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ABSTRACT

The intention at the beginning of this study was to investigate 
the primary productivity of phytoplankton in Swansea Bay. This 
productivity was measured fortnightly using the l ^ C - f i x a t i o n  technique. 
Biomass standing stock was measured as chlorophyll ji m“3 and as 
cell concentration. Concurrently, several environmental factors were 
measured to relate any possible effect on phytoplankton growth and 
species succession. The factors studied were seawater temperature, 
salinity, nitrate, nitrite, ammonia, phosphate, silicate and some 
meteorological data supplied by a local station. A weak positive 
correlation was found between net phytoplankton cell number and phyto- 
plankton chlorophyll _a. Based on this finding, the relative importance 
of phytoplankton size classes as primary producers was investigated. 
As a result of this investigation, it has been found that most of the 
primary productivity ( 80%) was carried out by phytoplankton less than
20 pm. Special attention was given to the role of nitrate in the 
^C-fixation by different phytoplankton size classes and by phyto­
plankton species grown in synthetic medium. The effect of nitrate on 
the ^C-fixation by the size classes was investigated using 
nutrient enrichment technique. From these experiments it has been 
found that nitrate enrichment stimulates the increase of ^C-fixation 
by the different size fractions at different rates. When nitrate was 
given to nitrogen-starved Thalassiosira sp. and Asterionella japonica, 
it was found that nitrate was taken up at the expense of ^C-fixation. 
It was also found that algal cells cultured in medium with high nitrate 
concentration increased their chlorophyll content. It was concluded 
from this study that nano and picoplankton play an important role in 
the productivity of Swansea Bay, and that nitrate plays a significant 
role as a limiting nutrient not only to the primary productivity of the 
phytoplankton population as a whole but also to the different phyto­
plankton size classes.



CHAPTER I 
GENERAL INTRODUCTION



In the many years spent in the study of marine biology, plankton 

research has received increasing attention. Phytoplankton studies 

began with the observation of Joseph Hooker in 1839 that the green 

water and slimy brownish-green scum on the Antartic ice were plant­

like. Victor Hensen in 1887 adopted a more physiological approach to 

the study of phytoplankton. The first review of the observations in 

the early years of phytoplankton studies was conducted by Gran (1912).

Phytoplankton are the major contributors to primary productivity 

in the oceanic environment. Apart from seaweeds and higher plants, 

phytoplankton are the main producers in coastal environment. Their 

role as major primary producers of organic material in the aquatic 

envrionment made them the core of primary productivity studies. 

Primary productivity is defined as the amount of carbon fixed by auto- 

trophic organisms through the synthesis of organic matter from 

inorganic compounds such as CO2 and H2O using energy derived from solar 

radiation or chemical reactions. The total amount of organic matter 

produced by photosynthesis represents the gross primary production. 

Net primary production represents the amount of organic matter 

remaining from gross primary production after the deduction of the 

amount of organic matter used in cell maintenance through respiration. 

Different methods are used to measure net primary production. The 

oxygen method of Gran has been used since the early decades of the 

twentieth century. Another method was developed by Steeman Nielsen 

(1952). This new method involves the measurement of carbon fixed by 

phytoplankton using carbon isotope (^C). Since there is a direct 

relationship between the amount of chlorophyll ,a in a phytoplankton 

sample from a given volume of water and gross primary productivity, 

chlorophyll â measurement has been used as an indirect tool in the
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measurement of primary productivity. One of the most important features 

of phytoplankton population dynamics is species succession. This 

phenomenon was observed by many authors (Marshall and Orr, 1927; 

Lillick, 1940; Robinson, 1965; Hulbert, 1975; Butler et al., 1979). In 

the Bristol Channel, species succession has been reported a number of 

times (Rees, 1939; Pearce, 1967; Paulraj, 1974; Tyler, 1976; Vogelmann, 

1980; Sexton, 1985). Since phytoplankton vary in size from 2 to 300 pm, 

this means that it is likely for a phytoplankton population of specific 

cell volume to be replaced by another population with a different cell 

volume.

The diversity of cell size leads to the introduction of phyto­

plankton differentiation into different groups according to their size. 

The term nanoplankton was first used by Lohmann (1903) for phytoplankton 

not retained by phytoplankton net. Sieburth et al. (1978) used the term 

picoplankton to describe plankton smaller than 2 pm in diameter.

Primary productivity by phytoplankton size fractions was investi­

gated in the different environmental ecosystems (McAllister et al., 

1959; Malone, 1971a; Durbin et al., 1975). In general, it has been 

observed that nano and picoplankton dominate the oceanic environment, 

while the net plankton dominate the coastal and neritic environment 

(Malone, 1980). Exceptions to these observations were found (Durbin et_ 

al., 1975; Hannah and Boney, 1983).

Many factors have been found to influence or limit primary pro­

duction and the distribution of phytoplankton in time and space. These 

factors include light (Marshall and Orr, 1927, 1930; Thomas et al.,

1978; Chan, 1980), temperature (Riley, 1946; Fogg, 1975; Raymont, 1980; 

Harrison and Turpin, 1982), nutrients (Atkins, 1930; Riley, 1937; 

Ketchum e t a l ., 1958; Ryther and Kramer, 1961; Hulbert, 1970; Pingree £t_
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al., 1977), and grazing (Bainbridge, 1953; Mullin, 1963; Martin, 1970).

The effects of the different environmental factors on the growth, 

species succession and physiology of phytoplankton have been studied 

intensively in the natural environment and in cultures (Fogg, 1975; 

Raymont, 1980; Morris, 1980).

Cultures have been used as simulated environments to simplify the 

complexity of the natural environment. In respect to the effect of 

environment factors (especially nutrients) on the growth of phyto­

plankton in unialgal, mixed cultures, or even natural populations, bio­

assay technique has been widely used (Schelske and Stoermer, 1971;

Schindler, 1971; Goldman, 1972; Barlow et al., 1973).

The present research started with a field study of the primary 

production, species succession, size fractionation, and the seasonal 

change in the physical and chemical environmental factors. Concur­

rently, culture experiments were carried out to investigate the

relationship between phytoplankton growth expressed either as l^C- 

fixation or cell concentration and nutrient enrichment, especially 

nitrate.

Throughout this thesis, the presentation of the chapters follows 

the development of the results and the findings based upon them. The

chapters are presented in the following order:

Chapter II Describes the study area, its location, hydrography, and
the methodology used in the field studies.

Chapter III Describes and discusses the seasonal change in the
physical and chemical factors: sunshine hours, sea and 
water temperature, rainfall; concentrations of nitrate, 
nitrite, ammonia, phosphate and silicate.
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Chapter IV Describes and discusses the seasonal change of phyto­
plankton abundance, biomass, primary productivity as 
well as the zooplankton abundance.

Chapter V Describes and discusses phytoplankton species suc­
cession.

Chapter VI Describes and discusses the seasonal change in the
primary productivity of phytoplankton size classes.

Chapter VII Describes the methodology used in the laboratory studies

which were (among other experiments) devoted to study 
the response of phytoplankton, in cultures or natural 
seawater, to the addition of nutrients (mainly nitrate).

Chapter VIII The findings of the research are discussed, connected 
and final conclusions are drawn.



CHAPTER II 
STUDY AREA AND METHODOLOGY



D

STUDY AREA

The Bristol Channel is one of the main water environments in the United 

Kingdom. Its significance derives from the presence of many industrial 

and economic sites along its northern and southern coastlines. The 

Severn Estuary and Bristol Channel form a wide, shallow estuary. 

Rivers Severn, Avon, Usk, Wye, Taff, Parret, Axe, Taw, Torridge, Neath 

and Tawe form the main run-off sources into the Bristol Channel. The 

mean annual freshwater flow into the estuary is 8 x 10  ̂ m^ year“l 

(Joint and Pomroy, 1981). The water circulation in the Bristol Channel 

consists mainly of an oscillatory tidal current and a relatively small 

residual current (Uncles, 1984). The ecology and hydrodynamics of the 

Bristol Channel are affected directly by the tidal and residual 

currents. They produce a frictional drag on the sea bed. The large 

tidal stresses produced are associated with strong vertical current 

shear which generates intense vertical mixing, which is responsible for 

the high turbidity of the channel.

Based on ecological and oceanographical features, the Bristol 

Channel is divided into seven hydrodynamic regions (I.M.E.R., 1974,

1975) (Fig* 2.1). Tidal currents in the central regions of the channel 

are mainly linear and parallel to the northern and southern coastlines 

(Admiralty Chart No. 1165, Admiralty Tidal Stream Atlas, 1973). 

Modifications to this rectilinear system occur along the South Gower 

coastline, due to the presence of embayments. Examples of such cases 

are the eddy systems in Port Eynon and Oxwich Bays (Tyler and Banner, 

1977; Ferentinos and Collins, 1980).

Swansea Bay is one of the largest embayments along the South Gower 

coastline at the northern boundary of the Bristol Channel. The



Figure 2.1 Hydrodynamic regions of the Bristol Channel

1. Inner estuary
2 . Outer estuary
3. Inner channel
4. North central channel
5. South central channel
6 . North outer channel
7. South outer channel
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distance, at the entrance of the bay, between Mumbles Head in the west 

to the eastern limits of the bay is about 12 km, and the distance from 

this boundary to the northern shore line is about 4 km (Collins et al»,

1979) (Fig. 2.2). The average depth of the bay is 8 m.

Many rivers, streams, domestic and industrial discharges contri- 

ibute to the input into Swansea Bay (Fig. 2.2). The mean volumetric 

input to the bay from rivers and discharges during a sampling programme 

conducted by Chubb et al. (1980) was 37.9 m^.sec"’̂-. Rivers and streams 

accounted for 93.6% of this flow and the two major rivers, Tawe and 

Neath together contributed 66.8% of the total.

Due to the protrusion of headlands in the bay, the rectilinear 

tidal current of the central region of the Bristol Channel is modified 

to an anticlockwise eddy circulation pattern in the west region of 

Swansea Bay. In the eastern part of the bay, an area of divergence 

between the main rectilinear current and the anticlockwise eddy 

circulation was observed (Collins et al., 1979) (Fig. 2.2).

The configuration of the coastal lines due to the presence of 

heads and land intrusions affected the quality and the hydrodynamics of 

the water by confining the mixing between offshore water and the 

inshore water to the inner bay. This was explained in the results of 

the work carried out by Mantoura and Morris (1980). They found a water 

mass representing the later stages of mixing between the coastal waters 

of inner Swansea Bay, with the main offshore water of the Bristol 

Channel. This is confirmed by the presence of an area with low

salinity water during the summer months near Mumbles Head (Joint,

1980).



Figure 2.2 Swansea Bay

A: Eastern sampling station 
B: Western sampling station

— ►  Tidal transport 
-► Wave transport
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METHODOLOGY

I . Field Collection of Samples

The field work of this study was carried out using RV ’Venturous'. The 

water and plankton samples obtained were from an area in the eastern 

region of Swansea Bay. Two sampling stations were established to the 

east (A), and west (B), of the BP outfall bouy (51° 34’N, 3° 51’W) and 

at a distance of half a nautical mile from it (Fig. 2.2). It is very 

likely that the sampling stations are in the area of the rectilinear 

currents, and near the suggested divergence area at the eastern part of 

the bay (Ferentinos, 1978; Collins et al., 1979).

The water column in Swansea Bay is usually well mixed due to the 

presence of strong tidal excursions. For this reason the water samples 

were pumped from one depth only (1 foot below the surface).

To obtain the best results, the same water mass should be sampled 

each time in order to observe and compare changes occurring in the 

water quality. In the case of Swansea Bay, this is difficult due to 

the complex water hydrodynamics and the powerful tidal action 

characteristic of Swansea Bay, and the Bristol Channel as a whole.

This means that, when, at a fixed station, water is sampled at 

different times during the tidal cycle and at different intervals 

during the lunar cycle, the water collected could be representing 

different water masses (Vogelmann, 1980).

Taking these points into consideration, a programme was 

established to collect water and plankton samples at each spring tide, 

and within 2 hours from high tides for a period of 28 months.
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i . Plankton collection

A standard plankton net was used for the plankton collection. The net 

consisted of an 18" diameter ring. To this ring, a cone of bolting 

silk with a mesh size no. 155 was attached. The end of the cone was 

open so that a jar was tied to it during the towing. Starting from the 

bouy, the net was towed first to the east for 20 minutes, and then to 

the west for another 20 minutes, and at each tow a line of about half a 

nautical mile was covered.

The plankton collected in the sampling jar were poured gently into 

plastic bottles.

ii. Water sampling

Seawater samples were collected from each station using a tap fixed on 

board the ship. The water was collected in clean, 5 litre capacity, 

polythene bottles. The water temperature was measured immediately 

using a -10°C to +110°C mercury thermometer. Because the samples

usually returned to the laboratory within 1 hour from sampling, they 

were kept in the shade until reaching the laboratory where the 

treatment was carried out.

II. Laboratory Treatment of Samples

All of the chemicals used were of the highest purity. They were 

obtained either from BDH or Sigma Chemical Companies. All of the 

glassware and equipment not used in the radioactive work were soaked 

overnight in 5% HCL, then rinsed three times with double distilled 

water prior to their use. The equipment used in the radioactive work 

was soaked in tap water containing detergent for two days, then rinsed 

five times with distilled water and left to dry prior to any radio­



active work.

i . Plankton

After returning the plankton samples to the laboratory, 200 ml of each 

sample was poured into 250 ml polythene bottle. To each sample Lugol's 

solution (5 g RI + 2.5 g I2 in 250 ml H2O) was added (up to 5 ml/200 ml) 

The plankton were identified and counted within a few days from 

sampling. Examination of the plankton samples was carried out using 

PZO compound microscope. With the aid of a fin pipette, 1 ml of the 

sample was transferred to Sedwick Rafter chamber, total volume 1 ml; 

the chamber was divided into 1000 squares. Depending on the concent­

ration of the sample, phytoplankton and zooplankton in at least 50 

squares were counted and identified. This process was repeated at 

least three times for each sample.

ii. Seawater sample

As mentioned previously, 5 litres of seawater were collected from each 

station. From each sample, 100 ml was used for the determination of 

the alkalinity, and 100 ml for the isolation of phytoplankton. 

Depending on the seasonal growth, triplicates of 0.5-1 litres of the 

seawater were filtered through Whatman GF/C filters using Millipore 

filtration apparatus. The filter discs were used for chlorophyll â 

determination.

200 ml of the filtrate was stored frozen until the next day for 

phosphate analysis. 1 litre of the filtrate was used in the analysis 

of nitrate, nitrite, ammonia and silicate. About 500 ml of the 

filtrate was stored in a glass, medical flat bottle to be used in the 

measurement of salinity. 400 ml of the seawater was used in the



measurement of primary production.

a. Salinity

Salinity was measured using YSI Model 33 S-C-T meter. The instrument 

was calibrated against different known salinities of synthetic seawater 

(25-35%o). Samples were allowed to equilibrate to room temperature 

overnight prior to analysis.

b . Chlorophyll a

Chlorophyll a_ was determined by the method described by Strickland and 

Parsons (1972). 0.5-1 litre of seawater was filtered through a Whatman

GF/C filter disc. The last 200 ml was treated with 1 ml of MgCo3 

suspension. The filter disc was divided into small portions and placed 

in 15 ml centrifuge tube to allow easier extraction. 10 ml of 90% 

acetone was added to the content of the tube, and the whole contents 

shaken vigorously to dissolve the filter paper. The mouth of the tube 

was covered with parafilm, and then the whole tube was covered with 

aluminium foil in order to minimize the effect of light. The tube was 

placed in the dark at 4°-5°C for 24 hours. At the end of the storage 

period, an additional 2 ml of 90% acetone was added and the sample was 

centrifuged at a speed of 2500 rpm. The supernatant was read in a 1 cm 

cuvette against a 90% acetone blank on CE 272 linear readout ultra­

violet spectophotometer, at wavelengths of 750, 665, 645 and 630 nm. 

To correct for turbidity, the reading at 750 nm was substracted from 

the readings at the other wavelengths. The extinction values were 

multiplied by 12 to normalize them to the values expected from 10 cm 

cuvette and 10 ml of extract.

The concentration of chlorophyll a was calculated according to
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Strickland and Parsons (1972) equations:

c (chlorophyll a) - 11.6 (E665) - 1.13 (E645) - 0.14 (630) (1)

~ cmg chlorophyll â m”-5 = - (2)
v

where c was the value obtained from equation (1) and v was the volume 

of filtered seawater in litres.

Capabilities:

If it is practical, up to 10 litres of seawater can be filtered with a 

lower limit of:

chlorophyll a_ precision at the 5 yg level 

The correct value lies in the range:

Mean of n determinations + 0.26/n^ yg chlorophyll ji

c. Primary production

Primary production of the photoautotrophic planktonic organisms was 

determined by the method described by Strickland and Parsons (1972), 

based on the original radioactive carbon-14 method by Steemann Nielsen 

(1952).

This method is based on the assumption that a small amount of 

specific radioactive compound added to a sample of water containing 

biological material, is assimilated at about the same rate as the 

corresponding non-labelled compound occurring naturally in the water 

to be assayed (Vollenweider, 1974).



14

Dilution and storage of radioactive carbon

The radioactive carbon was obtained as N a H ^ 4C03 from Amersham in 1 mci 

batches. Using a syringe, the contents of the ampoule were transferred 

to 100 ml volumetric flask. The ampoule was rinsed several times by 

0.5 N NaOH to ensure that all the radioactive material was transferred 

to the flask. The volume was diluted to 100 ml with a 0.5 N NaOH.

This dilution gave a pH of about 9. This was carried out to 

minimize the loss of during storage and handling (Gargas, 1975).

When 1 mci was diluted to 100 ml, the activity obtained was 10 yci/ml. 

5 ml portions were distributed into tightly stoppered, 5 ml plastic 

containers. These working solutions were kept frozen until required.

Determination of the ambient CO2

The method used here and described by Strickland and Parsons (1972), is 

based on mixing a known volume of seawater with a standard acid. The 

initial pH of the seawater was determined immediately after bringing 

the seawater to the laboratory using CORNING pH meter model 7.

25 ml of 0.01 N HC1 was pipetted into a 200 ml, wide mouth bottle. 

To this acid, 100 ml of the seawater was added. The contents were 

mixed together and the pH was measured. By measuring the pH before and 

after the addition of the acid, the total CO2 was calculated using 

the given tables (Strickland and Parsons, 1972).

C uptake

125 ml bottles were used for the artificial light incubator. The 

incubator used consists of a glass container holding up to 30 litres 

of water. The incubation bottles were covered with water in this 

container. The water temperature in the container was controlled using
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a Churchill Chiller Thermo-circulator. The temperature of the water 

was checked using a mercury thermometer. Osram Liteguard Daylight 

fluorescent tubes were used as a source of light with intensity of 

150 pE.ra”2 sec"l. For each station, three light bottles and one dark 

bottle were filled with 100 ml seawater. The dark bottle was covered 

by aluminium foil. The dark bottle was used to correct for the dark 

fixation and respiration. The dark fixation is due to biological and 

non-biological mechanisms. Biological mechanisms are associated with 

the tricarboxylic cycle. Non-biological mechanisms are related to 

adsorption, contamination and to background (Nielsen and Bresta, 1984).

Taking the zero time into consideration, 2 yci was added to each 

bottle. After 4 hours of incubation, a volume of the sample (20-100 ml) 

was filtered through 25 mm AA Millipore filter. The suction/pressure 

used was less than 0.3 K p . c m “ 2 .  The filter disc was then exposed to 

fumes of concentrated hydrochloric acid for 1 minute in order to remove 

possible extracellular jt was then left in an opened glass vial

for 2 hours to allow the escape of any CO2 formed, prior to the addition 

of scintillation liquid. The scintillation liquid used was obtained 

from Amersham. It was called Filter-Count, and was recommended by the 

manufacturer for productivity studies. 10 ml of this liquid was added 

to the sample vial, mixed well with the filter disc, and kept for 

30 minutes prior to counting to complete the dissolution of the filter 

disc. The background count and the activity of the added were

determined each time the primary production measurement was conducted. 

Beckman LS 6800 scintillation counter was used. There was no need to 

calculate the efficiency of the counter because it was calculated 

internally by the machine and the results were expressed as disinteg­

ration per minute in the output.
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The total carbon uptake, Pt, during the time, t, was calculated 

for every sample according to the following equation (Nielsen and 

Bresta, 1984):

dpm(a) .total CC>2(c) .1.05(d) .1.06(e) .K^ .K2
dpm(b)

where:

Pt = carbon uptake, mg C m“3 hr"l
(a) = light dmp-dark dpm = net dpm/sample
(b) = the activity of the added l^C solution, dpm
(c) = concentration of total CO2 in the experimental water, mg C m“^
(d) = a correction for the effect of discrimination, the uptake of

the is 5% slower than that of the
(e) = a correction for the respiration of organic matter produced

during the experiment. This has been found to represent 6% at
optimal photosynthesis.

= a correction factor for subsampling 
K2 = a time correction factor

Capabilities:

Range: 0.05-100 mg C m“3 hr”l 

Precision at the 25 mg C m”3 hr"l level 

The correct value lies in the range:

Mean of ri determinations + 3/n^ mg C m"3 hr“l 

(5 hour incubation, 1 pci added)

d. Nutrients 

Synthetic seawater

Synthetic seawater was prepared for the standard solution by dissolving 

31 g Na Cl, 10 g Mg SO47H2O and 0.05 g Na HCO3.H2O in 1 litre of dis­

tilled water.
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Nitrate-nitrogen

The determination of nitrate-nitrogen was based on the method described 

by Wood et al. (1967), the method based on the quantitative reduction 

of nitrate to nitrite. The sample was treated with tetrasodium 

ethylenediaminetetraacetate and passed through a column of copperized 

cadmium filings. The nitrate was reduced to nitrite which was deter­

mined by a diazotization method.

Apparatus

The reduction column used was identical to that described by Wood e^

al. (1967) (Fig. 2.3). It consisted of a U-shaped glass tube. One

side of it consisted of a 34 cm long tube, with an inner diameter of

8 mm. At the top of this tube was a 30 mm diameter reservoir holding

up to 50 ml. The other arm was 2 mm capillary tubing, curved at the 

upper part, ending with a Teflon stopcock equipped with a valve. A 

length of about 10 cm between the bottom of the reservoir and the 

discharge tip was used to maintain a nearly uniform flow into a 

graduated cylinder.

Reagents

Double-distilled water was used for the preparation of the reagents. 

Sulphanilamide solution:

5 g sulphanilamide dissolved in a solution of 50 ml 12 N.HC1 and 300 ml 

of double-distilled water, then diluted to 500 ml with double-distilled 

water.

N - (1. naphthyl)-ethylendiaminedihydrochloride solution:

0.5 g of the dihydrochloride was dissolved in double-distilled water 

and diluted to 500 ml.



Figure 2.3 Nitrate reduction column
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Nitrate standard:

0.1264 g KNO3 (dried for 1 hour at 110°C) dissolved in and diluted to 

250 ml with double distilled water.

Nitrite standard:

0.0863 g NaN0£ (dried for 1 hour at 110°C) dissolved in and diluted 

to 250 ml with double distilled water.

Copper sulphate solution:

20 g CUSO4 .5H2O dissolved in 1 litre of double distilled water.

EDTA solution:

38 g of tetrasodium ethylenediaminetetraacetic acid dissolved in and 

then diluted to 1 litre with double distilled water.

HC1 (2N):

85 ml of 12N.HC1 diluted to 500 ml with double distilled water.

HNO3 (0.3N):

10 ml of 15.4 N.HNO3 diluted to 500 ml with double distilled water.

HC1 (0.0015N):

0.125 ml of 12N.HC1 diluted to 1 litre with double distilled water. 

Column wash solution:

1 ml of the EDTA solution added to 50 ml of 0.0015N.HC1.
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Preparation of the column

Sticks of cadmium were filed. The fractions retained by 0.5 mm screen 

but passing through a 2 mm screen were used. About 40 g of the cadmium 

filings were washed with 2N.HC1 in a separatory funnel, then rinsed 

thoroughly with distilled water. This was followed by washing with 

0.3 N.HNO3 , rinsing with distilled water, and then washing with 2 N.HC1 

to remove the NO3 ions. A thorough rinsing with distilled water

followed. The cadmium was then treated with 100 ml of the copper 

sulphate solution in a flask. It was well shaken and then flushed with 

distilled water, preventing the copperized cadmium from being exposed 

to air.

A plug of Pyrex glass-wool was placed in the bottom of the tube. 

The tube then filled with distilled water and the copperized cadmium 

filings introduced slowly. When a length of 25 cm of filings was 

reached, a plug of Pyrex glass-wool was placed at the top of the

filings.

The filings were washed with approximately 50 ml of the wash

solution. Then it was allowed to stand for about 24 hours, renewing 

the wash solution a few times during that period.

To give about 98% reduction to nitrite, 3 litres of water con­

taining 60 yg, at 1“*1 of NO3-N and 20 ml of EDTA solution/1 were

passed through the column.

Seawater sampled and filtered through GF/C membrane filter was 

used for the nitrate analysis. Nitrate concentration was determined 

for the water samples, and the reagents. The reduction efficiency of 

the column was determined by passing water containing a known amount of 

NO3-N and then comparing the resulting quantity of nitrite with that of 

a water containing a known amount of N02-N.
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A c ,NC>3
E  ------

Ac,NC>2

E = the efficiency of reduction 

Ac,N02 = corrected absorbance of nitrite standard
Ac,N05 = corrected absorbance of a reduced nitrate standard of the 

same concentration

Procedure

To 50 ml of sample in 50 ml graduated cylinder, 1 ml of EDTA was added. 

The remains of the previous sample was rinsed with about 10 ml of the 

sample. When all the 10 ml portion passed, the rest of the sample was 

introduced into the reservoir. 5 ml portions were used to rinse the 

cylinder used for collecting the reduced sample. After 20 ml was 

discarded, the following 15 ml was collected. To this 15 ml, 1 ml of 

the sulphanilamide solution was added, shaken, and left to stand for 

2 minutes. 1 ml of the dihydrochloride was then added and the contents 

were shaken well. After 1 hour, the absorbance was determined using 

PYE Unicam SP6-250 visible spectrophotometer at a 543 nm, in 1 cm 

cuvette.

Capabilities:

The range of this method is between 0.05-60 yg at 1”1. The concen­

tration levels and standard deviations for 10 samples at each level 

are:

4 0 + 0 . 2 6  yg at NO3-NI”1 
2 0 + 0 . 1 2  yg at NO3-NI"1
1.0 + 0.04 yg at NO3-NI”1
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Establishment of the calibration curve

Nitrate standard was made up by dissolving 1.01 g KNO3 in 1 litre of

distilled water. 1 ml of this solution was made up to 1 litre by

synthetic seawater. Various volumes of the latter were diluted with 

synthetic seawater to give different concentrations of nitrate ranging 

from 0 (synthetic seawater only) to 5 ug at N03-Nl"^. These were 

treated and reduced as mentioned previously.

The corrected absorbances were plotted against their equivalent 

nitrate concentrations (Fig. 2.4).

A calibration factor (F) was determined and used for the direct

calculation of nitrate in seawater.

Nitrite-nitrogen

The method used here was described by Strickland and Parsons (1972), 

based on the procedure described by Bendschneiber and Robinson (1952).

The nitrite in seawater was allowed to react with sulphanilamide 

in an acid solution. The resulting diazo compound was then reacted 

with N-(1-naphthyl)-ethylendiaminedihydrochloride solution to form a 

highly-coloured azo dye.

