
 

 Swansea University E-Theses                                     _________________________________________________________________________

   

Use of remote sensing to assess supra-glacial lake depths on the

Greenland Ice Sheet.
   

Cordero-Llana, Laura
   

 

 

 

 How to cite:                                     _________________________________________________________________________  
Cordero-Llana, Laura (2012)  Use of remote sensing to assess supra-glacial lake depths on the Greenland Ice Sheet..

 thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42327

 

 

 

 Use policy:                                     _________________________________________________________________________  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42327
http://www.swansea.ac.uk/library/researchsupport/ris-support/


 

Swansea University 
Prifysgol Abertawe

Use of remote sensing to assess supra-glacial lake 

depths on the Greenland Ice Sheet

Laura C ordero  Liana

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Swansea University 
Departm ent of Geography

November, 2012.

The candidate confirms th a t the work subm itted is her own and tha t 
appropriate credit has been given where reference has been made to the 
work of others.

This copy has been supplied on the understanding tha t it is copyright 
material and tha t no quotation from the thesis may be published without 
proper acknowledgement.



ProQuest Number: 10798035

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10798035

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Abstract

The influence tha t supra-glacial lakes have had in the recent mass loss a t the margins 

of the Greenland ice sheet has been widely studied. Lakes can drain to  the base of 

a glacier, lubricating the bed, and enhancing acceleration of the glacier and hence 

ice thinning. Recent studies suggested th a t melt extent is not directly linked to the 

dynamic loss but it has been proven to be linked to peak summer speed ups of the 

ice sheet front.

Large volumes of water are necessary to propagate cracks to the glacial bed via 

hydrofractures. Hydrological models showed tha t lakes above a critical volume can 

supply the necessary water for this process, so the ability to measure water depth 

in lakes remotely is im portant to study these processes. The aim of this thesis was 

to test the current models used for water depth calculations based on the optical 

properties of water. An optimisation model to estim ate water depths was devel­

oped. Atmospherically-corrected data  from ASTER and MODIS were used as an 

input to the water reflectance model. As a reference dataset, ICESat measurements 

were used to obtain lake geometries over empty lakes. Differences between modelled 

and reference depths are used in a minimisation model to obtain param eters for 

the water-reflectance model, yielding optimised lake depth estimates. The key con­

tribution of this research was the development of a Monte Carlo simulation. This 

method allows the quantification of uncertainties in water depth and hence water 

volume, for the first time. This robust analysis provided better understanding of the 

sensitivity of the model to the input parameters. There is scope to improve current 

models of depth estimations if more extensive field observations are done.
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Chapter 1

Introduction and aims

In this first chapter a brief introduction to the thesis is presented, showing the 

motivation for it, the objectives tha t are achieved and how the thesis is structured.

1.1 M otivation

The observed increase in mass loss from the Greenland ice sheet (GrIS) during the 

last decade (van de Wal et a l, 2008; Velicogna, 2009; Rignot and K anagaratnam , 

2006; Schrama and Wouters, 2011) is of great concern for the future contribution of 

the GrIS to sea level. In the GrIS the m ajority of ice lying on bedrock is above sea 

level, which means tha t if completely melted, sea level would rise a global average of 

7.3 m (Lemke et a l, 2007). Previously it was thought th a t ice sheets took thousands 

of years to respond to an external forcing, hence the recent dram atic changes oc­

curred mainly on the outlet glaciers were not predicted by previous models (Bamber 

et a l , 2007).

Understanding what are the mechanisms tha t are driving the recent mass loss is 

an im portant task; many studies have shown th a t glacier dynamics, melting and 

ocean-ice sheet interactions play and im portant role in the mass balance. Quantify­
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ing these mechanisms over the entire GrIS is an unrealistic task; thus remote sensing 

techniques present a significant progress to monitor the ice sheet.

It is thought tha t supra-glacial melt-water lakes on the surface of the GrIS play an 

im portant role on the ice sheet dynamics by enhanced lubrication of the ice-bedrock 

interface (Krawczynski et al., 2009; Das et al., 2008; Luthje et al., 2006). Melt- 

water lakes are a common feature on the surface of the GrIS, which form seasonally 

(Box and Ski, 2007; McMillan et al., 2007) and specifically in the ablation zone 

in topographic depressions. It seems tha t increasing melt-water penetration to the 

base of a glacier increases sliding velocities as a result of raising water pressure near 

the bed (van de Wal et al., 2008). However, a study of drainage events across the 

GrIS, showed an inverse relationship between drainage events and the areas where 

increase mass loss was detected by the Gravity Recovery and Climate Experiment 

(GRACE) and the Ice, Cloud, and land Elevation Satellite (ICESat) (Selmes et al., 

2011). Surface melt-water causes a positive feedback on ice velocity, although is 

thought to be a seasonal effect tha t could have a minimal repercussion for the re­

sponse of the ice sheet to climate warming (van de Wal et al., 2008; Sundal et al., 

2011). Until the influence of changes in melting on the velocity of the ice sheet are 

completely established, the response of Greenland to the climate warming is still 

unclear. Therefore is still im portant to quantify the melt-water stored on the sur­

face of the GrIS as a potential for lake drainage events and also for annual evolution 

of melt-lake extent across the ice sheet. Furthermore, the estimation of the volume 

of individual lakes can help assessing the potential formation of hydrofractures and 

hence drainage to the bed (Krawczynski et al., 2009). This thesis investigates the 

application of different types of remote sensing imagery to derive a volume estim ate 

of melt-water stored on the surface of the GrIS.
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1.2 Aim  and objectives

The aim of this thesis is to estim ate the volume of melt-water stored in supra- 

glacial lakes on Greenland, using a combination of remote sensing platforms. This 

is achieved with the following objectives:

•  Use of an archive of supra-glacial lakes tha t provides the annual maximum 

area of melt extent over the period of 2005-2009, to locate the lakes.

•  Use of ICESat altim etry measurements of empty lakes, to  assess the accuracy 

of the water reflectance model applied to the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) imagery in deriving melt-lake 

depth.

• Optimising the water reflectance model, to derive the best set of the optical 

param eters for the ASTER imagery.

•  Testing different spectral bands of ASTER imagery, to select the best fit with 

respect to ICESat depth measurements.

•  Applying the optimised set of param eters to the M oderate Resolution Imag­

ing Spectroradiom eter (MODIS) archive, to up scale the depth estimates to 

catchm ent (or larger) area.

1.3 Structure of the thesis

The thesis is divided in nine chapters. In the following sections a brief description 

of each chapter is presented.
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1.3.1 Introductory chapters

Chapter 2 presents the motivation for this glaciological project, showing previous 

studies th a t emphasised the im portance of a quantification of the volume of melt- 

water stored on the surface of Greenland ice sheet.

Chapter 3 shows the principles of the different remote sensing platforms used in 

this thesis, MODIS, ASTER and ICESat. Chapter 3 also shows the advantages 

and disadvantages th a t each of the satellites in the application to melt-water depth 

estimates; including previous results obtained from optical imagery as a tool to infer 

water depth, based on the optical properties of fresh water.

1.3.2 M ethods chapter

Chapter 4 introduces the basis of the water reflectance model and how each of the 

parameters driving the model are obtained based on the optical properties of water 

and depending of the wavelength. It also explains how the ICESat depths are used 

to validate the model, including a description of the Monte Carlo simulation, which 

is used to solve the radiative equation and assess its uncertainties.

1.3.3 R esults chapters

Chapter 5 presents melt-water depth estimations obtained from the water reflectance 

model applied to ASTER imagery. Following this, the optimisation results after 

applying a minimisation model between ASTER derived depths with ICESat mea­

surements are presented, which will be compared with the initial results and then 

from tha t uncertainties will be discussed. From there a global set of param eters will 

be obtained from the mean of all the optimised set of param eters of each lake.
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Chapter 6 follows the results obtained and using the global set of parameters, a vol­

ume estimate for each lake is presented a compared with the lake volume estim ated 

derived from the model before the optimisation. It also explores the application 

of MODIS imagery to up scale the model to at least regional level (South West 

Greenland).

Chapter 7 introduces the potential of applying the water reflectance model on water- 

filled crevasse depth estimations, using a hyperspectral sensor, the Compact Air­

borne Imaging Spectrometer (CASI).

1.3.4 Discussion and conclusion chapters

In Chapter 8 a detailed examination of the optimisation m ethod is presented, com­

pared with previous published studies. Major limitations are also discussed, sep­

arated into instrum ent spatial/tem poral resolutions and the water reflectance as­

sumptions.

Chapter 9 concludes this thesis, summarising the results and the discussion. It also 

present how future work could improve this method.

5



Chapter 2

Supra-glacial lakes in Greenland

2.1 Introduction

The increasing mass-loss from the margins of the Greenland ice sheet (GrIS) during 

the last decade, which has been broadly reported (van de Wal et al., 2008; Velicogna, 

2009; Rignot and Kanagaratnam , 2006; Schrama and Wouters, 2011; Sprensen et al., 

2011; Schrama et al., 2011) was introduced in the previous chapter, where the need 

for a better understanding of the processes governing the ice sheet mass balance, 

since the mass balance is a key control of sea level (Thomas et a l, 2008) was high­

lighted. Changes observed at the margins of the GrIS (see Figure 2.1) show tha t 

dynamic response to higher tem peratures could have more importance in the mass 

balance of the ice sheet than previously thought (Alley et a l, 2005a). A combi­

nation of mass balance estimates of the Greenland ice sheet since 1958 to present 

show high correlation (R2 =  0.83) between surface mass balance and ice discharge 

(Rignot et a l, 2008).

Ice sheet models developed to simulate future of sea level seldom include surface 

melt-water as an influence on ice dynamics (Das et a l, 2008). The main uncertain­

ties are the time-scales and routes through which surface melt-water gets to the ice
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Rate of change of elevation changes

Mass loss rates (Gt/yr)

Figure 2.1: Two examples showing the observed mass loss on the GrIS from two 
different satellites; (a) Mass loss rates between 2003-2010 derived from the Gravity 
Recovery and Climate Experiment (GRACE), where the red in the colour bar cor­
responds to negative mass change rates (from Schrama et al. (2011)); (b) Rate of 
elevation changes derived from the Ice, Cloud and land Elevation Satellite (ICESat) 
measurements, and corrected for elevation changes caused by firn compaction, ver­
tical bedrock movement and ICESat intercampaign bias, over the period 2003-2009 
(from Sasgen et al. (2012)).

sheet base and the effect on basal motion. It has been shown that outlet glaciers 

and ice streams can present faster response than expected, therefore previous mod­

els th a t only included the slow movements of the ice and ice shelves, ignoring these 

rapid dynamic events are not accurate (Lernke et al., 2007).

It has been suggested th a t supra-glacial melt-water stored in lakes on the surface of 

the GrIS play an im portant role in ice sheet dynamics by enhanced lubrication of 

the ice-bedrock interface (Krawczynski et al., 2009; Das et al., 2008; Ltithje et al., 

2006), which was first hypothesised for drainage events in Greenland by Zwally 

et al. (2002a). Melt-water lakes are a common feature on the surface of the GrIS, 

which form seasonally (Box and Ski. 2007; McMillan et al., 2007; Selmes et al., 

2011) specifically in the ablation zone in topographic depressions. In this chapter, 

held observations and previous models trying to understand the implications of lake
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drainage and melt-water stored on the surface of the GrIS on the ice sheet mass 

balance are introduced.

Section 2.2 introduces the main characteristics of the hydrological system of the 

GrIS.

Section 2.3 describes supra-glacial lakes on the GrIS, how they form and drain as 

well as well as field observations of lakes on the GrIS. Then Section 2.4' introduces 

the process by which the water reaches the bed. Different models applied to deter­

mine how hydrofractures develop are also presented in this section.

Different techniques are used to estim ate lake depth, area and volume, which are 

introduced in Section 2.5, although a detailed description of the techniques will be 

introduced in Chapter 4. Also the results obtained from the different studies are 

introduced together with their implications.
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2.2 H ydrology of the GrIS

The GrIS flows outward from its interior through a combination of internal deforma­

tion and basal sliding, losing mass around its edges through melt-water runoff and 

iceberg calving (Das et al., 2008). Figure 2.2 summarises the two major ice dynamic 

mechanisms th a t potentially can cause a rapid change in ice sheet mass balance in 

the case of a calving front with a floating tongue, which are (1) perturbation of the 

force at the downstream terminus of the outlet glacier, and (2) lubrication of the 

bed (Bell. 2008). Climate warming could lead to earlier and expanded surface lake 

formation and as a result, links to the bed could happen earlier in the melt season 

and over a larger area (Das et al., 2008). Nevertheless, whether the increasing area 

of surface melt could result in a greater area of well-lubricated ice-sheet bed and 

increased ice velocities is still unresolved (Bell. 2008).

(a)

(b)

(c)

Figure 2.2: Summary of the ice dynamic mechanisms for fast ice-sheet flow, (a) 
The presence of an ice tongue provides a longitudinal compressive force, effectively 
slowing the flow of the ice stream, (b) Removing the ice tongue will produce in­
creased ice-sheet velocities, (c) Lubricating the bed with either a w ater-saturated 
till or basal water will also yield increased ice sheet velocities (Modified from Bell
(2008)).
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The supra-glacial hydrological system combines lakes, channels and moulins (Figure 

2.3). Supra-glacial lakes behave as a temporally storage of melt-water on the surface 

of the ice sheet. Supra-glacial channels can act as connectors between lakes and also 

between lakes and moulins (Johansson, 2012). The hydrological system in the ab­

lation area was proposed to  be similar to the one in Alpine systems, with in spring 

causing a strong melt/velocity feedback while in late summer there is a strong an 

instantaneous coupling between the surface and basal hydrology (Shepherd et al., 

2009), i.e. the drainage systems become increasingly efficient as hydrological connec­

tion between the ice surface and the ice sheet bed are made further inland, draining 

vast volumes of water and sediment (Bartholomew et al., 2011). This more efficient 

drainage experiments fewer speed ups ans water is transported at lower pressure. 

Sundal et al. (2011) showed tha t for high rate melt years, the mean summer veloc­

ity is lower. Sudden drainages of lakes can overwhelm this system and still cause 

accelerations on ice flow (Das et al., 2008). Routing of seasonal runoff at the ice 

sheet surface plays an im portant role in the magnitude and extent of seasonal ice 

sheet speed up (Palmer et al., 2011), although the degree of speed up in late-summer 

presents spatial variations and the effect extends far inland, up to 100 km.

2.3 Supra-glacial lakes description

Echelmeyer et al. (1991) identified lakes near the firn line of Jakobshvans Isbrae, 

West Greenland. They observed numerous lakes between 600 m and 1,450 m ele­

vation, with lakes below 1,150 m forming on bare glacial ice. Between 1,150 and 

1,300 m lakes are within the superimposed ice zone and above tha t elevation many 

of the lakes are in the wet-snow facies. The low albedo of lakes in areas of sat­

urated firm produce greater radiation absorption and thus increases the melting, 

which allows for the perpetuation of lakes (Echelmeyer et al., 1991; Liithje et al., 

2006). Tedesco et al. (2011) reported tha t warm conditions together with the pos­

itive albedo feedback mechanism contribute to large negative surface mass balance

10
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Figure 2.3: Photographs from a held site on the GrIS during August 2003; (a) A 
supra-glacial lake at 67°20’ N, 48°57‘ W  at an altitude of 1,240 m. x and y delimit 
the scale of the picture, (b) Photography from a large hole found in the bed of 
another lake at 68°43' N, 49°30' W, after it drained in 2007 (modified from (Das 
et al.. 2008)). (c) A small river (0.5 m wide), of the type typically found all around 
the lake (modified from Liithje et al. (2006)), which corresponds with river c in 
photograph (a).

anomalies, although they also reported that low rates of summer accumulation can 

also help to reduce the albedo. Lowering of albedo has being also recently reported 

in west Greenland, where areas of increased crevassing might enhance surface abla­

tion through increased absorption of solar radiation (Colgan et al., 2011).

Supra-glacial lakes are formed during the ablation season. There are lakes tha t are 

classified as fast draining, others which disappear by refreezing, which are very com­

mon. and others which drain supra-glacially (Selmes et al., 2011). Lakes that drained 

over 1.4 hours have been observed (Das et al., 2008) (See Figure 2.3(e)); another 

lake in the Canadian Arctic (79°40'N, 74°00'W) (Boon et al., 2003; Boon and Sharp. 

2003) drained abruptly  two days after an extreme melt event, where the water lev­

els increased to at least 5 times that of the normal daily cycle. The observations of
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Boon et al. (2003) confirmed th a t the high melt rates during the event caused large 

volumes of water to being routed through the englacial/sub-glacial drainage system. 

The surface layer of the glacier, which presented cryoconite holes up to 0.2 m deep, 

was removed by melting, and the resulting bare ice surface was covered with a thin 

film of water. This event observed by Boon et al. (2003) occurred relatively late in 

the melt season, when the link between the surface and the bed reached greatest 

efficiency.

The positive feedback over ice velocity is thought to  be a seasonal effect th a t could 

have a minimal repercussion for the response of the ice sheet to climate warming 

(van de Wal et al., 2008; Sundal et al., 2011). Even in spring, the melt/velocity re­

lationship can be decoupled. The impact of an early-season melt event on drainage 

development would be limited by the need to warm the snow pack to 0°C  before melt 

can occur, and by the refreezing of melt-water within the snowpack, which delays 

runoff response. However, early-season melt events could influence the dates when 

runoff and sub-glacial outflow are initiated (Boon et al., 2003). The observations of 

Hoffman et al. (2011) showed tha t direct input of runoff and supra-glacial streams to 

moulins could drive the seasonal velocity response rather the sudden lake drainages. 

Despite ice velocities in the ablation zone, where ice thickness is around 1,000-1,500 

m, reacting in less than a week to melt-water rates, annual velocities react slowly to 

ice thickness changes and surface slope. However, the mechanism tha t controls the 

drainage of a lake is not yet well understood nor how is it linked with the hydrology 

of the area.

Propagation of water-filled crevasses to the glacier bed seems to play a m ajor role in 

the seasonal establishment of the surface-bed connection, but is not the only process 

responsible for establishing sustained drainage connection. One theory is th a t the 

rate of fracture propagation is controlled only by the melt-water necessary to keep 

the fracture full and tha t supra-glacial lakes can supply enough water needed to 

transm it the fractures to the bottom  of the ice sheet. Local Global Positioning

12
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System (GPS) observations coupled with seismic and water-level sensors in south 

west of Greenland (Das et al., 2008), showed a lake draining rapidly during July 

2006 and again in 2007 (Figure 2.3(e)).

A recent study found th a t the rapid lake drainage events reported can not explain 

the distribution of significant dynamic mass loss in the more varying areas of Green­

land (Selmes et al., 2011). From the period 2005-2009, the SW and NE accounted 

for 68% of the to ta l fast draining lakes (Selmes, 2011), and since the SE, where those 

rapid changing glaciers are (like Helheim and Kangerdlugssuaq), only contained 2% 

of the to ta l lakes (Selmes et al., 2011) (Figure 2.4). Therefore, a t least for the south 

east other mechanisms must be found to  explain the mass loss. Better knowledge of 

both melt generation and the understanding of the sub-glacial hydrologic system at 

longer tem poral resolutions could help predict the future dynamics of the ice sheet 

in response to variations in surface melt (Hoffman et al., 2011).

2.4 Hydrofractures

Water-filled cracks are thought to be an effective mechanism to direct hydrofractures 

to the bottom  of an ice sheet (Krawczynski et al., 2009). W eertman (1973) showed 

tha t due to  the density contrast between ice and water, a water-filled crack will 

continue to propagate until it reaches the bed of an ice sheet. Moreover, if a crack 

remains water-filled during its evolution, the propagation depth is limited only by 

the volume of water available to fill the crack (Krawczynski et al., 2009). Supra- 

glacial lakes can provide the large volumes of water required to propagate fractures 

to the bed (Bamber et al., 2007); Krawczynski et al. (2009) estim ated th a t lakes with 

a diam eter of around 250 to 800 m and from 2-5 m deep store sufficient volume of 

water to drive a water-filled crack to the base of a 1 km-thick ice sheet. Furthermore, 

moulins th a t form in lake basins lie near the confluence of melt-water stream s and 

will continue to be supplied with surface melt-water after the lake drains, routing
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Figure 2.4: Summary of fast draining lakes 011 the GrIS from an autom ate method 
developed by Selmes et al. (2011), which used MODIS satellite data. Total area of 
lakes (red); total area of lakes that drained suddenly (yellow). The circles show the 
mean area values of the period 2005-2009. Bar plots show the interannual variation 
of lake area and drainage events and also melt intensity (black line) (From Selmes 
et al. (2011)).

water to the bed and delaying closure while sufficient melt-water continues flowing 

through the summer (Das et al., 2008). Many studies have tried to model crack 

depths and geometry; from those two main models are introduced.

N ye c revasse  m odel

Nve (1957) developed this model based 011 the balance between the longitudinal 

tensile strain rate and creep closure due to ice overburden pressure (M ottram  and 

Benn, 2009).
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(2 .1)

Where d [m] the is crevasse depth, exx [s-1] is the longitudinal strain rate, A  

[kPa-3s-1] and n  are flow-law parameters, pi [kgm-3] is the density of ice and g 

[ms-2] is the gravitational acceleration. Equation 2.1 is a version from Paterson 

(1994) as the crevasse depth derived from Nye’s model assumed crevasses free of wa­

ter (Weertman, 1973). It has been calculated tha t once there is water in a crevasse, 

this can increase its depth; a water-filled crevasse up to minimum of 97.4% of its 

depth can penetrate to the glacier bed (Weertman, 1973).

The Lineal Elastic Fracture M echanics (LEFM ) m odel

The LEFM model uses a stress intensity factor to describe the elastic stresses near 

the tip of the fracture. This factor provides the depth to which crevasses will pen­

etrate to the ice sheet bed (van der Veen, 2007). At this depth the stress intensity 

factor equals the fracture roughness of ice. Fractures tha t have propagated deep 

enough (>10-100 m) will continue to propagate to the bed and probably along the 

bed if they remain water-filled. This suggests tha t storage of water a t the surface, 

in lakes or in extensive but shallow crevasses is a normal prerequisite to moulin 

formation through cold ice (Alley et al., 2005b). Warming of glacier ice due to ini­

tial refreezing events increases the likelihood of a perm anent surface-bed connection 

developing during subsequent events. In addition, surface water ponding raises the 

water pressure a t the crevasse tip; this stored water contributes to crevasse enlarge­

ment by wall melting when it eventually drains (Boon and Sharp, 2003).

In Greenland, the distribution of water beneath the wet and fractured margins of
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the Greenland ice sheet is difficult to determine and the fraction of the increas­

ing ice-sheet velocities caused by increased surface melt-water lubricating the bed 

remains unknown (Bell, 2008). On the other hand in Svalbard, deep fracture sys­

tems have been investigated in areas with extensional stress and ready availability 

of melt-water (Benn et al., 2009). In tha t study, 60 m deep vertical fractures were 

found through cold ice to the bed. Prom their findings Benn et a l (2009) hypothe­

sized that, if near-surface deviatoric stresses are relative low, then supra-glacial lakes 

could be necessary for hydrofracturing by providing an elevated head of water and 

a storage reservoir; however if stresses are sufficient to open deep surface crevasses 

then lakes would not be a necessary condition for the initiation of hydrofractures.

2.5 Depth, area and volume of supra-glacial lakes 

from previous studies

An estimate of total water volume stored in supra-glacial lakes is crucial for assessing 

the potential formation of hydrofractures and hence drainage to the bed (Krawczyn­

ski et al., 2009); however a volume estimate of melt-water is challenging for several 

reasons; like mixed pixels (water/ice) due to sensor resolution; sensor related uncer­

tainties (e.g. cloud cover, sun angle) and the need of an accurate m ethod to derived 

water depth remotely.

Lake area can be relatively straight-forward derived from spectral differences be­

tween water and snow/ice (Liithje et al., 2006; McMillan et al., 2007), although due 

to spatial and temporal lim itations from the sensors (like cloud cover), a full volume 

coverage of the GrIS is yet impractical. Nevertheless, Selmes et al. (2011) developed 

an autom ate algorithm to map all the lakes detectable by the spatial resolution of 

MODIS imagery (250 by 250 m), producing an inventory of supra-glacial lakes over 

the entire GrIS from 2005 to 2009. This inventory contained the tem poral evolution
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of the lakes, with lake formation and drainage, if it occurred, and area extent of the 

lakes throughout the melt season. Therefore until an accurate m ethod of deriving 

lake depth for the entire GrIS can be combined with lake inventories, such us those 

from Selmes et al. (2011), it is not possible give an accurate volume quantification 

of the water stored on the GrIS.

W ater depth derived from models based on the optical properties of water column 

(Smith and Baker, 1981) were previously developed for coastal bathym etry stud­

ies (Lyzenga, 1978; M aritorena et a/., 1994; Philpot, 1989). Recently, estimates 

of water depth have been made for single or specific melt lakes on the GrIS from 

high-resolution optical satellite images, such as the Advanced Spaceborne Therm al 

Emission and Reflection Radiometer (ASTER) (Georgiou et a/., 2009; McMillan 

et a/., 2007; Sneed and Hamilton, 2007, 2011; Tedesco and Steiner, 2011), where 

they used the Radiative Transfer Equation (RTE) (Lyzenga et al., 2006; Stum pf 

et al., 2003) to derive the melt-water depth. These studies compare depths and 

volume estimations from satellite imagery (Box and Ski, 2007) with either in situ  

measurements or Light Detection And Ranging (LIDAR) observations (Georgiou 

et al., 2009).

The RTE is based on the Bouguer Lambert Beer law, which states th a t the water- 

leaving spectral radiance decays exponentially with water depth. Satellite-based 

studies use the surface pixel reflectance to derive water depth; hence they transform 

the radiance into reflectance and solve the RTE for depth (Philpot, 1989). The RTE 

is derived in C hapter 4 and it depends on three physical param eters th a t will also 

be introduced in th a t chapter. Roo is the reflectance of optically deep water; Ad is 

the bottom  albedo and g is the effective attenuation coefficient.
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2.5.1 Summary of previous studies estim ates

Several different approaches have been used to study lakes on the GrIS and they 

can be categorised as field, remote sensing and modelling studies.

Field studies

Field observations of lake depth around Jakobshavn Isbrae area were of the range 

of 0-20 m (Echelmeyer et al., 1991), with the deepest corresponding to crevassed 

areas, and maximum lake area around 10 km2. W hereas Das et al. (2008) reported 

a maximum lake extent 5.6 km 2 and a volume of 0.044 ± 0 .0 1  km3 with a relative 

maximum depth of 10 m for a single lake.

R em ote sensing studies

Currently remote sensing based studies have focussed on either one supra-glacial 

lake or an specific area of interest, mainly the south west of the GrIS, because as 

shown previously in Figure 2.4, the south west presents the biggest concentration of 

lakes of the whole GrIS.

Despite the relative coarse spatial resolution of MODIS imagery, it has been used 

for depth/volum e quantifications. An example is Box and Ski (2007) where the vol­

ume of individual lakes was calculated to be around 106 to 108 m3 on average with 

the maximum estim ated depth around 12 m. T hat study did not quote any uncer­

tainties in their calculations. Sundal et al. (2009) also used MODIS observations, 

although like Selmes et a l (2011) they used MODIS to monitor lake area, showing 

interannual area variations from 1 to 9 km2, with a 1.6% of uncertainty. Selmes 

et a l (2011) estim ated a median lake area of 0.56 km2 for south west Greenland.
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ASTER and Landsat have higher spatial resolution than  MODIS (15 and 30 m re­

spectively). Studies using these satellites derived lake depths based on the RTE of 

around 4 m, areas of tens of km 2 and volumes of around 2xl07 m3 for two specific 

lakes (Sneed and Hamilton, 2007). In a recent study the same authors used in situ  

measurements as true depth validation (Sneed and Hamilton, 2011); both  true and 

satellite derived depths were of the same order of magnitude, with a maximum depth 

of 4.2 m, although no uncertainties were reported to the estimations. Georgiou et a l

(2009) showed the tem poral evolution of a lake from 2002-2005 using ASTER ob­

servations and LIDAR from 1995 as a comparison. They compared the maximum 

depth given by ASTER with the LIDAR, assuming a ± l m  and accounting for inter­

annual variations of ablation and accumulation. They observed th a t A^ uncertainty 

reduces with depth as well as depth uncertainty. On the other hand Tedesco and 

Steiner (2011) found a Gaussian-like behaviour of A^, with this variability being 

intrinsic to th a t albedo of the lake bottom , which consisted of large patches of cry- 

oconite. In the study by Georgiou et al. (2009), the maximum lake volume observed 

was 18.6 ±  3.7 xlO6 m3 in 2005 from ASTER. Airborne laser altim etry was used as 

a ground-truth measurement of the optical remote sensing observations, although 

usually with different times and years as to the satellite, even with a decade of dif­

ference like in McMillan et al. (2007) and Georgiou et al. (2009) where they used 

data  acquired on 24 May 1995. McMillan et al. (2007) estim ated th a t the average 

depth of filling lakes increases from 1.5± 0.7 m to 3.9± 1 .1m  between July-August 

2001, which is of the order of the one they derived from airborne laser altim etry (4.4 

±  0.9 m).

M odels

Recent models have also try to simulate the growth of supra-glacial lakes. A model 

was developed for lake growth on west Greenland and is based on routing runoff 

estimated by a regional climate model across a DEM of the ice sheet surface (Lee- 

son et al., 2012). The 100x100 m cell size model can predict the location of 66%
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of observed lakes greater than 0.125 km2. They used the diam eter-area relationship 

first used by Krawczynski et al. (2009). The ID model presented by Liithje et al

(2006) studied the evolution of supra-glacial lakes showing th a t the surface ablation 

beneath the lake was enhanced by 110% in 1999 and 170% in 2001 compared with 

the ablation for bare ice. Nevertheless, from satellite imagery they showed th a t less 

than 1% of the ablation region in th a t region of Greenland is covered by supra-glacial 

lakes, therefore the large amount of melt beneath the lakes is minimal with respect 

to the to tal area. They also found the lake formation was more or less indepen­

dent of the melt extent and their maximum modelled lake depth was around 10 m. 

Another approach is the use of regional weather data, for example McMillan et al.

(2007) used the positive degree day model (PDD) to derive average lake depths, 

showing an average depth of filling lakes of 1 ±  0.7 m increasing to 3 .9 ± l.lm  on 

August. This study suggested tha t the uncertainties of area measurements (around 

9%) were dependant upon both the satellite resolution and the perim eter of each 

lake.

2.6 Chapter Summary

A relationship between the production of melt-water at the surface of the GrIS and 

the velocity of ice flow has been reported. Melt-water at the surface is thought to 

propagate through hydrofractures to the ice sheet bed. W hen water reaches the bed 

the water is thought to reduce the effective pressure, which allows the ice sheet to 

accelerate. This mechanism was called the Zwally Effect and previously was thought 

to be governing the ice sheet dynamics (Zwally et al., 2002a) and the recent observed 

mass loss (Figure 2.1). Recent studies have shown though th a t recent mass loss is 

not directly linked to supra-glacial lake drainage events (Selmes et al., 2011; Hoffman 

et al., 2011). Nevertheless field studies Das et al. (2008) showed th a t supra-glacial 

lakes could drain to the bed within a couple of hours and cause localised speed-ups. 

This confirmed th a t connections between surface and bed hydrological systems can
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be established over short-time scales. Drainage can also mean th a t melt-water is 

transported from one lake to another (Johansson, 2012). Therefore a wide quantifi­

cation of water stored on supra-glacial lakes is im portant for a better understanding 

of the dynamic response of the GrIS, to recent climate change.

A total estim ate of water stored on supra-glacial lakes over the entire ice sheet each 

year is yet unknown. Previous studies focussed on individual lakes. There are models 

tha t simulate the evolution of lakes during different years, which is a step forward 

for the volume quantification. Also the inventory developed by Selmes (2011) is 

an unique tool for lake area monitoring and distribution. If a global set of the 

three physical param eters tha t govern the RTE on (Ad, R 0o and g) could be derived 

and applied to every lake, the water reflectance model from Sneed and Hamilton

(2007) could be up-scaled to the entire ice sheet and together with Selmes (2011) 

lakes inventory a volume of water stored in melt-water lakes could be obtained. 

This thesis explores the possibility of an optimisation of the param eters derived 

from ASTER images of melt-water lakes and validated with Ice, Cloud, and Land 

Elevation Satellite (ICESat) laser altim etry data  over empty lakes, as an in put 

to the simple reflectance model for fresh water. Since knowing the uncertainties 

derived from the model is crucial to discuss its limitations and future applications, 

a Monte Carlo Simulation is applied, which allowed us to study the sensitivity of 

the param eters to the model.
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D ata sources

3.1 Introduction

This chapter presents the different datasets used in this thesis and explains the mo­

tivation for choosing them. The prim ary data  were ICESat elevation measurements. 

ICESat data  are introduced in Section 3.2. ICESat da ta  were used as a validation of 

the results obtained from the ASTER and MODIS data  (Section 3.3 and 3.4 respec­

tively). In section 3.5 CASI sensor is introduced, which was used in the last results 

chapter (Chapter 7). For each of the different data sources a sensor description, type 

of da ta  product, instrum ent errors and why the corresponding sensor was suitable 

for this thesis are included. Finally, in Section 3.6 Landsat 7 data  is included.

3.2 ICESat

3.2.1 Satellite description

The Geoscience Laser Altimeter System (GLAS) launched onboard the ICESat satel­

lite on January 2003 and developed by the National Aeronautics and Space Admin­
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istration (NASA) - Goddard. ICESat mission ended in October 2009. It was the 

first laser satellite designed specifically to observe changes in the polar ice sheets. 

For this reason the satellite was operated in near-polar and non-sunsynchronous 

orbit at an altitude of 600 km. W ith a 94° orbital inclination, ICESat reached a 

maximum latitude of 86° north and south of the equator. GLA S/ICESat em itted 

around 3.4 million pulses per day, usually 1/3 of IC ESat’s laser pulses were over land 

and ice, and around 1/2 over the ocean surface were obscured by opaque clouds (Ur­

ban and Schutz, 2005). GLAS/ICESat was a nadir-looking sensor and had three 

lasers mounted in a rigid optical bench (Schutz et al., 2005). A part from the 3-laser 

system, the system onboard ICESat included a Global Positioning system (GPS) 

and a Star Tracker (ST) (Wang et a/., 2011). The 3-laser system worked in two 

wavelengths, 1,064 nm (near infrared channel) for surface altim etry and dense cloud 

heights w ith a laser pointing angle determ ination system and 532 nm (green chan­

nel) LIDAR for the vertical distributions of clouds and aerosols.

The general idea of how the laser altim eter installed in ICESat worked is that, at 

a frequency of 40 Hz, the transm itted laser pulse illuminated a spot on the E a rth ’s 

surface with a 60 m averaged footprint (Zwally et al., 2002b), 172 m footprint sepa­

ration (Pricker et al., 2005a) and along-track spacing of approximately 7 Km at 60° 

and 2.5 km at 80° latitude (Zwally et al., 2002b). Figure 3.1 summarises how the 

laser altim eter instrum ent operated from space.

