<1.75 units), the filament undergoes significant 

necking during this period. In the subsequent region (£>1.75 units) and due to 

strain hardening, the filament radius declines more gradually. This response 

reflects close agreement with observations made by others [3], Trends for 

approximate lubrication theory with fixed end-plates ( e  0 7 5 e , Newtonian solution) 

and ideal uniaxial elongation ( e  0 ) provide a window between which the

response is clear for the two aspect-ratios in question.

1 0 °

Fig. 5.16{Rmin, Tr} variation with e; Oldroyd-B (/M1.915), 
a) Rnun, b) Tr

One o f  the main targets in operating the filament stretching rheometers is 

estimation o f extensional viscosity ( 7 j e ) .  Calculation o f this quantity is conducted 

based on the force applied on the end-plate, F z . Accordingly, Trouton ratio ( T r ) ,  

which is a function o f r /e , may be expressed [3] as,

7> =  —  =  
%

F X + 0 { F F ) . (5.7)
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Here, Rmin denotes the minimum filament radius at the mid-plane axis, and x  

represents a surface tension coefficient. The last term of Eq. (5.7), which accounts 

for correction terms due to inertial (F,) and gravitational (Fg) forces, is taken to be 

negligible in this work. The force on the plate, Fz, may be represented via,

Fz (0  = \[Ta (r, Zplalt, t) + p]dA = F„+Fe + F p (5.8)
A

where A is the area of the end-plate and zpiate=L/2; Fv, Fe and Fp are the viscous, 

elastic and pressure forces, respectively.

In Fig. 5.16b, Tr is compared against the results reported by Yao and 

McKinley [3], as a function of time for the Oldroyd-B fluid. Close agreement is 

extracted between these and our predictions. The transient extensional viscosity of 

the Oldroyd-B fluid tends to infinity at large strain levels, and the Trouton ratios 

calculated for both aspect-ratios reflect this trend (l/3and 2/3).

5.3.2 Results fo r  Volume-of-Fluid (VOF) scheme

Under the VOF-scheme, wet and dry regions are set apart, based on the 

assigned material property of viscosity, as relevant for momentum determination. 

The viscosity vanishes for a dry node, and hence the solution is null. The fraction 

of wet area is calculated through the number of active quadrature points (in the wet 

zone, simplex Gauss rules considered) for part-filled elements. Typical free-surface 

profiles at £"=0.2 units, obtained when employing seven, four and one Gauss 

quadrature point (gp) options are displayed in Fig. 5.17. Based on surface particle 

movement (dx/dt) as described above the free-surface is determined. These 

findings are compared against the results of Yao and McKinley (Yao and 

McKinley 1998). It is implied from the
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VOF(gpl)

0.5

VOF(gp7
Yao & McKinley [3] 
CM(dx/dt)VOF(gp4>
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(a) 8 =0 . 2
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- 0.2  -

-0.4 ■

-0.5
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(b) 8 = 1 . 0

Fig. 5.17 Free-surface predictions, a) 8=0.2; various sample point cases; 
b) 8=1.0; VOF v CM-schemes

VOF(gp7)
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figure that material property assignment through one Gauss point (piecewise- 

constant on the element, equivalent to a conventional VOF-implementation) 

accuracy degrades and the highest achievable level of strain with this setting is 

e = 0.2 units. The Gauss point is located at the diametrical centre of the triangular 

element in the one gp-form. Thus, as with the original VOF-scheme, if the element 

is half or more filled, it will be considered as wet; otherwise dry. There are 

schemes in the literature which are governed by perimeter element nodal point 

control and closed Newton-Cotes quadrature rules (/v-discretisation), see [53,54]. 

Our experience shows that enhanced precision may be obtained through increasing 

material assignment sample integration points from one, to four, and up to seven- 

gp. Close agreement on Rmin is observed between the seven-gp option and the 

literature [3], No practical difference has been found through enrichment (say, to 

gp=15) with further sample points.

A comparison between VOF and CM/ALE free-surface profiles at Hencky- 

strain levels of 0.2 and 1.0 units is demonstrated in Fig. 5.17a,b. At low Hencky- 

strain levels, where mesh aspect-ratios are comparable, there is barely any 

difference between VOF and CM-solutions, except near the plates. In fact, VOF 

and CM-solutions are observed to be visually identical in the central part of the 

filament providing close agreement on F min at£ = 0.2 units (see Fig. 5.17a). At the 

higher strain level of unity (Fig. 5.17b), the discrepancy between VOF and CM- 

solutions becomes more pronounced. The VOF-method apparently degrades the 

solution at contact-point interfaces (fluid-solid contact) where greater curvature 

arises. The major cause for this discrepancy may be attributed to the difference in 

mesh aspect-ratios generated there by the VOF and CM-procedures. The mesh 

aspect-ratios generated near the plate and filament centre with each method, at 

£=0.2 and 1.0 units are displayed in Fig. 5.18a,b. At low Hencky-strain of £=0.2 

units, mesh aspect-ratios do not greatly differ (factor of 3.8 at top-plate and 1.0 at 

filament-centre). However, by £=1.0 units, differences in aspect-ratio commence to 

broaden ( 6  at top-plate and 2.6 at filament-centre). For a typical sample point near 

the solid-fluid contact point, Fig. 5.19 exhibits the percentage error in departure for
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CMCM

VOF VOF

(a) 8 =0 . 2

(b) 8 = 1 . 0

Fig. 5.18 Mesh aspect ratios at top-plate and filament centre: a) e=0.2, b) 8=1.0
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Fig. 5 .19 Percentage error as a function of time at typical sample point, coarse mesh vs 
fine mesh
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VOF-results from those for the CM-method. At low strain levels, the percentage 

error is smaller, and rises exponentially in time, in accordance with actual aspect- 

ratio growth. Mesh refinement improves the situation at low Hencky-strain levels. 

This reveals the deficiency of the VOF-method and the fact that for this particular 

problem of spatial stretch, exponential error growth is to be anticipated.

Apart from mesh aspect-ratios, another aspect that may contribute towards 

discrepancy between VOF and CM-solutions, is the difference in treatment of 

imposed boundary conditions on free-surfaces. Within the VOF-method, no explicit 

traction conditions are applied on such surfaces. Instead, boundary conditions are 

incorporated by assigning suitable material properties within associated domain 

integrals, via sample quadrature point evaluation.

5.4. Conclusions

The present filament stretching study establishes large Hencky-strain solutions 

for Oldroyd-type fluids, illustrating constant shear viscosity and vigorous strain- 

hardening. On the numerical side, an effective comparison has been made between 

a compressed-mesh approach and a Volume-of-Fluid alternative. The CM-approach, 

with ALF-formulations (um~u) has proved to be superior to that for the VOF- 

scheme in terms of both solution quality and levels of ^nt- In particular, high levels 

of Hencky-strain of 0 (4  units) are realised with the full ALE/CM-strategy 

combined with dx/dt free-surface tracking. It is the relative mesh aspect-ratios that 

are mainly responsible for this.

We have also been able to severely contrast free-surface discrete treatments. In 

this respect, the sensitivities and deficiency of employing the kinematic condition 

(dh/dt)  to determine surface level h(z,t) has empirically been demonstrated. The 

particle-tracking technique (dx/dt) which is more flexible allows for less restriction 

of free-surface movement, and as such, captures zones of larger curvature 

adjustment with improved precision. This is most pronounced in the shear 

boundary layer near the plates at the feet of the filament. Employing the ALE/CM- 

strategy with particle-tracking yields quantitative measures via Trouton ratio, 

extensional viscosity, minimum filament radius, deformation rates and stress which 

are in close agreement with the literature. Here, we have managed to retain stability
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and provide viscoelastic field data up to Hencky-strain levels as large as 4.4 units.

In this work a robust numerical procedure has been established. In the 

companion work of chapter six, the impact of alternative forms of rheological 

response is identified for the finest mesh studied here and under the particle- 

tracking approach (dx/dt). There, we report upon the impact of both surface tension 

and body force influences on single-mode and multi-mode representations covering 

the three viscoelastic models discussed in chapter four.
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Chapter 6

Single vs Multi-Mode Modelling for Filament- 
Stretching Flows1

The subject of this chapter is computational investigation of filament stretching 

at high Hencky-strains. Previous predictions are extended on the multi-mode side 

through advance in Hencky-strain and single-mode predictions via rheological 

variation, with the additional consideration of linear versus exponential-stretching 

configurations under Oldroyd modelling. The focus is on strain-hardening 

polymeric solutions and broadening the application range of an ALE-formulation 

hybrid finite element/volume scheme. Computational predictions are validated 

against theoretical solutions and through discrete refinement for consistency. For 

such strain-hardening fluids, dominance of tension-thickening over shear-thinning 

properties is established. Shear effects are amplified for a Giesekus model, and 

greater foot pinching results with filament mid-plane thickening, as a consequence 

of hardening reduction and less extension at the filament centre. This has led to 

more exaggerated filament thinning. The importance of each mode has been 

addressed by comparing and contrasting single- versus multi-mode modelling 

(multi-timescale). The influence of multiple modes reveals itself through the

+ Material of this chapter is based upon the paper “Single and Multi-mode Modelling for filament 
stretching flows”, by H. Matallah, K.S. Sujatha, M J. Banaai and M.F. Webster, and published in 
Journal o f Non-Newtonian Fluid MechanicsVol. 146, Iss. 1-3, pp. 92-113 .
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developing components of stress generated and their impact on filament shape. At 

large levels of Hencky-strain, the emergence of bead-like structures has been 

explored. These structures are absent in either Giesekus or linear Phan- 

Thien/Tanner(^=0) solutions up to Hencky-strains as large as 5 units. In contrast, at 

sufficiently large Hencky-strains beyond 3 units, the presence of such structures is 

detected with the linear Phan-Thien/Tanner (£=0.13) option.

6.1 Introduction

Extensional flow of polymeric fluids has application within numerous 

industrial processes, such as film blowing, fibre spinning, and extrusion of 

polymeric materials. These processes are largely influenced by extensional modes 

of deformation. Extensional flows are also involved in applications such as 

coatings, enhanced oil recovery, lubrication, turbulent drag reduction and 

atomization. Filament-stretching is a common example of such an extensional flow 

with a broad spectrum of application in the study of polymer solutions and melts. 

In addition and particularly following the pioneering work of Sridhar and co­

workers [37], filament stretching has become a well-established rheometric 

technique for the measurement of elongational viscosity. In a number of polymer 

processing operations, the accurate calculation of extensional viscosity is of prime 

importance. The fluid sample undergoes extensional deformation, and subsequently 

a uniaxial extensional flow at the filament-centre is established. In a FISER-type 

(Filament Stretching Extensional Rheometer) rheometer, plate-retraction is often 

constrained to an exponential-rate, which imposes an exponentially increasing 

velocity upon the fluid filament and is accompanied by a constant stretch rate. 

Constant plate velocity and variable stretch rate is an alternative configuration. In 

the course of thinning and necking down, whilst the filament is progressing 

ultimately towards rupture, calibration is performable by monitoring the 

subsequent evolution of the mid-plane filament radius, or force measurement on the 

end-plates. Due to mechanical constraints and elastic instabilities, such filament- 

stretching experiments are practically difficult to conduct. Additionally, 

quantitative measurement of extensional viscosity is recognised as a challenging 

task to perform for highly mobile liquids, further exacerbated here by the presence
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of shearing effects at solid-fluid boundary interfaces. Therefore, particularly at 

large strain levels, the need arises for guidance and precision through accurate 

modelling and prediction of such extensional flows. For suitable background 

information, a thorough review of the flow dynamics is provided in the article of 

McKinley and Sridhar [46] covering filament-stretching rheometers. Matta and 

Tytus [56] who allowed the lower plate to fall under gravity, were the pioneers in 

introducing filament stretching device, conducting constant force experiments. In 

this instance, the authors reported that the liquid bridge was subject to a constant 

extension rate when the plates were rapidly retracted. An improved form of this 

apparatus has been developed by Tirtaatmadja and Sridhar [38] for low viscosity 

liquids. In their work, to sustain a constant stretch rate at the filament centre, the 

disks were pulled apart at an exponential rate.

Some general observations may be made regarding the literature on bead- 

formation under extensional deformation. Bead formation is a typical viscoelastic 

phenomenon under elastocapillary thinning, in which a uniform liquid filament 

collapses into a series of sphere-like drops connected by thin liquid threads, 

forming the so-called beads-on-string structure. The thicker regions of fluid are 

termed beads, interconnected by axially-uniform ligaments. In threads, molecules 

are highly stretched and viscoelastic stresses dominate, whilst in beads, molecules 

relax and surface tension dominates. The formation of a beads-on-a-string 

morphology occurs as a result of interplay between inertia, viscous, capillary and 

elastic forces in a nonlinear dynamic process. Such structures have been observed 

in both jets and stretched filaments of polymeric liquids in air. Goldin et al. [57] 

studied bead formation in viscoelastic and Newtonian liquid jets. Linear theory for 

infinitesimal disturbances captured the initial fast growth of axisymmetric wave 

disturbances in viscoelastic jets when compared with Newtonian fluids of equal 

viscosity. Yet, such linear theory was unable to describe the retardation of filament 

break-up in viscoelastic filaments (ultimate slow growth of disturbances), that is 

caused by the build up of extensional stresses. As such, viscoelastic filaments 

prove more stable to break-up compared against their Newtonian counterparts. In 

addition, the generation of beads at repeated times, termed ‘iterated stretching’ was
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studied by Chang et al. [58] for viscoelastic FENE and Oldroyd-B fluid jets. This 

analytical work was conducted via simplified long-wave theory and through 

simulation. To quote Chang et al., the beads may be described as accumulators and 

transmitters of noise from the surrounding fluid that trigger recoil dynamics, 

without being affected themselves by recoiling and consequent formation of 

secondary filaments. Through some more recent experiments, Oliveira et al. [59] 

studied iterated stretching and periodic formation of ‘beads-on-string’, concluding 

that this provides a means for probing transient extensional response even for very 

low viscosity polymer solutions.

With regards to predictive modelling, a number of computational studies have 

been conducted, aimed at predicting the development of viscoelastic fluid 

ligaments under various forms of filament stretching. In this respect, a number of 

alternative numerical techniques have been proposed to overcome the rigorous 

computational challenges involved: dynamic configuration, moving free-surface 

with solid-liquid contact, mixed mathematical equation type, and inclusion of 

surface tension and body forces. To model such flows, appropriate constitutive 

equations are sought that realistically reveal particular forms of fluid response. For 

example, the current interest is centred on strain-hardening polymeric solutions. 

Consequently, numerous integral and differential constitutive models have been 

considered [4-7], of both single-mode and multi-mode description. The FENE-CR 

(Chilcott-Rallison) model was implemented by Sizaire and Legat [4] in the single­

mode category to predict strain-hardening/constant shear viscosity material 

response. This involved a two-dimensional finite element solver within an Eulerian 

configuration (with the FENE-CR L2 extensibility coefficient of 4325.5). Bach et 

al. [5] in contrast, used a pure Lagrangian formulation alongside an integral 

constitutive model of minor modification to that of K-BKZ. Yao et al. [3] under 

multi-mode modelling, studied the stress evolution in Giesekus filaments under 

uniaxial elongation and stress relaxation following the cessation of stretching. Yao 

et al. utilised the commercial software package “POLYFLOW”, adopting an 

Eulerian Galerkin finite element discretisation of classical form, with a Thompson 

transformation remeshing technique and a height function to track free-surface
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deformation. Contrasting both multi- and single-mode solutions, the specific role of 

the fluid relaxation spectrum was investigated to identify the discrepancies in 

predicted viscoelastic response across the individual modes. Langouche and 

Debbaut [9] introduced a multi-mode Phan-Thien/Tanner model (exponential 

version EPTT, five and nine-modes) with a broad relaxation spectrum (O(10'3) < X\ 

< O (1 0 2)), under which shear, dynamic and transient stretching characteristics were 

all well-fitted. There, within a semi-analytical framework, close agreement was 

observed between predictions and experimental data at moderate Hencky-strains 

(up to 2  units), both for instantaneous extension and step-strain recovery 

experiments. Yet, predictions overestimated experimental data beyond a Hencky- 

strain level of 2.0 units. Then, to extend the analysis into two-dimensions, a finite 

element scheme was employed. This allowed for the additional considerations of 

force inclusion and boundary conditions, through inertia and surface tension, and 

during the early phase of instantaneous recovery tests succeeded in identifying the 

occurrence of inertial oscillations.

There are several nonlinear constitutive models available today capable of 

describing the rheology of interest. In the present work, a Giesekus model has been 

chosen as the base-reference [37], under both single and multi-mode 

representations, to contrast our findings against those for Oldroyd and PTT models. 

The Giesekus model is chosen for its suitability to fit both linear and nonlinear 

shear rheology for the majority of concentrated polymeric solutions, and is 

commonly used to represent weakly strain-hardening fluids, see for example Yao et 

al. [3] and Li et al. [2]. A higher-order discrete-elastic-viscous-stress (hp-DEVSS) 

finite element method was utilised in the work of Li et al.[2] to solve an 

axisymmetric stagnation flow of mixing-separating type [82,83]. This work is 

useful as it describes the viscometric characterisation of the test fluid in question, 

together with comments on the appropriateness of the various candidate rheological 

models under consideration.