Reagents:

N-(1-naphthyl)-ethylendiaminedihydrochloride solution:

0.5 g of the dihydrochloride was dissolved in double distilled water 

and diluted to 500 ml.

Sulphanilamide solution:

5 g sulphanilamide dissolved in a solution of 50 ml of 12 N-HC1 and 

300 ml of double distilled water, then diluted to 500 ml with double



Figure 2.4 Nitrate calibration curve
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distilled water.

Procedure:

50 ml sample of the filtered seawater was placed in 50 ml graduated 

cylinder. To this sample 1 ml sulphanilamide was added. The contents 

were shaken well and then kept for 2 minutes to react. 1 ml of the 

dihydrochloride solution was then added and the contents mixed 

together. This process was repeated for all the samples and for the 

reagent blank.

After 1 hour, the absorbance was read in a spectrophotometer, 

against distilled water as a blank in a 1 cm cell at 543 nm.

Capabilities:

Range: 0.01-2.5 yg at 1“ -̂

Precision at the 1 yg at 1”  ̂ level 

The correct value lies in the range, mean of 

ri determinations + 0.03/n^ yg at

Establishment of the calibration curve

Anhydrous sodium nitrite was dried at 100°C for 1 hour. 0.345 g was 

dissolved in 1 litre of double distilled water. This gave a concent­

ration of 5 yg at N ml“l .

Various volumes of this standard diluted with double-distilled 

water to 50 ml portions with concentrations between 0 (double-distilled 

water only) and 0.5 yg at N02_N.1“^. The procedure described above was 

followed and the corrected extinctions obtained were plotted against 

their equivalent concentrations (Fig. 2.5). A calibration factor (F) 

was obtained from the curve as follows:



Figure 2.5 Nitrite calibration curve
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ES -  Eb

Es = extinction of sample, Eb = extinction of blank 

Ammonia-nitrogen

The method used in this study was described by Koroleff (1976). This 

method is based on the reaction of ammonia in moderately alkaline 

solution with hypochlorite to give monochloramine. In the presence of 

phenol, nitroprusside ions and excess hypochlorite, the monochloramine 

gives indophenol blue.

Reagents:

Sodium hydroxide (0.5N):

20 g of sodium hydroxide dissolved and made up to 1 litre with de­

ionized water.

Magnesium sulphate solution:

50 g of magnesium sulphate heptahydrate was dissolved in about 100 ml

of deionized water. 0.5 N sodium hydroxide was added until a slight

precipitate was formed. With the aid of anti-bumping granules, the 

solution was boiled to evaporate any traces of ammonia. When the 

volume was less than 100 ml, it was cooled and made up to 100 ml with 

deionized water.

Phenol reagent:

38 g of phenol and 400 mg of disodium nitroprusside dihydrate were

dissolved, then diluted to 1 litre with deionized water.



Sodium thiosulphate solution:

24.82 g of Na2S203.5H20 was dissolved in 1000 ml double-distilled water 

to give 0.1N solution.

Sodium hypochlorite solution:

The available chlorine in the sodium hypochlorite stock solution was 

determined as follows:

0.5 g potassium iodide was dissolved in 50 ml of IN sulphuric acid.

1.0 ml of the hypochlorite stock was added and the iodine librated was 

titrated against 0.1N thiosulphate using starch as indicator.

1 ml 0.1N thiosulphate = 3.54 mg active chlorine

Using the above equation, hypochlorite reagent containing 150 mg avail­

able chlorine per 100 ml was prepared using 0.5 N NaOH.

Tri-sodium citrate solution:

240 g of tri-sodium citrate dihydrate was dissolved in 500 ml double­

distilled water. This solution was then made alkaline by the addition 

of 20 ml of 0.5 N NaOH. Ammonia was removed by boiling. The solution 

was made up to 500 ml with deionized water.

Procedure:

In a 50 ml volumetric flask, 35 ml of the sample was poured. To this 

sample, 1 ml of the citrate solution, 1 ml of the phenol reagent and 

1 ml of the hypochlorite reagent were added. The contents were mixed 

well by swirling between additions. The sample was kept in the dark 

overnight. The extinctions of the sample and blank were measured in 

1 cm cuvette against acidified distilled water at 630 nm.
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Capabilities:

Range: 0.01-10 yg at NH4+-N1“1

Precision of the method at 1 yg at 1“1 level 

The correct value lies in the range of mean of 

ri determinations + 0 .1/n^ yg at 1“1

Calibration

53.5 mg NH4CI was diluted to 100 ml with deionized water. This stock 

was diluted again with deionized water to give a concentration of 1 yg 

at Nl"*l. Three 35 ml portions of this new solution in addition to 

two 35 ml portions of deionized water were treated as in the procedure 

outlined above.

The mean of the reagent blank extinctions was substracted from the 

mean of the samples extinctions.

The result (A) was applied in the following equation:

1.0 
p  ---

A

where F was the calibration factor used in the determination of 

ammonia-nitrogen in seawater.

Silicate silicon

The method used for silicate analysis was the one described by 

Strickland and Parsons (1972).

Using this method, the seawater sample is reacted with molybdate 

in order to form silicoraolybdate, phosphomolybdate and arsenomolybdate 

complexes. The silicomolybdate complex is then reduced by a reducing 

solution to give blue colour.
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Reagents:

Molydbdate reagent:

4.0 g of ammonium paramolybdate was dissolved in 300 ml of double­

distilled water, and then 12 ml of concentrated hydrochloric acid was 

added. This mixture was made up to 500 ml with double distilled water.

Metol-sulphite solution:

6.0 g of anhydrous sodium sulphite was dissolved in 500 ml of double­

distilled water. To this solution, 10 g of metol was then dissolved. 

This solution was filtered through a No. 1 Whatman filter paper.

Oxalic acid solution:

Saturated oxalic acid was prepared by dissolving 50 g of oxalic acid 

dihydrate in 500 ml double-distilled water.

Sulphuric acid solution (50% v/v):

250 ml of concentrated sulphuric acid was added slowly to 250 ml of 

double distilled water, kept cool by running water.

Reducing reagent:

100 ml of metol-sulphite solution was mixed with 60 ml of oxalic acid. 

60 ml of 50% sulphuric acid was added slowly with mixing. The mixture 

was made up to 300 ml with double distilled water.

Procedure

10 ml of molybdate solution was added to a dry 50 ml volumetric plastic 

flask, fitted with a stopper. 25 ml of seawater sample at room 

temperature was added to the 10 ml molybdate reagent in the flask. The
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mixture was allowed to stand for 15 minutes. 15 ml of the reducing 

reagent was added to the mixture to make the volume up to 50 ml. The 

solution was then allowed to stand for 2 hours to complete the 

reduction. The extinction of the reagent blank and the sample were 

measured against double-distilled water in 1 cm cuvette at 810 nm.

Capabilities:

Range: 0.1 to 140 pg at 1“1.

Precision at the 10 pg at 1”1 level:

The correct values lie in the range:

mean of ti determinations + 0.25/n^ pg at 1“1.

Establishment of the calibration curve

Standard silicate solution was made up by dissolving 0.96 g silico- 

fluoride in 100 ml double-distilled water. It was then diluted to 

1 litre with double-distilled water.

1 ml aa. 5 pg-at Si

Various volumes of the above solution were made up to 25 ml portions 

with synthetic seawater to give 0-96 pg at Si 1” .̂

These standards were treated as described in the procedure and the 

resulting extinctions were plotted against their equivalent concent­

rations (Fig. 2.6). A calibration factor (F) was calculated from the 

curve using the formula:

100
Es-Eb



Figure 2.6 Silicate calibration curve
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Phosphate-phosphorus

The method used here was described by Strickland and Parsons (1972) and 

was taken from the original work by Murphy and Riley (1962).

The theory of the method is to allow the seawater to react with 

molybdic acid, ascorbic acid and trivalent antimony. The resulting 

complex is reduced to give a blue colour.

Reagents:

Ammonium molybdate solution:

15 g of ammonium paramolybdate was dissolved in 500 ml of double­

distilled water.

Sulphuric acid solution:

140 ml of concentrated sulphuric acid was added to 900 ml of double­

distilled water.

Ascorbic acid solution:

27 g of ascorbic acid was dissolved in 500 ml of double-distilled water. 

Potassium antimony1-tartrate solution:

0.34 g of potassium antimonyl-tartrate was dissolved in 250 ml of 

double distilled water.

Mixed reagent:

100 ml of the ammonium molybdate was mixed with 250 ml sulphuric acid, 

100 ml ascorbic acid, and 50 ml of potassium antimonyl-tartrate 

solutions. This mixed solution was prepared immediately before use.



Procedure

Into 100 ml glass bottle, 50 ml seawater at room temperature was intro­

duced. 10 ml of the freshly prepared mixed reagent was added. After 

30 minutes the extinctions of reagent blank and the sample were 

measured in 1 cm cuvette against distilled water at 885 nm.

Capabilities:

A range of phosphate concentrations between 0.03-5 yg at 1“1 can be 

determined.

Precision at the 3 yg at 1“1 level:

The correct value lies in the range:

mean of n determinations + 0.03/n^ yg at 1“1.

Establishment of the calibration curve

A phosphate standard solution was prepared by dissolving 1.361 g of 

anhydrous potassium dihydrogen phosphate in 1 litre of double-distilled 

water.

1 ml a 10 yg at P

Various volumes of this standard were diluted to 50 ml with double­

distilled water to give a range of concentrations between 0-14 yg at P 

1-1.
The steps described in the procedure were followed and the cor­

rected extinctions were plotted against their equivalent concentrations 

(Fig. 2.7).

A calibration factor (F) was calculated from the calibration curve 

by the following equation:



Figure 2.7 Phosphate calibration curve
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CHAPTER III 
ENVIRONMENTAL FACTORS



INTRODUCTION

Abiotic factors in the marine environment have been known for a long 

time to affect phytoplankton production. By comparing the seasonal 

productivity cycles in the coastal waters and nutrient concentrations, 

it was observed that phytoplankton biomass and primary productivity 

diminish as nutrient concentrations were reduced to low levels in the 

late spring and early summer (Brandt, 1898; Marshall and Orr, 1928; 

Lillick, 1937).

This effect has not been restricted to the nutrients. Light, 

temperature, salinity and water column stability could limit the phyto­

plankton production as well as nutrients (Braarud and Klem, 1931; 

Marshall and Orr, 1948).

Abdullah et al. (1973) made a detailed study in the Bristol

Channel describing the circulation and hydrography in the channel and 

their role in the distribution of the nutrients affecting phytoplankton 

growth. They suggested two distinct regions separated by a line drawn 

from Mumbles Head to Foreland Point. The nutrient distribution and 

salinity in the eastern region were mainly controlled by river runoff. 

High levels of nutrients were found in this region. On the other hand, 

the nutrient level in the western region was found to be low. This was 

suggested to be due to the mixing between the river runoff and the 

Celtic Sea water. Abdullah et al. (1973) suggested that the main

source of nutrients in the Bristol Channel was river runoff.

The cycling and variation of physical parameters, nutrients and 

plankton in Swansea Bay have been studied by Pearce (1967), Abdullah et 

al. (1973), Gabriel (1973), Isaac (1974) and Paulraj (1974).

The plankton and water chemistry were studied intensively by



Paulraj (1974) but the study was restricted to the area close to 

Mumbles pier.

More studies have been carried out recently by Morris and Mantoura 

(1980), Joint (1980), Humphrey et al. (1980). Although these studies 

were intensive, they were mainly carried out during selected times of 

the year and in the outer borders of Swansea Bay.

The present study was conducted for more than two annual cycles in 

the inshore waters of Swansea Bay. The reason for the study of the 

chemical and physical factors in the present study was to provide a 

basis of parameters which could affect the primary production of phyto­

plankton in Swansea Bay.

RESULTS

1. Seawater Temperature

The variation in water temperature ranged from 5.5°C to 19.5°C 

(Fig. 3.1). From 17°C in the autumn (1982) the temperature declined 

through the winter (1983) down to 5.5°C in March. From that time, the 

temperature increased steadily throughout the spring and summer reach­

ing its maximum in August (19.5°C). After it reached its highest value 

in August, the temperature declined steadily throughout the autumn and 

winter until it reached a minimum of 5.5°C in January-February (1984). 

Once again the water temperature started to increase at the beginning 

of the spring until it reached its annual maximum in August (19.5°C). 

After August it began to decrease until it reached 9.5°C in December 

when the sampling was stopped.



Figure 3.1 Seawater temperature
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2. Air Temperature

The maximum and minimum air temperature during the period of sampling 

were supplied by Penmaen Weather Station (Fig. 3.2)« These air 

temperatures fluctuated in a similar pattern to that of surface water 

temperature.

a. Maximum Air Temperature

At the time when the sampling programme was first started the 

temperature was 18.9°C (September, 1982). During the following months, 

the temperature decreaseed until it reached the minimum of 5.6°C 

(February, 1983). Thereafter, the temperature started to increase 

until it reached the annual maximum of 25.9°C (July, 1983)* This cycle 

was repeated again with minimum temperature of 5.8°C (January, 1984) 

and maximum temperature of 21.3°C (July, 1984).

b . Minimum Temperature

The minimum temperature throughout the years of sampling ranged from 

0°C to 19.3°C.

The temperature of September, 1982 was 13°C. This temperature 

dropped steadily down to 0°C in December. From January, 1983 the 

temperature started to increase until it reached the highest minimum 

temperature ever encountered during this study of 19.3°C in July. The 

decrease of temperature afterwards started a new but similar annual 

cycle.

3. Monthly Sunshine Hours

The variation in sunshine hours (Fig. 3.3) was characterized by alter­

native periods of low and high monthly sunshine hours. Tfre period from



Figure 3.2 Maximum and mimimum air temperature

#  Maximum 
• Minimum
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Figure 3.3 Total monthly sunshine hours
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September, 1982 to January, 1983 was characterized by a low number of 

sunshine hours. The total sunshine hours for that period was 382 hours 

with a daily average of 2.18 hours. The minimum value of sunshine

hours was in January (41.2 hours). The period from February to 

October, 1983 had high values of monthly sunshine hours. The total 

sunshine hours of that period was 1450.3 hours with a daily average of 

5.37 hours.

July was the month with the highest number of sunshine hours 

(307.6) with a daily average of 10.25 hours. This period was followed 

by one with a low number of sunshine hours (November, 1983 to February, 

1984). The total for that period was 237.3 hours with a daily average

of 1.97 hours. The period of high numbers of sunshine hours extended

from March to September, 1984. The total sunshine hours for this 

period was 1437.8 hours and the daily average was 6.84 hours.

Thereafter, the daily sunshine hours began to decrease.

4. Monthly Rainfall

During this study, three periods with high monthly rainfall have been 

found (Fig. 3.4). These,periods occurred mainly during the autumn and 

winter months.

The first period, from September, 1982 to January, 1983, had a 

monthly average of 168 mm. The period which extended from February to 

August, 1983 recorded a monthly average of 67.15 mm. The next rainy 

season started in September, 1983 continuing until January, 1984 with a 

monthly average of 144.94 mm. This period was followed by one with low 

monthly average (38 mm), extending from February to August, 1984.

Once again the summer period, with low monthly averages of rain, 

was followed by a period extending from September to December, 1984



Figure 3.4 Total monthly rainfall
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with a monthly average of 187.7 mm.

5. Salinity

i . Station A

In this station, salinity was variable over a range of 25.9-28.6%o 

between September, 1982 and May, 1983 (Fig. 3.5). Two exceptions were 

observed during that period; low value in November, 1982 (23.6%o), and 

another low value in January, 1983 (24.7%o).

The salinity started to increase steadily from May, 1983 until it 

reached a value of 30%o in July, 1983.

A sudden drop in salinity was observed during the period from 

August-September, 1983. The minimum value in this period was 25.5%o 

(August). After that period the salinity returned to its normal level 

of ca. 28-29%o. There was a sudden drop in the value of salinity from 

the normal level down to a very low value of 23.4%o in February, 1984. 

Thereafter, the salinity returned to its normal level until November, 

1984 when it dropped again.

ii. Station B

Salinity was mainly observed over a range of 24-31.2%o (Fig. 3.6). The 

salinity value of 28.5%o in September, 1982 started to decrease 

steadily until it reached an exceptional value of 16.3%o in November, 

1982. This was followed in January, 1983 by a relatively low salinity 

value of 24%o. From January to April, 1983 the salinity remained 

around 28%o. As in Station A, the period from August to September, 

1984 was characterized by low salinity values (25.5%o in August). From 

October, 1983 the salinity increased again until it reached £a. 29.5%o. 

It remained at this level until February, 1984 when there was a sudden



Figure 3.5 Salinity (Station A)
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Figure 3.6 Salinity (Station B)
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drop in salinity down to an exceptional value of 15.2%o. This drop was 

followed by a steady increase during the spring and summer months until 

the salinity was around 30%o. The salinity remained at this level 

until November, 1984 when there was a drop down to 26.8%o.

6 . Nitrate-nitrogen

The concentrations of nitrate-nitrogen in both stations were very 

similar during this study and there was no significant difference at 

any point (Fig. 3.7 and Fig. 3.8). For this reason their results will 

be described as one.

In September, 1982 nitrate-nitrogen concentration was 1.5 pg at 

1”!. The concentration increased steadily until it reached a maximum 

of 49 pg at 1“1 in November, 1982. Between November, 1982 and June, 

1983, the concentration values remained around 34 pg at 1”!. By 

the end June, 1983 there was a sudden drop from ££. 36 p g at 1"^

down to 6.7 pg at 1”^. This decrease in the concentration continued 

until it reached a minimum value of c£. 0.3 pg at 1”!. Thereafter 

nitrate concentration started to increase steadily until it reached the 

highest maximum in the study of ca. 66 pg at 1“1. This was followed by 

a steady decrease down to a minimum of 0.2 pg at 1~1 (Station A), and

0.144 pg at 1~1 (Station B) in May. These low values were followed by a 

steady increase until December, 1984 when it reached câ . 35 pg at 1“1 .

7. Nitrite-nitrogen

1 . Station A

Nitrite-nitrogen was observed over a range of ca. 0.019 pg at 1”1 

to 3.24 pg at 1”! (Fig. 3.9).

A September concentration of ca. 0.45 pg at 1 was followed by a



Figure 3.7 Nitrate-nitrogen (Station A)
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Figure 3.8 Nitrate-nitrogen (Station B)
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Figure 3.9 Nitrite-nitrogen (Station A)



49

t_7 N ~ 0 N 1 ° - Srt

19
82
 

19
83
 

19
84



50

sudden increase to ca. 3.32 yg at 1~1 in October, 1982, following 

which the concentration dropped to 0.39 yg at 1”!. During the fol­

lowing period the concentration remained around 0.25 yg at 1”  ̂ until 

it reached its minimum concentration of 0.075 yg at 1~^ in July, 1983. 

This was followed by a rapid increase up to the highest maximum concen­

tration of ca. 2.6 yg ay 1”! October, 1983, followed by a drop in 

the concentration until it reached 0.18 yg at 1“1 in December. Nitrite 

concentration remained around this level until May, 1984 when it 

reached its minimum of ca. 0.019 yg at 1”1. Thereafter, there was 

a steady increase up to ca. 1 yg at 1~1 in September, 1984.

ii. Station B

In this station nitrite concentration was observed over a range of ca.

0.019-3.4 yg at I”1 (Fig. 3.10).

There was a sudden increase from the September, 1982 concentration 

of 0.31 yg at 1 up to 3.4 yg at 1“  ̂in October. The concentration 

dropped sharply down to 0.475 yg at 1”! in November. There was a 

slow decrease from the November concentration of 0.475 yg 1~^ down 

to 0.062 yg at 1"^ in May, 1983. This was the minimum value observed 

in the 1982-1983 period. This value was followed by a rapid increase 

up to 2.56 yg at 1”  ̂ in October. A decrease in the concentration 

down to ca. 0.19 yg at 1“1 in December was observed. The concentration 

remained around this level for the following months until May, 1984 

when it reached a minimum of ca. 0.019 yg at 1”^. This was followed by 

a rapid increase up to 0.96 yg at 1“1 in September, 1984.



Figure 3.10 Nitrite-nitrogen (Station B)
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8 . Ammonia-nitrogen

i . Station A

Ammonia concentration was relatively high when the sampling programme 

started in September, 1982, with a peak of ca. 0.49 yg at 1“1 . The 

concentration values which followed were usually between 0.05 and

0.25 Ug at 1-1 (Fig. 3.11). These values characterized a period 

extending from October, 1982 to May, 1983. In June, 1983 a minimum 

value of 0.014 yg at 1”  ̂ was observed. This point represented the

end of an annual cycle and the start of a new cycle by the steady 

increase of the concentration until it reached a high concentration of 

ca. 0.28 ug at 1”1 during the months from August to October, 1983.

These months of relatively high ammonia concentration were followed by 

a period of relatively low concentrations (0.1 yg at l-^). This period 

was followed by a drop down to a minimum concentration of 0.008 yg at

1~1 in May, 1984. Once again the concentration started to rise

steadily until it reached a value of ca. 0.3 ug at 1~1. This was

followed by a drop down to 0.058 yg at 1“1 in December.

ii. Station B

In this station, the ammonia concentrations showed variable values

throughout the year (Fig. 3.12), but in general the values during the 

winter-early spring months were around or above 0.1 ug at 1” -̂

especially in 1982-1983.

These relatively high concentrations were followed by a drop down 

to a sxammer minimum (0 ug at Throughout this study the high

peaks which were observed during the autumn-spring periods had values 

around 0.3-0.45 ug at 1“1. From these high peaks, two were excep­

tional, one in November, 1982 (0.64 y g  at 1”^) and another in

February, 1984 (0.58 y g  at “*■).



Figure 3.11 Ammonia-nitrogen (Station A)
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Figure 3.12 Ammonia-nitrogen (Station B)
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9. Phosphate-phosphorus

i. Station A

Phosphate-phosphorus concentration was observed over a range of 0.058-

1.8 pg at l”1 (Fig. 3.13).
The phosphate concentration in September, and October, 1982 of ca. 

0.5 ug at 1~1 increased rapidly during the following month up to ca.

1.8 ug at 1”1 (November, 1982). During the following months until May, 

1983, the concentrations were around 1 ug at 1"*̂  • A sudden drop from 

this level down to 0.06 pg at 1”  ̂was observed in July, 1983.

At the end of July, the concentration increased up to 0.87 yg at 

and remained above 0.4 pg at 1-1 for the period until May, 1984. 

During this period of high concentration, a maximum value of c*i. 1.8 pg 

at 1”! was observed in February, 1984. During the period from May to 

July, 1984 the concentration remained at the low level of ca. 0.17 pg 

at 1”!. By early August, 1984 the concentration started to increase up 

to 1.45 pg at 1”1 in December.

ii. Station B

The phosphate-phosphorus concentrations in this station were observed 

over a range of 0.06-2.26 pg at 1”1 (Fig. 3.14).

At the start of this study, phosphate concentration was ca.

0.54 pg at 1“1 in September, 1982. It increased after September 

and remain at a high level of ca. 1 pg at 1”! until June, 1983. An 

exception to the high autumn-spring concentrations, was that observed 

in March, 1983. In that month, a very low value of 0.12 pg at 1“1 

was found.

A sudden drop from the high concentration of early June, 1983 down 

to a minimum concentration of 0.064 pg at 1"! was observed in June-July. 

This low concentration remained for a short period and was followed by



Figure 3.13 Phosphate (Station A)
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Figure 3.14 Phosphate (Station B)
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a rapid increase in late July. During the following period from 

August, 1983 to April, 198A, the concentrations remained high and most 

of the time above 1 pg at 1”1. During this period, an exceptionally 

high concentration of phosphate was observed in February, 1984 (2.26 ug 

at I”!). The period of low phosphate concentrations extended from May 

to July, 1984 with values around 0.17 pg at 1~1 and a minimum one of

0.06 Pg at 1"! in June. Thereafter, the concentration increased 

rapidly reaching a value of 1.57 pg at 1”1 in December, 1984.

10. Silicate-silicon

1 . Station A

Silicate concentration was observed over a range of 0-27.21 pg at 1“*̂ ) 

(Fig. 3.15).

The low silicate concentration of September, 1982 (1.73 pg at 1”1) 

was followed by an increase up to 19.96 pg at 1”! in early November,

1982. The silicate concentration remained around this high level until 

June, 1983 when there was a drop down to 0.51 pg at I”*- in July. This 

was followed by a steady increase up to £a. 15 pg at 1”  ̂ in September. 

The concentrations remained around this level until January, 1984. In 

February, a sudden increase up to 27.21 pg at 1” -̂ was observed. This 

was followed by a steady decrease down to the low summer level in May, 

1984. The concentration remained at this low level until it reached a 

minimum of £a. 0 pg at 1“1 in July. This minimum concentration was 

followed by a steady increase up to £a. 16.5 pg at 1”! in November, 

1984.



Figure 3.15 Silicate (Station A)
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ii. Station B

The silicate-silicon concentration observed in this station was over a 

range of 0-42.53 yg at 1“1 (Fig. 3.16).

The relatively low concentration of September, 1982 (2.55 yg at 

1“1) was followed by a rapid increase up to the highest maximum of 

42.53 yg at 1“1 in November. The concentration dropped from this 

maximum down to ca. 15 yg at 1”^. This relatively high concnetration 

was observed over the period extending from December, 1982 to June,

1983. By late June, the concentration reached ca. 0.5 yg at 1~1. This 

remained until late July when it started to increase rapidly up to ca. 

15 yg at 1"! in September. The concentration remained at that level 

until January, 1984. In February, a sudden increase up to c£. 42 yg at 

1”1 was observed. This was followed by a steady decrease in the 

concentration down to jca. 0.85 yg at 1”! in May, 1984. The concen­

tration remained at this low level reaching a minimum of 0 yg at 1“  ̂ in 

July. Thereafter, the concentration increased rapidly reaching ca. 

16.5 yg at 1"! in November, 1984.

DISCUSSION

The physical and chemical oceanography of Swansea Bay have been studied 

by many authors (Paulraj, 1974; Chubb et al, 1980; Humphrey et al, 

1980; Joint, 1980; Morris and Mantoura, 1980).

The data of Paulraj (1974) showed a clear seasonal variation in 

silicate. Phosphate concentration was less variable, and nitrate 

concentration did not show any seasonal trend. Morris and Mantoura 

(1980) studied the water chemistry of outer Swansea Bay during five



Figure 3.16 Silicate (Station B)
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cruises between February, 1977 and January, 1978. They reported a 100% 

depletion in the silicate concentration during the summer months, while 

total oxidised nitrogen and orthophosphate were depleted to some 30-40% 

of winter values.

Humphrey et al. (1980) have discussed the distribution of

nutrients throughout the Bay, using data collected by the Welsh Water 

Authority at four tidal states on each of six occasions during 1976/ 

1977. They found that the nutrient concentrations in winter are higher 

than in most coastal regions of the Bristol Channel. A well-defined 

seasonal variation in silicate concentrations has been found. They 

pointed out that the seasonal variations of phosphate and nitrate in 

the inshore waters were masked to a certain extent by the effect of 

nutrient input. Chubb et al. (1980) estimated that approximately 

9.75 tonnes of inorganic nitrogen are discharged daily to the bay. The 

daily orthophosphate input was about 729 kg day“  ̂ and the silicate 

input was 13 tonnes day”l .

However, the present study showed clearly a well-defined seasonal 

variation of the major nutrients (nitrate, nitrite, phosphate and 

silicate). There was an increase of nitrate up to jca. 49 yg at 1”! 