The prim ary objective of the GLA S/ICESat instrum ent was to measure ice sheet 

elevations and their tem poral variations, with a proposed minimum variation detec­

tion of 1.5 cm /year (Pricker et al., 2005b). O ther objectives were measures of cloud 

and aerosol profiles, land elevation and vegetation cover, and sea ice thickness. The 

different datasets are freely available from the National Snow and Ice D ata Centre 

(NSIDC) ( h t t p : / / n s i d c . o r g /d a t a / i c e s a t /o r d e r . htm l).
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Figure 3.1: Illustration showing the laser altim etry concept (modified from Schutz 
and Zwally (2008) and Schutz (2002)).

GLAS/ICESat presents two levels of products, which are summarised in Table 

3.1, with level-1 products (GLA01 to GLA06) storing altimetry, atmospheric, and 

engineering-related raw data; whereas level-2 products (GLA12 to GLA25) contain 

validated and corrected data. Based on the waveform of the received laser pulse and 

other instrum ent records, 15 different sets of data are available (Wang et al., 2011).

The NSIDC provides different d a ta  releases, each of them  presenting improvements 

on data management. For practical reasons Release 31 was chosen for analysis in 

this thesis, since it was the latest release available during the time that research 

took place. A summary of the main characteristics of Release 31 for the altim etry 

products (GLA05, 06, 12. 13. 14 and 15) are as follows;

1. The DEMs over Greenland and Antarctica used in previous releases have been 

replaced with the ICESat-derived DEM, with the GLAS-derived 1 km and 500 

m (respectively) DEMs on GLA06, 12-14.

2. The Geoid has been updated to E arth  Gravitational Model EGM2008. EGM2008
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Table 3.1: GLAS da ta  products offered by NSIDC (modified from Schutz (2002)).

Product ID Product name

GLA01 L1A Global Altimetry

GLA02 LI A Global Atmosphere

GLA03 LI A Global Engineering

GLA04 L1A Global Stellar Reference and GPS

GLA05 LIB Global Waveform-based elevation corrections

GLA06 LIB Global Elevation

GLA07 LIB  Global Backscatter

GLA08 L2 Global Boundary layer and elevated aerosol layer heights

GLA09 L2 Global Cloud heights for multiple layers

GLA010 L2 Global Aerosol vertical structure

GLA011 L2 Global Thin Cloud/Aerosol optical depths

GLA012 L2 Polar ice sheet altim etry

GLA013 L2 Sea ice altim etry

GLA014 L2 Global land surface altim etry

GLA015 L2 Ocean altim etry

was developed by the USA National Geospatial-Intelligence Agency (NGA) 

and combines gravitational information from the Gravity Recovery and Cli­

mate Experiment (GRACE) satellite, with 5’ x 5’ resolution (Pavlis et al., 

2008). The new geoid file contains the Earth G ravitational Model EGM2008 

referenced to the Topex-Poseidon ellipsoid, with mean tides applied. Eleva­

tions have had ocean tide and load tide corrections applied using the GOT99.2 

global ocean model (Ray, 1999).
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3.2.2 G L A S /IC E S a t Laser operational periods

Jan Feb Mar ! April May Jun Jul Aug Sep Oct Nov Dec

2003 L1ab i
!
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03
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2004 L2b I ■ L2c L3a

2005 L3b L3c I  L3d

2006 L3e L3f | L3g
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2008 L3j ■ i_2d

2009 L21 e•

Figure 3.2: Missions of ICESat. Different colours stand for different lasers: Purple, 
Laser 1; red, Laser 2; blue, Laser 3: and the lengths of the bars show the durations 
of different missions (modified from Wang et al. (2011)).

The three lasers tha t formed GLAS/ICESat operated one at a time throughout the 

mission. To maximise the mission lifespan, the three lasers were operating individu­

ally. with 33-dav to 56-day campaigns per year, varying from 1 to 3 times per year. 

In total G LAS/ICESat recorded 18 campaigns distributed in seven years as sum­

marised in Figure 3.2. usually one during spring and the other during autum n. Blank 

spaces on ICESat coverage maps are places where no elevation data  were recorded. 

This was usually due to atmospheric issues and also due to IC ESat‘s 8-day and par­

tial 91-day sampling patterns. The 8-day repeat orbit was chosen to secure frequent 

repeats of the ground calibration sites during Laser 1 ; whereas the 91-day orbit was 

used to allow dense data  for research purposes for lasers 2 and 3 (Wang et al., 2011).

3.2.3 IC E S a t’s elevation d a ta

The elevation derived from ICESat altim etry is defined as the mean surface height of 

the laser footprint, which is the difference between the satellite height and the range
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between the satellite and the surface (Brenner et a l , 2003). This value is estim ated 

using an ice sheet specific algorithm and after instrum ent corrections, atmospheric 

delays and tide models are applied.

GLA S/ICESat estim ates the surface elevation from the altitude of the satellite orbit 

above the E arth  minus the range of the surface measured by the sensor (see Figure 

3.3). GLAS determines the range via photon time-of-flight (TOF) in the altim etry 

and atmospheric backscatter channels of the altimeter. First, a  Gaussian pulse is 

em itted a t time ti from the laser and at time t 2 the echo pulse is reflected back 

from the surface in the sensor. The to tal round-trip of the photons is estim ated as 

A t= t2-ti (Mitchell, 2009). Then, the range to the mean surface w ithin the laser 

footprint is determined from R = cA t/2 , with c being the speed of light («  3 x l0 8 

m /s). If the transm itted  pulse is close to a Gaussian shape, then the surface is a 

mean slope plus random  height variations, and if there is no atmospheric forward 

scattering, then the return  signal shape would be close to a Gaussian (Brenner et al., 

2003). Over the oceans, sea ice and most of the ice sheets, the echo is expected to 

be a single Gaussian (Zwally et a l, 2002b).

Level-0 data  contains voltages recorded by the altim eter system and from there, 

as illustrated in Figure 3.3, Level-0 data  are translated into Level-1 range data. 

As mentioned above, Level-1 d a ta  contain global altim etry range and atmospheric 

backscatter information (Mitchell, 2009).

The GLAS measurement is the scalar distance between a reference point in the 

sensor and the E a rth ’s surface (Zwally et a l, 2002b). The precision a ttitude  deter­

mination (PAD) da ta  were combined with the precision orbit determ ination (POD) 

and laser-ranging da ta  to give the location of each footprint on the surface of the 

Earth, along with the topographic elevation at tha t point; this process is known as 

geolocation (Schutz, 2002). The geolocation results were reported in the location
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Level-1

(cAt/2) UTCTlme

Figure 3.3: Translation of Level-0 da ta  into Level-1 data  (from (Mitchell, 2009)). 
The graph on the left shows the Gaussian pulse em itted a t tim e ti  (T^.) and the 
echo pulse reflected back from the surface to the sensor at time t 2 - The graph on 
the right shows the output of Level-1 showing the range to the mean surface within 
the laser footprint (R). UTC stands for Coordinated Universal Time.

data  given on the ICESat Level 2 d a ta  products (see Table 3.1) (Sirota et a/., 2005).

As mentioned above, for the purpose of this thesis, only the GLA012 altim etry prod­

uct was used. The files contained a record number, spatial and tem poral coordinates, 

the surface elevation in meters with respect to  the ellipsoid at the spot location de­

termined by range using the ice sheet specific algorithm (described above) and the 

height of the geoid above the ellipsoid. To obtain the elevation above sea-level, the 

geoid values were subtracted for each of the elevation measurements. ICESat da ta  

files also contained a correction to elevation for saturated waveforms, which was 

applied to the elevation values following product guidelines. After correcting the 

dataset for the geoid and saturation, the final elevation da ta  were projected into 

North Polar Stereographic Projection for practical issues, which is characterised by 

a central meridian of -45° and standard  parallel of 71° and WGS1984 as the Geo­

graphic Coordinate System. This dataset of elevation measurements across Green­

land forms the base of this thesis; ICESat elevation measurements were transformed 

into empty lake depth and then applied as a validation for the model used.

Level-0

d)o>03 o>

UTC Time
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3.2.4 Sources of errors

The accuracy of the derived surface elevation depends on timing, range errors, in­

strum ent saturation, atmospheric forward scattering, field of view shadowing and 

pointing errors. The laser pointing errors depend on the slope and surface rough­

ness, as shown in Figure 3.4. The accuracy and precision of ICESat altim etry data  

were estim ated to be about 14 cm and 2 cm, respectively (Shuman et al., 2006; 

Wang et al., 2011). The error budget for GLAS/ICESat elevation measurements is 

detailed in Table 3.2,and it is valid for ice, land and ocean/lake applications.

Table 3.2: GLAS single-shot error budget (modified from Mitchell (2009) and Zwally 
et al. (2002b)). For the error budget estimation it was assumed 1° surface slope and 
laser pointing error 1.5 arcsec.

Error Source Contribution (cm)

GLAS range measurement precision per pulse 10

Radial orbit error (based on GPS) 5

Attitude/pointing determination error (based on PAD system) 7.5

Atmospheric delay error 2

Atmospheric forward scattering 2

Other (solid tides and ocean loading over ice sheets; ice sheet rebound) 1

Root Sum Squares (RSS) 13.8

The errors associated with the surface elevation determ ination by the GLAS/ICESat 

instrum ent have random and systematic nature. The components of the error bud­

get are mostly uncorrelated with each other, so the Root Sum Squares (RSS) (Table 

3.2) of the error budget is a reasonable representation of the overall error for a 

single pulse (Zwally et al., 2002b). However, as mentioned above, the slope and 

roughness of the target surface have great impact on ICESat pointing precision. As 

an example, for 1 arcse .Ocond pointing error; a 1° slope is equivalent to 5.1 cm of 

surface slope induced range error; a  2° slope is equivalent to 10.1 cm range error and 

a 3° slope is equivalent to 15.2 cm range error (Bae and Schutz, 2002; Yi et al., 2005).
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Figure 3.4: Example of how the received laser pulse varies as a function of the surface 
characteristics. The laser footprint diameter on the surface is nominally 70 m, and 
the width of the transm itted pulse is 4 ns (equivalent to 0.60 m in surface elevation). 
The returned pulse is broadened by the distribution of surface heights within the 
footprint. The surface height distribution is characterised by a mean surface slope 
and a surface roughness within the footprint (modified from Brenner et al. (2003)).

Since ICESat was launched (also pre-launch) many studies have carried out valida­

tion analysis of the sensor performance (Zwally et al., 2002b; Fricker et al., 2005b). 

Fricker et al. (2005b) chose the salar Uyuni on the Bolivian Altiplano as a terrestrial 

target to validate ICESat elevation measurements over the ice sheet, since it is a 

large salt flat, which is a stable surface th a t allows detailed surveying and present an 

albedo comparable to tha t of the ice sheets. They concluded th a t ICESat-derived 

elevations have an absolute accuracy (bias) of < 2 cm and precision (Standard Devi­

ation) of < 3 cm over the salar. Nevertheless, these results were for ideal conditions 

and a small deviation from them  causes errors to significantly increase. For instance, 

forward scattering in the atmosphere causes increased noise and negative elevation 

bias; moreover degradation of the transm itted  energy with time affect the accuracy 

and precision of the elevation derivations.

Pre-launch estimations of effects of roughness and slope over the ice sheet made the
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following assumptions:

1. The target surface was a Lambertian (diffuse) reflector, which is radiating 

constantly in a hemispherical solid angle.

2. It was also assumed th a t the surface reflectivity is uniform within the laser 

footprint.

The largest error source when estim ating ICESat measurements is the precision of 

the pointing knowledge of the laser beam. The Laser Reference system is a m ajor 

input required to calculate the beam point angle. The accuracy of ICESat eleva­

tion measurements was recently tested at the summit in Greenland (Siegfried et a/., 

2011), and they discovered inter-campaign bias in the data; however it was concluded 

tha t the biases were within the satellite’s objective of ±  0.15 m. The elevation data  

as a function of the bias highlights the need of parallel in situ calibrations of ICESat 

and therefore of any satellite.

3.2.5 Advantages of ICESat over other satellites

For the scope of this thesis, an accurate dataset covering the entire ice sheet was 

desirable. Since in situ measurements of supra-glacial lakes in the whole ice sheet of 

supra-glacial lakes were unfeasible, ICESat appeared to be an useful choice, due to 

its small footprint and with an absolute vertical accuracy of 0.15 m (Fricker et a l , 

2005b), which was determined as the elevation bis for the GLAS data, calculating 

the weighted-mean difference between GLAS and the GPS elevation measurements 

(Siegfried et a l , 2011). Also the measurements over lakes had to be when empty, 

since the ICESat laser does not penetrate water. As mentioned above, ICESat cam­

paigns were usually occurring in spring and autum n (Figure 3.2), which is when the 

lakes are likely to be empty. After an intensive search of overlapping lakes with ICE­

Sat tracks w ith a previously developed supra-glacial lakes archive (Selmes, 2011), it
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was concluded th a t ICESat was a valid dataset to use as validation depth.

Some of the characteristics of laser altim etry over ice sheets follow radar altimetry; 

the basic measurement follows the same principle (determ ination of T O F of an elec­

trom agnetic pulse from the source to the surface and back) (Brenner et al., 2003). 

However, there are two main characteristics th a t made laser and radar altimeters 

different; the smaller footprint of laser altimeters and the fact th a t they operated 

at much lower electromagnetic frequency. The accuracy of satellite radar altim etry 

techniques in the determ ination of land-surface elevation is lim ited by its large foot­

print, around 2-3km over ice. Also slope-induced error varies from several metres 

to tens of metres. The lower frequency of laser altim eter (40 Hz) means th a t there 

is no deep penetration below the surface (Brenner et al., 2003); in contrast radar 

altim etry uses the Ku band (12-18 GHz), which can penetrate through snow to the 

snow/ice interface (Wang et al., 2011). This effect increases in the dry snow zone 

and high accumulation areas. As an example Brenner et al. (2007) compared the ac­

curacy and precision of different altim eter satellites over A ntarctica and Greenland 

ice sheets; Figure 3.5 summarised their results, showing the unprecedented accuracy 

of ICESat elevation measurements.

One of the disadvantages of ICESat is tha t clouds and aerosols in the atmosphere 

affect the laser beam, which means th a t heavy clouds produce no ground returns 

and thinner clouds cause forward scattering (Brenner et al., 2003). Nevertheless, 

elevations derived from ICESat in clear atmospheric conditions have shown higher 

accuracy and precision than  results derived from the radar altimeters, such us ERS-2 

(European Remote Sensing) and Envisat (Environmental Satellite). Brenner et al. 

(2007) showed th a t elevations derived from ICESat varied from 0.14 to 0.5 m as a 

function of surface slope.
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Figure 3.5: Laser (ICESat Laser 1 and 2A) and radar altim eter (ERS-2 and EN- 
VISAT) elevation precision as a function of slope as measured by the standard 
deviation of the crossover residuals for a study in Greenland (Brenner et al., 2007).

3.3 ASTER

3.3.1 Sensor description

ASTER is a multi-spectral visible/infrared instrum ent onboard the Terra satellite, 

and launched in December 1999. It is one of the five systems onboard Terra, which 

was the first Earth  Observing System (EOS). ASTER sensor operates in a sun- 

synchronous polar orbit at 705 km of altitude and with a grounding track repeat 

cycle of 16 days. ASTER scenes have 60 km swath width and are georeferenced to 

the WGS-84 (World Geodetic System) datum  and the Universal Transverse Mer­

cator (UTM) projection. A STER instrum ent was designed to collect the highest 

spatial resolution (15 m - 60 m) surface spectral reflectance, tem perature, elevation 

and emissivity data  of all the Terra sensors (Miura et a/., 2008).

The basic principle of ASTER instrum ent is to acquire quantitative spectral informa­

tion of reflected and em itted radiation from the surface of the E arth  at the spectral 

windows shown in Table 3.3 (ASTER, 2005). The ASTER sensor is composed of the 

following radiometers: Visible Near-Infrared (VNIR), Shortwave Infra-Red (SWIR)
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and Thermal Infra-Red (TIR).

Table 3.3: ASTER bands specifications, table modified from (Yamaguchi et al.,
1998)

Subsystem Band Number Spectral Range (/im) Spatial resolution (m)

VNIR 1 0.52 - 0.60 15

2 0 .63- 0.69

3N 0.78- 0.86

3B 0.78- 0.86

SWIR 4 1.600 - 1.700 30

5 2.145 - 2.185

6 2.185 - 2.225

7 2.235 - 2.285

8 2.295 - 2.365

9 2.360 - 2.430

TIR 10 8.125 - 8.475 90

11 8.475 - 8.825

12 8.925 - 9.275

13 10.25 - 10.95

14 10.95 - 11.65

The key features of ASTER sensor are as follows;

1. High spatial resolution (see Table 3.3).

2. Wide spectral range (see Table 3.3)

3. It can produce stereoscopic (three-dimensional) images and detailed terrain 

height models using the Visible Near Infra-Red (VNIR) telescope’s backward
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viewing band (Band 3B).

4. It is able to schedule on-demand data  acquisition requests

The Japan Resources Observation System Organization (JAROS) is in charge of 

the development of the ASTER sensor. ASTER images were obtained though the 

on-line D ata Pool a t the NASA Land Processes D istributed Active Archive Cen­

tre User Services (LP DAAC), United States Geological Survey (USGS) - Earth 

Resources Observation and Science (EROS) Centre, Sioux Falls, South Dakota 

(https://LPDAAC.usgs.gov/get\_data). The standard data  products are divided 

into 3 levels; Table 3.4 summarises the ASTER land products currently distributed 

from LP DAAC.

1. Level 0: Reconstructed, unprocessed instrum ent da ta  at full resolution (Abrams, 

2000).

2. Level 1A: Reconstructed, Unprocessed Instrum ent D ata a t full resolution. 

This product contains instrum ent da ta  time-referenced (Abrams, 2000) and 

with geometric correction coefficients and radiometric calibration coefficients 

appended but not applied to Level 0 da ta  (ASTER, 2005)

3. Level IB: Registered Radiance at Sensor in W /(m 2 mm sr). This product 

contains radiometrically calibrated and geometrically coregistered d a ta  for all 

ASTER channels. It is created by applying the radiometric and geometric co­

efficients to the level 1A data. This product is the input to derived geophysical 

products (ASTER, 2005).

4. Level 2: Derived geophysical variables a t the same resolution and location as 

Level 1 data  (Abrams, 2000)

5. Level 3: The ASTER stereoscopic subsystem consists of nadir and back- 

viewing telescopes operating in the VNIR (Abrams, 2000). The final products 

of this level include ASTER Global Digital Elevation Model (GDEM), DEMs,
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15 orthorectified LIB radiance images and 15 orthorectified LIB  radiance im­

ages plus DEM (h t tp : / / a s te r w e b . jp l .n a s a .g o v /d a ta \_ p r o d u c ts .a s p ).

For the purpose of the thesis, where spectral reflectance values of water were needed 

at high spatial resolution, the Level 2 surface reflectance dataset (AST_07) was used. 

The next subsection presents a description of this dataset product.

Table 3.4: ASTER products table
Short name Level ASTER Product Grid Resolution (m)

AST_L1A 1A Reconstructed Unprocessed Instrument Data 15, 30, 90

AST_L1AE 1A Reconstructed Unprocessed Instrument Data (Expedited) 15, 30, 90

AST_L1B IB Registered Radiance at the Sensor 15, 30, 90

AST_L1BE IB Registered Radiance at the Sensor (Expedited) 15, 30, 90

AST_05 2 Surface Emissivity 90

AST.07 2 Surface Reflectance (VNIR and SWIR) 15, 30

AST.07XT 2 Surface Reflectance (VNIR and Crosstalk Corrected SWIR) 15, 30

AST_08 2 Surface Kinetic Temperature 90

AST.09 2 Surface Radiance (VNIR and SWIR) 15, 30

AST_09T 2 Surface Radiance TIR 90

AST_09XT 2 Surface Radiance (VNIR and Crosstalk Corrected SWIR) 15, 30

ASTGTM 3 ASTER Global Digital Elevation Model 30

AST14DEM 3 Digital Elevation Model (DEM) 30

AST14DMO 3 DEM and Registered Radiance at the Sensor (Orthorectified) 15, 30, 90

AST140TH 3 Registered Radiance at the Sensor (Orthorectified) 15, 30, 90

3.3.2 Surface Reflectance product description

The AST_07 product contains surface reflectance at each of the nine VNIR and 

SWIR bands. The reflectance values are obtained after applying an atmospheric 

correction to radiances a t the sensor (ASTER, 2002). The objective of atmospheric 

correction is to produce more accurate surface reflectance and to potentially im­

prove the extraction of surface param eters from the sensor images (Chrysoulakis 

et al., 2010).
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Atmospheric correction consists of deriving a relationship between the surface radi­

ance/reflectance and the top of the atmosphere (TOA) radiance from information 

of the scattering and absorption characteristics of the atmosphere (Information ob­

tained from site http://lpdaac.usgs.gov/get\_data). The algorithm used to 

obtain surface reflectance is based on a look-up table (LUT); the LUT approach 

uses results from a Gauss-Seidel iteration radiative transfer code (RTC) (Thome, 

1999) th a t assumes the E arth  is flat with a homogeneous, Lam bertian surface and a 

plane parallel, homogeneous atmosphere divided into optically th in  layers (Thome 

et al., 1998). The algorithm  uses outside sources (like the Multi-angle Imaging 

SpectroRadiometer (MISR), MODIS or climatological means) for the atmospheric 

information required due to the fact tha t the sensor was not designed to collect a t­

mospheric information. The atmospheric correction removes effects due to changes 

in satellite-sun geometry and atmospheric characteristics. The final results of this 

algorithm are in reflectance units (going from 0 to 1) with an accuracy as a function 

of the accuracy of input atmospheric characteristics and the surface slope. The ab­

solute accuracy of this product is 0.01 for reflectance < 0.15 and 7% for reflectance 

values > 0.1 (ASTER, 2002).

3.3.3 Advantages of ASTER satellite

ASTER satellite provides images of 15 by 15 m pixels, which for the case of mon­

itoring supra-glacial lakes is an useful resolution. Uncertainties risen from mixed 

pixels at the ice/water interface are still present with this sensor, but th a t is an 

uncertainty accounted for in the results derived from this sensor.

ASTER products provide atmospherically-corrected surface reflectance data, which 

requires no other basic processing before using them  (Miura et a l, 2008). ASTER 

follows from previous sensors designed for higher spatial resolution surface charac­
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terisation, which was begun with the Landsat Them atic Mapper (TM) and System 

Pour l’Observation de la Terre (SPOT), the Advanced Very High Resolution Ra­

diometer (AVHRR). The global advantages of ASTER were tha t it increased the 

number of bands in comparison with those previous instruments, plus giving high- 

spatial resolution and same-orbit stereo capability (Thome et al., 1998).

There are other satellites with higher spatial resolution than  ASTER, like IKONOS 

or the System for E arth  Observation (SPOT) with 4 m and 5 m respectively. How­

ever, IKONOS presents a 13.8 km swath in comparison with 60 km of ASTER, 

whereas SPO T has the same as ASTER. Nevertheless, more ASTER scenes with 

supra-glacial lakes were available for the study. For these reasons, a compromise be­

tween spatial resolution, temporal resolution and availability was made and ASTER 

was selected. Another reason is th a t MODIS imagery was used to  locate supra- 

glacial lakes (Selmes et a l, 2011) and both  MODIS and ASTER present the same 

flying time since they are both onboard the TERRA satellite, so th a t fact was very 

useful in term s of lake selection and scene quality comparison. The next section will 

introduce the MODIS sensor.

3.4 MODIS

3.4.1 Sensor description

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrum ent 

operating on both the Terra and Aqua satellites. Terra was launched on Decem­

ber 1999 and Aqua on 2002. The MODIS instrum ents were designed to monitor 

terrestrial, atmospheric and oceanic phenomenology across the Earth. MODIS in­

strument provides high radiometric sensitivity in 36 spectral bands and Table 3.5 

shows the first 7 bands only, because they are the ones used for land/cloud/aerosols
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boundaries and of interest for this thesis. W ith a ±  55° scanning pattern  at the 

EOS orbit of 705 km, the instrum ent presents a 2,330 km swath view and a ground 

repeated orbit of one or two days. MODIS was designed to provide long-term global 

measurements at m oderate spatial resolution, between 250 m to 1 km.

Table 3.5: MODIS first seven bands

Band Bandwidth (jum) Pixel size (m)

1 0.620 - 0.670 250

2 0.841 - 0.876

3 0.459 - 0.479 500

4 0.545 - 0.565

5 1.230 - 1.250

6 1.628 - 1.652

7 2.105 - 2.155

MODIS sensor has different da ta  levels; Level 1A data  set contains radiance count 

for all the channels, together with instrum ent and spacecraft ancillary data. Level 

1A data are used as input for geolocation, calibration and processing. Then, Level 

IB  dataset contains calibrated and geolocated radiances in W /(m 2 mm sr) for all the 

channels generated from the previous level 1A. One of the applications of MODIS 

is for the acquisition of land parameters, which requires th a t the TOA radiance to 

be transformed to surface reflectance. This process is called atmospheric correc­

tion; which is based on the same theory as the algorithm applied for ASTER. The 

atmospheric correction algorithm uses MODIS products as inputs (see Table 3.6). 

O ther results are DEMs, D ata Assimilation office (DAO) for surface pressure, water 

vapour, and ozone.

After applying the required algorithms MODIS level IB radiance are corrected for
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Table 3.6: List of MODIS products used as an input to the atmospheric correction 
algorithm (modified from (Vermote and Vermeulen, April 1999)) (*Bidirectional 
Reflectance Distribution Function).

MODIS products Characteristics

MOD02 Geographically registered and calibrated radiances

MOD03 Geographically registered and calibrated radiances

MOD35 Cloud mask

MOD04 Spectral aerosol optical thickness

MOD05 Precipitable water

MOD07 Ozone

MOD43 Surface BRDF*

atmospheric effects and then transformed into a surface reflectance dataset. The 

result is an estimate of the surface spectral reflectance for each band as it would 

have been measured at ground level if the atmospheric scattering and absorption 

were not present (Vermote et a l, 1997; Vermote and Vermeulen, April 1999). The 

algorithm is applied to bands 1 to 7 and it includes corrections for the effect of 

atmospheric gases, aerosol, and thin cirrus clouds, and it is applied to all non- 

cloudy level IB pixels th a t pass the level IB quality control. The atmospheric 

correction assumes th a t the signal received at the sensor is the result of the mixed 

reflectance of the pixel and reflectance values from surrounding pixels, each weighted 

by their distance from the target. This effect is known as the adjacent effect. In 

the case of MODIS ten pixels are used to correct this effect. Moreover, because 

the atmospheric point spread depends on the view angle; this is also taken in to 

account with their relationship. There are some characteristics of MODIS sensor 

tha t allow us the provide more accurate results from the atmospheric correction 

than previously (Vermote and Vermeulen, April 1999);

1. The seven channel in the spectral interval 0.41 to 2.1 /mi, which allows the 

estimation of aerosol optical thickness.
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2. The bandwidths in the reflectance channels are smaller so they do not overlap 

with the water vapour absorption bands, with the exception of 0.659 /am and 

2.1 p m. This results in a reduction of the error introduced by water vapour 

absorption.

3. Another improvement is the pixel reduction to 250 m in MODIS from the 

previous 1 km in the Advanced Very High Resolution Radiometer (AVHRR), 

which increases the detection of cloud pixels and reduces the subpixel cloud 

mixing.

4. Finally, apart of the seven reflectance channels, two other MODIS channels, 

3.75 pm  and 1.38 pm , are used for determining aerosol optical thickness and 

for detecting thin cirrus and stratospheric aerosols respectively.

The output algorithm is the MOD09, which process daily the 7 land bands a t 250 m 

(Bands 1 and 2) and 500 m (Bands 3-7). The product is the estimates of the surface 

reflectance, QA (Quality Assurance) bit fields and QA m etadata for each dataset. 

This MODIS product was the one used in this thesis and Table 3.7 gives the different 

accuracy for each band derived from the atmospheric correction algorithm.

Table 3.7: Total theoretical accuracy of MODIS surface reflectance (from Vermote 
and Vermeulen (April 1999)).

Band Absolute error Relative error % (range)

1 0.005 1 0 -3 3

2 0.014 3 - 6

3 0.008 5 0 -8 0

4 0.005 5 - 12

5 0.012 3 - 7

6 0.006 2 - 8

7 0.003 2 - 8
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3.4.2 Justification for data choice

For the purpose of this thesis two different products derived from MODIS were 

used. First an archive of 2,600 supra-glacial lakes across Greenland derived by 

Selmes (2011) from MODIS imagery, which includes lake evolution during summer 

months from 2005-2009 (Selmes et al., 2011). The second product used was MOD09 

reflectance values as an input for the model derived in this thesis. Even though 

ASTER reflectance values are the ones used for the model, since MODIS swath 

w idth is bigger and both  sensor flown onboard Terra and have equivalent channels, 

in some cases the ASTER dataset was substituted by MODIS, as it will be explained 

in the following chapter.

The main advantages of using MODIS is the high temporal resolution, which allows 

a continuous monitoring of Greenland. MODIS reflectance data  were rejected as 

a main source due to its coarse spatial resolution: 250 m. The reason is tha t in 

order to obtain an accurate estimate of lake depth and hence volume, the spatial 

resolution of the pixels has to be as high as possible to avoid mixed pixels. T hat is 

why ASTER was chosen instead.

3.5 CASI

The Compact Airborne Spectrographic Imager (CASI) is a V IS/N IR  pushbroom 

(along track) imaging spectrograph with a reflection grating and a 2D Charge 

Coupled Device (CCD) solid-state array detector. The instrum ent operates by 

looking down in a fixed direction and imaging successive lines of the scene un­

der the platform, building up a two-dimensional image as the platform moves for­

ward. The CASI instrum ent has been used in a variety of applications from forest 

cover mapping to pollution monitoring (http: //geo. arc. nasa. gov/sge/jskiles/ 
top-down/OTTER/0TTER_docs/CASI.html).
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This instrum ent was flown on an aircraft by the Natural Environment Research 

Council (NERC ARSF) Project on the 19th and 24th of July 2007 over the Helheim 

glacier in south east Greenland. The data  collected during those flights was used in 

this Thesis (Chapter 7). The NERC ARSF provides the UK environmental research 

community with high spectral and spatial resolution data  from the CASI instrument.

3.5.1 Sensor description

The CASI ” hyperspectral imager” with a spectral range of 400-915 nm, is fully 

programmable prior to, and during flight operations, and can be operated in a series 

of different modes depending on the requirements of the project application (http: 

//www.neodc.rl.ac.uk/index.php?option=displaypage&Itemid=7l&op=page&SubMenu=-l). 

The operational modes are:

1. Spatial Mode: 512 pixels across swath, up to 18 spectral bands fully pro­

grammable.

2. Spectral Mode: Full spectrum (288 channels) for up to  39 look directions 

spread across swath (between 4 an 16 pixel spacing between look directions). 

This also includes a monochromatic image at full spatial resolution (the Scene 

Recovery Channel).

3. Enhanced Spectral Mode: Full spectrum (288 channels) in a block of 101 

adjacent spatial pixels.

4. Full fram e: 512 pixels across swath by 288 spectral pixels (around 1-2 seconds 

of integration tim e). This limits this mode to laboratory calibration or ground- 

based field use.

The original specifications of CASI presented an imaging area of the array of 512 x 

288 pixels. The 512 spatial pixels across the field of view (FOV) of 38.4° degrees
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across track give a 1.23 meter ground resolution (cross track) per 1 km above ground 

level altitude. The along track ground resolution is approximately the product of 

the integration time and the aircraft speed.. The required integration time is directly 

proportional to the number of bands collected in spatial mode or in spectral mode 

the number of views. The spectral range of the CASI instrum ent is shown in Table 

3.8. The spectral resolution was 2.5 nm FWHM (Full W idth Half Maximum). The 

2.5 nm FWHM is nominal, the bandwidth changes significantly w ith wavelength. 

Channel to wavelength registration is subject to slight deviations (3 nm) at large 

view angles due to spectral sag.

Table 3.8: CASI bands list.

Band number Wavelength central frequencies (nm) FWHM* (nm)

1 448.46 10.51

2 488.94 9.58

3 551.17 5.82

4 606.95 6.78

5 649.63 3.95

6 669.6 4.91

7 700.09 4.92

8 709.63 4.92

9 740.24 4.93

10 748.86 3.98

11 761.34 3.02

12 779.60 3.99

13 819.14 4.97

14 863.75 4.99

15 940.04 5.04
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3.5.2 D ata processing details

CASI delivered d a ta  are Level lb  HDF (Hierarchical D ata Format), which means 

th a t the radiometric calibration algorithms have been applied and th a t the navi­

gation information has been appended. These Level lb  (or Level 2) files need to 

be geocorrected w ith the AZGCORR software, which produces a Level 3 file. The 

CASI atmospheric corrections and geocorrection processes will be detailed in the 

methodology (Chapter 4).

3.5.3 D ata quality

For the geocorrection process a LIDAR DEM produced during the flight is used. 

That DEM is not tested for geometric error; nevertheless screen-shots of the Level 3 

outputs generated by NERC ARSF were included in the data  distribution to indicate 

the expected accuracy. Some bands show missing pixel lines where the instrum ent 

has bad pixels. These have been removed autom atically where detected in the cali­

bration process applied by NERC ARSF, but some remain.

3.5.4 Justification for data choice

For the purpose of this thesis CASI geocorrected d a ta  were used in Chapter 7. The 

CASI reflectance obtained from the geocorrection process was used an input for the 

water reflectance model developed in Chapter 5. It is a an application of the model 

to derive the depth of w ater in crevasses. Due to the high spatial resolution of CASI 

(10 by 10 m in this study), this sensor appeared to be useful for this purpose, since 

crevasses can be very narrow features.
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3.6 Landsat 7

The last da ta  source described here is Landsat 7, which is one of the latest Na­

tional Aeronautics and Space Administration (NASA) satellite in a series th a t has 

produced uninterrupted m ultispectral record of the E a rth ’s land surface since 1972 

(Figure 3.6). Landsat 7 d a ta  are free available from the United States Geological 

Survey Global Visualisation Viewer (USGS GLOVIS) (http: //glovis. usgs . gov/).

