

 Swansea University E-Theses ___

Interaction and interest management in a scripting language.

Abidin, Sita Zaleha Zainal

 How to cite: ___
Abidin, Sita Zaleha Zainal (2006) Interaction and interest management in a scripting language.. thesis, Swansea

University.

http://cronfa.swan.ac.uk/Record/cronfa42324

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42324
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Interaction and Interest Management
in a Scripting Language

Siti Zaleha Zainal Abidin BSc.(M ichigan) MSc. (Illinois)

A thesis submitted to the University o f Wales in
candidature for the degree of Philosophiae Doctor

Department o f Computer Science
University o f Wales, Swansea

August 2006

ProQuest Number: 10798032

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10798032

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

f U8RARY

Summary
Interaction management is concerned with the protocols that govern interactive activities
among multiple users or agents in networked collaborative environments. Interest manage­
ment is concerned with the relevance-based data filtering in networked collaborative envi­
ronments. The main objective of the former is to structure interactive activities according
to the requirements of the application concerned, while the main objective of the latter is to
provide secured data transmission of a subset of information relevant to each recipient. The
research in these two important aspects of networked software has largely been carried out
in specific application domains such as online meetings, online groupware and online games.

This thesis is concerned with the design and implementation of high-level language con­
structs for interaction and interest management. The work that has been undertaken includes

• an abstract study of interactive activities and data transmission in networked collabo­
rative environments through a large number of variations of the noughts and crosses
game;

• the design Of a set of language constructs for specifying a variety of interaction pro­
tocols;

• the design of a set of language constructs for specifying secured data sharing with
relevance-based filtering;

• the implementation of these language constructs in the form of a major extension
of a scripting language JACIE (Java-based Authoring Language for Collaborative
Interactive Environments);

• the development of two demonstration applications, namely e-leaming on Simula­
tion of Network Trouble Shooting and online Bridge, using the extended JACIE for
demonstrating the technical feasibility and usefulness of the design.

These high-level language constructs support a class of complicated software features in
networked collaborative applications, such as turn management, interaction timing, group
formation, dynamic protocol changes, distributed data sharing, access control, authentica­
tion and information filtering. They enable programmers to implement such features in an
intuitive manner without involving low-level system programming directly, which would
otherwise require the knowledge and skills of experienced network programmers.

Some parts within this thesis have been presented at the IEEE International Symposium
on Multimedia Software Engineering 2004, Miami, Florida, USA. The parts on interaction
management is published in the Elsevier Journal of Network and Computer Applications,
Volume 30, Issue 2, April 2007.

Declaration

This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signedj.............................. (candidate)

Date
O X - l o y I

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is ap­
pended.

Signed (candidate)

Date

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside organi­
sations.

Signed ^ (candidate)

o z / o c f

Acknowledgements
I would like to express my sincere gratitude to both of my supervisors, Professor Min Chen
and Dr. Phil W. Grant for their patient guidance, encouragement and advice they have pro­
vided throughout my PhD program. Without their guidance, this thesis would not have been
possible.

I would like to take this opportunity to thank Universiti Teknologi MARA (UiTM) for their
generosity in funding my study and enable my family to stay with me in the UK. Without
them, my PhD life would be very difficult. Receiving this scholarship also motivates me to
give my very best in achieving my goals. In particular, my appreciation must go to the UiTM
management staff whose confidence and willingness to support has helped me to move for­
ward in many aspects.

I would like to thank all my family members, here or abroad for the moral support. My
special thanks to all my children, Hazirah, Hazmi Afandi and Haidah Dayini, and also to
my husband, Mohamad Zailani. Their patience and sacrifices meant a great deal.

Last but not least, thanks to all my friends in the postgraduate lab and colleagues in UiTM
who constantly give me support and ideas.

To all of these people, I am deeply grateful.

Contents

1 Introduction 1
1.1 Project Background.. 3
1.2 Aims and O bjectives... 6
1.3 Thesis Outline... 7

1.3.1 Chapter 2: Networked Collaborative S ystem s.................................... 7
1.3.2 Chapter 3: Programming Languages and Tools for Developing Net­

worked Applications.. 8
1.3.3 Chapter 4: JACIE Overview and Enhancements................................. 8
1.3.4 Chapter 5: Interaction M anagem ent.. 8
1.3.5 Chapter 6: Interest M anagement.. 9
1.3.6 Chapter 7: JACIE Applications... 9
1.3.7 Chapter 8: C onclusion.. 10
1.3.8 Appendices.. 10

2 Networked Collaborative Systems 11
2.1 Introduction... 11
2.2 Collaborative Environments ... 12

2.2.1 Networked Collaboration... 14
2.2.2 Collaborative Management.. 15

2.2.2.1 Centralised M anagem ent... 15
2.2.2.2 Distributed Management ... 15

2.2.3 Collaborative Applications...■. 17
2.3 Interaction M anagem ent... 19

2.3.1 Control M eth o d s ... 21
2.3.2 Management Strategies.. 22
2.3.3 Implementation T echniques.. 24

2.3.3.1 Database System S u p p o rt... 25
2.3.3.2 Agent System Support... 25
2.3.3.3 Algorithm Based Design ... 26

2.4 Interest M anagem ent.. 26
2.4.1 Data Filtering.. 27

2.4.1.1 Generic Filtering S trategies.. 27
2.4.1.2 Filtering Factors Based on User Interest 30
2.4.1.3 Filtering Implementation ... 32

2.4.2 Access C on tro l... 33

v

CONTENTS vi

2.4.2.1 Access and Security Factors.. 34
2.4.2.2 Management S tra teg ies.. 36
2.4.2.3 Sharing F a c to rs ... 37

3 Programming Languages and Tools for Developing Networked Applications 40
3.1 Introduction... 40
3.2 Network Programming Languages and Tools .. 41

3.2.1 Web Technology... 42
3.2.2 Networked Applications Development.. 43

3.2.2.1 Method of Com m unication.. 44
3.2.2.2 The Challenges .. 46
3.2.2.3 The T echniques... 47
3.2.2.4 The Characteristics ... 49

3.2.3 Java-based Collaborative Framework .. 50
3.2.4 Scripting L anguages... 52

3.3 Interaction Management ... 54
3.3.1 Implementation Tools ... 54

3.3.1.1 Using Software Toolkits.. 55
3.3.1.2 Using Programming Languages.. 55
3.3.1.3 Using Component-Based Approach.................................... 56

3.4 Interest M anagem ent... 56
3.4.1 Filtering Is su e s .. 57
3.4.2 Data S h a rin g ... 57

3.4.2.1 Sharing F a c to rs ... 58
3.4.2.2 Security and Privacy .. 61

4 JACIE Overview and Enhancements 63
4.1 Introduction... 63
4.2 Overview of JACEE... 64
4.3 JACEE Compiler... 65
4.4 Main Features of JACEE ... 67
4.5 Managing Collaboration ... 69
4.6 Race C ond ition ... 73

4.6.1 The C au ses ... 73
4.6.2 The Detection... 74
4.6.3 The S o lu tio n ... 75

4.7 Improvements to the JACIE L anguage... 79
4.7.1 Enhancement of Data T y p e s .. 79
4.7.2 Supporting Code Optimisation... 81
4.7.3 Compilation E rro rs .. 82

4.8 S u m m ary ... 88

5 Interaction Management 89
5.1 Introduction... 89
5.2 Related W o rk ... 90

5.2.1 Interaction P ro toco ls ... 90
5.2.2 Temporal Coordination.. 91

CONTENTS vii

5.3 The Noughts and Crosses Game and Its Variations.. 92
5.3.1 History of the Noughts and C ro sse s .. 92
5.3.2 D efin itions... 93
5.3.3 Traditional Noughts and Crosses.. 96
5.3.4 Summary of Variations.. 97

5.4 Interaction Management in J A C IE ... 100
5.4.1 Round R o b in ..100
5.4.2 C onten tion 103
5.4.3 Reservation ..106
5.4.4 Master ... 107
5.4.5 Tapping... 108
5.4.6 Group Protocols ..109

5.4.6.1 Protocol Group Userdefined..110
5.4.6.2 Protocol Group Roundrobin..110
5.4.6.3 Protocol Group Random.. 110
5.4.6.4 Protocol Group Master r)grPirnem.. 110

5.5 Language Enhancem ents... I l l
5.5.1 The Software Architecture for Managing Collaboration.......................I l l
5.5.2 Additional Tokens and Productions .. 112
5.5.3 Additional Codes and New Java C lasses.................................. 115

5.6 Other Protocol Design Issu es ... 116
5.6.1 Static and Dynamic Interaction Protocol S e ttin g s 116
5.6.2 Timer Im plem entation.. 117

5.6.2.1 Server Based T im e r ...117
5.6.2.2 Client Based T im e r ...119
5.6.2.3 Timer Interrupt ...119

5.7 Summary ... 121

6 Interest Management 123
6.1 Introduction ..123
6.2 Related W o rk ...124

6.2.1 Programming Data Sharing in Distributed S y stem s............................. 124
6.2.2 Interest Management and Filtering M ethods..125
6.2.3 Access Control and Data S ecu rity ..126

6.3 Interest Management in JA C IE .. 127
6.3.1 Shared Variables and A ttrib u tes ...127
6.3.2 Management Framework... 128
6.3.3 Assigning Value to Shared V ariab le .. 132
6.3.4 Access Control and Filtering F ram ew ork ... 133

6.3.4.1 The Access C o n tro l... 135
6.3.4.2 The Filtering..137

6.4 Language Constructs for Interest Management...138
6.4.1 Statement: u s e ... 139
6.4.2 Statement: s e t ... 140
6.4.3 Statement: c h e c k ...141
6.4.4 Statement: f i l t e r and i n t e r e s t s e t ..141

CONTENTS viii

6.5 Language Enhancem ents... 142
6.5.1 Additional Tokens and Productions ... 142
6.5.2 Additional Code and New Java C la s s e s ... 144

6.6 Technical Considerations... 145
6.6.1 Mutual Exclusion...145
6.6.2 Permission List Management.. 146
6.6.3 Access List Management.. 147

6.7 Secret S w itc h .. 147
6.8 S u m m ary .. 153

7 JACIE Applications and Performance Analysis 154
7.1 Introduction... 154
7.2 Bridge G a m e ..155
7.3 Implementation of the Bridge G a m e .. 157

7.3.1 Program Flow and Game Layout..157
7.3.2 Dynamic Protocol Changes... 163

7.3.2.1 Method One: Protocol Round Robin O n l y163
13.2.2 Method Two: Protocol Round Robin and Protocol Master

U s e r ...164
13 .23 Method Three: Protocol Round Robin and Protocol Group 165
7.3.2.4 Summary on the Bridge Game Interaction Protocol Im­

plementations ... 166
7.4 E-leaming on Simulation of Network Trouble Shooting166
7.5 Performance Analysis..177

7.5.1 JACIE vs. Java Translated P ro g ra m ..177
7.5.2 Preliminary User Study on JA C IE ...179
7.5.3 Interaction vs. Transmission Delay ... 184

7.6 S u m m ary .. 186

8 Conclusion 188
8.1 Summary of Contributions.. 189

8.1.1 The Collection of Interaction P ro to co ls ... 189
8.1.2 Interaction Management Implementation .. 189
8.1.3 Interest Management Im plementation...190
8.1.4 Major Language Enhancem ents..191
8.1.5 Demonstration A pplications.. 191
8.1.6 Minor Improvements on the Language and C om piler........................... 191

8.2 Future W ork... 192

A Variations of the Noughts and Crosses Games 194
A.l Five-in-a-line.. 194
A.2 Connect-4 ..194
A.3 Three Stones .. 195
A.4 Hasty B a ttle ... 195
A.5 Vicious B a ttle .. 196
A.6 Gentlemen’s B a t t le ...197
A.7 Dictator’s Entertainm ent... 197

CONTENTS ix

A. 8 First-Come, First S e rv e d ..197
A.9 Opportunity Knocks... 198
A. 10 Secret S w itc h ...198
A. 11 Group G a m es ...199

B Nomenclature 200

C The JACIE II Language Specifications 202
C.l Token Specifications..202
C.2 Syntax Specifications..203

C.2.1 JACIE Program Body... 203
C.2.2 JACIE Configuration Section...204
C.2.3 Message Definition.. 205
C.2.4 Client Implementation and Server Implementation Sections 205
C.2.5 Variable D eclaration... 206
C.2.6 Method Declaration S ta tem en ts .. 206
C.2.7 Basic Statem ents..206
C.2.8 Expression Statem ents.. 207
C.2.9 Control Statem ents.. 207
C.2.10 Iteration Statements ... 208
C.2.11 Input Output S tatem ents... 208
C.2.12 Graphics S tatem ents... 208
C.2.13 Event Control Statements ..209
C.2.14 Communication Statements ...209
C.2.15 Interface Statem ent.. 210
C.2.16 Interaction Management S tatem ents..210
C.2.17 Interest Management Statements.. 210

Bibliography 212

List of Figures 236

List of Tables 238

Chapter 1

Introduction

Contents

3
6
7

1.1 Project Background
1.2 Aims and Objectives
1.3 Thesis Outline . . .

Since the Internet has became a huge information highway, many researchers are inter­
ested to explore and enhance its capabilities. It consists of complex entities involving many
activities. Different types of computers that use different software systems are integrated
in one system. Electronic mail, chat and electronic-commerce are now routine activities on
the network. On the whole, people from all over the world benefit greatly as they can share
information, communicate and interact very easily [99,120,164,181].

The network connection can be in the form of telephone line, cable, satellite or wireless.
Among the earliest interactive communication system is the telephone with only analog
voice as data. This has been superseded by interactive communication as in the networked
collaborative systems which is no longer limited to one type of data. This can be in various
form of multimedia elements, such as analog voice converted into digital form, text, images
and video. In this way, people can share their work remotely as if in a face-to-face environ­
ment.

In a communication system, the user or node involved in an activity can be called a pro­
cess. The data or any element required by the activity can be called a resource. When
communication occurs in a collaborative system interactively, there must be more than one
process involved. As communication can occur concurrently, there must be rules, called
protocols which govern the processes [141, 310, 287]. The need of protocols is to ensure
that the communication between all processes is proper ordered. It is highly likely that some
data will be shared among the processes. Therefore, there is a strong requirement for mecha­
nisms to ensure that the data is in the correct form, consistent and secure. Such mechanisms
are referred to as data access and protection.

1

2

Since there may be many users involved and numerous resources are available, it is a chal­
lenge to design such systems, especially interactive networked collaborative systems where
many people can interact and communicate at the same time. Therefore, a networked collab­
orative application usually has a finite number of users working together with some common
or similar objectives [202]. All the users are in the tightly coupled context while they are
collaborating. The interaction protocol to determine the users’ turn and secured data sharing
and transmission are among the most common issues within these systems.

Software systems are very important in making the Internet successful. Software exists
to support the hardware technologies in many forms from the low level system program,
to the high level application software. Examples of such software include Web browsers,
network languages and various software tools. However, software for managing interaction
among the remote users usually relies on low level system and network programming.

To design a structured interaction in a high level language usually requires an application
program interface (API) [70] that enables the design of high level interaction protocols to be
implemented using low level programming utilities and network protocols. Some software
systems can handle interaction protocols in the context of various networked applications
[78, 260, 107]. Several network languages can also be used in implementing such appli­
cations. Java [152, 105, 51] and C# [84] can be considered among the popular network
languages. However, since both are general purpose languages, program codes tend to be
large to implement an application. Scripting languages such as Perl [269], Python [325]
and VBScript [161], have been used for network applications as these languages usually can
provide simple programming [24]. These languages are also general purpose and require
networked programming skills in writing a networked application. There are also several
languages such as logic programming languages [271] and concurrent languages [106] that
give support for networked environments, such as agent systems [166, 204, 298] and par­
allel systems [180]. As most of the existing programming languages mentioned above can
be used to build applications in networked system in general, we specifically focus on inter­
active networked collaborative systems. Furthermore, in most circumstances, programming
using these languages requires specific algorithms for implementing the interaction protocol
that limits the flexibility of having various protocols in developing applications. Such pro­
tocols have not yet been provided in the form of language constructs.

In managing data sharing, system level programming also provides an important role to en­
sure the data consistency. This job is usually performed by the operating system to guarantee
the mutual exclusion condition. At the high level, some programming languages provide the
sharing of memory in most concurrent or parallel applications. The languages used in these
systems, such as Orca [20] and APL [129], facilitate variable sharing through message pass­
ing or remote procedure call (RPC) [216], Our main concern is not only the secured data
sharing mechanisms, but also the relevant-based data filtering in accordance to the users’
interest.

Managing interest can ensure that the selected users, who have the access rights on a cer­
tain resource, will get the shared resource only if they are interested [230]. In this case, the

1.1 Project Background 3

shared data is handled securely and effectively. This interest management is mostly found
in distributed and collaborative systems [231, 217, 229]. Such systems often involve broad­
casting large amount of data, and therefore, it is necessary to filter the data according to the
users’ need. Simulation is often carried out to provide the most effective methods of filtering
[230,312, 323].

As mentioned above, there are several network languages available for designing and im­
plementing networked applications. In most cases, the languages provide the sharing of
components, object or memory through message passing, remote procedure calls or appli­
cation program interfaces. Normally, to implement an application, an experienced network
programmer is required. Hence, building such challenging tasks in the form of language
constructs can reduce the effort of writing long and complicated program codes.

In most existing networked applications, the common way of handling interest manage­
ment is by a centralised control [53]. Here, the server plays the important role of managing
the shared data among the remote users. Therefore, it is highly desirable to have distributed
and flexible control of shared data at the client end without putting all the burden on the
server and provide a set of high level language constructs for handling shared data. The
shared data used in a high level language is usually a variable, object or program component
[117, 285].

Another popular way of implementing shared data is through a database system [53, 217].
However, in most circumstances, this method requires the support of a sophisticated system
to determine secure access and the filtering needs. While this approach is reliable, it is not
practical to depend on such system in implementing an application that requires only limited
amount of data with basic interest management.

The lack of easy programming techniques for developing interactive networked collabo­
rative systems leads this research to provide programmers of such systems with high level
language constructs. Figure 1.1 shows some example applications for Internet collabora­
tive activities. An online meeting permits many users to have discussions similar to the
face-to-face environment. This application requires a structured order of turn control for
proper sharing of information and determining the outcome. In an online form filling appli­
cation, a user must enter appropriate answer according to the specified questions. In most
cases, the form is designed in such a way that the user is guided throughout the question
answered session which allows the user to manipulate only specific domains. For an online
game application, such as card game, several users play their cards in turn according to the
game rules. Some cards may be shown to all the players for determining their strategies.
Hence, it is crucial that the interaction protocol and access rights are managed correctly and
efficiently.

1.1 Project Background

The overall research covers a very broad area in several different fields of computer science.
The main study concerns Internet computing and networking with the focus on interaction

1.1 Project Background 4

L»«ro«nu of Write Review fo rm

Online Meeting [75]

Gt*t! us. your take
on im portant
c harac teristics of
th e topic

Tell t>S you
liked, disliked,
and sh a ie detail
of your experience

r 2 to 3 »ed»

Online Form Filling [250]

Barr FVowW*

Card Game [309]

Figure 1.1: Internet Collaborative Activities.

protocols for turn control in collaboration and the control of secured shared data. Other
aspects of computer science that support this research are operating system concepts and
design, compiler construction, programming languages concepts and database management.

We have made a comprehensive study of interaction activities and secure data transmis­
sion. Interaction management is concerned with the protocols that govern structured inter­
active activities among multiple users or agents in networked collaborative environments,
while interest management is concerned with the secure relevant-based data filtering. We
propose the design of new high level language constructs and report our efforts for incorpo­
rating these new constructs into JACIE (Java-based Authoring Language fo r Collaborating
Interactive Environments) [139], an existing scripting language designed to support rapid
prototyping and implementation of networked collaborative applications. We demonstrate
the usefulness of these language constructs through variations of the noughts and crosses
game, an on-line bridge game and an e-leaming application.

Figure 1.2 represents the output of some applications written in JACIE. The jigsaw puz­
zle game shows JACIE canvas channel for two players game with contention protocol. Both

1.1 Project Background 5

players share a common canvas to rearrange the correct order of grid square to complete
the whole picture. Another example is the communication between two people through a
shared whiteboard supported by Microsoft Netmeeting [73]. They can draw or sketch the
board with the common sketching tools. The network trouble shooting example shows an
e-leaming application with several views of a working canvas that provides global or local
view of rooms involved in the discussion. This application shows how three people in three
different rooms have a discussion using a chat channel to find out the cause of network prob­
lem given by the server. One person in a specified room can view and change the status of all
the devices located in the room represented in his/her local view. Other users can only give
suggestions on finding out the solution based on the given global view. The group scrabble
game presents a simple group collaboration with supportive private chat channels among
group members. At any turn, any member can represent the group after some agreements
have been made among them through private discussions.

uo~

Jigsaw Puzzle Shared Whiteboard

Network Trouble Shooting Group Scrabble

Figure 1.2: JACIE Sample Output

JACIE I was designed originally with a simple built in interaction feature to handle interac­
tive collaboration among users or groups [140]. The collaboration supporting multimedia
activities can be achieved through several built in communication channels. Although JACIE
I provided a small set of interaction protocols, it was not broad and flexible enough to cater
for many desirable networked collaborative applications. For example, all the mentioned

1.2 Aims and Objectives 6

protocols was contention, round robin, reservation, random, tapping, token and group, and
from these, protocol contention was fully implemented and tested, while protocol round
robin was implemented partially, and most of other mentioned protocols were not yet im­
plemented. For the group protocol, it was developed to select group members instead of de­
termining group turn protocol. The proposed selections were alternate, random and userde-
fined with full implementation and testing in the alternate protocol.

In managing data sharing, a programmer had to design and write a specific algorithm. JACIE
I provided the programmer with message passing facilities that enable any type of variables
to be exchanged with the server. In this way, data sharing between clients could be made
through server. In addition, JACIE I allowed both the client and server program to reside in
one file for easy managing identifiers that involved in the communication. A programmer
could instruct the server to send any message either to all, some or only one of the exist­
ing clients. However, there was no sharing nor security access of variables in the form of
language constructs.

1.2 Aims and Objectives

The main objectives of this work are:

1. To conduct an abstract study on the interaction activities and data transmission that
can provide a variety of interaction protocols. We aim to show that within this study,
we can conceptualise the interaction management, and thus, help us in the design of
comprehensive collection of protocols.

2. To design a set of high level language constructs for specifying structured interaction.
This design should focus on the management of floor control for user and group col­
laborations. The purpose is to provide the design of various protocols commonly used
in interactive networked collaborative application.

3. To design a set of high level language constructs for specifying secured data sharing
with relevant-based filtering. The purpose of this design is to provide a high level pro­
gramming interface for managing shared data among server and users in an intuitive
manner.

4. To include these language constructs in a high level programming language. With the
proposed comprehensive design incorporated into an existing programming language,
we can implement interactive collaborative applications.

5. To develop some applications to demonstrate the technical feasibility and the useful­
ness of the design of these language constructs.

6. To make some alterations and enhancements to the vehicle language in order to ac­
commodate these new design and features. These changes may include providing
some error messages for debugging purposes, adding new supportive statements or
rearranging some elements in the existing statements and adding more special identi­
fiers or keywords.

1.3 Thesis Outline 1

In general, several requirements related to this work include:

• Networked collaborative environment — In this environment, users usually rely on
the provided software system to engage in a collaboration. There is no limitation on
the physical distance between users.

• Interactive system — Communication between users can occur immediately that en­
able several users to work as a team.

• Scripting language — Language is the main vehicle to achieve our objectives. This
language enables a programmer to develop application faster than the traditional meth­
ods [24].

• Compiler construction — The scripting language must be translated into another lan­
guage that can be used for programming network applications.

• Network programming language — Java language is chosen to be the translated lan­
guage so that the work can be executed on any platform of the Internet [162].

1.3 Thesis Outline

The research areas in this thesis is spread over eight chapters. Chapter 2 and Chapter 3
presents the investigation and overview of previous research work in networked systems,
tools and languages. The detailed discussion on the implemented language is in Chapter
4, while Chapter 5 and 6 covers the main research work. We demonstrate the example
applications in Chapter 7 before the concluding remarks in Chapter 8.

1.3.1 Chapter 2: Networked Collaborative Systems

As interaction and interest management are common issues in networked collaborative sys­
tems, it is important to review these systems by looking into their concepts, structures and
system management. User collaboration can occur at the same or different time and inter­
active collaboration requires more challenge in managing users activities that often need
scheduling so that the work performed can achieve its objectives. Several objectives and
example applications are also reviewed.

We examine the interaction management in some existing systems by discussing on its meth­
ods, management strategies and implementation techniques. Similar discussion is made on
the interest management by looking into several filtering methods that mostly be found in
collaborative virtual environments [153, 203, 25] and simulation systems [187, 323, 312,
230]. The access control and security issues are also reviewed by discussing on their factors
and management strategies.

1.3 Thesis Outline 8

1.3.2 Chapter 3: Programming Languages and Tools for Developing Net­
worked Applications

Software supports a programmer or system designer to develop networked applications.
There are several ways and techniques that can be performed such as the use of software
products, software toolkits or through programming. In order to understand the networked
environments that can facilitate collaboration, web technology and its related software com­
ponents are reviewed.

Then, this chapter discusses the development of networked applications that includes com­
munication methods, challenges that need to be considered, available implementation tech­
niques, characteristics of the required environment for application development and type of
resources that may be needed. Since JACIE is translated into Java language, the examples
of various Java-based collaborative frameworks are included before brief discussions on the
scripting languages.

Interaction and interest management in some software tools and programming languages
are reviewed on their implementation techniques. Common factors in sharing resources
using these tools are also discussed.

1.3.3 Chapter 4: JACIE Overview and Enhancements

This chapter begins by giving an overview of the JACIE language especially its software
architecture, main features, and the language structure for managing collaboration. Since
JACIE is built on top of Java programming language, the code translation in made using
Java compiler tools, JFlex for lexical analysis, and JCup for parsing, with many Java classes
and methods to support the language translation process. In managing collaboration through
message passing, the overview of a client/server communication is given with a flow dia­
gram of the states of collaborative sessions and some code segments on the message passing
activities.

The enhancements on interaction and interest management as the major extension to the
language are given in details in Chapter 5 and 6, respectively, so this chapter discusses on
the enhancements made to improve the language on other related issues such as race con­
dition, supporting code optimisation and printing compiler messages on detecting illegal
actions.

1.3.4 Chapter 5: Interaction Management

This chapter provides an extensive study on interaction management based on the noughts
and crosses game and its variations. These variations include some other existing board
games and several versions of the traditional noughts and crosses games with some modi­
fications on the rules of the game. The main focus is on the interaction and work control
access. These games provide a significant comparative study of the interaction protocols

1.3 Thesis Outline 9

commonly used in networked applications. In addition, a set of formal notations for mod­
elling the spatio-temporal activities in a generalised noughts and crosses game is presented.

This chapter then describes the language constructs on interaction management in JACEE.
Types of protocols can be defined in one statement that consists of several option tags.
Detailed explanations are provided on all of the options, including several supportive state­
ments together with their respective protocols. All of the protocols can be statically defined,
as well as changed dynamically during a session. This chapter also discusses the enhance­
ment made to this language and implementation of timers that are included in the protocol
options. A comparative study on the server based and client based timer is also presented.

1.3.5 Chapter 6: Interest Management

This chapter begins with a brief review on the issues of data sharing, filtering methods and
data access and security techniques. Then, the interest management in JACEE is presented
by discussing the shared variable in JACIE II and its management framework. Several ex­
amples of networked applications are mentioned to help in designing interest management
in JACIE II. These factors include determining the access rule and user list.

The chapter continues by presenting the language constructs that handle shared variables
for the interest management. Several types of statement are presented that consists of the
owner’s permission statement, read statement with assignment and selection control, a write
operation and interest filtering statement. The description on the language enhancements is
also presented. Some technical issues in this new design are also considered which include
mutual exclusion and the management of the user permission list and the access list. Then,
this chapter provides the implementation of Secret Switch (one of the noughts and crosses
game) as an example to show how these language designs are tested and implemented.

1.3.6 Chapter 7: JACIE Applications

This chapter gives the example applications that have been implemented for both the inter­
action and interest management designs. An online Bridge game shows the usefulness of
the interaction protocols, while for the interest management, an e-leaming group exercise on
Simulation of Network Trouble Shooting application is presented. The descriptions include
some screenshots and code segments on the testing and implementation of the new language
constructs.

Several experiments have been undertaken to show the significance of this research work.
Some results on JACIE and its equivalent Java program are obtained to give the overall JA­
CIE performance. A small case study is also conducted that involves several experienced
and non-experienced people in programming to test their learning abilities on JACEE and
its interaction management features. The experiments on determining the cause of delay in
some of the example programs are also provided.

1.3 Thesis Outline 10

1.3.7 Chapter 8: Conclusion

The concluding chapter presents an overview of the achievements that this research work
has contributed to the scientific community. It also provides the author’s suggestions for
future work.

1.3.8 Appendices

Appendix A describes in detail the variations of noughts and crosses type games that support
the discussion on the interaction protocol design in Chapter 5. A collection of the common
terms and mathematical symbols that has been used throughout this thesis is presented in Ta­
ble B.l and Table B.2 in Appendix B. Appendix C contains token and syntax specifications,
which support Chapter 4, 5 and 6.

Chapter 2

Networked Collaborative Systems

Contents

2.1 Introduction... 11
2.2 Collaborative Environments............................. 12
2.3 Interaction Management................................... 19
2.4 Interest Management... 26

2.1 Introduction

A network is a collection of computers connected by a medium to facilitate information
exchange. It consists of more than one computer that normally supports many collaborative
activities such as communication, information sharing, discussions and so on. Even though
each entity in the system is distributed throughout the network, they are in some way coor­
dinated and appear to work together as a single system.

The technology of computer network was first introduced by the ARPAnet project in the
1969 [330]. The main purposes of its existence were as follows.

• Resource sharing — Distributed resources, either hardware devices or files, can be
shared among users.

• Super computing — Multiple computers can be combined efficiently to form a parallel
system for solving large computational problems.

• Computer reliability — Data or information can be replicated on several computers
for avoiding a total lost in the case of any computer failure.

The networked communication connection started with the telephone line and optical cables
are now a common place. In recent years, wireless technology emerged as the underlying
technology for ubiquitous systems. Much research has been undertaken to improve the use
of network systems in many applications. Communication between users is one of the im­
portant issues and interactive collaborative systems enhance the network capabilities. The

11

2.2 Collaborative Environments 12

interactive networked collaborative system was developed in the early 1990’s and it has be­
come very popular since 1997 [172].

Within the networked system, system management is important in providing users the ability
to handle their tasks properly and achieve their goals. In this chapter, we review the features
and management of the networked collaborative systems and discuss research works that
have been done in the area of interaction and interest management.

2.2 Collaborative Environments

The word collaborate is defined as ‘to work with someone else for a special purpose’ [50].
In this research work, collaborating is a situation of having several users to work together
interactively and remotely via computer networks. Hence, a networked collaborative system
is a computer mediated system for interaction between users.

The terms, collaborative workspace, networked virtual environment, collaborative virtual
environments, computer supportive cooperative work (or CSCW) and many others, have
been used to describe a collaborative environment in a networked system. It has also been
referred to as multimedia system since communication is achieved mostly using multimedia.
Whatever terms are used for these systems, all of them perform similar network tasks and
only differ in terms of their specific environments [172].

Collaborative virtual environment (or CVE) is a type of networked collaborative environ­
ments that gains popularity in much research. It is a system that allows multiple users
to engage in a common activity in a networked environment, where users are represented
graphically within the environment and allow others to interact through their graphical rep­
resentation [174, 172]. It is defined by Oliveira et al. [81] as the ‘virtual reality spaces
that enable participants to collaborate and share objects as if physically present in the same
place’. They also divided systems into rendering and graphics and communications middle­
ware. Rendering and graphics cover the display aspect and the communication middleware
concentrates on the issues of the user connections and communications.

It is also common that the words collaborative and cooperative are used interchangeably.
According to Panitz [248], collaboration is more on the philosophical aspect of interaction
while cooperation is the structure of interaction that accomplishes the goal. In our context,
there is no distinction between them as cooperate means ‘to act or work together for a par­
ticular purpose’ [50] and it has the same meaning as collaborate.

According to the space-time matrix [43] that denoted the characteristics of the cooperative
work environment (in CSCW), the working space can be classified by

• Time — The form of interaction whether or not depend on time. The term syn­
chronous refers to work that happens immediately as in interactive system, while
asynchronous illustrates the action that happens at different time or time independent.
It can also be named as a temporal factor.

2.2 Collaborative Environments 13

• Space — The distance between users whether they are in the same place (co-located)
or at different places geographically {remote). It can also be named as a spatial factor
[151].

Table 2.1 shows the matrix with example applications that relate to the situations described
in [43]. When work is done at the same time and at the same place, it is usually referred to
as a face-to-face environment. The rest of the environments may require some materials or
devices to support the collaborative works [151] and a networked system uses the different
place environment. In particular, the work in this thesis is concerned only with building
synchronous applications in networked systems.

Same time (synchronous) Different time (asynchronous)
Same place
(colocated)

presentation support shared computers,
bulletin board

Different Place
(distance)

videophones, chat email, workflow

Table 2.1: CSCW Environment.

In general, people engage in a collaboration whether in face-to-face or networked environ­
ments for a mutual goal. There are several advantages of collaboration, which includes

• Increase productivity — Productivity is the ratio of output to input [147]. When a col­
laboration occurs, the users, represent the input, can work together in order to produce
a piece of work, an output. In this way, the more users engage in collaborative works,
the more works can be produced, as pointed out by Havemann [147]. He undertook
research on the effectiveness of collaboration among scientists in their productivity
outcome in the period of 14 years, which was measured by the number of research
papers publication. The study had indicated that their productivity had increased.

• Gain knowledge — Collaboration allows people to share and exchange information.
For example, scientists and engineers can have conferences and collaborative meet­
ings to get news and up to date information for their research [67]. In this way, people
learn from each other, share information and gain more knowledge.

• Enjoyment and entertainment — People also get together to play games or be enter­
tained individually or in groups. This is another way of socialising, making friends
and enjoying themselves.

Therefore, networked systems, which do not limit the distance between users, increase the
opportunity for people to collaborate. They serve the need of people who are looking for a
fast, efficient and effective way to reach others or to get information.

Research in the effectiveness of networked collaboration is also carried out to compare
face-to-face and networked collaboration [296] and how some devices can influence col­
laborative activities [318, 154] but the most important factors are how user interaction can
be conducted while keeping shared data among participants precise and consistent.

2.2 Collaborative Environments 14

2.2.1 Networked Collaboration

Communication in networks involve many processes (either clients or servers) that need
some way to be coordinated. The coordination is usually dependent on the application. In
recent years, most applications in networked collaborative systems not only facilitate or­
dinary communication, but also provide collaborative work that requires users to interact.
Time is the main factor that influences the collaborative activities. When collaboration oc­
curs at the same time, we refer to it as interactive collaboration. For collaboration at a
different time, the term non-interactive is used.

Interactive collaboration usually consists of concurrent users whose works may affect oth­
ers in the system. The main advantage of this system is that the output of the work can be
achieved immediately. In sharing data that requires mutually exclusion [287,310], a control
protocol is needed to ensure users’ activities are in the correct work flow and all users are
treated appropriately to achieve the objectives of their work. A mutual exclusion is a condi­
tion where a shared resource can be used by only one user at a time and all other users are
excluded from accessing the same resource [310]. Several issues may occur in managing in­
teractive collaboration such as race condition, number of users in the system, type of shared
resources used, handling users interaction and shared resources.

In implementing most collaborative applications, the system usually has a distinct num­
ber of users in accordance to the system requirements and limited number of resources for
reducing the complexities of the system design [260]. However, research has also been done
to allow an unlimited number of users to collaborate by introducing scalability [223] fac­
tors. Interaction management is needed for user coordination while interest management is
to ensure data security and consistency.

It is possible to have interactive collaboration that does not require mutual exclusion con­
dition. Some facilities such as whiteboard in e-leaming and video in video conferencing
do not require any sequence of user controls. With a whiteboard, users can freely sketch
or write on the board at the same time. Similar to video conferencing, people can listen or
talk at any time they like, since they can see and hear all participants. Therefore, in these
environments, the sharing facilities are not limited to any control sequence.

In non-interactive collaborative environment, the medium for collaboration may be the main
issue instead of the users coordination since people can collaborate regardless of time. A
simple example is electronic mail. The communication does not happen at the same time
and a user sends messages to others where the messages are kept in storage for later retrieval
and response.

Besides the communication medium, users’ activities are usually supported by software
systems that are particularly concerned with user connection, interface and security [125]
without the need to be concerned particularly with the interaction management, however,
interest management is still required.

2.2 Collaborative Environments 15

2.2.2 Collaborative Management

In a collaboration, communication can be between client and server, server to server, and
client to client through servers. In this client/server connection, the control of the collabora­
tive activities can be either centralised or distributed.

Figure 2.1 demonstrates the client/server connection with server mediated interaction and
group collaboration. For server mediated interaction in (a), several users can communicate
individually with the server in an independent activity or collaboration among users can
occur through the server. For group collaboration in (b), users are divided into groups that
allow them to work individually and also interact between groups or within the group. The
communication between group members must be made through the server regardless of their
grouping.

2.2.2.1 Centralised Management

Centralised management is ‘concentration of decision-making power’ in a single admin­
istration [182]. It is the server which plays the most important role in keeping all shared
information and managing activities. As the server has full control over the whole system,
the data and security control can be monitored accordingly. Its advantages include

• Data consistency — The management relies only on one source, so data can be kept
consistent as data duplication rarely occurs [182].

• Process coordination — It is simpler to coordinate processes when all are under one
management. Such a system is less complex compared to having processes under
multiple administrators [114].

In the case where there are a large number of processes in a system, such as in a database
system, the server is loaded with too many jobs and if the server fails to function, the whole
system will have problems [114]. Therefore, centralised control is usually suited well on
small scale systems and research on distributed computing has emerged to find the best
solution for data management control.

2.2.2.2 Distributed Management

In distributed control, the data and management control can be passed to clients. Replication
is the term usually referred to data that is copied to a client and the system is called a
distributed system. Although these systems require critical data communication [93], there
are a lot of advantages that include

• Reliability — When data has multiple copies over several components in a networked
system, system reliability can be achieved. In this way, if one of the components
fails to function, others can take over the responsibilities of the failing component.
Therefore, the tasks performed in the system still continue to be processed.

2.2 Collaborative Environments 16

Client 8

C lient 7

Client 1

Client 6

Server

Client 2

C lient 5

Client 3
Client 4

(a) Server mediated multi-user interaction

G R O U P 4

Client

C lient 7
G R O U P 1

Client 1

C lient 6

Server

C lient 2

C lient 5

G R O U P 3
Client 3

C lient 4

G R O U P 2

(b) Group collaboration

Figure 2.1: Client/Server Connections that Allow Users Collaboration.

2.2 Collaborative Environments 17

• Storage — When data and work are increasing, more storage capacity is needed. With
distributed computing capability, data can also be kept at clients’ nodes without losing
the computing power.

• Performance — As most data is kept at the client, the data transfer activities are min­
imised and the network traffic is reduced. A good system performance can be achieved
when the amount of data on every client is equally distributed and no client is loaded
heavily or lightly.

Due to these advantages, a lot of research has been undertaken in various systems such as
agent systems [308], 3D collaborative systems [135] and database systems [56, 104, 264].
For example, Park et al. [251] introduced a scalable data management scheme to replicate
a data based on priority transfer. Priority is determined by the data location, user interest
and the popularity of the data among users. Their work gives positive results that show their
mechanisms reduce communication time.

2.2.3 Collaborative Applications

There are a large number of collaborative applications in areas such as e-commerce [305,
210], e-leaming [307, 40], entertainment [297, 212, 299], software development [338, 83]
and much more. Basically, most collaborative applications support users to serve the fol­
lowing purposes:

• To make decisions — People form a meeting to discuss issues and to reach decisions.
Mark et al. [215] proposed a system called DOLPHIN that supported online meet­
ings, to investigate the effects of meeting technologies in collaborative style. In the
experiment, participants worked in parallel to produce a proposed document. During
these collaborative meetings, a virtual chairman can be assigned in the form of an
agent [238].

• To create or modify documents — Work can also be done on a shared document. At
one time, users can read or write a document that is globally or privately accessed by
users and proper access control [268] is needed to ensure all users are obtaining the
correct updated documents.

• To share ideas — People can work together on sharing their ideas on a specific topic in
various environments such as an educational discussion in e-leaming [261] or sharing
information using objects in virtual systems [124].

• To get information — Users can gather information online from several information
sources, as free access or limited usage depending on the applications. An example
of limited access can be in video conferencing where only one speaker transmits data
using a media stream [143, 260] or allowing only one person to control a few web
cameras for viewing several online videos [78].

However, most of them involve in non-interactive collaborations or interactive with un­
structured activities. The most common goal of collaboration is probably to get or share
information among users or groups of users. There are few platforms for structured collab­
orative activities since they are challenging and require proper management.

2.2 Collaborative Environments 18

With the capabilities of the networked systems to allow immediate response between users
at different places, much work can be accomplished and probably some critical problems
can be solved in many different areas of everyday life. Such areas include

• Collaborative work — People get together to work on various fields using comput­
ers as the communication and workspace. For example, in healthcare collaboration
[76], medical colleagues can work together in discussing any medical subject and
their work is usually supported by various collaboration tools such as database, im­
ages and chat mechanisms. It is also possible to convert rapidly single user tools into
shared versions with working back and forth between interactive and non-interactive
as proposed in the Integrated Synchronous And Asynchronous Collaboration (ISSAC)
project [169].

In business environments where collaboration among people is usually significant,
most activities use transactions through database and discussion through video or
communicating through e-mail. It is rarely found a structured collaborative activ­
ity in e-commerce. However, Lei et a l [196] proposed a middleware platform to
enable user-to-user collaboration from within information technology (IT) business
operations that are concerned with data and services.

There is also collaborative work carried out on document sharing, such as proposed
by Sureswaren et a l [303] that enables people to share all web based and popular
productivity application documents such as controlling power point slides and updat­
ing documents. The system adds a new server with unique server ID to accommodate
several new users.

• E-leaming — The development of networked based distance learning consists of sev­
eral viewpoints [103] with several forms of learning environments, materials and
methods. Hence, some of its applications require structured activities. According
to Drira et a l [103], who distinguish the interaction levels in terms of cooperation,
coordination and communication, believe that each interaction level can be seen as
functional, architectural and technological. Functionally, the cooperation is a user-to-
user interaction paradigm, while coordination refers to group collaboration at user-
level and communication is information exchange between users.

The interaction in this type of application is either student-student or student-teacher
collaboration [261]. The structured activities must occur in the application such as
discussion on specific learning content or one teacher to many students learning en­
vironment. In contrast, general purpose learning can occur at any time or at the same
time but without any specific control on the materials or information access.

• E-meeting — Meetings can be conducted virtually using supportive software or through
video with usually one person to chair and determine the floor control. Meetings
mostly occur in a business environment [215] for decision making or e-leaming where
the environment consists of one teacher to many students [261]. Therefore, the turn
control policy of all participants is fully dependent on the chair person and the mutual
exclusion condition can be guaranteed.

2.3 Interaction Management 19

It is also possible not to have a chair person to determine the floor control but rather
use a token-based control. For example, Chang et a l [58] use a kind of data as a token
to be passed among participants to indicate the turn control. Whoever holds the token
is the one who is in control and it is allowable for participants to make token request.
Their views on a modem net-centric meeting must contain the following criteria,

- Web-based

- Multimedia environment

- Session and floor control mles

- Formal language approach to defining formal meeting

• Online game — Multiplayer games are available on the internet [255,163] that enable
people to play online interactively. For more challenging and interesting games that
require complex design and implementation, users subscription may be required.

There are wide selections of user-to-computer games as well as user-to-user collabo­
rative games. In developing such games, many researchers have brought up issues that
include the game presentation [42], user interface and supported device [63], game se­
curity [27, 48] and other network issues [126, 228, 256]. Interest management plays
one of the important roles since the mntime performance of the game is very impor­
tant [206].

Nowadays, many games are presented in a virtual world. From a limited number
of users to a large scale networked system, there have been many outstanding issues
such as scalability, transmission delay and implementation techniques for developing
such applications [228]. As pointed by Cai et a l [48], interactive games on the In­
ternet need the support from a scalable software architecture with the combination of
centralised and fully-distributed architecture. This combination forms a distributed
client-server architecture with multiple servers for many clients. With the server me­
diated services, the game state and communication transmission can be controlled
securely.

In building such collaborative applications, several approaches have been presented that rely
on agent systems [305,256], networked programming [107,46,301] or middleware systems
[199, 334] with the support of database systems for applications that require massive data
manipulation [324]. Therefore, the implementation requires knowledge and skill especially
on the technical design of system requirements and networked collaborative systems.

2.3 Interaction Management

Interaction is ‘when two or more people or things interact’ [50] or ‘the influence of objects,
materials, or events on one another’ [100]. In network environments, several issues have
been raised around the topic of interaction that include

2.3 Interaction Management 20

• Social discourse — It is concerned with social and psychological aspects of commu­
nication that are incorporated into the internet design. The internet provides a tech­
nological environment in building a cyberspace venue as a medium to discuss social
issues [148, 214].

• Human computer interaction — It is concerned with how human can interact easily
with the computer, the design of the user interface and devices that people use to
interact with the computer [10,279].

• Work coordination — It is concerned with the handling of users’ activities so that
users can work together in an organised way [50].

Throughout this research work, the focus is on the work coordination for interactive collabo­
rative environments where interaction is commonly referred to as a floor control. It manages
user’s control right over shared resources within a workspace [96], and allows remote users
to share networked multimedia application with some of the following floor characteristics
[93].

• Mutual exclusive permission

• Dynamically granted to the collaborating users

• Mitigating race condition

• Guaranteeing fair access

• Deadlock-free resource access

In [93], Dommel abd Garcia further pointed out that in managing collaborative activities,
there were several required services such as session management, floor control, authentica­
tion and synchronisation among mixed media, and in having a collaboration aware appli­
cation, the main focus is to integrate the floor control with session control. Session control
supports users in coordinating activity based on a connection management protocol that me­
diates between upper application layer and relay requests down to end-to-end services. Such
services include supporting users to establish a session, and helping users to join and with­
draw from a session.

In a session, there are three time-based stages of user interaction that usually require the
floor to take effect [93] that include

• Initialisation phase — The time when the floor is created and determines the online
users.

• Flow of control — It is based on the designed control policy to determine who is in
control of specified resources.

• Termination — When any user withdraws from the collaborative system, it may or
may not influence the floor controller depending on the control policy or the applica­
tion requirement.

In order to collaborate, a user must be aware of others in the system. As pointed out by
Liechti [201], group awareness can be defined as the understanding of the activities of oth­
ers within a team. In this way, a user knows what and when to take action [227].

2.3 Interaction Management 21

Much research has been undertaken on networked systems such as in collaborative vir­
tual environments [124] and agent systems [254, 85] to provide strategies and techniques in
handling structured user interaction. Such research is to serve the following purposes:

• Efficient control — The work flow must follow the specific application demand while
the consistency of the shared data is maintained.

• Various applications support — It is significant that a system that supports collabora­
tive applications is flexible in concurrency control. In this way, various applications
can be implemented.

As the main purpose is to achieve the efficient control in user interaction, many existing sys­
tems have proposed several ways and strategies in different application domains. Although
most of them concentrate on one specific application, there are also some systems, which
rely on agents [70], that are capable of supporting various applications [86], and middleware
platforms for system extensibility [124].

2.3.1 Control Methods

A protocol is ‘a convention or standard that controls or enables the connection, communi­
cation, and data transfer between two computing endpoints’ [223]. It has a similar meaning
to floor control policy or floor allocation that establishes clear rules for assigning a user’s
turn to control a computer resource [95]. Several methods have been introduced that can be
categorised into the following.

• Centralised control — Much research uses this policy especially when users collabo­
rate with the support of database systems. With this control, there are two ways users’
activities are usually allowed. They are

- free access : Users are free to access any resource they want, however, a locking
protocol is used to block any user if the requested resource is in use.

- single controller : With a single controller, users can request to have a floor and
it is up to the controller to grant the request.

Free access is widely used in most collaborative virtual systems [138, 211, 25, 135]
and several other methods and algorithms are proposed on top of the policy to achieve
efficient system performance. For the single controller, it is totally dependent on the
controller to decide on the control policy such as implemented in e-meeting applica­
tions [58].

• Token passing — A token is used to determine the user in control and at any one time,
there is only one user who can hold the token. The token is usually passed around
among users so that every user can have the control over the resources that they want.
This scheme appears to be fair to all users and it is possible to add a timer option to
this policy to avoid users having a long waiting time.

There are many names referring to interaction protocols such as first come first served [78],
round robin [177,78], free floor [177] or contention [94], central moderator [177] or reserva­

2.3 Interaction Management 22

tion [94]. These protocols are either controlled centrally or are token passing as mentioned
above. More policies are proposed by Kausar and Crowcroft [177] that include explicit
release and pause detection, which all of these are the customisations of the original turn
taking that require user in control to react upon event or time. They also propose another
policy called pre-emptive scheme with the priority factor being enforced as one of floor
control policies.

2.3.2 M anagement Strategies

Since managing the interaction protocol is challenging, several approaches have been in­
troduced. Some systems propose architectural-based design while others use models, both
approaches usually are considered to have several components with specific functions to
guarantee the flow of work is smooth and communication between processes is properly
handled.

There are several system architectures proposed to provide collaborative frameworks. In
order to handle interactive structured collaborative work, most systems depend on the server
to handle the floor control activities. Thus, with the centralised control, proper management
can be achieved. For example, Wang et a l [324] propose a client-server architecture where
all user events must be sent to the server first. At the server side, it has virtual world man­
ager that includes a virtual 3D world, scene manager, object manager, consistency manager
and event manager. Besides the virtual world manager, there are also a session manager and
server manager. Therefore, it can give scalable, persistent and consistent control that results
in excellent performance for 3D collaboration.

Sureswaran et a l [303] also introduce a client/server model for distributed network archi­
tecture that has three characteristics, chairman, presenter and participants. The chairman
controls the overall session, which consist of all users (participants), and the user in control
is the presenter. The system provides document sharing to users. The collaborative work
takes place with inter server communication while the system allows the growth of users by
adding extra servers for several new users.

In particular, to maintain the collaborative session interactively, processes are ‘tightly cou­
pled’, which have explicit member registration and are governed by a formal agenda [94].
The services provided by the system components can be

• Layered — A layered host-based service in an architecture allows the dynamic organ­
isation of users in a multilevel control tree [95]. Within this architecture, the system
is not only able to support interactive user-to-user collaboration, but also allows more
users to enter the system. The newly added users can form a group under the control
of one new host [303, 95].

• Integrated — In managing user interaction, the system is divided into several com­
ponents in order to organise the system to control user coordination and the com­
munication mechanisms. Each component has some distinct functions that can be
integrated and linked during the on-going session. For example, Abdel-Wahab et al.

2.3 Interaction Management 23

[2] introduced a system architecture that was divided into three major components
namely session server, session control manager and event controller. The session
server handled the floor control that offered several policies that consist of request-
and-get, request-and wait and no-floor policy. With the session control manager, a
user could request and release a floor, call, join or leave a session. The event con­
troller controlled the collaboration between a sender and one or more consumers that
are associated with the server and one or more clients.

While the layered service is significant, the management of many users with a lot of data re­
quires database support or file systems management. Some systems may provide only short
time collaboration in conjuction with non-interactive collaboration [268]. In addition, the
system can usually provide a limited choice of interaction protocols such as using prediction,
filtering and reservation in a virtual system [94] or locking protocol in sharing documents
[303].

It is common that most systems use integrated services, dividing the systems into at least
two components that consist of

• Floor controller

• Communication handler

In the CWCE System [190], there are three main components, the job generator, environ­
ment coordinator and resource provider. The main aim of this system is to provide agent-
based applications for distributed computing. For granting a resource, a resource provider
will follow the first-come-first-served (FCFS) strategy. Therefore, a process must wait for
its turn to get the resource. Another agent, the job manager uses a load distribution mecha­
nism called adaptive highest response ratio next (AHRRN) to maintain a queue of all jobs
waiting to be transfered to the resource provider.

Another system proposed by Lei et al. [196], called contextual collaboration framework, the
architecture consists of a component namely contextual collaboration platform for manag­
ing structured activities in business applications. The component has three items; contexts,
collaboration space and structured activity. Context is referred to as objects or any aspects
related to business environment, while collaboration space is a container for business ele­
ments and structured activity specifies the roles in the collaborative processes. Within each
item, there is a manager to fully control all activities.

A system implemented by Joslin et al. [173] allows multiple users to collaborate using
3D graphics presentation based on loading and managing scenes for connected users. They
proposed an architecture for special communication and task management that relies on
threads. Therefore, a thread manager is one of the important components of its architec­
ture. The characteristics of its management system include

• Buffer management — It allows unlimited data transfer for communication but the
data flow control is done using first in first out buffer.

• Thread management — The threads are created not according to the number of con­
necting clients, but rather according to the task performed. Hence, a priority value

2.3 Interaction Management 24

can be set to the tasks for faster processing.

With the thread manager that acts like the floor controller, this system also introduces a
buffer manager as part of the communication handler.

There are several models proposed for interaction management strategies with several ways
for handling group collaboration. Pinelle and Gutwin[253] developed a model called Col­
laboration Usability Analysis(CUA), a task analysis technique designed to represent collab­
oration in shared tasks for the purpose of carrying out usability evaluation of groupware.
Although their work focused more on the groupware usability factors, the designed model
was based on the mechanics of collaboration that were the basic operations of teamwork.
The mechanics covered two general types of activity that were

• Coordination — It concerns the shared access that includes tools, objects, space and
time, and transfer specifically for handling objects.

• Communication — It handles explicit communication and information gathering dur­
ing the collaboration such as the communication interface and awareness of partici­
pants.

Other work by Shih et al [283], proposed a multimedia presentation system based on Petri
Nets Model [233], that used the relation between places, transitions, input and output places
of transitions. Its floor control provided free access where users can freely send their mes­
sages to the server, equal control that limits only one user with specified timed token to
have control, group discussion to allow users to create new discussion group and direct
contact that allowed two people to have private collaboration. These protocols were used
for distance learning application that allowed senders to share a whiteboard, perform gen­
eral discussions, tools sharing and private communications. It is quite similar to a model
presented by Chang et al [58] that used Coloured Petri Nets [189] and focused on the hi­
erarchical order system with similar floor control policies to apply to collaborative meetings.

Other models for handling interaction management were proposed by Fantar et a l [113] that
introduced floor control algorithm on Session Initiation Protocol (SIP) [223]. Their work
focused on managing access to multimedia data streams in a video conferencing system. In
the model, each client SIP was connected to a server proxy SIP which had connection to all
other servers’ proxy SIP in the system. The floor was a token attributed to participants for
holding the control on resource access and also handling other participant’s floor request.

2.3.3 Implementation Techniques

Many of the above networked collaborative systems are implemented mainly for specific
applications. While some systems rely on sophisticated database or agent systems, there are
also systems built upon programming languages and tools. Details on these languages and
tools are discussed in Chapter 3.

2.3 Interaction Management 25

2.3.3.1 Database System Support

Database systems usually handle massive amounts of data. Collaborative virtual environ­
ments where collaboration is usually reperesented by graphic images, require a lot of data to
be managed. For example, a system called Windows Virtual Life Network (WVLNET) uses
a server database for clients to upload their information. In this way, the server manages the
clients’ activities [173] and data consistency can be guaranteed.

Although such collaborative systems can support many users at any one time, in manag­
ing interactive collaboration, only a few selected users can form a group collaboration [135]
with the issues of scalability and concurrency control. The concept of scalability ‘is to
reduce the message exchange as much as possible in terms of number and size without
harming the shared context and interactive performances’ [191] while concurrency is to
maintain synchronisation on replicated data on clients. According to Yang and Lee [332],
in distributed virtual environment that concern sharing objects between users, concurrency
control is categorised into three schemes,

• Pessimistic — A user is blocked until a lock request for an object is granted before
the object can be manipulated. It is the simplest mechanism that guarantees data
consistency can be achieved. The disadvantage of this scheme is that users may suffer
from a long response time when the number of users increase.

• Optimistic — This scheme allows users to update objects and interact naturally, but a
repair must be done when conflicts occur. Therefore, the system is more complex and
users have to undo and redo some actions [191].

• Prediction — It uses the optimistic scheme with the attempt to eliminate the need to
repair by having the owner to predict who the next user for ownership transfer request.

In general, database systems do not provide any specific interaction protocols but rather
use the mentioned concurrency control schemes to ensure data consistency on mutually
exclusive condition.

2.3.3.2 Agent System Support

In multiagent systems, agents are used to perform the coordination of the involving parties.
Agent is a ‘software program that intelligently performs its duties without human inter­
action’ [244]. It is also defined as ‘a piece of autonomous, or semi-autonomous proactive
and reactive computer software’ [223]. As pointed out by Bergenti and Ricci [34], due to
the challenges of providing the proper interaction protocols, it is a long standing issue in the
agent community to come up with the distinct and proper solution. By far, most agents are
involved in non-interactive communication or providing a specific protocol based on some
model [34,190]. In addition, they also pointed out that the meaning of interaction in agent’s
coordination activities seldom mixed the role of coordinating with computing on perform­
ing certain tasks. Hence, they further proposed some approaches to clearly distinguish the
agents’ roles.

2.4 Interest Management 26

Theoretically, Demazeau et al. [85] have proposed basic interaction protocols between
agents in controlling vision systems based on several models, where the agents must be
capable of reacting to incoming messages they received and also know what to expect after
sending a message in an activity. In this way, the global system control can be achieved in
terms of its possible and desired behaviours.

Practically, the Augmented Multi-party Interaction (AMI) project, is an example of research
on multimodal interaction that supports online virtual meetings [238]. The meeting is con­
ducted in a smart environment where agents are used to help in handling information for
each participant and there is also a virtual chairman for coordinating the meeting session.

2.3.3.3 Algorithm Based Design

Interaction protocols can be programmed using any general purpose language to build spe­
cific applications such as multi-user multi-camera environments [78], interactive video with
media channel rotation schemes [260], collaboration with java applets [107] and distributed
multimedia in distance learning [283].

Fantar et al. used algorithms to handle floor control in a video conferencing system to
work on the Session Initiation Protocol (SIP) that provided mechanisms to initiate sessions,
allow other users to join and leave or ask third parties to join. SIP also supported session
management and data exchange capabilities with minor help in access control. Therefore,
the proposed algorithm would extend coordination between participants for video confer­
encing [113].

Most of the work supported by algorithms rely on the server to control user coordination. In
implementing such systems, a programmer must have good skills in network programming
and excellent computer science knowledge to design such challenging work.

2.4 Interest Management

The secured sharing of information in networked systems must follow some rules to ensure
that the shared data is precise and consistent. In a collaboration, some of the shared data are
only relevant to some people. For example, in sharing a database system, a few users can
read or view the information, and only a certain number of them can do the updating. At
any one time, only one user is allowed to do any changes to the particular data. Within such
systems, a user may not want to know all the information kept in the system. Therefore, there
is a need to filter the data for clients and such a process is called data filtering. As pointed
out by Barrus et al. [25], the reasons for having data filtering are to serve the following
purposes

• Reduce the system complexities.

• Increase system performance.

2.4 Interest Management 27

While there are many ways that data can be filtered, user interest is the most commonly
found in networked collaborative systems. Many of these systems handle massive amount
of data that some way is needed to scale it down [191]. Most systems focus only on the
filtering mechanisms without concern for user access control or data protection since the
systems can rely on the database system that supported them or the system can use simple
locking protocols for concurrency control in updating the database [138, 211, 25, 135].
Therefore, these systems usually serve for specific application such as multiplayer online
games [336, 206], teacher to students e-leaming [124] and training or experimental testing
using simulation [230, 224, 312]. In these systems, people also share data or information
during collaboration that shows the need to include some mechanisms for determining user
access for data consistency and security for user privacy.

2.4.1 Data Filtering

In networked systems, data filtering refers to reducing the amount of irrelevant or unwanted
data transfered to clients [5, 217]. In group collaboration, the frequency of message ex­
change is less which results in minimising network traffic and reducing the burden on clients
[217] in receiving unnecessary messages. Data filtering is also implemented in parallel sys­
tems to reduce data transfer for efficient computing power [180]. Other networked systems
such as collaborative virtual systems [203,205,153], agent systems [298,263] and database
systems [53, 217], also implement data filtering based on user interest.

2.4.1.1 Generic Filtering Strategies

There are several strategies proposed to handle interest management in large networked
systems. They include the division of

• Region — Filtering of messages can be performed by the users location that can be
divided into several regions. In this way, messages are sent to the specified regions
which are referred to as a group of users with the same interest. Since the network
covers a very wide area, it is also possible to divide the region logically for not only
achieving efficient communication, but also for reducing the complexities in manag­
ing a lot of users and many activities as implemented in Spline (Scalable Platform for
Large Interactive Networked Environments) [25]. Several terms have been used to
describe the region division such as locales [25], sub-region or sub-domain [217].

• User — The user interest can also be determined by grouping all the users in the sys­
tem into several groups. The users are usually allowed to acknowledge the server their
existence and can make known their interest so that they can be grouped according to
the information given to the server [217,53]. It is also possible to group them accord­
ing to their role/identities or the tasks that they are working on. In this way, users are
grouped and work with others of the same interest.