The numerical algorithm employed in the current work is that of an ALE- 

formulation hybrid finite element/volume scheme (hy-fV ). This scheme, as already
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described in detail in the literature [82,83], is centred on several novel and 

advantageous features. Here, it has been developed and employed specifically 

within the context of transient viscoelastic free-surface flows. Elsewhere, it has 

effectively been applied for steady and transient inflow-outflow viscoelastic 

problems under static meshing and within enclosed domains [11]. The outstanding 

characteristics of this scheme are as follows. On each Hencky-strain step, it 

embodies a time-stepping algorithm of operator-splitting/fractional-stage structure, 

which takes a combination of incremental pressure-correction stages with Lax- 

Wendroff/Taylor-Galerkin time-splitting procedures [12]. The dynamic nature of 

the problem (mesh movement) is cast into an Arbitrary-Lagrangian-Eulerian (ALE) 

technique [31], as opposed to a pure Eulerian formulation. Furthermore in 

reference [19], the superiority of a Compressed-Mesh (CM) radial implementation 

is displayed in preference to that of a Volume-of-Fluid (VOF) scheme, along side 

improved free-surface procedures that favour particle-tracking (dx/dt) over height 

function (dh/dt)  schemes. The major signature to the scheme, comprising hybrid 

finite element and finite volume contributions, with a finite volume cell-vertex sub­

cell approximation for stress, and a finite element treatment for velocity and 

pressure [31,12] is provided through the precise form of spatial discretisation 

employed. The principle behind the ALZs-technique is to permit freedom of mesh 

movement, under a prescribed mesh velocity in a Lagrangian dynamic frame of 

reference, and to track the associated adjustment of complex free-surface shape in 

the evolving flow. Noh [11] and Hirt et al. [12] first introduced this approach in the 

finite difference domain. Then, Hughes et al. [13] further extended it into the finite 

element domain for incompressible viscous flows. The character of dynamic 

filament stretching well matches this description, being mainly the deformation of 

uniaxial extensional form. In Ref. [43], the distinct benefits are established of the 

present schemes under single-mode modelling to achieve high Hencky-strain 

solutions (three units and above), to capture fine structural definition at filament 

feet (solid-fluid boundary interface), and to include capillary and gravitational 

forces.
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The current chapter is split into two sections, the first one dealing with fresh 

aspects of detail under single-mode modelling and the second one covering multi- 

mode solutions. In consideration of single-mode modelling, the prior work in [31] 

has been expanded to consider three different strain-hardening models, inclusion of 

body force and surface tension effects, and both exponential and linear plate- 

retraction for Oldroyd fluids. Under the multi-mode section, only exponential- 

stretching is considered and comparison between three-mode Giesekus and linear- 

version PTT (denoted LPTT) models is provided. Attention was given to a two­

mode representation in [31], where preliminary results were gathered at low to 

moderate Hencky-strain levels (up to 1 unit). Therefore, in the present chapter, the 

focus is extended to a three-mode approximation and a widened strain regime. At 

the same time, this facilitates the study of the influence of a spectrum of relaxation 

times (O(10'3) < A* < 0(10°)), and indicates how high Hencky-strain levels (above 3 

units) may numerically be reached. The broader spectrum of relaxation times and 

viscosity weightings demand some modifications to the single-mode algorithm, in 

particular, tackling the smaller solvent viscosity contributions. The linear- 

stretching configuration, under constant and simultaneous plate retraction-rate, has 

also been studied by Foteinopoulou et al. [24] and by Koplick and Banavar [25]. 

The principal focus of the work of Foteinopoulou et al. was on predicting the 

growth of bubbles within the stretched filament between the end-plates. Koplick 

and Banavar [25] conducted a study on the atomic scale, examing the interfacial 

breakup of the liquid bridge, under variable exerted force that fluctuated throughout 

the course of stretching.

The next section proceeds to outline the numerical modelling procedures used 

and predictions they generate.

6.2 Problem specification

In the present flow problem, a viscoelastic filament is considered as contained 

between two coaxial circular discs, which are parallel to one another. The discs are 

simultaneously retracted to elongate' the liquid bridge at a controlled rate. Both 

linear and exponential-stretching configurations are considered for the single-mode
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approximation, in the presence of gravity and surface tension. Under multi-mode 

(three-mode) prediction, only exponential-stretching, with/without surface tension 

effects is considered. Throughout this work, the strength of inertial influence, 

reflected through the Reynolds number (0(1 O'3)), has negligible effect in practice.

To address consistency under the multi-mode version, spatial and temporal 

refinement is performed. Mesh-refinement is tackled in two axial and radial 

directions. Three initial meshes of generalised rectangular (triangular element- 

pairs) element description (100x20), (150x20), (200x20) are utilised for the axial 

direction; two meshes of (150x15 and 150x20) are taken radially. Under the 

context of single-mode simulations, the single ( 1 0 0 x2 0 ) mesh is employed, as 

appearing in [31,12]. In order to allow for emerging asymmetries and on the 

arguments presented in reference [31], a full filament mesh discretisation has been 

selected. That is without enforcing symmetry conditions on the filament mid-plane, 

or in the spatial discretisation (griding) above and below the mid-plane (but with 

centreline symmetry).

In all field variables, initial conditions are taken as quiescent and a base- 

reference of ambient surrounding pressure level on the free-surface is assumed. No­

slip boundary conditions are considered along the interface between the liquid 

filament and end-plates imposing axisymmetry along the filament-central axis 

(axial) and a local force balance at the free-surface, as exhibited in Fig. 6.1 (t=0 

and t>0), where a natural boundary integral (b.i.) is enforced. Velocity, Vz( t ) , and 

length, Lp( t ) , are imposed on the moving-plates, viz.,

a) exponential-stretching:

Vz ( t ) = ± {£  o L 0  / 2) exp( Sot ) ,  Vr(0  = 0 , Lp{t) -  ±(L0 /2 )ex p (f 0 1) ,

b) linear-stretching:

Vz(0  = ±(foA )/2), Vr(t) = 0 , Lp(t) = ±(L0/2)(l + £0t),
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w hereto, Lq denote an imposed initial stretch-rate and the initial filament length,

which provide an appropriate characteristic velocity scale, U = V0 = £o Lq . The 

initial filament aspect ratio is defined as A 0  = L0  / R0, taken here as 0.54 following 

reference [3] (yet with alternative data provided in [21]) with initial filament radius

Stretch-rate may be defined with generality for the two stretching configurations, as

configurations of stretching and at equivalent filament lengths, equivalent Hencky- 

strains will be established. Under numerical solutions reported, critical values of 

Hencky-strain, referred to below, equate to the maximum sustainable levels (time) 

to which stable solutions may be computed, prior to numerical divergence or 

breakdown. This provides for a constant stretch-rate under exponential stretching, 

and a dynamically decreasing stretch-rate under the linear stretching configuration.

In the presence of surface tension and along the liquid-gas free-surface 

interface, the following boundary condition is applied as derived from a localised 

force balance

c  • n = -  p n  + Ca~l (—  + — )« ,
R, R2’

where pa denotes the ambient surrounding pressure level, R\ and R2 are the

principal radii of curvature of the free-surface [43,66], and n represents the free- 

surface normal vector. This condition is incorporated via a natural form boundary 

integral that is provided through the finite element method.

Ro.

£ =
1 dLp 

Lp(t) dt

so that the Hencky-strain is defined as across
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v r = o

L(t)

A o=L o/R o=0.5 4

v z(0) = 0
top-plate

^  bottom-plate 
V z(0 ) =  0

t = 0

free-surface: boundary integral 
p = po (ambient pressure)

t > 0

Fig 6.1: Problem domain with boundary conditions; t=0, t > 0

Based on the force balance arguments developed in [4,33,34] the relevant 

transient Trouton ratio is defined in the present context neglecting inertial terms as,
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Above, ju+{£,£o) is the apparent extensional viscosity (Type IB of Yao et al. [3], 

relevant for experimental data comparison), and Fz is the force exerted on the area 

(A) of the moving-plates given through the surface integral,

Fz = l l - P  + ^ s ^ + r J d A .
A

6.3 Results and discussion

Results are reported under two sections: the first deals with single-mode and 

the second with multi-mode modelling. The first section covers a choice of 

rheological models and alternative stretching configurations (exponential and 

linear), with consideration of surface tension and body force effects. Alternative 

Theological properties are incorporated via modelling of various fluids by adjusting 

the LPTT parameters (Eptt, £) and Giesekus mobility factor ( a ) . In this fashion, the 

prevailing influences of shear-thinning, strain-hardening, and external forces may 

separately be taken into consideration. (sptt, a)-values are selected for the single­

mode approximation, as those for the largest mode (1st mode in Table 6.1). 

Similarly, the single-mode relaxation time is evaluated by neglecting the influence 

of the shorter modes, preserving only the largest. All polymeric viscosities of the 

discarded modes are taken to accumulate into the solvent viscosity, which aids 

numerical stability via the stronger semi-implicitness applied to the momentum 

equation. In the second multi-mode section, three-modes are used, accounting for 

surface tension effects. There, at a specific Hencky-strain of e=1.8 units, 

consistency through theory and mesh refinement is corroborated for the Giesekus 

model.

6.3.1 Exponential-stretching: single-mode results

The results reported for the single-mode approximation with (jis/po=0.262), are 

an extension of findings of Ref. [31].
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1 st mode 2 nd mode 3rd mode
4 (S ) 0.421 0.0563 0.00306

Li (Pa s) 25.8 7.71 1.37
(Xi (Giesekus) 0.3162 0.2422 0.0993
8 ' Dtt(LPTT) 0.035 0.035 0.035

& 0.13 0.13 0.13
Dei 1 . 8 8 6 0.252 0.014
|is (solvent 

viscosity) (Pa s)
0.069

p (density) (kg/m3) 1030
% (surface tension 
coefficient) (N/m2)

0.03

Single-mode
A;(s) 0.421
^(Giesekus) 0.3162
Sot* (LPTT) 0.035

0.13
De 1 . 8 8 6

ps (solvent 
viscosity) (Pa s) 9.149

Pp (polymeric 
viscosity) (Pa s) 25.8

Table 6.1: Material properties for single and multi-mode models

6.3.1.1 Effect o f  surface tension and body forces: LETT (§=0.13)
To assess the effect of both capillary and gravitational forces, separately and

combined, axial stress contours for the LPTT (£=0.13) model at elevated Hencky- 

strain levels beyond three are depicted in Fig. 6.2*. The situation for body force 

(Fg=0.122) and surface tension (C a'^0 .1) combined is shown in Fig.6.2a for the 

specific choice of parameter setting, following Ref. [31]. Overall, the maximum 

axial stress is observed within the central zone of the filament, declining towards 

the moving end-plates, almost doubling in value from around 42 units at 8=3 to 80 

units at 8=3.2. There are signs of the onset of bead generation, slightly off-set from 

the mid-plane with stress-maxima splitting at 8=3.2 units. The combined effect of

f Contour scales in this case vary over each Hencky-strain level, to provide direct comparison.
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body force and surface tension is translated to greater extension experienced at the 

filament mid-plane, so that at 6=3, the axial stress increases to 42 units, compared 

to its counterpart devoid of body and surface tension forces that yields about 35 

units (see Fig. 6.3d for direct comparison). In both cases at 8=3 units o f Fig. 6.2a,b, 

with/without surface tension but inclusive o f body force, similar internal stress 

distribution and filament shape is extracted.

8=3.0 
max 42.5

T
8=3.2 
max 79.4T

a) body force & 
surface tension

8=3.2 
max 94.3

e=3.4 
max 93.4

8=3.0 
max 57.2

b) body force

Fig 6.2: Axial stress component x ;̂ single-mode, LPTT (^=0.13); 
a) Ca '=0.1, Fg=0.122, b) Ca'=0, Fg=0.122

The position o f removal o f capillary forces can be investigated. For s<3 units, axial 

stress maxima are located at the filament mid-plane, irrespective of body force or 

surface tension influences. With gravitational force alone (Fig. 6.2b), beyond a 

Hencky-strain level of three and up to a critical level o f 3.4 units, these stress 

maxima commence to shift slightly off-centre, supporting a single bulge. Stress 

maxima plateau at Hencky-strains of 3.2 units and above at around 94 units being 

larger than when capillary force is included. Yet overall, there is an impression of 

almost symmetrical shape to the elongating filament.
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6.3.1.2 Comparison o f  Giesekus (a=0.32) and LP TT  (£)
To analyse the influence o f variation in shear-thinning and extensional

properties, attention is paid to alternative model choices to LPTT (£=0.13), and 

neglect the surface tension and body force effects. Fig. 6.3(a,b) displays the results 

for LPTT(£=0) and Giesekus models. These two models reflect similar shear- 

thinning behaviour. In relation to this material response, the LPTT (£=0.13) model 

exhibits the onset of shear-thinning at shear-rates 0(1 O'1), a decade earlier than 

LPTT(£=0) and Giesekus (0(1)) alternatives. On the contrary, both LPTT(£=0.13)

e=4.4 
max 99.7

8=4.0 
max 12.0

8=3.0 
max 11.9

e=3.2 
max 13.2

T
I
i

T
1

1 1

10
9
8

7
6
5
4
3
2

1

a) Giesekus model (a=0.32)

8=4.0 
max 81.1

8=3.0 
max 46.8

8=3.2 
max 52.8 99

90
80
70
60
50
40
30
20
10

b) LPTT (£=0)

- >  4-

Fig 6.3: Axial stress and foot shapes; single-mode, Ca '=0, Fg=0: 
a) izzGiesekus (a=0.32); b) TzzLPTT(£=0)

and LPTT(£=0), indicate exaggerated extensional properties corresponding to those 

for the Giesekus model (see Refs.[2,3,31] for the relevant viscometric data).

Direct comparison is provided in Fig. 6.4a via filament shape, through foot and 

filament central regions, across models and at a selected Hencky-strain of 8=2.6 

units. The comparison is made across models of Oldroyd-B, LPTT(^) and 

Giesekus, and the dominance of strain-hardening over shear-thinning is illustrated, 

both at filament feet and filament centre -  (see Fig. 10 of Ref. [31]). This is most
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pronounced in the filament foot zone, where the LPTT(^) models practically line 

up, between the Oldroyd and Giesekus results, so that adjustment in shear-thinning 

has an insignificant effect upon the LPTT(£=0.13)-solution. The thickest filament 

centres match the more strain-hardening models, compensating for adjustment at 

the feet, with Oldroyd being thickest, followed by LPTT models, and Giesekus 

being thinnest. These findings agree with the observations o f others in the literature 

[3,69]. 6=3.0

.4

.2

.2

.4

max 34.8 max 35.2 max 42.5

Ca =0.1 Ca'=0.1 
F„=0.122

LPTT (£=0) 
LPTT (5=0.13)

Oklrayd-B

G iesek u s

b) £=0.13

0.4 0 6
R/Ro

a) foot shapes at 8=2.6

Fig 6.4: Axial stress and foot shapes; single-mode: a) foot shapes, various models, e=2.6, 
Ca =0, Fg=0; b) t^LPTT (£=0.13), 8=3.0, [Ca_1=0.1, Fg=0], [Ca'=0, Fg=0]
[Ca ’=0.1, Fg=0.122]

Present results indicate that in the presence o f the ^-parameter within the LPTT 

model, non-symmetrical stress patterns at high Hencky-strains (e>3 units) may be 

generated, under certain circumstances. This position is examined by cross­

checking results for s>3 units with LPTT (£=0) and Giesekus(a=0.32) in Fig. 

6.3a,b. It is observed that the LPTT (£=0) model yields similar solution trends to its 

Giesekus counterpart, yet noting the distinct departure in the levels o f stress 

maxima extracted. Just long slender cylindrical filaments develop, with no bead­

like structures or asymmetrical features present. From this, two observations may
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be made. First, since the Giesekus(a=0.32) model supports a non-zero second- 

normal stress difference to similar order as LPTT(£=0.13), see Ref.[26], this cannot 

be identified as a main cause of asymmetry. Second, neither can the upper- 

convected stress derivative terms, as all solutions possess these terms. Quantitative 

data in Fig. 6.3a indicate that the Giesekus model attains a critical Hencky-strain of 

£crit=4.0 units, with Tzz-maxima on the central-plane of {11.9, 13.2, 12} units at e of 

{3.0, 3.2, 4.0}. In contrast, the LPTT(£=0) model (Fig. 6.3b) achieves eCrit=4.4 

units, with Tzz-maxima of 81 units at £=4 units, compared to some 12 units for the 

Giesekus model. This is a substantial demonstration of the increased strain- 

hardening supported by the LPTT model. In Fig. 6.4b and for LPTT (£=0.13), three 

solutions at the fixed Hencky-strain of e=3 units are contrasted. Both inclusion and 

exclusion of surface tension and body forces are covered through various options. 

The onset of symmetry breaking through the xzz fields and splitting of the stress- 

maxima is illustrated for the solution with body force.