System
Launch 

(End of s e rv i c e ) 1(3)
Re30l ution 
(meters) Communications

Alt.
Km

R
Days

D
Mbps

Landsat 1 7 / 2 3 / 7 2
( 1 / 6 / 7 8 )

RBV
MSS

8 0
8 0

Direct downlink 
with recorders

9 1 7 1 8 15

Landsat 2 1 / 2 2 / 7 5
( 2 / 2 5 / 8 2 )

RBV
MSS

8 0
8 0

Direct downlink 
with recorders

9 1 7 18 15

Landsat 3 3 / 5 / 7 8
( 3 / 3 1 / 8 3 )

RBV
MSS

4 0
8 0

Direct downlink 
with recorders

9 1 7 1 8 15

Landsat 4 * 7 / 1 6 / 8 2 MSS
TM

8 0
3 0

Direct downlink 
TDRSS

7 0 5 16 8 5

Landsat 5 3 / 1 / 8 4 MSS
TM

8 0
3 0

Direct downlink 
TDRSS**

7 0 5 1 6 8 5

Landsat 6 1 0 / 5 / 9 3
( 1 0 / 5 / 9 3 )

ETM 15 (pan)  
3 0  ( m s )

Direct downlink  
with recorders

7 0 5 16 8 5

Landsat 7 4 / 9 9 ETM+ 15 (pan)  
3 0  ( m s )

Direct downlink 
with recorders  

(sol id state)

7 0 5 1 6 1 5 0

I ( s )  = I n s t r u m e n t ^ )
R = Revisi t  interval  
D = Data rate
*TM data transmiss ion failed i n August,  1 9 9 3 .
* *  Current data transmi ss ion by di rect downli nk onl y. No recordi ng capabi l ity.

Figure 3.6: Table showing the key mission characteristics of the Landsat Pro­
gram, where the product used in this thesis is highlighted in red (http:// 
landsathandbook.gsf c .nasa.gov/pdfs/Landsat7_Handbook.pdf).

The Landsat 7 satellite was launched on April 1999. This satellite was designed for 

a 705 km, sun synchronous, earth  mapping orbit w ith a 16-day repeat cycle. Its 

payload is a single nadir pointing instrum ent, the Enhanced Them atic M apper Plus
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(ETM +). The ETM + is a derivative of Them atic M apper (TM) engineered for pre­

vious missions (Landsat 4 and 5), although is more closely related to  the Enhanced 

Them atic M apper(ETM ), which was lost during the Landsat 6 failure. The primary 

performance related changes of the ETM + over the TM ’s are the addition of the 

panchromatic band (Table 3.9) and two gain ranges, the improved spatial resolution 

for the therm al band, and the addition of two solar calibrators.

The ETM + design provides for a nadir-viewing, eight-band (Table 3.9) m ultispectral 

scanning radiometer capable of providing high-resolution image information of the 

E arth ’s surface when operated from Landsat 7, a 3 axis stabilized spacecraft located 

in a near polar, sunsynchronous and circular orbit at a 705 km nominal altitude, 

with an orbit inclination of 98.2°. The ETM + was designed to collect, filter and 

detect radiation from the Earth in a swath 185 km wide as it passes overhead and 

provides the necessary cross-track scanning motion while the spacecraft orbital mo­

tion provides an along-track scan.

Table 3.9: Landsat 7 ETM + spectral characteristics (h t t p : // la n d s a th a n d b o o k . 
g s f c .n a s a .gov/pdfs/L andsat7_H andbook. p d f).

Satellite Sensor Band number Bandwidths (nm) Resolution (m)

Landsat 7 ETM+ 1 450-520 30

2 520-600 30

3 630-690 30

4 760-900 30

5 1,550-1,750 30

6 10,400-12,500 60

7 2,080-2,350 30

Panchromatic 500-900 15

The goal of the Landsat 7 program was to achieve radiometric calibrations of the
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d ata  to ±  5% uncertainty over the 5-year life of the mission. Pre-launch, the mission 

design supported this requirement through hardware design changes, and instrum ent 

characterizations. W hen the satellite was on orbit, this 5% requirement was sup­

ported by a monitoring and calibrations program, and the implementation of any 

necessary changes to the ground processing of the data.

3.6.1 Justification for data choice

For the purpose of this thesis Landsat 7 was a useful tool to validate CASI modelled 

results on Helheim glacier. This was due to the availability of scenes th a t coincided 

with the CASI flights, with a few days difference and also with field observations 

by Sneed and Hamilton (2007). Landsat 7 radiometric da ta  were atmospherically 

corrected in order to obtain reflectance values for the model applied in this thesis. 

The pre-processing of Landsat 7 scenes is presented in Chapter 4.

3.7 Chapter Summary

The main data  source in this thesis was ICESat altim etry measurements (GLA12). 

This satellite was chosen due to it high accuracy in elevation measurements and the 

convenient campaigns operational periods, coinciding with the season when lakes 

might be empty, which allowed lake depth approximation from ICESat elevations. 

The other im portant da ta  source was ASTER surface reflectance (AST_07), which 

was used as an input to the water reflectance model used in this thesis to estim ate 

water depth from the optical properties of water. MODIS imagery was an im portant 

source for lake location and evolution, obtained from the archive developed by Nick 

Selmes. Finally CASI and Landsat 7 d a ta  were used as an application of the model 

develop in this thesis and hence as a test of itself.
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M ethodology

4.1 Introduction

In this chapter the methodology used to derive melt-water depth of supra-glacial 

lakes on the GrIS is described. In the previous chapter the data  sources from the 

different remote sensing sensors used as an input to these methods were introduced. 

The main sections of this chapter are the water reflectance model used in this thesis 

as an approach for water depth estim ation (Section 4.2) and the statistical analysis 

of the model carried out via a Monte Carlo simulation approach (Section 4.5). Also, 

an application of the water reflectance model for water-filled crevasses over the front 

of the glaciers is introduced in Section 4.6. Chapters 5, 6 and 7 present the results 

derived directly from this chapter.
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4.2 Derivation of water depth from optical im­

agery

An estimate of to ta l water volume stored in supra-glacial lakes is crucial for assessing 

the potential formation of hydrofractures and hence drainage to the bed (Krawczyn- 

ski et a l, 2009); however a volume estimate of melt-water is challenging for several 

reasons. Firstly, even though lake area can be derived from spectral differences be­

tween water and snow/ice (Liithje et al., 2006; McMillan et a l , 2007), due to spatial 

and temporal lim itations from the sensors (like cloud cover), a full coverage of the 

GrIS is impractical (Selmes et al., 2011). Secondly, estimation of lake volume also 

requires depth knowledge. Here is where the aim of this thesis comes in, starting 

with solving the integral form of the RTE for 2  (Equation 4.5).

Recent estimates of water depth have been made for single or specific melt-lakes 

on the GrIS from high-resolution optical satellite images, such as ASTER (Geor- 

giou et a l , 2009; McMillan et a l, 2007; Sneed and Hamilton, 2007), where they 

use the RTE (Lyzenga et a l, 2006; Stum pf et a l, 2003) to derive the melt-water 

depth. These studies compare depths and volume estimations derived from satellite 

imagery (Box and Ski, 2007) with either in situ  measurements or lidar observations 

(Georgiou et a l, 2009).

The difference in the spectral characteristics between ice/snow and water is the key 

tool for monitoring and mapping the area distribution of lakes, both spatially and 

temporally, on sea-ice and on the GrIS (Selmes et a l, 2011; Bartholomew et a l, 

2011; McMillan et a l, 2007; Sundal et a l, 2009; Tedesco and Steiner, 2011; Lee- 

son et a l, 2012). Figure 4.1 shows the theoretical difference in reflectance between 

glacier ice, snow, firn, and clear water on the visible near infrared part of the spec­

trum . The clear water curve is the one of interest in the current study. However, in 

order to provide a full picture of a lake and to quantify the potential of the water
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stored draining to the lake bed, the volume stored is necessary, water depth estima­

tions are also needed (Krawczynski et al., 2009). A refinement of the existent water 

reflectance model for a wider quantification of water stored 011 melt-lakes across 

Greenland is the purpose of this thesis.

T IRS W IRV N IR
VIS NIR

high
(100%)

snow

firn
'0-lfc 131

g lac ie i
ice
ro c k

ASTER

60m
LANDSAT
ETM+

low
(0%) 10.00.5 5 02 0

Wavelength (nm)
10

Figure 4.1: Spectral characteristics of water, snow and ice (coloured lines). Num­
bered boxes: wavelength range of the channels of the ASTER and the Landsat 
ETM + (and TM) sensors with their spatial resolution. Coloured area: atmo­
spheric transmission: high values indicate tha t a high degree of solar radiation 
passes through the atmosphere, low values indicate that large parts  of solar radi­
ation are blocked by atmospheric gasses, (http://www.esa.int/esaMI/Eduspace_ 
Environment_EN/SEMPJ7TWLUG_0.html).

W ater depth has been estimated from the optical properties of water for supra- 

glacial lakes, coral reefs areas, for bathym etry mapping of coastal regions (Lyzenga, 

1978; Smith and Baker, 1981; Philpot, 1989; M aritorena et al., 1994; Stum pf et al., 

2003; Lyzenga et al., 2006; Mishra et al., 2004; Sneed and Hamilton, 2007, 2011) 

and in sea-ice melt-lakes studies (M orassutti and Ledrew, 1996).

In the field of supra-glacial lakes 011 the Greenland ice sheet, satellite imagery from 

ASTER (Sneed and Hamilton, 2007, 2011; Georgiou et al., 2009) has been combined 

with in situ  bathym etry measurements (Sneed and Hamilton, 2011; Box and Ski. 

2007) and also multispectral measurements (Tedesco and Steiner, 2011) to measure 

lake depth. Figure 4.2 is an example of the different reflectance values given by 

three of the spectral bands from one of the ASTER scenes used in this thesis. The
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reflectance at the lake surface given by ASTER is used as the main input to the 

water reflectance model described next.
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Figure 4.2: Example of the difference in the spectral characteristics of ice and water 
from an ASTER scene used in this thesis. B lue/red/light blue dots corresponds to 
ice/edge/'water reflectance values for wavelengths between 520-860 nm, correspond­
ing to the three windows of Band 1 2 and 3N of ASTER. The horizontal error bars 
just show the range of values that each of the bands take of the spectrum and the 
dot the mean wavelength value.

4.2.1 Theoretical background of th e  w ater reflectance model

The depth derivation approach from optical properties of water applied in this thesis 

is based on Equation 4.1, which is a simple radiative transfer model for optically 

shallow waters of the general form (Philpot. 1989) and states tha t the water-leaving- 

spectral radiance L(z, A) decays exponentially with water depth 2 (see Figure 4.3). 

This relationship is some form of the Bouguer-Lambert-Beer law, which relates the 

transmission of light with the properties of the material (water in this study) that 

travels through. The focus of this thesis is the upward radiance after travelling
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through the water in a two way form (see Figure 4.3).

L(z, A) =  L (0, A) x exp(—K xz) (4.1)

Where L(0, A) is the spectral radiance a t zero depth and K \  is the spectral a tten­

uation (Lyzenga, 1978). The source radiance L  is defined as the radiant flux per 

unit solid angle per unit projected area of surface [W m -2 sr-1] (Zaneveld and Boss, 

2003). The solid angle is the surface area of a unit sphere covered by the surface’s 

projection onto the sphere (h ttp ://m a th w o rld .w o lfra m .c o m /S o lid A n g le .h tm l). 

If the concept of radiance is applied in remote sensing, Figure 4.3 summarises the 

general case of a passive satellite, where the sensor receives the radiance th a t first is 

em itted by the sun, arrives to the water surface, travels through it, reflects on the 

bottom  substrate and back to the water surface.

The knowledge of the physical param eters th a t define the water properties is needed 

to derive water depth. The optical properties of water are divided into two classes:

1. The Inherent Optical Properties (IOP) depend only upon the medium, which 

implies tha t they are not a function of the light field within the medium 

(Mobley, 1994). Examples of IOP relevant to this thesis are the absorption 

coefficient and beam attenuation coefficient.

2. The Apparent Optical Properties (AOP) are a function of both the medium 

(IOP) and of the geometric structure of the ambient light field. Examples of 

AOP relevant to this thesis are the reflectance measure by remote sensing and 

vertical diffuse attenuation coefficients (Mobley, 1994).
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Figure 4.3: Radiance arriving at the sensor after travelling through the water, show­
ing the difference factors that influence the am ount of radiance reaching the sensor, 
(modified from Bierwirth et al. (1993)).

Substrate

The IOP of water, water depth, and bottom  type are the main physical agents gov­

erning the magnitude and spectral composition of the backscattered flux received 

by the sensor (M aritorena et al., 1994). The Bouguer-Lambert-Beer law (Equation

4.1) is the integral form of the Radiance (or radiative) Transfer Equation (RTE) 

(see Equation 4.2), which drives the behaviour of radiance within natural bodies. 

After applying boundary conditions to the RTE. it is possible to predict the radiance 

distributions under the water surface, given the prior knowledge of the water's IOP, 

the incident light flux and the medium conditions (Mobley, 1994). The full deriva­

tion of the Bouguer-Lambert-Beer law from Equation 4.2 will not be shown in this 

thesis; however the basis of it will be explained next, together with the fundamental 

theorems that are used to derive it.

( ? )  + «  *  ( ? )  -  -  ( ? )  +  L ‘ + L - *  < «
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W here £ is the travelling direction of the photons, which travel a t the speed of 

light £ =  V/v\ c is the to tal beam attenuation coefficient; and finally the three last 

terms of the Equation are the m athem atical descriptions of elastic scattering ( L f ), 

inelastic scattering (L*) and true emission (L f). The term  L /n 2 comes from the 

fundamental theorem of radiometry (Equation 4.3);

This theorem states th a t ’the radiance divided by the square of the index of refrac­

tion is constant along any p a th ’; which in tu rn  derives from the n 2 law for radiance 

for the case of a beam with a normal incidence on air-water interface. The funda­

mental theorem of radiom etry is only true for paths in a vacuum, since real media 

have some kind of absorption and scattering. However, in a vacuum n\ — n 2 = 1, so 

Equation 4.3 stays as L\ = L 2, which is a generalization of the radiance invariance 

law.

Before solving the RTE it is im portant to understand how the light travels through 

the water medium (Figure 4.3); the light is defined as a beam of photons travelling 

in all directions through the medium. Six processes are necessary and sufficient to 

describe an energy balance equation for a beam of photons travelling through the 

water body:

1. Loss/gain of photons through scattering without change in wavelength (elastic 

scattering).

2. Loss/gain of photons through scattering with change in wavelength (inelastic 

scattering).
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3. Gain of photons through creation of photons by conversion of non-radiant 

energy to radiant energy (true emission).

4. Loss of photons through annihilation of photons by conversion of radiant en­

ergy to non-radiant energy (true absorption).

All these processes need to be w ritten in a quantitative way so they can be included 

in the equations. The general RTE expresses the change in L /n 2 along a path  with 

the sum of the physical terms causing th a t change (Mobley, 1994) (see Equation 

4.2). Equation 4.2 is the most general form of the RTE for unpolarised radiance, 

where unpolarised mean th a t the photons present randomly orientated electric field 

directions.

The Bouguer-Lambert-Beer law (see Equation 4.1) is derived from the general RTE 

mentioned above (see Equation 4.2) assuming an idealised case of source-free and 

non-scattering media and then integrating it for the whole water depth. Satellite- 

based studies use the surface pixel reflectance to derive w ater depth; hence the 

Bouguer-Lambert-Beer law is usually transformed in terms of reflectance (Equation 

4.4) (Lyzenga, 1978; Philpot, 1989; M aritorena et al., 1994; Stum pf et al., 2003; 

Sneed and Hamilton, 2007) and solved for water depth z (Equation 4.5). Note tha t 

there is a negative sign in Equation 4.5 ( “-g” )tha t does not come from Equation 4.4. 

This sign is added because depths are assumed negative.

R w = Roo + [Ad -  Roo] x exp(~ gz)  (4.4)

I

z =  (In(A d -  Roo) -  \n (R w -  R ^ / ^ g )  (4.5)
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W here R w is the pixel reflectance at the water surface provided by the sensor, de­

fined as the ratio of emergent radiance relative to the to tal irradiance (Bierwirth 

et al., 1993); is the reflectance at depth zero of the deep ocean; Ad is the bot­

tom  albedo and g [m-1] is the effective attenuation coefficient. Because there is no 

analytical solution of this RTE, any analytical equation is an approximation (Mar- 

itorena et al., 1994). Equation 4.5 is the form of the RTE on which this thesis is 

based. This thesis applied the simple reflectance model (Equation 4.5) for depth 

estimations, which is fully explained in the following subsection.

4.2.2 Types of Water reflectance models

The different types of water reflectance models are based on either one wavelength 

or on a combination of wavelengths. If the model is based on the knowledge of a 

single wavelength band the model linearises the relationship between the reflectance 

and the water depth; this is known as the simple water reflectance model, which 

accounts for almost the whole signal received from a sensor over clear shallow wa­

ter. This model ignores scattering in the water and internal reflection at the water 

surface (Lyzenga, 1978). An extension of the single band model is the estimation of 

depth for various wavelengths. The use of more bands with inversion weighted by 

uncertainties could be expected to results in greater accuracy in comparison with 

the single band approach. However the multiple band approach was dismissed for 

the purpose of this thesis for simplification and as a first approach.

For the case of two bands with equal attenuation coefficients, the water reflectance 

model is equivalent to the ratio method, which considers a pair of bands so the ratio 

of the bottom  reflectance in the two bands is the same for all the bottom  types 

(Lyzenga, 1978; Lyzenga et al., 2006). The main advantage of the ratio method is 

th a t it requires fewer empirical coefficients and it can tuned using available sound­

ings (Stumpf et al., 2003).
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The model can be extended for a N-band system, although the disadvantage of this 

algorithm is tha t it is more complex and hence more difficult to implement (Lyzenga, 

1978; Lyzenga et a/., 2006); furthermore this m ethod introduces errors in depth de­

term ination from each of the bands (Bierwirth et al., 1993).

For simplification and because the studies this thesis was motivated by used the sin­

gle band reflectance model (Sneed and Hamilton, 2007, 2011; Tedesco and Steiner, 

2011; Georgiou et al., 2009), it was decided to  proceed with the same m ethod for 

comparison with our results.

4.3 Description of the single band water reflectance 

model applied for depth derivation

This thesis presents an optimisation of the param eters derived from ASTER images 

of melt-water lakes and validated w ith ICESat laser altim etry data  over empty lakes 

(see Figure 4.4) on south west Greenland (sea map location in Figure 4.8), as an 

input to the simple reflectance model for fresh water (Equation 4.9).

A total estimate of water stored on the entire Greenland ice sheet each year is yet un­

known. If a global set of the three physical param eters governing Equation 4.5 (A^, 

Roo and g) can be derived and applied to every lake across the GrIS, the model can 

be up-scaled to the entire ice sheet and thus a volume of water stored in melt-water 

lakes can be derived. A to tal number of eleven lakes was used for this section, all of 

them located in the same area. The reason for so few lakes in the sample was due to 

the sparse subset of overlapping ASTER scenes and ICESat tracks for the same year.
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Figure 4.4: Example of an ICESat track over an empty lake giving the surface 
elevation above sea level, which is then transformed into lake depth to validate the 
ASTER depth derivations. In this case the lake in the graph is about 1.200 m long 
and 5 m deep.

The input value in Equation 4.5 is the returning signal at the surface of the lake 

from the ASTER scene (R w), which comprise information about radiation between 

two media (water/atm osphere) and about the underlying bottom  (Bierwirth et al., 

1993). Consequently, some assumptions are needed to apply Equation 4.5 in this 

study, which are based on previous studies (Sneed and Hamilton, 2007). In situ  

studies showed that the following assumptions are appropriate for this purpose 

(Sneed and Hamilton, 2011: Tedesco and Steiner, 2011); however further discussion 

is needed for individual assumptions, which is included Chapter 8, with the highest 

uncertainty related with mixed pixels due to the spatial resolution of the sensor used.

1. The fundamental assumption made is tha t the optical properties of the water 

are vertically homogeneous (Philpot, 1989).

2. Homogeneity of the lake bottom  assuming ice as the substrate, which allow us 

to consider Ad constant across the lake.

3. Negligible particular m atter within the water column.
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4. No inelastic scattering.

5. Absence of wind, i.e. no waves on the lake surface.

6. Melt-water considered pure natural water, assumption needed for the deter­

mination of g.

In order to get an accurate comparison between estim ated depth from the water re­

flectance model and observed depth (ICESat measurements), a transect was drawn 

for each lake in the ASTER scene following the ICESat track across the supra-glacial 

lake and the surface reflectance values from Band 1 in ASTER (Rir) are taken as an 

input to the water-reflectance model described below (Figure 4.5). A depth profile 

of each lake was obtained and then compared with the ICESat depth profile.

Figure 4.5: Example of a supra-glacial lake used in the study. Pixels show reflectance 
values of Band 1 from an ASTER image (scene taken on 26/06/2006). A transect 
of the reflectance along the ICESat track (dark blue circles) is used as an input for 
Equation 4.5, to estimate lake depth. Co-ordinates in polar stereographio projection.

To appreciate the relationship tha t exists between water reflectance and water depth 

given in the water model used in this thesis (Equation 4.5), Figure 4.6 shows the
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surface reflectance values given by ASTER for the same transect as the one 011 Fig­

ures 4.4 and 4.5. From this transect, water depth will be derived using the water 

model explained above.
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Figure 4.6: Reflectance (Ru;) transect of a lake given by an ASTER scene for Band 
1. 2 and 3N; clearly showing the attenuation/wavelength relationship.

4.3.1 P a ram e te rs  d e te rm ina tio n

From Equation 4.5 it can be seen tha t four inputs are needed in order to solve it. 

The input surface reflectance R w is given by the sensor ASTER. The other three 

inputs are the physical parameters A d , g and R ^ .  If the optical properties of the 

water body (R 00 and g) are known, the increase in reflectance due to the presence 

of the bottom  can be interpreted in terms of depth only if the albedo is known. The 

parameters are obtained as follows;
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R eflectance at the water surface

The spectral Band 1 (520-600 nm) values of reflectance from the ASTER scenes is 

taken as the Rw. The reason for this is th a t there is strong absorption after wave­

lengths above 650 nm, which excludes the use of those bands for depth  derivation 

(Tedesco and Steiner, 2011). The spectral absorption coefficient a(A) is inversely 

proportional to the wavelength and directly proportional to k{A) (Equation 4.6), 

which is collectively called one of the optical constants of water, although it de­

pends strongly on wavelength;

a(A) =
47rA;(A)

A
(4.6)

The physical explanation of the absorption curve (Figure 4.7) is tha t, for pure wa­

ter a t blue wavelengths (450-520 nm), photons are not energetic enough to  excite 

electrons to higher levels of energy of the water molecule (Equation 4.7 shows the 

inverse relationship between the energy of a photon (q) and A), and the photons do 

not have the right energy to interact easily with the molecule as a whole. Hence 

the photons do not interact strongly with the water molecules, and a(A) is at its 

minimum value. As the wavelength increases from blue to red and beyond, the pho­

tons begin having just the right energy to excite first the fundamental vibrational 

and then the rotational modes of the water molecules, and absorption once again 

increases rapidly in the infrared. The pronounced peaks in a(A) in the infrared result 

from these resonant excitations of molecular motions. At very long wavelengths, the 

photons are not energetic enough to excite molecular motions, and the absorption 

decreases (Mobley, 1994) (see Figure 4.7).
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Where h =  6.626a:10 31 J s  is the P lank’s constant and c =  3x108m /s  is the speed 

of light (Mobley, 1994).

v is ib le  b a n d

s e a w a t e r

10'6 10"2 
wavelength X (m)

,-ior 14

Figure 4.7: Spectral absorption coefficient for pure water (solid line) and for pure 
sea water (dotted line) as a function of wavelength. The visible band is the one 
relevant for the purpose of the thesis (from (Mobley, 1994)).

Band 1 in ASTER is the lowest wavelength range available, which corresponds with 

green, therefore this spectral band was chosen for R w\ also previous studies used 

tha t band also so it was used also for comparison (for example Sneed and Hamilton 

(2007)).
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B ottom  albedo

To determine Ad the difference in attenuation between spectral bands was taken 

into account. Due to the low attenuation in the blue and green (Band 1 in ASTER) 

bands in comparison w ith the red band (Band 3), Ad from ASTER Band 1 can 

be considered to have similar values to pixels at the lake shore. ASTER Band 3 

was selected to locate adjacent pixels defining the lake edge, following Sneed and 

Hamilton (2007); where it was shown tha t, for a wavelength of 780 nm and water 

depth of 10 cm, the adjacent pixel of bare ice will show 40% lower reflectance than  a 

neighbouring pixel with water. Thus locating two adjacent pixels with a t least 40% 

difference in reflectance in Band 3, the reflectance value of the pixel at the shore of 

band 1 was then approximated as the bottom  albedo Ad. The equation would be as 

follows (Equation 4.8);

Ai(Ai) = Roo + [i^ (A i)' -  Roo] x exp( - g z )  (4.8)

W ith z =  10 cm; solving this equation was found how the approximation was valid 

because Ad{Ai,  z  = 10cm)  «  R w(Ai,  z  =  10cm)  with a difference of less than  0.01.

The choice of the bottom  albedo is the most im portant param eter in Equation 4.5, 

for instance a decrease of 1% in the bottom  albedo, results in a 16% decrease in 

the melt-lake volume (Sneed and Hamilton, 2007). The sensitivity of depth estim a­

tion with variations in. bottom  albedo is dem onstrated in the results and discussion 

chapters.
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Effective attenuation  coefficient.

The approach used to  determine g was based on Smith and Baker (1981), who 

compiled a table (see Table 4.1) with the diffuse attenuation and the absorption co­

efficients for spectral bands between 200 and 800 nm. In th a t study the attenuation 

coefficient for clearest natural waters was related to the inherent optical properties of 

pure water. Many of the current studies about models based on the radiative trans­

fer theory use the param eters derived in this study (for example Sneed and Hamilton 

(2007); Georgiou et a l (2009)). Optically pure water is defined as a medium tha t 

is free of dissolved and suspended particulate material. W ater reflectance models 

established an inequality (Equation 4.9) th a t relates the diffuse attenuation coeffi­

cient for the clearest natural freshwater ( K ^ )  with the absorption coefficient for 

pure water (aw) and the backscattering coefficient for molecular scattering in fresh­

water (bfJ ) .

A previous study (M aritorena et al., 1994) dem onstrated tha t to estim ate the a tten­

uation coefficient, a two-flow model can be applied, which consists of two streams 

of irradiance. For natural light fields, one of the streams defined as flowing down­

ward through the optical media and the other as flowing upward (Ackleson and 

Klemas, 1986). The two-flow model applied by M aritorena et'al. (1994) included 

the upwelling irradiance and the irradiance ratio (reflectance) between the bottom  

(with a given albedo) and the top layer. They validated the approximated solutions 

comparing with Monte Carlo simulations. In this model the effective attenuation 

coefficient is considered as a two-way attenuation coefficient g & Kd + (aD u) (Smith 

and Baker, 1981; Philpot, 1989; M aritorena et al., 1994; Stum pf et al., 2003; Sneed 

and Hamilton, 2007), where Kd is the diffuse attenuation coefficient for downwelling 

light, which corresponds with in Equation 4.9; a is the beam absorption coef­

ficient, and D u is the distribution factor for upwelling irradiance.
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Table 4.1: Absorption (aw(A)) and scattering (bfi?) coefficients for pure water applied 
for the estim ation of the effective attenuation coefficient g (Modified from Smith and 
Baker (1981)).

A(nm) aw(m -1) b £ (m  x)

500 0.0257 0.0022

510 0.0357 0.0020

520 0.0477 0.0019

530 0.0507 0.0017

540 0.0558 0.0016

550 0.0638 0.0015

560 0.0708 0.0014

570 0.0799 0.0013

580 0.108 0.0012

590 0.0157 0.0011

600 0.244 0.0011

610 0.289 0.0010

620 0.309 0.0009

630 0.319 0.0009

640 0.329 0.0008

650 0.349 0.0007

660 0.400 0.0007

670 0.430 0.0007

680 0.450 0.0006

690 0.500 0.0006
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K t  >aw + 1/2 bC (4.9)

Many observations exits for Kd bu t virtually none for D u\ the problem is th a t the 

vertical diffuse attenuation coefficient is not directly measurable and has specific val­

ues for each situation and geometry. Therefore a range of values 1.5Kd < g < SKd 

is usually taken, where the highest value is used in case of strongly absorbing waters 

(Philpot, 1989). This approximate solution assumes th a t all the attenuation coeffi­

cients can be replaced by a unique coefficient K .

In this thesis the expression approximated in Equation 4.10 was used, w ith K ^w 

estim ated from Equation 4.9. g is taken as the mean of all the effective attenuation 

coefficients derived from th a t equation when applied for the wavelength range of the 

correspondent band width, in this case for Band 1 ASTER 520-600 nm (see Table

4.1). This approximation is thought to cause an underestim ate of the actual attenua­

tion suffered by the albedo difference, (Ad-Roo) h1 Equation 4.4. This approximation 

will imply an overestimation of depths (M aritorena et a/., 1994). Nevertheless, the 

approximate formula (Equation 4.10) can be safely adopted in operations when in­

terpreting or predicting the reflectance of shallow waters, in particular if g and 

have been estimated from remotely sensed data.

g = K a  2 K lw (4.10)
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R eflectance of optically deep water

Roo was determined using a similar approach as in Georgiou et al. (2009) and Sneed 

and Hamilton (2007), who showed tha t by choosing ASTER images with ocean 

present, R ^  could be approximated to the darkest pixel in the ocean. In our case 

no ASTER scenes had ocean present; nevertheless MODIS scenes w ith ocean present 

corresponding to the same day and time to the ASTER scenes used in the study 

were available; the dark pixel approximation was therefore made for those scenes. 

Reflectance values of deep water were taken from MODIS band 4 (545-565 nm), since 

it is the equivalent band to the ASTER band 1. Before carrying out the approx­

imation, reflectance values from both sensors for the same target were compared, 

selecting an area of bare ice. Only images where those values were similar between 

sensors were selected, with less than  0.01 reflectance difference.

4.4 Water reflectance model validation

ICESat laser altim etry data  acquired from eleven empty lakes in spring/autum n in 

the south-west of Greenland (Figure 4.8) were used to assess the accuracy of lake 

depth estimates derived from ASTER imagery based on the water reflectance model. 

Availability of both ASTER images and ICESat tracks crossing the em pty lakes in 

the same year limited lake selection. Visible near infrared (VNIR) A STER spectral 

bands with 15 m spatial resolution were used. For ICESat altim etry data, Release 

31 from the product ICESat/Geoscience Laser Altimeter System (GLAS) (Zwally 

et al., 2002b) was used. ICESat da ta  provides elevation above sea level, with 60 

m average laser footprint (Zwally et a l , 2002b), and 172 m footprint separation 

(Pricker et al., 2005a).

To convert ICESat elevations to lake depth, the absolute elevation of the lake shore 

must be determined. To achieve this ASTER images of the lakes combined with
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Figure 4.8: Location map of the lakes used for the water reflectance model, image 
background is a 250 m resolution MODIS Band 1 scene. Right side of the Figure 
shows ten snap shots of the lakes used in this Chapter; the scenes correspond to 
ASTER Band 1 scenes, which are the ones used as an input to the water reflectance 
model.

ICESat footprints were used to locate the margin of each studied lake and set tha t 

as zero depth. There are three causes of uncertainty in this method:

1. ASTER and ICESat d a ta  are not recorded on the same dates.

2. The separation between footprints in ICESat tracks prevents a precise lake 

shore demarcation.
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3. ICESat vertical resolution decreases on slopes greater than 1°.

To account for these error bias in depth estimation, the vertical uncertainty in the 

ICESat elevation set as depth zero was selected to be ±  0.5 m, this was calculated 

looking the consecutive footprints and averaging the elevation difference for the 

available campaigns. Since the vertical resolution of ICESat laser is 0.15 m (Fricker 

et al., 2005b; Siegfried et a l , 2011), 0.65 m of to tal vertical uncertainty is given to 

ICESat depth measurements in this study.

4.5 Statistical analysis

Modelled melt-water lake depth is a function of the physical parameters described 

above (Ad, g and R qq), all of them  dependent on the wavelength (A) and each of 

them present a different source of errors. The overall uncertainty in the lake depth 

is crucial in order to understand how the param eters influence the final melt-lake 

depth estimates; moreover if the depth error is known, ICESat depth values can be 

compared with the model error range. For this purpose, a numerical differentiation 

could be used to perform a statistical analysis of the method; however the complex­

ity of the analysed function (Equation 4.5) led the study to search for an alternative 

approach. Monte Carlo simulations are convenient for this purpose, since they can 

be applied to equations with multiple degrees of freedom and with independent vari­

ables (Metropolis and Ulam, 1949). In this study the param eters can be considered 

to be independent because the model was applied for one band, so A is essentially 

constant. The Monte Carlo simulation used in this research was modified from an 

approach previously applied for Ground Penetrating Radar (GPR) analysis inter­

ested on precision of velocity (Booth et a l , 2011).
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4.5.1 M onte Carlo approach

The Monte Carlo Method is a statistical approach to solve any problem in statistical 

physics using random positions, called samples (Krauth, 2006). Monte Carlo simula­

tions provide a probability density function of an output variable, using as an input 

random perm utation of samples within an imposed range of values for each variable. 

The ranges chosen are based on the errors associated with the given value, which 

are discretised in the simulation. In order to honour the Gaussian sampling regime, 

the Monte Carlo simulation should generate more depth manifestations than the 

number of possible perm utations of the input variables, itself given by the product 

of the number of discrete samples in each variable range.

The Monte Carlo simulation was applied to Equation 4.5, although only Ad, g and 

Roo are taken as the three independent param eters th a t randomly varied within the 

error margin, respectively. Rw is the input value given by the ASTER sensor, as 

was considered fixed, so no Monte Carlo Simulation was applied to the pixel sur­

face reflectance. However, Ry, absolute error is still considered as established from 

AST07 product (Thome, 2001) (Table 4.2).

Table 4.2: Absolute errors of the four input variables to Equation 4.5. The three 
first columns correspond to the independent variables and the last one to the input 
varible.

SAd Sg (m x) SRoo SRW

±  0.07 ±  0.15 ±  0.005 ±  0.07

The absolute error of each param eter was taken as the error range (Table 4.2); g 

error was based on Smith and Baker (1981) results; for R ^  the absolute error was 

given by Vermote and Vermeulen (April 1999). Ad absolute accuracy was taken 

from Thome (2001). W hen error ranges for all the param eters were specified the 

simulation generated depths estim ates for each pixel along the transect defined.
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For each of the 4 input variables (R w, A d , g and Boo), the error range was discre- 

tised into 20 samples, which showed a good compromise between model accuracy 

and com putational effort. Consequently, a total of 201 =  1G0.000 variable permu­

tations were obtained, thus the Monte Carlo simulation generated 160,000 depth 

manifestations. The first approach taken was to assume a Gaussian distribution of 

random samples, which was imposed on the input parameters, making samples of 

each variable more likely to be located at the centre of the error range. In Chapter 

5 different model scenarios will be applied to analyse the performance of the water 

reflectance model when the initial settings are altered. Figure 4.9 shows the dis­

tribution of random samples if a Gaussian distribution is imposed and in the case 

of a Box distribution. In a Box distribution all the perm utations present the same 

probability.

x 1 0 4 x 1 0 4
8

Boxcar distribution 
G aussian  distribution

7
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Figure 4.9: Histograms of boxcar (red line) and Gaussian distributions (blue line). 
The y-axis corresponds to the frequency th a t each of the values of the sample is 
sampled, and the x-axis corresponds to the different parameters P (Af/, g and R qo) 
where the Monte Carlo approach is applied, with Prmn corresponding to zero value 
and Pmax corresponding to 1.