Spline [25] is one of the leading collaborative networked systems that supports a very large
virtual world. It is implemented by Mitsubishi Electric Research Laboratories (MERL). It
is a 3D graphics presentation containing objects that are divided into 62 locales. Diamond

2.4 Interest Management 28

Park is one of the virtual landscapes implemented using Spline. Users or park visitors can
interact while undertaking some activities in the park. They can even converse verbally
when they are near each other. Therefore, although logically the system has many locales, it
is hidden from the users and the system allows smooth transition within the application [25].

In the research of Masa and Zara [217], spatial division is adopted allowing users to de­
fine their interests using the concept of room division in the application. The implemented
system is aimed at social interaction in virtual environments with avatars used for commu­
nication and selection of activities.

It is common in some Internet applications to use the concept of room to determine user
interest. For example, at www.pogo.com as shown in Figure 2.2, many users are grouped
by rooms. The rooms are originally divided according to the difficulty level of the match.
Within a room* there are tables where players can select their opponents. In choosing the
match, they can decide to play with or without timers. Users can also log into the system as
observers. This example illustrates the need to divide users into smaller groups for manag­
ing structured interaction and interest management.

Another system called CLOVES (City-Level Optimisations for Virtual Environments) [53]
groups users according to user selection on specified functional groups in an application
interface. The system that serves as data, navigation and communication infrastructure for
the City Scanning project, allows users to launch applications to join and leave functional
groups determined by the application.

According to Zou et al. [341], in networked multi-user games, there are two basic grouping
strategies,

• Cell-based — It is a region division based on any shape, normally squares, known as
cells. Each cell is assigned a multicast [223] group address and there are two sets of
cells associated with each entity for information sending and receiving sets.

• Entity-based — A single multicast group for an entity where the entity multicasts all
information within this single group. Therefore, in order to collaborate with other en­
tities, group intersection should be determined by the entity’s coordinate and multicast
group address.

With the assumption that the ‘playing area’ is presented in two dimensional space and di­
vided into cells, an entity is only interested in receiving data from other entities within its
vision domain as shown in Figure 2.3. These two grouping strategies are not particularly for
game environments, but can also be applied to virtual environments in general. As pointed
out by Liu et al. [205], the entity-based strategy requires distance comparison between
avatar and it is adopted by small scale virtual environments while the cell-based strategy
requires tracking the avatar’s position and can be adopted by large scale systems.

2.4 Interest Management 29

c A <

Cnmmunit> O n t i

— - —
G H A LL B N GB TIG E R
QigJ Y U U R T rE R m Sj

C h e s s

Pogo To Go’** G « m »
C h * c k out t t i e ie olftoi
g rea t gam e* from
Pogo To Go:
• e a g t f c tq sac
• Wflid wnoiniPr Ta up Players in Room

(a) Rooms Division

How to Ray
How to Join a Game
My Friends List
Change Rooms

L e g e n d M?re

O Rated Game
© Timed Game

[J j Table Info
g Private Game
O Beginner
O Intermediate

o Advanced
• Expert

• Master

Table 6 - In P rogress 15© Q i
PerfectH.., Q ,________________

Table 10 - In P ro g ress 12©
lo c k m a n .

W h o 's H e r e (8 5) R a t in g T a b le

IT 015 11 45

1741

AAForever2 o l 5 20

aa ro nse ll e42 0 1 4 0 4

e W elcom e t o J o g o Carnes ' l oe
b e s t p lace on t h e web to
m a k e fr iends and win oriaes!

Sen d

W atch

Table 1 - In P rogress 1 0 © O H

AZn8ive29
Table 5 - In P ro g ress 2 0 © Q[jj
vachier1

S ort t a b le s by ... vai lab H it jo i
Table 26 - Jo in th is G ante© QH] Table 27 - In P ro g ress

Rubenc83

b ig b re w o AA F orev...o

mtpmed

(b) Player Selection

Figure 2.2: Pogo Game Collaboration Chess.

2.4 Interest Management 30

Playing Area

Cells

Entity

Vision Domain

Figure 2.3: Entities, Cells and Vision Domains [341].

2.4.1.2 Filtering Factors Based on User Interest

Many filtering strategies are implemented based on users interest. Area o f Interest (AOI) is
the method used mainly on the server side to filter message [203]. AOI and user awareness
in CSCW systems have similar approach that regulates the amount of information to be pro­
cessed by each user. Awareness means an understanding of the activities of others, which
provides a context for one’s own activity [98]. In awareness management, suppressing the
irrelevant information that must be processed by each user [13] shows the need to filter in­
formation in collaborative management.

User interest is also found in other research areas such as data mining [186] and information
retrieval (IR) [66]. Data mining ‘is the process of automatically searching large volumes
of data for patterns’ [223] while information retrieval is often related to a specific object
searching and query [223]. IR is a broad interdisciplinary field and automated information
retrieval (IR) systems were originally used to manage information explosion in scientific
literature [223]. Information retrieval and information filtering (IF) concern on the same
objective, that is to get information [29]. As pointed out by Raje et a l, recently information
filtering has started to attract attention in information management research that involves
repeated interaction over multiple sessions with users having long term goals compared to
information retrieval which only satisfies the users’ short term information needs [263].

There are many different ways to determine user interest that include the followings.

• Distance — Determining a user’s area o f interest (AOI) can be found by aura-based
[217, 229, 228] or zone-based [336] approaches. In the aura-based, AOI basically
consists of three elements, focus, aura and nimbus [134].

- focus : A sub-region that defines the actual focal point of a user or the area of
space that a client is interested for a certain medium.

- nimbus : A region where a client can be detected or known by others.

2.4 Interest Management 31

- aura : A region where the awareness of an object becomes enabled and usually
contains both the focus and nimbus for purposes of determining interaction.

In this approach, either the server or client itself can determine the aura based on data
position. Several approaches have been introduced to determine a client’s aura such
as predictive modelling of object movements [229], algorithm-based AOI calculations
(i.e. collision detection algorithm [211, 206] or clients’ interest matching [188]) and
visibility-based awareness measurement [153].

While aura-based approaches use clients’ awareness and focus, zone-based approaches
raise several issues, particularly on the number of users in each partition [172]. For
example, in a networked virtual system, where the virtual area is very large, it is im­
portant to divide this workspace into several smaller zones because at one moment in
time, a user usually focuses on a certain zone in the system. While the user is working,
he/she can move from one zone to another. In this way, a user interest can be changed
dynamically. Therefore, it is important to manage the number of users and related
objects in a zone so that none of the zone is suffered from neither work overloading
nor idle [82]. Thus, it influences the system performance.

• Frequency — In data mining [186] and information retrieval (IR) systems [66], user
interest, usually referred to as user preference, can be indicated by the frequency of
information search. In a system such as SHARK (SHARing Knowledge), a document-
sharing multi-agent application [298], agents are used to identify and group users be­
fore analysing and categorising them according to the documents that they match the
most. In this way, such agents not only help in determining user interest, but also the
user’s future document searching and downloading can be speeded up. These agents
can also promote collaboration among users with similar interest.

Another system, COBioSIFTER [263], has similar approaches to determine user in­
terest based on information search frequencies for biological data. With the similar
concept of frequent user activities, interest can also be based on the activities that oc­
cur through user interaction in a system.

Ding and Zhu [91] describe a 3D virtual environment, called MultiVR, where user
interest is represented by user’s interaction with several objects. In such a system,
some algorithms are proposed to analyse the behaviour of any interaction activity that
results in the achievement of finding the focus of interest.

• Predefined setting — User interest in an application can also be determined by allow­
ing the user to provide a certain value. For example, in CLOVES system [53], a user
is allowed to join or leave a certain functional group that is previously set according
to the grouping procedure. Selecting to join a particular group means that the user has
determined the interest value.

Almost all of the related work presented here that concerns the data filtering based on user
interest show the significance of interest management. However, as most work applies in
large scale systems, interest management issues often focus on only the reduction of data
exchange between clients or message passing in the communication systems. For interactive

2.4 Interest Management 32

group collaboration, such as collaborative games, interest management can allow users to
engage in such preference activities in the form of small groups. In these environments,
although some data or information must be shared, there is little focus on integrating interest
management with user access and data protection except that mentioned by Belkin and Croft
[29] on information sharing that is mainly supported by agents and database systems but
without any consideration of user collaboration.

2.4.1.3 Filtering Implementation

As there are many strategies and approaches in filtering of data in network systems, these
filtering schemes are implemented in several ways that include the followings.

• Simulation technique — Much research on interest management is performed through
simulation. Concern is mainly with system efficiency and model testing. In fact, in­
terest management is one of the most significant concepts in distributed simulation
[187] with the aim of reducing the number of messages passed in various applications
such as military games training [230], software design [187] and mobile objects or
agents [312, 323].

Liu et al. [205] propose grouping strategies using algorithms that apply to entity-
based and cell-based groupings. Their work focuses on avoiding the calculation of
finding visible sets and reducing the complexity of updating groups, when an entity
changes its position or AOI. As a result, the grouping scheme overhead can be reduced
and only necessary messages are sent to the certain groups.

In the use of Distributed Interactive Simulation proposed by Messina et al. [224], in­
terest was managed, either server-based or router-based, where system entities had to
define their presence and activities to their local CPUs via messaging. Their work had
concluded that interest management was very significant in achieving system perfor­
mance since one critical issue within the system was the growing number of entities.

In agent-based distributed simulation as proposed by Wang et a l [323], the interest
management for High Level Language Architecture (HLA) [223] supports two types
of filtering

- Class-based filtering : A service that allows a user to update and receive updates
to object attributes based on object class.

- Value-based filtering : A service that extends the update service using routing
and regions.

With routing spaces or multidimensional coordinate systems, users’ interest are deter­
mined by subscription or updated regions. Using algorithms to calculate the intersec­
tion between these two, connectivity and efficient data transfer can be established.

• Virtual Environments — Interest management is also one of the important issues in
virtual systems that are mainly concerned with data transmission delay in user motion,
action and communication [53], minimising network traffic and reducing the burden

2.4 Interest Management 33

on clients [217]. These systems are usually supported by database systems for users’
information that apply to various applications such as online games [341, 336, 228],
e-leaming [124] and shared virtual worlds [53, 217].

For example, a net-VE system for social interaction and culture content dissemination
called e-Agora [217], combines spatial models and functional filtering interest man­
agement and comes up with a formalised storing and distributing updates namely Gen­
eral Variable (GV) concept. The GV for a particular user is kept in the GVs database
and this system also uses Virtual Reality Modelling Language (VRML) technology.
In another shared virtual world system, CLOVES [53], the spatial subdivision is used
a database with centralise information storing and the system introduces a Graduated
Visibility Set (GVS) for its interest management techniques that also combines the
spatial and functional filtering.

• Agent-based data filtering — Although agents are usually required for information
retrieval in information management systems, it is also possible for agents to filter
data according to users’ interest in order to help people in obtaining the information
they need in a faster and more efficient way. SHARK [298] and COBioSIFTER [263]
are example of such systems.

Although much research has been undertaken on interest management and several tech­
niques for data filtering have been implemented, there is no attempt to provide basic and
simple interest management for small scale interactive group collaboration through high
level language constructs that can filter message exchanges between users for a general ap­
proach in various networked collaborative applications.

2.4.2 Access Control

Access means ‘the right to use’ [50] that refers to mechanisms and policies to restrict the use
of computer resources [70]. Upon being granted system access, particular data or informa­
tion may be protected for privacy. Security refers to the ‘techniques for ensuring that data
stored in a computer cannot be read or compromised by any individuals without authorisa­
tion. Most security measures involve data encryption and passwords. Data encryption is the
translation of data into a form that is unintelligible without a deciphering mechanism, while
a password is a secret word or phrase that gives a user access to a particular data’ [70]. It
may occur that there are several access levels for sharing data or information in collaborative
systems.

Access control on shared data needs to be enforced for consistency and sensitivity. Tolone
et a l [317] proposed access control requirements that contain several elements as follows:

• Distributed platform — The control access platform must support distributed features
as resources can reside in distributed places.

• Generic models — The model can cover the needs of a wide variety of tasks and
models and be able to support various information backgrounds.

2.4 Interest Management 34

• Greater scalability — This refers to the number of operations supported. The greater
number would be better.

• Strong protection on information and resources — With massive data sharing, the
need for strong data security with different levels of access can be achieved.

• Flexible authorisation — A clear distinction for authorisation must be supported for
easy data manipulation and consistency.

• High-level specification — The better managing of access in conjuction with the com­
plexity of the applications.

• Dynamic models — Access policies can be changed and managed at run-time.

• Reasonable costs and performance — The costs would be kept at a reasonable level
as well as achieving good system performances.

The above requirements are based on models that are supported by software tools for Grid
environments that are dynamic, distributed and usually only support a short duration of group
collaboration [92]. As Grid computing is more concerned with speed and storage, it is not
particularly good for handling interactive group collaboration, but rather for coordinating
the sharing of resources among a massive number of users [236, 292]. Therefore, security
is one of its important issues.

In small scale interactive group collaboration, all the elements in the access control re­
quirements listed above can benefit the design of interest management that integrates access
control with data filtering. Apart from the ‘greater scalability’ factor, high level systems such
as middleware systems or special purpose network programming languages are capable of
providing generic and dynamic models with flexible authorisation and high level specifica­
tion for information protection in distributed platforms at reasonable cost and performance.
However, by far, there is no such tools to provide these features.

2.4.2.1 Access and Security Factors

In some systems, access control can be viewed as the same as security control while other
systems differentiate these considering access control as a more general system access while
security applies to specific data or information items. As access control can be part of a
security system, here, both approaches can be seen as having a similar purpose. In general,
several factors has been introduced in networked systems that include the following.

• User — The user is the key component in a system that needs to get access to any
' shared data. As pointed by Chen et al. [62], it is important to separate the users and
their data into different disjoint sets of security classes, so that both sets use different
secret keys. The users can be arranged hierarchically in order for proper management
of access control.

In grid computing, role-based access is widely used to enable dynamic access rules for
a user during a session that allows a user to change role or have multiple roles. This
model is called Role-based Access Control (RBAC). It starts by having a centralised

2.4 Interest Management 35

administrator [115], and then is enhanced to a distributed hierarchy that broadens the
role of the server as well as client with the support of locality [192, 59, 31]. Further
enhancements have been made to RBAC. For example, combining RBAC with XML
[59] for multi-domain environments [171], adding the concept of team for Team-based
Access Control (TMAC) in collaborative environments [315], putting other desirable
behaviours (such as time and location) for Context-based Team Access Control (C-
TMAC) [127] and Temporal Role-Based Access Control (TRBAC) that allows se­
curity to be applicable during runtime [36] and to fulfil complex security needs in
Dynamically Administered Role-based Access Control (DARBAC) [219].

In Xie et al. [331], a framework for security integrates users’ access rights, users’
history behaviours and resources protection. Therefore, users’ behaviours are tracked
and then according to these behaviours, secure levels are calculated and users’ access
rights are assigned. This work illustrates dynamic access control mechanisms.

• Event — It is important to have an access based on events as proposed by Bhide et al.
[38] in e-commerce environments that can reduce customer response time. The access
control rights are based on policies that are executed every time an event occurs. Such
mechanism is supported by a database system and the validation rules stored in a
policy database.

• Knowledge hierarchy — In most systems that are supported by databases, users are
interested in access to the knowledge or information in such systems. The access
is usually performed by SQL queries and there are rules and regulations set using a
Knowledge Description Language [32]. The concept of hierarchy in knowledge dis­
covery allows the knowledge to be expressed in higher level abstractions. However, it
requires complexities in the implementation that should consider the SQL primitives,
indexing and encoding of rules and much more [32].

• Location — Location is an access factor especially important for mobile computing.
In such environments, information is location-dependent while the location service
is general purpose [197]. The implementation of such systems also require supports
from a database system and the location of involved parties can be partitioned using
a hierarchy where access control is determined according to the user location domain
[198].

As the above factors apply to general access control methods, mainly individuals in partic­
ular, collaboration of groups has special requirements for security policies as pointed out
by Ellison and Dohrmann [108], They address the need of each group member to have the
same access rights and before the group is formed, it is important to be aware of each user’s
authorisation rights. Therefore, each member of the group is identified by a public key.

According to Tseng [319], in group collaboration that requires one sender to multicast data
to a large number of authorised receivers, it is necessary to have a scalable key-management
scheme. The group members usually share an encryption key that needs to be renewed if
changes in the group members occur. It is also common to have a hierarchical tree structure
of users for easy management and cost reduction in this scheme.

2.4 Interest Management 36

2A.2.2 Management Strategies

There are a few strategies proposed by researchers in different environments to manage data
access in accordance to the need of applications or system requirements.

Using the proper design of a system architecture, the system can be managed systemati­
cally with clearly defined functions for its components. For example, Closed Collaboration
Teams (CCT) [92] for business transactions supports the use of public key certificate. The
environment has several entities that consist of local security administrators, team managers
and team members. By the breaking entities, the system supports dynamic formation and
self-management of virtual collaborative networks.

The management of data access can be based on the basic access control model, a ma­
trix model, first formulated by Harrison et al. [146]. It is the relation between subject and
object where an authorisation is expressed according to the access rights and access modes
[274]. The matrix model has strong features that have been adopted by many researchers in
determining authorisation decisions [340]. As pointed by Zhang et al. [340], in this model,
there are three elements,

• A set of objects — All the entities to be protected in the system (passive entities).

• A set of subjects — Set of active entities that can request access rights or execute
some permissions on an object.

• A fixed set of commands — A condition or sequence of primitive operations that can
change the state of a system.

Example access models based on this matrix model include schematic protection model
(SPM) [275], type access matrix (TAM) [276], usage control (UCON) [274] and attribute-
based matrix model (ABAM) [340]. Most of these support modem access control that has
dynamic system states.

In MASSIVE-3 [135], there are several consistency mechanisms for data items within its
database. The consistency model features the following characteristics

• Single owner of single data items at one time for ensuring data consistency.

• Two part sequencer or counter for each data item for defining an unambiguous order
of all updates.

• A list of item sequencer values in every message for indicating event enactment.

• Allowable ownership request for a data item to ensure unambiguous order of owner­
ship transfer.

With the proposed model, the concept of mutual exclusion, centralised control of the data
owner and distributed management with the ownership transfer has been proven to support
interaction and interest management in networked collaborative systems. Further descrip­
tion on the state update is shown in Figure 2.4. Figure 2.4 (d) is similar to the JACIE interest
management design in terms of the ownership transfer concept and centralised control (de­

2.4 Interest Management 37

scribed in Chapter 6), but there are many differences in the concurrency control, shared
resource types and application implementation. In ownership transfer, the master, who is
the owner of the shared data receives the ownership request from a client. When the own­
ership is granted to the client, the client can perform as many updates as required by the
application provided that only the current owner can do the data updating. Figure 2.4 (a)
shows this concept on the first time data update, while Figure 2.4 (b) shows the subsequent
updates performed by the client after getting the ownership. With the centralised update in
(c), every updating event must be acknowledged and sent to the master that can cause de­
lay to the observer, therefore a Collaborative Immersive Architectural layOut (CIAO)-style
[302] update (Figure 2.4 (d)), which combines the ownership request and data update in one
event, reduces the delay. The numbering at all the arrow lines in Figure 2.4 represents the
sequence of events during the update process.

Master Master

Own. Request
Ownership
Update

1. Update 2. Update4. Update

Client Observer Client Observer

(a) Ownership transfer (b) Ownership transfer
(first update) (subsequent update)

Master Master

1. Update Request and
Own. Request

2. First update and
Ownership /

1. Update Request
2. Update 2. Update

2. First Update

Client Observer Client Observer

(c) Centralised update (d) CIAO-style updates

Figure 2.4: Consistency Mechanisms in MASSIVE-3 [135].

2.4.2.3 Sharing Factors

As data can be built from many types, the term data sharing may cover a lot of topics in
collaborative systems such as sharing of variables, objects, components or knowledge. The

2.4 Interest Management 38

variable sharing may be similar to memory sharing and sharing of information or knowledge
is usually applicable in database and agent systems.

There are many kinds of resources that people share in the networked systems. When sev­
eral users engage in an interactive collaboration, there are a few types of resources that they
are typically interested in, including the following.

• Memory — Sharing of memory is similar to sharing of variables as a variable is al­
ways represented by a high level symbolic name. They refer to addresses in computer
memory [258] that data exchange is performed by operating system services [223].
Therefore, throughout this discussion, both terms are interchangeable. The shared
memory is widely discussed in concurrent and parallel systems as memory is one of
its important factors in providing faster computation [180].

Parallel systems are usually composed of homogeneous processors that either share
a global memory, accessible by all the processors in the distributed systems, each
processor has its own memory. Although the concept of shared memory can be cen­
tralised or distributed, the way communication is performed mainly depends on the
system hardware and programming. This gives rise to issues of network connection
(or topology), distributed operating systems [288], virtual memory management, mul­
tilevel caches [60] and parallel programming languages [258].

• Object — Object is ‘a thing, an entity or a being’ or in a 3D model, it is ‘a represen­
tation of physical object’ [223]. In interactive collaborative virtual systems, sharing
a 3D graphics object, has given rise to several issues that include transmission rate
[220, 202] and data management [128, 213].

A prototype system called TeCo3D (TeleCooperation 3D) [220], a virtual reality
model, allows distributed users to view and share a single-user application. Users can
share interactive and dynamic 3D models over a distributed architecture while leaving
the sharing mechanisms performed by the application rather than the 3D-model itself.
The application is equipped with customised collaborative sensors for user interaction
and some programs as interfaces to support its main tool, a VRML. Its 3D-model ap­
plication dependent uses generic approach so that it is possible to reuse this system
for various applications.

Another example is the Shared Simple Virtual Environment (SSVE) [202], an object-
oriented framework for highly interactive group collaboration. It has rich features for
interaction and information sharing that can support only a small number of users.
Data consistency is achieved by combining atomic method exclusion (operating sys­
tem support) with transaction locking using object properties implemented at a high
level. This framework is implemented using simulation that runs a single user mode
and has proven the efficency of group collaboration through subgrouping and regroup­
ing mechanisms.

Other work by Geyer et al. [128] use object-centric sharing to support collaboration
activities. The main target is for lightweight activities that allows users to aggregate
and organise shared objects into activity threads. It also allows users to move seam­

2.4 Interest Management 39

lessly back and forth between different modes, interactive and asynchronise systems.
Using peer-to-peer shared objects, this research is aiming to fill the gap between ad
hoc communication and formal collaboration.

• Database — Sharing information in a database system is very common in distributed
systems nowadays. It benefits a lot of people in accessing the latest information avail­
able. It is common to have a distributed database system with distributed data man­
agement. A database system can be used to support applications with massive data.
For example, in multi agent systems, a database is used for knowledge sharing and
in concurrent systems, especially parallel systems, a database is used for data and re­
source sharing. The sharing of information in e-commerce relies on a sophisticated
database system for everyday transactions. It is also possible to achieve the integration
of several database sources. On top of that, as pointed out by Agrawal et al. [8], it is
possible to have information integration from autonomous entities with minimal shar­
ing based on more than one DBMSs. Their work examines sharing the integration of
only a required part of the systems and hiding the rest of the information. Another sys­
tem, HERMES (HEterogenous Reasoning and MEdiator System) [52] also provides
a platform for global security policy in mediated systems that allows the integration
of database systems with different local security policies.

The main issues in sharing database are security and privacy. The locking protocol
[264, 150] is one of the popular ways to ensure data consistency in updating infor­
mation. In the distributed database, replication is required for consistent data main­
tenance. For example, Navas and Wynblatt [235] describe and implement the data
management by borrowing the internet concept since the network is the database.

There is much research on handling the database management and access methods
as the database becomes more complex. For example, Cavazos et a l [56] propose
a 3-tiered client-server component-based architecture that provides a systematic and
secure execution sequence for data operations and schema operations. Another ex­
ample by Niemi et a l [237], proposed a powerful and advanced query language for
manipulating complex entities.

• Device - It is also possible to share devices, peripherals or instruments remotely and
collaboratively. Although it may not be easy to share one or more instruments between
one or more users, several investigations have been undertaken by either limiting the
number of resources, such as using only a single robot through multiple sensors [132]
in controlling robot motion, or limiting the number of users, such as in controlling one
or multiple cameras [78], or applying simple protocols such as locking mechanisms
in video control [260] and agent support for robot vision systems [85].

Although sharing resources in networked systems may include other entities such as files
and documents, these resources can be represented as objects or variables when they are
implemented in networked applications.

Chapter 3

Programming Languages and Tools
for Developing Networked
Applications

3.1 Introduction

Software supports communication and interaction among users in networked systems. It
is defined as a term for various kinds of programs used to operate computers and related
devices, and also considered as an intermediary between electronic hardware and data [329,
223]. Software that contains system software, programming software and application soft­
ware, supports programmers and designers in several different ways to achieve their objec­
tives. System software often requires low level programming in which only a programmer
with specialised skills and experience is able to write a networked application. Many pro­
gramming languages have emerged nowadays to assist in a much easier approach for the
development of different types of applications. Furthermore, clients can now communicate
through web pages that can be considered as documents written in Hypertext Markup Lan­
guage (HTML), which provide great flexibility for display and interaction. Such documents
can be supported by other back end programs such as Common Gateway Interface (CGI)
programs for further development features.

There are also several tools specifically designed for networked applications that help users

Contents

3.1 Introduction...
3.2 Network Programming Languages and Tools
3.3 Interaction M anagem ent..............................
3.4 Interest M anagement....................................

40
41
54
56

40

3.2 Network Programming Languages and Tools 41

to reach others, share information or work collaboratively. Software products such as Lo­
tus Notes and Domino [158], Basic Support for Collaborative Work (BSCW) [118], Mi­
crosoft Netmeeting [73], and Novell GroupWise [239] are also available usually to assist
users in general collaborative activities. This type of software system is also named as
groupware. Since most of these products serve users in general purpose collaborative work,
programming tools may give better opportunities to assist users in having the specific re­
quired applications. Such tools usually provide software developers with convenient pro­
gramming environments. Example of such tools include text editors, scripting languages
[269, 325, 161, 101] and toolkits [281, 193, 257, 88]. However, in using such tools, some
basic knowledge of network programming and web technology [322] are still required.

Interaction and interest management are important factors in implementing interactive net­
worked collaborative applications. As pointed out by Shirmohammadi and Georganas [284]
that at the application level of sharing multimedia applications, there are two main factors
in multi-user environments: consistency of data and application access control. The former
factor is indirectly related to interaction management while the latter factor is directly re­
lated to interest management. Since data is the most important element that people share
in collaborative applications, interaction control protocols guarantee data can be kept con­
sistent among users by allowing at most one user to change the shared data at a time while
interest management helps in controlling particular users to access particular parts of an ap­
plication.

This chapter discusses network programming languages and tools for developing networked
applications by looking into the developmental features and implementation issues of the
existing systems. Interaction and interest management issues are also reviewed.

3.2 Network Programming Languages and Tools

Since software can cover many topics in networked systems, from high level languages in
implementing web pages using web technologies to low level languages in network oper­
ating systems, only an overview of such technologies, system design and implementation
is discussed. Regarding the issues of programming languages used in the implementation,
Java [105] is one of the commonly used high level languages. It has been used in many
existing collaborative systems for its capability of running on any platform that has a Java
Virtual Machine (JVM) [162]. It is also the base language used in this research work where
the JACIE scripting language is translated. Java has the technology to insert its applets into
HTML documents, mostly used as client programs and allows server programs to be exe­
cuted as application programs. Therefore, this section also gives an overview of some of the
existing Java-based collaborative systems.

There is no progamming language that provides all types of applications demanded by net­
worked users, therefore, several types of languages and tools have been developed. Al­
though Java and .NET framework have provided popular platforms for general purpose pro­
gramming, there is also the need to handle special purpose applications that require such
languages or tools to provide powerful mechanisms and simpler approaches. For example,

3.2 Network Programming Languages and Tools 42

scripting languages have became popular for their ‘shift in application mix toward gluing
applications’ [246] that would mostly be found in web pages CGI scripting. There are also
component [223] based tools for software interoperability.

3.2.1 Web Technology

Web technology is about the World-Wide Web (WWW) that was ‘developed to be a pool of
human knowledge, which would allow collaborators in remote sites to share their ideas’ with
the original target application to support collaborative work [35]. It can also be considered
as the implementation platform and activity space. Therefore, it became the most conve­
nient way to access information on the Internet with WWW browsers to integrate different
network services into a common, easily accessible and platform independent user interface
[123].

In WWW technology, the HyperText Transfer Protocol (HTTP) is a protocol used to trans­
fer information from a specified address in Universal Resource Identifiers (URIs) (or also
referred to as Uniform Resource Allocator (URL)) [35]. Although HTTP is not intended for
real-time data feeds, CGI programs allow users to interact with the web server as well as its
active contents such as Java applets, to make interactive group collaboration possible [123],

Most application developer utilises WWW as the main vehicle to deliver a collaborative
application using several programming languages such as C++ and Javascript. To design a
group collaboration in the WWW, Gall and Hauck [123] highlight the importance of net­
work topology, which can clearly distinguish client and server subsystems in designing a
system architecture such as a client/server model [234, 329, 289], and the need of program­
ming models for communication, concurrency, floor control and session controls. JACIE
also uses a client/server model in managing group collaboration by supporting any user ac­
tivities through a server where the server initiates a session and allows a finite number of
users to join a session. However, a programmer can choose to program either centralised or
distributed applications since both server and client components can support communication
and session control.

A client/server model is one of the significant concepts in networked systems. It is a gen­
eral description where a client program initiates contact with a server program, which is
usually located on a different machine, for a specific function or purpose. The client exists
in the position of the requester for the service provided by the server [234]. Although the
client/server model can be used by programs within a single computer, it is significant to
use this model in a network environment. This model provides a convenient way to inter­
connect programs that are distributed across different locations [329], In this model, one or
more clients can interact through a server, along with the underlying operating system and
interprocess communication systems, form a composite system allowing distributed compu­
tation, analysis and presentation [289].

According to Chun and McLane [65], programming in a client/server model uses the basic
concept of multi-tier architecture where each tier has its own unique web-related technolo­

3.2 Network Programming Languages and Tools 43

gies, languages and software. To them, the architecture consists of

• Presentation — Concerned with the way information is presented at both client and
server.

• Application — It focuses on developing ‘business’ applications which are associated
with web servers and application servers.

• Data access — Concerned with the database handled by database server.

The work in this thesis has the most focus on the application tier that plays the most impor­
tant role in controlling the underlying process of applications, and some concern with the
presentation tier that inserts Java classes into HTML documents for displaying applications
at clients’ web pages and supporting clients activities. JACIE has no database support, so it
is not concerned with the data access tier.

In the application tier, server-side programming can be performed on HTML embedded
language as well as high level programming language using Java classes, JavaBean or Com­
ponent Object Model (COM) [223], and JACIE chooses to use Java classes in all its appli­
cations.

3.2.2 Networked Applications Development

Nowadays, there are various networked applications available to fulfil user demands in many
different types of systems such as parallel and concurrent systems [218,180], virtual systems
[45, 202, 124, 243, 212], agent systems [256, 166, 37] and database systems [264, 8, 282].
Research on improving software technologies is still an on going process so that the follow­
ing goals can be achieved.

• Ease of use — A software developer looks for an easy to use tool or simple language
to design and implement applications.

• Flexibility — It is important to have a programming language or tool that can provide
a platform for various types of applications.

Issues on developing networked applications especially in distributed systems [69] have
been discussed for some time that involved operating system support where, initially, only
operating system provides interprocess communication [293]. Network operating system
programming is mostly concerned with the work of processors that were connected by a
communication network. Several high-level distributed programming languages had been
developed to support program execution on these distributed processors [22].

When looking into the history of high level distributed programming languages, most lan­
guages during that era were sequential languages and some were concurrent languages based
on shared variables such as Concurrent Pascal [144] and Modula-2 [278]. In executing these
languages, each processor had its own concurrent program that ‘many operating systems for
uni-processors are structured as collections of processes, executing in a quasi-parallel mode,
and communicating through shared variables’ [22]. Other concurrent languages like SR [12]
and Ada [249] used shared variables as well as message passing to increase concurrency.

3.2 Network Programming Languages and Tools 44

Message passing had became widely accepted although in this approach the name of the
message receiver’s exact location was required. Various schemes to name the receiver’s lo­
cation have been proposed that enable such destination points to use either ‘direct naming’
(exact address), ports [223] or global names (mailboxes) [70]. Later, a remote procedure
call (RPC) [293,223] was introduced to enable a client to make a ‘call’ to a remote machine
to support at least two messages exchanged in a client/server interaction [11].

As hardware and software technologies advanced, distributed operating system provided
data access regardless of the receivers’ locations [133]. Therefore, these primitive ap­
proaches towards shared variables, message passing and remote procedure calls had gone
through several phases of developments. Such developments provide a programmer with
techniques for writing networked applications by ignoring the details of communication
processes. For examples, higher level abstractions such as Application Program Interface
(API) [162, 223] packages and abstract memory representations [258, 179] were proposed
to support application development from high level programming languages [293].

Nowadays, there are several general purpose network programming languages such as Java
[162] and C# [84] to provide a software developer with such design and implemention.
Although such languages still require some programming skills and network knowledge,
their general features make them able to provide platforms for different fields of applica­
tions. There are also scripting languages such as Python [325], Perl [269], Tel [160] and
JavaScript [71] that are widely accepted for their simple and easy programming features
using scripts. These languages are mostly used for CGI scripts in HTML documents to
enhance user interaction [145] and several other specialised languages or libraries such as
Mawl [16], DiCons [18] and Curry [145] have emerged for greater flexibility for the CGI
applications.

3.2.2.1 Method of Communication

Clients are in distributed places in a network and communication between them must be
made through servers. According to Bal and Tanenbaum [22], two way interaction between
two processes can be performed either using Remote Procedure Call (RPC) or Rendez­
vous [252], while interaction between one sender to many receivers can be done through
broadcasting and multicasting. Broadcasting enables information from one source to be
transmitted and received by all others in the network while multicasting allows information
output by one source to be received by a specific subset of others [142]. The sender can use
communication ports or mailboxes for the receiver’s location to avoid explicit addressing
of processes [22]. Therefore, to enable users’ collaboration, data at one location must be
passed to others by one of the following methods.

• Message Passing — Communication by message passing requires message queues for
both sender and receiver. It is usually in the form of a loosely coupled system [47].
In some languages, such as Hermes [17], message passing is performed by language
constructs. The general form of message sending is as follows.

send <expression_list> to <destination_point>

3.2 Network Programming Languages and Tools 45

In this language construct, e x p r e s s i o n _ l i s t indicates the values to be transmit­
ted while the d e s t i n a t i o n _ p o i n t can have one or more points or nodes, that
denote the destination of the message to be sent.

A process receiving a message from a source point is usually represented by the fol­
lowing statement.

receive <expression_list> from <source_point>
Similar to sending a message, e x p r e s s i o n _ l i s t has the same function as above
while the s o u r c e .p o in t usually represents only one source per message [11].

• Remote Procedure Call — It uses the concept of procedure calls in a structured lan­
guage such as Pascal [183], This concept provides the flexibilities of other programs
or routines from one section in a program (or other user in the network environment)
to use other routines with or without parameters. Therefore, one or more values in the
original routine can be copied or modified.

The primitive RPC approach was represented by a ‘call statement’.

call <service> (<value_argument>; <result_argument>)
The s e r v i c e indicates the source node’s name if it is referred to the place of service,
or otherwise, it can represent the name of a service if the ‘abstract’ address of source
node is used. Both call ‘parameters’ denote the value to be sent to the requesting
node and the value to get in return [11]. By far, the RPC mechanism has changed
since the object model [22] is introduced. The object model gives greater flexibilities
in communication methods where a parameter value can be referred to as an object.
Now, it has a mechanism of transferring control between the original to the calling
routine that facilitates an easy communication between virtual nodes.

The issue of message passing is often found in parallel systems where Message Passing
Interface (MPI) [119], a computer communication protocol, is a de facto standard for com­
munication among the nodes running a parallel program on a distributed memory system
(i.e. clusters of Symmetric Multiprocessors (SMP) [223]). MPI implementations consist of
a library of routines that can be called from a high level general purpose programming lan­
guages such as Fortran [112] or C [194, 223] that usually involve buffers, byte counts and
data types. Another example is ‘MPI Ruby’ [245], a scripting language that integrates MPI
with the object-oriented language Ruby [321], to achieve a simpler programming approach.

The RPC mechanism can be configured in several different ways that allows calls to be
made within the same machine or different machines, as shown in Figure 3.1. The figure
illustrates two machines, M and M’, where machine M has two processes PI and P2 while
machine M’ has only one process P3. Each process can contain one or more threads, there­
fore, RPC can be performed between threads in one process (denoted by RPC1) or between
processes within one machine (RPC2) or remote machine (RPC3) [293].

3.2 Network Programming Languages and Tools 46

RPC RPC3
RPC2

M’

Figure 3.1: Possible Configuration of RPCs [293].

3.2.2.2 The Challenges

Since a network can consists of many heterogeneous computer systems, constructing a pro­
gramming language for such environments is challenging. The emergence of generic plat­
forms such as CORBA [286], DCOM [72] and JVM [162], together with the use of general
purpose network programming languages can support higher level software design such as
scripting languages and toolkits to help designers in building interactive networked col­
laborative applications. Scripting languages and toolkits have provided a simpler way for
application design compared to the use of general purpose network languages. Languages
are often based on Java and C, such as Python is on C language and Yoix is on Java. Exam­
ples of group collaboration toolkits include DistView [257], Suite [88] and Collaboratory
Builder’s Environments (CBE) [193]. As these toolkits are useful, the language approach
design may give greater flexibility for developing various types of application.

For example, Figure 3.2 shows a session manager in DistView [257], a toolkit for building
collaborative applications [241]. In this session manager, users are grouped by a high level
grouping mechanism using a room model where users in the same virtual room can collab­
orate with each other. Users can perform their work on both private and shared workspaces
and they are able to move tools and data between these workspaces. This toolkit also sup­
ports mechanisms for access control with password authorisation on users who can choose
to be registered users or ‘guest’ users.

There are several other challenges to provide a software tool to a system designer in im­
plementing networked collaborative systems. These include multiple media channels for
various forms of communication, the collaborative environments over the Web from mul­
tiple platforms (e.g., Java-enable Web browser) and the mechanisms for access control to
ensure consistent shared data [193]. These factors enable collaboration among users from
many different places to be performed in many different ways while maintaining the consis­
tency of shared data among them.

Another challenge, apart from the application development issues, is probably the network
transmission delay that can affect the user response time. A brief discussion on this issue is

3.2 Network Programming Languages and Tools 47

SfflBi
Kelp

n Manager

Upem Oljeet Users

Trivote-guest (I)

Q Chat

n TtcTocToe

Q Draw

5 H Secret Jtpam (0)

Rfllii—
Q DistView Demo

D Chat

D TtcTatTae

Q Draw
fuest<Pparis. eecs. umtch edit

j Unsigned Java Applet Window

J Unsigned Java Applet Window

Current 'Users m the System

guest@paris. eecs. umich. edu

Ctose! •EMail I

j Unsigned Java Applet V

Select applet groups to add

J Chat

J TicTacTae

J Draw

Cancel I

Figure 3.2: Session Manager in DistView [241].

provided in Section 7.5.3. However, further details will not be provided since the focus of
this research work is more on the design of language features rather than the examination
into overall system performance.

3.2.23 The Techniques

Network protocol and communication are usually performed by operating systems since all
machines connected in a network are controlled by this system software. However, nowa­
days, these jobs can be managed at a high level through several methods. Application Pro­
gram Interface (API) [162, 223] is the most common approach in almost all programming
languages that support programming for networked applications.

Application Program Interface (API) is a set of routines or tools for building software ap­
plications. It usually takes the form of a library of routines that enable the higher level
programming languages to make use of the lower level features. In the traditional operating
systems, only assembly language can use the APIs to instruct the operating system kernel.
However, when the software technology improved, a programmer or even a computer user
can use API from a high-level language to activate some features in the modem operating
system. For example, the C programming language is used in writing the operating systems

3.2 Network Programming Languages and Tools 48

such as UNIX, was designed with the API facilities that makes programming system pro­
grams much easier and convenient. Other examples include the Orca programming language
[20] that works with the Amoeba operating system [240], and Ada for low level message
passing communications on BIGS AM Distributed Operating System [225]. In this way, net­
work protocols can be performed at the user level using application program interface (API)
or user libraries [21, 225, 314].

With the API approach, there are several object-based component system [223] platforms
provided to integrate heterogeneous systems. The most common platforms are as follows.
[265]

• Common Object Request Broker Architecture(CORBA) — This represents a standard
architecture to support object interoperability on networks, produced and maintained
by the Object Management Group (OMG) [286]. ‘It defines APIs, communication
protocols, and object/service information models to enable heterogeneous applica­
tions written in various languages running on various platforms to interoperate’ [223].

CORBA applications are composed of objects that are invoked by CORBA clients
using interface description language (EDL). DDL interface definition is independent of
programming language, but ‘maps’ to all of the popular programming languages via
OMG standards. Such programming languages include C++, Java, Cobol, Smalltalk
and Ada [286]. IDL uses simple syntax that enables a call to a software component
while hiding the detailed implementation such as a component running code and data.
It not only allows object interoperability between different programming languages,
but also inter-machine architectures. The operation is achieved through the concept of
remote procedure call [223]. The CORBA approach has become the most popular in
many networked applications because of the varieties of languages that it can support.

• Distributed Component Object Model (DCOM) — This is a Microsoft technology for
software components and extends the Component Object Model (COM) [72] allow­
ing COM components to communicate across network boundaries. Traditional COM
components can only perform interprocess communication across process boundaries
on the same machine. DCOM uses the RPC mechanism to transparently send and
receive information between COM components in the Microsoft Windows-family of
Operating Systems. For example, ActiveX Controls [73] which have the API con­
cept are widely used for software development tools and end-user productivity tools
[70, 223,72].

Both CORBA and DCOM have different architectures and use their own functionalities that
enable these platforms to work together. For example, in CORBA, communication between
clients and servers is through Internet Inter-Orb Protocol (HOP) [286], while in DCOM,
this communication is performed via RPC [73]. Since CORBA can work on any system
but DCOM is only for Windows environments, several attempts have been made to enable
DCOM to have cross-platform interoperability such as Microsoft’s Simple Object Access
Protocol (SOAP) [73, 80], and the proposal for an inter-working framework for CORBA
and DCOM namely Active COM [79].

In addition to CORBA and DCOM, Remote Method Invocation (RMI), developed by Sun

3.2 Network Programming Languages and Tools 49

Microsystems Inc., is another object-based component platform. Like DCOM, it is also spe­
cialised for one environment that is Java. It ‘enables a programmer to create distributed Java
technology-based to Java technology-based applications, in which the methods of remote
Java objects can be invoked from other Java virtual machines’ [162]. With the concept of
procedure call, it is in the form of an application program interface that is compatible with
CORBA.

3.2.2.4 The Characteristics

Since a networked system can be viewed as several connected remote computers to form
one ‘large’ system, therefore, in providing users with shared application, software tools
must consist of the following characteristics.

• Concurrency control — This refers to simultaneous execution of multiple interacting
computational tasks that occur either in separate programs or as a set of processes or
threads in a single program [223]. This required feature is necessary to accommodate
with the computing environment of networked systems. Some languages such as
Java, C and Concurrent Pascal [144] support such feature in the form of language
constructs that usually can also be referred to as concurrent programming languages.
These constructs may involve multi-threading that are implemented in several ways
including message passing and shared memory. Other languages such as Ada [249],
Erlang [111] and Oz [272] use application program interfaces that have interprocess
communication support for network operating systems.

• Communication Support — Programming languages and tools can provide ‘comfort­
able’ environments for users at high level where usually such tasks and activities are
handled by the operating systems for actual inter-user communications. A micro­
kernel [223] often provides communication primitives in some systems while other
systems rely on high abstraction level such as reliable message passing and RPC.
There are also systems that use a microkernel such as FLIP [176] in the Amoeba dis­
tributed operating system, to build higher level communication protocols in the form
of libraries in user space [240].

In user space, several protocols have been implemented such as Transmission Con­
trol Protocol/ Internet Protocol (TCP/IP) [131] and User Datagram Protocol (UDP)
[270]. While TCP/IP uses socket point-to-point connection for establishing user com­
munication that guaranteed data to reach its destination, UDP is reliable for broad­
casting and multicasting data [132].

In particular, most programming languages that support distributed systems have the above
characteristics. In addition, languages such as Ada and SR, also support failure detection
that is a significant reliability factor in distributed systems where such systems can continue
functioning properly even though failures have occurred at some parts of the systems [21].

3.2 Network Programming Languages and Tools 50

3.2.3 Java-based Collaborative Framework

Java [105] is a technology developed by Sun Microsystems [162] for machine-independent
software purposely for Internet computing. It encompasses of the following items.

• Java programming language — An object-oriented high-level programming language
that allows a programmer to write a powerful, ‘enterprise-worthy’ programs that can
run on any machine that installs JVM.

• Java Virtual Machine — A virtual machine that runs Java byte code. It is a program
that interpretes the Java programming language.

• Java Platform — A ‘software-only’ platform that runs on top of other ‘hardware-
based’ platforms. Since hardware platforms can vary in many aspects such as storage
and network connection, there are several specialised platforms to accommodate these
differences. These platforms include the followings.

- Standard Edition: This consists of Core Java and Desktop Java application en­
vironments as well as Java Web Services. The main target is for desktop envi­
ronments.

- Enterprise Edition: The standard for developing component-based multi-tier en­
terprise applications with the target being server environments.

- Micro Edition: A set of technologies and specifications for consumer and em­
bedded devices.

- Java Card Technology: Java platform for smart cards and other intelligent de­
vices that have limited memory and processing capabilities.

Hence, many types of applications can be developed for networked systems since
the specialised platforms are able to provide such programming environments. In
addition, each platform is based on Java Virtual Machine [223,162].

Although Java is often compared to .NET [313], both have their own specialities for their
target applications and have provided software developers ‘convenient’ environments for
programming networked applications compared to using low level programming with the
support of network operating systems. While Java uses varieties of platforms to cater for
different hardware bases, .NET allows the integration of several types of programming lan­
guages for a standard runtime environment called Common Language Runtime (CLR) [15].

There are many Java-based frameworks for interactive collaborative systems, which use
capabilities provided by this language. For example, Java Collaborative Environment (JCE)
[2] allows a single user Java application to be shared through data packet exchange using
socket connections. Its system architecture is divided into several components that handles
events, session and user interaction activities for providing several users to collaborate. JCE
develops these collaboration mechanisms by extending Java components with a new pack­
age called ‘collawt’.

Another Java framework called MultiTel [121] also hides the details of the underlying tech­

3.2 Network Programming Languages and Tools 51

nologies and the complexities of collaboration patterns from its designer by offering reusable
software components. It supports a distributed, compositional platform that manages mul­
timedia and networking resources in the design of complete multimedia collaborative ser­
vices. It allows collaboration between components and runtime composition of different
multimedia products, chats or GUIs [121].

JCell [267] uses the same concept of component and further integrates it with the concept
of module, to provide a software designer an internet language that is built on top of Java.
With this concept called ‘cell’, cells expose typed linking interfaces that may allow import
(plug-in) and export {plug-out) classes and operations. It uses extensions of the Java syntax
for the language and allows integration of objects to support local and distributed service in­
novations. Although this language has provided flexible system integration, a programmer
still needs the specialised skill in network programming.

There are several other Java-based framework for specific systems such as agent systems
[190], mobile systems [232], collaborative virtual systems [324] and WWW [107,123,284].
For example, in the collaborative Web computing environment (CWCE) system for agent-
base applications, Java-based distributed computing is used to guarantee fair resource util­
isation with global computing performance, using an object allocation mechanism [190].
Similar to mobile computing such as Sync [232], it uses the provided Java classes to de­
velop applications based on object-oriented replication. Java 3D also facilitate designers to
implement virtual systems with static and dynamical virtual environments [324]. Some sys­
tems that use VRML utilise ordinary Java object classes to integrate VRML with database
systems in building virtual systems.

For the WWW, user collaboration can usually be achieved using Java applets that are em­
bedded into HTML documents and there are also scripting languages built on top of Java
in order to facilitate simpler programming environments that are used for CGI. Promondia
[123], is an example framework for interactive group communication over the WWW. It
consists of a server program and session starter implemented as Java applets called session-
management applets that are embedded into HTML documents to offer text-based chatting,
shared whiteboard, voting and surveys, and games for a small number of users.

Java has rich features on network capabilities, supports independent platforms and has pro­
vided network programmers varieties of application program interfaces (API) in designing
and implementing networked applications. Therefore, on top of Java, there are several other
language-based or component-based approaches. JACIE [139] is the example of language-
based approach while Jcell uses the component-based approach in application design. The
objectives of such ‘new’ languages are to provide application developers with simpler or
flexible development processes. Example of other language based approach in the form of
scripting languages include Yoix [102], lava [266] and DiCons [18].

Yoix is a general purpose scripting language that uses syntax similar to the C program­
ming language. Although this language is interpreted into Java code, the language itself is
not object oriented and is able to provide some access to most a standard Java classes [101].

3.2 Network Programming Languages and Tools 52

lava is an embeddable interpreter for scripting within a Java platform that provides full
access to Java classes and APIs. It accepts a subset of the Java language itself, lava and Java
source code can ‘migrate’ to each other without rewriting [266].

DiCons (Distributed Consensus) Language [18] uses Java servlets in implementing a pack­
age of classes to specify different parts of the language. Its basic constructs consist of users
and roles, interactions, behaviour, presentations and data, which are capable of support­
ing asynchronous small group collaboration, with the main purpose to provide easy tools in
developing networked applications.

3.2.4 Scripting Languages

The idea of using a script in the computer field comes from the UNIX world with the term
‘shell script’ introduced in the 1970s [24]. The popularity of scripting language has arisen as
they are easy to use programming languages that allow programmers to develop applications
much faster compared to the traditional methods. This type of language can be embedded
within HTML to add more functionality to a web page. Therefore, the web page can be­
come more dynamic. On the client-side, the language affects the data in the user’s window
browser, whereas, on the server side, concern is mostly with manipulating a database. Perl
[269], Python [325], Tel [160], VBScript [161] and JavaScript [71] are examples of such
languages. [24].

Scripting languages have been used in many different ways due to their rich functionality
and ease of use. They are often used in system programming such as UNIX system admin­
istration [116], CGI scripting for web pages as well as to interconnect diverse pre-existing
components to accomplish a new related task. In fact, they can be found at almost every
level of a computer system and cater from simple computer tasks to complex computer ap­
plications [223]. For example, the REstructured extended eXecutor (REXX) language [157]
is normally used for job control as shell scripts, STEP [155] provides a platform for virtual
environments based on agent technology using VRML/X3D, Hypertext Preprocessor (PHP)
[68] supports HTML server side technology that is mostly applicable to database-driven ap­
plication [333] and SLIS [1], an Ada-based script language is used to implement simulation
applications.

According to Barron [24], these languages have some common features that include the
followings.

• Compile and run integration;

• Easy to program;

• Strong functionality; and

• Not much focus on the language efficiency.

Many existing scripting languages are interpreted. Some of them operate on an immediate
execution basis, while others are implemented as ‘strict interpreters’ where operations are
performed when a valid keyword or construct is recognised [24]. There are also compiled

3.2 Network Programming Languages and Tools 53

languages available. Most of these languages use simple statements that allow a program to
be written much simpler compared to usual programming in conventional languages. Some
scripting languages are typeless with no data types to be declared [262]. For functionality,
some languages can enhanced functionality in some area such as allowing easy access to
low level operating system facilities. They can also be programmed without much focus on
the language efficiency, but the developers’ needs are often met [24]. Therefore, there is a
huge selection of scripting languages available that serve either general or specific purpose
application development.

Table 3.1 lists some of the scripting languages used for developing networked applications.
In the table, all languages are classified according to some of their features. JACIE and
Yoix [102] are languages built on top of the Java programming language to help a program­
mer to develop applications without being concerned with the technical details of network
programming and object manipulation in Java. Although both languages utilise Java capa­
bilities, both differ in several perspectives.

• JACIE is a special purpose language for developing interactive collaborative applica­
tions, Yoix serves as a general purpose language.

• JACIE uses Java classes for application-based design in web technology while Yoix
is meant for client based CGI scripting that supports HTML embedded documents.

• JACIE uses a compiler compared to Yoix that uses an interpreter.

Language Purpose Compiled HTML embedded Other features

JACIE Special Yes No Built on top of Java

VBScript Special Yes No ActiveX scripting host

Perl General No Yes Interpreter written in C

Python General No Yes Support C/C++ extension

Tel General No Yes Every statement is a command

JScript General No Yes Object without class

Yoix General No Yes Built on top of Java

DiCon Special Yes Yes CGI extensible

Php Special Yes Yes CGI extensible

Table 3.1: Comparison on Scripting Languages.

Comparing JACIE and VBScript, which both feature special purpose languages, the differ­
ence is in their language platforms where VBScript is for Microsoft using activeX technol­
ogy. The rest of the scripting languages in the table are for HTML embedded documents
either general or special purpose languages. In classification of these CGI extensible lan­
guages, some of them can be programmed for both server and client programs, while lan­
guage such as (PHP) [68] only support server-side technology.

In general, specialities of the language features in using scripts have attracted many soft­
ware designers to propose numerous of scripting languages that can be used in many differ­
ent computing fields. As one language is not necessarily better than the other, each language
has its own strength to achieve the needs of an application. These specialities also encourage

3.3 Interaction Management 54

this research work to have a scripting language as the project background.

3.3 Interaction Management

Designing floor control policies have raised several issues such as determination of control
sequence, fairness to users, the length of time for a control, mutual exclusive permission and
many more. As pointed out by Boyd [41], floor control policies in multi-user applications
can be classified into several dimensions that include the following.

• The degree of interaction — Can be either automatic with entirely ‘application depen­
dent’ without any user input or ‘interactive’ that allows users to react to the application
for turn request and release.

• The extent of user characteristics influences a policy — A policy may be uniform with
providing ‘fair control’ to each individual or allowed to have a ‘master’ that represents
a single dominant role to determine the policy.

• The granularity of control — The policy implementation may cover the whole appli­
cation or some parts of an application.

• The duration of control — A policy may be for a long term or short term basis.

Considering some of these mentioned dimensions, such issues are related to how collabora­
tive applications are implemented. Some toolkits such as CBE [193] and JASMINE [107],
allow interactive user interaction through applets and utilise Java for their framework base.
With the similar concept to protocol reservation in JACIE where users can have interactive
floor request, these toolkits usually can provide limited protocol choices.

Most existing collaborative frameworks provide a dominant or master role especially in
developing e-leaming application for teacher/student environments [124] and implement
protocol contention, which they call ‘free access’ [138, 211, 25, 135]. Since both floor
policies, master and contention, may not be fair to users, protocol round robin is usually
implemented in some systems [177, 78], which they call ‘token based4, that allows every
user to have equal opportunity of holding a turn.

The last two items mentioned above are concerned with the flexibility of setting the floor
control and the inclusion of time factors in the policy design that influences user waiting
time. These factors can be manipulated in some of the toolkits mentioned above through
selecting a specific ‘button’ on the user interface. In comparison to JACIE, the approach
of offering such protocol customisations is still quite limited and with little flexibility in
implementing applications.

3.3.1 Implementation Tools

Although interaction between users can be viewed as having the support of some existing
systems such as database systems [173] and agent systems [238, 85], it can also be im­

3.3 Interaction Management 55

plemented using software tools such as commercial products [158, 118, 239] and toolkits
[281, 193, 257, 88], as well as programming on language-based [102, 139] or component-
based [267] facilities. While software tools and toolkits may provide software developers
with a simple approach but limited protocol selections, programming can allow them to de­
velop complex applications with more flexibility in the implementation techniques. There­
fore, application development can be performed using software tools and programming ei­
ther by a language approach or component approach.

3.3.1.1 Using Software Toolkits

There are several techniques implemented by toolkits to provide user interaction in collab­
orative systems. The implementations are based on several approaches that include API-
based framework applets such as in Jasmine [107] or Jets [284] and JavaSoft’s Java shared
toolkit (JSDT) [162], additional abstract window toolkits such as in JCE [2], new created
applet such as in Habanero [320], Windows system protocol such as in Netmeeting [74]
and additional software libraries in the MVL Toolkit [242]. In most of these toolkits, floor
control policy is performed using contention where users can have access, but only one user
at a time can hold the floor. This is implemented using a locking mechanism either with
pessimistic or optimistic concurrency [332]. In general, these toolkits provide the software
developers to build new applications.

3.3.1.2 Using Programming Languages

Most programming languages that support the development of networked applications can
be used to handle user interaction. Programmers can design and implement some algo­
rithms using these languages. Language types such as object-oriented, concurrent, scripting
and functional are the common languages found in building networked systems.

As an example, in a multi-user multi-camera environment [78] that uses simple contention,
equal round robin and weighted round robin with timeout, Java is used in the floor control
mechanisms that is based on a server for the technique and implementation. Network pro­
gramming skill is required to ensure proper connection between devices can be established
and maintained. Similar requirements apply to control interactive video that implement a
first in first out policy [260], and distributed multimedia in distance learning uses contention
and round robin [283]. In all these examples, floor policies are determined and built in the
server program with some choices being left to users to select the floor policy with which to
work. JACIE goes beyond this approach as the provided language constructs enable addi­
tional policies to be added to cater for the application’s need.

In research on agent systems by Demazeau at al. [85], agents could use an artificial lan­
guage, which they call ‘Interaction Language’, to interact between agents through messages.
The example of its general syntax is as follows.

3.4 Interest Management 56

<interaction> := <communication> <multiagent>
<application>

Here, c o m m u n ic a tio n is the main concern in the interaction among agents where mes­
sages must be sent efficiently. Upon receiving such messages, they should be interpreted
correctly. Floor control policies can be determined in two ways, either using a control
model or social control model. Control model uses an agent’s knowledge to determine the
floor according to the current states of the system, while the social control model is based
on a controller who is the master to assign the floor according to some rules. In controlling
robot vision using this artificial language, the social control model has proved to be more
preferable since proper turn control can be determined.

3.3.1.3 Using Component-Based Approach

The component-based approach introduces another programming style where many com­
ponents are provided for software developers to use. With this approach, it supports the
developers for not only implementing new applications, but also allows them to extend the
existing systems and applications.

For example, in the MOVE system [124] that uses a framework called ANTS, such frame­
work has Computer Supported Cooperative Work (CSCW) [223] components and is able to
provide synchronous group collaboration. Its architecture has several layers that enable the
development of new coordination mechanisms to have interface with different middleware
services. Floor control policies are determined by a master with the concept of a teacher and
students environment.

Another example is a MultiTel framework [121], which is developed using Java, is com­
posed of components built upon Java objects that run on distributed platforms. It separates
the coordination and data processing into different components. The aim of all components
is to allow software reusability by hiding its complex underlying technologies. Interaction
between components can be performed using Java/RMI and the floor policy is based on
contention.

3.4 Interest Management

From the software point of view, interest management mechanisms arise mostly in dis­
tributed simulations [187], distributed operating systems [185] and virtual collaborative sys­
tems. In distributed simulation research, it is often evaluated jointly with the factors of load
balancing and synchronisation to evaluate system performances [187]. The main filtering
factor is messages that are passed between users for a large scale networked systems. Other
factors can include objects and variables which are performed through remote procedure
call activities.

3.4 Interest Management 57

As interest management includes both filtering and access control in the context of this
research, filtering issues and data sharing in programming languages and tools are reviewed
in this section to investigate the characteristics and implementation factors. Some security
and privacy issues are also included.

3.4.1 Filtering Issues

In systems that use message passing for user collaboration, it is crucial to reduce these ac­
tivities, especially when they involve interactive collaboration. For example, Morgan et
al. [228] have proposed interest management using standard message-oriented middleware
(MOM) technologies to provide scalable message dissemination for networked games. Such
games are implemented using CORBA Notification Service (CORBA NS) [136], one of pop­
ular MOM standards, with predictive aura-based user interest determination. Unlike JACIE,
this approach has separated message filtering with user access and security in its develop­
ment and only focuses on the filtering of messages to improve system performances.

Another example is a toolkit called CBE [193], that uses the concept of rooms to filter
users through applet support. As this software supports interactive user commands at run­
time, the user room selections determine user interest. This high level interest factor is later
translated into an object-based mechanism through the application program interface. The
proposed concept of room also supports user access by controlling users to have access to
particular rooms. While this work has a similar approach to provide a similar concept of in­
terest management in JACIE, its implementation uses applet-based applications rather than
language constructs.

According to Dewan [90] who uses the term ‘interaction model’ for user interest from a
high level point of view, filtering can be performed either by a ‘room model’ (like CBE
above) or an ‘aura model’. Upon presenting room selections as ‘virtual rooms’ in an ap­
plication, users who enter a specific room can only ‘see’, ‘hear’ or interact ‘closely’ with
others in the room, and know nothing about users in other rooms. With the ‘aura model’,
objects that present users in 3D space can navigate and interact with other objects when they
get close enough to be ‘aware’ of each other [90].

3.4.2 Data Sharing

Data sharing is a very common issue in programming languages or application software. In
programming languages, data can contain several values such as numbers, characters and
images, and can be represented by various forms such as single variable, a list of variables
or objects. The term ‘global’ refers to data that does not belong to any routine or class and
can be accessed from anywhere in a program [223]. In contrast, ‘local’ data can be accessed
by only a part of a program [175]. Almost all programming languages used in develop­
ing networked applications do not support ‘remote global’ variables in either client or server
program. They are often executed differently due to the fact that they often reside in different
computers and different locations. JACIE had made the first attempt to allow the declaration

3.4 Interest Management 58

of ‘global’ variable in its client’s program since JACIE provides both client and server pro­
gram in one program, which leaves the separation of these programs to the compiler. Other
languages allow ‘global’ sharing of variables or objects through some mechanisms such as
message passing or RPC.

