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SUMMARY

The work reported in this Thesis reports on studies of the tensile strength of polymeric liquids by 

two experimental techniques, namely the Bullet-Piston (B-P) technique and a Capillary Break-up 

Extensional Rheometer (CaBER). The motivation for this work lies in the fact that although many 

associations exist between the cavitation properties of fluids and their extensional flow properties, 

these associations have never been systematically investigated due to a lack of an appropriate 

cavitation technique. The work presented in this thesis addresses this, using two custom-built 

instruments (a filament stretching device and a dynamic stressing technique for cavitation 

studies). Together, these were used to investigate the appropriate rheological and cavitational 

characteristics of a range of fluids including model polymer solutions. In experiments in which 

samples o f degassed, deionised water are subjected to dynamic stressing by pulses of tension, the 

pulse reflection technique allows the rate of development o f tension in the liquid, QF, to be 

varied in a systematic manner, in order to investigate its influence on the resulting measurement 

of the liquid’s ‘effective’ tensile strength, Fc . Results are reported for a range of stressing rates,

Qf , ~ 0-19bar/jis < QF < 0-77bar/jis. These experiments, which are the first of their kind to be 

reported on water, show an approximately four-fold increase of Fc at the highest stressing rate, 

this value being 224bar (for C1F = 0*77bar/ps) compared to 59bar (for QF = 0T87bar/ps). The 

present work has resolved a longstanding anomaly concerning the role of polymeric additives in 

determining the cavitation thresholds of dilute aqueous polymer solutions. For the first time it is 

shown that with increasing molecular weight there is an increased effective tensile strength of the 

solution. However, the results reveal that increasing polymer concentration results in a stress 

saturation level in terms of effective tensile strength. This work is also the first to relate 

cavitational failure of a fluid and its extensional properties in terms of two appropriately chosen 

stress parameters; and to report the relationship between these stress parameters on the basis of an 

experimental study involving two different techniques over a range of stress rates and a wide 

range of polymer concentration and molecular weight. Despite differences in the magnitudes of 

the tensile stress parameters, both techniques show that the relevant parameter increases with 

polymer concentration and molecular weight, but that such stress levels become effectively 

saturated at essentially the same levels o f concentration and molecular weight. This information 

has never previously been available. As a result o f the work reported in this thesis it may now be 

possible to conduct fluid breakup measurements in extensional flow experiments in order to 

ascertain the likely levels of cavitation threshold stress for dilute aqueous polymer solutions.
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Chapter 1 

Introduction and Literature Review

1.1 Introduction

Mesoscale-thickness liquid films experience rapid deformation between separating 

surfaces in many industrial processes such as lubrication, coating and peeling. In the 

case of fluid mechanical machinery these separating surfaces are usually solid, 

whereas in biomechanics they may be flexible surfaces, such as biological 

membranes. In printing processes involving ink films (McPhee (1997)) or coating 

flows involving films of liquid adhesives (Gent et al. (1985)), rapidly-stretching liquid 

filaments may form - possibly as a consequence of cavitational film-splitting. Such 

filaments are responsible for ‘linting’ and ‘picking’ problems in printing, while their 

break-up leads to unwanted droplet deposition. The ‘tack’ of such a film is the 

maximum tensile stress (or ‘negative pressure’) which it can withstand before splitting 

(Zang et al. (1991)).

Attempts to quantify tack usually rely upon direct measurements involving pressure 

transducers, but there is no satisfactory method of calibrating such transducers in 

terms of the often significant levels of dynamic negative pressure which arise. Such 

measurements may be further compromised by an elastic de-cohesion of the fluid 

from the transducer’s surface. Moreover, the concept o f ‘negative pressure’ is not 

particularly useful in this context as it is more pertinent to consider the state of stress 

experienced by the fluid; to understand this it is necessary to know the flow field 

(Brennen (1995)). The latter requirement imposes stringent experimental demands,
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chief among which is the necessity of imaging and recording meso-scale events with 

sub-millisecond resolution in the case of filament stretching; and sub-microsecond 

resolution in the case of cavitation phenomena. Cavitation of a fluid film may occur 

under the high tensile stresses developed in the rapid separation of surfaces and can 

result in loss of machine performance, or have damaging consequences (Trevena 

(1987)). Surface damage in high speed microelectromechanical systems devices has 

been attributed to the cavitation of perfluoropolyether (PFPE) lubricant films (Spikes, 

2000).

Due to the high deformation rates and short timescales which typify meso-scale film- 

splitting phenomena, significant viscoelastic effects may be anticipated. One of the 

few studies in this area suggests that an observed delay in the cavitation of 

viscoelastic fluids may be due to the development of normal stresses while other 

claimed viscoelastic effects include a significant displacement of the point of 

cavitation from the centre of contact (where film thickness is a minimum) and 

enhanced film thicknesses (Coyle (1984)). Despite the potential scientific and 

technological significance of these findings, the effect of viscoelasticity has not been 

widely studied in micron-scale film-splitting phenomena and very little is known 

about its influence in sub-micron situations. A crucial factor is the initial film 

thickness (which in many processes may be sub-micron). Even ostensibly low rates of 

surface separation may provoke the high rates of fluid deformation needed to induce 

the mechanical breakdown of a fluid film if its initial thickness is sufficiently small 

(Carvalho 1996).
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An improved understanding of the tensile properties of process fluids such as 

polymeric liquids is extremely valuable in a diverse range of industries including the 

automotive, printing and food industries.

Within these industries substantial negative pressures are developed within many flow 

situations. Once the pressure reaches a critical value for each fluid - its effective 

tensile strength - the fluid ‘breaks up’; driven by a mechanism known as cavitation. 

The term ‘cavitation’ refers to the formation of cavities (or cavitation ‘bubbles’) in a 

liquid when it experiences tension (Trevena, 1987; Joseph, 1998). If the tension 

exceeds the liquid’s cavitation threshold (or effective tensile strength, Fc) the liquid 

changes irreversibly into a two-phase system of liquid and a mixture of vapour and 

dissolved gas (Brennen, 1995). The cavitation of liquid films is an important aspect of 

lubrication (Dowson & Taylor, 1979) and printing (Zang et al, 1991), processes which 

often involve meso-scale (0.1-10 pm) thickness films undergoing rapid deformation 

between separating surfaces. In fluid mechanical machinery these are usually solid 

whereas in biomechanics surfaces such as biological membranes are flexible. The 

‘cracking’ of knuckle joints has been attributed to cavitation within meso-scale 

lubricating films of synovial fluid (Unsworth et al, 1971).

In coating processes, cavitational film-splitting may result in the formation of rapidly- 

stretching filaments, whose breakup leads to unwanted droplet deposition. Filament 

formation is also a feature of coating flows involving adhesive films (Lakrout et al, 

1999) but descriptions of the process are still largely qualitative, commonly invoking 

the term ‘tack’ (Braithwaite & McKinley, 1999; Zosel, 1998). The tack of an ink film 

is primarily connected with the tensile forces developed in film-splitting (Strasburger,
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1958), the function of cavitation being to limit the forces of separation of surfaces 

joined by a tacky liquid (Banks & Mill, 1953). By definition, the tack of an ink film is 

the maximum tensile stress (or ‘negative pressure’) which it can withstand before 

splitting (Zang et al, 1991).

Due to the high deformation rates which typify many meso-scale cavitation 

phenomena, significant viscoelastic effects may be anticipated. One such effect is a 

delay in the cavitation of viscoelastic liquids in micron-sized gaps, due to the 

development of normal stresses (Ouibrahim et al, 1996). Other claimed viscoelastic 

effects include a displacement of the point of cavitation from the centre of contact 

(where film thickness is a minimum) and enhanced film thicknesses (Narumi & 

Hasegawa, 1986). Although little is known about the influence of viscoelasticity in 

sw6-micron liquid film cavitation, the initial film thickness has been identified as a 

crucial factor: for sufficiently thin films, even ostensibly low rates of surface 

separation may provoke the high rates of fluid deformation necessary to generate 

enough tension (through viscous forces) to result in cavitation (Joseph, 1998). In 

ultra-thin films of water, cavitation may occur spontaneously due to the antipathy 

between the liquid and hydrophobic surfaces between which it is confined 

(Christenson & Claesson, 1988).

The development of the stress being applied to the fluid is an important factor 

(Trevena 1987) and the range of stressing rate varies extensively within industrial

applications. The oil in an engine bearing may experience shear rates in the magnitude

1 1of 10 s' while the shear rate associated with rubbing or applying a cream as well as 

roll-coating of inks could be in the order of 104 s'1. Other techniques which allow
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surface tension and gravity to control the kinematics of a flow may only experience 

shear rates in the magnitude of 10'2 s '1.

In many manufacturing situations such as, the spinning of synthetic fibres for 

clothing, the moulding of plastic bottles and in the production of paints, inks and 

motor oils, polymers are important components.

There are many rheological experiments that can determine different aspects of a 

polymeric fluid. Shear, oscillatory and extensional rheometers are all used to 

characterise different aspects of a fluid, however these experiments are not sufficient 

to explain all the industrial problems with fluid arising from filament break-up, hence 

a study into the tensile properties of fluids is essential to describe these additional 

parameters.

1.2 Experimental techniques for the measurement of liquid tensile

strength

The methods used to generate tension within a liquid fall into two main categories, 

depending upon the rate of stress development. In ‘static’ stressing, tension develops 

gradually (over seconds, or more), dynamic techniques involve timescales which are 

typically in the microsecond to millisecond range.

Early studies of liquids under (quasi-static) tension were conducted by Berthelot in 

1850 and various forms of his apparatus are still used (Trevena 1987). Typically it 

consists of a sealed cylindrical tube, almost completely filled with liquid. On heating,
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the liquid expands until it completely fills the tube. On cooling the tube, the liquid 

adheres to its walls and due to differential rates of contraction between tube and 

liquid, tension sets in until the liquid ruptures. Berthelot obtained breaking tensions of 

ca. 50 Bar for water in a glass tube while Henderson and Speedy (1980) reported 

values of ca. 130 Bar in their modified version of the apparatus which exploited the 

Bourdon effect to measure pressures directly.

Briggs (1950) employed a centrifugal method to apply a static tension to a liquid 

using a Z-shaped capillary tube containing liquid. The tube, which was open at both 

ends, rotated about its centre, the plane of the Z remaining horizontal. The maximum 

tension sustained was calculated from the maximum rotational speed attained without 

causing rupture of the liquid. Briggs’ results for water varied between 20 Bar at 1° C, 

rising to 277 Bar at 10 0 C and falling to 220 Bar at 50 0 C.

In Apfel’s (1970) work, a small, filtered sample of ether was suspended in an inert 

‘host’ liquid. The two liquids being immiscible, the sample ‘droplet’ container was 

the host liquid thus the possibility of nuclei for bubble growth at the container walls 

was eliminated. The droplet, suspended in the host liquid (glycerine), was stressed 

acoustically at the resonant frequency of the entire system and at temperatures well 

above the normal boiling points of the liquids. At a particular combination of 

superheating and acoustic stress, the droplet reached its ultimate tensile strength and 

vaporised. The results agreed well with homogenous nucleation theory, suggesting 

that cavitation occurred within the droplet, not at the liquid-liquid interface.
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The reflection of a pressure wave as tension from a suitable boundary has been 

exploited in dynamic stressing, such as in measurements of Fc in ‘bullet-piston’ (B-P) 

experiments (Davies et al 1955). In that work, a vertical steel tube, closed at its ends 

with steel pistons was filled with a liquid and a compression pulse was generated in 

the liquid by firing a bullet at the lower piston. Degassed distilled water was found 

incapable of sustaining a tension greater than 10 Bar. Later B-P work involving free 

surfaces gave values of 8.5 Bar for ordinary tap water and 15 Bar for degassed 

deionised water (Trevena 1987). Kedrinskii et al (1995) have described an x-ray 

imaging system which was used to investigate the structure of the cavitating zone 

produced by the reflection of pressure waves at the free surface of water.

Wilson et al (1975) detonated an explosive charge below the surface of a liquid and 

obtained high-speed photographs of the spray dome formed above the original 

undisturbed free surface. From measurements of the initial spray dome velocity, Fc 

was estimated to be 8.0 Bar for ‘ordinary water’. Williams and Williams (2000) have 

shown that the anomalously low values of Fc recorded in some work involving pulse 

reflection at a free surface are due to inadequate transducer response, and low data 

sampling rates.

Dynamic stressing work often involves ultrasound, which subjects a liquid to 

compression and rarefaction during its positive and negative half-cycles, respectively. 

Using focussed ultrasound, Willard (1953) found that water could withstand tensions 

of 70 Bar until a suitable nucleus appeared at the focus of the wave. Using a 42.9 kHz 

ultrasound wave, Greenspan and Tschiegg (1967) found that clean water could sustain 

tensions of 160 Bar for periods as long as a minute at 30 °C, and even higher (ca. 210
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Bar) for a few seconds. Galloway (1954) also reported ultrasonic thresholds as high as 

200 Bar for water, for similar sound frequencies. Coleman et al (1995) have studied 

the cavitation threshold of human tissue exposed to pulsed ultrasound in clinical 

lithotripsy (see Barnett and Kossoff (1998) for a survey of issues involving cavitation 

in biomedical applications of ultrasound, including diagnostic techniques).

Maris and Balibar (2000) have reported the ultrasonic stressing of liquid helium, in 

which laser light scattered by bubbles at the acoustic focus was detected by a 

photomultiplier. This work involves an ‘electron bubble’- a spherical cavity from 

which helium atoms are excluded when an electron is injected into helium. The 

bubble forms due to the repulsion of the electron by helium. If the pressure is zero, 

such a bubble has a radius of around 190 nm; and at around -2 Bar, it grows without 

limit.

It is interesting to compare the tensile strength of other liquids when measured 

statically and dynamically: usually, the higher the rate of stressing, the higher the 

value of Fc obtained (Temperley and Trevena 1987). In glycerol, differences in Fc 

may be explained in terms of different stressing rates. Bull (1956) found a tensile 

strength of 60 Bar while Carlson and Henry (1973) reported 600 Bar and in both 

experiments, cavitation occurred in the body of the liquid but the rate of stressing was 

104 times lower in Bull’s work than in Carlson and Henry’s. Similar findings have 

been reported for mercury, in which Briggs (1953) was unable to generate static 

tensions greater than 425 Bar but Carlson (1975) found that tensile failure occurred at 

a tension of 19 kBar, at a stressing rate of ca. 106 Bar/ms. At a lower rate (1 Bar/ms),
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Williams et al. (1998a) found a limit for Fc of ca. 3 kBar. In this respect mercury 

follows the trend observed in glycerol and water.

Spark discharge techniques have proved valuable in studies of bubble dynamics, such 

as in the work reported by Chahine (1979). Gibson and Blake (1982) have studied 

large spark-generated bubbles in a free-fall apparatus designed to remove buoyancy 

effects. In common with spark discharge work, the generation of bubbles by pulsed- 

laser also involves intense local heating and vaporization of the liquid. Its advantage 

over the spark technique is that high-voltage electrodes do not intrude into the liquid 

and thus disruption of the bubble motion is avoided. Brujan (1998) has reported the 

size of bubbles produced in laser induced cavitation and its relation to the pulse 

duration. In a CMC solution, the smallest size of the spherical bubbles produced using 

a Nd: YAG laser, with a pulse duration of 8 ns was 0.22 mm, but the maximum radius 

is reduced by decreasing the pulse duration. Vogel et al (1994) found that the smallest 

value of the maximum bubble radius produced by a 30 psi pulse in water is about 0.04 

mm. Vogel et al (1989, 1996) and Tomita and Shima (1990) have reported optical and 

acoustic studies of laser-produced bubbles, including studies of shock wave emission 

and bubble generation by picosecond and nanosecond optical breakdown in water.

1.3 Rheological properties of polymeric liquids

Rheology is the study of fluids that do not follow the constitutive equation associated 

with Newtonian fluids and has been defined as is the study of ‘flow and deformation 

of matter’ (Bingham, 1929). In many flow situations the fluids are subjected to both 

shear and extensional deformation. Fluids inhibit a resistance to shearing of the fluid
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known as its shear viscosity and the resistance to the extensional deformation of the 

fluid is known as the extensional viscosity. A brief description of shear and 

extensional characterisation will follow.

By considering a thin layer of liquid between two parallel plates, a set distance apart, 

dy, we can define the shear stresses applied to a liquid. The upper plate is subjected to 

a horizontal force, Fs, which moves at a velocity dVx, whilst the bottom plate remains 

fixed.

Velocity

Moving>

Stationary

Figure 1.1 Development o f  shear stress

The force per unit area that is required to produce motion is referred to as shear stress,

Os,
as= Fs/A [1.1]

Since the bottom plate is stationary shearing of the material is caused, as hypothetical 

layers of the liquid retard the flow of an adjacent layer. The velocity gradient in the

direction normal to the flow is known as the shear rate, given by

g = d v x /d y  [1.2]

11



Chapter 1
Introduction and Literature Review

Newton’s postulate in these terms can be simply expressed as the doubling of the 

shear stress doubles the shear rate,

o=nY‘ [1.3]

In this equation we can note that there is an additional coefficient, that is the shear 

viscosity which overcomes the ‘lack of slipperiness’ as mentioned by Newton. Hence 

the rearrangement of this gives a simple definition for shear viscosity.

q = o/y' [1.4]

This equation is only held for what is known as a Newtonian fluid, water being a good 

example of this. However many liquids exhibit non-Newtonian behaviour, that is they 

exhibit a non-linear dependence of shear stress on shear rate.