It is im portant to test after how many perm utations the Monte Carlo simulation 

converges, to test whether 160.000 perm utations are enough to make the simulation 

stable. Figure 4.10 presents the results from this test. The plot shows the residuals
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(Equation 4.11) for different numbers of perm utations, between 1 to around 106 in 

an increasing interval of 1. After 1,000 perm utations it can be stated that the Monte 

Carlo simulation is stable for both Gaussian and Box distribution settings. In the 

case of Box after 100 perm utations the model stabilises, whereas the Gaussian dis­

tribution needs more perm utations.
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Figure 4.10: Residuals from Equation 4.11.

4.5.2 O ptim isa tion  of th e  M onte  Carlo  sim ulations using 

IC E Sat elevation d a ta

Once depth and uncertainties were derived from the Monte Carlo simulation, the 

aim was to minimise the difference between ICESat measurements and ASTER de­

rived depths; for th a t purpose a minimisation model was applied. The input values 

were the ICESat values across each transect. Since the ICESat circular footprint is 

known to be around 60 m in diameter, thirteen pixels of ASTER were selected for 

each footprint of ICESat (see Figure 4.11). Taking the mean value of the thirteen 

surface reflectance pixels, we had as many ASTER points as ICESat were included 

for each lake.

•  Gaussian distribution of input paremeters
•  Box distribution of input parameters

The Monte Carlo Simulation was run again, fixing the mean surface reflectance 

from ASTER and leaving the other three variables to vary within the same range
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1 5  m

6 0  m

-  ICESat footprint 
“  ASTER pixel

Figure 4.11: Selection of thirteen ASTER pixels (blue) chosen to overlap with ICE­
Sat elevation values for one footprint (red).

described in the previous section and again a Gaussian distribution was imposed 

on the input samples. The model outputs the best lake profile given by all the 

perm utations of the input samples. The Monte Carlo simulation minimises the 

residuals between ICESat reference profiles (P j c E S a t ) and the modelled depths from 

the water reflectance model { P a s t e r )  (Equation 4.11). The best profile for each 

lake is given by:

B e s t p r o file  <=> ^  ((P a s t e r (0 -  P i c E S a t f ) =  M in im u m  (4.11)

Where P a s t e r (0 defines the output of the Monte Carlo simulation and PicESat the 

ICESat depth profile. From each of the eleven lakes the minimisation model gener­

ated a set of values for Ad and g that gives the ASTER profile with minimum 

difference with respect to ICESat profile. Taking the median value of each param eter 

for the eleven lakes, one global set of param eters was obtained. This param eters set 

was used to estim ate lake depth (Equation 4.5) again, this time with the optimised 

parameters as an input, so the water reflectance model results represent the best 

approximation to the observed depth profiles given by ICESat data.
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4.5.3 Influences of the M onte Carlo approach over the input 

parameters to  the model

A part from how the depth profiles vary with the minimisation model, it is interest­

ing also to show how the three input param eters (A^, g and Rqo) evolve w ith the 

model; Figure 4.12 shows the variation of the three param eters within the first ten 

best profiles of the minimisation; the model performance is discussed in Chapter 8 

(Figure 8.7). In Figure 4.12 the curves Lake 1 and Lake 2 correspond to two of 

the lakes used in this study and show how the minimisation model influences on 

each lake independently optimised. Curve All the lakes corresponds to the case of 

a global minimisation model applied to all the lakes a t the same time, as if all the 

lakes were one. Those graphs show how the param eters vary randomly for each 

perm utation, as expected from the Monte Carlo approach.
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Figure 4.12: Variation of the three input param eters for the best profiles of the 
minimisation model derived using the Monte Carlo approach. The plots are for two 
sample lakes used previously in the study (blue dash line and red solid line) and for 
all the lakes minimised together (green dash line).
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4.6 Application of the optim ised m odel to CASI 

dataset

The last experiment carried out in this thesis explored the potential of applying 

the water-reflectance model for the quantification of water-filled crevasses depths 

using CASI hyperspectral aircraft data. The area chosen for this study was Helheim 

glacier on south east Greenland, owing to the availability of CASI observations. 

Both Landsat 7 and CASI were used for this experiment, which is presented in 

Chapter 7. Landsat 7 was firstly used to estim ate lake depth from a lake found in 

Helheim, which also had field observations from Sneed and Hamilton (2011); there­

fore Landsat 7 modelled depths and the field observations were compared across two 

years and then with CASI The input da ta  used for the water reflectance model is 

the surface reflectance given by the atmospherically corrected Landsat 7 scenes.

The Landsat 7 scenes were atmospherically corrected using the 6S radiative trans­

fer approach, which was developed for the TERRA  MODIS instrum ent (Vermote 

et al., 1997). The version is a full version of the 6S used for MODIS because it in­

cludes the input da ta  NCEP (National Centres for Environmental Prediction) water 

vapour and TOMS (Total Ozone Mapping Spectrometer) ozone (Masek et al., 2012).

CASI hyperspectral dataset was chosen due to the high spatial resolution (less than 

10 by 10 m) and due to the availability of the images for Helheim glacier. The scenes 

used from CASI dataset are from summer 2007. No ICESat campaigns exist tha t 

overlap with the crevasses or lakes found on this glacier, therefore in situ bathym etry 

surveys from previous studies were used as reference true depth estimations (Sneed 

and Hamilton, 2011).

The pre-processing involved in the CASI images is detailed below; the result was 

atmospherically corrected surface reflectance with a pixel size of 10 m by 10 m.
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1. The first step was to atmospherically correct the CASI scenes. For this purpose 

the Atmospheric correction Module from ENVI software was used, which is 

the Fast Line-of-sight Atmospheric Analysis o f Spectral Hypercubes(FLAASH) 

(ENVI, 2009).

2. Once CASI scenes were atmospherically corrected, the geocorrection was ap­

plied using AZGCORR software (AZGCORR, 2005), which is an airborne 

remote sensing geocorrection package designed by Azimuth Systems and pro­

vided by Natural Environment Research Council Airborne Research and Sur­

vey Facility (NERC ARSF) (http://arsf.nerc.ac.uk/).

3. Before applying the geocorrection the output pixel size needed to be specified; 

the recommendations from NERC ARSF were followed (http://arsf-dan. 
nerc. ac. uk/trac/wiki/Processing/PixelSize#) and an autom atic pixel size 

calculator tool was applied, which depended on the altitude over the ground 

(http://arsf-dan.nerc.ac.uk/trac/wiki/Processing/PixelSize).

4. After applying the geocorrection, azexhdf tool (AZGCORR, 2005) was used to 

visualise the geocorrected CASI scenes. This tool was also provided by NERC 

ARSF.

The geocorrection applied to CASI scenes was not completely successful because in 

the output scenes the reference coordinate. The AZGCORR package was a novel 

tool for the research group where this thesis was developed, as well as the used of 

CASI hyperspectral aircraft dataset. Therefore it was not possible to completely 

solve the issues associated with the geocorrection, which were related to  the refer­

ence coordinate system information contained in each scene th a t was lost after the 

geocorrection or the atmospheric correction. Nevertheless, for the purpose of this 

thesis, the geocorrected scenes were still useful. W hen comparing CASI, Landsat 

7 and in situ depth measurements from Sneed and Hamilton (2011) from a lake 

located in Helheim glacier, the interest was focus on the depth profiles derived from
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each sensor so even if the coordinates from CASI were missing, a complete lake pixel 

area comparison was possible. Also for interannual comparisons, lakes form in the 

same topographic depressions (Echelmeyer et al., 1991) from one year to the next 

because they are influence by the bed topography and hence do not advert down 

glacier; therefore CASI scenes were still use for interannual comparisons, although 

only one year’s campaign was available. The lack of coordinate system would be an 

issue for a direct comparison of pixel to  pixel or for monitoring crevasse evolution 

within days, since crevasses move w ith the glacier flow.

4.7 Chapter summary

The theoretical background to the water reflectance model is included in this chapter. 

Prom the previously developed water reflectance model, a Monte Carlo simulation 

was applied to obtain a robust statistical analysis of the model and of all the three 

physical param eters involved in it. The objective of this analysis was to obtain a set 

of physical param eters th a t could be applied to each of the supra-glacial lakes on 

the surface of the GrIS, hence up-scaling the model and obtaining a quantification 

of the volume of water stored in them  and the errors associated with the volumes. 

This is im portant to understand the quantification of potentially draining water to 

the glacier bed and its possible implications on glacial dynamics.

The study was only carried out for eleven lakes located in south west Greenland. 

This lim itation was due to sparse d a ta  availability of both ICESat and ASTER, 

which needed to be from the same year. D ata from ICESat was required from when 

lakes were empty which was possible since ICESat campaigns were in Spring and 

Autumn. For the case of ASTER, the scenes were usually between July and August, 

when lakes were water-filled.
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In the last section of this chapter CASI hyperspectral imagery was introduced as a 

tool for quantifying water stored on crevasses. The reason for this is the small pixel 

sizes, (less than 10 m), which allow the detection of small and narrow crevasses. To 

achieve this the water reflectance model optimised previously was applied to this 

dataset. Helheim glacier was selected for this. There was not ICESat available to 

validate the results from this dataset, hence previous studies that carried out in 

situ measurements over these glaciers were used as a validation of the water-filled 

crevasses/lakes depth derived in this thesis.
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Lake depths from the water 

reflectance m odel

5.1 Introduction

The chapter presents both  the water reflectance model, the process of sensitivity 

testing and refining of the water reflectance model and the results obtained from 

each step. All the results in this chapter are for the eleven lakes selected across 

south west Greenland (see map in Figure 4.8, Chapter 4).

Firstly, water-depth was derived from the water-reflectance at the surface from 

ASTER using param eters values based on previous studies (Sneed and Hamilton, 

2011, 2007; Sundal et a/., 2009; Tedesco and Steiner, 2011; Smith and Baker, 1981) 

(Section 5.2.1). These depth estim ates are referred to Z a s t e r  (Figures 5.2, 5.3 and 

5.4). As explained in the methodology chapter (Chapter 4) a Monte Carlo simula­

tion was applied to Equation 4.5 (Chapter 4) in order to calculate the uncertainties 

in  Z a s t e r -

Secondly, ICESat derived depths (ZjcESat) are used as reference depths in a min­
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imisation model, where the param eters used for Z a s t e r  are the input to the model. 

Varying these parameters within their error range, the model gives the best set of 

values so th a t the residuals between the observed depths (ZjcESat) and the modelled 

depths (Z a s t e r ) are minimised (Section 5.2.2). For this minimisation model the 

Monte Carlo approach is applied again. The depths derived using the minimisation 

model are called Z b e s t -

The set of parameters used for Z b e s t  (Af> 9 and Rqo) are those th a t provided the 

best ASTER profile for each lake, i.e. the set giving the minimum residual between 

ICESat depth values and ASTER values. Prom this set of ideal param eters for each 

lake, a global set of parameters th a t could be used in any lake, was obtained by 

taking the median of the eleven values for each parameter. The water reflectance 

model was re-run for the eleven lakes and the results depths are referred to  as “op­

timised model estim ates” (Zoptimised) (Section 5.2.3).

In order to further understand the sensitivities of the water reflectance model and 

why the model tends to underestim ate water depth with respect to reference depth 

Z jc E S a t : especially in the deeper parts of the lakes, some variations of the model 

are applied (Section 5.3), referred to as model scenarios (Figure 5.6). First, the 

model is applied using the param eters and their respective uncertainties (absolute 

errors) derived from the sensor manufactures or the literature (Smith and Baker, 

1981; Sneed and Hamilton, 2007).

To test if the cause of depth underestim ation was the restriction of param eters 

to certain pre-chosen values, the next step was to run the model again allowing 

the parameters to vary within their physically possible values, although the values 

were varied so the depth equation gave real numbers. This change did improve the 

modelled depths with respect to the observed depths (Section 5.3.1), reducing the 

residuals between the model and the observed depths (ZicESat)•
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As explained in C hapter 3, the Monte Carlo simulation was assumed to have a 

Gaussian distribution, which means th a t the distribution of the input parameters 

with their error range has a Gaussian shape. This is an assumption based on the 

knowledge of the param eters from previous literature. To prove if this assumption 

is accurate, the model is run again, but this time assuming tha t the Monte Carlo 

simulation was a box distribution, which means th a t all the possible values th a t the 

input parameters can take have the same weight of probability (Section 5.3.2).

A very im portant choice for the optim isation model is whether the minimisation 

approach is applied independently to  each lake and then taking the median of the 

set of param eters obtained, or if the minimisation model should be applied at the 

same time to all lakes, since the last aim of this thesis is to obtain a global model. 

Therefore, results of the model using both  assumptions were obtained (Section 5.3.3).
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5.2 Initial model results

The development of the optimisation model was based initially on the scenario where 

the param eter’s error range was taken as their absolute error; the probability distri­

bution of the param eters was assumed Gaussian, and the minimisation model was 

applied independently to each of the eleven lakes.

5.2.1 Depths estim ates based on previous literature

In this section, depth estimates for the eleven lakes from applying the water re­

flectance model to ASTER imagery are presented. The ASTER reflectance values 

(Rw) are from Band 1 and the input param eters to equation (Equation 4.5 in Chap­

ter 4), were obtained as explained in the C hapter 4. Table 5.1 shows the values taken 

for each of the lakes as an input to the equation, applying the m ethod showed in 

Figure 5.1. It is worth pointing out th a t while eleven lakes are referred to through­

out this thesis, in fact then were measured but one (Lake ID 5) has two different 

ICESat measurements for the same year, so the estimates for tha t lake were taken 

twice and counted as two lakes called 5a and 55.

The results are presented in Figures 5.2, 5.3 and 5.4; this figure shows the median 

of the depth values obtained from the Monte Carlo simulation. A transect across 

each lake coinciding with the ICESat track was traced and the results (Z a s t e r ) are 

plotted with a blue line. The range and interquartile range (IQR) are also plot­

ted. The mean and the standard deviation were calculated, but for the results and 

discussion the median is chosen because the distribution is non-normally distributed.

Comparing the results obtained from ASTER observations with the ICESat depths 

(Figures 5.2, 5.3 and 5.4 blue lines), overall ICESat measurements tended to give

85



Chapter 5. Lake depths from  the water reflectance model

Table 5.1: List of the input param eters for the water reflectance model and their 
absolute error for each the lakes used in this first experiment described in Figure 5.1. 
Note th a t 5a/5b have the same values, this is because the same ASTER scene was 
used for both, varying only the ICESat reference track and hence reference depth 
values.

Lake ID

c-oo-H g ±  0.15 (m tfoo ±  0.005

1 0.697 0.196 0.011

2 0.835 0.196 0.010

3 0.770 0.196 0.015

4 0.757 0.196 0.012

5a/5b 0.873 0.196 0.011

6 0.855 0.196 0.011

7 0.677 0.196 0.012

8 0.757 0.196 0.013

9 0.992 0.196 0.010

10 0.887 0.196 0.010

deeper lakes than ASTER-derived depths. This discrepancy was not always the case 

in the shallow parts of the lake, where the sparse ICESat footprints do not resolve 

whether there is a stepped or smooth slope, whereas ASTER-derived depths give 

more detailed lake topography. Nevertheless, ICESat measures are within the lower 

range of the estim ated values from the Monte Carlo simulation. The sum of the 

residuals between Z i c E S a t  and Z a s t e r  taking the absolute value is 37.86 m, with a 

total of 44 footprints for all the lakes together.
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Chapter 5. Lake depths from  the water reflectance model

Figure 5.2: Lake depth (m) vs distance along profile (in) for the eleven studied lakes. 
Red dots are Z icESat measurements for each footprint; vertical and horizontal red 
lines are the respective uncertainties. Blue lines are Z a s t e r  derived from equation
4.5 (Chapter 4) and the input param eters on Table 5.1: the grey area and the blue 
dash lines are the range and IQR derived from the Monte Carlo simulation. Black 
dots are ZBest profiles for each lake considering minimum difference between Z jcESat 
and Z a s t e r , based on a Monte Carlo perm utation of the parameters (T?^, A d, g ). 
Green lines are Zoptimised profiles derived from equation 4.5 using as an input the 
set of optimised parameters (Table 5.3); green dash lines are the error range derived 
from the Monte Carlo simulation for the new set of param eters (NE to SW distance 
along profile (in)). Figure continues in Figures 5.3 and 5.4.
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Chapter 5. Lake depths from  the water reflectance model

Figure 5.3: Lake depth ( 111) vs distance along profile ( 111) for the eleven studied lakes. 
Red dots are ZjcESat measurements for each footprint; vertical and horizontal red 
lines are the respective uncertainties. Blue lines are Z a s t e r  derived from equation
4.5 (Chapter 4) and the input param eters on Table 5.1: the grey area and the blue 
dash lines are the range and IQR derived from the Monte Carlo simulation. Black 
dots are Z Bes1 profiles for each lake considering minimum difference between ZjcESat 
and Z a s t e r , based on a Monte Carlo perm utation of the param eters (i?oo, A f?  g ) .  

Green lines are Zoptimised profiles derived from equation 4.5 using as an input the 
set of optimised parameters (Table 5.3); green dash lines are the error range derived 
from the Monte Carlo simulation for the new set of param eters (NE to SW distance 
along profile (m)). Continued Figure 5.2.
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Chapter 5. Lake depths from  the water reflectance model

Figure 5.4: Lake depth ( 111) vs distance along profile ( 111) for the eleven studied lakes. 
Red dots are Zjcesw  measurements for each footprint; vertical and horizontal red 
lines are the respective uncertainties. Blue lines are Z a s t e r  derived from equation
4.5 (Chapter 4) and the input param eters on Table 5.1; the grey area and the blue 
dash lines are the range and IQR derived from the Monte Carlo simulation. Black 
dots are Zsest profiles for each lake considering minimum difference between ZjcESat 
and Z a s t e r > based on a Monte Carlo perm utation of the param eters ( R o c - ,  Ad , g ) .  

Green lines are Zoptimised profiles derived from equation 4.5 using as an input the 
set of optimised param eters (Table 5.3); green dash lines are the error range derived 
from the Monte Carlo simulation for the new set of parameters (NE to SW distance 
along profile (m)). Continued Figure 5.2.
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Chapter 5. Lake depths from  the water reflectance model

Even though Z a s t e r  depths for the eleven lakes are derived based on Sneed and 

Hamilton (2007), the param eters used as an input differ from the ones used by the 

same authors in a more recent article (Sneed and Hamilton, 2011), where using the 

same model they derived the following param eters values: Ad =  0.564; g = 0.118 

m -1 ; Rqq = 0.038. The median of the param eters in Table 5.1 differ around 42%, 

66% and -71% respectively. This difference will be analysed in detail in the discus­

sion (Chapter 8).

5.2.2 M inimisation m odel of ASTER  depths based on ICE- 

Sat reference depths

The second step of the optimisation process was to test if it was possible to tune 

the param eters so the modelled depths got closer to the observed values (ZjcESat)• 

For tha t purpose a minimisation model based on the Monte Carlo simulation was 

applied (Chapter 4). From the minimisation model, the combination of the three 

parameters (R ^ , Ad and g) within their uncertainties was chosen th a t gave the min­

imum difference between ICESat and the eleven best lake profiles. The best profiles 

for each lake (Zsest) are shown in Figures 5.2, 5.3 and 5.4. The list of the best 

set of parameters for each lake is shown in Table 5.2. For a statistical comparison 

between these param eters and the ones from the original model see Figure 5.7. The 

median of the best param eters in Table 5.2 are used as the input param eters for the 

optimisation model (Section 5.2.3).

After applying the independent minimisation model the difference between mod­

elled depth and observed depth decreases. Figure 5.5 compares the residuals for 

the original model and for the minimisation model, showing a clear reduction in 

residuals, with around 30% of the da ta  points falling around the zero residual value 

for the minimisation model, whereas the original model shows 25%. Comparing the 

distribution shape of the residuals, the residuals for Zeest seemed almost normally
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Table 5.2: List of the param eters derived from the independent minimisation model.

Lake ID Ad 9 (m_1) Roo

1 0.738 0.167 0.015

2 0.893 0.175 0.007

3 0.732 0.167 0.019

4 0.731 0.167 0.017

5a 0.934 0.213 0.014

5b 0.861 0.225 0.007

6 0.831 0.181 0.006

7 0.724 0.170 0.015

8 0.810 0.223 0.011

9 0.936 0.225 0.006

10 0.949 0.178 0.012

distributed, with the centre in zero and ranging from [-2,+2]. For the original case 

the histogram is skewed to positive residuals, following the previous finding th a t the 

observed depths tend to be deeper than  the model. In the case of the best profile the 

distribution is more symmetrical and the maximum residual is below 2 m, whereas 

the original model reaches 3.5 m. The sum of the residuals between ZjcESat and 

Z B e s t  taking the absolute value is 24.93 m, which is around 34% of the residuals 

obtained with the original set of param eters (Table 5.1).

5.2.3 Optimisation m odel A STER  depths using the set of 

parameters derived from the minim isation m odel

In this subsection the results of the final step of the modelling process are shown. 

Taking the median of the eleven set of param eters obtained from the minimisation
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Residuals original 

Residuals best profile

- 2 - 1 0 1 2 3 4  

Residuals ZICESai- Zmodelled (m)

Figure 5.5: Histogram comparing the residuals derived from the independent min­
imisation model (Z f c E S a t~Z B e s t) i unfilled red bars, with the residuals derived from 
the application of the water-reflectance model for the original parameters values 
( Z i C E S a t - Z a s t e r ) , blue bars.

model (Table 5.2), a unique set of param eters was obtained (Table 5.3). W ith that 

set of parameters the water-reflectance model is run again for each lake, in this case 

the absolute error in the parameters is the uncertainty of the median value used 

(IQR), not the satellite errors. The results are shown in Figures 5.2, 5.3 and 5.4 as

Z O ptim ised•

The optimised results still do not meet ICESat depth measurements. Nevertheless 

the model did improve upon the initial depth values. The total absolute difference 

between the ICESat profiles and the optimised profiles is 29.53 m, which is 22% bet­

ter than the difference between ICESat and ASTER differences from. Comparing 

Zoptimised with Z Best the latter is better, however what is needed is an improvement 

over Z a s t e r , therefore some compromise over Z s est should be acceptable to get the 

the global model.
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5.2.4 Summary of the results for the optim isation model

The overall results of the minimisation model are shown in Figures 5.2, 5.3 and 5.4 

where the observed depths (ZjcESat) are compared with the profiles of the eleven 

lakes plotted for the three stages of the model; the original model (Z a s t e r ) ,  min­

imisation model (Zsest) and optimisation model {Zoptimised) • The optimised model 

is not always an improvement on Zsest» which is explained by the used of a global 

set of parameters.

5.3 M odel variations

Some variations were applied to the optim isation model in order gain a  deeper un­

derstanding of the Monte Carlo simulation and the water-reflectance model behave. 

The following subsections describe the different model scenarios applied in this chap­

ter, the results obtained from, each model variation, and the process of selection of 

a final model to take forward to later sections of this thesis. Figure 5.6 summarises 

all the different scenarios introduced in this section.

5.3.1 M onte Carlo sim ulation varying the range of values of 

the input parameters

The first model variation was related to the uncertainties in the input param eters. In 

the previous Section (Section 4.2) where the optim isation model results were shown, 

the parameters were taken from Table 5.1. To allow the Monte Carlo Simulation to 

run, the range where each param eter was allowed to vary needed to be defined. In 

this first case, it was assumed tha t th a t range corresponded to the absolute error of 

each parameters, taken from satellite specifications or to previous studies (Scenario 

A, Section 5.2).
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Monte Carlo simulation allows bottom albedo, reflectance of optically 
deep  water and attenuation coefficient to vary within the error

i

ASTER

___________  i_
Residual betw een Z ^ r and Z,CESat are minimised using minimisation model

i
■ B̂EST 

1
t t

Scenario A: Parameters vary Scenario B: Param eters vary
within error within physically possib le range

Pixels analysed Pixels analysed :
i i Errors parameters Errors param eters

grouped by lake a s  a global set
1 i

G aussian distribution Box distribution

-------------------------------- ---------- 1..................... ...... ........
> r

4 scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Global/Box Global/Gaussian Independent/Box Independent/G aussian

A global m odel w as ch osen  to obtain 
I If an independent model w as ch osen  the median j 
I of each  parameter for all lakes would be taken I 

to give a global parameter for upscaling

Figure 5.6: Summary of all the steps involved in the different scenarios applied in 
this section (Section 5.3). Note th a t Z a s t e r  corresponds with the same model stage 
as in Figure 5.1.
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g (attenuation coefficient) R. (reflectance of deep water) A (bed albedo)
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Figure 5.7: Box plots showing the difference in the parameters values for three 
different scenarios. The central mark is the median, the edges of the box are the 
25th and 75th percentiles, the whiskers extend to the most extreme data  points not 
considered outliers, and outliers are plotted individually, (a) corresponds to the 
param eters values given by the literature, i.e. the so called original model; (b) 
param eters derived from the minimisation model for the eleven lakes using Scenario 
A; (c) param eters derived from the minimisation model for the eleven lakes using 
Scenario B.

The next step was to broaden the range by allowing each of the three param eters to 

vary within their physically viable limits. This experiment was done to see whether 

the minimisation model could be improved with this new scenario (Scenario B). Fig­

ure 5.7 shows how the param eters are distributed and compared with the original 

parameters. A& was the param eter th a t varied least, while the reflectance of deep 

water is the param eter varied the most, meaning that the model is highly sensitive 

to the bed albedo, as shown in previous studies (Sneed and Hamilton, 2007; Geor- 

giou et a/., 2009).
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Figure 5.8: Comparison of Z jcesw  with depths derived from ASTER imagery after 
applying the minimisation model between Z a s t e r  and ZjcESat for each lake {Zfjest)- 
Red dots correspond to Z^est using Scenario A as an input to the minimisation 
model. Blue dots correspond with Zsest using Scenario B. Both linear fits (blue and 
red lines) come from a Robust least squares method, where the extreme values are 
consider anomalous.
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The best profiles derived from the minimisation model applied for each of the lakes 

for both  scenarios A and B are compared in Figure 5.8. These results show th a t by 

using scenario B as an input to the minimisation model the best profiles are closer to 

the observed profiles. The linear fit for scenario B gives R 2 = 0.88, whereas scenario 

A gives a linear fit of R 2 =  0.75.

A significant observation is tha t previously modelled depths tended to underesti­

m ate lake depth, especially in the deeper parts of a lake. Even though scenario 

B still does not reach the values of deep ICESat footprints, it does gets closer to 

them. For example, for the deepest footprint out of the 44 used in this study, where 

ICESat depth is almost 8 m, modelled depth using Scenario B is around 7 m, more 

than 1 m deeper tha t the depth value obtained from the scenario A. For this reason 

in the next analysis where four further scenarios are tested (scenario 1, 2, 3 and 4), 

the error range for the param eters is assumed to be th a t corresponding to scenario B.

5.3.2 M onte Carlo simulation varying the probability dis­

tribution of the parameters

The probability distribution tha t the three input param eters present for the Monte 

Carlo simulation was firstly assumed to be Gaussian. Then the model was run again 

but this time assuming tha t the input distribution of the param eters was a Box dis­

tribution.

The results derived from a Box distribution and from a Gaussian are very similar, 

as shown in Figure 5.9.
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•  Residuals optimised

•  Residuals best profile
—  Linear fit R2 = 0.97
— Linear fit: R2 = 1
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Figure 5.9: Comparison of Residuals derived from the minimisation model (Red 
dots) and the optimisation model (blue dots), varying the probability distribution 
of the input parameters; Gaussian (scenario 3) or Box (scenario 4). A simple linear 
fit is applied for both curves.

5.3.3 O ptim ised dep ths  from a global and  an independen t 

m inim isation model

In Section 5.2 the optimisation model was applied assuming tha t the minimisation 

approach was applied independently to each lake and the param eters averaged over 

the eleven lakes. This is referred to here as the independent model. An alternative 

model was also tested, and referred subsequently as the global model, which con­

sisted in applying the minimisation model at the same time for all the lakes, which 

meant running the model for the 44 footprints at the same time, ignoring that they 

were from different lakes (Scenarios 1 and 2). This produced the optimised depths 

with no intermediate steps along with the set of param eters that provided the min­

imum residuals. The summary of these results are shown in Section 5.3.4.
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A quick way of comparing results between the global/independent models with the 

original model is to look at the residuals th a t each generated. Figure 5.10 shows how 

for both scenarios global/independent, the residuals between the reference profiles 

(ICESat) and the modelled reduce in comparison with the original model, especially 

for the biggest residuals where they were reduced around 1 m for some of the foot­

prints. The sum of the residuals for the global model is 27.78 m, whereas for the 

independent model is 29.53 m.
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Figure 5.10: Comparison of Residuals derived from optimisation model (ZicESar 
Zoptimised) for two different scenarios (scenarios 2 and 3) with the residuals obtained 
with the original model (Z i c E S a t ~ Z a s t e r ) -  Blue dots correspond with the optimised 
model derived from scenario 2; green dots correspond with the optimised model 
derived from scenario 3. A simple linear fit is applied for both scatter plots.
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5.3.4 R esults summary from the different m odel scenarios

This section groups the results of the model for the 4 different scenarios tha t were 

considered in order to improve the optimisation model (Figure 5.6). Figure 5.11 

summarises the optim isation models for each of the scenarios. Assuming a Gaussian 

or a Box distribution gives similar results when a global model is applied. Those 

results are also similar to the optimisation model assuming a Gaussian distribution 

but applying an independent model. The scenario th a t gives higher residuals is for 

a Gaussian distribution with an independent model (highest SSE).

The linear fits are done using a Robust linear squares fitting tool. They are plotted 

as an indication of how the points as a whole differ from the theoretical fit line when 

(xi = yi). They show th a t for deep parts of the lakes (deeper than  3 m) the modelled 

depths are shallower than the observed depths in all cases. For the shallowest parts 

the points tend to do the opposite, giving deeper values for the modelled, although 

the high concentration of scatter points around the 2 m depth make this less clear.
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Figure 5.11: Comparison of depth values from ICESat footprints w ith depths derived 
from ASTER imagery after applying the optimisation model to different scenarios.
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An exam ination of the residuals from each of the model scenarios was done (Figure 

5.12), showing 110 clear scenario th a t produces smaller residuals. I11 addition, for 

all scenarios except number 3, the distribution of the residuals tends to be negative 

skewed, showing once more tha t the observed values are usually deeper than the 

modelled.

Scenario 1 optimised 
Scenario 2 optimised

Scenario 3 best 
Scenario 3 optimised

Scenario 4 best 
Scenario 4 optimised

Residuals (ZICESat - Zmodelled) (m)

Figure 5.12: Histograms plot showing the different residual distribution for different 
model scenarios. Blue bars correspond with residuals derived from the minimisation 
model (ZiCESat ~ Zsest)- B('d unfilled bars correspond with Residuals derived from 
the optim isation model (ZjcESat - Zoptimised) • It is worth noting tha t in plot (a) both 
blue and red bars correspond with optimised residuals, this is because the 'Optimised 
profiles (scenario 1) =  Best profiles (scenario 1)' and the same applies for scenario 
2. (a) Compares residuals from the optimised models for the cases of scenario 1 
and scenario 2; (b) compares the residuals obtained from the minimisation model 
using scenario 3 with the residuals obtained from the optimisation model derived 
from the same scenario; (c) compares the residuals obtained from the minimisation 
model using scenario 4 with the residuals obtained from the optimisation model 
derived from the same scenario.
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In Figure -5.12 the residual histograms for the best profiles of each scenario are also 

plotted, for comparison with the optimised. There are some variations in distribu­

tion. but in general the best profiles give better results than the optimised one. In 

the case of the Zsest profiles, the sum of the absolute of the residuals for scenarios 1 

and 2 (global model) are around 28 m; and for 3 and 4 (independent model) around 

20 in. For the optimised profiles, scenarios 1 and 2 are the same as the best profiles, 

and for the 3 and 4 the sum is around 29 m. It seems th a t for the global model 

the sum of the residuals is around 1 111 smaller than for the independent model. Re­

member tha t for the original model (Section 4.2.1) the sum of residuals was around 

38 in. so even for the worst scenario, the improvement is greater than 25%.
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Figure 5.13: Scatter plot of the residuals obtained from the optimisation model for 
the 4 Scenarios as a function of the observed depth given by ZjcESat• The X axis is 
in log scale.

The previous histograms show the range of distribution of the residuals but they do 

not show how these residuals are distributed with depth, i.e. it is interesting to see 

whether there is a correlation between the residual value and sign with the observed
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depth. This information is plotted in Figure 5.13 for the four studied scenarios; 

this graph shows th a t for the deeper parts of the lake > 4 m, there is a positive 

correlation between the residuals and the observed depth. However, since only seven 

points represent this part, a conclusion is difficult to reach. For the shallower parts 

of the lakes the residuals tend to be concentrated in the zone of ±  1 m of residual. 

And for depths below 1 m, the correlation is negative.

The last part of this analysis shows the different set of param eters obtained for the 

different scenarios (Table 5.3). There are not major differences between the pa­

rameters obtained after the minimisation model for the four scenarios. The biggest 

variation occurs for the reflectance of deep water, was shown earlier to have the 

least influence on the water-reflectance model of the three parameters. Only for 

scenarios A and B are the difference bigger, where the error range of the input pa­

rameters was varied. For the other four scenarios the error range is fixed to the 

physically plausible limits for all cases. So in these scenarios the factors influencing 

the model are mainly the G aussian/Box distribution of the input param eters and 

the global/independent minimisation methods.

Table 5.3: Table showing the value of the optimised param eters for all the different 
scenarios consider in this study.

Scenario description g (m *) R oo

Parameters from Scenario A 0.831 ±  0.095 0.178 ±  0.027 0.012 ±  0.005

Parameters from Scenario B 0.909 ±  0.096 0.213 ±  0.017 0.011 ±  O.04O

Parameters from Scenario 1 0.864 ±  0.032 0.222 ±  0.011 0.099 ±  0.002

Parameters from Scenario 2 0.864 ± 0.038 0.219 ±  0.012 0.091 ± 0.003

Parameters from Scenario 3 0.864 ±  0.079 0.216 ±  0.018 0.016 ±  0.039

Parameters from Scenario 4 0.864 ±  0.096 0.219 ±  0.019 0.001 ±  0.045

104



Chapter 5. Lake depths from  the water reflectance model

5.4 Chapter Summary

This chapter introduces the results derived from the model developed to improve the 

water-reflectance model. The model uses a Monte Carlo simulation to minimised 

the residuals between the reference depths Z icesw  and modelled depth based on 

ASTER imagery. To achieve this, the model finds the best set of the input parame­

ters th a t give minimum residual error, varying the parameters within an established 

range. Section 5.2. shows the different steps carried out to achieve the optimised 

model. The optimised model provides an improvement with respect the original 

model, which was based on previous literature (Sneed and Hamilton, 2007). Despite 

the improvement, the difference between the expected depths and the modelled 

depths is significant, specially in the deepest parts of the lakes, where there is a 

systematic underestim ation of depth from the model.