(2.11., 1982, A) and 66 g at 1“1 (17.2., 1984, A). The concentration 

of nitrate in the other station (B) reached the same level during the 

autumn-winter period. At both stations, nitrate was depleted to 1% of 

the winter level during the two annual cycles recorded.

Nitrite concentrations were depleted to £a. 2% of the winter

maxima. This depletion occurred at both stations after each winter 

maximum was reached. The same trend was observed for phosphate and 

silicate. During the 28 months of sampling, the winter phosphate 

maxima dropped in the summer down to 2-6%.



The summer silicate concentrations represented 0-2% of the winter 

maxima. The data of this study show very different concentrations of 

the major nutrients (especially the nitrate and phosphate) than those 

recorded by Paulraj (1974), Humphrey et al. (1980), and Morris and 

Mantoura (1980).

It is very obvious that the seasonal variations of nitrate, 

nitrite, phosphate and silicate were not masked by the domestic and 

industrial discharge into Swansea Bay (Humphrey et al. 1980). It seems 

that the results obtained by Morris and Mantoura (1980), and Humphrey 

et al. (1980) do not give the true image of nutrients’ seasonal

variations in Swansea Bay. The data of these two researchers were 

collected during selected cruises, and it is very likely that periods 

of significant nutrient concentrations have been missed. This could be 

the reason why well-defined seasonal variations of phosphate and

nitrate were not found. This explanation is based on the results of

the present study. It can be seen from the nutrient data (Figs. 3.7- 

3.16) that very low nutrients concentration occurred during a short 

period. For example, if the period of July, 1983 was missed, the 

lowest nitrate value of Station A would be 4.4 yg at 1”*- which is 

ca. 9% of the winter maximum of that annual cycle. But because the 

July period was sampled, the minimum value of nitrate concentration 

found was 0.78% and this can be applied to the other nutrients. The 

results of the present study emphasize the role of nutrients (including, 

nitrate) as important factors in Swansea Bay, and their possible role

as limiting factors should not be underestimated.

The continuous variation in ammonia concentration in the present 

study makes it difficult to give a reliable explanation for the source 

or fate of ammonia and its effect on the primary productivity of
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Swansea Bay.

Although there was a trend towards seasonal variation (Figs. 3.11 

and 3.12), the ammonia concentration does not correspond to phyto­

plankton growth. This indicates that the effect of ammonium uptake by 

phytoplankton on seasonal change of ammonia concentration was minimal. 

A possible source of ammonia variation may have been animal excretion, 

in addition to industrial discharges into Swansea Bay, especially along 

the north-eastern coastline (W.W.A., 1983).

In the biological communities nitrate is reduced to ammonium with 

nitrite as intermediate form and vice-versa. In the present study, the 

inorganic nitrogen sources have shown seasonal maxima at different 

times of the year. In the winter, especially that of 1982-1983, 

ammonia maximum took place first, followed by nitrite and then nitrate. 

This order of occurrence indicates that there were oxidation processes 

taking place in that period of the year. This suggestion is further 

supported by the occurrence of exceptional nitrite maxima in October, 

1982, and October, 1983, coinciding with a drop in ammonia 

concentration.

Brandhorst (1958, 1959) suggested that a nitrite peak in the

natural enviroment was due to bacterial oxidation of ammonia. This 

hypothesis was supported by the observation that an increased 

production of nitrite has been found when samples containing added 

ammonium are maintained in the dark (Wada and Hattori, 1971; Hattori 

and Wada, 1972; Miyazaki et al., 1973).

Air and seawater temperatures exhibited a similar pattern, which 

follows the seasonal cycle of temperature in the temperate regions 

(Sverdrup et al., 1942). Their strong correlation indicates that they 

have a common source of heat energy, which is solar radiation.



Temperature plays an important role in the primary productivity of 

phytoplankton and this role becomes significant when it is coupled with 

long periods of sunshine hours (Sykes, 1981). In Swansea Bay, the 

coupling of long periods of sunshine and temperature occurred mainly 

during the spring and summer months. On the other hand, the winter 

months were characterized by short periods of sunshine accompanied by 

low temperatures (Figs. 3.1, 3.2 and 3.3). These two factors may have 

been limiting to the growth of phytoplankton in the winter. The strong 

winter gales accompanied by the strong tides, characteristic of Swansea 

Bay (and the Bristol Channel as a whole), increase the degree of 

vertical mixing and hence the turbidity. The high turbidity decreases 

the penetration depth of sunlight, and when coupled with short sunshine 

periods and low temperature it could play a very important role in 

limiting phytoplankton growth in winter (Joint and Pomroy, 1981).

The very low salinities observed in November, 1982, and February, 

1984 (Fig. 3.6) were preceded by high levels of rainfall. At the same 

time, exceptionally high levels of silicate were found (ca. 42 yg at 

Si 1” :̂ Fig. 3.16). These observations were noticed at the western 

station (B), where the input of the River Neath could be most 

effective. Chubb et al. (1980) found that the major silicate input to 

Swansea Bay was through the rivers (86.7%). In the same study, the 

River Neath has been found to represent the highest percentage of the 

major input total (27.7%). High levels of silicate were found in 

February, 1984 at the other station (A) but to a lesser degree (27 yg 

at Si 1~1).

The anticlockwise circulation described by Collins et al. (1979) 

and supported by the salinity data of Humphrey et al. (1980), who found 

that fresh water from the Rivers Neath and Tawe dispersed in a
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southerly/south-westerly direction has been used as an explanation of 

the very low salinities found in the area where the two rivers dis­

charge (Humphrey et al., 1980). The low salinity and high silicate 

concentration values found at Station (B) (which is nearer to the area 

of eddy circulation) can be explained by the presence of the anti­

clockwise eddy circulation. The effect of river input on the salinity 

and silicate values is supported by the strong correlation between 

salinity and silicate (r = - 0.69 (A), and r = - 0.813 (B)).

Nitrate and phosphate correlate less strongly with salinity than 

does silicate (Table 3.1). The correlation between salinity and the 

major plant nutrients suggests that river runoff was the main con­

trolling factor in the distribution of nutrients in Swansea Bay. The 

effect of the major environmental factors on the biomass (estimated as 

chlorophyll a_ concentration) was investigated by determining the 

correlation coefficient between chlorophyll â and each of the factors. 

(Data were omitted when there was suspected limitation by any factor 

other than the one under investigation.) The correlation coefficients 

are listed in Table 3.1. From the correlation coefficient results it 

can be seen that at Station (A) nitrate and silicate were correlated 

with chlorophyll a_. At this station, chlorophyll ja was strongly 

correlated with sunshine hours. On the other hand, at Station (B) 

silicate was the only nutrient which was correlated to a limited extent 

with chlorophyll a_. The lack of strong correlation between chlorophyll 

ji and all the measured environmental factors at Station (B) suggests 

that production at this station may have been controlled by a local 

factor not recorded in this study.

The strong correlation at Station (A) between chlorophyll â and 

sunshine hours suggests that the later had a main role in limiting the
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Table 3.1

FACTOR CORRELATION
COEFFICIENT

SIGNIFICANT 
AT P >

Salinity v nitrate (A) - 0.48 0.005
Salinity v nitrate (B) - 0.425 0.005
Salinity v phosphate (A) - 0.434 0.005
Salinity v phosphate (B) - 0.264 0.005
Salinity v silicate (A) - 0.69 0.005
Salinity v silicate (B) - 0.813 0.005
Nitrate v chlorophyll a (A) - 0.3329 0.005
Nitrate v chlorophyll a (B) - 0.1028 0.005
Phosphate v chlorophyll a (A) - 0.1624 0.005
Phosphate v chlorophyll a (B) + 0.013 0.005
Silicate v chlorophyll a (A) - 0.44 0.005
Silicate v chlorophyll a (B) - 0.249 0.005
Sunshine hours v chlorophyll a (A) + 0.763 0.005
Sunshine hours v chlorophyll a (B) + 0.26 0.005

production during winter periods. While the correlation between 

chlorophyll â and the plant nutrients at the time when the average 

daily sunshine hours was > 2 indicates that these nutrients may have 

been limiting to the production in the spring and summer periods.



CHAPTER IV
ABUNDANCE, BIOMASS AND PRIMARY PRODUCTIVITY
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INTRODUCTION

Ecologically significant organisms are those which play an effective 

role in the ecology and dynamics of an ecosystem. The significant 

status of phytoplankters is derived from their role as primary 

producers in the aquatic environment.

Several methods and techniques have been used for the evaluation 

of phytoplankton abundance, biomass and primary productivity. Although 

direct counting of phytoplankton has been used for a long time, its 

results can not be used as representative of the biomass because 

phytoplankton differ greatly in size. In fact the main advantage of 

this method is its use as a tool in the qualitative differentiation 

between species and differentiation of organisms from detrital 

particles. Cell volume, weight of the available matter per volume of 

water and carbon content of the plant have all been used as indicators 

of phytoplankton biomass.

Perhaps one of the most universally used techniques for the 

determination of biomass is the calculation of chlorophyll â content. 

The method which is widely used is the one developed by Strickland and 

Parsons (1972).

Primary productivity is another parameter which has been 

thoroughly investigated in the aquatic environments. Gaarder and Gran 

(1927) gave an account on the technique which involves the calculation 

of the change in oxygen production. Measurement of the radioactive 

carbon uptake by the photosynthetic organisms is another widely used 

technique for the estimation of primary productivity.

The interactions of zooplankton and phytoplankton raised the 

possibility that the zooplankton could be one of the environmental
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factors which may concurrently or sequentially influence the growth of 

natural populations of phytoplankton (Platt et al., 1977).

Plankton ecology and production in Swansea Bay and South Gower 

coastal waters have been studied by Pearce (1967), Gabriel (1973), 

Issac (1974), Paulraj (1974), Tyler (1976), Joint (1980) and Vogelmann 

(1980).

Paulraj (1974), who studied the phytoplankton at Mumbles pier, 

found an annual fluctuation in chlorophyll a concentrations from 

1.7 mg m”3 in July, 1973 to 26.6 mg m”  ̂ in May, 1974. Joint (1980) 

studied the spatial variability in a grid just outside Swansea Bay 

during August, 1977. He found that at some stations chlorophyll ji 

concentrations were higher than at others, reaching a maximum of about 

6 mg m“3 . in the present study, different parameters were used to 

study the phytoplankton production in Swansea Bay. These were cell 

number, chlorophyll â concentration and uptake of radioactive carbon.

RESULTS

I. Phytoplankton Annual Cycles

a. Total number of net phytoplankton:

In general, the total cell number of net phytoplankton for both 

stations follows the general pattern of seasonal variation in 

temperate regions (Fig. 4.1). In the winter of 1982-1983 the number of 

cells was at its lowest value. This was followed by several peaks 

during March to June, 1983. After a period of low cell number in July 

and August, 1983, high peaks occurred in September and October, 1983. 

This was followed by gradual drop with a minimum value in February,



Figure 4.1 Total phytoplankton cell number
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1984. The following spring was characterized by the occurrence of 

relatively high peaks of phytoplankton. A striking result was seen in 

June, 1984 when the cell number in Station A was at its maximum for the 

whole period of the study, but at the same time Station B showed a 

relatively low number of cells. There was a slight increase in the 

cell number in August and September, 1984 which followed a drop in the 

cell number during July. This increase was more obvious in Station A 

than in Station B.

In general, it can be said that there were some significant 

differences between the total number of net phytoplankton of Station A 

and that of B. Examples of such differences are shown in Table 4.1

Table 4.1 Total number of phytoplankton

DATE cell m”3 (A) cell m"^ (b )

31. 3. 1983 1462 599

12. 4. 1983 1517 505

23. 6. 1983 2475 375

22. 9. 1983 688 2112

20. 3. 1984 463 1976

27. 6 . 1984 4027 607

b. Phytoplankton groups

i. Station A:

In the temperate region, diatoms represent the major group in the 

marine phytoplankton. In Station A (Fig. 4.2), the high peaks of 

phytoplankton which occurred during the seasons of rapid growth 

consisted mainly of diatoms. This was recorded in March, April, May



Figure 4.2 Diatoms and dinoflagellates 
(Station A)
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and November, 1983. Over 90% of the net plankton cells in the April 

and June peaks were dominated by diatoms.

In general, the maximum peaks of flagellated phytoplankton were 

usually lower than the maximum peaks of diatoms. Dinoflagellates 

blooms occurred at the end of, and after, the diatom spring bloom of 

1983. The highest peak of flagellates took place in September, 1984.

ii. Station B:

During the spring and summer of 1983, two diatom peaks occured in May 

and July (Fig. 4.3). The highest peak of diatom in 1983 was seen in 

October followed by a smaller one in November. The maximum diatom 

bloom in 1984 occurred in March, April and May. A smaller peak 

occurred in June and another one in August. The general picture of 

flagellates growth during 1983 was dominated by relatively high peaks 

from May to June, and another peak in September. The highest bloom of 

flagellates in 1984 took place in August, and gradually decreased after 

that. As in Station A, the peaks of flagellates were generally smaller 

than those of the diatoms.

II. Chlorophyll a

i. Station A:

A high value of 14.27 mg m“  ̂ was found In September, 1982 (Fig. 4.4). 

This was followed by a drop to 1.955 mg m“3 which continued until 

April, 1983 when chlorophyll ji concentrations started to increase. It 

reached a maximum of ca. 52 mg m“3 in June when then it dropped. The 

low concentration was maintained until April, 1984 with the exception 

of a small rise in August, 1983. In the spring of 1984 it reached a 

maximum of C£. 16 mg m~^ in May. After reaching the maximum it



Figure 4.3 Diatoms and dinoflagellates 
(Station B)
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Figure 4.4 Chlorophyll 
(Station A)
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gradually dropped reaching a minimum of 0.65 mg m“3 fn November, 1984.

ii. Station B:

Almost the same pattern of variation observed in Station A was found in 

Station B (Fig. 4.5). A value of ca. 7 mg m”3 fn September, 1982 was 

followed by a gradual decrease until April, 1983 when it started to 

increase. It reached a maximum of ca. 50 mg m~^ in June, 1983 followed 

by a small rise in August. The low values during the following months 

remained until April, 1984 when it started to increase reaching a 

maximum value of ca. 16 mg m“3 fn May. The concentration of 

chlorophyll â remained at a value of ca. 5 mg m”3 from the end of May, 

1984 until late July when it dropped and remained low.

III. Primary Productivity of Phytoplankton

i. Station A:

The fluctuations in the values of primary productivity for Station A

followed the pattern of chlorophyll ji concentration seasonal change

(Fig. 4.6). A value of ca. 14 mg C m"3 hr"l obtained in September,1982
-3 -1was followed by a sudden drop to a low value of ca. 1 mg C m hr 

This low value remained almost constant until April, 1983. The 

productivity started to increase from April reaching a maximum of ca. 

51 mg C m”3 hr“l in June, 1983. The productivity fluctuated around a 

level of ca. 8 mg C m”3 hr”l from August to November, 1983. A very low

value of ca. 0.6 mg C m”3 hr~l in late November remained at the same

level until April, 1984. A gradual increase started in April reaching 

a maximum of ca. 56 mg C m“3 hr~l in May followed by a drop in June. A

relatively high peak of ca. 12 mg C m”3 hr”l was found in July, 1984.

The productivity then started to decrease until the end of the sampling



Figure 4.5 Chlorophyll 
(Station B)
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Figure 4.6 fixation
(Station A)
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programme.

ii. Station B:

Again the primary productivity fluctuations at this station followed 

the pattern obtained for chlorophyll ja concentration seasonal variation 

(Fig. 4.7). A value of ca. 9 mg C m ”^ hr in September, 1982 was 

followed by a drop to a value of £a. 1 mg C m“  ̂ hr”l. The productivity 

remained at this level until April, 1983. The productivity increased 

in April and reached a maximum of ca. 41 mg C m“3 hr"l in June. This 

high peak was followed by smaller peaks from July to November, 1983. 

During the winter of 1984, the low values of productivity remained at 

the same level of <1 mg m"^ hr ”1 until the spring bloom which started 

in April. The productivity reached a maximum of ca. 46 mg C nT^ hr”  ̂

in May, dropped to ca. 5 mg C m”3 hr”l and increased again to ca. 22 

mg C m"3 hr”l in July. It dropped again and remained low during the 

following months.

IV. Total Number of Zooplankton 

i. Station A:

Throughout the 28 months of sampling, the number of zooplankton changed 

from time to time. In this study, the number of zooplankton exceeded 

500 cell m“3 on one occasion only (Fig. 4.8). From September, 1982 to 

March, 1983, the total number varied from 0 to ca. 100 cell m”3 . This 

figure increased in April, 1983 when it reached ca. 250 cell m“3 . The 

maximum number of organisms was found in May, 1984, when it reached ca. 

2300 cell m"*3 . Then it decreased throughout the winter months with the 

exception of one peak in October, 1983. In the spring of 1984 there 

was a slight increase to more than 100 cell m-  ̂ in March and April. By



Figure 4.7 fixation
(Station B)
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Figure A .8 Zooplankton total cell number
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the end of the summer, a peak of ca. 400 cell m”  ̂ was found in July. 

This peak was followed by very low values throughout the autumn and 

winter months of 1984.

ii. Station B:

The number of zooplankton in this station, throughout the period of 

this study, were lower than those found in Station A (Fig. 4.8). The 

low number of organisms which occurred from September, 1982 to March, 

1983 were followed by a maximum number of ca. 400 cell m~^ in May. Low 

values of zooplankton cell number (ca. 50 cell m“^) were found in June, 

July and August, 1983. These were followed by an increase to ca. 200 

cell m"^ in September and October, and to ca. 150 cell m~3 in December,

1983. The cold months of 1984 winter were followed by a slight

increase in the number of zooplankton to ca. 150 cell m“3 in March.

The highest peak in 1984 was found later in July when the number

reached ca. 400 cell m“3.

DISCUSSION

I. Phytoplankton Numbers - Biomass

The results of Stations A and B represent the annual variations in the 

number of net plankton found in Swansea Bay during the period of 

sampling. In both stations diatoms dominated the populations of the 

phytoplankton.

The flagellates occurred during short periods of the year in 

relatively small numbers (Figs. 4.2 and 4.3). From the results

represented in Figures 4.1, 4.4 and 4.5 it can be seen that on many
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occasions, the total number of net plankton did not coincide with the 

biomass represented as mg chlorophyll £m"3.

During the period from March to May, 1983, two high peaks of net 

plankton were found at the time when the biomass was low (Fig. 4.1, 

Station A).

The most obvious examples can be drawn from the samples collected 

in October, 1983 (A, B), March, 1984 (B) and June, 1984 (A) (Figs. 4.4 

and 4.5).

These discrepancies in the results of phytoplankton numbers and 

phytoplankton biomass for both stations can be confirmed by the 

insignificant correlation for A (r =* +0.3875) and B (r = +0.384) (Figs.

4.9 A and B)

In the study of inshore phytoplankton of Swansea Bay, Paulraj 

(1974) found that the total number of net plankton and concentrations 

of chlorophyll ji were not correlated. It is widely accepted that nano­

plankton are usually more abundant and productive than net plankton, 

especially in oceanic waters (Steemen Nielsen and Jensen, 1957; 

McAllister et al., 1959; Malone, 1971b; Semina, 1972).

The net plankton dominate the continental shelf and coastal waters 

(Hasle, 1959; Hulbert, 1962,1970; Throndsen 1973). Exceptions to this 

general pattern have been observed in shallow, temperate estuaries and 

adjacent coastal waters influenced by estuarine runoff (Ryther, 1954; 

Loftus et al., 1972; Durbin et al., 1975; Malone, 1977b).

The disagreement between the results of phytoplankton cell number 

and phytoplankton biomass suggests that the latter situation mentioned 

above existed in Swansea Bay. This disagreement could be a result of 

the very small phytoplankton escaping from the net during sampling due 

to the relatively large mesh size (ca. 50 urn). Although some small



Figure 4.9 Correlation between net phytoplankton cell number
and chlorophyll a

r(A) = +0.39

r(B) = +0.38
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cells have been traced in the phytoplankton net collection, the total 

number of phytoplankton has been underestimated.

II. Phytoplankton Biomass - Primary Productivity

The results of this study show the annual variation in chlorophyll a_ 

concentration and primary productivity occurring in Swansea Bay. The 

values obtained for chlorophyll â are relatively high in comparison to 

those obtained by Paulraj (1974) who found values of 26.6 mg m”  ̂ in an 

inshore area in Swansea Bay.

From 1973-1974, eleven cruises were carried out by I.M.E.R. in the 

Bristol Channel. The highest chlorophyll ji content in the channel was 

found in Swansea Bay and around the Gower peninsula. The shallow area 

of Swansea and Carmarthen Bays provided the most suitable conditions 

for growth of phytoplankton where a value of 41 mg C m”2 hr“l was found 

(I.M.E.R., 1974).

The values of primary productivity obtained in the present study 

(Figs. 4.6 and 4.7) are much higher than those found by Joint and 

Pomroy (1981) in the inner channel (3.3 mg C m~2 hr”l), and the central 

channel (28.1 mg C m"2 hr”l).

In general, the values of total primary production for both 

stations were the same. On a few occasions, differences were found 

which could be a result of the spatial heterogeneity in the bay.

The relation between biomass and primary productivity exhibited 

significant positive correlation (rA = +0.822, rB = +0.7921) (Figs.

4.10 A and B). Here we have a strong positive correlation between 

biomass and productivity. This emphasizes that the weak correlation 

obtained in both stations between cell number and chlorophyll a. was a 

result of the underestimation of the actual number of phytoplankton in



Figure 4.10 Correlation between biomass and primary productivity

r(A) = +0.82

r(B) = +0.79
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Swansea Bay.

The assimilation number (photosynthesis/biomass) of the phyto- 

plankton populations during the period of sampling varied from 0.195 - 

8.35 in Station A, and from 0.11 - 9.77 mg C mg chlorophyll ji hr“  ̂

(Table 4.2).

It has been demonstrated that temperature (Eppley, 1972), light 

intensity (Beardall and Morris, 1976) and nutrient limitation (Thomas 

and Dodson, 1972), directly affect phytoplankton assimilation numbers.

In the present study, relatively high assimilation numbers were 

obtained in November, 1982 (A), January, 1983 (A), September, 1983 (A), 

November, 1983 (B) and July, 1984 (A, B) coinciding with low numbers of

net phytoplankton. Eppley (1972) proposed that high assimilation

numbers were associated with cells of low cell volume and fast growth 

rates; and Malone (1971b) determined that nanoplankton from different 

oceanic areas consistently had higher assimilation numbers than net 

plankton. Based on the previous findings, it is possible to suggest 

that, when high assimilation numbers were obtained at the time when 

cell count of net phytoplankton was low, the nanoplankton may have 

played an important role in the productivity of Swansea Bay.

Ill. Phytoplankton- Zooplankton

One of the factors which could either by itself or in association with 

the other environmental factors affect phytoplankton biomass, is zoo­

plankton. The effect of zooplankton as grazers had been identified as

early as 1935 (Harvey et al., 1935; Riley, 1946).

The zooplankton bloom which took place in May 1983 at Station A 

was mainly dominated by copepods. This bloom with an abundance of ca. 

2300 cell m“3 was the highest found during this study (Fig. 4.8). This
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Table 4.2 Assimilation number (productivity/biomass)

DATE A B DATE A B

7. 9.82 0.97 1.29 22. 9.83 7.32 5.23

22. 9.82 0.84 0.85 10.10.83 1.37 0.7

5.10.82 1.23 0.42 19.10.83 3.74 1.22

19.10.82 1.13 0.49 4.11.83 8.35 9.77

2.11.82 4.1 0.95 18.11.83 1.47 1.87

16.11.82 1.11 0.55 12.12.83 0.7 2.46

3.12.82 0.42 0.27 24. 1.84 0.3 0.87

14.12.82 0.58 0.92 3. 2.84 0.53 0.22

25. 1.83 4.37 0.46 17. 2.84 3.26 1.08

7. 2.83 3.57 1.05 20. 3.84 1.22 2.28

31. 3.83 0.92 2.13 30. 4.84 2.55 2.69

12. 4.83 0.66 0.83 14. 5.84 3.37 2.78

26. 4.83 1.0 0.9 31. 5.84 1.78 1.27

11. 5.83 3.12 4.26 13. 6.84 1.33 1.15

25. 5.83 1.6 2.65 27. 6.84 2.2 1.56

10. 6.83 0.47 0.48 11. 7.84 3.39 3.66

23. 6.83 0.98 0.82 30. 7.84 3.74 2.52

11. 7.83 2.94 1.66 30. 8.84 2.06 2.55

26. 7.83 2.36 3.57 17. 9.84 2.04 2.39

22. 8.83 1.48 4.0 13.11.84 1.68 1.9

30. 8.83 2.08 3.54 11.12.84 1.43 1.13
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peak occurred after a period of low productivity and low biomass 

(chlorophyll a).

On the other hand this bloom was preceded in April by a relatively 

high number of net phytoplankton cells (1500 cell m“^). Since macro- 

zooplankton selectively remove large particles from multi-sized algal 

diets (Mullin, 1963; Frost, 1972; Gaudy, 1974) it can be said that the 

decline of the net phytoplankton in the sample directly preceding the 

zooplankton bloom was due to zooplankton selectively grazing the larger 

cells (Chervin, 1978). Plankton cell numbers in Station B showed a 

similar pattern of phytoplankton and zooplankton alternative domination 

but to a lesser extent. The highest zooplankton peaks of 1984 at both 

stations were of similar values and occurred in July following a bloom 

dominated by Rhizosolenia delicaltula (95%, A; 71%, B). The peak at 

Station A was not as high as the one which took place in May, 1983 

following a bloom of Rhizosolenia hebetata (48%), and Biddulphia 

sinensis (28%). The peak of zooplankton at Station B in 1984 was as 

high as the peak of 1983 which followed a bloom of Biddulphia sinensis 

(22%) and Coscinodiscus sp. (22%). From the results (Figs. 4.1 and 

4.8), it seems that zooplankton in Swansea Bay were selective grazers 

and prefer relatively large phytoplankton cells. This can be seen from 

the high peak of zooplankton (Station A) which followed a phytoplankton 

bloom in 1983 dominated by large phytoplankton cells (R. hebetata, 

48%). The presence of B. sinensis in numbers (22%) suitable to support 

a growth of zooplankton in 1983 resulted in the occurrence of medium 

zooplankton peak (May 1983). On the other hand, the onset of R. 

delicatula bloom in June 1984 (ca. 80%) did not support the increase of 

zooplankton numbers to a high level as the one achieved in May, 1983 

(A).



CHAPTER V 
PHYTOPLANKTON SPECIES SUCCESSION
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INTRODUCTION

Succession is a process of continuous changes occurring in the eco­

system. In the sea, the changes occur at different levels. The 

taxonomic composition of phytoplankton communities, and the abundance 

and relative dominance of the different species and algal groups 

present undergo continuous change. Diatoms usually dominate in colder, 

nutrient-rich waters. The dominance of diatoms is sometimes replaced 

by dinoflagellates and coccolithophorids. This succession of phyto­

plankton groups often occurs in regions characterized by seasonal 

changes in temperature and nutrients (Gran and Braarud, 1935).

In addition to phytoplankton group succession, species succession 

plays a very important and fundamental role in the ecology of phyto­

plankton. Throughout the species succession, few or many species may 

occur together. One or a group of species may dominate the community. 

The duration and time of occurrence and disappearance of different 

species vary.

In temperate regions the annual variation of phytoplankton biomass 

and growth follow a defined pattern. In the winter, there is no 

appreciable growth. Phytoplankton numbers increase early in the spring 

reaching a maximum towards the end of April. The peak is usually 

followed by a sharp decline, and during the summer numbers remain at a 

relatively low level. A second maximum, usually not as high as the 

spring maximum, may occur in the autumn, after which the numbers 

decrease to the low winter level.