6.3.1.3 Strain-hardening effects: Giesekus model (0<a<l)
To study the strain-hardening behaviour of the Giesekus model (see stress field

contours of Fig. 6.5), the mobility factor is adjusted throughout an appropriate 

range. The Oldroyd-B model is recovered when this factor vanishes, which 

represents the limiting situation in maximum strain-hardening under Giesekus 

modelling. By increasing the mobility factor, in contrast, the model reduces its 

level of strain-hardening and one expects less axial stress development. Thus, the 

problem becomes more tractable to numerical solution. According to Larson [26], 

the solution loses physical meaning beyond the limit of a  of unity. The 

corresponding critical Hencky-strain declines as a  decreases: so, 8 crit is {2.69, 4.20, 

4.40, 4.80} for a  of {0.0, 0.32, 0.5, 1.0}. Across the range 0 .0<a<l, there is a 

consistent rising trend in critical Hencky-strain. As demonstrated in Fig. 6.5a-d 

shear stress is dominant near the region of the moving-plates (filament foot zone),
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a) a=0 (Old-B) b) cx=0.32 c) a=0.5 d)a=1.0

70.00
6222
54.44
46.67
38.89
31.11

e)cx=0 (Old-B) f) cx=0.32 g)a=0.5 h)a=1.0

Fig 6.5: Shear and axial stress contours at 8=2.6, a-variation, Giesekus single-mode: xrz 
(a-d); a) <x=0, b) a=0.32, c) a=0.5, d) a=1.0; x^ (e-h); e) a=0, f) a=0.32, g) a=0.5, h) 
a=1.0; Ca1 =0, Fg=0
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at the common Hencky-strain of 8=2.6, and as the mobility factor a  declines this 

shearing influence increases. In terms of axial stress, greater extension is dominant 

in the filament mid-section, yet this also falls with rise in a . At e=2.6 in each 

instance of a , quantitative data on shear/axial-stress maxima of Table 6.2 reveal 

magnitudes of: (8.11;80.0), (0.51;9.77), (0.37;6.69) and (0.28;3.65) at a=0.0, 0.32, 

0.50 and 1.0, respectively. As a —>0 and shear stress intensifies locally in the neck 

of the filament foot, the foot gets pinched, whilst the filament mid-section becomes 

thickened. Contrary to the situation with increasing a  (a —>1), lesser extension 

experienced at the filament mid-plane causes greater thinning in filament mid-plane 

radius (exaggerated filament thinning -  see Fig. 6.5e-h). So, as Vr rises in absolute

value and reaches its minima close to the plates, the fluid there becomes further 

pinched, being drawn more towards the centre of the plates. This is explained 

through changes in Vrmin, with -0.28< Vrmin<-0.23 for 0.0<a<1.0 (see Table 6.2).

a Ecrit T™x (8=2.6) t™x (8=2.6) V™ (8=2.6)
0.0 2.69 8.11 80.0 -0.28
0.32 4.20 0.51 9.77 -0.26
0.5 4.40 0.37 6.69 -0.25
1.0 4.80 0.28 3.65 -0.23

Table 6.2: Variation of mobility factor (a)

6.3.2 Exponential- vs linear-stretching: Oldroyd-B

This section is intended to compare and contrast predictions for Oldroyd-B 

fluids under the linear-stretching mode against those for the corresponding, 

exponential configuration, whilst adopting similar discrete approximations. The 

advantage of exponential-stretching is that the stretch-rate remains constant and 

this is helpful in the direct study of such physical properties as Trouton ratio and 

extensional viscosity [38]. From a computational point of view, the benefit of 

linear-stretching, with variable stretch-rates but constant plate-retraction rate, is 

that longer filament lengths and stretch times may be computed. In addition, this 

has some impact on temporal adjustment of minimum-maximum element aspect-
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ratios. Comparison between these two stretching configurations is taken at 

equivalent lengths (equal Hencky-strain levels) to analyse axial stress, normal 

force, Trouton ratio and radial velocity.

To provide some validation for Oldroyd solutions, the exponential-stretching 

polymeric stress solution is plotted in Fig. 6.6. This is performed at the centre o f  

the liquid bridge against various theoretical solutions under increasing strain 

measures.

10*
corrected lubrication theory (A)

| pure lubrication 
p initial ^  0 (C)

pure lubrication 
initial xzz=0(B)

10*

.1iff

icf
Numerical(D)

5 60 21 4

Effective Hencky-strain, eeff

Fig. 6.6a) Exponential stretching, axial stress vs effective Hencky-strain at (r=0, z=0):
Oldroyd-B, Ca 1=0, Fg=0

exponential

10' linear

2 3 41o
Effective Hencky-strain, eeff

Fig. 6.6b) Exponential vs linear stretching, axial stress vs effective Hencky-strain at (r=0,
z=0): Oldroyd-B, Ca '=0, Fg=0
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Following the arguments of McKinley [69], we utilise the more representative 

effective mid-plane radial Hencky-strain measure, eeff = 21n[----- -— ], (see on to

multi-mode Giesekus solutions). Such Oldroyd solutions are in close agreement 

over a broad range of strains with the corrected lubrication theory solution (A) of 

the form,

This theory takes account of simultaneous plate-retraction (origin at filament 

centre), no-slip end-plates conditions, but not free-surface influence. Large strain 

behaviour (above 3 units) adopts an exponentially rising form (linear in log-plot of

gradient (3 fo -X f1)). The two ideal lubrication theory solutions of McKinley et al. 

[39,69], offer upper and lower bounds for the mid-to-large strain numerical data (1- 

3 units). These two forms of theoretical solution cover: the circumstances of 

diminishing initial filament stress (B) on the one hand (matching low strain 

numerical data (0(1)) and lying below the large strain numerical data (0(3)); and 

alternatively, an assumed prescribed level of initial residual filament stress (C) (in 

particular, lying above the large strain numerical data). At the larger strain levels 

above unity, taking into account no-slip end-plate correction has brought prediction 

better into line against the theory. Slight departure from the theory below this level 

may be associated with the non-homogeneity of the kinematics, both spatially and 

temporally. This is further pronounced at early Hencky-strains below unity where 

free-surface curvature and its influence on the filament centre are larger. In fact, for 

Oldroyd data, the filament adopts extended thin cylindrical shape at higher levels 

of strain beyond 0(1) (see Fig. 6.10). This position more closely reflects pure 

lubrication theory.

In contrast, one may also compare Oldroyd solutions in axial stress under both 

stretching configurations. Here, it is observed that the stress solution for the linear 

stretching mode increases more sharply than for its exponential counterpart up to a
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strain measure o f 1.0 unit, at which they intersect with the linear case going 

through a maximum at 2 units. Beyond this strain level, the linear-mode stress 

gradually declines whilst the exponential-form continues to rise. The eventual 

decline in stress is to be anticipated due to the dynamic decrease in stretch-rate, see

Fig. 6.6b.

exponential

linear

8=0.2 8=1.0 8=1 8 8=2.6

(a) (b) (c) (d)

(e) (0 (g) (h)
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0.49  
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Fig 6.7: Exponential vs linear stretching, axial stress, x^at equivalent Hencky-strains: 
Oldroyd-B, Ca ]=0, Fg=0
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6.3.2.1 Comparison at equitable lengths (equivalent Hencky-strains)
A number of solution features are plotted to perform comparison across the

stretching modes at equivalent lengths. The development of extra-stress under both 

stretching modes is shown in Fig. 6.7 through contour field plots. Under 

exponential-stretching motion, extra-stress mid-plane maxima rise continually from 

8=0.2 to s=2.6 units. Whilst under linear-stretching mode, xzz demonstrates an 

increasing trend up to 8=1.8 units; it declines thereafter, so that xzz at 8=2.6 closely 

approximates its value at 8=0.2 units. The discrepancy between solutions under 

linear and exponential modes broadens as stretching advances. At 8=0.2 units, there 

are barely any differences in xzz; yet at 8=2.6 units, exponential-stretching 

predictions are O (102) times greater than their counterparts under the linear-mode. 

As noted above, since stretch-rate is declining under the linear-stretching motion, 

this causes the decrease in stress. Such disparity in stress development between the 

two contexts permits the longer period of stretching under the linear-case.

The development of Trouton ratio (Tr) versus Hencky-strain is illustrated in 

Fig. 6.8a, where the trend is one of monotonic rise under exponential-stretching 

mode. Under linear-stretching, Trouton ratio barely increases above the Newtonian 

level of three. There is miniscule rise up to 8-1.5 units (to a level of 4.6), with 

decline thereafter for e>3.0 units, to a vanishing limit. Normal force on the moving- 

plates (Fz of Fig. 6.8b) declines initially up to 8-1.0 under exponential-stretching 

and subsequently rises in exponential fashion. The trend in normal force under 

linear-stretching is one of monotonic decay, lying consistently below values for 

exponential-stretching at equivalent Hencky-strains. These trends, along with those 

in Rmid (e) of Fig. 6.8c discussed below, indicate the relative domination of Fz and 

Rnad upon Tr, over the early Hencky-strain period (e>l), and subsequently beyond. 

There is slight variation in Tr between the stretching modes up to Hencky-strain 

measures of 0(1). Only beyond this phase, does the normal force commence to 

dominate under exponential-stretching. Trouton ratio may also be determined by 

sampling the predicted solution at the filament centre through the expression, 

T r=(T zz-Trr)/(po* dzz)= Ni/(p0* dzz). The localised deformation-rate (dzz) may be

estimated from the initial stretch-rate ( f o )  in three alternative forms: as in ideal
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lubrication theory without end-plate correction ( e s t i m a t e  1 ) ;  or, as (1.5£0) with 

end-plate correction (e s t i m a t e 2 ;, or, directly from the locally predicted kinematics 

( e s t i m a t e 3 ) .  Such calculations have been performed under exponential retraction to 

find that the “force-on-the-plate” estimate is located between the two lubrication 

approximations with closer proximity to estimate 2. Typical values at £=2.5 units 

are { e s t i m a t e  1 ,  p l a t e - e s t i m a t e ,  e s t i m a t e 2 } = {70.68, 54.0, 46.64}, see Fig. 6.8a.
35
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Fig 6.8: Solution variation vs Hencky-strain; (a) Trouton ratio (Tr), b) normal force, Fzon 
moving plates, (c) mid-plane filament radius, Rm^e): Oldroyd-B, Ca 1 =0, Fg=0

E s t i m a t e  1  substantiates a 30% elevation from the p l a t e - e s t i m a t e , whilst e s t i m a t e 2  

represents a reduction o f around 12%. The local predicted kinematic calculation
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(estimate3) proves to line up almost identically with estimatel. This corroborates 

the overestimation of stress anticipated at the filament centre; see Yao and 

McKinley [39].

In Fig. 6.8c, the corresponding mid-plane radial evolution, R ^ a (e), is 

displayed as a function of Hencky-strain (e). Numerical predictions under constant
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linear
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Fig 6.9: Exponential vs linear radial velocity fields, equivalent lengths (Hencky-strains): 
Oldroyd-B, C a=0, Fg=0

plate-retraction rate concur closely with those for the exponential alternative, up to 

Hencky-strains close to 1.6 units, around which point departure begins. So, 

conspicuously beyond e>2.0 units necking is slightly greater with the constant Vz-
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plate alternative. This response produces the much longer elongation times allowed 

under linear-stretching. For example, to reach 8=2.4 units the time for linear- 

stretching is t~10 units, whilst under exponential-stretching this is only around 

t=2.4 units. This is slightly greater than a four-fold difference, which well 

compensates for the radial velocity adjustment that is typically three-times larger 

under exponential-stretching. For direct comparison, velocity field data are shown 

in Fig. 6.9 under both stretching-modes in question.
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0.20.2

_f 0
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/ \  V
e=2.6(t=2.6) . N* i:=1.8{t=1.8)
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Fig 6.10: Free-surface radial velocity distribution and surface profiles; s= (0.2, 1.0, 1.8 
2.6]; (a,b) exponential stretching, (c,d) linear stretching: Oldroyd-B, Ca 1=0 Fg=0

To appreciate the position, free-surface profiles and velocity distributions are 

presented comparatively in Fig. 6.10 at sampled Hencky-strain levels. At the 

equivalent Hencky-strain o f s=1.8 units (see Fig. 6.10a,c), linear-stretching mode
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radial velocity minima at the mid-plane prove substantially lower than those under 

exponential-stretching. We note the tendency to retard the migration of radial 

velocity minima towards the plate-region in the linear-stretching case over its 

exponential counterpart. Even at the greater Hencky-strain of 8=2.6 units, plate- 

zone values have not exceeded those at the centre under linear-stretching, whilst 

this has obviously occurred under exponential retraction. Notwithstanding such 

disparity in radial velocity at high levels of strain, free-surface profiles of Fig. 

6.10b,d exhibit close correspondence between the two stretching modes, from low 

(0.2 units) to high (2.6 units) strain measures. This is indicated in the temporal 

variation of radii at different locations along the filament. The low strain position is 

not unanticipated (e<1.0 units), where close agreement is observed in radial 

velocity profiles. At greater levels of strain (e>2.0 units), this finding is in 

agreement with the observations of McKinley et al. [68]. Such Oldroyd-B fluid 

filaments tend to adopt long slender cylindrical form under ideal uniaxial 

extensional flow (everywhere but close to the plates), reflecting a progressively 

growing parity between axial and radial Hencky-strain measures. On this basis, 

similar radial thickness would be expected, and thus, accounts for the resemblance 

in surface profiles between exponential and linear-stretching modes over greater 

regimes of strain.

6.3.3 Multi-mode results: exponential-stretching

Here, in multi-mode representation for Giesekus and LPTT models only the 

exponential-stretching configuration is considered with a three-mode representation 

for each model. The relevant selected parameter values of (a*, e'ptt and £,■) are 

tabulated in Table 6.1 for each model, and as proposed in Li et al. [2], (elptt and £,-) 

are held constant across the various modes. First, theoretical comparison and mesh 

refinement are considered with restriction to a single model of the Giesekus model. 

The refinement analysis is constrained to a moderate Hencky-strain measure of 

e=1.8 units and is performed both axially and radially. Three meshes (100x20, 

150x20 and 200x20) cover axial refinement (z-axis), and two meshes (150x20 and 

150x15) cover the radial refinement (r-axis). Once consistency has been confirmed, 

the rheological consequence is considered of the multiple relaxation times
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involved, where comparison is made to the literature to corroborate findings. In 

particular, the influence o f  shorter modes is explored, in contrast to solutions based 

on a single mode (the longest).

6.3.3.1 Comparison against theory fo r  Giesekus model
In Yao and McKinley [39], theoretical solutions are reported for both i d e a l

f l o w  k i n e m a t i c s  i n  u n i a x i a l  e l o n g a t i o n a l  f l o w  (ignoring end-plate effects), and

c o r r e c t e d  l u b r i c a t i o n  t h e o r y  assuming no-slip o f the end-plates. Here and for the

present work 
Yao et al. 
theory

10
1st mode

2 mode

3rd mode

Effective Hencky-strain,

Fig 6.11: Stress development, (Xzz/dzz,0), at (r=0,z=0); multi-mode Giesekus 

Ca'=0, Fg=0

purposes o f  direct validation, we refer to the form taken up in Yao et al. [3], that o f  

ideal flow kinematics in uniaxial elongational flow and provide comparison o f our 

predicted data against their theoretical and predicted stress evolution data in Fig. 

6.11. Such data correspond to the time history for the axial component o f the 

polymeric stress per mode with the same Giesekus fluid, sampled at the centre o f  

the liquid-bridge (r=0, z=0). As stated in Yao et al. [3], the closer agreement to 

lubrication theory is attained by interpreting data against the effective Hencky- 

strain measure (eeff, determined radially at mid-plane [14,39]) and with stress-
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scaling consistent with the strain-rate at the liquid-bridge centre (to overcome any 

non-homogeneity). Beyond the early Hencky-strains (unitary), differences and 

similarities are discemable, yet broadly, strong correlation may be gathered. The 

largest (first mode) results tend to correspond rather closely with the theory to ~ 5 

strain units (around 4.6); on the second largest mode, our data lie consistently 

closer to the theory than that of Yao et al., as far as 5 strain units (with slight 

departure ~ 6 units). The same comment applies on the smallest (third) mode data, 

but with close approximation to the theory from low Hencky-strains up to 4 strain 

units, where departure begins.

6.3.3.2 Time-discretisation fo r  Giesekus model
Robust numerical procedures are required to discretise the constitutive

equations of the relevant viscoelastic models to analyse transient behaviour in the

multi-mode context. One may apply either the explicit stress time-discretisation

developed earlier (see Ref. [31] ), or invoke the alternative semi-implicit approach

to meet both requirements of smaller time-steps, and concurrently, the occurrence

of low and high relaxation times (two-three orders variation). With the semi-

implicit scheme, a product factor (2De,+At) is provided. This factor has

dependency upon both the time-step (At) and the Deborah number (De,), emerging

from a Crank-Nicolson time-splitting stencil for the x-term. This accommodates the

De,—>0 context, under the scenario of larger non-trivial De,-values. In this manner,

solution for the multi-mode Giesekus model is sought, utilising a single mesh for

convenience, mesh (150x15), at 8=2 units with conventional explicit and semi-

implicit procedures. The corresponding axial stress (xa ) and velocity (Vz) contour

plots are displayed in Fig. 6.12a,b. Close agreement is established between the two 

solutions generated in both components throughout the whole field (graphically no 

disparity).



Chapter 6 Single vs Multi-Mode Modelling for Filament Stretching

Fig 6.12 a,b): Semi-implicit and explicit time-stepping solutions; multi-mode Giesekus,
Ca'=0, Fg=0, e=2.0; b) c ) V z

6.3.3.3 Mesh refinement fo r  Giesekus model
Axial refinement is demonstrated through stress field contour plots o f x^, at

8=1.8 units in Fig. 6.13a. These data reflect complete agreement between the 

solutions on the three axially refined meshes (100x20{solid}, 150x20{dashed} and 

200x20{dashdot}). The contours are exhibited from 0.0 to 8.0, in steps o f  0.5 units. 

As in the single-mode case, the axial stress reaches its maxima at the filament mid­

plane region consistently across all meshes, spreading and reducing in magnitude 

towards the plates. In Fig. 6.13b, V z contour data are plotted from -3.0 to +3.0 units

in steps o f 0.5 units. Again, the axial velocity is visibly overlapping across the three 

meshes, with evident symmetry around the filament mid-plane (vanishing there) 

with maxima (absolute value) located towards the moving-plates. Likewise, 

agreement in profiles may be gathered from Fig. 6.15c,e, covering (xzz and V z )  

along the filament centreline.
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Fig 6.13: Axial refinement, multi-mode Giesekus; Ca '=0, Fg=0, 8=1.8; 
meshes 200x20 [solid), 150x20 |dashed| and 100x20|dashdot|: a) x ^ ,  b) V z

Radial refinement is considered at s=1.8 units, in both (x^ ) (Fig. 6.14a) and 

( Vz) contour plots (Fig. 6.14b). Again, graphically identical results are provided 

across the two meshes in question (150x20 and 150x15). Concentrating on the 

filament mid-plane region radial-axis, profiles of (x,-r) and ( tzz) are plotted in Fig. 

6.14c,d. The overall pattern in (x^) reflects a constant form across the filament 

mid-plane, with a slight rise near the free-surface. In this dominant stress 

component, solutions across the meshes are practically identical along the filament 

width (r-axis), a position repeated in the much smaller (x^-component. The 

measure of the boundary layer near the free-surface stands for some five percent of 

the mid-plane radial span. The perturbation in (x^) approaching the free-surface, is 

a signature o f transition over the boundary layer, an aspect also observed in

Lastly, comparison with refinement is conducted in both coordinate directions,

profiles along the radial-axis at the filament mid-plane are plotted in Fig. 6.15b,d. 