The discrepancies between the model and the observations could be due to many 

factors. In next section of this chapter (Section 5.3) different model scenarios were 

tested to better understand what are the main influences on the model. The first 

variation introduced was in the range distribution of the input parameters to the 

model; in Section 5.2 it was assumed initially th a t the range was the published error 

range of each param eter, either from the correspondent satellite specifications or 

from previous established tables (scenario A). The input param eters were allowed 

to vary within their physically viable limits, while excluding the combinations tha t 

did not produce physically real values for the water reflectance model. This scenario 

was called scenario B. The minimisation model gave better results when scenario B 

was applied, presumably because any possible restrictions tha t the previous Scenario 

could have were removed. Therefore for the next four scenarios, where other factors 

were altered, it was assumed th a t the input param eters varied following scenario B.

The following scenarios were combinations of changes in the probability distribution 

of the input param eters (Gaussian or Box distributions) with changes in the minimi­
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sation m ethod (global or independent minimisation). For the minimisation model, 

a Box distribution w ith an independent model provided profiles (Zsest) closest to 

the observed values. This is probably because, in case the mean values of the input 

param eters chosen in the Gaussian distribution are not appropriate, the Box distri­

bution still gives equal weight to all the values. In addition, with an independent 

minimisation model, the best profiles are for each lake so there is no influence from 

others. However, when applying the optimisation model to all four scenarios the 

differences between the four decreased. This is due to the fact tha t the param eters 

values do not vary much (Table 5.3), especially the bed albedo, which is the one the 

water-reflectance model is most sensitive to.

This chapter has dem onstrated tha t the Monte Carlo Simulation provides a new 

m ethod of accurately calculating an optimised depth based on the water reflectance 

model and using ICESat depth estimates as reference depths. Even though the mod­

elled depths tend to underestim ate lake depths, particularly for the deep parts of 

the lakes, the observed depths fall within the uncertainties of the modelled values. 

This means th a t taking into account the Monte Carlo-derived uncertainties, it is 

possible to model depths a t a regional scale using the optimised model described in 

this chapter.

The different scenarios give an insight into the model behaviour. From these results 

a Box distribution of the param eters applied to a global model was chosen. The last 

objective was to obtain an optimised set of param eters tha t could be applied a t a 

regional or ice-sheet scale across the surface of the GrIS; for th a t a global minimi­

sation model appear to be most realistic. In the next chapter these results will be 

applied to  derived water volume in a regional scale (south west Greenland) and from 

them  an area-volume relationship will be investigated. Also the reflectance bands 

will be taken into account to see how the model performs at different wavelengths 

(Chapter 6). Following th a t chapter, another chapter will be introduced with an 

application of the model developed here to a higher resolution sensor (CASI) with
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the objective of deriving water-filled crevasse depth (Chapter 7).
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Chapter 6

Lake volum e estim ates

6.1 Introduction

This chapter will expand the results based on the optimisation model derived in the 

previous chapter (C hapter 5), showing the next obvious step after lake depth esti­

mation, i.e., estim ation of lake volume. The quantification of the volume of water 

stored in supra-glacial lakes is im portant in terms of basal pressure at the base of 

the lake, potential drainage events and overflow (Box and Ski, 2007; Russell, et al, 

2011; Das et al., 2008). For example, van der Veen (2007) stated tha t large volumes 

of water were necessary to propagate crevasses to the glacier bed via hydrofractures. 

Therefore lake volume knowledge is key to understand the processes tha t drive these 

events.

Firstly, volume estim ates derived from the water-reflectance model are presented 

(Section 6.2). In order to be able to analyse how realistic these results are and 

considering ICESat lim itations for this purpose, volume estimates based on the ref­

erence ICESat d a ta  using three different approaches, which will at least give the 

order of m agnitude of the water stored and the uncertainty. After this comparison, 

the water-reflectance model was up-scaled, although it was only applied to lakes in
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the south west of Greenland due to data  limitations. The reason for this choice is, 

as discussed in depth later on in this chapter, lakes elsewhere could present different 

water characteristics. Prom the volume results the area oc volume relationship will 

be investigated to test whether it will be possible to estim ate the volume w ithout 

knowing lake depth, which would imply th a t in situ measurement would not be 

required, with lake area derived from satellites being sufficient (Selmes et al., 2011; 

Liang et al., 2012).

Secondly, analysis of MODIS scenes as an input to the water-reflectance model is 

presented (Section 6.3). Since the temporal coverage of MODIS imagery is higher 

than ASTER, further analysis from the optimisation model needs to be carried out; 

fox example annual variation of lake area (Selmes et al., 2011), depth and hence 

volume. MODIS d a ta  cannot resolve the depth at the lake margins owing to the 

coarse resolutions of pixels (250 by 250 m). Nevertheless MODIS could be useful to 

compare depths on the centre of the lakes, where no mixed-pixels occur.

Thirdly, depth estim ates derived from the three visible near-infrared ASTER bands 

(Band 1, Band 2 and Band 3N) are introduced (Section 6.4). This was done as a 

prove of concept, since in the methods chapter it was already explained why Band 

1 is more suitable than  bands with wavelengths 650 nm (Chapter 4). This was 

because a t those higher wavelengths there is strong absorption by water (Tedesco 

and Steiner, 2011).

Finally, fourteen empty lakes were found in some of the ASTER scenes (Section 6.5)). 

This will be used to estim ate the reflectance of the bottom  of lakes and used this 

as a comparison with the previously estim ated bed albedo for the model (Chapter 5).
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6.2 Lake volum e estim ates

In order to estim ate the volume of water stored on the lakes previously used for 

depth estim ates based on the water reflectance model (Chapter 5), lake area quan­

tification is needed. The area selection technique used was as follows: selected pixels 

tha t for which R w < , meaning th a t the surface reflectance must be smaller than

the bed albedo otherwise the Bouguer-Lam bert-Beer law  would generate positive 

depth values, which would violate the physics of the equation (Figure 6.1). An un­

certainty was hence introduced due to the mixed pixels of water-ice at the edge of 

the lake in the ASTER image.

(a) (b)

Figure 6.1: (a) Snapshot of one of the lakes used in this Chapter (ASTER Band 1); 
(1)) Reflectance values for Band 1 of the same lake after applying a band threshold 
value to image (a). From (b) the area and hence the lake volume is estimated. The 
band threshold is applied for Ru, <  A^, otherwise the model would give positive 
values of depth, which is a not physically possible.

The equation used to derive lake volume calculates the volume of each water col­

umn underneath each pixel by multiplying the pixel size by the depth derived from 

the water reflectance model for each pixel. The to tal volume is the sum of all the 

volumes of each column. To estimate the uncertainty in the volume for each col­

umn of water the propagation of errors rule for the product was used, since the 

variable errors are considered independent random errors (Sanchez del Rro. 1989). 

This assumption could substantially underestim ate volume errors because one of the
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assumptions for the water reflectance model was homogeneous bottom , i.e. fixed 

albedo, which would mean th a t the errors could be correlated. The reason for 

choosing independent errors was for simplification, therefore the uncertainties in the 

volume should be considered with caution. The uncertainty in the pixel area was 

assumed negligible in comparison with the error induce in the depth determination, 

which was taken as half of the IQR derived from the Monte Carlo approach derived 

previously (C hapter 5).

The resulting volume estimates are presented in Table 6.1. Notice th a t there are two 

relative error estimates, SVrange and ($V r̂ , which corresponds to assuming the depth 

absolute error as half of the range or the IQR respectively, with both magnitudes 

obtained from the Monte Carlo simulation. In both cases the uncertainty is insignif­

icant in comparison with the magnitude of the volume, with the largest error being 

less than  the 10%. It is also worth noting th a t the error is not a function of the 

volume quantity, which is due to the fact th a t the error in the area was neglected. 

Therefore the error is related exclusively with the depth uncertainty.

Table 6.1: Table showing the area and volume of each of the lakes used for the 
optimisation model.

Lake ID Area (km2) V o p t im  ( x 106 m3) 6 V iq r  (% ) S V r a n g e  (% )

1 0.99 3.87 0.15 0.52

2 0.32 0.61 0.43 1.50

3 0.51 1.54 0.24 0.86

4 0.89 2.49 0.20 0.67

5a/5b 0.19 0.21 0.97 3.18

6 1.57 2.28 0.25 0.25

7 0.85 2.19 0.72 0.72

8 0.17 0.36 0.56 1.91

9 0.31 0.13 1.88 5.99

10 0.53 0.61 0.54 1.78
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6.2.1 Comparison w ith ICESat derived volumes

There are no in situ measurements of the selected lakes to validate the volume es­

tim ates derived above (Table 6.1). Nevertheless an approximation was applied in 

order to obtain two independent volume estimates from remote sensing observations; 

ICESat reference profiles were used for this purpose, although it was already known 

beforehand th a t the results were not going to be precise and not completely realis­

tic. As described previously, the ICESat dataset consists of tracks crossing the lake 

with footprint spacing of around 172 m. Because only tracks on the same year as 

the ASTER image used were chosen for the calculations, one track was available for 

each lake, which does not provide a direct volume estimate, rather a 2D transect of 

the lake.

Two approximations to derive volume were used; the first approximation is applied 

to the lake shape definition. After some testing with different geometrical objects 

and their volume, a spherical cap was chosen as the approximate shape for the 

lakes (Figure 6.2). Two main reasons determined this choice; the first one was tha t 

looking at all the lakes studied, the length of the lake appear to be larger than  the 

depth with an averaged ratio of 270:1 (approximated from Figure 5.2 in Chapter 

5). This ratio is estim ated by measuring the length of each of lake in tha t figure 

(given by the X-axis) and the maximum depth of each lake. The second reason 

was the simplicity of the equations needed for the spherical cap volume estimation, 

where only two variables were required. Looking at Figure 6.2 and the volume equa­

tion on it, the following terms were identified: h =  maximum lake depth derived 

from the water reflectance model and r =  radius of the lake area, considered a circle.

The second approximation used for the determ ination of the lake volume based on 

ICESat da ta  is related to the selection of the right circle radius (r) for the spheri­

cal cap equation. Since lake shape is often random, although with tendency to be 

circular/oval in plan form, three different choices for r were selected and from them
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Spherical cap

Spherical cap volume

V=-^7ih2(3R-h)

Figure 6.2: Geometric shape chosen to define the lake volume from the ICESat 
track, where it was assumed it had a spherical cap shape.

derive three different independent volume estimates, in order to see which one was 

closer to the volume results obtained for the ASTER imagery in the previous section 

(Figure 6.4).

The first r choice was taking the half of the shortest possible length ((lmin) and esti­

mate then the volume. Secondly, the longest possible length on the lake and taken 

dmax/ 2 as the radius was selected. Finally the third choice consisted in taking the 

radius as half of the length of the ICESat track crossing the lake (Figure 6.3). For 

the three cases the centre of the circle is taken as the maximum depth value given 

by the ICESat track (h in Figure 6.2).

Figure 6.4 summarises the results obtained from the approximations described above. 

The three volume estimates for ICESat are compared with the volume obtained in 

the previous section ('Voptim), he. selected from ASTER scenes. The graph shows 

no clear relationship with the volumes derived from the ASTER reflectance values; 

a linear fit model was applied and for the three cases R“ is smaller than 0.4, which 

means lack of linearity.
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Lake

Figure 6.3: Theoretical lake shape, showing an example of an ICESat track crossing 
the lake (d iCESat) and the maximum and minimum diameters of the lake (dmax and 
d min respectively). Three different volume estimates are obtained from each of the 
diameters.

Table 6.2: Table showing the total volume of all the lakes selected for the optimi­
sation model showed for the different estimation approaches. The relative error is 
also shown (e) and the Residual, which is the difference between the three different 
V i c e S a t  estimates and the reference value, taken as Voptim -

Volume ID Vtotal (xlO6 m3)  ̂ (%) Vo p t i m  /V I C E S a t

vv optim 17.79 16.24 1

V I C E S a t foi dmax 23.23 23.25 1.31

V I C E S a t foi dmiTl 7.29 19.49 0.41

V  I C E S a t for d I C E S a t 12.17 21.34 0.68

Theoretically it would be expected to find th a t V  i C E S a t / V o p t i m = 1 , but looking at 

Table 6.2 this relationship is not evident. ICESat volume results were not used as 

a validation of the volumes derived from the water reflectance model. This experi­

ment was intended to be a comparison of different approaches tha t potentially could 

be used for future volume estimations of supra-glacial lakes. Table 6.2 shows the 

comparison of the total volume of water stored in the ten lakes for the different 

estimates. There is an average residual of 20 % between the total ICESat derived
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Figure 6.4: Comparison of lake volume derived from ASTER (V optim ) vs- the vol­
ume derived from ICESat measurements ( V i c E S a t ) -  The three different colours cor­
respond to different assumptions when deriving VjcESat (see Figure 6.3. all of them 
estim ated assuming a spherical cap lake shape. The lines correspond with the un­
certainties derived from the propagation of errors approach.

volume and the optimised ones. For the case of dmax (Figure 6.3) there is an over- 

estimation of the volume with respect Voptima whereas for the cases of dmin and 

d i C E S a t  (Figure 6.3) there is an underestim ation of the volumes. For example, for 

individual lakes, if interannual ICESat campaigns are available and after removing 

the elevation changes due to accum ulation/ablation and other considerations like 

firn densification correction, it could be possible to obtain the lake geometry from 

the combinations of the different ICESat tracks. Nevertheless, in the current study 

only one ICESat track per lake was considered, therefore the spherical cap volume 

estimation is an approximation. Despite this approximation, in all the lakes the 

different volume estimates present the same order of magnitude, which shows that
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the approxim ation could be valid with further lake observations. For a precise sta­

tistical validation of the optimised volumes, in situ calibrations are needed, since in 

this section results made from approximations were compared.

6.2.2 Volume estim ates derived from the water-reflectance 

m odel up-scaled at regional level

In this section the results derived from a regional up-scaling of the water reflectance 

model are presented. The up-scaling was not done globally across the GrIS; this is 

because the optim isation model was only developed in south-west Greenland (see 

blue dots in Figure 6.5 in Chapter 5) due to data  availability. In Chapter 4 some 

assumptions were considered before applying the water reflectance model for lake 

depth estimations; for example non-presence of particulate m atter on the water col­

umn was assumed. Moreover, since there are not any field observations tha t could 

test the results obtained from the optimisation model (Chapter 5), nor water quality 

and composition across lakes, the up-scaling was restricted to the same region as for 

where the results from Chapter 5 were obtained (Figure 6.5). From this regional up- 

scaling the am ount of uncertainties derived from comparing lakes of different regions 

could be ignored and assume tha t within this selected area of interest the properties 

of water will not vary. A to tal of thirty  lakes were found for the up-scaling (see 

red dots in Figure 6.5), which together w ith the ten lakes used for the optimisation 

model (Chapter 5), give forty lakes to study.

For this section there are no in situ da ta  from the forty lakes th a t provide lake 

volume estim ates as a validation for the results obtained in this section. Moreover 

there are no ICESat d a ta  th a t could be used as an approximation as done in the pre­

vious section. The relationship th a t might exist between area, volume and depth of 

the lakes was studied in this section, assuming tha t a t least the order of magnitude 

and the uncertainties are realistic. As explained in the introduction of the current
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chapter, it is expected to find a positive relationship between area and volume, and 

it may be possible to use this elsewhere to infer lake depths.

Figure 6.6 summarises the results obtained in this section. The water reflectance 

model was applied to forty lakes distributed across the south-west of Greenland, 

using the optimised param eters obtained in the previous Chapter (Chapter 5). For 

this purpose available ASTER images were selected and for lake identification, the 

distribution m ap produced by Selmes (2011) as part of his thesis.

There is a positive relationship between depth and volume, as shown in Figure 6.6; 

nevertheless it is not clear which curve could define th a t relationship. Moreover, the 

depth values plot in Figure 6.6 are just the deepest pixel for each of the forty lakes, 

which means th a t the lake shape and the rest of the pixel values are being ignored. 

A lake could present a V shape, which would mean the lake volume for th a t lake 

would not be the greatest, despite being the lake with deepest points. On the other 

hand, smoother lake shapes (U shape) could store more water volume and at the 

same time not be the deepest lakes. Further research is needed to better under­

stand the relationship between the two variables. The uncertainties in the volume 

results are calculated as in Section 6.2, using the propagation of errors approach 

(Sanchez del Rio, 1989); for the depth uncertainty, half of the IQR values derived 

from the Monte Carlo simulation were taken. Some da ta  points do not have error 

bar, this is because the error was insignificant in comparison with the da ta  point 

value.

Looking now at area-volume curve in Figure 6.6, the trend seems to be more clear. 

Lake volume is a function of lake area, although the relationship is not linear. Fur­

ther analysis could try  to find a function th a t defines th a t relationship; which if it 

was found then lake depth estimates would not be needed for a quatinficaiton of 

water stored on the GrIS. For this purpose preliminary results regarding this poten­
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tial relationship are introduced. Once more, this results are not enough to establish 

the relationship, bu t it is a valid approximation and it could be used to test other 

independent results.

A rea-volum e relationship test

Figure 6.7 is an example of two types of function th a t could define the relationship 

between lake area and lake volume. Two different fitting functions were applied and 

both present very similar results, showing the possibility of a non-unique solution to 

the problem. The exponential fit gives an equation of the form A  = 87.6 * exp ( lA  * 

logioV) with a R M S E  =  3.6 * 105 (Root Mean Square Error). In the case of the 

potential fit, the equation is A  =  87.6 * (logioV)0 63, with R M S E  = 3.6 * 105.

Despite the high R 2 for both fitting functions (Figure 6.7) of around 0.8, it is yet not 

possible to conclude about the area-volume relationship. The main reason is tha t 

there are only forty samples, against thousands of lakes distributed across Green­

land. Even more, looking at Figure 6.7 it can be seen th a t a t the top right of the 

graph there are only two data  points, which means tha t the curve shape end is deter­

mined for a not representative number of d a ta  points, comparing it with the sample 

number. In the discussion (Chapter 8) previous AocV relationships (Krawczynski 

et al., 2009) will be introduced and their accuracy analysed.

6.3 W ater-reflectance model applied to MODIS 

dataset

Following the up-scaling of the water-reflectance model to a regional scale, MODIS 

imagery is used to compare the spectral behaviour of ASTER and MODIS satellites
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and also to show if the difference in spatial resolution, i.e. pixel size, can mask the 

results. For this purpose MODIS images of the same day and time as the ASTER 

images were selected to be able to accurately compare both results based only in 

the spectral and pixel size differences and not illumination influences, cloud cover or 

different lake size and depth. Sixteen lakes out of the forty lakes from the previous 

section (Figure 6.5) were selected for this study, merely due to the MODIS images 

th a t were available to use a t th a t time. Nevertheless for a simple comparison be­

tween satellite characteristics the samples are enough, as it will be shown below.

Figures 6.8 and 6.9, show the exponential decay of depth (z) with the surface re­

flectance (Rtu). There are sixteen figures and in each of them  the pixel depths 

derived from ASTER (Za s t e r ) are plotted together with the pixel depths derived 

from MODIS (Zm o d i s )-  The first thing to notice is the difference in pixel num­

bers between satellites; this is explained by the fact th a t the ASTER product used 

presents a 15x15 m spatial resolution, against the 250x250 m th a t the MODIS prod­

uct has. This results in a narrower window of Rw values for MODIS, this is due to 

the fact th a t this satellite presents more mixed pixels than  ASTER, therefore more 

pixels are subjected to different substrate. It is also worth noticing tha t ASTER 

tends to give deeper lake values than  MODIS for most of the cases presented. Only 

three lakes show deepest values with the MODIS results.

The exponential curves for all the lakes are of the same shape because all the es­

tim ates are derived with the optimised set of parameters (Chapter 5), thus only X 

and Y values vary. The uncertainties were derived from the Monte Carlo approach, 

using half of the IQR value given by the simulation. Remember tha t each pixel 

depth value was taken as the median of all the samples generated based on the 

error range of the param eters driving the water reflectance equation (Equation 4.5, 

Chapter 5).
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Figure 6.5: Location lake map showing the thirty  lakes included in the up-scaling.
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Figure 6.6: Graph summarising the volume estimates derived from the up-scaling. 
Blue dots correspond with lake area (left Y axis) vs. lake volume for the lakes in 
Figure (6.5). Red dots correspond the maximum depth values of each lake (right Y 
axis) vs. lake volume. Lake volume is plotted in logarithmic scale since many points 
are concentrated in small volume range.
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Figure 6.8: Graphs comparing depth estimates derived from ASTER scenes (blue 
dots) and MODIS scenes (red dots). Both datasets of depths are plotted against the 
surface reflectance value of each pixel (R w). Both depth estimates are derived from 
water-reflectance model, using the set of parameters derived from the optimisation 
model in the previous chapter. The uncertainties in Z m o d i s  are shown as red error 
bars. The error bars for the case of ASTER were excluded due to the high density 
of data and because they were of the same range as the MODIS errors (Continued 
overleaf).
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Figure 6.9: Graphs comparing depth estim ates derived from ASTER scenes (blue 
dots) and MODIS scenes (red dots). Both datasets of depths are plotted against the 
surface reflectance value of each pixel {Rw). Both depth estimates are derived from 
water-reflectance model, using the set of parameters derived from the optim isation 
model in the previous chapter. The uncertainties in Z m o d i s  are shown as red error 
bars. I excluded the error bars for the case of ASTER because of the high density 
of data and because they were of the same range as the MODIS errors (Continued 
from previous page).
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Figure 6.10 presents a summary of all the elements involving the volume estimation 

for both ASTER and MODIS.

Firstly, the deepest pixel of MODIS was plotted against ASTER (a) showing an 

underestim ation of the deepest points with the MODIS dataset. In Chapter 5 the 

depth estim ates of ASTER imagery for the optimisation model tended to underesti­

m ate the results compared with the ICESat depths, used as reference depths. From 

Figures 6.8 and 6.9, the reflectance values of MODIS did not reach as smaller values 

as ASTER in most of the cases, which explains why the lakes do not appear as deep.

Secondly, lake area for both satellites was compared (Figure 6.10(b)). The linear 

trend fits with R2 =  0.93, although there is a persistent underestim ation of the area 

in ASTER in comparison with MODIS. Previous studies have shown th a t this is not 

necessarily the case and despite the different spatial resolution both  MODIS and 

ASTER can give very similar area estimates (Liang et al., 2012). This disagreement 

could be explained as follows; ASTER area was determined as explained previously 

in this chapter. On the other hand MODIS, area was selected applying the region 

of interest selected for an individual ASTER lake, to the MODIS scene. This pro­

duced an overestimation of the lake domain, because the software used tried to fill 

the region of interest following the coordinates of the ASTER point but the pixel 

size is different. Therefore when a pixel falls within the domain, is counted as part 

of the area, even though tha t point had previously an area of 225 m2, and in the 

MODIS scene has a 62,500 m2 area.

MODIS areas determined by the technique explained in the previous paragraph, pro­

duced an increase in area of around 50% in comparison with the ASTER area; this 

will influence in the volume determ ination (Figure 6.10(c)). Some of the lakes show 

agreement between V m o d i s  v s . V a s t e r , especially for the smallest lakes. However 

for the deepest lakes given by MODIS, ASTER presents the smallest values, and
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vice versa. This lack of trend might be due to the area determ ination method used 

above. Despite this, both  satellites present the same order of magnitude for all the 

variables investigated in this section (depth, area and volume).
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Figure 6.10: Summary of the results obtained by using ASTER and MODIS scenes 
for lake characterisation, (a) compares the maximum depth of each lake (Z m o d i s  

v s .  Z a s t e r ) -  (b) compares the lake area for both ASTER and MODIS: showing a 
linear fit (red line) with R 2 =  0.93, although there is a consistent overestimate of 
the area in the case of MODIS of around double the ASTER size.(c) compares the 
volume estim ates for both  ASTER and MODIS. For all the graphs error bars are 
shown, except for graph (b), where no error was associated pixel area determination.
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6.4 The role of spectral band choice for the water- 

reflectance model

In the methods chapter it was justified why ASTER Band 1 was chosen as the spec­

tra l reflectance (Rw) for the water reflectance model (Chapter 5). In this section the 

water reflectance model was applied for each of the visible near infrared red bands 

from ASTER (Band 1, Band 2 and Band 3N). The reason was to see how the model 

behaves with different wavelengths, since one of the ideas why the optimised model 

still underestim ates depths in comparison with ICESat was th a t the chosen band 

range could be limiting deep lake values.

Figure 6.11 shows the results obtained after applying the water reflectance model for 

the three ASTER spectral bands. The three graphs show once more the exponential 

decay of depth with reflectance. An exponential fit function was plotted for a better 

visualisation of the trend. The decay is however quite different; while for Band 1 

there is a pronounced decline in depth of around 5 m for a range in R w of around 

0.3, the decline w ith increasing wavelengths seem to be less significant. For Band 2, 

the curve decays only 2 m for a similar range of reflectance; and finally for Band 3N 

the difference between the maximum and minimum depths is just of 0.3 m for the 

same R w range. This results show tha t depth is more sensitive to variations in the 

water reflectance for wavelengths between 520-600 nm than  for any of the other two 

(630-690 nm for Band 2 and 760-860 nm for Band 3N). Moreover the satellite signal 

suffers more absorption for Band 2 and Band 3N. As an example the attenuation 

coefficient (g) used for Band 3N is 4.14 m -1 in comparison with 0.196 m -1 for Band 

1 (Smith and Baker, 1981).
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Figure 6.11: Graphs showing the exponential relationship between lake depth 
(Za s t e r ) and the surface water reflectance (Rw).  The three graphs correspond 
with the three visible bands of ASTER imagery. The uncertainties in each estimate 
is shown with error bars.
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Finally, in Figure 6.12 Z a s t e r ( Z )  is plotted against ZjcESat• This figure confirms 

what it was discussed previously; with Band 3N there is almost no depth variation 

and the values are close to zero, meaning the attenuation coefficient is driving the 

depth equation, instead of the bed albedo like in Band 1. This is due to the high 

attenuation coefficient, and hence the signal does not reach the bottom  so it is not 

influenced by it. As showed in Chapter 4, Band 1 appears to be the most suitable 

band of the three visible near-infrared spectral bands of ASTER.
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Figure 6.12: Graph comparing the depth values for ICESat (ZjcESat) and ASTER 
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6.5 P ix e l reflectance over em pty  lakes

In this last section of the current chapter the reflectance values tha t em pty lakes 

present were investigated and compared with the bed albedo values that were used 

for the water reflectance model. It is worth recalling tha t the water reflectance 

model is more sensitive to changes in bottom  albedo value in comparison with the 

other param eters as shown previously (Chapter 5). For this purpose ASTER scenes 

with empty lakes on them were selected and the pixel reflectance values of the area 

th a t was covered by water before drainage analysed. Empty lakes are easy to detect 

if they have recently drained, because the pixels within the lake area look brighter 

than the surrounding pixels. This might be due to dust accumulated on the surface 

free of lakes; whereas the areas tha t were water covered before, are not exposed to 

dust or wind transportation. It could also be due to different crystal structure at 

the lake bed due to melt.

*  10*

Surface reflectance of empty lakes

Figure 6.13: Histogram showing the pixel distribution in terms of the bed reflectance 
in selected empty lakes.

Figure 6.13 shows the spectral distribution of all the pixels within the lake area for
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the fourteen examples found. There is a statistically significant number of pixels 

with reflectance values of around 0.999. From the graph it can be seen it is not 

a Gaussian distribution, therefore for statistical analysis the median is estim ated, 

being of 0.912 ±  0.055. This value is higher than the bed albedo value obtained 

from the optim isation model, which is expected because the reflectance in the empty 

lake is not influenced by the column of water above it, like when the bed albedo is 

estimated, this means th a t the spectral characteristics of the bottom  have varied.

0.95

M edian * 0 
IQ R * 0.106

0  85

Lake ID

Figure 6.14: Scatter plot showing the median reflectance for each of the empty lakes 
and the uncertainty derived.

The next step was to look at each of the empty lakes, to investigate whether there 

are any anomalous reflectance values. For tha t purpose the median of the empty 

bottom  reflectance was again estimated, but this time for each lake (Figure 6.14). 

Two of the lakes present a low median of around 0.7 in reflectance, but the rest 

agree with the previous result, with most of the medians varying around 0.9. W hen 

calculating the median of the lakes median, the value is slightly lower than  when 

the median was estim ated globally, 0.896 ±  0.053. Nevertheless both error ranges 

cover the o ther’s value. Further discussion about the reflectance of empty lakes is 

presented in C hapter 8.
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6.6 Chapter summary

In this chapter the optimised water reflectance model developed previously (Chap­

ter 5) was used for further applications regarding the supra-glacial lakes. The main 

result obtained from this chapter was the quantification of the volume regionally 

stored around the lakes of the south-west Greenland. These results were compared 

with estim ates based on ICESat imagery. The application of the Monte Carlo ap­

proach for the volume uncertainties regarding depth estimates is a unique tool tha t 

accurately provides the error in the estimates. The comparison with ICESat vol­

umes is a first approximation, since only a 2D picture is derived from ICESat data. 

Nevertheless in all the cases the order of magnitude of the volume is in agreement 

with the ICESat estim ates, which gives confidence in the approach.

The use of MODIS imagery for volume derivation and comparison w ith ASTER 

derived volumes gives an alternative source of data, and the study of this gives 

a better picture of the importance of the spatial resolution of the satellite used. 

MODIS satellites underestim ate lake depths, probably due to the mixed reflectance 

values, which is caused by mixed pixels. Also this underestim ation can be due to 

the fact th a t the param eters used as an input to the MODIS estimates were derived 

from the water reflectance model. Although only spectral bands with the same value 

range were chosen for the study (Band 1 for ASTER and Band 4 for MODIS).

A proof of concept was included in this chapter, where depth estimates derived from 

the different visible near infrared bands of ASTER imagery were compared. This 

was done to  further understand how the exponential decay of depth behaves with 

the chosen wavelength. It was shown how Band 2 and especially Band 3N present 

very strong absorption and tha t the attenuation coefficient dominates the water re­

flectance equation.
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Finally results derived from empty lakes were presented, showing how the reflectance 

values in empty lakes cannot be approximated to bed albedo values when the lake is 

filled, since the spectral properties of the return signal is different. Also it is impor­

tan t to know when the lakes drained to see whether the reflectance characteristic of 

the surface changed with time.
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Chapter 7

A pplication of the water 

reflectance m odel to  water-filled  

crevasses

7.1 Introduction

The objective of this chapter was to explore the possibility of applying the water- 

reflectance model for the quantification of water-filled crevasse depths, using a high 

spatial resolution hyperspectral satellite: CASI sensor mounted on the UK NERC’s 

Airborne plane. The specific characteristics of this sensor were described previously 

(Chapter 4). In this case the dataset includes water-filled crevasses and a supra- 

glacial lake on Helheim Glacier in south-east Greenland (Figure 7.1). Two different 

experiments are described using atmospherically corrected Landsat 7 scenes, CASI 

geocorrected scenes and in situ measurements (pers. comm. W. Sneed, 2012).

The first experiment (Section 7.2) compares CASI datasets with those from Landsat 

and field observations measurements; and further investigates the influence of spatial 

resolution on w ater-depth estimations. The CASI dataset has a spatial resolution
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between 2 and 10 m, although for the present experiment 10x10 m pixel resolution 

was chosen. The pixel size selection was chosen based on the geocorrection applied 

to the CASI scenes and its settings, which were described in Chapter 4. Depth and 

volume estim ates are shown for one lake, from which there were da ta  available from 

both CASI and Landsat 7 taken one year apart, and also in situ  measurements from 

Sneed and Hamilton (2011). ICESat elevation footprints were also available over 

this lake (see Figure 7.2), although from different years to the other da ta  so it was 

not possible to directly compare them.

The second experiment was surface water quantification of water-filled crevasses 

close to the ice front of Helheim (Section 7.3). In this case there are no in situ data  

tha t can be used to  validated these results. Nevertheless this is first approach to 

depth estim ation of water-filled crevasses from remote sensing satellites, which was 

possible to  detect due to the high spatial resolution of CASI scenes. Knowledge of 

the water-filled crevasses depth is im portant for calving models because they pre­

dict th a t calving will occur where the depth of surface crevasses equals ice height 

above sea level (Benn et al., 2007). Krawczynski et al. (2009) calculated tha t lakes 

with a diam eter of 250-800 m and 2-5 m deep store enough volume of water to 

drive a water-filled crack to the base of an ice sheet of 1 km thickness. Cook et al. 

(2012) highlighted th a t calving rate depends on the depth on water-filled crevasses, 

hence the im portance of depth knowledge. The quantification of the water stored in 

crevasses presented here is a first approach tha t could be used as an input to calving 

models.
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Figure 7.1: Location map showing the lake used in the current section for spatial 
resolution comparison. The Helheim image corresponds to a Landsat 7 scene 20 
July 2008. The pink circle locates the position of the supra-glacial lake used in this 
section.
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7.2 Application of the water reflectance model to  

CASI and Landsat 7 datasets

In this section the water reflectance model is applied to an individual lake. The lake 

location is shown in Figure 7.1. Two different optical sensors presented data  from 

th a t lake, Landsat 7 and CASI. CASI is a new tool for this purpose and was selected 

due to its high spatial resolution, 10x10 m for the present geocorrection applied.

Table 7.1: Summary of the different d a ta  sources and acquisition dates (*pers. 
comm. W. Sneed, 2012).

Date Type of measurement

02 July 2007 Landsat 7 atmospheric corrected surface reflectance

19 July 2007 CASI geocorrected surface reflectance

24 July 2007 CASI geocorrected surface reflectance

25 July 2007 Landsat 7 atmospherically corrected surface reflectance

1.9 August 2007 Landsat 7 atmospherical]y corrected surface reflectance

11 July 2008 Bathym etry measurements*

20 July 2008 Landsat 7 atmospherically corrected surface reflectance

The lake was chosen because there were in situ measurements (on 11 July 2008) 

of it published previously (Sneed and Hamilton, 2011). T hat study used a digital 

fathometer to measure lake depth with an accuracy of 0.03 m and they measured a 

maximum depth of 3 m within their transect profile, although it does not necessary 

mean th a t it was the deepest point of the lake. The Landsat 7 scene (on 20 July 

2008) was also used in Sneed and Hamilton (2011), therefore their results could be 

compared with those obtained using the model developed in this thesis. The CASI 

scene (on 19 July 2007) was taken almost exact one year before the Landsat one and 

the in situ  measurements. There were also three Landsat scenes from July 2007 of 

the lake; Table 7.1 summarises all the different da ta  sources.
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There were no ICESat data  from 2007/2008 th a t could be used as a reference mea­

surements of the empty lake as it was done in Chapter 5. However as shown in Figure

7.2, there are lake profiles for the years 2005/2006, showing a difference of almost 

15 m between early melt season (20 June 2005) and late November (20 November

2005). W ith no extra data, it is not possible to conclude whether 15 m difference in 

elevation are caused by the drainage of the lake or by melting. It is also interesting 

th a t in the next year during spring (24 March 2006) and early melt season (23 June

2006) the elevation is slightly lower than  in the previous November and then around 

around 3 m higher in the next late autum n (24 November 2006). The year 2005 

was reported to be very dynamic on Helheim glacier, showing sudden acceleration 

an retreat, with a change in acceleration from 6 to 11 km /yr between 2002 and 2005 

(Luckman et al., 2006; Howat et al., 2007; Stearns and Hamilton, 2007). As the 

lake location is fixed, rapid surface change can occur by ice advert through the lake 

basin. Moreover, strain thinning was also occurring (pers. comm. N. Selmes, 2012). 