Normally, in computing, data sharing can be found in two situations as listed below.

• Sharing Within the Same Computer — In this situation, a computer can either have
single processor or multiple processors. For a single processor system, data is shared
among two or more program components. The term ‘public’ as in Java and C, is the
keyword used to refer to the declaration of global variable type, or this global variable
can be declared at the top of a program block as in Pascal, so that all the program
routines can access it.

For multiple processors that support parallel processing, a programming language can
either use the similar concept of single processor with additional support of concur­
rent language features or facilitate inter-process communication through mechanisms
such as message passing and RPC. Concurrency can be found in languages such as
Modula-2 [278], concurrent C and concurrent Smalltalk.

• Sharing Among Different Computers — In this situation, all the computers are linked
by a network connection where every computer usually has its own processor. Shar­
ing of data is usually similar to the above mentioned ‘global’ variable, however, in
sharing memory for distributed systems, processors can share one global memory
or distributed memory that comes with each processor. For example, Linda intro­
duces ‘tuple space’ for the global memory sharing and Agora [39] uses ‘maps’ for
distributed sharing [22].

Nowadays, many programming languages have emerged to support not only sequential pro­
gramming, but also concurrent programming. There are computers such as workstations that
can have more than one processor to support large computational data. Network program­
ming languages usually support threads of execution, where a program is able to split itself
into two or more simultaneously running tasks [223]. Several attempts have been made to
provide language constructs for high level language to support programming networked ap­
plications especially distributed applications. Such languages include Hermes [17], COOL
[57], Eiffel [54] and many more. Most of these languages are built on top of the existing
programming languages. Furthermore, in sharing global data, message passing is usually
used besides RPC.

3.4.2.1 Sharing Factors

In networked systems, sharing of resources between computers at remote sites, can be in
several forms that include the following.

• Memory/Variable — Much research has been undertaken on shared memory as it is
a powerful abstraction for interprocess communication [300], and largely being dis­
cussed in networked environments such as parallel systems [180], concurrent systems

3.4 Interest Management 59

and distributed shared memory (DSM) [258].

In parallel programming, shared variables is probably the oldest paradigm that mainly
relies on the operating system support for interprocess communication and they are
used for tightly coupled systems while message passing is for loosely coupled sys­
tems [22].

According to Steinke and Nutt [300], the concept of shared memory originated from
multiprogramming on uniprocessors and bus-based multiprocesses where a simple
model of the memory system is enforced in hardware. The model consists of the
following statements.

- Each variable is represented by a physical memory cell that both the memory
and the processor have the same states.

- The memory operations are in sequentially forms where read operation returns
the value of its current state and write operation changes the current state of the
physical memory.

- The operations of each process take place in the order specified by its program.

They further pointed out that their concept of consistency model, which has a function
that maps each input to a set of allowable outputs, allows the shared memory not to be
tied to the physical implementation of memory cells. This leads to the idea of its rep­
resentation as an API as shown in Figure 3.3. It illustrates how an application program
can process shared data without the knowledge of the real hardware implementation
by both program and shared memory agreeing on this model [300].

Application Program

Memory Implementation (Black Box)

Shared Memory API

Figure 3.3: Shared Memory as an API [300].

• Object — In programming, an object is an individual unit, which is used as the basic
building block of programs, for binding data with methods that operate on that data
[223]. Object-oriented programming has attracted programmers not only for writing
sequential programs, but also concurrent programs that allow networked applications
to be implemented [22]. Object-based sharing is often found in various types of ap­
plications such as virtual systems [304], parallel systems [57], agent systems [166]
or also in some database systems that use object-oriented databases [167]. To enable
the sharing facilities, various platforms have been introduced with generic features
for cross-platforms abilities. In particular, CORBA from OMG [136], DCOM from

3.4 Interest Management 60

Microsoft [72] and Remote Method Invocation (RMI) from Sun MicroSystem have
made successful attempts [221].

The term component is usually referred to part of the software that is built from ob­
jects. It is usually defined as a small part of a large program that is independent and
reusable. It may also be defined as a black box. In [209], the detailed descriptions of
the terms are illustrated that may vary according to different perspectives. The notion,
software component, interface, service, encapsulation, reuse and plug-n-play can be
referred to it. Software components and executable software components very much
the same characteristics as in an object module, however, object reusable uses the
class libraries while the component reusable can be platform independent [209]. In
most network systems, components and objects may be used interchangeably. From
the design and implementation perspectives, the adaptability of components to suit
the needs of the designer is the main objective.

In building a software system or tool for a distributed system, software engineers use
distributed component technologies and interfaces [110]. Therefore, a large number of
component technologies exists such as Enterprise Java Beans(EJB), COM, CORBA
[286], RMI, and CORBA Component Model(CCM) [136] to allow distributed exe­
cution on various platforms. The technologies, based on object-oriented program­
ming give economical and cost effective ways of software development and usability.
The component models provide them with some mechanisms to compose components
through well defined interfaces rather than developing new or changing the existing
components. The use of APIs and RPC in the system design and implementations are
also becoming very common [110].

There are many object-based component systems that have CORBA or Microsoft Ac­
tiveX approach with separate interface definition language to map the passing and
object mapping for the remote objects [265]. The Jinni project [311] is an example
of gluing together components and objects in networked client/server applications. In
this way, it can support platform independence between Prolog [44] and Java for ef­
fective integration of inference technologies.

Object and component sharing are supported by programming languages such as
Smalltalk [290], Eiffel [294], Ruby [321], Java, C# and many more. Toolkits such
as COAST [281] also support object sharing through the use of application interfaces.
As toolkits are implemented using an existing programming language, the underlying
approach and mechanism are similar to that programming language, even though they
provide application designers with different application development environments.

• Database — In database systems, the contents can be shared among users by either
allowing access to one’s database or it is also possible to have integration between
databases. The former approach is simpler and only requires the inclusion of user
access mles, compared to the latter approach that may require ontologies to help de­
signers to understand the semantics of database objects [207]. ‘Software database
drivers are available for most database platforms so that application software can use
a common application programming interface (API) to retrieve the information stored

3.4 Interest Management 61

in a database. Two commonly used database APIs are JDBC and ODBC’ [223].

There are several other factors such as files and system clock (‘external system resources’),
called ‘externalities’ by Begole et al. [28] to describe resources that need state representa­
tion which is external to the application. In this example of resources sharing, a replicated
application-sharing system is implemented, namely Flexible JAMM (Java Applets Made
Multiuser) by allowing transparent, dynamic replacement of externality with a switching
from direct local access to ‘proxied’ remote mode when the application is switched from
single to multi-user mode. Such implementations are performed by modifying the Java core
library and native platform classes on the Java platform [28].

3.4.2.2 Security and Privacy

Security and privacy are important factors in almost all types of network applications and
in fact, it must be included in the design and implementation of networked collaborative
applications. Even though there are many collaborative frameworks available, the security
and restrictions on user access are usually either omitted (as these frameworks only con­
cerned with providing rather than controlling collaborative environments), or they rely on
the ‘back-end’ support such as the operating system or database system [89].

In database and operating systems, this issue is common where databases usually deal with
information in terms of records, and operating systems handle files. Access to a particular
record or file is managed in such a way that access rules are set at the beginning of a col­
laborative session and they remain unchanged throughout the application. As pointed out
by Dewan and Shen [89] user interface control at the ‘front end’ of an interactive program
needs to have more flexible approach to user access. They presented this approach through
a toolkit called Suite [88] where the design is based on an access matrix model.

Access matrix or access control matrix is ‘an abstract, formal security model used in com­
puter systems, that characterises the rights of each subject with respect to every object in
the system. It was first introduced by Lampson 1971’ [223]. Figure 3.2 shows the general
form of the model that has a list of subjects against a list of available objects in the system
with their corresponding access rules. The access rules usually contain access to several
operations such as read and write.

object 1 object 2 ... object(n_ i) objectn

subject 1 access rule access rule access rule access rule access rule

subject 2 access rule access rule access rule access rule access rule

... access rule access rule access rule access rule access rule

subject(n_ 1} access rule access rule access rule access rule access rule

subjectn access rule access rule access rule access rule access rule

Table 3.2: General Form of Access Control Matrix Model.

3.4 Interest Management 62

There are many collaborative systems adopting this matrix model in their design of ac­
cess control and user rights besides the Suite toolkit, JACIE also uses the same model in the
design process and this model is also largely used in grid computing [280].

In implementing the access rule and security, languages are often used to do the control
and checking. In database systems, query languages such as SQL [137] and XQuery [322],
are the common approach and in addition, middleware such as Semantic Access Control
Enabler (SACE) [247] can also be used for flexible control of information access. With this
flexibility, sharing databases is not only limited to a single database, but also covers several
heterogeneous information systems. So far, there is no attempt to provide user access control
and security protection integrated into one control in the form of high-level language.

Chapter 4

JACIE Overview and Enhancements

4.1 Introduction

This chapter covers the fundamentals of JACIE. This work builds on the previous research
work, the original language is referred to as JACIE I, and the extended version JACIE II. An
overview of JACIE I is first presented, followed by a description of its main features. The
enhancements that have been made to the language are then described by looking into sev­
eral issues such as race condition, data type and compilation errors while major extensions
on the interaction and interest management are to be discussed in Chapter 5 and 6.

The JACIE compiler was built using a multi-layer software architecture as shown in Fig­
ure 4.1. At the top level of the architecture are the JACIE language scripts. These scripts are
kept in a file with an extension . j a c i e . At the next layer, the JACIE compiler takes the
file x . j a c i e and translates the script into the equivalent Java files that reside in two dif­
ferent directories. One directory contains all the client programs, while the other directory
has all the files for the server programs. All these client and server Java programs must be
compiled to produce Java runnable classes. Some client programs are not only in the form
of Java files, but they can also be html files. The lowest layer of the system architecture con­
tains the Java Virtual Machine to process the Java classes produced by the JACIE program.

Contents

4.1 Introduction.......................................
4.2 Overview of J A C IE
4.3 JACIE Compiler.................................
4.4 Main Features of JACIE
4.5 Managing Collaboration..................
4.6 Race Condition....................................
4.7 Improvements to the JACIE Language
4.8 Summary...

63
64
65
67
69
73
79
88

63

4.2 Overview o f JACIE 64

It is also possible to have a WWW browser and the Netmeeting software to display the html
file and process the Netmeeting applications, respectively.

jacie

l a c i e

compiler

x_vconf X x * TL
.java .html .java .java

p'

lacie

xserver
.java

xserver
.class

c_server_
* .class

7) ^

l i
H J J i n

j o
j 5 9
> m °> 9 l
!>Hr

w >

_ o
Q O > 2
w > r
8 S 0

Net A__ WWW Java
meeting Browser Machine

Java
V irtual
Machine

m
w d rrl

Figure 4.1: JACIE Software Architecture.

Although new language constructs have been introduced and JACIE I has been extended, the
original software architecture remains the same. The extensions merely involved modifying
and adding more language statements instead of changing its overall structure. Therefore,
such amendments and additional language constructs for JACIE II are performed in the JA­
CIE compiler (in the JACIE compiler environment layer) and its next layer, ‘compiler gen­
erated Java programs’. The JACIE II design and changes are also related to several existing
Java Classes and methods that are scattered over 150 different files. Any new statements in­
troduced must be compiled by the JACIE compiler and details on this process is illustrated
in Figure 4.2 and described in Section 4.3.

4.2 Overview of JACIE

JACIE (Java-based Authoring language fo r Collaborative Interactive Environments) is a
scripting language designed for rapid prototyping of distributed collaborative applications.
In particular, it targets a collection of applications for which the existing programming tools
would incur expensive development costs. From a software engineering perspective, the
key design principles of JACIE are therefore special purpose and programming efficiency.
A detailed description of JACIE can be found in [140]. This language was first designed and

4.3 JACIE Compiler 65

built over the period 1997-2001.

JACIE provides a software development tool that enables distributed collaborative applica­
tions to be developed at a very low development cost, within a short development period, and
by possibly inexperienced programmers. Such applications may include groupware (e.g., a
collaborative design environment), e-leaming courseware (e.g., a teamwork exercise), and
web-based games (e.g., board games and card games). These applications commonly fea­
ture interactive collaborative activities, shared working canvases, controlled access domains
and structured communication. It is often very difficult for applications in these areas to
generate much commercial profit, and thereby difficult to attract resources to develop them
in the first place. For example, implementing an online bridge game in JACIE (illustrated
in Chapter 7), requires much less development skills and effort than would be needed with
Java, assuming the programmer has no previous experience in either language.

JACIE contains a collection of built-in language constructs for supporting structured and un­
structured communications through various communication channels such as canvas, mes­
sage, chat, voice, video and whiteboard. JACIE first introduced a small set of interaction
protocols as built-in language constructs, which define the rules that govern the means of in­
teraction between users in a collaborative environment, and are used to coordinate the input
from users and the display on a channel.

Learning the popularity of scripting languages in Internet technologies, JACIE was designed
as a scripting language, and its compiler generates target programs in Java. JACIE also
allows the inclusion of Java code as part of a JACIE program, enabling experienced pro­
grammers to utilise Java for the implementation of complex code segments. To alleviate the
difficulties in network programming, JACIE also employs a template-based approach and
uses a single program to specify both server and client.

In the original design of JACEE, the communication between clients had to be implemented
using the message channel. As the message channel is routed through a server, relevance
filtering and message security can be implemented at the server but relies largely on user-
defined code segments. It is hence desirable to introduce more sophisticated language con­
structs for interest management, which can improve programming efficiency in developing
applications that feature shared data and states.

4.3 JACIE Compiler

The standard compiler construction process takes a program written in one language as the
input, and then produces an output in the form of a target language. Two compiler tools,
JFlex and JCup are used at the Tower level’ of the compilation. JFlex undertakes the lexical
analysis of the JACIE program and JCup then performs the parsing. Both tools produce
the output in the form of Java files. Figure 4.2 shows the main flow of translating a JACIE
program into a corresponding Java program.

In the diagram, the green rectangular boxes represent written files that must be used in the

4.3 JACIE Compiler 66

JACiE PROGRAM

JFLEX -*■

jacie.cup

JCUPJA CIECScanner.ja va JACIE code translator

sym .java

JAGECparser.java

Server programClient program

JAVA EQUIVALENT PROGRAM

Figure 4.2: JACIE Compiler.

compiling process. The file, j a c i e . f l e x , contains the JFlex specifications of tokens.
JFlex produces the identified tokens in a file called JA C IE Scanner. ja v a . This file to­
gether with j a c i e . cup, which contains the JACIE grammar specification, are taken by
JCup to produce intermediate codes and compiling states (p a r se r . j ava and sym . j ava).
The file j a c i e .c u p also contains several objects which are used by the JACIE code
t r a n s la t o r . The JACIE code t r a n s la t o r is written in Java that must be com­
piled prior to executing JCup. It is the main part of the JACIE compiler and consists of over
a hundred Java classes. It is where most of the work for the extensions and enhancements to
the language reside.

The final stage of compiling is in the file JA C IEC Parser. ja v a that links the interme­
diate codes and all Java classes produced by the code translator to get the equivalent Java
program. All the output produced in different stages of the compiling process are presented
in ellipses.

For JACIE II, only the JACIECParser . j ava has not been changed while the rest of the
files, such as j a c i e . f l e x , j a c i e . cup and most of the JACIE cod e t r a n s la t o r
files, have to be modified. As many of the old files have been modified and new files with
Java classes introduced, a complete understanding of JACIE I for all layers of its architecture
is needed.

4.4 Main Features o f JACIE 67

4.4 Main Features of JACIE

In this section we highlight the essential features of JACIE, which are as follows:

• Template based programming style — A JACIE program fits into a prescribed tem­
plate that eases the programming task. It consists of three main components, System
Configuration, Client Body and Server Body. Furthermore, in the Client Body and
Server Body, a template based style is also adopted, for example, the segments of Ses­
sion Start, On Session and Session End. The JACIE programmer only needs to fill in
the template. The System Configuration is the component where the initial values for
communication are set, such as port number, applet name, initial protocol, number of
users and message identifiers that are shared by the server and all clients. In Figure
4.3, the JACIE standard template layout is displayed.

JACIE {

applet name X;
applet launcher image "X.gif";
configuration {...}
m es sa g es{ . . .}

SYSTEM CONFIGURATION C O M P O N E N T ^ X
Define program type (applet or application) and name. '
Define launcher (optional for applet)
Specify networking parameters, channels, protocols, etc.
Declare m essage identifiers.

client implementation {
declaration {...}
on canvas {.. }
on session start {. .}
on session {...}
on session end { }

}

CLIENT BODY COMPONENT
Declare variables and methods.
Initialise canvas such as drawing a background image.
Perform processes upon established connection
Main client session control
Perform processes upon session termination.

server implementation {
declaration { . .}

on server start { . }
on session start {...}
on session {...}
on session end {...}
on server end {...}

} / /
} y

SERVER BODY COMPONENT
Declare variables and methods
Initialise server processes
Perform processes upon each user's connection.
Main server session control.
Perform processes upon user's session termination
Housekeeping p rocesses upon all users termination.

Figure 4.3: Standard JACIE Component.

JACIE is an event based programming language, examples of such events are mouseclick
triggers, messages received from the server, turn control and many more. In the server
program, more segments are included that consist of On Server Start and On Server
End. The template based style influences the programming of the session control. On
Session always contains the main events for the collaborative processes. Therefore, a
programmer can really focus on this segment to design effective applications.

4.4 Main Features o f JACIE 68

• Single program for server and client — JACIE allows the integration of the code seg­
ments for both server and client in one program. Most other network programming
language separate these into two programs as both may play different roles and feature
different environments. JACIE allows this combination in order to ease the data ma­
nipulation between server and clients. It is the compiler’s job to generate the separate
programs that run on separate computers.

• Communication channels — There are several built-in communication channels that
facilitate different forms of media and communication methods. The channels are
canvas, message, chat, voice, video and whiteboard. The last three channels are sup­
ported by the Microsoft Netmeeting. At present, JACIE supports two dimensional
graphics on a canvas of default resolution of 632 by 360 where each point on the
canvas is represented by a grid point. Several special variables are provided for grid
manipulation such as ‘getting grid point’ and ‘checking on a specific area on the grid’.
The most frequently used communication method is the message channel between
client and server as JACIE can support server mediated communication. Even though
the communication is server mediated, the management of any application can be
fully distributed, centralised or a combination of both.

• Interaction protocols — In JACIE I, all the interaction protocols that were introduced
were built-in and managed by the server, with only the round robin and contention
protocols implemented and tested. Other built-in protocols were described but not
implemented. JACIE II introduced additional interaction protocols enabling almost
all common collaborative applications to be programmed.

• Multithreading — A language for building network applications must provide multi­
threading in order to accommodate the computing environment of a networked sys­
tem. Since JACIE is built using Java which has this feature, it was not difficult to
include this facility. For example, in the On Session section where the main event
(user session) occurs, several sub-events such as message received, timer options and
waiting events can occur any time within the event.

• Interfacing with Java — As the JACIE compiler was written in Java, it is desirable
for JACIE to have a programming interface with the Java language. The inclusion
of Java code as part of the program enables experienced programmers to utilise Java
for meeting additional requirements, for example, in a more complicated graphics
application.

The language can produce three different types of client programs, namely an applet, a
separate window invoked by an image launcher within an applet, and a separate window
invoked by a text button within an applet. Figure 4.4 shows the layout of the basic user
interface that demonstrates the nested implemented environment. The labelled layer starting
with the letter x, are the objects implemented by built in Java Classes which include the Java
Abstract Window Toolkit (AWT), the runnable standard interface and the Frame. The main
panel, which is seen by users, basically has three components, menu bar, canvas and message
bar. The menu bar contains all the communication commands such as image buttons for
connecting and disconnecting to the server, channel selection button, as well as text input
for host name and username. The message bar has the server generated messages called
Local Message and Server Message. This message bar can also display a text input option

4.5 Managing Collaboration 69

if required by the application.

JA ClElmageButton

x_Frame/Applet
x_Container
x_Menu0ar

x_Canvas

JACIE Box

x_MessageBar

Figure 4.4: Layout Diagram of JACIE User Interface.

In addition to all these features, some statements in JACIE II consist of several option tags
for various control and flexibility in programming. The lower level and hard coded programs
are always hidden. This allows the programmer to concentrate on the higher level program
and leave all the details concerning network connections and sockets to the compiler.

4.5 Managing Collaboration

In managing collaboration among users, all users must establish their connections to the
server. Due to the structure of JACIE which is designed in the form of transition states
through a typical client/server interaction, interaction activities for a client or server can
be specifically focused. Figure 4.5 illustrates the state transition diagram of the involving
states. A server starts its execution and waits for any user to establish a connection until the
appropriate number of users are connected to it. At a client, once it starts opening an appli­
cation by referencing to the address of the server, a user is in a s t a r t i n g s t a t e . When
a connection to the server is established, a user is put into a w a i t i n g s t a t e if more users
need to join a session, otherwise, the user goes to the i n t e r a c t i n g s t a t e . While in the
i n t e r a c t i n g s t a t e , both client and server may continue in this state while performing
activities in accordance with the instruction specified by the application. This is the state
where collaboration among users take place. The network connection remains active and
messages are exchanged until either the client or the server terminates the session. At the
t e r m i n a t i n g s t a t e , some ‘house keeping’ for the specific client may be performed
before the link to such client is closed. At the server, it is in r e i n i t i a l i s i n g s t a t e or
e n d in g s t a t e when all client connections are gracefully terminated where some ‘house
keeping’ may be performed. Then, either the server goes back to the s t a r t i n g s t a t e
which enables it to stay in the w a i t i n g s t a t e and ready for the next action, or it is also

4.5 Managing Collaboration 70

possible to terminate the server by stopping its execution.

SERVER
START END

SESSION

START MAIN END
re in it ia lis in gs ta rt in g

w a it i in g in te ra c t in g W te rm in a t in g

e n d in g
e s ta b lis h in g

CLIENT
SESSION

START MAIN END

s ta r t in g

te rm in a t in gin te ra c t in ge s ta b lis h in g

w a it i in g

Figure 4.5: State Diagram for Server and Client.

JACIE’s main communication method is message passing. Each message can be of various
types (i.e. integer, string, etc.) but only in one format. Each JACIE message is appended by
a header of type integer. The header is called the message identifier and determines its con­
tent. Figure 4.6 shows a JACIE message and its representation in relation to other network
layers. The message is in a high level form that allows itself to be part of the TCP packet,
IP datagram and message frame that is transmitted through the actual network link. In this
way, it provides flexible message specification and location transfer.

A
Frame
header

IP
header

TCP
header

Message
id

message

JACIE message

TCP packet

IP datagram

Frame

Figure 4.6: A JACIE Message and Its Representation in Relation to Other Network Layers.

In general, a JACIE message identifier can be of two different kinds, either system defined

4.5 Managing Collaboration 71

or user-defined. The system defined message identifier is a preset value in the JACIE com­
piler and hidden from a JACIE programmer. In JACIE I, there are 20 message identifiers
that deal with the establishment and verification of users, notification of states, and some
information on the active session such as user number, group number, turn number (for
current user in control) and group turn number. JACIE II extends the value range of these
message identifiers up to 39 by introducing more message specifications for managing floor
request and timers in interaction management and handling the access specification and ver­
ification of variables in interest management. Below is the example of the system defined
message header for JACIE I for session handling and user turn control. These values are
numbered from 10 to 20 and represented by variable names written in capital letters of type
Java ‘constant values’. These values are set in both client and server modules which are
called ClientSession and ServerSession components, respectively.

public static final int WAITOVER = 10
public static final int STARTSESSION = 11
public static final int USERGROUPNUMBER = 12
public static final int USERGROUPINFORMATION = 13

public static final int TURNNUMBER 14
public static final int GROUPTURNNUMBER = 15
public static final int PASSTURN = 16
public static final int ONLINEUSERTERMINATES = 17

public static final int TERMINATECONNECTION = 18
public static final int TURNEXPIRED = 19
public static final int NEWTURN = 20

Figure 4.7 illustrates an example of JACIE message that represents the message identifier
name, 14, which is TURNNUMBER and its value is 2. This means that the user turn is
currently set to a user with the user number 2.

Message
id

message

14 2
JACIE message 1

Figure 4.7: An Example of a JACIE Message with Values.

The user defined messages are associated with JACIE standard messages and declared in
the JACIE program. They are usually listed in the JACIE system configuration component
(Figure 4.3) as identifiers. During compilation, the JACIE compiler sets these identifiers to
start with the value 1000. These messages are used in JACIE application programs that are
associated with send and receive statements. The language constructs for these statements
are as the following.

send <identifier> [<expression list> [to <permission list>]]

receive <identifier> [expression list]

4.5 Managing Collaboration 12

For every send and receive statement, the < i d e n t i f i e r > that represents a message header,
is included to acknowledge the type of message to be exchanged. It is usually followed by
< e x p r e s s io n l i s t > for indicating the actual value. In sending a message from the
server, it is optional to have a < p e r m is s io n l i s t > specifically to address the receiver
that is represented by an identifier. Below is an example code segment that shows the dec­
laration of the message identifiers namely g r id x , g r id Y , posX and posY with their
corresponding send and receive statements.

JACIE { ...
configuration { ...
host prompt;
port 2000;
username prompt;

}messages {
gridX, gridY, posX, posY,

}client implementation { ...
gX = GETGRIDX;
gY = GETGRIDY;
send gridX gX;
send gridY gY;
receive posX ptX;
receive posY ptY;

}server implementation { ...
receive gridx pointX;
receive gridY pointY;
send posX pointX to all;
send posY pointY to all;

/ / start of JACIE program
/ / Configuration section

I I A user-defined message identifiers

/ / Start of Client Body section

I I gX and gY are local variables

I I < Send Statement with the message identifier gridX

I I M Receive Statement with the message identifier posX

/ / Start of Server Body section
I I M Receive Statement with the message identifier gridX

I I < Send Statement with the message identifier posX

All the user-defined message identifiers are translated and coded into an equivalent Java
program in the server component called Global Data Manager, which will be discussed
in detail in Section 4.6. The following code segment shows the translated codes for the
declaration of these message identifiers.

public static final int GRIDX = 1000; // M The value o f message header starts with 1000
public static final int GRIDY = 1001;
public static final int POSX = 1002;
public static final int POSY = 1003;

In managing these identifiers, JACIE separates the location of the two different types of mes­
sage identifier declaration, system defined and user-defined into two separate components of
the server program. A similar action is taken in the JACIE client program.

In managing a session, JACIE adopts the Transmission Control Protocol (TCP) with point
to point connection using sockets. TCP connections simultaneously transmit and receive

4.6 Race Condition 73

data that support full-duplex transmission. It is able to broadcast standard messages to all
the clients and JACIE also facilitates multicast message sending. It has several program
components that work closely and support one another in manipulating all these messages.

4.6 Race Condition

‘A race condition is an undesirable situation that occurs when a device or system attempts
to perform two or more operations at the same time, but because of the nature of the device
or system, the operations must be done in the proper sequence in order to be done correctly’
[329]. Race condition detection is a common issue in an operating system or concurrent
programming where there is no specific algorithm to detect its condition in a program [55]. It
is possible to have race conditions in JACIE as it allows concurrency with shared resources.

4.6.1 The Causes

In JACIE, a race condition may occur in the queues that handle messages at server and client.
Figure 4.8 shows the diagram of the processes occurring at both queues. Message exchange
between client and server are handled by ClientSession and ServerSession components, re­
spectively. ClientSession component gets the receiving messages and puts them at the back
of the client message queue. Like ClientSession, ServerSession component also does the
same for the server message queue.

Client Session
Component

Server Session
Component

[0] [1] [2][n] [n—1]... ... [n - lln]

CLIENT Message Queue SERVER Message Queue

Message transmissionsubcomponent of
Local Data Manager

subcomponent of
Global Data Manager

SERVERCLIENT

Figure 4.8: Message Exchange.

JACIE supports concurrency in both client and server sessions. It monitors this message
queue using a semaphore. The queue itself is represented by a Java Vector class that allows
its index counter to be increased or decreased corresponding to the ‘add’ or ‘remove’ oper­
ations. Below is a code segment of the Java translated program that handles the ‘remove’
operation. This operation is synchronised with the remove action is taken place when the
appropriate semaphore counter (determined in i s Em pty ()) is achieved.

4.6 Race Condition 74

public synchronized void remove() {
while (isEmptyO) {

try {
/ / wait until available
wait();

} catch (InterruptedException e) { }
}queue.removeElementAt(0);

}

At client, data in CLIENT Message Queue is retrieved by a subcomponent of Local Data
Manager. At this queue, the race condition can happen when the Client Session Component
adds a new message into the queue and at the same time, the Local Data Manager is retriev­
ing a message from the queue. Similar to the server, Server Session Component may adds
a new message into the SERVER Message Queue at the same time when the subcomponent
of Global Data Manager retrieves a message from the queue. This allows a race condition
to happen when the queue’s index counter can be incorrect. As pointed out by Christopher
and Thiruvathukal [64], ‘threads can try to update the same data structure at the same time.
The result can be partly what one thread wrote and partly what the other thread wrote. This
garbles the data structure, typically causing the next thread that tries to use it to crash’.

In addition to having two actions (‘add’ and ‘remove’) on the message queue from two
different components at the server, JACIE I also allows the Global Data Manager to add
data into the queue, which can happen in a separate thread. Hence, the total of three types
of operations are possible in updating the queue. This leads to even higher possibility of
having race conditions.

4.6.2 The Detection

In using JACIE I to execute an application such as the bridge game, there is no specific
algorithm to detect a race condition. From the users’ point of view, they may potentially
experience the undefined states that all users cannot proceed with the collaboration. For
example, in executing the bridge game, all the connected users for the JACIE server would
have the same server message that shows ‘It is your opponent turn..’. Therefore, no user is
in control of the turn and the game cannot continue.

From a JACIE compiler point of view, it is possible to debug the server program by printing
some messages on any action regarding the message queue. In this way, the sequence of
data to be inserted and removed can be traced to see where and when the race condition may
happen. Below is some of the debugging messages printed by several components of the
JACIE server. In the example, there are four users who exchange messages with the server.
The codes written at the left of all the statements and in between symbol ‘[’ and *]’ rep­
resent symbolic names of the server components. The code which is represented by **?*’
indicates the action of adding more data into the message queue by one of the server compo­
nents. This data addition may potentially clash with the messages received from clients. All
the numbers listed below either represent the actual data passed as messages, system defined

4.6 Race Condition 75

or user defined message identifiers.

[SAl
[SA2
[SA3
[SA4
[* ? *
[* ? *
[DAI [* ? *
[* *
[DA2
[DA3
[DA4
[SA3
[SA3
[* ? *
[SA3
[SA3
[DA3
[SAl
[SA2
[SA3
[SA4
[* ?*
[SA4
[SA4
[SA4
[SA4
[* ? *
[* ?*
[* ? *
[DA3
[DA2
[DAI

2 0 :

20
20
20

1018

0
1 6 ;

/ /
; 0

sending to Siti : 14:3
sending to Rudy : 14:3
sending to Ann : 14:3
sending to Susan : 14:3
queue add - 20:
queue add - 20:
queue remove -
queue add - 20
queue add - 20
queue remove -
queue remove -
queue remove -
received from Ann :
queue add - 1018:0
queue remove - 1018
received from Ann :
queue add - 16:
queue remove - 16:
sending to Siti : 14:4
sending to Rudy : 14:4
sending to Ann : 14:4
sending to Susan : 14:4
queue add - 20:
received from Susan : 1018:0
queue add - 1018:0
received from Susan : 16:
queue add - 16
queue add - 20
queue add - 20
queue add - 20
queue remove - 20
queue remove - 20
queue remove - 20

/ / (first) broadcasting messages for ‘user turn’ (id value 14) with data 3

/ / Sever Data Manager inserts message id represented by value 20

balance number of queue ‘add’ and 'remove ’ on dealing with id number 20

/ / (second) broadcasting messages for 'user turn’ (id value 14) with data 4

I I the race condition problem is suspected to occur

/ / the number of queue 'add' and 'remove' for id number 20
/ / must be a total of 4 each

The example concludes that the ‘unbalance’ operations (adding and removing) items on
the queue after the second broadcasting of messages, result in the race condition where the
thread has crashed before another add item for the value 20 and the removal of the identifier
for the value 16 can be performed.

4.6.3 The Solution

The common approach in handling race conditions is by a locking mechanism to ensure mu­
tual exclusion on shared resources. On top of using the semaphore, JACIE II also chooses
to avoid any ‘unsafe’ condition. The ‘unsafe’ condition is when there is a high chance of
having a race condition.

The following code segment is part of the JACIE I compiler that can lead to the race con­
dition. The code segment shows how messages at the server queue are retrieved and how
subsequent activities are handled. In the TURNPASS option, more messages are added to the
queue by the server in order to activate the TURNEXPIRED or the NEWTURN option selected
after the TURNPASS action. This situation may cause an error as adding the new messages
into the queue may violate the mutual exclusion because at the same time, the server may
receive new messages from clients that have to be added to the same queue. Therefore, this

4.6 Race Condition 76

condition is not safe. The code segment is part of the Global Data Manager that handles the
multithreading at the server. This unsafe condition arises when a call to the Server Session
component is made.

private int currentTurn; // ‘currentTum’ determines user turn

while (! Thread, interrupted ()) { // Listen to any message
currentMessageld = inputStreamQueue.checkMessageld();
/ / retrieve message from the Server Message Queue
if (currentMessageld != 0) // A new message detected
switch (currentMessageld) {
case BMServerSessionManager.TURNPASS : I I < retrieve message header'TURNPASS’

myTurn = false; // set off any user turn
onSession () ; / / process current user messages
currentTurn = BMServerFloorManager. nextTurn () ; // get next user turn
BMServerSessionManager.broadcastTurn(sessionAssistant);
... I I k make a call to session manager to broadcast new turn number
myTurn=BMServerFloorManager.currentTurn==sessionAssistant.usernumber;
... I I initialise turn

break;
case BMServerSessionManager .TURNEXPIRED : / / < retrieve message header ‘TURNEXPIRED’

myTurn = false;
onSession();

break;
case BMServerSessionManager .NEWTURN : / / < retrieve message header‘NEWTURN’

myTurn=BMServerFloorManager.currentTurn==sessionAssistant.usernumber;
... I I k actual turn setting

break;

When the Server Session Manager broadcasts the new turn number to all the clients, the new
message NEWTURN is put into the server message queue to enable the proper assignment of
the turn number. This step cannot only cause serious problems, but may also delay the
processing time in assigning the real turn to all the clients. Below is the code segment that
shows how the method, broadcastTurn, handles the actual broadcasting of messages to
inform all the clients of the new turn number and does the updating to the queue.

public static void broadcastTurn ("+name+"ServerSessionAssistant sender) {
... I I broadcast new turn number and then make the actual turn setting
broadcast(TURNNUMBER+VBMServerFloorManager.currentTurn, sender, true);
synchronized (userList) {
Enumeration enum = userList.elements();
while (enum.hasMoreElements()) {
BMServerSessionAssistant clientHandler=(BMServerSessionAssistant)enum.nextElement()
clientHandler. input StreamQueue .put (new JACIEMessage (NEWTURN+V))
... I l k put message into the server message queue

}
}

}

To solve the above problem and increase the program efficiency, both message header,
TURNEXPIRED and NEWTURN are deleted from the option message header list. At the
TURNPASS option, the user’s turn assignment is updated and broadcast. The control vari-

4.6 Race Condition 11

able c u r r e n tT u r n , which is initially set as private, is changed to static, making its value
to be globally available to all the server program components. Therefore, once its value is
set, all the connected users have its value immediately.

The new improved safer condition is illustrated in the following code segment. The call
to the Server Session component is still made, however, instead of calling the method
b r o a d c a s tT u r n that sends the new turn value to all clients before adding a new mes­
sage to achieve the turn setting for every client, the call is made to the b r o a d c a s t method
to set the user turn directly.

static int currentTurn; // -4 change variable type to static

while (! Thread. interrupted ()) { 1 1 - 4 Listen to any message
currentMessageld = inputStreamQueue.checkMessageld();
myTurn = BGServerFloorManager.currentTurn ==

sessionAssistant.groupNumber;
... I I A Set the actual turn
if (currentMessageld != 0)
switch (currentMessageld) {
case BGServerSessionManager.TURNPASS :
currentMessage = inputStreamQueue.get

("[DA"+sessionAssistant.usernumber+”]");
... I I A Retrieve current message
myTurn = false;
onSes s ion () ; 1 1 4 process message from the current client in control
currentTurn = BGServerFloorManager.nextTurnO;
BGServerSessionManager.broadcast

(BGServerSessionManager.TURNNUMBER+":"+
BGServerFloorManager.currentTurn,
sessionAssistant, true);

... I I A broadcast the new turn setting immediately
break;

The example given above is for the server side and the following code segment deals with
the race condition at the client side. At the client, the possibility of having ‘unsafe’ state is
less compared to the server. While the server may have three different attempts of updating
the queue at one time, the client can have only two attempts that are made by the Client
Session component and Local Data Manager.

The example code shows how the client can face a problem when a message is retrieved
during the NEWMESSAGE event in the JACIE program. Like the server that retrieves all the
system defined messages, this program instruction allows a user to retrieve user-defined mes­
sages at the client. Retrieving a user-defined message is a higher level approach provided
to a JACIE programmer which actually instructs the Local Data Manager to retrieve such
messages from the client message queue.

In avoiding the ‘unsafe’ condition, a JACIE program must try to retrieve the message as
quickly as possible to avoid any delay because the server may continue to send more mes­
sages to the client that requires the Client Session component to add those messages into the
same queue. The race condition occurs when there are many JACIE assignment statements
or control statements while retrieving the message and additional r e c e i v e s t a t e m e n t s

4.6 Race Condition 78

(message retrieval) are added within the event of retrieving some messages.

In the example, after receiving two messages, playN um and opB id , other statements
for checking certain conditions are written before two more server messages are accepted.
While the computation and control statements are executed, the states of two other messages,
b C h o ic e l and b C h o ic e 2 are undetermined. Most of the time executing the JACIE pro­
gram that has these codes, a user would experience the indefinite waiting due to system
crash.

JACIE {
on NEWMESSAGE { I I listen to any message from the server
if (MESSAGEID == playNum) {

receive playNum nPlayer; // M actual messages received
receive opBid oppoBid;
refresh;
if (bidHistory [nPlayer] [rNumber] == -1) { // do some checking

bidHistory[nPlayer][rNumber] = oppoBid;
if (oppoBid ==1) {

receive bChoicel bOne; // M receive more actual messages
receive bChoice2 bTwo;
refresh;
bidHSl [nPlayer] [rNumber] = bOne; // do some setting
bidHS2[nPlayer][rNumber] = bTwo;

}
}

} • • •

In order for the condition to be safer, the client NEWMESSAGE event section cannot have
many statements. Avoiding other actions except receiving message is very important. There­
fore, the use of a boolean variable might be necessary to set a certain flag for doing other
actions. Here is the improved condition for manipulating messages at the client side.

JACIE {
boolean getdatabid = false;
boolean getbid = false;
on NEWMESSAGE {

if (MESSAGEID == playNum) {
receive playNum nPlayer;
receive opBid oppoBid;
refresh;
getdatabid = true;

}
if (MESSAGEID == bChoicel)

receive bChoicel bOne;
receive bChoice2 bTwo;
refresh;
getbid = true;

} • • •

}
... I I Assignments and control checking are performed ‘outside’ the ‘NEWMESSAGE’ event
if (getdatabid) { / / < do checking on the first sets
getdatabid = false;
if (bidHistory[nPlayer][rNumber] == -1)
bidHistory[nPlayer][rNumber] = oppoBid;

}

I I -4 initialise boolean flags

/ / message received event
I I M receive first set o f messages

I I A set boolean flag

{ / / < receive second set o f messages,

I I < set another boolean flag

4.7 Improvements to the JACIE Language 19

if (getbid) { / / < process second set of messages
getbid = false;
bidHSl[nPlayer][rNumber] = bOne;
bidHS2 [nPlayer][rNumber] = bTwo;

} . . .

Any message received by the client is automatically accepted without any delay. Moreover,
no validation or checking is performed during the NEWMESSAGE event.

From the examples presented, JACIE II has made an attempt to identify ‘unsafe’ situations
that could lead to race conditions for both server and client. With the presented improved
conditions, JACIE example programs and applications (presented in Chapter 5, 6 and 7) are
executed correctly and are ‘safe’. However, in the future, it is desirable to include locking
mechanisms for further improvements.

4.7 Improvements to the JACIE Language

This section covers a few enhancements that have been made to improve the language. The
improvements facilitate JACIE programmers in producing shorter programs and better pro­
gramming environments. The major enhancements to the extended features for interaction
and interest management are covered and illustrated in Chapter 5 and 6, respectively.

The process of adding new and modifying the existing language constructs always start
with the j a c i e . f l e x (Figure 4.2) file for declaring new tokens, followed by the new pro­
ductions added to JACIE grammar in the j a c i e . c u p file. The rest of the additions are
in the JACIE c o d e t r a n s l a t o r in terms of new Java Classes or modifications to the
existing Java compiler.

The modifications and improvements include introducing a new data type that leads to solve
the problem of code repetition and producing some informative error messages for the com­
piler. A mouseclick event is also improved by enabling it automatically for the users who
are having the turn control or otherwise, it is always disable.

The discussions in the following subsections are focused on the new data type, code op­
timisation and the compiler issues. They provide significant information for further en­
hancements of this language in the future.

4.7.1 Enhancement o f Data Types

JACIE supports the primitive data types of Java as well as arrays that include any data of
typed integer, double, boolean, string and image. In JACIE I, the canvas manipulation that
deals with the grid, which is represented by a Java object, allows a JACIE programmer to
have several instructions such as locating a point, defining an object and posting text, lines
and images on the canvas. JACIE I does not include a grid as a variable type, but allows a

4.7 Improvements to the JACIE Language 80

statement called d raw s t a t e m e n t to initialise and draw such objects. Therefore, when
compiling this statement, the JACIE compiler must perform three actions, declaring an ob­
ject, initialising all of its corresponding values and then drawing the object on the JACIE
canvas. Below is an example of JACIE I grid objects that are included in the on c a n v a s
section.

client implementation {
declaration {

int[13] currentCard = -1;
int[13] dummyCard;

}on canvas{
/ / draw screen window and declare four new grid set

draw grid nCard at 7 0,45 step 13,1 size 20,47 colour black width 1;
draw grid eCard at 355,53 step 1,13 size 34,17 colour black width 1;
draw grid sCard at 70,270 step 13,1 size 20,47 colour black width 1;
draw grid wCard at 20,53 step 1,13 size 34,17 colour black width 1;

} •••
}

In order to optimise a program that has many grid objects, JACIE II has added a new data
type called grid2D. By making a grid a type, a programmer needs to declare any variable
of type grid in the declaration section before any instruction concerning such grid is per­
formed. The following code segment illustrates several grid objects’ declarations in the
JACIE d e c l a r a t i o n section before any action on such objects are performed in the on
c a n v a s section.

client implementation {
declaration {
shared int[13] currentCard = -1;
int[13] dummyCard = -1;
grid2D nCard; // M nCard is typed grid2D
grid2D eCard;
grid2D sCard;
grid2D wCard;
on canvas {
draw grid nCard at 7 0,45 step 13,1 size 20,47 colour black width 1;
draw grid eCard at 355,53 step 1,13 size 34,17 colour black width 1;
draw grid sCard at 70,270 step 13,1 size 20,47 colour black width 1;
draw grid wCard at 20,53 step 1,13 size 34,17 colour black width 1;

Although the code segment for the on c a n v a s section above are the same for both JACIE
I and II, the compiler code for JACIE II differentiates between creating a new class g r i d
from its constructor call d raw g r id . Thus, the actual process and compiler action is
different. During d e c l a r a t i o n , the grid object is created and its appropriate values are
initialised. When the d raw g r i d statement is executed, only one action is taken by the
JACIE II compiler, instead of three actions that were performed by the JACIE I compiler. In

4.7 Improvements to the JACIE Language 81

this way, any grid2D variables can be treated similar to any other types of variables.

4.7.2 Supporting Code Optimisation

The introduction of the type grid2D into JACIE II using type grid in the parameter list of a
method can lead to the avoidance of repeated code. For example, the following is part of the
JACIE I program implementing a bridge game. Here, statements are repeated in determining
which player selects a card from the individual’s hand.

client implementation {
declaration {. . .}
on MOUSECLICK {
gridX = GETGRIDX; // select a grid point x and y
gridY = GETGRIDY;
if (SplayGame) {...} II process bidding action
else

if (myTurn && ! chooseCard) { // no card is selected yet
if (userNumber == 1) {

if (userNumber == decPlay && playP) {
if (GETGRID == eCard) { // check on the canvas grid
chooseCard = true; '
tricks[turnTrick] = dummyCard[gridY];
dummyCard[gridY] = -1;
posCard = gridY;
gX [turnTrick] =2; // choose a card
gY[turnTrick] = 1;

]
}else {

if (GETGRID == wCard) { // check on the canvas grid
chooseCard = true;
tricks[turnTrick] = currentCard[gridY];
currentCard[gridY] = -1;
gX[turnTrick] =0; // choose a card
gY[turnTrick] = 1;

}
}

}else if (userNumber ==2) {
if (userNumber == decPlay && playP) {

if (GETGRID == sCard) { // check on the canvas grid
chooseCard = true;
tricks[turnTrick] = dummyCard[gridX];
dummyCard[gridX] = -1;
posCard = gridX;
gX[turnTrick] =1; // choose a card
gY[turnTrick] = 2;

}
}else

if (GETGRID == nCard) { // check on the canvas grid
chooseCard = true;
tricks[turnTrick] = currentCard[gridx];
currentCard[gridX] = -1;
gX [turnTrick] =1; // choose a card
gY[turnTrick] = 0;

}
}

}else if (userNumber == 3) {...
... II the same program codes are repeated with different values

4.7 Improvements to the JACIE Language 82

Clearly there is much repetition of code in the above, which could be avoided using a
method. With the introduction of the type grid2D, it is now possible to have a method with
grid2D parameters to remove this duplication. Below we see the improved code segment
rewritten using a defined method d e t g r i d with its appropriate parameters.

client implementation {
declaration {...
void detgrid(grid2D cardl,grid2D card2, int z,int a,int b,int c,int d) {
... II method in client program with grid type as the parameter lists
if (userNumber == decPlay && playP) {

if (GETGRID == cardl) { II check on the canvas grid
chooseCard = true;
tricks[turnTrick] = dummyCard[z];
dummyCard[z] = -1;
posCard = z ;
gX [turnTrick] = a; // choose a card
gY[turnTrick] = b;

}
}else {

if (GETGRID == card2) { // check on the canvas grid
chooseCard = true;
tricks[turnTrick] = currentCard[z];
currentCard[z] = -1;
gX [turnTrick] = c; // choose a card
gY[turnTrick] = d;

}
}

} . . .
on MOUSECLICK {
gridX = GETGRIDX;
gridY = GETGRIDY;
if (IplayGame) {...} // process bidding action
else

if (myTurn && ! chooseCard) { II no card is selected yet
if (userNumber == 1)
detgrid (eCard, wCard, gridY ,2,1,0,1); // call to the method for grid selection

else if (userNumber == 2)
detgrid (sCard, nCard, gridX, 1, 2 ,1, 0) ; // call to the method for grid selection

else if (userNumber == 3)
detgrid (wCard, eCard, gr idY, 0,1, 2 ,1) ; II call to the method for grid selection

else if (userNumber ==4)
detgrid (nCard, sCard, gridX ,1,0,1,2); // call to the method for grid selection

}
}

}

This approach of code optimisation can improve program readability and help in structuring
the program. However, the total time for executing such programs may not necessarily be
shorter.

4.7.3 Compilation Errors

In compiling JACIE programs, the JACIE compiler has to go through two phases, lexi­
cal phase and translation phase, which is similar to other automated compiler construction

4.7 Improvements to the JACIE Language 83

[109]. Figure 4.9 shows the outline structure of the compiler that is supported by compiler
tools for a Java environment, JFlex and JCup in both phases respectively.

Lexical phase Parsing and Translating phase

To input token To input grammar together with
Java classes

JACIE program Java equivalent
program

Figure 4.9: Outline Structure of JACIE Compiler.

With both tools, at least three different files should be written before compiling JACIE pro­
gram to produce the output in the form of Java programs. The files are

• JFlex specification — It contains a list of all tokens or terminal symbols that can be
recognised by the compiler.

• JCup specification — It consists of JACIE LR(1) grammar [9] with a list of produc­
tions.

• JACIE code translator — It contains several Java objects that can be distributed in
several files to perform the translation of some specific non-terminals defined in the
productions provided for JCup. All these Java objects must be in the form of Java
classes during the parsing and translating processes.

When a JACIE programmer writes a JACIE program, the compiler needs to provide some
mechanisms for checking any errors that may possibly be made by the programmer. During
its first phase (lexical), the compiler checks all the tokens for the language. It is possible for
a programmer to make mistakes in writing tokens. For example, in writing a string value
which is represented by double quotation at the beginning and end of a string, a program­
mer may miss the close quotation that results in an error detected by the lexical analyser
and forces JACIE compiler to stop the execution. Once the JACIE progam is starting to be
compiled, the token specifications that has been processed by JFlex is invoked so that the
compiler can check on all the tokens found in the program. Figure 4.10 is an example screen
shot in compiling a program that has the error of missing close quotation on a string value.
It shows the command ‘jacie’, followed by the file name, n c G e n e r a l i s e . j a c i e is used
to start the compilation which is then stopped with an error message, ‘Error: Unterminated
string at the end of line’ that is detected at the end of the program.

For its second phase (parsing and translating), the compiler starts its parse from the be­
ginning of the program by checking the syntax of all statements while at the same time,
the translated codes are produced and kept in some files until appropriate instructions in the
JACIE cod e t r a n s l a t o r are executed. In preparing for this phase, JCup must be used
to execute and process JACIE grammar specifications. It has a built-in error detection mech-

4.7 Improvements to the JACIE Language 84

ffl-« cssiti on cspcgl03: /compsci/partilion3/cssiti/jacienc - Shell - (Console iQ Q f f l
Session Edit View Settings Help

p a r t i t io n 3 /c ss i t i > ▲
p a r t i t io n 3 /c ss i t i >
p a r t i t i o n 3 / c s s i t i > cd ja c ie n c
c s s i t i / j a c i e n c > ja c ie n c G e n e ra l is e . ja c ie
s e t t i n g j f le x
s e t t i n g c lp a th
Com piling JACIE Com piler
Com piling JACIE S c r i p t . . .
S t a r t com piling JACIE P rogram m e...
E xcep tion in th re a d "main" j a v a . l a n g .E r r o r : U nterm inated s t r i n g a t end o f l in e

a t JA CIECScanner.yylex(JA C IEC Scanner.java: 1090>
a t p a r s e r . s c a n (p a r s e r . j a v a :2285)
a t jav a _ c u p .ru n tim e . l r _ p a r s e r .p a r s e (l r _ p a r s e r . ja v a ;5 2 7)
a t JA CIECParser. m ain(JACIECParser. j a v a : 19)

End s u c c e s s fu l ly a
c s s i t i / j a c i e n c > Q ▼

c£)n«w||(I5sH

Figure 4.10: Error on the Lexical Phase.

anism for ambiguous and wrong language that prevents the compiler from doing program
compilation. Therefore, before a JACIE program is compiled, JFlex and Jcup specification
files need to be executed for these tools to recognise JACIE tokens, grammar, and all neces­
sary Java classes used in the language translation processes.

Figure 4.11 shows the process of specifying grammar to JCup by a command ‘jcup’ to run
j a c i e . c u p file that contains the specifications. The tool detects ambiguous situations that
leads to some conflicts in the parsing process. Therefore, several error messages are printed
with the summary of the execution. In this example, 1 error and 4 warnings are found that
result in no output being produced. Thus, a JACIE program cannot be compiled since the
whole language is not recognised.

Both of the compiler tools provide simple and convenient environments to include error
messages. In addition, it is also possible to include some Java codes into the j a c i e . c u p
file for printing messages on syntax errors found in JACIE programs by specifically stating
the location of the error as shown in Figure 4.12. In this example, the JACIE code segment
shows that an error occurs on its last line of the statement, ‘protocol roundrobin’ with a miss­
ing semicolon (V) at the end of the line. Therefore, this error stops the compilation process.

With regards to the wrong syntax in Figure 4.12, an appropriate error message should be
printed to indicate the error. Figure 4.13 illustrates the action taken by the compiler with
error messages to inform the location of the error, ‘in line 19, column 4 ’. However, no de­
tails on the correct syntax or information on the error that causes such a problem were given.

JACIE I provided some error messages including all the examples shown above. In general,
it can handle almost all syntax errors even though the messages may not provide detailed
descriptions. It is significant to have informative error messages that can help programmers
to make corrections.

During parsing and translating phase, semantic errors may also occur. JACIE II introduces

4.7 Improvements to the JACIE Language 85

H)-tt cssiti on cspcglOi: /compsci/partition3/cssiti/jaciec - Shell - Konsole
S e s s io n Edit View S e ttin g s Help

c s s i t i / j a c ie c > jcup
s e t t in g j f le x
s e t t in g c lp a th
s e t t in g java Main
Opening f i l e s . . .
Parsing s p e c if ic a tio n from standard in p u t . . .
Checking s p e c i f ic a t io n . . .
B uilding parse t a b l e s . . .

Computing non-term inal n u l l a b i l i t y . . .
Computing f i r s t s e t s . , ,
Building s ta te m ach ine...
F i l l in g in t a b l e s . . .

*** Reduce/Reduce c o n f l ic t found in s t a te #340
between send_choice :;= send_choice <*)
and send_option ::= TO send_choice (*)
under symbols; {SEMICOLON}
Resolved in favor o f th e second p roduction .

*** Shift/R educe c o n f l ic t found in s t a te #340
between send_choice ;;= send_choice (*)
under symbol SEMICOLON
Resolved in favor o f s h i f t in g .

*** Shift/R educe c o n f l ic t found in s t a te #340
between send_option ;;= TO send_choice (»)
under symbol SEMICOLON
Resolved in favor o f s h i f t in g .

Checking fo r non-reduced p ro d u c tio n s ,. ,
*** Production “send_choice ::= send_choice " never reduced
*** More c o n f l ic ts encountered than expected — p a rse r g en e ra tio n aborted
Closing f i l e s . . .

 CUP vO.lOi P arse r G eneration Summary ----------
1 e r ro r and 4 warnings
171 te rm in a ls , 169 n o n -te rm in a ls , and 357 productions d e c la re d ,
producing 671 unique p arse s t a te s .
0 te rm in a ls declared bu t no t used ,
0 non-term inals declared bu t not used.
0 p roductions never reduced.
3 c o n f l ic t s de tec ted <0 ex p ec ted).
No code produced,
-- <v0 .10 i>

Compiling JftCIE Compiler
End su c c e ss fu lly
c s s i t i / j a c ie c > Q

N e w I j |j^j S h e i i j

Figure 4.11: Error on Determining Grammar.

some facilities to detect these errors that are included in the JACIE c o d e t r a n s l a t o r .
The error messages are produced on any attempt to do illegal actions. Some illegal actions
may stop the program execution while some others can cause the compiler to skip some pro­
gramming codes without processing the current statement. For cases when the compilation
process continues, the appropriate warning message is printed. Below are the list of cases
that are recognised to produce the warning messages. Upon printing these messages, the JA­
CIE compiler will skip the current executable statement and continue with the compilation
process.

• An assignment is made to a correct declaration of ‘global’ variable but no permission
is given to use or refer to that particular variable — When a ‘global’ variable is de­
clared in a client program, the JACIE compiler keeps the list of all these variables in
a table. Then, it creates another table to filter these ’global’ variables that can be ac­
tually referred to and used throughout the translation process. Therefore, any attempt
to include the ‘global’ variables that are not in the former table, into the latter table,
causes a semantic error.

4 .7 Improvements to the JACIE Language 86

/compsci/partition3/cssiti/jacienc/ncGeneralise.jacie - KEdit IS IM x
File Edit Qo Iools Settings Help

*> 0 k&
JACIE {

a p p le t name ncgen,
/ / a p p l ic a t io n name ncgen;

A

c o n f ig u ra tio n {
h o s t prompt;
p o r t 2005;
usernam e prom pt,
abo u t "G en e ra lised noughts and c ro ss e s" ;
ch an n e l canvas;
number of u s e rs 2;
p ro to c o l roundrob in

) ▲
▼

±J 1 l « l »
r ' |INS |Llne: 19 Col 4

Figure 4.12: Syntax Error in a Program.

H J - W c s s i t i on cspcgl03: / g o m psci/panitionYcsslti/jadenc - Sh ell - Kon so I e I s a s
S e s s io n Edit V iew S e tt in g s H elp

c s s i t i / ja c ien c >
c s s i t i / j a c i e n c > ja c ie n c G e n e ra l is e . ja c ie
s e t t i n g j f l e x
s e t t i n g c lp a th
Com piling JACIE Com piler
Com piling JACIE S c r i p t . . .
S t a r t com piling JACIE Program m e.. .
E rro r in l in e 19, column 4 : Syntax e r ro r
E rro r in l in e 19, column 4 : C o u ld n 't r e p a i r and c o n tin u e p a rs e
End s u c c e s s fu l ly
c s s i t i / j a c ienc > []

Shell

Figure 4.13: Error Message on Syntax.

• Password condition is not stated when accessing a shared variable that requires pass­
word — In JACIE II, a statement called access statement can include password veri­
fications. The compiler keeps the information on all the variables to be shared based
on password. Therefore, any attempt to use such variables without any password ‘op­
tion’ included in the statement would force the compiler to ignore this statement in
the code translation process.

The warning message is also printed in the case where there is no ‘global’ variable used
for statements that are supposed to have them. However, in some of these statements, ordi­
nary variables are permitted to be included in the statements. This action is to be processed
accordingly without skipping any codes. The warning message is just there to inform the
possibility of inefficient executing time.

The following list of situations result in the program compilation terminates. This con­
dition requires the programmer to make the correction and rerun the program. Upon dealing
with this situation, the compiler would print error messages.

4.7 Improvements to the JACIE Language 87

• A variable of type grid2D or image is only allowed to be used in the client program
since these types are only significant for canvas manipulation. In fact, the server
will not share or use the canvas. Therefore, while doing the code translation on the
declaration section of a server program, JACIE c o d e t r a n s l a t o r will detect
any attempt to do any illegal action on this matter.

• Any changes of interaction control protocol must be done only in the server program
for flexibility in changing user floor during program execution. Therefore, the code
translator checks any attempt to include such statement in client program to prevent
such action.

• A ‘global’ variable in JACIE II is declared in a special way so that the compiler can
distinguish between local and ‘global’ variables. These ‘global’ variables have some
special statements for performing value assignment or anything to do with ‘global’
sharing, therefore, it is illegal to have an ordinary variable exists in a statement called
permission statement. Figure 4.14 illustrates the attempt to include an ordinary vari­
able room N um ber to be used in one of ‘global’ variable’s special statements (the
statement is marked by a blue line).

/co m p sc i/p artitio n V cssiti/jc2im /N Tl. jac ie - KEdit |['I f o lH

| £ile Edit Qo lo o ls Settings help

I
1 C L L i

d is p la y I *
i f (USERNUMBER «= 1) (

■ p r i n t serverm essage " ["+deviceName+“ | “+ con fig ;
i f (I f i r s t S e t) {

f i r s t S e t ■ tru e ;
use c l4 by a l l to own to read to w r ite w ith passw ord "adm in";
use p l l by (2) n o t to own to re a d to w r i te ;
use h l l by (3) to own to read ,

)
draw 0ption2 (o p tio n 2) ;

e l s e {
p r i n t “dev ice ■ ”+deviceName,
i f (deviceName =* “C ab le l4 ") (

i n t e r e s t s e t c l4 1 .0 ;
s e t d i 3Dla v I = c l4 ,

_
A

▼ |

(in s |Line: 305 Col: 77

Figure 4.14: A Local Variable is Treated as Global.

Figure 4.15 shows a screen shot of the messages printed by the code translator in deal­
ing with the translation process and the semantic error mentioned above. Since this
attempt is treated as an error, the compilation stops and no Java equivalent program is
produced.

• In handling ‘global’ variables, it is also significant to check on any write access that
is permissible on the variable that has no read access. The compiler can stop the ex­
ecution because without the r e a d a c c e s s , it is impossible to change the unknown
value.

4.8 Summary 88

BI-SI cssiti on cspcglOS: /compsci/partition3/csshi/jc2im - Shell - Konsole JT* □ x
Session Edit View Settings Help

Copying n o c h O ff.g if . . .
Copying s t a tu s O f f .g i f . . .
Copying ipA d d O ff.g if . . .
Copying netM O ff.g if . . .
Copying gateW O ff.g if . . .
Copying r s o n .g i f . . .
Copying r s o f f . g i f . . .
Copying c h o o s e .g if . . .
C re a tin g c l i e n t a p p le t N T l.jav a . . .
[C reating N T lC o n ta in er.ja v a . . .
[Copying JACIECMethodTable, jav a . . .
Copying JACIEGrid, java . . .

End s u c c e s s fu l ly
c s s i t i / jc 2 im > Q

emission statement

Shell

Figure 4.15: Error Message on Semantic Checking.