Barely any disparity is detected between the different solutions, and in particular, 

the Xrr-component displays independence o f axial refinement with regard to the

(dvr/dr).

axially and radially (data for four meshes). Radial and axial stress component
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free-surface boundary layer. In the same way, both stress component solutions 

agree under refinement when plotted along the filament centreline axis, Fig. 

6.15a,c. Hence, satisfactory consistency has been established, leading to the 

adoption of the (100x20)-mesh in the analysis of rheological variations across the 

alternative models selected.

6.3.3A Giesekus versus LPTT (§=0.13 and §=0) comparison
In Fig. 6.16, we plot axial stress Tzz-profiles for the multi-mode Giesekus model

against its single-mode counterpart, along the filament centreline at different

Hencky-strain levels of 8=0.2, 1.0 and 2.0 units. In this form, the difference

between both single and multi-mode filament-centre solutions may be appreciated

directly, a large part of which has occurred at the relatively low Hencky-strain level

of 8=0.2 units. The contribution of the shorter modes to the Tzz-stress is felt, in

particular, through the larger value of the multi-mode solution, when compared to

its single-mode counterpart. At 8=0.2 units and along the filament mid-plane where

the maxima are observed, these contributions are, respectively: 0.89 units for the

multi-mode case {composed of 0.3 (largest mode), 0.47 (middle mode), 0.12

(shortest mode)} and 0.3 units for the single-mode form. Similar comments apply

also to the axial stress along the free-surface. Beyond e=1.0, the Tzz-largest mode

contribution begins to dominate (see Fig. 6.11). From the single-mode results of

Fig. 6.3, the Giesekus model exhibits symmetry in axial stress around the filament

mid-plane, being preserved across all Hencky-strains up to ecrit=4.0 units. The

multi-mode version corroborates these findings. In Fig. 6.17, axial stress fields are

depicted up to e=4.0 units. Beyond a Hencky-strain value of 8=3.0 units, the

influence of the shorter modes appears in the axial penetration of stress throughout

the filament (radially uniform). Yet again, neither single nor multi-mode solutions

manifest signs of bead-like formation. Under trends is axial stress-maxima across

Hencky-strain levels of e= (3.0, 3.2, 4.0), the single-mode representation yields a

slight increase in the axial stress-maxima, through magnitudes of (11.9, 13.2, 12.0)

units. The multi-mode representation at e= (2.0, 3.0, 3.6,- 4.0) provides axial stress-
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Fig 6.14: Radial refinement, multi-mode Giesekus; Ca'l=0, Fg=0, 6=1.8; meshes 150x20 
150x15: contours a) b) Fz; filament mid-plane profiles c) x „ ,  d)
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Fig 6.15: Axial and radial refinement, multi-mode Giesekus; 6=1.8; meshes 200x20, 
150x20, 100x20 and 150x15; filament centreline profiles a) t^, c) Tzz, e) V z ; on mid­

plane, b) x^d) Tzz; Ca '=0, Fg=0
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maxima o f (8.7, 12.0, 13.6, 12.0) units. This adjustment in axial stress-maxima 

with Hencky-strain may be interpreted as a steady limiting trend to an average 

plateau value of 12.5 units.

In a similar fashion to Giesekus results, symmetrical xzz-fields are also observed 

in the multi-mode LPTT (£=0) solutions. This holds true even at the high Hencky- 

strain level o f s=3.6 units (see Fig. 6.19 and Fig. 6.20) with the larger stresses 

generated in the filament over that o f Giesekus solutions (see Fig. 6.17). No bead­

like structure emerges for the LPTT (£=0) fluid. In contrast, a symmetrical bead-

— single-mode 
multi-mode

0.4
N,

0.2

- 0.2
8= 2.0

8= 1.0

6 1082 40

Fig 6.16: Filament centreline axial stress, izzprofiles; single and multi-mode Giesekus; 
increasing s, [0.2, 1 and 2] units: — single mode, — multi-mode; Ca 1=0, Fg=0
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Fig 6.17: Axial stress T^-contours; multi-mode Giesekus; increasing e; Ca '=0, Fg=0
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Fig 6.18: Filament shape; multi-mode LPTT(^=0.13); increasing e; Ca 1=0, Fg=0
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structure is beginning to appear with the multi-mode LPTT (£,=0.13) fluid for s>3.4 

units. This is absent at 8=2.6, as demonstrated through filament shapes o f Fig. 

6.19a, and also from Fig. 6.18 up to 8=3.4, appearing at 8=3.6 units (see also, Fig. 

6.19b). For its single-mode counterpart, this bead-structure is apparent earlier at 

s=3.2, the time-lag being directly attributable to the shorter modes. This is also 

accompanied by the splitting o f  stress-maxima, which generates local maxima in an 

off-centre position.

6.3.3.5 Comparison across relaxation-modes
In Fig. 6.20, the relative free-surface xzz-distributions across the individual

modes are illustrated for LPTT (£=0) at s=3.6 units. The largest mode is dominant 

by an order o f  magnitude, reaching 62.1 units when compared to 2.83 and 0.16 

units for the second and third shorter modes, respectively. For 8>0.8 units, the 

largest mode tends to be the main contributing factor. In contrast, at the early 

Hencky-strain o f  8=0.2 units, the xzz is dominated by the second largest mode (see 

Fig. 6.11, for Giesekus model). There, maxima in x ^  are equal to (0.59, 0.92 and 

0.20) units, ranging from the longest to the shortest mode, respectively. In the 

strain range, 0.2<e<0.8 units, the first two modes dominate their shortest-mode 

counterpart and provide similar contributions.

LPTT (4=0) LPTT (4=0)LPTT (4=0)

LPTT (4=0) LPTT (4=0.13) LPTT (4=0.13)
LPTT (4=0.13)

LPTT (4=013)

0 0 2 0 4 0 6 0 80 02  0.4 0.6 08 1
R/RoR/Ro

Fig 6.19: Filament free-surface and foot shape; multi-mode, various models; 
a) 8=2.6, b) 8=3.6; Ca '=0, Fg=0
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3 rd mode
t zz m a x = 0 . 1 6
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x z z m ax= 2 . 8 3

- 0.2

-0.4

600 4020

Fig 6.20: Frcc-surface axial stress (t̂ ) profiles; multi-mode LPTT(4=0); Ca ‘=0, Fg=0, 
8=3.6; separate relaxation modes contribution: 1st mode, 2nd mode, 3rd mode

63.3.6 Comparison with inclusion o f  surface tension
Finally, when accounting for capillary surface tension effects, multi-mode

LPTT(£=0.13) and Giesekus solutions are considered through axial stress free-

surface profiles. The Giesekus solution o f Fig. 6.21a is entirely consistent with that

o f insignificant surface tension forces (Fig. 6.17), demonstrating comparable stress

maxima at the elevated Hencky-strains beyond 3.0 units, achieving a plateau o f

around 13 units. Only long slender cylindrical filament shapes are detected with the

Giesekus fluid. For the LPTT(£=0.13) fluid o f  Fig. 6.21b, similar comments apply
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-  e = 3 .0  
c = 3.2 

• e = 3.4
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Fig 6.21: Free-surface axial stress (t̂ ) profiles with surface tension, multi-mode solutions; 
increasing s; C a’=0.1, Fg=0; (a) Giesekus, (b) LPTT(^=0.13)

when contrasting inclusion/exclusion of surface tension forces; no gross disparities 

are observed (see Fig. 6.18). If anything, with surface tension included, comparable 

but slightly larger levels of stress maxima are observed at Hencky-strains beyond

3.0 units. Stress maxima have not split with surface tension effects included, even 

at levels o f Hencky-strain o f 3.4 units. Once more, this would be anticipated to 

arise at e>3.6 units.

6.4 Concluding rem arks

To conclude, the filament stretching problem has been studied under both a 

single-mode approximation and through a multiple relaxation-time spectrum 

representation. Prediction and validation have been performed under the strain- 

hardening rheology o f Oldroyd-B, Giesekus and LPTT models. Numerically, two 

new important issues have been addressed: concurrently accommodating for values 

from a broad spectrum of relaxation times (small and large times, requiring 

improved time-implicitness); and handling near-Maxwellian form, as any solvent 

viscosity is mainly absorbed within a variety o f individual modes. Under single­

mode modelling and exponential-stretching, with the inclusion o f body forces and 

surface tension for the (LPTT-£=0.13)-fluid, an asymmetrical bead-like structure in
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the filament has emerged. Disregarding body forces/surface tension influences, the 

influence of variation in shear-thinning and tension-thickening properties has been 

analysed, concentrating upon comparison of results for LPTT(£=0 and £=0.13) and 

Giesekus models (Giesekus model, Tz2-maxima=13, eCrit=4 units; LPTT(£=0), t zz- 

maxima=98 units, 8Crit=4.4 units). Investigating filament shape, the dominance of 

strain-hardening is borne out for these flows, above and beyond that of shear- 

thinning, with the thickest filament centres corresponding to the models providing 

stronger hardening. Reduction in strain-hardening as with the Giesekus model and 

rising (a), renders less ( tzz ) development. In contrast, shear stress is dominant near 

the moving-plates, and by raising the mobility factor this shearing influence 

declines. Thus, in an a —>0 regime, when shearing effects are augmented, the 

filament foot is further pinched and the filament mid-section thickens. In contrast 

under the alternative regime of a —>1, exaggerated thinning is observed at the 

filament mid-section, as a result of the corresponding reduction in hardening and 

extension experienced there.

Linear versus exponential-stretching configurations have also been compared 

under an Oldroyd-B single-mode approximation, with predicted solutions validated 

closely against theoretical solutions. Under the linear-stretching mode, axial stress 

relaxes during the stretching process, hence proving less restrictive to the overall 

stretching period. This lies in contrast to the exponential-counterpart, where axial 

stress grows at an exponential rate. The dynamically decreasing stretch-rate of the 

linear-stretching configuration causes this decrease in stress, unlike its exponential 

counterpart. The trend in Trouton ratio is one of monotonic rise with Hencky-strain 

under exponential-stretching, whilst with linear-stretching, far lower levels of 

Trouton ratio are attained. Under linear-stretching, any early Trouton ratio rise is 

fairly insubstantial, ultimately declining to zero. Radial velocity minima (Vrn“ ) at 

the mid-plane prove substantially lower for linear-stretching than under 

exponential-stretching up to equivalent Hencky-strains of 8=1.8 units. At higher 

strain levels (Vrmin) do not exhibit a tendency to migrate towards the plate-regions 

(as occurs with exponential retraction). Despite such contrast for Oldroyd fluids,
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and considering the arguments relating radial and axial strain measures, developing 

filament shapes at equivalent lengths (Hencky-strains) do not significantly differ 

across the various modes of stretching.

Contrasting single- and multi-mode axial stress representation at the filament- 

centre, discrepancy in stress local maxima appears even at the relatively low 

Hencky-strains of 6=0.2 units (and fully so by 6=1.0). Considering the significance 

of the various relaxation-modes under multi-time scale modelling, the impact of the 

shortest modes is conspicuous in the axial penetration of stress through the filament 

(lengthwise), whilst providing uniform radial penetration. The largest mode 

represents the major contributing factor to the extra-stress for larger Hencky-strain 

levels (e>0.8 units), most notably in terms of axial stress. In early stretching stages, 

dominance switches between the modes, with the second mode taking over by 

6=0.2 units, and parity being established between first and second modes across the 

intermediate range (0.2<e<0.8 units). In the case devoid of body/surface tension 

forces and under single or multi-mode approximations, both the Giesekus and 

LPTT(£=0) fluids yield similar trends. There are no manifestations of bead-like 

structures, retaining symmetrical filament-shapes and stress distribution patterns 

(axial stress), even at large Hencky-strain levels of e>3 units. Addition of capillary 

forces does not alter this finding. In contrast, multi-mode LPTT (£=0.13) solutions, 

accounting for capillary force inclusion or not, provide a single symmetrical bead­

like structure, but only at larger Hencky-strain levels beyond e>3.4 units, as 

opposed to e=3.2 units for the single-mode instance. At e=3 units, the single-mode 

solution generates local stress-maxima, positioned off-centre, so that splitting arises 

in the axial stress component. This phenomenon delays its emergence in the multi- 

mode instance (due to shorter mode influence) until Hencky-strain levels above 

6=3.4 units.
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Chapter 7

Modeling Step-Strain Filament-Stretching by 
ALE Techniques1

The numerical modeling of capillary breakup extensional rheometer procedures 

(CaBER) employing Arbitrary Lagrangian/Eulerian (ALE) methods is discussed in this 

chapter. Different models, fluid viscosity ratios and aspect-ratios are studied, utilising 

a hybrid finite element/finite volume spatial approach. For the momentum and 

continuity equation, finite element discretisation is used whilst for the hyperbolic 

stress equation, a pure-upwinding cell-vertex finite volume representation is employed. 

The results are validated against equivalent experimental results reported in the 

literature. Viscoelastic response for some strain-hardening fluids in CaBER-type step- 

strain flows is studied through employment of various constitutive models. In this 

case, bead-like structures emerge for filaments with high initial aspect-ratios. In 

contrast, no bulges/beads appear for low polymeric viscosity Boger-type fluids 

(Oldroyd-B). The influence of surface tension and elastic forces upon these particular 

filament stretching flows is explored in this study.

t Material up to section 7.3 of this chapter is based upon the paper “Modeling step-straih filament 
stretching (CaBER- type) using ALE technique”, by K.S. Sujatha, H. Matallah, MJ. Banaai and M.F. 
Webster, in press, Journal of Non-Newtonian Fluid Mechanics.
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The chapter also explores the impact of practical implementation through examining 

the effect of plate deceleration at the end of the CaBER implementation. The study 

encompasses variation in material rheology, appealing to Oldroyd, Geisekus and Phan- 

Thien/Tanner type models, which display differences in shear and extensional 

viscosity properties (shear-thinning/extension-hardening). Two different viscosity ratio 

settings are considered to reflect high and low-solvent viscosity constituent 

components; the former representing typical Boger fluids, the latter high polymer 

concentration fluids. We compare and contrast results for three alternative filament 

aspect-ratios at the onset of step-strain. Throughout the step-strain period, we have 

been able to successfully capture such physical features as drainage to the filament 

feet, necking at the filament centre, and periods with traveling waves through the axial 

filament length. In addition, we have identified the suppressive influence that larger 

capillary forces have upon radial fluctuations, and the minor impact that gravitational 

forces have upon the ensuing deformation. From this study, estimates for rheometrical 

data have been derived in terms of characteristic material relaxation time and apparent 

extensional viscosity.

7.1 Introduction

Application of elongational flow of polymeric fluids arises within a number of 

industrial processes with the involvement of predominantly extensional modes of 

deformation. Examples include extrusion of polymeric materials, fibre spinning and 

film blowing. Extensional flows are also observed in applications such as coatings, 

enhanced oil recovery, lubrication, turbulent drag reduction and atomization. 

Filament-stretching is a common example of such an extensional flow with vast 

applications in the study of polymer melts and solutions. Additionally, it is a popular 

technique currently employed to quantify material fluid properties, via quantitative 

measurements of the thinning and failure within fluid filaments. McKinley and Sridhar 

[46] have provided a comprehensive review of the flow dynamics within filament-
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stretching rheometers. The common practice in a conventional filament-stretching 

rheometer (type 1 - FISER), is to insert an exponentially increasing velocity upon the 

fluid formed between the two rigid plates. Typically, the subsequent evolution of mid­

filament diameter is monitored during the process of necking and failure. The filament 

stretching rheometer may be employed for capillary-breakup trials (type 2 - CaBER), 

under a second mode of operation. In CaBER trials a rapid axial step-strain of 

prescribed magnitude is imposed, and then the ‘necked fluid’ sample is allowed to 

relax and break up under the influence of capillary forces. The viscous, elastic, 

gravitational and capillary forces govern the relaxation and decay of the necked sample 

and as with F /1SZs/?-procedures, the evolution of the mid-filament diameter is again 

monitored (see [21]). In many commercial operations, such as printing, paint 

applications, roll-coating of adhesives, and other food processing, the associated 

progressive thinning and breakup of a fluid’ filament into numerous small 

beads/droplets occurs. The fluid undergoing break-up is non-Newtonian in many 

instances, and the transient extensional viscosity of the fluid plays a key role in 

controlling the dynamics and eventual break-up. This dynamical process can be 

extremely rapid and is dependent upon the fluid composition, viscous, elastic and 

inertial forces resisting the capillary forces to form droplets. Though in the study of 

viscous polymer solutions and melts, the conventional filament stretching rheometer 

has been widely used, there are practical difficulties that arise with low viscosity 

solutions due to the resolution of the force transducer. In addition, such filament- 

stretching experiments are difficult to conduct in practice as a result of limitations 

caused by mechanical constraints and elastic instabilities. CaBER-thals, can 

alternatively be employed to measure the extensional properties of low viscosity 

fluids. A CaBER method provides information about the relaxation time spectrum, the 

extent of non-Newtonian characteristics, and the time to break-up of the fluid. Within 

the CaBER experiment, the fluid dynamics of the necking process evolves with time, 

and understanding this process is vital to obtain qualitative material properties of the 

candidate fluid.
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A detailed discussion on the capillary thinning and breakup of viscoelastic 

filaments employing a multi-mode FENE fluid model has been analysed and provided 

by Entov and Hinch [21]. In their analysis, a lengthy intermediate regime is revealed 

where elastic and surface tension forces balance, whilst other forces arising from 

inertial, gravitational and viscous effects are negligible. In this regime, capillary forces 

drive and viscoelastic forces resist the necking process. In order to restrain fluid 

molecules from relaxing, the filament must thin continuously at a rate proportional to 

the characteristic relaxation rate of the fluid. The predictions of Entov and Hinch [21] 

compared well with the experimental work of Liang and Mackley [84]. In capillary 

break-up rheometry, a significant amount of work has been covered in recent years 

since the pioneering work of Entov and Hinch [21] and Bazilevski et al. [18,72,73], 

Several devices have been developed specifically to study visco-elasto-capillary 

thinning [18,74,75]. For example, capillary thinning of Newtonian and viscoelastic 

filaments through both experimental analysis and numerical simulation have been 

studied by Kolte and Szabo [75]. These numerical studies were performed by 

employing a Lagrangian finite element method and their predictions, were in close 

agreement with their experimental findings. They have also reported good agreement 

between the results obtained on the longest relaxation time and shapes and the existing 

theory in the literature. McKinley and Tripathi [74] have indicated that such a device 

can also be effectively used for measuring the Newtonian viscosity of viscous liquids. 