Therefore 15 m of elevation change could be due to the previous dynamic changes. 

This implies th a t for outlet glaciers like Helheim ICESat elevation interannual mea­

surements could be bias by ice dynamics. This confirms the usefulness of relative 

depth measurements in those situations.

The comparison between the reference depth estimates (Sneed and Hamilton, 2011) 

and CASI dataset was done indirectly using Landsat 7 as a link; this was due to the 

lack of tem poral overlap between CASI and in situ  measurements. The steps taken 

were as follows;

1. Depths derived from the water reflectance model with Landsat 7, scene 20 

July 2008 (Figure 7.3) were compared with depth points measured by Sneed 

and Hamilton (2011).

2. Landsat from 20 July 2008 was compared with Landsat from 2 and 25 July 

2007 (Figure 7.3); in this case spectral characteristics were compared and
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Figure 7.2: (a) Snap shot of the lake from Figure 7.1. The coloured dots correspond 
to the different ICESat campaigns th a t passed over the lake, (b) ICESat profiles 
from the studied lake. The pink circles show the footprints that fall within the pixels 
corresponding with the lake.

also the deepest points and their location, since it is expected to be different 

between years.

3. Landsat 2007 (2 and 25 July) is compared with CASI 2007 (19 and 24 July) 

(Figure 7.3); in this step depth estimates will be compared together with the 

surface reflectance ranges given for both sensors.

4. Volume estimates were calculated for all the dates summarised in Table 7.1.
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7.2.1 Validation of th e  w ater-reflectance m odel w ith  in situ  

b a th y m e try  m easurem ents

The input d a ta  used for the water-reflectance model are shown in Figure 7.4, where 

the distribution of t he reflectance of each pixel within the lake is plotted for Landsat 

Band 2. All the Landsat 7 scenes were atmospherically corrected as showing in the 

methodology (C hapter 4).
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02/07/2007 19/07/2007

24/07/2007 25/07/2007

19/08/2007 20/07/2008

Figure 7.3: Snapshots of the evolution of the lake studied in this section. The 
second and th ird  scene correspond to CASI Band 3 (547.0-555.8 nm) and the rest 
are Landsat 7 Band 2 (520-600 11111).

To obtain lake depth from the reflectance values in Figure 7.4, the water reflectance 

model was applied once more including the Monte Carlo simulation to derive the 

uncertainties of the results, as done in the previous chapters. To retrieve the values 

of the three param eters needed as an input to the model (g, Ad and ), the same 

approach followed by Sneed and Hamilton (2007) and the current study was taken. 

The set of the input parameters and their absolute error are summarised in Table

7.2, which includes the param eters applied for each scene in the current chapter. 

Since there were 110 d a ta  to optimise the model as done previously (Chapter 5), it 

was decided to independently estim ate the param eters for each scene.
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Figure 7.4: D istribution of the surface reflectance of the lake domain for Band 2 
Landsat 7.

Table 7.2: Values of each of the input param eters for the water-reflectance model 
for different scenarios and their absolute errors.

Scenario ID g (m - 1) Aa Roc

02/07/2007 (Landsat) 0.197 ± 0.030 0.588 ± 0.038 0.03 ± 0.01

19/07/2007 (CASI) 0.128 ± 0.030 0.496 ± 0.069 0.08 ± 0.01

24/07/2007 (CASI) 0.128 ± 0.030 0.327 ± 0.021 0.08 ± 0.01

25/07/07 (Landsat) 0.197 ± 0.030 0.610 ± 0.033 0.03 ± 0.01

20/07/2008 (Landsat) 0.197 ± 0.030 0.599 ± 0.057 0.03 ± 0.01

After applying the water reflectance model, depth measurements for the whole lake 

domain are shown in Figure 7.5. The next step was to compare these measurements 

with the reference depth points previously published (Sneed and Hamilton. 2011). 

In that study in  situ  measurements give the depths at two points on the lake taken 

on the 11 July 2008; one at 66° 27’ 44.32” N 38° 27’ 3.6” W, 0.7 ±  0.03 m deep, 

and the other at 66° 27' 41.22’’ N 38° 26' 9.86” W, 3 db 0.03 m deep. The study 

says tha t the 3 m is not necessarily the deepest part of the lake since they took a
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random profile of the lake. Despite this, these two points can be directly compared 

with the Landsat derived depths for the same lake on the 20 July 2008. 9 days of 

difference are enough to cause major changes, since it has been shown that a lake 

can drain within hours (Selmes et a/., 2011) (See Appendix A Figure A.2). For the 

point of 0.7 in there are two Landsat pixels within those coordinates and the water 

reflectance model applied to the Landsat gives the depths between 0.34 ±0.22 m 

and 1.22 ±0.24 m, which give a mean depth value of 0.78 m, around 1% deeper 

than  the reference measurement. For the 3 m measured point, the model gives a 

depth between two pixels of 2.20±0.26m and 2.9±0.3 m respectively. The mean of 

these depths is 2.55 m, around 15% shallower than the given measured point. These 

estimations are within the uncertainties of the depths, which confirms the validity of 

the approach applied in this study, although more in situ points would give further 

confidence.

The previous comparison showed that Landsat 7 atmospherically corrected data  

provide a valid approximation of lake depth, thus in the next subsection modelled 

Landsat depth measurements will be taken as the reference depth.

z(m)

2 6 10 14 18 22
Pixel No.

Figure 7.5: Depth measurements of the studied lake for the Landsat 7 scene 20 July 
2008. The input to the model were the reflectance from Figure 7.4 and the input 
param eters from Table 7.2.
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7.2.2 Comparison of CASI and Landsat

Following the previous subsection, Landsat results (2008) are now compared with 

Landsat for 2007. Then as explained before, Landsat 2007 will be compared with 

CASI 2007 so it can be analysed whether CASI data  is also valid for depth estima­

tions or not.

Figure 7.6 shows the reflectance distribution for both CASI ((b) and (c)) and Land­

sat 7 ((a) and (d)). The lake drained completely by the 19 August 2007 (pers. 

comm. N. Selmes, 2012) (See Appendix A Figure A .l) , which by chance coincides 

w ith the Landsat 7 scene shown in Figure 7.3 (bottom  left snap shot). This could 

explain the higher surface reflectance values given in the late July image in com­

parison with the Landsat scene of 2 July 2007 (Figure 7.6(a)), where the range is 

of around 0.3 and the interval is [0.27,0.58]. This could mean the lake was deeper 

on the earlier dates, indeed the area of the lake is bigger in the earlier image. This 

hypothesis is dem onstrated in Figure 7.7, where the smallest lake area corresponds 

w ith the latest Landsat scenes, as does the shallowest lake. In 2007, it is shallower 

than  the early July scene and also presents smaller area.

The next step was the introduction of CASI data  for a complete analysis. Focussing 

on Figure 7.6, the first impression is th a t the CASI reflectance data  presents lower 

values than  Landsat 7, which in theory should not happen if both scenes were atmo­

spherically corrected; although the atmospheric correction method was different for 

each sensor (see C hapter 4), therefore th a t could influence the reflectance. Where 

both  satellites agree is in the tem poral evolution of the reflectance; in the first CASI 

scene (Figure 7.6(b)) the reflectance range is bigger than in Figure 7.6(c), and even 

though higher reflectance values would be expected because the lake is smaller, tha t 

is not the case. The small range in the latest CASI scene (around 0.15) can be ex­

plained because the lake is shallower but at the same time smaller so less shallowest 

parts of the lake will be covered with water.
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Figure 7.6: Reflectance distributions for the four different scenes during the melting 
season in 2(307. (a) and (d) are from Landsat 7 whereas (b) and (c) correspond to 
CASI.

Figure 7.7 shows the modelled depths for the four scenes derived from Table 7.2 

and Figure 7.6. CASI and Landsat models based on the water reflectance approach 

present very different depth ranges. CASI's maximum depth estim ated is from 19 

July 2007 where the values are around 12 m deep, whereas the deepest Landsat 

point is around 5 meters in early July. W ithout further information, this could 

be explained with the lake filling with water. However when looking at the scenes 

from 24 and 25 of July, which correspond with CASI and Landsat respectively the 

differences in depth are significant (more than 3 m).

144



(U
I)Z

Chapter 7. Application o f the water reflectance model to water-filled crevasses

o
C

m
c\i in

n
c\i

o

in o o
CM

in

o
CM

in

in

CM

O o o
CM

O
CO

Oino

O
CO

O
CM

a>
x

CO -4-S
c p   .?—I
S £hC cC 
Pm CO
r- 

<̂pf-ia3
CO

ccj
_fcjj
pM

C  cp1+-4 O

I  Io CP
CP c o l  "G CP

CP

Sh ^
53 52

,CP
CC

CP
rXc5

H
d

ce

cp cn
3  <
o O

CO

<p

CM
r5

u  <p
<p 3O cc
^ H c _

CD T - t

Q §

o n  l ex id

t-
CP
f-l

_'cb
Pm

co

CO CP 
CP 4 P  
f-H CP>“H r-J
O  £3CJ cd

7?

145



Chapter 7. Application of the water reflectance model to water-filled crevasses

7.2.3 Volume evolution of the supra-glacial lake derived from 

CASI and Landsat scenes

The last part of this section is the estimation of water volume of the lake for the 

different scenes. Table 7.3 summarises these results. The largest lake area corre­

sponds w ith the Landsat 7 scene of 2 July 2007, which was expected looking tha t 

the snapshots in Figure 7.3 where it appears flooded around the main lake area. 

The consecutive scenes from 24 and 25 July show th a t the area in the later day is 

15% bigger than in the previous image, even though the lake depth estimates are 

deeper in the earlier image. This difference is easily explained with the difference in 

pixel size, because at the edge of the lake a pixel th a t is part of the lake can present 

a percentage of ice, hence increasing the lake area. In 2008 the lake has its smallest 

area coverage.

Table 7.3: Summary of the results obtained in the current section, showing the 
volume estimates from the five different scenes, with their relative error derived 
from the Monte Carlo simulation. The area for each scenario is also shown.* e 
referrers to the uncertainty in the volume estimations.

Scene date Area (xlO4 m2) Volume (xlO5 m3) e* (%)

02/07/2007 (Landsat) 6.75 1.082 1.4

19/07/2007 (CASI) 5.94 1.774 17.2

24/07/2007 (CASI) 3.15 0.740 18.4

25/07/2007 (Landsat) 3.71 0.252 21.7

20/07/2008 (Landsat) 2.58 0.677 65.6

Looking at the volume, it is interesting to see how the lake volume increases between 

early and mid July (2007) by almost 40%, and then loses half of its volume in less 

than a week. The substantial difference in volume between 24 and 25 July is ex­

plained once more with the difference in surface reflectance between the two sensors 

obtained in this thesis. The uncertainty in the volume for 2008 is more than  50%,
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this is due to the fact th a t of the three Landsat scenes, th a t one has the deepest 

point and hence the uncertainty is bigger, since it is proportional with depth. And 

even though CASI scenes gave deeper lakes, the pixel area for Landsat is bigger and 

hence the relative error bigger too.

7.3 Application of CASI hyperspectral data for 

water quantification on Helheim glacier front

In this section the water reflectance model previously applied to supra-glacial lakes 

was tested with water-filled crevasses on the glacier front of Helheim glacier (Fig­

ure 7.8). The depth estimates from this study are the first made of water depth 

in crevasses from optical imagery; therefore a detailed discussion is needed to con­

clude whether it is possible to apply the water reflectance model on crevasses or not.

The first step was to do a water classification across the glacier front, because unlike 

supra-glacial lakes tha t have been m apped and located previously (Selmes et al., 

2011; Leeson et a l, 2012), crevasses are influenced by ice dynamics and they ad­

vance with the glacier front and within hours/days the geometry can change. After 

the water classification, the water reflectance model is applied to the reflectance of 

the water-filled crevasses, obtaining water depths and from there an estimate of the 

volume of water stored on the surface of Helheim glacier front.

7.3.1 W ater classification across Helheim  front

To obtain a water classification a band ratio  method was applied. This method is 

useful for this purpose because it enhances the spectral differences between bands. 

It consists of dividing one spectral band by another producing relative bands inten-
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Figure 7.8: Composite image of Helheim glacier composed by the combination of 
the different flight lines of CASI on 24 July 2007. The colour composition chosen is 
(R:B6. G:B4. B:B1) because this differentiates water from ice effectively.

sities. Bands th a t behave completely different for the chosen target are needed. In 

the present study the target is water, and it is known tha t blue and red bands have 

different spectral characteristics for water surfaces. Figure 7.9 shows where the blue 

and red bands are and how the CASI reflectance varies with the wavelength. The 

biggest change in reflectance is between the blue range and the red near-infrared. 

The lowest range of the blue corresponds with Band 1 CASI (431.6-449.0 nm), which 

is the first of the bands chosen. Band 4 CASI (676.5-681.8 nm) did produced a con­

148



Chapter 7. Application o f the water reflectance model to water-filled crevasses

tra s t with Band 1, but produced errors of classification, therefore the ratio method 

was tried again with another combination, using CASI Band 6 (735.4-740.7) in this 

case. Figure 7.10 shows that the difference in reflectance between R6-R1 it is lug­

ger than  with R4-R1, therefore the ratio band combination R6/R1G [0.001,0.6] was 

chosen for the water classification method.
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Figure 7.9: Reflectance profile over water in a crevassed taken from one of the CASI 
scenes from Figure 7.8. The visible centre wavelengths are shown by coloured lines 
and the CASI wavelengths intervals used in Figure 7.8 are shown in grey stripes 
(B l, B4, B6)

The CASI scenes used for the water classification are shown in Figure 7.8. The 

colour composite of the figure (Band 6, Band 4 and Band 1) was chosen to help 

visualise the water on the surface, in this case with a dark blue tone. After applying 

the band ratio R6/R4 to Figure 7.8, the water classification is shown in Figure 7.11 

in red colour.

The to tal area of Helheim glacier front is 1,139.15 kin2, which was computed adding 

up the number of pixels tha t compose Figure 7.11 multiplied by the pixel area 10x10 

in. The number of pixels tha t are part of the water classification ratio, i . e .  the ones
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Figure 7.10: Spectral profile through a crevasse. Note th a t the three spectral bands 
used in this profile are the same ones as in the previous figures (B l. B4, B6). Note 
the similar curves in B4 and B6 in comparison with B l, and how BG shows the 
biggest spectral difference with respect to B l.

that meet RG/R l£ [0 .001.0.G], is 24.041; the relative area covered by water is then 

around 0.2%. which is insignificant with respect to the total area of the glacier front. 

This result could have major impact in the current calving models, which assumed 

water-filled crevasses on the glacier front for calving to happen (Cook et al., 2012). 

However investigating the distribution of water-filled crevasses could be more in­

teresting for the influence on calving. Water-filled crevasses distribution will be 

discussed in the following chapter (Chapter 8).
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I

Figure 7.11: Helheim glacier showed with the composition of CASI flight lines as in 
Figure 7.8. In this case the image is shown in one band colour (Band 3) and the 
red points corresponds to the water detected by the ratio classification used in this 
section R6/R1.
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7.3.2 W ater-filled crevasses d ep th  estim ations

As mentioned before the quantification of water-filled crevasse depths is im portant 

for calving models, therefore in this section the water reflectance model was ap­

plied to the CASI scenes from the previous section. For this purpose, the surface 

reflectance from the pixels tha t fall within the water classification in Figure 7.11 

was selected (Figure 7.12); once more the surface reflectance is used as input to 

the water reflectance model to derive water depth. The set of the input param eters 

chosen for this example are taken from Table 7.2, selecting the ones derived for the 

CASI image 4 July 2007, since it is the same one used in the current section (g =

0.1284 ±  0.03; A d =  0.3273 ±  0.0208; R x  =  0.08 ±  0.01).
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Figure 7.12: Surface reflectance distribution of all the water pixels detected by the 
ratio classification approach from Figure 7.11.

Figure 7.13 shows the distribution of the depth of water in crevasses Helheim glacier. 

The values of each pixel are the median of the depths generated from the Monte 

Carlo simulation, as previously (Chapter 5). Notice tha t around 39% of the pixels 

fall within depth values greater than zero, which means they are out of the water 

area domain. T hat is a big proportion of the total number of pixels, reducing
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considerably the water covered area percentage estim ated previously; reducing th a t 

percentage of the to tal area to almost 0.1 %. This result could be caused by various 

factors;

1. The set of parameters used to derived crevasse depth are not adequate for this 

purpose, because they underestim ate crevasse area and hence depth, since it 

is proportional to the reflectance.

2. The ratio water classification made does not reflect realistically the water 

stored on the surface of the glacier, i.e. another ratio needs to be chosen in 

order to meet this.

3. W ater in crevasses cannot be detected from optical sensors as in the case of 

lakes, because the geometry of the crevasses is completely random, with spikes 

of ice combined with very deep parts. The sharp crevasse walls influence in 

the returning signal, therefore distorting the true water reflectance given by 

the sensor. The shadowing effect will be discussed in Chapter 8).

Prom the previous scenarios th a t could cause the positive depth values, scenario two 

would be the first to be dismissed, because when selecting the most appropriate ra­

tio (R6/R1), an underestim ation of the water pixels was made, because if not many 

new pixels free of water would appear as water. Therefore, the final pixels are with 

high probability inside the water area domain.

Despite the uncertainties on the water-filled crevasses depth estimates, it is still in­

teresting to calculate the to tal volume of water stored through the glacier front of 

Helheim. For th a t purpose the pixels with positive depth values in Figure 7.13 were 

excluded. The total volume for the area 694.88 km2 (61% of the to tal area derived 

from the ratio method) is 10.77xl06 ±  2.70xl06 m3. The relative error is around 27%.

The uncertainties of the depth estimates derived from the Monte Carlo simulation 

are calculated from half of the IQR for each median depth value. Figure 7.14 shows
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Figure 7.13: Depth distribution of all the CASI pixels from Figure 7.12. Notice that 
there 9.344 pixels («  39% of the to ta l)that give positive depths, which were removed 
from the analysis.

how the error in depth estimates increases as depth increases, which has been already 

reported (Hedley and Mumby, 2003). It is interesting how the relationship between 

depth estim ates and errors changes; it seems that there is an inflexion point where 

the relationship changes. Until 15 m deep the error increases exponentially with 

depth: for deeper values the points scatter around the plot, still with a positive rela­

tionship but the exponential curve disappears. Does the model behave different for 

deeper lakes? Is there an inflexion point after which the relationship between depth 

and reflectance ceases being exponential? It is known that the water reflectance 

models, like the one used in the current study are limited to shallow waters. If that 

is the case and tha t value is 15 m like in Figure 7.14, that would imply tha t the 

water reflectance model is not applicable to crevasses. Further discussion is provided 

in C hapter 8.
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Figure 7.14: Uncertainty in depth estimates versus crevasses depth for all the pixels 
tha t give z < 0 in Figure 7.13.
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7.4 Chapter summary

In the current chapter the water reflectance model was used for the first time to 

derive water-filled crevasse depth. For this purpose a hyperspectral satellite was 

used (CASI), with a spatial resolution of 10x10 m. To validate the results obtained 

from CASI dataset, Landsat 7 was used. The reason for choosing this sensor was 

th a t Sneed and Hamilton (2011) validated depth estimates from Landsat 7 with in 

situ  measurements. To sum up, in situ  measurements were used to validate Landsat 

7 depth values over the lake in Figure 7.1 for the year 2008; Landsat 7 for 2008 

was compared w ith Landsat scene of 2007; finally CASI data  was compared with 

Landsat 7 for 2007.

The differences between Landsat 7 depth estimates and CASI shown in Figure 7.7 

could be explained either by the differences in the measurement of water reflectance 

from both sensors and the different atmospheric correction methods used (Figure 

7.6) or by at the evolution of the lake, from the early stages where it was growing, 

when it started  draining and when it was drained. Nevertheless, a full bathym etry 

profile of the lake would be needed to contrast these results and from Sneed and 

Hamilton (2011) only two data  points were available, and none of them represented 

the deepest point of the lake.

The second m ajor result from this chapter was the water quantification derived from 

CASI da ta  using a band ratio algorithm. This is a novel result and could contribute 

towards the improvement of current calving models (Cook et al., 2012; Nick et al., 

2010; Otero et al., 2010). The current estimations predict th a t less than 0.2% of 

the to tal area of Helheim is covered with water, which does not seem significantly 

crucial for calving processes. However, further analysis of water-filled crevasses dis- 

trubution across Helheim could provide useful information about water presence at 

the calving front, where calving events occurr. This analysis will be presented in 

Chapter 8.
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The last section of this chapter corresponded with water filled crevasses depth esti­

mations. The results obtained there are not conclusive, because the model predicts 

no water where water is visible. Moreover, crevasse geometry is not like th a t of 

supra-glacial lakes; crevasses present almost vertical walls and the bottom  is not ho­

mogeneous, it could present water crystals from melt or ice spikes th a t will interfere 

in the surface reflectance values, making the satellite signal to  have multiple refrac­

tions. Even more, the depth on the crevasses might be deeper than  the maximum 

perm itted by the water reflectance models, which were developed for shallow waters. 

Despite all this uncertainties, there is no doubt th a t the use of CASI hyperspectral 

da ta  for water quantification across Helheim could be a big step forward for the 

better understanding of its influence on calving events.
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Chapter 8

Discussion

8.1 Introduction

In this chapter a general view of the different sources of limitations derived from the 

results chapters are introduced and discussed.

Firstly the water reflectance model performance is presented (Section 8.2). The 

main limitation found from the water reflectance model is th a t it tends to under­

estim ate water depths of shallow lakes in comparison with ICESat dataset, which 

was used as the reference depth. Due to these differences in depth estimates, further 

investigation about how representative ICESat is for this purpose is needed. The use 

of ASTER water reflectance as an input to the model highlighted the importance 

of the choice of the physical parameters (Chapter 5). The derivation of A<* (bottom  

albedo) in C hapter 5 is analysed and compared with reflectance values of empty 

lakes found in some ASTER (Section 8.5). However, these reflectance values of 

empty lakes cannot directly be compared with Ad obtained for the water reflectance 

model, because of the different times of the drainage events for each lake, which will 

effect the spectral characteristics of the substrate.
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For the estim ation of the uncertainties a Monte Carlo simulation was applied. This 

proved to be an useful tool for this purpose, because it takes into account the in­

fluence of each of the param eters in the model in a way th a t can be tuned. Section 

8.3 presents further analysis of the Monte Carlo performance.

In Section 8.4 the potential uncertainties th a t could influence the water reflectance 

model are listed. Starting from ICESat as a depth validation tool; then how the wa­

ter reflectance and the param eters could be limiting the model to a certain critical 

depth; followed by how the input param eters add uncertainties to depth calcula­

tions; and finally how these uncertainties influence on the to tal volume estimates.

Section 8.5 introduces a phenomenon th a t is not yet well understood; this is the 

dark zone th a t appears in the ablation area in the south west of the GrIS during the 

late melt season, causing a remarkable decrease in surface reflectance. The striking 

finding is th a t over the areas where supra-glacial lakes formed previously and then 

partially or totally drained, the dark ice does not appear, leaving the ice previously 

water covered, with reflectance values similar to fresh snow. The implications of 

this dark zone over the depth estimates from optical imagery is discussed.

In Section 8.6 the volume estimations are compared with previously published es­

timations. Further analysis of the potential relationship between volume and area 

introduced in C hapter 6 is included here. The results showed in th a t chapter could 

help in understanding the limitations of remote sensing for a quantification of water 

stored on the surface of the GrIS.

The estimation of the depth of water-filled crevasses from remote sensing is also 

discussed in this chapter, taking into account the expected geometry of a crevasse 

in comparison w ith a lake. This discussion can be found in Section 8.7.
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Finally, Section 8.8 discusses the glaciological implications tha t this thesis could 

have for future studies.

8.2 Further justification of satellite choice for the  

water reflectance model

8.2.1 Resolution effects

Previous studies of supra-glacial lakes on the GrIS have showed tha t MODIS imagery 

can be a valid da ta  source for lake detection and area measurement. Furthermore, 

due to the high tem poral resolution, it is possible to  monitor the evolution of lake 

area during each melt season; also as lakes form in the same position each year, 

it is possible to monitor interannual variations of lake area (Liang et al., 2012; 

Selmes et al., 2011; Sundal et al., 2009). Despite this, from Figure 8.1 MODIS is 

not adequate for a detailed lake perimeter identification, due to it coarse spatial 

resolution. The importance of accurately determined area for volume measurement 

is discussed in Section 8.4.

Masking the ASTER scene from lake 2 (Figure 8.1 (2a)) with the seven pixels of the 

corresponding MODIS scene (Figure 8.1 (2b)), a distribution of the reflectance val­

ues of ASTER falling within each MODIS pixel was produced (Figure 8.2). There 

is no clear probability distribution, although the wide range of ASTER reflectance 

within each MODIS pixel is interesting. This range could come not only from ice 

but also from both  shallow and deep water. It could also be th a t as ASTER has 

higher resolution, it will resolve better the water and lake bottom  characteristics: 

for example reflectance could be lowered if a patch of cryoconite appeared within a 

particular pixel. Figure 8.2 shows the m ajor implication th a t these results will have 

in the depth estimations. Further discussion about what can influence the satellite 

reflectance at the surface will appear later in this chapter (Section 8.4).
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Figure 8.1: Example of two lakes (1 and 2 in the figure) where the pixel reflectance 
is compared for ASTER and MODIS; (a) corresponds with the surface water re­
flectance for the ASTER scene (15 by 15 m); (b) corresponds to the MODIS re­
flectance applying the region of interest of the ASTER image to the MODIS (250 
by 250 m).

The main conclusion tha t can be made from this is that, firstly ASTER spatial 

resolution is more precise for lake perimeter specification and for a more accurate 

depth derivation because there are fewer mixed pixels than in MODIS. The differing 

spectral characteristics of the two satellites is shown in Figure 8.3, where the surface 

reflectance along a transect of the ablation area in south west of the GrIS is plotted 

for both satellites. The narrower values of reflectance given by MODIS were already 

introduced in Chapter 6, where ASTER and MODIS lake volumes were calculated.

MODIS maximum reflectance value for the transect in Figure 8.3 is 0.815 whereas 

ASTER's is 0.999; whereas the minimum value is 0.533 and 0.481 respectively (Fig-
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Figure 8.2: Histograms showing the water reflectance distribution of the ASTER 
pixels (Figure 8.1(2)) masked with each of the seven MODIS pixels.

are 8.4). The maximum reached by MODIS does not mean tha t is the maximum 

value detectable by the satellite; taking a transect around the centre of the ice sheet 

from the same MODIS scene the reflectance is around 0.980. Once again it is likely 

the varied surface types of the ablation zone are mixed, making the reflectance val­

ues less extreme. Figure 8.2 also shows that in the south west Greenland a dark 

zone appears, in comparison with the centre of the ice sheet. A thorough discussion 

about the dark zone will appear later in the current chapter (Section 8.5).
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Figure 8.3: Snapshots of an ASTER band 1 (above) and a MODIS band 4 (below) 
images. Both scenes were taken on the 11 July 2005 at 15:10 UTG (MODIS) and 
15:11:45 (ASTER) UTC . The red and green lines across the scenes correspond with 
the location of the transect profiles shown in the graphs for ASTER and MODIS 
respectively, which show the surface reflectance along the profiles.
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Figure 8.4: Distribution of the reflectance corresponding to  the transects from Figure
8.3. Note the lower range of MODIS (red) da ta  in comparison with ASTER (blue).

8.2.2 L im itations of d a ta  availability

ASTER optical imagery is a useful dataset for lake depth estimations (Chapter 5), 

but due to the infrequent measurements only for specific locations and dates. Both 

ASTER and Landsat are carried by satellites with orbital repeat cycles of 16 days. 

However, ASTER can modify the direction of view, in contrast to MODIS and Land- 

sat, which cannot modify their look-angle; therefore observations with ASTER could 

in theory be made more frequently, even every three days. Nevertheless, ASTER is 

operated “on demand" so data  archives are limited to previously requested data, so 

in reality data availability is very sparse.

On the other hand MODIS is good for repeated area measurements but not for 

depth estimations or for an precise lake perimeter determination. MODIS has a 

wider swath than ASTER (2,330 km vs. 60 km), meaning that MODIS can image a 

site daily. In the area of interest of the current study, i.e. in polar regions, MODIS 

can image several times per day due to the convergence of the satellites' orbital paths

■ ASTER 
n  MODIS

Reflectance
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(Terra and Aqua). This wide swath acquisition method permits global data collec­

tion, hence frequent repeated data  is available from the archives. Various studies 

have made used of the high tem poral resolution of MODIS to monitor supra-glacial 

lakes over time: Liang et al. (2012), Selmes et al. (2011) and Sundal et al. (2009) 

developed autom ated models for lake detection based on MODIS observations.

To sum up, ASTER can be applied for depth-volume estimates whereas with MODIS 

an extended time series can be produced, therefore time series of depths are not yet 

viable with the currently available data. As an example, Figure 8.20 (Section 8.5.1) 

shows the area evolution of a particular lake during a period of around hundred 

days; it shows more than  th irty  MODIS observations against two from ASTER. 

This means tha t even if it was possible to accurately quantify the volume of water 

for those two ASTER observations, in this particular example the maximum area 

extent would be missed using ASTER data. Hence as a future reference, for next 

generation sensors a compromise between time series and accurate volume estimates 

could be achieved. Figure 8.5 shows how lake area from ASTER scenes used in the 

current study (Chapter 6) do not show the maximum area extent as recorded for 

the same year from repeated MODIS observations (pers. comm N. Selmes, 2011). 

From the seven sampled lakes, six show ,as expected, how ASTER observations do 

not represent the maximum lake area. One lake shows th a t the ASTER derived 

area was bigger than tha t obtained from MODIS; looking at the table in Figure 8.5, 

there is only one day separating the ASTER and MODIS observations. This area 

difference between ASTER and MODIS might be due to  the different approaches 

used for both  MODIS and ASTER area determination. MODIS area is derived by 

spectral classifications ratio methods, whereas ASTER area is determined by the 

pixels th a t give positive depth values after applying the water reflectance model, 

which are physically incoherent.

Because there is still no satellite th a t can both produce accurate depth measure­

ments a t the same time as repeated observations, some studies used an assumed
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Figure 8.5: Comparison of lake area for ASTER and MODIS. ASTER areas are 
derived from the scenes available for depth derivations. MODIS areas are from the 
same year as ASTER but for the maximum detected area from MODIS (pers. comm 
N. Selmes, 2011). The right side table shows the dates for both ASTER and MODIS 
observation and also the difference in area of ASTER with respect to the maximum 
extend given by MODIS, presented in percentage.

depth-area relationship to derive lake depth and hence volume. Various studies fol­

lowed the assumption of a conical shape lake with 100:1 diam eter-depth relationship 

(Krawczynski et al., 2009; Leeson et al., 2012). The area from ASTER observations 

of forty lakes was plotted against the maximum lake depths, calculated earlier in 

the current study (Chapter 6), and is shown Figure 8.6. This figure shows several 

candidate fits to these data  and all of these fits give high residuals (SSE). The resid­

uals from each of the fits are almost identical, diverging at the extreme values, and 

no clear relationship is apparent. The correlation between lake area and depth (red 

dots in Figure 8.6) is 0.631. which is not a strong correlation. If the most extreme 

two points on the right side of Figure 8.6 are excluded as outliers, then the correla­

tion of the new sample is even lower. 0.386. From these results it can be concluded 

that lake area is a poor proxy for volume and that depth estimation is necessary for 

accurate volume quantification. In Section 8.6 further discussion of the potential 

area-relationship will be presented, analysing previous studies approaches.
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Figure 8.6: Lake area plotted against maximum estim ated depth; error bars for 
depth estim ates are shown in blue, area uncertainties too small to plot at this scale. 
The colour lines correspond with three sample fitting models; note tha t both the RJ 
and SSE are almost identical for the three models. The bottom  graph corresponds 
with the residuals for each model; the residuals only vary between models at extreme 
depth values, where they diverge.

8.3 Perform ance o f M onte Carlo op tim isation

The Monte Carlo simulation was used in Chapter 5 to obtain a robust depth un­

certainty estimations based on the water reflectance model and using the absolute 

errors of each of the input parameters as an input. There a minimisation model 

was applied, which objective was to minimise the difference in depth between ICE- 

Sat depths ( “true” depths) and the depths from the water reflectance model for 

ASTER observations. The minimisation model worked by varying randomly the 

input param eters within their error range and assuming either a Box or a Gaussian 

distribution.
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Figure 8.7: Profiles from the ten best iterations of the minimisation mode from one 
of the lakes used in Chapter 5. Profiles with the smallest SSE are ranked highest. 
The red dots and line correspond with the best profile giving the smallest residuals.

The minimisation model ranks each iteration according to the minimum residuals 

(SSE). To dem onstrate the suitability of the Monte Carlo approach Figure 8.7 shows 

the best ten minimisation solutions from the Monte Carlo approach for one of the 

lakes used in the current study (Chapter 5). In th a t figure the red line corresponds 

with the best profile, and hence with the equivalent chosen profiles for all the lakes 

in the study. Further statistical analysis is shown in Table 8.1, where the Sum 

Squared Error (SSE =  Z j c E S a t  ~  Z m o d e l)2) ls shown for the first ten best profiles. 

The best profile presents SSE=6.62 m and from then the subsequent value is almost 

double the first one. The tenth SSE= 107.50 m. which is more than ten times big­

ger than  the best profile. These results clearly show the effectiveness of the Monte 

Carlo approach for minimisation. In the next subsection the variation of the input 

param eters in the Monte Carlo simulation is shown.
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Table 8.1: Table summarising the root Sum of Squared Error (SSE) for the profiles 
plotted in Figure 8.7.