1.4 Cavitation and filamentation

Cavitation is the dynamic process of the formation and subsequent collapse of bubbles 

in a liquid when it experiences negative pressure (or 'tension') (Trevena (1987),

Joseph (1995)). Cavitation occurs when the tension exceeds a certain critical value; 

the liquid changes irreversibly into a two-phase system of liquid and a mixture of 

vapour and dissolved gas, the latter appearing as cavitation bubbles. It is the critical 

value of localised tension that leads to the rupture of the liquid which is known as the 

liquid’s effective tensile strength, FCm For some liquids, substantial negative pressures 

can be supported before rupture (Brennan 1995).
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Euler had predicted what we now call cavitation as early as 1754 where he stated 'But 

when it should happen that this quantity [the absolute pressure] will be negative 

somewhere inside the pipe, then the water would desert the inner wall of the pipe and 

create a void in space' (Euler 1754). It was however the occurrence of cavitation in 

hydraulic machinery that first prompted considerable research into this subject, and 

particular interest has been placed on the characteristic erosion-like patterns of 

damage which are found to occur at the lining surfaces of machinery in contact with 

cavitating liquids. This phenomenon, known as 'cavitation damage' was first noted by 

Bamaby and Thomycroft, in the case of fast-steam boats which failed to meet their 

expected design speed (Trevena (1987), Thomycroft and Bamaby (1895)). The 

damage found near these regions was ascribed to the violent collapse of the bubbles at 

the blade surfaces as they moved to regions of higher pressure. Thomycroft and 

Bamaby (1895) described the problems with the design of one particular destroyer,

H.M.S. Daring. This was nearly 150 years after Euler had first described this 

problem. Cavitation occurs when the pressure on the forward face of the propeller 

blade becomes low enough that vapour bubbles form and the water boils. The 

collapsing of the vapour bubbles might at first seem trivial, but it can be a very violent 

event which can result in the erosion and pitting of the propeller surface. As well as 

cavitation being a major source of propeller damage, vibration, noise and loss of 

performance are also attributed to this phenomenon. Cavitation can be caused by 

nicks on the leading blades, since trapped air bubbles within these pits can grow under 

negative pressure and cavitates. Since cavitation can cause these pits it is a 

progressive problem with more cavitation damage likely to happen later.
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The ability of liquids to withstand negative pressure or tension, is very similar to the 

more familiar property exhibited by solids and is a manifestation of the elasticity of a 

liquid (Brennen 1995). Much cavitation research has been stimulated by the erosion 

of solid surfaces in the near vicinity of collapsing cavities but it is also an important 

factor in the life of plants and animals (Tyree 1997; Smith 1991), including humans 

(Unsworth et al 1971).

Whereas gas-filled bubbles expand by diffusion from the liquid (or by pressure 

reduction, or temperature rise), in the case of predominantly vaporous bubbles a 

reduction of pressure may cause an ‘explosive’ vaporisation of the liquid into the 

bubble. The formation of bubbles (or their growth from preexisting nuclei) during the 

negative part of the acoustic cycle in an alternating pressure field is called ‘acoustic 

cavitation ’. Subsequently, under positive acoustic pressure, the growth of the bubble 

slows and eventually it begins to collapse. The behaviour of such a bubble depends on 

factors such as the amplitude of the acoustic pressure, the ambient pressure in the 

liquid, the frequency and duty cycle of the pressure wave, the liquid’s characteristics 

(such as its viscosity) and the presence of any dissolved gases (Leighton 1994). In 

‘resonant cavitation’ the acoustic wave frequency is equal to the resonant frequency 

of the bubble. In ‘stable cavitation’ the bubble’s growth rate during the acoustic 

rarefaction phase is equivalent to its contraction rate during the compression phase: 

such bubbles may oscillate around a mean radius for many acoustic cycles whereas 

‘transient cavitation’ exists for only a few cavity cycles, during which time they grow 

several times larger than their initial size. Their eventual collapse may produce 

extreme intracavity temperatures and pressures. Transient cavitation provides the 

relatively violent activity usually required in processes such as industrial ultrasonic
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cleaning, the dispersion of solid particles in liquids, depolymerization and cell 

disruption and the destruction of microbes.

The formation of stable bubbles implies an absence of rectified diffusion, the process 

by which bubbles in an oscillating pressure field grow more during expansion than 

they shrink during contraction, due to unequal diffusion of gases and vapor from the 

bulk liquid phase into the bubble. Other acoustic cavitation phenomena are bubble 

coalescence and the production of ‘cavitation streamers’. The latter involve a line of 

bubbles along a path in a sound field, their collective motion resulting from the effects 

of radiation pressure and mutual Bjerknes forces. Flows over solid surfaces can 

involve individual travelling bubbles (‘travelling cavitation’) in which bubbles are 

continuously shed, to collapse and rebound in regions of higher pressure.

1.4.1 Nucleation theory

Cavitation is not necessarily a consequence of pressure reduction to the liquid’s 

vapour pressure, p v, which is the equilibrium pressure, at a specified temperature, of 

the liquid's vapour in contact with an existing free surface. In a homogeneous liquid, 

cavitation requires a stress sufficiently large to rupture the liquid and this stress 

represents the tensile strength, Fc, of the liquid at that temperature.

Theory predicts that vapour bubbles will only form in pure liquids as a result of very 

large tensions, some 1.3 -  1.4 kBar in the case of water (Fisher 1948), although a 

somewhat higher figure (ca. 1.9 kBar) results from an interpretation of the 

thermodynamic properties of stretched water known as the stability limit conjecture
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(Speedy 1982). Experiments involving small quantities of pure water have produced 

tensions close to the homogeneous nucleation limit of 1.3 kBar (Zheng et al. 1991).

As large tensions are not commonly observed, the idea of bubble nucleation and its 

manifestation as the effective tensile strength of a liquid has been introduced.

In some treatments, nuclei represent ‘holes’ in the liquid which grow into 

macroscopic bubbles (Frenckel 1955) but heterogeneous nucleation may involve 

microscopic impurities such as ‘motes’ of dirt, or dust. An energy barrier against 

nucleation arises because the liquid-gas transition is discontinuous and the interface 

between the two phases has a finite energy per unit area -  the surface tension, <j. Thus 

bubble formation has an energy cost of 4nR a  The energy of the system also contains 

the work of the negative pressure over its volume, so that the total energy cost of 

forming the bubble is (Maris and Balibar 2000):

AE =  4TtR2a  +  —  R3F 
3

At negative pressures, this energy has a maximum for a critical radius Rc = 2o/|P|.

The liquid pressure, p , exterior to a bubble of radius R, will be related to the interior 

pressure, pb, by:

pB- p  = 2 d R

where cr is the surface tension. If the temperature, T7, is uniform and the bubble 

contains only vapour, then the interior pressure, ps, will be the saturated vapour 

pressure,/?^ 7). However, the exterior liquid pressure, p = p y -  2<j/R, must be less 

than p y  in order to produce equilibrium conditions. Consequently, if the exterior liquid 

pressure is maintained at a constant value just slightly less than = p y-2 cr/R , the
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bubble grows, R will increase the excess pressure causing the growth and rupture 

occurs. It follows that if the maximum size of the cavity is Rc (the ‘critical’ radius), 

then Fc will be given by:

Fc = 2of Rc

For some finite tension the liquid stretches without limit. The pressure at which that 

happens is called the spinodal limit, at which the compressibility is infinite and there 

is no barrier to nucleation. For small tensions the energy barrier is large and a pure 

liquid may sustain tension for a prolonged period. In this condition it is in a 

metastable state and inhabits the region between the spinodal and the coexistence 

curve where liquid and vapour coexist. The spinodal parabola meets the coexistence 

curve at the critical point but otherwise is separated from it by a finite distance.

The presence of dissolved gas would appear to be an obvious factor in reducing Fc . 

Several studies have found that as the gas content is reduced, cavitation thresholds 

increase. Galloway (1954) found that the highest attainable acoustic pressure ranged 

from 1 - 200 Bar as the air content of water was reduced from a saturation of 100% to 

0.05% . However, for carefully cleaned liquids, Greenspan and Tschiegg (1967) found 

no dependence on gas content for slightly undersaturated liquids. Apfel’s (1970) 

model for the stabilization of gas pockets in conical crevices has shown that this lack 

of dependence on gas content is the case for sufficiently small, imperfectly wetted 

impurities, whereas a large dependence on gas saturation results if the liquid contains 

large impurities.

Kuper and Trevena (1952) estimate that the reduction for water saturated with air at 1 

Bar would be less than 0.5%. Their theory involved a small, free, spherical cavity in
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the liquid acting as a nucleus for bubble growth to macroscopic size under tension. 

Such a bubble would rapidly dissolve, whereas larger bubbles would rise up through 

the liquid. The necessary mechanism by which gas bubbles may be stabilised and 

remain available as nuclei was proposed by Fox and Herzfeld (1954) who suggested 

that a ‘skin’ (possibly organic) might exist around gas bubbles thereby inhibiting the 

diffusion of gas across the boundary. The phenomenon of rectified diffusion suggests 

that diffusion at the bubble boundary is not heavily inhibited (Crum 1980). The 

mechanism of stabilisation has been attributed to surface-active substances which, in 

being absorbed onto the bubble’s surface give rise to an elastic skin (Hayward 1970). 

The model by which spherical gas bubbles become stabilised against diffusion by 

membranes of surface-active materials, is known as the varying-permeability (VP) 

model. Ordinarily, VP membranes are gas permeable but become effectively 

impermeable when subjected to compressions exceeding 8 Bar. Holographic studies 

show that cavitation nuclei of 1 pm to 1 mm exist in water and the nuclei number 

density distribution function varies from 109 to 1015 m~4 (Gates and Bacon 1978). For 

a survey of VP model work see Yount (1997).

Stabilised nuclei may also exist in cracks on the surfaces of microscopic particles 

(‘motes’) in a liquid (Harvey 1944). Under tension, the trapped gas pocket grows 

until, at a critical tension, the cavity detaches from the crevice. If the surface is 

hydrophobic, such a nucleus might persist for an appreciable period of time, providing 

a nucleus for bubble growth. In the case of motes with hydrophilic surfaces, failure of 

the liquid may occur at a location other than the mote. Brownian motion could keep a 

small mote in suspension almost indefinitely. For sufficiently large hydrophobic 

crevices, the critical factors governing the value of Fc are the liquid’s gas content and
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its stress history (Apfel 1970). Akulichev (1994) has reported a study of cavitation 

nuclei and thresholds of acoustic cavitation in ocean water. For sea water, Fc grows 

with water depth. In the upper sea water layer, the most characteristic nuclei are gas 

bubbles whose concentration increases with increasing sea roughness and wind speed. 

Evans and Walder (1969) suggest that gas micronuclei are present in vivo within the 

human body and that their production is related to impulsive internal stress resulting 

from muscular movement (see also Harvey 1951).

The greatest effort in cavitation research has involved the study of bubble dynamics, a 

preponderance of attention deriving from the association between collapsing bubbles 

and instances of damage to solid surfaces in their vicinity. The term ‘cavitation 

damage’ is widely used to describe this phenomenon. An early attempt to explain it 

was made by Lord Rayleigh (1917), whose seminal analysis of the behaviour of an 

isolated spherical void collapsing in an incompressible liquid still serves as the 

starting point of many studies. Rayleigh’s results are considered in detail later but an 

important conclusion is that as the collapse nears completion, the pressure inside the 

liquid becomes indefinitely large. It is this mechanism, albeit extensively modified, 

which has led to the association of bubble collapse with cavitation damage.

1.4.2 Cavitation in flowing liquids

Cavitation can be induced in liquids by flow over submerged bodies, or in vortices. 

Many flows induce the periodic formation and collapse of a ‘cloud’ of bubbles (‘ cloud 

cavitation’). In flow about a blunt body a sudden transition often occurs from
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travelling cavitation to the formation of a single vapour-filled wake known as a ‘fully 

developed-’ or ‘attached-cavity’. The vapour-filled separation zone formed on 

hydrofoils or propeller blades is known as ‘sheet cavitation’ whereas its counterpart in 

pumps is termed ‘blade cavitation’. This proliferation of terms is confusing but all 

describe the same large-scale cavitation structure (Brennen 1995). ‘Supercavitation' , 

in which a moving object is enveloped by a large bubble, has military application in 

high speed underwater munitions (Miller 1995).

In the cavitation of submerged jets, the cavitation number is defined as,

P r ~ P V

with p r the pressure in the reservoir where the jet is discharging and Vj the bulk 

velocity of the jet. A decrease in pressure from a non cavitating situation until 

cavitation is reached, or an increase in pressure from a cavitating situation until the 

non cavitating conditions are achieved, provide the inception, cri, or desinent, ad, 

cavitation numbers respectively. Extensive literature exists on underwater jet 

cavitation, much of it provoked by interest in the turbulent drag reduction associated 

with dilute solutions of high molecular weight polymers (Acosta and Parkin 1975). 

Several studies, such as those of Hoyt (1976), report that cavitation is either delayed 

or unaffected in such fluids and that major changes seem to be associated with a 

modified free-shear layer structure but there is little, if any, contribution from the fluid 

properties on inception. When cavitation is well developed, the cavities are larger and 

have smoother surfaces than their counterparts in the Newtonian solvent. These
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observations are related to the delayed departure from sphericity and instability of 

single bubbles in polymer solutions.

In flow around blunt bodies, major changes appear to be correlated with the early 

occurrence of laminar to turbulent transition in drag reducing polymer solutions, 

without significant contribution from bubble dynamics. In separated flows, such as 

jets and wakes, cavitation occurs in the low pressure regions of the vortices 

developing in the free shear layers. In tip-vortex flow situations with homogeneous 

polymer solutions, non-Newtonian effects seem to enhance the occurrence of 

cavitation, while, in pure water and polymer solutions there is a systematic cavitation 

inhibition. In confined vortex flow in homogeneous solutions, the results show either 

cavitation enhancement or inhibition (see Fruman 1999).

Joseph (1995) has studied cavitation inception in terms of a comparison of the 

cavitation threshold at each point in a liquid sample with the principal stresses present 

and emphasises from this, that for liquids in motion, cavitation criteria must be baseq 

not on the pressure but on the stress. A cavitation bubble will open in the direction of 

maximum tension in principal coordinates and an important point which emerges is 

that a liquid can cavitate as a result of experiencing a shear deformation, the resulting 

cavity being pulled open by tension in the direction defined by principal stresses. 

Kezios and Schowaiter (1986) have studied the effect of a controlled shear flow on 

the deformation of laser-generated bubbles.
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1.4.3 Cavitation in confined spaces

Few studies have examined cavitation in thin films, such as disk-lubricant films under 

high shear forces. Chen et al (1992) used a surface-force apparatus technique to 

observe, at the nanoscopic level, the growth and disappearance of vapour cavities 

between two moving solid surfaces. As the relative separation velocity of the surfaces 

increased they deformed elastohydrodynamically, becoming pointed in regions 

corresponding to negative pressure in the liquid and vapour cavities formed once the 

relative velocity of the surfaces exceeded a critical value. The sudden nucleation and 

growth of a cavity in a thin liquid film was claimed to be more violent than its 

collapse. Ouibrahim et al. (1996) have studied flows of water and a viscoelastic fluid 

in micron size gaps. They found that the initiation of cavitation was delayed in the 

polymer solution and speculate that the effect is due to normal stress development in 

the elongational flow.

1.4.4 Some processes involving cavitation

Sonochemistry relies on the use of ultrasound for invoking acoustic cavitation, which 

initiates reactions, changes reaction pathways or increases reaction rates and/or yields. 

Sonochemistry occurs when ultrasound induces ‘true’ chemical effects on the reaction 

system, such as the formation of reaction-accelerating free radicals. Two theories exist 

to explain the chemical effects due to cavitation. The former involves the idea that 

high (localised) temperatures and pressures may be associated with cavitation while 

the latter invokes an electrical charge on the bubble’s surface (Thompson and 

Doraiswamy 1999). Intense ultrasound fields can result in sonoluminescence and also
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possible free radical recombination. Sonochemiluminescence involves light emission 

in which radicals, produced by cavitation, react with solutes that chemiluminesce.

In lubrication, subambient pressures may occur in the divergent section of wedge- 

shaped oil films in bearings, giving rise to gaseous or vaporous cavitation (Braun and 

Hendricks 1984). Cavitation has been associated with bearing damage in internal 

combustion engines, but cavitation does not necessarily have a deleterious effect upon 

the load-carrying capacity of fluid-film bearings. If the film does not rupture, then the 

load capacity is zero since the convergent and divergent regions of the film make 

equal and opposite contributions. Gas release ensures that the pressure in the 

divergent section remains close to the saturation pressure, with a net force normal to 

the surfaces. In this case the load-carrying capacity results from film rupture (Dowson 

and Taylor 1979). Berker et al (1995) have reported the effects of polymer additives 

on flow in dynamically loaded journal bearings and concluded that their role in 

reducing wear may be associated with some mitigating effects of viscoelasticity on 

cavitation.

