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ABSTRACT

Box-girder bridges supported by single reinforced concrete (RC) columns are expected to 

sustain seismic shocks with minor structural damages in seismically active regions where 

transportation is substantially required for rescuing and evacuating tasks. Such viaducts are 

vulnerable to damage when they are subjected to strong ground motions and acceleration 

pulse records, especially when responding in a flexural mode or having relatively low core 

confinement.

Using a nonlinear dynamic solver that applies the fibre element method, global and local 

damage curves are computed based on the dissipated energy under hysteretic curves and 

based on constitutive curves, respectively. The RC bridge with seismic isolation bearing is 

used as an alternative system to control the damage, and modelled using linkage elements 

between the substructure and super structure. It was found that seismic isolation can be 

controlled to dissipate partial seismic energy so that the RC column gains the least possible 

minor damage.

Using a MatLab program, a fibre element nonlinear model was built using a simplified 

iterative process and simplified constitutive relations. The number of fibres and elements 

under the dynamic loading was found to be affecting the final results of the analysis.

Using crack growth modelling based on fracture mechanics, the combined discrete 

element/finite element explicit-Elfen code was applied to investigate the crack growth in 3D 

dynamically loaded RC columns. Despite its excessive computational cost and time, this code 

provides reliable information about local damage in the RC column core.

Earthquake records with the pulse acceleration phenomenon have a severe damage potential 

on the structure. The difference in damage intensities was detected by crack growth 

modelling for the same problem using different loading rates. Critically stressed zones can be 

investigated independently by using the relative response technique, in which responses from 

the numerically analysed structure are re-used as applied loads onto a small-scale crack 

model for the critical member.

Two general conclusions can be obtained; bridges with single RC columns designed by the 

demand/capacity criterion could suffer severe damage and possible collapse when subjected 

to strong ground motions. Secondly; hysteresis-based methods provide a global damage 

evaluation based on strength and ductility only regardless of the damage growth inside the 

concrete core and the buckling of bars, which could lead to progressive collapse.
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NOTATIONS

Notes:
1- Notations with (normal face) are scalar quantities, notations with (italic boldface) are local vectors or 
matrices, and notations with (bold face) are global vectors or matrices.
2- Notations from chapter 2 are not included in this list since they vary as they follow different published 
papers and text books.

a and b constants at Newmark’s method
Ak cross section area of the k-th fibre
A peak pseudo acceleration of the structure at its top level.
c, Cq damping factor of an element, rotational damping, respectively.
c wave speed
cu shear strength, or cohesion, of the material 
d displacement
dD, dc displacement demand and capacity, respectively. 
dR residual displacement
dy , dp yield and plastic displacements, respectively. 
du ultimate lateral displacement of the column 
dh Dt local and global damage indices, respectively.
D diameter of RC column
Dm0no, Diso damage in monolithic (non-isolated) and isolated structures, respectively. 
e rate of change of volume 
Edi dissipating energy at cycle (i)
Edn total dissipating energy for all cycles (n)
E elastic modulus
Ek elastic modulus of the k-th fibre
Et elastic modulus of the k-th fibre at time-step i
ECOnc elastic modulus of concrete
Esteei elastic modulus of steel
EA*t, EGt, Elt parameters of the stiffness matrix of the fibre element
Ed damping energy
E, the energy input to the structure
Ek kinetic energy
Es strain energy
EY yielding energy, or yield dissipated energy 
EAbsorbed absorbed energy 
^Dissipated dissipated energy 
Epecoverd recoverd energy

Enn degraded elastic modulus for failure and rotated failure planes n & nn, respectively. 
f 0 computed natural frequency for a multi-span footbridge structure 
fi, f D, f s mass inertia, damping force and restoring force or base-shear force, respectively. 
f s (u ,  u)  elastic and yield resisting force in an inelastic system.
( 7 s )  i  resisting elastic force for a linearly elastic system at time-step i.
(fs)i resisting elastic force vector at time-step i
(A/ s ) i  incremental restoring forces at time-step i
(Afs ) i  global incremental restoring forces vector at time-step i
Af incremental nodal forces and moments of the fibre element
( 7 s  (u, u))i resisting force for an inelastic system at time-step i.
7 s 0  initial restoring forces
fy yield strength of the global structural system, also the flexural capacity of the structure 
f y normalized yield strength of the system. 
f t tensile strength of material 
Fc also / '  concrete axial strength 
Fy steel axial strength
F  and Q yield surface and plastic potential surface, respectively.
Ei, F2, F3 3 different forces o f  linkage-elements
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G energy release rate per unit new crack area 
Gf fracture energy
h column height
i time-step
k, k t, k e stiffness, tangential stiffness and rotational stiffness.
k  grand stiffness
(k t) s secant stiffness at time-step i
(k i)t tangential stiffness at time-step i
(k i) t grand tangential stiffness at time-step i
k local stiffness matrix
kj global stiffness matrix at time-step i
kj global grand stiffness matrix at time-step i
/s r
kj reduced global grand stiffness matrix at time-step i 
K stiffness coefficient of seismic isolation bearing SIB 
K 1, K2 pre-yield and post-yield stiffness coefficients of SIB, respectively.
1 ,1 local and global influence vectors equal 0’s and ± 1 ’s according to the DOF of the structure.
I characteristic length of smallest element.
L length of element
Lp plastic hinge of length measured from the column base 
m mass of an element
m , m local and global mass matrices, respectively.
Mlt M2, M3 3 different moments of the linkage-element
Mh Md , Ms inertia moment, damping moment and restoring moment or base-moment, respectively. 
Mbo peak base moment
AM incremental moment force at middle of fibre element 
AMj incremental moment force at joint j of fibre element 
AN incremental axial force at middle of fibre element 
ANj incremental axial force at joint j of fibre element 
Pi applied force at time-step i.
A pi load increment at time-step i.
Ap h Ap, local and global grand load increments at time-step i, respectively. 
p0 initial restoring force 
P e f f  external effective force.
P(t)eff> P(t)eff local and global effective loads, respectively. 
qn(t) modal coordinate, also known as generalized displacement, 
q , q , q global generalized displacement, velocity and acceleration.
AQj incremental shear force at joint j of fibre element
r  hardening ratio, or ratio of the post-yield to pre-yield, also Kp y  and K2/K1  
Rd, Rs residual deformation, residual stresses, respectively.
Ry yield strength reduction factor
Tn natural period of the structure
tj time at time-step i
At constant time interval
Att time interval at time-step i, also constant.
u it iii, Hi displacement, velocity and acceleration at time-step i, respectively.
Au u Aiii, Aut displacement, velocity and acceleration increments at time-step i, respectively.
ii0, ii0 initial velocity and acceleration, respectively.
u,u , i i  local displacement, velocity and acceleration, respectively.
ugi UgQ ground acceleration, peak ground acceleration.
Uj ([t) displacement response at node j  
u l total displacement 
u  relative structural motion displacement 
ug rigid ground motion displacement
u 0, ii0, iio peak displacement, velocity and acceleration responses of structure’s top, respectively. 
um, uy maximum inelastic displacement, yield displacement, respectively.
Ua change in elastic strain energy (energy drop).
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uy tensile surface energy change
Uo total energy of specimen + its loading system, before the crack is introduced, (constant)
AUj global displacement increment at time-step i.
Au incremental nodal responses (displacements and rotations) of the fibre element
A Uj incremental nodal vertical displacement at joint j of fibre element
Al7j incremental nodal lateral displacement at joint j of fibre element

V*>o peak base shear
V0 initial volume
AV volume change
w damage parameter
W weight of superstructure
Vk distance from the element centroid to the k* fibre

/? and y  constants for Newmark method 
ye surface energy per unit area, or surface tension 
T nodal participation factor.
En  , £nn strain in the failure and rotated failure planes n and nn, respectively. 
ex , £y, £z strains in the i-direction.
AEk  axial strain increment at kth fibre
Afa incremental axial strain at the centroid of the element
Aec incremental axial concrete strain
Aev, Aeq incremental volumetric and deviatoric strains, respectively.

| Atcr critical time-step.
i £ time between time t t and t i+1, also damping ratio (chapter 3)
j: 6 column curvature, also scalar parameter (chapter 3)
j Qv plastic curvature capacity
| A0j incremental nodal rotation at joint j of fibre element
; A0  incremental curvature of the element
| Kp y  ratio of the post-yield stiffness to the initial stiffness, also r  and K2/K1.
I fi ductility factor
i  Hd> PD em a n d  ductility demand

^ C a p a c i t y  ultimate ductility (capacity) 
i v  Poisson’s ratio

<f damping coefficient
p material density
Pl longitudinal reinforcement ratio
ak axial stress of the k-th fibre element
aallowable allowable stress
ouit ultimate axial compressive stress of concrete (ultimate strength)
<jT also <jt tensile strength
<*i principal stress invariant i, (0 1 ,2 ,3 )
&n j ann stress in the failure and rotated failure planes n and nn, respectively.

deviatoric stress
®m> a mean stress and second deviator stress invariant
(P angle of dilation
0 angle of friction
0/n modal shape n at node j
<b global modal shape
0)n natural angular frequency.
12 spectral matrix



ABBREVIATIONS

AR Aspect Ratio
BDSI Bi-Directional Seismic Isolation
c-g. centre of gravity
Caltrans California Transportations Department
DE/FEM Discrete Element/Finite Element Method
DB Displacement-based formulation
DOF Degree Of Freedom
FBPH Force-Based formulation with Plastic Hinge
FEM Finite Element Method
FE Fibre Elements
FPS Friction Pendulum Systems (seismic isolation)
IM Intensity Measure
JRA Japanese Road Association
LRB Lead Rubber Bearings
MDOF Multiple Degree Of Freedom
PH Plastic Hinge
PRSI Partially Restrained Seismic Isolation
PGA Peak Ground Acceleration
PVA Peak Ground Velocity
PVA Peak Ground Velocity
PVD Peak Ground Displacement
PBSE Performance-Based Seismic Engineering
PBSD Performance-Based Seismic Design
RC Reinforced Concrete
SDC Seismic Design Criterion
SDOF Single Degree O f Freedom
SIB Seismic Isolation Bearings, also Base Seismic Isolation Bearings
SSI soil-structure interaction
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1.0 INTRODUCTION

1.1 PERFORMANCE-BASED SEISMIC ENGINEERING

The principle of Performance-Based Seismic Design (PBSD) has played a vital role in 

Earthquake Engineering. Its significance is to assure that the constructed buildings will resist 

the effects of earthquake ground motions of different severities within acceptable limiting 

levels of damage. This implies that the seismically loaded structure will not be damaged 

beyond certain limit states [1]. In general, Performance-Based Seismic Engineering (PBSE) 

has a broad concept which includes the evaluation of damage in structural members, non- 

structural facilities and also floor contents. In terms of structural members, PBSE is 

concerned with all aspects of the building process, such as the design criteria, selection of a 

structural system, layout proportions, detailing of the structural members, construction 

quality control and long-term maintenance. However, the majority of research work in this 

concern is associated with determining the different levels of reliability that a building can act 

under specified levels of excitations [1].

Damage in the designed members is highly significant in Performance-Based Seismic 

Engineering. However, many reinforced concrete (RC) bridge columns are seismically 

designed according to the Demand/Capacity principle of Seismic Design Criteria (SDC), 

which assumes the functionality of this principle as far as the structural strength and ductility 

is greater than the seismic demand. This research is questioning the validity of this 

assumption in RC bridge columns under strong ground motion and other conditions. It is a 

general concept in Eurocode 8 and also other codes that ‘the bridge should retain its structural 

integrity and adequate residual resistance after the seismic event’ [2]. However, there are 

structural parts in the RC bridges that are susceptible to damage by their contribution to 

energy dissipation during the seismic event, but the structure should still sustain emergency 

traffic [2]. Therefore, one of the design principles in bridge engineering is to allow local 

minor damages in the bridge columns, considering the initiation of plastic hinge (PH) zones. 

The concept of a plastic hinge in the design methodology presumes the loss of the concrete 

cover only, known as spalling, and the initiation of non-linear straining of the longitudinal 

bars along the PH zone. However, this may not be the case during severe earthquakes, where, 

severe local damage may destroy the concrete core of the column section, and could lead to a 

total collapse of the structure, especially when the longitudinal reinforcement bars are
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severely deform ed or buckled, as shown in Figure 1.1. The main goal o f  this research is to 

investigate the dam aged plastic hinges at the core o f  RC bridge colum ns when subjected to 

earthquake loading.

Figure 1.1: D am age o f  concrete  and bar buckling

1.2 LEVELS OF RELIABILITY

There are different scale levels for a structure that could be investigated and assessed in order 

to determ ine the levels o f  dissipated energy. These scale levels are: the m aterial, the section, 

the m em ber and the global scale o f  the structure. In order for a structure to resist an 

earthquake strike without failing its required serviceability, perform ance and safety 

requirem ents, all o f  these scale levels should be reliable during and after the earthquake 

incident. The term s for the levels o f  reliability [3], are expressed in the follow ing diagram  in 

Figure 1.2. M aterial reliability is often m easured by the constitutive relationship, yield 

strength and ultim ate strength. Section is tested by its ductility, and the m em ber's  reliability 

is dependent on its hysteretic behaviour. At a global scale, the whole structure is accounted 

for resisting seismic loading as its flexural and shear perform ance is acceptable.

Researches targeted the seism ic failure process from different levels o f  reliability for several 

structures, but none o f  them  can be dom inant and the output energy can dissipate through any 

one o f  those levels, therefore, it is a m atter o f  a case-study investigation that should be carried 

out individually in order to realise the less reliable level that m ay cause the severe damage.

3



Material
behaviour

Structural
behaviour

© Section 
behaviour

V
w Member 

behaviour
-AxJli,

Figure 1.2 Levels o f  reliability |3 |

This research is concerned about one o f  the m ost im portant levels o f  reliability, which is the 

level o f  m em ber’s behaviour, in which the reliability o f  reinforced concrete RC bridge 

colum n is tested under seism ic loading, know ing that the RC colum n m em ber is seism ically 

designed according to the D em and/Capacity principle o f  Seism ic Design Criteria (SDC).

1.3 DAMAGE RISKS

In addition to local dam age o f the m em ber and global dam age o f the structure, two other 

im portant issues are also crucial to PBS design for RC bridge colum ns, and should be taken 

into consideration; the residual displacem ent after an earthquake, and the structure 's  

displacem ent exceeding the allow able lateral displacem ent stated by building codes. These 

two issues, if  not considered, can also reduce the seism ic perform ance o f  the structure, even 

in case o f  low dam age levels. How ever, these issues are not within the scope o f  this work.

1.3.1 Levels of Vulnerability to Damage

V ulnerability to dam age in this particular problem  o f  the RC bridge colum n is increasing 

according to several factors, such as loading intensity, failure m ode, direction o f  loading, 

confinem ent, ductility, rate o f  loading and others. This structure becom es more vulnerable to 

dam age when levels o f  vulnerability to dam age are not controlled. This can be briefly 

explained in the follow ing sections.
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1.3.1.1 Peak Response to Strong Ground Motion

The m agnitude o f  the Peak Ground A cceleration (PGA ) in strong ground m otion is the m ajor 

cause o f  dam age severity in RC bridge colum ns, as larger loads cause greater deflections. 

Therefore, the level o f  vulnerability to severe dam age is high as P G A 's are high. O ther 

seism ic param eters are also effective, such as the type o f  soil and distance from the seism ic 

fault, which could prom ote the structural response to a higher dam age extent. The dam age o f 

the Lom a Prieta earthquake is severe at the part o f  the bridge settled in soft soil, as shown in 

Figure 1.3.

TREASURE 
T  ISLAND

:y p r e s s  w
STRUCTURE

I  |YERBA 
BUENA 

«  ISLAND
SANO AND GRAVEL

fltt'JFft
ncEi\

Figure 1.3 Flexural top deck o f  the freew ay collapsed due to the 1989 Loma Prieta earthquake  

a ccou ntin g  for a large fraction o f  the fatalities, even though the epicentral distance is about 100 km.

1.3.1.2 Failure Mode in Single Columns

D eflecting in the longitudinal direction o f  bridges supported on single colum ns is m ore likely 

to function in the shear m ode o f  failure, since the upper end is connected to a highly rigid 

viaduct structure. However, deflecting in the transverse direction o f  the bridge is m ore likely 

to act in the flexural m ode o f  failure as can be seen in Figure 1.4.

f - i U

A

Transverse motion Lonairudmal motion

Figure 1.4 Flexural and shear modes o f  failure
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Failure of single-column structure is fully dependant on the performance of the RC single 

column. In case of deflecting in the transversal direction, the flexural mode of failure 

increases the column’s vulnerability to damage since that flexure is restricted to one member 

only. In contrast to bridges, other structures with multiple columns, such as multi-floor 

framed buildings, have their flexural failure mode performed by applying the axial tensile 

stresses on some columns and compressive stresses on others. In such case, damage is less 

vulnerable to become critically grown in one member only. For a wider view on common RC 

box-girder bridges on single and multiple piers, Table 1.1 summarizes the types of RC box- 

girder bridges on single and multiple columns [4]. It is a fact that many viaduct structures are 

supported by single piers which take less traffic space and are architecturally suitable to both 

single-cell and multiple-cell box-girder viaducts.

1.3.1.3 Confinement and Ductility

The main purpose of confinement of RC columns is to initiate inward transverse stresses on 

the column core. Such stresses have a significant role in strengthening the concrete section 

especially at the critical zones of plastic hinges. One of the important methods for initiating 

confinement is the transverse reinforcement stirrups or hoops. They can produce inward ring 

stresses around the concrete column core to counteract the concrete outward strains due to 

axial forces of the structure dead load. If the dead load is relatively low, as in the case of 

single-cell box-girder bridges, low confinement is produced, and thus, the column is more 

vulnerable to damage under lateral motion. This is one of the main reasons that such 

structures could initiate crack growth inside the column core quite easily. Ductility of the 

structure is significantly compromised by the crack growth inside the column core, since the 

longitudinal reinforcement bars would be extremely exposed and could severely deform or 

buckle, leading to total collapse.
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Type

In-Situ
Multi-Cell

Box-Girder
Decks

In-Situ
Single-Cell
Box-Girder

Decks

Precast 
Segmental Box 
Girder Decks

Precast Full- 
Length Box- 

Girder Decks

Incrementally- 
Launched box- 

girder decks

Cast Type O f Pre- 
Stressing (Pre- 

Tensioning/Post- 
Tensioning

Connection To Piers Construction
Method

Supporting Piers

In-Situ Pre-Tensioned 
(Span-By-Span 
Pre-Stressing)

Or

Post-Tensioned
Tendons

Continuous, By 
Cantilevering & Pre- 

Tensioning

Span-By-Span 
Erection (Span + 
Short Cantilever)

Or

In-Situ Balanced 
Cantilever + In- 
Situ  Cantilevers 

Using Form 
Travellers + In- 
Silu  Mid-span

Single Or Multiple RC Columns

Single RC Columns

Precast Post-Tensioned
Tendons

Precast Pre-tensioned

In-Situ Post-Tensioned 
Tendons

Table 1.1 T ypes  o f  RC box-girder bridges

Continuous, 
By Pre- 

Tensioning

With Span-By-Span
Mortar Erection
Joints Or

Or Balanced
Cantilever

With Erection
Match- Or

Cast Joints
( Epoxy Or Progressive
Dry Joints) Placing Erection

Simply-Supported on 
Bearings (Rubber < 50m 
Span, Mechanical > 50m 

Span)

Lifting, Rolling, & 
Positioning Units

Continuous Precast Balanced 
Cantilevers + 

Lifting & 
Positioning Middle 

Units

Continuous, By Arch 
Effect (Vertical Shear 

Action)

Balanced
Cantilever
Erection

Single RC Columns

Single RC Columns

RC Wall
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1.3.1.4 Long Duration Pulse

In relevance to dam age, several earthquake records show  that relatively long duration 

im pulses with low  frequency have the potential to cause further dam age, more than those 

records having sim ilar P G A 's  but with relatively short duration im pulses and higher 

frequency. The phenom enon o f  long duration and low frequency is know n as the 

A cceleration Pulse [5], w hich causes higher ground velocity and larger ground m ovem ent. 

This increases the seism ic hazard, causing a m ore extensive response by the structure in 

term s o f  lateral displacem ent and dam age o f  the colum n base.

Figure 1.5 Destruction o f  plastic hinge zones |5 |

1.4 OBJECTIVES & METHODOLOGY OF THE CURRENT  
PROJECT

The levels o f  vulnerability  to dam age in RC bridge colum ns such as intensity o f  seism ic 

loading, failure m ode, d irection o f  loading, confinem ent, ductility and rate o f  loading could 

lead to severe dam age if  they are not controlled. Designing RC colum ns according to the 

seism ic design criterion o f  balanced dem and and capacity o f  colum n ductility is not sufficient 

to attain  plastic hinges with m inor dam ages, especially w hen m any levels o f  vulnerability are 

not controlled. The m ain goal o f  this research is to investigate the dam aged plastic hinges at 

the core and cover o f  the RC bridge colum ns w hen subject to earthquake loading.

Seism ic analytical m odels based on beam -colum n elem ents are used to perform  non-linear 

dynam ic analyses, to predict the plastic behaviour at pre-failure stages and strength 

degradation at post-failure stages. But they are not capable o f  predicting the local crack



growth and its effects on adjacent zones. Therefore, fracture analysis is significantly 

important to simulate the local damage in a small-scale model in order to have a more reliable 

understanding of such problems under any level of vulnerability. However, it is important to 

know that the damage growth mechanism in quasi-brittle 3D continuum under dynamic 

loading is still a complex subject in Mechanics of Materials [6].

Two major approaches have been followed with this aspect, the first approach is using the 

Fibre Element Method to perform a non-linear dynamic analysis, and to determine the global 

damage by using the energy-based method. In addition, this analytical model is used to 

approximate the local damage in the cover and core of the RC column section, by using a 

stress-based method. The second is a small-scale approach in which the Discrete 

Element/Finite Element Method (DE/FEM) is used to determine the local damage in the 

elements for only a short duration of the seismic history record. Despite its excessive 

computation time and capacity, the DE/FEM model provides significant information about 

the local damage state in the RC column core, which enhances understanding of the seismic 

performance of the structural member under any level of vulnerability.

When several levels of vulnerability compile together in one structure, it is very important to 

think of other alternatives of structural systems that are more capable to resist the seismic 

loading. It is not logically successful to adopt the same structural system for different cases of 

loading, failure modes, confinements and rates of loading. Two important tasks should be 

considered in this respect:

1. Adopting structural alternatives for single RC columns supporting single or multi­

cell box-girder bridges, such as Seismic Isolation Bearings SIB’s, carbon fibre 

reinforced polymers CFRP [5], steel confinement jackets [6], pre-stressed (post- 

tensioned) columns and buckling-resistant braces BRB. Such systems are 

specially designed to plastically control the damage in the RC columns and 

dissipate the seismic energy during the extreme seismic event in the safest 

manner. Other alternatives such as seismic-energy dissipation braces [7] are 

utilised to maintain the main frame members to remain perfectly elastic during the 

earthquake event, and allow secondary members to deflect plastically with 

minimal damage.

2. Adopting small-scale fracture analyses to investigate thoroughly the structural 

damage, and introduce a more reliable design for the RC single columns
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supporting box-girder bridges. Typical designs with seismic design criterion SDC 

based on the Demand/Capacity principle must be verified for the functionality and 

non-disruption of the assumed ductility of the structure. Fracture analysis should 

also be utilised to verify the workability of RC columns enhanced with one of the 

aforementioned structural damage-controlled devices such as SIB’s, CFRP’s and 

BRB’s.

1.5 OUTLINE OF THE THESIS

Chapter 2 is concerned with a literature preview for the topics related to this research in 

general, and the publications of some of the subjects discussed in the chapters of this 

research. Chapter 2 reviews topics on seismic performance, seismic spectra, damage indices 

and fragility measures. It also focused on important shaking table tests that are significantly 

used in this research, and addresses a variety of numerical tests that were introduced by 

researchers to simulated RC columns under seismic loading.

Chapter 3 is concerned with an explanation of the theoretical basis upon which many of the 

topics of this research have been discussed and numerically analysed. The main topics in this 

research include Equilibrium of Forces in the Elastic Medium, Equation of Motion for the 

Dynamic Body, Failure and Non-linear behaviour of Isotropic Materials, topics in Earthquake 

Engineering, Fracture and other selected dynamic topics.

Chapter 4 is concerned with applying the Fibre Element Method in a computational algorithm 

by using the MatLab program, to solve non-linear dynamic problems, and investigating some 

of the parameters that influence the validity of the code when compared with the results of 

one of the Fibre Element software packages; the SeismoStruct [10].

Chapter 5 applies the SeismoStruct software to solve a case study that was analysed and 

investigated in several important technical report publications in the field of RC 

reinforcement concrete bridge columns under strong ground motion earthquakes. In this 

chapter, more investigations are conducted about energy-based damage, stress-based damage 

and the global and local damage indices. There are more investigations about energy 

dissipation, and its correspondence to the damage potential. In addition to discussing the 

importance of applying the seismic isolation bearings as one of the major devices to dissipate
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the seismic energy and mitigate the damage potential in the RC bridge columns when 

subjected to strong ground motion.

Chapter 6 is dedicated to the application of the combined Discrete Element/Finite Element 

Method to solve the same proposed problem by using the Explicit-Elfen algorithm that’s 

developed in Swansea University, and has been applied in various fracture analyses. In this 

chapter, the proposed problem of RC bridge column is set up, and the theoretical basis for 

failure criterion, fracture model, pre-failure, post-failure and post-fracture for concrete as a 

quasi-brittle material is explained, in addition to the elasto-plastic behaviour of the steel 

reinforcement bars. Difficulties that have been encountered and the computational problems 

concerning the time-steps, time of computational analysis and initiation of cracks are also 

discussed.

The local damage can be determined in the column’s cover and core at every time-step, and 

the mode of failure is monitored in the concrete and steel reinforcement bars. Important 

conclusions were obtained in terms of disruption of the assumed ductility in RC bridge 

columns when subjected to levels of damage vulnerability.

In chapter 7, two different topics are presented; the effect of loading rate on the performance 

of RC bridge columns, and the multi-scale analysis in RC structures. In the first topic, 

fracture analyses are conducted to investigate the effect of different loading rates on the RC 

damage. The second topic is presenting a technique for analysing a small-scale model from a 

larger-scale model in order to conduct the fracture analysis for a beam-column joint selected 

out of a global RC frame structure.

Chapter 8 concludes the major achievements from this research, in addition to important 

recommendations and practical suggestions for the design of single-RC columns supporting 

single and multi-cell box-girder bridges. Additionally, specified points of criticism on the 

Eurocode8 are documented, in relation to the topic of this research. Finally, a proposed future 

work that links between research and practice is suggested, with possible applications on the 

field of motorway bridges in seismically active regions in Libya.
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2.0 INTRODUCTION

Earthquake effects have been a growing interest in the recent years for many structural 

engineers in both structural analysis and design. In addition to regular moving loads of 

vehicles and self-weights, reinforced concrete bridges have taken a wide portion of research 

in their liability to resist severe lateral loads due to wind forces, flood waves and earthquake 

strikes. Bridges serve as vital links that are required to be functional after an earthquake to 

provide access to hospitals, fire stations and a variety of other important services. A bridge 

failure data base website by Cambridge university [1] lists over 380 bridge failure cases 

which occurred over the world between 1800 and 2009, documenting the reason of failure 

attributed to natural hazards (such as earthquakes, wind storms, soil failure and floods), 

overloading, design error, human error, and others. Over 230 bridge failure occurred between 

1970 and 2009 [1].

On the seismic issue, many research efforts focused on investigating the ductility and 

integrity of the bridges’ supports; namely, piers and supporting columns. Such supports were 

very much tested for their seismic resistance together with their foundations, soil-structure 

interactions and bearings carrying the bridge deck. The research efforts were conducted on 

both the experimental and analytical models which are supported by theory and mathematical 

background, in addition to field observations on site for damage assessment after the 

earthquake event.

Earthquakes have affected bridge structures as they are excited by seismic loads laterally (or 

transversally), longitudinally and vertically. Responses of bridges differ according to the 

structural configuration, material, bridge type and seismic site. For example, girder-type 

bridges with single frames, multi-spans, transversal column lay-outs or single piers respond 

differently when subjected to an earthquake.

In this work, focus will be directed towards investigating the behaviour of reinforced concrete 

(RC) single columns supporting box-girder bridges when subjected to earthquakes. Single 

and multi-cell box-girder viaducts are widely used in the construction field with various 

forms and methods of structural layouts as in accordance to the type and size of the designed 

bridge. The considered box-girder in this research belongs to the (In situ single-cell box 

girder) family of bridges.

In this type, a bridge deck is constructed span by span and cast in place using different 

construction methods and according to different structural formulations. In situ single-cell
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box girders could span from 40 to 270 meters [2], and are most likely to be excited by ground 

motions at any direction of the seismic action. However, such girders with prescribed 

constant depths could span up to 70 meters only. Single-cell box girders with struts 

supporting side cantilevers of the girder deck have been successfully used in several projects 

in the UK and worldwide [2].

The structural design for bridges is based on the limit state conditions stated in several Codes 

of Practice for RC bridge design. The limit state given in the (BSi) is the permissible 

deflection and crack of a RC section [3]. This has been articulated for dead load and moving 

load cases which are imposed on the bridge, in addition to the seismic-equivalent lateral loads 

which is statically imposed on the piers. However, vertical seismic effect on building 

structures has not been included into practice except under special conditions [4]. Moreover, 

vertical seismic vibrations are to be considered when the ground acceleration is greater than

0.6g [5]. Quite relatively few researchers have discussed the nature and damaging effect of 

the seismic vertical component on the reinforced concrete bridge decks. The Eurocode8 

considers its effect if the structure is located within 5km of a seismo-tectonic fault or in a 

highly classified seismic zone [5]. Some researchers assumed that 2/3 of the lateral seismic 

load could be equivalent to the vertical seismic component [5], however, this estimation does 

not necessarily reflect a general condition of the seismic nature [4].

The BS5400 (BS code for bridge design) excludes any dynamic effects on bridges apart from 

the impact effect due to highway loadings [3]. According to the BS5400, only footbridges are 

to be dynamically analysed since they are excited by 0.50y[f^ , where f 0 is the computed 

natural frequency for a multi-span footbridge structure [3].

These comments, clearly, underestimate the effect of ground motions on bridges and 

particularly the combined lateral and vertical seismic components on bridges, therefore, 

neglecting its corresponding contribution in structural response, especially when evaluating 

the damage effect. In fact, incidents of considerable post earthquake structural damages can 

be attributed to the vertical components of the ground motion, especially for bridges with 

footings based on soft soils, such as the bridge collapse during the Luma Peirta earthquake in 

1989, where those segments of the bridge erected on soft soils were severely damaged. Due 

to the effect of combined horizontal and vertical ground motion, other cases occurred in 1994 

in Northridge, Hyogo-Ken Nanbu earthquake in Japan in 1995, Chi-Chi earthquake in 

Taiwan in 1999 and Bhuj earthquake in Gujarat in India in 2001 [6 ].
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2.1 EARTHQUAKE ENGINEERING AND STRUCTURAL 
DYNAMICS

Earthquake Engineering is the scientific field concerned with protecting society, the natural 

and man-made environment from earthquakes by reducing the seismic risk to socio­

economically acceptable levels [7]. In general, it is concerned with the study of structural 

behaviour in response to seismic excitations. One of the main objectives of earthquake 

engineering is ‘to design, construct and maintain structures to perform at earthquake exposure 

up to the expectations and in compliance with building codes’[8]. In other words, the 

structure should be properly designed so as to withstand the seismic loading effects with an 

acceptable level of damage.

In general, Earthquake Engineering is thoroughly related to major topics in Structural 

Dynamics Engineering, which covers all loaded structures that respond in a fairly faster

frequency fI, (or less faster by a limit), than their natural frequencies a)n ; i.e 0.25 < — <10. In(On

more precise terms, structures behaviour is dominantly dynamic when they are unable to 

respond, i.e. to deflect, as quickly to the time-dependent loading, thus they vibrate, and their 

maximum response u max would be different from peak response under a static loading u stat  

of the same magnitude; i.e., their Dynamic Factor would either be larger or less than unity, or
, .m a x

Df =  —̂ r ±  1.0.

In the following sections, some of the main topics in Earthquake Engineering and Structural 

Dynamics are reviewed from selected published research papers. Some of these topics are 

directly related to the subject of this research, and others are indirectly relevant to it. Before 

this it is useful to have a historical background on the topic of Performance-Based Seismic 

Engineering (PBSE), which is related to many topics in Earthquake Engineering.

2.1.1 Historical Background on PBSE

Before 1990 the US International Building Code had adopted a force-based concept for 

design, which focused on strengthening members’ sections to take extra load, but it did not 

consider the overall behaviour of the structure [9]. Buildings with such design strategy have 

shown poor performance during earthquake incidents.
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From 1990 to date, the Eurocode8 has laid a new base for the so called capacity-design 

strategy which has adopted deformation-based and energy-based approaches to reach a 

seismic design [9]. The philosophy of the capacity design is to dissipate energy throughout 

the building itself. For a portal frame structure, a strong-column/weak-beam design strategy 

would be adopted to let the inelastic energy dissipate throughout plastic hinges, which initiate 

on those weak beams. For different types of structures the plastic hinges would have different 

positions on the structure [9].

The plastic hinges, or damaged spots, are the means through which most inelastic energy is 

dissipated, and act as ‘hysteretic damping devices’ that would bring the structure to some 

balanced energy state and force equilibrium. It would control the failure of a structure to the 

minimum extent in order to increase Life Safety measures.

This strategy has changed after the 1994's North Bridge earthquake and 1995's Kobe 

earthquake [9]. Both earthquakes caused a huge loss in the economy and tremendous costs, 

people started to think about preserving a structure's serviceability as much as life safety. 

This brought up what is known as Performance-based strategy which focuses on limiting the 

expected damage in the design to maintain the structure’s serviceability after the earthquake 

incident [10]. Serviceability and reparability of the assessed structures are very much related 

to the state of damage that the structure has incurred.

This leads to the field of evaluation of damage in RC structures, which requires knowledge 

about fracture mechanism and simulation of crack growth as the structure is subjected to the 

seismic excitement. In addition, Performance-based design requires experience in designing 

the RC structural members so as to control the position and magnitude of the expected 

damage of plastic hinges [10].

2.2 ENGINEERING APPROACHES IN EARTHQUAKE 
PROBLEMS

2.2.1 The Displacement-Based Approach

One of the most popular methods that has been used in earthquake engineering practice and 

research is the displacement-based approach, which is based on constructing the Pseudo 

Velocity-Acceleration-Displacement (V-A-D) Elastic Response Spectra, which assign the 

peak motion parameters for the target earthquake. The Pseudo V-A-D Inelastic Response 

Spectra are then found from the elastic spectra either by the equal-energy principle or the
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equal-displacement principle, using the strength reduction-ductility-period (R-fi-T) 

relationship [11].

2.2.1.1 The capacity-demand spectrum

The Applied Technology Council (ATC) published the ATC-40 [12], for the PBSE for 

existing RC buildings, which constructs the displacement-capacity curve through running the 

so-called Push-over test analysis, in which the (whole structure) is tested to its ultimate 

ductile capacity under static loading for the purpose of evaluation. Then, both demand and 

capacity curves are plotted together in a pseudo acceleration/pseudo displacement graph, 

Figure 2.1, in order to determine the so-called (Performance Point) [13], at which the 

structure is evaluated as seismically balanced [13]. The seismic Capacity-Demand ratio (C/D) 

is used as an explicit expression to check the structure performance near collapse, thus if C/D 

< 1.0, the bridge is regarded safe, with acceptable damage effects. Then, damage can be 

estimated according to the displacement of the performance point, as shown in Figure 2.1.b, 

which should indicate a relatively low damage index.
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Figure 2.1.a Capacity /Demand spectra [13]. Figure 2.1.b Estimated damage at performance point

Sung et al [14] argued that conventional seismic evaluation methods for existing bridges have 

drawbacks and are not reliable, since they adopt a simplified strength-based linear procedure 

to estimate the non-linear demand of the earthquake. Moreover, they consider a single 

structural performance only (one ground motion intensity) to determine the demand [14]. On 

the other hand, R. Riddell and E. Jaime [15] argued that the performance-based design need 

not to be specified through a set of ground motions of different intensities, but through one 

design motion with performance controlled by the selected design parameters (strength or 

ductility) and deformation capacity supplied.
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2.2.2 Energy-Based Approach

The design concept of conventional maximum value-based seismic design method is based 

on the monotonic loading condition, which does not take into consideration the cumulative 

damage caused by the seismic excitation with hysteretic characteristics [16]. However, this 

will lead to unexpected damage in structures for earthquake load even slightly larger than the 

design load of maximum value [16]. The direct displacement-based design method is a 

maximum value-based seismic design method but it indirectly accounts for the energy 

dissipation due to inelastic deformation, therefore many researchers made a lot of effort in the 

field of energy-based seismic engineering [16]. The main design parameter in energy-based 

seismic design methods is the hysteretic energy response of a structure. The hysteretic energy 

is a ‘counter weight’ for the earthquake induced damage, and therefore, the design procedure 

will take into account all possible accumulated damage effects. The concept of energy was 

first induced in seismic design by Housner [17], five decades later researchers started to pay 

attention to this concept! Riddell and Garcia [16] introduced a method for constructing the 

energy demand spectrum based on 52 earthquake records, and deduced that damage occurs 

not only due to maximum ductility attained but also due to the hysteretic energy dissipated by 

the structure. Leger and Dussault [18] investigated the effect of viscous damping on energy 

dissipation of structures, Akbas et al. [19] developed a procedure to dissipate energy by 

accumulative plastic response, assuming linear distribution of dissipated energy along the 

height of the building. Leelataviwat [20] used the concept of energy balance to develop an 

energy-based seismic design method. Using the balance energy concept Dasgupta [21] 

obtained a base shear force for a buckling-restrained braced frame (BRBF) that’s 

significantly smaller than that obtained by the displacement-based design approach. Kim et 

al. [22] also used the energy balance concept for a BRBF by having the hysteretic energy 

demand equal to the energy dissipated by the buckling-restrained braces. H. Choi and J. Kim 

[16] proposed a seismic design procedure for BRBF structures using hysteretic energy spectra 

and accumulated ductility spectra, assuming frame members to remain elastic during the 

earthquake loading event, whilst BRB members sustain all seismic input energy and dissipate 

it independently. This was also performed by the energy balance concept but with using a 

different scheme to compute the hysteretic energy [16]. H. Choi and J. Kim used 20 

earthquake records to construct the spectra for SDOF structures and verify this design 

procedure [16].
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Bojorquez et al. stated that even though there is no agreement on the way that energy 

demands should be accounted for, all experimental and analytical studies indicate that 

structures can be protected from the effect of plastic demands by limiting their maximum 

deformation demand to be significantly smaller than the ultimate deformation capacity [23]. 