Best profiles order SSE (m)

I st 6.62

2nd 10.41

co -i a. 11.99

4  th 14.66

5th 19.15

Qth 26.59

nth 37.91

8th 54.20

9th 76.90

19th 107.50

8.4 W ater reflectance m odel poten tia l uncertain­

ties

The uncertainties derived from the Monte Carlo simulation for the optimisation 

model are one of the main achievements of this thesis. The depth uncertainties 

depend on the absolute errors of each of the input param eters to the water re­

flectance model, i.e. surface reflectance, bed albedo, attenuation coefficient and the 

reflectance of optically deep water. Nevertheless, the overall performance of the 

water reflectance model and of the optimisation model based on ICESat reference 

depths can be further analysed by introducing all the source of uncertainties that 

could have influenced the results obtained in this thesis.
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8.4.1 ICESat elevation measurements as a proxy to lake 

depth

The use of ICESat da ta  as a proxy to lake depth is a novel approach developed in 

this thesis. Previous studies have used ICESat elevation data  to locate and char­

acterise sub-glacial lakes on Antarctica, since the ice surface responds to variations 

in water volume (Pricker et al., 2007). Therefore there are no other studies with 

lake depths from ICESat th a t could be compared with the approach followed in this 

thesis.

ICESat depths have proved to be a useful approach for this thesis, taking into ac­

count the uncertainties of the technique. In Chapter 4 a 0.65 m vertical uncertainty 

was given to ICESat depth measurements, obtained from the vertical resolution of 

ICESat laser, 0.15 m (Pricker et al., 2005b; Siegfried et al., 2011), plus 0.5 m of 

uncertainty assigned to the depth estimation from ICESat elevations. Only ICE­

Sat da ta  from the same year as ASTER observations were used, which limited the 

number of lakes th a t could be studied. This da ta  shortage was increased by the fact 

tha t ICESat measurements needed to be made when lakes were empty.

There is one issue tha t should have been take into account if ICESat da ta  had been 

used for inter-annual variations, this is the fluctuations in rates of snow accumula­

tion and ablation, which is reported to be between 1 to 2 m for this region of the ice 

sheet (Box et al., 2006). This rate of changes was assumed for McMillan et a l (2007) 

because they were studying the seasonal variation of lakes using airborne LIDAR. 

For this thesis th a t is not necessary because depths derived from ICESat are relative, 

even if the lake is covered with snow during the ICESat spring campaign, the depth 

of the lake is calculated relative to the lake margin, therefore assuming equal snow 

thickness for both  margin and lake bed, it can be assumed no uncertainty derived 

from this fact.
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The effects of firn densification over ice sheet mass balance calculations has been 

widely reported (Cuffey, 2001; A rthern and W ingham, 1998). Nevertheless different 

firn densification models (McConnell et al., 2000; Reeh, 2008; Wingham, 2000; Al­

ley, 1987) can be applied to account for this effect densification, where they consider 

ice and snow densities separated to compute volume changes (Slobbe et a l , 2009) 

derived from ICESat data. For this thesis uncertainties due to firn densification 

are unlikely to have influence because there were not any interannual comparison of 

ICESat measurements, therefore no firn correction was applied.

As mention before, the main ICESat uncertainty results from depth determination, 

especially from margin location; this is due to the sparse footprint separation around 

172 m. This prevents from an exact margin location. Future laser satellites could 

overcome this by decreasing footprint separation. Also even if ICESat track density 

was higher in the thesis study area due to orbit convergence at the poles, because 

lakes area is insignificant in comparison with ICESat track separation, which is 

around 30 km in south Greenland (S0rensen et al., 2011), the probability of an ICE­

Sat track crossing an empty lake over the middle is low.

8.4.2 D epth limit of the model

Before applying the water reflectance model, one of the assumptions was tha t the 

model would be depth limited, because the passive methods are limited to shallow 

waters; the true bottom  cannot be detected in > 15 m of water (Stumpf et al., 2003). 

This shows a fundamental lim itation of depth estimation by optical systems, regard­

less of method. In this section th a t maximum depth limit will be tested for ASTER 

scenes and the water reflectance model used in Chapter 5. Depth is estim ated for 

a set of reflectance values spaced uniformly from 0.01 to 1. These reflectance val­

ues are theoretical; for the water reflectance model used in this thesis the set of 

param eters used had a reflectance of optically deep water (Rqo) was 0.099. If this
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Roc was used for the theoretical reflectance values, the physical assumption would 

be violated; it is not possible to get reflectance values lower than the optically deep 

water reflectance. Therefore since this is a theoretical test, was set to 0.001, so 

it is smaller than the theoretical surface reflectance.

Figure 8.8 shows the resultant curve of depth vs. water surface reflectance. The 

maximum depth value was around 25 m. The depth is also limited in the lower 

part, since Ru, must be <  to the bed albedo, otherwise the model will give positive 

values, which is not physically possible. It is worth noticing tha t bellow 5 m deep, 

the depth curve increases in depth very fast, even if the reflectance range of changes 

is less than  0.1; before tha t from 0-5 m deep the range in reflectance varies from 1-0.1.

-25

-30 -

Z vs. R assuming a Box distribution of input parameters

-35
0 0.1 0.2 0.3  0.4  0.5 0.6 0.7 0.8 0.9 1

Reflectance
Figure 8.8; Median of lake depths derived from the water reflectance model against 
water reflectance values. The red dotted lines correspond with the depth uncer­
tainties. These results were from the set of parameters derived from Chapter 5, 
although Roc value was changed to be smaller than 0.01 so the model could be run 
for a bigger range of R i().
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From these results it can be concluded th a t the water reflectance model, even if it is 

limited to shallow waters, is not limiting the results obtained in the current thesis. 

This can be said w ith confidence as all observed depths were within the optimal 

shallower pat of the curve shown in Figure 8.8. Therefore the water reflectance is 

what limits the minimisation model, since there are no low enough values of the 

reflectance to give deeper lakes. The limitation of the water reflectance model to 

shallow waters could prevent the application of the model for water-filled crevassed 

depth estimations, which will be discussed in Section 8.7.

8.4.3 Potential uncertainties derived from the input param­

eters

The input param eters used for the water reflectance model (Ad, g and Rqo) obtained 

in Chapter 4 could be compared with other studies (M aritorena et al., 1994; Philpot, 

1989; Georgiou et al., 2009; Sneed and Hamilton, 2011; Tedesco and Steiner, 2011), 

although this is would not be a direct comparison, because the parameters are either 

derived from other satellites or from in situ. Nevertheless later in this chapter the 

results obtained from this thesis will be compared with previous studies (Section 

8.6), including the input parameters (Table 8.6). The questions th a t arise from this 

comparison are: do the differences come from using different satellites even if they 

have the same sensor characteristics or equivalent? or are the differences due to the 

water characteristics and hence the physical param eters are specific for each lake? 

Before the studies are compared, in this subsection a thorough analysis of each of 

the three physical parameters (bed albedo, attenuation coefficient and reflectance of 

optically deep water) is detailed.
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Bed albedo

The prim ary source of error in the water reflectance model is the Ad (Georgiou et al.,

2009); for example Sneed and Hamilton (2007) showed th a t an «  1% decrease in Ad 

resulted in a «  16% decrease in calculated melt-water volume. Therefore the choice 

of the param eter value is very im portant. However, it is also the param eter most 

difficult to  obtain with accuracy. For this thesis the approximation used by Sneed 

and Hamilton (2007) was followed, which as mentioned previously (C hapter 4) was 

done by finding pixels a t the lake’s edge th a t are just barely covered w ith water. At 

780 nm (Band 3 in ASTER) with 10 cm of water covering ice, is approximately 

40% less than the reflectance of ice with no water cover. Searching for adjacent 

pixels th a t show rapid decrease in R^ and then finding the same in Band 1 we can 

arrive at a value for the bottom  albedo. This technique was tested by Tedesco and 

Steiner (2011) where they obtained a 10% difference between the bed albedo ob­

tained as just explained and from in situ measurements, which translates to a depth 

underestim ation of 15.9% for Landsat Band 2 (equivalent to ASTER Band 1).

Another im portant factor ignored in many studies, including this thesis, is the ab­

lation th a t occurs a t the bottom  of the lakes. Ablation will not only can have 

hydrological implications for the ice sheet, but also and more im portantly for this 

thesis, melting at the bottom  could affect estimates of lake depth from optical satel­

lites, because it can alter the reflective properties of the signal (Tedesco et al., 2012). 

It is also possible th a t the bed albedo could vary with time as the melt season ad­

vances; Selmes et al. (2011) concluded th a t this phenomenon could be especially 

im portant for lakes th a t do not drain, which they will have a longer life span and 

hence likely have more melt at the bottom . Since it is not possible to obtain the 

bed albedo from optical imagery without using the approximations described above 

and in the absence of in situ  data, the only thing one can do with the d a ta  available 

is to look at the spectral reflectance of the bottom  albedo for drained or partially 

drained lakes; this will be done in Section 8.5.
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R eflectance of optically deep water

Previous studies showed tha t the images used for depth estimation needed to con­

tain deep-water pixels from the ocean in order to obtain R ^  (Sneed and Hamilton, 

2007), although Georgiou et al (2009) used adjacent scenes along track including 

sea water at a depth greater than 40 m and later on Sneed and Hamilton (2011) 

dem onstrated th a t is not necessary th a t the image used shows deep water. For the 

present study there were no ASTER scenes with pixels from the ocean, therefore 

looking at MODIS scenes for the same date and time as the ASTER, the value of 

Roo was selected from the MODIS image. Nevertheless from the water reflectance 

model and the Monte Carlo simulation, it can be stated th a t this param eter does 

not have a crucial role on depth estimation uncertainty.

Despite the fact th a t the water reflectance model is not driven by the value of R ^  

- in Chapter 5 was shown how broad the range of it was and how little the depth 

varied with those variations - it is still one of the physical param eters governing the 

water reflectance model. Therefore in order to minimise the uncertainties due to 

these parameters it wouid be preferable if a more rigorous technique were available 

to future studies to determine Roo values. This would not only reduce the depth 

uncertainties, but would allow the use of satellite observations tha t do not contain 

deep water; or if in situ  measurements are taken there would not be a need to use 

satellite values of Roo- As an example, Tedesco and Steiner (2011) measured in situ  

multispectral (surface leaving reflectance values) and bathym etry (water depths) 

data  and tested the procedure followed by Sneed and Hamilton (2007). F itting  an 

exponential decay of the surface leaving reflectance with water depth, they obtained 

a fitted set of param eters (A^, g and Roo)- The results are shown in Figure 8.9, 

which stresses the importance of in situ  measurements for the validation of the pa­

rameters derived from optical satellites, like in the present study.
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Figure 8.9: In situ  measured surface water reflectance vs. lake depth for Landsat 
Band 1 (450-550 mu), Band 2 (520-600 inn) and Band 3 (630-690 11111). The fit­
ting equation used for the graph is R = R 00+ (A c/-R00)exp(-gz) (Figure modified from 
Tedesco and Steiner (2011)).

Specific a t te n u a t io n  coefficien t

The last physical param eter is g. which was obtained based on studies of optically 

clear water (Smith and Baker, 1981), where g has a value for each 10 nm wavelength 

interval (Chapter 4). For this study the mean value of all the intervals within the 

selected band was taken. This assumption could lead to uncertainties, as presented 

bv Georgiou et al. (2009) where they showed that the averaging lead to an uncer­

tainty of 9.5% in the derived depth. To overcome this effect when applying the 

Monte Carlo simulation, g was allowed to vary within a maximum and minimum 

value corresponding to the spectral band used. Nevertheless, there is another factor 

tha t can lead to further uncertainty, g was estim ated assuming tha t the param eter a  

~  2, where g ~  q I \(/. This assumption can lead to an underestim ation of the actual 

attenuation (Tedesco and Steiner, 2011; M aritorena et al., 1994), which implies an
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overestimation of depth. Tedesco and Steiner (2011) obtained in situ d a ta  and they 

obtained a 15% diference between the observed a  values and those from literature.

Apart from the use of ground-truth measurements to improve the water reflectance 

model - like shown by Tedesco and Steiner (2011) - the attenuation coefficient could 

be further refined with the application of a semi-analytical model like the one pro­

posed by Lee et al. (1999), where they developed an inversion method to estimate 

bottom  depth from the optical properties of water for different water characteristics. 

Also if the water column diffuse attenuation coefficient was known from field obser­

vations for each spectral band and the water depth were measured independently, 

the surface reflectance of the submerged substrate could be estimated, hence allow­

ing a spectral classification of the lake (Hedley and Mumby, 2003), which would 

improve the present spectral classification of water in supra-glacial lakes.

8.4.4 Influence of area uncertainty on the estim ation o f the 

volume of water

In Chapter 6, lake volume estimates were shown together with their uncertainties. 

As a reminder, the volume uncertainties were derived using the propagation of er­

rors approach (Sanchez del Rio, 1989) taking only into account depth uncertainties, 

which were obtained from the Monte Carlos simulation. Area uncertainties derived 

from the pixel size of the satellite (ASTER and MODIS) were consider insignificant 

with respect to depth induced uncertainties, therefore they were not included in the 

volume uncertainties. However the uncertainties derived from the estim ation of lake 

area could be attribu ted  to other factors, which are included in this section.

Previous authors have used several approaches to estimate the error in area calcu­

lations as a result of pixel resolution. Some studies assumed a circular lake area
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equivalent to  the m ean of all the considered lakes and the uncertainty given to tha t 

area was applied to all the lakes’ area uncertainties (Sundal et a l , 2009; McMillan 

et al., 2007). The uncertainties estim ated from this approach were 4% for Sundal 

et a l (2009) and 8-9% for McMillan et a l (2007). Another study combined the 

area of 100 lakes for ASTER and MODIS data  set, giving an area difference of 

1.77% and using the RMSE (0.11 km2) as the area uncertainty per lake, assum­

ing no variation or errors between years (Selmes et a l, 2011). All these approaches 

seem reasonable, although further analysis of the area uncertainties should be made.

In this subsection a new m ethod of area uncertainty is introduced to replace those 

used previously. The technique is as follows; for each lake an autom atic script is 

run, which counts the number of pixels on the lake perimeter. The script counts 

the pixels with a t least one side on the border and also the pixels touching the 

border diagonally. The reason for this approach is tha t it is assumed tha t for each 

pixel at the border of the lake, there will be a ±  half pixel of uncertainty; assuming 

tha t this uncertainty is then taken into account the mixed pixels a t the lake edge. 

This is equivalent to ±  112.5 m2 per pixel at the edge. Table 8.2 shows the results 

obtained from this approach for both lake area and volume for five random lakes 

of the current study. In the table volume uncertainties used previously (Chapter 6) 

are also shown for comparison.

The average area uncertainty is 9.67%, which is of the same order and similar value 

as in previous studies (Selmes et a l , 2011; Sundal et a l , 2009; McMillan et a l, 

2007). For the lake volume, the averaged uncertainty taken from Chapter 6 is 8.54%, 

whereas for the current case is 25.76%, which is one order of magnitude bigger than 

the first case. The averaged dV2 (Table 8.2) is within the range of previous studies 

(see Table 8.4), where the range of volume uncertainty is 20-50%.

From these findings it can be concluded th a t the new area error determination devel-
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Table 8.2: Table showing area and volume uncertainties for five sample lakes of the 
current study. dVi correspond to the uncertainties obtained in Chapter 6 assuming 
no area error; dA and dV2 assuming the error derived assuming ±  half pixel of 
uncertainty as the area uncertainty.

A (x l05m 2) dA (x l05m2) V (x l06m3) dVi (x l06m3) dV 2 (x l06m3)

3.65 0.61 3.64 0.11 0.19

1.56 0.23 2.23 0.05 0.17

6.60 0.41 1.89 0.24 0.81

24.55 1.33 5.99 0.83 1.37

6.10 0.32 2.11 0.23 1.06

oped in this subsection meets the results from previous studies and th a t the previous 

assumption used in Chapter 6 is too optimistic. Therefore th a t approach should be 

rejected for future research and the present one should be used instead. Nevertheless 

for the calculations in Chapter 6, it was considered as a first approach, therefore is 

still taken into account.

In Chapter 6 the errors in the depth estimation for each column of water was consid­

ered independent for the volume uncertainty calculation. As mentioned previously, 

this assumption could substantially underestim ated the error in the volume, there­

fore for future studies it is recommended to consider the errors correlated.

8.5 Reflectance of em pty lakes and the dark zone

Late in the melt season, some lakes drain fully or partially, while others refreeze 

or just overflow on the ice surface. ASTER scenes including partially drained lakes 

were found for the south west Greenland (see Figure 8.10), therefore further inves­

tigation about the spectral characteristics of the bare ice of the empty lakes was
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performed. A striking finding was the values of the surface reflectance over empty 

or semi-empty lakes, in comparison with the surrounding ice. Before analysing tha t 

difference, the values of the lake reflectance after draining are investigated (Figure 

8.11). The identification of lakes th a t had recently drained was very simple because 

the spectral characteristics between the bare ice and the ice outside of the lakes 

are visually very different (Figure 8.19). The pixels previously covered by water 

are much brighter than  the pixels of the surrounding ice and the delim itation of 

the lake margin when it was full of water is very obvious for all the lakes found. 

Applying a mask to pixels outside the bright area, the result is shown in Figure 8.11.
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Figure 8.10: Location map of the partially/fully empty lakes found in south west 
Greenland (red dots) used in this section. The background image corresponds to a 
MODIS band 4 scene.
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Rw (Reflectance of empty lakes)
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Figure 8.11: Example of twelve drained or semi-drained lakes from ASTER Band 1 
scenes. Most of them  are not completely drained, tha t is why there is a grey area 
on most images w ith no data. The images show the value of the surface reflectance 
after drainage.
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The idea was to investigate if there was a pattern  in the reflectance of empty lakes, 

for instance to see if the brightness decreased with the time since the pixels were free 

of water. The m ajority of the lakes in Figure 8.11 tend to show higher reflectance 

where the empty lake had previously been deepest, for example lakes 4, 5, 6, 7, 8 

and 9 in Figure 8.11, but it is not conclusive. Figure 8.12 shows the distribution of 

the reflectance of those lakes and again the pattern  is very random  with no clear 

distribution shape. From the previous figure (Figure 8.11), there can also be noted a 

difference in reflectance between lakes. It is possible tha t this is due to the different 

drainage days, so to analyse this the median of the reflectance for each lake was 

plotted against the number of days since the draining was detected, which can be 

seeing in Figure 8.13.
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Figure 8.12: Histograms showing the distribution of the surface reflectance of the 
twelve lakes from Figure 8.11.
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MODIS scenes where the drainage events can be followed are used to estim ate 

the day of each lake's drainage (Appendix B). Figure 8.13 shows the relationship 

between reflectance of the empty lakes and the days since drainage, with a correlation 

coefficient of -0.475. However, if the last two data  points on that graph are treated 

as outliers and ignored (with number of days since drainage bigger than 26), it 

seems tha t the median of the reflectance decreases as the number of days since 

drainage increases and it presents a correlation coefficient of -0.791. a robust inverse 

relationship. This result could be interpreted as tha t the reflectance at the surface of 

recently drained lakes is very high, of the order of the reflectance of bare ice (around 

0.9-0.99), and as the time passes since the drainage the reflectance values reduce, 

which could perhaps be due to dust accumulation for example. The discussion about 

the dust presence is introduce in the dark zone subsection (Section 8.5.1) . Table 

8.3 summarises the days the ASTER images were taken and the days when based 

on MODIS images, the lake drainage approximately occurred.

0.9

HH

0.7 6 -

0.7 -

0.66
160 6 10 20 26 30

Number of days since the draining was detected

Figure 8.13: Evolution of the median of the reflectance from all the lakes in Figure 
8.12 with the time passed since the drainage was detected. Vertical lines are the 
absolute error of the median (IQR/2), and the horizontal lines is the uncertainty in 
the drainage day selection, due either to the lack of MODIS scenes, or to not very 
clear scenes.
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Table 8.3: Table summarising the dates for the ASTER and MODIS scenes used in 
this section. ASTER images acquisition time in UTC; whereas there is not time for 
the MODIS dates, ra ther drainage is know to  have occurred between two scenes, 
therefore the d a ta  is an approximation.

Lake No A STER image (Em pty lake date) MODIS image (Drainage date)

1 11/08/2008 15:18:25 01/08/2008

2 11/08/2008 15:18:25 01/08/2008

3 11/08/2008 15:18:25 01/08/2008

4 12/08/2005 15:11:32 30/07/2005

5 12/08/2005 15:11:32 30/07/2005

6 12/08/2005 15:11:32 09/08/2005

7 12/08/2005 15:11:32 28/07/2005

8 03/08/2008 16:06:39 15/07/2008

9 03/08/2008 16:06:39 06/07/2008

10 03/08/2008 16:06:39 09/07/2008

11 03/08/2008 16:06:39 07/07/2008

12 03/08/2008 16:06:39 15/07/2008
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8.5.1 T he da rk  zone surround ing  em pty  lakes on th e  SW  of 

G reen land

MODIS and ASTER scenes show a phenomenon tha t is not yet well understood; 

looking at the location map of the empty lakes (Figure 8.10), a shadowed or dark 

area can be noticed on the ablation zone of the west of Greenland. Previous litera­

ture lias already reported the formation of the dark zone (Wientjes and Oerlemans, 

2010: W ientjes et al., 2011: Boggild et al., 2010; Greuell, 2000). This darkening of 

the surface appears to increase as the melt season advances. Figure 8.14 shows the 

temporal evolution of the dark zone for MODIS observations. For a more detailed 

view of the spectral characteristics of this dark zone, a longitudinal transect is drawn 

across the the dark zone for three different melt season dates (Figure 8.15). The 

latitude of the transect is around 67° 50" N and it seems tha t the dark zone is 

concentrated between 49.7°- 48.2° W. The minimum reflectance values of the dark 

zone on the latest scene (purple dots) is around 0.3. which corresponds with Pa­

terson (1994) definition of slightly dirty ice, whereas the surface reflectance of the 

earlier scene in the same location (blue dots) is around 0.8, which is between the 

classification of dry snow and melting snow by Paterson (1994).

20 June (14:50 UTC) 11 July (15:10 UTC) 12 August (15:10 UTC)

Figure 8.14: MODIS band 4 (545-565 11111) snapshots showing the tem poral evolution 
of the dark zone from late June to mid August during the melt season of 2005. The 
coloured lines locate the transverse reflectance profiles plotted in Figure 8.15.
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Figure 8.15: MODIS surface reflectance plotted against longitude for the three dif­
ferent MODIS band 4 scenes from Figure 8.14.

All the studies tha t have investigated this dark zone (Wientjes and Oerlemans, 2010; 

Wientjes et al., 2011; Boggild et al., 2010; Greuell, 2000) agree in the location of 

the dark zone, which is between 64.5°-70.5° N. This dark zone also happens in the 

north east of Greenland, as reported by Boggild et al. (2010), although this section 

focuses on the south west dark zone. The dark zone is thought to appear only dur­

ing the part of the season with intensive melting (July and early August) (Greuell, 

2000). The darkness is believed to appear from outcropping dust layers (Wientjes 

and Oerlemans, 2010), and the increase in melt-water seems to be a result of the 

darkening rather than the cause, as was previously thought (Greuell, 2000). More 

recently, chemistry and sedimentological analysis concluded that the dust originated 

locally (Wientjes et al., 2011).

ASTER scenes can be also used to detect this dark zone; due to its high spatial 

resolution (15 by 15 m) further analysis of the lakes used previously in the empty 

lakes Section (Figure 8.12) is done. Looking at the spectral characteristics of each 

of the lakes between ice outside and inside the empty lake area, striking differences 

are found (Figures 8.16, 8.17, 8.18). Plotting a transverse profile of the reflectance
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Figure 8.16: ASTER snapshots of the lakes from Figure 8.11. The scatter plots on
the right side of each snapshot correspond with the transverse reflectance profile
from the red arrow in the left side (continued overleaf).
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Figure 8.17: ASTER snapshots of the lakes from Figure 8.11. The scatter plots on
the right side of each snapshot correspond with the transverse reflectance profile
from the red arrow in the left side (continued overleaf).
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Figure 8.18: ASTER snapshots of the lakes from Figure 8.11. The scatter plots on
the right side of each snapshot correspond with the transverse reflectance profile
from the red arrow in the left side.
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including pixels from outside and inside of the empty lake, allows us for a better 

visualisation of this phenomenon (Figures 8.16, 8.17, 8.18). In all the cases the 

surrounding lake ice has lower reflectance (lower than 0.8), in comparison with the 

ice inside the empty lake area, which presents a reflectance higher than 0.9. The 

values of the la tter are similar to the expected reflectance values of fresh snow for 

th a t wavelength range (520-600 nm) (Rees, 1993), regardless of time since drainage.

W hat is intriguing is th a t the dark zone defined above is not present on the area 

where the water filled the lakes previously, and comparing consecutive MODIS im­

ages (Appendix B), the high reflectance values in comparison with the dark zone do 

not change significantly. The cause if this is still unknown, and there are not previ­

ous studies th a t report this phenomenon on lakes. Various hypotheses are proposed 

here;

1. The dust from the dark zone gets suspended in the melt-water of the lakes 

and when they drain it washes off the surface.

2. The dust was transported while the lakes were filled and thus the water “pro­

tected” the lake bottom  from the dust, although if this was the case the water 

would contain suspended dust, hence darkening the satellite signal and deep­

ening the depth results from the water reflectance model.

3. The empty lakes contain holes filled with the dust, like the cryoconite holes 

th a t are mostly narrow and vertical. This means the albedo derived from 

nadir-view satellites (like Landsat or ASTER) will bias the reflectance. This 

was reported by Boggild et al. (2010). This effect in the lakes analysed here 

would produce higher reflectance, despite having holes filled with the dust. 

But if this was the case, the lake area would be completely covered in holes, 

and looking at Figures 8.16, 8.17, and 8.18 the area looks very smooth, al­

though the spatial resolution of ASTER would not resolved the holes. Also if 

th a t was the case, we would expect to see holes also outside the lake area, and 

this is not the case and even if they where there, the holes would still be too
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small to resolve.

Figure 8.19 shows in more detail the characteristics of the dark region. It is in­

teresting to  note th a t the region covered with dust presents an almost Gaussian 

distribution of reflectance, with a mean of 0.831 and a median of 0.835 and an IQR 

of 0.043. Figure 8.19 shows the development of the dark zone as the melt season 

advances, which agrees with Greuell (2000), because it can be seen tha t the dark 

zone is not there at the beginning of the melt season, there are patches of dust but 

its maximum extent occurs a t the end of the melting season. It is also interesting 

tha t the distribution of the water reflectance is very homogeneous for the first image 

but for the partially empty one there is a zone of very low reflectance in the centre 

of the lake, even though the water-covered area is quite similar, between 0.9 to  0.7 

km2 (Figure 8.20). The maximum lake area extent for 2005 is around 28/07/2005 

with more than  2.5 km2 covered by water. The dark pixels on the later image 

of 12/08/2005 could be caused by bottom  ablation as reported by Tedesco et al. 

(2012), which would deepen the lake. Another hypothesis is th a t the dust could be 

accumulated at the centre coming from the surrounding lake while it drained.

The key findings from this section are the dark zone appearing during the melt 

season and how the dark pixels do not appear in the former sites of lakes drained 

during the melting period. This means th a t the mechanism with which the dark 

zone develops does not affect the bottom  of the lakes. In other words the water 

covering the lakes could be preventing the dark zone to extend to the bottom  of 

the lakes or is removed by their drainage. If this is caused by the seasonal melting 

and the darkness appears from outcropping dust layers (Wientjes and Oerlemans,

2010), then the bottom  of the lakes should not be influenced by it, and hence there 

would not be any repercussion for the application of the water reflectance model 

on melt lakes. Future field studies should investigate why the dark zone seems not 

to affect areas th a t where previously covered with water, by analysing the spectral 

characteristics of the bottom  before and after the drainage, and the studies should
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be extended for the duration of the melting season.
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Figure 8.19: Figure showing lake 5 from previous graphs in this section. The first 
image on the top correspond to the ASTER image tha t was used as an input for 
the water reflectance model in previous chapters (Chapter 5). On its right there is a 
histogram of a random square of pixels from the snow/ice, with an area of around 1.6 
km2. The second graph from above is the same lake but showing it partially empty, 
the histogram on its right if from the same square area of bare ice covered with dust. 
The two bottom  snapshots show the only the lake area of the previous graphs for a 
deeper look and also on their right the histogram of the lake area reflectance.
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Figure 8.20: Figure showing the area distribution of lake 5 derived from MODIS 
images for 2005 melt season. The blue crosses correspond with the area of the dates 
where the two ASTER scenes from Figure 8.19 were taken (Figure modified from 
Selmes (2011)).

8.6 Com parison w ith  previous studies

the use of remote sensing observations is not a new tool for quantifying the wa­

ter stored in supra-glacial lakes across Greenland, although there are different ap­

proaches for this purpose. In this section different results from previous studies 

will be shown and compared with the results obtained in the current study. The 

differentiation between four types of studies tha t focus on supra-glacial lakes could 

be made for an easier comprehension;

1. Studies attem pting to develop autom ated lake detection to study tem poral 

evolution of its coverage over a large region (Liang et al., 2012; Selmes et a l ,  

2011; Sundal et al., 2009). All of these studies used MODIS observations, 

despite its coarse spatial resolution (250 by 250 m) to measure lake area. The 

fact that supra-glacial lakes form in depressions th a t are linked to the bedrock
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topography, means tha t they form always in the same location and they do not 

are not displaced with ice flow. This facilitates the lake detection algorithms.

2. Studies tha t used optical sensors to derive water lake depth, mainly based 

on Sneed and Hamilton (2007) approach (Sneed and Hamilton, 2011; Tedesco 

and Steiner, 2011; Georgiou et al., 2009), or other model-fitting approaches, 

still based on the exponential decay of surface water reflectance with depth 

(Box and Ski, 2007). Generally these models present a volume quantification 

of water stored based on depth calculations, either in individual lakes or a t a 

catchm ent area scale.

3. Studies th a t monitor the evolution of supra-glacial lakes using satellite imagery 

in combination with regional da ta  of accumulation and ablation and also PDD 

(Positive Degree Days) models as a proxy to lake depth (McMillan et al., 2007) 

or Digital Elevation Models (DEMs) as a proxy for depth (Luthje et a/., 2006; 

Leeson et al., 2012).

4. Studies based on in situ  observations (Echelmeyer et al., 1991) of lake forma­

tion or drainage events monitored with GPS or other equipment (Das et al., 

2008).

Prom the studies mentioned above Table 8.4 summarises the results obtained for 

each of them, including area, volume and /o r maximum depth estimations. Unless 

otherwise specified, all the results are from the south west Greenland, which is the 

same location this thesis covered for the application of the water-reflectance model. 

It is worth noting th a t the m ajority of the studies do not include uncertainties in 

the estimates, which are necessary for the development of any model and for a sta­

tistical analysis. Since each study gives results for specific lakes, direct comparison 

would not be constructive and few of the estimates have been validated with in situ  

measurements. Nevertheless, in this section the relationship between each of the 

three estimates (A, V and z) will be tested.
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The last row in Table 8.4 shows the median and IQR for the lakes used in this sec­

tion (see Table C .l). Depth values correspond with the deepest pixel for each lake 

and the water reflectance model was applied, using the optimised set of parameters 

obtained in Chapter 5. The median and the IQR are used, since it is not a normal 

distribution and extreme values were excluded. Prom those values it can be seen tha t 

the lakes from this study are uniformly shallow, despite the large area coverage (62.8 

km2) compared with other studies. Which again shows a potential underestim ation 

of lake depth. Nevertheless the results obtained from other studies shown in Table

8.4 vary in one order of magnitude, implying th a t lakes across Greenland vary in 

shape and size, hence for an accurate between studies, same lakes should be studied.

Some studies used area-volume relationships to overcome the lack of validated depth 

estimates. This is the case of Krawczynski et al. (2009), who approximated lake 

volume assuming th a t lakes had a conical shape. They also assumed tha t the di­

ameter and depth follow the aspect ratio 100:1. This assumptions have not yet 

been validated, although other studies have used them  too due to the lake of depth 

estimations. Therefore using Krawczynski et al. (2009) for the studies from Table

8.4 showing estimates of area, volume and depth, the diam eter-depth ratio will be 

tested. Using the formula of the area of a circumference (A =ir r2), the diameter 

value can be worked out (<f> = r/2 ), using A from Table 8.4. Then to estimate the 

depth, the formula of the volume of a cone (V =  (7r r2z)/3) is solved for z, using V 

from Table 8.4. The results are in Table 8.5, where A, V and zmax are from previous 

studies (Table 8.4); whereas (f)Conicai and Zconicai correspond to the results obtained 

using Krawczynski et al (2009) approach. If the assumptions made by Krawczynski 

et a l (2009) are correct, then the 0-z ratio should be 100:1; looking at the last 

column of Table 8.5 it can be seen th a t the obtained aspect ratio for those thirteen 

lakes from previous studies does not meet the expected value. The range goes from 

88:1 to 1436:1, with a median of 203:1; therefore both assumptions of conical lake 

shape and </>-z ratio =  100:1 are not valid for the sample lakes.
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Table 8.4: Table summarising the different lake area and volume reported by previ­
ous studies. The last row corresponds with the results obtained in this thesis using 
the water reflectance model with ASTER data, median and IQR taken from Table 
C.l

Study Specifications A (km2) V (xlO6 m3) zmax (m)

(Selmes e t  al., 2011) Median lake A 0.56±0.01 - -

(Sneed and Hamilton, 2011) Max. z, not necessarily deepest - - 4

(Tedesco and Steiner, 2011) Mean z for MODIS and Landsat - - 2.1±0.92

3.47±0.95

(Georgiou e t  al. , 2009) Max. A /V 3.4 18.6 ±  3.7 9.6±1.0

(Sundal e t  al. , 2009) Max. lake A range (SW, NE, NW) 0.16-0.99 -

(Das e t  al., 2008) Max. lake A /V  extend 5.6 44±10 10

(Box and Ski, 2007) SW 1.8 10.3 12.1

8.5 21.7 4.8

1.8 5.4 5.1

2.2 8.3 8.0

3.3 24.3 11.5

6.8 32.9 10.8

6.5 21.7 6.2

(McMillan e t  al., 2007) Max. lake A /V  modelled 40.6±3.4 157±42 3.9±1.1

13.6± 20±11 1.5±0.7

30.9±2.6 45±21 1.5±0.7

9.6±0.8 14±7 1.5±0.7

(Sneed and Hamilton, 2007) Max. z, not necessarily deepest - - 4

(Liithje e t  al. , 2006) Modelled - - 10.28

(Echelmeyer e t  al., 1991) From in s i t u  observations 10 - 20*

Current study (ASTER data) Water reflectance model 62.8±31.4 1.9±1.4 5.8±1.5

Further investigation was carried out using the lakes from this thesis selected for 

volume estimations (Chapter 6). Figure 8.21 shows the depth results for the lakes 

of this thesis assuming conical shape lakes plotted against the maximum depths 

obtained from the water reflectance model. The comparison is also plotted for the 

lakes from Table 8.5. None of the datasets meet the assumptions of conical shaped 

lakes. Appendix C shows the equivalent Tables C .l and C.2 for the lakes used in 

the current study (Chapter 6). The aspect ratio for this dataset varies from 23:1 to 

1304:1, with a median of 110:1. If it was assumed tha t Krawczynski et a l (2009)
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Table 8.5: Table summarising the different lake area, volume and depth reported 
by previous studies; the last three columns of the table correspond to the diameter, 
depth and diam eter-depth ratio tha t those lakes would have assuming a conical 
shape volume (using A and V from column one and two).