The ability of liquids to sustain tension is an important factor in the survival of plants, 

in which the cohesion-tension (C-T) theory explains water transport (Tyree 1997).

The C-T theory assumes that water, when confined in small tubes with wettable walls 

such as xylem elements, can sustain a tension ranging from 3 to 30 MPa. The liquid 

forms a continuous system in the water-saturated cell walls, from the evaporating 

surfaces of the leaves to the absorbing surfaces of the roots. During evaporation, the 

reduction in water potential at the surfaces causes movement of water out of the 

xylem, with water loss producing tension in the xylem sap that is transmitted
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throughout the continuous water columns to the roots. The C-T theory has been 

questioned repeatedly and is currently the subject of considerable debate.

The acoustic production of liquid droplets has been ascribed to an interaction between 

hydrodynamic instabilities involving surface waves and sub-surficial cavitation of a 

liquid (Boguslavskii and Eknadiosyants 1969). This interaction is thought to induce 

the generation of surface ‘spray’ phenomena subsequent to underwater explosions in 

which spray droplet formation involves layers of vapor which are ‘sandwiched’ 

between layers of liquid (Trevena 1987). It is the putative ability of these vapor 

layers, formed by cavitation, to reflect incident compressional waves as tension which 

is crucial to explaining the production of droplets. The need for further research in this 

area has been identified in a U.S. National Research Council report which notes that 

ultrasonic atomisation “seems to involve acoustic cavitation but is poorly understood’ 

(Prosperetti 1996).

The tensile strength of a liquid is relevant to printing processes which involve the 

‘tack’ of an ink - the maximum tensile stress developed in the splitting of ink films at 

a printing nip exit, where the ink is subjected to an extensional flow in the direction 

normal to the roller surfaces (Zang et al 1991). Banks and Mill (1953) proposed that 

tack is a consequence of cavitation and of the drop in hydrostatic pressure at the nip 

exit, and so is independent of the liquid. Zang et al. (1991) conclude that tack is 

primarily determined by polymer content, which suggests that extensional, not shear, 

viscosity properties govern film splitting.
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In many industries an interesting parameter is that of tack, however it has many 

different definitions depending on the procedure the fluid is going through. Zang et 

al. (1991) defined ‘tack’ to be the maximum tensile strength of a liquid. In the ink and 

coating industry the tack of an ink is connected with the forces developed in the 

splitting of ink films near the nip exit, where the ink is subjected to an extensional 

flow in the direction normal to the roller surfaces. In the region of the nip exit, 

tension develops within the liquid, this tension increases until the tension reaches the 

critical tension for the sample and the ink film splits. Cavitational film-splitting results 

in the formation of filaments, which on break-up cause unwanted droplet deposition 

and hence lower the printing quality. McPhee (1997) describes the film splitting 

procedure in six steps, shown in figure 1.2: 1. At a critical negative pressure, cavities 

or bubbles are formed (cavitation). 2. As the cavities move away from the exit they 

expand and become interconnected forming filaments. 3. The filaments are stretched 

as rollers separate. 4. At a critical point, the filament ruptures. 5. Following rupture, 

the filament ends recoil. 6. The recoiled filaments cause satellite drops and other 

detrimental effects. It is clearly evident that one of the causes of detrimental printing 

is that of cavitation within the ink, caused due to the negative pressure that the liquid 

experiences on exit of the roller. It is the one of the purposes of this thesis to 

investigate the cavitation threshold of polymeric liquids used in the ink and coating 

industry to study this phenomena.
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Top roller

Fluid film

I . Giviiies are form ed.
2 . Q v id e i expand and becom e 

interconnected, forming filaments.
3. Filaments are stre tched .

4. Filaments are rup tu red . -
5 . Filam ent ends recoil. -

6. Pebbly surface is formed. —

Figure 1.2 Process of Film Splitting (McPhee 1997)

Filament formation is a feature of coating flows involving pressure sensitive 

adhesives, but descriptions of the process are as yet qualitative (Zosel (1998)). Zang et 

al (1991) describe tack as one of the most important characteristics of an ink, affecting 

the runnability and printability of inks. An excessive ‘tack’ can cause the ink to 

remove fibres or coating particles from the paper during the printing process. Banks 

and Mill (1953) proposed that tack is a consequence of cavitation and of the drop in 

hydrostatic pressure at the nip exit and so is independent of the liquid. However Zang 

et al. (1991) conclude that tack is primarily determined by polymer content and 

suggest that extensional, not shear, properties of the fluid govern film-splitting. It is 

therefore appropriate to examine the extensional nature of fluid flows to further our 

understanding of tack.
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1.5 Extensional flows

Examples of extensional flows abound in the process industries, in situations such as 

fibre-spinning, lubrication, spraying, atomisation and anti-misting, coating and 

printing. The lack of adequate rheological information concerning extensional flows 

of mobile (i.e. low viscosity) fluids, is a significant impediment to the development of 

process simulation. The requisite information involves the extensional viscosity, t]e, 

the significance of which is that it may be several orders-of-magnitude higher than the 

corresponding shear viscosity in elastic liquids (Petrie (1979)).

Measurements of the extensional flow properties o f ‘mobile’ fluids are acknowledged 

to be difficult. A US National Research Council survey of progress in non-Newtonian 

Fluid Mechanics has concluded that “the measurement o f  extensional stresses o f  

mobile fluids is a major outstanding problem; and this measurement is essential fo r  

determining the predictive power o f  constitutive equations for flows which are closely 

related to many important processing situations” (Sridhar (1990)). In the case of 

mobile fluids, the generation of a purely extensional flow is considered virtually 

impossible and workers have resorted to the generation of flows with a high 

extensional component (Coyle (1984)). Perhaps the best known approach involves a 

filament stretching device wherein a sample is held between two plates which move 

apart at controlled rates, the upper plate being attached to a load measuring device. 

This technique provides a transient extensional viscosity growth function as the 

Hencky strain e increases but is restricted to low deformation rates (< 100 s-1) and 

only provides meaningful data for fluids of high extensional viscosity. Furthermore, at
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large 8 the filaments suffer elastic decohesion from the plates, rendering the 

determination of elongational stress, c e, unreliable (McPhee 1997).

A major advancement in determining the transient extensional viscosity was devised 

by Matta and Tytus in 1990. They developed an extensional rheometrical device to 

obtain such information on both Newtonian and non-Newtonian viscoelastic fluids, 

known as the falling mass rheometer. This simple device consisted of two cylindrical 

plates in between which was placed a sample fluid, the bottom plate was then allowed 

to fall under the influence of gravity. A nearly pure extensional flow is generated 

during the stretching process. High speed photography of the extensional flow is used 

to deduce the liquid deformation rate and ligament stress. These values help determine 

the elongational viscosity, which give comparable results to the Trouton ratio for 

Newtonian liquids, the testing of viscoelastic media indicated that the extensional 

viscosity is significantly greater than Newtonian liquids with the same shear viscosity. 

Modifications to this technique were presented by Matthew Barrow (2000), these 

modifications include, due to advancement in photographic techniques, the high speed 

camera system being replaced by a digital recording system. This new digital imaging 

means that there is less error in the measurement of the fluid during the stretching 

process. It was also shown that error crept into the falling mass technique when highly 

viscous fluids were used, with the base cylinder tilting during its fall. Modifications 

to this base cylinder and to the retaining shelf were implemented to overcome these 

issues and successful results of this were presented by Matthew Barrow (2000).
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1.5.1 Filament stretching rheometry

The design of filament stretching rheometers followed the work of Matta and Tytus 

(1990) with the attempt to create a purely extensional (elongational) flow by placing a 

small sample of the test fluid in between two circular endplates and moving them 

apart so that the gap increases exponentially in time. This device known as the 

filament stretching rheometer came about to overcome the issues raised by Sridhar 

(1990) where a test fluid had been experimentally analysed by differing extensional 

rheometers with a wide variety of results. A comprehensive review of filament 

stretching rheometry has recently been published by McKinley and Sridhar (2002). 

The first design in this form was implemented by Tirtaatmadja and Sridhar (1991, 

1993). They implemented an exponential displacement profile of the endplates with 

the tensile force of the filament, Fp(t) and the mid point diameter of the filament, 

Dmicj(t) were measured in time. The mid point of the diameter can be measured by 

different techniques such as laser micrometers, wire gauges or by analysing high 

speed photographic images of the extended filament. This method can look at the 

whole profile of the filament but does not give as good results. A basic sketch of the 

device is shown in figure 2, the original dimensions of the filament being length, Lo, 

and width Do. These two measurements give us an initial aspect ratio Ao=Lo/(D0/2). 

The initial aspect ratio of the filament has been shown to affect the initial transient 

response of the tensile forces within the filament Spiegelberg (1996)).
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In extensional devices the material function that normally is to be obtained is the 

transient extensional viscosity as a function o f time, this is defined as,

where e0 is the axial elongation rate. By balancing the forces within the filament, we

can relate the transient extensional viscosity to measurable quantities such as the force 

exerted on the endplate and the diameter o f the filament. The value for the force on 

the endplate is adjusted to include the affects o f surface tension and gravity. The 

Trouton ratio is a non-dimensional form, with the ratio o f the transient extensional 

viscosity with the zero-shear-rate viscosity, r|o This can be written in the form,

Fig. 1.3 Diagram o f  filament stretching rheometer (McKinley et al. 1999)

The first models used to describe the filament stretch assumed a perfectly uniform 

radial decrease; in practice this was established not to be the case due to the no-slip
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criterion imposed by the endplates. A trial and error experiment produced an endplate 

profile that would result in the mid-filament diameter to decrease exponentially 

(Tirtaatmadja (1993)). A ‘velocity compensation algorithm’ was designed to achieve 

such a mid-diameter profile, the analysis was also used to predict the effect of the 

initial aspect ratio on the transient stress growth in the filament.

There are three main sections to the flow within filament stretching rheometers, firstly 

the filament is elongated with the radius of the filament decreasing exponentially, 

secondly the fluid undergoes stress relaxation where the tensile stress in the filament 

relax and the radius of the filament remains almost constant, and the final section of 

the flow is the breakup of the filament this is caused when the capillary pressure and 

gravitational stresses become dominant. It was very clear even from these early 

experiments that there was an additional shearing component to the flow near the end 

plates due to the no-slip boundary conditions. This instability within the flow has been 

experimentally investigated by Spiegelberg et al. (1996) and numerically by Yau and 

McKinley (1998).

A recent thesis by Welsh (2000) developed a stability region of stretching flows and 

can be used to determine useful limits of initial parameters for the filament stretching 

rheometer. This work also focused on the fingering instability that appears during the 

stretching process, the radial cross-section of the filament near the endplates loses its 

symmetry and fibrils are formed. The formation of fibrils during filament stretching is 

very closely related to the peeling and failing of adhesives as has been discussed with 

respect to roll coating. Welsh also ascertained that the results for extensional viscosity 

measurements from the filament stretching rheometer should not be sensitive to the
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changes in the initial aspect ratio, but that the total work of adhesion is sensitive to 

such changes.

Computational Rheometry and numerical analyses have been used in filament 

stretching Rheometry to confirm that true homogeneous uniaxial elongation can be 

achieved. One of the main theories used is that of the lubrication theory, also used for 

describing the flow in many roll coating analyses, along with different constitutive 

models. Yau et al. (1998) have shown axial profiles for transient uniaxial elongation 

of fluid filaments with three different constitutive equations, namely Newtonian, 

Oldroyd-B and Giesekus models. Spiegelberg et al (1996) showed that for Newtonian 

fluids and small initial aspect ratios the liquid bridge can be approximated by the 

lubrication theory.

Another theory that is commonly used in the literature is the slender-body theory, in 

this theory the filament is taken as a one-dimensional system. The model can be 

assumed to be one-dimensional for the majority of the filaments history since the 

endplate separation, Lp(t), causes rapid decreasing of the mid-filament diameter 

Dmid(t). However near the endplates two-dimensional shearing arises due to the axial 

curvature and no-slip boundary conditions imposed there; hence this approximation 

does not capture these kinematics. It has been noted that the axial curvature is 

negligible for aspect ratios less than or equal to one. Yau et al (1998) have shown that 

a good approximation to the overall flow is still generated by the use of the slender 

body experiment.
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Some of the failing mechanisms in polymeric liquids have been reviewed by Malkin 

and Petrie (1997). The ‘necking’ and filament failure during the transient uniaxial 

elongation of viscoelastic fluid samples in extensional rheometers has been analysed 

by McKinley (1998). As the filament is stretched a viscoelastic fluid undergoes 

molecular relaxation, the limit of this relaxation results in filament failure. The energy 

gained before this breakup is stored elastically and the Considere criterion is used to 

calculate the Hencky strain before failure. Their work looks at constitutive conditions 

for branched polymer melts such as the Doi-Edwards and the Pom-Pom models.

These numerical calculations predict the onset of necking and suggest the possibility 

of determining the optimal operating conditions for strong uniaxial extensional flows. 

Recent work by Anna et al (2001) looked at the comparison of filament stretching 

rheometers across different laboratories and shows that there is good relationship with 

results for the Trouton ratio and hence shows it to be a reliable method of measuring 

the response of viscoelastic fluids.

The CaBER experiment has been used by many different workers on the extensional 

properties of polymeric systems, including Rodd et al. (2005), Anna and McKinley 

(2000) and Wunderlich et al. (2000).

The surface tension of the liquid filament is one of the main parameters that ‘holds’ 

the filament together before rupture. The extensional stress on the filament can be 

given by,

2a
%E~ D mid

where Amd is the diameter of the filament just prior to break-up.
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From the foregoing work, described above, it is evident that many important 

associations exist between the cavitation properties of fluids (in terms of their 

response and ultimate failure under imposed tensile stresses) and their extensional 

flow properties. These associations require careful consideration in relation to the 

behaviour of fluids in industrial processes (such as those outlined above) in which 

cavitation and filamentation may both result from the generation and application of 

tension in flow settings. What is also evident however is that no appropriate 

systematic experimental study has been conducted which enables the relationship 

between cavitation properties (such as cavitation resistance or tensile strength) and 

extensional flow properties to be explored and elucidated. The principal reason 

underlying the lack of such a study is that, until now, no appropriate cavitation 

technique has been identified or applied in this area. The work presented in this thesis 

addresses this situation by introducing two custom-built instruments (a filament 

stretching device for extensional flow work and a dynamic stressing shock tube 

technique for cavitation studies). Together, these instruments are used herein to 

investigate the appropriate Theological and cavitational characteristics of a range of 

fluids including model polymer solutions. The results, which are described in later 

chapters, are the first to be reported for such a study and present a new experimental 

basis for assessing the performance of low shear viscosity, non-Newtonian fluids in 

high strain rate / high (tensile) stressing rate regimes.
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Chapter 2 

Materials and Bullet-Piston Technique

2.1 Introduction

The investigation into the tensile properties of polymeric solutions has been 

conducted within this thesis by the means of two main dynamic stressing experiments: 

the modified bullet-piston (B-P) technique and a Capillary Break-up Extensional 

Rheometer (CaBER). The first of which, the bullet-piston technique, will be discussed 

in this chapter with subsequent chapters 3 and 4 discussing results obtained via this 

method on water and polymeric solutions respectively. The CaBER experiment will 

be discussed in more detail in Chapter 5 alongside the results obtained on the same 

polymeric samples as for the B-P technique in chapter 4.

2.2 Materials

Polyethylene glycol (PEG) is a hydrophilic non-ionic polymer used in many 

biological and industrial applications. PEG is a non-toxic polymer and is used in the 

cosmetic, pharmaceutical and food industries. It is most commonly used as a binding 

agent in gels and pastes and to alter the shear characteristics of a fluid such as ink. In 

ink-jet printing about 5% of the ink is made of up of polymers which are used to 

increase the shear viscosity of the ink to around 10 centipoise, measured over a range 

of 10-500 s '1.
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The polymers used were obtained from Fisher (1500 and 6000 Mw) and Sigma- 

Alldrich (600,10000 and 20000 Mw). PEG is soluble in water and for these 

experiments was dissolved in purified water and mixed with a rotational mixer for 8- 

16 hours to ensure complete solubility.

PEG is commonly used within industry and especially in the printing industry. The 

effects on the shear characteristics with increased polymer concentration are known 

but an extensive study into the tensile properties of these fluids has yet to be 

completed. This thesis will show a systematic testing of PEG over a range of 

Molecular weights and concentration.