Accounting for cumulative plastic deformation demands can be achieved through the use of 

one of the following [23]:

• Damage indices; which are capable of considering the cumulative plastic deformation 

demands, or

• Dissipated hysteretic energy spectra.

Bojorquez et al. proposed a reliability-based seismic evaluation procedure for the seismic 

design of steel structures, taking into account the reliability and cumulative deformation 

demands through the use of normalized dissipated hysteretic energy spectra [10].

Recent studies have advised the use of energy concepts as an alternative way to the 

traditional design strategies for the identification of both seismic demands imposed by the 

earthquakes and structural capacities that meet with such demands [24]. Decanini and 

Mollaioli [24] stated that the energy balance formulation is much more effective in concept 

than the force equilibrium equation since it provides explicit control of balance over the input 

and dissipated energy. The considered energy is the inelastic input energy, which is the sum 

of the hysteretic energy and the damping energy, since the accumulation of kinetic and strain 

energy rates is zero [11]. Hysteretic energy spectrum is more comprehensive than other 

spectra, and is best correlated with damage [24], therefore, Decanini and Mollaioli [24] 

suggested a method to estimate seismic demands of hysteretic energy (dissipated energy) 

from the knowledge of both the elastic and inelastic input energy spectra. They also 

confirmed that damage depends on both ductility and energy dissipation, but the sensitivity of 

the input energy towards ductility and energy dissipation depends on the intensity of the 

ground motion [24]. They constructed a design hysteretic energy spectrum envelope, Figure 

2.2, relevant to the hysteretic model of the most significant strong ground motion records. 

Such a design envelope can be used to estimate any seismic demand on a certain 

structure[24]. Decanini and Mollaioli [24] found that the hysteretic energy to the input energy 

ratio is also varying along the period range, and is relevant to 3 major parameters; soil type, 

distance from the seismic fault and displacement-ductility ratio.
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Figure 2.2 Comparison of the design energy spectrum and those relevant to most significant strong 

ground motion records: Imperial Valley College, (Imperial Valley, 1979), Kobe JMA (Kobe, 1995), 

Sylmar Parking Lot, Newhall, Rinaldi, and SCS (Northridge, 1994). Soil S2. Df<5 km. 6.5<M<7.1. p=4.

[24].

2.2.3 Combination of Displacement-Based and Energy-Based 
Approaches

The inelastic spectrum can be combined with energy-dissipation spectrum to account for 

damage related to the hysteretic behaviour. Estimates can be made of ultimate deformation 

capacity of the structure required to meet a given performance level when subjected to a 

given design earthquake [15]. This was derived using the Park and Ang damage indicator by 

Riddell and Garcia [15] and simplified to be plotted as in Figure 2.3.
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Figure 2.3 Inelastic design spectrum, dissipated energy spectrum, and required deformation 

capacity spectrum, for design ductility p=5 and design ground motion specified 

by Ig; 85 cm/s and 44 cm. [15].
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2.2.4 Damage and Performance-Based Seismic Design PBSD

R. Riddell and J.E. Garcia in 2001 [15] expected that damage assessment will become a 

central issue in the years to come, since the seismic codes emphasis has been towards 

strength of a structure to resist the base shear forces and base moments only, and no accurate 

verification of the seismic performance for the designed structure had ever been made [15]. 

The performance-based seismic design is used to ensure that specific damage-based criteria 

are met [25]. A performance objective represents a specific risk, stated in terms of the desired 

structural behaviour (or damage state) to be associated with a specific level of earthquake 

demand (or seismic hazard) [15].

In concern with bridges, Sung et al [14] stated in 2009 that conventional seismic evaluation 

of existing bridges show inaccurate and unreliable information since they use a strength- 

based concept to indirectly estimate the non-linear behaviour of structures. A seismic 

performance-based design of a structure implies that the seismic capacity of a structural 

response should meet the seismic demand of that structure under the target ground motion 

excitations. However, when a shortage of seismic capacity exists, certain damage would 

occur corresponding to that shortage. It is the damage index that expresses the shortage of 

efficiency in the structure, or it is the fragility index that describes the probability of 

exceeding the damage state [26]. The severity of damage is related to the amount of energy 

dissipated during the inelastic stage, and in RC structures concrete starts to sustain the 

damaging process much earlier before the steel reinforcement tends to yield [27]. Therefore, 

as fracture is very much related to the hysteretic energy and maximum ductility, fracture 

energy could be released in some critical members during minor damage stages of the 

structure [27].

There seems to be an agreement (between researchers) on the fact that the earthquake damage 

occurs not only due to maximum deformation (or max ductility) attained, but it is associated 

with the hysteretic energy dissipated by the structure as well [15].

2.2.5 Damage-Based Approach

Most studies in fragility analysis on bridges use column ductility as the primary damage 

measure [26]. But other effective damage indicators are based on energy dissipation, and one 

of the best-known local damage indices is the one proposed by Park and Ang [28], which
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defines a linear relationship between the displacement and a damage index, yet it involves the 

ductility and rate of dissipative energy [29]. Another approach was by Hwang et al [30] who 

used the capacity-demand ratio of the bridge columns to develop fragility curves.

As a qualitative descriptive approach, the HAZUS 97 is a technical manual used for 

estimating the structure loss in bridges due to lateral earthquake movements, and it 

determines the damage states as they vary between no damage -to- complete damage state 

[31]. An extension to the HAZUS table was created by Dutta [32]. HAZUS was used in an 

analytical study on typical bridges [26], in which damage states were classified in terms of 

ductility measures and displacement-based domains.

One of the recent researches was by Erduran and Yakut [29] in 2006 who developed 

displacement-based damage functions for the components of RC moment-resisting frames. 

They developed damage index curves for different ductility and PGA levels and crack width- 

rotation curves for different displacement levels [29], as shown in Figures 2.4 and 2.5. The 

variety in relationships between damage parameters indicated the complexity of damage 

evaluation in RC structures under seismic load and thus different formulae have been 

obtained for different RC members (columns, beams and walls) independently. Other 

parameters such as the structure’s period also affects the damage. During a severe load with a 

long-period structure, the hysteretic energy increases and the maximum deformation could 

become close to the ultimate deformation value, affecting the damage index significantly 

[15].
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Figure 2.4 Variation of damage curves [29], Figure 2.5 Variation o f crack width curves [29]

Important notes on damage-based inelastic spectra by Basu and Gupta [33] stated that it is 

essential for the seismic design practice to incorporate a measure of cumulative damage in the 

inelastic spectra to provide information about forces and maximum inelastic deformation, in 

addition to the magnitude of associated damage. They summarized others’ work based on the 

damage criterion such as Fajfar [34] who proposed equivalent ductility factors based on
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damage and used them for constructing the inelastic spectra. Decanini and Mollaioli [24] 

stated that recent seismic destructive events showed that values of ductility higher than 4 

implicate unacceptable damage levels. On the other hand, several authors do not agree about 

how earthquake input energy is sensitive to ductility [24].

2.3 SEISMIC DAMAGE & DAMAGE INDICES

2.3.1 Definition of the Damage State

Pier columns are most critical components in conventional highway bridges with continuous 

deck and monolithic abutments, a number of studies have developed the criteria for their 

damage index and corresponding limit states based on the damage status or loss of load- 

carrying capacity [35]. Different damage indices are based on different measurers such as 

curvature ductility, displacement ductility and residual displacements. HAZUS [36] defined 4 

damage states, shown in Table 2.1 as slight, moderate, extensive and collapse damages. This 

definition is commonly adopted by many researchers.

Damage slates Description

N o damage (N) 
Slight/minor 
damage (S)

Moderate 
damage (M)

Extensive 
damage (E)

Complete 
damage (C)

N o damage to a bridge
Minor eracking and spalling to the abutment,
cracks in shear keys at abutments, minor spalling
and cracks at hinges, minor spalling al the column
(damage requires no more than cosmetic repair) or
minor cracking to the deck
Any column experiencing moderate cracking and
spalling (column structurally still sound), any
connection having cracked shear keys or bent
bolls, or moderate settlement of the approach
Any column degrading without collapse (column
structurally unsafe), any connection losing some
bearing support, or major settlement o f  the
approach
Any column collapsing and connection losing all 
bearing support, which may lead to imminent deck 
collapse

Table 2.1 Description of bridge damage states (taken from HAZUS 97) [26]

2.3.2 Assessment of the Seismic Damage

Performance-based design needs to have a reliable assessment of the seismic damage 

potential since the cost of construction or rehabilitation of existing structures depends on the 

assessment of the seismic damage [37]. Excessive costs for new construction could result if
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the expected intensity of the earthquake is greatly overestimated, severe damage and loss of 

life may occur if the intensity is seriously underestimated [37], Therefore, “a reliable 

definition of seismic intensity has to relate to the effect of damage on structural behaviour in 

order to assess the potential seismic hazard and to classify the seismic input’’[40]. E Cosenza 

and G Manfredi divided the damage Indices into 3 types [37]:

1. Damage measures based on ground motion parameters

This type is based on data from earthquake records alone with no structural response 

data involved. The peak parameters, which are PGA, PGV and PGD, are used to 

formulate the earthquake’s destructiveness that are called ‘Integral Parameters’ which 

are the basis for measures such as the Arias Intensity and the Saragoni Factor [26], 

Integral parameters are the root mean square RMS of acceleration, velocity or 

displacement value for x ( t )  in the following definition of an integral parameter 

formula:

R M S X =  [ ± f ‘Ex 2 ( . t ) d t ] 1/2 (2.1)

where t E is the total duration of the earthquake record, which is very influential on the

level of structural damage. “Records with large acceleration and spectral values

produce slight damage if the duration is short (e.g. the Ancona earthquake in 1972), 

whereas records with low acceleration and long duration can be very destructive (e.g. 

the Mexico earthquake in 1985)” [37]. The integral parameters are effective for 

measuring the energy content of a seismic event, and for including the seismic 

duration. Other damage measures do not associate the seismic duration in their 

formulations.

2. Damage measures based on Linear response:

These are simply the maximum elastic pseudo-acceleration, pseudo-velocity and 

displacement determined for destructive earthquakes. Elastic spectral representation 

can be assumed as a basic measure of the earthquake’s potential. Other parameters 

based on these values are also used as measures for destructive earthquakes.

3. Damage measures based on Non-Linear response:

The damage potential in an in-elastic system depends on two parameters:

1) The inelastic pseudo-acceleration, or simply the plastic acceleration, which 

represents the strength demand of the ground motion on an inelastic system. The 

plastic acceleration represents the behaviour of the structure independent of the 

dissipated energy.
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2) The hysteretic energy that represents the cyclic collapse in an in-elastic structure 

that shows a cumulative damage. The energy dissipation is due to the plastic 

cycles in the structural response. In order for the structure to dissipate the total 

amount of hysteretic energy, the structure has to develop a number of plastic 

cycles to reach the maximum ductility, or maximum plastic displacement.

2.3.3 Typical Damage Indices

Typical damage states for concrete columns and bearings are shown in Table 2.2, with their 

corresponding damage index criteria available in the literature [36]. In this table the damage 

is captured an based on either curvature ductility, displacement ductility, loss of load-carrying 

capacity, drift ratio, displacement or shear strain. This description of damage states given by 

HAZUS97 and other sources [26,35,36,38,39,40,41] provides one of the important qualitative 

damage definitions for loaded RC columns. The definition of the damage states are usually 

based on recommendations of previous studies and results from experimental tests, but 

engineering judgement should also be used when determining the damage states, as they vary 

depending on type, age and condition of the bridge [26].

Bridge
component

DI Slight (DS =  1) Moderate (DS =  2) Extensive (DS =  3) Collapse (DS =  4)

Column A Physical phenomenon Cracking and spalling Moderate cracking and spalling Degradation without collapse Failure leading to
collapse

B Section ductility V, > 1 Ht > 2 Hk > 4 >7
C Displacement ductility fid > Md > Hyidd U-d Mrr=0.002 9-d -*■ Mmw

(1-0) 0-20) (1.76) (476)

D Y =  (Hd + y  > 0.14 fy > 0.40 y > 0.60 y  > 1.0
E Load carrying capacity loss fa fa, fa >0% fa >2% fa  > 5% fa >20%

fa >5% fa  > 10* fa, > 25% fa  >  50%

F Drift ratio 9 9 > 0.007 9 >  0.015 9 > 0.025 9 > 0.050
Bearing B Displacement S S > 0mm S > 50 mm S > 100 mm i  > 150 mm

C Shear strain y y  > 100* y  > 150% y  > 200% >' >  250%

Table 2.2 Summary of Damage Indices DI and corresponding Limit States LS for concrete columns and
seismic isolation bearings [26,35,36,38,39,40,41]

The Damage Indices for columns are: Physical phenomenon, Curvature ductility fik , 

Displacement ductility \id , Shear strain y  =  (fid + /?/60/mu , horizontal and vertical Load 

Carrying Capacity Losses Ph>Pv and Drift ratio 0. The Damage States corresponding to each 

of these Indices are defined according to the following limits: Slight(DS=l), 

Moderate(DS=2), Extensive(DS=3) and Collapse(DS=4). It is obvious that these damage 

indices depend mainly on the response of the structural member regardless of other seismic 

factors such as the hysteretic energy and duration of the earthquake record. They can also

27



differ in estimating the damage intensity, since each one records a different aspect of the 

structure’s response for different modes of failure, such as either shear or flexural modes of 

failure.

2.3.3.1 The damage index of Mergos & Kappos
Mergos & Kappos [42] introduces a more specific Damage Index for damage assessment of 

RC columns, which combines both curvature and shear distortion. They consider that an RC 

member may fail either in flexure mode, in shear mode or in both. Hence, the total damage 

occurs when an RC member reaches flexure capacity or shear deformation capacity. This is 

represented by:

D-  =  1 - ( 1 - ^ f ) a ( 1 - ^ f ) i’ <2-2>

Where, (pu is the curvature capacity and yu is the shear distortion (strain) capacity. The 

variables a & b depend on the variation of Dt o t , and are taken as 2/3 [42]. However, this 

index is valid only in conjunction with methods that utilises moment-curvature and shear- 

strain hysteretic relationships for the calculation of element flexibility matrix [42]. This index 

is not appropriate when the shear-flexure interaction is disregarded [42].

2.3.3.2 Other Damage Indices
The following 3 Damage Indices share common response descriptors, and are produced by an 

inelastic SDOF structure subjected to ground motion loading [43]. They are based on:

• (parameters from monotonic loading analysis): ultimate displacement x u , ultimate

ductility /xu , yield displacement x y  and yield strength f y , which are independent of the

loading history.

• (parameters from ground motion loading analysis): maximum displacement x max and 

maximum ductility fimax, which depend on the loading history.

These 3 Damage Indices are namely [43];

1. Powell & Allahabadi (1988) proposed the Damage Index based on ultimate ductility,

D L  =  x™*~xy = SsffiCi (2.3)
^  XU- X y  Hu~  1

2. Cosenza et al. (1993) and Fajfar (1992) [34] proposed a damage index based on the 

structure hysteresis energy EH as follows:

D I h  =  £7 ^ T  (2 '4>Hu 1

Dip  does not include the effect of hysteretic energy, and DIH does not include the 

effect of repeated cyclic loading.
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3. Park and co-workers (1985) developed a simple damage index based on experimental 

data. The Park & Ang index is:

DIPA =  *22£ + =  +  « _ £ » _  (2.5)
x u f yxy fyxy

P  is a positive constant that weighs the effect of cyclic loading on structural damage, 

and is extracted from experimental data. The damage is measured on the basis of the 

remainder of unity left from this demand-capacity ratio.

Park & Ang damage index does not take into account the effect of plastic cycles, but 

rather considers the dissipated energy under a monotonic-type loading [18], while 

computations of the analytical damage consider non-linear hardening, softening and 

unloading behaviour, giving a more accurate definition for the damage.

2.3.4 Performance Limits in Damaged Members

In comparison with the previously mentioned description of damages, the state of structural 

damage based on Park & Ang damage index DI is defined in a more practical classification, 

associating the repairability of the structure after damage as [45]:

(a) repairable, DI<0.40,

(b) beyond repair, 0.4<DI<1.0, and

(c) a state of total collapse, DI>1.0.

El-Attar and Ghobarah [44] introduced another classification of the damage index based on 

the load-deflection relation in a monotonic loading analysis such as a force-drift relationship, 

as shown in Figure 2.6. The performance of a structure is defined in terms of damage states 

as a structure with no damage, minor damage, repairable damage un-repairable damage and 

progressive collapse.

progressive
collapse

minor
damage

i*sJt3M
atM
2
1m
©

2
£

Displacement or drift

Figure 2.6 Limits of structure performance in a load-deflection relationship [44]
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Enrique Alarcon and a group of researchers [45] developed a numerical model for RC 

members associated with fracture theory. The model provides the answer for the following 

important question concerning the use of damage indices; For a given set of damage values, 

how safely can the damaged structure be used, and to what extent it is repairable.

Enrique Alarcon and a group of researchers [45] used the Griffith criterion for the energy 

release rate of a member with damaged hinges to construct a model that simulates the 

stiffness degradation of the member under cyclic loading, and allows to characterise the 

elastic and collapse prevention limits by knowing the cracking, yielding and ultimate 

moments of the member’s cross section. Such prevention limits correspond to the required 

damaging values [45]. Together with the Damage Index DI the proposed model is also 

capable of predicting a Reparability Index RI, as shown in Figure 2.7. From the plot of the 

two indices, all damages prior to the intersection point of the two curves are theoretically 

repairable, and all points past to the intersection point are un-repairable.

Park A Ang index

R ffin M lfty M a

t S u IS 30 35 40

Dij placement (m.m.)

Figure 2.7 Evolution of the damage indices during the numerical simulation [45]

2.3.5 Fragility curves

“Fragility curves describe the probability of a structure being damaged beyond a specific 

damage state for various levels of ground shaking”[26]. This means that when a structure is 

most probable to exceed its damage state to a higher damage state, it is highly fragile. Such a 

measure is as useful as the damage index since it describes the damage state qualitatively as a 

damage state classification. Fragility curves are independent from damage indices in the way 

that a high fragility curve for a structure can describe the high probability to exceed the 

damage state for a high or low damage index, i.e. a highly fragile curve may be used to
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describe an element with a slight or minor damage state, while a low fragile curve may be 

used to describe an element with an extensive damage state [26].

Fragility curves are also useful to compare between different bridge components (columns, 

fixed bearings, expansion bearings, deck, etc.) along different PGA’s, showing which 

component is more vulnerable at a certain PGA, and also comparing between different bridge 

systems. E. Choi et.al. [26] have developed fragility curves for 4 types of bridges in Central 

& Southern US, subjected to PGA’s from O.lg to 0.7g in the longitudinal direction, and were 

analysed analytically using the DRAIN-2DX fibre element software. It was concluded that 

the bridges run from least vulnerable to most vulnerable in the PGA intensity scale as 

follows: pre-cast multi-span continuous, steel girder multi-span continuous, pre-cast multi­

span simply supported and steel girder multi-span simply supported [26]. This indicates that 

multi-span simply supported bridges with steel girders are most likely to exceed their damage 

states at low PGA’s in this comparison, while multi-span continuously supported pre-cast 

bridges are less likely to exceed their damage states at low PGA’s in this comparison [26]. 

Fragility curves can also be developed based on empirical data, i.e. reported bridge damage 

data from past earthquakes and they are used for economic loss estimation as well as a basis 

for assigning retrofit prioritization [26].

2.4 SHAKING TABLE TESTS FOR SEISMICALLY 
DESIGNED RC BRIDGE COLUMNS

Results from both model simulation and experimental work verify the validity and reliability 

of the analytical hypothesis for the proposed engineering problem. In RC bridge structures 

under seismic loading, shaking table tests are conducted for either down-scaled bridge RC 

models or full-scale RC structural members [29].

In this section, the work of 4 important published shaking table experiments and numerical 

models for RC piers is reviewed in detail, with important concluding remarks documented for 

the benefit of this PhD research study. These published papers and technical reports are, in a 

sense, related with some conclusions based on previous work, therefore for clarity; they are 

reviewed herein according to their publishing dates.
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2.4.1 Nishida and Unjoh [46]

N ishida and Unjoh [46] conducted a series o f  shaking table tests for three types o f  cross 

sections, circular (600 m m  in diam eter), square (6 0 0 X 6 0 0  m m ) and rectangular (4 5 0 X 8 0 0  

m m ), under a near field ground m otion, and then conducted dynam ic analyses to investigate 

the effect o f  bilateral loading. The specim ens were excited by the JR Takatori Station record 

docum ented during the 1995 H yogoken N anbu Earthquake, which was used as the source o f  

input w aveform  [46],

The excitations, responses and dam ages for the three colum ns are sum m arised in the 

follow ing Table 2.3, and the final dam ages can be seen in Figure 2.8.

Specimen

section

PGA,

x-direction

Max lateral

displacement

x-direction

PGA,

y-direction

Max lateral

displacement

y-direction

damage

Squared

section

0.642g 0.120m 0.666g 0.200m Peeling o f cover and all 48 bars 

and few hoops buckled.

Circular

section

80%

o f 0.642g

0.100m 80%

o f 0.666g

0.150m Peeling o f  cover and 15 out o f 48 

bars buckled.

Rectangular

section

90%

of 0.642g

0.081m 90%

o f 0.666g

0.159m Peeling o f cover with severe 

damage and 12out o f  48 bars 

buckled. 30% o f  stiffness 

deterioration.

T ab le 2.3 Sum m ary o f  excitations, resp onses and d am ages for the three colum n types under shak in g  table
tests 14 6 1.

S q u a rr  Mrvtton

1000

500

( ircular eras*, section 
A M B P

1500

1000 .  - -r  r  .

500 T

Ktxtan̂ ulir truss hx(kid

F igure 2 .8  Final d am age p ortra its o f  RC colum ns 14 6 1
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2.4.2 Sakai and Mahin [47]

Due to the lack of ductility capacity of bridge columns, the 1995 Hyogo-ken Nanbu, Japan, 

earthquake caused destructive damage to many bridges in that area [47]. Many bridges lost 

their functionality because of permanent deformation, although some bridges did not collapse 

in the earthquake [47]. ‘More than 100 reinforced concrete bridge columns experienced a tilt 

angle of more than 1 degree (1.75% drift) and these columns had to be removed and new 

columns built because of the difficulty of setting the superstructure back to the original 

alignments and levels’ [47, 48]. Many researchers realised the need to mitigate the residual 

displacements of bridges to ensure serviceability after the earthquake [47].

Sakai and Mahin [47] conducted a numerical investigation for a circular RC bridge column as 

part of a research project to develop a new method that mitigates post earthquake residual 

displacements. Sakai and Mahin [47] introduced a numerical model based on fibre elements, 

cracked stiffness elements and rigid elements to investigate the behaviour of RC 1.83 m- 

diameter columns whose aspect ratios are in the range from 3 to 10, as illustrated in Figure 

2.9, and designed in accordance with the Seismic Design Criteria (SDC) of the California 

Department of Transportation (Caltrans) (2001). The residual displacements are computed 

according to the Japanese specification, with the ductility demand and the ultimate ductility, 

which are based on the demand/capacity balance of ductility. The residual displacements 

computed using the ductility demands are larger than 1% drift, which is the allowable 

residual displacement, according to the Japan Road Association JRA [47]. ‘If design criteria 

of limiting residual displacements were used, the target ductility demand commonly used in 

the U.S. by (CALTRANS) design practice would have to be substantially reduced, with 

corresponding impacts on strength, stiffness, and cost’ [47].

The analytical model is applied to determine the residual displacements for more than 250 

RC column models with various configurations of ‘self-centring’ methods, which resulted in 

an 85% reduction of the quasi-static residual displacement [47]. ‘Self-centring’ or ‘re­

centring’ systems are RC bridge columns with an unbounded, prestressing strand placed at 

the centre of the cross section, as shown in Figure 2.9, to reduce the residual displacements of 

the bridge structure after an earthquake event. Sakai and Mahin [47] applied 10 earthquake 

records of strong ground motions, listed in Table 2.4, to investigate the column behaviour 

under the dynamic loading.
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□ n n n n

D u ct

M rund

F igure 2 .9 A nalysed  RC colu m ns w ith  aspect ratios from  3 to 10, and ana ly tica l m odel w ith unbonded

strand s at the colum n cen tre 147].

Record Earthquake Magnitude
Epicentral PGA (m sec; )

Distance Normal Parallel

Tabas Tabas. Iran. 19"8 7.4 1.2 km 8.83 9.59

Los Gatos Loma Pneta. LTSA. 19S9 7.0 3.5 km 7.04 4 49

Lexmgton Dam Loma Pneta. USA. 1989 7.0 6.3 km 6.73 3.63

Petrolia Cape Mendocino. USA. 1992 7.1 8.5 km 6.26 6.42

Erz mean Erzincan. Turkey. 1992 6 r 2.0 km 4 24 4 48

Landers Landers. USA. 1992 7.3 1.1 km 7.00 7.84

Rinaldi Northndee. USA. 1994 6.7 7 .5 km 8.73 3.81

Olive View Northridge. USA. 1994 6.7 6.4 km 7.18 5.84

J\1A Kobe Hyogo-ken Nanbu. Japan. 1995 6.9 3 4 km 10.67 5 64

Takaton Hyogo-ken Nanbu. Japan. 1995 6.9 4.3 km 7.71 4.16

T ab le  2 .4 N ear-field  earthq uak e stron g  ground m otions used for d ynam ic an alysis |4 7 |.

M any researchers have studied analytically and experim entally such effect for various

structural system s, using a series o f  shaking table tests and analytical studies to identify the

key design variables and evaluate the effect o f  different ground m otions and different colum n

configurations for self-centring system s [51]. The results o f  the previous studies by Sakai and

M ahin [47] dem onstrated the basic viability and feasibility o f  self-centering colum ns for

bridges. They also found that the local unbonding o f  the mild reinforcem ent increases the

fatigue life o f  the colum n by reducing the possibility o f  developed peak strains [47].

In their num erical investigation, Sakai and M ahin [47] found that confinem ent o f  the concrete

core by further increasing the am ount o f  spiral reinforcem ent or providing steel jacketing
.

provided m ore resistance to m itigate the possible crushing o f  the concrete core [47].
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In respect to the loss o f  stiffness associated with the unbonding mild reinforcem ent in the 

plastic hinge region, Sakai and M ahin [47] suggested that increasing the area o f  the post­

tensioning strand can com pensate such small loss in stiffness.

Figure 2.10 shows the dynam ic responses o f  4 RC colum ns with aspect ratio o f  6 and with 

different configurations o f  self-centring com pared with normal RC colum n, subjected to 

Lexington Dam earthquake record [47]. The response show s a significant reduction o f  the 

residual displacem ents in the self-centred RC colum ns com pared with the norm al RC 

colum n.

Sakai and M ahin [47] studied the behaviour o f  self-centring in term s o f  the am ount o f  post­

tensioning applied in the colum n, since m ore com pression forces due to the post-tensioning 

can increase the self-centring but it can also cause earlier failure in the confined section.

Lateral Displacement (in)
-20 -10 0 10 20

400  RC column
- -  No. 3
'—  No 5 
 No 9 200 %

0

1

-400

0 3 0 6-0 6 0
Lateral Displacement (m)

Figure 2.10 Dynamic response of columns with aspect ratio =6, subjected to Lexington Dam record 1471.

2.4.3 Sakai and Unjoh [49]

M any researchers conducted a series o f  shaking table tests for RC bridge colum ns, subjected 

to static, quasi-static and dynam ic unidirectional, bilateral and m ultidirectional loading 

conditions [46,47,48,50]. How ever, research on m ultidirectional dynam ic loading on RC 

bridge colum ns is still lim ited due to the lim itation o f  capacity o f  research facilities [49], 

A lthough conducted tests provided valuable findings in seism ic design concerning the 

m ultidirectional dynamic loading effects, m ost colum ns were tested under conditions o f  near 

field ground m otion excitations, w hich usually have few dom inant pulses, but no 

experim ental investigations have been conducted under the repetition o f  strong pulses o f  

ground m otion until it was first perform ed by Sakai and Unjoh [49].
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A dvanced and reliable design procedures are still needed to evaluate seism ic perform ance for 

RC bridge colum ns under m ultidirectional loading o f  the ground m otion since the research in 

this area is still lim ited [49]. Further analyses are still needed for various ground m otions, and 

reinforced concrete colum ns with various natural period and flexural strength [49].

Sakai and Unjoh [49] investigated the dynam ic response o f  'A-scaled circular RC bridge 

colum n specim en under m ultidirectional strong repetitive pulsating ground m otion.

The selection o f  such ground m otion was aim ed to produce a target response o f  0.17 m 

(± 1 0 % ) , which was the m axim um  displacem ent obtained by the test o f  N isida and Unjoh 

[46].

Out o f  10 ground m otion records with repetitions o f  strong pulses, the record on the ground 

surface near the Tsugaru Bridge during the 1983 Nihonkai Chubu earthquake, Japan was 

selected and scaled up by 400%  for the required input, so that sim ilar m axim um  displacem ent

is obtained for a !/4-scalcd specim en. The P G A 's for the x, y and z directions after being
2 2 2 scaled up were 11.12 m /s , 9.52 m /s and 8.2 m/s , respectively, and the m axim um  lateral

displacem ents were 0.192m  in the x-direction before rebar fracture, and reached

approxim ately 0.18m in the y-direction after rebar fracture. The specim en w as subjected to

severe cover spallings, rebars buckling and fracturing. In fact, 22 o f  40 longitudinal

reinforcing bars were fractured, which occurred m ostly at the x-faces, and the core concrete

was com pletely crushed at the bottom o f  the colum n, nevertheless, the specim en did not lose

its stability [49]. Figure 2.11 shows the dam aged RC colum n base at the beginning and end o f

the shaking table test.

Salem
Frame]

Figure 2.11 Set-up of RC specimen and the resulting damage 149]

Sakai and Unjoh [49] spoke about a phenom enon in the relationship betw een lateral and axial 

forces, which are supposed to be proportionally  related to the cantilever-type structures. They 

found that the response lateral force is not significantly affected by the fluctuation o f the axial
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force for cantilever-type structures, as can be seen from Figure 2.12, in w hich the lateral 

forces increase as the axial forces decrease. They attributed this phenom enon to the 

difference in natural frequencies in the two directions. The predom inant natural period in the 

vertical direction (0.08 seconds) is 25%  o f  that in the horizontal direction (0.3 seconds), and 

thus the lateral and axial forces barely reached their m axim um  values sim ultaneously [49].

-100 -50 0 50 100
Lateral force m X (KN>

F igure 2 .12 R eversely  proportional relationsh ip  betw een axial and lateral forces for can tilever-typ e  RC

stru ctu res under d ynam ic load ing  |4 9 |.

Concluding Remarks:

The resulting responses o f  this test were considered as one o f  the m ain inspirations for this 

PhD research work, since it showed very clearly by experim ental evidence the vulnerability 

o f  a bridge RC single colum n, (typically designed based on a current seism ic design code o f  

Japan [49]), as it is subjected to m ultidirectional strong ground motion. It also showed the 

lack o f  reliable seism ic perform ance when several levels o f  vulnerability are com bined in one 

case.

The final results o f  this experim ent, as stated by the authors are; “22 out o f  40 longitudinal 

reinforcing bars were fractured, which occurred m ostly at the x-faces, and the concrete core 

was com pletely crushed at the bottom  o f  the colum n” , These findings are significantly 

im portant for this PhD research study, since it is focused on investigating the fracturing 

behaviour in the concrete core for seism ically designed RC colum ns under strong ground 

m otion excitem ents. W hat signifies the im portance o f  investigating this problem  is that most 

analytical m odels that determ ine the overall load-deflection relationship o f  sim ilar problem s 

do not in fact have the capability to com pute the core dam age under such a dynam ic m ulti­

directional loading. It should be noted that cracks due to dynam ic m ulti-directional loading in 

a RC body are too com plex to be sim ulated by FE form ulations, and is still not finally 

achieved by researchers.
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M r Junichi Sakai provided this PhD work with the input data files for the ground m otion 

records o f  Tsugaru Bridge 1983 earthquake o f  N ihonkai Chubu in Japan. The x, y and z 

ground acceleration records were used to obtain analytical results for the RC colum n 

structure which was m odelled by using the (Seism ostruct) non-linear dynam ic solver.

2.4.4 Jeong, Sakai and Mahin [51]

Jeong, Sakai and M ahin [51] conducted a series o f  shaking table tests to assess the ability o f 

partially prestressed RC colum ns with unbonded post-tensioning tendons to reduce residual 

d isplacem ents resulting under strong earthquake ground m otions. This work was conducted 

‘to study the effect o f  debonding o f  the mild reinforcing bars in the area o f  the expected 

plastic hinge, to study the effect o f  incorporating steel jacketing, com bined with local 

unbonding o f  the mild reinforcem ent, and to investigate the effect o f  m agnitude on the 

prestressing force’ [51].

This work tested four RC bridge colum ns '/4-scaled specim ens to conduct shaking table tests 

under strong ground m otions. The four RC colum ns are all with unbonded prestressing 

tendons provided in the colum n centre. The second and third specim ens PR C -U  and PRCU2 

had their longitudinal reinforcem ent bars debonded in the expected plastic hinge region, with 

some difference in the pre-stressing forces in the two cases. Bars are debonded by having 

them coated with wax and covered with a plastic sheath, to increase the fatigue life o f  the 

colum n. The last specim en PRC-UJ, shown in Figure 2.13, is also provided with debonded 

bars in addition to steel plate jackets incorporated at the expected plastic hinge zone [51].

4“ (102mm)

^2 Steel Jacket 
y. / = 1.52 mmTendon

Unbonded \  j 0 5"
Longinidmal \  (12.7 mn:

Reinforcement Spirals
12 Iff’No. 3 W3.5 (5.4 nun-diameter)

(10 mm-diameter) s - 1.25 (32 mm) ^

Figure 2.13 Cross section of all specimens and PRC-UJ specimen |51|
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Confinem ent o f  the concrete core by further increasing the am ount o f  spiral reinforcem ent or 

providing steel jacketing  can im prove the behaviour o f  the RC colum n. M oreover, steel 

jacketing  can also prevent spalling in the colum n cover during the inelastic response [51]. 

Jeong. Sakai and M ahin [51] concluded that ‘as m ight be expected, the use o f  a higher p re­

stressing force decreased the m axim um  displacem ents and residual displacem ents when 

subjected to the design and m axim um  level tests, but the dam age to specim en PRC-U2 was 

more severe than to specim en PRCU, due to the effect o f  the higher pre-stressing force.’

Sakai and M ahin [47] studied the behaviour o f  self-centring in term s o f  the am ount o f  post­

tensioning applied in the colum n, since that m ore com pression forces due to the post­

tensioning can increase the self-centring but it can also cause earlier failure in the confined 

section. A sum m ary o f  the seism ic responses and dam ages are illustrated in both Table 2.5 

and Figure 2.14.

specimen Description of specimen provisions Strong

ground

motion

PGA

Max lateral 

displacement (m)

dam age

PRC-2 Central post-tensioning tendons. 0.641g 0.2677 Developing cracks with 3 buckled 

bars

PR C -l Central post-tensioning tendons with 

bars debonded at PH zone.

0.654g 0.2788 Developing cracks with 2 buckled 

bars

PRC-U2 Central post-tensioning tendons highly 

prestressed, with bars debonded at PH

0 .6 18g 0.2512 Developing cracks with 6 buckled 

bars and 1 spiral fracture

PRC-UJ Centra! post-tensioning tendons with 

bars debonded and steel jacket at PH

zone.

0.650g 0.2445 Developing cracks with buckled 

steel jacket

Table 2.5 Description of specimens and damages under strong ground motion tests |511

Figure 2.14 Damages in specimens at plastic hinge zones |511
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Concluding Remarks:

Such post-tensioning provisions enhanced the RC columns with very strong elastic potential 

to reduce the possible residual displacements that occur in traditional RC bridge columns 

when subjected to seismic loading. Due to this elastic ability, less plastic deformations are 

produced since the prestressed section is forced to apply less ductile capacity. However, the 

deformation is still plastic and the column drift still causes significant plastic damage in the 

plastic hinge zone, as was shown in Figure 2.14, and also described in Table 2.5. Even 

though such damages were considered a spalling type of damage that hits the cover only, with 

bar buckling [51], it is not known how much crack growth could have damaged the column 

core in reality.

Having a reduced residual displacement with a severely damaged section is still not an ideal 

performance for seismic resistant structures. As a matter of fact, a reduced residual 

displacement is significantly important to ensure serviceability and preserve the bridge’s 

functionality after an earthquake event [48], but the column must also be removed and 

replaced with a new one because of the high risk of possible core damage, consequently lost 

strength after being severely damaged and unreliability to resist another possible seismic 

strike.

2.5 NUMERICAL MODELS

2.5.1 Numerical Modelling using the Damage Theory

2.5.1.1 Continuum Damage Model (CDM), Calayir and Karaton [52]

The philosophy of this model is based on the Smeared Crack Approach (SCA), since it is 

based on determining the changes in the constitutive laws governing the cracking material 

without refinement of the mesh [52]. The constitutive laws of the CMD are based on the 

formation of the damage value d, which is based on Lemaitre’s elastoplastic damage theory

[3]:

<T* =  ^  <T (2.6)

Where, a* and a  are the stresses after and before damage respectively. Lemaitre’s principle 

for damage is based on determining the reduction in the net area of the loaded surface due to 

the distributed micro-cracks in the material volume [53].
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If the stress directions are fixed as in the initial crack inclination, a zigzag propagation of the 

crack profiles in the mesh will cause severe stress locking [52]. Therefore, an improved 

Smeared Crack Approach (SCA), called the co-axial Rotation Crack Model (CRCM) is used 

in this model to alleviate the stress locking in the (SCA) [52].

In a 2D case for plain concrete, two damage parameters d 1 and d 2 are associated with the 

effective stress vector {cr*} after damage and with Cauchy stress vector {a} before damage, 

which makes the model orthotropic since there are two net area values A t * and A 2* for the 

two perpendicular surfaces of the concrete infinitesimal element, as shown in Figure 2.15 

[52]. Similarly; the constitutive matrices for the material after damage [D *] and before 

damage [D] are related by the damage matrix [V*] as follows:

ID*] = [ V * ] - 1 [D ] f lF T 7, (2.7)
£ o (  E0v { l - d { ) { l - d 2') n

[D*] =

1 -v  l - v 2
E 0 V ( 1 —d i ) ( l —d 2 )  £ 0 ( l - d i ) 2

l - v 2 l - v 2
0  2 G ( l - d 1)2( l - d 2)2

(2.8)

(l-d ^ + ci-d ,)2 J

Where [D *] is a function of the updated initial modulus of elasticity E0, Poisson’s ratio v, 

shear modulus G and damage values d 1 and d 2, which are related to the net area values A ±* 

and A 2 and initial area A. Assuming that the damage occurs due to the tensile stresses only, 

the damage initiation is determined according to the tensile strength, with softening strains 

starting from post-failure until complete drop of the stress.