The timing and magnitude of the blooms occurring in the temperate 

region depend on a number of environmental factors. The individual or 

collective effect of the different environmental factors on the growth
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and succession of phytoplankton species is specific for each geo­

graphical region. Some of the most important factors are:

a. Temperature and light:

Temperature and light affect phytoplankton species differently. Each 

species has its own requirement of temperature and light. In addition, 

the different combinations of temperature and light stimulate different 

responses. The combinations of temperature and light vary according to 

season: in spring, an increase in light and low temperature; summer, an 

increase in light and high temperature; autumn, a decrease in light and 

high temperature; winter, a decrease in light and low temperature 

(Strickland, 1965; Hutchinson, 1967; Fogg, 1975).

b. Concentration of nutrients:

Nutrients have been known for a long time as one of the most important 

ecological factors that could affect phytoplankton growth. In addition 

to their role as growth-limiting factors, the availability of one 

nutrient at the expense of another may promote the growth of a specific 

group of phytoplankton organisms. For example, the bloom of diatoms 

usually exhausts the silica available for growth. The resulting new 

proportion of silica to other nutrients may support the growth of 

another group of phytoplankton such as Chlorophyceae (Fogg, 1975).

c. Hydrographical conditions:

The turbulence which results from the autumn and winter gales disturbs 

the stable water column which developed in the summer. It is possible 

that the turbulent conditions favour rapidly sinking forms and the 

stabilized water column favours buoyant and motile algae (Moss, 1969).
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In addition to the effect of turbulence on buoyancy, these conditions 

can result in increased circulation of nutrients in the water mass.

d. Selective grazing:

The biomass and species composition of phytoplankton are influenced 

largely by the presence of grazers in the water column. Grazers may be 

selective or non-selective (Edmondson, 1964). During the period of 

high growth rate of grazers, and when conditions favour selective 

grazing, phytoplankton species of a certain cell size may be replaced 

by a differently sized species (Frost, 1977).

Phytoplankton species succession has been studied throughout the 

Bristol Channel (Rees, 1939; Pearce, 1967; Paulraj, 1974; I.M.E.R., 

1975; Tyler, 1976; Vogelmann, 1980; Sexton, 1985). The phytoplankton 

of inshore Swansea Bay have been studied extensively (Paulraj, 1974) 

and were found to exhibit a regular annual pattern of species 

succession.

In the present study, ecologically significant species (those 

species which made up at least 30% of a phytoplankton net sample, 

Vogelmann (1980)) were related to the environmental factors. This was 

carried out to see if there was a correspondence between the dominant 

phytoplankton species and the environmental conditions existing at the 

time of sampling.



RESULTS

Phytoplankton abundance, temporal variation and species succession are 

essential topics in the study of aquatic primary productivity.

In the present study, the data of phytoplankton abundance through­

out the period of study were treated in two ways. Firstly, the total 

number of each species in each sample was represented as a percentage 

of the highest total number of phytoplankters which occurred during the 

period of study. This will give an idea of the relative importance of 

each species and its temporal variations. Secondly, the bimonthly 

samples were treated as sub-units. The total number of each species in 

each sample was represented as a percentage of the total number of 

phytoplankton in that sample. This method will show the dominant 

species in each sample.

During the study period, 43 phytoplankton species were identified. 

Any species representing 30% or more of the population at least once 

during the study period was considered dominant. Twelve species have 

fallen into this category.

1. Bacillaria paxillifer

At both stations, the occurrence of this species took place during the 

spring and autumn seasons. An exception was the autumn of 1984.

Station A (Figures 5.1.1 and 5.1.2)

Figure 5.1.1 represents the temporal variation of B. paxillifer. 

Throughout the period of sampling, five peaks of this species occurred 

at Station A. The first one occurred in October, 1982 (6.5%); followed 

by May, 1983 (21%); October, 1983 (11%); January, 1984 (3%); and March-



Figure 5.1.1 Temporal variation of Bacillaria paxillifer
(Station A)
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Figure 5.1.2 Dominance of Bacillaria paxillifer
(Station A)
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April, 1984 (3%).

B. paxillifer dominated the phytoplankton population at Station A 

in October, 1982 (50%); May, 1983 (56%), January and March, 1984 (32%). 

See Figure 5.1.2.

From Figures 5.1.1 and 5.1.2 it can be seen that when the temporal

variation was 2% in December, 1982, B. paxillifer dominated and re­

presented 32% of the population.

Station B (Figures 5.1.3. and 5.1.4)

Figure 5.1.3 represents the temporal variation of B. paxillifer at 

Station B. It occurred from September, 1982 until July, 1983, and from 

September, 1983 until May, 1984. Some significant peaks took place

during those periods; December, 1982 (3.5%); July, 1983 (16%); October,

1983 (9%); January, 1984 (6%); and March, 1984 (25%).

This species dominated the population in October, 1982 (36%);

November, 1982 (50%); January, 1983 (30%); July, 1983 (45%); January,

1984 (60%) and March, 1984 (50%). See Figure 5.1.4.

By comparing Figures 5.1.3 and 5.1.4 it can be seen that in Figure 

5.1.4 the dominance values of November, 1982 (50%), July, 1983 (45%)

and March, 1984 (50%) correspond to temporal variation values of 0.5%, 

16% and 25% respectively (Fig. 5.1.3).

2. Biddulphia sinensis

At both stations, this species occurred throughout the period of 

sampling from September, 1982 until June, 1984. It disappeared during 

the period July to December, 1984.



Figure 5.1.3 Temporal variation of Bacillaria paxillifer
(Station B)
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Figure 5.1.4 Dominance of Bacillaria paxillifer
(Station B)
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Station A (Figures 5.2.1 and 5.2.2)

The temporal variation of B. sinensis at this station ranges from 0% to 

72%. The most significant peaks occurred in September, 1982 (7%); 

November, 1982 (5.5%); April, 1983 (10%); May, 1983 (9%); October, 1983 

(72%); January, 1984 (5.5%); and March, 1984 (4%). See Figure 5.2.1.

Biddulphia sinensis dominated the phytoplankton population at this 

station from September, 1982 until December, 1982 (43-60%). From

January, 1983 until March, 1983 (75-98%); May, 1983 (34%) and September

1983 (41%). It dominated the population from October, 1982 until 

January, 1984 ranging from 50-94% of the population. From February,

1984 until March, 1984 it ranged from 30-66% of the population. See 

Figure 5.2.2.

Station B (Figures 5.2.3 and 5.2.4)

The values of temporal variation at this station were lower than those 

of Station A from September, 1982 until July, 1983. The maximum value 

in this period was 4% in October. The variation from September, 1983 

until May 1984 took a very different pattern. The values were much 

higher than those in the first period. A peak of C£. 60% occurred in 

October, followed by a peak of 26% in November and a third one of ca. 

10% in May.

A comparison of Figures 5.2.3 and 5.2.4 shows that although the 

values of temporal variations were relatively low in the first period 

(Fig. 5.2.3), the corresponding values in Figure 5.2.4 were very high. 

They reached 58% in October, 1982; 49% in November, 1982; 67% in

December, 1982; 60% in February, 1983 and 32% in May, 1983. On the 

other hand, the period from September, 1983 until May, 1984 reflects a 

relatively normal correspondence. The values of 60%, 4%, 26% and 10%



Figure 5.2.1 Temporal variation of Biddulphia sinensis
(Station A)
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Figure 5.2.2 Dominance of Biddulphia sinensis 
(Station A)
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Figure 5.2.3 Temporal variation of Biddulphia sinensis
(Station B)
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Figure 5.2.4 Dominance of Biddulphia sinensis
(Station B)
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in Figure 5.2.3 corresponded to 73% (October, 1983); 82% (November, 

1983); 92% (November, 1983) and 22% in March, 1984. The obvious

exception in this period was the first value in November, 1983.

3. Coscinodiscus sp.

Coscinodiscus sp. occurred mainly in the spring and autumn seasons 

during the sampling period.

Station A (Figures 5.3.1 and 5.3.2)

At this station, the temporal variation of Coscinodiscus sp. was

characterized by higher values in the spring than those found in the 

autumn. The values of spring 1983 reached a value of 4% in May, 1983; 

5.5% in June, 1983; and 7% in April, 1984. On the other hand, the 

values of the autumn rarely exceeded 1%. Although the total number of 

Coscinodiscus sp. was low in January, 1983 (< 0.2%) and May, 1984

(0.5%), it dominated the sparse phytoplankton in those months, reaching 

50% and 34% respectively.

Station B (Figures 5.3.1 and 5.3.3)

At this station, the temporal variation of Coscinodiscus sp. was

similar to that of Station A with the exception of the September, 1983 

value. At this station the temporal variation (Fig. 5.3.1) was 

characterized by low values of the autumn not reaching 1% except in 

September, 1983 when it reached 37.5%. The spring values reached 4.5% 

in May, 1983 and 9% in April, 1984.

Coscinodiscus sp. dominated the phytoplankton population in

September, 1982 (65%); March, 1983 (50%); May, 1983 (33%) and

September, 1983 (72%). From Figures 5.3.1 and 5.3.3, it can be seen



Figure 5.3.1 Temporal variation of Coscinodiscus sp. 
(Stations A and B)
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Figure 5.3.2 Dominance of Coscinodiscus sp. 
(Station A)
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Figure 5.3.3 Dominance of Coscinodi 
(Station B)
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that when the temporal variation in September, 1982 was very low 

(0.5%), Coscinodiscus sp. dominated the population, accounting for 65% 

of the total.

4. Chaetoceros sp.

During the sampling period, Chaetoceros sp. occurred mainly in the 

spring. It disappeared at other times of the year.

Station A (Figures 5.4.1 and 5.4.2)

From March, 1983 until August, 1983 the values of the temporal 

variations were between 0.5% to 1%, with a noticeable peak of 5% in 

May, 1983. The other period of Chaetoceros sp. growth took place from 

March, 1984 to August, 1984. The peaks of this period were of the same 

size, March, 1984 (1.5%); June, 1984 (0.5%) and August, 1984 (1%). See 

Figure 5.4.1.

At this station, the dominance of Chaetoceros sp. was not obvious, 

except in the sample of August, 1983 (44%). See Figure 5.4.2.

Station B (Figures 5.4.1 and 5.4.2)

From March, 1983 until August, 1983 the pattern of temporal variations 

was similar to that of Station A. It consisted mainly of low peaks of 

ca. 0.5%. The exception was the sample of May, 1983 with a value of 

10%. This pattern was repeated from March to September, 1984. The 

highest peak in 1984 was in May, with a value of 12.5%. At this 

station Chaetoceros sp. dominated the phytoplankton population in May, 

1983 and May, 1984 when it formed 30% and 63% of the population, 

respectively. When compared with the two previous figures, it can be 

seen that the values of temporal variations (Fig. 5.4.1, A) in May,



Figure 5.4.1 Temporal variation of Chaetoceros sp. 
(Stations A and B)
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Figure 5.4.2 Dominance of Chaetoceros sp. 
(Stations A and B)
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1983 (5%) and August, 1983 (1%) did not correspond to the same extent 

in Figure 5.4.2, A. In this figure, the value in May, 1983 was 10%, 

while that of August, 1983 was 43%.

5. Rhizosolenia hebetata

This species occurred in the spring and summer of 1983 and 1984.

Station A (Figures 5.5.1 and 5.5.2)

The temporal variation (Fig. 5.5.1, A) featured four different peaks. 

This species first occurred in April, 1983 (18%); then in May, 1983 

(4%); followed by April, 1984 (1%) and June, 1984 (1.5%). R. hebetata 

dominated the population in April, 1983 (47%) and May, 1983 (34%). It 

represented 27% of the population in June, 1984.

Station B (Figures 5.5.1 and 5.5.2)

In 1983, the temporal variation at this station was different from that 

of Station A (Fig. 5.5.1, A). It started in March, 1983 (1.5%) and

maintained the same level in April and June, 1983. The highest peak

was in July, 1983 which reached 10.5%. In 1984 it was generally lower 

than that of 1983 with a highest value of 1.5% in March. At this 

station, R. hebetata dominated the population on one occasion only. 

This was in July, 1983, reaching 30% (Fig. 5.5.2).

6 . Melosira moniliformis

The major outburst of this species occurred in the early summer of 

1983. It disappeared almost completely during the other seasons.



Figure 5.5.1 Temporal variation of Rhizosolenia hebetata
(Stations A and B)
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Figure 5.5.2 Dominance of Rhizosolenia hebetata 
(Stations A and B)
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Station A (Figures 5.6.1 and 5.6.2)

The temporal variation of this species was characterized by one major 

peak which took place in early June, 1983 reaching 45%. Melosira 

moniliformis accounted for 26% of the population of September, 1982 and 

58% in June, 1983.

Station B (Figures 5.6.1 and 5.6.2)

At this station the temporal variation exhibited the same pattern as 

that of Station A. The major peak occurred at the same time in June, 

1983 but reaching only 9% (Fig. 5.6.1). At this station, Melosira 

moniliformis dominated only once which was in June, 1983. On that 

occasion it accounted for 79% of the population.

7. Prorocentrum micans

P . micans was the most important dinoflagellate which occurred in 

Swansea Bay during the present study and dominated the phytoplankton 

population at one stage.

Station A (Figures 5.7.1 and 5.7.2)

At this station, P. micans occurred from April until October, 1983 and 

from April until December, 1984. The values of temporal variation were 

1.5% in April, 1983; 4% in June, 1983; 1.5% in July, 1983; 2% in 

September, 1983; 1% in May, 1984; 3% in July, 1984; 6% in August, 1984; 

with the highest value in September, 1984 (9%). See Figure 5.7.1.

P . micans was dominant in August, 1983 (30%); May, 1984 (30%) and 

July, 1984 (40%). See Figure 5.7.2.

By comparing Figures 5.7.1 and 5.7.2 it can be noticed that when 

the temporal variation values were 3% (July, 1984); 6% (August, 1984)



Figure 5.6.1 Temporal variation of Melosira moniliformis
(Stations A and B)
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Figure 5.6.2 Dominance of Melosira moniliformis 
(Stations A and B)
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Figure 5.7.1 Temporal variation of Prorocentrum micans
(Stations A and B)
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Figure 5.7.2 Dominance of Prorocentrum micans
(Station A)
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and 9% (September, 1984) the dominance values were 40%, 36% and 30% 

respectively.

Station B (Figures 5.7.1 and 5.7.3)

At this station, P . micans occurred from April until October, 1983 and 

from May until December, 1984. The values of temporal variation were

1% in April, 1983; 2% in June, 1983; 2% in July, 1983; 3% in October,

1983, 1% in May, 1984 and the highest value was 5% in August, 1984.

P. micans contributed 29% of August, 1983 population. It 

dominated the population of July, 1984 (40%) and August, 1984 (33%). 

There was contrariety between Figure 5.7.1 and 5.7.3. It can be 

noticed that when the temporal variation values were 1.5% (July, 1984); 

5% (August, 1984) and 2.5% (September, 1984) the dominating values were 

40%, 33% and 30% respectively.

8 . Rhizosolenia shrubsolei

Rhizosolenia shrubsolei is one member of the phytoplankton which 

occurred in the summer months only.

Station A (Figures 5.8.1 and 5.8.2)

When the temporal variation of R. shrubsolei is considered, it can be 

mentioned that the individuals of this species occurred more in the 

summer of 1983 than in the summer of 1984 (Fig. 5.8.1). In July, 1983

it reached 9.5%, while in June, 1984 it was only 1%.

This species dominated the phytoplankton population on one 

occasion only, which was in July 1983 when it reached 60%.



Figure 5.7.3 Dominance of Prorocentrum micans
(Station B)
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Figure 5.8.1 Temporal variation of Rhizosolenia shrubsolei
(Stations A and B)
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Figure 5.8.2 Dominance of Rhizosolenia shrubsolei 
(Stations A and B)
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Station B (Figures 5.8.1 and 5.8.2)

In this station, R. shrubsolei took the same pattern as was seen in 

Station A, but at a lower level. In fact, the highest peak in this 

station was 3.5% in July, 1983. It occurred at the same time in 1984, 

but it only reached 1%. R. shrubsolei dominated the phytoplankton in 

July, 1983 when it accounted for 46% of the population (Fig. 5.8.2).

9. Skeletonema costatum 

Station A (Figures 5.9.1 and 5.9.2)

S. costatum occurred in low numbers in 1983 (Fig. 5.9.1). This 

occurrence extended from April to July, 1983. In May and June, 1983 it 

was 1%. This pattern was changed in 1984 when the value reached 15.5% 

in April. S. costatum was the dominant species in April, 1984. In the 

sample of that month, it represented 38% of the population (Fig. 5.9.2)

Station B (Figures 5.9.1 and 5.9.2)

The pattern of temporal variation which took place in Station A was

similar at this station. The highest value of 1983 was 1% in May. In

the growth season of 1984, the highest value was 51% in April 

(Fig. 5.9.1). The contribution of S. costatum to the population of 

April, 1984 was 29%

10. Thalassionema nitzschioides 

Station A ( Figures 5.10.1 and 5.10.2)

This species was recorded on few occasions during this study. It 

occurred in low densities in April, 1983 (1%) and May, 1983 (2%). It 

was also found in the spring of 1984 in low densities of 1% (February) 

and 0.5% in March. Although it occurred in negligible numbers in



Figure 5.9.1 Temporal variation of Skeletonema costatum
(Stations A and B)
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Figure 5.9.2 Dominance of Skeletonema costatum 
(Stations A and B)
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Figure 5.10.1 Temporal variation of Thalassionema nitzschioides
(Stations A and B)
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Figure 5.10.2 Dominance of Thalassionema nitzschioides
(Stations A and B)
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December, 1982, it dominated the population of that month with a value 

of 33%.

Station B (Figures 5.10.1 and 5.10.2)

The temporal variation in this station was characterized by low values 

throughout the occurrence periods (Fig. 5.10.1). An exception to this 

pattern was the relatively high peak of 5% in May, 1983. The second 

highest value was in September, 1982 (1.5%). In that month, T.

nitzschioides was dominant, representing 52% of the population (Fig.

5.10.2).

11. Rhizosolenia delicatula 

Station A (Figures 5.11.1 and 5.11.2)

Throughout the sampling period, R. delicatula occurred only once, in 

June, 1984. It accounted for 92% of the highest recorded population 

(Fig. 5.11.1). On that occasion it represented 95% of the population 

(Fig. 5.11.2).

Station B (Figures 5.11.1 and 5.11.2)

At this station, the temporal variation took the same pattern as that 

of Station A. There was only one peak which reached 10% in June, 1984. 

When it occurred in June, 1984 R. delicatula dominated the population 

and accounted for 70%.

12. Thalassiosira gravida

Station A (Figures 5.12.1 and 5.12.2)

The temporal variation of T. gravida at this station was restricted to 

April and May, 1984. The highest value was in May (4.5%). On the



Figure 5.11.1 Temporal variation of Rhizosolenia delicatula
(Stations A and B)
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Figure 5.11.2 Dominance of Rhizosolenia delicatula 
(Stations A and B)
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Figure 5.12.1 Temporal variation of Thalassiosira gravida
(Stations A and B)
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Figure 5.12.2 Dominance of Thalassiosira gravida 
(Stations A and B)
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other hand, this species accounted for 22% of the May population. 

Station B (Figures 5.12.1 and 5.12.2)

In contrast to the highest value of temporal variation in Station A, 

the highest value at this station was 17%. This value occurred in May, 

1984 (Fig. 5.12.1). The individuals of this species were dominant in 

May, 1984. They represented 42% of that month's population (Fig.

5.12.2).

13. Phaeocystis sp.

It is almost certain that Phaeocystis was responsible for at least part 

of the production in Swansea Bay, especially in the summer. This 

species was recorded at peak levels in the samples of May-June, 1984. 

Due to its delicate and slimy structure, it broke down and clogged the 

towing net which made it very difficult to quantify its presence in the 

net sample.

DISCUSSION

There is a continuous change in the biotic and abiotic environmental 

factors througout the year. This change may take the shape of a 

seasonal cycle or just an occasional pulse which may occur at any time 

due to one reason or another. The change in the environment which is 

caused by a single factor or a combination of several factors may 

affect the population of certain species or the community as a whole.

The cyclic and seasonal variations in the environmental conditions 

of a climatic region produce a characteristic seasonal pattern in the



phytoplankton of such a region. The seasonal growth pattern which is 

characteristic of the temperate regions has been recorded from coastal 

waters in Britain by Atkins (1923), Harvey (1933), Barry (1963), Pearce 

(1967), Dooley (1973), Vogelmann (1980) and Sexton (1985).

The phytoplankton which occurred and dominated the population in 

Swansea Bay was divided into different groups according to the 

frequency of occurrence:

A. A group of continuous occurrence;
B. A group of discontinuous occurrence;
C. Species with one major occurrence.

A. A group of continuous occurrence

This group contains the species which occurred throughout the year, 

including Bacillaria paxillifer, Biddulphia sinensis and Coscinodiscus 

sp > •

1. Bacillaria paxillifer (Figures 5.1.1 to 5.1.4)

Bacillaria paxillifer was found to be neritic (Lebour, 1929). This 

species has been recorded around the Gower peninsula coasts by Paulraj 

(1974), Vogelmann (1980) and Sexton (1985). It was found to be one of 

the dominant species which occurred throughout the year.

In the present study, a comparison of the environmental conditions 

which preceded the major peaks at Station A (31.3.1983 and 19.10.1983) 

and B (11.7.1983 and 20.3.1984) was made (Table 5.1)

When the conditions of A (4.3.1983) were compared with those of B

(6.3.1984), it was found that the recorded environmental conditions 

at both stations were similar. These conditions are usually
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Table 5.1 Environmental factors measured during the growth of
Bacillaria paxillifer

FACTOR STATION A STATION B
4.3.83

Salinity (%o) 28.2

Temperature (°C) 5.5

Nitrate (yg at Nl”l) 33.57

Nitrite (yg at Nl“l) 0.2

Ammonia (yg at Nl"l) 0.21

Silicate (yg at Sil”l) 16.4

Phosphate (yg at Pl~l) 0.83

10.10.83 23.6.83 6.3.84

28.6 29 29.4

14.3 15.5 7

19.3 6.7 47.1

2.6 0.24 0.075

0.07 0 0.03

11.8 0.47 16.95

0.99 0.1 1.03

characteristic of the spring season, i.e. a relatively low temperature 

accompanied by high concentrations of nutrients. In this case, it is 

possible that the combination of high nutrient concentrations and cool 

temperatures of the spring (5.5-8°C) may have triggered the growth of

B. paxillifer. On the other hand, another group of B. paxillifer 

growth peaks was found in the sample of 11.7.1983 (B) and 19.10.1983 

(A). The magnitude of the environmental conditions in this case was 

different from that of the spring growth (Table 5.1).

Firstly, the temperatures of the period which preceded the peaks 

were much higher than those of the spring. Secondly, the peak of

B. paxillifer which occurred at Station A (19.10.1983) was preceded by 

relatively high levels of nutrient concentrations especially nitrite 

which reached very high concentraions (ca. 2.6 yg at Nl” ^).

The peak which took place in the summer (11.7.1983) in Station B
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was preceded by very low nutrient concentrations especially of 

silicate. Temperature was the only factor which was as high as that of 

19.10.1983 growth. It appears that temperature was the main factor 

which stimulated the growth of B. paxillifer in the late summer and 

autumn.

From all the points mentioned in the previous discussion and the 

possibilities which were suggested to explain the growth of B. 

paxillifer during the study period, it can be noticed that those 

possibilities were applied to explain the growth of B. paxillifer in 

hugely different conditions. The conditions varied from time to time 

during the periods which preceded the growth. Temperatures varied from 

5.5 to 15.5° C, nitrate from 6.7 to 47.1 yg at Nl-^, nitrite from

0.075 to 2.6 yg at Nl“l , ammonia from 0 to 0.21 yg at Nl”l, silicate 

from 0.47 to 16.95 yg at Sil“l and phosphate 0.1 to 1.03 yg at Pl"^.

To explain this continuous occurrence of B. paxillifer throughout 

the year two possibilities emerge: firstly, an unmeasured environmental 

factor or combination of factors may have been limiting the growth or, 

secondly, different physiological races of B. paxillifer may occur at 

different times of the year regulated mainly by the temperature 

(Vogelmann, 1980; Sexton, 1985). A spring race which is favoured by 

temperature around 5°C, and an autumn race with a temperature 

preference over the range 14-18°C.

2. Biddulphia sinensis (Figures 5.2.1 to 5.2.4)

Biddulphia sinensis is a major representative of the phytoplankton 

found in the waters around the British coasts. It has been recorded in 

the water samples of the Gower peninsula coasts by Paulraj (1974), 

Vogelmann (1980) and Sexton (1985).
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Like Bacillaria paxillifer, Biddulphia sinensis was found to occur 

throughout the year.

In the present study, the seasonal variation pattern of Biddulphia 

sinensis was very similar to that of B. paxillifer (Figs. 5.1.1, 5.1.3, 

5.2.1, 5.2.3). In Station A, the major peaks of growth occurred in the 

spring (12.4.1983) and the autumn (19.10.1983). The latter was much 

higher than the former. On the other hand, the highest peaks at 

Station B occurred in the autumn (19.10.1983) and the spring

(20.3.1984). The highest peak found at this station was that of the 

spring. Biddulphia sinensis occurred at the same period during which 

the growth of B. paxillifer took place.

During the periods which preceded the growth of Biddulphia 

sinensis, the magnitude of variations of the environmental factors was 

very similar to that found prior to the high growth of B. paxillifer. 

In this case temperature varied from 5.5 to 18°C, nitrate from 5.7 to 

66.73 yg at Nl~l, nitrite from 0.15 to 0.63 yg at NI“1 , ammonia from

0.05 to 0.39 yg at Nl”^, silicate from 6.5 to 24.5 yg at Sil“l and 

phosphate from 0.52 to 2.26 yg at Pl”l (Table 5.2).

It was also found that Biddulphia sinensis and Bacillaria 

paxillifer usually dominate the phytoplankton populations together. 

See Figures 5.1.2, 5.1.4, 5.2.2 and 5.2.4. Therefore, it is possible 

that unmeasured environmental conditions may have stimulated the growth 

of B. sinensis or that different physiological races of B. sinensis 

were regulated by temperature over different temperature preferences 

(Vogelmann, 1980).
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Table 5.2 Environmental factors measured during the growth of
Biddulphia sinensis

FACTOR STATION A STATION B
4.3.83 6.9.83 6.9.83 17.2.84

Salinity (%o) 28.2 30.5 30.5 27

Temperature (°C) 5.5 18 18 5.5

Nitrate (yg at Nl“l) 33.57 5.8 5.7 66.7

Nitrite (jig at Nl”l) 0.2 0.6 0.63 0.15

Ammonia (yg at Nl” -̂) 0.21 0.34 0.39 0.05

Silicate (yg at Sil“l) 16.4 7.3 6.5 24.5

Phosphate (yg at Pl”l) 0.83 0.71 0.52 2.26

Coscinodiscus sp. (Figures 5.3.1 to 5.3.3)

Coscinodiscus sp. is the third in the group which includes the species 

which occur more or less all year round. The major occurrences of this 

species took place during the spring at both stations. An exceptional 

occurrence took place in the autumn (22.9.1983) at Station B (Fig. 

5.3.1).

Table 5.3 shows the values of the environmental conditions which 

occurred prior to the onset of the Coscinodiscus sp. major growth. 