2.3 Bullet-piston apparatus

The current bullet-piston apparatus, is based on the instrument described by Williams 

and Williams (2000), and consists of a cylindrical stainless steel tube of length 1.4 m 

and an internal diameter of 0.0243 m with the lower end closed by a piston. A 

schematic figure and picture are shown below (figures 2.1 & 2.2). The piston’s base 

surface is coupled to the bolt of a cartridge driven stun-gun (Shelby and Volkes, UK, 

‘Magnum’ model 7000) which on impact generates a pressure pulse in a column of 

liquid within the tube. The upper steel flange permits connection of the tube to a high 

pressure steam line, a vacuum line (-1 Bar) and a regulated pressure line which is 

connected to an oxygen-free nitrogen supply and a pressure gauge (PSITronix, USA).
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1 Magnum model 7000 
cattle stun gun
2 Mushroom-headed cosh
3 Steel piston
4 Transducer ports
5 Support arm
6 Sealing gasket
7 Sealing flange

Figure 2.1. Schematic o f bullet- 
piston apparatus

The tube is locked to restraining lugs and is supported by a steel arm, which absorbs 

some o f the pressure applied to the system, on a counter-weighted aluminium stand. 

When the stun-gun is fired in operational procedure the piston is forced upwards 

(relative to the tube) by the movement o f  the cosh, this generates a compression pulse 

in the liquid. A typical pressure pulse generated would last for around 300 ps, with a 

rise time to peak amplitude in the order o f 50-100 ps.
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Figure 2.2 The B-P apparatus

The pressure transducers used in the current tube arrest apparatus are Kistler type 

603B (Kistler Ltd, Switzerland). These transducers have a dynamic pressure range o f 

up to 200 Bar, with a rise time o f ca. 1 ps and a natural frequency o f > 400 kHz. The 

measuring element in construction has a built-in stability against both thermal and 

mechanical shocks. When the pressure is transmitted through the silicone oil fitting,

39



Chapter 2
M aterials and Bulllet-Piston Technique 

shocks are reduced before reaching the measuring cell. Shocks o f 1 kg are easily 

absorbed. These pressure transducers change pressure into an electrical signal by 

deforming a diaphragm manufactured from monocrystalline silicon, the pressure 

being exerted on one side.

Figure 2.3 Image o f pressure transducer Kistler 603B

The pressure transducers are mounted within the walls o f  the tubes (#4 in figure 2.1). 

The output voltages o f the transducers were recorded by a  high speed acquisition 

system (Microlink 4000; BioData Uk Ltd) specifically designed for the capture o f 

rapid transient signals. The transducer output voltage was sampled at 1 MHz by a 12- 

bit analogue to digital converter with an 8 MB memory buffer. The pressure records 

were transferred to a PC-AT microcomputer for analysis using signal processing 

software (DADiSP; DSP Corp., USA).

To ensure that there is no metal-to-metal connection during this experiment we 

position a high density rubber disc at the base o f the lower piston fixed by an 

adhesive, this ensures that no damage to the apparatus can occur. Also a plastic ‘O ’-
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ring is used around the piston to ensure the bottom flange does not directly hit the 

static upper flange.

Temperature control on the rig was achieved by the combination of a heating coil and 

a refrigeration unit. The refrigeration unit consists of a TAE M10 water cooler 

(M.T. A. SRL, Italy) connected to a double copper coil (OD 5 mm) tightly wound 

around the steel tube of the B-P apparatus. Coolant liquid is then circulated around the 

coil, this liquid being Go Therm AF200 (Linde, UK) which contains 1,2 propanediol, 

enabling a temperature range of -15°C to room temperature (25°C). Heating tape 

(lOOW/m at 230 V) is also used for the temperature control to obtain temperature up 

to 135°C (see figure 2.4). This tape is closely wrapped around the cooling coils on the 

B-P apparatus. The operating temperatures for this apparatus are therefore between 

-15°C and 115°C. To provide insulation and heating efficiency the heating and 

cooling tapes are surrounded by Armourflex lagging (IPS Ltd., UK). The temperature 

measurements were made by the use of thermocouples, (Jenway, UK), at the tubes 

inner surface. The temperature was recorded at different heights over the liquid 

column within the tube and minimal variation was observed.
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Bullet-Piston apparatus

Tightly wound 
^copper cooling coils

” 1Refrigeration
unit

Heating tape

Figure 2.4 Schematic o f heating/cooling system.

For cleaning purposes the upper steel flange connects the tube to a high pressure 

steam line. The lower flange can incorporate a steam condensation system and a 

liquid drain point. Prior to experiments, superheated (1 10°C) steam is blown through 

the tube, ensuring that at all oil particles are removed from the walls o f the tube. 

Cleaning o f the tube is also done by the use o f domestic cleaning products and a soft 

brush pushed up and down the inside o f the steel tube, with subsequent steam to take 

away the cleaning products. When the sample is changed the steel plugs, which are 

screwed into the transducer ports in the walls, are removed, checked, inspected and 

then returned or replaced. The walls o f the open tube are then allowed to dry by 

applying heat up to 100°C. Following this procedure the tube was allowed to cool 

prior to being refilled to the required depth with a fresh sample o f the test liquid. The 

sample is kept in situ for 90 minutes prior to the first measurement and 30 minutes in 

between each subsequent measurement to allow the sample to rest. The upper flange 

is also connected to a vacuum line and a regulated pressure line, the latter being 

connected to an oxygen-free nitrogen supply and a pressure gauge. This part o f the
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apparatus allows a recorded increased static pressure to be applied over the liquid 

sample.

2.3.1 Operation

Within the modified B-P apparatus a pressure pulse is generated by the bullet striking 

the piston. This piston is forced upwards generating the pressure pulse through the 

liquid sample within the tube. At the top of the liquid column the pressure pulse is 

reflected. As the pressure pulse returns as tension, the liquid is pulled downward to 

the bottom of the tube and it eventually ruptures due to it being unable to sustain the 

tension, and cavitation bubbles are formed. Due to the compression of the liquid these 

cavitation bubbles collapse. This in turn emits a pressure wave to the surroundings 

and is again reflected as a tension pulse from the base of the tube, causing the bubble 

to grow under this tension. This process repeats itself with the bubble growth and 

subsequent collapse until the energy is dissipated into the surroundings.

2.3.2 Typical results

A typical pressure record is shown in figure 2.4, which shows the typical features of a 

pressure pulse, and is measured with a Kistler 603B dynamic pressure transducer. The 

incident pressure pulse, generated by the lower piston being pushed into the liquid 

column by the resultant action of the stun-gun, is represented by feature ‘ 1’ in figure 

2.5. This is immediately followed by a pulse of tension, feature ‘2’, from the 

reflection of the incident pressure pulse at the free surface. This cycle ‘ 1-2’ is referred 

to as the ‘primary’ pressure-tension cycle with the following cycles ( ‘3-4’, ‘5-6’, etc.)
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known as the ‘secondary’ cycles. The presence of these subsequent cycles has been 

attributed, within dynamic stressing experiments, to cavitational activity within the 

liquid column. (Williams et al. 2002, 2003).

Pressure (ADC units)

0.8

0.6

0.4

0.2

0.0

- 0.2

-0.4

- 0.6

0.08 0.12 0.140.06 0.100.02 0.040.00

Time/s

Figure 2.5 A typical pressure record showing the primary (‘ 1- 
2’) and secondary pressure cycles (‘3-4’, ‘5-6’, etc.)

The B-P method used involves regulating a static pressure, Ps, in the space above the 

liquid column. This static pressure is increased gradually in a series of dynamic 

stressing experiments. From the dynamic pressure measurements obtained in these 

experiments a record is made of the time delay, Tj, between the peak incident pressure 

(‘1’ in figure 2.5) and the first pressure pulse arising from cavitation bubble collapse 

(‘3’ in figure 2.5) an expanded view of this can be seen in figure 2.6. What is actually 

recorded here is the process of a cavitational bubble, growing from pre-existing
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nuclei, under tension. The bubble grows and then subsequently collapses and 

rebounds, emitting a pressure wave into the liquid as it does so. Each subsequent 

growth and collapse is shown in the pressure cycles seen in figure 2.5. Hence the 

interval r,, which encompasses the attainment of maximum cavity radius and its 

subsequent decrease to a minimum value, is reduced by increasing Ps (t/ therefore 

provides a convenient measure of cavitational activity). In order to understand this 

important point fully it is necessary to briefly consider some pertinent aspects of 

cavitation bubble dynamics.

2.4 Bubble dynamics

Several accounts of this topic are available and the following section closely follows 

the review by Plesset and Prosperetti (1977). In terms of the dynamics of vapour 

bubbles, we consider separately those bubbles formed in subcooled and superheated 

liquids, respectively. In the former case, the low vapor density means that latent heat 

flow does not affect the bubble’s motion, which is inertially controlled: in this case 

the liquid is described as cavitating. The opposite condition prevails in the case of 

boiling phenomena.

Rayleigh (1917) studied the collapse of an empty cavity in a large mass of 

incompressible liquid. Neglecting surface tension and viscosity, he showed that the 

bubble boundary R(t) obeyed the relation
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where p is the liquid density, poo is the pressure in the liquid at a large distance from 

the bubble, and p(R) is the pressure in the liquid at the bubble boundary. Assuming 

incompressibility, the liquid velocity at a distance r from the bubble centre is given 

by,

, , R2 A u(r,t) = -~-R [2.2]

The pressure in the liquid is found from the general Bernoulli equation to be

[2.3], v R r . m 1 1 R h 2
p{r,t) = P°°Jr - [ p { R ) - p ™ \  + 2 P - R - f

where the pressure poo is constant. Equation [2.1] may be extended to include the 

effects of surface tension erand viscosity, jn. For a spherical bubble, viscosity affects 

only the boundary condition so that it becomes,

[2.4]

where pi is the pressure in the bubble. Plesset (1949) extended Equation [2.1] by 

allowing poo to be a function of time. Thus the generalized Rayleigh equation may be 

written as

2a 4p b
p (R)=p , — ^ — ^ R

[2.5]

where the pressure in the gas at the bubble wall, p, (and p inf )  may be a function of 

time.

We consider first the dynamics of gas bubbles, whose content is a permanent, 

noncondensable gas. Minnaert (1933) reported the first study of the small-amplitude 

(linearized) oscillations of a permanent gas bubble in a liquid. His work involved the
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forced radial oscillations of a bubble which may arise when it is immersed in an 

alternating pressure field whose wavelength is large compared with the bubble radius. 

The pressure field is introduced in the Rayleigh equation as

Poo{t) = Poo{i  + ecoscor) [2.6]

where Poo is the average ambient pressure, co is the sound frequency, and 8 is the

dimensionless amplitude of the pressure variation. The oscillations take place about 

the equilibrium radius Rq given by

#o = — — —  [2.7]
Pl-Poo

so that one may write

K = ^ [ l+ * ( 0 ]  [2.8]

The natural frequency of the bubble, a>0, is given by

oo„ = 3k — r — [2.9]
P*S pRo

in which Aris the polytropic exponent where

p r p ^ T  [2.io]

and energy dissipation arises only from liquid viscosity and compressibility. The 

results of an analysis involving the complete set of linearized conservation equations 

of mass, momentum and energy, may be summarised as follows (see Plesset and 

Hsieh 1960; Prosperetti 1976). There are essentially three length scales involved, 

namely, the bubble radius Ro, the wavelength of sound in the gas and the thermal 

penetration depth in the gas, Lth. If R</Ag is small, the pressure within the bubble is 

spatially uniform, leading to isothermal behaviour. Adiabatic behaviour corresponds 

to the case where Ro »  Lth. In the first case, the oscillations are too slow to maintain
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an appreciable temperature gradient in the bubble, whereas in the latter they are so 

fast that most of the gas contained in the bubble is practically thermally insulated 

from the liquid. For sufficiently high frequencies such that is of the order of Ro, 

pressure non-uniformities develop in the bubble and a polytropic pressure-volume 

relationship loses its thermodynamic meaning. Except for very small bubbles for 

which viscosity is very important, the low-frequency damping is dominated by 

thermal effects, whilst the high-frequency damping is due to acoustic effects.

2.4.1 Nonlinear oscillations

In an oscillating pressure field, equation [2.5] takes the following form:

where, polytropic behaviour is assumed. For large bubbles, such as those produced by 

underwater explosions, the most significant damping mechanism is acoustic energy 

radiation and therefore equation [2.1] cannot be used (Hoyt 1977). Noltingk and 

Neppiras (1950) demonstrated that very rapid growth followed by a violent collapse 

to very small values of the radius could occur within a single period of the driving 

force. Lauterbom (1976) has studied the behaviour of an air bubble of radius R0 = 10'3 

cm in water under a static pressure /%/•= 1 Bar and has reported the resonances that 

accompany the increasing pressure amplitude and the complicated effects of the initial 

conditions on the ensuing oscillatory motion, including subharmonic components. But 

it is not possible to express in a simple way the relation between the initial conditions 

and the value of the amplitudes in the steady-state oscillations, particularly as a small

48



Chapter 2
Materials and Bulllet-Piston Technique

change in the initial conditions can cause markedly different transients and steady- 

state motions.

Other studies of equation [2.1] have been reported, including the case of free 

oscillations with and without viscous effects (Prosperetti 1975). Flynn (1975a,6) 

reported a formulation of the general problem of cavitation dynamics, including an 

analysis of the gas behaviour and large-amplitude free oscillations. Fujikawa and 

Akamatsu (1980) studied the effects of liquid compressibility, non-equilibrium vapour 

condensation, intracavity heat conduction and the temperature discontinuity at the 

phase interface.

2.4.2 Mass-diffusion effects

The presence or absence of gas bubbles in a liquid and their behaviour are in part 

determined by mass-diffusion across the bubble-liquid interface. Henry's law relates 

the partial pressure of a gas acting on a liquid surface, pg, and the saturation gas 

concentration in the liquid denoted by cs:

cs = apg [2.12]

Here a is a constant characteristic of the particular gas-liquid combination and is 

primarily a function of temperature. Equation [2.2] is valid also at a nonplane 

interface. The pressure pg is determined from the dynamical Rayleigh equation but we 

first consider a situation in which the ambient pressure is fixed and equal to Pinf, then, 

unless the gas concentration c at the bubble surface satisfies equation [2.2] the bubble 

will not be in equilibrium, and it will either grow or shrink according to whether c > 

cs or c < cs.
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In an oscillating pressure field a bubble may grow even in an under-saturated solution. 

If the oscillation amplitude is large enough so that the gas-liquid solution at the 

bubble surface becomes under-saturated during the compression half-cycle and 

supersaturated during the expansion half-cycle then a mass exchange of alternating 

direction takes place between the bubble and the liquid. The average flux over one 

oscillation is zero in the case of a plane interface but for a spherical bubble the surface 

area is on average greater during the mass inflow than during outflow, resulting in a 

net increase in the mass of gas within the bubble. This rectified mass diffusion (Blake 

1949), is augmented by decreasing thickness of the diffusion layer adjacent to the 

bubble surface during the expansion half-cycle and its increase during the 

compression half-cycle.

When the liquid is not saturated, the bubble eventually disappears if the mass flux 

caused by rectified mass diffusion does not balance the loss of mass required by 

Henry's law. The amplitude at which the two fluxes are equal gives the threshold for 

bubble growth by rectified diffusion.

2.4.3 Cavitation bubbles and vapour bubbles

For a predominantly vapourous bubble, which grows rapidly to many times its initial 

size, mass-diffusion effects are negligible and the gas content only plays an important 

role in the final stages of an ensuing collapse. As noted above, we may distinguish 

between cavitation bubbles and those formed in boiling phenomena. In the latter, 

thermal (not inertial) effects dominate bubble growth. The former is referred to as
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cavitation bubbles and the latter as ‘boiling’ or ‘vapour’ bubbles. For a cavitation 

bubble, the internal pressure remains practically constant until the final stages of 

collapse but a much greater vapour pressure effect is obtained in the case of a boiling 

bubble. Hereafter focus is turned to the dynamics of a cavitation bubble, for which 

Equation [2.5] gives

1
\ R  p R - f i r [2.13]

i.e. neglecting viscous effects and taking the ambient pressure to be independent of 

time and with constant internal pressure. The subscript zero denotes the initial 

conditions for growth. Ifp v > p M it is seen that for R »  R0 the velocity is 

approximately equal to its asymptotic value

ii= p p z - p 1
\ 3  P

[2.14]

Ifp v > Poo, but an initial impulse is imparted to the bubble wall, equation [2.3] 

predicts that the bubble would reach a maximum radius that, neglecting surface 

tension, is given by

R =
3 . 2/

1 + -  pR (Poo -  pv) Rn [2.15]
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Under the same assumptions one can obtain an expression similar to [2.3], valid for 

the collapse of the bubble starting from some initial radius Rv If the initial velocity is 

taken to vanish, one has

' R_0

R
- 1 +

2a 
pR

[2.16]

In the absence of surface-tension effects, Equation [2.6] gives the time required for 

complete collapse:

n j

3rcp
2 ( p o o - p v)

0.915
( — ~— T  Ri\ P o o - p „ )

[2.17]

which is Rayleigh’s result. Experimental confirmation of the collapse time predicted 

by equation [2.7] (ca. 300 psec for a 0.378 cm bubble in water) has been reported by 

Lauterbom (1972a).