In implementation of the finite element modelling, the material constitutive matrix [D*] after 

damage is updated in each integration point according to the status of damage. The stiffness 

matrix of the element is also updated using the updated [D*] [52]. As shown in Figure 2.16, 

unloading and reloading are conducted by updating the unloading-reloading modulus of 

elasticity En as:

£ "  =  £ < > i r S -  (Z 9 )

Where d p is a damage parameter d p which is related to the recoverable and inelastic strains, 

and X is an experiment constant.
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S o f te n in g  in ita tio n

\  R e o p e n in g

Figure 2.15 Damaged volume element 1521 Figure 2.16 Closing and re-opening criteria |52|

2.5.1.2 Lumped Damage M odel, A larcon E. et al. [54]

A larcon E. et al. [54] stated that Continuum  Dam age M echanics are less suitable for the 

analysis o f  solids such as frames. Therefore, A larcon E. et al. proposed a Continuum  Damage 

M odel (CM D) based on the com bination o f  fracture and dam age m echanics with the concept 

o f  plastic hinge, using a branch o f  Fracture m echanics called Lum ped Dam age M echanics, 

where a fam ily o f  m odels that com bine dam age and fracture m echanics with the concept o f  

plastic hinges [54].

The m ain idea in this model is to use the dam age variable in order to characterise the loss o f  

stiffness and strength o f  RC m em bers. In this m odel, a beam -colum n elem ent is assum ed to 

rem ain elastic, with two plastic hinges at the two elem ent ends, as seen in Figure 2.17.

inelastic h inges  
■ jrT", , ............■M.    _________

elastic beam -colum n

C = = D —

Figure 2.17a) Lumped plasticity model of a beam-column element, b) Generalized stresses, c) Generalized

deformations. |54|

The constitutive relationship betw een the generalized stresses M =  (m^rrij ,  n )  and 

generalized strains <t> =  ( 0 / ,0 y ,5 )  can be expressed as a function o f  the dam age param eters 

and plastic rotations as follows:

M =  S (D ){ 0  -  (2.9)
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Where, Op = (0 jP, (pjV, 0) and {O — Op} is the generalized elastic strains since the beam-

column element should remain elastic in the analysis. The stiffness matrix 5(D) is defined as:

12(1  —  d{)  6(1 -  d i ) ( l  -  d j )  0
6(1 — d ;) ( l  — d j )  12(1 -  d j )  0 (2.10)

0 0 4 -  (1 — dj)(l. -  d ;)y

El
4 (l l dy) L

r4 El 2 El O'L L
2 El AE1 0L L

0 0 EA 
L -

If damage parameters d t =  dj  =  0 , then the stiffness matrix takes its familiar form for the

beam-column element as:

To solve for the rotations in the term of generalized strains, the damage variables d t and dj  

must be computed first. In this stage, the Damage Fracture Mechanics is combined with 

concept of plastic hinges, by using the Griffith criterion in a damaged hinge. The damage 

evolution in hinge i can be described using the Griffith criterion for the hinge Gt and the 

crack resistance of the hinge ft(dj) as:

Gt =  R ( d t)

Or, 6E7(1
m f L  _  ^  „ lo g ( l-d i)
- Z j p - G c r i  +  Rt i _ d .

(2 .1 1 .a)  

(2.1l.b)

For a given ultimate moment; m Ui, the Griffith criterion is determined as:

m.
-  Gcri +  Qi

log (l - d Ui)
1-dui6E/(l-dUi)2

and recovers as; 2Gc r i ( l  — d Ui) + l o g ( l  — d Ui) + q t =  0

where, d Ui is solved.

For a given plastic moment m p , the Griffith criterion is determined as:

log (l-dp.)

(2.12.a)

(2.12.b)

mPi L _  r  , lpg 
6E/(i-dp.)2 cr i qi l-dp.

and recovers as;

where, dp . is solved.

— 1 =  0l-dn, y i

(2.13.a) 

(2.13.b)

These parameters; d u . and d v . can be computed if the cracking, yielding and ultimateI r i

moments of the member’s cross-section are known. These damage values represent those 

limits even in the case of hysteretic loadings with cyclic energy dissipation [54].
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2.5.1.3 Continuum Damage Model under Force Equilibrium Mechanics for 
Bridge Piers, S. Oiler, A. Barbat [55]

The proposed model is based on evaluating the local damage at given points in the structure, 

by means of local constitutive models which describe the accumulating damage due to the 

micro-structural damages [55, 56]. The global damage is also evaluated as a scalar depending 

on damage parameters that characterise the dynamic response of the whole system [55, 57]. 

The seismic damage is first evaluated at local level, which describes the state of the material 

after degradation by some damage index at the targeted cross section. Then, damage is 

evaluated at a cross sectional level based on adequate averages of the obtained local damage 

indices.

From continuum damage mechanics, the local damage is determined based on the isotropic 

damage constitutive law, where the model is based on two major criteria, firstly; the material 

degradation evaluated at structural points at the local level, secondly; the consequently 

reduced moment of inertia and cross section area of the bridge pier after the damage. The 

global damage evaluation is based on this reduction of the pier properties [55].

The following points explain in brief the numerical model:

1. During the non-linear process a residual force exists since the elastic modulus and 

moment of inertia are changing, and the undamped lumped mass equation of motion for 

each pier is written as:

mi  a ; +  Fjin — AFiR =  0 (2.14)

where, m t and a t are the top girder and pier mass in the ith DOF and a t is their acceleration. 

Fjin is the internal cross-section resisting force.

2. The solution for this equation requires the iterative process using the non-linear 

Newmark’s methodh, and the force equilibrium condition for this equation is achieved by 

eliminating the un-balanced residual force AFtR at each time of the process, using the 

Newton-Raphson process. Indirectly, this process also eliminates the residual bending 

moment AM = M° — M in , which is the difference between the maximum elastic 

external moment (demand), and the pier internal strength moment after damage 

(capacity).

3. The changes in the pier stiffness and changes in the internal cross-section force F*m 

depends on the damage level reached at each point in the pier. This damage level is
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evaluated by the continuum  dam age model criterion, which is based on the dam age 

constitutive equation:

Tmax  r (d) .
f ( x 1, x 2, x 3) =  1 -  d ( x 1#X2,X 3) =  —^ e  ( rmax) ( 2 .15)

w h e re ,  f { x x, x 2, x 3) is the  local d a m a g e d  in te rn a l  v a r ia b le ,  d ( x 1, x 2, x 3) is the  d a m a g e  

in d e x ,  t  a n d  Tmax a re  the  c u r re n t  a n d  m a x im u m  te n s io n  s t r e n g th  at e a c h  p o in t  o f  the  

so lid ,  w i th  0 <  j max <  r  in  the  d a m a g in g  case .

4. For each step o f  the non-linear analysis the properties o f  the system  are updated for the 

dam aged cross sectional area ^4(x3), for the first m om ent m j(x 3), for the second m om ent 

o f  inertia Ia(x3) and for the Product o f  Inertia / {;(x 3) with respect to the principal axes 

(Xj,x; ) , at the base section x 3 as follows:

a (x 3) =  fA / ( x 1;x 2;x 3). dA

™-i(x3) =  JA f ( x l f x 2, x 3) . Xj .  dA  (2.16)

^ ( ^ 3 ) =  /^  f ( x 1, x 2, x 3) .xj 2.dA

h j ( x 3) =  fA f ( x l t x 2, x 3) . ( x i tXj ) .dA 

N oting that the principal inertia axes (X j ,x ; ) do change their position after dam age, 

consequently the product o f  inertia would not be zero.

5. The increm ental generalized strains are obtained according to the updated properties and 

the residual generalised stress.

6. The generalized internal stress is obtained based on the new section properties, and the 

Residual forces are the difference betw een the elastic generalized initial stress and the 

generalized internal stress.

Figure 2.18 Bridge pier as canti lever  beam with forces at plastic  hinge section x3 15 5 J 

Concluding Remark:

This work is significantly im portant due to the practicality and sim plicity o f  the proposed 

m odelling m ethod, and is very encouraging for sim ilar and extended future work, since it was
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2.5.2 Numerical Models based on Empirical Models

To simulate the nonlinear behaviour under dynamic loading, numerical models are provided 

with built-in hysteretic models which were obtained from the hysteretic model test of load- 

deformation representation for a SDOF structure, such as Clough, Takeda, Slip, or Pinching 

and Degrading models [24]. As shown in Figure 2.19. These models are capable of 

representing the energy dissipation behaviour in the dynamically loaded RC member. 

However, they are not widely used anymore except for cases when representing special 

mechanisms in the structure such as slippage of bars and isolation bearings.

ft
a  R, -

■

Figure 2.19 Hysteretic models [24]
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2.5.2.1 Beam-Column Non-linear Element Modelling Supplemented with 
Empirical Drift Capacity Models. Yavari, Elwood and Wu. [58]

This model simulates previous work of shaking table tests performed on four RC frame 

columns by C. Wul [59]. The model employs force-based nonlinear beam-column elements, 

using the OpenSEES framework developed by the Pacific Earthquake Engineering Research 

Centre [60], which is an open modelling system available for international use, and mainly 

developed for earthquake engineering simulations. This model was used to simulate two 

different modelled approaches to investigate 4 RC frame columns resisting earthquake 

loading. The two fully ductile RC columns and two so called non-ductile RC columns differ 

in the modelling of the element ends in which zero-length slip springs simulate the ductile 

columns and the shear, axial and slip springs simulate the non-ductile columns. As shown in 

Figure 2.20, the model consists of a series of elements, nodes and springs, having each 

column consisting of a single force-based nonlinear beam-column element with five 

integration points and two zero-length elements located at the top and bottom of the beam- 

column element [58].
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Figure 2.20 Analytical modelling for a shaking table specimen [58]

The four force-based nonlinear beam-column elements are provided with zero-length spring 

modelling ends. They are described as follows:

Non-ductile RC columns are supplemented with an empirical drift capacity model whose 

behaviour is defined by an empirical (Limit State) material model for shear and axial failure. 

The shear spring captures the behaviour of strength degradation and increases the shear
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deformation as shown in Figure 2.21. Axial strength spring accounts for the axial failure. 

Both springs controlling the post-failure response for the element resulting from the strength 

degradation [59]. Slip springs are also provided to account for the possible slippage of 

reinforcement bars from the concrete.

Shear spring Beam-Column Total

Drift
■capacity
model

Lim it State 
m aterial 
mode)

Figure 2.21 Shear spring using limit state material model [58]

Ductile RC columns provided with Slip springs only have been analysed. Other models with 

different end springs, shown in Figure 2.22, have also been performed in a parametric-like 

study to investigate the effects of such different modelling provisions.

For the purposes of this study, a ‘ductile’ column is defined by a ductile detailing common in 

current seismic building codes, while ‘nonductile’ column details are used before the 

introduction of ductile detailing requirements [58]. A column defined as ‘nonductile’ may 

display a moderately ductile response followed by a relatively brittle failure [58].

No Axial A Shear Spring! M old

■S 0.02
I •Xe ! •:

15 17 I*
Time (See)

Figure 2.22 Models with different end springs and corresponding drift responses [58]
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Simplified non-degrading models using elastic elements:

RC columns are also simulated by simplified methods that use non-degrading models which 

are commonly used by many nonlinear analysis software packages in engineering practice. 

Elastic column elements with concentrated rotational springs are used to simulate simplified 

non-degrading models such as rigid-perfectly-plastic, and sudden degrading models such as 

the ASCE/SEI 41-06 model [11]. Figure 2.23 shows the elastic column with the concentrated 

hinges at the ends. The plastic moment capacity for the rotational plastic moment Mp is 

determined based on moment-curvature analysis using material constitutive models. For the 

considered frame in this study, S. Yavari et al. [58] concluded that nonlinear dynamic 

analyses using the ASCE/SEI 41-06 backbone model significantly overestimated the drift 

demands for the structure, and should therefore be revised, while a simple non-degrading 

concentrated plasticity model provided a good estimate of the drift demands but only for non- 

severe degradation of the lateral load resistance [58].

Figure 2.23 Elastic column with the concentrated hinges at the ends [58]

Concluding Remark:

S. Yavari, K. Elwood and C. Wu. [58] concluded that the simple non-degrading concentrated 

plasticity model provided a good estimate of the drift demands but only for non-severe 

degradation of the lateral load resistance. This is a significantly important conclusion from 

researchers, such as C. Wu and K. Elwood [58 and 59], who worked in both modelling types; 

experimental and analytical, with their publications in the recent date of October 2008.

2.5.2.2 Strain-Curvature Empirical Model. Lee and Watanabe [61]

This model is based on documenting the experimental observations and sectional analysis of 

the rotational response and the axial strains in the plastic hinge region of a RC column being 

subjected to reversed cyclic lateral loading.

The longitudinal axial strains in the plastic hinge region are related to the rotation of the 

member as shown in Figure 2.24.

M

_  BlMCic Coluaon 
(O JEJj)

Zero Lcnfth 
Spriflf

49



Slip region

Repeated J 
loading 1

Plastic
h inge

Flexural
yielding

0.02

"o
3

CCJ
o  — ■ — .— .
- 0.04 -0.02 0

Rotation
0.02

(rad.)

0.04

Figure 2 .24 Axial strain vs. rotation o f  an RC beam failing in shear after flexural y ie ld ing 16 1 1.

This proposed strain-ro tation  relationship consists o f  four paths with different com putations: 

Path 1: Pre-flexural yielding or unloading region; in which the longitudinal axial strain, £x , at 

the centre o f  the beam 's cross-section in the plastic hinge region. The cum ulative axial strains 

sxl  as given in path 1 are calculated as:

W here. F is the num ber o f  unloading cycles beyond flexural yielding, £x r is the axial strain 

at flexural yielding, k d is the neutral axis depth corresponding to the flexural yielding, h and 

d  are the overall and effective depths o f  the section respectively.

Path 2: Post-flexural yielding region; the longitudinal axial strain, in the plastic hinge region 

increases rapidly as the rotation increases beyond flexural yielding. The cum ulative axial 

strains £x2 as given in path 2 are calculated as:

W here, Rprnp and Rpmn are the positive and negative plastic rotations, respectively. j d is the 

m om ent arm distance betw een the steel bars, lh is the length o f  the plastic hinge region.

Path 3: Slip region; the change in the axial strain is negligible.

Path 4: Repeated loading region; the increase in the m agnitude o f  axial strain is inversely 

proportional to the num ber o f  reloading cycles Nj. The m em ber is loaded cyclically to the 

same rotation m agnitude Rm. Based on experim ental observations, the cum ulative axial 

strains £x4 as given in path 4 are calculated as:

h

* -  ~~kd
£xf ~ T T d

(2 .17.b)

(2.17.a)

(2.18)

(2.19)
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The axial strains of paths from 1 to 4 are summed up to obtain the final cumulative value.

The 4 paths locations in the strain vs. rotation diagram are shown in Figure 2.25.

A Longitudinal axial strain 
in the plastic hinge region
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__ —•̂  "Path 4
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Figure 2.25 Proposed model for analyzing the longitudinal axial strain in the plastic hinge region of RC

beams [61].

2.5.3 FEM Numerical Modelling based on Smeared and Discrete 
Approaches

The gradual growth of micro-cracking is gradually formed as the loaded concrete material 

exceeding its tensile strength limit. The internal tensile stresses during post-failure reduce due 

to gradual reduction of cohesive characteristics of the material. It is assumed that formation 

of visible cracking in the concrete is a brittle process, and it occurs once the internal 

resistance of the tensile stresses drop to zero. The concrete material is generally modelled by 

a Linear Elastic Fracture relationship using a tensile cracking criterion, such as the maximum 

stress criterion or the maximum strain criterion [62]. In general, there are three different 

approaches for crack modelling in the analytical studies of concrete structures using the FEM. 

They are: 1) Smeared Cracking modelling, 2) Discrete Cracking modelling and 3) Fracture 

Mechanics modelling. The selection of modelling type depends on the purpose of the 

analysis; smeared crack models, for example, are most suited if overall load-deflection 

outputs are desired. If the study of local behaviour is desired, then discrete cracking model is 

the best choice.

2.5.3.1 The Smeared Cracking Model

In this approach, the cracked concrete is assumed to remain a continuum, and cracks are 

‘smeared out’ in a continuous fashion, by representing an infinite number of parallel fissures 

across the cracked concrete element [62]. The onset of cracking introduces an orthotropic
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plane, as shown in Figure 2.26, with new constitutive relationships governed by the tangent 

stiffness matrix, which is defined as:

0 0 0 -

[Ct ] = 0 E 0 (2.20)
Lo 0 PG.

Where, E  and G are the elastic modulus and shear modulus, respectively. /? is a constant that

depends on the integrity of the material to resist shear after cracking and under compressive

stressing. In many applications, /? = 0 is assumed when cracks are open, i.e. during the 

tensile stresses, and /? = 1 is assumed when cracks are closed due to compressive stresses, 

implying perfect healing, or known as ‘aggregate interlocking’, for a closed crack with 

compressive strains across the closing cracks pattern. As /? approaches 1, shear strength is 

reserved between the cracked concretes.

Moreover, smeared cracking models can allow for strength degradation in the crack direction 

for reinforced concrete materials [62].

normal

Figure 2.26 Idealization of the smeared crack model

2.5.3.2 The Discrete Cracking Model

The discrete modelling is based on explicit displacement disconnection at nodal points of the 

adjoining elements or across the element domain, depending on where the assumed cracking 

line takes place in a FE mesh. In either way, new nodes are constructed leading to a change in 

topology of the mesh as a crack is formed. In order to preserve the shear strength between the 

cracked elements when the cracks close under compressive stress unloading process, special 

‘linkage elements’ are modelled to simulate the ‘aggregate interlocking’ process that controls 

the behaviour of the crack as it slides. The stiffness of these linkage elements decreases as the 

crack opens, and thus interlock forces decrease in large cracks [62].
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2.5.3.3 Fracture Mechanics Modelling

There are special fracturing situations that needed special modelling criteria using the basis of 

Fracture mechanics. Fracture due to twisting, shearing, compression and crushing require 

special modelling criteria, and special fracturing associating matters such as bond and dowel 

effects in RC material, crack width and stress concentration at crack tips are also specially 

treated in terms of modelling according to the point of interest of the research.

2.5.3.3.1 Discrete tensile and compressive fracture in quasi-brittle materials, Klerck et 

al. [63]

The aim of this model is to predict the fracturing development in rocks in a deep level mine

[63]. The rock fails in a mechanism similar to that of a conventional uniaxial compression 

test, extension test and triaxial test at the stop face, excavation face and inside confined 

regions ahead of the mining face, respectively [63]. The proposed model uses such 

similarities to predict the fracturing developments according to the required region of the 

excavation. This is performed by employing a FEM application enhanced by Discrete 

Elements to simulate such conventional tests, and be able to define similar fracture 

developments on site accordingly.

The combined finite-discrete element DE/finite element FE under the Explicit-Elfen code, 

was used to perform the required modelling, but with a modified algorithm so that elements 

are possibly fractured under compressive stresses as well as typically fractured under tensile 

stresses. The DE/FE Explicit-Elfen code is based on the Mohr-Coluomb failure criterion for 

the non-linear definition of stresses.

There are two possibilities in crack modelling in the Elfen code; fixed and rotating crack 

modelling. In the rotating crack model, the crack direction and damage occur in the direction 

of the current principal stresses, while in the fixed crack model, the plastic strain accumulates 

across a pre-defined plane [63].

2.5.3.3.2 Developments in the discrete approach

As previously stated, Smeared Modelling and Discrete Modelling are the two main categories 

for numerical modelling of fracture. The former has the advantage of solving the problem 

within a continuum setting, while the discrete approach introduces the fracture in a 

straightforward manner in terms of displacement discontinuities (or jumps) and tractions, 

rather than in terms of stresses and strains [64]. However, in the smeared modelling approach
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numerical difficulties could appear as strain localization occurs, requiring regularization of 

the continuum model to overcome this problem [64].

In recent years researchers have introduced several improvements to the classical 

formulations of the FEM in the field of discrete approach to solve fracture problems.

Since fracture problems are mainly based on the accuracy of stresses developed by the 

elements, accuracy of stress values should drive the discrete algorithm to inaccurate results. 

In this aspect, classical finite elements have only one approximation of the stress over the 

element domain, which is a major disadvantage in the classical finite elements [65], 

especially when they are used to simulate cracks. Therefore, a hybrid element has been 

proposed, and there is a wide acceptance that hybrid formulations are the most accurate types 

for the finite elements [65]. In a hybrid element two fields are utilised; one field is assumed to 

approximate stresses over the element bulk domain, while the second one is assumed to 

approximate displacements over the boundaries. Another modification has been used to the 

Hybrid element which is the Trefftz function to produce the so called Hybrid-Trefftz element

[65]. Trefftz elements use designated Trefftz functions to approximate the stresses in the 

element domain to satisfy the linear momentum balance equation, giving a much higher order 

formulation than those used by the classical finite elements [65]. A Hybrid-Trefftz element is 

successfully advantageous in crack modelling since that stresses in the element field and 

tractions in the cohesive element are fully independent, and no inconsistency may occur [65]. 

In this way all oscillations in the tractions that can occur on the cohesive surfaces are 

removed when solving non-linear equations [65].

As heterogeneous material concrete constituents are aggregates and the cement matrix, and 

the cracking occurs between these two different materials. Therefore, the crack path is 

designated to be controlled by the heterogeneities of the material, i.e. depending on the 

distribution of the aggregate bulks, as shown in Figure 2.27. To simulate such a continuum 

with designated discontinuities the so called interface concept was applied by many 

researchers [65]. The initial development for the interface elements was initially to model 

joints that simulate discontinuities inside rock bulks, but are now widely used to model 

fracture of quasi-brittle materials, such as concrete [66]. There are two basic types of 

interface elements: continuous interface elements, which are integrated over the crack face, 

and nodal interface elements which can be considered to be discrete spring elements [67].

G. Edwards et al. [65] implemented discrete cracks that are restricted to element boundaries 

using interface elements, using 10-noded tetrahedrons for the bulk, and 6-noded tetrahedrons 

as interface elements. The continuum is assumed to be elastic with geometrically nonlinear
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hybrid-Trefftz stress elem ents, containing cohesive cracks restricted to elem ent interfaces

[64].

This topic is beyond the scope o f  this research, but has been reviewed for the benefit o f  a 

wider view.
( n a r s r  m esh

Displacement*

Fine mesh

Figure 2.27 Crack controlled by the discontinuity interfaces in a ‘dog bone’ test, with coarse and fine

meshes |64|.

Concluding Remarks:

The aforem entioned topic is very recent, and the sim ulation o f  crack growth in quasi-brittle 

heterogeneous m aterials such as concrete is still under research, as well as the sim ulation o f  

crack growth o f  concrete with em bedded reinforcem ent bars. The com plexity o f  the topic o f  

fracture using discrete elem ents encouraged many researchers to apply various techniques, 

but it is a com m on fact in m odelling that m ore accuracy in the perform ance o f  param eters 

approxim ations is usually conjugated with less a com prehensive approach for the problem . 

On the other side, approaches with less depth and m ore assum ptions produce less accuracy 

but can handle m ore com prehensive problem s, such as global RC structures under dynam ic 

loading.

2.5.4 Fibre Elements and Lattice Elements Numerical Models

In the m idw ay betw een FE m odels with 3D tetrahedral elem ents and bar-elem ent m odels 

with Beam -C olum n 2D elem ents, the 2D Fibre elem ents and 2D Lattice elem ents have been 

em ployed in the num erical m odelling to investigate the non-linear behaviour in skeleton 

(fram e) structures. A m em ber section is discritized into fibre elem ents w hich function in the 

fibres axial straining as a group and are controlled by constitutive linear and non-linear 

behaviour o f  the m aterial to be assigned for each fibre, as shown in Figure 2.28. The fibres
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configuration o f  the m em ber geom etry is very attractive to build longitudinal bars, post- 

tensioned strands and polym er tubes as fibres [68, 69], in addition to the concrete bulk, to 

sim ulate axial flexural forces and deform ations for all m aterials. How ever, shear forces are 

obtained from the coupling effect o f  the stiffness m atrix o f  the elem ent. A draw back o f  the 

technique o f  fibre m odelling is the lack o f  sim ulating the transverse reinforcem ents which 

form ulate the confinem ent effect in structural m em bers. As a substitute, fibres in the concrete 

core are upgraded according to theoretical basis to som e nom inal com pressive strength as a 

result o f  the confinem ent o f  transverse hooks.

Figure 2.28 Controlled descretized section in fibre element modelling |69|

In contrast to the fibre elem ent m odels, lattice elem ent m odels are capable o f  predicting the 

shear failure at any section o f  the analysed m em ber [70]. How ever, they have a m ajor 

disadvantage in term s o f  processing tim e o f  the analysis due to the very large num ber o f  

applied freedom s [71]. This is obvious as they incorporate different elem ents for different 

functions. As shown in Figure 2.29, the concrete region consists o f  flexural com pression and 

tension m em bers, diagonal com pression and tension m em bers, and global arch m em bers. 

Longitudinal and transverse reinforcem ent bars are m odelled by vertical and horizontal 

m em bers, respectively. The 2D lattice elem ents model can be extended into a 3D model to 

incorporate m ulti-directional loading [71], but w ith larger num ber o f  freedom s and longer 

tim e o f  analysis, and consequently, the lattice elem ent m odel is not popular.

Lateral force d. Effective depth
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Flexural compression 
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Figure 2.29 Configuration of Lattice elements for a RC column 1711
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2.5.5 Numerical Models Conjugated with Seismic Evaluation 
Approaches and Performance-Based Concepts for Bridges

Using an equivalent SDOF system for an idealized RC wall system, T. N. Tjhin et al. [72] 

used a theoretical approach based on the seismic spectra for different performance levels of 

the structure. They estimated the displacement of a RC ductile structure at yield, based on 

information from the Yield Point Spectra. Different performance levels of the RC wall are 

used to express the plastic hinge rotations and corresponding roof drifts.

T. H. Kim et al. [73] used a FEM computer program to model pre-cast RC segmental bridge 

columns, representing the interaction between the concrete and tendons using interface 

elements. The concrete elements design is based on the tension and compression stiffening 

modelling, in addition to the shear transfer modelling.

To improve the seismic performance of RC walls, K. Antoniades et al. [74] evaluated the 

hysteretic response RC walls strengthened with Fibre-Reinforced Polymer (FRP), using 

numerical methods and verified by experimental tests. However, it was concluded that the 

overall seismic performance of the FRP walls was not better than that of the original walls, 

and further research is still needed in this field.

Y. Sung et al. [75] proposed a seismic evaluation method for existing bridges based on 

presenting the relationship between various structural performances and the actual PGA’s of 

several earthquake records. Such a relationship is used to obtain a universal perspective on 

seismic evaluation of bridges. They proposed a simplified method to obtain the plastic hinge 

point PHP by the interpolation between the working load and ultimate load, which are 

obtained by using the SAP2000 software analysis for RC bridge framed columns [75].

2.5.5.1 Numerical models using the Ambient Vibration Technique

The ambient vibration technique provides the engineer with mainly the natural frequencies of 

vibration and the corresponding deformed shapes for each excited mode of the existing 

bridge spans [76]. These dynamic characteristics are then used to match with those from the 

computational model of the bridge spans i.e. the bridge is remodelled by trial-and-error in 

order to make it respond dynamically as similar to the existing structure [76]. This is in 

contrast to the so-called ‘blind analysis’ in which only the input data is provided. At that 

stage time-history analysis can be obtained from computer analysis for any targeted ground 

motion to predict reliable results [76]. This procedure is mainly used for seismic evaluations
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such as performance-based seismic evaluation, and several study cases using the ambient 

vibration process can be found in the literature, such as in [13] and [77].

2.5.5.2 Numerical models using the System Identification (SI) Methodology

M. Chaudhary et al. [78] used an Identification Methodology known as System Identification

(SI) to identify the system parameters. Many parameters were obtained by the help of a 

comparison process with seismic records obtained from bridge sensors previously mounted 

on Yama-age' bridge in Japan [78]. The main parameter obtained is the acceleration which is 

idealised according to some theoretical basis, based on the dynamic characteristics of 

frequencies, damping ratios and effective mode participation factors. The system parameters 

are then computed, which are; the column flexural stiffness, horizontal foundation stiffness, 

rocking foundation stiffness, abutment backfill stiffness, RC columns stiffness, rubber 

bearing stiffness, rubber damping ratio and coefficient of friction of side stoppers. Such 

parameters are then used to build the bridge model for the purpose of performance 

evaluation.

S. Chao, C. Loh [79] developed a Modified Force-Analogy Method (MFAM) to simulate the 

non-linear response of a RC structure, using beam-column elements with three different 

plastic mechanisms for the moment and shear force hinges. S. Chao, C. Loh [79] claimed that 

‘currently (stated in 2007), no theoretical or empirical equations can determine the internal 

force versus plastic deformation relationship accurately based on an element design’. They 

stated that even by using detailed finite element method complex degradation and pinching 

phenomenon of RC members cannot be estimated accurately, and further study is needed to 

establish the relationship between model parameters and the design properties, with the help 

of sophisticated System Identification (SI) techniques [79].

S.J. Li et al. [80] also utilized the System Identification technique to model non-linear 

hysteresis systems with slip action, which are considered complex and contain a large number 

of parameters. They proposed a three-stage iterative procedure to build the model. Modelling 

based on the SI methodology has a theoretical and practical interest over the years, and has 

also been used in the field of Structural Health Monitoring (SHM) and Structural Control 

[80].
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2.5.5.3 Energy Concentration and Critical Earthquake Loading

The unsteady nature of ground motions causes non-stationary excitations, which results in 

severe pulses of the acceleration. An acceleration pulse is a phenomenon in earthquake 

records that has low-frequency and long-period pulses of acceleration which holds in a large 

potential to damage on the structure severely [81].

There is a significant effect of deterioration on structures due to the time-varying frequency 

content of the ground motion [82]. To prove that acceleration pulses are so damaging, 

Hancock and Bommer [83] investigated the increase in structure’s period responses together 

with the progressive damage during the acceleration pulses. They showed that the records 

with strong accelerations and longer periods are the most damaging records.

Sasani and Bertero [84] carried out a review on structural responses under such acceleration 

pulses, also known as severe pulses, to investigate their damaging effect. Severe pulses imply 

that ground motions having their energy concentrated in time and frequency are producing 

much more structural damage than that with evenly distributed energy [85]. Cao and friswell 

introduced a quantitative representation of the energy distribution of an earthquake record. 

This representation is known as the characteristic PGA or (CPGA) [85], which is based on a 

few components of a record with periods close to the structural fundamental period. Such 

components dominate the structural response and reflect the concentration of record energy in 

frequencies around the fundamental period [85].

Having a similar concern, Abbas [86] approaches the earthquake problem by deriving the 

critical earthquake loads as design inputs for inelastic structures. Using Fourier series, the 

earthquake acceleration is modulated by an envelope function which maximizes the inelastic 

responses according to predefined constraints [86]. To construct the critical seismic inputs, 

these constraints are based on the energy, PGA, PGV, PGD, upper bound Fourier amplitude 

spectra (UBFAS) and lower bound Fourier amplitude spectra (LBFAS) [86]. The problem is 

then formulated as determining the optimization variables such that maximizing the Park & 

Ang damage index subjected to those defined constraints [86]. This formulation was 

developed for SDOF and then developed for a MDOF structure; where a global index for the 

structure is define in terms of a weighed function of the damage indexes for the individual 

structural members [86, 87]. In general the applied method can be used by the structural 

engineer to prescribe critical earthquake loads that could produce the worst scenario of 

damage at the structure under seismic loading [87].
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Abbas comments on the unsteady nature of ground motions by saying “The occurrence of 

earthquake ground motions invplves a high level of uncertainty. In fact, each earthquake 

brings out new surprises and teaches us new lessons” [87].

2.5.5.4 Software Packages of Dynamic Solvers

The NISEE Software Library CDROM is a collection of 116 research software codes which 

are available with their manuals through (The Earthquake Engineering Online Archive). The 

NISEE is the National Information Service for Earthquake Engineering, which is a 

production of the Pacific Earthquake Engineering Research (PEER) Centre, based in the 

university of California, Berkeley. Software such as OpenSees is an open-source software 

framework for earthquake analysis of structures developed by PEER researchers. The open- 

source nature of the framework enables researchers and engineers to add and share 

enhancements to the material and element models easily.

Similar to the SeismoStruct dynamic solver, which is used in this PhD research, but with 

more graphics capabilities, the Drain-3DX software package can give more information about 

the current damage states, such as yield, spalling and crushing. Other packages such as 

SAP(fibre-hinge element), ANSR(beam-column element with plastic hinge), PC- 

ANSR(fibre-hinge element) and OpenSees(force-based beam-column element) are 

earthquake engineering facilities that produce numerical solutions for the large scale problem, 

and are also capable of solving RC bridge structures under dynamic excitements.

The variety of models depends on reliability of simulation of the internal behaviour of quasi- 

brittle material and reinforced concrete structures under dynamic, quasi-static or static 

loadings. Selection of the model type depends on the desired output of the analysis and the 

context of the problem and its environment, restrictions of the geometry and availability of 

input data and material properties. It also depends on the degree of approximation required 

for the assumptions of the governing equations and their formulations. However, some 

formulations are powerful and robust for particular problems but they are not necessarily 

suitable for others.
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3.0 INTRODUCTION

The proposed problem of this research is associated with several important engineering 

topics, which need to be explained before representing the research work. The problem is 

associated with equilibrium of dynamic forces in the isotropic elastic medium, failure and 

non-linearity in the isotropic materials, solving the equation of motion of MDOF structures 

subject to non-periodic earthquake loading, topics in Earthquake Engineering and topics in 

Fracture.

3.1 DIFFERENTIAL EQUATIONS FOR EQUILIBRIUM OF 
STATIC FORCES IN ISOTROPIC ELASTIC MEDIUM

Considering a cube element with stress change between each two parallel planes, as shown in 

Figure 3.1, the stresses in an infinitesimal element in a body can be represented in a cube 

element with a stress differential daj along the change in dimension dxj.

AX

X

da.
dx

Figure 3.1 Stress change in a 2D plane of a cube element

The equilibrium is between the internal forces, stress multiplied by area, and the external 

forces, body forces multiplied by the volume. The equilibrium equation for 2 planes only is:

[Ox)l -  Ox)2] * 8 y $ z  + [ ( j y x ) 3 ~ ( j y x )  J  * M z  + [OzDs “  OzDel * M y  + *  * M y  = 0 (3.1.a)

where, (0 *)! — (ox) 2 is the normal stress change between 2 parallel planes, 6y §z is the 

j change in area, ( T x y ) 3 ~  ( T x y ) 4  is the shear stress change between 2 parallel planes, X is the



body force and Sx 6y 6Z is the volume change. Body forces are forces per unit volume such as 

gravitational and mass inertia forces. The equilibrium equations for the other 4 planes are as 

follows [1]:

[ ( ° y ) 3 “  M 4 ] * M z  +  [ ( ? x y \  -  ( Tx y ) 2] * 8 y 6 z  +  [ ( t z j , ) 5 -  ( r z y ) 6 ]  *  8 x 8 y  +  Y  *  8 x 8 y  8 Z =  0  ( 3 . 1 . b )

[ O z ) s  -  f a z ) e \  * 8 x 8 y  +  [ < T y z ) 3 “  ( Ty z ) 4 ]  *  s x $ z  +  [ ( J x z ) i  -  ( T * z ) 2 ] *  Sy 8 z  +  Z *  8 x 8 y  8 Z =  0  ( 3 . 1 . c )

Shrinking the cube element into an infinitesimal cube element, and taking the limit for all of 

the faces:

d ° x  _|_ d T y x  ^  dxzx ^    q
dx d y  dz

3 * y +  3 t 2 , +  £ t s +  y = Q

a y  ox dz

i r  +  ^ r £ +  ^ ? £ + z  =  odz  dx dy

This is the Equation o f  Equilibrium , which m ust be satisfied at all points throughout the 

volume of the body in order to maintain equilibrium [2]. However, in case of dynamic 

loading problems, other body forces should be added to this equation to maintain equilibrium. 

From Continuum Mechanics, by substituting the following definition of normal strain 

components;

du dv , dw
£x ~  dx  ’ £y  ~  d y  £ z ~ H  (  ^

into the definition of stress components;

crx = A e + 2 G z x , o y  = A e  + 2 G s y  and o z = A e + 2 G sz (3.4)

the normal stress components are obtained as:

ax =  A e + 2 G
*  dx

oy =  A e +  2 G j -  (3.5)

<r2 = A e  + 2 G ^ -
z  dz

where, u, v and w are the displacements at x, y and z directions, respectively, e =  ex +  ey  +
V E

ez is the unit volume expansion, A =  (1+v^ 1_ 2v>) »v  *s P°issons ratio, E is the elastic

£
modulus and G is the shear modulus, G =  —— -.

’ 2(1+V)
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Similarly, shear strain components are defined as:
du , dv dv , dw , dw , du ^

Y%y  ~  ! y  t o ’ yy z ~  T y a n iY zx  -  te  +  a7 (■ ^

By substituting the shear strain components into the following definition of shear stress 

components;

Yxy  ̂ t xy  , Yyz  ̂ Tyz and y zx  — — t zx (3.7)

the shear stress components are obtained as:
n ,du d v .

r ^  =  Gf e + ^

r  ( d u  d w \
T-  = G ( i I  +  ^ J

Substituting both normal and shear stress components, equations (3.5) and (3.8) respectively, 

into the Equation of Equilibrium, equation (3.2), the following modified Equation of 

Equilibrium is obtained as:

de
(A + G) —  +  G V 2u  +  X  =  0 

o x

( A + G ) | ^ +  G V 2v  +  Y =  0 (3.9)
dy

d e
(A + G) —— h G V w + Z = 0 

o z

where, — is the rate of change in volume expansion and V2 =  —  + —  + —  is the 

summation of second derivative with respect to x, y and z.

If body forces are not considered, i.e. gravitational forces have no effect on the stress change 

of the body, and the effective external forces are surface forces which are located on the 

surface boundaries of the body, X, Y  and Z can be eliminated for the internal elements, and 

substituted with surface forces, X,  Y and Z, for the infinitesimal tetrahedral elements on the 

boundary surface of the body[2]. In this case, all of the infinitesimal elements come to 

equilibrium with the external forces in each direction when they are added together. 