The theoretical studies of Entov and Hinch [21] and the experiments by Stelter et al. 

[19] have revealed that apart from the longest relaxation time, also through CaBER- 

procedures, one can measure the steady terminal elongational viscosity of the fluid. 

Polymer solutions have also been analysed in the work of Anna and McKinley [17], 

using the CaBER stretching device presented in Ref. [18]. In their work, it has been 

demonstrated how the transient elongational viscosity of a dilute polymer solution can 

be estimated from the mid-plane diameter evolution of the necking filament. The 

apparent extensional viscosity profiles obtained have been compared with
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experimental measurements conducted with a rotational viscometer, and the equipment 

presented by Tirtaatmadja and Sridhar [38]. CaBER and FISER procedures have been 

shown to be complementary experiments, providing consistent measurement of the 

transient extensional viscosities of polymeric fluids. Moreover, the extensional 

rheology of other material systems, of inks and paint dispersions using capillary break­

up rheometry has been studied by Willenbacher [79]. Likewise, Stelter et al. [19] have 

employed an elongational rheometer to measure steady terminal extensional viscosity 

and relaxation time at various concentrations and in suitable solvents for aqueous 

solutions of ionic and nonionic polymers. A method has been developed by these 

authors to characterise the elongational behaviour of polymer molecules and the onset 

of higher-order concentration impacts in elongational flows. Rodd et al. [71] have 

experimentally studied the dynamics of capillary thinning and break-up with 

polyethylene oxide (PEO) in water and glycerol for low viscosity, dilute and semi­

dilute polymer solutions. These authors state that the successful operation of such a 

device is controllable by three time-scales and two length-scales. The two length- 

scales represent the initial sample size and the total stretch imposed and the three time- 

scales characterise the relative importance of inertial, viscous and elastic forces. By 

optimizing the ranges of the relevant length-scales involved, characteristic time-scales 

have been measured for axial stress growth for model solutions. Bousefield et al. [22] 

have studied the transient evolution of viscoelastic jets and the beads-on-a-string 

phenomenon, using a finite element method to incorporate nonlinear effects. In the 

literature, several studies are available that deal with the dynamics of necking threads, 

covering evolution to break-up. Almost all constitute similarity solutions (see, for 

example, Renardy [76]), utilising one-dimensional radially-averaged forms, to provide 

velocity fields valid for slender filaments. Eggers [47] has discussed many of these in 

details. Such stability analyses have been conducted to study rheological response and 

the ability to form stable fluid filaments and jets. Based upon the early work of Chang 

and Lodge [57], spinnability of viscoelastic fluids in uniaxial elongation was studied 

by Ide and White [83], incorporating surface tension and nonlinear extensional
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rheology. Beads-on-string structure that may arise in viscoelastic threads have also 

been reported in detail by Clasen et al. [80]. These authors have analysed the 

characteristics of such a phenomenon as a function of times both smaller and larger 

than the relaxation time of the polymeric material. Within these CaBER experiments, 

understanding the fluid dynamics associated with the necking process is vital in order 

to obtain reliable material properties for the candidate fluid under study. As the fluid is 

allowed to relax on its own time-scale (see [71]), the fluid may reflect complex 

dynamical response in such a device. There are also practical difficulties in CaBER 

experiments including configuration of the desired sample loading, a low-shock step- 

strain stop and taking numerical derivatives from noisy data to provide the required 

material properties. Prabhakar et al. [191] studied the stress in the polymer in a dilute 

polymer solution to predict elastocapillary thinning and breakup of the solution.

In earlier chapters and to predict the dynamical response of uniaxial filament- 

stretching flows [33,61], a consistent hybrid finite element/volume formulation has 

been developed. There, under retraction of plates at an exponential rate, extensional 

deformation has been considered of a viscoelastic filament between two coaxial discs 

(plates). The base of these studies was an axisymmetric model incorporating 

viscoelastic behaviour, surface tension, fluid inertia and a deformable free-surface. A 

compressed-mesh, Arbitrary Lagrangian/Eulerian (CM/ALE) procedure has effectively 

been employed to track the flow evolution via a particle-tracking technique (dx/dt) 

utilised to capture the developing free-surface of the deforming filament. Large 

extensional deformation has been studied, up to impressive levels of Hencky-strain of 

the order of five units and above. For constant shear-viscosity fluids, Newtonian and 

Oldroyd-B model predictions have indicated excellent agreement against the literature. 

Recently, there has been noticeable progress in prediction and analysis of transient 

viscoelastic response of strain-hardening fluids with shear-thinning properties (via 

linear Phan-Thien/Tanner (LPTT) and Giesekus modeling) [61]. There, a parametric 

study varying surface tension and inertial effects has been conducted to isolate the 

emergence of flow asymmetries, leading to the onset of bead-like structures. The
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hybrid FV scheme has proven capable in dealing with such severe computational 

challenges, capturing sharp differences in filament curvature and flow structure during 

the various phases of the flow evolution. In the present chapter, the focus lies mainly 

on employing this methodology in the study of capillary break-up filament rheometry, 

utilising three different viscoelastic models, and two polymeric viscosity ratios with 

alternative final filament aspect-ratios for each. For highly-polymeric fluids, three such 

ratios have been studied, and two further ratios for low-polymeric fluids. From the 

mid-filament diameter evolution, estimates may be derived for the apparent 

extensional viscosity and the material relaxation time. Encouragingly, such estimates 

of relaxation time are found to lie in close agreement with the actual relaxation time 

data used for the fluids in question. In addition, the trends predicted in extensional 

viscosity demonstrate corroboration with those in the literature.

7.2 Problem description

Capillary and extensional deformation for viscoelastic filaments between two co­

axial discs is considered. First, the plates are retracted at an exponential rate, which 

provides a constant stretch-rate as described at section 4.2. Once the required filament 

aspect-ratio has been reached, the liquid bridge is allowed to relax under the action of 

surface tension. Two different fluid viscosity settings are studied. One fluid employed 

has a relatively high solvent/low polymeric viscosity ratio (j3=jU2/jUo=0.87), a typical 

so-called SMl-Boger fluid described by the Oldroyd-B model. The second fluid is a 

low-solvent/high-polymeric viscosity fluid (J3=p,2/po=0.262), which is represented 

through three alternative constitutive models, namely, Oldroyd-B, LPTT and Giesekus. 

With these latter fluids, the degree of strain-hardening varies from least in Giesekus, 

through to more exaggerated forms, in LPTT intermediate, to most extreme in 

Oldroyd. As such, the Giesekus model has been chosen to represent weakly strain- 

hardening fluids, providing a reasonable fit to both linear and non-linear shear 

rheology data for most concentrated polymeric solutions (see for example, Li et al. [2] 

and Yao et al. [3]). Only the Oldroyd model has a constant shear viscosity, the other
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two models demonstrating some degree of shear-thinning, with onset around 

deformation rates of O (1) units. The fluid characteristics and filament dimensions are 

provided in Table 7.1, so that, the time-scales involved for the above two fluids are

0.22 and 1.0 seconds, respectively {Me).

High polym. vise Low polym. vise

Re (Reynolds number) 4.7*10'4 3.8*10'4
Lo (initial length) (m) 1.89* 10'3 1.5*10”3
X (surface-tension coefficient) 30.0* 103 37.8* 10'3

(Nm'1)
p (density) (Kg.m'3) 1030 1026
jlio (zero shear viscosity) (Pa.s) 34.949 39.2
p.2 (solvent viscosity) (Pa.s) 9.08 34.0

e (extension rate) (s'1) 4.48 1.0
Ca (Capillary number) 9.86 1.56
Bo (Bond number) 1.2 0.6

Table 7.1: Fluid properties, filament dimensions and non-dimensional numbers

Meshes Elements Nodes Tzz-m ax 
ti h t3

B-mid
ti h t3

Mesh-Ml
(100x20)

4000 8241 15.044 12.036 1.293 0.496 0.232 0.039

Mesh-M2
(150x20)

6000 12341 15.043 12.017 1.245 0.495 0.234 0.036

Mesh-M3
(200x20)

8000 16441 15.045 12.016 1.286 0.492 0.232 0.036

Table 7.2: Mesh refinement: xzz-max, and at different times.

Fluid y#-ratio ^est /I
Fluid 1-SMl-Boger 0.870 3.12 , 3.70

Fluid 2- 5.0 wt% 
polystyrene

0.262 0.35 0.421
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Table 7.3: Estimated relaxation time, Aest 
The problem dependent values for the above quantities are tabulated in Table 7.1.

During the relaxation process,, the radial evolution of the filament midpoint

characterizes the dynamics, assuming that symmetry is retained about mid-plane and

the filament profiles remain spatially self-similar. The radial evolution of the midpoint

is governed by a force balance on the filament, through viscous, elastic and capillary

terms neglecting inertial and gravitational effects. This may be expressed as [12]:

^M2£(t) = ~ - - ( . r a - T rr),  (7.1)
mid.

, • . -  2 dDmidwhere e(t) = ----------- — .
dt

The apparent extensional viscosity, p app can also be represented as 
( t  — T  )

M a p p - * rr +3 JU2. (7.2)
£(t)

Combining eqs. (7.1) and (7.2) yields,

(7 3 )
/  m id  \

dt
Here, Dmici is the mid-plane diameter of the filament, and x  is the material surface 

tension coefficient. Such CaBER-trials can also provide the means to determine, the 

principal material relaxation time (A), and thus, an indication of the corresponding 

characteristic time-scale for viscoelastic stress growth under uniaxial extension. The 

mid-filament diameter of an Oldroyd-B fluid filament is predicted to decrease 

exponentially with time [18,21,22,72]. If viscous stresses are assumed to be negligible, 

and capillary and elastic contributions to the total force balance each other, then the 

mid-filament diameter is predicted to decrease according to the relationship,

Dmid W = ( ^ - ) 1/3 exp(-t / 3A ) . (7.4)
D0 d x

Where Dq is the midpoint diameter following cessation of stretching and G is the

elastic modulus of the material and is given by G = — .
A

The above relationships are deployed below upon present data to extract the relevant
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material quantities in question.

7.3 Results and discussions

7.3.1 High polymeric viscosity fluids, 0=0.262, various models

Here, various fluid models including Oldroyd-B, Giesekus and LPTT are 

employed to study the test fluid, a 5.0wt % solution of high molecular weight 

polystyrene dissolved in a mixture of dioctyl phthalate (DOP) and tricresyl phosphate 

(TCP). Li et al. [2] provide the detail on the preparation and viscometric 

characterisation of this fluid. A time-evolution scenario with a single LPTT fluid is 

illustrated in Fig. 7.1, employing two different implementations of the numerical 

scheme, termed FISER-ALE and CaBER-ALE. First, the liquid bridge is stretched at 

exponential rate to a Hencky-strain of two units and is subsequently allowed to relax. 

In the FISER-ALE instance, an ALE interpretation is adopted where the mesh velocity 

is taken the same as the fluid velocity. In this instance, it is observed that fluid 

migration towards the plates causes element aspect-ratios in the mid-filament region 

become excessively stretched (mesh sparsity). Consequently, the near-plate regions 

become much denser in elements. The corresponding adjustments in mesh aspect-ratio 

have led to degradation in the computation of free-surface curvature. To overcome this 

situation, adaptive remeshing strategies are required. In an alternative approach, a 

CaBER-ALE method is employed, where the length of each element is held constant in 

the axial-direction once plate movement has been halted. In this instance, mesh-node 

movement is only in the radial direction and to compensate for this difference, a 

correction in convection is applied after stage 3 of the ffactional-stages (see ref [33]). 

As element aspect-ratios are now not subject to such dramatic changes, longer step- 

strain duration times are found for the CaBER-ALE instance to reach the filament 

break-up phase. In addition and encouragingly, the results from CaBER-ALE trials 

conducted on a low polymeric viscosity Boger fluid show close agreement in filament- 

shape with the experimental observations of others (Anna and McKinley [17]).

172



Chapter 7 Modeling Step-Strain Filament Stretching by ALE

Accordingly, under subsequent simulations, we opt for this amended ALE (<C a B E R -  

A L E ) option.

t=0 0.1 tf 0.3tf 0.46tf 0.6tf 0.76tf tf=13u

t=0 0.15tf 0.3tf 0.45tf 0.6tf 0.75tf t,=20u

Fig 7 1 : Filament shapes, LPTT; a) FISERvs b) CaBER ALE; 
//tc/ ratio—2, Ca '=0.1, 1 time unit=0.22 sec.

A comparison across models at a starting Hencky-strain o f 2 units (l / d  ratio=2) is 

depicted in Fig 7.2. The Oldroyd-B fluid filament takes a longer time to reach the 

break-up phase, followed by LPTT, and then Giesekus filaments. Over the early stages 

of stretching, the Oldroyd fluid, being the most strain-hardening, demonstrates the 

largest level o f initial mid-plane elastic stress, and consequently sustains the largest 

filament diameter at equivalent times (prominent over the early stages o f  stretching up 

to 0.3tf). Thus, it requires more strong force to neck-down. The Giesekus fluid filament 

develops to a thinner form much earlier at the filament mid-plane contrary to that for 

the LPTT fluid, and halts therefore much earlier (tr=2.5 units). The structure in the 

filament feet for these various models differs significantly, as illustrated in Fig 7.2, 

most bulbous for Oldroyd, followed by LPTT, and then Giesekus fluids. For the LPTT
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filament, a double bulge structure forms at the centre o f the filament at t= 0.1 tf. This 

feature is also present in a much reduced form with the Oldroyd-filament, as shown in 

Fig.7.5a below This bulge subsequently shifts towards the plates in time. In contrast, 

for the Giesekus filament no bulge/bead emerges throughout the step-strain process.

t=0 0.1tf 0.3tf 0.5tf 0.7tf 0.9tf tp lS u

t=0 0.1 tf 0.3tf 0.5tr 0.7tf 0.9tf tf=2.5u

Fig 7.2: Filament shapes; a) Oldroyd-B, b) LPTT, c) Giesekus; l / d ratio=2, Ca '=0.1 
1 time unit=0.22 sec.

At a higher aspect-ratio, equivalent to a starting Hencky-strain level o f  2.4 units and 

l / d  =3, comparison is made across models as displayed in Fig. 7.3. The Oldroyd-B 

filament reflects no signs o f central thinning and fails rather rapidly as it approaches its 

critical Hencky-strain level (shorter time to break-up). With the LPTT fluid, a double­

bead develops after one-third o f  the process (0.3tf); and the beads subsequently move 

towards the end-plates.
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t=0 O.ltf 0.3tf 0.55tf 0.7tf 0.9tf tf= 1.1 u
Fig 7.3: Filament shapes; a) Oldroyd-B, b) LPTT, c) Giesekus; 

l / d ratio=3.0, Ca ’=0.1,1 time unit=0.22 sec.

Finally, the beads disappear and the filament thins in the central region before 

break-up occurs, leaving two bulges at both end-plates. In contrast, the Giesekus 

filament does not develop any such bulge. It has a long thin cylindrical shape at the 

central region, with two small triangular-like shaped swellings gradually appearing 

present at the near end-plate zones.

175



Chapter 7 Modeling Step-Strain Filament Stretching by ALE

Progressive thinning o f the LPTT filament at a larger l / d  ratio o f 10 is depicted in 

Fig. 7.4. Here, the terminating Hencky-strain at the end o f phase one is 3.6 units, 

which is close to the critical state sustainable for this LPTT-fluid under the continuous 

stretching mode. In this case, symmetrical shape is maintained, no radial fluctuations 

or bead-like structures are formed and the filament thins down gradually until 

numencal failure occurs. Since the level o f Hencky-strain is close to a critical state, the 

filament breaks-up rather rapidly at tf=0.7 units.

T

11
t=0 0.1 tf 0 .3 tf 0 .5 tf 0.7tf 0 .9 tf tr=0.7u

Fig 7.4: Filament shapes, LPTT (£,=0), l / d ratio=10.0, Ca 1=0.1, Fg=0.0
1 time unit=0.22 sec

Fig 7.5 demonstrates the variation o f Rmid and x^-mid-plane as a function of time for 

l / d  =2. This calls upon the three models cited and the aspect-ratio o f l / d  =2 , to be 

interpreted directly against Fig. 7.2. The state of thinning o f the liquid bridge with time 

is apparent from this representation in correspondence with the relaxation o f stress. At
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earlier times, up to around t=5 units with Oldroyd and LPTT-filaments some 

oscillations are noticeable in both Rmd and but noticeably not with Giesekus

filaments. This may be attributable to the formation o f bulges and their shift in position 

at early times (t<0.3 tf, see also Fig 7.2). At longer times, the mid-plane filament 

diameter and stress maxima are subject to progressive decrease, until eventual break­

up occurs. Approaching break-up, the stress rises rapidly as illustrated in Fig 7.5b. 

Dunng the thinning of fluid filaments, elastic extensional stress resists the necking 

caused by the surface-tension/capillary forces. Consequently, the extensional stress in 

the filament grows in the local mid-filament region as one proceeds towards break-up 

(see [17]). The thickest filaments correspond to the most severe strain-hardening 

Oldroyd-B fluid, and hence take the longest time to reach their break-up states.

-05

-25

Giesekus

-3.5

-4.5

150

,100

50

10

(b)

LPTT

I 1 ■ ■ ■ I ■ ■ ■ 1 I ■ ■ 1 . I J I I I L— 1— 1 .