An important feature of the collapse stage is that, due to instability, analyses which 

assume spherical symmetry are inaccurate. Equation [2.6] predicts a velocity which 

approaches infinity as Rl3/2 as R -> 0 . This non physical behaviour is principally due 

to the neglect of liquid compressibility which is significant for a bubble-wall velocity 

comparable with the speed of sound in the liquid. A modification of the Rayleigh 

equation which takes into account liquid compressibility was obtained by Gilmore 

(1952). The result is that R ocR~1/2 as R —> 0, in contrast to the incompressible 

approximation.
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Hickling and Plesset (1964) analysed the effects of liquid compressibility 

numerically. A significant feature of their analysis, which continued past the bubble’s 

rebound, was the formation of a shock wave in the liquid. The peak pressure had an 

approximate 1/r dependence during the rebound, with cavity pressures of tens of 

kilobars. Due to the expansion wave produced during collapse, the Kirkwood-Bethe 

approximation gives good results up to relatively large Mach numbers but for bubble 

growth at very large velocities the same accuracy could not be expected, due to the 

propagation of a shock wave into the liquid. Prosperetti and Lezzi (1986) discuss 

modifications to the Rayleigh-Plesset equation which are accurate up to Mach 

numbers of ca 0.3. Another shortcoming of equation [2.6] is the neglect of the 

variation of p v due to the fact that condensation of the vapour cannot keep up with the 

bubble-wall motion when its velocity becomes of the order of the speed of sound in 

the vapour.

Hsieh (1970) obtained approximate analytic expressions for the maximum cavity 

radius in a viscous liquid subject to a transient pressure pulse. Flynn (1982) has 

reported numerical investigations into the behaviour of small bubbles in a liquid such 

as water when exposed to microsecond duration pulses of ultrasound. He considers 

the differences in maximum collapse pressures associated with stable and transient 

cavities. Whereas the collapse of a stable cavity would result in the generation of a 

pressure of ca 100 bars (at minimum radius), the maximum pressure in a collapsed 

transient cavity p m may be many orders of magnitude higher. A significant conclusion 

is that, for small values of the initial radius R„, there may exist a well-defined pressure 

amplitude Pt at which a nucleus will grow explosively into a transient cavity. This
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critical pressure is called the pressure threshold for transient cavitation at which a 

small change in the pressure amplitude Pa causes a very large change inp m.

Thresholds for transient cavitation have been reported by Flynn (1975a) who 

partitioned the acceleration d£//dt of the cavity interface into an inertial and a pressure 

acceleration function, IF  and PF, respectively. The former is governed by the term -  

3 lf/2 R  in the equation of motion of the cavity and the latter is the sum of all pressure 

terms in the same equation. As a cavity contracts from its maximum radius Rm, the 

function PF  at first becomes negative, reaches a minimum and then becomes positive, 

ultimately arresting the inward motion of the interface. IF  is always negative and its 

magnitude increases as the collapse speed increases and the cavity radius decreases.

In the expansion of a cavity of initial radius R„ there exists a critical value of the 

maximum radius Rm such that, for Rm less than this critical value, the entire cavity 

motion is controlled by PF  and the cavity is called a stable cavity. When Pa causes Rm 

to exceed this critical value, the motion is controlled during most of its contraction by 

IF  and the cavity is called a transient cavity. At this critical value of Pa , the plot of IF 

as a function of Rm intersects a similar plot of PF  at the minimum of P F . The 

pressure threshold Pt is then that value of Pa for which IF  intersects PF  at its 

minimum.

Flynn (1982) notes that thresholds are significant in the prediction of transient 

cavitation because, if a threshold exists, transient cavitation can be produced by 

pressures much less than might otherwise be required. The example is given of a 

nucleus with a radius of 0.5 jam which does not have a threshold at a frequency / a of 

10 MHz but does have one at 1 MHz. At 1 MHz, such a nucleus grows explosively
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under a microsecond pulse of sinusoidal waves with a Gaussian envelope creating 

pressure amplitude of 2.2 Bar: the resulting collapse produces a maximum pressurep m 

of 4 kBar (the pulse used in these calculations has a negative pressure peak of 

magnitude P a, followed by a positive peak of the same magnitude). At 10 MHz, the 

growth and collapse of a 0.5 jam nucleus would result in a maximum pressure of 4 

kBar only when Pa is increased to 12 Bar. When a well-defined threshold for transient 

cavitation exists, it is possible that microsecond pulses of ultrasound will produce 

transient cavities at pressure amplitudes much less than would be anticipated from 

estimates based on the pressure applied on the cavity. Acoustic cavitation produced 

by such pulses has been reported in experiments by Crum and Fowlkes (1986).

It is interesting to note some of the general statements made by Flynn (1982) 

concerning the nature of cavitation produced by a microsecond pulse of ultrasound -  

particularly in relation to the pressures and temperatures resulting from bubble 

collapse. AX/a = 1 MHz and Pa = 6 Bar, a nucleus with R„ = 1 pm will expand to a 

maximum radius of 7.4 Rn : the collapse is estimated to produce a maximum pressure 

of 28 kBar and a maximum temperature of 104 °K. Typically the maximum 

temperature lasts for less than a nanosecond. In a frequency range 1 -1 0  MHz , only 

nuclei with Rn < 2-3 pm will grow explosively into transient cavities and the 

maximum size of nuclei for which there is a well-defined threshold decreases as / a 

increases. At a given frequency and pressure amplitude the maximum pressure 

increases as R„ decreases. Furthermore, at a given initial radius Rn and pressure 

am plitude,^ increases as / a is decreased.
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2.4.4 Spherical bubbles in non-Newtonian fluids

Fruman (1999) has reported the results of integrating the generalized Rayleigh-Plesset 

equation [2.5] incorporating the following integral term to represent the viscous 

stress,

where m and n are the power law parameters and rj(R, R ,m,n,) is the apparent 

viscosity. The results of a rapid pressure variation were compared in a Newtonian 

fluid and three different power-law fluids. Despite considerable differences in r\, the 

temporal evolution of the bubble’s radius was found to be practically 

indistinguishable from the Newtonian situation. Fogler and Goddard (1970) reported 

large elastic effects on the temporal evolution of spherical bubbles in viscoelastic 

fluids but later works conclude that viscoelasticity has a very limited retardation effect 

on bubble growth and collapse in dilute polymer solutions e.g. see Ting (1977). These 

later findings are supported by Ryskin (1990), who concludes that bubble growth is 

unaffected by the polymer, but that the final stage of collapse is.

Kim (1994) has reported numerical studies of spherical bubbles in Maxwell fluids in 

which the Reynolds number Re and Deborah number De were defined as Re =

Ro(p Po)1/2 / t|  and De = X / T , and pG is the uniform pressure in the fluid, Ro is the 

initial bubble radius, T is the Rayleigh time scale and X and r\ are the fluid’s 

relaxation time and viscosity, respectively. While highly oscillatory behaviour of the 

bubble radius was reported for moderate Re and De over several growth-collapse

CD

3 f ( M d r  = - 4 ( 2 v T■»-i m . R ,«-i R 
n R R [2.18]

R
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rebound cycles, asymptotic behaviour was found for large ReDe, and fluid elasticity 

was found to accelerate the early stages of collapse while retarding its later stages. 

Kim (1994) argues that this is due to the dominance of inertia in the early stages of 

collapse, the viscoelastic stresses not having had sufficient time to grow sufficiently, 

and notes that, even for small De, the viscoelastic stress is significant when the rate of 

deformation is large.

The behavior of spark generated bubbles in an unbounded fluid, including water, 

polyethylene oxide (PEO) and Guar Gum solutions have been widely reported (e.g. 

Chahine 1979). Even at polymer concentrations which invoke marked viscoelastic 

effects, the bubbles remained spherical during growth and collapse, the duration of the 

latter phase being equal to the Rayleigh time computed using the maximum radius of 

the bubble. The time and amplitude of the first and second rebounds were also 

unaffected. Similar findings have been reported for laser-induced bubbles in solutions 

of CMC and PAM in which, even at very large polymer concentration, the bubble 

behavior is little affected by rheological properties other than the infinite-shear 

viscosity (Brujan et al. 1996).

Pearson and Middleman (1977) have described how bubble collapse provides a means 

to study the elongational flow of polymer solutions and low viscosity melts. The 

collapse of a single spherical gas bubble within a large body of fluid creates a uniaxial 

elongational flow in the surrounding fluid, and collapse under constant bubble 

pressure produces nearly constant strain rate kinematics.

57



Chapter 2
Materials and Bulllet-Piston Technique

The B-P experiment involves the transmission of a pulse of tension by the liquid to 

the face of the piston; and that cavitation may result from this pulse. It follows that in 

the case of experiments in which cavitational activity is detected, the magnitude of the 

tension transmitted by the liquid is sufficient to result in the development of a 

transient net negative pressure in the presence of a background static pressure (Ps). 

Thus an estimate of the magnitude of tension capable of being transmitted by the 

liquid can be obtained from knowledge of Ps.
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Figure 2.6 Expanded pressure record obtained from a 603B transducer showing the 

time intervals x* and x0

The results of such experiments on a mutigrade oil are shown in figure 2.7, in which xt 

is plotted as a function of Ps (absolute, in p.s.i.) and from which Fc is estimated in the 

following way. The time delay x0, between pulses corresponding to ‘ 1’ and ‘2’ in 

figure 2.5 and is shown in expanded form in figure 2.6, represents the time required 

for the upward travelling pressure wave to return, as tension, to the lower transducer’s 

location: it also represents the smallest time interval for which a cavity growth- 

collapse cycle could occur given that a bubble would have to grow and collapse
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infinitely quickly in order that r, = xQ. Thus Fc is estimated by extrapolation of the data 

in figure 2.6 to that pressure Ps at which t, = xG; this condition represents the complete 

suppression of cavitation.
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Figure 2.7 The time interval xt as a function of applied static pressure, Ps (in p.s.i.) 

for a petrol-engine oil. Also shown is the the time interval x0 used to estimate Fc

The following Chapter now reports how this form of the B-P dynamic stressing 

apparatus has been used herein to investigate the tensile properties of water, as a 

precursor to using the technique to investigate the properties of a range of non- 

Newtonian fluids (dilute aqueous polymer solutions over a range of molecular 

weights and polymer concentrations).
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Chapter 3 

Tensile Properties of Water

3.1 Introduction

It will be recalled from the work reviewed in Chapter 1 that the concept of a well- 

defined threshold stress for cavitation inception has been extensively studied from a 

theoretical perspective. The theoretical estimates of the tensile strength of water are in 

the region of 500 -  1300 Bar (Temperley, 1947; Fisher, 1948) when undergoing 

homogeneous nucleation, where there is little dependence of Fc on stressing rate 

(Fisher, 1948). The majority of experimental techniques involve heterogeneous 

nucleation in which case a dependence of Fc on stressing rate may be expected 

(Trevena, 1982). Recent reviews of the experimental methods to determine Fc have 

found two broad groups of experimental results (Herbert and Caupin, 2005; Williams 

and Williams, 2004). The first group consists of the results of various ‘quartz 

inclusion’ studies (Zheng et al, 1991) which present values of Fc in the range 800 Bar 

to 1300 Bar. Such studies, which involve extremely small sample volumes, are 

thought to involve homogeneous nucleation conditions which give rise to values of Fc 

close to the theoretical limit. However, these studies rely on long extrapolations into 

the negative pressure regime. A second group of results involves experiments in 

which heterogeneous nucleation is responsible for the recorded cavitation events. It is 

this second group which is the focus of the work reported in the present paper. It 

consists of the results of experiments involving various techniques which produce 

values of Fc in the range 50 Bar to 250 Bar (Henderson and Speedy, 1987; Briggs, 

1950; Galloway, 1954; Greenspan and Tschiegg, 1967; Jones et al 1981).
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There is also a third group of results (Williams and Williams, 2004), containing 

anomalously low values of F& representing the outcomes of dynamic stressing 

experiments in which a pulse of tension is generated within a liquid by the reflection 

of a compressional wave at a suitable boundary. In the ‘shock tube’ work of Richards 

et al (1980), this reflection took place at a flexible membrane while in the ‘bullet- 

piston’ (B-P) technique this reflection occurs at the free surface of the liquid. Early B- 

P work suggested that degassed, distilled water was incapable of sustaining a tension 

greater than 10 Bar (Davies et al, 1956). In subsequent B-P work, Couzens and 

Trevena (1969) found a value of 8.5 Bar for ordinary tap water and 15 Bar for 

degassed, purified water, while Couzens and Trevena (1974) and Sedgewick and 

Trevena (1976) reported values of 10 Bar for purified water. These anomalously low 

values however can be explained by the pressure transducers and data sampling 

methods employed (Williams and Williams, 2000).

No satisfactory explanation has been given for the extremely broad range of values 

represented by the second group of results described above. A principal difficulty in 

reconciling the results of such studies is clearly the diverse range of experimental 

techniques employed. Each of these techniques has different characteristics in terms 

of the corresponding rates of tensile stress development it invokes within a test liquid. 

It is arguable therefore that what has been lacking is a single technique in which the 

rate of tensile stress development ClF may be varied in a systematic manner in order to 

investigate its effect on the determination of Fc .

This chapter reports how a modified form of the B-P technique has been used as the 

basis for such an investigation.
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3.2 Dynamic testing of purified water

In most cavitation experiments the basis for all other work is taken from the value 

obtained for water. The water undergoes filtration and deionisation to remove any 

impurities in the sample. These impurities if left within the sample can act as 

nucleation sites and enhance cavitational activity. The next section shows the results 

obtained for purified water including the pressure tension cycles that were obtained. 

The modified B-P experiment (as described in chapter 2) was used to carry out a 

series of experiments at different static pressures with a constant applied stressing rate 

i.e. the pulse caused by the bullet impact on the piston was always kept constant 

(results for different stressing rates can be seen in section 3.3). It is worth noting at 

this point that the stressing rate of the experiment under the modified B-P technique 

could be closely monitored and changed if necessary. Figures 3.1-3.4 show the pulse- 

tension cycles that occurred when applying static pressures of 0, 100, 200, 250 psi 

respectively (these values are the noted gauge pressures, however for actual pressure 

an additional 14.7 psi was added for the presence of atmospheric pressure). It is clear 

that the gap between the initial pulse-tension cycle and that of the secondary pulse- 

tension cycle is reduced as the pressure increases. The timescale on the x-axis is the 

same for the values for 100, 200 and 250 psi but has been increased for 0 psi.
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Figure 3.1 Pressure-tension record for purified water at 0 psi
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Figure 3.2 Pressure-tension record for purified water at 100 psi
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Figure 3.3 Pressure-tension record for purified water at 200 psi
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Figure 3.4 Pressure-tension record for purified water at 250 psi
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All the results were repeated five times with reproducible results occurring on all 

pressures. The time gaps between first and second pulse cycles have been recorded in 

table 3.1

Static pressure 

applied (Psi)
14.7 34.7 54.7 84.7 114.7 164.7 214.7 264.7 314.7

Time gap (ms) 

(average value)
79.6 34.4 22.3 17.3 12.7 8.93 7.4 5.2 4.85

Table 3.1 Pressure applied and time gaps achieved for purified water

From the data in table 3.1 we are able to plot a log-log graph of the static pressure and 

time gap as presented at figure 3.5. A line of best fit is also presented here and it can 

be seen that there is good agreement to the results and the fitted line. From this data, 

as mentioned in chapter 2, we can extrapolate back to determine the tensile strength of 

the solution. The result obtained for water was 104 Bar, which corresponds well with 

previous bullet-piston work (Williams et al 1997).
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Figure 3.5 A representation of the results obtained for purified water from the bullet- 
piston experiment giving rise to a tensile strength of 105 Bar.

3.2.1 The effect of stressing rate on tensile strength measurements of

purified water

The effect of stressing rate has long been established with Trevena (1982) showing 

that increasing the stressing rate would increase the tensile strength of a solution. 

However, until now there has not been a single experiment that has been able to 

systematically test a solution with a range of stressing rates whilst keeping all other 

parameters constant. By varying the gap distance between the piston base and the top 

of the stun gun we can vary the pressure applied from the captive bolt as it strikes the 

base of the column. Within the work presented here the gap size was varied from 

3.75 to 4.2 cm which resulted in stressing rates in the order of 0.6 to 0.17 Bar/ps.
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This rate o f  stressing can also be altered by varying the strength o f bullet that is used

in the stun-gun. Although this method has not been tested within this research it

would be a viable alternative to change the stressing rate. All parameters except the

rate o f stressing were kept fixed.

It is interesting to look at the pressure-tension cycles for the different levels o f 

stressing, figures 3 6-3.8 show the cycles for different gap sizes at atmospheric 

pressure. W here the y-axis represents unsealed pressure recorded directly from the 

transducer,

P ressu re

3

IADC Units)

0 06 0.08 
time I ms

Figure 3.6 Pressure-tension record for purified water at 0 psi at gap size 3.6 cm
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Figure 3.7 Pressure-tension record for purified water at 0 psi at gap size 3.7 cm
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Figure 3.8 Pressure-tension record for purified water at 0 psi at gap size 3.8 cm
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It is clearly evident that the peak tension achieved is significantly higher for the 

smaller gap size, as would be expected with a greater force being driven into the 

piston base. Similarly we can show the difference in pressure cycles at each different 

applied static pressure which show agreement with the above figures. However to be 

able to give a quantative measurement for the rate of stressing we have to look at the 

maximum rate of change of pressure. An obvious problem with this is that of the 

pressure transducers not being able to accurately record the maximum amplitude of 

the cycles, as mentioned in chapter 2, however the time gaps achieved are recorded 

with great accuracy. To determine the rate of stressing we have to work back from the 

obtained values for the tensile strength of each solution. The peak amplitude on the 

first cycle corresponds to the tension achieved prior to cavitation, also this value is the 

effective tensile strength of the fluid which we have found. By using the time gap 

involved in achieving the breaking tension we can then determine the rate of stressing. 