Furthermore, it is also possible to have syntax and semantic errors after a JACIE program is
successfully translated into Java. In this case, all the errors are detected by the Java compiler
with appropriate error messages.

4.8 Summary

The JACIE compiler has verified that JACIE scripting language can be a tool for implement­
ing interactive and collaborative applications. Its special features such as simple template
style and event-based programming help a Java programmer to write a structured and or­
ganised program which also allow them to concentrate on the application development es­
pecially the manipulation of ongoing session between user and server.

Major enhancements have been made to JACIE I in extending its features on interaction
and interest management besides improving its compiler in reducing the chances of having
a race condition at both client and server. A new type of variable called grid2D is intro­
duced to ease the programmer in writing codes on the manipulation of canvas channel. The
introduction of grid2D can lead to code optimisation which allows a programmer to include
grid in a parameter list of a JACIE method call.

Some improvements are also made to JACIE c o d e translator that enables the de­
tection of some semantic errors while doing program translation. In detecting these errors,
it is possible to skip the current statement or stop the compilation with the appropriate warn­
ing or error messages to be printed out immediately.

In general, JACIE high level language features allow flexible program coding and improve
readability.

Chapter 5

Interaction Management

Contents

5.1 Introduction..
5.2 Related Work ...
5.3 The Noughts and Crosses Game and Its Variations
5.4 Interaction Management in JACIE........................
5.5 Language Enhancements.......................................
5.6 Other Protocol Design Issu es.................................
5.7 Summary..

89
90
92

100
111
116
121

5.1 Introduction

Almost all collaborative applications involve the management of interactions among remote
users. While the implementation of such software usually involves system level program­
ming interfaces for network communications, it also requires high-level features such as
carefully formulated interaction management policies, correctly designed interaction proto­
cols, and sometimes, a consistent and secure means for managing shared data. While many
software solutions have been proposed over the years in the context of various applications,
these high-level features are rarely supported by software development tools in a coherent
manner. Especially, hardly any programming language has language constructs for provid­
ing direct support for interaction management.

Interaction management is concerned with the protocols that govern structured interactive
activities among multiple users or agents in networked and collaborative environments. The
implementation of the protocols is often not a trivial task in the development of an applica­
tion involving structured communication. The provision of protocol control mechanisms is
the weakness of most existing programming languages and development tools. For example,
software engineers desire developer support, which can alleviate the burden in implement­
ing correct and reliable codes for managing an online meeting, a teamwork exercise or a

89

5.2 Related Work 90

multi-user web camera in a structured manner.

Research on interaction management has been conducted largely in the context of specific
management for various applications, including video conferencing [260], group coordina­
tion [95], web-based camera control [78], 3D collaborative virtual environments [78] and
agent-based collaboration [254, 85]. However, our work provides a general management
using a high-level approach for easy programming and managing the interaction.

In this chapter, we attempt to identify a collection of useful interaction protocols that are
common in many collaborative applications. We consider an abstraction of various collabo­
rative applications in the form of variations of the noughts and crosses game. We examine
the needs of these games for programming interaction protocols, and propose a comprehen­
sive collection of program constructs for supporting interaction management.

5.2 Related Work

Human-human interaction in a distributed collaborative environment often requires coordi­
nation in a structured manner where the term floor control is often used. In [94, 260, 283],
floor control is defined in a more formal agenda and usually must guarantee a mutual exclu­
sion condition among users. Since the environment is often tightly coupled, the floor control
mechanism is usually applied to a small number of users. In a small scale system, it usually
limits the number of users to collaborate in order to manage the activities properly [202],
and for a large scale system, the users are usually formed into groups with similar interests
or objectives [97]. When interaction among users exists, the collaboration often requires
scheduling to achieve structured interactive activities.

5.2.1 Interaction Protocols

A protocol is a set of rules that governs the order of communication among users that are
distributed in a networked system. Interaction in collaborative environments require users
not only to communicate, but also to work together and share some resources. The shar­
ing of resources such as data, have to be managed in such a way that in a given state, all
users must hold the same shared values. Therefore, when a data update is performed, this
event must be in a mutually exclusive manner. It is common in distributed operating sys­
tem that mutual exclusion issues are discussed [133], and nowadays, these issues are also
discussed in the systems that support data sharing and allow this data to be processed concur­
rently [335]. Concurrent processing is often implemented in several network programming
languages. For example, Java has method calls such as lock() and up() to handle mutual
exclusion. Hence, to ensure that mutual exclusion always holds in dealing with shared data,
users’ turns can be scheduled in such a way that they would follow a proper sequence.

The types of floor control commonly implemented in networked collaborative systems in­
clude protocol contention [191, 135, 138, 25], master [124, 94], and round robin [78, 94].
Contention gives all users the chance to fight for turn control by allowing only one user to

5.2 Related Work 91

have control over the shared data at any one time. When the user has a turn, this particular
user has the right to manipulate the shared data while other users either continue their tasks
without any intervention to the shared data or they may be blocked. In situations where other
users’ tasks are blocked, the protocol is called first-in first-out [78]. In operating system con­
cepts, first-in first-out scheduling often requires queue or buffer manipulation to keep a list of
processes that wait for their turn, which is determined by their arrivals [287,310]. However,
in implementing collaborative applications, most systems that use a ‘blocked’ mechanism
choose a user who gives the fastest response and simply block others who are later have
to fight again for another attempt. The master protocol has a single dominant controller to
determine the floor. In this protocol, the master can freely determine the user turn or it is
also possible for the controller to make a selection based on users’ requests. The round robin
protocol can be considered a ‘fair’ scheme that lets all users have the turn in a sequential
order. In implementing this scheme, information on all the users must be kept to ensure
every user gets the turn. When a user holds a turn, other users are usually blocked from
doing any task [78].

The implementation of floor control is usually performed using software packages [257,193,
88], programming languages [102,139] or component-based programming [267]. While the
software packages may allow a software developer to program networked collaborative ap­
plications based on the provided built in interaction protocols, in particular, programming
requires a programmer to write specialised algorithms. Whatever the case, handling interac­
tion protocols requires some basic elements such as flow control algorithms, communication
media (e.g. voice, messages, images, etc.), and sometimes, buffer management schemes.
JACIE I represented one of the first attempts to provide interaction management through
high-level language constructs [140, 139]. However, the original set of interaction proto­
cols in JACIE I is quite limited, and more than half of the games discussed as case studies
in Section 5.3.4 cannot be directly managed by the original protocols without a noticeable
amount of programming effort. We will address this issue in Section 5.4.

5.2.2 Temporal Coordination

Temporal coordination is the management of processes in cooperative work that specifically
depends on time factors, viewed as the state of a process at a particular time. As time plays
a very important role in determining data consistency, time cannot be ignored in designing
interaction protocols for collaborative environments. It can also influence the outcomes of
the system performance [23]. Bardram [23] defines temporal coordination as an activity
that integrates actions in all aspects of distributed collaborations and is influenced by tem­
poral conditions and its surrounding socio-cultural context. He analyses the three levels of
temporal coordination namely synchronisation, scheduling and time allocation at a surgical
department. Synchronisation refers to the continuous ‘rhythm’ in the work flow for the dy­
namic teamwork. Scheduling is viewed as the work plan and goal, while time allocation
refers to the need to ensure an adequate match between work demand and resource capabil­
ity.

In distributed multimedia systems, temporal synchronisation, either intramedia or interme­

5.3 The Noughts and Crosses Game and Its Variations 92

dia, that incorporates user interaction into actions, needs to guarantee the quality of the
multimedia presentation. Liao and Li [200] focus on single user intramedia synchronisation
especially on the rendering of the playback and retrieval schedules. They use the request-
on-demand protocol in their design. For the intermedia synchronisation, Mirbel et al. [226]
propose a method for checking the temporal integrity of interactive multimedia documents
that may consist of a variety of multimedia objects, and includes event modelling and com­
position. In distributed interactive systems, Zhang et a l [339] propose a ‘timed token’
protocol in handling real-time traffic for network communications. For multiagent systems,
the agent collaboration tasks which are subject to temporal constraints must be handled ac­
cordingly. Hunsberger [156] describes a distributed control of a temporal network among a
group of agents.

Recently, more formal approaches have been applied to interaction management, and these
include GTRBAC [170], which introduces the notion of role enabling and role activation,
and TILCO[30], which separates the external view of the process of interaction from its
internal view. In determining the state of data consistency and integrity, in Section 5.3.2 we
propose in our design a formal notation for the interaction protocol using a discrete tempo­
ral function. Such notation is defined by considering the formulation of generalised noughts
and crosses games that are used for modelling interaction management in JACIE II.

5.3 The Noughts and Crosses Game and Its Variations

In this section, we first define a set of abstract notations for modelling the noughts and
crosses game, its variations and the corresponding interaction protocols in later sections.
We then describe the traditional game in 5.3.3. A summary of the various games is given
in section 5.3.4 where we highlight their main protocol features in turn control and domain
control, linking them with real life collaborative applications. We relegate the details of the
variations of the noughts and crosses games to Appendix A.

5.3.1 History o f the Noughts and Crosses

According to [7], the history of this game was probably started during the Roman empire,
but there was no strong evidence to prove this. While in the United Kingdom, this game
has been played for several centuries. It appears that the first software program to play this
game was designed by A.S. Douglas at Cambridge University for the EDS AC computer in
1949, as part of his PhD thesis. This game is also called Tic Tac Toe in some other coun­
tries. Although the basic game seems quite simple, there are many variations of the game
with different levels of complexity. Some of the varieties of the traditional game are Tic
Tac Tower, 3D tic-tac-toe, 4D tic-tac-toe and 2D game variations (with different materials,
layout, or applications, etc.), Figure 5.1 shows some examples of the noughts and crosses
type games. These are two players games with various turn controls and domain controls.

Some researchers use this game as a case study or implement this game for entertainment
or as a teaching aid. Addison and Thimbleby [6] claims that this game was one of the first

5.3 The Noughts and Crosses Game and Its Variations 93

computer programs. Gibson [130] used this game written as a Java applet to teach program­
ming to primary school students. This game has data that must be known (or shared) by
both players and they need to follow some rules to place their symbols on the game board.
Therefore, it is useful to look into the interaction and the resource sharing when this game
is played as an interactive collaborative system.

5.3.2 Definitions

The standard noughts and crosses game can be generalised in many different ways, includ­
ing increasing the size of the game board, altering the rules governing the game, changing
the definition of winning state or the allowed states and valid symbols of each cell, and so
on. In our generalisations, we choose to give a high degree of freedom to the specification
of game rules in order to explore a variety of interaction protocols and cover a broad range
of applications. We restrict ourselves to using only two basic symbols, namely nought and
cross in our discussions, which enables us to maintain a reasonable level of abstraction in
order to focus on the interaction management in the games rather than on the games them­
selves. The extension to an arbitrary set of symbols is relatively trivial in terms of both
specification and implementation, but it generally does not bring much benefit to the discus­
sion of interaction management.

Once we move away from the traditional game, it is inevitable that having a 3 x 3 game
board is too restrictive. Therefore, a generalised game board for noughts and crosses is
defined over a grid of N x x N y cells. Each cell < i , j > may exhibit one of the three
basic visual states, namely empty, with a nought, o , or with a cross, x . During a game,
relative to a player, each cell may also be in two different modes indicating whether or
not the visual state of the cell is modifiable by the player concerned. We therefore con­
sider six valid states for cells, whose visual representation are □ , ■ , [o], M, [x], P , where for­
mally, the set of symbols are elements of the set O X x Mod where O X = {empty, o , x }
and M od = {mod, unmod}. So, for example, [o] and H are the visual representations of
< o , mod > and < o , unm od > respectively. A white background indicates that the con­
tents of the cell is modifiable and a black background that it is immodifiable.

A single game board G is then a function indicating the state of each cell and so is of
type

G : Nx x -> O X x Mod.

where we let = { 1 , . . . , N x} and Ny = { 1 ,. . . , N y}. We use \o x ' and ‘.mod’ to select
components of the range. G is said to be empty, if the state of every cell is empty (either
modifiable or unmodifiable), i.e.,

V < i , j > e Nx x Ny (G {i,j).ox = empty).

G is said to be active, if there is at least one modifiable cell in G, i.e., 3 < i , j > e
Nx x Ny (G (i,j).m od = mod). Otherwise, G is said to be inactive.

As we are interested in the change in the board over time, we extend the notation and intro­
duce a time parameter t which ranges over a semi-bounded domain T = [tstart-, co), where

5.3 The Noughts and Crosses Game and Its Variations 94

3D Noughts and Crosses [295] 4D Tic-Tac Toe [165]

Five-in-a-line Three Stones [208]

□□□□□□□
□ ■ ■ □ □ □ □
□ [x] [Q] ■ ■ ■ □
[x][q|[oj o];x][o][J
[o] !o] [x] [x] [o] [x] ■

Connect 4 Board and Its Representation

Figure 5.1: Various Versions of the Noughts and Crosses Type Games.

5.3 The Noughts and Crosses Game and Its Variations 95

t start is the time when a game commences. Hence we use G(t) to denote the state of the
game board at time t with G having domain T x Nx x Ny. In a paper-based noughts and
crosses game, or its implementation on a centralised single processor environment, there
should be a single board at any specific time t. We call this the primary game board and
denote it by Gprim(t). Nevertheless, in a distributed, collaborative environment involving a
collection of processors, identical boards cannot easily be guaranteed across the processors.
Let po,pi,P 2 , • • • iP k be K + 1 processors in such an environment. At a particular time
t £ {tstart j oo), a user associated with a particular processor p^ has access to a particular
version of Gprim(t), which is denoted as Gk{t). All G k(t), with the same t, together with
the corresponding primary state Gprim(t), are called homothetic states of the game board.
Formally G is now a function of type

G : T x Kq x N x x N y O X x M od

Ko = {prim , 0 , 1, . . . K } where G k(t)(i,j) is shorthand for G(t, k, i , j) and we can con­
sider each Gk(t) : Nx x Ny —» O X x Mod. In any distributed collaborative environment,
it is not necessary, and often impossible, to ensure identical homothetic states within Gk (t)
for all k. However, it is necessary to have correctly designed and implemented interaction
protocols to ensure a consistent state transition of Gprim{t) and Gk{t) for each individual
Pk-

At any particular time, pk can attempt to perform an action by trying to assign a new state
in cell < i , j >. In this chapter, we consider only two types of actions, attempting to assign
an o or x in cell < i , j >. The actions are described by the function act of type

act : T x E o x N x x N y —> O X U {no-op}.

no-op is used to indicate that no real action is being performed, that is, no attempt is is being
made to change the state of a cell.

We can take a curried form of G to encapsulate all the boards at time t, that is we take

£7 : T ->• Ko x N j x N y -> O X x M od

where Q(t)(k, i, j) = G(t, k, i, j) . Let A (ta, tb) be the graph of act where time t is restricted
to [ta, that is,

A {ta, t b) = {< t , k , i , j ,a c t (t ,k , i , j) > \ta < t < tb,k e Ko,* e N x, j G Ny}.

This records all the actions during the time interval [ta, tb). An interaction protocol, there­
fore, is essentially a temporal function, ip, that computes all homothetic states Q (t) as:

Q(t) = 1p(t, A (tstart, t),Q {tstart))

where Q(tstart) represents the initial homothetic states of the game board on different pro­
cessors. As it is not feasible to maintain a continuous change of Q {t), on a specific processor
Pk, Gk(t) is updated in a discrete manner as

Gk{ti), Gkfc), • • • , Gk{ts), Gk(ts+1) , . . . ,

5.3 The Noughts and Crosses Game and Its Variations 96

where tstart < h < 2̂ < • • • < ts < t 8+1 < . . . , which do not necessarily have a regular
time interval. The state represented by Gk{ts) defines a temporal action domain for pk,
during the period [fs, t s+i).

Ideally, one would like to simplify ^ to a function that operates on a discrete time series,
. . . < t s < t s+1 < . . . , as G{ts+i) = 1>(t8+ u A (ta,ts+ i),G (ta))- However, the time se­
ries operating at each processor is based on its local events (including clock, interaction and
communication events), hence is not synchronised with that of other processors. This poses
the major challenge to the design and implementation of any interaction protocols for net-
centric collaborations.

In a distributed collaborative environment, the implementation of i/j has to be realised using
a set of concurrent sub-functions, ^ a, -06, •..» which operate in different processors in a dis­
tributed and co-ordinated manner. To facilitate more intuitive and coherent discussions in
the following sections, we assume a client-server model, with one server po, and K clients
Pi,P2 , • • • iPk- We also assume there is only one user (player) at each client, and only one
sub-function ipk at each processor p^, 0 < k < K . In practice, for instance in JACIE, a ^
can be realised by multiple threads or processes. We also take a ‘coarse’ view of the time
series in our presentation of algorithmic operations for managing protocols, rather than a
‘fine’ view which would separate any algorithmic step into many tiny small discrete events
at the micro-instruction level.

5.3.3 Traditional Noughts and Crosses

In a traditional noughts and crosses game, two players are assigned to nought and cross re­
spectively. Each player takes it in turn to place his/her symbol, either a nought or a cross, in
one of the empty cells. The player, who first completes a 3-cell line horizontally, vertically
or diagonally, wins the game. It is possible for a game not to have a winner.

We can generalise the game to a N x x N y game board. Each player may have Sturn G (0 ,00)
seconds to complete a move. A player who first completes a w-cell winning line wins the
game. Referring to the primary board, a winning line is a set of contiguous cells, that satisfy
one of the following conditions, (a) for a horizontal line, (b) for a vertical line, and (c) or (d)
for a diagonal line:

3*o G Nx , j 0 G Ny
(a) V/(0 <Z. I ̂ W ̂ Gprimly) 0 ~b tfjo^j.OX = Gprim(t) (jo f jo)"0 %)
(b) VZ(0 <C I W ̂ G p r i f n { t) (*o? ̂ *0 “b I')-OX = G p r i r f i (t) (i,Q ̂jo')-Ox')

(c) VZ(0 I <C W ̂ Gprimit) (*0 ”b l^jo ~b I).OX = Gprim{l)(Ji0̂ jo'j'Ox}
(d) VZ(0 I <C. W ̂ Gprim(t) (lQ “I" If jo t).OX = Gpriniit^iiof jo'j.Ox}

For cells on the boards Gk{t), the game requires the use of four states, namely □ , H, §J and
H as defined in Section 5.3.2. The interaction protocol is essentially a round robin mecha­
nism (see also Section 5.4.1), which can be found in many practical applications, including
a variety of board games, question-answer based user interfaces, option menu interactions,

5.3 The Noughts and Crosses Game and Its Variations 97

.....

----- 1

B

horizontal win for o vertical win for o

---- 1

Ml
m

H BU J □
Ml 0 □

diagonal win for x diagonal win for x

Figure 5.2: Win Conditions.

and automatic tele-information service. The turn time (or timeout) management can also be
found in applications such as fault-tolerance automatic tele-information service (i.e., han­
dling a user’s hesitation) and menu facilities in many television sets.

For example, in a question-answer based user interfaces application, a user is given a set
of questions that need to be answered. The round robin protocol is applied to the user and
the system where a user needs to produce the answer and the system produces the question.
During this process, such question and answer are unique without any repetitions or changes
in the answer given previously. The concepts are similar to what has been represented by
the four cell states, □ , ■ , g] and g .

5.3.4 Summary of Variations

Traditional noughts and crosses captures a simple interaction protocol commonly used in
a variety of collaborative applications, such as question-answer dialogues, many different
types of board games, and online information services. However, it is not adequate enough
to represent other complex collaborative activities. For instance, when two or more people

5.3 The Noughts and Crosses Game and Its Variations 98

are working on a document collaboratively, it is not necessary, often not desirable, for them
to follow strictly a round robin order. Many collaborative activities involve a ‘master’ who
controls the turn of other participants. In order to accommodate such collaborative appli­
cations, we have studied many other forms of board games, such as five-in-a-line and three
stones, which exhibit the main features of the noughts and crosses game. In addition, we
have invented several new variations, including hasty battle, dictator’s entertainment, etc.
The detail description of these games is provided in Appendix A. Though some of the in­
vented variations may not be suitable for a real competitive contest, they effectively capture
some common interaction protocols used in our everyday life. For example, gentlemen’s
battle captures a friendly interaction protocol used in many non-competitive collaborations,
while vicious battle exhibits a selfish interaction protocol adopted by many in accessing
shared networked resources.

Here, we choose a more abstract approach based on these variations, instead of application-
based design. These games enable us to focus on having a comprehensive collection of
turn control protocols. They are simple enough for us to concentrate on the interaction re­
quirement of the language and applications. At the same time, the real applications that are
associated with these variations are identified. Therefore, these games and JACIE language
act as the platform for the design and experimentation. Table 5.1 summarises and compares
these variations of the noughts and crosses game. In the table, we highlight, for each game,
the relevant interaction protocol to be discussed in Section 5.4, the main cell states to be
considered in the management of temporal action domains, and applications typified by and
reflected in the game. The cell states for protocol contention in vicious battle (Appendix
A.5) is the only protocol that does not have unmodifiable cell, This represents the con­
tinuous turn control for all the users, while the rest of the protocols have shown the need for
a proper scheduling in determining users’ turns. A ‘blocked’ on other users’ tasks is one of
the implementation techniques.

X O

X o
X o o o

o x x x

Opportunity Knocks Game

Figure 5.3: Screenshots of Two Noughts and Crosses Games.

Figure 5.3 shows the screenshot of vicious battle (Appendix A.5) and opportunity knocks
(Appendix A.9) games. In the vicious battle, all the cells are green to indicate that users

O X

X X O

O O X O

Vicious Battle Game

5.3 The Noughts and Crosses Game and Its Variations 99

always have the turn to play. For the cells with \o\ and (3, green also indicates that these
symbols can be overwritten at any time. In the opportunity knocks, there are green and red
cells that can contain one of both symbols, oand x . Since green represents the modifiable
cells, pink is the unmodifiable cells. All the full cell states are shown here where in any
green cell, users can put their symbols at any empty cell or overwrite any symbol. Any
attempt to do the same action to any pink cell is not permissible.

Name (Section) Turn Control Cell States Used
Generalised game (5.3.3) round robin D ■> H, M

Applications : question-answer user-interface, menu, board games, tele-info, service.
Five-in-a-line (A. 1) round robin □ , ■ , B- H

Applications : question-answer user-interface, menu, board games, tele-info, service.
Connect-4 (A.2) round robin □ , ■ , is, m

Application : online form filling.
Three stones (A.3) round robin □ , mi n , m

Application : online form filling.
Hasty Battle (A.4) contention □ , M ,M

Applications : shared database access, printing queueing.
Vicious Battle (A.5) contention D H,[x]

Applications : shared whiteboard, co-authoring.
Gentlemen’s Battle (A.6) tapping □ , m n , m

Applications : discussion forum, tele- and video conferencing
Dictator’s Entertainment (A.7) master □ , ■ , m, □

Applications : e-learning class and testing, structured online meeting.
First-come, first served (A. 8) reservation n » m, q

Applications : document downloading, web camera control.
Opportunity Knocks (A.9) round robin □ , ■ , [o], H, 0 , Q]

Application : emotional IQ test.
Secret Switch (A. 10) round robin □ . ■> [O]. 0

Application : distributed database access.
Group games (A. 11) round robin & group protocol □ , ■ , n , m

Applications : group work and team games.

Table 5.1: Variations of the Noughts and Crosses Game, and Their Main Features.

This list represents only a small proportion of possible variations. Many other games, such
as Go, Othello (or Reversi) and Droughts, can also be thought of as some kind of complex
variation of the noughts and crosses game. As the complexity concerns largely the rules,
movement and strategies, rather than interactions, it is not essential to include them in the
discussions. Most of the variations can be moderated using various timers. We have only
selectively discussed these timers in a few variations to avoid an unnecessary coverage of
all possible combinations.

5.4 Interaction Management in JACIE 100

5.4 Interaction Management in JACIE

In this section, we give the functional specification of each of the six protocols, and describe
its use and implementation. We give the syntactic specification of the language construct for
each interaction protocol. As JACIE is a scripting language, most arguments (or extensions)
of a protocol are optional, which facilitate ‘fast scripting’ for simple and commonly-used
protocols, and the extensibility when introducing new variations and extensions.

5.4.1 Round Robin

protocol roundrobin [turn [timer] Sturn]
[overall [timer] 6overau] [silence [timer] 8siience]

_________ [[max] action gQCtion] [rest [timer] 8rest]_________
turn pass

______________ action start ... action end______________
Round robin is one of the most commonly used protocols for managing interactions. In a
basic round robin protocol, only one user, at most, is authorised to alter the states of the
game board at any time during a game. In other words, at any specific time, t, we have
either:

3k, 0 < k < K such that a game board at client k,
Gk(t), is active, and VI 7̂ k , we have Gi(t) is inactive

or
Vk(0 < k < K —► G k(t) is inactive).

The protocol management function ip resides mainly at the server po as ipQ. This will ini­
tialise Q{t\) as follows:

(i) Vi E Nx , j e N y iG o W iiJ) <-< em pty,m od >),
(ii) Vi £ Nx , j G Ny {Gk{ti)(i, j) <—< empty, unm od >),i = 2 , . . . AT, and

(in) G i(ti) = Go(ti).

Upon a valid action from the authorised client p\ at t 2 , ipo computes a new active ^ 2(^3) for
client P2 , and a new inactive G k(h) for each client 2 < k < K . The order of clients being
activated is organised according to the order of their registration with the server, and is on the
first-come, first served basis in a circular manner. For efficiency reasons, JACIE facilitates
an additional sub-function ipk at each client p ^ which validates each action a c t(t ,k ,i , j)
against the current Gk(tc), where t > tc. Upon a valid action, ipk automatically replaces
Gk(tc) with an inactive Gk(tc+1), by making Gk(tc+i)(i, j).m od «- unmod, Vi, j render­
ing all subsequent actions at pk invalid until an active G k(tf) is received from the server at
time t f > tc+1.

In JACIE, the behaviour of the basic round robin protocol can be modified with three

5.4 Interaction Management in JACIE 101

main timeout timers, namely t u r n t im e r , o v e r a l l t i m e r and s i l e n c e t im e r ,
and another timer called r e s t t im e r that must be declared together with the multiple
a c t i o n s selection. Such timers are particularly useful in applications where more precise
control of time, or more efficient use, of shared resources is necessary, such as structured
meeting, various board games, and online teamwork exercises.

The t u r n t i m e r is governed by a variable Stum (default oo). When it is switched on,
with a finite value of <Wn, it can be used to restrict each client to perform valid actions
within Stum seconds after gaining the turn control. The turn timer is managed by each
client sub-function and is activated upon receiving an active Gk(tc)• It generates a time­
out event at t c+\ = t c + 6tUrn-> which leads to the replacement of Gk(tc) with an inactive
Gk(tc+1)-

The o v e r a l l t i m e r is governed by a variable Soverau (default oo) and it can be used
to restrict each client to have a fixed amount of total time for holding a turn. The overall
timer is managed by each client sub-function V’/c, and is activated upon the session start.
If the user’s turn time is accumulated to a total equal to Soverau , the user’s session will be
ended.

The s i l e n c e t im e r , Ssuence (default oo) represents the maximum amount of contin­
uous time that the client in control is allowed to remain inactive. The timer starts upon
receiving the turn, and is reset upon every interaction initiated by the client. Once the si­
lence timer has expired, the turn is automatically passed back to the next client via the server.

The maximum number of actions in each turn, which is set with [max] a c t i o n (de­
fault 1), represents the number of actions that a client can make during the given turn. This
option is introduced to accommodate circumstances, such as in an application, when it is
sometimes more efficient and cost effective for a party to perform multiple actions before
passing the turn to another party. Upon choosing the multiple actions in a turn, the r e s t
t im e r , Srest (default 0), can be set to any value by the JACIE programmer. The rest timer,
which defines the minimal timing gap between two consecutive actions, can be used by
JACIE programmers to moderate between the fast speed of user interaction (e.g., through
the keyboard and the mouse) and the relatively slower speed of network communication. If
there is no specification of [max] a c t io n , the parameter of r e s t t im e r has no effect
as there is only one action per turn.

The following JACIE code shows how the protocol is implemented with the t u r n t im e r
is set to six time units and s i l e n c e t i m e r set to three units in the generalised noughts
and crosses game 5.3.3.

JACIE {
applet name ncGen;
configuration {

. . . / / other declarations
number of users 2;
protocol roundrobin turn 6 silence 3; / / < interaction protocol

} • • •client implementation {
declaration { .. . }

5.4 Interaction Management in JACIE 102

on session { ...
on MOUSECLICK { . . .

action start; / / < signifies the m ouseclick action
. . . I I ge t x and y poin t on canvas i f click on the right cell
criticalsection start; / / -4 continuously sen d m essages to server
. . . I I send som e m essages to the server and update board
action end; / / 4 sim ilar to p a ss the turn control i f num ber o f action = 1

}
} • • •

}
server implementation {

declaration { ... }

on session {
on TURN { / / < process current in control user

. . . I I process an action

} • • •

} • • •

}

}

The statement s t a r t a c t i o n is usually included in the program if the s i l e n c e t i m e r
is in the protocol option. In this example, the s t a r t a c t i o n is activated by a mouse­
click. Therefore, any mouse-click within 3 units of time allows the user to continue with the
turn until the t u r n t i m e r expires. Otherwise, the user turn is terminated and the turn is
passed to the next user. Upon successfully making an action within the time limit, the e n d
a c t i o n triggers the end of the user turn. Since the number of actions is not specified in
this example, and by default, only one action per turn, the e n d a c t i o n is equivalent to
t u r n p a s s .

• R F r r ~ f i M

ALISEO N O UG H TS AND CROSSES w ith t im e r

X

O X X X o
O O

- W aiting for turn)

Figure 5.4: Screenshots of Generalised Games.

Figure 5.4 shows the output of this program for both players at time t. The user in control
has a message in the JACIE Local Message to show the timer counter for easily acknowl­
edging the time limit. A text message is also displayed in JACIE Server Message, ‘It is your

j & l a 1 ! " - • » 'R - R

GENERALISED NOUGHTS AND CROSSES w ith t im e r
RULES

1) N u m b e r o f p la y e r s - 2

2) N o o v e rw r i t te n s y m b o l s

3) M o d if ia b le ce ll X

4) U n m o d if ia b le c e ll

OXXXO

o o
Play sy m b o l X

Local Message. j tim er = 4

se rver Message: j it is your turn!

server Message:

(C lien t 1 - in con tro l)

(C lien t 2

5.4 Interaction Management in JACIE 103

TURN’ to represent the user’s current turn. The game board state with □ shows that there
are some modifiable cells on the board. While at the opponent, the state on the board is H
to avoid the player making any grid selection. The text message on the user interface, ‘It is
YOUR OPPONENT turn’ indicates that the opponent has the current turn control.

The statements a c t i o n s t a r t and a c t i o n e n d must be used in conjunction with
[max] a c t i o n where <Joĉ on > 1 or a finite value for the s i l e n c e t im e r . The
a c t i o n s t a r t resets the s i l e n c e t i m e r automatically, while a c t i o n en d indi­
cates the completion of one action cycle and increments the action count. The first action cy­
cle is started by an activity defined in an application, such as keyboard or mouse events, text
input or opening of a communication channel. In the case where the s i l e n c e t im e r ex­
pires before the t u r n t im e r ended, the user’s turn is ‘forcefully’ terminated. By default,
only one action is permitted in each turn, therefore, the a c t i o n en d has the equivalent
effect as a t u r n p a s s statement if the value of a c t i o n e n d is not set.

5.4.2 Contention

protocol contention
protocol contention hold

[turn [timer] <5ttirn]
[overall [timer] Soverau] [silence [timer] 8siience]

_________ [[max] action craĉ on] [rest [timer] 8re s t]_________
Interactions under a contention protocol is perhaps considered as almost unmanaged since
all clients are authorised, at almost any time during a game, to alter the game board, though
it does not guarantee the success of every action.

The protocol management function ip almost totally resides at the server, which initialises
the client action domains as:

(z) Vz € Nx , j e N y (G 0 { t i) (i , j) = □) ,

(it) G k (t i) = Go(fi), k = 1 , . . . , K .

With a contention protocol, it is particularly difficult to maintain a consistent set of homo­
thetic states at any time t during a game, due to the non-deterministic behaviours of users,
client computers and the network. It is possible, Gk (t) may vary substantially from client
to client.

Each user action a c t(t ,k ,i , j) is first validated by the client sub-function ipk against the
current Gk(tc)• It is then forwarded to the server, entering at the end of an action queue.
As it is possible that actions from different clients may not compatible with each other be­
cause of concurrent activities, all actions need to be examined again at the server. As long
as the queue is not empty, the server sub-function ip0 continues to fetch actions one by one
from the head of the queue. Each action is revalidated against the current game board state,
Go(ts), stored at the server end. If the action is invalid, it is simply discarded. Otherwise,
ipo computes a new Go(fs+i) and propagates it to all clients.

5.4 Interaction Management in JACIE 104

As all Gk(t) are active most of the time, it is possible for the protocol management to
become highly ineffective because of a combination of continual user actions and delays in
network communication. In such a case, the r e s t t i m e r can be used to ease the pres­
sure on protocol management by restricting each client to ‘rest’ for a small period between
two consecutive actions. It is governed by a variable 5rest and is managed by each client
sub-function Upon the receiving of a user k action at tc, Gk(t) becomes inactive imme­
diately and 'ipk activates the rest timer while processing the action. All actions issued by the
user during (tc, tc + Srest) are discarded by Gk(t) becomes active again at t = tc + 8rest.

Besides the rest timer, the contention protocol can also be influenced by the o v e r a l l
t im e r . For the o v e r a l l t im e r , the function ^ will activate the timer upon the ses­
sion start. When the overall time expires, ^ will stop all the clients’ activities. With this
timer, clients are forced to act even faster, not only to get their data to reach the server
quickly, but also to fight against the time given to finish their activities in the specified time.

One variation of the protocol is c o n t e n t i o n h o ld , which allows a client to hold onto a
turn once the client’s action is accepted. All actions from clients will be placed in a turn-
waiting queue, and an automatic filtering mechanism ensures that only one action per client
is allowed. Hence, the contention takes place in the turn-waiting queue, rather than the ac­
tion queue. When a client is holding a turn, all the subsequent actions of the client will
be placed in the action queue, and be processed ahead of other actions in the turn-waiting
queue.

The following code shows the hasty battle noughts and crosses game. It presents the con­
tention protocol declaration with the o v e r a l l t i m e r option, where the total time of ten
units is allocated to a user to play the whole game.

JACIE {
applet name ncHB;
configuration {

... // other declarations
number of users 2;
protocol contention overall 10; II A interaction protocol

} • • •client implementation {
declaration { . . . }
on session { ...

on MOUSECLICK { ...
... / / get x and y point on canvas
... II send some messages to the server

} • • •

} • • •

}server implementation {
declaration { . . . }
on session {

... II validate board and process an action

... II broadcast updated board information
} • • •

}

5.4 Interaction Management in JACIE 105

}

It has a slight difference from the generalised noughts and crosses in validating the game
board. Since the turn control is always given to all the players, the client board game is
updated after receiving the validation from the server. For changing the turn protocol in the
C o n f i g u r a t i o n S e c t io n , it is only a matter of changing one line of code.

Contention protocol has another choice available, called the contention hold, also known
as f i r s t come f i r s t s e r v e d protocol. With this protocol, s t a r t a c t i o n and
en d a c t i o n are also included as in the round robin. At the start session, all the players
have the turn control. At the s t a r t a c t i o n , a message is sent to the server to place the
player in the server turn-waiting queue. The s t a r t a c t i on is activated by a mouse-click
event. Once the server receives this message, the user turn is set and at that time, only one
player gets the turn, and the other player’s turn is blocked. When the current player in con­
trol finishes the turn, which is in this example six units of time for a turn or one action is
completed (which ever comes first) another message is sent to server to acknowledge the
completion.

JA C IE {
applet name ncVB;
configuration {

... // other declarations
number of users 2;
protocol contention hold turn 6; II M interaction protocol

}client implementation {
declaration { ... }
on session { ...

on MOUSECLICK { . . .
action start;
... II process an action
action end;

}
} • • •

}... 11 the remaining code is similar to generalised game, Section 5.4.1

}

As the t u r n t i m e r usually has to be set in this protocol, the program coding is very sim­
ilar to the round robin protocol. However, the slight differences are that the order of the turn
exactly follows the order of the processes in the turn-waiting queue and all the players are
always have the turn control if there is no player in action.

With the contention hold, the t u r n t i m e r and the s i l e n c e t i m e r influence the client
turn. Similar to the roundrobin protocol, the t u r n t i m e r is used to indicate the length of
time for a turn and the s i l e n c e t i m e r is to stop the client turn if no action is initiated.
The o v e r a l l t i m e r can be used for the total length of time for holding turn control.
The r e s t t i m e r is only applicable for the declaration of multiple actions in a turn.

5.4 Interaction Management in JACIE 106

5.4.3 Reservation

p r o t o c o l r e s e r v a t i o n
[t u r n [t im e r] 8 t U m] [o v e r a l l [t im e r] Soveraii]

[s i l e n c e [t im e r] 8 s i i e n c e] [[m ax] a c t i o n a oction]
[r e s t [t im e r] 8rest]

t u r n r e q u e s t B o o le a n

This type of protocol allows clients to make their requests to the server for their turns. The
requests are made, in a round robin fashion, by all the clients at the start of the session. Any
request is put into a queue. After all the clients have the chance to make their requests, the
server checks the content of the request queue. If the request queue is not empty, the proto­
col reservation is set and the turn control will follow the requests in the queue. After all the
requests are fulfilled, the protocol is set to round robin again to look for another set of re­
quests. This protocol can also be modified by the timer choices given before. The statement
t u r n r e q u e s t is used by the client in the round robin request mode with the Boolean
set to TRUE to ask for a turn. Otherwise, without any request from a client, by default, the
Boolean is FALSE.

For the reservation protocol, the JACIE statement t u r n r e q u e s t indicates whether the
current user wants to request a turn (with value TRUE) or not (value FALSE). During
the turn, there exists two different modes, either the r e q u e s t t u r n mode or the actual
a c t i o n mode.

JACIE {
applet name ncRev;
configuration {

... II other declarations
number of users 2;
protocol reservation; // 4 interaction protocol

} • • •client implementation {
declaration { . . . }
on session { ...
on TURN {

... II get the current state set by the server
}on MOUSECLICK { . . .

if (state == TURN_REQUEST) {
... / select button to make option
if (grid == REQUEST)

turn request TRUE; // client requests to play
else

turn request FALSE;
} else // set state to PLAY
... I I update the board
turn pass;

} • • •

} • • •

} ... II the remaining code is similar to generalised game, Section 5.4.1

}

5.4 Interaction Management in JACIE 107

The current user in the actual a c t i o n mode, will click on any board cell to proceed with
the game. Whenever the user is in the r e q u e s t t u r n mode, the game board is inactive
and he/she can only click a specific button on the canvas to choose whether to request a turn
or not.

5.4.4 Master

protocol master [server] [random | userdefined]
[turn [timer] <Wn] [overall [timer] Soverau]
[silence [timer] 5siience] [[max] action aoction]

[rest [timer] 8rest]
protocol master client 77dient

[turn [timer] <Wn] [overall [timer] 5OVerail'\
[silence [timer] 5silence] [[max] action o action]

___________________[rest [timer] 8rest]___________________
turn set client r}cuent

For this protocol, the master, whose job is to determine the turn control, has all the power
to set the turn. The default master is the server. The random choice indicates that the
server determines the order of the user turn in no specific order or is randomly assigned.
Like the round robin protocol, only the state □ , can be changed, and no overwritten value
is permissible. The following is the code segment for the c o n f i g u r a t i o n section of
dictator’s entertainment game A.7. Since this game has the same cell domain and rules
except on the floor control protocol comparing to generalised game 5.4.1, both programming
codes for these two protocols are the same except for the p r o t o c o l s t a t e m e n t in the
c o n f i g u r a t i o n section.

configuration { ...
// other declarations
number of users 2;
protocol master random turn 10 silence 5;// M interaction protocol

} • • •

This code segment shows the protocol master server with the default value is the server even
though it is not stated in the statement. The timer options are the t u r n t im e r with the
value of ten units of time and the s i l e n c e t i m e r is set to five units.

A more flexible option is u s e r d e f i n e d for including a user-defined code segment in
the server part of the program, providing JACIE programmers with the capability to incor­
porate an arbitrary server-based turn control mechanism into an application.

The other choice, the protocol master client allows one of the clients, rjcnent, to become
the master, which can exercise the turn protocol in an application. Similar to master server
userdefined, this protocol always requires the inclusion of a user-defined code segment for
turn management, except that the code is defined in the client part of the program. This

5.4 Interaction Management in JACIE 108

protocol causes the Protocol Manager to be temporarily suspended and control passed to
the user defined algorithm for interaction management.

The u s e r d e f i n e d feature in the master protocol is supported by generic turn manage­
ment statements, t u r n p a s s , t u r n r e q u e s t , and t u r n s e t c l i e n t , as well as
the a c t i o n s t a r t and a c t i o n en d statements. In addition, protocol master can be
modified by the turn timer, Stum , the overall timer, Soverau , the silence timer,Ssuence, the
action counter, oacti0n and the rest timer,Srest. These options, which have the same mean­
ing as defined in the round robin protocol, allow further parameterisation of a user-defined
protocol. This in effect allows more creative JACIE programmers to design any complex
interaction protocols. This flexibility is further extended with the user-definable option in
the group protocol (Section 5.4.6.1) and the dynamic protocol feature (Section 5.6.1).

5.4.5 Tapping

p r o t o c o l t a p p in g
[t u r n [t im e r] <Wn] [o v e r a l l [t im e r] 6overaii]

[s i l e n c e [t im e r] 6suence] [[m ax] a c t i o n craCiion]
[r e s t [t im e r] Srest]

In tapping, the order of the turn is determined by the client who currently gets the turn
control. It is different from the protocol master user since in this protocol, every user is the
master instead of just one master for all. The timer choices can also be made in this protocol.

To support protocol tapping, the t u r n c l i e n t statement is used to enable the current
user to set the next turn according to the user number. The user is free to decide whether to
have another turn or to pass to the opponent.

JACIE {
applet name ncGBattle;
configuration {

... II other declarations
number of users 2;
protocol tapping; II M interaction protocol

} • • •client implementation {
declaration { . . . }
on session { ...
on MOUSECLICK { . . .

... II process an action
if (usernumber ==1) II set the next turn to opponent

turn set client 2;
else

turn set client 1;
turn pass;

} • • •

} • • •

} • • •... 11 the remaining code is similar to generalised game, Section 5.4.1

}

5.4 Interaction Management in JACIE 109

In general, the program coding is also similar to the generalised game 5.4.1, but the slight
differences are the interaction protocol setting in the c o n f i g u r a t i o n section and the
inclusion of the t u r n c l i e n t statement.

5.4.6 Group Protocols

p r o t o c o l g ro u p [g ro u p n u m b er g r p]
[u s e r d e f i n e d | random | r o u n d r o b in | m a s t e r r)gTp ,m e m]

[t u r n [t im e r] <Wn] [o v e r a l l [t im e r] 8overaii]
[s i l e n c e [t im e r] Ssiience] [[m ax] a c t i o n £7action]

[r e s t [t im e r] 8rest]

t u r n s e t g ro u p [g ro u p n u m b er grp] r}grp>mem

In JACIE, besides handling an individual user’s turn, the turn within a group is also consid­
ered because JACIE not only allows the collaboration among individual users, it also allows
group collaboration. In the group protocol, the number of users K , is divided into a num­
ber of groups specified by the JACEE programmer in the JACIE c o n f i g u r a t i o n section.
Let L groups, grp\,grp 2 , . . . , grpL, share a game. The JACIE group manager will select
one member of a group to represent the current group in control, grpi. While at the same
time, the JACIE floor manager will select grpi among the groups. All the groups can be as­
signed the same protocol or it is also possible to have different protocols for different groups.

The final statement t u r n s e t g ro u p permits selection of any group member to start
a turn cycle. Otherwise, by default, the first player in a group will start the cycle. This is
most significant for the group round robin protocol.

For the game rules and the domain cells, group protocol is similar to the generalised game
5.4.1 and the gentlemen's battle A.6. Therefore the implementation is the same as those
except for the p r o t o c o l s t a t e m e n t in the c o n f i g u r a t i o n section. If the group
number is not specified in the protocol group statement, all the groups will have the same
within group protocol.

configuration {
... // other declarations
number of users 4;
protocol roundrobin; // M interaction protocol between groupjs
number of groups 2;
protocol group roundrobin; // M interaction protocol within each group

}

As an alternative, different groups could have different interaction protocols within the group
as illustrated in the following example.

configuration {
... // other declarations
number of users 4;
protocol roundrobin; // M interaction protocol between groups

5.4 Interaction Management in JACIE 110

number of groups 2;
protocol group groupnumber 1 random; // 4 interaction protocol within each group
protocol group groupnumber 2 master 1; // 4 interaction protocol within each group
II A group 1 uses the random order within the group,
/ / group 2 uses master within the group, with player 1 acting as the master

}

This example uses the interaction protocol for all the groups as round robin but each indi­
vidual group has its own in-group interaction protocol.

5.4.6.1 Protocol Group Userdefined

In JACIE, there is a set of built-in channels that include: canvas channel, message chan­
nel, chat channel and video channel where more than one channel can be used at the same
time. For group collaboration, usually group members will communicate using these private
channels. Since all the group members will have the turn control, they can decide who in the
group will represent the group through the communication using one or more of the above
mentioned channels. All members, pk of the group grpi will have Gk(t) made active. When
one of the members of grpi has updated the board and passed the turn, then the turn of next
group will be activated.

5.4.6.2 Protocol Group Roundrobin

The concept of the round robin for in-group protocol is very similar to the user turn protocol
r o u n d ro b in . Each member of a group has an equal opportunity to represent the group in
turn. At the grpi s turn, only one member of the group will have the active game board to
work on, the other members’ boards will be inactive. When finished and the turn control is
passed, the server will determine the next group.

5.4.6.3 Protocol Group Random

The selection of one member, who represents the group, is performed at random by the
server. The chosen member will have the turn, and the rest of the members are inactive.
After the turn is passed, the next group is selected.

5.4.6.4 Protocol Group Master rjgrp,mem

For the protocol g ro u p m a s te r , only one member represents the group for every turn.
The master of the group, r}grp,mem> acts like a leader of the group. The group leader can be
set by the server or the server may ask the group to elect the leader. With the t u r n s e t
statement, JACIE allows the flexibility to change the master by the server.

5.5 Language Enhancements 111

5.5 Language Enhancements

This section describes the improvements that have been made to JACIE I on managing
interaction. We describe the changes to the lexicon and grammar required of the extended
language, JACIE II. As JACIE II permits many more options and tags for the protocols, the
corresponding grammar rules are necessarily more complex. For example, there are several
options on timer selections and in a protocol type itself, which can consist of more than one
choice such as contention or contention hold and master server or master client.

5.5.1 The Software Architecture for M anaging Collaboration

As discussed in Section 5.3.2, an interaction protocol is essentially a discrete temporal func­
tion if;, which is usually realised by a set of sub-functions operating in both the server and
clients. In JACIE II, this is implemented as a set of software modules as shown in Figure 5.5.
The rules for co-ordinating interactions largely reside in the floor manager for general inter­
client turn control, and in the group manager for handling inter-group tum-control.

As communications between the server and clients are conducted over the JACIE message
channel, several other JACIE modules are also involved in interaction management, includ­
ing Session Manager for initialisation and message handling, and Global Data Manager for
storing and managing all global variables and message identifiers including those used by
interaction protocols.

Normally one would expect a complex set of pre-defined library functions or objects for
managing collaborative activities and for interfacing with communication sub-functions. In
JACIE, however, for an ordinary programmer, the programming interface to these prede­
fined sub-functions is largely declarative, that is, in the form of protocol specifications.

Figure 5.5 illustrates that the main communication method between client and server is
through the JACIE message channel. Each client has two main components, Local Data
Manager and Client Session Manager. At the server, the predefined code segments have
three major components, namely Server Session Manager, Global Data Manager and Pro­
tocol Manager. Both the server and client predefined code segments are actually the JACIE
translated compiler codes that process the user-defined JACIE program, both the client and
the server, at their upper level of the architecture.

All the clients will have the same copy of the client program. Since every client runs the
program on different machines, all the data are kept locally and the same copy of the pro­
gram code runs on each separate machine. The Local Data Manager is responsible for all
the client’s local data. Any shared data, which is also known as global data, can also be
kept at client sites provided that the client is the owner of the data. Shared data must always
reside on the server and the server has control of the shared data as well as the owner(s).
Since every client has the same copy of the program, this does not necessarily mean that
every client must have the same copy of shared data. They only have the same copy of local
data. The detailed description of this topic is discussed in Chapter 6 . The Client Session

5.5 Language Enhancements 112

Floor

Group

Global
Data

Manager

Client
Session
Manager

Local
Data

Manager

Server
Session
Manager

Protocol
Manager

JACIE predefined code segm ent

User-defined code segm ent

Client Program

JACIE predefined code segm ent

User-defined code segm ent

Server Program

JACIE Message Channel

Figure 5.5: JACIE Collaborative Management.

M anager is a component that handles all the communication between client and server, at
the client. It recognises the messages sent and received, to and from the server.

5.5.2 A dditional Tokens and Productions

In adding the new interaction protocol constructs, new tokens are introduced. Below is an
example of the code segments in j a c i e . f l e x file. It shows some of the tokens listed in
the left column, and the specified name to be recognised for the next parsing process. All
the new names for the next process must be written in the capital letters.

"hold"
"master"
"request"
" set"
"rest"
"action"
"silence"
"overall"

The next step is to add the same tokens to the j a c i e . cup file to be recognised by the
compiler tool JCup. Besides these terminal symbols, JCup requires the declaration of new
non-terminal symbols to be used in the productions in the grammar. The non-terminals can
be of any type such as string, integer, and many more, including Java classes defined for
the code translation phase. The following code segment is the declaration for the new non­
terminals in handling the interaction management. In the definition of the terminal symbols,
all tokens are written in capital block letters as the JFlex compiler tools produce all the
terminals in the same form.

return symbol(sym.HOLD); }
return symbol(sym.MASTER); }
return symbol(sym.REQUEST); }
return symbol(sym.SET); }
return symbol(sym.REST); }
return symbol(sym.ACTION); }
return symbol(sym.SILENCE); }
return symbol(sym.OVERALL); }

5.5 Language Enhancements 113

/ / List of terminal symbols
terminal MASTER;
terminal REQUEST;
terminal SET;
... / / List o f non-terminal symbols
non terminal protocol_user; // M non-terminal of no specific type as it produces other non-terminals
non terminal master_choice;
non terminal protocol_choice;
non terminal timer_choice;
non terminal timer_select;
non terminal contention_timer;
non terminal group_protocol_choice;
non terminal JACIECStatement start_action_statement; // M type java class JACIECStatement
non terminal JACIECStatement end_action_statement;
non terminal JACIECStatement turn_client_statement;
non terminal JACIECStatement turn_request_statement;

The following example includes productions where some of the above non-terminals are
used, for the configuration section and the initialisation section of the JACIE pro­
gram. The specify_protocol production shows that the protocol-choice can
be of a group or user protocol. For this production, the parser makes a call to a method,
protocolCheck () ,in JACIEConf ig class. Both of the defined protocols have the
same timer_choice, and they are the initial turn protocols to start a session.

specify_protocol::= PROTOCOL protocol_choice timer_choice SEMICOLON
{: JACIECConfig.protocolCheck(); :}

protocol_choice ::= GROUP specify_group_protocol
Iprotocol_user

The following code segment is the user protocol choice. For every protocol type, the com­
piler sets the initial system configuration according to the specified protocol. For c o n t e n t i o n
and m a s te r protocols, there exist several other options within the protocols. The option is
denoted by an extra non-terminal next to the protocol name. These options result in several
other protocol types that make this language flexible and comprehensive for implementing
collaborative applications.

protocol_user::= CONTENTION contention_timer
{: JACIECConfig.protocol = JACIECFloorMgmtProtocol.contention; :}
IROUNDROBIN
{: JACIECConfig.protocol = JACIECFloorMgmtProtocol.roundrobin; :}
IMASTER master_choice
{: JACIECConfig.protocol = JACIECFloorMgmtProtocol.master; :}
IRESERVATION
{: JACIECConfig.protocol = JACIECFloorMgmtProtocol.reservation; :}
ITAPPING

5.5 Language Enhancements 114

{: JACIECConfig.protocol = JACIECFloorMgmtProtocol.tapping; :}

The group protocol that handles the user’s turn within a group also has several options. The
production, as shown below, sets the initial compiler configuration for handling the groups.

specify_group_protocol::= group_protocol_choice SEMICOLON

group_protocol_choice
::= USERDEFINED

{: JACIECConfig.groupProtocol = JACIECGroupProtocol.userdefined; :}
IRANDOM
{: JACIECConfig.groupProtocol = JACIECGroupProtocol.random; :}
IROUNDROBIN
{: JACIECConfig.groupProtocol = JACIECGroupProtocol.rrobin; :}
IMASTER
{: JACIECConfig.groupProtocol = JACIECGroupProtocol.master; :}

As some turn protocols require several supporting statements, some new productions in the
JACIE parser are added. The following code segment illustrates those statements. Since
all of them involved new statements, the JACIE II parser has to invoke new Java classes to
produce those new statements. In these example productions, the compiler tool, JCup, is
not only checking the syntax of the statements, but also checking the semantics and pro­
ducing the equivalent Java statements by invoking the associated new Java classes, such as
StartActionStatement and EndActionStatement.

start_action_statement::= START ACTION SEMICOLON
{: RESULT = new StartActionStatement(); :}

end_action_statement ::= END ACTION SEMICOLON
{: RESULT = new EndActionStatement(); :}

turn_pass_statement ::= TURN PASS user_option:uopt SEMICOLON
{: RESULT = new TurnPassStatement(uopt); :}

turn_client_statement ::= TURN CLIENT INTEGER_LITERAL:num SEMICOLON
{: RESULT = new TurnClientStatement(num.intValue()); :}

tum_request_statement: : = TURN REQUEST BOOLEAN_LITERAL: num SEMICOLON
{: RESULT = new TurnRequestStatement

(boolliteral.toString()); :}

All the examples in this subsection show some of the new terminals and non-terminals in­
troduced with the necessary productions added to the existing grammar. In addition, many
new Java classes are also introduced that require more Java methods that are added to the

5.5 Language Enhancements 115

JACIE code translator program.

5.5.3 Additional Codes and New Java Classes

There are some new Java classes created to support the compiler for code translation. Table
5.2 lists all the new Java classes for the parser and the code translator.

CLASS NAME PURPOSE (in code translation process)
RemindTum To stop the turn timer event
RemindSilence To stop the silence timer event
RemindOverall To stop the overall timer event
StartActionStatement Resets silence timer
EndActionS tatement Count number of actions
TumClientStatement Allows to set client turn
TumRequestS tatement Allows setting a request to a Boolean value
ChangeProtocolS tatement To change protocol during session

Table 5.2: New Java Classes for Interaction Management.

Major code modification and extensions can be found in the Protocol Manager. The Proto­
col Manager contains two files JACIECFloorManagerTemplate. java for handling
user turn protocols and JACIECGroupManagerTemplate. j ava for the group proto­
cols. Table 5.3 shows the changes on the user turn protocols.

VERSION CONTENT
Original 1. Declaration of variables

2. Set initial values of all variables
3. Algorithm for protocol round robin and contention

New version 1. Declaration of variables
2. Set initial queue for protocol reservation or contention hold
3. Write a method containing next turn algorithm for all protocols
4. Write a method containing initial set values for all protocols
5. Write a method for queue manipulation on protocol reservation or

contention hold

Table 5.3: Changes on FloorManagerTemplate.java File.

In JACIE I, only protocol round robin and contention were actually implemented while the
rest of the user protocols, such as reservation and tapping, were defined in the previous de­
sign [140], and included in the file for initial program configuration.

In JACIE II, algorithms are implemented to handle all the protocols mentioned in the previ­
ous section 5.4. The reservation and contention hold protocol require the use of queues. In
reservation, the queue holds the user number which made the request for turn control during
the TURN REQUEST mode, while in contention hold, the function of a queue is simply to
keep the order of the users’ turns.

5.6 Other Protocol Design Issues 116

For the group protocol, there are major changes to the Group Manager, called the
JACIECGroupManagerTemplate. j ava, the file where the codes reside. In JACIE I,
the only protocol for groups is to select the group members, and there are no turn protocols
for group interaction. The selection on the group members is set according to the arrival of
the users. The first user is assigned to the first group and the next user is assigned to the next
group following a cyclic order until all the users have been placed in the existing groups. Ta­
ble 5.4 lists the changes made for the Group Manager. There are several additional methods
in the JACIE II since there are four new choices of group protocols implemented.

VERSION CONTENT
Original 1. Declaration of variables

2. Set group members according to the order of user arrival
3. Write a method that returns the member of the specified group

New version 1. Declaration of variables
2. Set group members according to the order of user arrival
3. Write a method that returns the member of the specified group
4. Write a method to set the same protocol for all groups
5. Write a method to set a protocol for a specified group
6 . Write a method to set protocol initialisation values
7. Write a method to handle group roundrobin protocol
8. Write a method to handle group master protocol
9. Write a method to handle group random protocol

Table 5.4: Changes on JACIECGroupManagerTemplate.java File.

Since interaction management is also supported by other JACIE software components, such
as Global Data Manager, Local Data Manager, Server Session Manager and Client Session
Manager, there are also modifications and enhancements in the files associated with these
components. The changes and the additions include the implementation of timer options and
new supporting statements that are required in some of the protocol choices as described in
Section 5.4.

5.6 Other Protocol Design Issues

In implementing the interaction protocol design into JACIE, several other issues arise. This
section discusses those issues that include defining protocols dynamically which can be
changed in an application and consideration of timer implementation either server based or
client based.

5.6.1 Static and Dynamic Interaction Protocol Settings

With the above protocol declaration constructs, JACIE allows a programmer to set any of
the protocols in two different sections in a JACIE program, the c o n f i g u r a t i o n section

5.6 Other Protocol Design Issues 117

and o n S e s s io n section. Since the c o n f i g u r a t i o n section is at the beginning of a user
program and known as the declaration part for both client and server, the setting protocol in.
this section is referred to as a static declaration. Once it is declared, the protocol through­
out the session will remain unchanged if no other protocol statement is issued during the
o n S e s s io n . Contention is the default protocol if none is declared.

For flexibility, the JACIE programmer can change the interaction protocol dynamically by
issuing the appropriate protocol declaration statements in the o n S e s s io n section. This
is called the dynamic feature, allowing changes in the protocol at anytime during a session.
The protocol declarations for both static and dynamic settings shared the same syntax. How­
ever, this option is only applicable in the server program. If it happens that the programmer
tries to include the statement in the client program, the attempt will be ignored by the JACEE
compiler.

With the choice to use either static or dynamic protocol declarations, the JACIE II pro­
grammer has more flexibility in implementing various types of applications. For example,
in implementing a card game, such as Bridge, at least two different protocols may be needed,
which will be further discussed in Chapter 7.

5.6.2 Timer Implementation

There are four timer options: o v e r a l l , tu r n , s i l e n c e and r e s t . The default values
are, oo, oo, 3 units and 0, respectively. The objective of o v e r a l l , t u r n and s i l e n c e
options are to prevent users from holding their turns too long resulting in long waiting time
for others. The rest timer is to reduce the over cluttering of the message queue at the server
since a lot of actions may occur consecutively which result in sending a lot messages to the
server.

In implementing the timers of JACIE n, a timer is a Java Timer class that creates an event
for the compiler and executed as a thread. The following subsections discuss the alternative
approaches for having either a server based or a client based timer.

5.6.2.1 Server Based Timer

By having the timer resides on the server, provides the opportunity to have centralised con­
trol. The timer can be considered a ‘global clock’. For each client’s turn, the server has to
send messages at the start and at the end of the timer. This must be done for every timer
option indicated in the interaction protocol statement. However, the possible delay in trans­
mitting messages may result in inaccuracy in the actual time given to the clients. It is very
unlikely that the time for the start timer message and the end timer message to reach the
client, take exactly the same length. Many factors can influence this, such as the current
network traffic that may be very unpredictable.

Furthermore, the server based timer requires the information at the server that can result

5.6 Other Protocol Design Issues 118

in a lot of message passing activities between server and the current client in control, espe­
cially when more than one timer option is chosen. As mentioned earlier in Chapter 4 that
JACIE message is in the form of header and content, which message header is represented
by an integer value (Figure 4.6). Therefore, to determine the start and end of a timer, mes­
sages must be sent by the server to the client who has the turn.