15
Time

20 25

Fig 7.5: a) Rm,d vs time; b) T^jnid-plane vs time, Oldroyd-B, LPTT, Giesekus

To demonstrate the effect o f aspect ratio variation, the rate o f decrease o f Rmid for 

LPTT model is displayed in Fig. 7.6, for l / d  =  { 2, 3, 10}. The longest relaxation
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period is observed for the shortest ratio. This representative data is for the LPTT 

(£=0.13) version, which reflects only marginal differences to that with £=0 o f the 

alternative two aspect-ratios. For l / d  ratios o f 2 and 3, after the slight oscillations 

detectable at early times (t<5 units), R m,d undergoes a continuous monotonic decrease. 

The strength o f  oscillation and its impact upon the filament mid-plane clearly vanishes 

with rise in aspect-ratio. Rmid decreases at the steepest rate and any oscillatory 

behaviour is removed for the l / d  ratio o f 10. The filament has been stretched to near its 

critical strain level at this large aspect-ratio. Hence, the relaxation period is the shortest 

for this instance and numerical failure occurs due to the high stress levels achieved.

3

2.5

2

©  

a:
1  1-5 
£

1

0.5 

0
0 5 10 15 20
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Fig 7.6: Temporal radial evolution, l / d =  2, 3 and 10, LPTT (fl=0.262)

7.3.2 Low polymeric viscosity fluids, f}=0.87, Oldroyd-B, various l/d 

In this instance, an Oldroyd-B fluid with low polymeric/high solvent viscosity ratio 

(/?=0.87) is employed to match the SMl-Boger fluid as cited in Ref. [19] and for direct

l/d=2

l/d=3
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comparison purposes. The evolving filament sample patterns are displayed in Fig 7.7a. 

These trials are conducted for a filament with l / d  ratio o f 1.36. In this instance no 

beads or other physical asymmetries are observed. As time progresses, filament foot 

structure undergoes dramatic changes, becoming more bulbous and increasingly 

thicker. Similar trends were reported in the experiments conducted in Ref. [17],

t=0 t= 0 .1 tf t=0.3tf t=0.5tf t=0 .7 tf t—0.9tf t r - 22

(a)

r a n
t=0 t=0.1tf t=0.3tf t—0.5tf t—0.7tf t=0.9tf tf—10

(b)

Fig 7.7: Filament shapes, Oldroyd-B(/?=0.87), 1 time unit=l .Osec. a) l / d ratio=l .36; b ) , l / d  

ratio=2.72
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Fig. 7.7b displays the position for the same fluid at a larger aspect ratio ( l / d  = 2 . 1 2 ) .  

Once again, similar characteristics are observed in this instance as described above, 

and long, slender, uniform cylindrical shape emerges in the filament-core as time 

advances with feet-structure adjusting from truncated-conical to final thick 

hemispherical shapes. The step-strain duration times, for contiguous filaments are tf = 

{22, 10} units for problems with aspect-ratios l / d = { \ . 36, 2.72}. Mid-plane radius 

minima (Rmid) and stress maxima (v m a x )  are exhibited in Fig. 7.8a and Fig. 7.8b, 

respectively. From experimental results, it has been observed that in the case of 

capillary thinning for dilute polymer solutions, the mid-filament radius undergoes an 

approximate exponential decrease. The variation o f Rmjd (scaled by R;, the initial radius 

at the onset o f step-strain) illustrated in Fig. 7.8a provides excellent agreement with 

equivalent expenmental results (see [17]). The lesser l / d  ratio o f 1.36 attracts the 

milder rate-of-decrease in Rmid, as opposed to the larger l / d  ratio o f 2.72. As 

demonstrated in Fig. 7.8b, the extensional stress increases rapidly as the filament 

radius decays. The higher aspect-ratio problem yields sharper and greater stress 

variation than the lower aspect-ratio case.

600

- 0.8
500

- 1.6

400l / d = 2 . 1-2.4

Anna & McKinley [17]

200-4.8

100
-6.4

-7.2 ■ i
5 10 15 20020 25 305 10 150

Time Time

Fig 7.8: a) Rmid vs time; b) x^.max vs time, Oldroyd-B, 1 time unit=l .0 sec.
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Noticeably, the length o f the central cylindrical ligament for l / d = 2 . 1 2  represents some 

seventy percent o f the final filament length, whilst for the l / d =  1.36 instance, this length 

is about thirty percent.

(a)
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0.6 
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(b)

3

l/d=2.72

2
N
N

1

0
- 0.2 0 0.2 0.4-0.40.6 0.8 10.2 0.4

r/R mid z/L

Fig 7.9: a) x^-field contours ( l / d =  1.36); b) x^-field contours ( l / d =  2.72);
c) Xzz-profiles, z=0 axis ; d) xzz-profiles, r=0 axis, Oldroyd-B (/?=0.87)
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Typical stress contours and profiles along principal axes for SMl-Boger fluid at two 

strain levels (aspect-ratios) are demonstrated in Fig. 7.9. These representative samples 

are chosen in the relative position at time t=0 from which relaxation commences, as a 

result o f the step strain process. Apparently, the maximum axial stress is located about 

the filament mid-plane at the free-surface (Fig. 7.9c). As strain level (aspect-ratio) 

rises, this maximum stress increases due to the longer exposure to extension. Due to 

this and its associated relative decrease in filament-core thickness with rise in aspect- 

ratio, shortening occurs in the step-strain process period. .

For both viscosity ratio fluids, the relaxation time and apparent extensional 

viscosity are estimated applying Eq. 7.3 and Eq. 7.4. Fig. 7.10a displays the estimated 

relaxation times for Oldroyd and Giesekus fluids. The data for the Oldroud fluid, the 

low polymeric-viscosity SMl-Boger fluid (y9=0.87) is extracted from the aspect-ratio 

trial l/d=2.12. Similarly, the data for the Giesekus fluid, the high polymeric-viscosity 

5wt % polystyrene composition fluid (>9=0.262), is taken from the aspect-ratio trial 

l/d l .  Apparently, for both the two fluids, close agreement is observed between the 

estimated and actual relaxation time data. Table 7.3 indicates the averaged sampled 

estimates, being 3.12 to approximate 3.70 for the Oldroyd-B fluid (Fluidl-SMl), and 

0.35 to approximate 0.42 for the Giesekus fluid (Fluid2). Fig. 7.10b illustrates the 

development of apparent extensional viscosity as a function o f Hencky strain with a 

uniform monotonic rise for the Oldroyd (/?=0.87) and LPTT (>9=0.262) fluids. Here, 

the Hencky strain e(t) may be expressed in the form, e=2 In (D i/D ^ t)), and is radially 

measured at the mid-plane, in which Di represents the initial step-strain filament 

diameter, see Anna and McKinley [17]. These predictions with rising trend and range 

of apparent extensional viscosity values reflect close correspondence with typical data 

reported in the literature [17,81]. The more strain-hardening Oldroyd fluid, 

consistently provides extensional viscosity values, one order o f magnitude greater than 

that for the LPTT fluid, as anticipated.
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Giesekus, (3=0.262 
0 .33< k st<0.37

Oldroyd-B (SM I), (3=0.87
3.0<A.est<4.1

4 6
Time

Oldroyd-B (SM I), (3=0.87
3.0<?test<4.1

 7
LPTT, (3=0.262

4 6 8
Hencky strain (c)

Fig 7.10: a) Estimated relaxation time, A,est; b) Apparent extensional viscosity 
vs Hencky strain
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7.4 Numerical modelling of step-strain for stretched filamentst

The preceding section has explored filament response under conditions where the 

platens are stopped instantaneously. This can not be achieved practically and therefore 

the focus of this section is an exploration of the impact of plate deceleration. This will 

be compared against the instantaneous stop model to complete the discussion in the 

previous section of the present chapter.

7.4.1 Computational predictions

All data are considered initially for the default filament aspect-ratio of L/D=2 and 

the base case of high polymeric:low solvent viscosity ratio ((3=0.262), with parameters 

of Ca'=0.1 andFg=0.122.

7.4.1.1 Start-up conditions

An important aspect to the current problem is the instigation of the halt condition 

(sudden-gradual) and to appreciate how this impacts upon the resulting dynamics in 

the step-strain period. For example, we have observed that commencing from various 

alternative start-up conditions can significantly affect the flow response. To identify 

this dependency, computations have been conducted for sudden-stop and gradual-stop 

instances with LPTT (£=0) model and Fg=0. Under sudden-stop, the end-plates are 

brought to rest instantaneously, whilst under gradual-stop, this motion is brought about 

only gradually over a designated period of time, just prior to the start of the step-strain 

phase.

Fig. 7.12a (short-time, 0<t<l) and Fig. 7.12c (middle-time, l<t<5) illustrate the 

variation of axial fluid velocity (Vz) along the principal axis (r=0), under the sudden 

stop scenario. The corresponding position for a gradual-stop instance, is covered in 

Fig. 7.12b (short-time) and Fig. 7.12d (middle-time), demonstrating profiles when 

plates are brought to rest over a period of 0.2 units, prior to the (t=0)-station. Then, the

1 Material in.this section is based upon the paper “Numerical modelling of step-strain for stretched 
filaments”, by M.F. Webster, H. Matallah, K.S. Sujatha, and M J. Banaai and has been submitted for 
publication to the Journal of Non-Newtonian Fluid Mechanics.
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time (t=0)-instance illustrates the start of the step-strain process, at which time (Vz) 

vanishes at the end-plates. From Fig. 7.12a-d, it is apparent that dramatic changes 

occur in spatial velocity variation immediately after the start of the step-strain process, 

confined within the early time period (0<t<l) units. Within this initial period, the 

magnitude in (Vz) is significantly reduced, from 3.6 units to 0.4 units (see Fig. 7.12a). 

Over times (l<t<5), and after the initial drastic reduction in magnitude, (Vz)-profiles 

display wave-like patterns whilst being anchored at both end-plates (see Fig. 7.12c). 

Between times 1 and 3 units, there is switch in sign of amplitude. During this 

secondary time period (l<t<5), velocity amplitude declines at a much slower rate. 

Similar comments apply for the gradual-stop instance displayed in Fig. 7.12b,d, where 

the magnitude of velocity (Vz) reduces considerably (halved) over that compared to its 

sudden-stop counterpart. Resulting filament profiles for the gradual and sudden-stop 

protocols are provided in Fig. 7.12e,f, where it is apparent that the setting with sudden 

halt captures radial fluctuations, which are largely absent under the gradual-stop 

protocol. There, only a relatively static filament is substantiated with insufficient 

dynamics to generate radial oscillations. Overall, it may be concluded that the sudden- 

stop protocol itself is responsible for the manifestation of radial fluctuations, and that 

moderation to gradual-stop tends to suppress this feature. We proceed below to 

consider further only the sudden-stop protocol.

7.4.1.2 High polymeric/low solvent viscosity ratio (P=0.262); Ca-1=0.1, Fg=0.122, 

various models

We can observe temporal features in shape from the filament profiles, shown 

superimposed at each sample time across models (Fig. 7.13a), and separately for each 

model in stress contour plots (Fig. 7.13b,c). This data may be interpreted alongside 

that of Rmid profiles (Fig. 7.14a) commented upon in more detail below. First, data is 

considered for each model, taken comparatively across models.

Oldroyd data: In comparison to LPTT-data and prior to t=3 units, the Oldroyd 

profiles of Fig. 7.13a and Fig. 7.14a reflect delay in phase and about half the peak-to-
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peak time-period. For t<l unit, these Oldroyd profiles show greater resistance to 

amplitude of oscillation. The Oldroyd central filament-core initially swells up to t=2 

units, whilst Giesekus and LPTT filaments initially thin to t~l unit. There is a slight 

hint of a double-bulge formation at t=l unit in the Oldroyd profiles. After t=5 units, 

Oldroyd profiles enter long-time behaviour up to t=28 units.

Giesekus data: Over the relatively short and early process period l<t<2, the 

Giesekus filament profile demonstrates the more rapid thinning and necking-down at 

filament-centre, with fluid drainage to the feet, which consequently become more 

bulbous. No temporal oscillations/fluctuations are detected with the Giesekus model, 

and the process terminates earlier (tf=2.7 units, Fig. 7.14a) due to excessive necking 

when stress levels rise sharply. This response may be attributed to the much reduced 

hardening of the Giesekus model and its related properties.

LPTT data: The LPTT profiles of Fig. 7.13a line up between those of Oldroyd and 

Giesekus at each sample time (l<t<2) considered. A prominent double-bulge 

formation is observed at t«2 units, with local minima and maxima in shape and stress, 

both present in the filament central zone (Fig. 7.13a-c). As with Oldroyd solutions, 

again there is build up of radial wave-like structures, which eventually lead to central 

necking-down when t>5units. Around t~3 units, such structures are beginning to 

merge into a single bulge/peak, which has occurred by t~10 units. For LPTT(^O) of 

Fig. 7.14a, necking down suddenly accelerates around t~13 units (t>16, £=0), with 

larger stress generation than with £=0. Hence, solution failure occurs earlier with £?0, 

just beyond t=16, and at t~18 for £=0.

Examining in greater detail the Rmid profiles of Fig. 7.14a, we may gather further 

quantitative information relating to the filament centre evolution, discerning 

oscillatory behaviour in filament mid-plane radius for all models, bar Giesekus at early 

times (t<5 units). These radial oscillations adopt the form of traveling waves 

transmitted axially along the filament between the plates. The variation in R mid(t) for 

LPTT(£=0.13) departs from that of (£=0) around t=4 units, yet overall, these two
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LPTT-versions behave in a similar fashion. The slightly larger amplitude oscillation is 

displayed by the (^O)-solution during the early fluctuation period, whilst for the 

(E=0)-solution, the filament-core is thicker at all times beyond t=4 units. The 

rheological distinction that may be drawn between these two LPTT-versions lies in the 

more premature shear-thinning response of the (^O)-form, with onset a decade earlier 

at deformation-rates 0(1). Hence, one might expect minor differences in solutions over 

regions where shearing effects are more prominent (see Fig. 7.13b,c, stress between 

foot-to-centre, early times t<5). The Oldroyd-B fluid filament thins at the slowest rate 

compared to other model alternatives. Hence, beyond the early fluctuation period (up 

to t=5 units), the central section of the filament is thickest for the Oldroyd fluid, 

leading to longer life-span of the thinning filament. One may attach this response to 

the larger resistive tensile stress and the most severe strain-hardening property of this 

model over its counterparts (as noted in Rodd et al. [71] under increased molecular 

weight). In contrast to Oldroyd solutions, both Giesekus and LPTT filaments neck- 

down earlier to a fine thread in the central region (see Rmid profiles of Fig. 7.14a, also 

filament-shape profiles and stress contours fields of Fig. 7.13a-c); most rapid is for 

Giesekus of t=0(2.5); then, LPTT with t=0(16-18) units. Once again, the reason for 

such differences in flow response may be principally attributed to the relative strain 

hardening properties of these fluid models. During the early stress-relaxation phase up 

to say t<10, the Oldroyd-fluid displays the greater extensional stress that translates to 

thicker filament centres (Fig. 7.13b and Fig. 7.14b). The situation reverses around the 

time (t~10) when LPTT-filaments enter their stress growth period and the final 

necking-down phase begins.

Filament foot structure: For reasons of fluid volume conservation, thicker filament 

centres correspond to greater foot pinching (thinner feet). Hence, when necking begins, 

more fluid is drawn into the filament feet, which expand accordingly. Comparing 

across models from Fig. 7.13a and at early times l<t<2, the Oldroyd-B fluid tends to 

generate most pinching close to the plates, followed next by LPTT solutions, whilst 

Giesekus solutions provide the more bulbous feet. Long-time response in LPTT
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filament foot-structure reveals a more conical shape emerging, which is similar to that 

adopted at even longer filament duration times for the Oldroyd fluid. With the 

Oldroyd-fluid, the greater foot pinching at earlier times can be observed to correspond 

to shear stress maxima appearing in the neck of the foot (see stress contour plots up to 

t<5, Fig. 7.13c). The peaks in Rmid, around t=2 and 5 units, provide the thicker filament 

centres and lead to the thinner feet formations, with these shear stress maxima. 

Subsequently, such stress maxima gradually shift towards the filament-centre in time, 

as apparent for t>10 in Fig. 7.13c plots. For the alternative two models, such stresses 

are lower in magnitude and consequently there is less tendency to sharpness of foot 

pinching. LPTT solutions reflect a peak in Rmid between t=2 and 3 units, which again 

produces shear stress maxima in the neck of the foot over this time period. In this 

instance, since radial fluctuation dies away subsequently, again shear stress-maxima 

migrate to the filament centre for t>3.