A table of the time gaps associated with each stressing rate can be seen in table 3.2.

70



Chapter 3
Tensile Properties o f  Water

Time gap (ms) at each stressing rate

Pressure 0.3 Bar/ps 0.4 Bar/ps 0.6 Bar/ps

14.7 79.6 85.2 90.1

34.7 34.4 38.9 40.9

54.7 22.3 24.1 25.1

84.7 17.3 18 19

114.7 12.7 14.1 15.2

164.7 8.9 9.9 10.9

214.7 7.4 8.4 9.1

264.7 5.2 6 7

314.7 4.85 5.2 6.1

Table 3.2 Time associated between first and second pressure pulses under different
stressing rates and applied static pressures.

The plots associated with determining the tensile strength from the time associated 

with initial bubble growth can be seen in figure 3.9. The log-log plot of static 

pressure versus initial time gap shows that as the stressing rate is increased, the line of 

best fit increases its gradient resulting in determining a higher tensile strength.
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Figure 3.9 The time interval as a function o f applied static pressure (psi) for purified 
water at three different rates o f stressing

It is worthwhile noting that even though the initial values appear similar, the gradient 

o f the fitting line is altered dramatically by the variation in values at higher static 

pressures in the area above the liquid column.

The resulting difference in the tensile strength by varying the stressing rate can be 

seen in the table 3.3 below.

Gap Size 
(cm)

Tensile Strength 
(Bar)

Stressing Rate 
(Bar/ps)

3.75 240 0.6

3.9 168 0.4

4.0 110 0.3

4.2 60 0.17

Table 3.3 The effect o f stressing rate on the tensile strength o f water
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These results can also been seen graphically (figure 3.10) which seem to indicate a 

linear increase of tensile strength with increasing stressing rate. The B-P unfortunately 

has limitations as to the operating conditions in which it can deliver, namely running 

the experiment safely. This means the range of stressing rate could only be 

undertaken from 0.17 to 0.6 Bar/ps. A smaller gap between piston and captive bolt 

would increase the likely event of breaking the apparatus whilst a larger gap failed to 

generate a pressure pulse.
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|  150--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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«
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Stressing Rate (Bar/us)

Figure 3.10 The effect of stressing rate on the tensile strength of water

It is evident that with increasing rates of stressing the tensile strength of the sample is 

increased, in agreement with Trevena’s work. It is important to note that in a 

similarly built experiment the rates of stressing could be quite different due to the 

effect of the gun and the absorbency of pressure on the supports. Even with a small 

variation in stressing rate the effect on the effective tensile strength can be quite large.
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It is therefore important to investigate if the rate of stressing can alter the trends 

between different fluid samples.

Since there is a linear relationship between the tensile strength and stressing rate 

delivered to a fluid sample (figure 3.10), we can characterise the fluid sample by a 

tensile parameter in the form

X =Fc/(dFc/dt)

By taking the linear gradient of the line of best fit from the data shown in figure 3.10 

we obtain a value of X=425 for purified water. Within a set industrial application a 

given rate of stress development would be applicable, enabling estimation of the 

tensile strength of a fluid at that stress rate, as long as we could test this at any other 

given stress rate. With the values that we have obtained for purified water this 

equation estimates the tensile strength within a 15% accuracy.

3.3 Discussion

These measurements on degassed, purified water at 25°C for different rates of 

stressing (0* 187bar/ms < QF < 0-77 Bar/ms) reveal a marked dependence of Fc on 

ClF, with Fc being significantly larger at the higher stressing rates, some 224 Bar 

(Qp = 0-77 Bar/ms) compared to 59 Bar at the lowest stressing rate ( &F ~ 0* 187 

Bar/ms). Fc( QF) also shows a linear relationship over the stressing rates considered. 

At the highest stressing rate employed herein (ClF = 0-77 Bar/ms) the value of Fc 

obtained (224 Bar) is comparable to values obtained by Henderson and Speedy 

(1987), Greenspan and Tschiegg (1967), Galloway (1954) and Briggs (1950), where
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160 Bar < Fc <.250 Bar, and is almost identical to the value determined by Herbert 

and Caupin (2005) where Fc ~ 225 Bar at 25°C. Also shown in figure 3.11 is the value 

of Fc for purified water resulting from another pulse-reflection technique, (Williams 

et al, 1997). This value of Fc (300 Bar at 1 Bar/ps) follows the trend of FC(QP) 

established in the present work.

D /cm Fc / Bar WF / Bar ms'1

4*2 59 ±2-5 0-18675 ±0-0146

4 110 ± 3 0-369 ±0-0153

3*9 168 ±4 0-5875 ± 0-044

3-7 224 ±5 0-77 ±0-043

Table 3.4 Values of Fc and Qp for various gap widths D.

300 • A

250 -

I—5 —I

200 -

I—£ - l
150 -

100 -

50 -
• Bullet - Piston
* Tube - Arrest (Williams et al, 1997)

0 -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 .9  1.0 1.1

Clp / (bar/|os)

Figure 3.11 Fc as a function of tip for degassed, purified water at 25°C. Also shown 
is the result from the tube-arrest dynamic stressing technique (Williams et al, 1997).
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3.4 Conclusions

The present results reveal that under a range of rates of tensile stress development, 

samples of degassed, purified water present markedly different values of effective 

tensile strength which range from ca. 60 Bar to ca. 250 Bar. These values span the 

range reported in the second group of experimental results described in section 3.1, 

which involve various stressing techniques, each of which may be assumed to 

produce a different characteristic rate of tensile stress development. It is significant 

therefore that in the present work, results have been produced from a single technique, 

consisting of experiments conducted within the same apparatus in which the rate of 

stressing is deliberately varied. The results of such a study have not previously been 

reported. They clearly establish the importance of stressing rate in considerations of 

the effective tensile strength of liquids under conditions where heterogeneous 

nucleation prevails and emphasise that any attempt to reconcile the results of previous 

cavitation studies should take this factor into account.

The latter point is emphasised by reference to the various results obtained for the 

tensile strength of other liquids. In work on glycerol, Bull (1956) found a tensile 

strength of 60 Bar while Carlson and Henry (1973) reported 600 Bar. It is interesting 

to note that the rate of stressing was some 104 times lower in Bull’s work than in 

Carlson and Henry’s. Similar findings have been reported for mercury, in which 

Briggs (1953) was unable to generate static tensions greater than 425 Bar but Carlson 

(1975) found that tensile failure occurred at a tension of 19,000 Bar, at a stressing rate 

of ca. 106 Bar/ms: at a lower rate (1 bar/ms), Williams et al. (1998) found a limit for 

Fc of ca. 3,000 Bar. It is noteworthy that the characteristic times of the pulses used
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herein correspond to those involved in some medical applications of low frequency 

ultrasound (Rosenschein and Rassin 1998); and the tensile strength of water reported 

here considerably exceeds the values of tension thought to be generated in vivo by 

some ultrasound devices.

It should be noted that the findings for the values of purified water over a range of 

stressing rates raises a few points in regard to the previous experimental work, on the 

original B-P technique, as the rate of stressing was not constant during this work. The 

very make-up of the B-P experiment meant that different bullet strengths and varied 

gaps were used in the experiment, required to increase the pressure in the system, to 

find one fixed value for the tensile strength of purified water. It is therefore 

hypothesised that the anomalously low values for water were actually found due to 

different stresses being applied during the experiment. Simulating the data that might 

have been made using the original B-P technique can be made using data gained 

during the research for this thesis. Data obtained from high stressing rate experiments 

and also from low stressing rate tests produces a graph similar to figure 3.12. This 

was generated by selecting time gaps produced at a low stressing rates for low 

pressures and at high stressing rates for high pressures. The blue line of best fit is 

significantly steeper than that previously generated and results in tensile strength in 

the order of 35 Bar. This, even though not as low as reported in the work by 

Sedgewick and Trevena, may explain further the low values that had been found.
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Figure 3.12 Time gap between pressure peaks as a function o f static pressure. 
(Results for all stressing rates shown.)

The results presented here show that it would be possible, on testing the same liquid, 

in this case water, to obtain variation in the tensile strength by altering the stressing 

rate. The original B-P technique requires experiments undertaken at different stressing 

rates to obtain one value o f the tensile strength. These new results show clearly how 

the anomalously low values obtained may have arisen and establish that the B-P can 

yield new information on the tensile properties o f water when used and analysed 

appropriately. The following chapter now reports on the basic B-P variable stressing- 

rate technique to investigate the tensile properties o f aqueous polymer solutions.
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Chapter 4 

Tensile Properties of Polymer Solutions

4.1 Introduction

It is well established that in many circumstances, the addition of high molecular 

weight polymer in low concentration (less than 100 ppm) to a Newtonian solvent has 

little effect on the mechanical properties of the resulting dilute polymer solution. For 

example, the effect on shear viscosity is virtually insignificant with a small increase in 

its absolute value and very little shear thinning. At the same time, there are some 

situations where the addition of very small concentrations of polymer can lead to very 

significant changes in mechanical response; 'drag reduction' in turbulent flow being an 

obvious example. This field has been well worked for several decades and is 

mentioned here only as an example of an 'extravagant effect' for a 'small input' (Cheny 

and Walters 1996). There are other examples of this which are of significant potential 

practical relevance. We refer particularly to the effect of polymer additives on 

cavitation and extensional viscosity.

As noted previously in this thesis, the occurrence of negative pressures in many flows 

of engineering relevance result in the cavitation of liquids and the related 

phenomenon of liquid-jet formation. The interaction of these liquid-jets with the 

shockwaves formed about oscillating cavitation bubbles leads, in many instances, to 

damage to solid surfaces (Trevena 1987). An important example is found in the 

engine bearing context, where the need to study cavitation in lubricating oils is clearly 

established (Dowson and Taylor 1979).
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Despite theoretical and experimental studies demonstrating that the viscoelasticity 

conferred upon liquids containing polymer additives influence their cavitation 

properties, the results are often contradictory -  particularly with regard to the specific 

effects on cavitation damage potential and cavitation threshold.

Recent studies of the effects of polymer additives on lubricant flow in dynamically- 

loaded journal bearings conclude that their role in reducing wear may be associated 

with mitigating effects of viscoelasticity on cavitation, but the precise nature of such 

effects remains unclear. Indeed, no mitigating effects have been found in some studies 

of cavitation-induced pressures in viscoelastic liquids, in which the presence of 

relaxation mechanisms with characteristic times in the range 10'3 s to 10"4 s lead to 

transient pressures some 30 times larger than in Newtonian liquids of comparable 

shear viscosity (Trevena 1987). Although these findings are supported by evidence 

that small amounts of polymer can lead to enhanced cavitation damage, they are 

complicated by consideration of the time-scales of the various relaxation and 

retardation mechanisms associated with different polymers (McComb and Ayyash 

1980) and confused by contradictory results, even for the same polymer (Shima et al. 

1986). This crucial issue of the timescale of the stressing events in cavitation 

threshold determination work is the purpose of the work considered in this chapter 

because similar uncertainty pertains to the related question of the role of polymer 

additives in determining the cavitation threshold (or effective tensile strength) of 

liquids. This is a parameter of crucial importance in relation to the establishment of 

flow boundary conditions in (fluid) mechanical engineering and process design, such 

as in the prediction of bearing performance.
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Under dynamic stressing there is evidence that the presence of polymer can lower 

cavitation threshold, such as in the stressing of water containing polyacrylamide 

additives by the bullet-piston reflection method (Trevena 1987). This work 

demonstrated a reduction of liquid effective tensile strength, the reduction increasing 

with increasing polymer concentration. However, when this system was investigated 

using an ab initio technique, the cavitation threshold was found to be increased by the 

same polymer additive, and when subjected to static stressing (in a modified Berthelot 

tube) the presence of polymer made no discernible difference to the effective tensile 

strength of the liquid.

In view of the scientific and engineering importance of the questions posed by these 

findings, and the commercial and environmental benefits linked to their solution, 

there is clearly a pressing need for a systematic study of the specific effects of 

polymer additives on the cavitation and related Theological properties of liquids under 

dynamic stressing. As previously noted for many industrial applications such as ink 

jet printing and engine oil manufacturing, the importance of tensile strength of a fluid 

is high, since this knowledge can help reduce damage on the process, i.e. inkjet 

nozzle or engine bearing. In the manufacture of inks polymers are often added to 

increase shear viscosity, however these polymers can also affect the extensional 

viscosity and the tensile strength of these solutions. This chapter represents the first 

reported results for the tensile strength of a range of concentrations and molecular 

weight for a polymeric system with a clear definition of the parameters.
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The tensile strength of a range of molecular weight polyethylene glycol in solution 

was undertaken by dynamic stressing using the bullet-piston technique as described in 

chapter 2.

4.2 Polyethylene glycol solutions

The shear viscosity measurements were made on the Advanced Rheometric 

Expansion System (ARES) rheometer (Rheometrics) and the zero shear value was 

obtained. In industry, polyethylene glycol is used to increase the shear viscosity.

Table 4.1 shows the shear viscosity measurements for the samples.

Concentration (% polymer by weight)

0.5 1 2 4 8 16

Molecular 600 7.7 8.3 8.7 9 9.3 9.9

weight 1500 7.9 8.5 8.9 9.1 9.5 10.7

6000 8.1 8.7 9.1 9.7 11 15

10000 8.6 9 9.4 10.7 13.2 20

20000 8.7 9.1 9.8 11.4 15.2 25

Table 4.1 Shear viscosity measurements (r| (Pa.s))

It can be seen that the increased concentration and molecular weight increase the 

shear viscosity of the sample.
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4.2.1 Tensile strength results

As w ith the experiments for deionised water (chapter 3) the values for the time gap 

between primary and secondary cycles over a range o f applied static pressures were 

obtained. The samples were tested over a range o f concentrations and molecular 

weights. The lowest molecular weight tested was 600. Figures 4.1 -  4.12 show the 

pressure tension results obtained for these solutions at 0, 100, 200 and 250 psi for 

concentrations 1, 5 and 10%. Records for pressures at 20, 50, 150 and 300 psi have 

been omitted for briefness. The pressure tension cycles for 6000 and 10000 Mw at the 

same concentrations are shown for comparative reasons in section 4.6.

P ressu re  (ACD units)
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Figure 4.1 Pressure-tension cycle for a 0 psi static pulse for 1% 600 Mw solution.
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Figure 4.2 Pressure-tension cycle for a 100 psi static pulse for 1% 600 Mw solution.
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Figure 4.3 Pressure-tension cycle for a 200 psi static pulse for 1% 600 Mw solution.
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Figure 4.4 Pressure-tension cycle for a 250 psi static pulse for 1% 600 Mw solution.
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Figure 4.5 Pressure-tension cycle for a 0 psi static pulse for 5% 600 Mw solution.
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Figure 4.6 Pressure-tension cycle for a 100 psi static pulse for 5% 600 Mw solution.
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Figure 4.7 Pressure-tension cycle for a 200 psi static pulse for 5% 600 Mw solution.
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Figure 4,8 Pressure-tension cycle for a 250 psi static pulse for 5% 600 Mw solution.
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Figure 4.9 Pressure-tension cycle for a 0 psi static pulse for 10% 600 Mw solution.
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Figure 4.10 Pressure-tension cycle for a 100 psi static pulse for 10% 600 Mw 
solution.
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Figure 4.11 Pressure-tension cycle for a 200 psi static pulse for 10% 600 Mw 
solution.
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Figure 4.12 Pressure-tension cycle for a 250 psi static pulse for 10% 600 Mw 
solution.

From the pressure tension cycles we can obtain the time taken for initial bubble 

growth collapse by taking the time between the primary and secondary pressure 

peaks. An interesting effect can be seen that at high static pressure the negative peaks 

are much broader than at low static pressures. This, although not researched here, 

would likely be due to a memory effect o f the fluid. By taking a log-log plot o f the 

applied static pressure above the liquid column and the time between primary and 

secondary pressure pulses the effective tensile strength may be determined by 

extrapolating back to a zero time gap between pulses. Figures 4 .1 3 -4 .1 5  show the 

results for 1500 Mw PEG at 1, 5 and 12.5 % concentration. The subsequent figures 

4 16 -  4.19 show the comparative graphs for each molecular weight.
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Figure 4.13 Log-log plot o f time between pressure peaks as a function o f applied 
static pressure for 1500 Mw at 1% concentration

log (time gap)
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Figure 4.14 Log-log plot o f time between pressure peaks as a function o f applied 
static pressure for 1500 Mw at 5% concentration
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Figure 4.15 Log-log plot o f time between pressure peaks as a function o f applied 
static pressure for 1500 Mw at 12.5% concentration
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Figure 4.16 Log-log plot o f time between pressure peaks as a function o f  applied 
static pressure for 1500 Mw at 1%, 5% and 12.5% concentration.
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■ 6000M w  5%  

a  6000M w  12.5%

50.00%

2.5 3.5
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Figure 4.17 Log-log plot o f  time between pressure peaks as a function o f applied 
static pressure for 6000 Mw at 1%, 5% and 12.5% concentration.
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Figure 4.18 Log-log plot o f time between pressure peaks as a function o f applied 
static pressure for 10000 M w at 1%, 5% and 12.5% concentration.
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♦ 20000M w  0.25%  
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Figure 4.19 Log-log plot o f time between pressure peaks as a function o f applied 
static pressure for 20000 Mw at 1%, 5% and 12.5% concentration.