Therefore, equilibrium is still maintained at each of these elements without the existence of 

body forces, and the E quation  o f  E quilibrium  in terms of displacements will be;

. de
(A + G) —  + G V2u  =  0 

o x



If differentiating these equations, (3.10), with respect to x, y and z respectively, and adding

the differentiated values together, the E quation  o f  E quilibrium  will become;

(.X +  2 G ) V 2e =  0 (3.11)

This means that V 2e  = 0 , and the rate of volume expansion Ve  is also zero since the volume 

expansion e  =  ex +  ey  + ez is a constant value.

3.1.1 Solving the Elastic Body Problem

In order to solve the problem of the elastic body, the equation of equilibrium (3.10) for the 

body and equation (3.9) for its boundaries, substituting the surface forces X, Y and Z for the 

body forces, must all satisfy the 6 conditions of compatibility, which are:

d z£x d 2 e y  _  d 2YXy  d z £y  d 2 £z  _  d 2Y yz  d 2£z  d 2 £x  _  d 2yxz
d y 2 d x 2 d xd y  9 d z 2 d y 2 dyd z  9 d x 2 d z 2 dxdz  9

2f r  = r ( - ^  + i r +irz) ’ 2t t  = j - (£r £- ^ + ^ i) andd y d z  dx  v dx d y  dz  dxdz  d y  dx  d y  dz

2 | ^  = f ^ s  + ^ a - ^  (3.12)
dx dy  d z ^ d x d y d z

Using algebraic methods, there must be sufficient equations to solve for the unknowns of 

stress, strain and displacement components. There are 6 stress components, 6 strain 

components and 3 displacement components, which need to be determined using the 3 

equilibrium equations (3.10), the 6 compatibility equations (3.12), the 6 strain-displacement 

relations, (3.3) & (3.6) and the 6 constitutive relations, (3.5) & (3.7).

There are different Algebraic methods to solve for these unknowns, which can be found in 

the references of the subject of Continuum Mechanics [3,4,5,6].

3.2 DIFFERENTIAL EQUATIONS FOR EQUILIBRIUM OF 
DYNAMIC FORCES IN ISOTROPIC ELASTIC MEDIUM

For an isotropic elastic body subjected to a sm a ll m otion  lo a d in g  such as sudden 

displacements, the inertia forces; m u , mi? and m w  are considered as the external B o d y  

fo rc e s  in three directions, and are added to the E quation  o f  E quilibrium  (3.10) in terms of 

displacements. This will result the following E quation  o f  M o tio n ’.



W + C ) | + ( ? ^ - p 0  =  0 (3.13)

, m .. d 2u m  .. d 2v  , m  .. d2w , . . . . ir .where, —u  =  p  —— , —v  = p  —  and — w  =  p -—  are the inertia forces, m  is the mass, V is
V ^ d t 2 V d t 2 V d t 2

the volume and p  is the density.

The forces in the equation of Motion can be physically interpreted as forces applied normal to

the infinitesimal surfaces, and thus, transfer as stress waves propagating in the elastic volume. 

Such propagation can be in either a longitudinal or a transversal manner, as will be briefly 

explained.

3.2.1 The Propagation of Waves of Distortion in the Elastic Medium

change = s x +  £y  +  £z =  0 . This means that the deformation is either shearing distortion 

due to shear stresses, rotation due to torsion stresses or both shearing and rotational 

distortion, and therefore, no D ila tion  could occur. Thus, the E quation  o f  M otion  will be:

This is called the E quation  o f  E quivolum inal W aves or the E quation  o f  D istortion  W aves.

3.2.2 The Propagation of Waves of Dilation in the Elastic Medium

In case that volume expansion exists, such as in Quasi-brittle materials, the volume change 

e  = £x +  £y  + s z ±  0 , and deformation has a D ila tion  feature. This indicates that the volume 

expansion is a constant value, i.e. there is a volume change when the material is compressed 

(or tensioned). This is true for quasi-brittle material such as concrete, where its Poisson's ratio 

reaches 0.3. However, incompressible materials with zero volume change, e =  0, have their 

Poisson's ratio approaching 0.5.

In case where no volume expansion exists such as in Von-Mises materials, the volume

(3.14)
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The E quation  o f  M otion  is the same as was first defined, and it can be substituted by the 

following terms: ^  = V2u > ^  = V2*7 and “  = V2w. The E quation  o f  M otion  is re-written as 

follows:

d 2u
(A+ 2G )V 2u  -  p 1r T  =  0 

a t*

(A +  2G) V2v — p j ^  =  0 (3.15)

✓ \ , d 2w(A+  2G)V2w -  p —— =  0

This is called the E quation  o f  Irro ta tion a l W aves or the E quation  o f  D ila tion  W aves.

3.2.3 Longitudinal and Transversal Propagation of Stress Waves

The general case of propagation of waves in an elastic medium is obtained by the 

superposition of both w a ves o f  D istortion  a n d  D ila tio n , which can be written as follows:

0  =  a 2 V2r  (3.16)

JA + 2 G in case of waves of Dilation and a  =  c2 =

I^ in case of waves of Distortion. c1 and c 2 are the velocities of propagation of the plane

waves. This equation is representing the earthquake vibration motion in the soil medium, 

which can be recorded on a seismograph.

In simpler terms, for a one dimensional motion, v  =  w  =  0 and the equation of motion will 

be represented as follows:

^  =  a 2 V 2u  (3.17)

Stress waves propagate from the centre o f  d isturban ce  at which external forces apply. The 

E quation  o f  M otion  assumes two kinds of wave propagation in the plane of an elastic 

medium, according to the type of material of the medium. As shown in Figure 3.2, the first 

kind is the motion of L ongitudinal w a ves  which propagate in parallel to the direction of plane

|A+2Gpropagation lines, causing D ila tion  strains which involve the parameter of c± =  I — - in the
'5
j equation of motion. The second kind is the motion of T ransversa l w a ves  which propagate 

! perpendicular to the direction of plane propagation lines, causing D isto rtio n  strains which

involve the parameter c2 =  J ^  in the equation of motion.
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Figure 3.2 Propagation of stress waves in an elastic medium; Longitudinal and Transversal waves

3.2.4 The Propagation of Waves in Isotropic Elastic structures

Structural members depend on their M odulus o f  R ig id ity  to resist against the propagation of 

waves in the elastic range of loading. The M odulus o f  R ig id ity  for a member, also known as 

member’s stiffness, depends on the method of loading. The M odulus o f  R ig id ity  for a member 

is: its a x ia l r ig id ity  EA in a pure axial loading, its sh ear r ig id ity  GA in a pure shear loading, 

its sh ea r r ig id ity  GI in shear with bending, its to rsion a l r ig id ity  G j0 in a torsional loading and 

its flex u ra l r ig id ity  E l in a flexural bending moment loading.

In general, the stiffness matrix of a structural member in the E quation  o f  M otion  is analogous 

to the term a 2V 2 in the elastic medium, which is a function of the mechanical properties of 

the material multiplied by the second order gradient. However, stiffness m atrix  for a member 

is a function of its geometry, material properties and degrees of freedom.

3.3 THE EQUATION OF MOTION FOR THE DYNAMIC 
BODY (a different approach)

This is a different approach for determining the dynamic forces in the isotropic elastic 

medium. In seismic problems, responses of excited bodies are studied as elastic non-rigid 

bodies, which are structured with single or multiple degrees of freedoms. All forces affecting 

the body’s responses need to be determined including those existing before the dynamic 

excitation, i.e. the elastic stiffness of the structure in the static stage of the problem. Both 

static and dynamic responses (results) of the structure are directly added up for every degree
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of freedom in order to obtain the overall response. This direct superposition of the results is 

valid for linear systems only. However, non-linear systems, such as structures with plastic 

design need to be analysed collectively for both the static and dynamic cases.

Since we are not interested in studying the motion of rigid bodies, but rather the elastic and 

plastic behaviour in all points of the moving body, together with its mass inertia and other 

possible resisting forces, equilibrium of the forces on an infinitesimal 3D element, shown in 

Figure 3.3, can be derived in ID [9] first as:

P  =  a  A =  E A e  =  EA (3.18)

where, P  is the force acting in the infinitesimal element.

Figure 3.3 Stresses on a cube element.

To maintain equilibrium in the x-direction, body forces Qx (per derivative length d x ), such as

gravitational or inertia forces, counteracting the acting derivative forces dPx (per derivative

length dx) as follows:

f f + < ? *  =  0 (3.19)

Substituting;

m £ z + Q x =  0 (3.19’)

If the body forces are considered as inertia forces only, they can be represented by using the
IT13SS

Newton’s Law for the force per unit length Qx as Qx =  ——-----r  x acceleration . Then,v  & ' t x  unit length ’

equation (3.19’) becomes:
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d^u d^u
E A J:? + P A ^  =  0  (3-20>

where, p is the mass per unit volume and A is the area of the cube surface.

In a more general case, the damping forces are also added to the inertia forces and the 

stiffness forces. In case of a forced vibration, external forces are added to the right hand side, 

and the equation of motion can be written in the 3D formulation as follows:

+ E A £ = E*

PAB  + c f t + E A ^ = Fy <3-21>

p a j ? + c j ; + e a j 2 = f *

where, c is the damping factor, and Fx; Fy and Fz are the external forces (driving forces ) per 

unit length. The driving forces together with the stiffness, damping and inertia forces, will 

form the equation of motion in its 2 nd order time-dependant form of a partial differential 

equation.

i To solve the equation of motion for u , v  and w  displacements, numerical methods are used to 

, build an analytical model to simulate loading and material response within the geometric 

; context and boundary conditions of the problem. This is done in the following two steps:

1. Finite element discretization level; Transforming the partial differential equations 

PDE’s which are governing the infinitesimal elements (infinite elements) of the body 

volume into ordinary differential equations ODE’s that govern a context of finite 

elements FE’s. such finite elements could be in the form of:

• A discrete system of multiple degrees of freedoms (MDOF) for discrete 

(skeleton) structures such as frames and converted pendulums, or

• A finite element form, or fibre element form for elastic continuum systems.

2. Solution level; Solving the discretized body volume by using Newmark’s Method,

which is one of the most popular time-stepping methods for solving dynamic 

problems.

In the discretization process the body mass is to be divided into small masses, each is 

"lumped" to a node which would control its movement and response. Therefore, equation 

(3.21) is linearized by discretising u, v  and w  in the finite elements. The equation of motion 

for each lo ca l f in ite  e lem en t would be written in a m atrix  fo rm  as:
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m B + c d i + k u  =  F <3-22)

where, u  =  [u v  w ] T is the nodal displacements, m  is the local matrix of material mass 

inertia for an element, c  is the local matrix of material damping for an element, k  is the local

matrix of material stiffness for an element and F  =  [Fx Fy Fz ] is the nodal forced 

vibrations. Noting that F  is representing the forces applied on the nodes, and is equivalent to 

the effect of earthquake ground motion on the structure.

For simplicity, consider a structure system with multiple degrees of freedom (MDOF), to be 

g en era lized  in one degree of freedom at each node. The equation of motion (3 .2 2 )  that 

controls any vibration (periodic or non-periodic) for a structure with single degree of freedom 

(SDOF) is reduced for the single freedom to:

m ii +  c u  + k  u  =  p (t) (3 .2 3 )

For simplicity, consider a SDOF structure with un-damped forced vibration, which will have 

the equation of motion as:

m  u  + k  u  =  p ( t )  (3 .2 3 ’)

The equation of motion for a node subjected to a ground acceleration ug ( t )  is given as:

77i u  + k  u  = — m iig  =  p ( t)e // (3 .2 4 )

Where, p ( t)e/ /  is the effective fo rc e  that causes the sam e effect on a  s ta tio n a ry  structu re  as 

the earthquake does.

In a lo ca l m atrix  fo r m , the equation of motion for one local element with more than 2  DOF’s 

is written (in the italic bold face) as [1 0 ]:

m i l  +  k u  =  — m l U g  =  p ( t ) ef f  (3 .2 4 ’)

And in a g lo b a l  m a tr ix  fo rm , the equation of motion for the whole MDOF structure is to 

be written (in the bold face) as:

m u  +  k u  =  — ml i i g  = P(t)eff (3 .2 4 ” )

where 1 is the influence vector which equals 0’s and ± l ’s as according to the DOF of the 

structure, and m 1 is known as the spatial distribution for the system which determines the 

existence of mass inertia forces in the right degree of freedom.

[
[

i
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3.4 FAILURE AND NON-LINEAR BEHAVIOUR IN THE 
ISOTROPIC MATERIALS

Failure of isotropic materials occurs when the waves of D isto r tio n , D ila tion  or both become 

large enough to cause the initiation of micro-cracks by starting the plastic softening or 

hardening stage. In this stage the E quation  o f  M otion  is not valid via the elastic stiffness, 

since that the elastic potential of the material is not totally conserved, and the material’s 

ultimate strength is degraded via residual strains when the structure is un-loaded and re­

loaded during the plastic stage.

To determine the internal stresses in this stage, at first; failure criteria such as Mohr-Coulomb 

and Rankine are needed in case of quasi-brittle materials, so as to predict the failure in the 

overstressed zones which develop D isto rtio n  and D ila tion  strains. Secondly; the numerical 

time-stepping techniques for integrating differential equations are still needed, to apply the 

E quation  o f  M otion  under certain conditions of degraded stiffness and strength of the 

material, and determine the resulting displacements in such non-linear stage. The last stage is 

the post-failure stage in which the material strength is totally lost and micro-cracks develop to 

become visible cracks. In this stage the material fracture energy which bonds the elements 

together is violated, and a new stage of discrete elements is reached. Failure criteria, non- 

linearity and fracturing of the material are important issues in the proposed RC problem, and 

are discussed in the successive chapters in this research.

3.5 SOLVING THE EQUATION OF MOTION FOR NON­
PERIODIC RESPONSES OF MDOF STRUCTURES SUBJECT 
TO EARTHQUAKE LOADING

Non-periodic responses such as those gained by seismic loading have no exact solutions since 

the frequency for the forced vibration cannot be defined. Non-periodic response of MDOF 

structures are even more complex to solve, since they will have more than one modal 

frequency response and more than one modal shape. Therefore only approximate solutions 

can be obtained for this case of loading. There are several approximate methods to solve 

equation (3.24, 3.24’ and 3.24” ) numerically for the nodal displacements:

• The M o d a l S uperposition  M eth od ,

• The D irec t In tegra tion  M eth ods , using N ew m ark  M eth o d  with the Explicit integration, 

Implicit Integration or mixed Explicit/Implicit Integration method.
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In the following two sections, both methods will be discussed briefly.

3.5.1 Applying the Modal Superposition Method for Solving a Non- 
Periodic Response of MDOF Structures Subject to Earthquake Loading

Since it is possible to obtain the exact solution for harmonic loading problems, the M odal 

S uperposition  M eth o d  is associated with the concept of M o d a l E xpansion , which depends on 

the superposition of a ll possible harmonic responses of the structure. The equation of motion 

for MDOF systems can be solved numerically by decomposing the MDOF equation into 

independent equations for the coupled nodes. This is done by using the M o d a l D ecom position  

P rincip le . In this way, a MDOF structural system is decomposed into several SDOF systems 

which can be solved independently, and thus the differential equations for the multiple 

systems can be solved independently and numerically. From the previous briefing, 4 steps are 

to be performed [1 0 ,1 1 ]:

1. Applying the concept of modal expansion of MDOF responses

2. Decomposition of the MDOF equation of motion into independent uncoupled 

equations

3. Solving for the harmonic responses for all modes.

4. Superposition of the expanded SDOF equations

Before proceeding to further explanation, it should be known that the M o d a l S uperposition  

M eth od  is valid for elastic analysis only, and cannot be used for inelastic analysis. Therefore, 

this method is not used in this research. Alternatively, Newmark’s method is then discussed 

and applied.

3.5.1.1 Applying the concept of modal expansion of MDOF responses

In this principle, superposition of all harmonic responses, namely; the modal coordinate 

q n ( t )  times the modal shape 0;n will produce the displacement response U j ( t )  for any given 

non-periodic motion, (e.g. responses to earthquakes), for a structure at any time t. This 

displacement is to be determined by summing up the scalar products of all modal shapes and 

coordinates at a time, as follows:

U ; ( t ) =  Zjf=l ?n (t) (3-25)
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Or, in a matrix form; u = O . q (3.25’)

where,

• = generalized displacement at time t, also known as modal coordinate, or

coordinate at n. It equals the extreme displacement if 0 j n is normalized, but it can be 

any displacement value if 0 j n is not normalized.

• 0 jn  = modal deflected shape, which is a ratio representing relative displacements at 

different DOFs in the structure. 0 j n is independent of time, and normalized shapes 

rank from 0  to 1 .0 .

3.5.1.2 Decomposition of the MDOF equation of motion into independent uncoupled

solved for a non-periodic response, i.e. response due to earthquake loading. Substituting 

equation (3.25’) into equation (3.24” );

equations

Now; introducing the Modal Superposition principle in order to have the equation of motion

m . O . q  + k . O . q  = -  m / ug { t ) (3.26)

Multiplying both sides by Or ; the transposed modal shape matrix;

Or

<Dr.m . <D . q + <Dr. k . O . q = -<Dr. m / ug ( t )  

M . q + K . q = —L . ug { t )

(3.27)

(3.28)

where,

M = ®T. m . O 

K = <Dr. k . <D 

L = <Dt . m . /

Dividing by M ; q + f i 2 q = -r  ug ( t ) (3.29)

where, T =  —5 *4M
modal participation factor
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Equation (3.29) is the m o d a l fo rm  of equation of motion for a forced vibration which does not 

contain any co u p led  coefficien ts of a matrix, since the spectral matrix £ l2 is diagonal, and L 

and M depend on the modal matrix <t)T which is uncoupled as well.

However, equation (3.29) has been derived from equation (3.24” ) which contains the 

stiffness matrix k  with co u p led  coefficien ts. Having obtained the equation of motion (3.29) 

with u ncoupled  m atrix coeffic ien ts, it is very usual to have it solved for q on sin g le  basis, 

i.e. as a SDOF system. Therefore, equation (3.29) is now reduced to the modal level of a 

SDOF system as follows:

<7n(t) +  Oil <7n (0  =  -  rn ■ U g ( t )  (3.30)

where; rn =  —  =  ®inT ' m ' 1 ■ =  modal participation factor
n Mn 0jnT. m . 0 jn b V

3.5.1.3 Solving for the harmonic responses for all modes

As an example, the equation of motion for an undamped structure with natural angular 

frequency (o)n), and subjected to a step force P0 is m u  +  k  u  =  PQ . This is a 2ed order 

homogeneous DE that has an exact solution consisting of the summation of the particular and
p 0

complementary solutions to be: u ( t )  = — ( 1 — c o s  con t  ) .K

Similarly, when q n ( t ) = 0 , the particular solution is :

? n ( t ) „ =  - 4 i i ; ( t )  (3.3i)
wn

the complementary solution is: qn(t) c =  A c o s  a)n t  +  B s in c o n t
p

and the complete solution is : ^nCO = A c o s a ) n t  + B s in  con t + ---- \  u a ( t )(On »

Applying the I.C. ; q ( 0) = 0 & q(0) = 0 at which the SDOF system is initially at rest: 

q ( 0 )  =  0 = A c o s O  + B s i n O  +  — . u a { t )  -> A =  ■%. u a ( f )
<»n y  < * > n y

q ( 0) = 0 =  — (x)n A s in  0 +o)n B c o s  0 + 0  -> B =  0

Substituting A & B;

q n ( t )  =  7+  iig(t) ( c o s  con t -  1) (3.32)0)n a
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3.5.1.4 Superposition of the expanded SDOF equations

As substituting (3.32) into equation (3.25’), in which equations of (3.25): u; (t) =  0 ;n q n ( t )

method is valid for elastic behaviour only.

3.5.2 Applying the Direct Integration Method, by using Newmark’s 
Method with Implicit Integration, for Solving a Non-Periodic Response of 
MDOF Structures Subject to Earthquake Loading

The N ew m ark  M eth o d  is more popular with less complex calculations, and will be discussed 

in this section briefly. The equation of motion is the 2ed order time-dependant equation, and 

written in its global matrix form as:

where; r is the displacement vector in the global structure. By using the Im plic it In tegration

are summed in a superposition method for all times (t) given for a ground acceleration 

interval. Thus, U j ( t )  can be determined. It should be known that the modal superposition

(3.33)

scheme, this equation is re-written numerically in a linear interpolation in time by involving a 

scalar parameter 6  varying between 0.5 and 1, thus a class of R ecurrence R ela tion s  based on 

this linear interpolation is obtained [9]. The equation of motion is re-written at two numerical 

stations; ‘O’ and ‘1’ as follows:

M ^ + ( a M  + p K ) ^  +  K r 0 =  F0 (3.34.a)

M ^ + C c c M  + p K ^  + K r ^ F ! (3.34.b)

where, a  and (3 are the inertia and stiffness Rayleigh damping coefficients respectively. The 

linear interpolation in time involving 6  between 0.5 and 1 for the displacement and velocity 

can be written as:

(3.35.a)

(3.35.b)

84



Substituting these two equations into the two numerical stations ‘O’ and ‘1’, equations 3.34.a 

and 3.34.b, will construct the following three R ecurrence R ela tio n s , as follows:

[(a + i ) M+(/?+0At)Kh =

6  A t F, +  (1 — 0)At  F0 +  ( a  +  M r0 + -g +  [0  -  (1 -  0)At]K r 0 (3.36.a)

d T i  _  1 f -  1 - 0  5r0
■3r - « s ( r i - r ») - T i r  ( 3 3 6 b )

32r!
" at*"

_  1 / 'd l l  l - 0 d 2ro ^  ^

~  e Z  tIT “  «rJ “ “  (336x)

By means of the recurrence relations, the values of displacement (3.36.a) and its derivatives 

(3.36.b and c) at one instant in time are sufficient to determine these values at the subsequent 

instant, i.e. giving implicitly one equation solution per each time-step. This method was 

formulated into a FE computational code by using the MatLab program, and was applied to 

solve a simple forced vibration problem, by using an elasto-plastic solid in plane strain with 

8 -noded quadrilateral elements and lumped masses. The aim of this analysis was to 

understand more about Newmark’s method with implicit integration and to be able to 

determine the behaviour of two different materials; namely concrete and a steel bar, with 

interface elements in between, under forced vibrations to simulate the damping influence due 

to the bond effect between concrete and steel bars. The simulation was verified by published 

results, but no further investigations were conducted in this direction, since it was diverting 

from the main topic of this research, but could be carried out in other future work.

3.6 TOPICS IN EARTHQUAKE ENGINEERING

3.6.1 Equation of Motion of a SDOF Structural System

It is important to physically understand the governing equation of a SDOF structural system 

subjected to ground accelerations and how the equation’s parameters are formulated for an 

equivalent structure with a stationary base. When a portal frame structure with a SDOF is 

subjected to a ground acceleration motion ug for a period of time, i.e. a number of time-steps, 

the corresponding response that’s documented for a single time-step can be divided into two 

different stages:
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1- A rigid absolute m otion with ug displacem ent, that is caused by a ground force m  ilg , 

where m  is the structure 's lum ped mass.

2- A flexible relative m otion w ith u displacem ent, that is caused also by the ground

force m  ilg , which is resisted by two different types o f  forces;

• external, which is known as the m ass inertia m  u , also described as fictitious since it 

is not expressed alike others by a spring or a dashpot.

•  internal, which has two parts; a dam ping force c ii and a restoring force ku. The

form er is expressed by a dashpot and the latter is expressed by a spring in a

rheological model.

The overall resisting forces are sum m ed up and known as the effective forces since they 

indicate the forces that cause the relative m otion only; P e f f  =  m i i  +  c i i  +  k u  . The force 

diagram  o f  the dynam ic structure in Figure 3.4 shows 3 m ovem ents o f  the structure m ass in 

the m oving ground diagram ; a) initial, b) rigid and c) deform ing cases. In this m otion 

diagram  the inertia force is resisted by the effective force and equilibrium  is reached after the 

relative m otion stops at position c. Equivalent to that is the force diagram  in the stationary 

base, in w hich the two forces are equal and sum m ed up as: m  iig +  P e / f  ~  0-

  p eff m u g + Peff  =  0

b ca
Figure 3.4 Force diagram for the moving ground and for the equivalent stationary base

Substituting; m i i g +  m u  +  c u  +  k u  =  Q

Or m i l  +  c ii +  k u =  —m u g (3.37)

The m inus sign is only a convention indicating that the resisting effective forces P e f f  and

ground forces m  u q are equal and acting opposite to each other, or m  iig H— m  iig =  0. The

total displacem ent o f  a structure is equal to the relative structural m otion displacem ent u and

the rigid ground m otion displacem ent ug as follows: u 1 =  u +  ug .
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In a dynam ic analysis the rigid absolute m otion ug is ignored, but its force effect m  u q is 

used as an applied load subjected on the lum ped m ass structure on a stationary base. The 

structural response o f  any point on the structure is com puted relative to the stationary base. 

The resisting relative forces will have different contributions according to the inertia, 

dam ping and stiffness o f  the structure. They are nam ely the inertia, dam ping and restoring 

forces and their sum m ation is the total effective force. They are plugged in the equation o f 

m otion as follows:

fi +  fo  +  fs  =  - m u g (3.38)

3.6.2 Rotational Motion

Although ground rotation 9g does not exist, it is worth it to apply the previous concept o f  

dynam ic analysis on the rotational m otion o f  a cantilever structure such as an elevated water 

tank. The total displacem ent (rigid & flexible) is u t =  u +  h 0g and the total rotation is 

6t =  6 +  6g, as shown in Figure 3.5. By applying the equation o f  m otion for the m om ents 

and rotational response the following equations are obtained [10]:

M, +  MD +  Ms =  - m  Qg (3.39)

m  Q +  ce 6 +  k d G =  - m  9g — Me^  (3.40)

where, cd and k d are the rotational dam ping and rotational stiffness respectively. However, 

the transitional relative forces and effective force Pef f  can also be calculated from the 

assum ed ground rotation as follows:

m i l  +  c ii +  k u =  —m  h 6g =  Pe^  (3.41)

where, h is the height o f  the lumped m ass from the stationary base.

Figure 3.5 Rotational motion d iagram
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It should be noted that measurements of rotational parameters for a SDOF cantilever 

structures are preferred for many researchers since 0  is a good indicator for a structural 

damage index and more significant hysteresis loops are attained from Ms  — 6  curve 

representation more than f s  — u  curves. A hysteresis curve of base moment vs. curvature 

(Ms  — 6  curve) is used to produce a hysteresis curve of base shear vs. displacement ( f s  — u  

curve), by dividing Ms / h  to obtain the base shear and multiplying 6  * h to obtain the 

displacement.

3.6.3 Ductility: the Capacity and Demand

The inelastic response of the structure is fundamentally important in earthquake engineering. 

From the design aspect, earthquake engineering mainly considers that the seismic capacity of 

the structure to be larger than the seismic demand on the structure.

Theoretically, if the demand is larger than the capacity, the structure would suffer damage as 

a result of exceeding the capacity limit. However, this may not be feasible in all cases, since 

low damage can occur even before reaching the capacity of the structure yet acceptable from 

the design aspect. The question is: how much damage could result at low or high levels of the 

demand versus capacity? The scope of this research focuses mainly on this subject. From a 

different aspect, engineers choose to keep their work under the design criterion for ductility. 

The challenge to the engineer is to design the structure with damage that is controlled to some 

acceptable degree. Ideally, the designed structure is aimed to be safe and damage-free. 

Design- wise, this should be approved if:

MCapacity MDemand (3.42)

I Where, [i is the Ductility factor, which is the capacity of an inelastic structural system to 

j deform beyond its elastic level. This implies determining the inelastic range for the structure 

j when it is subjected to the ground shaking and is defined as [1 0 ]:

I n  =  * r  (3-43)uy

where, u m is the maximum inelastic displacement and u y  is the yield displacement of the 

structure. Ductility, in this sense, is the inelastic displacement normalized to the elastic 

displacement limit of the structure. For the whole structure, it is very suitable to plot the



force-deformation curve as a global indication for the hysteresis behaviour of the structure in 

resisting the seismic loading as in Figure 3.6.

fs

fy

u,ly

Figure 3.6 First response stages of force-deformation curve: actual and elastoplastic idealization

An approximation to the actual force-deformation curve, Figure 3.6, is known as Elasto­

plastic idealization, or linearized inelastic system, which considers the yielding force as the 

resisting force during the inelastic phase. The condition is to keep the same area under both 

curves, since it expresses both the strain recovery Energy Es and the Dissipative Yield 

Energy Ey .

3.6.4 Yield Strength and Ductility Relation

Two important measures for determining the inelastic responses are; the Ductility factor ju 

and the Yield Strength factor f y . The combination of both measures is so important in 

designing inelastic systems. They sim p ly  le a d  to  con tro l the y ie ld  d isp lacem en t u y  o f  the 

inelastic  structure. However, if p  and f y  are provided in inadequate values, the structure may 

not respond to the seismic loading sufficiently and the resulting damage could be very severe. 

For design purposes, it is important to determine the yield displacement u y  for the structure, 

in order to limit the ductility demand imposed by the earthquake loading, so that it should be 

always less than the ductile capacity of the structure.

In this sense, it is important to normalize both the ductility p  and yield strength f y  of a SDOF 

inelastic structure, corresponding to the parameters of a SDOF elastic structure that has the 

same dynamic characteristics; frequency o)n (with small amplitudes), damping ratio Both 

systems, elastic and inelastic, are of course subjected to the same ground acceleration ug .



The yield strength fy  is norm alized to m easure the elastoplastic system  in relation to the 

elastic system , as follows [10]:

r  _  f y  _  u y  

h  to
(3.44)

W here, f 0 is the m inim um  strength required for the structure to rem ain elastic and u 0 is the 

corresponding elastic displacem ent.

The norm alized yield strength is restrained to be; 0 <  f y <  1. How ever, it is m ore suitable to 

use the yield strength reduction factor, which is restrained betw een 

1 <  Ry <  p o s i t i v e  n u m b e r  , and equals

Rv =  4- =  £  (3.45)
y  f y  f y

Sim ilarly, the ductility factor is restrained to be; 1 <  p  <  p o s i t i v e  n u m b e r , and equals

(3-46)

where, u m is the m axim um  displacem ent response. W hen Ry =  1 , the system is not 

elastoplastic, but when Rv equals 4 for exam ple, this m eans that the yield strength o f  the 

proposed system  is reduced 4 tim es below  the elastic strength o f  its corresponding  elastic 

system. Sim ilarly, if  the ductility p  o f  this elastoplastic system  is com puted and found to be

3.11 for exam ple, this m eans that a seism ic dem and is im posed on this structure to deform

3.11 tim es beyond the elastic lim it uy o f  this elastoplastic structure. In Figure 3.7, shown the 

force-deform ation relation for the elastoplastic (or elastic perfectly-plastic) system  and its 

corresponding  elastic system . The force f s is the resisting force, or the strength required by 

any o f the two structures to resist the seism ic loading.

Corresponding elastic system

fo

Elasto-plastic system

f y

Uy

Figure 3.7 An elastoplastic system and its corresponding linear system
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The linear parameters are used as references for the ductility factor [i and the reduction 

factor Ry , to evaluate the behaviour of the non-linear system. These factors are very useful to 

construct the Inelastic Design Spectrum from the Elastic Design Spectrum. This topic is not 

relevant to the scope of this research but the Inelastic Design Spectrum, provided with the 

ductility range, is significantly practical in determining the demand quantities (yield strength 

fy  and stiffness) for the structure.

3.6.5 The Equation of Motion for an Elastic System

The governing equation of motion of a linear SDOF system subjected to a ground 

acceleration iig is

m  ii + c ii  +  k u  =  —m i i g (3.37)

If divided by the mass m ,  the following formula is obtained:

ii +  2 $(on u  + oin u  =  ~  Ug (3.47)

where, con =  P  and < =  .
^  771 2  771 C l) f t

As a conclusion, the deformation response u  for an elastic (linear) structural system depends 

on 2 system parameters; the natural period Tn of the system (or its natural angular frequency 

0)n ) and its damping ratio £ only, in addition to the time of motion t.

Therefore, for an earthquake with ground acceleration iig , the deformation response for a 

linear system is formally written as [10]: u { t ,  Tn, £).

Consequently, for any two structural systems having the same values of natural period Tn and

damping ratio £ , they should have the same deformation response u even if one system is

stiffer or more massive than the other. This is true when the structure is dynamically

activated. However, when structures with different stiffness values k lf k 2, k 3,  k N are

subjected to the same static loading they will produce different deformation responses

u l t u 2, u 3,  u N. This is one of the main differences between dynamic and static actions

[10].
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3.6.6 Equation of Motion for an Inelastic System

The resisting force f s in the inelastic systems extends to the yielding phase especially at large 

displacement responses. The yielding property in the material is corresponding to the ductile 

property of the whole structure. The resisting force f s of the whole structure will be 

dependent on both the displacement and velocity in the inelastic range and is written as 

f s ( u , i i ) .  This is because determining f s in the inelastic phase for the dynamic loading 

depends on whether u  is increasing, which means positive velocity + u ,  or decreasing, which 

means negative velocity —ii. Hence, the resisting force f s is not a single valued vector, since 

it depends on the history of the deformation response in the inelastic phase. The equation of 

motion for a SDOF structure subject to a ground motion iig is [10]:

m i l  + c u  +  f s (u , ii)  =  — m i i g  (3.37’)

If divided by the mass m, the following formula is obtained:

i i  +  2 (wn u +  (0%uy f s ( u , u )  =  — i i g  (3.48)

where, u v is the yield deformation limi, f s ( u , u )  =  is a dimensionless quantity that’s
fy

multiplied by u y  to estimate the deformation u  and f y  is the yield strength of the system.

When the system is working plastically, f s ( u , u )  >  1 and the plastic deformation is estimated 

according to this ratio.

o)n is the natural frequency of the inelastic system vibrating within its linearly elastic range, 

when u  < u y , or the natural frequency of the corresponding elastic system. Similarly, (  is the 

damping ratio of the inelastic system vibrating within its linearly elastic range, when u  < u y , 

or the damping ratio of the corresponding elastic system.

In the plastic range for an inelastic system, ductility factor fi is a dimensionless ratio that 

measures how much the system will deform beyond its elastic limit. For u  >  u y , substituting 

u  =  u y . {X and its derivatives too, then dividing by u y , the equation of motion becomes:

ii +  2 {■&)„£ +  f s ( u , u )  =  -  - 7  (3.49)
Uy

1 k  (jj2 m  o ) 2Since — = — = —— = — , the previous equation can be re-written in the following form:
u y  f y  f y  ay

i i  +  2 ( a ) n  f i  +  u l  f s ( u , u ) =  (3.50)
Uy
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where, a y  =  ^  is interpreted as the acceleration of the mass necessary to produce the yield 

force f y .

The next step is to substitute the yield force by the normalized yield force / v =  — = — ,
* fo u 0

where f 0 and u 0 are the resisting force and deformation, respectively, in the co rresp o n d in g  

elastic linear system. From this equation, it is clear that the ductility p  depends on the 

following parameters: o)n , (  and a y .

— /c
Substituting fy  for f y  and — for m, a y  is re-written as follows:

_    f y  fo__ _  ~r~ r  _ _ _  <̂ n Uo 7 ~ r    2  „ .  / " >  r i \
&y ~  m ~   ̂ fy  fo ~  fy  fo ~  ^ n  ^o fy  (3.51)

Therefore, the equation of motion for the inelastic system is now re-written as:

II +  2 <w„/i +  <0* f s { u ,u )  =  -  (3.52)
“ o Jy

As a conclusion, the deformation response u  for an inelastic (non-linear) structural system 

depends on the ductility factor p  , which depends on 3 system parameters; the natural period 

Tn of the system ( or its natural angular frequency o)n ), its damping ratio (  and the 

normalized yield strength of the system f y . Therefore, for an earthquake with a ground 

acceleration ilg , the deformation response for an inelastic system is formally written as:

It is now concluded that for an earthquake with a ground acceleration iig , the ductility p  of 

an inelastic structural system depends on Tn, (  and f y  , or formally written as p (T n, ( , f y ).

3.6.7 Ductility Factor fi and Yield Strength Reduction Factor Ry

For an inelastic system, ductility is then depending on the normalized yield strength f y  =  —
Ry

since that a v =  — and f v = — = — . This leads to the conclusion that the Ductility
y  m  f 0 u 0 J

Demand Factor p  and the Yield Strength Reduction Factor Ry  are correlated. They are

proportionally related as follows [1 0 ]:



w hich m eans that the m axim um  inelastic displacem ent um o f  the inelastic system  can be 

related to the m axim um  elastic displacem ent u 0 o f  the corresponding elastic system .

The corresponding elastic system  is not m eant to be an alternative to the inelastic system s. It 

however, has no physical benefit except as being a reference to the inelastic system s. This 

helps researchers com paring betw een different inelastic system s, through the ductility factors 

ju and yield strength reduction factors Ry for a specific ground m otion. M ore reduction in the 

yield strength allows for m ore ductility values for system s subject to the sam e ground 

excitem ent.

Both /r and Ry param eters are m ainly used to construct the Inelastic Response Spectrum  

(Actual & Design Spectrum ) from the Elastic Response Spectrum . Both spectra are 

significantly useful for engineers, and are w idely approved by m any international codes for 

seism ic structural design. None o f  these applications are within the scope o f  this research.

The R — Ry relation is significantly explored via the frequency dom ain for the SDOF 

structures. This subject is also not within the scope o f  this research. [10, p.274].

However, some typical design approaches consider that the reduction factor is assigned equal 

to the ductility factor, as shown in Figure 3.8.a, in order to obtain an optim um  design in 

w hich the dem and is less than or equal to the capacity, therefore, Ry =  n .

This is not necessarily the case for all structures, since some structures could have their 

ductility capacity exceeded at Ry  =  fj. and it is preferable to have the reduction factor much 

less than the ductility, as shown in Figure 3.8.b, in order to obtain the optim um  design in 

which the dem and is less than or equal to the capacity, therefore, Ry «  /r .

F o rce

R =

* 7.7

X uh D isp . at

= R

Figure 3.8 The reduction factor and the ductility  factor, a) R y =  p, b) Ry «  p . | 1 4 |
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3.6.8 Base Shear Coefficients and Ductility

The combined D-V-A Elastic Design Spectrum curves are the peak Displacement response, 

peak Velocity response and peak Acceleration response in the natural period domain Tn for a 

SDOF structure with a given damping ratio and subjected to a ground motion record ug { t ) .  

The combined D-V-A Elastic Design Spectrum shown in Figure 3.9 is for a ground motion 

record ug ( t )  with peak ground acceleration PGA ug =  1 g .  These peak responses are

reduced by few reduction factors Ry  to create the combined D-V-A Inelastic Design 

Spectrum curves, corresponding to a variety of given ductility factors. The elastic and 

inelastic curves are obviously applied for elastic and inelastic systems respectively. It should 

be noted that Design Spectra are the simplified versions of the Actual Responses Spectra for 

the same SDOF structure with a given damping ratio, and subjected to a ground motion 

record ug ( t ) .  However, errors could exist because of these simplifications especially, in the 

velocity-sensitive and displacement-sensitive ranges of the natural period of the 

spectrum [1 0 ].