7.4.1.3 Influence of capillary forces, LPTT (£=0); L/D=2, (3=0.262, Fg=0.122

The influence of surface tension is examined by varying the capillary number 

through the surface tension coefficient. The LPTT (£=0)-model is considered, with the 

standard case of aspect ratio of L/D=2 and (3=0.262 for inverse capillary numbers of 

(0.1, 0.5, 1.0). This choice proves richer in solution features to analyze. By comparing 

temporal evolution in Rmid-profiles across the various parameter settings and for 

relative perspective Rmid/Ro, (Fig. 7.15a, where Ro=Rmid(t=0)), interpretation may be 

drawn re the overall influence of larger capillary forces upon features such as: periods 

of strong radial fluctuations, and also onset, rate and duration of the necking-down 

process. This information may be read alongside the representation of full filament 

patterns, sampled through the relevant time periods, providing further insight on 

deformation patterns and balance between the processes of necking-down (at filament 

centre) to gradual sucking out of fluid to the filament feet. Capillary forces have barely 

had time to take effect up to t ~ l  unit. Beyond this time up to t=4 units, significant 

radial fluctuations are observed in the (Ca’!=0.1)-data, reaching troughs and peaks in
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Rmid at t=(l, 2.5, 4) units. Through the filament length and viewed about the mid-plane 

(see Fig. 7.16 for filament-profile movement), this provides localised bulges in the 

upper and lower portions of the filament. These structures travel axially along the 

filament length in time (over l<t<6 units), towards the plate in each half-filament 

portion, before merging with the developing foot structure. With the (Ca'J=0.1)-data 

and in comparison across the three (Ca_1)-instances, necking-down commences around 

t=5, and continues throughout the longest time period sampled up to t=18 units. Note, 

that (Ca’^0 .1 ) corresponds to the selected material surface tension coefficient, %= 0.03 

Nm'1. In relative terms, the Ca_1=(0.5, 1.0) data in Rmid reflect the increased 

suppression of early radial fluctuations throughout the filament, reducing this time 

period from 0(5) for Ca-1=0.1, to 0(2) for Ca’̂ 0 .5 . With Ca_1= l, this feature has been 

almost completely suppressed, so that necking down begins directly after step-strain 

commences at the most rapid rate, terminating at t=4 units. For Ca_1=0.5, necking 

down commences around t*2 units, with rate-of-decline slightly less than that for Ca’ 

1=1.0, terminating at t«6 units. In summary and as anticipated physically, the greater 

influence of capillary forces accelerates the rate of necking-down and reduces the 

tendency towards radial fluctuation. Such wave formation (undesirable 

experimentally) through the central core of the filament, transmits itself into greater 

top-bottom asymmetry in filament shape (Fig. 7.16 profiles). For Ca_1=1.0, asymmetry 

is not appreciable, whilst with Ca_1=0.5 there is only a slight hint of this in the feet 

formation, 4<t<5 units. Another noticeable feature is the gradual lengthening of the 

central necking filament portion as Ca'1 is elevated. This rises from approximately 

one-fifth of the filament length with Ca_1=0.1, to one-third of length for C a'^0.5, and 

one-half of length at C a'^1.0.

LPTT Tzz-midplane data: Alongside data on Rmid, the Xzz-midplane data track 

resultant stress development over equivalent time phases. The early decay of Tzz-stress 

is apparent only for Ca’!<1.0 and up to t~2.0 units. The final filament failure period, 

where there is rapid rise in stress, occurs during the last time unit prior to ultimate
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termination in each case (just before filament break-up occurs). Only the (Ca_1=0.1)- 

data yields a relatively constant mid-plane stress state over a sustained period, 3<t<15 

units (see also Fig. 7.14b). Upon increasing Ca'1, the fluid representation will display

greater surface tension influence, with the same viscosity (jUo), initial stretch-rate ( £o) 

and length (Lo). The greater the influence of surface tension, the sooner the fluid will 

break, as this forcing effect tends to dominate. The axial stress Tzz is highly sensitive to 

decrease in capillary number (Ca'1 increase). For Ca_1=l and at early times (t<3 units), 

some oscillation in stress is apparent at the mid-plane, increasing thereafter to reach a 

large Tzz-mid-plane value above 1200 units by t=3 units.

7.4.1.4 Influence of gravitational body forces; Giesekus and LPTT
Giesekus data: Solutions for the Giesekus model are considered, both under the 

influence of body force (Fg=0.122) and without. With this model, one observes 

negligible impact of body forces as the step-strain period is comparably short. This is 

made apparent through Rmid (Fig. 7.17a) and Tzz-profile plots Fig. 7.17b), alongside 

filament evolution shapes (Fig. 7.17c). Only slight differences in free-surface shapes 

may be inferred over 0<t<2.5, filament centres being consistently thinner at equivalent 

times for (Fĝ 0)-data. With body force inclusion, the stress at the filament centre is 

barely changing over 0<t<2, with upturn and sharp rise at t=2. This state continues up 

to filament failure at t~2.5, hence, during the final one-fifth of the step-strain period. 

For the case devoid of body forces, filament-centre stress displays consistently larger 

values than when body forces are acting for t<2.3, reversing in dominance beyond this 

time up to final failure. From filament evolution shapes of Fig. 7.17c, it is possible to 

distinguish slight asymmetry in the feet structure of (Fĝ 0)-solutions through overlaid 

differences between the top-foot and bottom-foot. Gravitational influence is to drag the 

filament downwards and to swell the lower foot. The central core section is extremely 

thin and no shape difference can be detected there. Free-surface profiles for radial 

coordinate and stress of Fig. 7.18, supplement this information in a more quantitative 

manner. From this, we are able to detect the asymmetry in stress that emerges through
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time, with off-centre maxima of 23 units for (Fĝ 0). Symmetry about the mid-plane is 

observed for (Fg=0) with maxima on-centre of 15 units. Profile shapes with/without 

gravitational force, are almost identical. There is an interesting point of inflection that 

emerges in surface curvature at the throat of the filament-foot after t=1.5 (see Fig. 

7.18a,c), which is clearly present by t=2 units.

LPTT data: There are some slight changes with LPTT fluids from the observations

for Giesekus fluids and body force inclusion. Here, for brevity, we consider only the

LPTT (£=0) instance (see Fig. 7.19). Overall, there is more of a tendency to strong and

early radial fluctuation, displayed at characteristic sample time t~5 shown in Fig. 7.19c

(see also, t~2 in Fig. 3, Fig. 4a with Fĝ 0). In Fig. 7.19a, there is larger departure in

Rmid(t) after t~3 between instances with and without body forces. As for Gieskus

above, the case with body force inclusion ultimately necks down slightly more rapidly,

generating larger stress maxima for t>12, and terminating in solution earlier (t~18

versus t~20 in Fig. 7.19b). With respect to relaxation of mid-plane stress, both with

and without body force, the initial stress value and rate of decline adjust over a similar

relaxation period, 0<t<5 units. From t=5 to around t=12 there is moderate growth,

prior to the sharp necking period thereafter. Slightly greater asymmetry in filament

shape is depicted by LPTT fluids with body force inclusion (Fĝ 0), noting once again,

the marginal top-bottom asymmetry introduced at the filament feet. In this case, the

impact of body forces is practically negligible due to the dominance of viscous forces

over gravitational forces. Here, the fluids considered have moderate viscosity levels of

0(35 Pa s). For fluids with low-viscosity (mPa s), the problem would be quite different

with large Ca'1, where gravitational forces would dominate more and break-up would

occur earlier. For fixed Bo, identical results would be achieved either by increasing

C a 1 or Fg, as both parameters are linearly proportional

/ it r. * ^  -i gravitational fo rces . T . , „ . *\ r  = Bo*Ca  = ---------------------------). In the present work Bo is not fixed, so some
viscous forces
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variation is to be anticipated. For the range of Ca'1 considered, the largest value of 

unity reflects similar fluid response, with earlier thinning to break-up.

7.4.1.5 Variation in aspect ratio (L/D); Giesekus

To demonstrate the practical implications of variation in final filament aspect ratios 

adopted, we have investigated three choices of ratio Af = for the Giesekus fluid, with 

(3=0.262, C a'^0.1 and Fg=0.122. Findings are reported comparatively across the three 

ratios at suitable sample times per Af in terms of filament shapes, Rmid(t) and profiles 

on the free-surface through shape and x ^ t)  (see Fig. 7.20, Fig. 7.21).

Global inferences may be made from the outset. First, for low (short-fat) aspect 

ratios Af =1, long-time relaxation periods are anticipated (10 units); there is no 

filament break-up (Rmid (tf)>0) to observe, whilst minor asymmetry is detected in 

upper and lower feet formations. Second, longer aspect ratios Af=2 and 3 behave in a 

similar fashion, showing the development of bulbous feet in a continuous monotonic 

fashion. The central part of the filament thins down, drawing the fluid into the feet, 

and excessive central thinning (necking) leads to ultimate numerical failure (as above). 

For the largest aspect ratio considered, the Af=3 instance, the foot formation is even 

more bulbous than the case with Af=2. Fig. 7.21 offers the quantitative description of 

Fig. 7.20, through free-surface profiles on shape and, correspondingly, axial stress 

' t z z ( t ) .  This specifically covers the additional two new aspect ratios of L/D=(l, 3).

On R-surface and Rmid:- For Af =1, there is shrinkage for t<l, but not much 

adjustment thereafter. This is the only instance for Giesekus fluids, where some initial 

oscillation is observed (see Fig. 7.20e). With Af =2, adjustment through time in the 

core is continuous and monotonic, yet the curvature at the filament throat displays the 

point of inflection as observed above in Fig. 7.18. This interferes with the central 

cylindrical shape that is restricted to about two-fifths (40%) of the filament. By Af =3, 

the same behaviour of thinning at the core occurs as with Af =2, but more ideal 

cylindrical structure is extracted, now over four-fifths (80%) of the full filament. This 

is the scenario to gather pure uniaxial extension conditions with cylindrical shape,
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from which corresponding rheometrical data may be extracted. It would appear that 

ratios 2<Af <3 are preferable to establish such a position under present material 

considerations.

On Tk profile-data: For the low aspect ratio Af =1, there is only stress relaxation 

(Fig. 7.21b). This position adjusts to only stress growth at the filament core for the 

largest aspect-ratio considered, Af=3 (Fig. 7.21d). The intermediate case of Af=2 (in 

Fig. 7.18 ), essentially follows that of Af=3, but with some tendency to also relax in 

stress during the process (0<t<l, Fg=0). Again, this reaffirms the positive attributes of 

Af ratios larger than two.

7.4.1.6 Low polymeric viscosity ratio (P=0.915); Ca'^O.l, Fg=0.122, various 

models

Next, we discuss the consequences of switching between the polymeric viscosity 

ratios, from high (p=0.262) to low (p=0.915), upon the ensuing filament deformation 

(Fig. 7.22-Fig. 7.26). All three fluids now more closely reflect the properties of Boger- 

fluids, with practically constant shear viscosity, whilst being strain-hardening to some 

degree. There are some obvious features that are worthy of note in the solutions 

predicted. First, one may comment on the impact of P-elevation upon the early-time 

response in the different fluid filaments. With this P-change, the level of initial mid­

plane stress reduces for Oldroyd-filaments from 0(30) to 0(10) units (see Fig. 1.22b). 

The equivalent P-switch for LPTT-filaments yields stress reduction from 0(15) to 

0(4) units (see Fig. 1.24b) and for Giesekus filaments from 0(7) to 0(0.7) (see Fig. 

1.26b).

OldroydfLPTT-data: Correspondingly, the early-time radial fluctuations are affected 

differently for each fluid in turn. With (P=0.915)-data, these are now totally 

suppressed with the LPTT-fluids, as occurs with the Giesekus filaments tested. These 

LPTT-fluids are observed to thin down directly from the Rmid-data of Fig. 7.24a, and 

from filament-shape evolution of Fig. 7.25. This would therefore also go hand-in-hand 

with expectation of reduction in the limiting strain-hardening plateaux for these fluids
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through (3-elevation. For Oldroyd-fluids likewise, there is some adjustment to these 

fluctuations, which occur earlier in phase, during the first two time units for 

(P=0.915)-data, in comparison to that for ((3=0.262)-data (which are present for 

t<5units, see Fig. 1.22a and Fig. 7.23). In addition, we can appreciate from the 

Oldroyd and LPTT-data that as (3 tends to unity (more solvent presence), there is a 

significant reduction in the period of duration of step-strain. This time period reduces 

by a factor of around one-third for Oldroyd-fluids (from 28 to 20 units), and by one- 

half for LPTT-fluids (from 16 to 8 units).

Giesekus-data: The time to filament break-up, or equivalently that for central 

column formation and breakage, doubles from t=2.5 for (p=0.262), to t=5.5 for 

(P=0.915). This outcome would appear to oppose that observed for the more 

exaggerated strain-hardening alternative two fluids. A possible explanation may lie in 

the underlying filament shapes (and stress) generated of Fig. 7.26. The more bulbous 

Giesekus feet at p=0.262, with thinner necked filament-core (see Fig. 7.17c), give rise 

to premature thinning and earlier termination than correspondingly for the (p=0.915)- 

case. The length of the central filament column at termination is also significantly 

different. At P=0.915, filament columns are extracted that are about half the total 

filament length, with correspondingly wider, less pinched feet. For p=0.262, the 

filament column is only about one-fifth of the final filament length.

The state of stress evolution within the Giesekus-filament, with P-adjustment from 

0.262 to P=0.915 is most marked (Fig. 7.26). Over a sustained early period t<1.5, Tzz- 

midplane is 0(0.7 units) for (p=0.915) and 0(7 units) for (P=0.262); this substantiates 

a fourteen-fold increase. In particular, this difference in level of stressing has its 

impact upon the filament-foot shapes of Fig. 7.26, generating the point of inflection on 

the free-surface curvature of (P=0.262)-filaments, as in Fig. 7.18.
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7.4.1.7 Material relaxation time (Aest) and apparent extensional viscosity (paPP)

Apparent extensional viscosity (fiapp(t)) and estimates of relaxation time (Aest) may 

be taken from the Rmid(t) data discussed above. For the high-polymeric/low-solvent 

base-case of (P=0.262) and L/D=2, the Giesekus data-set provides the best match to 

the theory and its assumptions. That is without early oscillatory disturbance to the 

filament structure and monotonic variation in slope of Rmid(t)-data. Other model data 

provide tight restriction on the time-windows of relevance, as derived from their stress 

growth data. The Giesekus data provides reasonable trends over time in iiapp(t), as 

gathered experimentally (see Anna & McKinley [17], English [81]), rising 

monotonically from O(102) at early times, to O(103) when approaching a time of 3 

units. For the Giesekus model, when switching to the high-solvent/low-polymeric case 

with (p=0.915), stress levels dramatically decline and the trend in extensional viscosity 

follows this pattern likewise (see Fig. 7.27). The sharper rise at early times is lessened 

with (p=0.915), as the central filament core assumes more cylindrical form and is 

slower to neck down than for (P=0.262). The improved match of (L/D=3, p=0.262)- 

data to the necessary assumptions is also gathered from this plot, following a similar 

pattern to the (L/D=2)-data over the early time period up to 1.3 units, yet with a 

slightly more monotonic trend.

Similarly under the same assumptions, estimates of relaxation time may be gathered 

for any of these settings discussed with Giesekus data. For example, with (L/D=2, 

p=0.262)-data and taking sample times over the range 1.5<t<2.5, one finds estimated 

dimensional relaxation time lies in the range 0.24<Xest^0.21s. Over the earlier time 

0.0<t<1.5, the estimated values are in the range 0.33<^est^0.35s. Of these two 

estimates, the former around 0.22s is that coinciding with the final stress growth 

period. With (L/D=2, p=0.915)-data and the sample stress growth range 3.5<t<5.5, the 

result is 0.20<A,est^0.22s. Earlier time estimates here would provide 0.49s. Clearly, the 

latter stress growth period data agree closely across the P-ratios. Encouragingly, these 

relaxation time estimates under either viscosity ratio yield a reasonable approximation
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to the target value of 0.42s, as original material data adopted for this study (mean 

relaxation time measurement taken in the linear viscoelastic regime).

7.4.2 Conclusion

In this chapter, the capillary thinning (CaBER) step-strain filament stretching 

process has been simulated using an earlier established numerical procedure, a 

CMI ALE hybrid fe/fv method. Various fluid aspect-ratios and constitutive models 

(Oldroyd-B, Giesekus and LPTT) have been studied. The hybrid finite element/finite 

volume scheme with a problem-specific CaBER-ALE implementation has successfully 

captured sharp differences in filament curvature (beads/bulges, for example) and flow 

structure throughout its evolution. In high polymeric viscosity strain-hardening models 

with high aspect-ratio filaments, radial fluctuations and beads-like formations are 

observed with high polymeric-viscosity fluids and strain-hardening models. Prediction 

of the mid-filament radius Rmid evolution, and filament shape, conducted on a low 

polymeric Boger-type fluid (Oldroyd-B), has indicated qualitative agreement with 

equivalent experiments from the literature. No beads or asymmetries have been 

observed in such an instance. The radial fluctuations decline in magnitude as the 

aspect-ratio rises (from two, to three, to ten), so that they are not observed at the 

largest aspect-ratio of ten. At a fixed aspect-ratio, the impact of the degree of strain- 

hardening is an outstanding aspect. The development of radial-fluctuations is resisted 

by the excessive strain-hardening properties of the Oldroyd model. Whilst these 

fluctuations are more apparent for the intermediate-level strain-hardening LPTT model 

and absent for the weakly strain-hardening Giesekus model.

Considering the low polymeric Boger-type fluid (SMI-Fluid 1), with Oldroyd 

models and two further aspect-ratios, provides qualitative agreement with the relevant 

experiments recorded in the literature. This is observed in overall filament shape 

features, such as structures within the central core and feet. This can be concluded 

quantitatively via the comparison of the evolution of mid-filament radius Rmid through 

both prediction and experimental measurements. Further investigation is demanded to
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resolve some deviation caused by start-up of step-strain. When the plate motion is 

suddenly brought to rest (impulsive step-change), yet this is difficult to approximate 

experimentally. In such a solvent-dominated instance with the aspect-ratios 

investigated, no beads-like formation or radial fluctuations are observed. Through this 

study on both low and high polymeric fluids, predicted estimates have been derived for 

apparent extensional viscosity and principal relaxation time. In this respect, close 

agreement has been achieved with the underlying experimental data, both on estimated 

relaxation time and the trend (range of values) in extensional viscosity.