Below are examples of Java code generated by the JACIE compiler for handling the message
identifiers. The message identifiers are integer constants and they are part of the declara­
tion section in the JACIE server session manager. This code segment shows the message
identifiers for start and end of all the timer options.

public static final int TURNTIMERSTART = 21 // the start of turn timer
public static final int TURNTIMERSTOP = 22 // the end of turn timer
public static final int OVRLTIMERSTART = 23 II the start of overall timer
public static final int OVRLTIMERSTOP = 24 II the end of overall timer
public static final int SLNCTIMERSTART = 25 II the start of silence timer
public static final int SLNCTIMERSTOP = 26 II the end of silence timer
public static final int RESTTIMERSTART = 27 II the start of rest timer
public static final int RESTTIMERSTOP = 28 II the end of rest timer

The following is an example of JACIE generated Java code for handling the overall
timer. The code shows a Java Timer class, ovrlTimer is declared and activated when the
call to the method public void startOvrlTimer () is made. When the timer du­
ration is reached, an automatic call to another method, public void run () in class
RemindTimeTask extends TimerTask, is made to stop the timer event. In both
methods, public void startOvrlTimer () and public void run (), there are
calls to the server session to activate message exchanged represented by two identifiers,
OVRLTIMERSTARTand OVRLTIMERSTOP.

class RemindTimeTask extends TimerTask {
public void run() {

System.out.println("Overall time is up!");
myTurn = false;
onSession();
sessionAssistant. send / / a call to a server session component

(ncsftimerServerSessionManager.OVRLTIMERSTOP+":");
. . . I I k message sent to client when timer stop

ovrlTimer.cancel();
onSessionEnd();

}
}
public void startOvrlTimer() {

ovrlTimer = new Timer();
sessionAssistant. send // a call to a server session component

(ncsftimerServerSessionManager.OVRLTIMERSTART+": ") ;
. . . II k message sent to client when timer starts

ovrlTimer.schedule(new RemindTimeTask(),90*1000);
System.out.println("Start overall timer");

}

5.6 Other Protocol Design Issues 119

5.6.2.2 Client Based Timer

The client based timer is an alternative approach where all the timer options are activated
and run on the client’s site. The server determines the turn control and once the client gets
its turn, all the appropriate timers are started. The handling of all the timer events is entirely
on the clients. Therefore, the client needs to inform the server of the end of each turn con­
trol. It is appropriate to have the timer running on the client’s site rather than the server,
especially for the t u r n and the s i l e n c e timers. These two timers are activated once the
client receives the turn. This will give a more accurate timing for the client program to run
since the status of the network traffic will not have any influence.

In terms of storage, every client shares the burden and there will be little message pass­
ing between the server and clients to handle such timers. However, when the timer is a Java
class event, many threads may exist. One problem which may occur is the existence of a
timer interrupt to indicate the end of the user turn in the middle of sending other important
messages from the client to the server. This is to be discussed in the next section.

5.6.2.3 Timer Interrupt

When there is a timer interrupt in the middle of sending a message, errors may occur at
the server site which is waiting for a specific sequence of messages to be received. In
this case, JACIE II introduces two new statements, c r i t i c a l s e c t i o n s t a r t and
c r i t i c a l s e c t i o n end. The c r i t i c a l s e c t i o n s t a r t allows messages to be
sent continuously to the server even though the time is up. When this statement is exe­
cuted, the timer interrupt event in the JACIE II compiler, is ignored which enables messages
in the client message queue to be retrieved and sent to the server until another statement,
c r i t i c a l s e c t i o n en d is executed.

The following JACIE code segment shows how these two statements, c r i t i c a l s e c t i o n
s t a r t and c r i t i c a l s e c t i o n e n d are placed before and after several s e n d state­
ments, respectively.

on MOUSECLICK {
if (myTurn) {
gX = GETGRIDX;
gY = GETGRIDY;
if (GETGRID == board)

if (boardP[gX][gY] == ""){
criticalsection start; // ^ indicates the start of ignoring any timer interrupt
send gridX gX;
send gridY gY;
send userNum usern;
send symMark playerMark;
criticalsection end; // M indicates the end of sending messages
turn pass;

}
}

5.6 Other Protocol Design Issues 120

The effect o f the statements, are for some flags in the Java generated code, from the JACIE
compiler, to be set to ignore the interrupt from the timer event and also to reset the event to
its default value. The following shows part o f the Java equivalent codes to the above JACIE
code segment.

i f (boardP[gX][gY].equalsIgnoreCase(""))
{

criticalsection = true; // M actual flag setting to ignore any interrupt
sessio n A ssis tan t. send(GRIDX+" : "+gX);
sessionAssistant.send(GRIDY+": n+gY);
sessio n A ssis tan t. send(USERNUM+" : "+usern);
sessio n A ssis tan t. send(SYMMARK+" : n+playerMark);
sess ionA ssistan t.send(sessionA ssistan t.PASSTURN+":");
c r i t ic a ls e c t io n = fa lse ; / / -4 actual flag setting to be the default value of the event
myTurn = fa lse ;
turnTim er.can ce l();
setTimer = fa lse ;

}

At the end of each timer event, some variables that act as flags are set to FALSE to indicate
the end of certain actions. The following code segment illustrates flags such as myTurn,
and s e tT im e r being set to FALSE when the turn timer stops. The c r i t i c a l s e c t i o n
that controls the timer interrupt is checked upon the occurrence of the interrupt. If there are
messages to be sent to the server at this time, the c r i t i c a l s e c t i o n will have the value
TRUE, resulting in the timer interrupt being ignored. The appropriate messages will be sent
to the server in the other event section where all these relevant flags values are set.

class RemindTask extends TimerTask {
public void run!) {

if (! criticalsection) { // -4 check flag at the timer end event,
myTurn = false; // M to change user turn
sessionAssistant.send(sessionAssistant.PASSTURN+":");
turnTimer.cancel();
setTimer = false;

}
}

}

Figure 5.4 shows the screenshot of the generalised game, the client-based timer is used in
its implementation. It is possible to display the remaining time of the turn in the JACIE
L o c a l M essag e section at the bottom of the screen. This may not be done with precise
timer values if the timer is server-based.

Table 5.5 shows the summary of the comparison on the server and client-based timers. The
comparison is made based on accuracy of the timer, the efficiency of the management, the
disadvantage and advantage of the two options as mentioned above.

It is better to implement the timer options using the client-based approach as it gives accurate
timing. Although it is totally managed by clients, the distributed management gives the

5.7 Summary 121

Server-based Client-based
Timing Accuracy Depends on network traffic Accurate
Management Control Easy to manage (centralised) Each client has control

on the local timer
Disadvantage Many message passing

activities
Timer interrupt

Advantage No separation between timer
and turn control

local display of
current timer values

Table 5.5: Timer Based Comparison.

clients full control in manipulating and displaying the timers. For example, in the case
where the timer interrupt may occur during the execution of any code, an algorithm can be
written to determine the interrupt and proper action can be taken. As the server-based timers
have to rely on the network for sending and receiving information about the timers, it may
not give the client the exact period of time specified. It is easy to manage the centralised
timer setting especially if it is the o v e r a l l timer where only a simple algorithm is needed
to perform the calculations. There is also less chance of having interrupt problem because
the server always has full control of the overall system and most activities occur at clients.
Hence, additional codes, algorithms and message passing activities are needed at the server.

5.7 Summary

In this chapter, we have based our technical discussions around the noughts and crosses
game and its variations, which serve as an ‘abstract’ collection of networked collaborative
applications, and enable us to focus on the interaction management, rather than the context-
specific details of the applications. We have presented a set of formal notations for modelling
the spatio-temporal activities in a noughts and crosses game. The formal notations help ad­
dress the main issues in interaction protocols, including the visual states and modes of the
game boards, temporal consistency between clients and the server, and discrete events se­
ries. We have highlighted that an interaction protocol for managing collaborative activities
is essentially a discrete temporal function, which in most cases, will have to be realised by
sub-functions in both the server and clients.

Based on the formal notations and consideration of noughts and crosses games, we have
developed a comprehensive collection of interaction protocols, and have incorporated them
into JACIE. These protocols, including, round-robin, contention, master, reservation, tap­
ping and group, are capable of addressing the protocol needs in all variations of the noughts
and crosses game described, and thereby the related applications. Our main contribution in
this respect is the adventurous attempt in providing language constructs for specifying a va­
riety of interaction protocols. The implementation of such functionality otherwise typically
requires the skills of experienced network programmers.

The implementation of the interaction protocols in the language has resulted a major ex­

5.7 Summary 122

tension to JACIE I. Many code modifications and additions are made. Contents of several
existing files have been changed and some new files are introduced. This chapter also dis­
cusses other protocol design issues that include static and dynamic protocol declarations,
and the implementation of timer options.

Chapter 6

Interest Management

Contents

6.1 Introduction..
6.2 Related Work ...
6.3 Interest Management in JACIE........................
6.4 Language Constructs for Interest Management
6.5 Language Enhancements.................................
6.6 Technical Considerations.................................
6.7 Secret Switch..
6.8 Summary..

123
124
127
138
142
145
147
153

6.1 Introduction

Almost all collaborative applications involve the management of data distribution and fil­
tering according to the needs of the receivers. Interest management is concerned with
relevance-based data filtering in distributed and collaborative environments. The main ob­
jective is to avoid broadcasting data unless it is to be shared by all the processes, and to
provide secured data transmission of a subset of information relevant to each process. In
recent years, the issue of interest management has largely been considered in the context
of large scale collaborative virtual environments [124]. In many ways, it is a long-standing
issue that was previously considered in areas such as parallel and distributed computation,
distributed operating systems and distributed database systems. However, the resurfacing of
this issue clearly indicates the lack of generic support for interest management in program­
ming languages and software development tools. In particular, it is not trivial to program
dynamic data distribution and message communication with changing access control gov­
erned by interactive interaction needs.

There are numerous programming languages for developing Internet applications in gen­
eral. These include general purpose conventional languages such as Java and C#, and script­
ing languages such as Perl, Python, VBScript and JavaScript. In addition, there are also

123

6.2 Related Work 124

many domain-specific languages such as Distributed Oz [272] for network transparency,
Yoix [102] for handling broadcast messaging, threaded communications, logging, and screen
management, JCell [267] for distributed object and mobile code, and JACIE I [139] for pro­
totyping collaborative environments. None of these languages yet feature any high-level
constructs for interest management.

As pointed out by [95], commercial software systems, such as Lotus Notes, Novell Group-
wise, Microsoft NetMeeting, O’Reilly Webboard and ICQ, largely employ store-and-forward
transactions via a centralised server for facilitating data sharing among remote users. This
raises the question as to how the decision on accessibility, security, mutual exclusion and
data filtering can be incorporated into a collaborative application, ideally not to involve
direct programming of a server. It is highly desirable, in most circumstances, to have high-
level language constructs allowing the specification of interest management at the client
without the need of programming a server.

Programming shared data is an indispensable task in the development of many collabora­
tive applications. It is commonly implemented through a centralised database, where shared
data is dynamically filtered according to access needs, restrictions and rules. While such an
approach is technically effective, it relies upon a sophisticated database system, which sup­
ports reliable and protected concurrent access, in engineering such software environments.
However, this approach that involves an extensive effort is usually implemented for large
scale systems [159], such as collaborative virtual systems [205, 332]. Therefore, it is de­
sirable for JACIE, as a development environment for collaborative applications, to provide
program constructs that supports some basic interest management facilities without relying
on a sophisticated database system.

6.2 Related Work

Since we define interest management to cover data sharing, filtering and access right issues,
this section investigates several different implementations in other research.

6.2.1 Programming Data Sharing in Distributed Systems

In distributed systems, sharing of interest can be defined as the sharing of resources avail­
able on the network. Data may be the most popular resource that people share. It can be in
any form of multimedia elements, object, component or variable. Other resources such as
devices, memory and information can be also shared over the Internet.

From the perspective of programming languages, managing shared data becomes essentially
the programming of ‘variables’. However, conventional programming languages do not nor­
mally provide program constructs that support such remotely shared variables, except via
network programming APIs (e.g., RPC, sockets, MPI). Note that so called global, public and
external variables are mostly confined to a single process programming paradigm. Attempts
were made to introduce high level constructs in some languages, including APL [184],

6.2 Related Work 125

Scheme [195] and Orca [22]. These languages are mainly for sharing of memory and their
communication facilities are supported by operating systems. Thus, the shared data is de­
clared in these languages while the rest of the operations are performed by making calls to
the specified operating systems. For example, Orca defines shared data as an object. The
sharing of this object is performed through a r e a d operation when this object is applied
to a local copy, and a w r i t e operation ensures all copies are updated immediately using a
reliable broadcast protocol. The syntax for declaring the shared data is shown below where
the word s h a r e d is used to indicate its status.

i d e n t i f i e r : s h a r e d < o b j e c t ty p e >

The rest of the operations are performed by the use of a queue for message exchange [19]
since the communication is supported by message passing activities.

Distributing shared memory is also an important approach to the distributed data manage­
ment. Since a variable refers to a location in a memory, the data management mechanisms
may be similar. However, the emphasis is more on the memory rather than the variable
itself. Programming languages that deal with shared memory are often referred to as coordi­
nation languages. Examples are Linda [291], XMLSpace [316] and JavaSpaces [61] which
provide shared space, called tuple space, for storing global variables. The security of the
data essentially relies on the supported application and usually uses a database system.

6.2.2 Interest M anagement and Filtering Methods

Interest management in collaborative environments is often coupled with the replication
and communication of data to be shared by users. For example, in very large virtual envi­
ronments, it is necessary to manage interest by filtering out data that is of no interest to a
particular user [124]. MASSIVE-3 [135] and ATLAS [191] utilise distributed databases to
manage interest, SPLINE [326] facilitates interest management at the level of locales, while
ATLAS supports interest management based on user interests and spatial distance.

As managing interest in collaborative environments is mainly concerned with data filter­
ing, restrictions on whether or not shared data is accessible must comply with the level of
interest of users and the level of access of owners. As many CVE systems like ATLAS
and MASSIVE use aura and nimbus [33] to determine the areas of interest, there are many
methods to determine the level of access rights as found in grid computing, e-commerce,
database systems and wireless communications. Levels of access in these systems can de­
pend on the Virtual Organisation [259], the present state and history of the user’s behaviour
[331], current event [38], knowledge hierarchy [32], location [198], user driven [328] or
based on a user hierarchy [62]. However, none of these levels of access can be specified by
high-level language constructs.

The networked systems as mentioned in Section 2.4.1 in Chapter 2, provide us with sev­
eral different techniques of filtering. Largely, interest management is carried out by simula­
tion techniques to test the system design effectiveness [224, 230, 205, 312, 323]. Here, we
merely focus our attention to their implementation techniques in determining user interest.

6.2 Related Work 126

Table 6 .1 summarises a number of distributed system environments with the system objec­
tives, the sharing method, the type of the data filtering and examples of real life applications
using such systems. The filtering method, d i s t a n c e , is seen to be the most common tech­
nique that is dependent on the virtual distance between the sender and the receiver, which
effects the network delay. While most systems propose several filtering techniques based on
the user interest to reduce the amount of data transmitted from sender to receiver, in contrast,
the main objective of parallel system environments is to reduce the amount of data to achieve
better system performance and the data filtering has no concern with the user interest.

Environment Objective Shared method Filtering method Example applications

Network and

CVE

Minimise

network

traffic

message

[135,124, 191]

distance

[135,124,191]

chatting,

CVE navigations,

games, document
download

Agent

System

inter­

operability

object [323, 263],

information [298]

distance [323],

activities [298],

probability [263]

file system manipulation,

resource determination,

on-line auction

Parallel

Systems

High

performance,

computation

speed up

memory [180] data layout [122],

data placement [180],
algorithm [180]

statistical analysis

handling multimedia,

arithmetic computation,

massive databases

Distributed
Database

Information
sharing

information [53] functional

activities [53],

distance [217]

e-billing, e-banking,

reservation systems,

question-answer UI

Network

Language

Implement

various

and flexible

applications

variable [22],

object [13,91],

component [13, 91]

Interaction

frequency [91],

distance [13],

preset[13]

e-leaming, video

conferencing, games,

web camera-control

Table 6.1: Environment and Applications for Distributed Systems.

We can conclude that in any system that involves data sharing, there is a filtering method
to ensure a structured and easy management for consistency and system efficiency. Even
though, different environments have different objectives and sharing methods, the support
of the data filtering helps in the design of such systems.

6.2.3 Access Control and Data Security

Chapter 2 and 3 discuss the issues of access control and security in existing collaborative
systems and their implementation techniques using programming tools or languages. Here,.
the discussion based around the general approach that can usually be found in an operating
system.

In operating systems, it is common that a shared resource is represented by a file. A file

6.3 Interest Management in JACIE 127

is usually referred to by a name, structured in several ways (e.g. in bytes, records, etc.) and
can have several data types such as text, images, etc. In managing file access, an operating
system includes other information associated with a file called file attributes [223]. Several
possible file attributes include a file creator with an identifier, an owner, read-only flag, lock
flag, current size and maximum size. Different systems may require different file attributes.
These attributes help the operating system in determining any access to such files. The op­
erating system often has a list of users with its corresponding resources and operations such
as read, write and execute [310].

The operating system also protects each individual user by a password scheme so that private
resources cannot be shared by others. It is dependent on the user to set the password’s value.
A password is usually encrypted and compared to the previously stored password given to
the operating system [310]. Nowadays, it is also possible to enhance security management
using additional device such as Personal Security Proxy (PSP) [337] or a smart card [223]
with encryption and decryption mechanisms.

6.3 Interest Management in JACIE

JACIE II allows for the sharing of resource through ‘shared variables’ with the level of ac­
cess being specified by security rules. Users can set their level of interests in their accessible
shared variables. Therefore, upon having to access some variables, it is the users’ options
to declare their level of interest so that the server can determine the filtering of broadcast
communication messages and information. Information on the shared variable must always
be kept secret from unauthorised and uninterested users to ensure efficient and secure man­
agement.

Although JACIE provides interest management for a collaboration of a small number of
users, it is significant to reduce the number of message passing activities. Instead of sending
‘extra’ messages to some users who are not interested in using the data in the messages,
users are guaranteed to receive the data that are relevant and significant to them. On top of
this factor, with this interest management feature, a JACIE programmer can have a simple
way to manage shared data without having to program details of message passing activities
such as the use of s e n d and r e c e i v e statements.

Recall in JACIE I [139] that both server and client programs are defined in the same pro­
gram, this feature can provide a consistent and coherent platform for introducing and con­
trolling shared variables for interest management. The following subsections describe the
management of shared variables in JACIE II that represents interest management.

6.3.1 Shared Variables and Attributes

In JACIE, the declaration of any variable to be read or written in a shared manner must start
with the keyword s h a re d . Hence, variables and shared variable can be declared using the
following JACIE construct.

6.3 Interest Management in JACIE 128

d e c l a r a t i o n { [s h a re d] < d a ta ty p e s >
c v a r i a b l e d e c l a r a t o r > }

Below is a JACIE code segment for declaring two variables of type String, namely sym bol
and b o a rd P . The code shows that both variables are declared in the JACIE client program.
The variable sym bol is declared and managed locally as an independent variable by each
client. On the other hand, b o a rd P is a global variable shared among all clients, but man­
aged by the server.

client implementation {
declaration { ...
string[2] symbol="X","0";
shared string[8][8] boardP =

} •••
}

For the local variable, the management is performed in a similar manner to variable manip­
ulation in any programming language where an operation such as r e a d or w r i t e can be
performed anytime according to the scope of a variable in a program. In contrast, global
variables require special management schemes to ensure that their values are always correct
at any given time. This consistency issue is very important since it is shared remotely and
may also be distributed in several places.

For each global variable, there are attributes attached to it. These attributes contain valu­
able information to ensure proper management when the global variable is being shared.
Such information includes the variable’s type and a list of users who have the permission to
use it and these users are allowed to alter the data.

6.3.2 M anagement Framework

There are several tables used by the server and clients for managing shared variables. Ini­
tially, during the compilation process, the JACIE compiler creates several tables to keep
useful information that consist of the following:

• All declared shared variables — All the shared variables are recorded in a table since
their management is different from ordinary variables. When a client declares a shared
variable, the variable is kept in a table called M ethod T a b le . Then, the compiler
creates a similar type of table for the server program so that the declaration will appear
in the server program instead of at client, because by default, the server is the owner.

• All shared variables that involve permissions — Since a programmer can include any
variable in a permission statement, it is the compiler’s job to check that each variable
defined is in the M ethod T a b le . Any invalid variable usage will results in an error
in the compilation stage.

Upon completion of the compilation process, several tables are created in the target program
(which is referred to a user program). Figure 6.1 shows a diagram of the connection between
compiler and user program components. The content of M ethod T a b le that exists during

6.3 Interest Management in JACIE 129

compilation is copied to both the server and client programs using the same name. In the
target program, the Method Table is used for searching the variable’s index in determin­
ing the correct reference.

Method Table

Attribute Table

Declaration

& Methods SERVER

Session Manager components

Global Data Manager components

Methods Attribute Table CLIENT
M ethod Table

Local Data Manager components
C O M T IL E R

USER PROGRAM COMPONENTSCOMPONENTS

Figure 6.1: Tables for Managing Shared Variable.

In the user program, another table called the Attribute Table, keeps shared variable
attributes for access validation that include user access lists and password checking
if required. At the server, this table is handled by a Server Session Manager, while at the
client the table is handled by the Local Data Manager. In general, the user program that
contains both server and client programs, each has two types of table for managing useful
information during runtime.

The Global Data Manager maintains a master copy of each shared variable for efficient
and consistent data handling. A copy of each shared variable is also stored by the specific
client owner. Each time the value is updated at the server, the updated copy will be sent to
the owner, as well as at the clients who have the access. Since the shared variable’s mas­
ter copy resides and is automatically declared at the server, it is possible for the server to
perform any variable manipulation ‘locally’ without informing the clients. Therefore, it is
crucial that any operation on shared variables is performed through the JACIE’s language
constructs. Detailed descriptions of these language constructs are given in Section 6.4.

At the server, variable attributes are stored in a table by the Server Session Manager for
the determination of access permissions and interest filtering. When a session starts, this
table is empty. Once the server receives a permission instruction to use a shared variable,
such an instruction is analysed and appropriate information is added to the table. This in­
struction is a permission statement that allows control to be transfered from a JACIE high
level program to the Server Session Manager to assign variable attributes in the table shown

6.3 Interest Management in JACIE 130

in Table 6.2.

ATTRIBUTE PURPOSE
Variable name As a reference of the shared variable
Owner’s read password To keep password for read validation
Owner’s write password To keep password for write validation
Variable type To determine the data type
Variable presentation To determine primitive or array type
Permission list The original set of the permissible users
Access list The actual set of users who get the access
User interest value To keep user interests’ values
Interest filter To keep the owner interest filter value
Access list count The total number of users in the access list
Permission list count The total number of users in the permission list
Owner flag To determine ‘own’ permission of a variable
Read access flag To determine ‘read’ permission of a variable
Write access flag To determine ‘write’ permission of a variable

Table 6.2: Shared Variable Attributes on the Server.

The permission list attribute keeps the original list of users who are given access permissions
and is included in a list called the u s e r l i s t . This list is needed, since not all the users
in the u s e r l i s t are automatically given the access permissions. Other factors, such as
the user’s interest and the password, if required, influence the granted access. Therefore,
another list, the a c c e s s l i s t , is required to store the list of the users who have been
granted access after going through the validation and interest filtering.

For every user in the permission list, the variable attribute table also stores each user’s in­
terest value. This is needed for interest filtering comparison. Users are free to change their
interest values at anytime and the owners are also free to change the value of the interest fil­
ter. Hence, the number of users in the permission lists can always be changed. This results
in the need to have a counter to cope with the changes. These changes are not only concern
the content of the permission list, but also the content of the access list.

The variable attributes in the permission access list are kept using individual access name,
own, read and write. Owner is a boolean flag with value true for t o own or false for n o t
to own. R ead a c c e s s and the W r ite a c c e s s are of integer type with the value 0
for n o t t o r e a d or n o t t o w r i t e , value 1 for t o r e a d or t o w r i t e , and value
2 for t o r e a d w i th p a s s w o rd or t o w r i t e w i th p a ssw o rd .

By default, the server can set permission rules during the start of the session. Otherwise,
it is also possible to use a selection statement (e.g. i f statement) in the JACIE program to
determine the owner among the given users. If the owner does not include himself or herself
in the permission list, the Server Session Manager will automatically include the owner and
be added to the access list. If the shared variable has permission to be owned by all users
in the permission list, then any of the owners can set the new permissions. Thus, updated

6.3 Interest Management in JACIE 131

permissions will overwrite the previously defined permission.

START

No

Yes

'if this No

Yes

if this No

list?

Yes

END

A f variabm
is defined
Tor first .
\ t i m e /

Retrieve message and
extract information

Add in the server table

Put this owner in the
access list

Send variable information
to all the owners

U pdate table information

Put this ow ner in the
permission list

F ig u re 6 .2 : F low Chart o f the Server Control on Perm ission Setting.

Figure 6.2 shows the Server Session Manager's operation during the setting of a permission
rule. For every change of the table’s content, the Server Session Manager will inform all the
owners of the changes to the attributes. The variable attributes that are sent to the owners
are the permission access, the own, read and write access, the shared variable name and the
owner read password, if relevant.

The shared variable name is always required to be known by the Server Session Manager in
order to get the index of the table in determining and setting other variable attributes. All the
passwords obviously needed to be kept for validation when the read or write operation, at a
later stage, requires the use of a password. The type of the shared variable, whether it is of
typed integer, double, boolean or string, is needed for the write process where a value must
be assigned to the variable. When the value is received by the Server Session Manager, it
is always of type string. It is then the Server Session Manager's job to pass the value in
its original type to the Global Data Manager to actually change the shared variable’s value.
The variable presentation, whether it is primitive, one or two dimensional array must also
be clearly indicated to be used to get or to set the particular element during the read or the
write operation.

At every client site, the Client Session Manager also stores the shared variable’s attributes
in a table for any validation check by the client. The table information is shown in Table 6.3.
This information is handled by the Local Data Manager in a manner similar to the Global
Data Manager for the server. As in the data management at the server, this table of variable

6.3 Interest Management in JACIE 132

attributes is also initially empty and data is added when the client receives any information
regarding the shared variable in the standard JACIE message channel. All the variable’s at­
tributes in this table help prevent the client from sending unnecessary messages to the server
that may result in too many message passing activities for data sharing and filtering.

ATTRIBUTE PURPOSE
Variable name As a reference of the shared variable
Owner flag To determine ‘own’ permission of a variable
Read access flag To determine ‘read’ permission of a variable
Write access flag To determine ‘write’ permission of a variable
Owner’s read password To keep password for read validation
User read password To keep password for read validation

Table 6.3: Shared Variable Attributes on the Client.

Like the server, the variable name is required to identify the location of the shared variable.
In the JACIE compiler, the shared variable at the client is kept as another Java class gen­
erated during the compiling process. The shared variables are kept in an ArrayList. The
order of the variables in the list is set according to the order of their occurrences during
the declaration stage. The Owner flag, Read access flag and Write access
flag are used by the Local Data Manager when the user who owns the shared variable
performs validation during read operations. Similar to the server table, the Owner flag
is a boolean type while the Read access flag and Write access flag are of
type integer values. The Owner' s read password and User read password are
needed when the read operation requires password validation.

6.3.3 Assigning Value to Shared Variable

In order to manipulate shared variables, both server and client use a method called technique.
Although at the server, the shared variable exists as an ordinary variable in the Global Data
Manager, the management relies on the Server Session Manager. In this way, both of the
server components must have a communication method between them. Therefore, there are
several methods for retrieving and setting the value.

Below is a code segment that shows part of the Server Session Manager in determining
the current user access rights. In the example, once the current user gets permission to
w r i t e a c c e s s , the M ethod T a b le is searched to find the variable index. Then, the
given value is converted to its actual type before a call is made to actually change the shared
variable’s value. After this is carried out, the new value is copied to all the clients’ sites.

if (access Yes) { II < Current user has the access right
... I I Insert current user into the Access List in the Attribute Table
boolean found = false;
int k=0;
while (! found && k<JACIECMethodTable. size ()) // -4 Check index identifier in the Method Table

if (ids.equals(JACIECMethodTable.getMethodName(k)))
found = true;

6.3 Interest Management in JACIE 133

else k = k+1;
int valint = 0; // initialisation before converting value to the actual type
double valdouble = 0;
boolean valbool = false;
if (typeId.equals("1")) valint = Integer.parselnt(valuestring);
else if (typeld.equals("2")) valdouble = Double.parseDouble(valuestring);
else if ((typeld.equals("3"))&&(valuestring.equals("true"))) valbool = true;
setACCESS(k,indexl,index2,valint,valdouble,valuestring,valbool);
... I I A A method call to change a variable value
... I I Then the compiler sends a duplicate copy o f variable to clients

In the client program, the same technique is applied when the Local Data Manager refers to
the M ethod T a b le for a variable index reference and A t t r i b u t e T a b le for access
validation. There are also several methods in the Local Data Manager for accessing the
copy of a shared variable kept in one of its component. In the case of updating the shared
variable value, the event only takes place at server.

6.3.4 Access Control and Filtering Framework

As the design of interest management is incorporated into a high level language to support a
programmer in building collaborative networked applications, it is desirable to acknowledge
the type of applications related to the access constraints so that the rules and policies that
can influence such design can be determined.

Table 6.4 shows example applications involving combinations of access control operations
using read and write. The number of users involved at a time is divided into three cat­
egories: All (A), Some (S) and One (O). All refers to all the users, Some means the
selected users and One simply denotes any one person from all the users, who is usually the
owner in a distributed system. The actions, Read and Write are further classified into the
actions verified by password. To identify a ‘read only’ situation, the ‘No Write’ condition is
added. The ‘No Write’ is also useful to remove permissions on a user granted access. Dy­
namic access rights is significant due to the application requirements and conditions. All the
examples are Internet based collaborative applications. The number o f users, the specified
actions and password affect the access type and security on some data.

Therefore, there are several important factors that include the following.

• Common rule access — It is common that sharing data usually includes r e a d and
w r i t e operations. Read access means that a party who owns a variable allows an­
other party to s e e the value of the variable. Write access means that the other party
is allowed to c h a n g e the variable value. In a programming environment, data are
not only seen and changed, but also another factor, called e x e c u te , is also included
to enable raw data to be processed and converted into meaningful information. In
distributed systems, to allow a user to process shared data, the e x e c u te factor is
not appropriate, but instead, the word own is more suitable. In a way, the granted
ownership leads to the replication of data on many sites on a networked system.

: P
er

m
iss

io
n

to
all

 u
se

rs

6.3 Interest Management in JACIE 134

O
-b

O Vho
•S

£</}co 5s §
Wl cd £ W
o Cu ;3
l- l<D</>£ aoo
3 9J
<D
§

g

<2 «s
JS

CO
CO

4^'d
O

tso4300

tio43oo
0

1• •

Xo Pm £

A
D

D
IT

IO
N

A
L

C
O

N
D

IT
IO

N
No

W

rit
e

(A
)

A
dv

er
tis

em
en

ts

X X

D
oc

-d
ow

nl
oa

d

X X

CO
M

M
O

N

A
CC

ES
S

C
O

N
D

IT
IO

N
S

W
rit

e
w/

 P
(0

)

Bo
ok

in
g

sy
st

em

Db
as

e
sy

st
em

A
dm

in
is

tr
at

or

Db
as

e
sy

st
em

E
-p

ay
m

en
t

Se
cu

re
d

da
ta

W
rit

e
w

/P
(S

)

B
la

ck
bo

ar
d

E
-L

ea
rn

in
g

X

G
am

es

E
-b

an
ki

ng

X

W
rit

e
w/

 P
(A

)

Fo
ru

m

X X

G
am

es

X X

W
rit

e
(0

)

W
eb

-c
am

er
a

Q
A

U
I

No
t

Sh
am

bl
e

Pr
in

tin
g

A
dm

in
-in

fo

Se
cr

et
 c

od
e

W
rit

e
(S

)

D
is

cu
ss

io
n

Fo
rm

Fi

lli
ng

X

V
-c

on
fe

re
nc

e

M
gm

t-
in

fo

X

W
rit

e
(A

)

S-
W

hi
te

bo
ar

d

X X

E
-c

om
m

er
ce

X X

Re
ad

(A

)

Re
ad

(S

)

Re
ad

(0

)

Re
ad

w/

 P
(A

)

Re
ad

w/

 P
(S

)

Re
ad

w/

 P
(0

)

Ta
ble

6.

4:
 E

xa
m

pl
e

A
pp

lic
at

io
ns

 I
nv

ol
vi

ng

Re
ad

and

W

rit
e

Ac
ce

ss
 C

on
di

tio
ns

.

6.3 Interest Management in JACIE 135

• Access factors — It is very common that a password is used to restrict the access to
shared data. The password is usually encrypted for actual communication.

As password usage is a common way for restricting access, it is also necessary to
limit the number of users who get access by a constraint. In general, the list of users
with a l l , some or one which are mentioned above, is appropriate as a reference for
the design of interest management in JACIE II.

6.3.4.1 The Access Control

Figure 6.3 shows the process of updating a shared variable in a w r i t e operation. Once a
user tries to update any value, the server checks whether the operation is w r i t e o n ly or it
is a w r i t e operation that also involves a r e a d operation. If the action involves both r e a d
and w r i t e operations, it represents that the shared variable is assigned to an expression
that contains one or more shared variables. Therefore, first, the interest manager performs
the r e a d operation to evaluate the value on the right hand side of the assignment symbol.
Then, it continues with the w r i t e operation.

STA RT

No

Yes

N o

Y es

N oU ser in
access list

No

Yes

Yes

EN D

' U ser in N
perm ission
\ list? /

' rhs sin
^expression?,

Evaluate value o f rhs

U pdate ow ners ' data

R etrieve m essage and
extract inform ation

G et the value

U ser need to set interestU pdate shared variable A ction denied

Figure 6.3: Flow Chart of Write Operation.

6.3 Interest Management in JACIE 136

In the next step, the interest manager will check whether the w r i t e operation requires
a password. If it does, the validation on the password given by the current user is performed
by comparing with the owner’s password kept in the variable attributes table. Upon correct
validation, the interest manager will check the user a c c e s s l i s t in the table. The user
is put in the a c c e s s l i s t only if the correct password is given and also the user interest
to use the shared variable is already set and compared to the i n t e r e s t f i l t e r . On
the other hand, without the required password, the user will be put into the a c c e s s l i s t
for the first time on attempting to update the shared variable. Any changes in the shared
variable’s attribute table are sent to the owners for the shared variable’s value and the client
table updates.

In a w r i t e operation, the write access to update a shared variable is denied by the in­
terest manager if the following cases occur. It is assumed that the user has referred to the
correct shared variable in the variable attribute table.

• No password given - The interest manager via the Server Session Manager will first
check this condition upon receiving the information on the shared variable. Upon
failure to provide a password if required by the statement in setting the permission,
the rest of the write operations will automatically be skipped .

• No permission on write access - At the time of password checking, the interest man­
ager also looks at the write access permission in the variable attributes table. If there is
no write permission, the write operation terminates and the rest of the write processes
are skipped.

• User is not in the permission list - When a user who has an attempt to do the w r i t e
operation and at the same time, he/she is not in the permission list, the program ter­
minates since this action is not permitted.

• User has not give the interest set value - If the user is in the permission list but not
yet in the access list, the password validation is required at this point. Upon receiv­
ing the correct password, the interest manager checks the user interest value. In the
case where the user has not set any interest value, write access is denied and the
r e m in d e r m e ssa g e is displayed on the server output panel.

• The interest set value is less than interest filter - In the condition where the user has
given the correct password and the interest value in accessing such shared variable,
the interest manager invokes the interest filtering operation. By having the interest set
value less than the owner interest filter, the write operation is also denied. Detailed
descriptions of the filtering operation is given in Section 6.4.4.

For the r e a d operation, the process for determining the access can be at the server or at the
client depending on the shared variable own p e r m is s io n . Figure 6.4 shows the server
r e a d operation. Similar to the w r i t e operation, the interest manager will first check
whether the user has given any password if required for the reading access and also the
shared variable r e a d p e r m is s io n . If there is no r e a d p e r m i s s i o n or the user does
not provide any password when it is required, the interest manager skips the rest of the r e a d
operation. Otherwise, if the user is in the a c c e s s l i s t , the password validation is made

6.3 Interest Management in JACIE 137

accordingly. Upon receiving the correct password, the value of the shared variable is sent to
the user. At this stage, there is no need to check the user interest value since the inclusion
or exclusion of the user from the a c c e s s l i s t already indicates that the filtering process
has been made.

ST A RT

NoU ser ii

Yes

No

Yes

/ N o \
'passw ord
required c

correct
■password.

Send the value to the user

Perm ission denied

Perm ission denied

Retrieve m essage and
extract inform ation

Figure 6.4: Flow Chart of Read Operation.

The read operation occurs at the client if the user is the owner of the shared variable. The
Read Flag in the client’s Attribute Table is always referred to when any validation
process is needed and this process is similar for the server.

6.3.4.2 The Filtering

JACIE II chooses to implement filtering by a preset method. With preset, a user must give
an interest set value to determine the interest desire, or otherwise, it is assumed that
the user has no interest in using a shared variable. The owner of the shared variable may also
need to set a value for the filtering of interest. The Server Session Manager determines this
filtering process by comparing the interest filter value given by the owner and the
interest set value by the user. The execution control throughout the filtering process
is performed by the Global Data Manager and it is shown in Figure 6.5.

When the filtering process occurs, the interest manager checks whether the user i n t e r e s t
s e t value is within the required range. Both the owner and user can change the respec­
tive i n t e r e s t values anytime during a session. Any changes made to the i n t e r e s t
f i l t e r value must be validated upon the Own F la g attribute. Then, it is the interest
manager’s job to update the permission list or the a c c e s s l i s t and multicast the neces­
sary changes to the appropriate clients.

6.4 Language Constructs for Interest Management 138

ST A R T

N oU ser set
in terest?

Yes

NoS U ser in >
perm ission
\ l i s t ? y

Y es

N oU ser i n \
access list?

Yes

E N D
Send access inform ation to
user if there is any changes

U pdate variable a ttribute
and delete user from list
if no m ore has access

C ontro l transfer to the

G et p erm ission lis t and
update the access lis t

send updated access for
a ll users in access lis t

Set variable attribute and
pu t u ser in access lis t i f
has access______________

S et variable attribute
for user in terest value

O w ner sets in te rest lim it

Figure 6.5: Flow Chart of Filtering Process.

For a user to give an i n t e r e s t s e t , firstly, the interest manager determines whether
the user is in the user permission list. Upon exclusion from the list, the rest of the filtering
operation is skipped. However, the value of the user interest is still stored in the table just in
case there will be some changes in the later permission given by any of the owners.

If the permission list contains the current user, then the interest manager checks the con­
tent of the a c c e s s l i s t . The filtering process takes place where the user interest value is
compared against the owner’s i n t e r e s t f i l t e r value. If the user interest has a greater
value than the i n t e r e s t f i l t e r value, the user must be included in the user access list
if is not yet in the list. In contrast, for the case where the user is already in the a c c e s s
l i s t and the user interest value is smaller than the interest limit, the user will be deleted
from the a c c e s s l i s t . Any changes in the table content requires the interest manager to
send the changes to the current user for updating the client variable attribute table.

6.4 Language Constructs for Interest Management

The following subsections discuss JACIE language constructs for the interest management.
With similar design concepts to the previous interaction management language constructs,
these constructs also allow several options and tags in a statement to facilitate fast scripting.

6.4 Language Constructs for Interest Management 139

These constructs are designed based on the factors presented in Section 6.3. In summary,
the constructs consist of the followings.

• An owner permission (u se statement (Section 6.4.1)).

• A read operation (s e t and c h e c k statements (Section 6.4.2 and Section 6.4.3, re­
spectively)).

• A write operation (s e t statement (Section 6.4.2)).

• A filtering operation (f i l t e r and i n t e r e s t s e t statements (Section 6.4.4)).

6.4.1 Statement: use

u s e < s h a r e d v a r i a b l e > b y c u s e r l i s t >
[to own | n o t t o own]

[to r e a d [w ith p a s s w o rd < S tr in g >] |
n o t t o r e a d]

[to w r i t e [w ith p a s s w o rd < S tr in g >] |
n o t t o w r i t e]

The u s e statement is employed by the owner of a shared variable to set its access permis­
sion. When a shared variable is first declared, by default, it is owned by the server, and can
only be read or written to by the server. It is common for the server to re-assign the own­
ership at the initialisation stage of the server section of the program (i.e., on s e s s i o n
s t a r t) . The owner (or owners) of the variable can modify the access permission during a
JACIE session, provided that appropriate mutual exclusion rules are observed.

The c u s e r l i s t > , which is the permission list, is one of the owner’s access rule to
indicate the number of users who are given the access rights. The list can be one of the
following:

• a l l - All clients.

• o t h e r s - All clients except the owner or owners.

• g ro u p g r p - This is only applicable when a group interaction protocol is in use.
It implies all the members of the group specified by the group identifier grp.

• me - The owner or owners.

• { Mi , M2»• - - } - This is a list of client identifiers.

The access permission contains the common access states with several options that include:

• t o own - All clients in the u s e r l i s t will become the owners of the variable.

• n o t t o own - All clients in the u s e r l i s t will be stripped of the ownership.
Regardless of the assignment of the ownership, the server will remain as the owner of
any shared variable throughout a JACIE session.

6.4 Language Constructs for Interest Management 140

• t o r e a d [w ith p a s s w o rd < S tr in g >] - The variable will become read­
able by all clients in the u s e r l i s t . If the statement contains a w i th p a s s w o rd
option, clients are required to specify a password in <S t r in g > when invoking a s e t
statement to obtain a copy of the shared variable. The same access right is given to
the user to make any comparison on the shared variable in the c h e c k statement.

• n o t t o r e a d - The variable will not be readable by any clients in the u s e r
l i s t .

• t o w r i t e [w ith p a s s w o rd < S tr in g >] - The variable will become writable
by all clients in the u s e r l i s t . The same rule on password specification applies as
t o r e a d specification. It is for invoking a s e t statement to assign a new value to
the shared variable.

• n o t t o w r i t e - The variable will not be writable by any clients in the u s e r
l i s t .

Upon processing this statement, either at the server or at the client, the execution control
must be transferred to Server Session Manager to assign the variable’s attributes.

With the password option, the owner can specifically state the password by giving a string
value in this statement. The JACIE compiler treats the password value as a string type. The
password can be defined one or more times during a session. Once a password is defined for
a shared variable, a client program can access the variable by including the password in the
statements that require password validation. If the password is omitted in such a statement,
JACIE will automatically prompt the user of the client program with an input instruction to
enter the password every time the u s e or s e t statement is executed.

6.4.2 Statement: set

set [with password <String>] clocal variable> =
< sv-expre s s i on>

set [with password <String>] <shared variable> =
<ordinary expression> | <sv-expression>

The s e t statement is used to handle any assignment statement that involves shared vari­
ables. Unlike an ordinary assignment, such an operation requires the validation of access
permissions for all shared variables involved. The keyword s e t instructs the interest man­
ager at the server (if the r e a d operation is performed by any user who is not the owner) to
validate the read-access permission for all shared variables in an expression involving shared
variables (which is denoted as < s v - e x p r e s s io n >) and the write-access permission of
the variable to be updated if it is a shared variable.

At the right hand side of the assignment, any < s v - e x p r e s s io n > that requires more than
one password verification would need a list of passwords to be included at its left hand side.
With this approach, the interest manager will make the ‘mapping’ between the password
and its corresponding shared variable using the attribute table (Table 6.2). Furthermore, this

6.4 Language Constructs for Interest Management 141

allows the compiler to parse JACIE expression (Appendix C.2.8) in a straight forward way.
Therefore, the inclusion of these constructs into JACIE allows its main language structure,
specifically its <o r d i n a r y e x p r e s s io n > remains untouch.

Any failed validation on permission access will result in an error report in the JACIE stan­
dard message channel, and will cause the program to skip the entire s e t statement. How­
ever, such a failure will not cause the program to abort.

One can of course use the s e t for an assignment that involves no shared variable at all, that
is, s e t c l o c a l v a r i a b l e > = c o r d i n a r y e x p r e s s i o n s However this will in­
cur additional processing and communication time for validation.

On the other hand, when one uses a shared variable in an ordinary assignment, the JA­
CIE compiler will report this as a compilation error. This error is detected as the shared
variable is not kept as a local variable with direct declaration in the Java equivalent program.

This s e t s t a t e m e n t is like a write statement if the shared variable occurs on the left-
hand side of the assignment symbol, and like a read statement if the shared variable only
occurs at the right-hand side of the assignment. The write process is always validated by the
server. However, the read process is dependant on the own p e r m i s s i o n access.

6.4.3 Statement: check

c h e c k c c o n d i t i o n a l s v - e x p r e s s io n > < s ta te m e n t>
{ e l s e c h e c k < c o n d i t i o n a l s v - e x p r e s s i o n > < s ta te m e n t> }

[e l s e < s ta te m e n t>] [d e f a u l t < s ta te m e n t>]

The c h e c k statement is used in place of i f when the conditional expression involves one
or more shared variables. The statement causes the program to validate the read-access per­
mission of all the shared variables. Therefore, the validation process is as in Figure 6.4.

Any failed validation will result in an error reported through the JACIE standard mes­
sage channel, and will cause the program to skip the entire c h e c k statement, except for
the d e f a u l t component of the statement if it is included in the c h e c k statement. The
d e f a u l t component is activated only upon a failed validation of the read-access permis­
sion of shared variables in < c o n d i t i o n a l s v - e x p r e s s io n > .

6.4.4 Statement: filter and interest set
There are two language constructs for managing data filtering.

f i l t e r < s h a r e d v a r i a b l e > c c o n d i t i o n a l o p e r a to r > < v a lu e >

i n t e r e s t s e t c s h a r e d v a r i a b l e > < v a lu e >

6.5 Language Enhancements 142

The i n t e r e s t s e t statement allows users to set their interest on the shared variable.
If it happens that the user, without any access permission, uses this statement, the action
on this statement will be ignored. The statement f i l t e r allows the owner, who by de­
fault is the server, to set the level of access on any shared variable. The c o n d i t i o n a l
o p e r a t o r can be any one of the relational operators: ‘=’, *<*, ‘< = ’, *>’, *>=’ or ‘o ’.
The v a l u e specified must be 0 or 1 or any real value between 0 and 1. The value 0 will
automatically indicate the denial of access or no interest in using such a shared variable. In
contrast, the value 1 indicates the full access from the owner, and the very high interest of
the user. Other values mean that some evaluations must be made.

For the interest level, only the user can determine the value. The user can give the value
depending on how important is the shared variable in the design of the applications or sim­
ply based on the interest in reading or writing the shared variable. For the access level, the
server can make the decision based on how important it is to protect the shared variable.
The decision can also be made based on a certain percentage of the number of current users.
However, if it happens that in an extreme case, all the users with access permission claim the
full interest of a single shared variable, the server must fulfil the access. There is no limita­
tion as the situation guarantees that no messages will be wasted when the server is sending
the copy of the shared variable of any information regarding the variable’s attributes. In
contrast, if the user in the access list does not set any interest level, it is assumed that the
user has no interest and no access will be granted. As a whole, the user interest v a lu e
varies depending on the application to be implemented.

6.5 Language Enhancements

Interest management is new to JACEE with consequent changes to the language and major
modifications to the compiler. In JACIE I, data sharing had to be carried out through user-
defined messages using s e n d and r e c e i v e commands. With interest management, the
number of message passed during a session is reduced with reduction in program size. The
following subsubsections describe all the changes and the additions made to the JACIE I
compiler.

6.5.1 Additional Tokens and Productions

The new tokens required for interest management are introduced into the jacie.flex file (Fig­
ure 4.2). Some of the example tokens are illustrated below.

'by"
"set"
"get"
"check"
"with"
"mine"
"password"

return symbol(sym.BY); }
return symbol(sym.SET); }
return symbol(sym.GET); }
return symbol(sym.CHECK); }
return symbol(sym.WITH); }
return symbol(sym.MINE); }
return symbol(sym.PASSWORD);

6.5 Language Enhancements 143

The jacie.cup file (Figure 4.2) has to be extended to deal with the parsing of the new lan­
guage features. The following code segments show some declarations of the non-terminals
of type JACIECStatement and j ava. lang. String. The non-terminals of type
JACIECStatement are validated in Java JACIECStatement Class which generates the
correct form of Java statements, while the j ava. lang. String represents any non­
terminal symbols in JACIE II productions.

non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal
non terminal

JACIECStatement permission_statement;//
JACIECStatement access_statement;
JACIECStatement filtering_statement;
JACIECStatement filter_choice;
JACIECStatement filter_statement;
JACIECStatement set_statement;
java.lang.String option_select;
java.lang.String option_rwChoice;
java.lang.String option_wChoice;
java.lang.String option_tol
java.lang.String option_to2
java.lang.String option_to3
java.lang.String option_notl;
java.lang.String option_not2;
java.lang.String option_not3;
java. Icing. String password_choice;
java. Icing. String str_choice;
java.lang.String permission_list;
java. Icing. String user_list;
java.lang.String one_list;
java.lang.String more_list;
java.lang.String rel_sym;

4 type java class JACIECStatement

I I 4 typejava.lang.String

The c h e c k s t a t e m e n t construct for interest management is similar to an ‘if’ statement,
so the production associated with this statement must be able to cope with multiple nesting.
This is indicated in the following code.

statement ::= statement_without_trailing_substatement:swts

while_statement :wstat II 4 the While statement
{: RESULT = wstat; :}
Icheck_then_statement:ctstat II 4 Check statement
{: RESULT = ctstat; :}
Icheck_then_else_statement: ctestat II 4 Check with Else statement
{: RESULT = Ctestat; :}

The production for use statement, set statement and filtering statement are as fol­
lows.

statement_without_trailing_substatement ::= compound_statement:compstat
{: RESULT = compstat; :}
I
expression_statement:estat

6.5 Language Enhancements 144

{: RESULT = estat; :}

permission_statement:prmstat
{: RESULT = prmstat; :}
I
access_statement:accstat
{: RESULT = accstat; :}
I
f iltering_statexnent: f ilstat
{: RESULT = filstat; :}

Productions used in checking the syntax of some of the other interest management features
appear in the next example. Some new Java classes are invoked for parsing and semantic
processing.

permission_statement::= USE IDENTIFIER:id BY permission_list:prsml
option_select:ops SEMICOLON

{: RESULT = new UseStatement(id,prsml,ops); :}
I I A invoke the java Class UseStatement

access_statement ::= SET password_choice:psdc assignment:assg SEMICOLON
{: RESULT = new SetStatement(psdc,assg); :}

I I A invoke the java Class SetStatement

filtering_statement ::= filter_choice:fc SEMICOLON
{: RESULT = fc; :}

filter_choice ::= filter_statement:flim
{: RESULT = flim; :}
IINTEREST set_statement:fset
{: RESULT = fset; :}
I I A filtering options whether to limit or set the interest

filter_statement::= FILTER IDENTIFIER:id rel_sym:rs FLOATING_POINT_LITERAL:ft
{: RESULT = new IntLimitStatement(id,rs,ft.doubleValue()); :}

set_statement ::= SET IDENTIFIER:id FLOATING_POINT_LITERAL:str
{: RESULT = new IntSetStatement(id,str.doubleValue()); :}

6.5.2 Additional Code and New Java Classes

New Java classes are introduced in the compiler for every new statement introduced and for
handling several tables for data sharing. Table 6.5 lists some of these classes.

Most code modification is contained in the Global Data Manager, Server Session Manager,
Local Data Manager and Client Session Manager. When a shared variable is declared in the

6.6 Technical Considerations 145

CLASS NAME PURPOSE (in code translation process)
JACIECMethodTable A table to keep shared variable index at runtime
JACIECSharedldTable A table to keep shared variable during compilation
JACIECS hared VarTemplate A table for client shared variable attributes
JACIECSharedVariableTemplate A table for server shared variable attributes
UseStatement To handle u s e statement
SetStatement To handle s e t statement
CheckS tatement To handle simple c h e c k statement
CheckElseStatement To handle nested c h e c k statement
FilterStatement To handle f i l t e r statement
IntSetS tatement To handle i n t e r e s t s e t statement

Table 6.5: New Java Classes for Interest Management.

client program, the code translator will generate the same copy of the shared variable in the
Global Data Manager at the server using the same identifier name. This can be performed
since all the shared variables are kept in the table JACIECSharedldTable during the
compilation process. The Server Session Manager handles the rest of the tasks for handling
shared data and interest management.

At the client, the Client Session Manager only adds the new message header identifiers
and receives any message associated with the shared variable from the server. The rest of
the data handling is performed by the Local Data Manager.

6.6 Technical Considerations

Sharing global variables remotely requires proper management. Several issues must be
considered to ensure that the variable has the same value even though it can be distributed
in several places. The users who can manipulate this variable must be determined correctly.
In this design of language constructs that involve global variables, the issues such as mutual
exclusion, the management of permission list and access list are important.

6.6.1 M utual Exclusion

As mutual exclusion requires only one process (user) uses a shared resource (variable) at
one time and other processes (users) are excluded from doing the same thing [310], it is
always related to a critical section [223]. Here, in our work, a critical section is a part of
JACIE program where an owner is setting a shared variable permission and also when an
authorised user is trying to do w r i t e operation on a shared variable.

In general, JACIE interaction protocols that provide proper scheduling of users’ activities,
are able to ensure that any attempt to do an update on a shared variable is in a mutually
exclusive manner. Almost all the provided protocols allow only one of the users to have the
turn control which allows the manipulation of shared variables. During a turn, the selected

6.6 Technical Considerations 146

user is performing any task while others are ‘blocked’ from doing any work. Therefore, in
this way, it is not possible to have two or more users attempting to manipulate shared vari­
ables at the same time.

However, in protocol contention where there is no ‘proper’ turn scheduling, mutual ex­
clusion can also be implemented by the use of a message queue at the server. In this case,
whoever are fighting for the turn must send a kind of data using a JACIE message. Messages
from users are added into the server queue and they are managed in first in first out order
where only one message is retrieved at a time.

Since Java language supports multi-threading and JACIE messages can be processed in
many different threads, a JACIE programmer is required to include a control, i f - t h e n
statement in handling a critical section. This statement is used usually to check several
conditions on the current environment to ensure mutual exclusion can be achieved. Further­
more, in executing these critical conditions, the control of execution in the JACIE program
(user-defined codes) is transferred to the JACIE server program (pre-defined Java codes).
In particular, this situation is like a call from a high level system to a lower level that can
guarantee the objectives of the given tasks are achieved successfully.

6.6.2 Permission List M anagement

For variable sharing in a client/server system, a shared variable must belong to someone and
by default, the server is the owner or otherwise, it can keep the copy of the variable and has
the full control with joining ownership. At the start of a session, the owner of any shared
variable must have declarations on the variables’ permission rules. One of the rules is to
state a list of users who can gain access. In JACIE, a permission list of a shared variable
contains the identifier (u s e r num ber) of all the permitted users. Even though JACIE sup­
ports group collaboration, this list still keeps the user’s identifier instead of group identifier.
In this case, the JACIE group manager can always provide the list of users in each group.

The content of the permission list is updated when the execution of the u s e statement
(Section 6.4.1) is performed. During the execution, the control is transferred to the JACIE
pre-defined codes in one of the Global Data Manager components. It is possible that a
shared variable’s permission is changed several times during a program execution. These
actions require the Global Data Manager subcomponent to overwrite the content of the pre­
vious list and always keep the recent and updated information. Reference to the the content
of this list is made through index references. When an item is added, the index reference is
updated by incrementing the index counter, while the deletion of an item from this list can
be made by removing the item from the list and decrementing the value of the index counter.
In Java, this list is a Vector class which allows the operation regarding this list to be made
through several methods.

In group collaboration, members are determined at the beginning of a session. JACIE does
not facilitate the change of members throughout the application and its interaction proto­
cols are concerned on the turn control of groups and the selection of a particular member to

6.7 Secret Switch 147

represent the group during the turn control. Therefore, in the case where one of the users
or group stops the collaborative work by terminating the connection to the server, a new
session is started and the permission list is reset.

6.6.3 Access List M anagement

In addition to the permission list, JACIE also creates an access list to guarantee that the ac­
cess to a shared variable is only performed by the appropriate user. Similar to the declaration
of the permission list, this list is represented by the individual user. For group access, check­
ing must be made by referring to the group manager for getting the list of group members.
Like permission list, the implementation of this list also uses the same type of Java classes.

There are several conditions on adding or modifying the content of the access list which
include the following.

• The execution of the u s e statement (Section 6.4.1).

• The execution of the w r i t e operation.

• A user in either the permission or access list changes the i n t e r e s t s e t value.

• The owner of the shared variable changes the value of the i n t e r e s t f i l t e r .

Unlike the permission list that requires the update operation on only the execution of JACIE
u s e statement (Section 6.4.1), the access list can be updated at several parts of the program.
During the execution of the u s e statement (Section 6.4.1), the user who is the owner of the
shared variable is added into the access list. For other users who are listed in the permis­
sion list, their inclusion and removal from the list are determined according to the factors
mentioned above.

6.7 Secret Switch

A secret switch is one of the variations of the noughts and crosses game. This game is im­
plemented to test the language constructs for the data sharing mechanisms. The rules of the
noughts and crosses game is modified in such a way that both players have to set their own
password for the opponent to guess. The game turn alternates and each player has to guess
the opponent’s password. The correct password guess allows the player access to change
the content of the board. The filtering of interest in this game can still be used but, it may be
looked at as an added restriction to the board access.

This game was implemented in three different ways. First, it was implemented without
the new language constructs and the winner of the game is determined by the server. The
other two programs used the new interest management statements with one of them deter­
mining the winner at the server and the other checking the winner at the client. Below is the
first implementation.

6.7 Secret Switch 148

In the example, the board control and password verification must be done by the server
with the support of the s e n d s t a t e m e n t and r e c e i v e s t a t e m e n t . Therefore, both
players must send their passwords to the server to keep for later verifications. When they get
the turn control, they must key in their guess passwords to be sent to the server and wait for
the server to verify. The server sends an answer through the standard message channel using
the user-defined type message that uses s e n d s t a t e m e n t and r e c e i v e s t a t e m e n t
to instruct the player to play the game when the correct password is guessed. Otherwise
the player’s turn is terminated. In this implementation, there are many message passing
activities involved.

client implementation {
declaration { . . .

string[8] [8] boardP = "" ;
string my_pwd = " ";
string guess_pwd = " ";

}on session start {...
state = SET.PASSWORD;

}on session {. . .
if (opponentPWDanswer == correct)

state = SET.PASSWORD;
on MOUSECLICK {

gX = GETGRIDX;
gY = GETGRIDY;
if (state == PLAY) {
boardP[gX][gY] = playSymbol;
send gridX gX;
send gridY gY;
send symbol plySymbol;

/ / board declaration
/ / owner’s password
/ / guess password

/ / check condition if need to reset a password

/ / get a grid point on the canvas

/ / update the board
/ / send required data to the server

}else if (state == SET.PASSWORD) {
print servermessage "Please set your new password for opponent to guess";
input my_pwd; II < enter text using textinput bar
send ownPwd my_pwd; // send new password to the server
State = WAIT.PASSWORD;
}else if
print
input

(state == WAIT.PASSWORD) {
"Enter your guess for password";
guess_pwd; // A enter text using textinput bar

send clientPwd guess_pwd; / / send guess password to the server and wait for verification

/ / get the verificationreceive ansPwd answer;
if (answer == correct) {

state = PLAY;
print "Correct password! Pick a position on the board";

}else {
state = WAIT.PASSWORD;
print "Wrong password! Lose your turn";

}

}
server implementation {

declaration {. . .}
on session {. . .

... II validate password and determine the winner

6.7 Secret Switch 149

}
}

Below is the code segment that shows the implementation of the game with the second
method. The password verification processes are carried out in the pre-defined JACIE code
that automatically checks, verifies and makes any changes to the board game. The processes
are performed through the JACIE standard message facility in the JACIE pre-defined com­
piler codes instead of user-defined type message that uses s e n d statement and r e c e i v e
statement. As can be seen, this lower level verification uses none of these statements.

client implementation {
declaration { ...

shared string[8][8] boardP = "";
string my_pwd = " ";
string guess_pwd = " ";

} . . .on session start {...
state = SET.PASSWORD;

}on session {
if (opponentPWDanswer == correct)

state = SET.PASSWORD;
on MOUSECLICK {

gX = GETGRIDX; // get a grid point on the canvas
gY = GETGRIDY;
if (state = PLAY) { // try to update the board
set with password guess_pwd boardP[x][y] = playerSymbol;

}else if (state = SET_PASSWORD) { ...
my_pwd = selected_pwd; // set new password for permission
use boardP by all to own to read to write with password my_pwd;
state = WAIT.PAS SWORD;

}else if (state = WAIT.PASSWORD) { . . .
guess_pwd = selected.string;
state = PLAY;

}
} • • •

} • • •

}server implementation {
declaration { .. . }
on session {

... II determine the winner
>

}

The third method is similar to the second method shown above. The slight difference is that
the winner of the game is determined at the client, instead of at the server. After every event
of the board game being updated, an algorithm that resides at the current client is executed to
determine the winner. Once the winner is determined, the client sends a message to inform
the opponent through the server before the game is ended.

In general, the implementation of these various methods allow us to test the significance
and usefulness of the new language constructs. Therefore, the output for all the message

/ / declaration of a shared variable
/ / owner’s password
/ / guess password

/ / check condition if need to reset a password

6.7 Secret Switch 150

passing activities are printed out by the server program. Figure 6.6 shows the summary of
those activities at a given time interval, where the upwards direction indicates time increas­
ing. It also shows three different conditions which are represented by three different colours.

t(time) ► O w n er s e t s a n ew p a s s w o rd --------

S e rv e r a c k n o w le d g e s th e o p p o n e n t

WRONG GUESS

S e rv e r v a lid a te s g u e s s and g iv e s th e re su lt -

——► Client 1 m a k e s a p a s s w o rd g u e s s ---------

O w ner s e t s a n e w p a s s w o rd •

G ives 2 g n d p o in ts and G ives 2 g n d p o in ts and
pla y ed sy m b o l p la y e d sy m b o l

RIGHT GUESS

’ S e rv e r v a lid a te s g u e s s a n d g iv e s th e resu lt

— C lient 2 m a k e s a p a s s w o rd g u e s s « --------

O w ner s e t s a n e w p a s s w o rd

Client 1 Server Client 2

(a) Message Passing Activities Without Interest Management

t (t im e)

O w ner s e t s a new p a s sw o rd

UPDATE & MULTICAST ► RIGHT GUESS

1
WRONG GUESS

G iv e s 2 g rid p o in ts and
g u e 3 s p a s sw o rd

O w n er s e t s a ne w p a s s w o rd

G iv e s 2 grid p o m ls end
g u e s s p a s s w o rd

O w n er s e t s a new p a s s w o rd

Client 1 Server Client 2

(b) Message Passing Activities With Interest Management

Figure 6.6: Summary of Message Passing Activities.