When it occurred in the spring, Coscinodiscus sp. was 20-50% dominant. 

The spring growth was observed over a temperature range of 5-11°C. The 

nutrient concentrations at that period were high. The autumn growth of 

Coscinodiscus sp. at Station B occurred in different conditions. At 

that period the nutrient concentrations were relatively low, and the 

temperature ranged from 18-19.5°C during the preceding months (July-
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Table 5.3 Environmental factors measured during the growth of
Coscinodiscus sp.

FACTOR STATION A 
26.4.83 20.3.84 26.4.83

STATION B 
6.9.83 20.3.84

Salinity (%o) 26.7 30 26.6 30.5 30

Temperature (°C) 9 6.5 9 18 6.5

Nitrate (yg at Nl“l) 35.86 40.0 36.18 5.7 38.94

Nitrite (yg at Nl”l) 0.225 0.15 0.17 0.63 0.17

Ammonia (yg at Nl“l) 0.23 0.07 0.25 0.39 0.024

Silicate (yg at Sil“l) 17.05 15.38 16.17 6.53 15.06

Phosphate (yg at Pl“l) 1.1 1.28 0.99 0.52 1.41

September).

The autumn growth was 70% dominant. Once again, the growth of 

Coscinodiscus sp. was observed in two ̂ otally different conditions. A 

spring and autumn growth of Coscinodiscus sp. was observed. The wide 

range of environmental factors recorded give two possibilities to 

explain the results:

1. There were two populations of Coscinodiscus sp., a spring 

population adapted to cool water temperature and high nutrient 

concentrations and an autumn population which was adapted to high 

temperatures and low nutrient concentrations.

2. There was one population of Coscinodiscus sp.. The growth of this 

species was controlled by factors other than those recorded during 

the study.



B . A group of discontinuous occurrence

This group includes phytoplankton species which occur more than once 

but discontinuously.

1. Chaetoceros sp. (Figures 5.4.1 and 5.4.2)

In both stations, Chaetoceros sp. occurred mainly in the spring. The 

highest growth in 1983 occurred at the same time in both stations 

(11 .5.1983), with the growth in the spring of 1984 characterized by a 

high bloom at Station B (14.5.1984) and a moderate growth in both 

stations in March of the same year.

In both stations, the salinity which preceded the increase was in 

the range 28.4-30.1%o. It can be observed from Table 5.4 that the 

increase of Chaetoceros on all the occasions followed a period of 

temperature in the range 7-11°C and high concentrations of nutrients. 

Chaetoceros sp. has been recorded over a temperature range of 9.8-19°C 

(Pearce, 1967; Paulraj, 1974; Vogelmann, 1980).

From the observations that Chaetoceros occurred over a wide 

temperature range, three distinct temperature preferences were 

identified (Vogelmann, 1980). The temperature ranges proposed are 

10-13°C, 14-15°C and 16-19°C.

Based on this grouping the increase in Chaetoceros observed in 

this study (spring, 1983 and 1984) falls into the first temperature 

range. During this increase Chaetoceros sp. dominated the population 

at Station B (Fig. 5.4.2). On the other hand, the slight increase of 

Chaetoceros at Station A (11.7.1983) dominated the population reaching, 

about 43%. This slight increase during August occurred when the 

temperature was about 18°C.

Paulraj (1974) recorded a domination of Chaetoceros at Mumbles
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Table 5.4 Environmental factors measured during the growth of
Chaetoceros sp.

FACTOR STATION A 
31.3.83 6.3.84 31.3.83

STATION B 
6.3.84 30.4.84

Salinity (%o) 28.6 29.1 28.4 29.4 30

Temperature (°C) 8 7 8 7 11

Nitrate (yg at Nl”l) 31.4 48.73 30.78 47.11 34.98

Nitrite (yg at Nl“l) 0.32 0.056 0.425 0.075 0.24

Ammonia (yg at Nl“l) 0.082 0.11 0.1 0.029 0.028

Silicate (yg at Sil"l) 13.39 17.41 13.7 16.95 8.38

Phosphate (yg at Pl“l) 0.9 1.35 0.81 1.034 0.92

during August, 1973 of 50-60%, when the temperature was 18--19° C.

Vogelmann (1980) recorded domination of Chaetoceros during August, 1978 

in Oxwich Bay at 18°C.

Vogelmann (1980) concluded from his results that the increase in 

Chaetoceros sp. in the summer could be stimulated by a factor other

than the nutrients. The stimulating factor may have been the onset of

a narrow temperature preference range.

In the present study, the highest increase of Chaetoceros occurred 

during the spring. At that time, nutrient levels were high enough not 

to limit the increase in the population. It appears that the increase

from low winter to moderate spring temperatures, the increase in day

length and hence the incidence of light, and the high level of

nutrients all combined to stimulate the increase of Chaetoceros sp.

during the spring. The high peak of Chaetoceros sp. at Station B



(14.5.1984, Fig. 5.4.1) may have been due to the spatial heterogeneity 

caused by the divergence in the sampling area (Collins et al., 1979). 

The increase of Chaetoceros sp. in August, 1983 (Station A) after a 

period of very low nutrient concentrations may be due to the narrow 

temperature preference range which has been suggested (Vogelmann, 1980)

2. Rhizosolenia hebetata (Figures 5.5.1 and 5.5.2)

In the present study, Rhizosolenia hebetata occurred mainly during the 

spring and early summer of 1983, 1984. The increase in the spring of 

1983 was much higher than that of 1984 (Fig. 5.5.1).

R. Hebetata was found to occur over a wide range of temperatures, 

7-14°C (Vogelmann, 1980). In the present study, the high increase of 

this species occurred at 8°C, 13.5°C and 18.5°C. In fact, the increase 

in numbers of this diatom followed periods of low and high tempera­

tures. See Table 5.5. This means that it is not likely that tempera-

Table 5.5 Environmental factors measured during the growth of
Rhizosolenia hebetata

FACTOR STATION A 
4.3.83 17.2.84 4.3.83

STATION B 
23.6.83 17.2.84

Salinity (%o) 28.2 27 28.2 29 27

Temperature (°C) 5.5 5.5 5.5 15.5 5.5

Nitrate (yg at Nl*“l) 33.57 65.99 32.54 6.69 66.73

Nitrite (yg at Nl” -̂) 0.2 0.18 0.187 0.237 0.15

Ammonia (yg at Nl“l) 0.21 0.042 0.37 0 0.046

Silicate (yg at Sil”l) 16.37 24.33 16.43 0.47 24.5

Phosphate (yg at Pl“ )̂ 0.83 1.09 0.116 0.096 2.26



ture has controlled the occurrence of R. hebetata in Swansea Bay.

R. hebetata also occurred during a wide range of nutrient concen­

trations. The highest increase at Station A (18%) was preceded by high 

nutrient concentrations. On the other hand the highest increase of R. 

hebetata at Station B was preceded by very low nutrient concentrations. 

Hence, it can be concluded that nutrients did not appear to control the 

increase in R. hebetata. The only common factor which preceded the

increase in R. hebetata was the salinity. Although R. hebetata is an

oceanic diatom, its occurrence in Swansea Bay followed a period of

relatively low salinity (27-29%o). This would suggest that the

increase in R. hebetata was controlled by this range of salinity, but

it must be noticed that R. hebetata has been observed along the south 

Gower coast over a relatively wide range of salinities (Vogelmann, 

1980). Hence, it appears that the increase and succession of R. 

hebetata in Swansea Bay was controlled by unmeasured factor(s).

3. Melosira moniliformis (Figures 5.6.1 and 5.6.2)

This species occurred a few times during the present study. Its 

increase in the early summer (23.6.1983) in samples from both stations 

coincided with the highest spring-summer bloom of that year. In fact 

it increased to £a. 46% at Station A (58% dominant), and 9% at Station 

B (78% dominant).

The increase of M. moniliformis at both stations followed a period 

(March-May) of high nutrients and cool water temperatures (5.5-10°C). 

The only change in the measured factors was the increase in water tem­

perature up to 13.5°C just before the bloom. See Table 5.6.

During and after the bloom there was a sudden decrease in the 

nutrients while the temperature remained high. It appears from these
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Table 5.6 Environmental factors measured during the growth of
Melosira moniliformis

FACTOR STATION A 
10.6.83

STATION B 
10.6.83

Salinity (%o) 28 27.9

Temperature (°C) 13.5 13.5

Nitrate (pg at Nl” -̂) 35.86 36.55

Nitrite (pg at Nl~l) 0.375 0.39

Ammonia (pg at Nl"“l) 0.07 0.06

Silicate (pg at Sil”l) 10.88 10.88

Phosphate (pg at Pl”^) 1.276 1.16

results that at the beginning, the increase in temperature triggered 

the increase of M. moniliformis. The exhaustion of the nutrients 

during that period may have caused the sudden drop in their numbers. 

At that time the nutrients became limiting, causing the termination of 

the M. moniliformis bloom.

4. Prorocentrum micans (Figures 5.7.1 to 5.7.3)

Prorocentrum micans was the main dinoflagellate which contributed 

largely to the total number of phytoplankton and dominated it at one 

time reaching 40%.

At both stations, P. micans occurred mainly during the summer and 

autumn months. See Figure 5.7.1.

In this study, P. micans was observed over a wide range of 

nutrient concentrations, from very high to very low concentrations.



This indicates that nutrients appear not to have controlled the 

increase of P. micans* As mentioned previously, P . micans occurred and 

increased during the summer and early autumn over a temperature range 

of 13-19°C. In fact, P. micans occurred only after the water tempera­

ture had reached over 11°C. See Table 5.7.

Table 5.7 Environmental factors measured during the growth of
Prorocentrum micans

FACTOR STATION A STATION B
25.5.83 13.6.84 25.5.83 13.6.84

Salinity (%o) 28 30 27.7 30.2

Temperature (°C) 11.5 14 11.5 14

Nitrate ( p g  at Nl”l) 37.88 5.25 38.07 5.37

Nitrite ( y g  at Nl”l) 0.19 0.075 0.26 0.075

Ammonia ( y g  at Nl“l) 0.044 0.12 0.031 0.145

Silicate ( y g  at Sil""̂ -) 14.21 1.927 13.82 1.862

Phosphate ( y g  at Pl”l) 1.2 0.116 0.773 0.174

It appears that temperature was the limiting factor of P . micans 

growth as is the case with most of the dinoflagellates (Gran and 

Braarud, 1935; Tait, 1981). It can also be concluded that P. micans 

was adapted to the low nutrient concentrations during the onset of its 

favourable range of temperature. That may have been the reason for its 

dominance (40%) of the phytoplankton population when the nutrient 

concentrations were very low.
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5. Rhizosolenia shrubsolei (Figures 5.8.1 and 5.8.2)

R. shrubsolei occurred in the summer months of 1983 and 1984. Its 

major occurrence was in July, 1983. It increased up to 9.5% at Station 

A and 6% at Station B. R. shrubsolei followed the bloom of M. 

moniliformis in a period of very low levels of nutrients during the 

summer of 1983 (Table 5.8).

Table 5.8 Environmental factors measured during the growth of
Rhizosolenia shrubsolei

FACTOR STATION A 
23.6.83

STATION B 
23.6.83

Salinity (%o) 28.8 29

Temperature (°C) 15.5 15.5

Nitrate (yg at Nl”l) 6.85 6.69

Nitrite (yg at Nl”l) 0.218 0.237

Ammonia (yg at Nl*"l) 0.0135 0

Silicate (yg at Sil""l) 0.977 0.474

Phosphate (yg at Pl“l) 0.086 0.096

In both years it was observed over a narrow range of temperatures 

(14-18°C) and it appears that this factor was critical to the appear­

ance of the species in the plankton. But during its occurrence, R. 

shrubsolei dominated the phytoplankton community (60%, A and 45%, B).
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6. Skeletonema costatum (Figures 5.9.1 and 5.9.2)

Skeletonema costatum is a major representative of the temperate water 

phytoplankton (Lebour, 1929). This species has been observed in the 

Bristol Channel in the spring over a temperature range of 6-11°C 

(Pearce, 1967; Paulraj, 1974; Tyler, 1976; Vogelmann, 1980). Although 

S. costatum has been observed in most of the studies carried out along 

the south Gower coast, in most of the offshore studies (Tyler, 1976; 

Vogelmann, 1980) it was not found to be more than 40% dominant.

In the present study, the increase in S. costatum followed a 

period of cool water temperature (Table 5.9) and when it was found, the 

water temperature was 11° C (30.4.1984) which is within the suggested 

preference range.

Table 5.9 Environmental factors measured during the growth of
Skeletonema costatum

FACTOR STATION A 
20.3.84

STATION B 
20.3.84

Salinity (%o) 30 30

Temperature (°C) 6.5 6.5

Nitrate (pg at Nl“l) 40.03 38.94

Nitrite (yg at Nl~l) 0.15 0.17

Ammonia (yg at Nl- -̂) 0.073 0.024

Silicate (yg at Sil”l) 15.38 15.06

Phosphate (yg at Pl”l) 1.27 1.41



In the present study, S. costatum blooms at Stations A and B were 28% 

and 38% dominant respectively (Fig. 5.9.2). From the results it 

appears that in Swansea Bay, S. costatum occurred when the nutrient 

concentrations were high enough and the temperature was within the 

preference range.

7. Thalassionema nitzschioides (Figures 5.10.1 and 5.10.2) 

Thalassionema nitzschioides has not been a familiar member of the 

phytoplankton community along the south Gower coast, but it occurred a 

few times during the present study, reaching 52% dominance at one time 

(Fig. 5.10.2). From the results it appears that T. nitzschioides was 

one of the few phytoplankton species which survived the extreme 

conditions of the cold months. For example there was a negligible 

number of cells of this species in December, 1982 (Fig. 5.10.1), but it 

comprised 33% of that month's phytoplanktons.

C. Species with one major occurrence

Although the species included in this group occurred on one occasion 

only, they represented a significant percentage of the highest total 

phytoplankton population encountered.

1. Rhizosolenia delicatula (Figures 5.11.1 and 5.11.2)

R. delicatula was observed in June, 1984. It increased to 96% (Station 

A) and 10% (Station B) and it was 95% and 71% dominant, respectively 

(Figs. 5.11.1 and 5.11.2). It occurred during and after a period of 

very low nutrient concentrations. This was accompanied by a narrow 

range of warm temperature (14-15°C) and relatively high salinity (30- 

31%o) (Table 5.10). It is possible that these restricted conditions 

were favourable for R. delicatula to increase and compete successfully.
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Table 5.10 Environmental factors measured during the growth of
Rhizosolenia delicatula

FACTOR STATION A 
13.6.84

STATION B 
13.6.84

Salinity (%o) 30 30.2

Temperature (°C) 14 14

Nitrate (pg at Nl”l) 5.255 5.37

Nitrite (pg at Nl“l) 0.075 0.075

Ammonia (pg at Nl”l) 0.121 0.145

Silicate (pg at Sil”l) 1.927 1.862

Phosphate (pg at Pl“^) 0.116 0.174

2. Thalassiosira gravida (Figures 5.12.1 and 5.12.2)

Thalassiosira gravida was observed during the spring of 1984 only

(14.5.1984). See Figure 5.12.1. The maximum increase was in May 

(4.5%, A and 17%, B).

This species was dominant (22%, A and 41%, B) after a decline in 

the nutrient concentrations and when the water temperature was 11°C 

(Table 5.11).

Although the measured environmental factors were similar during 

the growth period, there is a difference of magnitude between the 

growth of T. gravida at Station A and that at Station B. This 

difference in growth may have been the result of the spatial hetero­

geneity in the area of sampling.

It can be seen from the results in Table 5.11 and Figures 5.12.1 

and 5.12.2 that T. gravida increased in number during the periods of
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low silicate and phosphate concentrations. This indicates that this 

species may have been a successful competitor within the phytoplankton 

community at low nutrient concentrations, but growth itself was 

stimulated by the onset of a favourable water temperature.

Table 5.11 Environmental factors measured during the growth of
Thalassiosira gravida

FACTOR STATION A STATION B
30.4.84 14.5.84 30.4.84 14.5.8'

Salinity (%o) 30.1 31 30 30.7

Temperature (° C) 11 11.5 11 11.5

Nitrate (pg at Nl”^) 34.62 19.02 34.98 19.02

Nitrite (pg at Nl”^) 0.225 0.237 0.244 0.225

Ammonia (pg at Nl”^) 0.058 0.008 0.028 0

Silicate (pg at Sil“^) 8.04 1.0 8.38 0.85

Phosphate (pg at Pl“l) 1.0 0.232 0.918 0.247



SUMMARY

Phytoplankton group and species succession in Swansea Bay followed a 

more or less regular pattern. Diatoms occurred at different times of 

the year at temperatures lower than those at which the dinoflagellates 

occurred. Some of the species performed a regular and expected 

occurrence such as Biddulphia sinensis, Bacillaria paxillifer, and 

Prorocentrum micans (Figs. 5.13 and 5.14). On the other hand some 

species occurred at times when the conditions were apparently more 

specific. Due to one reason or another, a few species occurred in high 

numbers only once, e.g. Thalassiosira gravida.

In both stations, B. paxillifer and B. sinesis occurred in high 

numbers and dominated the phytoplanktons mainly during the autumn. 

Chaetoceros sp., Rhizosolenia sp., and M. moniliformis dominated the 

spring and early summer populations. Dinoflagellates, e.g. P . micans 

dominated the late summer and early autumn populations (Figs. 5.13 and 

5.14).

In the present study, some differences in the species composition 

and the degree of dominance were observed between Stations A and B.

For example on 21.9.1982, Coscinodiscus sp. represent 68% of the 

phytoplankton of that sample at Station B, while it represented 28% 

only at Station A. On 22.8.1983, Chaetoceros sp. represented 43% of 

the populations of Station A, while it only represented 14% at Station 

B. Another example is the sample of 14.5.1984. At Station B,

Thalassiosira gravida represented 42% of the populations, while in the 

other station it represented 22%.

The chemical factors which were recorded on the dates mentioned 

previously were very similar at both stations. This leaves the hydro-



Figure 5.13 Phytoplankton dominance in Swansea Bay
(Station A)

1 . Bacillaria paxillifer
2 . Biddulphia sinensis
3. Coscinodiscus sp.
4. Chaetoceros sp.
5. Melosira moniliformis
6 . Rhizosolenia hebetata
7. Rhizosolenia shrubsolei
8 . Skeletonema costatum
9. Thalassionema nitzschioides
10. Prorocentrum micans
11. Thalassiosira gravida
12. Rhizosolenia delicatula
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Figure 5.14 Phytoplankton dominance in Swansea Bay
(Station B)

1 . Bacillaria paxillifer
2 . Biddulphia sinensis
3. Coscinodiscus sp.
4. Chaetoceros sp.
5. Melosira moniliformis
6 . Rhizosolenia hebetata
7. Rhizosolenia shrubsolei
8 . Skeletonema costatum
9. Thalassionema nitzschioides
10. Prorocentrum micans
11. Thalassiosira gravida
12. Rhizosolenia delicatula
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graphic conditions as the reason for the differences encountered at the

two stations. An area of divergence has been thought to occur in the

area of sampling (Collins et al.t 1979). This proposed divergence may

have been the main factor which produced the differences in the phyto-

plankton of Stations A and B. Another possibility is the transport of 

phytoplankton populations from other parts of the bay as a result of 

the eddy circulation (Collins et al, 1979; Joint, 1980). This point is 

further discussed in the general discussion chapter.



CHAPTER VI
PRIMARY PRODUCTIVITY OF PHYTOPLANKTON SIZE FRACTIONS
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INTRODUCTION

The role of phytoplankton as primary producers has been known for a 

long time. For most of the years spent in studying the production of 

phytoplankton, net plankton have always been regarded as the major (if 

not the only) contributors to the production of aquatic environment.

This approach has been derived from reliance on net samples for 

assessments of population composition and biomass. The term nano­

plankton was first used by Lohmann (1903), referring to the part of 

plankton not retained by the net. It was then that the possible con­

tribution of nanoplankton to the biomass and production was suggested. 

Since Lohmann (1903), many definitions have been suggested to describe 

nanoplankton.

In the present study, the term nanoplankton will be used to 

describe the phytoplankton cells between 2-20 pm (Dussart, 1965;

Sieburth et al., 1978).

Sieburth et al. (1978) gave the name picoplankton to the small 

plankton which are in the size range 0.2-2.0 pm. Based on Lohmann’s 

(1903) definition of nanoplankton, their importance in the phyto­

plankton has been proved by many studies (Steemann Nielsen, 1938; 

Atkins, 1945; Harvey, 1950; Knight-Jones and Walne, 1951; Wood and

Davies, 1956; Malone, 1971a; Durbin et al., 1975; Throndsen, 1978;

Hannah and Boney, 1983). The contribution of nanoplankton to the total 

phytoplankton productivity has been estimated from different

localities: Steemann Nielsen and Jensen (1957) 82%, Yentsch and Ryther 

(1959) 98%, Teixeira (1963) 90%, Malone (1971a) 60-90%, Durbin et al. 

(1975) 51%, Hannah and Boney (1983) 50%.

On the other hand, the contribution of picoplankton to the biomass



and production of phytoplankton has only recently been investigated 

(Sieburth et al., 1978). Since then data have accumulated giving more 

evidence of the importance of picoplankton (0 .2-2.0 pm).

From recent studies, more evidence supports the findings that 

there is considerable production by photoautotrophic organisms which 

are of the same size as bacteria. The major contribution to the 

production is no longer restricted to the net plankton and the naho- 

plankton >5 pm. A series of recent findings in different localities 

has shown that nanoplankton < 5 pm and picoplankton (0 .2-2.0 pm) are 

very important quantitatively. In the size fraction <1 pm, production 

was found to represent 20 to 30% of the total (Gieskes et al., 1979); 

20 to 80% (Li et al., 1983); 60% (Platt et al., 1983).

Joint and Pomroy (1983) reported primary production values of 35 

to 40% by organisms > 1 - <5 pm and 20 to 30% by organisms <1 pm. 

Organisms which passed through a 3 m filter and representing up to 25% 

of the phytoplankton biomass have been reported (Larsson and Hagstr'dm, 

1982).

In general, nano- and picoplankton are more abundant and pro­

ductive than net plankton especially in the offshore and oceanic waters 

(Steemann Nielsen and Jensen, 1957; McAllister et al., 1959; Malone, 

1971b; Semina, 1972; Johnson and Sieburth, 1979; Waterbury et al., 

1979; Li et al., 1983; Platt et al., 1983). On the other hand, net 

plankton increases in abundance towards continental shelf and coastal 

waters (Hulbert, 1962, 1970; Strickland et al., 1969; Ryther et al., 

1971; Malone, 1971a, 1976, 1977a).

Several exceptions to this general pattern have been observed in 

shallow, temperate estuaries and adjacent coastal waters influenced by 

estuarine runoff (Ryther, 1954; Loftus e t a l ., 1972; Durbin et al.,



1975; Malone, 1976, 1977b; Hannah and Boney, 1983).

EXPERIMENTAL

From each station, 3 x 100 ml seawater samples were poured into 125 ml 

bottles, two clear and one dark. 2 pci NaH^C03 were added to each 

bottle at zero time. After 4 hours of incubation, 7 x 10 ml portions 

from each bottle were filtered through 0.45, 1, 5, 10, 20, 50 and 80 pm 

filters. The filtration, treatment of filters, and counting of radio­

activity were carried out in the usual way (Chapter II).

RESULTS

The results of one year of sampling are treated in two different ways. 

To determine the significance of each size class in relation to the 

monthly total, the productivity of the size class was calculated as a 

percentage of the total productivity of that month. On the other hand, 

the seasonal variation of each size class was calculated based on the 

highest productivity value found in the whole year as 100%.

A. Total primary productivity

In this one year long programme, the primary productivity at each 

station was determined monthly. At both stations the highest values 

occurred in the spring-summer and in the autumn. The highest value of 

primary productivity (ca. 17 mg cm”̂  hr“  ̂ was found at Station A in 

April (Fig. 6.1).



Figure 6.1 Total primary productivity

A: eastern station 
B: western station
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B. Monthly percentage of each size class

These are the values of each size class based on the total primary 

productivity of each month as 100%.

1. 0.45-1 pm

Station A : Monthly average = 14.28%

The values here were variable throughout the year (Fig. 6.2). The 

values were in the range of 0.3-37.4%. The highest values were found 

in March (31.3%), May (37.4%) and December (33%).

Station B : Monthly average = 19.16%

The values of this size class at this station were different from 

Station A. The values were in the range of 2.2-43.4% (Fig. 6.2). The 

period of highest production extended from March to May. At this 

period the highest production was in March (43.4%). The highest value 

in the period starting in the summer and ending in the winter occurred 

in August (30.8%).

2. 1-5 pm

Station A : Monthly average =■ 22.35%

At this station, the productivity of autotrophic organisms >1 - <5 pm 

was very important. They were highly productive from March to 

September. In that period there was little variation in the values of 

primary productivity. The values ranged from 17.1% in July to the 

highest value of 50% in March with an average of 30.6% (Fig. 6.3).

Station B: Monthly average = 11.58%

In contrast to Station A, there was a period extending from January to



Figure 6.2 Monthly percentage of 0.45 - 1 pm size class



0 . 4 5 - 1  jjm

40

30

°// oo  2 0

10

00

40

30

°//OO 20

10

00
J F M A M J  J A S O N D

1984



Figure 6.3 Monthly percentage of 1 - 5 ym size class
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September with fairly constant productivity value ca. 5.8%. There were

exceptional values to the average of that period. Those values were

18.5% (April) and 23.9% (July). In this station, the values of

November and December were different from those of Station A with

values of 18.5% and 26.1% respectively (Fig. 6.3).

3. 5-10 pm

Station A : Monthly average = 24.67%

In this size class the highest values have occurred mainly from May to 

September and they were over a range of 21.7% (August) to 39.5%

(September). The highest production value in this size class (56.5%) 

occurred in November (Fig. 6.4).

Station B : Monthly average = 26.48%

As in Station A, the highest values of Station B occurred mainly from 

May to September and they were over a range of 26.2% (July) to 65.4% 

(August). The lowest values were found in the winter months and early

spring with an average value of 8.35% (Fig. 6.4).

4. 10-20 pm

Station A ; Monthly average = 18.56%

In this size class, the lowest percentage was 7.6 (May), and the 

highest was 35.4 (January). The high production values in this size 

class were not restricted to one season or one continuous period but 

distributed almost evenly throughout the year (Fig. 6.5). The four 

highest values occurred in January (35.4%), February (26.5%), April 

(31.8%) and August (25.6%).



Figure 6.4 Monthly percentage of 5 - 10 um size class
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Figure 6.5 Monthly percentage of 10 - 20 ym size class
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Station B : Monthly average = 29.37%

The organisms represented in this size class are important and regular 

contributors to the primary productivity of phytoplankton. This can be 

shown clearly by excluding the values of May and August from the total 

of this class. The remaining values ranged from 17.4% (November) to 

43% (April) with an average of 35.28% (Fig. 6.5).

5. 20-50 ym

Station A : Monthly average = 15.29%

The highest contribution to the total primary production by the phyto­

plankton of this size class took place mainly in the winter, January 

(22%), February (16.4%), November (21.6%) and December (37.94%).

In addition to that, an average contribution of 11.7% took place 

in the spring and summer (from April to September). See Figure 6 .6.

Station B : Monthly average = 10.5%

As in Station A, the highest contribution to the total production by 

the organisms in this size class occurred in the winter, January 

(20.4%), February (28.4%), November (13.4%) and December (13.64%). The 

average monthly contribution of May, June and July was ca. 9% (Fig. 