Design Spectrum curves or, alternatively, Response Spectrum curves, are used to determine 

the Base Shear Coefficient -  , which is used to determine the peak base shear Vbo and peak

base moment M bo for the structural columns. Where, A  is the peak pseudo acceleration of the 

structure at its top level and g  is the ground acceleration= 9.81 kg.m/s . It should be known 

that the peak pseudo acceleration A is not equal to the peak acceleration response i l l  even 

though both have the same units. Peak pseudo acceleration= D , where D =  u 0 is the 

peak displacement response of the structure at its top level and iij =£ A =

3.6.9 Procedures for Strength-based Seismic Design

For a given column section design, the next steps are typically followed to determine the peak 

base shear Vb(} and check the validity of the given section:

1- Given the geometric properties for a generalized SDOF structure; moment of inertia /, 

elastic modulus E, moment arm y  and structure’s height h.

2- Determine the structural stiffness k  for a generalized SDOF structure of an inverted
3EIpendulum fixed at base = —  .
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3- Determine the natural period for the structure Tn = — = -p=.
*  <*>n UL

4̂
4- Using Tn in the Elastic Design Spectrum, determine the Base Shear Coefficient

9
A

5- Determine the peak base shear Vbo =  -  w , where, w  is the total weight of the

structure.

6 - Find the peak base moment M bo =  Vb o -h  for the structure.

7- Find the axial stress on the structural section due to applied moment, craXiai = ' y

and check its validity with the allowable stress cra iiow abie  • If ° axial ^  ° allow able  the section 

should be revised.

8 - Using Tn in the Elastic Design Spectrum Response curves, with fj. = 1, determine the

peak displacement response of the structure at its top level, u 0 =  D and check its 

serviceability with the allowable lateral displacement. If u 0 >  u auowabie the section should 

be revised.

200

110.4
100

Inelastic denfn •^ecuui

0.5
0.02 005 0.1 0.2 0J

T,, tec

Figure 3.9 Elastic and Inelastic Design Spectra for ground motion record iig(t) with ugQ =  lg , ugQ =  

4 8  j  and ugo =  3 6  in; \i = 1 ,2  and 8;  ̂ =  5%. [10]

3.6.10 Procedures for Ductility-based Seismic Design

In addition to strength based design, the capability of elastoplastic systems to resist 

earthquake loads is verified by Ductility-based seismic design, which is used to determine the 

initial stiffness k  and yield strength of the structure f y  necessary to limit the maximum 

deformation u m to an acceptable value. It should be noted that seismic codes introduce 

reduced base shear coefficients which are smaller than the elastic base shear coefficients that 

are associated with the strongest shaking that can occur at the site [10]. The 20 0 0
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International Building Code  has a range o f  base shear coefficients reduced betw een R=1.5 to 

8 from the elastic design spectrum  for ground m otion record u q ( t )  w ith ug — 0 .4 g . as can

be seen in Figure 3.10.

, /  Elastic design spectrum 
V <V = 0.4g

In te n ia tio n a l B u ild in g  ( 'o d e

0.4aec
0.2

20 3
Natural vibration period 7„, see

Figure 3.10 Comparison of base shear coefficients from elastic design spectrum and International

Building Code 110]

Therefore, structures that are designed according to many building codes, such as the 

International Building Code  exhibiting reduced base shear coefficients, must act beyond the 

limit o f  elastic behaviour when subjected to ground m otion w ith iig =  OAg. Consequently,

buildings are vulnerable to suffer dam ages when subjected to severe earthquake ground 

m otions such as with peak ground acceleration PGA îg 0 ~  due to their obliged

elastoplastic behaviour, but the challenge is to design the structure with such controlled 

dam age that is acceptable according to the Perform ance Based Seism ic Evaluation PBSE. 

The goal o f  a perform ance-based seism ic design is to m aintain the building or structure 

within its safety and serviceability perform ance during and after the earthquake event.

For an unknow n colum n section, the follow ing steps represent the sequence o f  the flow  chart 

in Figure 3.11, which shows seism ic design procedures that could be followed in order to 

determ ine the initial stiffness k and yield strength o f  the structure fy necessary to lim it the 

m axim um  deform ation u m to an acceptable value. The procedures are divided into two parts; 

determ ining the seism ic dem and and the seism ic capacity param eters, as follows:

1 - The yield displacem ent uy and m axim um  deform ation response u m are assum ed so as 

to assum e the ductility dem and g  for the structure.
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2- From the com bined D-V-A Inelastic Design Spectrum  curves, w ith a variety o f 

ductility factors, the natural period Tn can be determ ined and thus, the initial stiffness o f  the

structure is estim ated as k =  ( — ) m.
\Tny

3- By solving the stiffness equation, the yield strength o f  the structure fy  is obtained.

4- The seism ic dem and param eters o f  strength fy and ductility are validated by their 

correspondents from the seism ic capacity param eters, in order to ensure the w orkability o f  the 

flexural and lateral strength o f  the designed section. If  the dem and is not less than the 

capacity, either a new  ductility factor [i is assum ed or the section is revised.

End

Start

com puted  t t (

-* k

Drmani ^  ^  Co p ac ity

Demand

Seismic

Capacity

Seismic

Inelastic Response 

Spectrum

_ , i t /
Design p t ,s ize , k  =

Flexural strength  

capacity design

Lateral strength  

capacity design

Figure 3.11 Flow chart of ductility-based seismic design for elastoplastic systems
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3.7 FRACTURE

3.7.1 The Energy Balance Approach

The Griffith Theory is designed to explain the tensile fracture m ode only, (or M ode I), and 

the two other m odes o f  tw isting and shear, as illustrated in Figure 3.12, are less dom inant in 

brittle m aterials and will not be considered as a fracture-induced m echanism , but rather 

leading to failure, such as shear stresses exceeding the M ohr-Coulom b criterion [20].

I
Mode I: 
Opening

M ode II: M ode III:
In-plane shear Out-of-plane she*

Figure 3.12 Types of fracture modes

Considering a 2D brittle material specim en with a unit thickness and width, that is remotely  

loaded by a tensile loading o f  o  and causing an initiation o f  a central crack with a very small 

crack length o f  2a, where 2a «  w idth [20]. as in Figure 3.13.

y <r

Figure 3.13 Central crack in an infinite plate due to a remote load a

W hen a crack starts to grow, the circular area around the crack is driven to have significantly 

low vertical stresses that will reach zero especially  near the crack flanks. This stress drop

99



would decrease the stored elastic strain energy of the material in that region. The energy 

change (per unit volume) would be:

1 0-2 /-» C-  <t £ = — (3.54)
2 2 E v J

Since the circular area around the crack is the area with stress drop, the energy change for 

that cylindrical volume (or area multiplied by unit thickness t=l) is:

{ n a 2 ' t ) °±  ^  ^
v J 2 E 2 E

This is only an approximation because the stress field becomes non-homogeneous near the 

crack. Therefore, (Griffith) used a stress analysis developed by (Inglis) to obtain a more 

accurate amount for the elastic energy change for an infinite plate:

71 c d
Ua = - ^ ~  (3-55)

where Ua is the change in elastic strain energy (energy drop).

In order to have the crack extended, Griffith assumes that the elastic energy drop (elastic 

energy change) Ua should be larger than the tensile surface energy change UY , which acts in 

the opposite direction of the flanks opening process, and tends to close the crack flanks back 

to their non-cracking position. Thus;

Uy =  4 a . Y e (3.56)

Where, ye is the surface energy per unit area, (or surface tension), and 4 a is the approximate 

area of the surface tension of the existing crack with a length of 2 a, i.e. total surface area is 

(2a +  2 a ) t  = 4a.

The total energy U for a specimen with finite dimensions, loaded with a “fixed grip” 

condition and has its first crack initiated is:

U =  U0 +  Ua +  UY -  W o r k  (3.57)

where, UQ = (a constant value) total energy of specimen + its loading system, before the

crack is introduced. W o r k  =  work performed by the loading system du rin g  the introduction
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o f  the crack = load x displacem ent. Since the loading system  on the specim en is a fixed grip 

type, it is defined as a constant displacem ent loading system . Since the elastic stresses at that 

region will drop due to the crack initiation, the work perform ed by the loading system , fixed 

grip, will also drop as no displacem ent w ould occur. Therefore, W o r k  =  0. Substituting 3.55 

and 3.56 into 3.57, the total load is [20]:

U =  U0 - ^ ^ +  4 a . y e (3.58)

3.7.2 A Crack Growth

A crack would grow  if the total energy U decreases. Considering an increase in the crack 

length by d { 2 a ) .  Equation 3.58 can be differentiated with respect to (2 a )  to obtain the rate o f 

decrem ent o f  the total energy as:

d U  

d { 2 a )
< 0 (3.59)

The driving force for a crack extension exists due to the decrease in the elastic energy rate

(d 2a )  counteracts lhe tension energy rate ( ~ £ )  o f  the crack surface. This is the principle

o f  Energy Balance , which can also be illustrated in the Figure 3.14, when the slope o f  the 

total energy decreases, the crack will experience unstable crack propagation.

Energy Surface Energy

Total Energy

Crack Length a

Strain Energy

Figure 3.14 Energy Balance between Stable and Instable Crack Propagation (211



This concept can be explained as follows. The total energy rate due to crack growth of 

<2 (2 a), i.e. slope of the curve, decreases such as:

d(2a)
dU dU.

d(2d)
a (3.60)

Since U0 is constant,  ̂ is zero, and by substituting for the other terms we obtain:

(3.61)

This implies that a crack growth occurs when:

The rate of fracture energy (energy release rate G) > 2 (surface energy per unit area, i.e. surface tension ye).

Irwin designated the left hand side of equation (3.61) as the energy release rate G , 

representing the energy per unit new  crack area ava ila b le  for the crack extension. The right 

hand side represents the crack resistance R s, representing the surface energy increase per unit 

new  crack area that is req u ired  to allow for an extension. Therefore, a crack will extend when 

the a va ila b le  energy rate is g rea ter  than  the req u ired  energy rate. If R s  is constant, then G 

should be larger than some critical value Gc which is equal to R s, i.e. G >  Gc — R s

Equation (3.61) can be re-written as:

(3.62)

is purely material properties which has a constant value that should be violated by 

a  yfa  to allow for a crack growth extension.
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4.0 INTRODUCTION

The analytical exact solution for the Equation of Motion can be determined usually for 

periodically loaded problems of linear systems. However, such solutions are not possible in 

cases of arbitrarily time-varying excitation forces such as ground acceleration iig , or if the 

system is non-linear. Therefore, only numerical time-stepping methods for integrating the 

differential equation of motion are applicable, giving approximate solutions. The numerical 

solution of such a differential equation requires the equation to be represented in an 

incremental procedure [1].

Numerical time-stepping methods apply the time interval At* =  t i+1 — t t as a constant value. 

The response of a structure is to be known at a discrete time instant t t as u it iii and iij, which 

are satisfying the elastic system governed by this equation of motion at time t*:

m iij + c i i i  +  ( / j) ( =  Pi (4.1)

where, (f s ) t is the resisting elastic force that equals k  u t at time t t for a linearly elastic 

system. However, for an inelastic system the resisting force is (f s ( u , u ) ) i  which depends on 

the prior history of displacement and on the velocity.

The system is assumed to have linear viscous damping coefficient c which is determined 

approximately, since the exact damping value is still lacking information and needs to be 

approximated to predict the magnitude of energy absorption that’s associated with the 

damping effect, especially at large amplitudes of motion [2].

By using the time-stepping procedure, the response of the structure Ui+1,U i+1 and i i i+±, at 

time t i+1 are to be determined by satisfying the equation of motion as follows:

m iii+1 +  c  i i i+1 +  ( fs ) i+1 =  p t+1 (4.2)

If the equation of motion at time t t is subtracted from this equation, the incremental equation 

of motion is obtained as:

m  A iii + c A i L i +  (A f s ) i  = A p t (4.3)

It should be known that stepping the equation from time ti to time t;+1 is an approximate 

procedure that needs the conditions of convergence, stability and accuracy to be successful. 

Convergence imposes approaching towards the exact solution as the time-step decreases. 

Stability means that the solution should be stable in the presence of numerical round-off 

errors. Accuracy is how close the approximate solution is to the exact solution [2].

107



4.1 NUMERICAL-INTEGRATION SOLUTIONS FOR DYNAMIC 

PROBLEMS

There are different types of time-stepping procedures. Generally, they are:

•  Procedures based on interpolation of the excitation function.

• Procedures based on finite difference of velocity and acceleration.

• Procedures based on assumed variation of acceleration, which is known as Newmark 

Method. These procedures have two kinds; the Linear Acceleration Method and the 

Average Acceleration Method. The following section will consider a time-stepping 

procedure based on the Average Acceleration Method since it is numerically stable 

under any time interval [2]. This method is applied in this chapter to solve the 

proposed example numerically.

4.1.1 Newmark Method for Linear Systems

Newmark (1959) developed a time-stepping method based on the integration of an 

approximated acceleration value ii(£) at time ^between time t, and t i+1. The integration 

produced the following approximate Recurrence Equat ions  for velocity and displacements at

relatively large. However, the solution will be accurate only if At is small enough [2]

By introducing an incremental form such as Au t =  u i+1 — Ui for all of the time-dependant 

parameters u it u it iii and Vi, the Recurrence Equat ions  are re-written as follows:

Which are substituted into the incremental equation of motion; Aiq + c  Aiq + k  Aiq = 

A pi , where, (A f s) i  = k  Aiq . This will produce a relationship that contains the incremental

time t i+1 :

ti;+i =  Ui + [(1 -  y)At] iii + Y ^ i i i+1

u i+ 1 =  ^  + At i i i + [(0.5 -  P ) { A t ) 2]iii + [/?(At)2]ui+1

(4.4.a)

(4.4.b)

Where, the parameters y and /? determine the type of approximation for the acceleration over
i i  i ia time step. The parameters y =  - , / ? = -  are for average acceleration and y = - , / ?  =  -  are
2 4  2 6

for linear acceleration, and they determine the stability and accuracy of the method. It is 

important to know that the average acceleration method is stable for any At, even if it is

(4.5.a)

(4.5.b)
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displacement A u t, and is considered as the key equat ion , that is, implicitly, solved at each 

time step in Newmark’s Method. This key equat ion  is:

k A U i  =  A pi (4.6)
V 1where, k  =  k  +  —  c +  — - -  m  which is constant in the elastic system analysis, and 

APi =  APi +  ( ^ m  +  j c ) u i +  [ ± m  +  A t ( ± - l ) c ] i l i .

Therefore, the solution is then found by adding the incremental displacement Au t to the

solution of the previous step as follows:

Ui+i = Ui +  AUi (4.7.a)

By substituting the incremental velocity and acceleration at each time step i, the rest of the 

solution is similarly found as:

u i+ 1 = iii + A u t (4.7.b)

fy+i =  Ui + A u t (4.7.c)

4.1.2 Newmark Method for Non-Linear Systems

The previous solution can be extended to be applicable to a non-linear response by modifying 

the incremental resisting force (Af s )i  to become a function of the incremental displacement, 

using a time-varying variable as follows:

(A fs ) i  =  ( k i ) t AUi (4.8)

where, { k { ) t is the tangential stiffness at time-step i, which is changing at each time-step.

However, the incremental displacement must first be calculated from the key equat ion , which

is also re-written as:

=  Api  (4.6’)

and consequently, (£ ,) t =  (fc;)t +  c +  m .

The resulting errors in the approximate incremental resisting force (Af s )i  are due to the

linearity of the tangential stiffness, which is assumed to be approximate to the secant stiffness

as follows:

( k O t =  Ck d s  (4.9)

where, the secant stiffness (/c*)s is assumed as the exact representation of the element 

stiffness. This assumption introduces numerical errors, which can be minimized by reducing 

the time-step interval At* = t i+1 — t t to a relatively small value. This technique is quite 

useful and easy to consider, it can be used to solve non-linear problems with very small 

errors.
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However, these errors can also be minimized by using an iterative procedure in which the key 

equation is iterated a number of times within every time interval At*, until convergence is 

reached by some tolerance value. This can be processed by using the technique of Newton- 

Raphson or modified Newton-Raphson iterative methods. However, no iterative procedure 

has been adopted in the proposed computer code of this problem, but rather reducing the 

time-step interval At* =  t i+1 — t t to a relatively small value, to minimize the expected errors.

4.2 THE FIBRE ELEMENT METHOD FOR SOLVING NON-LINEAR 

DYNAMIC ANALYSIS

The response of reinforced concrete columns under dynamic loading can be predicted 

numerically by using the fibre element models. The linear and non-linear responses such as 

force versus displacement hysteresis and time history are determined.

A fibre element is a beam element that consists of a number of ‘fibres’. Each of the fibres is 

assigned a uni-axial constitutive model corresponding to the material it represents. The fibres 

are grouped in an element section and the fibres’ properties are summed together to form the 

stiffness matrix of the element. It is significantly practical to use fibres in order to model the 

reinforcement bars of different diameters within the reinforced concrete section. Fibre 

modelling is also useful to represent the degradation of stiffness of the section during the 

non-linear process. Gradual degradation of the element stiffness is a consequence of failure of 

those fibres that reached the ultimate axial strength. It is therefore, possible to examine the 

failed concrete or steel fibres at any stage of loading and obtain useful conclusions for the 

analysed structure. Many researchers adopt fibre element analysis in non-linear dynamic 

problems especially for the analysis of reinforced sections.

4.2.1 Initiation of the Hysteresis and Employment of the Built-in Hysteresis 

in the Fibre Element Method

The Difference between non-linear analysis with a pre-defined hysteretic rule and the non­

linear analysis with fibrous elements is that, in fibrous elements the stiffness depends on the 

state of the computed elastic modulus E, which depends on the stress-strain state at each 

time-step and the axial stress-strain behaviour depends on the given material model. While, 

in a non-linear analysis with a pre-defined hysteretic rule, the stiffness alternates according to
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a given load-displacement (hysteresis) curve, that’s extracted from the hysteresis theory. The 

hysteresis can also be extracted from experimental data of a SDOF inelastic system. In this 

case, the stiffness response is not calculated, but simulated according to a previous model, 

which may differ in the hysteretic behaviour from the analysed problem.

4.2.2 Fibre/Beam-Column Elements with Two Nodes

The applied two-dimensional fibre element has two nodes at its ends, with a total of 6 degrees 

of freedom DOF. The non-linearity of the element is assumed in the middle cross section of 

the element, as shown in Figure 4.1.a and 4.1.b.

k-th fiber
Area: 4t
Tangential stiffness at time /:

Centroid

Figure 4.1.a) Two-dimensional fibre element, b) Fibre section of the element.

The incremental axial strain at the centroid of the element A s a and incremental curvature A0 

of an element between time t  and t  +  At are as follows:
_  Auj 2- A u j 1 

^ a  ~  L

A 0  =

(4.10)

(4.11)

where L is the element length, Au;1 and AUj2 are the incremental nodal axial displacements at 

joints j l  and j2, respectively, and AG^andAfl^ are the incremental nodal rotations at joints j l  

and j2, respectively.

By employing the assumption of plane sections remaining plane after deformation, the axial 

strains in all fibres of the section are linearly proportional as shown in Figure 4.2. The 

incremental axial strains of the k-th fibre is the difference between the incremental axial 

strains due to axial force and the incremental axial strains due to bending moment. This can 

be obtained as follows:
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ASfc =  A£a -  y k . A<p (4.12)

where, is the distance from the element centroid to the k fibre. It is assumed that 

A0  = sin A<p having the condition that A(p is very small and must be in radians. The value of 

A(p is very small for such problems, but if A0 is in degrees, it must be substituted with sin A0 

in the previous equation.

Bending Moment

Aa\

Centroid

Figure 4.2 Diagram of incremental axial strain of the k‘h fibre.

4.2.3 The Stiffness Matrix of the Two-dimensional Fibre Element

The stiffness of the fibre element defines the function between the applied forces and 

corresponding displacement and rotation responses. For a 6 DOF element with nodal 

freedoms {nl, n2, n3, n4, n5, n6}, the stiffness matrix defines the function between the 

following couples:

• The incremental axial force ANj and the nodal incremental vertical displacement Auj ,

• The incremental nodal lateral force A Qj and the incremental nodal lateral 

displacement Avj ,  and

• The incremental bending moment AMj and the incremental nodal curvature A 6j.

The forces-displacements relationship for the element can be written in a matrix form as:

{A/} =  [fct] {Au} (4.13)

where, k t is the tangential stiffness for the element, A f  is the incremental nodal forces and 

Au  is incremental nodal responses, or

{A/} =  {A Nn , AQn , AM,1; A Nj2, A Qj2, A Mj2 f  (4.14)
T

{Au}  =  {Auj l>Avj l ,A9 j l f AUj2,Avj 2 t A0j2} (4.15)

112



The stiffness matrix is derived from the force-stress and the moment-stress relations. By

substituting equation 4.12 into these relations the following is obtained:

A N  =  f  A a  d A  =  I kn=1(A ek EkA k) =  EA't A s c -  EG't A0  (4.16)

AM =  — /  Act .y. d A  =  — Z kn=1(Aek EkA k y k)  =  - E G ;  Aec +  EVt A4> (4.17)

Where,

EA't =  Z k=1(EkA k) (4.18)

EG; =  Y kn=1(EkA k y k) (4.19)

E l i  =  2 U i ( y f )  (4-20)

are the parameters of the stiffness matrix. Where, Ek is the elastic modulus of the k th fibre 

material, and A k is the cross section area of the k-th fibre. Using these relations and using 

polynomial formulae for the assumed deformed shape of the element in u  and v ,  the stiffness 

matrix of the two-dimensional fibre element with 6 DOF’s [k t ] can be expressed as:

EA,* 
L

0 E G * 
L

EA,*
L

0 EG,*
L

0 12 El, 6EI, 0 12 El, 6EI,

I? L 2 L 3 L 2

*

6EI* 4 E l* EG* 6EI,* 2 El,*
L L 2 L L L 2 L

EA,* 
L

0
EG,*

L
EA,*

L
0 EG*

L

0 12 El, 6EI, 0 12 El, 6EI,

L3 L 2 L 3 L 2
E G * 6 E l* 2EIt* EG* 6EI* 4 E l*

L L 2 L L L 2 L

4.2.4 Envelope Curves of Concrete Stress-strain Model

It should be noted that the equations for the constitutive model described by Sakai & Mahin

[3] represent comprehensive formulae for linear and all probable non-linear stress-strain 

paths. They describe 7 paths in the compressive field, and they are listed as follows:

• elastic stress-strain path,

• idealized unloading path,

• unloading path from re-loading path,

• re-loading path from zero stress, Figure 4.3.a,

• re-loading path from un-loading path, Figure 4.3.b,

• post un-loading from envelope curve and

• post un-loading from re-loading path.
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Figure 4.3.a and 4.3.b Idealized re-loading paths [3]

Such lengthy detailed formulae can estimate the expected non-linear behaviour more 

approximately, but they need longer computer programming sections than the scope of this 

chapter. However, a more simplified loading, un-loading and re-loading path of the stress- 

strain relationship has been used, in order to bring the calculations to an acceptable standard, 

and then, determine the level of approximation that can be reached.

Assumptions:

There are two important assumptions that have been made in the proposed computer code so 

as to determine the level of acceptable approximation that’s required to solve the dynamic 

non-linear problem. They are:

1. No iterative procedure has been adopted in the proposed computer code of this problem, 

but rather reducing the time-step interval At* =  t i + 1  — t t to a relatively small value, 0.01 

seconds, in order to minimize the expected errors made due to the assumption of adopting 

the tangential stiffness as equal to the secant stiffness, or (k i ) t =  (k i )s , as previously 

discussed.

2. A more simplified formula for the probable non-linear stress-strain paths has been 

adopted, which is more suitable to the proposed computer code.

4.2.5 Simplified Concrete Stress-strain Envelop

The adopted simplified envelopes of the constitutive law for the concrete column are based 

on the idealized linear stress-strain curve of the concrete core and the concrete cover of the 

column. The shown Figure 4.4 will have the stress-strain curve envelop in the non-linear 

strains, where £t <  s cc for confined concrete core, and £t <  £sp for un-conflned concrete 

cover. However, the numbers in the figure were changed to suit the proposed problem. At
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time-step i, elastic stresses are obtained from Hook’s law, and the stress envelop is obtained 

from the following formulae, as a function of strain:

For concrete cover: =  —7 .0 0 E 0 9  £t — 5.6F07

For concrete core: o t =  —11.5F09 £t — 5.75F07

0

C3

I  ' 2 0

|  -40
J l

-60
-0.03 -0.02 -0.01 0

Strain e c

Figure 4.4 Envelope curves of concrete stress-strain model |3]

Confinement:

The confinement of a concrete core section increases its ultimate strength according to two 

main factors; firstly, the transverse reinforcement properties; yield strength, cross section area 

and spacing, secondly, the axial stress on the column section. However, confinement is not 

effective when the axial stress is relatively low, less than 10% of the column compressive 

strength [4]. In general, confinement increases as more axial forces are applied on the 

column. In the proposed problem less than 3% of the column compressive strength is applied 

as axial stresses, and thus very low confinement is activated by the transverse reinforcement 

on the core section. Thus, the stress envelop is obtained from the following formula:

For concrete core: =  —l l . S E 0 9 £ i  — 5.75E07.

4.2.6 Simplified Constitutive Un-loading and Re-loading Paths for 

Concrete

For every time-step i strain is produced to fall into one of 5 parts of the simplified 

constitutive curve to define its corresponding stress. For concrete modelling, the 5 parts are:

1. Tension strains part: In this range stresses are ignored and set equal to zero.

2. Linear Loading, Un-Loading and Re-Loading part: In this range of strains the

behaviour is considered linear as long as they lie between two determined boundary

1 1 p  Vtsp%%
11ft 1ft I • f 1 1 ft 1

-2
% Ii I i f C/3

* f
111 i I  - -4

. f '  MFeu Jco f
U

“ - -6 75
Si

—  Cover Concrete €̂cc * ^ cc ^ £

----  Core Concrete
i i

-8



values of strains; lower and upper strain limits. The lower-limit strain value corresponds 

to a stress value on the envelope, and the upper-limit strain value corresponds to a zero- 

stress value. These two strain values are updated in the code at each new lower strain 

exceeding the previous lower-limit on the softening envelope. They are also updated at 

each time a new higher strain exceeds the upper-limit on the zero-stress line. Therefore, 

these two limits should be previously updated for the 3ed or 4th parts for the current 

iteration.

It should be noted that this part is idealized differently by researchers to obtain the path 

functions in the un-loading and re-loading processes, such as Sakai & Mahin [3] who 

developed parabolic stress-strain paths for the unloading process and linear paths for the 

re-loading process. In this model, both unloading and reloading paths are considered 

linear, with a slope parallel to the concrete linear elastic stiffness. Such approximation is 

adopted to reduce the size and complexity of calculations, since paths with parabolic 

functions are very close to the linear behaviour.

3. Envelope stresses with softening strains (strains below the lower-limit):

These softening points lie on the softening envelope, and they are updated at each time- 

step. Confined concrete fibres have a different softening envelope from that of the 

unconfined fibres, which are in the column outer cover and are more vulnerable to 

dissipate energy than the concrete in the column core.

4. Unloading and reloading beyond the zero stresses (strains above the upper-limit):

If the concrete model is unloaded to reach strains beyond the zero-stress point, i.e. strains 

exceeding the upper-limit and re-loaded again, a new linear path with new upper and 

lower limits is updated. Such a path is followed for the re-loading and un-loading 

processes as far as limits are not exceeded.

5. Crushing strains:

Once the fibres are strained to a crushing value of the concrete, -0.008, all successive 

points will have a zero-stress value, since fibres are considered fully fractured and have 

absorbed energy equal to their fracture energy.

4.2.7 Simplified Constitutive Un-loading and Re-loading Paths for Steel 

Rebars

The adopted stress-strain constitutive Model for Steel Rebars is also simplified by 

considering idealized linear loading, un-loading and re-loading paths, in addition to 

considering zero-slope envelope at the ultimate strength of the steel material. However, more
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complex paths are adopted by researchers for these path functions for steel, such as the one 

adopted by Sakai & Mahin [3] who modified a stress-strain model based on Mongetto & 

Pinto model and Sakai & Kawashima model.

A steel fibre strain is introduced to fall into one of 3 parts of the simplified constitutive curve 

to define its corresponding stress. For the steel rebars modelling, the 3 parts are:

1. Tension strains part: In this range, stresses are either linear which follow the linear 

stress-strain relation of uni-axial loading, or non-linear, with strains exceeding the tensile 

yield stress value of steel.

2. Compressive loading part: In this range stresses are either linear which follow the linear 

stress-strain relation of uni-axial compressive loading, or non-linear, with strains 

exceeding the compressive yield stress value of steel.

3. Un-loading and Re-loading part:

This range fails between the tensile and compressive yield stresses. All constitutive points 

within this range follow a linear path in this model. The linear path is taken as parallel to 

the initial elastic stiffness rate of the steel. All un-loading and re-loading points behave 

linearly as far as they do not exceed the upper or lower limits of the strains.

4.2.8 Algorithm and Flow Chart

In addition to the previous explanation of Newmark’s method, fibre element modelling for 

: non-linear dynamic analysis and the simplified constitutive modelling of envelop curves for 

concrete and steel, the following explanation is concerned with the code algorithm that has 

been built using MatLab programming to solve and analyse a nonlinear RC column problem 

under dynamic loading. Appendix [A] shows a complete list of the written code.

In general, the code follows the major steps given by Chopra [2], which are listed below with 

an important explanation of the necessary steps required for the iteration loops, fibre loops 

and formation of the global matrices. They are three major steps as follows:

1.0 Given are the initial conditions: p 0, f So, u 0 which are the initial load, initial restoring 

forces and initial velocities respectively. The initial accelerations are then calculated as:

Vo ~  c  ■ —  f s 0
u 0 =  -------------------------

m

Where c a n d  m  are the damping and mass matrices for one element.

2.0 For all time-steps iteration, beginning from i —1 to the end, with time-step At:

2.1 Obtain the local and global grand load increment A p t as
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A pi  =  A pi  + a  . iii + b .Ui

Api =  Apj + a . itj + b . iij
1 y 1 /  y \where, a  =  - — m + -  c and b =  —  m +  At — — l i e

’ /?A t /? 2(2 \ 2 p  )

2.2 Obtain the global stiffness matrix k t from the previous time step.

2.3 Obtain the global grand stiffness matrix as follows:

Y 1kj =  kj +  — —. c +  — —  . m
1 1 p .  A t  p .  A t 2

~  r
kj needs to be reduced into kj by deleting terms of boundaries constraints in order to 

avoid singularity when inverted in the next step 2.4.

2.4 Solve the key equation for the global displacement increment Auj for the whole 

structure as follows:

A«i = [V] ■Apir

Start of fibre-level loop. Obtain the global stiffness matrix and the global

displacements for the next time-step iteration, from 2.4.a) to 2.4.c) :

2.4.a) Obtain the strain increment of this iteration (A£k) i  for each fibre in the element as:

(A £fc)i =  (Aea — y k .Acf>)i

(Au jo -  Au j i ) .  ̂  ̂ (Adjo-Adj i ) .
where, (Aea)i = ------ ------ L , (A0)j = --------------L and , y k is the distance from

the element centroid to the k-th fibre.

Where L is the element length. AUj2 and Au;1 are the incremental nodal displacements 

at the nodal freedoms n4 and n l, respectively. A6j2^ ndA 6j1 are the incremental nodal 

rotations at the nodal freedoms n6 and n3, respectively. The nodal freedoms {nl, n2, 

n3, n4, n5, n6} in the code terms correspond to the incremental nodal responses 

{AuJlt AVjlf AGjl t  AUj2,AVj2,A9j2 } in the theoretical terms, respectively.

Now, obtain the strains of the next iteration ( £ fc) ;+ 1  for each fibre in the element as:

(£/c)i+1 “  (£/c)i
2.4.b) Obtain the stresses of the next iteration (crfc) i+1 for each fibre in the element from

the provided concrete & steel simplified constitutive models.

2.4.c) Obtain the updated stiffness modulus for every concrete and steel fibre in the

element as follows:

P _  (.&k)i+1

2.4.d) End of fibre-level loop. Repeat all steps from 2.4.a) to 2.4.c) for the next fibre.
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2.4.e) Form the global stiffness matrix as in the following steps:

s tep ( l ) :  Construct the element stiffness matrix k i+1 as a function of 

E A \ , EG{ , E l l  and L using the updated stiffness modulus Ei+1. 

s tep(2): Transform element stiffness matrices to global coordinates (NOT NEEDED). 

step(3): Combine element stiffness matrices to form global stiffness matrix k i+1. 

step(4): Reduce global stiffness matrix with constraints.(NOT NEEDED here, but 

needed for the Grand global stiffness matrix in step 2.3).

2.4.f) Obtain the global displacements vector u i+1 for the next iteration as:

u i+1 =  Auj + Uj

2.4.g) Solve for the global restoring forces vector ( / s ) i + i  as follows:

( f s ) i + l  =  k i + 1  - u i + l

2.5 Obtain the global incremental velocities and accelerations vectors as:

Y Y (  Y \Au, = —  Aul - - u 1 +  A t ( l - - ) u 1

2.6 Obtain the global velocities vector for the next iteration as:

u i+1 =  Aiij +  Uj

2.7 Obtain the global accelerations vector for the next iteration as:

«i+i =  Aiii +  Uj

3.0 End of time-step iteration loop. Repeat all steps from 2.1 to 2.7 for the next time- 

step.

4.2.9 Flow Chart for the Code Algorithm

Solving the proposed non-linear dynamic problem requires several computational tasks. The

main tasks can be summarised in the following points:

1. Defining initial values, Newmark’s constants, input and output parameters, and 

configure them in the correct arrays dimension. This also includes configuring the 

geometry of element fibres and assembling the global matrices.

2. Constructing constant and varying global matrices; mass, damping and stiffness 

matrices. The global stiffness matrix is constructed twice; the first time is to solve for 

unknowns in the static analysis under the permanent loading of gravity, the second 

time is during an iterative updating process to solve for unknowns in the non-linear 

dynamic analysis under dynamic loading.
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Updating the stiffness matrix is processed at every time-step, and depends on computing the 

updated elastic modulus, which depends on the simplified constitutive models built-in for the 

concrete and steel fibres.

The global stiffness equation, known as key equation, is solved iteratively, and the solution is 

used to determine and update the fibres’ strains and stresses, which are used to determine and 

update the elastic modulus.

The hysteresis curves can be obtained from solving the stiffness equation again. Damage 

could also be estimated according to those stresses falling in the stage of softening strains.

The sequence for handling these tasks can be briefly described using the flow chart shown in 

Figure 4.5.

4.2.9.1 Damage

According to the concrete constitutive curve, the fibres are not designed to resist the tensile 

stresses, but rather resist compressive stresses until some strain crushing limit -0.008, after 

which the fibres are banned from resisting any more loads since they are considered fully 

damaged. However, even though fibres that have experienced tensile strains are theoretically 

damaged, they are not banned from resisting further compressive stresses at further time- 

steps. This is because they attain small hair cracks in reality, and are not considered fully 

damaged. In this fibre element model, damage is not estimated but rather its effect is 

encountered within the updated stiffness matrix for each element.

4.2.9.2 Programming Issues

• Solving for the displacement increment for the whole structure in step (2.4) is obtained
~ r ^  r

from the reduced grand (cap) stiffness matrix kj and reduced grand loading vector Apj . 

This is done by using the key equation.

• After using a MatLab function file to produce the stresses from strains, it is necessary to 

update every strain value for the next time-step before entering the fibres’ loop of the next 

iteration. This should be done for each element otherwise, strains would not be updated 

for the next iteration.

| • The global restoring forces vector (fs)j and the global displacements vector Uj in steps

I 2.4.f) and 2.4.g) respectively, are plotted to obtain the hysteresis curve for the structure
j
j for all time-steps.

' • The updated stiffness modulus Ei+1 in step 2.4.c) is the damaged modulus E D if the fibres 

strains exceed the elastic limit and fall into the softening strain stage.
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Figure 4.5 Flow Chart for non-linear dynamic solver using the Finite Fibre Elements

4.3 THE PROPOSED PROBLEM

The proposed problem is a reinforced concrete column with a mass lumped at the top of the 

column and complete fixation at the base. The top mass is subjected to an effective dynamic 

lateral load equivalent to an artificial ground acceleration record of 6 to 8 seconds long. The 

structure has a fundamental vibration period of 0.375 seconds for the first of mode 1, and is 

analysed with a damping ratio of 5% using the mass-proportional damping type with mass 

parameter 1.66221693. The column is 6 meters long, and its cross section is (0.70m x 0.70m)
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w ith 0.025m  cover and 16 No. 14 steel rebars o f  diam eter 25 m m , as show n in Figures 4.6.a & 

b.

f i t  « I : t. ' •» S*i-ii K:

X

Figure 4.6.a) RC column cross section, b) Column structure

4.3.1 The Structure Model

The model for the proposed problem  was built and analysed by using M atLab program m ing, 

and verified using the Seism oStruct m odel. The Seism ostruct softw are is one o f  the 

successful and robust non-linear dynam ic solvers. It is designated to perform  seism ic 

analyses for RC and steel structures under seism ic loading. The Seism ostruct M odelling is 

based on the Finite Fibres Elem ents which are very suitable for m odelling o f  2D and 3D RC 

fram e structures. As can be seen from Figure 4.7, the fibre-elem ents m odelling for a RC 

m em ber is based on discretization o f  the m em ber's  section into 2D fibres which are entitled 

the elastoplastic properties o f  the material [5], The program  accounts for both m aterial 

inelasticity and geom etric nonlinearity, follow ing the constitutive relationship for the 

m aterials in their elastoplastic behaviour. Several seismic tasks can be perform ed by the 

Seism ostruct such as dynam ic, quasi-static, static tim e-history, and Eigen analyses. Two 

schem es o f solutions are available; the displacem ent-based and force-based schem es, with 

and w ithout involving the plastic hinge properties. The force-based schem e is very successful 

in solving non-linear dynam ic problem s since it converges with a very few  num ber o f  

elem ents, and is recom m ended by the U ser's  manual for solving non-linear problem s w hen 

applying dynam ic and quasi-static analyses.

Two o f  the Seism oStruct contesters won the ‘Award o f  E xcellence’ in the ‘blind prediction 

contest’ carried out by PEER and N EES in 2010 for analysing the shaking-table test o f  a full- 

scale RC colum n. In 2012, The Seism ostruct software was also awarded in the ‘ 15th W orld 

Conference on Earthquake Engineering’ for estim ating, with unm atched accuracy, the
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dynam ic response o f  two full-scale reinforced concrete fram es designed for low and high 

ductility levels, and tested on a shaking-table.

ode B

o

Figure 4.7 Modelling components of RC members by fibre elements |5|

4.3.1.1 Assumptions of the Fibre Element Model in the MatLab Code 

Elements and Nodes:

N um ber o f  elem ents=5. num ber o f  DOF per elem ent=6, total num ber o f  D O F=l 8, num ber o f  

restrained DOF=3 at the base o f  the colum n.