Results for the tensile strength for the different PEG solutions can be seen in table 4.2. 

A graph o f these results can be seen in figure 4.20.

Molecular

weight

Concentration (% polymer by weight)

0.25 0.5 1 2.5 5 7.5 10 12.5 15

600 - - 102 106 112 115 118 120 120

1500 - - 105 115. 126. 139. 140. 140. 141

6000 - - 132 149 164 169 171 171 -

10000 - 131 156 188 200 200 201 - -

20000 126. 162. 185. 221. 223. 223. - - -

Table 4.2 The tensile strength, Fc, o f solutions of PEG over a range o f molecular weights and 

concentrations.
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Tensile Strength Fc
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10000 Mw PEG 
6000 Mw PEG 
1500 Mw PEG 
600 Mw PEG

6 8 10 12 
Concentration (% polymer)

14 16 18

Figure 4.20 The tensile strength o f PEG solutions as a function o f polymer 
concentration and molecular weight.

This indicates that at each molecular weight the addition o f polymer causes the tensile 

strength o f the fluid to rise but it is also evident that there seems to be a restriction on 

the growth o f the tensile strength o f the fluid, and on all the molecular weights a 

plateau point is reached. An important point on these graphs is that if  the lines 

associated with each molecular weight were extended as the graph shows, they would 

intersect the y axis at approximately 100 Bar which agrees with (reasonable accuracy) 

the result obtained for deionised water o f 105±5 Bar.

Figure 4.20 has two main noteworthy characteristics; Firstly the steep increase in 

tensile strength with additional polymer concentration and secondly there is a limiting
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tensile strength associated with each molecular weight which also corresponds to a 

critical concentration, at which point the addition of extra polymer fails to increase the 

tensile strength. The point of the onset of the plateau is referred to herein as the 

plateau tensile strength.

Molecular weight Plateau tensile strength Concentration at Fcpiat

600 120 11.5

1500 140 9

6000 170 6

10000 200 4

20000 222 2.5

Table 4.3 Plateau tensile strength against concentration

If a log-log plot of the Molecular weight versus the plateau tensile strength (Fc(plat>) 

is taken, a linear relation is obtained as seen in figure 4.21.

2.4

2.35

2.3

& 2.25£
iH
S
m3

2.15

2.1

2.05
4.1 4.3 4.53.7 3.93.3 3.52.7 2.9 3.12.5

log(Molecuhr Weight)

Figure 4.21 Log-log graph of molecular weight and plateau tensile strength
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The line of best fit on the above graph (figure 4.21) is given as y = 0.1755x + 1.5878 

rearranging for Fc(plat) we obtain

F c(p l a t )  = 38.7 Mw°1755

Hence with other molecular weight polyethylene glycol solutions we can predict the 

plateau value for the tensile strength.

Similarly it is interesting to look at the concentration at which the maximum tensile 

strength is first achieved, hence giving an estimate for the least amount of polymer 

needed to achieve the largest achievable increase in tensile strength. Figure 4.22 

shows a graph of concentration verses molecular weight on a semi-log scale.

14 -]------

eo
3k.

lsoU
330>
3

4.53.5

log(M olecular W eight)

Figure 4.22 Graph of plateau concentration as a function of molecular weight
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4.3 Effect of stressing rate on polymer solutions

In section 3.3.1 the effect of stressing rate on purified water reveals that increasing the 

stressing rate also increases the tensile strength. It has been shown that the effect of 

concentration and molecular weight creates a distinctive trend, observed also for 

purified water, namely, an increase in stressing rate has a linear increase with tensile 

strength. However, it is important to verify that the trend is repeatable at different 

stressing rates.

We have taken as an example the 6000 Mw solutions and repeated them at different 

stressing rates (0.17-0.6 Bar/ps). It is the author’s understanding that this is the first 

reported work on the effect of stressing rate on a range of polymer solutions.

Concentration (% polymer by weight)

Stressing

rate

(Bar/ps)

0 1 2.5 7.5 12.5

0.6 240 286 330 373 379

0.4 168 194 226 255 258

0.3 110 132 149 169 171

0.17 60 71 82.5 94 95

Table 4.4 The effective tensile strength Fc at a range of concentrations of 6000 Mw 
PEG solution over a range of stressing rates.

To obtain the tensile strength data in table 4.4, a systematic range of testing was 

undertaken at various static pressures. A range of gap sizes was then used to alter the 

pressure applied at the base of the piston and hence alter the rate of stressing 

developed on the fluid. The results can be seen graphically in figure 4.23.
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Figure 4.23 The effective tensile strength Fc as a function o f concentration for 6000 
Mw PEG solutions over a range o f stressing rates.

Figure 4.23 and table 4.4 show that with increased stressing rate the tensile strength of 

the solution also increases. It is important to note that the trend associated with each 

fluid applies across the range o f stressing rates (albeit at a high stress regime).

In chapter 3, on purified water (section 3.2.1), a linear relationship between the tensile 

strength and stressing rate can be observed. Figure 4.24 shows that this relationship 

also applies to the polymeric solutions tested. By taking the gradient o f these lines the 

tensile parameter can be obtained on each o f these solutions to detennine its tensile 

strength for a given rate o f stressing. From the small amount o f data that we presently 

have, these estimations at the high stress development regime have given predictions 

within 15%.
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Figure 4.24 The effective tensile strength, Fc, over a range o f  concentrations o f 6000 
Mw PEG at various rates o f stressing

The effect o f stressing rate on the tensile strength o f polymer solutions has only been 

examined for PEG samples at 6000 Mw and further research to confirm the trends 

observed would need to be undertaken at various other molecular weights.

4.4 PAA results

Similar experiments were conducted on a high molecular weight polyacralamide 

solution in purified water using a 9*106 Mw polymer grade at concentrations from

0.1-0.8, to try to establish if  the effects seen for PEG are individual to that polymer or 

low molecular weight solutions. The same experimental technique as performed with 

the PEG solutions was carried out with the PAA. The pressure tension cycles have 

been omitted from this thesis as they show the same trends as previously reported for 

PEG solutions (Section 4.2.1).

♦ 0%
■ 1% 
a 2 .5%
•  7.5%
♦ 12.5%
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The tensile strength data can be seen in table 4.5 and a graph of these can be seen in 

figure 4.25. It is apparent that there is a steep increase in the tensile strength of the 

fluid when initially increasing the polymer concentration, as previously seen with the 

PEG solutions.

Concentration 

(% by 

weight)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Tensile 

strength Fc
104 160.57 191.2 208.1 212 212.5 216.4 217.2 218.9

Table 4.5 Tensile strength of PAA at a range of concentrations

240 

220

tensile strength Fc(bars)

200

180 

160 

140 

120 - 

100
0.1 0.2 0.3 0.4 0.5 0.6

concentration by weight (%)
0.7 0.8 0.9

Figure 4.25 Tensile strength as a function of concentration for PAA solutions
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These preliminary studies into the effect of PAA on the tensile strength of solutions 

seem to suggest a similar occurrence, of the onset of a tensile strength plateau with 

increasing concentration, to what has been seen in PEG. This is an area where more 

time and research is required to further establish this result across a broader range of 

molecular weights and polymers.

4.5 Results and discussion

The work reported in this chapter is the first to address the issue of the influence of 

polymer additives on liquid tensile strength by an appropriate experimental technique

i.e. one in which the timescale of the dynamic stressing event and the rate of stressing 

(rate of tensile stress development) may be systematically controlled. In all previous 

studies the latter feature has been essentially an ad hoc parameter with no adequate 

means of controlling it or of varying it significantly.

The present results cover systematic testing of the tensile strength of polymeric 

liquids over a range of concentrations and molecular weight. For the first time in such 

experiments it is shown unequivocally that with increasing molecular weight there is 

an increased effective tensile strength of the solution. However, the results also reveal 

that increasing polymer concentration results in a clearly defined stress saturation 

level -  with an apparent plateau in terms of effective tensile strength.

The present work addresses an important and longstanding anomaly in the cavitation 

literature concerning the role of (high molecular weight) polymeric additives in 

determining the cavitation thresholds of dilute aqueous polymer solutions. It is
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important to recall that previously, under pulsed dynamic stressing, other researchers 

had claimed that the presence of polymer could result in a decrease of the (effective) 

cavitation threshold, such as in the stressing of water containing polyacrylamide 

additives by the bullet-piston reflection method (Trevena 1987). Their 

work claims to demonstrate a reduction of liquid effective tensile strength, the 

reduction increasing with increasing polymer concentration. However, when this 

same polymer system was investigated using an ab initio technique, the cavitation 

threshold was found to be increased by the same polymer additive, and when 

subjected to static stressing (in a modified Berthelot tube) the presence of polymer 

made no discernible difference to the effective tensile strength of the liquid. The 

results of the present work make explicit the crucial role of timescale in the recording 

of effective cavitation threshold strength (i.e. tensile stress) parameters. It highlights 

that in future work (as indeed in all rheological testing) it is essential to consider the 

stress timescale of the particular flow process being considered in order to design the 

appropriate means of estimating cavitation resistance. The present results highlight 

that significant errors could arise in cavitaiton stress estimates, as the test liquid may 

be subjected to stressing in experiments involving inappropriate timescales. Moreover 

the choice of appropriate timescale of the stressing event for cavitation threshold 

determination must also, clearly, take into consideration the characteristics of the 

polymer additive -  both in terms of the polymer’s molecular weight and its 

concentration in solution. Neither of these issues has previously been considered in a 

systematic manner in the cavitation research literature -  hence the discrepancy 

between various estimates of the level of cavitation resistance of such solutions and 

their dependence on concentration and polymer characteristics.
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Chapter 5 

Extensional Rheology

5.1 Introduction

Distinctive trends in the effect of polymer weight and concentration on the tensile 

strength of a sample have been clearly observed in the previous two chapters. These 

results obtained using the bullet-piston technique use high stressing rates in the order 

of 0.1-0.7 Bar/ps. These rates are of importance in the motor industry because they 

are of the same order as that found in the lubrication of journal bearings. However in 

other industrial applications such as printing applications, the stressing rates are far 

lower. This means the values obtained in the bullet-piston technique are not 

quantitative in relation to the ink printing industry. It is therefore necessary to use a 

technique which can calculate the tensile strength at these lower stressing rates. It 

would therefore be appropriate to use an extensional rheometer, which operates at 

these lower stressing rates, to determine the tensile strength of a polymeric sample.
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5.2 Capillary breakup extensional rheometer (CaBER)

The CaBER is a device designed to measure the extensional viscosity and longest 

relaxation times o f polymer solutions. A picture o f the CaBER can be seen in figure 

5.1. The operational procedure o f the CaBER requires a small amount (<0.5 ml) o f 

sample liquid to be placed between two horizontal vertically aligned plates.

Figure 5.1 The CaBER

The top plate is rapidly separated from the bottom plate at a set speed to a set 

distance. After cessation o f stretching, the fluid at the mid-point o f the formed 

filament undergoes an extensional strain rate defined by the extensional properties of 

the fluid. This sequence o f events is filmed on a high speed camera system, a Kodak 

EKTAPRO 4540mx Imager. With analysis o f the images the extensional properties o f 

the fluid may be determined. The CaBER experiment has been used by many different
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workers to investigate the extensional properties of polymeric systems, including 

Rodd et al. (2005), Anna and McKinley (2000) and Wunderlich et al. (2000).

Once the plates have stopped, a filament is observed between the two reservoirs. The 

capillary thinning geometry of the filament is used to determine the strain rate and 

stress on the fluid. In analysing the filament a slender filament approximation is used, 

taking the assumptions that the filament is thin and the axial velocity does not vary 

radially. With these assumptions the local extension rate can be given by (Anna 

2000):

where e is the extension rate, R is the radius and t is the time. Assuming the filament 

is perfectly cylindrical there is no shear component.

The calculation of the stress can be expressed in differential form, presented in Szabo 

et al (1997) as,

where t E is the extensional stress, s is the surface tension, v is the axial velocity, r is

the density and g is the acceleration due to gravity. F  is included for any other terms 

which may be deemed important such as any contributions to shear stress. However 

within the capillary thinning experiment many assumptions can be made; forces 

arising from gravity, inertia and curvature as well as any shear forces are neglected. 

This results in a simplification for the extensional stress as,

2 dR
K  at

2cr
^ J7 TZ
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5.3 Operation

The upper and lower plates of the CaBER are aligned both vertically and horizontally 

before the experiment takes place. A small amount (<0.5 ml) of the sample is the 

placed using a syringe between the plates, with a separation of 3 mm. This forms a 

liquid bridge as can be seen in image 1 of figure 5.2. The upper plate is then moved a 

set distance at constant speed before stopping, figure 5.2 shows a typical procedure of 

the plates being separated. In many similar experiments the method of separation is 

important for measurement purposes. Many other techniques separate the plates in an 

exponential manner to impose constant stress rates across the fluid sample. However 

this takes much longer and allows more fluid to drain from the liquid bridge before 

cessation. This causes problems with the lack of fluid left to film the filament breakup 

over a long time period. The separation process takes approximately 0.2 seconds, 

which leaves enough fluid to extensively film the breakup procedure. It can be seen 

from figure 5.2 that as the upper plate is moved upwards the liquid bridge is pulled 

apart until the formation of a filament. This filament is normally centred in the 

horizontal direction and slightly higher than centre in the vertical plane due to the 

effect of gravity on the surrounding liquid.
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Figure 5.2 Typical set o f images during separation o f plates a-f (time gap between 
frames is 0.035 seconds with a complete separation in 0.2 seconds).
(PEG 600 Mw 0.5% concentration).
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After the upper plate has stopped, the filament breaks under the forces acting on it; 

gravity and surface tension being major factors. The sequence of images showing the 

breakup of the filament, figure 5.3, shows how the low molecular weight polyethylene 

glycol solution (600 Mw at 0.5% concentration) has a very uniform symmetrical split. 

Measurements of the filament diameter are taken from each frame in relation to the 

time since the plates have stopped. This has been achieved both manually and by 

using a computer programme (ImageJ) which looks at the contrast in colour across a 

set line and records the width of darker parts of the image across that line (hence 

recording the dark parts of the filament). This corresponds well to the manual 

readings and hence in this work results have been obtained via the computer package 

to analyse three of five repeated samples, manually checking the remaining two for 

accuracy.
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Figure 5.3 Sequence o f images a-f showing the splitting o f the filament after the 
upper plate has ceased moving. Time between each frame is 4/4500 seconds. 
(PEG 600 Mw 0.5% concentration).
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The graph below (figure 5.4) shows a typical filament diameter versus time for a low 

molecular weight polymer solution. The analysis o f the images was completed both 

by using a custom-coded macro with ImageJ and also manually for verification 

purposes. The principle behind the analysis techniques is to look at the midpoint o f 

the filament and to follow the diameter profile. The first part o f the graph may include 

a few frames where separation is still ongoing but clearly shows a gradual decrease in 

filament diameter until a set point where a sharp rise in speed o f decrease is noted.

The filament lasts for <0.025 seconds and eventually ruptures.

100

3
i

o
5

n
5

1
0 0.005 0.01 0.015 0.02 0.025

Time after cessation of plates (Seconds)

Figure 5.4 The diameter o f the filament after cessation o f the plates for a low 
molecular weight polyethylene glycol solution (600 Mw PEG 0.5% concentration) 
until ultimate rupture.

A sequence o f images shown at the filming rate o f 4500 f.p.s is shown in figure 5.5. 

These images clearly show that the breakup o f the filament is at the base o f the 

filament. This then ‘releases’ satellite particles as seen in image ‘e ’ figure 5.5.
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Images a-e show the filament 
break-up and formation o f 
satellite drops.
Each image has a time gap o f 
1/4500 seconds between each 
subsequent shot. (PEG 600 Mw 
0.5% concentration)
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5.4 Results

To determine the tensile strength of the fluid sample as described earlier in the 

chapter, the mid diameter of the filament just prior to breakup is required. To obtain 

this value a record was taken of the splitting at high speeds and the profile of the 

filament was mapped. Enlarging the images taken just prior to breakup allows the 

pixels within the image at the middle of the filament to be determined (for this 

purpose the mid diameter is actually taken as the thinnest part of the filament prior to 

breakup and may not be exactly in the centre of the two plates). By also checking the 

pixels for the plate diameter we can then determine the actual filament diameter.