A (km2) V (xlO6 m3) Zmax (ai) 0 conical (m) Zconical (m) 0-z ratio

3.4 18.6 9.6 1954 18.6 105:1

5.6 44 10 2670 23.6 113:1

1.8 10.3 12.1 1514 17.2 88:1

8.5 21.7 4.8 3290 7.7 430:1

1.8 5.4 5.1 1514 9.0 168:1

2.2 8.3 8.0 1674 11.3 148:1

3.3 24.3 11.5 2050 22.1 93:1

6.8 32.9 10.8 2943 14.5 203:1

6.5 21.7 6.2 2877 10.0 287:1

40.6 157 3.9 7190 11.6 620:1

13.6 20 1.5 4161 4.4 943:1

30.9 45 1.5 6272 4.4 1436:1

9.6 14 1.5 3496 4.4 799:1

ratio was and average/median of other values, then the approximation could be 

considered, although taking into account the big grade of uncertainties.

Figure 8.21 presents the regression param eters for both dataset if the relationship 

was Zconicai/ ^estimated- For the da ta  set from Table 8.5, R2 is negative, which is an 

indicator tha t there are not enough observations for the regression (blue dots). In 

the case of the dataset from the current study R2 is 0.48, which indicates a weak 

linear fit.
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Figure 8.21: Depth estimates derived from assuming a conical lake shaped vs. esti­
mated depths; red dots correspond with the lakes used in the current study, whereas 
blue dots correspond with the lakes used in previous studies (Table 8.5). Both linear 
fits correspond to the ideal case where x—y, which is the dash line on the figure.

8.6.1 S um m ary  of th e  w ater reflectance m odel p aram eters  

used in previous studies

Apart from depth, volume or area comparisons with previous studies, the physical 

parameters used for depth derivation drive the accuracy of the estimations as well as 

the uncertainties derived from them. For this reason a summary of previous studies' 

set of parameters is shown in the current subsection (Table 8.6). The last row of 

the table corresponds to the set of parameters obtained for this thesis in Chapter 

5. There are not enough studies that used Sneed and Hamilton (2007) for a robust 

statistical analysis. However with the available data, the correlation coefficients 

can be estimated, to see whether there is any correlation between the parameters 

and their variation with the studies. The correlation coefficients are 0.2575 (A(/-g),
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0.1848 (g-Roo) and 0.6732 (A^-Roo)- Prom these coefficients it can be concluded 

that the first two pairs of param eters are uncorrelated, whereas the last pair shows 

a weak linear correlation. This means th a t of the number of different studies th a t 

are available from Table 8.6, there is not a clear relationship between each set of 

parameters and the variations within studies.

Table 8.6: Table summarising the different input param eters for the water reflectance 
model in previous studies. The last row corresponds with the set of parameters 
derived from the optimisation model using a Monte Carlo approach assuming a box 
distribution of the input param eters (Chapter 5).

Source Methodology Ad g (m b Roo

Georgiou e t  al. (2009) ASTER observations based on 

Sneed and Hamilton (2007)

0.76 ±  0.17 0.206 ±  0.01 0.105 ±  0.035

Tedesco and Steiner (2011) 

(*free fitting parameter 

to equation)

Landsat observations based on 

Sneed and Hamilton (2007)

0.34 ±  0.062 0.21 0.0188*

Sneed and Hamilton (2011) Landsat observations based on 

Sneed and Hamilton (2007)

0.5639 0.1180 0.0380

Current study Monte Carlo approach assuming 

a Box distribution based on 

Sneed and Hamilton (2007)

0.864 ±  0.032 0.222 ±  0.011 0.099 ±  0.002

This section can be synthesised as follows: there is a lack of field studies th a t es­

tim ate lake depth in a regional scale. This fact prevents a more accurate water 

reflectance model. W ith this lack of reliable depth estimates, some studies made 

use of an approximation of area-volume relationship to calculate lake volume from 

just the satellite derived area. As shown above, this assumption would work for the 

results included in this thesis if the ratio was assumed as the median of all the lakes, 

although for previous studies this was not the case. This result stresses the need of 

in situ  depth measurements to improve current models and to get a more adequate 

set of parameters. There is another source of uncertainties th a t should be discussed 

in this section, this is related with scene selection, which is analysed next.
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8.6.2 D ata selection procedure and uncertainties

When looking at previous literature, apart from the results they presented, the data  

sources used was also taken examined. For all the studies from the previous section, 

it was checked whether the same scenes were available in the archive th a t was used 

for this thesis. None of the lakes th a t the previous studies used coincided with the 

lakes th a t this thesis studied owing to the lack of ICESat da ta  for these lakes. How­

ever the same scenes th a t some studies used were found in the archive. Therefore 

those scenes were checked to investigate if with the model developed in this thesis, 

similar results could still be found as in those studies. This is the case of two of the 

ASTER scenes used by Georgiou et al. (2009). They used ten summertime scenes 

recorded by ASTER between 2002 and 2005 to analyse temporal variations of lake 

reflectance. They focused on the evolution of a lake located at 69° 18’ 2” N, 48° 54’ 

31” W.

One of the scenes used is from 2 July 2005 15:17 UTC, and the lake snapshot can be 

seeing in Figure 8.22 (a). W ith the colour composition chosen a significant part of 

the lake appears ice covered and most of the ASTER pixels seem to present mixed 

water-ice. Tracing a rough region of interest following the perimeter of the lake, Fig­

ure 8.22 (b) shows the distribution of the pixels corresponding to lake coverage; more 

than 80% of the pixels show a reflectance higher then 0.878 (for ASTER Band 1). 

Georgiou et a l (2009) used a value of the lake bed reflectance of 0.76±0.17, which 

means all the water pixels with reflectance larger than  th a t of the bed albedo will 

give positive values with the depth equation. Solving the water reflectance model 

for depth using the input parameters given by Georgiou et al. (2009), the results are 

shown in Table 8.6. The depth profile is shown in Figure 8.22 (c), with only 9% of 

the total pixels inside the lake area being represented as water; this gives an area of 

the lake covered by water of 0.18 km2, against the to tal considered lake area with

201



Chapter 8. Discussion

(a)
48°57'0”W

CO

48°55'0"W 48°53’0"W

C  4000
Band 1

S 5 3000

1 Kilometers

--------1-------- 1-------- T
48°57’0”W 48°55'0"W 48°53’0MW

0.4 0.5 0 6  0.7 0.8 0.9 1
Reflectance

(C)

O 30
c
O 40
.2  50 Q_

10020 40 60 80 120 140

-0.5

-1

-1.5 Q- CD
-2 ?

-2.5

-3

-35

-4

Pixel no.

Figure 8.22: Graphs showing one of the lakes used by Georgiou et al. (2009); (a) 
ASTER colour composite snapshot (R:3. G:2, B :l) from 2 July 2005; (b) Histogram 
shows the reflectance distribution of the pixels inside the lake area, which is shown in 
the small snapshot on the top left corner; (c) Depth estimates derived after applying 
the water reflectance model and using the input param eters derived from Georgiou 
et al. (2009).

and without ice, which is 2 km2. Georgiou et al. (2009) estim ated a lake area of 1.9 

km2 for the same lake scene, which means tha t for their lake volume estimations 

they took in account the whole lake, ignoring the fact th a t the m ajority of the pixel 

were covered by ice and the rest could be considered mixed pixels. The maximum 

lake depth is 4 m, which is within the higher range estim ated by Georgiou et al. 

(2009), where the maximum depth was 3.2 ±  1.9 m.
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Despite the results shown in Figure 8.22, which tried to emulate Georgiou et al. 

(2009) results for tha t ASTER scene, those values could be biased. Even more, 

when doing the lake selection for the current study, th a t lake was selected and re­

jected after seen the percentage of ice covered pixels. One of the uncertainties tha t 

can affect not only depth measurements but also an accurate area detection is the 

presence of ice. In the case of depth estimates the ice could bias the reflectance 

values detected by the sensor, therefore underestim ating lake depth, as will increase 

the reflectance of the pixels. Therefore, for future studies, the use of lakes with ice 

present is not recommended, especially if it is almost entirely covered. Nevertheless, 

it might still possible to estimate lake area looking a t Figure 8.22 (a), because at 

the margins the ice from the surroundings of the lake is well differentiated from the 

perimeter of the lake, but without further da ta  it is not possible to determine lake 

depth, nor volume without adding significant uncertainties to the estimations.

Apart from mixed ice-water pixels over a lake, cloud cover is another im portant 

source of depth estimates uncertainties. Another ASTER scene of the same lake as 

above was found in our archive, and th a t scene was also used by Georgiou et al. 

(2009). It is the scene from 12 August 2005, which was the scene th a t study made 

most of their analysis from. The full ASTER scene is shown in Figure 8.23 (image 

on the left). Cloud assessment of satellite imagery is im portant for better image 

selection and higher-level processing. For this reason a cloud classification mask 

algorithm was applied to the ASTER scene (Tonooka, 2008); the result is shown 

in Figure 8.23 (right hand side). The spatial resolution of the mask is quite coarse 

(around 86 by 86 m), in comparison with ASTER scenes (15 by 15 m). Nevertheless 

it is shows a borderline zone where the lake is located; the cloud mask algorithm 

divided the scene into four squares, and the left bottom  corner square corresponds 

with where the lake is. The algorithm estim ated th a t 76% of th a t square is cloud 

covered, whereas the average cloud cover for the whole scene is 82%. These per­

centages seem very high to be ignored, therefore as it was recommeneded for the 

ice-covered lake scene (Figure 8.22), this scene should not be use for lake depth
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estimations, because the clouds could bias the lake reflectance.

48°30’0"W 48°0'0"W 47°30’0"W

5 10 Kilomel

48°0,0”W |  Cloudy |  Uncertain

□  Probably Clear Q  Confident Clear

Figure 8.23: ASTER colour composite snapshot (R:3, G:2, 13:1) from 12 August 
2005 used by Georgiou et al. (2009) to determined the maximum area extend of the 
studied lake, shown inside the red squared (figure on the left); Cloud mask derived 
from an algorithm developed by Tonooka (2008). Note how the lake is on borderline 
area, where the algorithm predicted around half of the pixels to be confident clear 
and other half uncertain/cloudy.

From this section it is concluded that satellite imagery selection should be performed 

more rigorously, and also the potential uncertainties like cloud cover or ice-water 

mixed pixel should be taken into account when estimating area or lake volume.
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8.7 Discussion about crevasse depths derived from 

the water-reflectance model: Is it feasible?

The results obtained in Chapter 7 are further discussed in this section. In tha t 

chapter the high spatial resolution (10 by 10 m) hyperspectral airborne da ta  from 

CASI was used as an input to the water reflectance model and water-filled crevasse 

depth was obtained from it. As previously mentioned knowing the depth of water 

in crevasses is im portant for calving models because they predict th a t calving will 

occur where the depth of surface crevasses equals ice height above sea level (Benn 

et al., 2007). Water-filled crevasses can penetrate cold glaciers within hours or 

days, depending on ice thickness and availability of the surface water (van der Veen, 

2007). Hence in the models for calving to occur, water in crevasses is a prerequisite. 

Krawczynski et al. (2009) calculated th a t lakes with a diameter of 250-800 m and 2-5 

m deep store enough volume of water to drive a water-filled crack to the base of an 

ice sheet of 1 km thickness. They also showed tha t if a crack is water-filled during its 

evolution, then the crack propagation depth is only limited by the volume of water 

available to fill the crack. This is possible for example when the crack is the base of 

a supra-glacial lake. However there are not supra-glacial lakes on the glacier front 

of Helheim, the first group of lakes are around 20 km from the calving front in the 

main flow line. Therefore in the case of calving fronts supra-glacial lakes might not 

play an im portant role in the dynamics of the front, at least directly: if one of these 

lakes drained to the bed, it could contribute to the acceleration of the glacier front. 

This is unlikely since in the case of Helheim there are not many lakes. Moreover, as 

Selmes et a l (2011) reported drainage events on the GrIS are not linked with areas 

where acceleration and retreat have been reported in recent years (Luckman et al., 

2006).

Due to the location of crevasses, it is dangerous to monitor them  with field ob­

servations and satellite images present usually too low spatial resolution to resolve 

crevasses. Also, due to the uneven surface a t the glacier front, optical satellites can
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not accurately differentiate the spectral characteristics of the surface, due mainly to 

shadowing. In shadow areas the radiance detected by the sensor is a small non-zero 

signal, because the to tal radiation signal at the sensor contains a direct (beam) and 

a diffuse (reflected skylight) component (Ritcher and Schapfer, 2012). The shadow­

ing can also occurre when the level of the water in the crevasse is not to  the surface 

level, therefore the reflectance signal is scattered on a vertical wall, similar to the 

shadowing effect. Nevertheless an accurate water depth detection for crevasses is 

necessary for a better refinement of calving models: it has being found th a t mod­

elled calving rate is highly sensitive to changes in crevasse water depths, varying 

from 0 to 10 m (Cook et a l, 2012). It has been reported th a t glacier acceleration 

and retreat could be provoked by fracturing and deepening of crevasses caused by 

the availability of surface melt-water. This feedback increases calving rates (Cook 

et a l, 2012).

In Chapter 7 it was calculated from a water classification approach of C ASI scenes on 

the 25 July 2007, tha t only 0.1% of the to tal area of Helheim front covering around 

20 km length of the glacier from the calving front (see Figure 7.11 from previous 

Chapter). However, since calving events occur at the front, it would be convenient 

to estim ate the water-filled crevasses depth focussing on the calving front. On the 

north side of the Helheim calving front (Figure 8.24 (a) red line) more calving events 

are reported because it is the fastest flowing part of the glacier and also it is con­

nected to the glacier bed so all the water could have drained higher up the glacier 

(pers. comm. T. James, 2012).

Figure 8.24 shows the water depth of the crevasses at the calving front. The maxi­

mum depth is 6.94 ±  1.07 m. The reflectance values vary from 0.073 to 0.419 and 

a mean value of 0.333 ±  0.033.

Looking a t the distribution of crevasse depths at the front, it can be seeing tha t
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Figure 8.24: Close up selection of crevasses on the glacier front of Helheim; (a) 
Landsat band 2 snapshot from Helheim front showing the wideness of the front (6 
km) and the length of the front where water was detected by CASI water classifica­
tion m ethod (4 km); (b) CASI snapshots of the 4 km calving front on the 24 July 
2007 (around 12:00 UTC (Coordinated Universal Time)), the top one is a colour 
composite (R:6, G:4, B :l) and the bottom  one shows in red the pixels that have 
water from the ratio band classification applied in Chapter 7; (c) crevasse depths of 
the calving front from tha t 4 km zone derived using the Monte Carlo approach with 
the water reflectance model.

they are very shallow (Figure 8.25), with a median of 1.18 m. These results do 

not necessarily follow the calving model theory. In Chapter 7 crevasse depths were 

distributed between 0 to 25 m (Figure 7.14, Chapter 7 ) for the whole Helheim 

front area. A question rises from these results, and tha t is whether the water-filled 

crevasses contain more water higher up the glacier and as they get closer to the 

calving front th a t water drains forming cracks through the ice, and since there are
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not supra-glacial lakes at front, those cannot act water storage sources to fill the 

crevasses. The implication could also be th a t because the crevasses are not fihed to 

the surface, optical imagery as CASI hyperspectral signal, would be biased by scat­

tering in the narrow walls of the crevasses. T hat is, crevasses will penetrate to the 

depth at which the net longitudinal stress becomes zero. In the absence of water in 

the crevasses, at this depth the longitudinal tensile stress equals the compressive ice 

overburden pressure (Nick et al., 2010). If the crevasse contains the sufficient water, 

the crevasse could start increasing deepening and once water crevasse propagation 

is started , the growth rate is determined primarily by the amount of water flowing 

into the crevasse (van der Veen. 2007).
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Figure 8.25: Distribution of crevasse depth of water within crevasses at the front of 
Helheim calving front estim ated from CASI hyperspectral dataset (Figure 8.24).

As shown previously the water reflectance model is limited to shallow waters, but 

the depth at which the model stops working varies with the parameters. The model 

will stop being valid when Ru;= R 00, i.e. when the reflectance given at the water 

surface equals the reflectance of optically deep water. Therefore, this is one of 

the reasons why the water reflectance model might not be suitable for water-filled 

crevasse depth estimations. There even if at the calving front the crevasses are very 

shallow following the water reflectance model depth estimates (Figure 8.25) those
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results might an underestim ation of the real crevasse depth a t the glacier front.

There are no field studies in Helheim th a t have water-filled crevasse depth esti­

mates; nevertheless M ottram  and Benn (2009) compared in situ  crevasse depths 

from a glacier in Iceland (Breidamerkurjokul glacier) with crevasse depths derived 

from Nye crevasse model (Nye, 1957) and from the Linear Elastic Fracture Mechan­

ics (LEFM) model (van der Veen, 1998b,a). The models predict crevasse depth of 

maximum 40 m, whereas the field observations from M ottram  and Benn (2009) show 

depths of maximum 20 m, although mainly below 14 m, as shown in Figure 8.26. 

These field results are very similar to the crevasse depth estimations obtained in the 

previous chapter (Chapter 7) based on CASI reflectance and the water reflectance 

model, as shown in Figure 8.27, which is repeated from the previous chapter for a di­

rect visual comparison. M ottram  and Benn (2009) concluded tha t predicted depths 

in both Nye and LEFM models might be closer to actual crevasse depth than esti­

m ated with field observations; this could be due to the fact th a t the measurements 

were minimum depths because the device used was prevented from accessing the 

narrowest and deepest of the crevasses. Also, van der Veen (1998b) proposed tha t 

cracks may penetrate to deeper levels due to the overburden pressure, without the 

fracture a t the surface separating, which would imply th a t optical or field observa­

tions would not account for the depth of tha t crack.

To sum up, field observations are limited not only by the location of the crevasses, 

which is dangerous, but also by the current devices used to measure crevasse depth. 

In terms of the result obtained in Chapter 7, there have been found various limi­

tations to th a t approach. These limitations were mainly due to shadowing, which 

is pronounced around outlet glaciers due to the mountainous areas and with low 

sun angles in late summer observations. In addition, the crevasses are not neces­

sary filled to the top surface, therefore the sensor might be detecting not the water, 

but only narrow ice walls, which would underestim ate the amount of water-filled 

crevasses on the glacier. The bottom  of the crevasse is another source of errors, and
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Figure 8.2(3: Distribution of crevasse depths measured a t Breidamerkurjokul (Mot­
tram  and Benn, 2009)

9000
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Figure 8.27: Depth distribution of all the crevasses depth detected with CASI hyper- 
spectral data. Notice tha t there 9.344 pixels (~  39% of the total) that give positive 
depths, which were removed from the analysis.

tha t is when it can actually be detected by the sensor signal. This might not be 

possible, since the crevasses can present a very uneven bottom. Finally, crevasses 

are not in a constant position from year to year, as supra-glacial lakes are: crevasses

210



Chapter 8. Discussion

move within days, which prevents the use of satellite observations from monitoring 

changes in depth of crevasses with time. Also this movement will deform the geome­

try  of the crevasse. Prom all of these limitations, it could be concluded tha t crevasse 

depth determ ination from optical satellites is at the moment not reliable. However, 

the estimates obtained in this thesis are of the range of previously published field 

observation (M ottram  and Benn, 2009), which can potentially be useful for further 

field campaigns of CASI airborne over Helheim or elsewhere.

8.8 Glaciological implications of this thesis

The motivation of this thesis was to test the current methods of estimating lake 

depth on supra-glacial lakes th a t form on the surface of the GrIS. The implications 

of this study on the glaciological community could help clarify the theory developed 

by Zwally et al. (2002a); the so called Zwally effect was thought to be the cause 

of the increased dynamic loss by drainage to the bed, lubricating the glacier and

accelerating it. However, recent studies have dismissed this theory showing the ar-
\

eas with highest mass loss are not areas with highest number of drainage events. 

If further investigation was done, either with field observations or with the launch 

of a satellite th a t met adequate spatial and temporal resolutions, more accurate 

estimates of lake volume could be produced.

The optimisation of the water reflectance model developed in this study was region­

ally up-scale to forty lakes in south west Greenland. These lakes correspond to the 

3% of the total lakes mapped by Selmes et al. (2011), who m apped 1,430 lakes on 

the southwest (south west area from Figure 2.4). Prom this it can be stated th a t the 

regional up-scaled is not significant. Time limitations prevented from a full volume 

estimation of the whole south west area. However, this study could be a first step 

towards a global quantificaiton of the volume stored at catchment area, which could
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add further information to previous studies (Selmes et al., 2011; Leeson et a/., 2012). 

This volume of water could be compared with the location of the lakes with drainage 

events, reported by Selmes et al. (2011). The implication of these findings could be 

applied to further explore the potential link between drainage events and glacier 

dynamics. Since area and volume are somehow related, it would be expected th a t 

in regions with highest lake concentration, the highest am ount of volume would be 

found. Future research could help explain the role of supra-glacial lakes on seasonal 

acceleration and also it could be possible to link lake volume with drainage events 

and hence hydrofracture to the glacier bed, which could dismiss the Zwally effect 

theory.

8.9 Chapter summary

The water reflectance model used in this thesis has been widely used to derive water 

depth across the supra-glacial lakes on the GrIS, specifically in the south west of 

Greenland (Sneed and Hamilton, 2007, 2011; Tedesco and Steiner, 2011; Georgiou 

et al., 2009). One of the aims of this thesis was to test whether an optimised version 

of the water reflectance model could be applied simultaneously in a regional/global 

scale to obtain water depth. The main achievement of this thesis was the inclusion 

of a robust analysis of the model by applying a Monte Carlo simulation (Chapter 4). 

For this purpose ICESat elevation measurements over empty lakes was transformed 

as a reference depth for the optimisation model, as shown in Chapter 5. Throughout 

this section all the factors driving the water reflectance model are discussed. One 

of the main sources of error is the selection of the physical parameters used as an 

input to the water reflectance model; also their uncertainties and the assumptions 

th a t need to be made to be able to compute the model (Chapter 4). In th a t re­

gard the Monte Carlo simulation appeared to be an adequate approach for a better 

understanding and quantification of these uncertainties. Finally the use of ICE­

Sat data as the observed depth for the minimisation and optimisation of the model
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was discussed and what it can be interpreted from the results obtained, since it was 

not possible to generate a global model th a t agrees with the expected measurements.

Further analysis should be done with regard to the dark zone and field observations 

should be taken in consideration to understand the phenomenon. Also more ex­

tended field measurements are needed for a better understanding for the area-volume 

relationship, since at the moment the chosen approximations by Krawczynski et al. 

(2009) are not correct. Another factor to take in consideration in the future is the 

image selection procedure, since it has been proved th a t cloud cover and ice mixed 

pixels can influence in depth estimates cause bias.
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Conclusions and future work

9.1 Summary

In recent years supra-glacial lakes have been in the spotlight of studies interested 

in the mechanisms tha t govern the recent mass loss a t the margins of the GrIS. 

Drainage events to the bed through hydrofractures were thought to enhance glacier 

flow velocities by lubricating the ice sheet bed. Recent studies have shown tha t there 

is not a direct link between drainage to the bed and the recent observed mass losses, 

like in the south west of Greenland. Nevertheless field studies have confirmed how 

melt-water from supra-glacial lakes plays an im portant role in hydrofractures and 

establishing a connection between the surface and bed hydrological systems over 

short time scales; peak velocities of the ice are found to be positively correlated 

with the degree of melting. Therefore supra-glacial lakes are of interest for a better 

understanding of the dynamic response of the GrIS to recent climate change in a 

short term  scale and to the future predicted warming.

The aim of this research was to investigate the performance of current water re­

flectance models applied to optical imagery for melt-water depth/volum e quantifi­

cation. These water reflectance models are based on the Bouguer Lambert Beer
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law, which represents the exponential decay of the reflectance at the surface w ith 

water depth. The ASTER sensor was chosen owing to its high spatial resolution, 

which allows for a more accurate lake delimitation and for more precise reflectance 

values th a t minimised the amount of mixed pixels, which bias the reflectance and 

hence depth calculations. A MODIS inventory of lakes across the GrIS developed 

in a previous research (Selmes, 2011) was used to locate the lakes. For the water re­

flectance model three physical param eters were needed as an input; bed albedo (A^), 

attenuation coefficient (g) and reflectance of optically deep water (Roo). Various as­

sumptions had to be made to obtain the parameters using previous approaches. To 

validate the depth estimations from the water reflectance model, ICESat elevation 

measurements were transformed into lake depth when ICESat tracks crossed an 

empty lake. Only eleven lakes were selected for the model validation; this was due 

to the lack of overlapping between ASTER observations and ICESat tracks crossing 

empty lakes over the same year. Further investigation consisted of an optimisation 

model applied to minimise the difference between ICESat and ASTER modelled 

depth profiles. For this purpose a Monte Carlo simulation was applied to the water 

reflectance model, which produced a robust uncertainties analysis of the modelled 

depths.

9.2 Conclusions

•  The optimised model provides an improvement w ith respect to the original 

model, which was based on previous literature. Despite the improvement, the 

difference between the expected depths and the modelled depths is significant, 

especially in the deepest parts of the lakes, where there is a systematic under­

estimation of depth from the model.

•  In order to understand the factors th a t prevent the optimisation model to meet 

ICESat reference depths, different model scenarios were tested. The different
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scenarios give an insight into how the model behaves; from those results a Box 

distribution of the param eters applied to a global model seemed more appro­

priate. One of the objectives of this thesis was to derive an optimised set of 

param eters th a t could be applied elsewhere, in a regional or global scale across 

the GrIS; for th a t a global minimisation model appeared to be more realistic.

•  The param eters tha t govern the water reflectance model together with the 

water reflectance need to be obtained from field observations in higher spatial 

scale than  individual lakes. Moreover, other factors might be influencing depth 

modelled from satellite observations; for example the dark zone introduced in 

Chapter 8, could be causing bias on depth estimations during the time when 

the darkening is present.

•  The Monte Carlo Simulation provides a new method of accurately calculating 

an optimised depth based on the water reflectance model and using ICESat 

depth estimates as reference depths. Taking into account the Monte Carlo- 

derived uncertainties, it is possible to model depths at a regional scale using 

the optimised model.

•  It is possible to accurately determine lake volume from optical imagery, al­

though due to the lack of compromise between spatial-tem poral resolution of 

the current sensors, it is yet not feasible to study the evolution of lake volume 

throughout the melt season. For inter annual variations of volume bathym etry 

field observations could help validating the modelled volumes and hence gain 

a better understanding of the difference in spectral characteristics of lakes, 

since if the bathym etry was known, then the optical signal could entirely be 

attribute to water characteristics and depth.

•  Up-scaling the optimisation model elsewhere in the ice sheet is not recom-
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mended w ithout further research, since water and lake bottom  characteristics 

could vary spatially.

•  The application of the the water reflectance model for the quantification of 

water-filled crevasse depth on Helheim glacier, was a novel approach and there­

fore tested. Crevasse geometry is not like tha t of supra-glacial lakes; crevasses 

present almost vertical walls and the bottom  is not homogeneous, it could pre­

vent water from melt or ice spikes th a t will interfere in the surface reflectance 

values, making the satellite signal have multiple refractions. Even more, the 

depth of the crevasses might be deeper than the maximum perm itted by the 

water reflectance models, which were developed for shallow waters. Despite 

all these uncertainties, there is no doubt th a t the use of CASI hyperspectral 

data  for water quantification across Helheim could be a big step forward for 

the better understanding of its influence on calving events.

9.3 Suggestions for further work

As a future reference, for next generation of sensors a compromise between time 

series and spatial resolution could be useful for accurate volume estimates and tem­

poral variations of the melt-water stored on the ice sheet. Also even if in this thesis 

satellite comparison was mainly focussed on ASTER and MODIS differences, similar 

comparisons could be made between other combinations of high resolution sensors.

The Monte Carlo optimisation model could be applied with field observations, there­

fore the reference depths used in the minimisation model would be precise and hence 

a robust statistical analysis could be achieved once the optimised param eters are 

obtained. If field observations could be made in a catchment scale, then different 

sensors covering th a t catchment during the field season, could be optimised with 

the those in situ  measurements and then a detailed comparison of the performance 

of each satellite could be made.
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Further analysis should be done with regard to the dark zone and field observations 

should be taken in consideration to understand the phenomenon. Also more ex­

tended field measurements are needed for a better understanding for the area-volume 

relationship, since at the moment the chosen approximations by Krawczynski et al. 

(2009) are not correct. Another factor to take in consideration in the future is the 

image selection procedure, since it has been proved tha t cloud cover and ice mixed 

pixels can influence depth estimates causing bias.

The CASI hyperspectral sensor is a potential candidate for further studies over 

lakes and over crevasses. Nevertheless first validation of the geocorrection methods 

is needed, since CASI reflectance was significantly lower than expected. If the geo- 

correction process and the atmospheric correction were reviewed, CASI data  could 

be applied to other glacier fronts where narrower storage of water occurs.

Further studies on water-filled crevasse depth are crucial to better understand the 

dynamics th a t govern calving events, also field observations could make the current 

calving models more realistic.

Recent studies have proved tha t drainage events from lakes are not directly linked 

with the variations in mass balance, although they are linked with the seasonal peaks 

of flow speed up. Both field studies and satellite observations have detected those 

drainage events; however is still not well understood why some of the lakes drain 

and why others do not or why the refreeze instead. Hence there is a need to find the 

factor th a t makes lakes more likely to drain. Quantification of lake volume across 

the GrIS could help finding the trigger of these events, by knowing the distribution 

of water on the ice sheet and how it could influence the draining.
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Lake evolution from M O D IS
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Figure A.l: Figure showing the area distribution of the supra-glacial lake studied 
in Chapter 7. The area distribution was derived from MODIS images for 2007 
melt season. Blue lines correspond with the CASI scenes used to estimate depth 
from the water reflectance model and also lake area derived from is shown. Green 
lines correspond with the Landsat 7 scenes used to estimate depth from the water 
reflectance model and also lake area derived from is shown Figure modified from 
Selmes (2011).
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Appendix A. Lake evolution from  M O D IS

Field measurements 
(Sneed and Hamilton, 2008)
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Figure A.2: Figure showing the area distribution of the supra-glacial lake studied 
in Chapter 7. The area distribution was derived from MODIS images for 2008 melt 
season. The blue line corresponds with the day of the field observations by Sneed 
and Hamilton (2011). The green lines corresponds with the Landsat 7 scenes used 
to estimate depth from the water reflectance model and also lake area derived from 
is shown Figure modified from Selmes (2011).
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Appendix D. Drainage evolution from  M O D IS

Figure B.l: MODIS scenes showing the evolution of the twelve lakes studied in 
Section 8.5 (Chapter 8). The lake number in the graphs corresponds with the 
numbers in Figure 8.11. From these snapshots the day that the lakes drained was 
approximated. Continued in Figures B.2. B.3. B.4, and B.5.
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Appendix D. Drainage evolution from  M O D IS

Figure B.2: Continued Figure B.l. MODIS scenes showing the evolution of the 
twelve lakes studied in Section 8.5 (Chapter 8). The lake number in the graphs 
corresponds with the numbers in Figure 8.11. From these snapshots the day that 
the lakes drained was approximated (continued overleaf).
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Appendix D. Drainage evolution fromi M O D IS

(8)

Figure B.3: Continued Figure B.l. MODIS scenes showing the evolution of the 
twelve lakes studied in Section 8.5 (Chapter 8). The lake number in the graphs 
corresponds with the numbers in Figure 8.11. From these snapshots the day that 
the lakes drained was approximated.
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Appendix D. Drainage evolution from  M O D IS

(10)

Figure B.4: Continued Figure B.l. MODIS scenes showing the evolution of the 
twelve lakes studied in Section 8.5 (Chapter 8). The lake number in the graphs 
corresponds with the numbers in Figure 8.11. From these snapshots the day that 
the lakes drained was approximated.
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Appendix D. Draino,ge evolution from, M O D IS

(12)

Figure B.5: Continued Figure B.l. MODIS scenes showing the evolution of the 
twelve lakes studied in Section 8.5 (Chapter 8). The lake number in the graphs 
corresponds with the numbers in Figure 8.11. From these snapshots the day that 
the lakes drained was approximated.
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Appendix C. Conical ratio

Table C .l: Table summarising the different lake area, volume and depth obtained 
from this study; the last three columns correspond to the diameter, depth and 
diam eter-depth ratio tha t those lakes would have assuming a conical shape volume 
(using A and V from column one and two), following Krawczynski et al. (2009). 
These results were introduced in Section 8.6 (Chapter 8). Continued in Table C.2.

A (km2) V (xlO6 m3) Zm ax  (m) tficonical (m) Zconical (***) 4>-z ratio

98.93 3.87 7.1 1122 11.7 96:1

31.75 0.62 3.8 636 5.8 110:1

51.30 1.54 5.0 808 9.0 90:1

89.01 2.49 4.3 1065 8.4 127:1

19.10 0.21 2.5 493 3.3 152:1

157.32 2.28 3.3 1415 4.4 325:1

17.17 0.36 5.6 468 6.3 74:1

59.56 0.13 1.3 871 0.7 1304:1

52.74 0.79 2.5 819 4.5 183:1

49.52 0.66 4.9 794 4.0 200:1

36.52 3.64 3.7 682 30.0 23:1

15.64 0.22 3.3 446 4.3 104:1

15.84 0.29 3.7 449 5.5 82:1

49.37 0.92 4.3 793 5.6 141:1

32.27 0.76 5.2 641 7.0 91:1

67.57 1.023 3.3 928 4.5 204:1

48.40 0.65 4.0 785 4.0 196:1

105.10 1.95 6.2 1157 5.6 208:1

73.08 3.06 7.7 965 12.6 77:1

29.59 0.89 5.9 614 9.03 68:1

108.79 3.64 5.2 1177 10.0 117:1

62.78 1.66 5.6 894 7.9 113:1
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Appendix C. Conical ratio

Table C.2: Continued Table C .l. Table summarising the different lake area, volume 
and depth obtained from this study; the last three columns correspond to the diame­
ter, depth and diam eter-depth ratio th a t those lakes would have assuming a conical 
shape volume (using A and V from column one and two), following Krawczynski 
et al. (2009). These results were introduced in Section 8.6 (Chapter 8).

A (km2) V (xlO6 m3) Zmax (ni) 0conical (m ) z conical (m ) 4>-z ratio

43.04 1.11 7.1 7403 7.7 96:1

232.52 7.02 6.9 1721 9.1 190:1

128.12 0.66 6.7 1277 1.5 831:1

66.04 1.89 6.2 917 8.6 107:1

62.33 1.90 5.7 891 9.2 97:1

365.56 26.63 12.5 2157 21.9 99:1

114.89 4.53 7.5 1209 11.8 102:1

89.15 3.56 7.7 1065 12.0 89:1

130.03 5.86 8.0 1287 13.5 95:1
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