Length o f  elem ent L=1.2 m. width o f  e lem ent^  w idth o f  colum n cross section=0.70 m 

Fibres:

N um ber o f  fibres per elem ent=57. width o f  each fibre=0.0125 m.

D iam eter o f  steel bars=0.025m , num ber o f  bars at each side o f  section = 7 bars.

Axial loading: Axial load is the dead gravity load o f  the top mass, and is placed at top node 

16 w ith a value o f  (-30,000 x g) N, where g is the ground gravity=9.81 kg/m .s2. In order to 

have the axial load as a perm anent gravity value, th a t's  m aintained during the tim e o f 

analysis, it is applied as a static loading, and solved with the reduced stiffness equation to 

obtain the displacem ents, which are added to the displacem ents obtained from the dynam ic 

loading.

Lateral loading: Lateral loads are calculated by m ultiplying the lumped m ass o f  every node 

by an artificial ground acceleration record o f  6 to 8 seconds long, as shown in Figure 4.8. 

Loads are applied at the lateral DOF num ber 14 at the colum n top node, w ith a m agnitude o f 

(30000 x g x Load Factor changing per time).

G auts 
Section b
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Figure 4.8 Artificial ground acceleration record

Time-step: The total tim e o f  curve loading = time step (0.01 sec) x size(600-800 tim e-steps) 

= 6-8 seconds, where, the interval o f  tim e step =0.01 seconds and size o f  the problem = 600- 

800 tim e-steps.

Material properties:

Concrete elastic m odulus Econc= 21000 M Pa = 2.1 Oe 10 Pa (N /m 2)

Concrete Axial Strength Fc = -4.2e7 Pa

Steel elastic m odulus Esteel= 175000 M Pa = 1.75el 1 Pa

Steel Axial Strength Fy = 3.5e8 Pa

Lum ped m ass at top node = 30000 kg, rotational m ass =  43200 kg.m 2[6,7].

Lum ped m ass at colum n nodes =735 kg, rotational m ass =1058 kg. m 

Damping factor:

The dam ping m atrix c can be form ed by different form ulae according to different 

assum ptions. For a 5% dam ping ratio the follow ing form ulae are obtained: 

c =  0 .231  m  -I- 0 .00501  k Rayleigh dam ping, calculated from Chopra [2, eq .l 1.4.10] 

c =  0 .2138  m  +  0 .0 0 5 2 4  k Rayleigh dam ping, obtained from Seism oStruct. 

c =  0 .00601  k S tiffness-proportional dam ping, obtained from Seism oStruct. 

c =  1 .6 6 2 2 1 7  m  M ass-proportional dam ping, obtained from Seism oStruct. The m ass- 

proportional dam ping type was used to avoid possible num erical instability.
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Constitutive Models in SeismoStruct:

The constitu tive m odels used by the Seism oStruct for concrete and steel have been chosen as 

m ost sim plified ones, as shown in Figures 4 .9 .a and 4.9.b. and are given the same properties 

in the code.
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Figures 4.9.a and 4.9.b Constitutive models used by the SeismoStruct for concrete and steel, respectively

4.3.2 R esu lts  an d  D iscussion

Figure 4.10 shows the hysteresis curve for the relative lateral displacem ent versus the base 

shear by both M atLab code and Seism oStruct analyses. The hysteretic loops tend to degrade 

as the dynam ic loading increases every tim e step. This is due to the fact that the global 

stiffness m atrix is updated according to the changes in the elastic moduli o f  the loaded fibres. 

A ccording to the concrete constitutive m odels assigned for the colum n core and cover, fibres 

m ust lose their elastic strength when subjected to any tensile strains. This would, eventually, 

cause the degradation o f the global stiffness m atrix as fibres strain in the tensile direction. 

This can also be seen in the base-m om ent/rotation hysteresis curve in Figure 4.11.
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Figure 4.10 Base-shear/displacement hysteresis curve
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Figure 4.11 Base-moment/rotation hysteresis curve

Figures 4.12 and 4.13 show  com parisons o f  different responses o f  base shear forces and 

displacem ents, betw een the M atLab code and Seism oStruct analyses. It can be seen that 

displacem ents do not agree in the beginning o f  the response, but relatively agree in further 

stages.
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Figure 4.12 Base shear forces by SeismoStruct and code analyses.
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Figure 4.13 Relative displacements by SeismoStruct and code analyses.

At the first elem ent, the fibres at the end o f  the elem ent section will have concrete and steel 

stress-strain curves that look like Figures 4.14 and 4.15. The curves follow  the assigned 

constitutive m odels for concrete and steel linear and non-linear paths successfully. How ever, 

concrete stress-strain curves o f  the two analyses do not coincide even though the overall 

results are approxim ately close. This is because the concrete elastic m odulus in the code is 

linearly plotted, and not processed with non-linearity curving as in the Seism oStruct concrete 

constitutive m odel, as can be seen in Figure 4 .9 .a.

In general, the lim ited non-linear behaviour in the softening stage o f  the concrete fibres is due 

to the problem  input param eters such as loading, geom etry, m aterial and rate o f  loading.
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Figure 4.14 and 4.15 Constitutive curves for concrete and steel end fibres in the first element in both

SeismoStruct and code analyses

4.3.2.1 The Number of Elements and the Number of Fibres

It is typically known in num erical m odelling that the increase o f  elem ents should im prove the 

perform ance o f  analysis. In the proposed dynam ic problem , this has been found true for 

elastic analysis only, and when im plying the D isplacem ent-B ased Schem e for com puting the 

num erical integration. In contrary to this, increasing the num ber o f  elem ents will lead to 

incorrect results in a non-linear plastic analysis, and it is preferred to keep a lower num ber o f  

elem ents for this problem  since the plastic stage is applied at m ost o f  the analysis.

A nother im portant conclusion is related to the num ber o f  fibres assigned to the elem ent 

section. It has been found that increasing the num ber o f  fibres will im prove the non-linear
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performance of the analysis, since the degradation of the global stiffness matrix would 

become gradual, giving more continuity to the produced curves.

As a rule of thumb, single-material sections will usually be adequately represented by 100 

fibres, whilst more complicated sections, subjected to high levels of inelasticity, will 

normally employ more than 200 fibres. Therefore, only a sensitivity study on a case-by-case 

basis can establish the optimum number of section fibres [5]

Figure 4.16 shows a comparison of displacement responses obtained from different analyses 

for the same problem. The analyses are for 10 elements with 29 fibres, 5 elements with 29 

fibres and 5 elements with 57 fibres, which are all to be compared with results by the 

SeismoStruct analysis. SeismoStruct analysis is performed by using 2 elements only since it 

employs the Force-based Method, and the section is provided with 200 fibres. From 

comparison, the closest to the SeismoStruct is the analysis with the 5 elements and 57 fibres. 

A useful conclusion has been made upon several computer runs that have been carried out for 

different numbers of elements and fibres to different dynamic non-linear problems, that 

there’s no rule of thumb that generalises a main refinement of the elements and fibres to 

attain acceptable solutions. However, a sensitivity study for each specific problem must be 

carried out in a case-by-case basis in order to establish the optimum number of elements and 

section fibres for such a problem.

In mathematical terms, the need for a lower number of elements to obtain a better non-linear 

simulation, can be interpreted from the fact that larger incremental rotational strains A(p will 

increase if taller element fibres are used, and thus, less number of elements are required.

/. (A 0 y '6 — j"i) ■
As can be seen from the definition of incremental rotational strains; (A0)* = ------   L,

the difference between the incremental rotations Ad  for the two element ends should be large 

enough to produce large rotational incremental strains; A(p , and thus, produce large 

incremental axial strains; y k . A(p at each time-step. This will, consequently, increase the 

overall incremental axial strains A s k as follows:

(A ffc )i =  (A s a  — y k - H ) i
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Figure 4.16 A comparison of displacement responses

In the proposed problem , Ask will increase since Asa has relatively small values, and when 

y k is negative. Thus, the axial strains (ek)i increase when accum ulating.

On the other hand, if  shorter elem ent fibres are applied, i.e. more elem ents are used, sm aller 

increm ental rotational strains A(p are produced, and thus, the axial strains ( £k) t decrease 

w hen accum ulating. Such a case has occured w hen 10 elem ents were m odelled for the same 

proposed problem.

4.3.2.2 Differences Between the MatLab code and the SeismoStruct Model

In general, the differences in results betw een the two analyses by Seism oStruct and M atLab 

code, can be attributed to m any issues:

1. The most suspected reason creating such differences is using different m ethods o f  

problem -solving. The code em ploys the D isplacem ent-based M ethod with 5 elem ents, 

while the Seism oStruct em ploys the Force-based M ethod with only 2 elem ents, which 

is recom m ended for the sim ulation o f  dynam ic non-linear analysis by [5].

2. The num ber o f  fibres in an elem ent section is assum ed 57 in the code, while in the 

Seism oStruct analysis it is taken as 200-300 fibres w ith 3-4 integration sections in 

each elem ent.
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3. The constitutive models of concrete and steel are very simple in the code, while they 

are complex in the Seismostruct.

4. There is no iterative process, such as Newton-Raphson, used in the code to minimise 

the errors due to the assumed approximation between the secant stiffness and 

tangential stiffness:

Cki)t = (ki)s

but only small time-step interval (0.01 seconds) to compensate for that simplification. 

While, an iterative strategy is used in the Seismostruct with a small tolerance (le-05) 

for convergence.

5. Mass matrix in the code is based on a lumped mass approach by having the element 

masses lumped in the nodes, while it is based on the distributed mass approach in 

Seismostruct, in representing both transitional and rotational mass parameters at the 

nodes.

6. SeismoStruct applies geometric non-linearity, while it is not applied in the code.

All these differences can produce the mismatch in the comparison between the two analyses, 

especially the difference in the applied constitutive models, which largely affect the non- 

linearity process and ductility of the structure.

4.3.2.3 Diagram Representations of Results for all Elements at all Times, and for all 

Fibres at all Times

In the non-linear dynamic analysis for the RC column example with 10 elements and 29 

fibres per element, Figures 4.17 and 4.18 represent the lateral displacements Vj and resisting 

shear forces Qj  for all of the element nodes, respectively, at all of the analysing times.

The modal shape of the structure across the 6-meters height of the analysed column has the 

first modal shape for an inverted pendulum problem. However, it can be observed that the 

modal shape starts to change at the last stages of loading, as in Figure 4.17. The change in 

modal shape is due to strength degradation of the elements due to the increase in dynamic 

loading. Consequently, the resisting shear forces Qj  for all of the element nodes tend to 

increase at the very last stages of the dynamic loading, as in Figure 4.18. Strength 

degradation is an indication of the occurrence of damage in element fibres.
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Figure 4.17 Lateral displacements of all elements. Figure 4.18 Resisting forces for all elements

Figures 4.19 and 4.20 show the axial strains and corresponding axial stresses diagram s, 

respectively, for all o f  the 29 fibres o f  one elem ent at all o f  the analysed tim es. The selected 

elem ent is the one with the plastic hinge (PH) to observe the plastic strains behaviour.

It can be noticed that the centre o f  the strain diagram  is m oved o ff  the controid o f  the elem ent 

at the last stage o f  loading, indicating the occurrence o f  strength degradation, which indicates 

dam age in the plastic hinge PH.

Figures 4.19 and 4.20 Axial strains and axial stresses of all fibres at PH element, respectively.

4.3.2.4 Stiffness matrix effect on the hysteresis curve of quasi-brittle material

It is known that the stiffness m atrix term s are coupled, since axial displacem ents are due to 

axial forces, and curvature o f  the elem ents are due to both lateral forces and m om ents. 

However, another term , the shear m odulus term  EGt*, is added to the applied stiffness m atrix, 

which is relating the curvature rotation to the axial forces, and will affect the hysteresis 

behaviour in a quasi-brittle structure significantly. This is because the elastic m odulus E will 

becom e zero in the fibres under tension, and rem ains the same in the com pressed fibres, thus
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m aking the stiffness term  EGt* =  Yun=\{EkAk y k), fluctuate between +ve and -v e  values, 

since y k has different signs according to fibres positions. M ore fluctuation can also occur 

when the com pressed fibres exceed the elastic lim it, and Ek for those fibres become 

degraded. G enerally, if  the shear m odulus term  EGt* is not included, the hysteresis m ode o f 

the lateral forces will not be affected, and will appear in an undisturbed m ode, as shown in 

Figure 4.21, for the structure under cyclic loading. H ow ever if  term  EG£ is included, but the 

elastic m odulus E rem ains elastic at all tim e-steps; i.e. E is the same under both tensile and 

com pressed fibres, the hysteresis o f  the lateral forces will also be undisturbed, and will show 

an elastic dynam ic response as shown in Figure 4.22.
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Figure 4.21 Hysteresis with EGt*-term = 0 Figure 4.22 Elastic Hysteresis with EGt*-term

In general, the inclusion o f  the EG{ term  in the stiffness m atrix will disturb the lateral-forces 

hysteresis o f  the structure by establishing axial forces due to the m om ents, o r — EG^ .A 6jl  

and EG{ .A 0j2, and by establishing m om ents due to the axial forces, or —EGl  .Auyl and 

EG{ . AUj2 , as can be seen in the solution o f  the stiffness equations at one node:

ANyi =  \ ( E A \ .h .  +  0 +  -  EG; .A9jl)  -A u>2 +  0 + (4.21)

AM,! =  i  { - e g ;  . A u ,!  +  bJr  ■ Au,! +  ^ . A0,i) +

2 (EG;  Au,2 +  —̂  • Av,-2 +  i ^ . A  (4.22)

The incremental lateral forces are not directly related to the axial forces, as can be seen from 

the stiffness m atrix, but since the axial force and m om ent are coupled, the increm ental lateral 

force AQ is also affected be A#, as can be seen from the solution o f  the stiffness equations at 

one node:

A<?,i = i ( °  + iH!i.Ai;,1 + ^ . A 0 , ! )  + i (o  +  -±Hi.Au,-2 + ^ i .A 0 ,2) (4.23)
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In this case, the vertical displacements of the analysed structure, also known as rocking 

motiom, will differentiate largely between the upper (top) and lower (base) nodes of the 

structure, which will disturb the lateral-forces hysteresis as E is fluctuating between 

tensiomed and compressed fibres in quasi-brittle materials.

4.4 CONCLUSIONS

• The fibre element method is an effective method for modelling RC framed structures 

under dynamic loading. It is widely used by researchers and engineers, with many 

developed versions, but its powerful performance can also be achieved under 

simplified assumptions. Modelling of dynamic problems was performed with 

linearized assumptions for more simplification. The possible errors due to 

linearization of the tangential stiffness can be minimized by reducing the time-step 

interval to a relatively small value. This technique is quite useful and easy to consider, 

and can be used to solve non-linear problems with small errors.

• The un-loading and re-loading of non-linear paths for the material in problems of RC 

sections can also be simplified by linearising the constitutive concrete and steel 

models. Such simplifications can be implemented into a fibre element low-fidelity 

model to analyse non-linear dynamic problems, yet producing acceptable approximate 

results.

• Increasing the number of fibres will improve the non-linear performance of the 

analysis and give more continuity to the produced curves by gradual degradation of 

the global stiffness matrix.

• There’s no rule of thumb to generalize refinement of the fibres to attain acceptable 

solutions, but rather a sensitivity study for each specific problem should be carried out 

in a case-by-case basis in order to establish an optimum number of elements and 

section fibres for each specific non-linear dynamic problem.

• In the proposed problem, less than 3% of the column compressive strength is applied 

as axial stresses, and thus very low confinement is obtained by the transverse 

reinforcement on the core section.

• In this fibre element model, damage is not estimated but rather its effect is reflected as 

the stiffness matrix for each element is updated due to the degradation process.
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5.0 INTRODUCTION

The input energy imposed on an inelastic structural system by a dynamic cyclic loading is 

dissipated by both viscous damping and yielding energy; also known as hysteretic energy. 

However, mass inertia forces also resist the applied loading and affect the hysteretic 

performance of the structure. However, hysteretic curves are different in a statically loaded 

structure since the resistance of mass inertia does not exist. The hysteretic curves depend on 

the geometry of a structural system and its material strength and ductility, and they can reflect 

the overall damaging behaviour that a structural system may have under the lateral static or 

dynamic loading.

There are several measures for damage due to lateral loading applied on reinforced concrete 

structures. Engineering-based measures depend on empirical results which justify the damage 

according to both ductility and hysteresis parameters. For example, Park & Ang damage 

index is one of the popular damage measures, which is based on both ductility and energy 

dissipation of the structure. However, it does not take into account the plastic cycles’ 

distribution, but rather considers the global amount of the dissipated energy [1]. In fact, 

analytical damage calculations consider the non-linear hardening, softening and unloading 

behaviour, and give a more accurate definition for the damage.

5.1 VERIFICATION OF NON-LINEAR ANALYSES

In the following sections, two examples are modelled and analysed by using the Seismostruct 

software in order to verify the published numerical and experimental results.

5.1.1 Example By Erduran and Yakut [1]

The example is a verification of numerical and experimental load-displacement curves 

obtained for a referenced RC column problem. The selected column is experimentally tested 

by Azizinamini et al [1], and is subjected to a cyclic loading of a quasi-static nature. The 

numerical non-linear analysis carried out by Yakut [1] is obtained by a FE model with 

longitudinal reinforcement modelled as smeared through the column section, and is able to 

simulate the cracking and crushing of concrete. The small difference between these two 

analyses is due to the method of loading and nature of analytical analysis. The monotonic
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one-w ay static loading in the FE analysis does not take the strength degradation into account, 

hence it overestim ates the colum n strength.

Using the Seism ostruct, the obtained hysteretic curve is following sim ilar behaviour o f  the 

published num erical and experim ental Push-over and hysteretic curves respectively. 

Flowever, even though the loading cycles are different but they agree at the negative values o f  

displacem ents and loads. The program  term inates before reaching the end o f  the analysis due 

to lack o f  convergence because o f  failure o f  m ost o f  the concrete fibres. Figure 5.1. The axial 

applied load is 20%  o f  the colum n capacity, and is affecting the hysteresis loops significantly.
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5.1.2 Example by Sakai and Unjoh [2]

Junichi Sakai and Shigeki Unjoh [2] conducted a shaking table experiment for a RC circular 

column specimen, subjected to the strong ground motions that were recorded near Tsugaru 

Bridge during the 1983 Nihonkai Chubu in Japan. The earthquake record was scaled up by 

400%, since the tested specimen was a /^-scaled model. Junichi Sakai and Shigeki Unjoh also 

introduced a numerical model for the same problem using a mathematical model of fibre 

element with lumped masses, which verified the testing results [2]. The top inertia mass is 

27000 kg, and is inducing an axial force dead load at the bottom of the column of 280 kN. 

The cylinder concrete strength is 41.7 MPa, and the yield strength of the longitudinal and 

transversal reinforcement bars are 351 MPa and 340 MPa respectively. Figure 5.2 shows the 

^-scaled ground accelerations. Figure 5.3.a shows the geometric set up of the scaled 

specimen, the column cross section and reinforcement details. This test was performed 

mainly to investigate the multi-directional effect of the seismic loading on the RC circular 

column, since no method properly evaluates the effect of multidirectional dynamic loading 

that has been developed until 2006 [2].

The SeismoStruct model also came into a fair agreement with the test results, and with a 

better agreement with the numerical results. The differences in the base shear magnitudes are 

attributed mainly to the unpredictable crack growth that governs the post-softening stage of 

the process. The analytical rules that govern strength degradation of the column at the 

softening stage are different from those due to real fracture in the test. Furthermore, the 

assumed length of the modelled plastic hinge PH and assumed damping ratio have also 

significant effects on the final results.

Figure 5.3.b shows the time history results obtained from experiment and numerical analysis 

by Sakai and Unjoh. Figure 5.4.a shows the fibre element model by the Seismostruct, and 

Figures 5.4.b and 5.4.c show the time history results obtained from numerical analysis by 

SeismoStruct dynamic solver in the x and y directions respectively. Both numerical analyses 

use the fibre element technique but with lumped mass in the former and distributed mass in 

the latter.
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5.2 COMPUTATION OF ENERGY AND SEPARATION OF 

ENERGY QUANTITIES

The seismic energy demand that is imposed on an inelastic structural system, such as a RC 

multi-column bridge, is released, or dissipated by the structural response into elastic, kinetic, 

damping and yield energy. This occurs according to the capacity of the system, but the main 

dissipation is released by both viscous damping and yielding energy quantities [3].

The equation of motion for a structure with mass m  and damping factor c  is written as:

u  4- c u  +  f s ( u , u )  =  —m u g  (5.1)

where, both the elastic and yield forces f s ( u , u )  are the RC column restoring internal forces, 

that are produced by the initial stiffness and yielded stiffness of the column. By integrating 

the equation of motion with respect to the displacement u  for an inelastic system subjected to 

the ground acceleration ug , the work done by each of the resisting forces can be calculated as 

follows:

JQUm u  d u  +  c u d u  +  / Qu f s ( u , i i ) d u =  — JQUm ug d u  (5.2)

Or can be re-written by integrating with respect to time, which is more convenient for 

numerical computations. This is written in terms of the time step d t  and velocity as follows:

Sq Tt i u  u  d t  +  f *  c u u  d t  +  f s ( u ,  u ) u d t  = — m u g u d t  (5.3)

The first term is the kinetic energy, EK, the second term is the damping energy, ED, the third 

term is the sum of the energy dissipated by both yielding, EY, and recoverable strain energy 

of the system, Es .

Thus the dissipating energy by yield is:

e y  =  [ s ^ f s ( u , u ) u d t j -  Es  (5.4)

where, the recoverable strain energy can be established by determining the initial stiffness k  

of the system as follows:

Es  = Jq f s  d u =  f ^ k u  d u  =  \ k u 2 (5.5)

When k  becomes inelastic Es  is set to zero, and f s  is considered purely inelastic and not 

associated with any elastic restoring forces. In this way EY can be separated and defined for 

the inelastic system.

However, EY can also be obtained directly by considering only the forces that exceed the 

elastic limit f y  of the structural system, and not by considering those lying before that limit 

on the time-history graph of the restoring forces. This method is also used to determine the
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graph of time intervals yielding for an idealized elastic perfectly-plastic structural system [3, 

4]. However, this method is approximate since it considers all forces that are within the 

elastic limit as elastic even if they are unloading force responses occurring in the inelastic 

stage. This is also a basic definition in both cases of ‘kinetic non-linearity’ and ‘isotropic 

non-linearity’ curves under static loading, in which all unloaded responses are considered 

elastic when they are within the elastic limit [5].

In order to determine and graph the energy curves, it is important to separate the linear elastic 

and non-linear inelastic force diagrams at first. To do this, it is important to define the elastic 

limit fy  for the structural system.

The elastic limit for a monolithic structure such as steel, is a well pre-defined parameter, but 

for combined-section structures such as RC columns, f y  must be defined independently as 

according to each structure. This is defined by either quasi-static or push-over analysis, which 

is used to draw the ‘envelope curve’ of the linear and non-linear behaviour in a load- 

deflection curve [6]. The connection point between the linear and non-linear envelops in a 

load-deflection curve, hysteresis curve, is the elastic limit f y  for the system.

5.2.1 Mass Inertia Forces and the Kinetic Energy

From the integrated equation of motion, the kinetic energy is determined as:

= J0U// d u  =  Sq m i l  d u  = Q m ^ d u  =  / “ m u  d u  =  \ m u  (5.6)

Together with the restoring force f s  and damping force f D the mass inertia // are resisting the 

motion induced by an external effective force p eff -

According to the first law of Newton, mass inertia force resists the forced motion and the 

forced state of rest. Therefore, the inertia force, together with the restoring force and damping 

force are internal forces that always resist the external forces, since the system is a forced 

vibration system. However, in a free vibration system, mass inertia forces resist internal 

restoring forces f s  when motion is triggered by the stiffness potential of the oscillated 

column. Meanwhile, mass inertia force also triggers motion since mass has gained 

acceleration as returning to its original position. Thus a fluctuating manner of forced and 

resisting modes of motion is found in the free vibration system.

In a damped inelastic structural system, both yielding and damping energy dissipate all the 

seismic energy at the end of the earthquake excitation event. This is true since the kinetic 

energy EK and recoverable strain energy Es  diminish near the end of the ground shaking
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process [3]. This can be proved for a steady state motion of a SDOF elastic system 

represented by a mass-spring-damper system [3].

From personal practice, f y  can also be defined by drawing the recoverable strain energy Es  

that shows the best diminishing level of energy by end of the time history of the dynamic 

analysis. This is done by first assigning a trial-and-error value for f y  in the energy 

calculations, and then plotting the recoverable strain energy Es  that fits the best diminishing 

energy value at the curve end. Even though this was successful for some dynamic problems 

but it was also very sensitive to the number of hysteretic loops and load intensity of the 

problem. Therefore, no theoretical evidence could be obtained to support this technique, and 

it may not be reliable for all cases.

5.2.2 Damping Forces & Energy

Dampers are special devices that mitigate a structure’s velocity response. They also play a 

vital role in absorbing the seismic shock, thus a large part of the seismic energy is dissipated 

by the damper. However, damping forces can also be produced by the internal friction of 

material’s particles and the bond frictional forces between reinforcement bars and the 

concrete [7].

In general there are three types of dampers; viscous and viscoelastic dampers, metallic

dampers and friction dampers [3]. A useful quality in damping devices is that destroyed

dampers can easily be replaced by new substitutes at the retrofit of a structure. This gives a 

significant flexibility for designers to work for a performance-based seismic design with 

lower rates of strength and ductility.

The damping energy can be determined as follows:

Eq = /q /d  u d t  =  J * c u u d t  (5.7)

5.2.3 Accumulated Energy Curve

In general, energy quantities express the work done by each resisting force, and can be 

represented as follows:

Ej =  EK +  ED +  Es +  EY (5.8)

where, £) is the energy input for the structure since the earthquake excitation begins, and can 

be expressed in terms of the effective forces pĉ  which can be alternatively applied on the 

e.g. of a SDOF structure as equivalent to the ground excitation as follows:

E, =  - S * p ef f  i i d t  =  -  fg m i i g U d t  (5.9)
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It is good practice to compute and plot the accumulating energy quantities versus time of 

analysis, when it is desirable to find out the contribution of each force-type to resist the 

seismic demand during the earthquake event.

5.3 DAMAGE CURVES BASED ON HYSTERESIS OF THE 

STRUCTURE

Sadeghi [8] introduced a method of assessment of global damage for structures, based on the 

global degradation of strength in structures under cyclic loading. This can be detected from 

the hysteresis representation, which is a load-deflection relationship represented by the 

displacements of the top of the structure and the base shear forces at the bottom of the 

structure.

From the graph of hysteresis loops, the area under the first loop represents the dissipating 

energy that could cause the first damage. The following loops with strength degradation 

indicate occurrence of successive damages. When the structure is unloaded some of this 

energy is recovered, and the rest of it is absorbed by the structural stiffness potential, but the 

damage would retain as it first occurred. It should be noted that damage is a residual quantity, 

and cannot be partially or fully recovered or recurred when energy or some of the energy is 

recovered.

The relationship between those three kinds of energy can be formulated in an inelastic system 

as follows:

EAbsorbed ~  ^ D issipa ted  ~  ^Recoverd  (5.10)

In general, a structure absorbs all of the dissipated energy unless some of it gets recovered by 

an un-loading process. For the purpose of simplification of this concept, three theoretical 

assumptions of hysteresis are now introduced, and the load-deflection curves are shown for 

one side only. Figure 5.5.a shows the dynamic load-deflection behaviour of an irrecoverable 

inelastic system with zero recovered energy, ERecovered =  0. Figure 5.5.b shows the dynamic 

load-deflection behaviour of a fully recoverable inelastic system with zero energy absorption,

EAbsorbed ~  0*

Figure 5.5.C shows the dynamic load-deflection behaviour for an inelastic system with partial 

recovery, in which some of the dissipated energy is recovered and the rest is absorbed. The 

absorbed energy sustains a residual deformation R d when the system is un-loaded until zero 

loading. Moreover, the absorbed energy increases and sustains a residual stress Rs when the
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system  is further un-loaded and returns back to its original position, i.e. at zero displacem ent. 

In both residual cases the dam age potential exists unless all absorbed energy is fully 

recovered alike in the case o f  fully recoverable inelastic or elastic system s, as m entioned 

earlier.

Figure 5.5.d shows the dissipated, recovered and absorbed energy quantities on the second 

degraded hysteretic loop. It should be known that such degradation reflects the degradation o f 

both stiffness and strength in the structure. D egradation o f  strength occurs usually in RC 

structures due to the initiation o f  fracture in concrete. This indicates that part o f  the dissipated 

energy is due to dam age in the concrete, while in steel structures, for exam ple, no strength 

degradation exists apart from stiffness degradation due to the yielding influence.

Load

Displacement

Load

Absorbed =0

Displacement

A strength

Load

Absorbed Recovered

Displacement

Load

Absorbed,

Recovered

Displacement

Figure 5.5 a) Full energy absorption b) Full energy recovery c) Partial energy recovery with residuals 

d) Degradation of stiffness and strength in successive loops.

To conclude and further explain, an im portant sum m ary is given as follows:

• Hysteresis occurs when the state o f  a system  (deform ation) depends on its history o f  the

environm ent (loading), as when dynam ic loading is applied on elastic system s. This is
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known as the Dynamic Hysteresis since loop area is proportional to the excitation 

frequency co [3], and thus, the load-deformation curve is hysteretic and not a single­

valued curve, like when static loading is applied on elastic systems; i.e. no hysteresis 

loops since (o =  0. Hysteresis, therefore, is due to the dissipation of energy in systems 

under dynamic loading.

• In elastic structures under dynamic loading, the energy is dissipated due to influence of 

viscous damping, kinetic and strain energy only. The hysteresis loops maintain their 

shape by having the same stiffness and same strength unchanged.

• Elastoplastic (or, inelastic) systems dissipate the input energy as they are loaded 

dynamically. They tend to retain absorbed energy and recovered energy when unloaded. 

These systems are partially recovered with residual deformations or, strains.

• In elastoplastic systems such as steel structures, the input energy is dissipated due to

kinetic, strain and damping energy, in addition to (yielding) energy, which is reflected in

the hysteresis graph by the ‘degradation of stiffness’.

• In structures such as RC members, the input energy is dissipated due to kinetic, strain, 

damping and (yielding) energy seen by ‘degradation of stiffness’, in addition to the 

(fracturing) energy seen by ‘degradation of strength’.

• Residual deformations Rd and residual stresses Rs sustain the potential of damage. When

damage occurs in RC structures due to these residuals, it is not recoverable by any

recovered energy with further unloading process. Therefore, it is possible to record such 

damage at every newly dissipated energy, regardless of any further recovering of energy.

• As an exception to the previous rules, structures under quasi-static loading can be 

considered to have ‘dynamic hysteresis’ since they involve pseudo time with the applied 

cyclic loading during the analysis. The exception here is that damping, kinetic and strain 

eneigy do not exist since there is no real time involved in the calculations. This means 

that the hysteresis in quasi-static analysis for a RC structure is dissipating only (yielding) 

eneigy seen by the ‘degradation of stiffness’, in addition to the (fracturing) energy seen 

by degradation of strength’. Both of these energy quantities are referred to in the 

literature as (yield) or (hysteretic) energy.

• An important result that will be concluded in the following sections is that both dynamic 

and quasi-static analysis can have close quantities of the dissipated energy since strain, 

kinetic and viscous damping in RC box-girder bridge columns are not relatively large, 

and the yield energy has the major contribution in dissipated energy.
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Back to S adeghi's  m ethod o f  assessm ent o f  global dam age, the dam age is now  determ ined as 

it corresponds to energy dissipation before any energy recovery takes place. This is necessary 

since no dam age is recovered even w hen part o f  the energy is recovered, or when:

E A bsorbed — E D jssjpated (5.11)

The global dam age index Dt for any loop cycle (i) is defined as the ratio betw een the 

sum m ation o f  the d issipating energy Edi  and the total energy dissipated by the system  for all 

cycles (n), or sum m ation o f  Ed n , or:

Di = (5.12)
Ln hcL,n

Figure 5.6 show s two hysteretic cycles from which the dam age can be determ ined for each 

tim e step. The dissipated energy Ed l for the first cycle is the area under the curve O A A \ and 

the dissipated energy Ed 2 for the second cycle is the area under the curve A ’A^G G '. The

sum o f  the dissipated energy until the last cycle must be the area under all those limited

curves in the show n prim ary h a lf cycle PHC [8]. The global dam age index can be determ ined 

for each side o f  the oscillation axis o f  the structure. In inverted pendulum  structures such as 

bridge colum ns, each side should represent the global dam age in the structure since the 

energy dissipation is the sam e in both sides with cyclic loading o f  a quasi-static analysis.

Force (+) A

Displacement {-)

Displacement (+)

Force {-

Figure 5.6 Damage as corresponding to the dissipating energy before recovery, on one side of the

hysteresis |8|

The global dam age index can be graphed versus the lateral displacem ent or rotational 

curvature that causes the dam age value at each progressive m ovem ent. The dam age index can 

also be graphed versus the tim e-step o f  the analysis, bearing in m ind that only those tim e- 

steps with the progressive m ovem ents are considered, and not those at the un-loading 

processes or those occuring on the other side o f the oscillation axis. It is also im portant to
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know  that the dam age index is plotted versus pseudo tim e abscissa since it is exhibited for a 

structure under quasi-static analysis.

In follow ing section, Sadeghi's  m ethod to produce an energy-based dam age curve [8] is 

applied. The global dam age is calculated for a RC bridge colum n structure exhibiting an 

oscillation m ovem ent due to a cyclic loading effect. The steps for calculating the global 

dam age from  a hysteresis curve are written in a M atLab program , and docum ented in 

A ppendix [B].

5.4 CASE STUDY 1: NUMERICAL ANALYSIS

A designed RC bridge colum n with aspect ratio A R =6 and geom etric properties show n in 

Figure 5.7, is selected from an analytical research study on 8 different colum n structures [9], 

which have the same section geom etry and reinforcem ent but vary in the aspect ratio AR 

ranging betw een 3 and 10. To determ ine the dam age curve for this colum n, a hysteresis 

analysis is required with cyclic loading in a quasi-static non-linear analysis. The global 

dam age o f  the structure under any applied seism ic loading can then be determ ined.
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48  a  N o  0S p ira ls  N o  5 

i 76 m m  (3  in)

SO m m  ( 2  in )

Figure 5.7 Designed RC bridge column |9]

The RC bridge colum ns are designed according to the Seism ic Design C riteria SDC o f  the 

California Dept, o f  T ransportations (Caltrans 2001) [9]. The SDC for a single-colum n bent is 

defined based on the dem and/capacity principle, which assum es the displacem ent dem and d D 

is less than the displacem ent capacity d c , or:

d D < d c (5.13)
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It should be noticed that the displacement capacity d D is associated with the assumption of a

plastic hinge of length Lp measured from the column base. The plastic displacement is:

where, 6p is the plastic curvature capacity and h  is the column height. Lp is calculated based 

on Priestly et al.(1996) [9], and equals 1.18 m for this column with aspect ratio = 6. For 

columns with aspect ratios 3 and 10, Lp is 0.74m and 1.76m respectively. The local damage 

spreads in a larger area as the aspect ratio increases but not necessarily being more intensive. 

The RC bridge column structure has the following properties; aspect ratio h/D = 

10.97m/1.83m = 6, natural period Tn of its 1st mode is 1.3 sec, where D is the column 

diameter and h is the height between the footing and the centre of gravity C.G. of the top 

mass. The column is subjected to an axial load of 4.5 MN, which is the dead load, and 

equivalent to 5% of its strength capacity. It has a longitudinal reinforcement ratio of 1.18% 

and a transverse reinforcement ratio of 0.61% [6].

5.4.1 RC column Under quasi-static loading

The RC column with aspect ratio 6 is subject to a quasi-static displacement cyclic loading 

that’s imposed on the C.G. of the superstructure. The imposed displacement amplitudes in the
thfirst cycle d y l  and last (5 ) cycle d y5 are 5 inches (0.127m) and 25 inches (0.635m), 

respectively. d y5 is estimated to be close to the ultimate lateral displacement of the column 

d u =0.58 m (23 inches).

For the proposed problem, a good agreement with the published hysteretic loops by Sakai and 

Mahin [9] is obtained. However, some differences in the base-shear forces are found. This is 

due to the difference between the distributed-mass inelasticity method, implemented with 

Force-Based formulation with Plastic Hinge (FBPH) in the Seismostruct solver, and the 

variety of lumped-mass rigid elements, beam elements and fibre elements implemented in the 

analytical model by Sakai and Mahin [9], as previously shown in Figure 5.7.

Figure 5.8 shows the hysteresis for the RC column obtained by the Seismostruct. The 

capacity of the column is limited at the 5 hysteretic loop, and the column’s degradation of 

strength and stiffness depends on the member’s state of loading, geometry, properties and 

boundary context. The quasi-static analysis is important to determine the capacity of the 

column, its strength degradation and stiffness degradation.

(5.14)
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Figure 5.8 Hysteresis curve for R/C bridge column with aspect ratio 6.

There are m any aspects o f  the colum n capacity that can be detennined from the hysteretic 

behaviour. The m ost im portant aspects are shown in Table 5.1 [9].

Aspect
ratio

h / D

Natural
period

T1 71

Yield limit 
displacement & 

strength

Ultimate limit 
displacement & 

strength

Residual 
displacement 

by JRA

Ductility 
Demand < 
Capacity

dy Fy du Fu d rwith

Hd.

d rwith

Hu
Hd Hu

SDC 6 1.26 0.112 1.3MN 0.58 1.3MN 4.15 5.19

JRA 1.26 0.112 1.3MN 0.58 1.3MN 0.21
(1.92% )

0.28
(2.56% )

4.15 5.19

Quasi­
static
Analysis

1.30 0.127  
(5 in)

1.16M N 0.635  
(25 in)

1.44M N 0.434
(3.95% )

4.15 5~F

Table 5.1 Capacity limits for R/C column |9|.

These capacity aspects obtained by the quasi-static analysis are found approxim ately in 

agreem ent w ith those calculated according to Caltrans Seism ic Design Criteria (SD C ), and 

those calculated according to the Japanese Road A ssociation JRA. In addition, the 

accum ulated energy dissipation throughout all the cycles is 3.52 M N.m , and the ratio o f  the 

post-yield stiffness to the initial stiffness is Kpy=3.9%.