The images Sequence 1-5 just prior to breakup are shown for 0.5% concentrations 

over the molecular weights tested, each subsequent image is 1/4500 sec after each 

other. Frames just prior to breakup for all Mw and concentrations are shown in 

Appendix B.
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C d

Sequence 1 Filament splitting (a-d) for 600 Mw PEG solution at 0.5% concentration
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C d
Sequence 2 Filament splitting (a-d) for 1500 Mw PEG solution at 0.5% 
concentration
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C d

Sequence 3 Filament splitting (a-d) for 6000 Mw PEG solution at 0.5% 

concentration
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C d
Sequence 4 Filament splitting (a-d) for 10000 Mw PEG solution at 0.5% 

concentration
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Sequence 5 Filament splitting (a-d) for 20000 Mw PEG solution at 0.5% 

concentration

By using image analysis we can obtain the filament diameter in mm, a plot o f the 

filament diameter verses concentration for the polymer solutions can be seen below 

(figure 5.6).
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Figure 5.6 Filament diameter prior to breakup against concentration

It is noteworthy that larger diameters o f the filament upon breakup, correspond to 

lower molecular weight polymer solutions as the polymer itself seems to strengthen 

the liquid sample to resist breaking-up until much smaller diameters.

An additional aspect o f the filament breakup is that there is the formation o f droplets 

during the splitting process; these are directly related to the size o f the filament o f 

breakup and hence can also be used as a ranking aid for the strength o f the polymer in 

solution. Figure 5.7 shows diameter size versus concentration for all molecular 

weights.
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Figure 5.7 Droplet diameters against concentration.

To determine the tensile strength however we use the values obtained for mid filament 

just prior to breakup along with the surface tension measurements for each sample 

using the equation,

2 a

The estimates we obtain for the tensile strength for this method can be seen in the 

table below and the subsequent graph.
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Concentration 

(% by weight)

600 Mw 1500 M w 6000 Mw 10000 Mw 20000 Mw

0 300 300 300 300 300

0.5 300 315.8 375 400 533.3

1 315.8 342.9 400 505.3 600

2 342.9 375 457.1 564.7 705.9

4 358.2 406.8 533.3 631.6 727.3

8 375 461.5 571.4 685.7 750

16 431.7 457.1 555.8 666.7 774.2

and molecular weights o f PEG
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£
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Figure 5.8 Tensile strength (from CaBER) as a function o f polymer concentration for 
a range o f PEG Mw solutions

What can be seen is that the similarity in shape and order o f the graph is very close to 

that o f the results obtained via the modified bullet-piston technique. The order o f
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magnitude however is significantly different with the CaBER experiment, resulting in 

tensile strengths o f the order o f approx 500 Pa whilst the B-P technique gave results in 

the magnitude o f 150 Bar. For a graph o f comparative results see figure 5.9.

0 2 4 6 8 10 12 14 16 18

Concentration (%w/w)

Figure 5.9 Bullet-piston and CaBER tensile strength values as a function o f polymer 
concentration

However as was shown in chapter 3 the rate of stressing has a marked effect on the 

tensile strength o f the fluid and with this in mind one must look at the rates o f 

stressing applied in both experiments.

To detennine the rate o f stressing in the CaBER experiment the previously given

equation is used,

- 2  dR 
R a t

By looking at the rate o f change o f diameter at breakup the extension rates can be 

determined. The rates o f stressing resulted were in the magnitude o f 12000 -  25000 

Pas'1, whereas in the bullet-piston experiment these were in the range 0.3 -  0.6 B ar'1.
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5.5 Summary

It is clear that the pertinent rates of stress development in the cavitation experiments 

are orders-of-magnitude greater than those arising during the CaBER filament 

stretching work reported herein. However, the duration of the pulsed dynamic 

stressing regime is correspondingly far less: in rheological terms, in consideration of 

the relevant Deborah number, this means that there is far greater time available for the 

fluid in the filament stretching situation to relax stress by an extensional flow 

mechanism. The situation in terms of the cavitation experiment is more akin to the 

fracture of an elastic solid (where there is no corresponding relaxation of stress 

possible due to viscous dissipation during flow). This difference in (i) the relative 

rates of stressing, and (ii) the different timescales of the duration of the stressing 

event, leads to the large differences which are evident between the cavitation 

resistance of the fluids (in terms of their limiting effective tensile strength) and the 

corresponding values of extensional stress generated immediately prior to filament 

rupture. The two measures of tensile stress correspond, of course, to markedly 

different rheological phenomena and failure mechanisms. Despite these significant 

differences between a cavitational rupture event within the bulk of the liquid sample 

and a fluid filament breakup phenomena, it is clearly interesting and encouraging 

from a process engineering standpoint that both types of experiment reveal essentially 

the same form of dependence of the two different critical stress parameters in relation 

to their variation with polymer concentration and molecular weight of the polymer.

The results reported in this chapter (taken together with those in chapter 4) are in fact 

the first to relate cavitational failure of a fluid and its extensional breakup properties
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in terms of two appropriately chosen tensile stress parameters. In addition, this work 

is the first to report the relationship between these stress parameters on the basis of an 

experimental study involving two different but complementary techniques involving a 

significant range of tensile stress development and a wide range of polymer 

concentration and molecular weight. Despite the large differences evident in the 

magnitudes of the tensile stress parameters estimated in the two different experiments 

- which arise principally due to the large differences in stressing rates/deformation 

rates involved in the two techniques - both show that the relevant stress limiting 

parameter increases with polymer concentration and molecular weight, but that such 

stress levels become effectively saturated (i.e. produce plateau limiting values) at 

essentially the same levels of concentration and molecular weight. This information 

has never previously been available due to a lack of a suitable cavitation technique 

and of the appropriate analysis of CaBER filament breakup experiments in terms of 

the limiting stress parameter.

The information reported here, and in chapter 4, shows for the first time that it may be 

possible to conduct fluid breakup measurements in extensional flow experiments in 

order to ascertain the likely levels of cavitation threshold stress for dilute aqueous 

polymer solutions. The bullet-piston experiments (chapter 4) are extremely time- 

consuming, difficult to perform and require relatively large volumes of fluid sample 

whereas the CaBER-type experiments require very small volumes of fluid sample, are 

quick to perform and can be achieved for relatively low cost. The results of such 

measurements will inform the better design (and possibly control) of numerous 

industrial flow processes involving relationships between cavitational breakup of 

fluids and their subsequent filamentation -  with printing and coating flow processes
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being the best known example of these. The present work is therefore most likely to 

find immediate applications in that field -  possibly in terms of ranking the cavitation 

resistance of fluids involving a systematic variation of polymer additives, in a range 

flow settings involving different deformation rates.
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Conclusions and Future Directions

The work reported in this thesis is focused on determining the tensile strength of 

polymeric liquids by two main experimental techniques, namely the modified bullet- 

piston (B-P) technique and a capillary break-up extensional rheometer (CaBER). The 

principal motivation for this work lies in the fact that although many important 

associations exist between the cavitation properties of fluids (in terms of their 

response and ultimate failure under imposed tensile stresses) and their extensional 

flow properties, these associations have never previously been investigated in a 

systematic way using appropriate experimental techniques. Moreover, these 

associations require careful consideration in relation to the behaviour of fluids in 

industrial processes (such as printing and coating as well as motor industries) in 

which cavitation and filamentation may both result from the generation and 

application of tension in flow settings.

The principal reason underlying the lack of a study into the relationship between 

cavitation properties (such as cavitation resistance or tensile strength) and extensional 

flow properties has been that, until now, no appropriate cavitation technique has been 

identified or applied in this area.

Turning first to the results for a Newtonian fluid, this thesis reports the results of 

experiments in which samples of degassed, purified water were subjected to dynamic 

stressing by pulses of tension. The pulse reflection technique employed allows the 

rate of development of tension in the liquid, Clp , to be varied systematically, in order
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to investigate its influence on the resulting measurement of the liquid’s ‘effective’ 

tensile strength (or ‘cavitation threshold’), Fc. Results are reported for experiments 

involving a range of stressing rates, Qp, ~ 0*19 Bar/ps < &P < 0-77 Bar/ps. These

experiments, which are the first of their kind to be reported for water, show an 

approximately four-fold increase of Fc at the highest stressing rate, this value being 

224 Bar (for Qp = 0-77 Bar/ps) compared to 59 Bar (for Q, =0-187 Bar/ps). These

results have provided new insight into the wide range of values of Fc which are found 

in the literature and provide evidence to substantiate the claim made by previous 

workers that the rate of dynamic stressing is an important consideration in 

understanding the cavitation properties of liquids. It is key therefore that in the present 

work, results have been produced from a single technique, consisting of experiments 

conducted using the same apparatus in which the rate of stressing is deliberately 

varied. The results from these experiments clearly establish the importance of 

stressing rate in considering the effective tensile strength of liquids, under conditions 

where heterogeneous nucleation prevails, and emphasise that any attempt to reconcile 

the results of previous cavitation studies should take this factor into account.

The present work has also addressed and resolved an important and longstanding 

anomaly in the cavitation literature concerning the role of (high molecular weight) 

polymeric additives in determining the cavitation thresholds of dilute aqueous 

polymer solutions.

It is important to recall that despite theoretical and experimental studies 

demonstrating that the viscoelasticity conferred upon liquids containing polymer 

additives influence their cavitation properties, the results have been contradictory -
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particularly with regard to the specific effects on cavitation damage potential and 

cavitation threshold. The results reported in this thesis emanate from systematic 

testing over a range of concentrations and molecular weight. Due to this unique 

experimental approach it is shown unequivocally that with increasing molecular 

weight there is an increased effective tensile strength of the solution. However, the 

results also reveal that increasing polymer concentration results in a clearly defined 

stress saturation level -  with an apparent plateau in terms of effective tensile strength.

The results of the present work make explicit the crucial role of timescale in the 

recording of effective cavitation threshold strength (i.e. tensile stress) parameters. It is 

also the first to relate cavitational failure of a fluid and its extensional break-up 

properties in terms of two appropriately chosen tensile stress parameters; and to report 

the relationship between these stress parameters on the basis of an experimental study 

involving two different but complementary techniques involving a significant range of 

tensile stress development and a wide range of polymer concentration and molecular 

weight. Despite the large differences evident in the magnitudes of the tensile stress 

parameters estimated in the two different experiments, both show that the relevant 

stress limiting parameter increases with polymer concentration and molecular weight, 

but that such stress levels become effectively saturated (i.e. produce plateau limiting 

values) at essentially the same levels of concentration and molecular weight.

This information has never previously been available due to a lack of a suitable 

cavitation technique and a neglect of the appropriate analysis of CaBER filament 

breakup experiments in terms of the limiting stress parameter. As a result of the work 

reported in this thesis it may now be possible to conduct fluid breakup measurements
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in extensional flow experiments in order to ascertain the likely levels of cavitation 

threshold stress for dilute aqueous polymer solutions. The bullet-piston experiments 

are extremely time-consuming, difficult to perform and require relatively large 

volumes of fluid sample whereas the CaBER-type experiments require very small 

volumes of fluid sample, are quick to perform and can be achieved for relatively low 

cost. The results of such measurements will inform the better design (and possibly 

control) of numerous industrial flow processes involving relationships between 

cavitational break-up of fluids and their subsequent filamentation -  with printing and 

coating flow processes being the best known example of these. The present work is 

therefore most likely to find immediate applications in that field -  possibly in terms of 

ranking the cavitation resistance of fluids involving a systematic variation of polymer 

additives, in a range flow settings involving different (extensional) deformation rates.

It is also interesting to note that the characteristic times of the pulses used in the B-P 

work reported in this thesis correspond broadly to those involved in some medical 

applications of low frequency ultrasound; and the tensile strength of water reported 

here considerably exceeds the values of tension thought to be generated in vivo by 

some ultrasound devices. The present findings may have significance in the context of 

assessing the safety of ultrasound application in relation to its potential to induce 

cavitation. The outcomes of the present study also suggest that the new B-P technique 

might prove a useful research tool for liquids such as motor lubricants which 

experience a range of rates of tensile stress development in the action of components 

such as dynamically loaded journal bearings.
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Additional Pressure Records
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Figure A. I Pressure-Tension cycle for a 0 psi static pulse for l%  6000 Mw solution.

P ressu re  |ACD units)

V

Figure A.2 Pressure-Tension cycle for a 100 psi static pulse for 1% 6000 Mw solution
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time /ms

Figure A.3 Pressure-Tension cycle for a 200 psi static pulse for 1% 6000 Mw 
solution.

A  -r
P ressu re  (ACD units)

time /ms

Figure A.4 Pressure-Tension cycle for a 250 psi static pulse for 1% 6000 Mw
solution.
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P ressu re  |ACD units)

Figure A.5 Pressure-Tension cycle for a 0 psi static pulse for 5% 6000 Mw solution.

P ressu re  (ACD units)

4

4—

Figure A.6 Pressure-Tension cycle for a 100 psi static pulse for 5% 6000 Mw

solution.
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Figure A.8 Pressure 
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.Tension cycle for a 250 ps,stat,c pulse for 5% 6000 Mw
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Figure A.9 Pressure-Tension cycle for a 0 psi static pulse for 10% 6000 Mw solution.
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Figure A. 10 Pressure-Tension cycle for a 100 psi static pulse for 10% 6000 Mw

solution
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Figure A. 13 Pressure-Tension cycle for a 0 psi static pulse for l%  10000 Mw 
solution.
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Figure A. 14 Pressure-Tension cycle for a 100 psi static pulse for 1% 10000 Mw 
solution
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Figure A. 15 Pressure-Tension cycle for a 200 psi static pulse for 1% 

solution.
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P ressu re  [ACD units)
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Figure A. 17 Pressure-Tension cycle for a 0 psi static pulse for 5% 10000 Mw 

solution.
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Figure A. 18 Pressure-Tension cycle for a 100 psi static pulse for 5% 10000 Mw

solution.
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Figure A. 19 Pressure-Tension cycle for a 200 psi static pulse for 5% 10000 Mw 

solution.
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Figure A.20 Pressure-Tension cycle for a 250 psi static pulse for 5% 10000 Mw

solution.
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Figure A.21 P r e s s u r e - T e n s .o n  cycle for a psi

solution.
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P re ssu re  [ACD units)

time I ms

Figure A.23 Pressure-Tension cycle for a 200 psi static pulse for 10% 10000 Mw 

solution
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Figure A.24 Pressure-Tension cycle for a 250 psi static pulse for 10% 10000 Mw

solution
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Additional Break up Im ages

Figures B.l to B.6 are for 600 Mw PEG solutions.

Figure B.l 600 Mw PEG solutions 0.5% concentration

Figure B.2 600 Mw PEG solutions 1% concentration

Figure B.3 600 Mw PEG solutions 2% concentration
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Appendix B
Additional Break up Images

Figure B.4 600 Mw PEG solutions 4% concentration

Figure B.5 600 Mw PEG solutions 8% concentration

Figure B.6 600 Mw PEG solutions 16% concentration
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Appendix B
Additional Break up Images

Figures B.7 to B . l2 are for 1500 Mw PEG solutions.

Figure B.7 1500 Mw PEG solutions 0.5% concentration

Figure B.8 1500 Mw PEG solutions 1% concentration

Figure B.9 1500 Mw PEG solutions 2% concentration
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Figure B.10 1500 Mw PEG solutions 4% concentration

Figure B.l 1 1500 Mw PEG solutions 8% concentration

Figure B.12 1500 Mw PEG solutions 16% concentration
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Appendix B
Additional Break up Images

Figures B . l3 to B . l8 are for 6000 Mw PEG solutions.

Figure B . l3 6000 Mw PEG solutions 0.5% concentration

Figure B . l4 6000 Mw PEG solutions 1% concentration

Figure B . l5 6000 Mw PEG solutions 2% concentration
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Appendix B
Additional Break up Images

Figure B.16 6000 Mw PEG solutions 4% concentration

Figure B .l7 6000 Mw PEG solutions 8% concentration

Figure B . l8 6000 Mw PEG solutions 16% concentration
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Appendix B
Additional Break up Im ages

Figures B . l9 to B.24 are for 10000 Mw PEG solutions.

Figure B . l9 10000 Mw PEG solutions 0.5% concentration

Figure B.20 Mw PEG solutions 1% concentration

Figure B.21 10000 Mw PEG solutions 2% concentration
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Additional Break up Images

Figure B.22 10000 Mw PEG solutions 4% concentration

Figure B.23 10000 Mw PEG solutions 8% concentration

Figure B.24 10000 Mw PEG solutions 16% concentration
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Appendix B
Additional Break up Im ages

Figures B.25 to B.30 are for 20000 Mw PEG solutions.

Figure B.25 20000 Mw PEG solutions 0.5% concentration

Figure B.26 20000 Mw PEG solutions 1% concentration

Figure B.27 20000 Mw PEG solutions 2% concentration
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Additional Break up Im ages

Figure B.28 20000 Mw PEG solutions 4% concentration

Figure B.29 20000 Mw PEG solutions 8% concentration

Figure B.30 20000 Mw PEG solutions 16% concentration
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