6.6 ).

6. 50-80 urn

Station A : Monthly average = 4.8%

The organisms of this size class were not very important contributors 

to the total primary production of each month. The highest contri­

butions took place in February (19.3%) and December (12%). During the 

rest of the year the production was very low (Fig. 6.7).



Figure 6.6 Monthly percentage of 20 - 50 ym size class
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Figure 6.7 Monthly percentage of 50 - 80 pm size class
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Station B : Monthly average = 2.9%

As in Station A, the contribution to the monthly total primary pro­

duction by the organisms of this size class was very low. The highest 

value occurred in January (17.2%), while the monthly average of the 

remaining months of the year was 1.5% (Fig. 6.7).

C. Seasonal variation of phytoplankton size classes

These are the values of the monthly production by the different size 

classes based on the highest total production (16.99 mg cm"^ hr“l) as 

100%.

1 . 0.45-1 pm

Station A :

The values of primary production in this size class were usually less 

than 3%. Two exceptions were found, the values of May (21.9%) and July 

(7.42%). See Figure 6 .8 .

Station B :

As in Station A, the primary productivity values at Station B were 

usually low. April and May were characterized by high values (14% and 

22.74% respectively). See Figure 6.9.

2. 1-5 pm

Station A :

Here the period of high values extended from April to September over a 

range of 3.41-30.47%. This period was characterized by a noticeable 

high value of production in April (30.47%). See Figure 6 .8 .



Figure 6.8 Seasonal variation of the size classes:
(Station A)

0.45 - 1 pm
1 - 5 pm
5 - 10 pm
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Figure 6.9 Seasonal variation of the size classes:
(Station B)

0.45 - 1 tm
1 - 5 um
5 - 10 yin
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Station B :

The distribution of the significant values at this station was dif­

ferent from Station A. The high values of production extended from 

April to July (Fig. 6.9). In this period of time the values ranged 

from 1.06% in June to 16.83% in July (Fig. 6.9).

3. 5-10 urn

Station A :

At this station, the distribution of production values in this size 

class was characterized by a period of high and constant production 

extending from May to July. The average of the production values in 

this period was 17.1% (Fig. 6.8).

Station B :

The pattern of distribution in this station was to a certain extent 

similar to that at Station A. The period of high production extended 

from May to September. The values of production in this period were 

more variable than those at Station A. They were over a range of 

6.06-25.19% with an average value of 13.66% (Fig. 6.9).

4. 10-20 ym

Station A :

The phytoplankton in this size class contributed to the production 

throughout the year. On the other hand, this contribution was usually 

low except for the period from April to July (Fig. 6.10). The 

production values in this period were around 7%. The highest contri­

bution by this size class was in April (29.82%).



Figure 6.10 Seasonal variation of the size classes:
(Station A)
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Station B :

At this station, the production values were variable throughout the 

year (Fig. 6.11). They were generally low except on two occasions when 

the production was 29.25% (April) and 22.13% (July).

5. 20-50 pm 

Station A :

Throughout the year, production values were relatively low (Fig. 6.10). 

The highest production values occurred during the spring and early 

summer. The highest value in that period was found in April (17.38%).

Station B :

As in Station A, the values here were low most of the time (Fig. 6.11). 

The highest value was found in July (10.95%).

6. 50-80 pm 

Station A :

The production values were very low throughout the year (<1%) except 

for one occasion (April) when it reached 6.93% (Fig. 6.10).

Station B :

At this station, the production values were very low throughout the 

year (<1.71%). See Figure 6.11.



Figure 6.11 Seasonal variation of the size classes:
(Station B)
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DISCUSSION

The fractionation technique used in this study was based on the 

assumption that the different size classes of phytoplankton can be 

separated by the filtration of seawater through filters of different 

pore size.

It has been reported that nucleopore filters behave as screens 

(Sheldon, 1972), but they may still retain particles smaller than the 

rated pore size. Joint and Pomroy (1983) tested the retention of 

bacteria on 5 and 1 urn pore size filters by counting the number 

of bacteria in a water sample before and after their standard 

fractionation procedure and found recoveries of between 90.3 and 99.8%. 

Nucleopore filters have been used in the present study because of their 

satisfactory reliability as separators of different particle sizes.

Very low vacuum was used during the filtration procedures in order to 

minimize possible cell fragmentation.

Filtration of the water sample into different size classes was 

carried out after incubation with ^C. This was carried out in order 

to avoid damage to the phytoplankton by the filtration before they take 

up the xhe data obtained in this study are presented in two ways:

A. Monthly percentage

This approach shows the significance of each size class to the monthly 

total production.

Station A : (Figures 6.2 to 6.7)

From the figures it can be seen that the winter populations of phyto­

plankton were dominated by phytoplankton 10-50 pm in size which were
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mainly diatoms. By early spring, phytoplankton of the size class 

0.45-5 urn began to establish themselves and appeared as the major 

contributors to production. During the spring and summer months most 

of the production was carried out by phytoplankton of the size class

0.45-10 urn. This was during the time when small diatoms (<20 ym) and

flagellates appeared to be the dominant groups (Chapter V). This high 

contribution to the monthly production continued until late autumn.

Station B : (Figures 6.2 to 6.7)

At this station, the highest monthly production by organisms > 20 ym 

occurred during the winter. The spring production was carried out by 

the phytoplankton size class of 0.45-20 ym. It seems that although the 

net plankton appeared dominant and major contributors to the monthly 

production during the spring, the picoplankton (0.45-1 ym) were very 

important. In fact they contributed up to 43% of the production. By 

late spring and early summer the role of organisms 10-20 ym began to

decrease and organisms 5-10 ym started to become the major contributors

to the monthly production.

From the Figures 6.2 to 6.7 it can be seen and concluded that 

plankton of the size 0.45-20 ym were very important to the primary 

production in Swansea Bay. If the total production of organisms 0.45- 

20 ym was calculated as a percentage of the total monthly primary 

production it represented 50-100% (A) and 62.3-100% (B).

B. Seasonal variation

This approach shows the significance of each size class throughout the 

year.



Station A : (Figures 6.8 and 6.10)

These figures show clearly that when the seasonal significance of the 

different size classes was considered, the most important size classes 

were 1-5 and 5-10 pm. They were highly productive during the spring- 

summer months. When the values of 1-5 and 5-10 pm size classes (April- 

July) were considered as one unit, they represented 24.9-37.22% of the 

highest annual production.

In addition to the role of phytoplankton of the size class 

1-10 pm, organisms which passed 1 pm pore size nucleopore filter 

appeared to make a significant contribution occasionally. Organisms < 

1 pm represented 21.9% of the total primary production in May.

The larger members of the phytoplankton were absent at certain 

periods and contributed nothing to the fixation (Fig. 6.10).

Organisms from 10-80 pm did not contribute significantly to the 

production except on one occasion. This contribution occurred in April 

which is quite understandable because of the increase in net plankton 

during early spring.

Station B :

As in Station A, the major contribution of organisms < 1 pm occurred 

mainly in May. On the other hand, the highest productivity was 

achieved by organisms in the size classes 1-5 and 5-10 pm. When the 

April-July values of these two size classes were added together, they 

represented 9.24-35.31%.

The organisms in the size class 10-20 pm had a more significant 

role at this station than those of Station A. During the April to July 

period they occurred twice as significant contributors to the primary 

production, once in April (29.25%) and the other in July (22.13%).



Organisms of the size classes 20-50 ym and 50-80 ym were not 

significant contributors to primary production.

From the previous review it is interesting to see that in Swansea 

Bay the nano- and picoplankton have a far more important role than 

would have been expected.

In general, pico- and nanoplankton play a very important role in 

the oceanic environments (Semina, 1972; Waterbury et al., 1979; Platt 

et al., 1983). The idea of nanoplankton dominance in the oceanic 

environment only has been subject to increasing exceptions (Loftus e_t 

al., 1972; Durbin et al., 1975; Malone, 1976; Hannah and Boney, 1983). 

The possible significant role of nanoplankton in Swansea Bay was first

suggested by Paulraj and Hayward (1980). The results obtained in the

present study are similar to those of Bruno et al. (1983), and Hannah 

and Boney (1983). Although in the study of Hannah and Boney nano­

plankton were generally dominant in the winter, water surface data show 

that nanoplankton were much more significant in the spring and summer 

than in winter. Bruno et al. (1983) working on primary productivity 

and phytoplankton size fraction dominance in a temperate North Atlantic 

estuary found that nanoplankton (<20 ym) accounted for 88.5% of the

productivity and 88.1% of the standing crop during May through

September. On the other hand, net plankton (>20 ym) has been found to

account for higher primary productivity percentage than nanoplankton

during the winter months.

From the results of the present study it can be seen that the

highest rate of productivity occurred during spring and summer. Most

of that period was characterized by having high monthly percentages of 

pico- and nanoplankton productions.

The high pico- and nanoplankton production took place during a
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Table 6.1 Nutrient concentrations 
(Mg at

i during the
I"1)

A

fractionation programme

DATE NITRATE NITRITE AMMONIA SILICATE PHOSPHATE
(N) (N) (N) (Si) (P)

24. 1.84 26.7 0.15 0.11 16.4 0.58
17. 2.84 66.0 0.18 0.042 24.3 1.8
20. 3.84 40.0 0.15 0.073 15.39 1.28
30. 4.84 34.6 0.225 0.058 8.04 1.0
31. 5.84 0.2 0.019 0.048 3.33 0.15
27. 6.84 2.81 0.094 0.027 0.49 0.15
11. 7.84 0.6 0.056 0.037 0 0.17
30. 8.84 5.94 0.92 0.3 5.16 0.52
13.11.84 31.4 0.63 0.066 16.5 1.18
11.12.84 34.8 0.225 0.058 13.4 1.45

B

DATE NITRATE
(N)

NITRITE
(N)

AMMONIA
(N)

SILICATE
(Si)

PHOSPHATE
(P)

24. 1.84 26.0 0.13 0.05 15.1 0.95
17. 2.84 66.7 0.15 0.046 24.5 2.26
20. 3.84 38.9 0.17 0.024 15.06 1.41
30. 4.84 35.0 0.24 0.028 8.4 0.92
31. 5.84 0.14 0.019 0.042 1.73 0.1
27. 6.84 1.72 0.14 0 0.85 0.06
11. 7.84 0.82 0.056 0 0 0.21
30. 8.84 4.4 0.54 0.365 4.12 0.37
13.11.84 31.52 0.62 0.063 16.53 1.24
11.12.84 35.65 0.29 0.03 13.13 1.57
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period of low nutrient concentrations (Table 6.1). And because these 

organisms did not represent high percentage during winter months when 

nutrient concentrations were at the highest level, it can be said that 

high nutrient concentrations were not controlling pico- and nano­

plankton production. On the other hand, the spring-summer period is 

characterized by higher temperature and longer sunshine periods. The 

availability of high nutrient concentrations (Table 6.1) and the 

increasing daily sunshine hours (Fig. 6.12) may have favoured the 

increase in net plankton during the winter-early spring period. This 

is because the lower the surface area/volume ratio, the lower the 

ability to uptake more nutrients (Eppley et al., 1969). These 

conditions may have favoured the higher production percentage of net 

plankton with low surface area/volume ratio in the winter and early 

spring.

The increase in pico- and nanoplankton production (Figs. 6.8 and 

6.9) occurred in a period of high temperature, high monthly sunshine 

hours, and low nutrient concentrations. As mentioned previously, net 

plankton (>20 pm) were more significant when the high sunshine hours 

were accompanied by high nutrient concentrations. Considering the 

advantages nanoplankton have in terms of surface area/volume ratio, and 

therefore nutrient uptake (Eppley et al., 1969) and presumably growth 

rate (Williams, 1964), as a result they have outgrown net plankton 

during periods of low nutrient concentrations.



Figure 6.12 Monthly sunshine hours and air temperature

A: Total monthly sunshine hours
B: Maximum air temperature 
C: Minimum air temperature
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CHAPTER VII 
LABORATORY EXPERIMENTS
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INTRODUCTION

Since the early years of marine biology, growing algae in the

laboratory has been one of the main tasks facing scientists. Natural 

waters were used as growth media in algal cultures, but they have been 

found unsatisfactory mainly because some essential nutrients are

usually present in only trace amounts, their concentrations depending 

on dynamic equilibria which are disturbed as soon as the water is 

collected (Fogg, 1975). Natural waters supplemented with various 

nutrients have been much used when the object has been only to produce

algal material, precise knowledge of the conditions affecting its

growth being unnecessary. One of the earliest artificial media having 

some resemblance to those in which algae grow naturally was devised by 

Chu (1942). Thereafter, many improvements of artificial media have 

been introduced and many new artificial media have been prepared 

(Rhode, 1948; Krauss, 1953; Miller and Fogg, 1957; Provasoli et al., 

1957; Droop, 1961; Stein, 1973; Morel et al., 1979). Algal cultures 

were developed to a degree that they can be used to explain the inter­

action between phytoplankton and its surrounding environment. Two 

different types of cultures are used for this purpose, batch culture 

and continuous culture. Batch culture is the simplest and most 

commonly employed culture system. Algal cells are inoculated into a 

nutrient solution contained in a suitable vessel which is often shaken 

or aerated to suspend the cells, replenish CO2 and otherwise maintain 

a homogeneous environment. Growth in batch culture exhibits a very 

distinctive curve. The establishment of an exponential phase at the 

early growth period makes batch culture a suitable technique to study 

natural populations with a similar growth phase e.g. Spring bloom
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(Droop, 1975; Myklestad, 1977). Batch cultures are extremely useful in 

autoecological studies as long as the environment and possible cell- 

cycle effects are taken into account. They have been used most 

successfully to study the effect of parameters such as light intensity, 

temperature and salinity on growth rates and to provide material for 

countless studies on ultrastructure and chemical composition. 

Continuous culture is a relatively new kind of culture developed in the 

1940s. This type of culture was developed to overcome the problem of 

very high cell concentrations in batch culture and to study the physio­

logical status of phytoplankton under steady-state growth rate and 

nutrient limitation. Continuous cultures were used to study nutrient 

limitation because a hyperbolic relationship between the cellular 

fraction of the limiting nutrient and the growth rate has been found 

(Fuhs, 1969; Caperon and Meyer, 1972; Passche, 1973; Droop, 1974; 

Tilman and Kilham, 1976). Nutrient limitation is believed to be the 

most important factor which controls phytoplankton competition and 

species succession. Nutrient limitation is based on the competition 

theory which predicts that, under idealized conditions (Titman, 1976), 

the one species best able to acquire and use the limiting source 

(Liebig, 1843) should displace all other competing species. In the 

natural environment this situation has never been found. It is always 

the case that many phytoplankton species co-exist in the same body of 

water. This observation has been termed the paradox of the plankton 

(Hutchinson, 1961). One of the explanations for this contradiction 

between theory and the real situation is that species-specific, 

nutrient-utilization characteristics result in different species each 

being limited simultaneously by a different nutrient. Direct 

competition is avoided and potentially as many species can co-exist as
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there are limiting nutrients (Tilman, 1977). Other explanations stress 

that the mixed layer of lakes and oceans is not homogeneous as is 

generally assumed. Well-known vertical gradients in light, nutrients 

and temperature during calm weather provide spatial heterogeneity, 

allowing localized increases in those populations which find themselves 

in favourable conditions (Darley, 1982). Quantification of the ability 

to take up nutrients, given optimal levels of all other growth factors 

has been attempted (Kuenzler and Ketchum, 1962; Fuhs, 1969; Carpenter, 

1970). Significant differences have been observed in the nutrient

uptake capacities of different species, and this finding has often been 

suggested as a possible controlling factor in natural phytoplankton 

species succession.

Redfield (1958) reported that the C:N:P atomic ratio of parti­

culate matter in sea water is 106:16:1 and that these nutrients appear

to be depleted in a similar proportion to this ratio during phyto­

plankton growth. When the utilization of N and P was closely examined 

in surface water, N was found to be depleted first with a significant 

amount of P always remaining in solution (Ryther and Dunstan, 1971). 

Therefore, N is generally considered as the limiting nutrient in sea 

water.

Using the Redfield ratio alone as an indicator to nutrient 

limitation may be misleading. This is because whereas it is usually 

safe to assume that nutrient concentrations above the pg at 1“  ̂ range 

(e.g. 1 pg at Pl”l) are not limiting (Darley, 1982), lower, even very 

low concentrations may or may not be limiting depending on the presence 

of other limiting factors and the rate at which the nutrient is re­

cycled in the system (Rhee, 1978). Therefore, additional indicators 

should be used to support the possibility of nutrient limitation due



to the low concentration of a certain nutrient. Nutrient-enrichment 

bio-assay is the technique most commonly used to investigate nutrient 

limitation in algal cultures and natural communities. Care must be 

taken in the interpretation of the result obtained as productivity in 

the enrichment experiments. The result obtained shortly after 

enrichment will be misleading because the productivity values will not 

be representative of the real response of phytoplankton to nutrient 

addition. Nutrient-limited phytoplankton will be using the available 

energy to assimilate nutrient rather than take up additional carbon 

(Gerhart and Likens, 1975; Thomas et al., 1976; Hipkin et al., 1983).

In the present study, special consideration was given to the 

effect of nitrate on the growth of, and l^C-fixation by, algae In 

artificial media and natural sea water. This is because low nitrate 

values have been found at certain times of the year. When these values 

were compared with phosphate values found at these times, low N to P 

ratios (< 16) were obtained. The possible nitrate limitation to the 

growth of phytoplankton was further investigated using a bio-assay 

technique.

Materials and Methods

I. Culture media and phytoplankton growth

i. Growth media:

a. Erdschreiber medium:

Erdschreiber medium was used mainly for maintaining the phytoplankton 

species. This medium was made up as follows:



NaN03 stock solution 
Na2HP04.12H20 stock solution 
Soil extract*
Vitamin B-12 solution 
Vitamin B-l solution 
Fe/EDTA solution 
Trace element solution 
Fluorosilicate solution

1 ml 
1 ml 

50 ml 
1 ml 
1 ml 
1 ml 
1 ml 
1 ml

Made up to 1 litre with filtered sea water

The stock solutions were prepared as follows:

NaN03 stock solution 
Na2HP04 stock solution 
Cyanocobalamin (B-12) solution

Thiamine (B-l) solution

Fe/EDTA solution

Fluorosilicate solution 
Soil extract

Trace element solution

20 g/100 ml 
3 g/100 ml
0.1 g/250 ml; diluted tenfold for 

stock solution 
0.1 g/250 ml; diluted tenfold for 

stock solution 
1 ml FeCl3 solution and 
0.23 g Na2 EDTA/100 ml 
0.1 g sodium fluorosilicate/100 ml
1 kg of garden soil added to
2 litres of distilled water, 
autoclaved for 1 hour at 5 lbs 
pressure, cooled and centrifuged
* soil extract was filtered before 

use through Whatmann No.l filter 
papers 

0.1 g ZnS04.7H20 
0.001 g CoC12.6H20
0.002 g MnCl2.4H20
0.001 g Na2Mo04.2H20
0.001 g H3BO3
0.0002 g CUSO4 .5H20 
in 100 ml double distilled water



All solutions were made up with double distilled water unless otherwise 

stated.

Filtered sea water collected in Swansea Bay, allowed to
settle for a few days, filtered through a 
GF/C filter, then a Millipore filter 
(0.45 pm pore size)

b. Aquil medium:

Although Erdshreiber medium has been used successfully for maintaining 

phytoplankton growth throughout this study, its definite composition 

has always been unknown. For the physiological experiments, a defined 

medium with known amounts of nutrients and which is suitable for the 

growth of the available phytoplankton was required. The basic idea for 

the preparation of such medium was to enrich synthetic sea water of 

known composition with additive nutrients. In addition to this type of 

medium synthetic media were tested. The media tested were: F2 medium 

(Guillard and Ryther, 1962); ASP-2 (Provasoli et al., 1957); ARA medium 

(Kain and Fogg, 1958); Aquil (Morel et al., 1979); and the medium 

recommended by American Public Health Association (1980).

The suitability of these media for the growth of phytoplankton was 

tested. The growth was not satisfactory except in Aquil medium after 

few changes in its basic formula (Table 7.1).

ii. Phytoplankton species:

Most of the phytoplankton used in these laboratory experiments were 

obtained from the Plymouth laboratories via J. Sexton. Those species 

were Ditylum brightwellii, Thalassiosira sp., and Prorocentrum micans. 

Asterionella japonica was isolated from Swansea Bay during the course



Table 7.1 Composition of Aquil medium

SUBSTANCE ORIGINAL FORMULA PRESENT FORMULA

NaCl 420 mM 420 mM
CaCl2 .2H20 10.5 mM 10.5 mM
KBr 0.84 mM 0.84 mM
NaF 0.0714 mM 0.0714 mM
KC1 9.39 mM 9.39 mM
H3BO3 0.485 mM 0.485 mM
Na2S04 28.87 mM 28.87 mM
NaHC03 2.38 mM 2.38 mM
SrCl2 .6H20 0.0638 mM 0.0638 mM
MgCl2 .6H20 54.6 mM 54.6 mM

NaH2P04.2H20* 10 yM 25 pM
NaN03 * 100 pM 100 pM
Na2SiF6 * 12.5 pM 20 y M

CuCl2 .2H20 9.97 x 10“4 pM 4 x 10“ 2 y M

Na2Mo04.2H20 1 . 5  X  1 0 ” 3  y  M 3 x 10“2 yM
CoC12 .6H20 2.5 x 10”^ pM 5 x 10“ 2 pM
MnCl2 .4H20 2.3 x 10”2 y  m 0.9 pM
ZnCl2 4 x 10”3 yM 8 x 10“ 2 pM
FeCl3 4.51 x 10“1 p M 11.7 pM
Na2 .EDTA 5.0 pM 11.7 pM
Vitamin B-l 100 pg/1 100 yg/1
Vitamin B-12 0.55 pg/1 0.55 yg/1
Biotin 0.5 pg/1 0.5 yg/1

* Except when variable concentrations of nitrate, 
phosphate and silicate were needed
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of this study.

Phytoplankton isolation

The method used here was based on the work of Knight-Jones (1951). It 

depends mainly on the dilution of sea water by Erdschreiber medium.

Procedure:

A preliminary dilution of 1/100 was made by adding 1 ml of the 

collected seawater to 99 ml of sterile sea water (previously autoclaved 

under 15 lb pressure/sq. inch for 20 minutes in a clean stoppered 

bottle and shaken gently several times).

Twenty test tubes each containing 9 ml Erdschreiber, plugged, and 

sterilized were arranged in four groups of five.

1 ml of the preliminary dilution was added to each test tube of 

the first group. After mixing the contents of each test tube well, 

1 ml from each of these tubes was transferred to the corresponding tube 

in the second group. This process was repeated for the second, third 

and fourth group until a series of dilutions was achieved.

These tubes were then kept in a constant temperature room (20°C) 

under continuous illumination for a few days. The tubes were checked 

at different time intervals, and the one with unialgal growth was sub­

cultured using Erdschreiber medium in conical flasks.

iii. Phytoplankton growth in culture media:

a. Cell counting:

Phytoplankton cells were counted either by Sedgewick rafter chamber or 

haemocytometer depending on cell size. The haemocytometer has been 

found to be much more suitable for counting the small phytoplankton
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cells than the Sedgewick chamber.

b. Growth rate of phytoplankton species in Aquil and 
Erdschreiber media:

Replicate cultures of Prorocentrum micans, Ditylum brightwellil and

Thalassiosira sp. were grown in Aquila and Erdschreiber media. P.

micans and D. brightwellii cells were counted using Sedgewick rafter

chamber, while Thalassiosira sp. was counted using the haemocytometer.

The cell number of the three species was determined daily. The growth

rate was determined as follows:

N2 3.322
K = (log — ) (----- )

Nx t

where and N2 are the cell concentrations at the 
beginning and end of a time period t 
t =» time in days

II• ^C-fixation by phytoplankton in artificial media

A. Experiments conducted using full Aquil medium:

i. l^C-fixation by phytoplankton species in unialgal cultures:

Three different species, Prorocentrum micans, Ditylum brightwellii and 

Thalassiosira sp. were used in these experiments. To a triplicate set 

of 125 ml bottles each containing 50 ml Aquil medium approximately the 

same number of P. micans cells was introduced. This process was

repeated with the other species. They were then kept in a constant 

temperature room for four days. At the start of the fifth day, the

cell number in each bottle was determined. At 3 minute intervals,

2 uci NaH^^C03 was added to each bottle and the counts were taken at 

zero time, and after four hours of incubation in the usual way

(Chapter II). The l^C-fixation was determined per 10^ cells and per



surface area expressed as ym^.io^ cells hr

ii. l ^ C - f i x a t i o n  by phytoplankton species in mixed algal culture:

From the stock cultures of P. micans, D. brightwellii, and 

Thalassiosira sp., 1.425, 4.5 and 0.15 ml respectively were added to 

100 ml full Aquil medium in a 500 ml conical flask to give approxi­

mately the same number of cells of each species in every flask. Five 

flasks were used, I, II, III, IV and V. Flasks numbers IV and V were 

used to determine the change in cell number during the course of the 

experiment. At 3 minute intervals, 10 pci NaH^C03 was added to each 

of the flasks I, II and III. At zero time, 1 ml portions from each 

flask were filtered through 0.45, 20, 50 and 80 pm filters and the dpm 

was determined for each filter.

The five cultures were kept in a constant temperature room under 

growing conditions for 7 days. Every 48 hours the cell number was 

counted and the above filtration procedures were repeated.

B. Experiments conducted using media with variable nitrate 
concentration:

i. Effect of nitrate on the growth of and l^C-fixation by 
Thalassiosira sp.:

Thalassiosira sp. grown in Erdschreiber medium was centrifuged at 

5000 rpm, and washed twice with N-free Aquil medium. These washed 

Thalassiosira cells were resuspended in N-free Aquil medium to give a 

concentration of 192,500 cells ml”*-. This suspension was used to 

inoculate 20 x 125 ml bottles each containing 100 ml Aquil medium. 

These bottles were separated into two groups each with ten bottles. 

In each group duplicates were made of the following nitrate 

concentrations:



Control; 1 pg at Nl” ;̂ 10 pg at Nl” ;̂ 50 pg at Nl~^; and 100 pg at 

Nl-^. To each of the 20 bottles, inoculum from the cell suspension was 

added to give a final cell count of ca. 3-5 x 10^ cells ml“^. The 

bottles of the first group were used for the growth experiment and the 

bottles of the second group were used for the l^C-fixation experiments.

On the first day of the experiment the number of cells was counted 

in the first group, and to the second group 5 pci NaH^C03 was added to 

each culture. As soon as the radioactive carbon was added, 10 ml were 

filtered from each bottle and the l^C-fixation was measured at zero 

time.

These cultures were kept in the constant temperature room at 20°C 

and continuously illuminated by fluorescent light. Every 24 hours the 

number of cells and l^C-fixation were determined.

ii. Effect of nitrate on l ^ C - f i x a t i o n  by N-starved 
Thalassiosira sp.; Asterionella japonica:

In this type of experiment the algal cells were nitrogen starved by

washing in N-free medium and then grown at constant temperature for

48 hours. Two media were used, Aquil medium and Erdschreiber medium.