5.4.1.1 Global Damage (Energy-Based Approach)

The quasi-static analysis is also used to obtain the global dam age curve for the colum n, based 

on the principle o f  energy dissipation, by using the m ethod adopted from the work o f  Kabir
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Sadeghi [8]. In this method the work done for every time-step, also the dissipated energy Ed i , 

which is calculated for each additional displacement in one oscillation side of the structure, 

and its accumulation is divided by the total work done, or the total dissipated energy Ed n , at 

that side only. Recalling the global damage index:

D _  l i f i L  (5.12)
1 T.nEd.n

Figure 5.9 shows the global damage curves for three R/C bridge columns, with aspect ratios 

of 3,6 and 10. For every displacement, the global damage increases as the aspect ratio 

decreases. This indicates that structural columns with higher aspect ratios h/D  have lower 

ductility values p u , which make them less vulnerable to high damage rates. As shown in 

Figure 5.9, less damage rates are experienced with structures having lower ductility values \lu 

, at higher aspect ratios.

As known from RC sections, ductility is inversely proportional to the longitudinal 

reinforcement ratio p t , but in this case study, both geometry and reinforcement of the column 

section are held constant for all analyses, and the change in ductility is due to the change in 

the aspect ratio. Consequently, a higher damage rate is experienced as ductility increases in 

lower aspect ratios, which imposes shorter natural periods Tn, or;

Lower aspect ratio-> Shorter Tn -> Higher ductility -> Higher damage (5.15)

5.4.1.2 Local Damage (Stress-Based Approach)

In this analysis, Figure 5.10 shows large tensile strains in both cover and core selected 

concrete fibres with approximately zero fibre strength, indicating total theoretical fracture due 

to tensile forces. At compressive strains, cover fibre stresses start softening after passing the 

un-confined concrete stress a uit =-34.0 MPa, and processing un-loading and re-loading 

cycles until fibre approaches total failure at approximately a strain of -0.05. In the core zone, 

fibres are less damaged at -0.05 strain, reaching -26.0 MPa after 4 hysteretic loops. Softening 

starts after the core fibres pass the ultimate strength of the confined concrete core <Tuit=-44.0 

MPa.
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Figure 5.9 Global damage curves in R/C bridge columns, with 3,6 and 10 aspect ratios.

Local dam age dj needs to be determ ined independently for any required fibre point in the 

colum n section. Only the com pressive dam age can be calculated by using these fibre stress- 

strain curves, since that fibres under axial tensile stresses are, theoretically, fully dam aged at 

very early tim e steps. It is im portant to know  that tensile stresses can cause a great dam age 

threat to the colum n core if  the energy due to flexural failure is not sufficiently dissipated by 

the reinforcem ent longitudinal bars.

- 5 , 0 0 0 , 0 0 0

— cover
-10,000,000

core90
- 1 5 , 0 0 0 , 0 0 0

- 20 ,000,000

2  - 2 5 , 0 0 0 , 0 0 0

- 3 0 , 0 0 0 , 0 0 0

- 3 5 . 0 0 0 , 0 0 0

- 4 0 , 0 0 0 . 0 0 0

- 0 . 0 5 0 0 . 0 5 0.1 0 . 1 5

Strain

Figure 5.10 Stress-strain curves for selected fibres at cover and 9o% of core radius, for a RC column with

aspect ratio =6 under quasi-static analysis.

A Local com pressive dam age curve for concrete fibres is now  introduced. This dam age is 

based on the ratio betw een axial com pressive stresses and the ultim ate strength o f  concrete.
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and can be obtained during the softening straining of the analysed fibres, as in the following 

equation:

d  = 1 _f i£ i r£  (5.16)
a u lt

where i is the time-step or pseudo time in a hysteretic analysis of the column. When d t equals 

1, the fibre has lost its strength and is not capable of resisting any more axial compressive 

stresses, indicating a local totally damaged state under compression. Local damage curves are 

obtained using a MatLab programming code according to the local stress concept. The code 

is listed in Appendix [C].

Figure 5.11 shows the capacity of local compressive damage curves for selected fibres from 

the core and cover zones of the column section for a 6-aspect ratio column. The maximum 

local damage value, due to compressive stresses at 90% of the core radius, is about 0.28. At 

further inner core fibres, 80%, 70% and 60% of the core radius, much lower damage rates are 

found, indicating the local fracture state inside that column core section. On the peripheral 

zone of further inner core tips, there could be some fibres with no damage at all.

At the cover of the base zone, compressive stresses are very high, and its local damage 

reaches 0.9 at early stages in most cases. The local damage due to the axial tensile stresses of 

the fibres is not computed, since it theoretically, reaches unity at very early time steps, as 

previously mentioned.

5.4.1.3 Damage Assessment

The previously determined global damage Dt curve is now plotted again in Figure 5.11 versus 

pseudo time, together with the local damage d t curves for the same column analysis. It is 

obvious that the global damage curve is an intermediate between the two local damage curves 

of the cover and core fibres, representing the global behaviour for the whole structure. Cover 

fibres tend to damage severely in compression at relatively early time steps, while core fibres 

tend to have minor damages under compression. Being in the intermediate range of the 

damage curves, the global damage curve expresses the overall possible damage intensities in 

! the core and cover due to both compressive and tensile stresses, which is accepted from a 

logical point of view.

Based on this index, global and local damage intensities can be determined for the same 

structure under any seismic loading, as will be shown in Figure 5.11. Such an approximation 

is useful for seismic assessment purposes, but more investigation is still needed concerning 

the initiation and growth of local damage in the section core.

154



1 r  i----------------------------1----------------------------1----------------------------1-----& ***«**>--------i
j p B f l e M a a a f l  f e e t f l k c '  f T j

— |
0.8 - I------------------------------- f -r ----------- ; 4

;: cover
Global Damage

0 g  ___ . , ________ ii_ 90% core I
80% core

|      -i- 70% core
^  o 4 _____  | _______________  60% core

" if|  _ 
t | ______  |~L"~ 7 -.

Q  ■*- - »  i  ~ j~ ~ 1 ^ ------ 1—   j----------------------------------------------------1

0 2 4 6 8 10
pseudo Time, sec

Figure 5.11 Capacity of local & global damage index vs. pseudo time for a quasi-static non-linear analysis

of R/C bridge column with aspect ratio =6.

5.4.2 RC Column Under Dynamic Loading

Sakai and Stephen A. M ahin [9] conducted 80 seism ic non-linear analysis runs, using 

lum ped-m ass fram e elem ents, to determ ine the ultim ate and residual responses for 8 single 

R/C bridge colum ns, with the aspect ratios 3,4,5,6,7.8,9 and 10, subjected to 10 different 

strong m otion earthquakes.

For sim plicity, only 3 non-linear analyses have been conducted using the Seism oStruct, to 

analyse the RC colum ns with the aspect ratios 3,6 and 10, being subjected to one single 

earthquake, which is the Loma Prieta earthquake in 1989, shown in Figure 5.12.a. The 

ground m otion is a near fault Lexington Dam Record, with PG A= 6.73 m/sec , Epicentral 

distance=6.3 and m agnitude o f  7.0.

The hysteretic curves o f  these analyses, perform ed by Seism oStruct, proved a reasonable 

agreem ent w ith the published curves. Dynam ic hysteresis in Figure 5.12.C for the structure 

with aspect ratio 6 , subjected to Lexington Dam Record showed a reasonable agreem ent with 

the analysed curve in Figure 5.12.b. It should be noted that the base shear forces are 

com puted by dividing the base m om ent by the height, f s = M / h  , and displacem ents are 

obtained by m ultiplying curvature by the height, d = G.h.
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Figure 5.12 a) Lexington Dam record, b) Load-Deflection curve [9], c) Load-Deflection curve by

Seismostruct
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Table 5.2 show s som e o f  the results obtained by the analytical m odels m ade by Sakai and 

M ahin [9] for the RC colum n with the aspect ratios 3,6 and 10, w hen subjected to 10 different 

strong m otion seism ic records.

Selected Strong

motion

Earthquake

Record Magni­

tude

Epic-

entr-

al

Dist­

ance

(km)

PGA,g

m/s2

Max & Min Ultimate 

Displacements d u (m)

Max & Min Residual 

Displacements d R (m)

AR= 3 AR=6 AR=10 AR= 3 AR=6 Aspect Ratio 

variesSDC Ultimate Capacities

0.173 0.58 1.485

Tabas, Iran, 

1978

Tabas 7.4 1.2 0.90g 0.07 0.32 0.70 0.002 0.004 0.035(AR=8)

Loma Prieta, 

USA, 1989

Los Gatos 7.0 3.5 0.72g 0.15 0.60 1.45 0.002 0.015 0.08(AR=9)

Loma Prieta, 

USA, 1989

Lexington

Dam

7.0 6.3 0.68g 0.20 0.53 0.90 0.001 0.043 0.06 (AR=10)

Cape

Mendocino, 

USA, 1992

Petrol ia 7.1 8.5 0.64g 0.10 0.47 0.80 0.005 0.038 0.037(AR=6)

Erzincan, 

Turkey, 1992

Erzincan 6.7 2.0 0.43g 0.05 0.40 0.62 0.003 0.012 0.03(AR=4)

Landers, USA, 

1992

Landers 7.3 1.1 0.71 g r  0.05 0.24 0.72 0.0 0.018 0.05(AR=7)

Northridge, 

USA, 1994

Renaldi 6.7 7.5 0.89g 0.25 0.44 0.53 0.0015 0.013 0.015(AR=6)

Northridge, 

USA, 1994

Olive

View

6.7 6.4 0.73g 0.05 0.41 0.55 0.001 0.0175 0.03(AR=6)

Hyogo-ken 

N anbu , Ja p an , 

1995

JMA Kobe 6.9 3.4 L08g 0.25 0.37 0.71 0.001 0.019 0.07(AR=9)

Hyogo-ken 

Nanbu, Japan, 

1995

Takatori 6.9 4.3 0.78g 0.20 0.66 0.60 0.0 0.016 0.02(AR=5)

T able 5.2 M ax & M in responses for the R /C colum n w ith aspect ratios 3 ,6  and 10, under 10 d ifferen t
stron g  m otion se ism ic records |9 |.

The capacity o f  all colum ns was evaluated according to the SDC, and gave ultimate 

displacem ents o f  0.173m , 0.58m and 1.485m for colum ns w ith 3, 6 and 10 aspect ratios 

respectively. Table 5.2 shows ultim ate displacem ents under 10 seism ic records loadings. The 

underlined values fall very close to the SDC capacity range or exceed it. This shows that the 

responses under strong m otion records could affect the concrete core intensively, and plastic 

hinges would not be lim ited to spalling only but could get extensively dam aged.

The residual displacem ents evaluated according to the Japanese Design Specifications for 

colum ns with AR betw een 3 and 10 are betw een 0.09m  (1.58%  drift ratio) and 0.71m (3.86%  

drift ratio) respectively. But all o f  the residual displacem ents obtained under the 10 seism ic
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records loadings have drift ratios m uch below 1% , which is the m axim um  allowable value for 

bridges according to the Japanese Design Specifications m ade by the JRA. In practice, this 

m akes less need to im prove the design for better residual displacem ents, and encourages 

m ore research to control the ultim ate displacem ents.

Figure 5.13 show s the global dam age curve for a RC colum n with A R=6 reaching high 

dam age index when approaching its ultim ate capacity. The seism ic loads with low responses 

on this colum n, like Landres (0.7 lg , 0.24m ) and Tabas (0.90g ,0.32m ) cause m edium  global 

dam ages o f  0.4 to 0.6 respectively. Seism ic loads with severe responses on this colum n, like 

Lexington Dam (0.68g, 0.53m ) and Takatori (0.78g, 0.66m ), cause large global dam ages over 

0.9. The rest o f  the records show global indices over 0.75. This indicates that m ost o f  the 

selected records cause a total collapse o f  the structure, leading to the fact that more 

investigations should be carried out, concerning the local dam age due to both tensile and 

com pressive stresses at the core zone o f  the colum n base.

A nother im portant observation is that, records with relatively high PGA, like Tabas (0.90g) 

and Landres(0.71 g) caused relatively small displacem ents; 0.32m  and 0.24m  respectively, 

w hereas records with relatively low PGA, like Lexington Dam (0.68g) caused relatively 

larger displacem ents; 0.53m. This may be attributed to the phenom enon o f  acceleration pulse 

and acceleration spike, where long duration im pulses and low frequency have the potential to 

cause displacem ent responses, more than those records having sim ilar or even lower PG A 's 

but with relatively short duration im pulses and higher frequency.

0 9

0.7

Of 0.6

0.4

0.2

0.2 0.3 0.4
Top D isp lacem ent, m

0.5 0.6 0.7

Figure 5.13 global damage intensities vs. displacement response of analysing R/C bridge column structure 

with AR=6, subject to Landres(0.24m), Tabas(0.32m), Lexington Dam(0.53m) and Takatori(0.66m).
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5.5 CASE STUDY 2: SHAKING TABLE EXPERIMENT

As previously m entioned in section 5.1.2. this experim ental test was conducted to investigate 

the effects o f  m ulti-directional seism ic excitation on the dynam ic response o f  RC bridge 

colum ns. Applied forces are the ground m otions recorded near the Tsugaru Bridge during the 

1983 N ihonkai Chubu earthquake in Japan.

The elastic lim it capacity f y was obtained for the RC circular colum n using a quasi-static 

analysis, and reached lOOkN (0.1 M N) for this structure, which is also know n as the flexural 

capacity o f  the structure [2].

In this test, the crack growth events have been observed on the colum n base in Figure 5.14, 

and carefully recorded in details in Table 5.3 [2].

Figure 5.14 Damage at column base |2|

Pomts I  line (sec ) Distance Disp ui X Disp. m V F.VtrnN o l" c i\ o l .il Xp .iti-1 \ n  t.ucs

IP 7.500 0 050 in 0 046 ill 0.019 in Seveial cracks
In 7 8 75 0 077 ui -0 065 in -0 040 in Several cracks

2p 8 635 0 034 in 0  03 I ui 0 004 m Propagation o f  cracks
2 n 9 125 0 090 in -0 088 ill -0 014 in Propagation o f  cracks

-; P 9 630 0 0 9 1  in 0 084 til -0.035 ill Piopagatiou o f  cracks
3n 10 225 0  096 in -0 093 ill 0  022 in Slight spallme at Xn face

^P 10 885 0 085 in 0 056 til -0 063 in
4n 11 425 0 090 m -0 083 m 0 035 m

-<P 11 990 0 104 ill 0  103 ill 0  014 ui Slight spallme at Xp face
5n 12 520 0 123 ui •0 113 ui -0 048 ui
6p 13 195 0 108 111 0.108 ui 0  012 in Spallme at Xp face
6u 13.760 0.143 in -0 139 in -0.034 m Spallme at Xn face

7P 14 410 0.150 in 0.147 m -0 0 2 7 m Buckling o f  rebar at Xp face
7 ll 15 120 0 154 ill -0  154 in -0 008 in Seveie spallme at Xn face
8p 15 765 0 196 in 0 192 m 0.040  in

8n 16.375 0.188 in -0 188 in 0.005 in
Fracture o f  rebar at Xp face and
buckling o f  rebar at Xn face

Table 5.3 Peak displacements and damage events in the x-direction |2|.

From this table, the specim en experienced different dam aging events as the lateral 

displacem ent response had increased. W hen the x-displacem ent response reached 0.147 m 

buckling o f  rebars started to occur, and at 0.188 m fracture o f  rebars started to occur. W hen
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the displacem ent exceeded 0.20 m 22 o f  40 longitudinal bars were fractured, and the core 

concrete w as com pletely crushed at the bottom  o f  the colum n [2]. These results are quite 

im portant for m ore understanding o f  the dam age states o f  the core concrete and 

reinforcem ent bars under the seism ic loading.

Figure 5.15 illustrates a hysteretic curve for the tested specim en in the x-direction, showing 

the peak displacem ents on the two sides o f  oscillation o f  the x-direction. The hysteretic loops 

are lim ited by the flexural capacity o f  the structure, lOOkN, and by the m axim um  

displacem ent, 0.192 m, which was reached at point 8p as shown.

100
z

-100 611 5,1

0.2-0 2 0 0.1

Lateral displacement in X (m)

Figure 5.15 Hysteresis curve by the experiment |2|

A num erical analysis has been conducted using the Seism oStruct dynam ic solver for this 

problem , and approxim ate results have been attained. The base shear in the hysteretic loops 

shown in Figure 5.16 is the base m om ent divided by the height, f s = M / h , and the 

displacem ent is the curvature m ultiplied by the height, d  =  6. h.

By draw ing the energy curves, useful conclusions can also be attained concerning the 

behaviour o f  the hysteretic energy curve as crack growth increases.

5.5.1 Accumulated Dissipating Yield Energy Curve

A s previously discussed, the hysteresis loops can express both dissipating and recovering 

energy during the loading and un-loading responses respectively. The difference betw een the 

two energy quantities is the absorbed energy. If  the dissipating and recovering yield energy 

quantities are com puted for one side o f  the colum n oscillating m otion only, approxim ately 

ha lf o f  the absorbed yield energy is attained.
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Figure 5.16 Hysteresis loops by SeismoStruct

If only the dissipated energy is com puted for one side, this will express all stages o f  the 

stiffness resistance o f  the colum n, including the elastic, hardening and crushing behaviour, 

excluding the recovering consequences o f  the un-loading m otion. Therefore, it is more proper 

to com pute only the dissipating yield energy for one side in order to be able to differentiate 

betw een the different stages o f  dam age, and also be able to define the yield energy dom ain 

that is responsible for the most severe dam age. Definition o f  such an energy am ount will give 

more understanding o f  the dam aging behaviour, and therefore, more approxim ation o f  the 

capacity o f  a seism ic isolation device m ight be determ ined to effectively m itigate the 

response o f  the substructure.

How ever, definition o f  the dissipating yield energy for this purpose will require com puting 

the accum ulating dissipated yield energy in an ascending-order basis, i.e. the dissipating yield 

energy values m ust be sum m ed up in an order that is corresponding to an ascending order o f  

the displacem ent values. This has been perform ed by processing the output data attained from 

the dynam ic analysis for the colum n, and have them  written in a M atLab program  as listed in 

Appendix [D].
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5.5.2 Yield Energy Curves and the Damage State in the Shaking Table 

Experiment

It is well know n that the dam age in the plastic hinge zones is the result o f  d issipation o f  the 

yield energy o f  the colum n. Therefore, useful conclusions can be attained concerning the 

behaviour o f  the hysteretic curves as crack growth increases.

From the global hysteresis curve obtained by the num erical analysis for this problem , the 

accum ulated absorbed yield energy can be calculated as equal to the area enclosed w ithin the 

hysteretic loops. As m entioned before, the absorbed energy is equal to the dissipated energy 

perform ed by the loading process m inus the recovering energy which is perform ed by the un­

loading process o f  the colum n. The total accum ulating absorbed yield energy w hich is 

perform ed along the x-axis reached 2.30E05 N.m  at the end o f  the analysis.

The dissipated yield energy that has accum ulated on one side o f  oscillation along the x-axis 

reached approxim ately 1.0E05 N .m  at the end o f  the analysis. A nother energy curve has also 

been processed for the one-side dissipated yield energy but with a different path o f  energy 

accum ulation, th a t's  corresponding to an ascending order o f  displacem ents on the sam e 

oscillation side, as shown in Figure 5.17.a. The sam e energy curves, with both norm al order 

and re-ordered energy paths are also plotted but versus the displacem ent along the x-axis and 

for the same side o f  oscillation, as shown in Figure 5.17.b. These energy curves have been 

constructed by the M atLab program  listed in Appendix [D] as m entioned. The one-side re­

ordered dissipated energy curve can be useful to classify the different stages o f  dam age 

experienced by the colum n on that side, and determ ine their corresponding scalar quantities 

o f  the dissipating yield energy tha t’s com puted on the same side.
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Figure 5.17.a &b Accumulating yield energy versus time and x-displacement.
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From the previous Displacement-Damage Table 5.3, classification of damage states can be 

done by selecting the different damage limits that are denoted by the peak points on the 

“positive” side of the column, and expressed as “p”. The corresponding displacement values 

are used to classify the dissipated yield energy curve according to those damage limits. This 

should provide a reasonable approximation of the quantity and percentage of the dissipating 

energy that the column can have for different damage states. From the displacement of 0.0 to 

0.084 m at peak point “3p” is the stage of “initiation and propagation of cracks”. From the 

displacement 0.084 m to 0.108 m at peak point “6p” is the stage of “slight spalling”. From 

0.108 m to 0.192 at peak point “8p” is the stage of most of the severe damage states that 

includes “severe spalling, rebar buckling, severe spalling and fracture of rebars”.

One of the important conclusions that could be attained from the energy curve in Figure 

5.17.b, is that the amount of dissipating energy corresponding to the last stage, state (III), 

described as “severe damage” reaches 1.00E04 N.m is approximately 10.5% of the total 

accumulating yield energy performed on this side. Therefore, if the damages are 

approximately symmetric on both sides of the column, this rate remains the same and would 

be responsible for such severe damages in the column, along the x-axis of the column 

oscillation motion.

The less damaging stage on the curve is state (II), which is the stage of “slight spalling” has 

shown a dissipating yield energy of approximately 1.20E04 N.m, which is about 12.5% of the 

total energy on one side of the column. Therefore, if the damages are approximately 

symmetric on both sides of the column, this rate remains the same and would be responsible 

for the “slight spalling” along the x-axis of the column oscillation motion. Consequently, the 

remaining 77% of the total dissipating yield energy, is therefore responsible for the least 

damaging stage, or state (I), along the x-axis of the column motion, which is the “initiation 

and propagation of cracks”. Table 5.4 summarises these conclusions. It should be noted that 

there are small differences between the numerically obtained results and the experimentally 

obtained results especially at large displacements in which experimental displacements 

reached 0.192 m, but numerical displacements reached only 0.165 m.

It should be also noted that the assumption of considering symmetric energy dissipation and 

damages on both sides of the RC column is an approximation due to the symmetry of the 

cyclic loading, since the damage may differ on each side due to the uncertainty of damage 

growth in concrete. However, very slight differences of energy dissipation can be observed 

on the two sides in the experimental test of Azizinamini et al [1], as was shown in Figure

5.1 .b.
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Displacement 

Limits at x- 

Direction

Damage State Dissipating 

energy on one 

side

Rate of 

dissipating 

energy on 

one side

State

(I)
0 -0 .0 8 4  m Initiation and 

propagation of 

cracks

7.3E04 N.m 77%

State

(II)

0 .084 -  0.102 

m

Slight spalling 1.2E04 N.m 12.5%

State

( I I I )

0.102 -  0.192 

m

Severe spalling, 

rebar buckling, 

severe spalling and 

fracture of rebars

1.0E04 N.m 10.5%

Total 9.5E04 N .m

Table 5.4 Damage states at different dissipating energy rates

5.5.3 Discussion of Results

The specim en suffered severe dam age at state (III), w hich was concentrated in a zone starting 

from the colum n base to a height o f  0.25 m. The bar buckling and fracture occurred in 

betw een the hoops at 0.075 and 0.150 m from the colum n base, respectively. A num ber o f  22 

out o f  40 longitudinal reinforcing bars were fractured, which occurred m ostly at the X faces, 

and the core concrete was com pletely crushed at the bottom  o f  the colum n [2].

Based on the design specifications for the Japanese Road A ssociation (JRA 2002), the yield 

and ultim ate displacem ent o f  the specim en are 0.016 and 0.055 m, respectively. How ever, the 

displacem ent response exceeded the ultim ate displacem ent at state (I), and exceeded tw ice 

the ultim ate displacem ent at states (II) and (III). The designed colum n suffered internal crack 

growth at its core, and the plastic hinge was severely dam aged as m entioned. This proves that 

the RC colum n design failed to sustain an appropriate resistance to the seism ic loading to 

m eet a perform ance-based seism ic design.

5.6 SEISMIC ISOLATION BEARINGS (SIB)

5.6.1 Introduction

One o f  the m ost practical solutions to resist seism ic responses in Bridge Engineering is the 

use o f  Seism ic Isolation Bearings (SIB) or Base Seism ic Isolation Bearings. Seism ic isolation 

in RC bridges is used in RC bridges, since they can m aintain serviceability o f  the bridge after
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it is subjected to an earthquake. There is a large variety of seismic isolation systems but Lead 

Rubber Bearings (LRB’s) are widely used in bridge structures. This is due to their simplicity 

and the combined isolation/energy dissipation function in a single compact unit [10]. In 

general, connections between the substructure and superstructure in a bridge have one o f 

three alternatives:

• Rubber bearing systems, which have partial isolation of the substructure and the 

superstructure. They may either have low damping natural RB, high damping natural RB 

or Lead Rubber Bearings LRB.

• Fixed bearing systems, which have monolithic complete integrity of the substructure and 

the superstructure, and

• Roller bearing systems, which have complete isolation of the substructure and the 

superstructure. Also known as friction-based, or sliding-based systems, such as the Eradi- 

quake and friction pendulum systems (FPS) [11].

The isolation bearings are installed in the connection position between the superstructure and 

the substructure. A large part of the seismic energy would dissipate throughout the isolation 

bearings, and a substantial amount of input energy is mitigated, with relatively smaller 

amount of energy taken by the sub-structure’s stiffness and damping resisting forces. The 

performances of seismic isolation bearings in several application cases have shown success in 

reducing earthquake response on the structure [1 2 ].

One of the most important practical aspects of installing SIB fittings into existing bridges is 

that its cost is 30% of the cost of retrofitting [11]. Conventional retrofitting methods are 

based on strengthening and enhancing ductility o f the existing substructures and are quite 

expensive and difficult to implement [1 1 ], but replacement of the vulnerable existing 

bearings by SIB is much more practical.

As shown in Figure 5.18, a LRB isolation device consists o f two parts; the first part is an 

isolator, i.e. the rubber part, which works as a flexibility inducer that increases the natural 

vibration period of the structure away from the high-energy periods of the earthquake. The 

second part is the damper, or the lead plug, which functions as an energy absorber, or shock 

absorber, that retains energy and residual forces when unloaded. This device o f combined 

materials reduces the applied seismic forces effectively [13], and is to be mounted on top of 

the column as a seismic isolator between the sub-structure and super-structure, as shown in 

Figure 5.18.
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Figure 5.18 Elastomeric isolation LRB and position of insallation

In general, LRETs allow  for longitudinal and transverse m ovem ents, but in term s o f  design 

this m ovem ent is lim ited. There are two types o f  seism ic isolation in tenns o f  seism ic 

restraints; bi-directional seism ic isolation (BDSI) and partially restrained seism ic isolation 

(PRSI), in w hich both ends o f  the superstructure are usually restrained in the transverse 

direction [14]. To restrict the transverse m ovem ent for the PRSI bridges, shear-rod stoppers 

are often used [14].

A nother aspect o f  design in Bridge Engineering is lim iting the superstructure m ovem ent to 

som e allow able displacem ent lim it in the transverse direction. Such a lim it is necessary for 

the functionality o f  the bridge after the earthquake event, and is dictated by the building 

codes for seism ic design. This is perform ed by installing lateral side stoppers [14], which 

w ould stop excessive lateral m ovem ents o f  the superstructure, and eventually, transfer m ore 

dissipative energy to the sub-structure.

To m itigate the earthquake response, rubber bearings have been used in railway and highw ay 

bridges [15], and it has been a task o f  controlling the m echanical properties o f  rubber and 

lead bars to successfully design the rubber bearings RB or lead-rubber bearings LRB, in order 

to sustain the vertical loading as well as to provide sufficient displacem ents to the 

superstructure, or provide sufficient dam ping [15]. A ccordingly, the m echanical properties o f  

the presum ed isolation bearing can sum m arized as vertical stiffness Kv and yield stiffness Kd 

which are represented by:

Kv =  Kd =  (5 .17)

where, a  effective, Ecb elastic m odulus, G shear m odulus respectively, A cross section area, 

Keq equivalent stiffness, Qd yield load, 6  shear horizontal deform ation [15].

In num erical analysis using the Seism ostruct package, the representation o f  such seism ic 

isolation bearings is controlled by a linkage elem ent th a t's  installed betw een the sub­



structure and the super-structure, and given the mechanical properties o f the rubber bearing 

RB or the lead rubber bearing LRB [16]. The mechanical behaviour of the linkage element in 

3D representation should be assigned for the six degrees of freedoms DOF’s of one node in 

relative to the other node of the linking element. These 6  DOF’s are the bearing’s forces and 

moments; Flf  F2, F3, M lt  M 2, M3, for the principal coordinate directions 1,2 and 3 [16].

Each degree o f freedom DOF is to be given the stiffness coefficient K  that governs its motion 

in relation to the other node of the linking element. K  is represented by a force-deflection 

curve or a moment rotation curve o f the material behaviour. However, different stiffness 

coefficients are required to represent different material behaviour, such as linear and non­

linear behaviour o f the RB or LRB bearings. The stiffness o f seismic isolation bearings and 

dampers in Seismostruct can take different model shapes, and they are mainly characterized 

by: Elasto-plastic / rigid-plastic, Bi-Linear and Tri-Linear curve shapes, in addition to the 

symmetry and asymmetry of the curve shape.

SeismoStuct [16] provides 14 different curves that represent 16 different governing models 

for the linking element representation. The model should be able to represent the linear and 

non-linear behaviour of the linkage element in the loading, un-loading and re-loading 

process. However, the hysteresis property o f the model depends on the formulation o f the 

model itself. Consequently, more complex models contain more parameters. For example, the 

Seismostruct provides the Multi-Linear curve, which has 16 parameters that need to be fully 

characterised, and the Smooth curve, which contains 22 parameters that also need to be fully 

characterised. Other models, such as the Simplified Bilinear Takeda curve has only 4 

parameters, and the Ramberg-Osgood curve has also 4 parameters. Both are also applicable 

for linkage-element modelling [16].

5.6.1.1 Future research point

The modelling of a SIB depends on the parameters which formulate the load-deflection non­

linear curve of the isolation material compound. However, it cannot be guaranteed that the 

same hysteresis behaviour would remain unchanged after strong seismic excitements being 

applied in a multi-directional manner. If a specimen has been tested under cyclic loading, 

acting in three different directions to determine its hysteresis behaviour for each direction 

independently, the multi-directional combined manner o f loading would produce different 

capacity limits in each direction. This point is worth being investigated in future research 

work.
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A sim ilar argum ent can also be extended to the stiffness behaviour o f  a SIB specim en during 

different normal and shear strains as the specim en is subjected to a dynam ic loading. It has 

been found by a group o f  researchers [15] that the m echanical characteristics, such as the 

horizontal stiffness, o f  different SIB specim ens are not stable when shear straining is small, 

but becom e m ore stable as shear strains becom e larger than 100%, as can be observed from 

Figure 5.19.
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Figure 5.19 Variation of mechanical characteristics of RB and LRB under dynamic loading 115|

5.6.2 Damage in the Isolated and Non-Isolated Systems

W hen a relatively large am ount o f  energy is dissipated by the bearings in an isolated system , 

this im plies that the isolation system  is offering an effective resistance against earthquake 

dam age responses. However, m ovable bearings such as steel rollers with lim ited 

displacem ent m ovem ent are also providing effective energy dissipation corresponding to the 

earthquake response, but they could cause a great dam age since they are non-absorptive 

devices and must be limited by displacem ent stoppers, which will lead to a sudden transfer o f  

the energy to the substructure. W hen a part o f  the seism ic energy is not absorbed by the 

bearings, it will certainly be transferred to m em bers o f  the substructure, w hich will dissipate 

it in the form o f  structural dam age. Due to this energy m echanism  both fixed and roller 

bearings exhibit unsafe seism ic resistance to earthquake strikes in single RC colum ns 

supporting box-girder bridges. It can be stated that ‘f o r  le s s  e n e r g y  a b s o r p tio n  b y  th e  

iso la to r s  m o r e  d a m a g e  p o te n t ia l  is  e x h ib i te d  o n  th e  s tr u c tu r e ” . Figure 5.20.a& b shows two 

extrem e exam ples o f  the m echanical behaviour o f  two different isolators; low absorptive and 

highly absorptive. The form er exhibits less ductility than the latter, and thus more dam age 

potential is transferred in the low absorptive m odel to the substructure.

RB and LRB isolation devices exhibit energy dissipation in the form o f  lateral displacem ents. 

They are absorptive system s since they sustain residual deform ation w hen unloaded.
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H ow ever, they m ust also be lim ited by displacem ent stoppers according to the seism ic code 

regulations, but their capability to absorb some o f  the energy offers appreciated benefits to 

m itigate the expected dam age to the substructure m em bers. Therefore, it is a criterion o f  

seism ic design to select the m aterial properties for RB and LRB devices that are most 

appropriate for the loaded structure. This im plies that appropriate m echanical properties o f  

the seism ic isolators should be able to m itigate the earthquake response by the bridge 

structure, and thus resulting in less dam age.

Dtspl.

Force

Figure 5.20.a&b Low and highly absorptive isolators models

Carlos M endez Galindo and others [17] found that the best use o f  LRB to provide m axim um  

seism ic energy dissipation capacity as well as limited m axim um  deck displacem ent is by 

using LRB devices designed for an optim um  ratio o f  yield force level to superstructure
K1

weight (Fv / W  = 0 .1 )  and optim um  pre-yield to post-yield stiffness ratio — =  10. It is also
*  K 2

K1
considered in design that this ratio is acceptable with 3 <  — <  50 [13].

K  2

The ratio K 1 / K 2  o f  LRB also provides a m oderate period shift, as recom m ended by Japan 's  

H ighway Bridges Specifications [17]. In their steel bridge seism ic analysis, Carlos M endez 

G alindo and others [17] designed LRB isolators with dynam ic characteristics to obtain 

fundam ental natural periods o f  1.3 seconds for the isolated bridge m odel, which are slightly 

larger than tw ice the fundam ental period o f  the non-isolated bridge m odel (0.6 seconds). 

Carlos M endez Galindo and others [17] consider that this is a m oderate period shift as 

recom m ended by Japan 's  Highway Bridges Specifications. M eng-H oa Tsai [14] also used 

values for the fundam ental natural periods close to what has been m entioned.

How ever, m axim um  seism ic energy dissipation capacity attained by selecting a m oderate 

period shift for the isolated system, does not guarantee low dam age results in all cases since 

isolated system s with m oderate period shifts could exhibit less absorption energy in some 

cases [17].
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Another important factor that controls the performance of a LRB is the lead plug size in the 

isolator. Larger size of a lead plug increases its stiffness, and smaller size would decrease its 

stiffness. The efficiency of isolators depend on the size of the plug, since relatively large or 

small lead plug sizes may cause significant damage to the pier structure [17]. Therefore 

design for seismic isolators may be preceded by detailed dynamic analysis of a parametric 

study for the mechanical properties of the isolation devices installed in the structural system.

5.6.3 A Low Fidelity Model Representing an Ideal Seismic Isolation 

System

The optimum seismic energy dissipation capacity for a seismic isolation device is related to 

two principal aspects; firstly; the PGA magnitude and the acceleration pulse of the ground 

motion, and secondly; the stiffness o f the substructure system.

The previously mentioned statement: “fo r  less energy absorption by the isolators more 

damage potential is exhibited on the structure” implies that an optimum seismic device 

should have optimum absorptive and dissipative energy in order to help the substructure 

resisting earthquake responses with the lowest damage consequences.

From previous sections 5.5.2 and 5.6.2, it can be concluded that the amount of dissipative 

energy that’s accounted for crushing o f the column core is the one that needs to be absorbed 

the most by the seismic isolators. Meanwhile, both SIB and the substructure should together 

dissipate an energy amount that would not be causing over limited displacements.

Similar to the energy curves in section 5.5.2, such dissipative energy amount can be 

determined by energy curves obtained by either experimental tests or liable fracture analysis 

models.

Out o f searching, there was no method specifically found in the literature in relevance to 

seismic isolation, which assigns applying a certain amount of energy to an ideal seismic 

isolator, but it might be ideally acceptable to build a numerical model that can apply such 

energy dissipation for an ideal isolator. A low fidelity model, using Newmark’s method to 

solve for elastoplatic beam-column elements, can handle the simulation o f a MDOF column 

structure with an ideal stiffness isolator, subjected to a dynamic or seismic lateral loading. 

From searching the literature, one of the most suitable models to perform energy dissipation 

based on damage assessment for the RC column is the simplified moment-curvature damage 

model for bridges subject to seismic loads by S. Oiler and A. Barbat [18], which will be 

briefly explained in the following section, and is very much recommended for future work as 

will be discussed in Chapter 8  later on.

170



5.6.3.1 A simplified moment-curvature damage model for bridges subject to seismic 
loads
This numerical model [18,19] is significantly useful since it applies a simple and reliable 

non-linear analysis based on damage detection and evaluation. It combines both utilizing the 

moment-curvature model which is a highly practical approach for time-stepping (iterative) 

methods in the non-linear analysis, and the continuum damage model which is based on the 

constitutive damage law in a cross section for a loaded member. In addition to providing the 

stiffness of a combined RC section to the analysed element for the column, linkage-type 

elements could also be provided to consider the seismic isolation bearing (SIB) at the 

column’s top, and the soil-structure interaction (SSI) at the column’s base, which is shown in 

Figure 5.21.

N

K

Figure 5.21 Pier displacement considering soil-structure effect [18]

Even though energy quantities are not measured parameters in this model, the process of 

verification of the equilibrium equation, (as shown below in step 4.c), on the plastically 

hinged cross section should work in conjunction with the SIB isolators to give an ideal 

performance of the substructure. Such an analysis is based on the balance of controlled 

energy dissipation by the isolators and controlled minor damage in the RC columns.

Other characteristics can also be provided for this model such as the possibility of including 

the fatigue behaviour, the effect of shear stress, local and global stability, and the debounding 

effect between steel and concrete [18]. Such characteristics made the model eligible for 

analysing existing bridges for seismic assessment projects held by many European 

governmental firms [18]. However, B. Richard et al. [20] concluded in their investigation that 

the use of continuum damage mechanics fails in evaluating cracks opening and spacing even 

if the global behaviour of the structure is correctly predicted.

Explanation of the model:

According to the damage theory, the presence of small cracks and voids degrades the material 

properties. This phenomenon is expressed by means of continuum damage mechanics, and
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the level of degradation is measured by the damage factor d  which is based on the effective 

stress a ef f  after the damage and Cauchy stress o  before the damage as follows:

a . , f - —  5.181 - d

where the damage factor represents the loss of stiffness level in the member, and is limited 

between 0, where no damage exists, and 1 , where damage is maximum.

In this model, numerical computations are divided into three parts; Newmark’s method at 

steps 1,2 and 3, computation o f the residual forces A g ( x 3)  for the critical section x 3 (will be 

shown at step 4 below), and computation o f the damage constitutive equation (at step 4.(e) 

below). In general, the model is explained in the following:

1. Using Newmark’s method, top displacement and velocity are first predicted then the 

incremental displacement AUt+Atis determined starting from applying the linearized 

equilibrium equation until correcting the predicted displacement, velocity and 

acceleration vectors.