The timing activity in Figure 6.6 can be described as follows.

1. Initial phase when password is first set up — At the beginning of a session, both
clients have to set their passwords for the opponent to guess. By default, client 1 gets
the turn control in the round robin protocol and sets a password. This password is
sent to the server. Then, the same action goes to client 2 when client 2 gets the turn
control. Here, this particular condition is referred to as Start o f Session.

2. Client 1 makes a password guess and gets a wrong answer. Therefore, the board access
is denied — In case (a), it shows that client 1 tries to guess the opponent’s password by

6.7 Secret Switch 151

sending the guess password to the server for validation. Later, the server responds and
sends a reply for its result. For case (b), that involves interest management constructs,
client 1 sends the guess password using the u s e statement. Then, the validation is
performed automatically by the JACIE II predefined server program. Therefore, the
server informs the result through the system defined message identifier. This condition
is referred to as No Data Access.

3. Client 2 makes a password guess and gets it right so the game board is updated —
When this condition occurs, there are more message passing activities in case (a)
compared to case (b) because of the following actions.

• Client 2 sends the guess password.

• Client 2 receives server message for validation.

• Client 2 sends three messages for the three different data in the game.

• Server forwards these three new data to client 1.

• Server sends a message to client 1 for the acknowledgement of changing the
password because the current password is invalid.

• Client 1 sends the new password.

Therefore, there are a total of 10 messages to and from the server for both clients. In
comparison, case (b) has only 4 message passing activities for the following actions.

• Client 2 sends the required new data and the guess password in one message.

• Server updates the s h a r e d v a r i a b l e and sends two messages that contain
the required information (in one message) for both clients. This is also per­
formed by the JACIE II predefined server program.

• Client 1 has to send the new password to the server when receiving the updated
s h a r e d v a r i a b l e .

Here, this third condition is referred to as Get Data Access.

In executing the whole application, the first condition, Start o f Session, occurred only once
while the other two conditions, No Data Access and Get Data Access, may happen several
times.

The number of message passing activities for these three conditions are determined when
this secret switch game is implemented using the following methods.

• Method One: Secret Switch without new language constructs

• Method Two: Secret Switch with new language constructs and determination o f win­
ner at the server

• Method Three: Secret Switch with new language constructs and determination o f
winner at the client.

Table 6.6 compares these three methods for the above three different conditions and adds
another factor called Winner Info. This factor is used to determine the number of message

6.7 Secret Switch 152

passing activities when the winner determination algorithm is executed at server (for Method
One and Method Two) or at client (for Method Three). In Method One and Method Two, the
server sends each client a message that contains the information of the winner. In Method
Three, the winner usually stops the game after sending a message to the server. Then, the
server sends a message to the loser to end the game. In the table, the entities presented by
letters *P\ ‘S’ and ‘O’ stand for the player, server and opponent, respectively. The numbers
indicate the actual number of messages sent from those entities.

Besides looking into the number of message sending activities, we also calculate the number
of lines in the programs. One way of doing the calculation is by running a Linux command
wc in the Linux operating system environment. Therefore, the calculation is performed and
added to this table.

METHOD START OF
SESSION

NO DATA
ACCESS

GET DATA
ACCESS

WINNER
INFO

LINES

P S o P S o P S O P s O
One 1 0 0 1 1 0 4 5 1 0 2 0 384
Two 1 0 0 1 1 0 1 2 1 0 2 0 330
Three 1 0 0 1 1 0 1 2 1 1 1 0 304

Table 6.6: Comparison on the Secret Switch Implementations.

From the data stated in Table 6.6, we can conclude that the interest management constructs
reduce the number of message passing activities at either client or server when dealing with
the s h a r e d v a r i a b l e . The main advantage is that the s e t statement allows several
data to be transferred within one message. In terms of programming codes, the constructs
help reduce the number of lines in the program by avoiding multiple s e n d and r e c e i v e
statements.

Figure 6.7 shows a screenshot of the Secret Switch noughts and crosses game, which fea­
tures the above example code segment of Method One. The game has two players, each
sets a password at the end of his/her turn. The password, which is implemented as a string
type variable to be passed to the server for access validation, can have a combination of four
letters word, consisting of ‘A’, ‘B’, ‘C’ and ‘D’ (for this specific example). The opponent
must guess the password correctly in order to have a turn.

There is a Text Input bar at the bottom of the canvas for the user to enter their own password
or to guess the opponent password during the turn. The game instruction is displayed on the
JACIE Local Message bar.

Since this example is simple involving only two players, it is not practical to apply the fil­
tering methods provided. Chapter 7 provides a more practical e-leaming application using
these language constructs.

6.8 Summary 153

MsJ " r F R ' . «jjJ
NOUGHTS A NO CAOSSESS GAME WITH PASSWORD

Figure 6.7: Screenshot of the Noughts and Crosses Game with Password.

6.8 Summary

In this chapter, we have presented the design of a set of language constructs for interest
management, and our implementation through a major extension to an existing scripting
language JACIE. This set of language constructs can provide network programmers with
a high-level programming interface for managing shared variables among the server and
different clients. This enables some common issues, such as data security, access control and
information filtering to be addressed by a programmer in an intuitive manner. In addition, by
incorporating such language constructs in a programming language, we are able to transform
interest management from a traditionally hard-coded facility in specific applications to a
general-purpose facility. With the rapid growth of network-based applications, we believe
such a facility will become an dispensable feature in many programming languages in the
future.

Chapter 7

JACIE Applications and
Performance Analysis

Contents

7.1 Introduction.. 154
7.2 Bridge G am e... 155
7.3 Implementation of the Bridge G am e.. 157
7.4 E-learning on Simulation of Network Trouble Shooting 166
7.5 Performance Analysis.. 177
7.6 Summary... 186

7.1 Introduction

This chapter describes two examples of JACIE applications that have been implemented us­
ing the new language constructs for interaction and interest management. One application is
a complex game, online Contract Bridge, that focuses on interaction protocols and the other
is an example of an e-leaming group exercise, the Simulation of Network Trouble Shooting,
which is concerned with interest management. At the end of this chapter, the discussion on
the JACIE performance is performed to verify the significance of this scripting language.

The implementation of the Bridge game signifies the need to have dynamic interaction pro­
tocol. In this chapter we discuss the relevant features of this game and its implementation
using JACIE n, which include the overall program structure and several examples on the use
of different interaction protocols in implementing the same application.

The initial e-leaming groupware was implemented in JACIE I, which does not have any
interest management features other than sharing information through a chat channel. Its
focus was to show that JACIE I could provide multiple canvas displays. With multiple dis­
plays, a user could have a ‘global’ view of the network representing work spaces of all the

154

7.2 Bridge Game 155

users in one canvas and also have a ‘local’ view of his/her own workspace represented by
another canvas, as shown in Figure 1.2 in Chapter 1. Through discussion supported by a chat
channel, which was a common approach adopted in many e-leaming environments, the user
could work without sharing his/her work space. He/She has total control and would make
any changes according to the discussion and suggestions made during the collaboration. At
any time, all users were free to switch back and forth between the ‘local’ view (working
canvas) and the ‘global’ view (overall network diagram) during the discussion. With inter­
est management, JACIE II allows the ‘local’ view of one’s work space to be sharable with
the access control monitored by the owner. In this way, flexible data manipulation for user
collaboration at a high level can be achieved without relying on discussion through chatting.

7.2 Bridge Game

A contract bridge card game is played by four players in a partnership. Partners are deter­
mined by the seating arrangement; namely West, North, East and South. The person who
sits at North is automatically the partner of the person at South and they play against the
other partners, West and East. Although they are partners, no communication is allowed
between them except via the bidding process seen by all players.

There are many types of bridge games [222]. Many books [178,327], research papers [277],
and websites as well as software (such as the GIB software) are devoted to this game. Most
of them discuss the techniques of the bidding process because this is the most important part
of the game that can lead the player to consider the tactics to win. There are also internet
games of bridge that allow users to play against a computer. In this work, we concentrate
only on the basic and common game rules. Figure 7.1 shows some examples of bridge game
images that represent (quite similar) representation of the ‘seating arrangement’ of the users.

Bridge has two basic modes, the bidding process and the trick play, which both require dif­
ferent interaction protocols. The number of active players in both modes are also different.
The bidding process has four players and then it is reduced to three as one of the players
becomes the dummy in the trick play mode.

At the initial stages of this work, the game was implemented as a benchmark using JACIE
I. This allowed us to see how JACIE I handles changes in the user interaction and controls
the access to card information. We implemented the game with only one protocol setting
throughout the game, which is due to the protocol setting in JACIE I that could be only be
set at the beginning of a session. Information sharing was performed using the message
passing facilities, send and receive statements. We then reimplement the game with JACIE
n.

The bridge game is chosen as a benchmark because it has the relevant features that are
very useful to test our design, especially as regards of interaction management. Some of the
interesting game features are:

7.2 Bridge Game 156

CuM na 4S-XX
Otclar«r:

GIB 6.1.5 [26] Bicycle Bridge V3.0. [14]

s CO □ 88
B ridge P ie fe r e n c e s

Declarer W est N /S E /W
C oritrac: 3 MT Heed £ 9
Pena lty None W en C 0

bicycle m T o c t

Comrjc!

Computer. 1

Com putet.4 Computer.?

wyol?3p

SymMobile game [306]Pogo game [255]

Figure 7.1: Example of Bridge Games.

• Team game — Although the game divides the four players into two teams, the team
members cannot share any information about the cards in their hands. Therefore, this
rule requires the players to have bidding strategies, whether to place a bid or pass the
bidding process that can enable them to win the trick play.

• Game protocol — The bidding process and the trick play require different sequences
of turn control. In the bidding process, the turn follows a round robin in clockwise
order. In the tricks play mode, the turn order depends on the bidding outcome for the
first round and the rest relies on the outcome of the previous round of cards played.
For the team that consists of the declarer and the dummy, only one member of the
group can play. This results in a change in the interaction protocol.

• Cards information sharing — During the bidding process, information on all cards
is private. However, when a dummy player is determined, the dummy’s cards must
be shown to all other players after the first card is played. In this way, the rule for
information access has changed.

• Complicated game rules — This game has many rules that makes it a complicated
game to program. For example, it requires different turn scheduling for different game
mode, maintains information on the team members, stores the bidding history and
keeps up with information on the individual player’s cards, needs proper algorithms to

7.3 Implementation o f the Bridge Game 157

determine the dummy and decide the winner on every round in the trick play, updates
display information and much more.

After implementing this game as the benchmark, some alterations and enhancements to­
gether with major extension to JACIE I have been undertaken. Several issues have arisen
that concern programming this game in general that include dynamic interaction protocol
(Section 5.6.1), code repetition for programming grid manipulation on the JACIE I canvas
and many variable declarations that require many lines of codes. Some of JACIE I enhance­
ments used are described in Chapter 4.

Since most of our case studies in this thesis are in terms of games, it is useful to com­
pare game environments with collaborative working environments. At a glance, games can
be viewed as simplified collaborative environments that are manipulative or active. They
are represented either in a two or three dimensional presentations. Games can be used as
approximations for real life applications. Throughout this thesis, games have been used as
case studies for designing interaction management. We also use simple example of games
for designing interest management features while most other research have used simulation
techniques [8,20]. Therefore, a game can be used as a research tool and a vehicle for under­
standing design actions in a restricted environment. The focus is usually on a specific aspect
of the design as argued by Brandt and Messeter [42],

Like noughts and crosses, which uses cells in the game, Baughman et al. [27] provide
cell-based protocols within local regions to reduce network traffic. Their work, carried
out through simulation, purposely focus on centralised and serverless online games. Much
research has also be undertaken using Conway’s Game of Life [49], which is also a cell-
based game that consists of a space-time model namely cellular automata (CA) [273]. In
[149], this game is used as an evolution of a learning base in a character recognition system,
while in [273], parallel techniques have been applied to the cellular automata algorithms.
In general, collaborative working environments can be much larger and more complex than
games.

7.3 Implementation of the Bridge Game

With JACIE, much less development skill and effort are required of the programmer for this
task than what would be needed with Java, assuming no previous experience in either lan­
guage. This section describes the implementation of this game highlighting some aspects of
the program and focusing mainly on interaction management to test the technical feasibility
and usefulness of the high level language constructs.

7.3.1 Program Flow and Game Layout

Once the program is compiled and executed at a specified web address, each user has to log
in by entering the hostname and username. After four users have entered the correct infor­
mation, the game starts by assigning the first user as the first player. We omit the usual rule

7.3 Implementation o f the Bridge Game 158

in determining the first player in order to concentrate on the more important features of the
game. Figure 7.2 shows the screenshot of the game that represents the JACIE canvas viewed
by the user at position ‘W ’ (West). At the top bar is the hostname called c s p c g l 0 3 , port
number 2 000 set by the programmer and the username called S i t i . There are also several
command buttons in the toolbar to perform actions such as connecting and disconnecting to
the server and information regarding the application.

hatk
t ♦ ♦

•438I *
}* *
I* *
!* *
!» *
;%*

M o*tJ I e s p c $103 Port: 200C U*

BRI DGE G A ME

N

W E

S

« : S i t i

BID

D 2 H 4 0 6 H D
n ♦ n ♦ itox2R?

1 * 2 ♦ P a s s 2 ♦
3 * P a s s 3 • P a s s

Local M essage: | c lic k pass or b io

S erv e r Message: j it is your tu rn _

Figure 7.2: Bridge Game (The Bidding Process).

In JACIE, the game layout can be drawn on a canvas for each user where all the users see the
same canvas view at the beginning of the game session as all users have the same copy of
the program. Once the user is connected to the server, the server assigns an identifier (user
number) to each user that is determined according to the user’s arrival.

The program flow of this game is as follows:

• Setting a player’s cards — The server generates 13 cards at random for each user
and sends the card information to the respective user at the start of a game. Below is
the example code segment in the server program where the card selection is performed
in a JACIE method d ra w C a rd . The cards played by a user are presented by integer
values. Since the total number of the cards played in this game is 52, any number from
0 to 51 is selected each time the method d ra w C a rd is called and the selected value
is then removed from the original list nu m b erO f C a r d s []. The selected value is
sent to the client one at a time using the send statement.

server implementation {
declaration { ...

shared int drawCard () { // module to draw a card
boolean drawn = false;
int drawnCard = -1;
int index;

7.3 Implementation o f the Bridge Game 159

while (Idrawn) {
index = rnd(52); // 4 random selection
if (numberOfCards[index] !=-l) {

drawnCard = numberOfCards[index];
numberOfCards[index] = -1;
drawn = true;

}
}
return drawnCard;

} . . .
}
on session start {

for (int i=0; i<13; i=i+l) send newCard drawCardO; I I M send a card to a user

}
}

In a client program, the cards received are also represented by integer values, which
are then illustrated on the JACIE canvas as images. Below is the example JACIE code
that shows the client program which receives the cards and sorts them for the purpose
of canvas display at a later time.

on session start { ...
for (int i=0; i<13; i=i+l) {

receive newCard currentCard[i] ; // M receive a card from the server
}

for (int i=0; i<12; i=i+l) { // sort the cards
for (int j=i+l; j<13; j=j+l)

if (currentCard[i] > currentCard[j]) {
temp = currentCard[i];
currentCard[i] = currentCard[j];
currentCard[j] = temp;

}
}

}

To include images of the cards, which are stored as gif files, JACIE provides a pro­
grammer with a variable of type im age. The inclusion can easily be achieved in
the declaration section of the client program. Below is the example code segment to
show the declaration of some existing gif files that reside in the same directory as the
client program. In the example, four different variables, c lu b , d iam d, h e a r t and
sp a d e , are the arrays of type im age. Each array consists of 13 elements.

declaration { ...
image[13] club = {"club2.gif","club3.gif",...,"clubK.gif","clubA.gif"};
image[13] diamd = {"dia2.gif"," d i a 3 . g i f " d i a K . g i f ","diaA.gif"};
image[13] heart = ("heart2.gif","heart3.gif",...,"heartK.gif”,"heartA.gif"};
image[13] spade = {"spade2.gif","spade3.gif",...,"spadeK.gif","spadeA.gif"};

}

The JACIE canvas channel displays the game according to grid specifications. Below
is the example code segment that shows the grid for the location of all the card images,
namely n C ard , eC ard , sC a rd and wCard, the players’ title, and grid p la y C to
display texts for labelling the users, ‘N’ (North), ‘E’ (East), ‘S’ (South) and ‘W’

7.3 Implementation o f the Bridge Game 160

(West). This canvas specifications remain fixed throughout the program.
on canvas { ...
draw string "BRIDGE GAME" at 140,20 size 18;-
draw grid nCard at 70,45 step 13,1 size 20,47 colour black width 1; // North
draw grid eCard at 355,53 step 1,13 size 34,17 colour black width 1;// East
draw grid sCard at 70,270 step 13,1 size 20,47 colour black width 1;// South
draw grid wCard at 20,53 step 1,13 size 34,17 colour black width 1; // West

draw grid playC at 150,110 step 3,3 size 34,47
draw string grid playC "N" at 1,0 size 20;
draw string grid playC "E" at 2,1 size 20;
draw string grid playC "S" at 1,2 size 20;
draw string grid playC "W" at 0,1 size 20;

Below is a JACIE method g r id d a p that is responsible for identifying a card and
transferring the appropriate image to the corresponding grid locations on the canvas.

void griddap(grid2D cardl,int x,int y) {
int a=0;
int b=0;
for (int i=0; i<13; i=i+l) { // M A total of 13 cards for each player
if (y ==0) a = i;
else b = i;

nom = currentCard [i] % 13; // determine card number as the index o f array for images
if (currentCard[i]< 13) draw image grid cardl pcclub[nom] at a,b;
else if (currentCard[i]< 26) draw image grid cardl pcdia[nom] at a,b;
else if (currentCard[i]< 39) draw image grid cardl pcheart[nom] at a,b;
else draw image grid cardl pcspade[nom] at a,b;

}
}

colour white width 1; // player
I I label f o r ‘North’
/ / label for ‘East’
I I label f o r ‘South’
/ / label for ‘West’

With the use of array c u r r e n t C a r d [] to represent the card’s value, this value is
used as the reference to the index of the array of type im age.

• Bidding option — After all users get the cards’ information displayed, the game can
begin the bidding process. Figure 7.2 shows the example game for the bidding process
where all the players can see the bidding history.

During the bidding process, several messages are displayed in the JACIE message
bar (at the bottom of the screen in Figure 7.2) to instruct the current user. Grid cells
can be chosen using a mouseclick that represents the bidding option. Below is the
example code segment in the client program for the canvas settings for specifying the
option buttons. There are two rows of buttons to do the bidding with the first row
represented by b i d l and b id 2 for bidding buttons in the second row. Grid b id H is
is to display all the bidding histories.
on canvas { ...
draw grid bidl at 440,35 step 8,1 size 20,20 colour white width 1;

... / / A grid bid option button on the first row
draw grid bid2 at 460,55 step 7,1 size 20,20 colour white width 1;

... I I A grid bid option button on the second row
draw string ” W N E S" at 450,87 size 10;
draw string "---------------------- " at 450,97 size 10;
draw grid bidHis at 450,105 step 11,15 size 12,15 colour white width 1;

7.3 Implementation o f the Bridge Game 161

... / / ▲ grid bid history
}

The actual value of the bidding history is stored in a two-dimensional array for keep­
ing track of the information and for display purposes. Below is the declaration of the
variables that represent these values. The variable b i d H i s t o r y stores all the neces­
sary values of the bidding process while b id H S l and bidH S2 are used to store the
bidding information of the current user which is later copied into b id H is to r y .
client implementation { ...

declaration { ...
int[5][10] bidHistory = -1;
int[5][10] bidHSl = -1;
int[5][10] bidHS2 = -1;

}
}

The bid history is always displayed during the game and it is updated in every bidding
made by each player. Below is the code segment that shows the printing of the bidding
history during the bidding process where uNumber represents the user number and
rN um ber is the round number of the bidding.

for (int j=l; j<uNumber+l; j=j+l) { // for the total users
posX = (j-1) * 3;
if (bidHistory [j] [rNumber] == 0) { I I if user choose to'pass'the bid

draw string grid bidHis "Pass" at posX,rNumber size 12;
}
else {

if (bidHistory [j] [rNumber] == 1) { // if user is bidding
... I I ‘draw’ the bidding history at the corresponding grid location

if (bidHSl[j][rNumber]> -1 && bidHSl[j][rNumber]<7) {
draw string grid bidHis points[bidHSl[j][rNumber]]

at posX,rNumber size 12;
}if (bidHS2[j][rNumber]> -1) {

if (bidHS2[j][rNumber]<4) {
draw image grid bidHis cType[bidHS2[j][rNumber]]

at posX+1,rNumber;
}else {

draw string grid bidHis cT[bidHS2[j][rNumber]-4]
at posX+1,rNumber size 12;

}
}

}
}

}

The bidding process ends when there are three consecutive ‘passes’ from three differ­
ent users. Then, the game changes to the trick play mode.

• Card selection during trick play — During the trick play, a user can click on the
selected card image to identify the card to play. Below is the code segment that shows
how a player’s selection on a grid is made by calling a JACIE method g e t p o i n t ()
to get the correct grid position. Before this call is made, the correct player number for
the correct grid point is checked.

if (state==TRICK_PLAY && Card_to_Select==TRUE) { // trick play mode

7.3 Implementation o f the Bridge Game 162

if (cPlayer == 1) getpoint (2,1, 0,1) ; // determine current player
else if (cPlayer == 2) getpoint(1,2,1,0);
else if (cPlayer == 3) getpoint(0,1,2,1);
else if (cPlayer == 4) getpoint(1,0,1,2);
rCard = false; I I card is a lready selected

}

Once the correct grid cell is chosen, the cell is coloured with black to indicate the
successful completion of the selection. Figure 7.3 shows a screenshot of the trick play
for all four players. In this example, client 1 is the dummy player and all the others
have the dummy’s cards displayed on their sites. The dummy’s partner, i.e., client 3,
can read the information and choose a card to play. Client 4 (South) has the current
turn control. The player has two black squares on the cards deck, while other players
have 3. This indicates that the game is on the third round in the trick play. After the
thirteenth round, all the grid cells were selected and the game ends.

la J ~ F r T " F — r"
BRIDGE GAME

K W H . |

| , If r*w w m n I—.

(a) Client 1 - West

Jflflj 1..........1'”
BRIDGE GAME

e m fm m m ■

iafea
,

1 • l* 14 *♦

• « s
**! * * : « ■

i

s

1 s*

UCtfl* U».f 1 II ON 4wmm.

ScmrM„rnr. ------

(c) Client 3 - East

j&jlJ PHT~~ ^ - f SM
BRIDGE G A M E

(b) Client 2 - North

BRIDGE GAME

(d) Client 4 - South

Figure 7.3: Bridge Game (The Trick Play).

The most significant difference between the bridge game and the noughts and crosses game
and its variations is that the bridge game involves two interaction protocols, for the bidding
and the trick play stages, respectively.

7.3 Implementation o f the Bridge Game 163

7.3.2 Dynamic Protocol Changes

In this implementation, the declaration of the protocols are not only in the Configuration
Section, but also defined during the Server On Session. The game requires different types of
protocol throughout the game session. The dynamic change of the protocols is described in
Section 7.3.2.

The following subsections describe the methods used in managing the interaction proto­
col using several different protocol choices provided by JACIE II. Discussion will focus on
the use of interaction protocols for the application without going into great detail about the
complex mles of the game.

7.3.2.1 Method One: Protocol Round Robin Only

The game is treated as consisting of four individual players even though they are two pairs
of partners, as no private communication is allowed to take place between partners. The
round robin protocol is used for the entire game. The rules of the game are managed in a
fully distributed manner, and there is little game-specific functionality implemented at the
server side. Once the bidding mode has finished, the standard JACIE message channel is
used for the winning bidder to issue instructions to the dummy partner, in view of all the
other players. The dummy partner simply follows the instructions when it is his turn. This
mechanism is very similar to that in a face-to-face bridge game.

configuration { ...
number of users 4;
protocol roundrobin;

}client implementation { ...
on TURN { ...

if (state == BIDDING) { I I M this is a local state
... I I select an appropriate action on canvas
... I I run an algorithm to determine if the bidding process finishes
if (condition == BIDDING_END) {

... I I run an algorithm to determine the dummy and the first player
if (firstPlayer == ME) { // is the bid winner
player_counter =0; // initialise the player counter for a trick
trick_counter =0; I I initialise the trick counter for a game
state = TRICK_PLAY; // start a new trick, play now

} else if (player_counter > 0)
state = TRICK_PLAY; // a new trick has started, play now

else {
state = TRICK_PLAY; // play next time when'on TURN’
turn pass;

}
}

}
if (state == TRICK_END) {

... I I run an algorithm to determine the first player (based on the last trick)
if (firstPlayer == ME) {
player_counter = 0;
trick_counter = tricker_counter + 1;
state = TRICK_PLAY; // start a new trick, play now

} else if (player_counter < 4)
state = TRICK_PLAY; // a new trick has started, play now

else {

7.3 Implementation o f the Bridge Game 164.

state = TRICK_PLAY; // play next time w hen‘on TURN’
turn pass;

}
}
if (state == TRICK_PLAY) {

if (dummy == ME) {
... I I if it is the first trick, show all the cards
... I I send a message to remind the bidder to issue an instruction
... I I follow the bidder’s instruction in the message window
... I I play the card selected by the bidder

} else {
... I I select one card from my deck and play

}player_counter = p-layer_counter + 1;
state = TRICK_END; // ^ the end of a trick for the player concerned

}
turn pass;

}
}server implementation { . . . }

Since the above algorithm involves a distributed decision process, most variables are local
and every player has the same copy of code. However, some variables must be global and
shared, for example, p la y e r _ c o u n te r and t r i c k . c o u n t e r .

7.3.2.2 Method Two: Protocol Round Robin and Protocol Master User

The bidding process follows the same procedure as in Method One, except that the turn
during the trick play is determined by the server. The interaction protocol is initially set to
round robin, and after the bidding process finishes, it is changed to master server userde-
fined. The server program determines and sets the client turn based on a user-defined code
segment for turn management. Thus the mechanism for managing the trick play mode uses
a centralised approach, where almost all game specific functionality is implemented at the
server side.

configuration { ...
number of users 4;
protocol roundrobin;

}client implementation { . . . }
server implementation { . . .

if (state == BIDDING) {
... I I run an algorithm to determine if the bidding process finishes
if (condition == BIDDING_END) {

State = TRICK_PLAY;
player_counter =0; // initialise the player counter fo r a trick
trick_counter =0; // initialise the trick counter fo r a game
protocol master server userdefined; // ^ protocol change
... I I determine the dummy and the first player based on the bidding sequence
turn set client firstPlayer;
player_counter = player_counter + 1;

}
} else if (state == TRICK_PLAY) { . . .

if (player_counter == 4) {
player_counter = 0;
trick_counter = trick_counter + 1;

7.3 Implementation o f the Bridge Game 165

... I I determine the player who wins the trick
turn set client winnerPlayer;

} else { ...
... I I determine the order fo r the turn in the trick
turn set client nextPlayer;

}
player_counter = player_counter + 1;

} • • •

}

This example demonstrates a newly introduced feature of JACIE, namely dynamic protocol
change within a JACEE session. This is particularly useful for implementing some complex
interaction protocols. As long as such a protocol can be decomposed into a set of simpler
protocols in a temporal order, one can use dynamic protocol change to facilitate the tran­
sition from one protocol to another. In this example, the transition involves a change from
round robin to master server userdefined, and from four active players in the bidding stage
to three in the trick play stage.

7.3.2.3 Method Three: Protocol Round Robin and Protocol Group

In this implementation, the bridge game is viewed as a group game. There are two groups
(two players in each group) with no communication allowed between group members. In
the bidding process governed by protocol group round robin, the flow of the game is exactly
the same as the protocol round robin for four individual players. For the trick play, the
interaction protocol for the winning bidder group changes to protocol group master, while
the other group’s protocol remains unchanged. As described in Chapter 5, protocol group
master allows only one player of the group to be active and thus facilitates the change in the
total number of active players in the game.

configuration {
number of users 4;
protocol roundrobin; // protocol between group
number of groups 2;
protocol group roundrobin; // protocol within a group, starts with first player

}client implementation { . . . }
server implementation { ...

if (state == BIDDING) { ...
... I I run an algorithm to determine if the bidding process finishes
if (condition == BIDDING_END) {

state = TRICK_PLAY;
player_counter = 0;
trick_counter = 0;
... I I run an algorithm to determine the bidder group and the opponent group,

/ / the bidder player (group master), the dummy, the first player
protocol group groupnumber groupBidder master playerBidder;
... I I A change the protocol o f the bidder group, and set the master
turn set client groupOpnt; // turn starts with the opponent group
turn set group groupOpnt firstPlayer;
player_counter = player_counter + 1;

}} else if (state == TRICK_PLAY) { . . .
if (player_counter ==4) {
player_counter = 0;

7.4 E-leaming on Simulation o f Network Trouble Shooting 166

trick_counter = trick_counter + 1;
... I I determine the player who wins the trick and the associated group
turn set client winnerGroup;
turn set group winnerGroup firstPlayer;

}player_counter = player_counter + 1;
} • • •

}

Like the turn set client statement that sets one of clients to have a turn and in this
example is the winnerGroup during the TRICKJPLAY state, turn set group state­
ment allows the setting of one of the group members in the winnerGroup to become the
first to play in the round.

7.3.2.4 Summary on the Bridge Game Interaction Protocol Implementations

As the bridge game requires changes in the turn protocol and the number of players during
the game, we have implemented three possible different ways of interaction management
provided by JACIE. Method One uses distributed management on the game rules supported
by some algorithms and some involvements of global variables. JACIE facilitates this ap­
proach with the use of its standard message channel. The other two methods, Two and
Three, provide the centralised functionality control based on the selected interaction pro­
tocols. Method Two requires the appropriate algorithms before the turn is assigned to the
specific user, while method Three needs less program coding since it has to determine the
turn order of only one of the groups that uses the group protocol roundrobin. The other
group only has one active user. In general, method Three can be considered the best, as
compared to method One that requires many message passing activities and method Two
that needs quite a complicated algorithm.

7.4 E-learning on Simulation of Network Trouble Shooting

In collaborative applications, e-leaming is one of the popular activities where people share
information through virtual classrooms and communities. There are different methods used
to help people share such information. Common ways to collaborate are shared white­
board, chatting and video conferencing. Much research concentrates on the strategies and
tools [77, 243] for these environments. Both the strategies and learning tools consist of the
technology on improving the learning process such as the system’s presentation [87] and
presented materials [243]. In addition, electronic content of material can determine learning
efficiency. Software systems and devices to support the learning systems are still ongoing
research topics.

In this section we describe an application on data sharing and interest filtering implementa­
tions. In the variation of the noughts and crosses game namely Secret Switch, only the data
sharing mechanism can be applied without the filtering mechanism since only two players
are involved. The shared variable is the game board where all the players must have the read
and write access, while in the bridge game, the variable sharing only occurs from the middle
to the end of the game. According to the game rules, all players can only have read access

7.4 E-learning on Simulation o f Network Trouble Shooting 167

to one of player’s cards for the game strategy except the bidding declarer has write permis­
sion. The filtering mechanism based on interest is also not appropriate for the bridge game
because all players must share the dummy’s card for the game tactic in the trick play. Since
most work focuses on interaction management and language improvement, no data sharing
constructs are implemented in this game, although the data sharing issue is also significant.
So, in order to complete the testing of the interest management mechanisms, an e-leaming
network trouble shooting program is implemented and described in this section.

This e-learning environment consists of three on-line users who are assigned three different
rooms, Room 1, Room 2 and Room 3. Each room has a network of computers and periph­
erals. The peripherals can be workstations, printers, hubs, a gateway, servers or network

It is YOUR TURN!S e rv e r M essage;

Hub3

ROOM 1

Hoslt c cpc$l03 Port; 200C Username: J $ iti & \ v |

I LOCAL VIEW PROBLEM ROOM SELECT |

T e x t i n p u t :

Local M e s s a g e : Y o u ’ve been assig n ed ro o m n u m b e r 1

WS11 WS12 WS13 P1

W S22

Figure 7.4: Overall Network Settings.

cabling. The network in all the rooms are inter-connected. Figure 7.4 shows the overall
layout of the total network, which is the global view seen by the user in Room 1. At the start
of a session, all users have the default view of the global layout. The main objectives of this
application is for users to discover the cause of a network problem assigned by the server. In
the process of trouble shooting, some of the network components must be checked for their
status or properties before the problem can be detected, diagnosed and solved.

As described before in Section 7.1 that this application was already implemented before
using JACIE I, but a different approach had been used and the user’s local view was not
sharable. The local view of every user is shown in Figure 7.5. A user can check the status of
any device in the room by clicking on the specified device. Once the cause of the problem is
known, the user can change the device property to solve the given problem by entering the
command in the Text Input bar at the bottom of the user interface. This example requires

7.4 E-leaming on Simulation o f Network Trouble Shooting 168

1 I«‘»‘ *iJjd
StOtALVtEW | | FAOBIFM | ROOMSELECT |

ROOM 2

Room One Layout Room Two Layout

i>nnntCM | Hoowsti
ROOM 3

HubJ A

Room Three Layout

Figure 7.5: Layout of the Individual Room.

only the contention protocol for the turn control for all the users to involve in the chatting
process.

The local view of each room, Figure 7.5, illustrates the break down of the whole network set
up. Room 1 consists of three workstations, a printer, a hub and five cables that connect the
hub to all the devices. Room 2 shows only three workstations, a printer and a cable, while
room 3 has a hub, a gateway, three servers and four cables that connect the hub to all the
devices in the room. This figure also shows that all the users, 1, 2 and 3, have selected to
view one of the network components in their assigned rooms. The JACIE Local Message
bar, at the bottom of the canvas, displays the problem given by the server, and the JACIE
Server Message bar prints the property of the selected component. For example, user 1 is
clicking on the printer PI in Room 1 which has status ‘on’, IP address is 161.139.67.4, net-
mask is 255.255.255.0 and default gateway is 161.139.67.250. User 2 is currently choosing
workstation number 2 (WS21) with status also ‘on’, IP address 161.139.68.1, netmask is
255.255.255.0 and default gateway 161.139.68.250. User 3 is clicking on the hub in Room
3 and the information status is ‘on’.

Turn control protocol is insignificant if the provided interest management feature is imple­
mented. The chat channel is not necessarily the only way to collaborate. Therefore, we can
implement the simulation on network trouble shooting with the data sharing mechanisms
that allows all the users not only to view the assigned rooms as their local views, but also to

7.4 E-leaming on Simulation o f Network Trouble Shooting 169

view any of other users’ rooms as the local views. However, a user can only work on one
room at a time.

In this application, there are four selection buttons at the top of the canvas. The first button
is for viewing the global network layout, the second button is the local view selector, third,
is the button to display the network problem on the JACIE Local Message bar and the last
button is the global network layout with the room selection buttons. The last button is to
allow every user to select and view other users’ assigned rooms. Notice that the button is
inactive or changed in colour once it is selected. For example, Figure 7.4, that shows the
global view, has the Global view button inactive, Figure 7.5 shows the change in the
Local View button and Figure 7.6 has the button Room Select inactive. Below is the
example of code segment to show the display of the selection buttons on the top of canvas
so that a user can choose to have the global view of the network, local view of a room,
get information on the description of the trouble shooting problem to be displayed on the
message bar or a button to view the options of room to be selected. Here, the button for the
global view is currently ‘on’ while the other buttons are ‘off’.
on canvas {

draw grid Viewlcons at 10,0 step 5,1 size 100,25 colour black width 1;
draw image grid Viewlcons globalViewOn at 0,0; // global view button selection
draw image grid Viewlcons localViewOff at 1,0; // local view button selection
draw image grid Viewlcons problemlcon at 2,0; // problem description button selection
draw image grid Viewlcons roomOn at 3,0; // room selection button selection

}

A user can let others have read or write or both read and write access to the selected devices
in his/her room. The interest management mechanism facilitates this feature. With the
introduced data sharing, the user can choose to work on the assigned room or another room
that he/she is allowed to have access. Figure 7.6 shows how each client can select any room
to work on.

H o s t I c s p c g l O J Por t ! 200C U>trn<si«l Siti

I 1GL OBAL V IEW LOCAL VIEW P R O B l E M

ROOM 3
W S 11

CHOOSE
TO VIEW
THIS
ROOM

CHOOSE
TO VIEW
THIS
ROOM

ROOM 1

WS23

CHOOSE
TO VIEW
THIS
ROOM

H ub3ROOM 2

T e x t Input:

Local M e s s a g e : Y o u 've been assigned room n u m b e r 1

S e rv e r M e s s a g e : i t is y o u r t u r n !

Figure 7.6: Room Selection.

7.4 E-leaming on Simulation o f Network Trouble Shooting 170

In this figure, each room has the text, ‘CHOOSE TO VIEW THIS ROOM’. By double
clicking this text, the user will see the local view of the selected room. Viewing the selected
room does not necessarily mean that the user has the control of the room, the control is
dependent on the permission given by the original owner of the room. The code segment
below gives the grid specifications on the button that presents the actual selection to the
selected room.

draw grid roomCl at 50,55 step 1,1 size 100,100;
draw grid roomC2 at 50,220 step 1,1 size 100,100;
draw grid roomC3 at 430,140 step 1,1 size 100,100;
draw image grid roomCl chooseR at 0,0;
draw image grid roomC2 chooseR at 0,0
draw image grid roomC3 chooseR at 0,0

/ / grid for button to select Room 1
/ / grid for button to select Room 2
/ / grid for button to select Room 3
/ / Copy the image to the grid

on MOUSECLICK { ...
if (currentView ==3) { ...

selectView=true;
if (GETGRID==roomCl) selectR=l;
else if (GETGRID==roomC2) selectR=2;
else if (GETGRID==roomC3) selectR=3;
else selectView=false;
refresh;

}
}

/ / currently is on 'room select’ button
11 a selection has been made
/ / select Room 1, or
/ / select Room 2, or
/ / select Room 3

With the data sharing feature, every network component is represented as a variable. In this
application, not all components are shared. Therefore, only the shared component is referred
to as a shared variable. All shared variables are declared as follows in the client program.

/ / devices and cables in Room 1

shared string hll = "";
shared string cl4 = "";
shared string pll = "";
/ / devices and cables in Room 2

shared string p21 = "";
shared string c21 = "";
/ / devices and cables in Room 3

shared string h31 = "";
shared string c31 = "";
shared string s31 = "";

/ / represents Hub 1 in Room 1
/ / represents Cable 14
/ / represents Printer 1 in Room 1

/ / represents Printer 2 in Room 2
/ / represents Cable 21

/ / represents Hub 3 in Room 3
/ / represents Cable 31
/ / represents Server 31

In the server program, the above declaration of the shared variables are automatically gen­
erated by the declaration. The server can have full control over those variables. In the server
program, each network component and its respective properties are kept in arrays. The in­
formation is kept in this way to ease the process of updating the specific properties. The
following code segment shows part of the array declaration.

shared string [31] netDevice // keeps device information
= {"WS11","WS12","WS13"," P I " , "Hubl",

"Cablell","Cablel2","Cablel3","Cablel4","Cablel5",

7.4 E-leaming on Simulation o f Network Trouble Shooting 171

"WS21","WS22","WS23","P2",

"Cable31","Cable32","Cable33",nCable34","Gateway"} ;

shared string [31] [4] netConfig // keeps status information
= {{"on","161.139.67.1","255.255.255.0","161.139.67.250"},

{"on","161.139.67.2","255.255.255.0","161.139.67.250"},
{"on","161.139.67.3","255.255.255.0","161.139.67.250"},
{"on","161.139.67.4”,"255.255.255.0","161.139.67.250"},
{"on","na","na","na"},
{"connected","na","na","na"},
{"connected","na","na","na"},
{"connected","na","na","na"},
...}

At the start of a session, the server initialises all the shared variables using the set statement
by assigning the value from the n e tC o n f ig array into the shared variable. The boolean
variables, f i r s t S e t , s e c o n d S e t, t h i r d S e t and s ta r tN o w , are used in the program
to make sure that the initialisation of values are executed only once.

if (! f irstSet && USERNUMBER==1 && startNow) // user 1 is also the owner
firstSet = true;
set pll =netConfig[3] [0] + ", IPAddress="+netConfig[3] [1]+", defaultGateway=" +

netConfig[3][2]+", netMask="+netConfig[3][3];
set hll =netConfig[4][0]+", IPAddress="+netConfig[4][1]+", defaultGateway="+

netConfig[4][2]+“, netMask="+netConfig[4][3]
set cl4 =netConfig[8][0]+", IPAddress="+netConfig[8][1]+", defaultGateway="+

netConfig[8][2]+", netMask="+netConfig[8][3];

if (IsecondSet &Sc USERNUMBER==2 && startNow) // user 2 is also the owner
secondSet = true;
set p21 =netConfig[13][0]+”, IPAddress="+netConfig[13][1]+", defaultGateway="+

netConfig[13] [2] + ", netMask="+netConfig[13] [3];
set c21 =netConfig[14][0]+", IPAddress="+netConfig[14][1]+", defaultGateway="+

netConfig[14][2]+", netMask="+netConfig[14][3];

if (! thirdSet && USERNUMBER==3 && startNow) I I user 3 is also the owner
thirdSet = true;
set s31 =netConfig[22][0]+", IPAddress="+netConfig[22][1]+", defaultGateway="+

netConfig[22][2]+", netMask="+netConfig[22][3];
set h31 =netConfig[25][0]+", IPAddress="+netConfig[25][1]+", defaultGateway="+

netConfig[25][2]+", netMask="+netConfig[25][3];
set c31 =netConfig[26][0]+", IPAddress="+netConfig[26][1]+", defaultGateway="+

netConfig[26] [2] + ", netMask="+netConfig[26] [3];

The following code segment is part of client program that shows how the permissions are
set for shared variables that represent the devices in one’s room. The checking condition
on the USERNUMBER guarantees that only the owner has the right to determine the access
permission. The flag f i r s t S e t ensures that the permission setting is performed only
once during the whole session. In the example, user 1 is assigning three of the network
components, cable number 14, a printer and a hub in his/her assigned room, Room 1, to
be sharable. Cable number 14 can be owned and read, as well as write its property with a
password. The only acceptable password value is adm in. Printer and hub are given read
access without write access. User in room 2 allows the printer in the room to be owned by
all the users and cable number 21 to be read by user 3. User 3 allows server number 31 and

7.4 E-leaming on Simulation o f Network Trouble Shooting 172

hub in room 3 to be owned, read and written, while cable number 31 can only be read by
user 1.

if (USERNUMBER == 1) { 1 1 4 Owner is user 1
if (!firstSet) {

firstSet = true;
use cl4 by all to own to read to write with password "admin";
use pll by 2 not to own to read;
use hll by 3 to own to read;
I I k Use permission on three of the owner's variables

}
if (USERNUMBER == 2) { 1 1 - 4 Owner is user 2

if (!firstSet) {
firstSet = true;
use p21 by all to own to read to write;
use c21 by 3 not to own to read;
I I k Use permission on two of the owner’s variables

}

if (USERNUMBER == 3) { 1 / 4 Owner is user 3
if (!firstSet) {

firstSet = true;
use s31 by all to own to read to write;
use c31 by 1 not to own to read;
use h31 by all to own to read to write;
// ▲ Use permission on three of the owner's variables

}

With the permission given by the owner, the selected users are allowed to read the informa­
tion regarding the selected device such as the status, IP address, netmask and the gateway.
The following code segment shows how a user sets the interest before the r e a d operation in
order to access the information. The print statement causes the specified string to be printed
in the JACIE Local Message bar. It will display the name of the selected network compo­
nent. The example below illustrates the r e a d operation on variable p l l that represents the
printer in Room 1. The user sets the interest value to 1 . 0 to guarantee the read access. With
the set statement, the r e a d operation is invoked by assigning the property of printer 1 to
a variable d i s p l a y l . Upon checking the value of d i s p l a y l , it is determined whether
the r e a d operation is successful or not. If the read operation is not granted, the appropriate
message is displayed in the JACIE message bar, and in this example, the message is ‘No
access to the current device’. With the statement p r i n t s e rv e rm e s s a g e , the status of
the selected sharable device is displayed at the bottom of the screen in the message bar.

print "device = "+deviceName;
if (deviceName == "Printerl") {

interest set pll 1.0; // user sets interest to access shared variable
set displayl = pll; // read access statement
i f (displayl! ="") 1 1 4 check access condition

print servermessage " [Pll] "+displayl; I I display the shared data
else

print servermessage "No access to the current device";

Figure 7.7 is a screenshot of all the users who currently are viewing room 1 at the same time.
There are three screens, user 2 is at the top, user 1 who is also the owner is in the middle and
user 3 is at the bottom of the figure. User 2 is viewing the information on printer 1 and user

7.4 E-learning on Simulation o f Network Trouble Shooting 173

ills .

. IS Home ijjj MeHcap# A Search ' j Shop JBoofaeartt s Glo»

ROOM 1

Figure 7.7: Read Operation on Devices in Room 1.

3 is viewing the information on the hub. All the users have the same button selection in the
local view but each of them has different control over the network components in the room.
User 2 can only access cable number 14 and printer for the r e a d operation, user 3 can only
access cable number 14 and the hub while user 1 has full control over all the components in
this room.

For some variables that have write permission, there are a few selection buttons to take
an appropriate action on changing the item’s property. Figure 7.8 shows a screenshot of user
1 who is viewing room 3. The user who is allowed to have read/write access to the server
number 31, is selecting the device for the r e a d operation. The JACIE message bar displays
the device status, and the user is ready to do any write operation if necessary. There are
five option buttons appearing at the left of the network components to perform the selected
action. The user can choose not to change the device’s property, change the device status (to
switch on or off and connected or disconnected for a cable), change the IP address, netmask
or gateway by entering the text value at the Text Input bar. The user is also free to ignore
these buttons and continue to view information on other permissible network components.
If a cable is selected, any attempt to change IP address, netmask or gateway will be denied
since it is not applicable.

7.4 E-leaming on Simulation o f Network Trouble Shooting 174

2001

PROBLEM ROOM SELECTGLOBAL VIEW

ROOM 3

Gateway

H ub3

T ex t Input:

Local M e n ag e ; dev ice - S31

S e ro e r M essage: [S31)on, lP A ddress-161.139.68.10, d efau ltC a tew ay -2 S 5 .2 S 5 .255.0, n e tM * » k -l 61.139.68.250

Figure 7.8: Ready To Do a Write Operation on a Device in Room 3.

The problem to solve in this e-learning example is to find out the reason why Server 31 in
Room 3 cannot access Printer PI in Room 1. Figure 7.9 shows one of the possible options
tried by all the users to find out the problem. In this example the turn control protocol is set
to roundrobin to make sure that any change in the network component is mutually exclusive
and a user can work on only one component in a turn. The order of the figure is not accord­
ing to the user turn, but rather the connection of the specified devices starting from server
S31 in Room 3. User 1 checks the status of server S31 in Room 3 (as shown in Figure 7.8),
which is read/write by all users. Server S31 is on. User 3 clicks on cable 31 in Room 3 and
finds out that the cable is connected. User 2 who has read/write access to Hub 3 in Room 3
sees that the hub’s status is on. User 1 who has not given any access on Cable 15 in Room
1 to anyone else has the check on the status of this cable and it shows that it is connected.
User 1 also clicks on Hub 1 and it is on. User 3 clicks on cable 14 in Room 1 and finds out
that the cable is not connected. User 2 checks the printer status in Room 1 and it shows that
the printer is on.

This shows that cable 14, selected by user 3 is the cause of the network problem. Since
the device is read/write by all the users, user 3 can change its status from disconnected to
connected. Figure 7.10 shows the screenshot of the action taken by user 3. When the action
button ‘Change Status’ is clicked, the new device’s status is sent to the server using the set
statement. This is automatically verified by the server and the new status value is sent to all
the users. Therefore, when any user who selects cable 14 afterwards, will find that the status
is connected. The Local Message bar displays the process, while the Server Message bar
shows the new status of the cable.

In the JACIE program, variable c ! 4 represents the cable 14 device. Its value is set using

7.4 E-leaming on Simulation o f Network Trouble Shooting 175

(C a b l e 3 i l s t A t u j - c i

User 3 selects Cable31 User 2 selects Hub3

S 31 c a n ’t a c c e s s P r ln t e i(P r o b le m] P r o b le i(P r o b le m J P r o b le m l : S e i S 31 c a n ’t a c c e s s P r i n t e r P

P R O B L E M R O O M S E L E C T

User 1 selects Cable 15 User 1 selects Hubl

Change
IP address

[p 1 1o n , i P A d d r e j j - 1 6 1 . 1 9 9 .6 7 .4 , d e f a u l t c a t e w a y - 2 S 5 .2 5 S .2 S S .o , n e t M a s k - 1 6 1

d e v i c e - c a b l e

(c a b l e i d j d l s c o n n e c t e d , iP A d d r e : d e f a u l t c a t e w a y - n a , n e tM a s k -

P H Q 8 L E M | R O O M S E L E C T

| e * p < * » 0 3 f « r i l j aoO < |

J A l l L l l M l 1 I I I I B L t M I H O U M S H E C T I

o Change Change Change C
nge S tatus IP address Netmask. G i

User 3 selects Cable 14 User 2 selects device PI

Figure 7.9: Checking on Network Components.

7.4 E-leaming on Simulation o f Network Trouble Shooting 176

GLOBAL V IEW | PROBLEM | ROOM SELECT |____________________________________

ROOM 1
W S 1 1 W S 1 2 W S 1 3 P1

T ex t Input: 1
Local M e « a g e : D ev ice s ta tu s c h an g ed : d o n e

S e rv e r M essage: (C a b le i4)c o n n e c te d , iPAddress<*na, d e fa u l tc a te w a y -n a , n e tM ask= na

Hub1

Figure 7.10: Detecting the Problem and Solve.

the new language construct. Below is the code segment that illustrates the use of the set
statement. When the user is instructed to enter the device status, he/she must enter the value
using Text Input bar by typing the word ‘connected’. The variable is updated by the server
and the server sends the new c l4 value to all the users since all the users are the owners of
the variable.

if (writeSelect) { I I ready to p e r f o r m ‘W rite’ operation
if (selectAction==noChange) { ...

print "Do nothing to the selected device: DONE";
}
else if (selectAction==changeStatus) { I I Select button Change Status

print "To change status, enter text";
input change; / / enter text in the textlnput bar
if (deviceName = "Cablel4")

set cl4 = "Status="+change; // < change device status
else if (deviceName = "PI");

set pll = "Status="+change;

print "Device status changed: DONE";
}
else if (selectAction==changeIP) { // Select button Change IP A ddress

if (deviceType(deviceName)=="workstation" |
deviceType(deviceName)=="server" |
deviceType (deviceName) =="printer") { I I only applicable on specific devices

print "To change IP Address, enter text";
input change;
if (deviceName = "PI")

set pll = " IPAddress="+change; // change device IP address
else if (deviceName = ”P2");

set p21 = "IPAddress="+change;

print "IP Address changed: DONE";
}
else print "Selection is not applicable";

7.5 Performance Analysis 111

}
else if (selectAction==changeNetM) {...
} • • •

}

At the server, when any of the devices’ properties are changed, the ‘reachability’ of the
associated devices that have connection to the current updated information is modified ac­
cordingly. The use of array variable n e tC o n f ig is associated with another array called
r e a c h a b i l i t y . Below is part of the JACIE server program that handles the update of the
network information.

if (problemNumber==l) {
netConfig[8][0] = "disconnected";
for (j = 0; j<31; j=j+l)

if (j!=3) {
reachability [3] [j] =0; // none can reach PI
reachability[j][3] = 0;

}problem = "Problem 1: Server S31 can't access Printer PI";
{
for (k=22; k<=24; k=k+l) // reassign reachability for S31, S32, S33

if (reachability[25][k]==1)
for (j = 0; j<31; j=j+l)

if (reachability[25][j]==1) {
reachability[k][j] = 1;
reachability[j][k] = 1;

}

The example shows that the reachability factors of the devices associated with printer PI in
room 1 are set to zero at the start of session. This means that printer PI is not accessible by
all the devices that should have links to it. Later in the example, the code shows how the
reachability of all the servers are set to 1 to indicate that connections between the specified
devices are achieved.

7.5 Performance Analysis

Several experiments have been undertaken to find out the significance of this research. While
Section 6.7 discusses interest management, this section focuses on the overall JACIE inter­
action management and delay problem in the presented example programs (e.g., the noughts
and crosses games). Here, several results are presented to support the discussion.

7.5.1 JACIE vs. Java Translated Program

JACIE is translated into Java and then compiled to byte code for execution under the Java
virtual machine. A comparison between JACIE and its translated Java programs is discussed
to discover the differences in the amount of coding and compilation time. Using the Linux
command wc, the byte, word and line counts for a program can be determined. Therefore,
the above measures have been calculated to compare several JACIE programs and their

7.5 Performance Analysis 178

corresponding Java translated programs. The results are shown in Table 7.1. There are five
JACIE programs selected for this purpose. H e l l o . j a c i e i s a simple program that consists
of one client connected to server to send a ‘Hello’ message and then the server sends a
reply with the ”OK: Hello” message to acknowledge the reception. V i c i o u s . j a c i e and
D i c t a t o r . j a c i e are the variations of the noughts and crosses games, vicious battle
(Appendix A.5) and gentlemen’s battle (Appendix A.6). B r i d g e , j a c i e is the bridge
game example discussed in Section 7.3 and N e t w o r k . j a c i e is the e-leaming application
example in Section 7.4.

FILES BYTE WORD LINE
1. Hello.jacie 927 112 61
1(a) Client Programs 24,570 1,974 816
Kb) Server Programs 12,244 1,046 417
(a)+(b) Total in Java 36,814 3,020 1,233
2. Vicious.jacie 8,535 1,005 296
2(a) Client Programs 39,696 3,230 1,253
2(b) Server Programs 26,522 2,200 763
(a)+(b) Total in Java 66,218 5,430 2,016
3. Dictator.jacie 8,630 1,012 299
3(a) Client Programs 40,413 3,262 1,265
3(b) Server Programs 28,221 2,303 807
(a)+(b) Total in Java 68,634 5,565 2,072
4. Bridge.jacie 31,656 3,737 1,002
4(a) Client Programs 81,929 6,013 2,301
4(b) Server Programs 36,134 2,738 973
(a)+(b) Total in Java 118,063 8,751 3,274
5. Network.jacie 67,525 5,801 1,514
5(a) Client Programs 110,927 7,170 2,828
5(b) Server Programs 92,134 7,073 1,962
(a)+(b) Total in Java 203,061 14,243 4,790

Table 7.1: Codes Length Comparison on JACIE and Its Java Translated Programs.

Referring to Table 7.1, the smaller size JACIE programs, produce Java programs with
larger percentage size. For example, the simplest program, H e llo , yields an equivalent
Java program about 30 times larger, whereas the longest program, e-leaming simulation
(N etw ork , j a c i e) produces Java codes about 2.5 to 3 times larger. This is due to the
fact that a lot of Java code is required to prepare the graphical user interface for the output.
Providing such interface takes about 1200 number of words for the client programs. On top
of that, in the translation process, there are several Java files that contain the basic required
codes. These files take about a minimun of 1000 number of words for the server programs
and 300 words for the client programs.

We also look into the processing time of these five files. It includes the compilation time
(from the start to the end) and the CPU time that they take during the compilation. This

7.5 Performance Analysis 179

calculation is made based on the Linux t im e command. Table 7.2 shows the data in sec­
onds (sec). JACIE is designed to provide simpler codes in writing a networked collaborative
application. Its compilation must go through two phases of translation, JACIE to Java, and
then from Java to its virtual machine code. This table shows that the time to translate JACIE
to Java does not significantly increase the overall compilation time. For example, it takes
about 4 seconds for its 1,514 lines of program to complete a compilation. Within this time,
the actual CPU time for the processing is 2.42 seconds.

FILES COMPILE
TIME (sec)

CPU
TIM E (sec)

1. Hello.jacie 0.76 0.33
1(a) Client Programs 0.98 0.65
1(b) Server Programs 0.8 0.55
(a)+(b) Total in Java 1.78 1.20
2. Vicious.jacie 0.83 0.42
2(a) Client Programs 1.12 0.65
2(b) Server Programs 0.8 0.58
(a)+(b) Total in Java 1.92 1.23
3. Dictator.jacie 0.83 0.41
3(a) Client Programs 1.0 0.71
3(b) Server Programs 0.82 0.58
(a)+(b) Total in Java 1.82 1.29
4. Bridge.jacie 1.78 0.66
4(a) Client Programs 1.12 0.76
4(b) Server Programs 0.85 0.59
(a)+(b) Total in Java 1.97 1.35
5. Network.jacie 1.89 0.93
5(a) Client Programs 1.17 0.83
5(b) Server Programs 1.02 0.66
(a)+(b) Total in Java 2.19 1.49

Table 7.2: Processing Comparison on JACIE and Its Java Translated Programs.

In conclusion, the code length of the larger JACIE programs is about a third of the size of the
translated Java code. Although the similar applications can be written in several different
ways, one cannot avoid using a lot of Java classes in producing the same output needed for
the graphical user interface. The Java classes such as Applets, Frame, Panel, Component
and Container must be included in the client’s program. As regards compilation, the extra
time of the translation phase producing Java from JACIE, is acceptable.

7.5.2 Preliminary User Study on JACIE

A case study on introducing JACIE to a number of people was conducted. This study con­
sists of two teaching and three program writing sessions. The first teaching session is de­
signed to give the overall picture of this language. It is presented using four slides on the

7.5 Performance Analysis 180

following topics.

• All of the JACIE standard components.

• Configuration component.

• Client implementation component.

• Server implementation component.

The main contents of these slides are to provide information on network connections, mes­
sage passing activities, variable declaration and assignment and other related issues on han­
dling a single user. The JACIE user interface is also presented. After this teaching session,
the participant is required to write a hello program. During this writing session, the par­
ticipant is given the teaching notes together with a sample JACIE program. This sample
program is the generalised game of noughts and crosses (Section 5.3.3) with the elimination
of inessential detail. The required output is shown in Figure 7.11.

® - W hello - Netscape

E ile E d it y ie w S o B ookm arks lo o ls w in d o w H e lp

“Ao ©| ^ h t tp ://c s p c g l0 3 sw an a c .u k /~ c s s it i/h e llo /h e llo htm l |
EB, l i H om e [Mg N e ts c a p e S e a rch v G lo ssa ry o f T e r ... H o w D o T h e se <v U tusan M a la y s l »

t] N e w T a b [£ h e llo □
j f f i | Host jcspcgl03 Port: ^010 U i i r n m j i u Jj
Local Message: Hello

Server Message: Server response: OK: Hello

i © Q & □ Applet hello started

Figure 7.11: Output of JACIE Hello Program.

The second teaching session that uses three slides for its three program components intro­
ducing more JACIE statements. These include canvas manipulation, declaration of multiple
users, interaction protocols specifically roundrobin and contention, JACIE events, message
broadcasting and other related issues. The participant has to write a JACIE program that
uses the roundrobin protocol to count and print the number of user’s click on the canvas and
the total number of clicks during the collaboration. The required output of this program is
given to the participant. Similar to the previous session, the teaching notes and the same
sample program are also supplied for the participant’s reference.

The third session is very important to this research since its purpose is to test the signif­
icance of the interaction management design. In this session, the participant has to write
the same program as in the second session but the interaction protocol is changed into con­
tention. Figure 7.12 shows the screenshot of the required program. Here the total number
of a user’s click can differ, but the progam terminates when the total of 20 clicks have been
made. This program only differs in the number of user’s click if compared to the second
program when both users make 10 clicks in a round robin fashion.

7.5 Performance Analysis 181

l«MSC - N«tscap«
. EH» f t* fio f ioo^a rrt Jooit ftmaow H®ip

, i k | © ^ QM
3B. -fl Won# gg N*»cap« < \ s»afch ^ «»<o*taiy of Tar ^HowOoThtt* ‘r Uluta

New T >o | £ totttc

ÎjsU H©»1 <>*<*') Nrt J«.'l •»«*»*•« M

1.2 .3 .4 .5 .6 .7 ,8 ,9 .10 .11 .

T «* users1 auk* - 1 .2 ,3 ,4 .5 .6 .7 ,8 ,9 .10 .11 .12 .13 .14 ,15 ,16 ,17 ,18 .19 ,20 .

F«wi
Fiofum a

I»«vc - NvtiCApe <2»
„ E1** ^iew Qo fioo»jn4rtn looH ^^4ow bdp

. □.

Q0 J Q s J CEEI
i:\ s l Home Hebe ape Sesrc^i v GKmary of Ter . Hew Do These , UHiten Malay? I

r j Hew Tab [3 *•**>£

«LU

Your I k . . 1 ,2 ,3 ,4 .S ,6,7,8,9,

Totk u , « , - t k l . - 1 ,2 .3 ,4 .5 .6 .7 .8 .9 .10 , U , 1 2 ,1 3 .14.15 .16 ,1 M 8,19 .20 ,

Uk*I

Server Me »**e framm Amu # >hcU>Ul vie* «lkk5 ot 2ft :
9 a & *y □ w *!«>«

Figure 7.12: Output of Program with Contention Protocol.