N-free Erdschreiber medium was obtained by growing Phaeodactylum

tricornutum cells in Erdschreiber medium to exhaust the ambient

nitrogen in the sea water. After complete exhaustion of nitrogen, the

Erdschreiber medium was filtered through GF/C filters and the filtrate

was enriched with phosphate and silicate. In all the experiments,

duplicates were made for each culture.

a. Thalassiosira sp.:

Starved cells were inoculated into a series of flasks containing 100 ml
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N-free Aquil medium and varying nitrate concentrations (0, 0.1, 1, 10, 

100 yg at 1“1) to give final concentration of approximately 3 x 10  ̂

cells ml“l . To each of these flasks 5 yci NaH^C03 were added. The

l^C-fixation was measured at zero time and after four hours of

incubation.

b . Asterionella japonica:

Starved cells were inoculated into a series of flasks containing 100 ml 

N-free Erdschreiber medium and varying nitrate concentrations (0, 5, 

20, 50, 100 yg at Nl”*) to give a final concentration of approximately 

200 cells ral“l . To each of these flasks 4 yci NaH^COg were added. 

The l^C-fixation was measured at zero time and after four hours of 

incubation.

The following experiments were developed, designed and based on 

the previous experiments (ii.a and ii.b). In the new experiments,

Thalassiosira sp. was preferred to A. japonica because it has been

found much easier to grow, maintain and count.

iii. Effect of nitrate on ^C-fixation by N-starved Thalassiosira sp. 
at different time intervals:

Starved cells of Thalassiosira sp. were inoculated into a series of 

bottles containing 100 ml N-free Aquil medium and varying nitrate 

concentrations (0 , 1, 10, 100, 1000 yg at 1”^) to give final con­

centrations of approximately 10 x 10^ cells ml“l . To each of these 

bottles 5 yci NaHl^C03 were added. The l^C-fixation was measured every 

hour for four hours.
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iv. l ^ C - f i x a t i o n  by Thalassiosira sp. cells previously adapted to
different nitrate concentrations:

An experiment similar to the one described above (iii) was carried out. 

In this experiment, the cells were adapted to their new nitrate concen­

tration for 24 hours before the addition of NaH^C03. The ^C-fixation 

was measured after four hours of incubation only.

v. Effect of nitrate on chlorophyll â  content of N- starved
Thalassiosira sp.:

Thalassiosira sp. cells were centrifuged and washed in N-free Aquil 

medium. Approximately the same number of washed cells were inoculated 

to bottles containing 100 ml Aquil medium with the following range of 

nitrate concentrations: 0, 5 and 500 y g at Nl“^. The cell number was 

determined for each culture prior to every filtration. At zero time, 

5 ml of each culture was filtered through GF/C filter for chlorophyll a. 

determination. The cultures were incubated in a constant temperature 

room at 20°C and the filtration process was repeated at 7, 24, 48 and 

72 hours. Chlorophyll â content was determined following the method of 

Strickland and Parsons (1972) and it was expressed as mg chlorophyll â 

per 1C)6 cells.

Ill. Sea water enrichment and the ^C-fixation by phytoplankton 
size fractions

In these experiments, sea water samples from Station A were enriched 

with growth nutrient. The aim was to investigate the effect of 

nutrient enrichment on l^C-fixation by phytoplankton size fractions. 

Three experiments were carried out, each with a different combination 

of nutrient concentrations. The nutrients added and their concent­

rations in each experiment are mentioned in Table 7.2.
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Table 7.2

CULTURE EXPERIMENT 1* EXPERIMENT 2** EXPERIMENT 3***

Control No addition No addition No addition

Nitrate +5 pg at 1”! 
+50 pg at 1“1

+50 pg at 1”1 
+500 pg at 1”!

+50 pg at 1“1 
+500 pg at 1”!

Phosphate +0.5 pg at 1”! 
+10 pg at 1“1

* The sea water used in this experiment contained 13.65 pg at Nl“l 
and 0.835 pg at Pl”l.

** The sea water used in this experiment contained 31.4 pg at Nl”l 
and 1.2 pg at Pl~^. Phosphate was added to all cultures to 
give final concentration of 20 pg at Pl”l.

*** To all cultures phosphate was added to give final concentration 
of 20 pg at PI”!, and silicate to give final concentration of
50 pg at Sil”1.

In these experiments 500 ml of the collected sea water was poured 

into a 2 litre conical flask. To this sample the required amount of

nutrient(s) was added. Triplicates were made for each culture and the

flasks were then kept continuously illuminated in a constant 

temperature room at 20°C. On the day of filtration, 50 ml from each 

culture was poured into a 125 ml bottle. At zero time, 2 pci NaH^C03 

was added to this sample. After 4 hours of incubation in the usual way 

(Chapter II), 3 x 10 ml portions from each sample were filtered through

0.45, 5 and 20 pm filters. The radioactivity was then counted (Chapter 

II). In experiment no.3, the nitrate uptake by phytoplankton was 

measured through its loss from the medium. On the day of l ^ C - f i x a t i o n  

measurement, a 5 ml portion from each culture was filtered through GF/C 

filters using a syringe filter holder and the filtrate was stored



frozen in 5 ml capped plastic containers. Later, they were thawed and 

the nitrate concentrations were determined using the method described 

by Cawse (1967). This method is described below:

a . Reagents:

Perchloric acid, 5% v/v 

Sulphamic acid, 2% w/v

b. Procedure:

Take 1 ml of the filtered sample in a test tube, add 1 ml of sulphamic 

acid solution and allow the mixture to stand for 2 minutes. Dilute to 

10 ml with 5% v/v perchloric acid, and measure the absorbance at 210 nm 

with 1 cm silica cells. Correct for blank.

c. Calibration curve:

Nitrate standard solution was prepared (0.1 pg at N ml“^). This 

was diluted to 0.75, 0.5 and 0.25 jig at N ml*”1-. Triplicates of

these dilutions were prepared, and to each ml of the standard 1 ml 

sulphamic acid was added followed by 8 ml perchloric acid after 2 

minutes. The optical densities obtained were very close to those 

mentioned in the original work (Cawse, 1967). From the present results 

an optical factor was calculated (F = 1390). See Figure 7.1, Table 

7.3.



Figure 7.1 Nitrate calibration curve
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Table 7.3 Results of nitrate calibration curve

CONCENTRATION AVERAGE Es - Eb CALIBRATION FACTOR

25 yg at 1“1 0.0155 1613
50 yg at 1”! 0.0345 1449
75 yg at 1“1 0.056 1339
100 yg at 1“1 0.075 1335

Es : Extinction of sample 
Eb : Extinction of blank

RESULTS

I. Culture Media and Phytoplankton Growth

Growth rate of phytoplankton species in Aquil and Erdscreiber medium: 

The growth rates of Thalassiosira sp., Prorocentrum micans and Ditylum 

brightwellii each in Erdshreiber and Aquil media are shown in Figures 

7.2, 7.3 and 7.4. The highest growth rate of Thalassiosira in

Erdschreiber was found within the first 24 hours of growth (k =* 1.7). 

This was followed by a gradual decline until it reached -0.02 doubling/ 

day in the period between days 5 and 6. In Aquil medium the growth 

of Thalassiosira reached its peak after the first day of incubation

(k = 1.72). This peak was followed by a rapid decrease in the value of

growth rate until it reached it lowest value (k = 0 .02) between the 

fifth and sixth days.

The growth of P. micans in Erdshcreiber (Fig. 7.3) exhibits a 

pattern with a high growth rate value in the first time interval

(k = 1.0) followed by a drop down to 0.1 in the second time interval.



Figure 7.2 Growth rate of Thalassiosira sp.

in a: Erdschreiber medium
b: Aquil medium
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Figure 7.3 Growth rate of Prorocentrum micans

in a: Erdschreiber medium
b: Aquil medium
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Figure 7.4 Growth rate of Ditylum brightwellii

in a: Erdschreiber medium
b: Aquil medium
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Between the second and the fifth day, the growth rate was ca. 0.22. 

This value dropped to -0.42 in the period between the fifth and sixth 

day. To a certain extent the growth rate of P. micans in Aquil medium 

was similar to that in Erdschreiber. The highest growth rate value of

0.64 in the first time interval decreased gradually to 0.18 in the 

third time interval. After an increase to 0.48 in the period between 

the third and fifth day the growth rate decreased to 0.27 in the final 

period. The growth rate of Ditylum brightwellii in Erdschreiber and

Aquil media is illustrated in Figure 7.4. The growth rate in

Erdschreiber medium reached its highest value in the second time

interval (k = 1.42). There was a gradual decrease down to 0.27 in the 

last time interval between the fifth and sixth day. The growth rate 

pattern of D. brightwellii in Aquil medium was similar to that in 

Erdschreiber medium. The highest value (k = 1.4) which was found in 

the second time interval was followed by a sharp decline after a short 

period down to -0.6 in the period between the third and fifth day. 

This was followed by a further decrease to -0.84 in the last time 

interval.

II. ^C-fixation by Phytoplankton in Artificial Media 

A. Experiments conducted using full Aquil medium:

i« ^C-fixation by phytoplankton species in unialgal cultures:

Figure 7 .5a illustrates the fixation of by three different

phytoplankters, Thalassiosira sp., Prorocentrum micans, and Ditylum 

brightwellii. The fixation is expressed as dpm/lO^ cells. D. 

brightwellii had the highest fixation value of 9.65 x 10^ dpm/106 

cells. P. micans followed with a value of 3 x 10^ dpm/10^ cells and 

Thalassiosira sp. with the lowest value of the three of 1.15 x 10^



Figure 7 .5a l^C-fixation by phytoplankton in unialgal cultures
(dpm/lO^ cells)

1 . D. brightwellii
2. P. micans
3. Thalassiosira sp.

Figure 7 .5b l^C-fixation by phytoplankton in unialgal cultures
(dpm/ym^.10^ cells)

1. D. brightwellii
2. P. micans
3. Thalassiosira sp.
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dpm/lO^ cells. Figure 7.5b illustrates the same results when expressed 

as dpm/pm^.lO^ cells. In this case the order of fixation has

changed with P. micans at the top with ca. 200 dpm/pm^.lO^ cells.

It was followed by Thalassiosira sp. with 166 dpm/pm^.lO^ cells. 

D. brightwellii followed with a value of 84 dpm/pm^.lO^ cells.

ii. l^C-fixation by phytoplankton species in mixed algal culture:

In this part, three phytoplankters viz. Thalassiosira sp., P. micans 

and D. brightwellii were grown in Aquil medium. The growth of these 

species in mixed culture is illustrated in Figure 7.6. From an initial 

cell concentration of cju 750 cell ml”! Thalassiosira increased during 

the 7-days-long experiment reaching a maximum of 37,500 cell ml”  ̂ on 

the fifth day. Although P . micans and D. brightwellii started with 

about the same initial cell concentration, the growth rates of both

species were much slower than that of Thalassiosira. P. micans cell 

concentration remained at the same level from the second day of the 

experiment until the end which was £a. 1500 cell ml“l. D. brightwellii 

growth curve followed a similar pattern to that of P . micans but in 

this case at a slightly higher level of ca. 3750 cell ml“l.

Figure 7.7 illustrates the increase in cell surface area of the 

three species. D. brightwellii total surface area increased very 

rapidly from ca. 8 x 10^ pm^ up to 50.5 x 10^ pm^ on the fifth day. 

Thalassiosira sp. total surface area increased from 0.5 x 10^ pm^ up to 

26.5 x 106 pm^ on the fifth day. The total cell surface area of P .

micans increased at a very slow rate. From 0.85 x 10^ pm^ of the

initial P . micans cell concentration, the total surface area remained 

around 1.9 x 10^ pm^ reaching its highest value of £a. 2.5 x 10^ pm^ on 

the fifth day.



Figure 7.6 Growth of phytoplankton species in mixed culture

1 . D. brightwellii
2. P. micans
3. Thalassiosira sp.
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Figure 7.7 Change of phytoplankton surface area in mixed culture

1. D. brightwellii
2. P. micans
3. Thalassiosira sp.





Figure 7 .8 illustrates the fixation of NaH^C03 by the different 

size fractions of the mixed culture. The initial fixation at zero time 

by each species was <100 dpm. The fixation by the size class 0.45- 

20 pm was lowest on the second day. This increased steadily and 

reached its highest fixation on the fifth day. At that point the 

fixation by this size class was representing ca. 35% of the total

l^C-fixation. On the second day the size class of organisms > 50 pm 

showed the second highest fixation, but thereafter their role was taken 

over by the organisms in the size class 0.45-20 pm. The highest 

fixation by the phytoplankton in the size class > 50 pm was on the 

fourth day of the experiment where they represented 27% of the total 

^-^C-fixation. Throughout the experiments, members of the size class 

20-50 Pm dominated the population reaching their highest fixation on 

the fifth day with 40% of the total. ^-^C-fixation by each species was 

calculated by working out a correction for the differential retention 

by the filters i.e. calculating the percentage of each species retained 

by the different filters. This was achieved by filtering 1 ml from 

selected mixed culture used for determining cell concentration. The 

results obtained show that 90% of Thalassiosira sp. pass through the 

20 pm filter, 25% of D. brightwellii pass through the 50 pm filter. 

When the results of the l^C-fixation by the different size classes 

shown in Figure 7.8 were corrected to give the fixation by each 

species, Figure 7.9 was achieved. This figure shows that Thalassiosira 

and D. brightwellii represented the major contributors to the 

^C-fixation throughout the experiment. But when the fixation was 

expressed as dpm/lO^ cells of each species (Fig. 7.10), P. micans 

contributed the major fixation throughout the experiment with D . 

brightwellii in the second place. When the fixation by the unit



Figure 7.8 l^C-fixation by different size classes in mixed culture

1. 0.45 - 20 nm
2. 20 - 50 pm
3. > 50 um
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Figure 7.9 l^C-fixation by phytoplankton in mixed culture

1. D. brightwellii
2. P. micans
3. Thalassiosira sp.





Figure 7.10 l^C-fixation by phytoplankton in mixed culture

1. D. brightwellii
2. P. micans
3. Thalassiosira sp.
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surface area was considered (Fig. 7.11), P . micans represented the 

highest fixation/pm^.10^ cells. It was followed by Thalassiosira sp.. 

Figure 7.11 shows that both P. micans and Thalassiosira sp. had their 

maximum fixation/unit surface area on the second day, which was during 

the exponential growth phase.

B. Experiments conducted using media with variable nitrate
concentrations:

i. Effect of nitrate on the growth of, and 14C-fixation by 
Thalassiosira sp.:

a. Growth (Fig. 7.12):

The cell number increased in the control on the second day from 0.85 x 

104 cell ml"1 to 2.8 x 104 cell ml"1. The cell number remained at this

level to the end. At the 1 jig at 1”1 concentration, the cell number

increased from 1.4 x 104 cell ml-*- on the second day to 4.1 x 104 cell 

ml"1 on the fifth day. After reaching this value, the cell number 

decreased slightly at the end of the experiment. At the 10 pg at l"1 

concentration, the cell number increased gradually from 0.5 x 104 cell 

ml"1 at the start of the experiment to 5.4 x 104 cell ml"1 on the fifth

day. This was followed by a drop to 4.2 x 104 cell ml"1 on the last

day of the experiment. At the 50 pg at l"1 concentration, the cell

number increased from 0.33 x 104 cell ml"1 on the first day to 8.8 x

104 cell ml”1 on the fifth day. This was followed by a drop to 6.33 x

104 cell ml”1 on the sixth day. At the 100 pg at l”1 concentration,

the cell number increased from 0.5 x 104 cell ml"1 on the first day to 

12.55 x 104 cell ml"1 on the fifth day. This was followed by a drop to 

8.8 x 104 cell ml"1 on the sixth day.



Figure 7.11 14C-fixation by phytoplankton in mixed culture 
(dpm/ym^.lO^ cells)

1 . D. brightwellii
2. P. micans
3. Thalassiosira sp.
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Figure 7.12 Effect of nitrate on the growth of Thalassiosira sp.

1. control
2. 1 yg at Nl”!
3. 10 yg at Nl”1
4. 50 yg at Nl“l
5. 100 yg at Nl"*1
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b. l^C-fixation (Fig. 7.13):

The l^C-fixation by Thalassiosira cells grown in control, 1 yg at Nl”1-, 

and 10 yg at Nl”1- were similar and progressed at the same rate (Fig.

7.13). From an initial value of ca. 3.7 x 10  ̂ dpm ml”1- at the

beginning of the experiment, the l^c-fixation 0f three concent­

rations increased up to 1.022 x 10^ dpm ml”1- (control), 1.077 x 10^ dpm

ml”1- (1 yg at l"1-), and 1.118 x 10^ dpm ml""! (10 yg at l”1-) at the end

of the experiment. The l^C-fixation at the 50 yg at 1”! increased 

gradually from 3.3 x 10^ dpm ml”1- at the beginning of the experiment to

1.538 x 10^ dpm ml”1- at the end. The l^C-fixation at the 100 yg at l”1-

increased rapidly from 3.1 x 10^ dpm ml”1- at the beginning to 2.601 x 

10  ̂ dpm ml”1- at the end of the experiment.

ii. Effect of nitrate on l^C-fixation by N-starved cells of 
Thalassiosira sp.; Asterionella japonica:

a. Thalassiosira sp. (Fig. 7.14):

At 0 yg at Nl”1- (control), ̂ C-fixation value was 3.36 x 10^ dpm/10^

cells. At 0.1 yg at Nl”*-, ̂ C-fixation value was 3.4 x 10^ dpm/10^

cells. ^C-fixation at 1 yg at Nl“  ̂was 2.975 x 10^ dpm/10^ cells. At 

10 yg at Nl”1-, l^C-fixation was 2.025 x 10^ dpm/10^ cells, and at 

100 yg at Nl”1- it was 1.15 x 10^ dpm ml”1-.

b. Asterionella japonica (Fig.7.15):

At 0 yg at Nl”1- (control), the ^C-fixation was at its highest value 

(3.02 x 10  ̂ dpm ml”1-). At 5 yg at l”1-, it was 1.74 x 10^ dpm ml”1-. At 

20 yg at 1”! the l^C-fixation was 0.26 x 10^ dpm ml”1-. At 50 yg at l”1- 

it was 0.18 x 10^ dpm ml”1-, and the l^C-fixation by nitrogen-starved A. 

japonica incubated at 100 yg at Nl“l was 0.22 x 10^ dpm ml”1-.



Figure 7.13 Effect of nitrate on the fixation by 
Thalassiosira sp.

1. control
2. 1 yg at Nl”1-
3. 10 yg at Nl”1-
4. 50 yg at Nl”1-
5. 100 yg at Nl”1-
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Figure 7.14 l^C-fixation by nitrogen-starved cells 
Thalassiosira sp.
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Figure 7.15 l^C-fixation by nitrogen-starved cells 
Asterionella japonica
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iii. Effect of nitrate on *^C-fixation by Thalassiosira sp.
at different time intervals (Fig. 7.16):

In Figure 7.16 the *^C-fixation is plotted against time. At zero time,

the *^C-fixation by Thalassiosira cells in the control was 0.163 x 10^

dpm/106 cells. This value has increased rapidly with time and it

reached 4.662 x 10^ dpm/10^ cells after 4 hours of incubation. The

*^C-fixation by cells at 1 yg at Nl™* was 0.219 x 10^ dpm/10^ cells at

zero time. It reached 1.7 x 10^ dpm/10^ cells after 4 hours of

incubation. *^C-fixation by cells at 10 yg at Nl”* increased from

0.051 x 10^ dpm/10^ cells at zero time to 2.0 x 10^ dpm/10^ cells after

4 hours. The *^C-fixation by cells at 100 yg at Nl“* increased from

0.086 x 10^ dpm/10^ cells at zero time to 2.435 x 10^ dpm/10^ cells

after 4 hours of incubation. And finally, the *^C-fixation by

Thalassiosira cells at 1000 yg at Nl™* increased from 0.061 x 10^ dpm/

10^ cells at zero time to 2.669 x 10^ dpm/10^ cells after 4 hours of

incubation.

iv. *^C-fixation by Thalassiosira sp. cells previously adapted
to different nitrate concentrations (Fig. 7.17):

Thalassiosira cells previously adapted to nitrate for 24 hours have

shown an increase of *^c-fixation with higher concentration of nitrate.

After 4 hours of incubation, the value of *^Ofixation at 0 yg at 1”*

was 0.63 x 10  ̂ dpm/10^ cells. At 1 yg at 1”*, the *^C-fixation was

0.693 x 106 dpm/lO^ cells. At 10 yg at l"1 it was 1.387 x 106 dpm/106

cells. At 100 yg at 1™* it was 2.162 x 10^ dpm/10^ cells. The *^c-

fixation at 1000 yg at l-* was 2.15 x 10^ dpm/10^ cells.



Figure 7.16 l^C-fixation by nitrogen-starved Thalassiosira sp.

1. control
2. 1 Pg at Nl’1
3. 10 yg at Nl’1
4. 100 yg at Nl’1
5. 1000 yg at Nl’1
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Figure 7.17 l^C-fixation by Thalassiosira sp.
previously adapted to nitrate
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v. Effect of nitrate on the chlorophyll â content of 
N-starved Thalassiosira sp. (Fig. 7.18):

During a relatively short experiment (72 hours), chlorophyll â content

of Thalassiosira cells grown at 500 yg at Nl”l increased rapidly

from 0.9 mg chl.a/lO^ cells at zero time up to 5.83 mg chl.a/lO^

cells after 72 hours. At 5 g at Nl“l, chlorophyll ji content increased

from 0.9 mg chl.a/lO^ cells to 1.4 mg chl.a/lO^ cells after 72

hours. After 72 hours of incubation, chlorophyll a_ content at 0 yg at

Nl” l increased from 0.9 mg chl.a/lO^ cells to 1.13 mg chl.a/lO^ cells.

III. Seawater enrichment and the l^Ofixation by 
phytoplankton size fractions:

The l^C-fixation values in each of the following experiments are 

expressed as percentages of the highest l^C-fixation value of that 

particular experiment.

a. Experiment 1:

Size class 0.45 - 5 ym (Fig. 7.19):

l^C-fixation by this size class was stimulated by the addition of 

phosphate or nitrate. The highest values were found after two days of 

enrichment. In the control, the highest ^-^C-fixation percentage 

was 11%. It increased to 16.9% in culture enriched with 0.5 yg at 

Pi”-*-, 22.1% in cultures enriched with 10 yg at Pl“l, 20.7% in

cultures enriched with 5 yg at Nl”l, and to 25.6% in cultures 

enriched with 50 yg at 1“1. In all the cultures, values of 

l^C-fixation declined gradually after reaching the maximum.

Size class 5 - 20 ym (Fig. 7.20):

The patterns of ^C-fixation by this size class were different from



Figure 7.18 Effect of nitrate on chlorophyll â content
Thalassiosira sp.

1. 0 ug at Nl”1
2. +5 ug at Nl”1
3. +500 ^8 at Nl”1
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Figure 7.19 ^C-fixation by 0.45 - 5 pm size fraction

1. control
2. +0.5 yg at PI"1
3. +10 yg at PI"1
4. +5 yg at Nl”1
5. +50 yg at Nl"1
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Figure 7.20 ^C-fixation by 5 - 20 ym size fraction

1. control
2. +0.5 M g at PI”1
3. +10 M g at PI-1
4. +5 M g at Nl”1
5. +50 Mg at Nl"1
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those of 0.45 - 5 ym size class. In all the cultures there was an 

increase in l ^ C - f i x a t i o n  as a result of nutrient enrichment. In 

the culture enriched with 0.5 yg at Pl“l , l^C-fixation increased 

significantly after two days, but reached its maximum of 87.2% after 

four days of enrichment. It dropped to 24.8% on the sixth day and down 

to 9.8% after eight days of incubation. Culture enriched with 10 yg at 

Pl“l reached its maximum after two days of incubation reaching 85.8%. 

This was followed by a gradual decrease down to 14.1%. In the culture 

enriched with 5 yg at Nl~l, the l^C-fixation reached its highest values 

on the second and fourth days of incubation (75.7%, 68.1% respec­

tively). The value then reached 5.7% on the eighth day. l^C-fixation 

pattern in culture enriched with 50 yg at Nl”l was similar to that 

of culture enriched with 5 yg at Nl“l. A high value of 87.2% was found 

on the second day followed by a maximum value of 100% on the sixth day. 

This was followed by a rapid decrease down to 10.9% on the eighth day.

Size class >20 ym (Fig. 7.21):

In all the cultures, the highest ^C-fixation by phytoplankton >20 ym 

occurred on the fourth day of incubation. In the control, the maximum 

l^C-fixation was 39.8%. The value in culture enriched with 0.5 yg 

at Pl”l reached 52.8% on the fourth day. In the culture enriched 

with 10 yg at Pl“l the fixation value reached 22.9% on the second 

day and 25.6% on the fourth day. Maximum value of ^^C-fixation in 

the culture enriched with 5 yg at Nl”  ̂ was 53.4% on the fourth day, 

while the maximum value of culture enriched with 50 yg at Nl”l was 

68.1% on the fourth day. In all the cultures, including the control, 

the l ^ C - f i x a t i o n  values decreased after the fourth day until they 

reached their lowest values on the eighth day.



Figure 7.21 ^C-fixation by > 20 ym size fraction

1. control
2. +0.5 yg at PI”1
3. +10 yg at PI”1
4. +5 yg at Nl”1
5. +50 yg at Nl”1
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b. Experiment 2:

Size class 0.45 - 5 pm (Fig. 7.22):

l^C-fixation by phytoplankton in the control increased slightly to 7.4% 

on the third day of the incubation. The fixation in the culture 

enriched with 50 pg at Nl”l increased to its maximum value of 35.1% 

on the sixth day of the incubation. Highest l^C-fixation values in 

the culture enriched with 500 pg at Nl"l were 14.8% on the sixth 

day and 18.9% on the ninth day. This was then followed by a steady 

decrease down to 3.4% on the sixteenth day of the experiment.

Size class 5 - 20 pm (Fig. 7.23):

l^C-fixation by phytoplankton in the control increased to 16.5% on 

the third day and up to 19.6% on the sixth day. This was followed by a 

steady decrease down to 1.4% on the sixteenth day (Fig. 7.23.1). In 

the culture enriched with 50 pg at Nl”l, the l^C-fixation value 

increased to 27% on the third day and then to 64.8% on the sixth day. 

On the ninth day, l^C-fixation dropped to 9.8% and remained at this 

level until the end of the experiment (Fig. 7.23.2). l^C-fixation 

in the culture enriched with 500 pg at Nl”l increased from 0.2% at 

the start of the experiment and before the enrichment to 10.1% on the 

third day as a result of nutrient enrichment. This value increased to 

27.7% on the sixth day, but decreased slightly to 15.5% on the ninth 

day. A. very high l^C-fixation value was found on the thirteenth 

day (100%) followed by a drop to 47.3% at the end of the experiment.

Size class >20 pm (Fig. 7.24):

In the control, ^ C - f i x a t i o n  value increased very slightly to a 

maximum value of 8.1% on the sixth day. In the culture enriched with



Figure 7.22 l^C-fixation by 0.45 - 5 pm size fraction

1. control
2. +50 pg at Nl”l
3. +500 pg at Nl”l
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Figure 7.23 l^C-fixation by 5 - 20 ym size fraction

1. control
2. +50 yg at Nl-1
3. +500 yg at Nl”l
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Figure 7.24 ^C-fixation by >20 ym size fraction

1. control
2. +50 yg at Nl-1
3. +500 yg at Nl”1
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50 Ug at Nl"’! f t^e !^C-f ixatlon reached its maximum value of 

19.2% on the sixth day. This was followed by a steady decrease down to 

3% on the sixteenth day. From the third day to the ninth day of the 

experiment, the !^C-fixation value by cells enriched with 500 pg at 

1"! was around 6%. This value increased to 20.9% on the thirteenth day 

and then dropped to 2.7% on the sixteenth day.

c. Experiment 3:

Nitrate uptake (Fig. 7.25):

Nitrate concentration in the control decreased steadily from 35 pg at 

Nl"! at the start of the experiment down to undetectable concentration 

on the sixth day of the experiment. Nitrate concentration in the 

culture enriched with 50 pg at Nl"! decreased steadily from 85 p g at 

Nl"! at the beginning of the experiment to undetectable concentration 

on the sixth day of the experiment. Nitrate concentration in culture 

enriched with 500 pg at Nl"! decreased steadily from 535 pg at Nl"! at 

the beginning of the experiment to 518 pg at Nl”! on the fourth

day. Thereafter, there was a rapid decrease in nitrate concentration 

until it reached 183 pg at Nl"! on the last day of the experiment.