This investigation has also addressed the numerical simulation of the step-strain 

process, using various constitutive models, final filament aspect-ratios and viscosity 

component fractions. A summary of our major findings may be stated as follows. The 

greater the effect of surface tension, the sooner the fluid will thin down, as then 

stronger necking (capillary) forces acts on the filament. When gravitational body force 

is taken into consideration, there are no significant adjustments to general 

observations, bar slight asymmetry in filament-shape. The case with body force 

inclusion, ultimately necks down slightly more rapidly, generating larger stress 

maxima at earlier times and terminating in solution earlier. Under various filament 

aspect-ratios tested, with Af =1 there is shrinkage for t< l, but not much adjustment 

thereafter. With Af=2, adjustment through time in the core is continuous and 

monotonic, yet the curvature at the filament throat displays a point of inflection. By Af 

=3, the same behaviour of thinning at the core occurs as with Af=2, but more ideal 

cylindrical structure is extracted (more substantial length of cylinder). For the current 

problem, the setting (2<Af<3) yields suitable core-filament structure, from which 

reasonable estimates can be made for associated rheometrical data in extensional 

viscosity and characteristic material time. The strain-hardening levels of the LPTT 

models tend to capture radial fluctuations, whilst these are damped by even greater 

strain-hardening with the Oldroyd model, and practically removed by much reduced 

strain-hardening under the Giesekus model. Such fluctuations tend to interfere with

197



Chapter 7 Modeling Step-Strain Filament Stretching by ALE

ideal cylindrical filament shape. The shortest step-strain periods are generated by the 

Giesekus model, followed by LPTT, with the longest for the Oldroyd model. This is 

attributed to the larger tensile stresses that arise with more strain-hardening fluids, 

which tend to maintain thicker core to the filament to longer times. Adjustment of 

viscosity fractional component from high to low polymeric parts has revealed some 

differences in response during the step-strain period illustrated in free-surface profiles. 

For the more strain-hardening models of Oldroyd/LPTT, the fluid with high (3-ratio 

displays more Newtonian-like behaviour and thins down faster compared to its low 13- 

counterpart. The low (3-ratio form yields more foot pinching, thicker filament core at 

all times, and consequently, a longer step-strain period. The converse is the case for 

the less strain-hardening Giesekus model, with the high (3-ratio instance displaying the 

longer time to break-up. Here, it is the low |3-case that provides the more bulbous 

filament feet, thinner core and shorter time to break-up.

Overall, this work has enabled the gathering of rheological properties and process 

settings to predict suitable windows for experimental operation, so that reliable 

rheometrical data may be extracted. In this manner, reasonable trends of increasing 

apparent extensional viscosity in time have been derived over acceptable ranges of 

values. In addition, point estimates for characteristic relaxation time are found to lie in 

close agreement with material data originally supplied.

Potentially fruitful directions for this work lie in the careful study of the effects of 

alternative modes of preliminary plate-separation (linear versus exponential), and 

possible variation in initial sample loadings (shapes). Such predictive knowledge 

would serve to aid more profound understanding of the CaBER procedure and its 

successful practical application in rheometrical measurement.
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Parameter symbol (unit) value

Plate radius Rplate (m) 3.5* 10*

Initial filament 

length
L0( m) 1.89* 10’3

Extension rate £o (s'1) 4.48

Reynolds number Re 4.72* KT4

capillary number Ca 9.86

Bond number Bo 1.203

Deborah number De 1.886

zero shear 

viscosity, (Pa s)
Ito

34.95

density, (kg/m3) P 1030

surface tension 

coefficient, (N/m) X
0.03

Table 7.4: Problem parameters and non-dimensional group numbers

P Sample time ^est(s) ^act(s)

0.262 0.0<t<0.5 0.35 0.42

0.5<t<1.5 0.33

1.5<t<2.0 0.24

2;0<t<2.5 0.21

0.915 0.0<t<2.0 0.48 0.42

2.0<t<3.5 0.50

3.5<t<4.9 0.22

4.9<t<5.5 0.20

Table 7.5: Relaxation-time data; various sample time intervals; Giesekus; 
two viscosity ratios, L/D=2.
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Fig. 7.11: Step-strain schematic diagram
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Fig. 7.12a-d: Variation stop criteria; LPTT(£,=0); Fz(t) profiles; sudden-halt a) 0<t<l, 
c) l<t<5; gradual-stop b) 0<t<l, d) l<t<5; L/D=2, Ca‘l=0.1, Fg=0,
P=0.262
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(e) Sudden-halt

t=\ t=2 t=3 t=4

(f) Gradual-stop

t=5 t= 6

Fig. 7 .12e, f: Variation stop criteria; LPTT(£,=0); e) sudden, f) gradual; filament 
shapes; l<t<6; L/D=2, Ca'1=0.1, Fg=0, p=0.262
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Fig. 7.13a: Filament shapes, various models (Giesekus, LPTT(J;=0) and Oldroyd-B);
0<t<10, (3=0.262, Ca'1=0.1, Fg=0.122, L/D=2
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Fig. 7.13b: Filament axial stress (t^) contours; various models, p=0.262, Ca' =0.1, 
Fg=0.122, L/D=2
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Fig. 7.14: Mid-plane axial stress and radial evolution; Oldroyd-B, LPTT(£=[0.13,0]) 
and Giesekus fluids; (5=0.262, L/D=2.0, Ca '=0.1, Fg=0.122
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Fig. 7.15: Influence of capillary forces; LPTT(£,=0), L/D=2, p=0.262, Fg=0.122, 
Ca‘1=0 .1 , 0.5 & 1 ; a) ln(Rmid/Ro), b) x^-midplane
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Fig. 7.16: Influence of capillary forces; deformation profiles; l<t<18, 
LPTT(^=0), L/D=2, p=0.262, Fg=0.122, Ca_1=0.1, 0.5 & 1
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Fig. 7.17: Mid-plane axial stress and radial evolution; Giesekus; with and 
without body force; (3=0.262, L/D=2.0, Ca‘1=0.1; a) Rmjd and b) (Tzz)mid, c) filament 
shapes,shapes, t= {0.5,1,2,2.5}
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Fig. 7.18: Body force effects (Fg=0, 0.122); Giesekus; different times (0<t<2.5 units), 
L/D=2 (s=2), Ca"1=0.1, p=0.262
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Fig. 7.19: Body force effects (Fg=0, 0.122); LPTT(£=0); various times (0<t<18); 
L/D=2 (e=2),Ca"1=0.1,P=0.262
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Fig. 7.20: Influence of initial aspect-ratio; Giesekus; Ca'1=0.1, Fg=0.122, p=0.262: a) 
L/D=l, t=0, 1, 2 ,3 ,4 , 5 & 10 units, b)L/D=2, t=0, 1, 2 & 2 .5 ,c ) L/D=3,t=0, 0.5 & 1; 
d) development of Rmid(t), L/D=l, 2 & 3; e) development of Rmid(t), L/D=l
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Fig. 7.22: Mid-plane axial stress and radial evolution; Oldroyd-B; |3=(0.262, 0.915); 
L/D=2.0, Ca'1=0.1, Fg=0.122
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Fig. 7.23: Filament shapes; Oldroyd-B; (3-ratio comparison (0.262, 0.915); l<t<28; 
L/D=2,Ca'1=0 .1 ,Fg= 0 .122
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Fig. 7.24: P-ratio comparison (0.262, 0.915); LPTT(£=0); midplane a) R(t), b)
^ ( t ) ;  L/D=2, Ca'1=0.1, Fg=0.122
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Chapter 8 

Concluding Remarks and Suggestions

8.1 Concluding remarks

Simulation of axisymmetric filament-stretching and step-strain of viscoelastic 

fluid flows in two-dimensional geometry has been presented in this work. Effort has 

been placed upon relating fluid dynamic response to background rheometrical 

properties, such as extensional and shear viscosity. In particular, axial stress response 

in extensional flows displays a dependence on the degree of strain-hardening. That 

is, for fluids exhibiting less strain-hardening under prevailing stretching conditions, 

extra axial stress rises less sharply in magnitude. Stress and stretch fields also depend 

upon the associated material functions. It is possible to discern dominant deformation 

regimes in some instances within a specific region. As an example under stretching 

mode, fluid along the mid-plane centreline experiences pure elongational flow, 

whilst farther from the filament centre, larger magnitudes for shear stress are 

observed in the foot-zones near the end-plates (where strain-rates are practically zero 

due to no-slip boundary condition). On the feet and close to the plates, important 

shear effects are anticipated which may potentially lead to foot-pinching under 

certain circumstances. Hence, in extension-dominated zones (mid-filament region),
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extensional viscosity becomes an important parameter, whilst in regions of strong 

shear, the fluid response is governed by shear viscosity.

Through this study, a hybrid finite element/finite volume (fe/fv) numerical 

scheme is employed, which has been developed by the computational rheology 

(INNFM) group at Swansea University. In chapters four to seven, solutions are 

validated against results and predictions appearing in the literature.

First, the Oldroyd-B constitutive equation has been considered. This model is of a 

relatively high strain-hardening nature, and has been selected to predict rheological 

behaviour of a wide range of polymeric solutions and melts. Several modifications 

have been proposed since the introduction of the original model. Under filament 

stretching, the influence of the non-dimensional quantities on the flow is gathered. 

These quantities control the degree of strain-hardening, the onset of shear-thinning 

and the viscoelastic contribution. The next step was to provide corresponding 

predictions for viscoelastic fluids in filament-stretching cylindrical geometries, 

where radial evolution, stress and velocity fields are reported for different levels of 

solvent fraction and aspect-ratios. Alternatively, less strain-hardening 

representations, with the linear version of the Phan-Thien/Tanner (PTT) model and 

the Giesekus model, were also implemented with variation of £ and a  parameters, 

respectively.

Comparison across the three viscoelastic models presents the advantage of varying 

the strain-hardening response with little variation in shear-thinning viscosity. Upon 

this basis, the influence of extensional viscosity and Trouton ratio was investigated 

for shear-thinning fluids in the context of filament-stretching. In addition, the 

influence of anisotropy and the numerical difficulties introduced by this factor have 

been observed. It was concluded that the instabilities provoked by the anisotropy 

parameter are boosted at larger a-values, where the anisotropy-free case for the 

Giesekus model corresponds to the Oldroyd response. A comparison has been 

included with the LPTT model at two different levels of ^-parameter £={0,0.13}, 

with variation in shear response, similar dynamic behaviour and slightly less strain-
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hardening properties at ^=0. At Hencky-strains larger than three, bead-like structure 

starts to emerge for the earlier shear-thinning/more strain-hardening LPTT (§#)) 

fluid, features which are observed neither in the equivalent Giesekus nor LPTT (£, 

=0 ) instances.

The scheme of ALE-hy-fV  has proven its capability in dealing with numerical 

challenges and grasping sharp differences in flow structure and filament curvature 

throughout flow evolution. The quality of solutions generated for the single-mode 

approximation has been confirmed through analyses performed on full-filament and 

quarter-domain problems. At larger levels of Hencky-strain, multi-mode 

approximation has shown deeper stress penetration across the filament span.

Gravitational forces create a directional bias to the shape of the filament and 

counterbalance the effect of surface tension.

An effective comparison has been made between a compressed-mesh approach 

and a Volume-of-Fluid alternative. Solution quality and levels of for the CM- 

approach with AL£-formulations {um~u) have been found superior to those for the 

VOF-scheme.

Regarding the discrete treatment of the dynamic free-surface , the sensitivities and 

deficiency of employing the kinematic condition (dhldt)  to determine surface level 

h(z,t) have been illustrated empirically. In the particle-tracking technique (dx/dt), 

free-surface movement is carried out with further flexibility and less restriction, and 

hence, it allows for capturing zones of larger curvature adjustment with improved 

precision. In the shear boundary layer, near the plates at the feet of the filament, this 

effect is most prominent. Applying the ALE/CM-stmtegy with particle-tracking 

yields quantitative measures via Trouton ratio, extensional viscosity, minimum 

filament radius, deformation rates and stress, all of which provide close agreement 

with the results recorded in the literature.
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Disregarding body forces/surface tension influences in the context of filament- 

stretching, the influence of variation in shear-thinning and tension-thickening 

properties has been analysed, concentrating upon comparison of results for 

LPTT(£=0 and £=0.13) and Giesekus models. Reduction in strain-hardening as with 

the Giesekus model and rising (a), tends to lead to less (xzz) development. Whilst, 

shear stress effects are dominant near the moving-plates, and by raising the mobility 

factor these shearing effects begin to decline. Thus, in an a —>0 regime, when 

shearing influence is augmented, the filament foot is more pinched and the filament 

mid-section thickens. In contrast, when a  —>1, exaggerated thinning is detected at 

the filament mid-section, due to the corresponding reduction in hardening and 

extension experienced there.

Contrasting single- and multi-mode axial stress representation at the filament- 

centre, discrepancy in stress local maxima appears even at the relatively low levels of 

Hencky-strain of £=0.2 units (and fully so by 8=1.0). Under multi-mode modeling, 

the impact of the shortest modes is conspicuous in the axial penetration of stress 

through the filament (lengthwise), whilst providing uniform radial penetration. For 

larger levels of Hencky-strain (e>0.8 units), the largest mode represents the major 

contributing factor to the extra-stress, most notably in terms of axial stress. In early 

stretching stages, dominance switches between the modes, with the second mode 

taking over by £=0 . 2  units, and barely any disparity is discerned between first and 

second modes across the intermediate range (0.2<£<0.8 units). Under single or multi- 

mode approximations and in the cases where body/surface tension forces are absent, 

both the Giesekus and LPTT(£=0) fluids yield similar trends. There are no signs of 

bead-like structures formation, retaining symmetrical filament-shapes and stress 

distribution patterns (axial stress), even at large Hencky-strains of £>3 units. 

Inclusion of capillary forces does not alter this finding. In contrast, multi-mode 

LPTT (£=0.13) solutions, apart from capillary force inclusion or exclusion, provide a 

single symmetrical bead-like structure, but only at larger strain levels beyond £>3 . 4  

units, as opposed to £=3.2 units for the single-mode instance.
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Under an Oldroyd-B single-mode approximation, linear versus exponential- 

stretching configurations have also been compared, with predicted solutions 

validated closely against theoretical solutions. Under the linear-stretching mode, 

axial stress relaxation has been observed during the stretching process, hence proving 

less restrictive to the overall stretching period. This lies in stark contrast to the 

exponential-counterpart, where axial stress grows exponentially. The dynamically 

declining stretch-rate of the linear-stretching configuration accounts for such a 

relaxation in stress, unlike its exponential counterpart. Likewise, the trend in Trouton 

ratio is monotonically rising with Hencky-strain under exponential-stretching, whilst 

with linear-stretching, far lower levels of Trouton ratio are attained. Radial velocity 

minima (Vriran) at the mid-plane prove considerably lower for linear-stretching than 

under exponential-stretching up to equivalent Hencky-strain levels of 8=1.8 units. 

Under linear-stretching mode and at higher strain levels, radial velocity minima do 

not display a tendency to migrate towards the plate-regions (as occurs with 

exponential retraction). Nonetheless, developing filament shapes at equivalent 

lengths (Hencky-strains) do not exhibit significant difference across the various 

modes of stretching.

The capillary thinning (CaBER) step-strain filament stretching process has been 

simulated using a CM/ALE  hybrid fe/fv  method numerical procedure. Three 

constitutive models (Oldroyd-B, Giesekus and LPTT) have been studied for various 

fluid aspect-ratios. Prediction of the mid-filament radius Rmid evolution, and filament 

shape, conducted on a low polymeric Boger-type fluid (Oldroyd-B), has indicated 

qualitative agreement with equivalent experiments from the literature. No beads or 

asymmetries have emerged in such an instance. As the aspect-ratio rises (from two, 

to three, to ten), the radial fluctuations decline in magnitude so that they are absent at 

the largest aspect-ratio of ten. The development of radial-fluctuations is hindered by 

the excessive strain-hardening properties of the Oldroyd model. Whilst these 

fluctuations are more apparent for the intermediate-level strain-hardening LPTT 

model and absent for the weakly strain-hardening Giesekus model.
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The low polymeric Boger-type fluid, with Oldroyd models and two further aspect- 

ratios, provides qualitative agreement with the relevant experiments reported in the 

literature. Further investigation is demanded to resolve some deviation caused by 

start-up of step-strain. The plate motion, in the present simulations is suddenly 

brought to rest (impulsive step-change), yet this is difficult to approximate 

experimentally. In the solvent-dominated instance with the aspect-ratios investigated, 

no beads-like formation or radial fluctuations have been observed. Through step- 

strain studies, predicted estimates have been derived for apparent extensional 

viscosity and principal relaxation time for both low and high polymeric fluids. Close 

agreement has been achieved with the underlying experimental data, both on the 

trend (range of values) in extensional viscosity and estimated relaxation time.

8.2 Suggestions for further study

No-slip conditions have been applied on the end-plates, in all instances studied in 

this work. Considering slip conditions and comparison against present results may 

prove a fruitful topic in future studies.

Single extended Pom-Pom (SXPP) model is of a relatively new class of 

constitutive equations, developed mainly from physical arguments and several 

modifications have been proposed since the introduction of the original model by 

McLeish and Larson. There is little research performed to study the dynamic 

response of this model in filament-stretching and step-strain. As such, it is proposed 

to study this model fluid behaviour, both under the contexts of filament-stretching 

and step-strain, with possible inclusion of an alternative version of the pom-pom 

model termed X2XPP. This provides access to modelling system structure, through 

entanglement and concentration (branched/linear architecture, mono-/polydispersed 

systems).

In experimental research, it is practically impossible to study step-strain under 

instantaneous sudden halt of the moving plates. As indicated in the appendix of 

chapter seven, a paper has recently been submitted for publication including the
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gradual cessation of filament-stretching. Further studies are proposed along this line 

through parameter variation to investigate the wave-like behavior of radial 

fluctuations and their physical interpretation, covering both instances of linear and 

exponential initial stretching.

A combination of filament-stretching and step-strain processes study may be an 

interesting prospective topic, through which a filament is subject to intermittent 

stretching and step-strain.

The numerical study of torsional rheometers and investigation of differences with 

FISER and CaBER rheometers can be another appealing area of research.

The thorough study of step-strain following linear filament-stretching is 

commended for its associated dynamic response in terms of radial evolution and 

stress growth and relaxation. Comparison against the literature for its exponential 

counterpart would be most informative.

Since in experimental work, emergence of bubbles is common when filaments are 

subjected to stretching, it would be helpful to simulate the step-strain process with 

either a single- or multiple-bubbles located at different positions along the filament.

Other fruitful study proposals may include modeling filament break-up as a 

helpful tool in the study of filament shape and dynamic response after failure; 

different initial filament sample shapes based on initial stresses and parameter 

feasibility study on final aspect ratio.
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