There were five people involved in this case study, three from the computer science depart­
ment (CS) and two from the engineering department (ENGR) at Swansea University. While
two of these participants have some experiences in networked programming, others have
none. However, all participants have a programming background, even though, the level of
expertise may varies. Table 7.3 shows the data about all the participants’ background ob­
tained from the survey questions. A scale of 1 to 5 is used to indicate the level of experience,
with 5 indicating the most experienced.

PARTICIPANT DEPT PROGRAMMING
SKILL

NETWORK
EXPERIENCE

TYPING
SPEED

(word/minute)
1 CS 5 5 22.5
2 CS 4 2 24
3 CS 3 1 22.5
4 ENGR 4 1 21
5 ENGR 2 1 10.5

Table 7.3: Participants Background Data.

Other data recorded from the study includes:

• The teaching time.

• The participant’s program writing (typing) time.

• The participant’s time on compiling (and editing) programs.

The teaching is conducted individually so that each participant can get the full attention
and concentration. However, the method and teaching environment are the same for all.

7.5 Performance Analysis 182

Although the presentation of teaching materials takes about the same amount of time, the
time for question and answers is also considered as that depends on the participant’s under­
standing of such materials. The time is recorded after all participants are given the overview
and basic concepts of the networked collaborative systems. Table 7.4 shows the recorded
time to teach JACIE for its simple concept (Tl) that can get the participant ready to write
the first program (QI). It also shows the teaching time (T2) to introduce several additional
statements to enable the participant to write the second program (Q2). The participant is re­
quired to compile both program one (Ql(Compile)) and program two (Q2(Compile)). Some
additional program editing may be necessary when doing the compilation. Later, the partici­
pant has to write the last program (Q3) to determine the time taken to change the interaction
protocol of the same application (the second program). The time measured for all the above
work is in minutes (m). The program can be written in several different ways.

NO T l Q l Ql(Compile) T2 Q2 Q2(Compile) Q3
1 8.6 m 9.2 m 2 m 7.9 m 13.5 m 3 m 12.3 m
2 8.2 m 7.5 m 3 m 8.5 m 25 m 6 m 13.5 m
3 11.2 m 11m 3 m 13 m 17 m 7m 14.8 m
4 11m 11.5 m 3 m 12 m 18 m 6 m 14.5 m
5 12 m 16 m 6 m 15 m 24 m 8m 17.7 m

Table 7.4: Learning and Testing Sessions.

Here, there are several factors that can influence the recorded time for writing the programs.
For each participant, the background, programming experience, the understanding of net­
worked collaboration, the ability to learn new knowledge and the typing speed may have
the effects. From Table 7.4, we see that the longest time to write the ‘Hello’ program is 16
minutes for participant 5, who has the lowest level of skill. Participant 2, who has a very
good programming skill, completes program 1 in the shortest time. However, participant 2
also has the fastest typing speed, so this could account for the good result for this simple
program. Column T l, indicates that the simple concepts of JACIE can be taught within
15 minutes, allows the participant to write a client/server program. In writing the second
program, participant 2, who is considered as a good programmer and has the fastest typing
speed, takes almost the same time as participant 5. This is due to the fact that this particular
participant has gone beyond the minimum requirement by writing the second program using
long variable names, producing several user friendly program output and also adding sev­
eral comments in the program. Participant 1,3 and 4 have similar 50 percentage increased
in time to write this program compared to the first.

In writing the last program, all participants have shown a decrease in time for writing this
program compared to the second. On average, all of them take about 1 to 1.5 minutes to
determine the required changes in order to write the same program with different protocol
as JACIE provides the interaction management statement. There are only two changes to
make to the program,

• change ‘protocol roundrobin’ to ‘protocol contention’ and

• delete ‘pass turn’ statement.

7.5 Performance Analysis 183

Since the program is quite long, the length of time for each participant is constrained by
the typing speed. The results have shown that all of them have very close time differences
regardless of their experiences.

This case study has drawn several important findings. It concludes that JACIE is a sim­
ple programming language to learn based on the following factors.

• The number of presentation slides.

• The amount of teaching time.

• The number of provided materials for references.

• The amount of programming time.

• The amount of time to write a similar application with different interaction protocol.

With its templated-based feature, the structure of the program can be easily managed. This
allows the participant to follow the flow of the program especially the networked support
that hides the connection details and combining both client and server in a single program.
Even someone with less programming skill can write a program in a short period of time
similar to others when all of them are introduced to JACIE. With its interaction management
features, one can easily modify one or two lines of code. Again, the programming experi­
ence has not much different since this feature eliminates the burden on the programmer to
write quite a complex algorithm when changing the turn protocol. One of the participant
had given a positive comment by stating that ‘in JACIE, a programmer is only concerned
with what to do rather than worry about how to do it’.

An attempt had been made to conduct a similar experiment in Java for comparative pur­
poses. For this reason, some materials for teaching in Java is prepared. In order to keep the
same number of slides as teaching JACIE, the output of the ‘Hello’ program has to be simple
without the graphical user interface. Therefore, the client program only produces text-based
line by line output. Figure 7.13 shows the output of both server and client.

The program is written in two different files that are compiled separately. Four slides are
prepared that consist of the followings.

• Program layout, specifications and related features (e.g., object oriented, class defini­
tion, Java main method, Java syntax, etc.).

• The related programming features in Java (e.g., API packages, socket definition and
connection, garbage collection, etc.).

• Server program requirements.

• Client program requirements.

The approximate teaching time without the question and answers, takes about 45 minutes
to deliver (compared to 15 minutes for teaching JACIE for the ‘Hello’ program). A sample
program that involves client/server is taken from the Bruce Eckel’s book, ‘Thinking in Java’
[105]. This sample program is shown to participant 4, who has experienced in C language,
without the object oriented features. This particular participant is reluctant to continue with

7.5 Performance Analysis 184

S ess io n Edit View Settings Help

c s s i t i/Docu merits > java H elloServer j*
S ta r ted : ServerSocket[addr=0.0 .0 .0 /0 .0 .0 ,0 ,p ort= 0 ,loca lp ort= 8080]
Connect ion accep ted : Socket[addr= localhost/1 2 7 .0 ,0 .1 ,port=49029, lo ca lp o r t=8080]
Server: OK: H ello
Echoing: C lien t: H ello
c l o s i n g . . . X
cssiti/D ocum ents> D “

1 (0 Shell

S ess io n Edit View Settings Help

c s s i t i /Docu merits > java H elloC lien t a
addr = lo c a lh o s t /1 2 7 .0 .0 .1
socket = Socket[addr=lo c a lh o s t /1 2 7 .0 .0 .1 , p o t t=8080, localport=49029]
C lien t: H ello
Server: OK: H ello —
c lo s in g . . a

cssiti/D ocum ents> u ▼

|T J Shell

Figure 7.13: Output of Java Hello Program

the user study. The reason is that the Java syntax and the program flow are very hard to
follow. Similarly to other participants, they are worried about the time factor involved and
the complexity of the program. Therefore, with these responses, the case study on the Java
language was not carried out.

In conclusion, this small case study shows that JACIE is a simple language to implement
a networked application. It is able to keep a reasonable amount of time to learn, write and
execute. The interaction management features help inexperienced programmers to manage
user interaction in a program without concerning the details implementation of the protocols.
Therefore, a programmer can focus more on the application’s requirements.

7.5.3 In teraction vs. T ransm ission Delay

Interactive collaboratian requires the user to respond to the shared application in order for
all the users to work together at the same time. Therefore, a few experiments have been
carried out to determine the delay in the interaction and communication. Using the round
robin and contention protocols in the variations of the noughts and crosses games, the time
taken by a user (player) is recorded and printed in the output of a JACIE pre-defined server
program. The relevant values (in millisecond) that are considered include the following.

• The packet transmission time between the sender and receiver.

• The time for a user to make a response to a computer.

We experiment with the transmission for two different conditions. First, the network trans­
mission is calculated without any ‘working data’ using a p in g command. Second, the
transmission involving data in playing a generalised game (Section 5.3.3), where the trans­
mission between client and server is recorded with first message from server to client. The

7.5 Performance Analysis 185

server records its time before this first message is sent. Upon receiving the first message, all
the clients record their time and send back a message to the server. Then, when the server
gets these messages, another recorded time is set. At the same time, the server also acknowl­
edges the receiving message by sending another message to the corresponding client. In this
way, both server and client can record the time for a transmitted message in a cycle.

MACHINE CASE 1 (Game played) CASE 2 (ping command)
SERVER CLIENT SERVER CLIENT

1 1 ms 0 ms 0.026 ms 0.015 ms
1 ms 1 ms 0.028 ms 0.018 ms
46 ms 46 ms 0.027 ms 0.021 ms

2 4 ms 0 ms 0.176 ms 0 ms
9 ms 10 ms 0.189 ms 0 ms
1 ms 10 ms 0.181 ms 0 ms

3 1 ms 0 ms 0.191 ms 0 ms
2 ms 0 ms 0.250 ms 0 ms
1 ms 0 ms 0.211 ms 0 ms

Table 7.5: Transmission Delay Between Server and Client

Table 7.5 shows the results recorded for the transmission delay. Case 1 refers to recorded
time of message transmission while executing the generalise game and Case 2 is the time
recorded using the p in g command. The unit of data is in milliseconds (ms). In Case 1,
there are a lot of messages transmitted during the whole game. However, here, there are
only three consecutive transmissions in three turns are shown. There is a sudden increase
in the transmission time for the third data (Machine 1). It may be caused by the number of
users working on the network or the number of concurrent jobs executing on the machine.
Case 2 shows three consecutive packet transmissions. Since this test involves three different
machines, such data can be influenced by the machine speed. Therefore, the concern is to
compare the transmission rate of the same machine on two different conditions.

It is also significant to record the amount of time taken by a user to make a response to
the computer. Here, we record the time for a user to click a mouse as quickly as possible.
In comparison, a vicious battle (Appendix A.5) is played to record a message sent for every
symbol put on the game board. A player clicks the board as quickly as possible to put five
symbol in a row. Every action is recorded and printed in the output of the JACIE pre-defined
server program.

Similar to the above approaches, Table 7.6 shows the results for message transmission dur­
ing the vicious battle game for the same machines and the response time of the same player
on the corresponding machine. With the same amount of data to be transmitted from ei­
ther server or client as in the generalised game, this table shows the massive increase in the
amount of time when the message is sent according to the number of user’s action. This is
represented by Case 1. Case 2 is the average amount of time for a user to do a mouseclick on
the corresponding machine. The amount of time shows that the user response is about 1000
times higher than the message transmission rate. Both of the variations of the noughts and
crosses games used do not involve a lot of calculations that can influence the delay. Table

7.6 Summary 186

7.5 shows the comparison that most of the transmission takes 0 to 46 milliseconds with little
difference between the transmission without the game.

MACHINE CASE 1
(Game played)

CASE 2
(Machine Interaction)

1 947 ms 201 ms
1230 ms 191 ms
1100 ms 193 ms

2 2258 ms 230 ms
2054 ms 223 ms
1645 ms 228 ms

3 980 ms 210 ms
1372 ms 250 ms
2233 ms 255 ms

Table 7.6: Interaction Delay on a User

In conclusion, both Table 7.5 and Table 7.6 show that the user’s response has the larger
impact on the delay for both games. Case 1 and 2 for Table 7.5 shows the small value in
the results as this relates to the data transmission only while Table 7.6 has larger values
when it represents the interaction. Therefore, network transmission time can be seen to be
insignificant when compared to the user response time.

7.6 Summary

This chapter presented the implementation of the online Bridge game to test the design of the
interaction protocols, and the simulation of network trouble shooting for testing the design
of the interest management language constructs. Both applications have been successfully
implemented and justified the significance of the design. In addition, several experiments
have been undertaken for testing the JACIE language, interaction management features and
the delay problem in some example programs presented in this research.

Online bridge, which is a complex and difficult game to implement usually requires an
experienced network programmer if it is to be programmed using an ordinary general pur­
pose language such as Java. JACIE has provided not only an easy to program feature, but
also a collection of interaction protocols to fulfil the complicated interaction needs of the
game in a structured manner. We have presented this game using three different protocol
options. One is achieved using a built-in control protocol ro u n d r o b i n throughout the
game while the other two are implemented with dynamic changes using protocols m a s te r
u s e r and p r o t o c o l g ro u p . The new language constructs can provide a JACEE pro­
grammer several protocol options in implementing an application.

The other application, that focuses on e-leaming, shows how interest management can fa­
cilitates a programmer in implementing secure and efficient data sharing in a collaborative
application. As most e-leaming applications rely on a chat channel for communication, this

7.6 Summary 187

example shows that the chat channel is not the only possibility. With the data sharing facili­
ties, one’s resources can be shared and accessible by the users in accordance with the rules
and specifications set by the owner. Therefore, it is an easy and helpful way for e-leaming
as information can be accessed directly from the owner’s site.

The results on the experiments and conducted case study have shown that JACIE is a simple
language. The interaction management is significantly helpful for programming multiuser
networked systems. The presented example programs (the noughts and crosses games) show
that the network transmission delay has insignificant effect.

Chapter 8

Conclusion

Contents

8.1 Summary of Contributions
8.2 Future W ork.....................

189
192

In this thesis, issues of interaction and interest management in interactive networked collab­
orative systems have been discussed. This work provides a set of new language constructs
for interaction control protocols and data sharing incorporated into the scripting language,
JACIE (.Java-based Authoring Language for Collaborative Interactive Environments), and
has achieved its objectives as outlined in Chapter 1. In particular,

• We have conducted an abstract study of the interaction activities and data transmission
in networked collaborative environments through a large number of variations of the
noughts and crosses game.

• We have designed a set of high level language constructs for specifying a variety of
interaction protocols.

• We have designed a set of new high level language constructs for specifying secure
variable sharing.

• We have implemented these language constructs in the form of a major extension of
the scripting language JACIE I.

• We have developed two demo applications for demonstrating the technical feasibility
and usefulness of the design.

• We have improved the JACIE I compiler and some of its language features.

In general, the enhancement of the language and its compiler allows a wider coverage and
flexibility in designing and implementing various forms of interactive collaborative appli­
cations. For the interaction management, the new language construct provides the use of
simple statements with several options. It gives further flexibility to JACIE II programmers
to add or set their own interaction protocols. It is also allowable to dynamically change
the protocol setting in the middle of a session. The interest management constructs allow a

188

8.1 Summary o f Contributions 189

fast and simple way for variable sharing among users. These new features that are added to
JACIE, not only provide a secure means of resource sharing, but also interest filtering that
helps prevent the server from sending unnecessary messages to clients.

8.1 Summary of Contributions

This work started by doing a comprehensive survey on the interaction and interest manage­
ment in networked systems, programming languages and software tools. This study gives a
broad understanding of commonly employed techniques in handling interaction needs and
secure data sharing with filtering features. Several systems within networked collaborative
systems have also been reviewed to look into the system features and related applications.
The following subsections describe the work that we have contributed in order to provide
the proposed interaction and interest management language constructs.

Selected parts of this thesis have been presented in the following publications:

• the IEEE International Symposium on Multimedia Software Engineering under the
title Managing Interaction for Multimedia Collaboration - through the keyhole o f
noughts and crosses game [3], in Florida, USA.

• the Elsevier Journal of Network and Computer Applications under the title Designing
Interaction Protocols using Noughts and Crosses Type Games, Volume 30, Issue 2,
April 2007 [4].

8.1.1 The Collection o f Interaction Protocols

We extended and elaborated the previous case studies on the noughts and crosses game
[139]. The study of similar games to the noughts and crosses, either cell-based or in other
forms had also been considered. Games, such as Gomuku, Connect-4 and Three Stones, are
examples of related games. With some modifications to the game rules, we introduced many
variations of the noughts and crosses game. At the same time, to have a realistic design, the
real applications associated with the games variations have also been studied and proposed.
Details on this case study are described in Chapter 5. Formal notations for modelling the
spatio-temporal activities in a noughts and crosses game have also been outlined.

8.1.2 Interaction M anagement Implementation

Although the concept for interaction management was introduced in the JACIE I language,
the constructs provided were not easily customisable. This became quite apparent when we
attempted to implement many variations of the noughts and crosses game. These variations
provided us with an effective means for identifying the many different types of protocols
that can exist and the useful parameters for their customisation.

8.1 Summary o f Contributions 190

The language constructs that we have implemented include the protocols round robin, con­
tention, reservation, master, tapping and group protocols. Within protocol contention, we
also introduce another protocol contention hold, which is similar to ‘first come first serve’
and within protocol master, programmers can have several options whether to select the
server (by default) to be the master or otherwise, choose one of the client as the master.
The programmers can also choose to add their own design of application specific protocols
without relying on the provided protocols. For handling groups, the protocol userdefined,
roundrobin, random and master can be used to select one member from a group to han­
dle inter-group collaboration. Some customisations that have been added to these protocols
include timer options (turn timer, overall timer, silence timer and rest timer), number of
actions per turn and several supporting statements (turn pass, action start, action end, turn
request Boolean, turn set client and turn set group).

8.1.3 Interest M anagement Implementation

We have initiated an original investigation into the subject of interest management by re­
viewing the possible systems that have such mechanisms. The types of shared resources and
the techniques involved have also been studied. We looked at several shared resources such
as shared memory, shared object, variable, program component and database. The design
and implementation of sharing such resources are applied in many systems such as paral­
lel, concurrent, multi-agent, database and general networked systems. We have studied the
interest filtering mechanisms in networked environments which are mostly implemented in
collaborative virtual systems and simulation systems.

For designing the language constructs, several factors have been considered that include
the access rules on sharing variables among users and the determination of user list that
represents the list of users who can be granted access rights on a shared variable. The ac­
cess rules include to own, not to own, to read, not to read, to write and not to write. Thus,
these access rules facilitate a user to become the owner of a shared variable and the user can
perform r e a d or w r i t e operations. The user list consist of all, others, group, me and a
specific list of users ({ p \, p.2 , ••• })• With the specific list, an owner of a shared variable has
the flexibility to select any user to have variable access without depending on any user clas­
sifications. Other user list options can provide a quick setting to particular classifications of
users. The security option on a shared variable is performed by a password protection that
can be used in the read/write operation.

In the relevance-based filtering, a user is required to set an ‘interest value’ and this value
will be compared to the owner’s ‘filter value’. Both of these values are between 0 and
1, inclusively. It is possible for both (user and owner) not to set any value that results in
the assumptions that the user is ‘not interested’ and the owner allows ‘no restriction’. The
f i l t e r i n g operation causes the user list to be filtered into user access list that represents
the actual users who are granted the access to a particular shared variable.

The new interest management statements include use statement for the owner to set shared
variable’s permission, set statement for read/write operations, check statement for selection

8.1 Summary o f Contributions 191

control on using the shared variable, and interest set and filter for filtering operations. Some
of these statements are tested on implementing one of the noughts and crosses game varia­
tions, namely Secret Switch.

8.1.4 M ajor Language Enhancements

In adding several new statements into a language requires several new productions for the
grammar. The new productions need several new non-terminal and terminal symbols. There­
fore, modifications have to be made on the existing JACIEI compiler to accommodate these
changes. For translating JACIE into Java, many new Java classes are introduced with addi­
tional new Java modules.

At the initial stage, the online Bridge game was implemented as a benchmark to identify
major components of the JACIE I language and its compiler. Once the original design and
details of the compiler constructions were known, the design of the language constructs
were built upon JACIE. Chapter 4 has provided a comprehensive review of this language
with its special features, compiler components, language architecture and other highlights
of the language. The structured compiler construction of this language had allowed our
design of the language constructs to enhance its features.

8.1.5 Demonstration Applications

Two applications namely an e-leaming program for the Simulation of Network Trouble
Shooting and online Bridge, were implemented using the extended JACIE language, JA­
CIE II. The implementations have proven that our designs facilitate flexible and simple to
program capabilities. Firstly, several protocols are tested in implementing the same game,
online bridge. Three different protocols have been used that enable us to compare and dis­
tinguish the usefulness of the protocol designs. Secondly, we implemented an e-leaming
application to test the interest management design. It is apparent that the language con­
structs give a fast way of communicating while allowing users to share their workspaces
rather than giving suggestions and discussions through the chat channel. Chapter 7 provides
examples of the code segments of these two implementations, together with a number of the
screenshots.

8.1.6 M inor Improvements on the Language and Compiler

In addition to the language extensions on the interaction and interest management, we had
also foreseen other issues that had related to these language extensions indirectly, but it is
significant to make some improvements for the overall language design.

In handling user collaboration concurrently, the race condition has become the issue that
must be taken into account. We have detected some parts of the compiler that may face the
chances of having the race condition and lead to the execution of thread to crash. Therefore,
we have made some changes to some parts of the compiler program to reduce these chances.

8.2 Future Work 192

We have introduced a new variable type, namely Grid2D so that any grid manipulation
on JACIE canvas channel can be performed clearly with its declaration and manipulation
are stated clearly. With this new grid type, the ‘grid object’ can be included in a parameter
list of a method that results in shorter and organised program.

It is significant to provide a programmer with information on some illegal attempts in de­
veloping an application. Therefore, we have introduces several new messages that can be
‘warning’ messages or ‘error’ messages. With the ‘warning’ messages, the compilation of a
user program continues by skipping the statements that contain the illegal actions, while any
error would terminate the program compilation process. Details on this work is described in
Chapter 4.

8.2 Future Work

The language JACIE, has now gone through its second major development. The first ver­
sion was concerned more with the ability of the language to provide a tool to easily design
and implement collaborative application with a set of multimedia channels, template and
event-based programming. In this second development, the comprehensive set of language
constructs for interaction management has been designed, implemented and tested. Even
though the main objective to implement a set of comprehensive interaction protocols has
been achieved, the group protocol needs further improvement, particularly on the selection
of group members. Currently, there is no flexibility in choosing the group members. The
selection is made by the JACIE compiler according to the users’ arrival. Users are assigned
to groups in a cyclic fashion. It is better for the protocol design to have some flexibilities
for the users to choose their groups according to some rules and regulations. This will give
a more realistic environment for group collaboration. The improvement on choosing the
group is not only when a user starts a session, but also, it is practical to allow one, some or
all the users to change their groups freely during a session.

Since the use of one or more types of timer options are permissible within one protocol,
JACIE allows the timer to be set at the start of a session. No changes to a timer option could
be done during the ongoing session. Therefore, there are no timer options for the dynamic
change in the protocol setting. To add this feature, it requires quite substantial changes to
the code translator. Having dynamic timer options along with the dynamic protocol settings
can give great flexibility in the interaction management.

As for interest management, there are many rooms for further improvements since this fea­
ture is still new in JACIE. For example, the only filtering technique available is fixed and
rigid with a preset value in [0 . . . 1]. Other research has proved that there are a wide range
of methods in determining users’ interests such as user distance and interaction frequency.
Including these choices of filtering methods into JACIE requires specific algorithms for fit­
ting them to the JACIE language background.

The access method that we have implemented is achieved according to a certain set of user

8.2 Future Work 193

lists. The user lists consist of all, others, group, me and a specific list o f clients. It is possible
to add the user list by introducing a combination of groups in the form similar to the specific
list o f clients that we already have.

In general, the language itself, JACIE has not focus on developing its visual representa­
tion and graphics capabilities. It caters for 2D graphics presentation. Before the start of
the second version of language enhancement and development, we studied the possibili­
ties of implementation under a different environment. The .Net Framework was our target.
The idea behind this environment change was to ease enhancement of visual representation
and graphics features provided by .Net. However, since building a language relies heavily
on compiler construction, this aim was abandoned because there were no compiler tools
provided under the .Net environmental at that time. Eventually, the development of this lan­
guage continued in Java.

In collaborative systems that involve concurrent processes, a race condition can happen.
In JACEE, it has been detected that a race condition can happen at both server and client
programs. In both programs, each has a queue to be used in message exchange between
them. In the future, a locking mechanism can be included in the program when the action to
add data into the queue and retrieve data from the same queue are to be made. It is to ensure
that both actions can be performed in a mutual exclusive manner.

The language provides a set of multimedia communication channels. All the channels are
designed and implemented to serve the basic needs of communication. Improvement of the
advance features of such channels can provide the language with powerful tools in building
interactive collaborative applications. For example, these channels could have the flexibil­
ities to be set as private or public at any time. However, this improvement requires a lot
of research and programming effort as Java can provide various options to implement very
good, structured and flexible communication methods.

Appendix A

Variations of the Noughts and
Crosses Games

The variations of the noughts and crosses games summarised in Table 5.1 are described in
more detail in this appendix.

A.l Five-in-a-line

Five-in-a-line game, which is called Wuzigi in China, Gomuku in Japan, Gobang or Goban
in the West, is usually played with a Go board game set. It is commonly played in China,
Japan and Korea as an initiation for beginners of Go. It uses a board, Figure 5.1, with 19 x 19
grid points (as pieces are placed on grid points rather than in cells), and black and white go
pieces are used instead of noughts and crosses. A player, who first completes a 5-cell line
horizontally, vertically or diagonally, wins the game. The game is usually associated with a
more elaborate set of rules than noughts and crosses, for example, any player must announce
if he/she reaches a condition that could lead to victory if undefended by the opponent.

In terms of interaction management, and related applications, this game can be consid­
ered as a special case of the generalisation in 5.3.3. It also uses round robin mechanism
that can support similar applications as mentioned before, however, additional and probably
more complicated rules can be included to the implemented applications. For example, in
an automatic tele-information service, a user is allowed to have immediate contact to an
appropriate person for help support in any special cases.

A.2 Connect-4

A connect-4 board is a vertically-standing (instead of flatly laid) grid of cells, typically of
7 x 6 cells. Two players are assigned to red and green pieces respectively. Each player takes
it in turn to drop one of his/her pieces from the top of the board into one of the column

194

A.3 Three Stones 195

slots with empty cells, hence only the lowest empty cell in any column is ‘modifiable’. A
player who first completes a 4-cell line (horizontal, vertical or diagonal) wins the game. It
is possible for a game not to have a winner.

This game can be generalised in a similar way to the traditional noughts and crosses games.
From the perspective of interaction management, this game introduces the notion of ‘un-
modifiable’ cells, H, as illustrated in Figure 5.1. The mechanism for changing the state
of an empty cell from H to □ is also interesting, as it can be facilitated by appropriate in­
terest management and may require the incorporation of application-specific code segments.

The modifiability of an interactive component is not uncommon in practical applications.
For example, complex online forms in web-based interaction often have items activated or
deactivated after some other items are filled in. One can also imagine in a collaborative de­
sign environment (e.g., computer-aided system design or computer-aided geometry design),
available design options change during the design process according to the previous design
steps taken.

A.3 Three Stones

This is a two-player game using an octagonal board as shown in Figure 5.1. Each player
takes turn to draw a stone from a pouch but normally can only place the stone in any empty
cell in the same row or column as his/her opponent’s last played. In the case no empty cell
satisfies this condition, the player can place the stone in any empty cell on the board. There
are three different colours of the stones in the pouch, namely black, white and clear, with the
clear stone considered as a ‘wild card’ for both black and white. Two players are assigned to
black and white respectively. Every time a move results in three stones of the same colour in
a row, a score is awarded to the player associated with that colour. When a player draws out
a stone of the opponent’s colour, he/she must also play, usually in a way to avoid awarding a
score to the opponent. The player with the highest score when the board is completed filled
wins the game.

In addition to the complexity introduced due to the wild card and the octagonal board, like
connect-4 in A.2, the game also requires the management of the modifiability of empty cells.
Therefore, in the application such as online form filling, users can have greater flexibilities
in filling the form by having more selections of the ‘activated’ items to work on and they
can also choose whether or not to give information on selected sections.

A.4 Hasty Battle

This is one of the imaginary games, designed to address the interaction needs of some col­
laborative applications. Similar to the generalised noughts and crosses game in 5.3.3, two
players are assigned to nought and cross respectively. There is no turn control in this game.
Both players place their assigned symbols, one each time, in any empty cells as fast as they

A. 5 Vicious Battle 196

can. The player, who first completes a w-ce\\ line horizontally, vertically or diagonally, wins
the game.

Though the fact of not having any turn control seems to contrary to the essence of collabo­
ration, this feature is common place in numerous real-life or computer based collaborations.
It is usually an efficient and effective means for managing access to shared resources in a
distributed collaborative environment, for example, accessing critical sections of a shared
database, and queueing for printing facilities. It is this imaginary game that raises a number
of design issues for the contention protocols in Section 5.4.2, and challenges the process
for validating user actions, and resolving conflicts in interactions. In any of its applications,
such as printing queueing, it is important to ensure that only one user is having access while
other users must wait until the particular user finishes the printing and releases the printer.
In this work, the term for this protocol is called contention.

A.5 Vicious Battle

This is an imaginary game that goes further than the hasty battle in A.4 in simulating un­
managed, or almost unfriendly, collaborations. The game has neither turn control, nor cell
control. Like hasty battle, two players are assigned to nought and cross respectively, and the
player who first completes a u;-cell line wins the game. However, unlike hasty battle that
has a cell control mechanism, players can overwrite symbols that are already in the cells. In
other words, the game requires the use of three modifiable states, namely □ , [o] and [x] as
defined in Section 5.3.2 until the game ends.

One might think that there is no place for such an unmanaged and unregulated interac­
tion protocol in collaborative activities. In fact, many shared applications in collaborative
environments have been designed and developed in this manner. For instance, a shared
whiteboard in video conferencing normally does not have any turn control or domain con­
trol. Users are free to overwrite anything drawn on the board previously, and are ‘trusted’ to
self-regulate their interactive activities.

This game has also an interesting minor variation, where two players are required to swap
their assigned symbols after a certain period of time A T until one wins the game. At the
end of each period AT, the player who was playing with nought will play cross in the next
period of AT, and vice versa. This can be considered as a simplified scenario where two
authors are working on different aspects of a document collaboratively through a shared
word-processor application and swap their roles after a period.

This game is also implemented using contention protocol, similar to hasty battle A.4, but
vicious battle allows the resource, such as shared whiteboard, to be written to by any user at
any time.

A.6 Gentlemen’s Battle 197

A.6 Gentlemen’s Battle

Similar to the generalised game in 5.3.3, except that each player is required to inform the
opponent of the cell where he/she is about to place a symbol. The player can place the sym­
bol only after getting a permission from his/her opponent.

Although this is almost nonsensical and unworkable as a competitive game, it features as an
essential protocol in any courteous human interaction and collaboration. It challenges the
efficiency of protocol management with extra interactions between clients in a computing
environment, despite the fact that it is often achieved in real life in a spontaneous, effortless
but effective manner.

This interaction protocol is commonly found in a forum discussion where there is no proper
order of user turn to be performed. Based on the matters being discussed in the forum, the
current user can appoint any users (participants) to speak and it is important to make sure
that only one can speak at any given time.

A.7 Dictator’s Entertainment

This is perhaps the opposite of the gentlemen’s battle in A.6. Two players are assigned to
nought and cross respectively. Two players take it in turn to place their assigned symbols.
The turn is determined by a ‘dictator’ (e.g., the server) at random. The player, who first com­
pletes a 5-cell line horizontally, vertically or diagonally, wins the game. A minor variation
is to introduce a turn timer, which allows each player to play as many symbols as possible
within a set period Stum-

Despite the less pleasant name of the game, we can find many collaborative activities are
conducted, to a large extent, in such a manner, for example, in an e-leaming class involving
a teacher and several students, floor management of an online meeting, computer-assisted
testing with automatic question selection.

In e-leaming class, the ‘teacher’ role represents the ‘master’ who can control the turn of
all the students in the class by a random order. Similar to an online meeting, the ‘master’
is the chairman who usually assigns the turn according to the matter being discussed and it
can also be performed at random.

A.8 First-Come, First Served

Like the hasty battle in A.4, two players compete for their turns. However, unlike the hasty
battle, once obtaining a turn, a player can hold on to it, and places as many symbols as
he/she likes, until the player voluntarily gives it up. To prevent indefinite holding of a turn,
a turn timer can be introduced to limit each player to have a maximum of 8turn € (0, oo)
seconds in each turn. Alternatively a silence timer can be used to seize the turn control back

A.9 Opportunity Knocks 198

after a predefined period of 6suence 6 (0, oo) seconds within which the player fails to make
any move.

As a competitive game, it would probably work only with very large values of N x, N y
and w. However, in real life collaborative activities, this is a very typical playground pro­
tocol. It can also be deployed successfully in applications involving the control of shared
resources, for example, camera control in collaborative surveillance [78]. In this applica­
tion, a user who is fast enough to hold a camera control button, blocks others from getting
the turn control. In this way, the user in control can view the videos that are presented by
all the provided cameras, while other users can have other attempts once the camera control
button is released.

A.9 Opportunity Knocks

Similar to the dictator’s entertainment in A.7, this imaginary game also involves a ‘master’
(e.g., the server), which randomly sets 50% empty cells modifiable, □ , and the other 50%
unmodifiable, ■ , at the beginning of each turn. Two players take it in turn to place their
symbols, one each time in a modifiable empty cell. A minor variation of this game may also
include opportunities, again randomly generated, for overwriting the opponent’s symbol.

From the perspective of protocol design, this game requires dynamic management of an
action domain as in the connect-4 game in A.2. In fact, the minor variation of the game
involves the use of the full set of cell states, S = { Q H ,© ,® ,® ,® } - This simulates cer­
tain aspects of collaborative activities, where the operational domain of each member in a
team is restricted but can change dynamically. The management of the changing operational
domain is not a trivial task in any distributed software, leading to the discussions on interest
management in Chapter 6.

This game is implemented using round robin and its management can be found in real appli­
cations such as in an emotional IQ test. This test can describe a person’s ability to understand
his or her own emotions and the emotions of others so that appropriate action can be taken
based on this understanding [168]. The set of questions can be presented randomly and the
score is based on the selected questions and answers.

A.10 Secret Switch

In this imaginary game, there is a special cell, called secret switch, on (or attached to) the
game board. The secret switch is initially set, randomly and secretly, to either a nought or
a cross. Similar to the generalised noughts and crosses game in 5.3.3, two players take it in
turn to place their symbols. However, at the beginning of a turn, each player must first guess
what is in the secret switch, either a nought or a cross. If the player guesses correctly, he/she
continues to place an assigned symbol on the game board; otherwise no move is allowed.
Before passing the turn to the opponent, the player resets the symbol in the secret switch to

A. 11 Group Games 199

either a nought or a cross, for the opponent to guess.

This can be seen as an abstraction of collaborative applications with security management,
such as accessing distributed databases or other resources that are protected by passwords.
In implementing these applications, it is important that user access rights must be deter­
mined before hand so that any attempt to read or modify data can be protected.

The secret switch can be implemented in many ways. We are particularly interested in
how such a mechanism can be supported by an interaction protocol, and how the ‘shared
space’ of the special cell Can easily be specified with appropriate program constructs. Both
of these two issues will be addressed in Sections 5.4 and Chapter 6.

A .ll Group Games

Most of above-mentioned games can easily be generalised to involve more than two play­
ers. Here we focus on a group game that is uncomplicated but introduces essential additional
needs in protocol design. We consider two groups with 2 players in each group. In such a
setting, there are two levels of protocol management, that is, between groups and within
a group. Consider a simple round robin mechanism for managing turns between the two
groups. Two groups are assigned to nought and cross respectively. Each group takes it in
turn to place its assigned symbols. The group that first completes a w-ce\\ line wins the
game. We can have many different schemes for managing turns within each group. For
instance, (a) players within a group may also take it in turn, (b) the first move whichever
player plays becomes the group’s move, (c) only one player (i.e., a leader) in each is allowed
to make a move, or (d) players can be allowed to discuss the move and decide their move
in consultative manner. Such a protocol can also be moderated using a group turn timer,
especially when discussions are allowed in a group.

It is not difficult to imagine many applications that fit this particular model, as many collab­
orative activities involve multiple teams and groups, which work in a collective and often
co-ordinated manner. Several users can form a group, then collaboration among the groups
can be performed. There are several issues that can arise that include the determination of
group members and the inter-group interaction protocol.

An example application that facilitates this protocol is in a group discussion. In this ap­
plication, manipulation of timer options such as round robin with time out can be used for
the case that requires several stages in discussing a subject matter. It is possible to ‘reward’
users with extra time if they have used less time at the beginning and more time towards
the end. It can be imagined that users need a short duration of time in ‘brain storming’ ses­
sion at the beginning of the discussion, and later, extra time may be required to discuss the
conclusion.

Appendix B

Nomenclature

All the terms used throughout this thesis can be divided into two different tables. One
consists of the common terms in the context of this research work and the other contains
the mathematical notations. As there are a lot of terms with different meaning in different
context, especially in areas of networked communication, Table B .l is provided to clarify
the meaning that this whole thesis is referred to.

Term Definition
Data sharing

Distributed system

Environment
Group collaboration

Interaction protocol

Interest management
Language construct

Networked Collaborative System

Software tool

Shared variable

Structured activities

System-defined program

Un-structured activities

Users

Any form of data that are globally used by
people in a collaborative system.
A system that consist of more than one computers
at distributed places and link together.
A situation where users are working
The interaction between several users that form
a group.
A rule that governs structured interactive
activities.
A filtering of secured data access.
A part of a language that has syntactically
determined elements to form a statement.
A system where several people work together
remotely and are connected by a network.
A provided software system to assist a system
developer in implementing networked applications.
An identifier declared to commonly used in an
application.
Users’ activities that must be performed in a
specific order.
A set of instructions written by a language
developer/designer.
Users’ activities that require no specific turn
control mechanism.
The people who involve in a collaboration.

200

201

User-defined program__________ | A set of instructions written by a programmer.
Table B.l: Technical Terms.

The following table, Table B.2, lists mathematical symbols commonly used in this thesis.

Mathematical Term Definition
G A game board

Number of cells in x and y directions
< h j > A cell position

N Set of all natural numbers
Mod Write access state; {mod, unmod}

K Set of all processors
P A processor

act A function to describe an action
Q A homothetic state
S A State
t Time parameter
K Number of clients
L Number of groups

grp A group
A discrete temporal function

6 A timer variable option

Table B.2: Mathematical Symbols.

Appendix C

The JACIE II Language
Specifications

JACIE II language specifications are divided into two sections that consist of its token spec­
ifications and the language constructs.

C.l Token Specifications

JACIE II data have two types; primitive and compound. The primitive types are listed in
Table C. 1 and the compound type is an array that can have a collective data of primitive
types.

Type Size/Format Description
int 4 bytes Integer
double 8 bytes Numbers with fractional parts
boolean t r u e or f a l s e Boolean
image g i f or j p e g typed images Image
string a series of characters between double Character string
grid2D an object a created Java Grid class

Table C.l: Primitive Data Type.

The operators for arithmetic operators are given in Table C.2 and relational and conditional
operators are listed in Table C.3.

Type Description Type Description
+ addition / division
- subtraction/negation % modulus
* multiplication

Table C.2: Arithmetic Operators.

202

C.2 Syntax Specifications 203

Type Description Type Description
> greater than | or
> = greater than or equal to & and
< less than * exclusive or
< = less than or equal to || logical or
—= equals to &;& logical and
! = not equals to 1 not

Table C.3: Relational and Conditional Operators.

JACIE comments are represented by symbol 7/’ for a one line comment and for multiple
line comment, it starts with the symbol 7*’ and ends with **/’. A variable name must begin
with a letter and be a sequence of letters or digits, which is similar to the variable declaration
in the Java language.

C.2 Syntax Specifications

This section provides JACIE II syntax specifications (in terms of productions) divided into
several components according to their features.

C.2.1 JACIE Program Body

< JACIE program >

< create application>

< create applet>

<jaciecontent>

< create applet option >

JACIE {
< create application > | < create applet>
}
application name < identifier> ;
<jaciecontent>
applet name < identifier> ;
[< create applet option >]
<jaciecontent>
configuration {
<program configuration >
}
messages {
< message definition>
}
client implementation {
< client program implementation >
}
server implementation {
<client program implementation>
}
appletlauncher

C.2 Syntax Specifications 204

Ctext button launcher > | < image button launcher>
< text button launcher> ::= text <string>
< image button launcher> ::= image < string>

C.2.2 JACIE Configuration Section

<program configuration> ::= < specify hostname>
< specify port number>
< specify usemame>
< configuration statement>

< configuration statement> ::= < specify channel> ;
< specify about> ;
< specify observers > ;
< specify number of groups > ;
< specify number of users > ;
< specify protocol > ;

< specify hostname> ::= host
< string > | prompt

< specify port number> ::= port
< integer number> | prompt

< specify username > :: = username
<string> | prompt

< specify channel > :
Cchannel name> :

:= channel <channel name> { , Cchannel name> }
:= canvas | chat | whiteboard | voice | video

< specify about> :

< about file> :

:= about
<string> | Cabout file>

:= file <string>
< specify number of users > :

< specify minimum> :
< specify maximum > :
< specify range number> :
< specify observers> :
< specify protocol > :
< protocol-choice > :
< specify user> :

<contention_option> :
<master_option> :
<master_choice> :

<timer_option> :

:= number of users
< integer number> | < specify minimum> |
< specify maximum> | < specify range number>

:= minimum < integer number >
:= maximum < integer number>
:= < specify minimum> upto < specify maximum>
:= number of observers < integer number>
:= protocol <protocol_choice> <timer_option>
:= group < specify group> | < specify user>
:= contention [<contention_option>] | roundrobin |

reservation | master <master_option> |
tapping

:= hold
:= server <master_choice> | client
:= random | userdefined

[turn < integer number >] [rest < integer
number>]
[overall < integer number>]

C.2 Syntax Specifications 205

[silent < integer number>]
[action < integer number>]

< specify group> ::= userdefined | random | roundrobin | master
< specify number of groups> ::= number of groups

< integer number> | < specify minimum> |
< specify maximum > | < specify range number>

C.2.3 Message Definition

Below is the productions for declaring user-defined messages that are sharable between
client and server.

< message definition > ::= [< one or more identifiers>]
<one or more identifiers > ::= < identifier> { , < identifier> }

C.2.4 Client Implementation and Server Implementation Sections

< client program implementation > ::= declaration
< variable and method declaration list>
on canvas
Ccompound statement>
on session start
Ccompound statement>
on session
Ccompound statement>
on session end
Ccompound statement>

< server program implementation > ::= declaration
C variable and method declaration list>
on server start
Ccompound statement>
on session start
Ccompound statement>
on session
Ccompound statement>
on session end
Ccompound statement>
on server end
Ccompound statement>

< variable and method
declaration list> ::= Cdeclaration list> ;
< declaration list> :: = C variable declaration list>

Cmethod declaration list>
C declaration list>

C.2 Syntax Specifications 206

C.2.5 Variable Declaration

Below are productions for the declaration of variables both at the client and server program.
The keyword ‘shared’ can be used in both programs. In the client program, this variable is
treated as a ‘global’ variable that is sharable by all the users, while at server, a variable with
‘shared’ declaration is used globally only to all of the server program components.

< variable declaration list>
<data types >
< variable declarator>
<primitive t y p o
< compound type>
< variable >
< variable initialiser>
< array initialiser>
< variable initialiser list>

{ [shared] <data types > < variable declarator>
int | double | boolean | image | string | grid2D
<primitive ty p o | ccompound ty p o
<variable> { , <variable> }
[<value>] { [= <value>] } <variable>
< identifier> [< variable initialiser>]
<value> | < array initialiser>
{ < variable initialiser list> }
< variable initialiser> { , < variable initialiser> }

C.2.6 Method Declaration Statements

Cmethod declaration list>
< method header >
Cmethod header list>
C formal parameter list>
C formal parameter>
Cmethod body>

{ [shared] Cmethod header> Cmethod body>
Cdata types> | void | Cmethod header list>
Cidentifier> ([Cformal parameter list>])
Cformal parameter> { , Cformal parameter> }
Cdata t y p o cidentifier>
Ccompound statement>

C.2.7 Basic Statements

Ccompound statement> ::= { [Cstatement list>] }
C statement list> ::= cstatement> | ; { cstatement> }
Cstatement> :: = C comment statement>

| Cexpression statement>
| c control statement>
| C iteration statement>
| c input output statement>
| c graphics statement>
| c event control statement>
| C communication statement>
| C interfacing statement>
| c interaction statement>
| C interest statement>
| ccompound statement>

C comment statement> Ctraditional comment>
Cend of line comment>
Cdocumentation comment>

C.2 Syntax Specifications 207

< traditional comment>
<end of line comment>
< documentation comment>

= /* {<commentcontent>} */
= // {<comment content>} d in e terminator>
= /** {< comment content>} */

C.2.8 Expression Statements

<expression statement>

< arithmetic expr>
< arithmetic >

< arithmetic symbols >
< unary expression >
< unary symbols >
< conditional expr>

< conditional symbols >
< relational symbols >
< array access >
< method invocation >
< argument list>
< postfix expression >
<expression>

< expression list>

< system variable>

< arithmetic expr>
| < conditional expr>
| < array access >
| < method invocation >
| < postfix expression >
<arithmetic> | <unary expression>
<expression> <arithmetic symbols>
<expression>
+ | -1 * | / 1 %
Cunary symbols> <expression>
+ | -1 !
< expression > < conditional symbols >
< expression >
|| | && | | | ~ | & | Crelational symbols>

<identifier> [<expression>] { [<expression>]}
< identifier> ({ < argument list> })
<one or more identifiers >
rnd (< expression >)
< unary symbols > < identifiers >
| <identifier> Crelational symbols> <identifier>
| < expression list>
< identifiers >
| <value>
| < system variable>
| < expression list> < arithmetic symbols >
< expression lists >
USERNAME | USERNUMBER | GROUPNUMBER
MESSAGEID | CURRENTTURN |
CURRENTGROUPTURN | GETTEXT | GETX |
GETY | GETGRID | GETGRIDX | GETGRIDY

C.2.9 Control Statements

< control statement>

< if statement>

< if statement>
| < check statement>
| cretum statement>
| cexit statement>
if (< expression >) <statement>

C.2 Syntax Specifications 208

{ else if (<expression>) <statement> }
[else <statement>]

Cretum statements ::= return [<statement>]
<exit statement> ::= exit

C.2.10 Iteration Statements

<iteration statement> ::= <for statement> | <while statement>

/ f n r c t Q f p m p t i t N * for (<for init> ; <conditional expr> ; <for
update>)
<statement> | < compound statement>

<for init> ::= < arithmetic expr> | < local var declaration>
<for update> : < arithmetic expr>
< local var declaration > ::= <datatype> <variable>
< while statement> ::= while (< conditional expr>

<statement> | <compound statement>

C.2.11 Input Output Statements

< input output statement> := < input stmt> | <print stmt> | <clear stmt>
< input stmt> ::= input creceiver list>
<receiver list> ::= <one or more identifiers>
< print stmt> ::= print <message bar> [<output list>]
< clear stmt> ::= clear cmessage bar>
< message bar> ::= servermessage | localmessage
< output list> ::= < expression list> [{ + < expression list> }]

C.2.12 Graphics Statements

< graphics statement> ::= Ccanvas statement> | <draw statement>
| < colour statement>

<canvas statement> ::= <canvas size> | <canvas definition>
| < canvas specify > | < refresh screen >
| < clean canvas >

<canvas size> := canvas size <pair expression>
< canvas specify > := use canvas < identifier>
< refresh screen > := refresh
< clean canvas > := clean
Ccolour statement> := foreground Cdraw colour>

| background <draw colour>
<draw statement> := <draw grid>

| <draw im a g o
| <draw string>
| <draw l i n o

C.2 Syntax Specifications 209

<draw grid>

<draw im a g o

<draw string >

<draw l in o

<paint grid>
<draw at>
<draw s i z o
<draw colour >
<draw width>
<flip choicO
<font t y p o
<font s ty lo
<move grid object>
<pair expression >
<draw colour >

| <paint grid>
| cm ove grid object>
draw <identifier> <draw at> step
<pair expression > <draw size> <draw colour>
<draw width >
draw image [< identifier>] < expression list>
<draw at> <draw s i z o [flip <flip choice>]
draw string [<identifier>] <expression list>
<draw at>[font <font t y p o] [<expression>]
[<font s t y lo]
draw line < identifier> from <pair expression >
to <pair expression> [<draw colour>]
[<draw width>]
paint < identifier> <draw at> <draw colour>
at <pair expression >
size <pair expression>
colour <draw colour>
width < expression >
horizontally | vertically | diagonally
arial | courier | times
plain | bold | italic | bolditalic
move to <identifier> <pair expression>
< expression > , < expression >
black | blue | green | cyan | red | magenta |
yellow | white | gray | darkgray | lightgray |
orange | pink

C.2.13 Event Control Statements

< event control statement> ::= <on event> | < pause statement>
<on event> ::= on <event> <compound statement>
<event> ::= WAITING | OBSERVERCONNECTION | TURN |

GROUPTURN | REQUESTCONTROL |
RESERVATION | SERVERABORT |
CLIENTABORT | NEWMESSAGE |
MOUSECLICK | MOUSEPRESS |
MOUSERELEASE | TEXTENTERED

< pause statement> ::= wait < expression>

C.2.14 Communication Statements

<send statement>

<send choice >
<send list>

::= send < identifier> < expression list>
[to <send choice>] ;

::= server | <send list>
::= all | others | group

C.2 Syntax Specifications 210

<receive statement> ::= receive <identifier> [<receiver list>] ;
< abort session statement> ::= a b o r t ;

C.2.15 Interface Statement

It is used to enable a programmer to include Java codes into JACIE. Below is the syntax
rules.

< embedded java code> ::= Java { <java code> }

C.2.16 Interaction M anagement Statements

Main parts of specifying these statements have been included in the Configuration Section
above. Therefore, below are the productions for specifying the supporting statements and
other related statements in managing user interaction.

< interaction statement> := Cpass turn statement> | caction statement> |
Ctumset statement> | Crequest statement> |
Ccritical statement> | Cdynamic statement>

<pass turn statement> := turn pass;
< action statement> := action start | end ;
< request statement> := turn request cboolean> ;
Ctumset statement> := turn set cset_choice>
<set_choice> := Ctumset client> | Ctumset group>
Ctumset client> := client Csetting> ;
< setting > := C identifier> | c integer number>
Ctumset group> := group [groupnumber c setting >] C choices >
C choices > := Csetting> , Csetting> ;
C critical statement> := criticalsection start | criticalsection end ;
C dynamic statement> : = C specify protocol >

C.2.17 Interest M anagement Statements

C interest statement> ::= Cpermission statement> | Cset statement> |
Ccheck statement> | cfiltering statement>

Cpermission statement> ::= use Cidentifier> by Cuser list> Caccess list> ;
Cuserlist> ::= csend list> | me | { cchoices> }
C access list> ::= [to own | not to own] |

[to read [with password c string >] | not to read] |
[to write [with password c string >] | not to write]

Cset statement> ::= set [with password C string >]
Cidentifier> = cexpression> ;

Ccheck statement> ::= check (cexpression>) cstatement>
{ else check (cexpression>) Cstatement> }

C.2 Syntax Specifications 211

< filtering statement>
< filtering owner>

< filter user>

[else <statement>]
::= < filter owner> | < filter user>
::= filter < identifier>

Crelational symbols> <double> ;
::= interest set <identifier> <double>

Bibliography

[1] H.J. Abbink. An Ada-based script language for simulation applications. ACM Ada
Letters, XVI(5):35^17, 1995.

[2] H. Abdel-Wahab, B. Kvande, O. Kim, and J.P. Favreau. An internet collaborative en­
vironment for sharing Java applications. In Workshop on Future Trends o f Distributed
Computing Systems, pages 112-117. IEEE, October 1997.

[3] Siti Z. Z. Abidin, Min Chen, and Phil W. Grant. Managing interaction for multimedia
collaboration - through the keyhole of noughts and crosses games. In International
Symposium on Multimedia Software Engineering, pages 132-135, Miami, Florida,
December 2004. IEEE.

[4] Siti Z. Z. Abidin, Min Chen, and Phil W. Grant. Designing interaction protocols using
noughts and crosses type games. Journal o f Network and Computer Applications,
30(2):586-613, April 2007.

[5] Howard Abrams, Kent Watsen, and Michael Zyda. Three tiered interest management
for large scale virtual environments, h t t p : / / w a t s e n . n e t /B a m b o o /p a p e r s /
v r s t 9 8 . p d f , January 2002.

[6] M.A. Addison and H.W. Thimbleby. Networked interpersonal communications: The
convergence of technology...with what? h t t p : / / c i t e s e e r . i s t . p s u . e d u /
302503 . h tm l .

[7] Adit. The history of noughts and crosses, h t t p : / /www. a d i t . c o . u k / h t m l ,
1996.

[8] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private
databases. In International conference on Management o f data, pages 86-97. ACM,
2003.

[9] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.
Addison Wesley, 1985.

[10] M.L. R. Almendros, M.J. R. Fortiz, and M. G. Megias. A framework for modeling
the user interaction with a complex system. In R. M-Diaz and F. Pichler, editors,
EUROCAST2004, pages 50-61. LNCS 2809, Springer-Verlag, 2003.

[11] G.R. Andrews. Distributed programming languages. In Proceedings o f the ACM
conference, pages 113-117, 1982.

212

BIBLIOGRAPHY 213

[12] G.R. Andrews, R.A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and
G. Townsend. An overview of the SR language and implementation. ACM Trans­
actions on Programming Languages and Systems, 10(1):51—86, January 1988.

[13] Miguel Antunes, Antonio Rito Silva, and Jorge Martins. An abstraction for awareness
management in collaborative virtual environments. In Symposium on Virtual Reality
Software and Technology, pages 33-39. ACM, November 2001.

[14] Reflexive Arcade. Card game bridge, h t t p : / / t a k e g a m e . c o m / g a m b l i n g s /
p i c t u r e s / b r i d g e . jpg .

[15] R. Athauda, N. Kodagoda, J. Wickramaratne, R Sumathipala, L. Rupasinghe,
A. Edirisighe, A. Gamage, and D.D. Silva. Integrating industrial technologies, tools
and practices to the IT curriculum: An innovative course with .Net and Java plat­
forms. In SIGITE’05. ACM, Oct 2005.

[16] D.L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A domainspecific language for
formbased services. IEEE Transactions on Software Engineering, 25(3):334-346,
May/June 1999.

[17] J.S. Auerbach, D.F. Bacon, A.P. Goldberg, G.S. Goldszmidt, M.T. Kennedy, A.R.
Lowry, J.R. Russell, W. Silverman, R.E. Strom, D.M. Yellin, and S.A. Yemini. High-
level language support for programming distributed systems. In Conference o f the
Centre for Advanced Studies on Collaborative Research, pages 173-196. ACM, Sept
1991.

[18] J.C.M. Baeten, H.M.A. van Beek, and S. Mauw. Specifying internet application with
DiCons. In SAC 2001, pages 576-584. ACM, 2001.

[19] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Experience with distributed pro­
gramming in Orca. In Conference on Computer Languages, pages 79-89. IEEE,
March 1990.

[20] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language
for parallel programming of distributed systems. IEEE Transactions on Software
Engineering, 18(3): 190-205, March 1992.

[21] Henri. E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming lan­
guages for distributed computing systems. ACM Computing Surveys, 21(3):261—322,
September 1989.

[22] Henri E. Bal and Andrew S. Tanenbaum. Distributed programming with shared data.
Computer Languages, Proceedings. International Conference, pages 9-13, Oct 1988.

[23] Jakob E. Bardram. Temporal coordination: On time and coordination of collaborative
activities at a surgical department. Computer Supported Cooperative Work, 9(2): 157-
187, May 2000.

[24] David Barron. The World o f Scripting Languages. John Wiley & Sons, Ltd, Baffins
Lane, Chichester, West Sussex P019 1UD, England, 2000.

BIBLIOGRAPHY 214

[25] John W. Barms, Richard C. Waters, and David B. Anderson. Locales: Support­
ing large multiuser virtual environments. Computer Graphics and Applications,
16(6):50-57, November 1996.

[26] Adam Barth, h t t p : / / w w w .a d a m b a r th .o r g / i m a g e s / b r i d g e .g i f , Au­
gust 2004.

[27] Nathaniel E. Baughman, Marc Liberatore, and Brian Neil Levine. Cheat-proof play-
out for centralized and serverless online games. In INFOCOM, pages 104—113, 2001.

[28] J. Begole, R.B. Smith, C.A. Struble, and C.A. Shaffer. Resource sharing for replicated
synchronous groupware. IEEE/ACM Transactions on Networking, 9(6):833-843, Dec
2001.

[29] N.J. Belkin and W.B. Croft. Information filtering and information retrieval: Two sides
of the same coin? Communications o f the ACM, 35(12):29-38, Dec 1992.

[30] Pierfrancesco Bellini and Paolo Nesi. Communicating TELCO: a model for real-time
system specification. In Seventh IEEE International Conference on Engineering o f
Complex Computer Systems, pages 4-14, Skovde, Sweden, June 2001. EEEE.

[31] A. Belokosztolszki, K. Moody, and D.M. Eyers. A formal model for hierarchical
policy contexts. In International Workshop on Policies for Distributed Systems and
Networks, pages 127-136. IEEE, June 2004.

[32] Marco E M Di Beneditto and Leliane N de Barros. Using concept hierarchies in
knowledge discovery. In A. L. C. Bazzan and S. Labidi, editors, Advances in Artificial
Intelligence, volume 3171, pages 255-265. Springer-Verlag Berlin Heidelberg, Sept-
Oct 2004 2004.

[33] Steve Benford and Lennart Fahlen. A spatial model of interaction in large virtual
environments. In Third European Conference on Computer Supported Cooperative
Work (ECSCW’93), September 1993.

[34] F. Bergenti and A. Ricci. Three approaches to the coordination of multiagent systems.
In Symposium on Applied Computing (SAC 2002), pages 367-372. ACM, 2002.

[35] T. BemersLee, R. Cailliau, A. Luotonen, H.F. Nielsen, and A. Secret. The worldwide
web. Communications o f the ACM, 37(8):76-82, August 1994.

[36] E. Bertino, P.A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access con­
trol model. ACM Transactions on Information and System Security, 4(3): 191-223,
August 2001.

[37] Lorenzo Bettini, Rocco De Nicola, Rosario Pugliese, and GianLuigi Ferrari. Inter­
active mobile agents in X-KLAIM. In Workshop on Enabling Technologies: Infras­
tructure for Collaborative Enterprise (WETICE), pages 110-115. IEEE, June 1998.

[38] M. Bhide, S. Pandey, A. Gupta, and M. Mohania. Dynamic access control framework
based on events: A demonstration. In Conference on Data Engineering (ICDE’03),
pages 765-767. EEEE, March 2003.

BIBLIOGRAPHY 215

[39] R. Bisiani and A. Forin. Multilanguage parallel programming of heterogeneous ma­
chines. IEEE Transactions on Computers, 37(8):930-945, Aug 1988.

[40] CH. Bouras, E. Giannaka, and TH. Tsiatsos. Virtual collaboration spaces: The EVE
community. In Symposium on Applications and the Intemet(SAINT’03), pages 48-55.
IEEE, January 2003.

[41] J. Boyd. Floor control policies in multiuser applications. In Companion on Human
Factors in Computing Systems, pages 107-108. ACM, April 1993.

[42] Eva Brandt and Jom Messeter. Facilitating collaboration through design games. In
conference on Participatory design, volume 1, pages 121-131. ACM, 2004.

[43] TomBrinck. Groupware: Introduction, h t t p : / / w w w .u s a b i l i t y f i r s t .com /
g ro u p w a re / i n t r o . t x l , 1998.

[44] Paul Bms. Prolog programming a first course, h t t p : / / w w w .s c r e . a c . u k /
p e r s o n a l /p b /p r o lo g b o o k , May 1999.

[45] Barry Brown and Marek Bell. CSCW at play: ’There’ as a collaborative virtual
environment. In CSCW’04, pages 350-359. ACM, November 2004.

[46] Lee Bu-Sung, Yeo Chai Kiat, Soon Ing Yann, Lee Keok Kee, and Sun Wei. Design
and implementation of a Java-based meeting space over internet. In Multimedia Tools
and Applications, volume 20, pages 179-195, The Netherlands, June 2003. Kluwer
Academic Publishers.

[47] Victor Budau and Guy Bernard. Synchronous/asynchronous switch for a dynamic
choice of communication model in distributed systems. In Proceedings on Parallel
and Distributed Systems(ICPADS’02), pages 97-102. IEEE, Dec 2002.

[48] Wentong Cai, P. Xavier, S. J. Turner, and Bu-Sung Lee. A scalable architecture for
supporting interactive games on the internet. In Workshop on Parallel and Distributed
Simulation(PADS’02), pages 54-61. EEEE, May 2002.

[49] Paul Callahan. What is the game of life? h t t p : / /www. m a th . com / s t u d e n t s /
w o n d e rs / l i f e / l i f e .h tm l, 2000.

[50] Cambridge. Dictionary online, h t t p : / / d i c t i o n a r y . C a m b rid g e . o r g ,2006.

[51] Mary Campione, Kathy Walrath, and Alison Huml. The Java(TM) Tutorial: A Short
Course on the Basics. Pearson Education Corporate Sales Division, New Jersey,
USA, third edition, 2001.

[52] K.S. Candan, S. Jajodia, and V.S. Subrahmanian. Secure mediated databases. In
Conference on Data Engineering, pages 28-37. IEEE, Feb-March 1996.

[53] Michael Capps and Seth Teller. Communication visibility in shared virtual worlds.
In Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise,
pages 187-192. IEEE, June 1997.

[54] D. Caromel. Toward a method of object-oriented concurrent programming. Commu­
nications o f the ACM, 36(9):90-102, Sept 1993.