Size class 0.45 - 5 pm (Fig. 7.26):

In the control, !^C-fixation reached its highest value on the sixth day 

of the experiment (11.9%), but decreased afterwards. In the culture 

enriched with 50 pg at Nl"! ̂ the highest !^C-fixation value was found 

on the sixth day (19.4%) of the experiment followed by a gradual

decrease down to 4% on the tenth day. !^C-fixation in the culture

enriched with 500 pg at Nl"! increased gradually up to 21.2% on the

eighth day of the experiment. This was followed by a drop down to 6 .6%



Figure 7.25 Nitrate uptake by phytoplankton 
measured as loss from medium

a. control
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Figure 7.26 ^C-fixation by 0.45 - 5 ym size fraction

1. control
2. +50 yg at Nl”1
3. +500 yg at Nl”1
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on the tenth day.

Size class 5 - 20 ym (Fig. 7.27):

In the control culture, l ^ C - f i x a t i o n  increased to 21.2% on the fourth 

day and up to 58.1% on the sixth day. This was followed by a sudden 

drop down to 6% on the eighth day (Fig. 7.27.1). In the culture 

enriched with 50 yg at Nl“l , the l ^ C - f i x a t i o n  value increased from 1.0% 

on the second day, to 38.9% on the fourth day, and up to 100% on the 

sixth day of the experiment. Then it dropped to 16.7% on the eighth 

day (Fig. 7.27.2). l ^ C - f i x a t i o n  the culture enriched with 500 yg at 

Nl“l increased from 29.8% on the fourth day to 100% on the sixth day of 

the experiment. This value dropped from 100% to 46.5% and down to 

25.7% on the tenth day (Fig. 7.27.3)

Size class >20 ym (Fig. 7.28):

In the control culture, l^C-fixation reached its highest value of 27.8% 

on the sixth day of the experiment. In the culture enriched with 50 yg 

at Nl”l , l^C-fixation increased from 1.0% on the second day, to 14.1% 

on the fourth day, and up to 49.7% on the sixth day. This was followed 

by a decrease to 10.1% on the eighth day, and down to 4.0% on the last 

day of the experiment. The l^C-fixation pattern in the culture 

enriched with 500 yg at Nl”l was slightly different from those in the 

control, and in the culture enriched with 50 yg at Nl“l. The ^C- 

fixation increased from 0.5% on the second day to 15.6% on the fourth 

day and up to 46.7% on the sixth day of the experiment. This was 

followed by a drop down to 16.2% on the eighth day and then, an 

increase up to 39.4% on the last day of the experiment.



Figure 7.27 l^C-fixation by 5 - 20 ym size fraction

1. control
2. +50 yg at Nl”1
3. +500 yg at Nl"1
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Figure 7.28 l^C-fixation by >20 ym size fraction

1. control
2. +50 yg at Nl“l
3. +500 yg at Nl“l
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DISCUSSION

A universal artificial medium which can be used for physiological 

experiments of phytoplankton was and still is an objective hard to 

achieve. Figures 7.2 - 7.A show the results of experiments with a 

modified version of Aquil medium (Morel et al., 1979). Although Aquil 

medium did not match Erdschreiber medium as a growth medium, never­

theless the three phytoplankton species tested showed a satisfactory 

growth. l^C-fixation has been used in this study as an indicator of 

the growth of phytoplankton wherever possible. Figure 7.5 a, b shows 

the l^C-fixation by Thalassiosira sp., Prorocentrum micans and 

Ditylum brightwellii in unialgal cultures. When l^C-fixation was 

expressed per 10^ cells of each species (Fig. 7.5 a), P. brightwellii 

had the highest value followed by P. micans and then Thalassiosira sp.. 

This order of fixation corresponded to the decrease in surface area 

from D. brightwellii (11314 ym^), P. micans (1540 ym^) to Thalassiosira 

sp. (707 ym2). But when l^C-fixation was expressed per ym^.lO^ cells 

(Fig. 7.5 b), P. micans had the highest value followed by Thalassiosira 

sp., and then D. brightwellii. This order agrees with the point of 

view which stresses that cells with the highest surface area to volume 

ratio and those with more mobility have higher growth rates and hence 

take up nutrients faster than larger cells with low surface to volume 

ratios (Williams, 1964; Eppley and Sloan, 1966; Banse, 1976).

Thalassiosira sp., P. micans and D. brightwellii were grown in 

mixed culture containing full Aquil medium. Thalassiosira sp. had 

outgrown the other two species when the concentration of cells was 

considered (Fig. 7.6). This was mainly due to higher growth rate and 

possibly higher nutrient uptake capacity. D. brightwellii growth was
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very low when compared to Thalassiosira sp., which could be the result 

of lower growth rate due to the comparatively large cell volume. The 

interesting result was that of P. micans. When this species was grown 

with Thalassiosira and D. brightwellii it showed very low growth rate. 

Bearing in mind the smaller cell volume of P. micans when compared with 

D. brightwellii, the low number of the former species could possibly be 

the result of an inhibitory extracellular product by Thalassiosira

sp.. It seems that P. micans only was affected by this suggested

inhibitory product. This is supported by the results of surface area

shown in Figure 7.7. From this figure it is obvious that there was a

large increase in the total surface area of Thalassiosira sp. and D.

brightwellii but not in P. micans.

Figure 7.8 shows the l^C-fixation by the different size fractions 

in the previous mixed culture experiment. These results show that the 

highest fixation was carried out by cells between 20-50 ym in diameter. 

The second highest fixation was carried out by cells between 0.45-20 ym 

in diameter, and the least fixation was carried out by cells > 50 ym in 

diameter. This order in l^C-fixation indicates that the highest 

fixation was carried out by P. micans cells, followed by Thalassiosira 

sp. cells and then D. brightwellii cells. This result must not be 

taken entirely at its face value for the fixation by the different

species. This is due to the fact that there was a differential 

retention by each filter. This was confirmed by an experiment 

conducted to calculate the percentage of Thalassiosira cells which 

pass through a 20 ym filter, and the percentage of P. micans and D.

brightwellii cells which can pass through 50 ym filters. It was found

that 90% of Thalassiosira cells pass through the 20 ym filter, and 25% 

of D. brightwellii cells pass through the 50 ym filter. Using this



result the values in Figure 7 .8 were corrected and related to the 

different species. The l^C-fixation of the different species is 

illustrated in Figure 7.9. The order of fixation in this figure 

followed the order observed in Figure 7.6. The l^C-fixation values 

of the three species in Figure 7.9 are very close to each other. 

Comparing Figures 7.6 and 7.9 shows that the high fixation value of 

Thalassiosira was because of its high cell number. The high fixation 

value of D. brightwellii was because of its high total surface area. 

Finally the high fixation value of P. micans was because of its high 

rate of -^C uptake per unit cell number (Fig. 7.10), and high 

uptake rate per unit surface area (Fig. 7.11). It can be concluded 

from the mixed culture experiment (Figs. 7.6 - 7.11) that the critical 

factors in the -^C-fixation by phytoplankton cells are the high 

growth rate (represented by Thalassiosira) and high uptake capacity per 

unit surface area (represented by P. micans).

The effect of nitrate on growth of and l^C-fixation by 

Thalassiosira sp. was investigated and the results are illustrated in 

Figures 7.12 and 7.13. It can be seen from the results that the 

increase of nitrate concentration in the medium was accompanied by an 

increase in cell number. This result emphasizes the role of nitrate as 

an important nutrient needed by the phytoplankton for growth. This 

role is further illustrated by an increase of l^C-fixation as a result 

of an increase in nitrate concentration (Fig. 7.13).

When nitrate was added to nitrogen-starved cells of Asterionella 

japonica and of Thalassiosira sp., the highest l^C-fixation was carried 

out by cells in the lowest nitrate concentrations (Figs. 7.14 and 

7.15). Since nitrogen-starved cells were in immediate need of nitrate, 

it was assimilated at a higher rate than was^C-fixation. The very low



values of l^C-fixation by cells supplied with high nitrate concent­

rations was because energy sources were directed towards nitrate 

assimilation at the expense of ^C-uptake (Healey, 1973; Falkowski 

and Stone, 1975; Thomas et al«, 1976; Hipkin et al., 1983).

In another experiment, the rate of l^C-fixation was measured 

in nitrogen-starved Thalassiosira sp. supplied with different nitrate 

concentrations. The fixation was measured at hourly intervals. At the 

beginning of the incubation (0 - 1  hour) the energy sources in the 

phytoplankton supplied with nitrate were directed towards nitrate 

uptake at the expense of l^C-fixation. An exception was the cells

without nitrogen supply. In these starved cells, ^C-fixation was 

at its maximum because there was no competition for energy for nitrate 

uptake (Fig. 7.16).

After one hour of incubation, l^C-fixation values of phytoplankton 

cells supplied with high nitrate concentrations (10-1000 yg at 1“ )̂ 

began to increase at rates higher than those of cells supplied with 

1 pg at 1”!. This led, after two hours, to a separation of cells 

supplied with 1 pg at Nl"̂ - from those supplied with higher concent­

rations. It appeared that phytoplankton supplied with high nitrate

concentrations assimilated enough nitrogen to decrease their starvation 

state and to direct their energy sources towards ^C-fixation and

productivity.

This is emphasized by the increase in l ^ C - f i x a t i o n  according 

to the concentration of nitrate at the later stages of the experiment 

(Fig. 7.16).

Another experiment was conducted to investigate the effect of cell 

adaptation to different nitrate concentrations before the incubation 

with 14C. It was found that Thalassiosira cells adapted to nitrate



before incubation have shown the expected relationship between nitrate

concentration and l^C-uptake (Fig. 7.17). It can be concluded from the

previous two experiments that nitrate-starved cells may give an 

unexpectedly inverse relationship between ^C-fixation and the nitrate 

concentration. This is due to competition for energy sources between 

l ^ C - u p t a k e  and the nitrate uptake. After sufficient nitrate is taken 

up and the competition stage is over, ^C-fixation increases with

the high nitrate concentrations.

Several workers have suggested that electrons are needed to reduce 

nitrate in the process of nitrate assimilation (Warburg and Negelein, 

1920; Van Niel et al., 1953). Thomas et al. (1976) suggested that in 

nitrogen deficient Chlorella cells, nitrate reduction to nitrite can 

proceed well by electrons derived from dark reactions but that the 

nitrite reduction step takes electrons both from dark respiration

and from the photochemical mechanism. This means that during com­

petition for energy sources, the nitrate-deficient Thalassiosira and 

A. japonica cells used the limited energy sources (electrons) for the 

reduction of nitrite at the expense of l^C-uptake.

The change of chlorophyll ji content in Thalassiosira sp. cells 

supplied with different nitrate concentrations was investigated (Fig. 

7.18). Chlorophyll content in cells supplied with 500 pg at Nl“ -̂ 

increased rapidly which indicates the need for nitrate to retain the 

normal metabolic processes. In nitrate-starved cells this need for 

nitrogen was fulfilled at the expense of C02“fixation (Fig. 7.16).



Enrichment experiments

a. Variable concentrations of phosphate and nitrate:

Size class 0.45-5 pm:

The pattern of -^C-fixation by cells in this size class was very 

similar in all the cultures (Fig. 7.19), but there was relatively 

higher fixation in the cultures enriched with 10 pg at Pl~^, 5 pg at 

Nl“l and 50 pg at Nl~l. Bearing in mind that the original phosphate 

concentration in the collected seawater was 0.8 pg at Pl“l, and nitrate 

concentration was 13.6 pg at Nl“^. This means that in cultures 

with low l^C-fixation (control, and 0.5 pg at Pl"^) there was a 

possible phosphate limitation. In all the cultures, the highest 

l^C-fixation was achieved after two days of incubation with additive

nutrients. This could be a result of high growth rate characteristic

of small cells (Munk and Riley, 1952; Eppley et al., 1969; Eppley and 

Thomas, 1969; Maclsaac and Dugdale, 1969; Friebele et al., 1978).

Size class 5-20 pm:

Phytoplankton cells in this size class have shown a strong response to 

the nutrient enrichment (Fig. 7.20). It seems that the increase in 

nutrient concentrations has increased nutrient uptake and hence, the 

growth rate. This can be seen in Figure 7.20, 3, 4 and 5. The highest 

total of fixed ^-^C-fixation was found in cultures enriched with 5 

and 50 pg at Nl” -̂ (20% and 27% respectively of the total -^C-fixed by 

phytoplankton of this size class). This may have been the result of an 

increase in cell number due to the presence of nitrogen which is an 

essential element in the structure of proteins and amino acids, and an

important factor in cell division. In most of the cultures, the

highest l^C-fixation was found after two days of enrichment. This may



have been the result of low half-saturation constant and high growth 

rate (Malone, 1980).

Size class > 20 ym:

l^C-fixation In this size class Increased slowly, reaching Its 

maximum after four days of Incubation (Fig. 7.21). This follows the 

point of view which argues that large phytoplankton cells have high 

half-saturation constant and low growth rate (Eppley et al., 1969). On 

the other hand, the level of fixation was lower than that carried out 

by the 5-20 ym size fraction which may have been due to low cell number 

resulting from low growth rate.

In all the previous graphs (Figs. 7.19 - 7.21), high l^C-fixation 

was of short duration and did not continue for more than four days. 

This can be seen even in cultures with very high l^C-fixation (Fig. 

7.20, 1, 2). It is possible that the growth was eventually limited by 

phosphate which was present at the start of the experiments in low

concentrations (0.8 yg at PI”*).

b. Variable nitrate concentrations + constant phosphate:

In these experiments, phosphate was added to each culture to give 20 yg 

at Pl”l, which is much higher than limitation concentration.

Size class 0.45-5 ym:

The l^C-fixation values by this class were very low, except in the 

culture enriched with 50 yg at Nl”l (Fig. 7.22). In general, the 

enrichment of sea water with nitrate increased l ^ C - f i x a t i o n  when

compared to the control. The highest fixation value was found in

culture with nitrate concentrations similar to those found in Swansea
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Bay (see Chapter III). Addition of very high nitrate concentration 

(500 yg at Nl“l) increased the length of time over which l^C-fixation 

occurred but the amount of l^C-fixation did not reach such high levels 

as with the addition of 50 yg at 1” -̂; in the latter case the peak of 

fixation was obtained within a short period and then dropped off. It 

can be concluded that nitrate is needed by organisms in the size class

0.45-5 ym up to the level encountered in the natural environment to 

increase productivity, but very high concentrations may cause an 

inhibition of l ^ C - f i x a t i o n  f o r  a short period at least.

Size class 5-20 ym:

When nitrate was added in concentrations similar to those found in 

Swansea Bay, it stimulated l ^ C - f i x a t i o n  (Fig. 7.23, 2). But when it 

was added in very high concentrations (500 yg at I"*), it inhibited the 

l^C-fixation for a period of time. The fixation was then increased 

possibly because nitrate concentration dropped to the level (< 50 yg at 

1~1) found in the natural environment (Fig. 7.23, 3). Very high values 

of l^C-fixation were found in this size class. This indicates that 

phytoplankton > 5 - < 20 ym dominated the cultures most of the time and 

they were more successful competitors than the phytoplankton of the 

other size fractions.

Size class > 20 ym:

l^C-fixation by phytoplankton > 20 ym did not increase to the level 

reached by phytoplankton between 5-20 ym (Fig. 7.24). Since they both 

had a similar initial l ^ C - f i x a t i o n  value prior to the addition of 

nutrients, the high increase of ^C-fixation by phytoplankton < 20 ym, 

while the fixation by cells > 20 ym increased very little, supports



the suggestion that small cells have higher growth rates (Eppley e_t 

al., 1969). The extended period over which l^C-fixation took place 

is shown in Figure 7.19, 3 and supports the suggestion that phosphate 

may have been limiting phytoplankton productivity in the later stages 

of the experiment conducted with low phosphate concentrations (Figs. 

7.19 to 7.21).

c. Variable nitrate concentrations + constant phosphate and silicate: 

In this experiment phosphate and silicate were added in quantities well 

above limiting concentrations.

Size class 0.45-5 ym:

There was no significant change in the level and duration of l^C- 

fixation by this size class except in the culture enriched with 500 yg 

at Nl“l (Fig. 7.26). This increase occurred after the nitrate 

concentration dropped to ca. 50% from its original value (Fig. 7.25). 

This supports the previous findings that exceptionally high nitrate 

concentrations inhibit ^-^C-fixation by natural phytoplankton 

populations.

Size class 5-20 ym:

The addition of nitrate increased l^C-fixation by phytoplankton in 

the size class 5-20 y m  by £a. 40% (Fig. 7.27, 2, 3). Fixation by cells 

enriched with 500 yg at Nl"’̂- remained at a relatively high level 

after reaching its maximum value on the sixth day of the experiments. 

This was probably due to the presence of enough nitrate to sustain the 

growth of phytoplankton at a relatively high growth rate (Figs. 7.25 

and 7.27, 3). The fixation by cells enriched with 50 yg at Nl~l,



and those in control dropped heavily on the eighth day, which may have 

been due to a nitrate decrease to undetectable concentrations on the 

sixth day of the experiment (Figs. 7.25, 7.27, 1 and 2).

Size class > 20 ym:

The l ^ C - f i x a t i o n  this size class was stimulated by the addition

of nitrate (Fig. 7.28). Although nitrate did stimulate the increase in 

l^C-fixation, the duration of this relatively high fixation was 

different between culture enriched with 50 yg at Nl~l and that enriched 

with 500 yg at Nl“^. l^C-fixation drop in the former was due to the 

exhaustion of nitrate, while it was sustained at relatively high levels 

in the latter because nitrate remained in relatively high concent­

rations (Fig. 7.25).

It can be concluded from all the previous enrichment experiments 

that nitrate stimulates the growth of all phytoplankton size fractions 

at different rates. The rate of carbon fixation and hence productivity 

was related to phytoplankton cell size and ability to compete. It was 

found that phytoplankton in the size class 5-20 ym were able to grow 

and fix at rates higher than those of cells > 20 m. This may

have been due to the higher surface area/volume ratio, low half­

saturation constant and high growth rate. The importance of this 

finding for nanoplankton (<20 ym) is that in Swansea Bay such 

organisms may dominate the phytoplankton.



CHAPTER VIII 
FINAL DISCUSSION AND CONCLUSIONS



Although phytoplankton in Swansea Bay have been studied by many people, 

there has been no intensive study of their primary productivity. The 

preliminary objective of the present study was to investigate the net 

primary productivity of phytoplankton and to relate it to the environ­

mental factors which may have a controlling effect. Another part of 

the research was to study plankton cell number and phytoplankton bio­

mass. Phytoplankton net with mesh size ca. 50 ym was used. It was 

preferred to a net with a smaller mesh size. This was because very 

fine phytoplankton nets may be clogged, especially when we know that 

Swansea Bay has high turbidity due to suspended particles (Joint, 

1980).

Diatoms have been found to dominate the net phytoplankton most of 

the year. Flagellates occurred for short periods in relatively small 

numbers (Chapter IV, Figures 2 and 3).

On many occasions no correspondence was found between net phyto­

plankton number and biomass (chlorophyll a^m-^). Examples are October, 

1983 (A, B), March, 1984 (B) and June, 1984 (A). See Chapter IV, 

Figures 4 and 5. The correlation coefficient (r) for phytoplankton 

biomass and net phytoplankton cell number was + 0.387 (Station A) and 

+ 0.384 (Station B). Paulraj and Hayward (1980), studying phyto­

plankton at Mumbles Pier (Swansea Bay), found no correlation between 

net phytoplankton cell {lumber and biomass. These findings suggest that 

the weak correlation in the present study may have been a result of 

either phytoplankton spatial heterogeneity, or numbers of small phyto­

plankton escaping as a result of the relatively large mesh size. If 

there was spatial heterogeneity, this would result in a weak cor­

relation between chlorophyll ji concentration and l^C-fixation, sup­

posing that chlorophyll â concentration represents the biomass of the



total phytoplankton community.

Since chlorophyll ja concentration and l ^ C - f i x a t i o n  were determined 

using the same water sample from each station, the strong correlation 

between these two parameters (r [A] = + 0.82, r [B] * + 0.79) means 

that part of the phytoplankton was missing.

Eppley (1972) suggested that high assimilation numbers (primary 

productivity/biomass) are associated with small cells. High 

assimilation numbers have been found on many occasions in the present 

study (Chapter IV, Table 4.1). Zooplankton grazing is believed to have 

a minor effect on phytoplankton biomass because zooplankton occurred in 

relatively small numbers most of the year, except on one occasion (see 

Chapter IV, Figure 8).

The different phytoplankton species showed different responses to 

the changing environmental conditions. Individuals of some phyto­

plankton species have been found to occur in different environmental 

conditions, e.g. Biddulphia sinensis, Bacillaria paxillifer. The 

existence of physiological races for B. sinensis and B. paxillifer has 

been used as an explanation for their occurrence at different times of 

the year (Tait, 1981). The classification of each species into physio­

logical races was based on their preference for a different temperature 

range at different times of the year (see Chapter V). Other species 

occurred mainly at certain times of the year. For example, the highest 

number of Chaetoceros sp. was found in the spring over a range of 

temperature from 7-10°C. This range of temperature is thought to be 

the preference range of Chaetoceros sp. (see Chapter V). Some other 

species of phytoplankton occurred on one occasion only during the whole 

period of sampling, e.g. Rhizosolenia delicatula. It occurred in high 

numbers when the measured environmental conditions were very specific



to that period. Rhizosolenia delicatula occurrence took place in the 

summer of 1984. At that time, the nutrient concentrations were very

low, temperature was high (14-15°C) and salinity was relatively high

(30-31%o). From these findings it seems that phytoplankton species 

succession in Swansea Bay was controlled by more than one factor, but 

the main factors were temperature and sunshine hours in the winter, and 

nutrients in the summer (see Chapters III and IV).

From the findings of the growth measurements (cell number, biomass 

and productivity) and the suggestion that small phytoplankton may have

been significant contributors to the total primary productivity, a one-

year-long study of primary productivity by phytoplankton size classes 

was carried out. In the fractionation study, it has been found that 

there was no obvious seasonal variation in primary productivity by 

phytoplankton of the size classes 0.45 - 1 vim and 50 - 80 ym. A trend 

towards seasonal variation has been found in the productivity by phyto­

plankton > 5 - < 20 ym in diameter. From the data representing the 

contribution of each size class to the total monthly productivity, 

it was found that phytoplankton > 5 ym and < 20 ym were the major 

contributors to productivity during the spring and summer periods. 

During these periods, the nutrient concentrations reached very low 

values, and temperature and sunshine hours reached their maximum values 

(see Chapter III). The occurrence of small phytoplankton cells (> 5- 

< 20 ym) mainly in periods characterized by low nutrient concent­

rations, suggests that they have higher uptake rates than larger phyto­

plankton cells (Eppley et al., 1969). See Chapter VI.

From all the previous findings, it seems that the onset of 

specific environmental conditions could result not only in the dis­

appearance of a species and the occurrence of another, but even a group
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of phytoplankton of certain size class may be replaced by another with 

better ability to adapt to the new environmental conditions.

On some occasions differences have been found in the phytoplankton 

populations or total cell numbers between the two stations studied. 

These differences were very difficult to explain especially when, at 

the time of the differences, the measured environmental conditions were 

very similar. However, this would suggest that factors other than the 

measured nutrients, salinity or temperature may have been responsible 

for such differences. Lekan and Wilson (1978) found that chlorophyll â 

patches at wavelengths greater than 20 km were caused by nutrient 

distribution, while patchiness over wavelengths less than 20 km were 

related to physical processes. Swansea Bay represents a complex hydro- 

graphical system. Several currents occur in this relatively small 

area. The main current is the rectilinear current parallel to the 

northern boundaries of the Bristol Channel, with an anticlockwise eddy 

circulation in the western half of Swansea Bay (Collins et al., 1979). 

These are accompanied by a very strong tidal current. Joint (1980) 

studying phytoplankton production in Swansea Bay during August, 1977, 

found chlorophyll a. patches at some stations distributed over a grid 

located just at the outside boundaries of the bay. He found that the 

increase in chlorophyll a_ at certain locations in the period between 

two cruises is greater than would be expected from the normal increase 

in chlorophyll â during that period. He suggested that benthic algae 

derived from the inshore area of the bay may have been responsible for 

such an increase. The sampling stations of the present study are 

located at the eastern half of the bay, in an area where the anticlock­

wise eddy circulation might emerge from the rectilinear current 

(Ferentinos, 1978). The sampling area in this study is further from



the shore than the area where Joint (1980) found the chlorophyll £  

patchiness. It is likely that localized physical conditions resulting 

from the complex hydrodynamics of Swansea Bay may have been responsible 

for the observed differences in this study between Stations A and B. 

More studies are needed to investigate this problem.

Several assumptions were made based on the findings of the field 

work of the present study. Two of these assumptions are particularly 

important. First, contrary to the results and conclusions reported in 

previous studies (see Chapter III), nitrate showed a very distinct 

seasonal variation. Nitrate concentration reached undetectable values 

in the summer, which suggested that it may have been limiting to the 

phytoplankton growth in Swansea Bay. Second, from the size

fractionation field studies, it has been found that phytoplankton less 

than 20 ym are major contributors to primary productivity in Swansea 

Bay. These assumptions were investigated in the laboratory. Special 

attention was given to the response of phytoplankton (either in 

prepared media or in natural sea water), according to their cell size, 

to the changes in the growth conditions.

From the experiments conducted to determine ^^C-fixation values by 

phytoplankton grown in mixed culture, it has been found that smaller 

cells fixed more carbon because of their high growth rate 

(Thalassiosira sp.) and high uptake capacity per unit surface area (P. 

micans). See Chapter VII. Enrichment experiments were conducted to 

investigate the effect of changing nitrate concentrations on the 

l ^ C - f i x a t i o n  hy phytoplankton size fractions. Phytoplankton size 

classes responded differently to nutrient enrichment. When enriched 

with nitrate, phytoplankton cells > 5 - < 20 ym showed a tremendous 

increase in l^C-fixation in comparison to 0.45 - 5 ym and > 20 ym size



classes (see Chapter VII).

The Importance of nitrate to phytoplankton was further 

investigated using nitrogen-starved cells of Asterionella japonica and 

Thalassiosira sp.. When these starved cells were given nitrate, they 

directed their energy sources towards nitrate uptake at the expense of 

l^C-fixation. This is because nitrate was urgently needed to maintain 

their physiological activities. This need was illustrated by the 

increase in chlorophyll £  content of the starved cells when supplied 

with nitrate (see Chapter VII).

In this study, an attempt was made to investigate the primary 

productivity of phytoplankton in Swansea Bay and the role of pico- 

plankton and nanoplankton in this productivity. Also, the role of 

nitrate as a controlling factor to primary productivity received 

special attention.

From the findings of this study, it can be concluded that nano­

plankton play a significant role in the primary productivity of Swansea 

Bay, and this role is controlled, to a high degree, by the level of 

nitrate concentration in the sea water.
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