BIBLIOGRAPHY 216

[55] S. Carr, J. Mayo, and C.K. Shene. Race conditions: a case study. Journal o f Comput­
ing Sciences in Colleges, 17(1):90—105, Oct 2001.

[56] F.A. Cavazos and J.C.L. Jarquin. A 3-tiered client-server distributed system
component-based. In International symposium on Information and Communication
Technologies, pages 1-6. ACM, 2004.

[57] R. Chandra, A. Gupta, and J.L. Hennessy. COOL: An object-based language for
parallel programming. Computer, 27(8): 13-26, Aug 1994.

[58] Carl K. Chang, Francis Quek, Lie Cai, and Seongwoon Kim. A research on collabora­
tion net. In Distributed Computing Systems. Proceedings o f the sixth IEEE Computer
Society Workshop on Future Trend, pages 228-233. IEEE, October 1997.

[59] Somchai Chatvichienchai, Mizuho Iwaihara, and Yahiko Kambayashi. Secure in­
teroperability between cooperating XML systems by dynamic role translation. In
V. Marik et al, editor, Database and Expert Systems Applications, volume 2736, pages
866-875. Springer-Verlag Berlin Heidelberg, Oct 2003.

[60] DeQing Chen, Chunqiang Tang, Xiangchuan Chen, Sandhya Dwarkadas, and
Micheal L. Scott. Multi-level shared state for distributed systems. In Proceedings
of the International Conference on Parallel Processing (ICPP’02). IEEE, 2002.

[61] Gang Chen, Zhonghua Yang, Hao He, and Kiah Mok Goh. Coordinating multi-agents
using JavaSpaces. In Conference on Parallel and Distributed Systems (ICPADS),
pages 63-68. IEEE, 2002.

[62] T-Shyong Chen, Y-Fang Chung, and C-Sin Tian. A novel key management scheme
for dynamic access control in a user hierarchy. In Conference on Computer Software
and Applications Conference, pages 396-397. IEEE, Sept 2004.

[63] J.D. Choi, B.T. Jang, and CJ. Hwang. Collaborative interactions on 3D display for
multi-user game environments. In M. Masoodian et al., editor, Conference on Com­
puter Human Interaction, LNCS 3101, pages 81-90. SpringerVerlag Berlin Heidel­
berg, July 2004.

[64] T.W. Christopher and G. K. Thiruvathukal. High Performance Java Platform Com­
puting Multithreaded and Networked Programming. Sun Microsystems/Prentice
Hall, Feb 2001.

[65] W.S. Chung and D. McLane. Developing and enhancing a client/server programming
for internet course. Journal o f Computing Sciences in Colleges, 18(2):79-91, Dec
2002.

[66] C.L.A Clarke, RL Tilker, A.Q-L Tran, K. Harris, and A.S. Cheng. A reliable storage
management layer for distributed information retrieval systems. In International con­
ference on Information and Knowledge Management, pages 207-215. ACM, 2003.

[67] Gail P. Clement. Science and Technology on the Internet An Instructional Guide.
Library Solutions Press, Berkeley and San Carlos, California, June 1995.

[68] John Coggeshall. An introduction to PHP. h t tp : / /w w w .o n la m p .c o m /p h p ,
February 2001.

BIBLIOGRAPHY 211

[69] IBM Corporation. Glossary. h t t p : / / p u b l i b . b o u l d e r . ib m . com /
i n f o c e n t e r / a d i e h e l p / t o p i c / c o m . i b m .w s i n t e d % .g l o s s a r y ,
d o c / t o p i c s / g l o s s a r y .h tm l, 2000.

[70] Jupitermedia Corporation. Webopedia. h t t p : / /www. w e b o p e d ia . com.

[71] Jupitermedia Corporation. The JavaScript source, http://javascript.intemet.com,
2005-2006.

[72] Microsoft Corporation. COM: Component object model technologies, h t t p : / /
w w w .m icro so f t . c o m /c o m /d e fa u l t .m spx, 2006.

[73] Microsoft Corporation. Microsoft, h t t p : / /www. m ic r o s o f t . com, 2006.

[74] Microsoft Corporation. Microsoft, h t t p : / /www. m ic r o s o f t . com /w indow s /
n e tm e e t in g , 2006.

[75] Prismic Corporation. Sales forces, h t t p : / /www. f a c e t o f a c e m e e t in g . com /
s a l e s . htm , 2004.

[76] Ramius Corporation. Knowledge management & healthcare, h t t p : / /w w w .
r a m iu s . n e t / h e a l t h c a r e . cfm = 148987 ,2006.

[77] Rabelani Dagada. ’where have all the trainers gone?’ e-leaming strategies and tools in
the corporate training environment. In SAICSIT2004, pages 194—203. ACM, October
2004.

[78] Gareth W. Daniel and Min Chen. Interaction control protocols for distributed multi­
user multicamera environments. In N.Callaos, A.M. Di Sciullo, T. Ohta, and T.K.
Liu, editors, proc. o f 7th World Multiconference on Systemic, Cybernetics and Infor­
matics, SCI2003, volume 1, pages 448-453. International Institute of Informatics and
Systemics, July 2003.

[79] J. Daniel, B. Traverson, and V. Vallee. Active COM: an interworking framework for
CORBA and DCOM. In Symposium on Distributed Objects and Applications, pages
211-222. IEEE, Sept 1999.

[80] A. Davis and D. Zhang. A comparative study of DCOM and SOAP. In Symposium
. on Multimedia Software Engineering, pages 48-55. IEEE, Dec 2002.

[81] J. C. de Oliveira ans Shervin Shirmohammadi and N. D. Georganas. Collaborative
virtual environment standards: A performance evaluation. In International Work­
shop on Distributed Interactive Simulation and Real-Time Applications, pages 14—21.
IEEE, October 1999.

[82] T.G. de Senna Cameiro and J.N. Cotrim Arabe. Load balancing for distributed virtual
reality systems. In International Symposium on Computer Graphics, Image Process­
ing and Vision, pages 158-165. IEEE, October 1998.

[83] J. DeFrancoTommarello and F.P. Deek. Collaborative software development: A dis­
cussion of problem solving models and groupware technologies. In Conference on
System Sciences, pages 568-577. IEEE, Jan 2002.

BIBLIOGRAPHY 218

[84] H.M Deitel, P. J. Deitel, J. Listfield, T.R. Neito, C. Yaeger, and M. Zlatkina. C# HOW
TO PROGRAM. Prentice-Hall, Upper Saddle River, New Jersey 07458, 2002.

[85] Yves Demazeau, Olivier Boissier, and Jean Luc Koning. Using interaction protocols
to control vision systems. Systems, Man, and Cybernetics, 1994, 2:1616-1621, Oct
1994.

[86] E. Denti and A. Omicini. A coordination infrastructure for agent-based internet ap­
plications. In Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pages 230-235. IEEE, June 2000.

[87] Micheal Demtl and Renate Motschnig-Pitrik. Patterns for blended, person-centered
learning: Strategy, concepts, experiences, and evaluation. In Symposium on Applied
Computing, pages 916-923. ACM, March 2004.

[88] P. Dewan and R. Choudhary. A high level and flexible framework for implement­
ing multiuser user interface. ACM Transactions on Information Systems (TOIS),
10(4): 345-380, Oct 1992.

[89] P. Dewan and H. Shen. Controlling access in multiuser interface. ACM Transactions
on Computer Human Interaction, 5(l):34-62, March 1998.

[90] Prasun Dewan. An integrated approach to designing and evaluating collaborative
applications and infrastructures. Computer Supported Cooperative Work, 10(1):75-
111, March 2001.

[91] Dawei Ding and Miaoliang Zhu. A model of dynamic interest management: Interac­
tion analysis in collaborative virtual environment. In Symposium on Virtual Reality
Software and Technology, pages 223-230. ACM, October 2003.

[92] I. Djordjevic, C. Phillips, and T. Dimitrakos. An architecture for dynamic security
perimeters of virtual collaborative networks. In Network Operations and Manage­
ment Symposium, volume 1, pages 249-262. IEEE, April 2004.

[93] HansPeter Dommel and J.J. GarciaLunaAceves. Design issues for floor control
protocols, h t t p : / / w w w .c se .u c sc . e d u / c c r g / p u b l i c a t i o n s / p e t e r .
s p ie 9 5 .p d f , 1995.

[94] Hans-Peter Dommel and J.J. Garcia-Luna-Aceves. Group coordination support for
synchronous internet collaboration. IEEE Internet Computing, 3(2):74-80, April
1999.

[95] H.P. Dommel and J.J. Garcia-Luna-Aceves. A novel group coordination protocol for
collaborative multimedia systems. In International Conference on Systems, Man, and
Cybernetics, volume 2, pages 1225-1230. IEEE, October 1998.

[96] H.Peter Dommel and J.J. Garcia-Luna Aceves. Floor control for activity coordi­
nation in networked multimedia applications, h t t p : / / www. c s e . u c s c . e d u /
r e s e a r c h / c c r g / p u b l i c a t i o n s / p e t e r . a p cc 9 5 .p s . gz, June 1995.

[97] H.Peter Dommel and J.J Garcia-Luna-Aceves. A coordination architecture for inter­
net groupwork. In Euromicro conference, volume 2, pages 183-190. IEEE, Septem­
ber 2000.

BIBLIOGRAPHY 219

[98] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In
CSCW, pages 107-114. ACM, 1992.

[99] Paul Dourish. The parting of the ways: Divergence, data management and collab­
orative work. In Fourth European Conference on CSCW(ECSCW), pages 215-230,
1995.

[100] Wisconsin DPI. Science glossary of terms, h t t p : / /www. d p i . s t a t e . w i . u s /
s t a n d a r d s / s c i g l o s .h tm l, 2005.

[101] R. L. Drechsler and J.M. Mocenigo. The Yoix scripting language and interpreter,
h t t p : / / w w w . r e s e a r c h . a t t . c o m / s w / t o o l s / y o i x / d o c / r e s e r v e d .

[102] Richard L. Drechsler and John M.Mocenigo. The Yoix scripting language as a tool
for building web-based systems. In E. Gregori, L. Cherkasova, G. Cugola, F. Panzieri,
and G.P. Picco, editors, Web Engineering and Peer-to-Peer Computing: NETWORK­
ING 2002, volume 2376, pages 90-103, Pisa, Italy, May 2002. Springer-Verlag Berlin
Heidelberg, network language.

[103] K. Drira, T. Villemur, V. Baudin, M. Diaz, and L. du Cnrs. A multiparadigm layered
architecture for synchronous distance learning. In Euromicro Conference, pages 158—
165. IEEE, Sept 2000.

[104] D. D’Souza, J.A. Thom, and J. Zobel. Collection selection for managed distributed
document databases. Information Processing & Management, 40(3):527-546, May
2004.

[105] Bruce Eckel. Thinking in Java. Prentice-Hall, 3rd edition, December 2002.

[106] Stephen A. Edwards. Tutorial: Compiling concurrent languages for sequential pro­
cessors. ACM Transactions on Design Automation o f Electronic Systems, 8(2): 141-
187, April 2003.

[107] Abdulmotaleb El-Saddik, Shervin Shirmohammadi, Nicolas D. Georganas, and Ralf
Steinmetz. Jasmine: Java application sharing in multiuser interactive environ­
ments. In Interactive Distributed Multimedia Systems and Telecommunication Ser­
vices, pages 214-226, 2000.

[108] C. Ellison and S. Dohrmann. Public-key support for group collaboration. ACM
Transactions on Information and System Security, 6(4):547-565, Nov 2003.

[109] W.F. Els worth and M.B.A. Parkes. Automated compiler construction based on top-
down syntax analysis and attribute evaluation. ACM SIGPLAN Notices, 25(8):37-42,
Aug 1990.

[110] Wolfgang Emmerich. Distributed component technologies and their software engi­
neering implications. In International Conference on Software Engineering, pages
537-546. IEEE, May 2002.

[111] Ericsson. ERLANG, h t t p : / / w w w . e r l a n g . o r g .

[112] D.M. Etter. Structured FORTRAN 77 for Engineers and Scientists. Addison Wesley,
Menlo PArk, CA, 5th edition, 1997.

BIBLIOGRAPHY 220

[113] S.G. Fantar, S.M. Gammar, and F. Kamoun. Using SIP for floor control in a video­
conference. In Int. Conference on Information Technology Based Higher Education
and Training, pages 274-277. IEEE, June 2004.

[114] D. G. Feitelson. On the scalability of centralized control. In Symposium on Parallel
and Distributed Processing. IEEE, April 2005.

[115] David Ferraiolo and Richard Kuhn. Role-based access control. In Proceedingd o f
15th National Computer Security Conference, pages 554-563, 1992.

[116] F.G. Fiamingo. Unix system administration, h t t p : / / w k s . u t s . o h i o \ - s t a t e .
e d u / s y s a d m \ - c o u r s e / h t m l / s y s a d m \ - l . h tm l , August 1996.

[117] Robert E. Filman and Daniel P. Friedman. Shared variables. In COORDINATED
COMPUTING: Tools and Techniques for distributed software, chapter 6, pages 57-
72. McGraw-Hill Book Company, 1984.

[118] Fraunhofer FIT and OrbiTeam Software GmbH. BSCW. h t t p : / / b s c w . f i t .
f r a u n h o f e r . de, 1995-2005.

[119] Message Passing Interface Forum. MPI: Overview and goals, h t t p : / / w w w .
m p i - f o r u m . o r g / d o c s / m p i - l l - h t m l / n o d e 2 . h tm l , August 1997.

[120] Piero Fratemali. Tools and approaches for developing data-intensive web applica­
tions: A survey. ACM Computing Surveys, 31(3):227-263, September 1999.

[121] Lidia Fuentes and Jose M.Troya. A JAVA FRAMEWORK FOR WEB-BASED mul­
timedia and collaborative applications. IEEE Internet Computing, pages 55-64,
March-April 1999.

[122] Masaru Fukushi and Susumu Horiguchi. A self-reconfiguration hardware architecture
for mesh arrays using single/double vertical track switches. IEEE Transactions on
Instrumentation and Measurement, 53(2):357-367, April 2004.

[123] U. Gall and F.J. Hauck. Promondia: a Java-based framework for real-time group
communication in the web. Computer Networks and ISDN Systems, 29(9):917-926,
Sept 1997.

[124] Pedro Garcia, Oriol Montala, Carles Pairot, Roberto Rallo, and Antonio Gomez
Skarmeta. MOVE: Component groupware foundations for collaborative virtual
environments. In COLLABORATIVE VIRTUAL ENVIRONMENTS. ACM Society,
September 2002. http://ants.etse.urv.es/move.

[125] S.L. Garfinkel, D. Margrave, J.I. Schiller, E. Nordlander, and R.C. Miller. Email and
security: How to make secure email easier to use. In Conference on Human Factors
in Computing Systems, pages 701-710. SIGCHI, April 2005.

[126] P. Gaztin, B. Lerman, and M. Zeitoun. Distributed games and distributed control for
asynchronous systems. In Latin American Symposium on Theoretical Informatics,
volume 2976, pages 455-465. Springer(LNCS), April 2004.

BIBLIOGRAPHY 221

[127] C.K. Georgiadis, I. Mavridis, G. Pangalos, and R.K. Thomas. Flexible team-based
access control using contexts. In Symposium on Access Control Model and Technolo­
gies, pages 21-27. ACM, May 2001.

[128] W. Geyer, J. Vogel, Li-Te Cheng, and M. Muller. Supporting activity-centric collab­
oration through peer-to-peer shared objects. In GROUP’03, pages 115-124. ACM,
November 2003.

[129] A. Geyer-Schulz and T. Kolarik. Distributed computing with apl. In International
Conference on APL APL ’92, pages 60-69. ACM, July 1992.

[130] J. Paul Gibson. A noughts and crosses Java applet to teach programming to primary
school children. In PPPJ 2003, pages 85-88. ACM, 2003.

[131] H. Gilbert. Introduction to TCP/IP. http://www.yale.edu/pclt/COMM/
TCPIP. HTM, Feb 1995.

[132] K. Goldberg and B. Chen. Collaborative control of robot motion: Robustness to error.
In Int. Conference on Robots and Systems. IEEE/RSJ, 2001.

[133] Andrzej Goscinski. DISTRIBUTED OPERATING SYSTEMS: The Logical Design.
Addison-Wesley Publishing Company, 1991.

[134] Chris Greenhalgh and Steve Benford. MASSIVE: a distributed virtual reality system
incorporating spatial trading. In conference on Distributed Computing Systems, pages
27-34. IEEE, May-June 1995.

[135] Chris Greenhalgh, Jim Purbrick, and Dave Snowdon. Inside MASSIVE-3: Flexible
support for data consistency and world structuring. In Elizabeth Churchill and Martin
Reddy, editors, ACM conference on COLLABORATIVE VIRTUAL ENVIRONMENTS,
pages 119-127. ACM SIGCHI, ACM SIGGROUP and ACM SIGGRAPH, ACM,
September 2000.

[136] Object Management Group. CORBA BASICS, h t t p : / /www. omg. o rg .

[137] Postgre SQL Global Development Group. PostgreSQL 8.1.4 documentation, h t t p :
/ / w w w . p o s t g r e s q l . o r g / d o c s / 8 . 1 / s t a t i c / s q l . h t m l .

[138] O. Hagsand. Interactive multiuser VEs in the DIVE system. In IEEE Multimedia,
pages 30-39,1996.

[139] Abdul S. Haji-Ismail, Min Chen, Phil W.Grant, and Mark Kiddell. JACIE-an author­
ing language for rapid prototyping net-centric, multimedia and collaborative applica­
tions. Annals o f Software Engineering, 12:47-75, December 2001.

[140] Abdul Samad Haji-Ismail. JACIE-A Scripting language for internet-based multime­
dia collaborative applications. PhD thesis, Department of Computer Science, Uni­
versity of Wales Swansea, UK, 2001.

[141] FredHalsall. Data Communications, Computer Networks and Open Systems. Addi­
son Wesley, fourth edition edition, 1996.

[142] Fred Halsall. Multimedia Communications. Addison Wesley, Edinburgh Gate, Har­
low, Essex CM20 2JE, England, 2001.

BIBLIOGRAPHY 222

[143] M. Handley, I. Wakeman, and J. Crowcroft. CCCP: A scalable base for building
conference control applications. In Conference on Applications, Technologies, Archi­
tectures, and Protocols for Computer Communication, pages 275-287. ACM, 1995.

[144] B. Hansen. Monitors and concurrent Pascal: a personal history. In conference on
History o f programming languages, pages 1-35. ACM, 1993.

[145] M. Hanus. Highlevel server side Web scripting in Curry. In PADL’01, LNCS 1990,
pages 76+. Springer Verlag, 2001.

[146] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating system. Com­
munications o f the ACM, 19(8):461-471, August 1976.

[147] Frank Havemann. Collaboration and productivity of West-German
biomedical researchers. h t t p : / / c i t e s e e r . i s t . p s u . e d u /
h a v e m a n n 0 2 c o l l a b o r a t i o n . h tm l , 2002.

[148] Micheal S. H. Heng and Aldo de Moor. From Habermas’s communicative theory to
practice on the internet. Information Systems Journal, 13(4):331—352, October 2003.

[149] Jean-Luc Henry. A k-nearest neighbour method for managing the evolution of a learn­
ing base. In Conferencr on Computational Intelligence and Multimedia Applications,
pages 357-361. IEEE, Nov 2001.

[150] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. Database replication
using epidemic communication. In 6th International Euro-Par Conference, pages
427-434. LNCS 1900, Springer, Aug/Sep 2000.

[151] S. Horrocks, N. Rahmati, and T. Robbins-Jones. The development and use of a frame­
work for categorising acts of collaborative work. In Conference on System Sciences,
page 13pp. IEEE, Jan 1999.

[152] Cay S. Horstmann and Gary Cornell. Core JAVA Volume I-Fundamentals, volume 1.
Sun Microsystems Press, Palo Alto, California, 2001.

[153] Mojtaba Hosseini, Steve Pettifer, and Nicolas D.Georganas. Visibility-based interest
management in collaborative virtual environments. In COLLABORATIVE VIRTUAL
ENVIRONMENTS, pages 143-144. ACM Society, September 2002.

[154] H. Hua, L.D. Brown, and Chunyu Gao. Scape: Supporting stereoscopic collaboration
in augmented and projective environments. IEEE Computer Graphics and Applica­
tions, 24(l):66-75, Jan-Feb 2004.

[155] Z. Huang, A. Eliens, and C. Visser. Implementation of a scripting language for
VRML/X3D-based embodied agents. In Conference on 3D Web Technology, pages
91-100. ACM, 2003.

[156] Luke Hunsberger. Distributing the control of a temporal network among multiple
agents. In Conference on Autonomous Agents and Multiagents Systems (AAMAS’3),
pages 899-906. ACM, July 2003.

[157] IBM. IBM REXX family, http://www306.ibm.com/software/awdtools/rexx/.

[158] IBM. Lotus software, h t t p : / /www. l o t u s . com.

BIBLIOGRAPHY 223

[159] IFAC. h t t p : / / m e d i a , i c i . r o / a c a d e m i a / i f a c / i f a c \ _ t c 5 4 .htm.

[160] ActiveState Software Inc. Tel developer xchange. http: / /www. tel. tk.
[161] Infinite Software Solutions Inc. VBScript, http://www.devguru.com/

Technologies/vbscript/QuickRef/vbscript_intro.h%tml,
1999-2005.

[162] Sun Microsystems Inc. Java technology, h t t p : / / j a v a . s u n . com.

[163] Yahoo Inc. Yahoo games, h t t p : / / g a m e s . y a h o o . c o m / g a m e s / f r o n t .

[164] Rahat Iqbal, Anne James, and Richard Gatward. A collaborative platform for het­
erogeneous CSCW systems: Case study of academic applications. In International
Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Tech­
nology and Applications, pages 462-467. IEEE, Sept 2003.

[165] iQTOYS. 4D tic-tac-toe. h t t p : / /www. i q t o y s . a u . com.

[166] K. Isbister, H. Nakanishi, T. Ishida, and C. Nass. Helper agent: Designing an assistant
for human-human interaction in a virtual meeting space. In Conference on Human
Factors in Computing Systems, pages 57-64. ACM, April 2000.

[167] H. Ishikawa, Y. Yamane, Y. Izumida, and N. Kawato. An object-oriented database
system Jasmine: Implementation, application and extension. IEEE Transactions on
Knowledge and Data Engineering, 8(2):285-304, April 1996.

[168] iVillage. What is your emotional intelligence quotient? h t t p : / / q u i z ,
i v i l l a g e . c o m / h e a l t h / t e s t s / e q t e s t 2 .htm, 1995-2006.

[169] L.S. Jackson and E. Grossman. Integration of synchronous and asynchronous collab­
oration activities. ACM Computing Surveys, 31(2es), 1999.

[170] James B D Joshi, Elisa Bertino, and Arif Ghafoor. Temporal hierarchies and inheri­
tance semantics for GTRBAC. Proceedings o f the Seventh ACM symposium on access
control models and techniques, pages 74—83, June 2002.

[171] J.B.D. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor. Access-control language for
multidomain environments. IEEE Internet Computing, 8(6):40-50, Nov-Dee 2004.

[172] C. Joslin, T. D. Giacomo, and N. Magnenat-Thalmann. Collaborative virtual environ­
ments: From birth to standardization. IEEE Communications Magazine, 42(4):28-33,
April 2004.

[173] C. Joslin, T. Molet, and N. Magnenat-Thalmann. Advanced realtime collaboration
over the internet. In Symposium on Virtual Reality Software and Technology, pages
25-32. ACM, 2000.

[174] R. Jota, J. Martins, A. Rito-Silva, and J. Pereira. Experimenting with a flexible aware­
ness management abstraction for virtual collaboration spaces. In Symposium on Ap­
plications and the Intemet(SAINT03), pages 56-64. IEEE, January 2003.

[175] G.S. Novak Jr. Vocabulary, h t t p : / / w w w . c s . u t e x a s . e d u / u s e r s / n o v a k /
c s 3 0 7 v o c a b . h tm l , 2000.

BIBLIOGRAPHY 224

[176] M.F. Kaashoek, R.V. Renesse, H.V. Steveren, and A.S. Tanenbaum. FLIP: An in­
ternetwork protocol for supporting distributed systems. Transactions on Computer
Systems, 11(1):73-106, Feb 1993.

[177] Nadia Kausar and Jon Crowcroft. End to end reliable multicast transport protocol
requirements for collaborative multimedia systems. In Reliable Distributed Systems,
pages 425^130. IEEE, October 1998.

[178] Ronald L.G. Keith. The Matic System or Bidding By Numbers for Contract Bridge.
Edurec Ltd, Spring Wood Lane, Burghfield Common, Reading, RG7 3DS, 1996.

[179] Peter J. Keleher. A high-level abstraction of shared accesses. ACM Transaction on
Computer Systems, 18(1): 1-36, Feb 2000.

[180] M.E. Khan, Ray Paul, Ishfaq Ahmed, and Arif Ghafoor. Intensive data management
in parallel systems: A survey. Distributed and Parallel Databases, 7(4):383-414,
October 1999.

[181] Hyung-Jun Kim, So-Hyun Ryu, Young-Je Woo, Yong won Kwon, and Chang-Sung
Jeong. COVE: A design and implementation of collaborative object-oriented visual­
ization environment. In Groupware: Design, Implementation and Use, CRIWG 2003,
LNCS, volume 2806, pages 42-57. Springer-Verlag Berlin Heidelberg, September
2003.

[182] John Leslie King. Centralized versus decentralized computing: Organizational con­
siderations and management options. ACM Computing Surveys, 15(4):319-349, Dec
1983.

[183] Elliot B. Koffman. Problem Solving and Structured Programming in PASCAL.
AddisonWesley, Reading, Mass, 1981.

[184] Thomas Kolarik. Extending the two-partner shared variable protocol to n partners.
In Proceedings o f the international conference on APL, pages 124-133. ACM Press,
1993.

[185] F. Kon, R.H. Campbell, M.D. Mickunas, K. Nahrstedt, and FJ. Ballesteros. 2K: a
distributed operating system for dynamic heterogeneous environments. In Symposium
on HighPerformance Distributed Computing, pages 201-208. IEEE, Aug 2000.

[186] Jean-Luc Koning and Marc-Philippe Huget. Interaction protocol design: Applica­
tion to an agent-based teleteaching project. In Conference on Cognitive Informat-
ics(ICCT03), pages 8pp-. IEEE, 2003.

[187] B.I. Kumova. Software design concept of a distributed simulation kernel. In Con­
ference on Parallel, Distributed and Network-Based Processing, pages 34-39. IEEE,
Feb 2004.

[188] B.I. Kumova. Dynamically adaptive partition-based data distribution management.
In Principles o f Advanced and Distributed Simulation, pages 292-300. IEEE, June
2005.

[189] K.B. Lassen. Colored petri nets. h t t p : / / w w w . d a i m i . a u . d k / C P n e t s /
i n t r o , Dec 2002.

BIBLIOGRAPHY 225

[190] Chungnan Lee, Chuanwen Chiang, and Minfong Homg. Collaborative web comput­
ing environment: An infrastructure for scientific computation. IEEE Internet Com­
puting, March-April:27-35, April 2000. access control or load distribution.

[191] Dongman Lee, Mingyu Lim, and Seunghyun Han. ATLAS: a scalable network frame­
work for distributed virtual environments. In ACM Conference on COLLABORATIVE
VIRTUAL ENVIRONMENTS. ACM, September 2002.

[192] Gunhee Lee, Hongjin Yeh, Wonil Kim, and Dong-Kyoo Kim. Web security using
distributed role hierarchy. In M. Li et al, editor, Grid and Cooperative Computing,
volume 3032, pages 1087-1090. Springer-Verlag Berlin Heidelberg, December 2003
2004.

[193] J.H. Lee, A. Prakash, T. Jaeger, and G. Wu. Supporting multi-user, multi-applet
workspaces in CBE. In CSCW’96, pages 344-353. ACM, 1996.

[194] L.Q. Lee and A. Lumsdaine. The generic message passing framework. In Symposium
on Parallel and Distributed Processing, page 10pp. EEEE, April 2003.

[195] Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable bind­
ings across multiple lexical scopes. In Conference Record o f the Twentieth An­
nual ACM SIGPLAN-SIGACT Symposium on Principles o f Programming Languages,
pages 479-492, Charleston, South Carolina, 1993.

[196] H. Lei, D. Chakraborty, H. Chang, M.J. Dikun, T. Heath, J.S. Li, N. Nayak, and
Y. Patnaik. Contextual collaboration: Platform and applications. In Conference on
Services Computing, pages 197-206. IEEE, Sept 2004.

[197] U. Leonhardt and J. Magee. Towards a general location service for mobile environ­
ments. In Workshop on Services in Distributed and Networked Environments, pages
43-50. IEEE, June 1996.

[198] U. Leonhardt and J. Magee. Security considerations for a distributed location service.
Journal O f Network and Systems Management, 6(l):51-70, March 1998.

[199] P. Li, B. Ravindran, H. Cho, and E.D. Jensen. Scheduling distributed real-time threads
in Tempus middleware. In International Conference on Parallel and Distributed
Systems, pages 187-194. IEEE, July 2004.

[200] Wanjiun Liao and Victor O.K. Li. Synchronization of distributed multimedia systems
with user interactions. Multimedia Systems, 6(3): 196-205, May 1998.

[201] Oliver Liechti. Awareness and the www: an overview. SIGGROUP Bulletin, 21(3):3-
11, December 2000.

[202] J.M. Linebarger, C.D. Janneck, and G.D. Kessler. Shared Simple Virtual Environ­
ment: An object-oriented framework for highly interactive group collaboration. In In­
ternational Symposium on Distributed Simulation and Real-Time Applications, pages
170-180. IEEE, October 2003.

[203] Chen Ling, Chen Gen-Cai, and Chen Chun. A knowledge-based adaptive message
filtering technique for collaborative virtual environment. In Conference on Signal
Processing, volume 1, pages 266-271. IEEE, Aug 2002.

BIBLIOGRAPHY 226

[204] Antonio Liotta, George Pavlou, and Graham Knight. A self adaptable agent system
for efficient information gathering. In S. Pierre and R. Glitho, editors, MATA 2001,
volume LNCS 2164, pages 139-152. Springer-Verlag Berlin Heidelberg, 2001. agent.

[205] Chia-Hao Liu, Chen-Hsing Wen, and Hsing-Lung Chen. Tracking-needless grouping:
An efficient and scalable grouping scheme in networked virtual environments. In
Consumer Communication and Networking Conference (CCNC 2004), pages 477-
482. IEEE, Jan 2004.

[206] E.S. Liu, M.K. Yip, and G. Yu. Scalable interest management for multidimensional
routing spaces. In VRST’05, pages 82-85. ACM, Nov 2005.

[207] Z. Liu, X. Du, and N. Ishii. Integrating databases in internet. In Conference on
Knowledge-Based Intelligent Electronic Systems, pages 381-385. IEEE, 1998.

[208] Enginuity LLC. Three stones board game. h t t p : / / w w w .
e d u c a t i o n a l - c h i l d - t o y . com.

[209] Veryard Projects Ltd. Notions of software componentry, h t t p : / / www. u s e r s .
g l o b a l n e t . c o . u k / ~ r x v / C B D m a i n / c b d n o t i o n s .htm,December 2001.

[210] Zakaria Maamar. Commerce, e-commerce, and m-commerce: What comes next?
Communications o f the ACM, 46(12):251-257, December 2003.

[211] Micheal R. Macedonia, Micheal J. Zyda, David R. Pratt, Donald P. Brutzman, and
Paul T. Barham. Exploiting reality with multicast groups: A network architecture for
large-scale virtual environments. In Virtual Reality Annual International Symposium,
pages 2-10. IEEE, March 1999.

[212] Isabel Machado, Rui Prada, and Ana Paiva. Bringing drama into a virtual stage.
In Elizabeth Churchill and Martin Reddy, editors, ACM conference on COLLAB­
ORATIVE VIRTUAL ENVIRONMENT, pages 111-117. ACM SIGCHI, ACM SIG-
GROUP, ACM SIGGRAPH, ACM, September 2000.

[213] David A. Maluf and Peter B. Tran. Articulation management for intelligent integra­
tion of information. IEEE Transactions on Systems, Man and Cybernetics, 31(4):485-
496, Nov 2001.

[214] Tony Manninen. Conceptual, communicative and pragmatic aspects of interaction
forms - rich interaction model for collaborative virtual environments. In International
Conference on Computer Animation and Social Agents(CASA’03), pages 168-173.
IEEE, May 2003.

[215] G. Mark, J.M. Haake, and N.A. Streitz. Hypermedia structures and the division of
labor in meeting room collaboration. In Computer Supported Cooperative Work,
pages 170-179. ACM, 1996.

[216] Dave Marshall. Remote procedure calls (RPC), h t t p : / / www . c s . c f . a c . u k /
D a v e /C /n o d e 3 3 . h tm l , 1999.

[217] Michal Masa and Jiri Zara. Generalized interest management in virtual environments.
In Proceedings on Collaborative Virtual Environment, pages 149-150. ACM, Sep-
Oct 2002.

BIBLIOGRAPHY 227

[218] M.L. Massie, B.N. Chun, and D.E. Culler. The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Computing, 30(7):817-840, July
2004.

[219] A.K. Mattas, I.K. Mavridis, and G.I. Pangalos. Towards dynamically administered
role-based access control. In Workshop on Database and Expert Systems Applications
(DEXA’03), pages 494-498. IEEE, Sept 2003.

[220] Martin Mauve. TeCo3D - sharing interactive and dynamic 3D models. In Multimedia
Tools and Applications, volume 20, pages 283-304, The Netherlands, August 2003.
Kluwer Academic Publishers.

[221] P F McKee, I W Marshall, and I D Henning. Research directions in distributed
systems. BT Technology Journal, 17(2): 137-144, April 1999.

[222] John McLeod. Contract bridge. h t t p : / / w w w . p a g a t . e o m / / b o s t o n /
b r i d g e . h tm l , January 2002.

[223] MediaWiki. Wikipedia encyclopedia, h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
S o f t w a r e \ _ a g e n t , 2006.

[224] P. Messina, S. Brunett, D. Davis, T. Gottschalk, D. Curkendall, L. Ekroot, and
H. Siegel. Distributed interactive simulation for synthetic forces. In Heterogeneous
Computing Workshop (HCW’97), pages 112-119. IEEE, April 1997.

[225] B.R. Millard, D.S. Miller, and C. Wu. Support for Ada intertask communication
in a message-based distributed operating system. In Conference on Computers and
Communications, pages 219-225. IEEE, March 1991.

[226] I. Mirbel, B. Pemici, T. Sellis, S. Tserkezoglou, and M. Vazirgiannis. Checking
the temporal integrity of interactive multimedia documents. The VLDB Journal,
9(2): 111-130, July 2000.

[227] A. L. Moran, J. Favela, A. M. Martinez-Enriquez, and D. Decouchant. Before get­
ting there: Potentials and actual collaboration. In J.M Haake and J.A Pino, edi­
tors, Groupware: Design, Implementation and Use, pages 147-167. LNCS 2440,
Springer-Verlag, 2002.

[228] G. Morgan, F. Lu, and K. Storey. Interest management middleware for networked
games. In Symposium on Interactive 3D Graphics and Games, pages 57-64. ACM,
April 2005.

[229] Graham Morgan and Fengyun Lu. Predictive interest management: An approach to
managing message dissemination for distributed virtual environments. In Proceed­
ings o f the First International Workshop on Interactive Rich Media Content Produc­
tion: Architectures, Technologies, Applications, Tools (Richmedia2003), 2003.

[230] Katherine L. Morse. Interest management in large-scale distributed simulations,
h t t p : / / c i t e s e e r . i s t . p s u . e d u / m o r s e 9 6 i n t e r e s t . h t m l , 1996.

[231] K.L. Morse and M. Zyda. Multicast grouping for data distribution management,
report, ESS and MAG, 2550 Fifth Avenue, Suite 724, San Diego, CA, USA, 2001.

BIBLIOGRAPHY 228

[232] J.P. Munson and P. Dewan. Sync: a Java framework for mobile collaborative appli­
cations. Computer, 30(6):59-66, June 1997.

[233] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings o f the
IEEE, 77(4):541-580, April 1989.

[234] N-Tier.com. Client/server and the n-tier model of distributed computing, h t t p :
/ / n \ - t i e r . c o m / a r t i c l e s / c s o v e r v w . h t m l , 1999.

[235] J.C. Navas and M. Wynblatt. The network is the database: Data management for
highly distributed systems. In International conference on Management o f data,
pages 544-551. ACM, May 2001.

[236] Zsolt Nemeth and Vaidy Sunderam. Characterizing grids: Attributes, definitions, and
formalisms. Journal o f Grid Computing, 1(1):9—23, 2003.

[237] T. Niemi, M. Junkkari, K. Jarvelin, and S. Viita. Advanced query language for ma­
nipulating complex entities. Information Processing & Management, 40(6):869-889,
November 2004.

[238] Anton Nijholt. Meetings in the virtuality continuum: Send your avatar. In Conference
on Cyberworlds (CW’05), pages 75-82. IEEE, Nov 2005.

[239] Inc Novell. Groupwise. h t t p : / / w w w . n o v e l l . c o m / p r o d u c t s / g r o u p w i s e ,
2006.

[240] Marco Oey, Keon Langendoen, and Henri E. Bal. Comparing kemel-space and user-
space communication protocols on Amoeba. In Conference on Distributed Comput­
ing Systems, pages 238-245. IEEE, May-June 1995.

[241] EECS (University of Michigan). The DistView collaboratory toolkit, h t t p : / /www.
e e c s . u m i c h . e d u / d i s t v i e w / u s e r d o c s . h tm l , 1998.

[242] Tetsuro Ogi, Takura Kayahara, Toshio Yamada, and Michitaka Hirose. MVL toolkit:
Software library for constructing an immersive shared virtual world. In Virtual Real­
ity, pages 249-250. IEEE, March 2004.

[243] Masaya Okada, Hiroyuki Tarumi, and Tetsuhiko Yoshimura. Collaborative environ­
ment education using distributed virtual environment accessible from real and virtual
worlds. Applied Computing Review, 9(1): 15-21, April 2001.

[244] Zan Oliphant. Programming Netscape plug-ins. h t t p : / / d o c s . r i n e t . r u /
P l u g i / a p p c .htm, 1996.

[245] Emil Ong. MPI Ruby: Scripting in a parallel environment. Computing in Science &
Engineering, 4(4):78-82, July/August 2002.

[246] J.K. Ousterhout. Scripting: Higher level programming for the 21st century. Com­
puter, 31(3):23-30, March 1998.

[247] C.C. Pan, P. Mitra, and P. Liu. Semantic access control for information interoperation.
In SACMAT’06, pages 237-246. ACM, June 2006.

BIBLIOGRAPHY 229

[248] Ted Panitz. A definition of collaborative vs cooperative learning, h t t p : / /
w w w . l g u . a c . u k / d e l i b e r a t i o n s / c o l l a b . I e a r n i n g / p a n i t z 2 . h t m l ,
1996.

[249] Marcin Paprzycki and Janusz Zalewski. Ada in distributed systems: An overview.
ACM Ada Letters, XVII(7):67-81, Mar/Apr 1997.

[250] parentsays. h t t p : / / w w w . p a r e n t s a y s . c o m / i m a g e s / b e n e f i t l . g i f .

[251] Sungju Park, Dongman Lee, Mingyu Lim, and Chansu Yu. Scalable data management
using user-based caching and prefetching in distributed virtual environments. Virtual
Reality Software and technology, pages 121-126, November 2001.

[252] M. Patino-Martinez, R. Jimenez-Peris, and S. Arevalo. Synchronizing group trans­
actions with rendezvous in a distributed ada environment. In Symposium on Applied
Computing, pages 2-9. ACM, February 1998.

[253] David Pinelle and Carl Gutwin. Task analysis for groupware usability evaluation:
Modeling shared-workspace tasks with the mechanics of collaboration. ACM Trans­
actions on Computer-Human Interaction, 10(4): 281-311, December 2003.

[254] Claudio S. Pinhanez and Aaron F. Bobick. Interval scripts: a programming paradigm
for interactive environments and agents. Personal and Ubiquitos Computing, 7(1): 1—
21, May 2003.

[255] Pogo. h t t p : / /www.pogo . com.

[256] R. Prada and A. Paiva. Intelligent virtual agents in collaborative scenarios. In
T. Panaylotopoulos et a l, editor, Int. Working Conference on Intelligent Virtual
Agents, LNAI3661, pages 317-328, Sept 2005.

[257] A. Prakash and H.S. Shim. DistView: Support for building efficient collaborative
applications using replicated objects. In Conference on CSCW, pages 153-164. ACM,
Oct 1994.

[258] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. A survey of distributed shared
memory systems. In Trevor N. Mudge and Bruce D. Shriver, editors, Proceedings
o f the 28th Annual Hawaii International Conference on System Sciences. Volume
1: Architecture, pages 74—84, Los Alamitos, CA, USA, jan 1995. IEEE Computer
Society Press.

[259] Weizhong Qiang, Hai Jin, Xuanhua Shi, and Deqing Zou. A novel VO-based ac­
cess control model for grid. In H. Jin, Y. Pan, N. Xiao, and J. Sun, editors, Grid
and Cooperative Computing, volume 3251, pages 293-300. Springer-Verlag Berlin
Heidelberg, Oct 2004.

[260] Ruibiao Qiu, Fred Kuhns, and Jerome R. Cox. A conference control protocol for
highly interactive videoconferencing. In Global Telecommunications Conference,
GLOBECOM ’02, volume 2, pages 2021-2025. IEEE, Nov 2002.

[261] C. Qu and W. Nejdl. Constructing a web-based asynchronous and synchronous col­
laboration environment using WebDAV and Lotus SameTime. In SIGUCCS '01,
pages 142-149. ACM, Oct 2001.

BIBLIOGRAPHY 230

[262] D. Radosevic and B. Klieek. Development of a higherlevel multimedia scripting
language. In Information Technology Interface, pages 201-208. IEEE, 2001.

[263] R.R. Raje, D. Zhu, S. Mukhopadhyay, L. Tang, and M. Palakal. COBioSIFTER - A
CORBA-based distributed multi-agent biological information management system.
Cluster Computing, 7(4):373-389, October 2004.

[264] RK. Reddy and M. Kitsuregawa. Speculative locking protocols to improve perfor­
mance for distributed database systems. IEEE Transactions on Knowledge and Data
Engineering, 16(2): 154-169, Feb 2004.

[265] S.P. Reiss. A component model for intemetscale applications. In ASE’05, pages
34-43. ACM, Nov 2005.

[266] Mathias W. Richter. lava: yet another interpreter for scripting within the Java plat­
form. Software-Practice And Experience, 30:81-106, 2000.

[267] Ran Rinat and Scott Smith. Modular internet programming with cells. In B. Magnus-
son, editor, ECOOP 2002 - Object-Oriented Programming: 16th European Confer­
ence, pages 257-280, Malaga, Spain, June 2002. Springer-Verlag Berlin Heidelberg.
LNCS 2374.

[268] M. Ringel, K. Ryall, C. Shen, C. Forlines, and F. Vernier. Release, relocate, reorient,
resize: Fluid techniques for documents sharing on multi-user interactive tables. In
CHI 2004, pages 1441-1444. ACM, April 2004.

[269] Kirrily Skud Robert. Perl documentation. h t t p : / / w w w . p e r l d o c . c o m /
p e r l 5 . 8 . O / p o d / p e r l i n t r o . h tm l .

[270] K.W. Ross and J.F. Kurose. Connectionless transport: UDP. h t t p : / / w w w \ - n e t .
c s . um ass . e d u / k u r o s e / t r a n s p o r t / U D P .h tm l , 1996-2000.

[271] Peter Van Roy, Per Brand, Denys Duchier, Seif Haridi, Martin Henz, and Christian
Schulte. Logic programming in the context of multiparadigm programming: the Oz
experience, h t t p : / / w w w .m o za r t -o z . o r g / p a p e r s , 2003.

[272] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Schei-
dhauer. Mobile objects in distributed Oz. ACM Transactions on Programming Lan­
guages and Systems (TOPLAS), 19(5):804-851, September 1997.

[273] R. P. Saldana, W. C. Tabares, and W.E. S. Yu. Parallel implementations of cellular
automata algorithms on the agila high performance computing system. In Interna­
tional Symposium on Parallel Architectures, Algorithms and Networks, pages 110—
116. IEEE, May 2002.

[274] Ravi Sandhu and Jaehong Park. Usage control: A vision for next generation access
control. In V. Gorodetsky et al., editor, MMM-ACNS 2003, pages 17-31. Springer,
2003.

[275] R.S. Sandhu. The schematic protection model: Its definition and analysis for acyclic
attenuating schemes. Journal o f ACM, 35(2):404-432, Apr 1988.

BIBLIOGRAPHY 231

[276] R.S. Sandhu. The typed access matrix model. In Symposium on Security and Privacy,
pages 122-136. IEEE, 1992.

[277] Manish Sarkar and B. Yegnanarayana. Rough-fuzzy set theoritic approach to evaluate
the importance of input features in classification. In International Conference on
Neural Networks, volume 1, pages 438-443. IEEE, June 1997.

[278] Herbert Schildt. Modula2 Made Easy. McGrawHill, Berkeley, California, 1986.

[279] K. A. Schneider and James R. Cordy. Abstract user interfaces: A model and notation
to support plasticity in interactive systems. In C. Johnson, editor, DSV-IS 2001, pages
28-49. LNCS 2220, Springer-Verlag, 2001.

[280] Jennifer M. Schopf. Grids: The top ten questions. Scientific Programming: Special
issue on Grid Computing, 10(2): 103-111, August 2002.

[281] C. Schuckmann, L. Kirchner, J. Schummer, and J.M. Haake. Designing object-
oriented synchronous groupware with COAST. In CSCW, pages 30-38. ACM, 1996.

[282] H. Schuldt, H. Schek, and M. Tresch. Coordination in CIM: Bringing database
functionality to application systems. h t t p : / / c i t e s e e r . i s t . p s u . e d u /
s c h u l d t 9 8 c o o r d i n a t i o n . h tm l , 1998.

[283] Timothy K. Shih, Lawrence Y.Deng, I-Chun Liao, Chun-Hung Huang, and Rong-Chi
Chang. Using the floor control mechanism in distributed multimedia presentation
system. In Distributed Computing Systems Workshop, pages 337-342. IEEE, April
2001.

[284] S. Shirmohammadi and N.D. Georganas. JETS:a Java-enabled telecollaboration sys­
tem. In Multimedia Computing and Systems, pages 541-547. IEEE, June 1997.

[285] S.K. Shrivastava, G.N. Dixon, and G.D. Parrington. An overview of the Aijuna dis­
tributed programming system. IEEE Software, 8(l):66-73, January 1991.

[286] Jon Siegel. CORBA BASICS, h t t p : / / w w w . o m g . o r g / g e t t i n g s t a r t e d /
c o r b a f a q . h tm l , May 2002.

[287] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Con­
cepts. Wiley, New York, 6th edition, 2002.

[288] Hugo Simpson. Mascot real time networks in distributed system design. In IEE
Colloquium on Building Distributed Systems, pages 1/1-1/10. IEEE, Nov 1990.

[289] A. Sinha. Client/server computing. Communications o f the ACM, 35(7):77-98, July
1992.

[290] Smalltalk.org. Smalltalk, h t t p : / / www. S m a l l t a l k . o r g / m a i n .

[291] M.L. Smith, R.J. Parsons, and C.E. Hughes. View-centric reasoning for Linda and
tuple space computation. In IEE Proceedings on Software, volume 150, pages 71-83.
IEEE, April 2003.

[292] Allan Snavely, Greg Chun, Henri Casanova, Rob F. Van der Wijngaart, and M. A.
Frumkin. Benchmarks for grid computing: A review of ongoing efforts and future

BIBLIOGRAPHY 232

directions. ACM SIGMETRICS Performance Evaluation Review, 30(4):27-32, March
2003.

[293] P.G. Soares. On remote procedure call. In Conference o f the Centre for Advanced
Studies on Collaborative Research, pages 215-267. ACM, 1992.

[294] Eiffel Software. Eiffel software, h t t p : / / www. e i f f e l . com.

[295] Sandy Knoll Software. Tic-tac-toe. h t t p : / / s e c u r e . d o w n e a s t . c o m , May
2003.

[296] Diane H. Sonnenwald, Mary C. Whitton, and Kelly L. Maglaughlin. Evaluating a
scientific collaboratory: Result of a controlled experiment. ACM Transactions on
Computer-Human Interaction, 10(2): 150-176, June 2003.

[297] C. Stapleton, C. Hughes, M. Moshell, R Micikevicius, and M. Altman. Applying
mixed reality to entertainment. Computer, 35(12): 122-124, Dec 2002.

[298] A. Di Stefano, G. Pappalardo, C. Santoro, and E. Tramontana. SHARK, a multi-agent
system to suppport document sharing and promote collaboration. In International
Workshop on Hot Topics in Peer-to-Peer Systems, pages 86-93. IEEE, October 2004.

[299] Karl E. Steiner and Tom Moher. Encouraging task-related dialog in 2D and 3D
shared narrative workspaces. In Elizabeth Churchill and Martin Reddy, editors, ACM
conference on COLLABORATIVE VIRTUAL ENVIRONMENT, pages 39-46. ACM
SIGCHI, ACM SIGGROUP, ACM SIGGRAPH, ACM, September 2002.

[300] R.C. Steinke and G.J. Nutt. A unified theory of shared memory consistency. Journal
o f the ACM, 51(5):800-849, Sept 2004.

[301] M. Young Sung and D. Hyung Lee. A Java-based collaborative authoring system for
multimedia presentation. In K. Aizawa, Y. Nakamura, and S. Satoh, editors, Advances
in Multimedia Information Processing, volume LNCS 3332, pages 96-103. Springer-
Verlag, Nov-Dee 2004.

[302] U.J. Sung, J.H. Yang, and K.Y. Wohn. Concurrency control in CIAO. In Virtual
Reality ’99. IEEE, 1999.

[303] R. Sureswaran, S. Noori, R. Budiarto, and S. Rao. Scalable and reliable multises­
sion document sharing system. In Conference on Information and Communication
Technologies: From Theory to Applications, pages 613-614. IEEE, April 2004.

[304] H. Suzuki and R. Huang. Virtual realtime 3D object sharing for supporting distance
education and training. In Advanced Information Networking and Applications, pages
445-450. IEEE, 2004.

[305] Irene Sygkouna, Maria Strimpakou, Francisco Valera, Anastasia Kaltabani, Luis Bel-
lido, Enrique Vazquez, and Miltiades Anagnostou: Seamless incorporation of agents
in an e-commerce intermediation platform. Springer-Verlag Berlin Heidelberg, pages
292-301, 2002. LNCS2521.

[306] SymMobile. h t t p : //www. s y m m o b i l e . c o m / i m g / n e w s / b r i d g e \ _ j ? 8 00 .
g i f .

BIBLIOGRAPHY 233

[307] Toshiyuki Takeda. A design for computer supported collaborative learning using
concerns oriented model. In Conference on Creating, Connecting and Collaborating
Through Computing, pages 89-95. IEEE, Jan 2003.

[308] M. Tambe, W.M. Shen, M. Mataric, D. Goldberg, P.J. Modi, Z. Qiu, and B. Salemi.
Teamwork in cyberspace: Using TEAMCORE to make agents teamready. h t t p :
/ / c i t e s e e r . i s t . p s u . e d u / 8 6 3 4 .h tm l , 1998.

[309] The Tam sll. Tamsll gaming lobby. h t t p : / / w w w . t a m s l l . c o m /
p o k e r s q u a r e s / p o k e r s q u a r e s . jpg .

[310] Andrew S. Tanenbaum. Modem Operating Systems. Prentice Hall, Upper Saddle
River, N.J., 2nd edition, 2001.

[311] Paul Tarau. Towards inference and computation mobility: The Jinni experiment.
In J. Dix, L. Farinas del Cerro, and U. Furbach, editors, JELIA’98, pages 385-390.
Springer-Verlag Berlin Heidelberg, 1998. LNAI 1489.

[312] Simon J.E. Taylor, Jon Saville, and Rajeev Sudra. Developing interest management
techniques in distributed interactive simulation using java. In Proceedings o f the 1999
Winter Simulation Conference, volume 1, pages 518-523. IEEE, 1999.

[313] Thuan Thai and Hoang Q. Lam. .NETFramework Essentials. O’Reilly & Associates,
1005 Gravenstein Highway North Sebastopol CA 95472, second edition, February
2002.

[314] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Edward D. La-
zowska. Implementing network protocols at user level. IEEE/ACM Transactions
on Networking, l(5):554-565, October 1993.

[315] Roshan K. Thomas. Team-based access control (tmac): A primitive for applying
role-based access controls in collaborative environments. In Workshop on Role-based
Access Control, pages 13-19. ACM, November 1997.

[316] Robert Tolksdorf and Dirk Glaubitz. XMLSpaces for coordination in web-based
systems. In Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprise (WETICE), pages 322-327. IEEE, June 2001.

[317] W. Tolone, G.J. Ahn, T. Pai, and S.P. Hong. Access control in collaborative systems.
ACM Computing Survey, 37(1):29-41, March 2005.

[318] D.M. Traill, J.M. Bowskill, and P.J. Lawrence. Interactive collaborative media envi­
ronments. BT Technology Journal, 14(4): 130-140, October 1997.

[319] Yuh-Min Tseng. A scalable key-management scheme with minimizing key storage
for secure group communications. International Journal o f Network Management,
13(6):419-425, Nov-Dee 2003.

[320] UIUC. Habanero. h t t p : / / w w w . i s r l . u i u c . e d u / i s a a c / H a b a n e r o .

[321] Bill Venners. The philosophy of Ruby, h t t p : / / w w w . a r t i m a . c o m / i n t v /
r u b y P . h tm l , September 2003.

[322] W3C. W3c world wide web consortium, h t t p : / / www. w3 . o rg , 1994-2006.

BIBLIOGRAPHY 234

[323] Lihua Wang, SJ. Turner, and Fang Wang. Interest management in agent-based dis­
tributed simulations. In International Symposium on Distributed Simulation and
Real-Time Applications (DS-RT’03), pages 20-27. IEEE, 2003.

[324] S.Q. Wang, L. Chen, and G.C Chen. A framework for Java 3D based collaborative
virtual environment. In International Conference on Computer Supported Coopera­
tive Work in Design, volume 1, pages 34—39. IEEE, May 2004.

[325] Greg Ward. Distributing Python modules, h t t p : / / w w w . p y t h o n . o r g / d o c /
c u r r e n t .

[326] Richard Waters and David Anderson. Scalable platform for large interactive net­
worked environments. h t t p : / / www.m e r l . c o m / p r o j e c t s / s p l i n e , October
2002.

[327] David J. Weiss. BRIDGE Parity Leads in Defence. Robert Hale.London, 1994.

[328] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-
man, S. Meder, L. Pearlman, and S. Tuecke. Security for grid services. In Proceedings
on High Performance Distributed Computing (HPDC’03), pages 48-57. IEEE, June
2003.

[329] Whatis.com. Web services definitions, h t t p : / / w h a t i s . t e c h t a r g e t . c o m ,
April 2006.

[330] Larry D. Wittie. Computer networks and distributed systems. Computer, 24(9):67-
76, Sept 1991.

[331] Bing Xie, Xiaolin Gui, Yinan Li, and Depei Qian. A new grid security framework
with dynamic access control. In H. Jin, Y. Pan, N. Xiao, and J. Sun, editors, Grid
and Cooperative Computing, volume 3251, pages 863-866. Springer-Verlag Berlin
Heidelberg, Oct 2004.

[332] J. Yang and D. Lee. Scalable prediction based concurrency control for distributed
virtual environment. In Virtual Reality, pages 151-158. IEEE, March 2000.

[333] Kevin Yank. Interview- PHP’s creator, Rasmus Lerdorf. h t t p : / / w w w .
s i t e p o i n t . c o m / p r i n t / p h p s - c r e a t o r - r a s m u s - l e r d o r f , M a y 2002.

[334] Stephen S. Yau and Fariaz Karim. An adaptive middleware for context-sensitive com­
munications for real-time appliations in ubiquitous computing environments. Real-
Time Systems, 26(1):29—61, Jan 2004.

[335] E. Yoshida and H. Kakugawa. A learning system for the problem of mutual exclusion
in multithreaded programming. In Conference on Advanced Learning Technologies,
pages 2-6. IEEE, Aug-Sept 2004.

[336] A.P. Yu and S.T. Vuong. MOPAR: A mobile peertopeer overlay architecture for
interest management of massively multiplayer online games. In NOSSDAW5, pages
99-104. ACM, June 2005.

[337] F. Zaffar, G. Kedem, and A. Gehani. Paranoid: A global secure file access control
system. In ACSAC 2005. IEEE, 2005.

BIBLIOGRAPHY 235

[338] M. Zellouf, P. Prevot, and R. Aubry. Computer-supported coordination and commu­
nication in collaborative development of courseware. In Conference on Communica­
tions, Power, and Computing, pages 95-100. IEEE, May 1995.

[339] S. Zhang, A. Bums, J. Chen, and E. Stewart Lee. Hard real-time communication
with the timed token protocol: Current state and challenging problems. Real-Time
Systems, 27(3):271-295, September 2004.

[340] X. Zhang, Y. Li, and D. Nalla. An attribute-based access matrix model. In Symposium
on Applied Computing, pages 359-363. ACM, March 2005.

[341] L. Zou, M.H. Ammar, and C. Diot. An evaluation of grouping techniques for state dis­
semination in networked multi-user games. In Int. Symposium on Modeling, Analysis
and Simulation o f Computer and Telecommunication Systems, pages 33-40. IEEE,
2001.

List of Figures

1.1 Internet Collaborative Activities.. 4
1.2 JACIE Sample Output... 5

2.1 Client/Server Connections that Allow Users Collaboration............................... 16
2.2 Pogo Game Collaboration Chess.. 29
2.3 Entities, Cells and Vision Domains [341]... 30
2.4 Consistency Mechanisms in MASSIVE-3 [135]... 37

3.1 Possible Configuration of RPCs [293].. 46
3.2 Session Manager in DistView [241].. 47
3.3 Shared Memory as an API [300]... 59

4.1 JACIE Software Architecture... 64
4.2 JACIE Compiler. ... 66
4.3 Standard JACEE Component.. 67
4.4 Layout Diagram of JACIE User Interface... 69
4.5 State Diagram for Server and Client.. 70
4.6 A JACIE Message and Its Representation in Relation to Other Network Layers. 70
4.7 An Example of a JACIE Message with Values... 71
4.8 Message Exchange.. 73
4.9 Outline Structure of JACIE Compiler. ... 83
4.10 Error on the Lexical Phase... 84
4.11 Error on Determining G ram m ar... 85
4.12 Syntax Error in a Program.. 86
4.13 Error Message on Syntax.. 86
4.14 A Local Variable is Treated as Global. .. 87
4.15 Error Message on Semantic Checking.. 88

5.1 Various Versions of the Noughts and Crosses Type Games............................ 94
5.2 Win Conditions.. 97
5.3 Screenshots of Two Noughts and Crosses Games.. 98
5.4 Screenshots of Generalised Games..102
5.5 JACIE Collaborative Management.. 112

6.1 Tables for Managing Shared Variable...129
6.2 Flow Chart of the Server Control on Permission Setting...131

/

236

LIST OF FIGURES 237

6.3 Flow Chart of Write Operation.. 135
6.4 Flow Chart of Read Operation... 137
6.5 Flow Chart of Filtering Process..138
6.6 Summary of Message Passing Activities.. 150
6.7 Screenshot of the Noughts and Crosses Game with Password.....................................153

7.1 Example of Bridge Games... 156
7.2 Bridge Game (The Bidding Process)...158
7.3 Bridge Game (The Trick Play)...162
7.4 Overall Network Settings...167
7.5 Layout of the Individual Room..168
7.6 Room Selection... 169
7.7 Read Operation on Devices in Room.1..173
7.8 Ready To Do a Write Operation on a Device in Room 3..................................... 174
7.9 Checking on Network Components...175
7.10 Detecting the Problem and Solve...176
7.11 Output of JACIE Hello Program.. 180
7.12 Output of Program with Contention Protocol... 181
7.13 Output of Java Hello Program .. 184

List of Tables

2.1 CSCW Environment... 13

3.1 Comparison on Scripting Languages.. 53
3.2 General Form of Access Control Matrix Model... 61

5.1 Variations of the Noughts and Crosses Game, and Their Main Features. . . 99
5.2 New Java Classes for Interaction Management..115
5.3 Changes on FloorManagerTemplate.java File.. 115
5.4 Changes on JACIECGroupManagerTemplate.java File.......................................116
5.5 Timer Based Comparison...121

6.1 Environment and Applications for Distributed Systems......................................126
6.2 Shared Variable Attributes on the Server...130
6.3 Shared Variable Attributes on the Client...132
6.4 Example Applications Involving Read and Write Access Conditions 134
6.5 New Java Classes for Interest Management... 145
6.6 Comparison on the Secret Switch Implementations...152

7.1 Codes Length Comparison on JACIE and Its Java Translated Programs. . . 178
7.2 Processing Comparison on JACIE and Its Java Translated Programs................. 179
7.3 Participants Background Data..181
7.4 Learning and Testing Sessions...182
7.5 Transmission Delay Between Server and C lie n t ... 185
7.6 Interaction Delay on a U se r..186

B.I Technical Terms..201
B.2 Mathematical Symbols...201

C. 1 Primitive Data Type..202
C.2 Arithmetic Operators.. 202
C.3 Relational and Conditional Operators...203

238