2. Due to the material degradation, the reduction in properties of the plastic hinge section, 

x 3 , is computed for the moment of inertia l ( x 3) and cross section area ^ (* 3 ), and is 

formulated in the Jacobian matrix J ( x 3)  as shown below in step 4.(e). This reduction is 

used to update the internal generalized stress a int(x3) sustained by the damaged section, 

as shown below in step 4.(e). The difference between the updated internal generalized 

stress and initial generalized stress ct°(x3) is the residual unbalanced forces Act(x3) 

which must come to a small tolerance number to verify the balance of the equation of 

equilibrium.

3. The parameters of the Jacobian matrix are computed according to the damage 

constitutive law, in which the local damage variable f ( x l t  x 2, x 3) at all points of the cross 

section x 3 is calculated by the damage constitutive equation:
Tm a x  n ( .  _£(d) %

f { x 1, x 2, x 3)  =  1 -  d { x l t x 2, x 3)  =  — ^ e  ( Tmax) 5.19

where 0  <  x m ax  <  r, z max and t  are the maximum and current tension strength at each 

point, respectively, a  is dependant on the fracture energy, and d ( x l f x 2, x 3) is the damage 

factor at all sections. The Jacobian parameters are determined according to f ( x l t x 2, x 3) 

for the sub-section b, as follows:

=  f A f ( x l t  x 2, x 3).  d A  damaged area o f the sub-section b. 

m i t e ) c  =  f A f i x i> x 2> * 3 )- x j-  d A  damaged first moment of the sub-section c.
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h i  t e ) a  =  f A f ( . x i> x 2 > * 3 )- x f ‘ d A  damaged moment o f inertia of the sub-section a.

h j  f e ) d  =  IA f ( . x i> x 2 > x 3)• x j - x i • d A  damaged product o f inertia of the sub-section d. 

The integration is performed numerically by the use of numerical weight coefficients for all 

the sub-sections of the targeted cross section x 3 .

The following steps are a summarized explanation of the moment-curvature damage model:

1. Prediction of Displacement and Velocity at top of column:
( j t+M  =  &  +  ( l - y ) i j t . A t  

jjt+dt =  \ j i , A t  +  U t ( ± - p ^ W . A t 2

y  =  0.5, P  =  0.25 , and Uf, Uc, Ut are given from last time instant.

2. Compute displacement increment AUt+At starting from the lineraized equilibrium 
equation:

_  ^ jt+ A t  ^ j j t + A t

Given Aft+At and AJt+At =  M—̂  -1- K, where, M andK  are the mass, stiffness
9 (3 A t2 9 ’ ’

matrices, Af is the increment o f inertia force.

3. Correction of Displacement and Velocity for the same time instant, using Newton- 
Raphson’s trials for nonlinear conversions.

4. Computation o f the residual forces using the continuum damage model:

4.(a) Computation of elastic generalized initial stress, (the Predictor), using top displacement 

Ut+At(0):

0 ° O 3) =

N°(x3)

M2° f e )
, W ffe )  =  v2Lc+m, Mf (% ) =  v l Lc+At

K s  3 E ° I n  K s  2 E °1 2 2

where, K s is the rotational stiffness, L length of the pier, v1? v2 rotations at pier top.

4.(b) Computation of residual generalized stress,(the Residual). The unbalanced equilibrium 

equation is:

The Residual= elastic generalized initial stress -  generalized internal stress

A a(x3) =  8 ° 0 3) -  ffint(x3)

=  0, (verified) Go to step  6
4.(c) Verify the equilibrium equation if Aaint(^3) ^ J(not verified) Continue

4.(d) Computation of incremental generalized strains, using the Newton-Raphson iterations:

Aet+At(x3) =  - [ y ( x 3) ] _1. A a f e )  

e t + M ( x 3)  =  £t+At(x3) fast +  A s t+ A t( x 3)
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4.(e) Computation of section properties J ( x 3) and generalised internal stress a int(x3) using 

the continuum damage model

y f e )  =
A ( x 3)  r r i i f e )  m 2 ( x 3) 

hi ( .x 3) I12t e )  
m 2 f e )  h i ( x 3) h i  (* 3 )

fint

5. Go back to step 4.(b)
6. Computation o f displacement at x3:

U t+at o 3) =
u(x3)

V i ( x 3 )

V2f e )

w(x3) 
M 1 O 3 )  

M2  ( * 3 )

t+at

7. Back to step 1 for a new time increment and dynamic load increment Aft+At

In addition to the inclusion o f rotational stiffness K s o f the soil-structure interaction 

behaviour, the stiffness for seismic isolation bearing SIB can also be included in the global 

stiffness matrix, and thus the effect of both damaged section properties and seismic isolation 

can be controlled.

5.6.4 A Numerical Example

It is useful to describe the behaviour o f a seismic isolated-bearing system throughout two 

numerical examples; the first is the RC bridge column subjected to a multi-directional 

seismic excitation [2], and the second is a group of single RC columns supporting a single­

cell box-girder bridge. Both examples are to be supplemented with a SIB system, and 

subjected to an earthquake loading.

5.6.4.1 Single RC Column with a Seismic Isolated Bearing System

From the previous investigation in section 5.5.2, most of the severe damage in the RC bridge 

column subjected to the 1983 Nihonkai Chubu earthquake [2] occurs when the structure 

reaches the defined state (III). The seismic energy dissipated at this stage needs to be 

alleviated and alternatively dissipated by the isolation device. Using the Seismostruct 

dynamic solver, a lead-rubber bearing device is numerically simulated by a linkage element, 

and installed between the column (substructure) top node and the bridge deck (superstructure) 

bottom node. The linkage element is idealised by an elastic-plastic model of bi-linear 

symmetric curve, as shown in Figure 5.22. It should be noted that a kinematic-hardening
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property is selected to suit the mechanical non-linear behaviour o f the rubber, while other 

materials may follow an isotropic-hardening rule in the non-linear mechanical behaviour

[16]. The model is governed by 3 parameters as follows; the initial stiffness K 0, the yield 

force Fy  and the post-yield hardening ratio r  which is given the default 0.005.

force or

Figure 5.22 the Bi-Linear Kinematic Curve for a LRB modelling of a linkage-elementfl6]

There are three important modelling steps to build a linkage-element model in the 

Seismostruct, and are summarized in the following:

• Creating the super-structure/linkage-element node with coordinates fully coincident with 

the sub-structure/linkage-element node.

• Giving the above parameters to the linkage-element in all o f its 6 forces and moments as 

follows: F1 =  F2 =  F3 =  Fy , M 1 =  M 2 =  M 3 =  0.

• Providing the nodes connectivity between the linkage-element nodes and the nodes o f the 

structure.

Given that over isolated structures may cause large displacements in the bridge deck during a 

severe earthquake, they are, practically, restrained by special stoppers to prevent such 

displacements. However, stoppers will enforce additional columns’ resistance to the seismic 

load, leading to more damages in the column. Therefore, an adequate isolation system is 

required to act together with the columns stiffness in order to mitigate the expected damage 

effectively and, simultaneously, minimize the lateral displacements. This depends on the 

properties o f the isolation devices. Thus, a parametric study was carried out on this isolation 

device model for the same structure and same loading, to obtain a column performance that is 

not engaged within state (III) of severe damage. As can be seen from Figure 5.23, the isolated 

column reaches state (II) with displacements between 0.084 and 0.102 m, in much less 

dissipated yield energy of 45 kN.m. The rest o f the seismic energy was alleviated, and 

dissipated by the isolation device. The ‘convergence’ o f the curve occurs when it starts to
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becom e m ore horizontal as the contribution o f  the dissipating energy starts to reduce. 

Therefore, the structure needed a large am ount o f  energy to be alleviated by the isolators in 

order to converge at such low displacem ent value to avoid engagem ent with state (III).

As m inim um  co lum n 's  dam age can be attained at a range o f  isolation betw een highly isolated 

and fully fixed cases, the interm ediate properties for such m inim um  dam age for this structure 

were found to be as follows: initial stiffness K0 or K 1= 55.1E06 N/m , yield force Fy=551 .E03 

N and hardening ratio r  = 0.005. It is im portant to know  that such properties are considered 

as m edium  range betw een other LRB strength extrem es [17], and that the PG A ’s for the x, y 

and z com ponents applied on this structure are scaled up by 400% , and are as high as 11.12 

m /s2, 9.52 m /s2 and 8.2 m /s2, respectively [2].
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Figure 5.23 Dissipated yield energy in RC column with and without seismic isolation

Figure 5.24 shows the com parison in the structure’s curvatures betw een isolated and non­

isolated RC colum ns. The isolation is successful in elim inating the rotational m otion with 

very limited residuals. Figure 5.25 show s that the velocities o f  the substructure and 

superstructure are not in phase. In fact they differ enorm ously in frequency, and the 

elastoplastic property o f  stiffness for the LRB model enables the higher m ass superstructure 

to respond with m uch less frequency than the response o f  the low er m ass substructure.
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Figure 5.24 Time history of relative rotational response in RC column with and without seismic isolation
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Figure 5.25 Nodal relative velocities in the isolated substructure and superstructure

5.6.4.2 Single RC Colum ns with a Seism ic Isolated Bearings System

The proposed structure, Figure 5.26, is subjected to a seism ic loading with PG A =0.25g only, 

applied in the transverse direction o f  the bridge, and solved num erically by Seism oStruct. 

The seism ic isolation system  is m odelled sim ilarly to what was explained in the previous 

section. A param etric study was carried out to m inim ize the colum ns dam age, w hich can be 

attained at a range o f  isolation betw een highly isolated and fully fixed cases. The 

interm ediate properties for such a m inim um  dam age for this structure were found to be as
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follows: initial stiffness K0 or K 1= 20.E08 N/m , yield force /y,=700.E04 N and hardening 

ratio r  =  0.005.

Figure 5.26 Bridge structure

The difference in perform ance betw een the adequately isolated and non-isolated fully fixed 

structures can be clearly seen in the follow ing load-deflection hysteresis curve and the stress- 

strain plot. The isolation process m itigated the structural response o f  the substructure, and 

decreased its top displacem ent response by approxim ately 25%. The m axim um  top 

displacem ent o f  the colum ns dropped from 0.2 to 0.15 m, and the overall hysteresis loops 

shrunk tow ards a more elastic response, as can be seen in Figure 5.27. How ever, on the cover 

o f  the colum n base, the stress-strain plots in Figure 5.28 show less dam age in the stressed 

fibres o f  the isolated structure, and higher dam age in the non-isolated structure. The softening 

com pressive m axim um  stresses reached by the non-isolated and isolated structures were 

2.9E07 and 1.2E07 Pa respectively. The corresponding m axim um  strains reached by the non­

isolated and isolated structures were -0.0032 and -0.0058 respectively.
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Figure 5.27 Hysteresis curves for different analyses of the bridge columns
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Figure 5.28 Stress-strain curves for a point on the RC column cover at PH section 

S.6.4.3 D iscussion o f Results

Theoretically, the seism ic energy is partially dissipated by isolators set up at this transitional 

zone betw een the substructure and the superstructure, and thus, the colum n dam age is 

m inim ized significantly. How ever, an effective isolation device with adequate m echanical 

properties needs to be carefully designed for the structural system  to create the balance 

betw een relatively large isolation with large displacem ent o f  the super-structure, and little 

isolation with a high dam age rate in the sub-structure. A ssessm ent o f  the isolation 

perform ance can be done using the follow ing m ethodology:

1- Com parison betw een the isolated/non-isolated perform ances for the sub-structure part 

only. This can be done by evaluating:

1. Global dam age; using the Energy-displacem ent relation to evaluate the different states 

o f  global damage.

2. Local dam age; by using the stress/strain relation to evaluate the local dam age at the 

base.

3. Over-all perform ance; by using the hysteresis, displacem ent and rotational time 

histories.
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2- Comparison between the sub-structure/super-structure performances for the isolated 

structure only. This can be done by evaluating the frequency performance; by using velocity 

and displacement time-histories, to test the elastoplastic property of the LRB model that

enables dominance of the higher-mass superstructure frequency over the lower-mass

substructure frequency.

From the above methodology, both damage and ultimate lateral displacement response can be 

used as analytical constraints to determine some o f the mechanical properties for the rubber 

bearing seismic isolation device that’s most adequate for the structure.

As a simple evaluation process for the multi-column bridge example, the lo c a l  damage at a 

point on the cover fibre can also be approximated from the ratio between the softened 

stiffness and initial stiffness E  in the previously obtained stress-strain curve in Figure 5.28. 

The local damage is approximated for the fibres of the non-isolated (monolithic) and isolated 

structures as follows [21]:
_  s o f t e n e d  _  B 5 2 9 e 7

u m ono -  1 ^in itia l -  1 24S0e7 ~

_  g s o f t e n e d  _  2 0 6 .8 e 7

U i s o  -  1  E i n i t i a l  -  1  2 4 5 0 e 7  ~

The difference in the two damage estimations is 26%, and it is the largest difference found 

between the performances of the two structures. Values having small differences are found 

for other fibres on the core of the column, where damage is minimum. G lo b a l damage can 

also be numerically determined for this structure using the previously mentioned methods, 

however, irregularity of the hysteretic curve due to the dynamic motion does not express the 

global damage measure accurately. Rather, it may be possible to define the global damage for 

the whole structure by statistically defining the local updated stresses for all o f the critical 

fibres in the column [21].

5.7 CONCLUSION & RECOMMENDATIONS

Damage analysis in dynamic problems under seismic loading could lead to major 

conclusions, which can be considered useful for performance-based seismic engineering 

PBSE and design PBSD in RC bridge columns. From the previous study the following 

conclusions are found:

• The intensity of local damage in a plastic hinge (PH) is critically significant, and the 

damage growth in the PH zone inside the concrete core could easily lead to a total
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collapse, or more often, excessive residual displacements. This occurs when large parts of 

the longitudinal bars lose their bond effect as the concrete core is damaging.

• Global damage curves obtained in this chapter are based on the energy dissipation in the

hysteresis performance of the structure, indicating a fairly representative global damage 

index measure for the whole structure in general. However, the corresponding global state 

is usually based on experimental and site observations, but not necessarily reflecting the 

inner core damage state for the members.

• Local damage curves obtained in this chapter are based on fibrous damage due to the

performance of the compressive axial stresses only, while the concrete fibres under

tensile axial stresses are not represented in these curves, since they are considered fully 

damaged at very early stages.

• Based on the Demand/Capacity principle d D <  d c , the Seismic Design Criteria (SDC) 

for RC bridge columns is also assuming the initiation of a plastic hinge, which dissipates 

seismic energy. But the cracking growth nature of the fracturing mechanism cannot be 

estimated in this manner, or assured not to reach severe damage rates, even if  the 

Demand/Capacity principle is adopted.

• Seismic isolation is an efficient method to control both the damage in RC members and 

consequently, the large displacements exceeding allowable movement limits o f the 

superstructure, in addition to its efficiency in reducing the residual deformations.

• Evaluation o f the isolated structure can be done by modelling the isolation devices 

numerically, and thus comparing the seismic performance of the isolated and non-isolated 

sub-structure, using evaluation methods for global damage, local damage, energy curves, 

hysteresis curves and time-histories. Another useful seismic evaluation method is the 

performance o f the isolated sub-structure/super-structure zones based on the formation of 

yield energy curves. Such evaluation methods help to design the mechanical properties of 

the isolation devices.

• The moment-curvature damage evolution model can be applied to perform seismic non­

linear analysis with controlled damage and controlled seismic isolation. It is significantly 

practical and reliable since it combines both continuum damage mechanics and structural 

mechanics in a simplified formulation capable of analysing MDOF global structures 

under seismic loading.

• The Seismostruct dynamic solver is capable of performing and evaluating seismic 

response of RC frame structures efficiently with and without seismic isolation.
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6.0 INTRODUCTION

In many research papers the damage assessment for similar RC columns has been defined 

using damage index curves, which indicate the expected G lo b a l D a m a g e , that’s 

approximated for the whole structure. However, more investigation should be conducted to 

explore the L o c a l  D a m a g e  state at the plastic hinge zone itself. It is obvious that the column 

cover, core and reinforcement bars would have different damage states at different time-step 

loading, and they should be investigated independently in order to obtain an overall damage 

assessment that’s more specific than the typical G lo b a l D a m a g e  approximations.

The combined DE/FE Discrete Element/Finite Element analyses are applied by using the 

Elfen-Explicit application to solve the RC column under dynamic loading, and investigate the 

non-linear behaviour of the structure, associated with the expected damage in the concrete. 

This requires defining the analysed elements with the discrete properties as well as the plastic 

properties for the material assigned to the finite elements. The algorithm associated with the 

discrete properties of the elements is functioning within so many restrictions concerning the 

processes of failure, fracturing and post-fracturing of the elements.

The algorithm will not function properly, i.e. will be producing numerical and geometric 

errors, when these processes are not functioned as designed. The workability o f the combined 

DE/FE analyses is a matter o f a case-by-case task, in which many modelling testing trials 

must precede obtaining the expected simulation for every analysed problem independently. In 

addition to testing the functionality of the elements discrete properties, such trials also 

include the geometry of the structure, mesh refinement, plastic properties, time-step 

restrictions and loading magnitudes and rates. A relatively large effort and time consuming 

task is spent to obtain DE/FE simulations for each independent engineering problem, 

especially when a parametric study is required to obtain useful conclusions.

There are three important subjects that are discussed in this chapter, which encompass the 

main parameters o f the DE/FE simulation. Figure 6.1 shows the material properties, failure 

criterion and the DE/FE algorithm are all inter-dependant and act together to perform the 

analysis. In this way, many computer error messages given by the Elfen seemed irrelevant to 

the real cause of the problem. In general, in this chapter the properties and input data of the 

proposed problem are explained, in addition to discussing the techniques followed to build 

the problem model, and difficulties that faced the execution of those models during their 

computer runs.
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6.1 THE EXPLICIT-ELFEN MODEL

6.1.1 Elements

The Elfen application has five fam ilies o f  elem ents. Two types o f  finite elem ents are used in 

this analysis. For a 3D concrete continuum , the 4-noded solid tetrahedral elem ents are used, 

also know n as 4-nodes Strain Stabilisation Tetrahedral Elem ents, or SSET 4, as show n in 

Figure 6.2. For 3D Bars, the 3D 2-noded pin jo in ted  bar elem ents are used, also know n as 2- 

nodes Strain Bar Elem ents SBE3 2.

4

Figure 6.2 The tetrahedral element

r

DE/FE algorithm

 /
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The algorithmic formulation of the finite elements is based on the standard iso-parametric 

approach, in which the same shape function is used to interpolate both the displacement and 

geometry formulations. The strain-displacement relationship is formulated using a velocity 

strain measure, from which the incremental strains are evaluated. SSET 4 elements are 

known between users to be are more reliable for fracture simulation in 3-D continuums.

6.1.2 Time-step and the Explicit approach

Time step is the time interval that’s used by time-stepping methods to calculate the 

incremental values numerically. As generally known, a time-step is lowered to avoid 

numerical divergence and instability, and approach the numerical convergence required to 

solve the problem. In addition, a lower-value time-step gives more accuracy to the output 

results and smoother output curves. However, this costs more expensive computational 

efforts especially in nonlinear problems and problems with fracture mechanism.

It should be noted that the combined DE/FE analyses algorithm for solving dynamic non­

linear problems with fracture in Elfen is solved by using the explicit scheme only. The time- 

step in the explicit central difference solution algorithm is relatively smaller than that in the 

implicit approach, and the explicit approach requires a very large number of time steps to 

maintain stability. This highlights how computationally expensive the explicit central 

difference time integration scheme can be, especially for problems that require a large overall 

time period such as earthquake problems. The critical time step Atcr is given by:

A t „ = - e (6.1)

where, c  =  -  , I is the characteristic length of the smallest element in (mm), c is the wave
yjp

9 9 4.speed in (mm/s), E is Young’s Modulus in (N/mm ) and p is the density in (N.s /mm ). 

Initially, the first time step should be given by any estimation, then it is corrected according 

to the previous equation. However, a modified version of this formula is used in Elfen, to 

ensure stability when dealing with different shape elements, especially when geometrically 

distorted. Using the Elfen-Explicit Dynamic selection, the following time step control data 

are defined:

• Factor of Critical Step: which factorises the size of the time-step when smaller values 

are needed, especially in problems with expected fracturing elements.

• Termination Data: is the maximum number of time-steps that could be reached by the 

computational process.
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• Termination Time in seconds: usually equals or less than the loading time. Obviously, 

it has nothing to do with the computing time of the machine.

6.1.3 Building the model in the Elfen environment

The structure o f a finite element in the Elfen is made of entities. Entities are either nodes, 

lines, surfaces or volumes. They are divided into 2 categories;

• Dependant entities, which form upper level entities such as lines forming surfaces and 

surfaces forming volumes.

• Top-level entities, which do not form other upper entities.

These two types are important for the entity size inheritance from the upper level entity size 

to the lower level entity size. It is also important to be defined for the proposed RC model, 

since the reinforcement bar elements must be top-level entities in order to be meshed, sized 

and assigned their material properties to function independently.

6.1.4 Pre-fracture properties

The following Table 6.1 shows the material properties used for the proposed problem, which 

are used to perform the linear and non-linear pre-fracture process.

For the non-linear computations, the following parameters are required for Rankine (model 

08) and M-C with Rotating crack (model 19):

Tensile strength a T =  0.5V27.58 = 2.625 E06 N/m2, since the tensile stress of concrete 

=  O . s j f ^  «  0.1 f ' c , where f ' c is in N/mm2. The Fracture Energy Gf  for concrete is 

estimated as 100 to 200N/m.

Elastic
Modulus

E

Shear
Modulus

G

Compressive 
Yield stress

9  C

Tensile
stress*

(jf

Cohesion or 
Shear 

Strength c u

Density p Poisson’s 
ratio v

2.485E10
N/m2

1.035E10
N/m2

2.7579E07
N/m2

2.7579E06
N/m2

13.7xl06 N/m2 2356.0
N.s2/m4

0.2

E G *  OAE f ’c ~  10-3 E a T w e -4 E 
° t  *  e-1/ ' c

a T  *  - S V A

cu  w 5e_4E 
Cu  *  0.5 f ’e 

c u  ~  5 a T

p  =  10“7E
p =  10- 4/ ' c
p  =  1 0 ~ 3 (t t

*also known as Uniaxial Yield stress in Rankine criterion, or Hydroststic Tension Cut o ff stress in Drucker Prager criterion.

Table 6.1 Mechanical properties of concrete and useful relations
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6.1.5 Post-fracture properties

This stage is concerned with Contact Mechanics of the discrete elements (DE) after fracture 

has occurred, and the assigned properties serve this stage in particular, which is not 

significantly useful to the field o f seismic engineering. However, the post-fracture parameters 

are still important for the continuation o f the dynamic analysis even if they have no 

significance to the seismic problem.

The physics of post-fractural discrete elements prohibits the partial interaction, or known as 

penetration, o f two discrete elements in the same space simultaneously. But to obtain the 

simulation such penetration is allowed between the ‘impactor’ and the ‘targetter’ but with 

very large stress values, or known as penalty values, in the normal and tangential planes 

coordinate.

To avoid numerical instability caused by such large penalty values, a ‘relaxed’ situation is 

provided by allowing the penetration of an element node to the element edge or element 

surface, for a permissible penetration domain controlled by a ‘contact damping field’.

The following are the post-fracture parameters that are given in the Elfen code to activate the 

discrete element mode:

• Contact Damping: defines the damping factor which is used to modify the contact 

penalty force which in turn may be increased or decreased depending on the velocities of the 

contacting bodies. For fracture, values in the range 10%-50% are recommended. A Damping 

ratio of 200% is given for contacting surfaces that are moving apart. Given 30%.

• Contact Field: is the maximum permissible penetration as a function of the length of 

the element size. It is normally set at 10% to 20% of the smallest element size in the mesh. It 

was found in this research that if  the contact field is too small (less than 10%), it causes 

excessive penetration of the node towards the element. However, it has also been found that 

if  the contact field is too large (more than 20%), there is no effect on the node-edge algorithm 

but it has a negative effect on the edge-edge algorithm. Given 0.01 m.

• Normal Penalty: the normal penalty value P  for the evaluation o f the contact force.

The value is typically in the range 0.5E < P n < 2.0E where E  is the Young’s Modulus. Given 

2.76E10 N/m2.

• Tangential Penalty: the tangential penalty value P  for the evaluation o f the tangential 

contact force. The value is typically an order of magnitude less than P  . P ~  P J 10. Given 

2.76E09 N/m2.
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• B uffer zone: the dom ain where local nodes o f  contact are searched in the contact 

algorithm . It is given an average size o f  side length o f  the finite elem ent. G enerally this is set 

as the average side length o f  the m esh. G iven 0.06 m.

•  Sm allest elem ent: the m inim um  size o f  elem ent after fracture occurs. I f  it is given a 

size larger than the size o f  a fracturing elem ent, fracture would occur in betw een the adjacent 

elem ents and not through the elem ent, and it will not be allow ed to fracture further. G iven

0.05 m.

• C ontact Dam ping types are: No D am ping, Rigid Body D efender Node, N ode-Edge 

Velocity M om entum , V elocity/M om entum  and Viscous type. The “V elocity/M om entum " 

contact dam ping type is recom m ended for m odelling general m echanical interactions.

• Contact Type: Edge-Edge or N ode-Edge. Selected the N ode-Edge contact type.

• Friction betw een contacting surfaces is given 0.0.

• Cohesion betw een contacting surfaces is given 0.0.

Figure 6.3 shows a diagram  o f  the m aterial properties required for pre-fracture and post­

fracture processes as related to different categories.
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c o h e s i o n
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z= -10E-10= minimum tensile cut-off contact stress, 0= initial tension cut-off contact stress.

Figure 6.3 Material properties for failure criterion & discrete elements
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6.1.6 Changes in the Elfen Defaults

In Elfen there are three categories of parameters that have been set at default, and are 

accessible for amendments according to requirements of the problem. They are; Element 

Options, Global Options and System Variables. In this proposed problem two parameters in 

the System Variables category are amended. They are; "RFRACT", or the reserved fraction 

for discrete element fracturing, which has been changed from 2 to 10, and "MAXDEG" , or 

the maximum number of edge connections for each node, which has been changed from 40 to 

80 or 100 in some runs. Both are associated with the algorithm capacity o f the fracturing 

mechanism for the analysed problem.

Another important default value, which is associated with the time-step control data, and also 

needs to be amended, is the factor of critical time step, which is 0.9 as a default and changed 

into a value less than 0.6 for fracturing purposes. In this problem the time-step needed to be 

reduced by 0.2 and 0.4 to obtain the fracture analysis.

6.1.7 Damping for explicit dynamic analysis

In addition to the energy dissipated by the nonlinear yield response o f the excited structure, 

there are other dissipative forces that resist the loading effect, and dissipate some portion of 

the input energy. These forces are the damping forces. In General, the damping forces are 

classified according to the following groups:

• V isco u s  d a m p in g : most widely used model that was found to be a good approximation for 

the friction effect on an oscillator in oil or air. The viscous damper (also known as 

dashpot) dissipates the vibrational energy of the system.

• S tr u c tu r a l  d a m p in g : which is due to the internal material damping and friction of joints,

• D r y  f r ic t io n  o r  C o u lo m b  d a m p in g : describes the motion of a body on a dry surface [1].

Damping forces are assumed proportional to the velocity response of the structure by a 

proportionality factor c, which is assumed to be a constant damping matrix, and can be either 

measured experimentally or estimated [1]. Because o f difficulty in determining the damping 

constant c for the structural damping type, the viscous model is used as an equivalent to 

represent damping in RC structures. The equivalent viscous damping contributes in 

dissipating the energy absorbed by the system.
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In an Elfen-Explicit algorithm Point Damping is applied. Point damping applies velocity 

proportional damping to the nodes created on entities to which it is assigned, i.e. every 

selected node in the problem will be subjected to point damping. The value of damping 

prescribed is defined relative to the automatically estimated lowest frequency o f vibration for 

the application and the damping may be prescribed differently for each freedom of the node. 

For the proposed problem, a damping ratio of 5% is given to the column surfaces to 

approximate the damping effect for such structures under such low frequency vibrations. For 

very high frequency vibrations, the Elfen-Explicit is provided with an artificial bulk viscosity 

for all o f the mesh elements to smooth shock discontinuities that may occur in impact 

problems [2].

6.2 MATERIAL MODELLING

For reinforced concrete structures, the material modelling in Elfen encompasses the following 

materials:

1) Isotropic Elastic materials.

2) Incompressible Elasto-plastic and Metal Plasticity materials.

Generally, those materials that do not show any volume change when compressed (or 

tensioned), i.e. incompressible materials have theoretically no volume change, i.e. A V  =  0, 

and the rate o f volume change is the volume change divided by the initial volume:
AV

e =  —  =  £x +  £y +  £z =  0 (6.1)
v0

where, V0 is the original volume and i =  1,2,3 are the strains in the i-direction. From 

Mechanics of Solids, the rate of volume change for isotropic materials is:

e - v )  (6.2)

For incompressible isotropic material, Poisson’s ratio will be v  =  0.5, and for incompressible 

orthotropic materials lower Poisson’s ratios are given, i.e. v  <  0.5.

Steel reinforcement bars are Von-Mises elasto-plastic material that may be related to failure, 

hardening and softening. The constitutive stress-strain relationship exhibits 3 stages defined 

in Elfen as follows:

• Definition of failure initiation: a yield point where the initiation of failure occurs.

• Definition of material hardening
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• Definition of failure softening : at which the stress reduces either immediately or

gradually until complete failure is reached where stresses vanish.

3) Compressible Elasto-plastic Materials.

Concrete is modelled as an isotropic compressible elastic plastic quasi-brittle material. This is

explained as follows:

Isotropy

Concrete is modelled in most cases having the same elastic properties, namely; Young’s 

modulus E , Bulk modulus G and Poisson’s ratio v ,  in any uni-axial direction of a specimen. 

Compressibility

As a brittle material, concrete is vulnerable to certain volume change A V  when compressed 

and damaged. The rate of change in volume for a unit element is:
AV

e = — = £x + sy  + ez 0 (6.1’)
*0

When a specimen is compressed in the x-direction all strain components can be found 

according to the character of compressibility at which the Poisson’s ratio v  is larger than zero 

and less than 0.5. For an isotropic compressible material:

e = ^  = £x (1  -  v -  v) > 0 (6.2’)
vO

v  is given between 0.2 and 0.3 for concrete.

6.2.1 Elasticity and plasticity

The uniaxial stress-strain constitutive relation for concrete is assumed linearly-elastic with 

plastic softening in the tensile stress field. This assumption simplifies the computational 

effort and in the same time represents the mechanical behaviour successfully. When 

compared with a typical uni-axial stress-strain curve for concrete, shown in Figure 6.4, the 

adopted linearized curve makes a reasonable simulation with the reality.

In contrast to the tensile constitutive curve, the compressive uniaxial stress-strain constitutive 

relation for concrete is approximately 10 times larger in size, and has a hardening part before 

reaching the failure point, as shown in Figure 6.5. These characteristics are also incorporated 

within the material properties section of the Elfen. The Elfen code utilizes this relationship in 

the principal planes and in the 3D configuration in order to control the elastic and plastic 

behaviour of the loaded material.
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Figure 6.4 Linearized constitutive model[2] Figure 6.5 Typical uni-axial test [3]

6.3 MODELLING OF QUASI-BRITTLE MATERIALS

From a general literature preview on material modelling by the FEM, the post-failure 

modelling of brittle materials has usually taken one of the following routes:

• Continuum-based approach which adopts the idea of “smeared crack models”

• Discrete-based approach which physically models the fracture paths and its growth.

6.3.1 The Continuum Approach

In the continuum approach the total strain rate is additively decomposed into two 

components:

1- Elastic strain rate: in which the constitutive law defines the relationship between 

elastic strain rate and stress rate through the E la stic ity  M atrix , and

2- Failure strain rate, which will be, according to associated flow theory of plasticity, 

analogous to softening plasticity, and dependent on the constitutive law of the failure model. 

The failure model is a function of stress, strain and internal variables.

To model the softening response, experimental data are utilised to obtain a g lo b a l tangent 

softening modulus E 1 for the material. As shown in Figure 6.6, the experimental data are for 

a concrete bar under tension, in which a g lo b a l load-displacement curve is obtained. 

However, the softening modulus has no length scale to ensure mesh independent solutions.
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u

Figure 6.6 Global load-displacement curve of concrete bar under tension

6.3.1.1 Fracture Energy

The Fracture Energy Gf is an appropriate material constant that controls the softening process 

at some controlled volume, and determines the instantaneous tangent softening modulus E t 

for that volume, i.e., a lo ca l softening modulus. The fracture energy is defined as the amount 

of energy needed to create a continuous crack on a unit area, and it is the equivalent 

alternative to the softening law. The fracture energy for a controlled volume, often chosen to 

be the finite element, is the area under the softening curve, as shown in Figure 6.7. Modelling 

wise, if the stresses have not dropped to zero, the area under the softening curve is less than 

the assigned fracture energy Gf, and the material is partially damaged, i.e. the Failure Factor 

is assigned between 0 and 1, and the controlled volume is under micro-cracks but no cracks 

are initiated yet. If this area is equal to the fracture energy, the material is totally damaged,

i.e. Failure Factor=l, and cracks start to initiate.

The release of the fracture energy rate dG f is dependent on the degree of damage caused 

during the softening stage, which is defined as:

dG f =  a . d u  (6.3)

Gf =  f  a . d u  = /  o . f(s). d s  (6.4)

where e ( s )  =  ^  is the softening strain in the direction of the principal plane. Integrating over 

a localization band with lc for a constant slope softening model, this gives:

E t = T - = ~ f4 r -  (6.5)de 2Gf v '

where, lc is a function of an element area, and the negative sign is for the modulus slope. 

The fracture energy is used to define the softening curve E l , and the resulting area under the 

curve is either larger or less than the energy fracture Gf.
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Figure 6.7 Fracture energy under softening curve

Once the plastic stresses drop, the resulting area under the curve is either less than or equal to 

the fracture energy Gf. W hen the area under the curve reaches Gf, the fracture energy o f  that 

point is said to be released, i.e. work o f  “ softening strains’* is com pleted during the softening 

stage at that plastic zone, and a crack initiates.

As a conclusion, the reason that softening strains occur is that softening is associated with 

“micro cracks” , which perm it such an energy to be released after that Gauss points had 

gained high stresses at the failure initiation point.

During the M icro-fracture process, an opening o f  m icro-cracks and closing o f  m icro-cracks 

occur in a brittle m aterial such as concrete, therefore, an unloading o f  the stress m ay occur at 

any stage o f  M icro-dam age before the softening is com pletely finished, as shown in Figure 

6.8. In this case, new strain values are to be calculated for the unloading. The stress-strain 

slope at that dam age is:

E d =  ( 1  -  ( 6 . 6 )  

where w  is the dam age param eter that is dependent on the fracture energy Gf .

f  - Softening Associated 
with Micro-fracturing

Unloading witl 
damage

Figure 6.8 Constitutive relation for plastic softening and unloading |2 |
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6.3.1.2 The Smeared Crack Model

The S m ea red  C ra ck  model is a plastic softening model based on the continuum approach. 

The idea of this model is introduced to rationalise the relationship between E l and Gf. It 

replaces the physical discrete crack in a controlled volume with continuous micro-cracks 

evenly distributed across the whole volume, such that the energy dissipated in the discrete 

and smeared failure process are equivalent. Plastic stresses and softening strains produce the 

softening work which is equivalent to the resultant micro cracks, as according to the S m ea red  

C rack  principle. Therefore, visible cracks are assumed to appear directly after the end of this 

stage.

6.3.2 The Discrete Approach (Discrete Fracture Modelling)

Continuum approaches are unable to express post failure interactions since they alternatively 

exhibit regions of zero strength only. However, the finite/discrete formulation is able to 

undergo large deformation in quasi-brittle materials.

6.3.2.1 Rotating Crack Model

The R ota tin g  C rack  model is a discrete-based approach. It is neither a plastic softening model 

nor a pure damage model, and may be seen as a combination of both approaches. The 

modelling of material failure by the R ota tin g  C rack  theory is very much an engineering 

approach.

The R ota tin g  C ra ck  model assumes that the direction of a smeared crack rotates, following 

the maximum principal stress direction during the failure process. From a micro-mechanics 

point of view if failure occurs in one direction, a system of micro-cracks is activated parallel 

to the failure direction, and they begin to grow. However, if the maximum principal stress 

direction progressively rotates, these micro-cracks partially close, and the micro-cracks 

parallel to the new failure direction are activated, i.e. they open up, and dominate a further 

crack growth.

6.3.2.2 Fixed and Rotating Crack models

The rotation of any of the principal stresses by a small angle AG is due to the

dynamic nature of the internal forces during the loading process. In a F ix ed  C rack  model, the
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degraded elastic m odulus E d for the failure plane n  rem ains the sam e when rotated into plane 

n n  in the new  tim e-step. This is known as the characteristic o f  isotropic softening at the 

F ixed  C rack  m odel, and thus; E d =  E dn .

How ever, in a R otating Crack  m odel, the degraded elastic m odulus E d for the failure plane n  

becom es different when rotated into plane n n  in the new  tim e-step. This is know n as the 

characteristic o f  anisotropic softening at the Rotating Crack  m odel, and thus; E d =£ E dn . The 

degraded elastic m odulus E dn in the rotated failure plane n n  was shown in Figure 6.8. 

M oreover, the strength on plane n  in the new  tim e-step returns to its original strength, with 

m odulus o f  En , and is not degraded since the m icro-crack openings are considered ‘c losed ' at 

that tim e-step. Thus; E d ^  E dn =£ En . The physical difference betw een the fixed and rotated 

crack m odels can be illustrated in Figures 6 .9 .a and 6.9.b.

t °\

->T -> T t
a,

S
£0 ^  ^  ^  

----------------

(a) (b)

Figure 6.9. a) Fixed crack model b) Rotating crack model

In post yield, the Rotating Crack represents the dam age evolution using the degraded elastic 

m odulus E d, and the direction o f  the principal plastic strains £( is associated with the 

principal plastic stresses <rt , which determ ine the direction o f  cracks. This is represented as 

follows:

^n n  ^ n n  ^nn (6*7)

where nn is the local coordinate system  o f  a rotated plane.
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6.4 MODELLING OF QUASI-BRITTLE MATERIALS IN 
ELFEN

Concrete is a quasi-brittle material characterised by heterogeneous microstructures, which are 

known in lin ear e la stic  fra c tu re  m echan ics LEFM as f la w s  [7,8]. Flaws constitute in random 

distribution to concentrate local tensile strains and initiate fracture in the zones of 

compressive and tensile stresses. N on -linear fra c tu re  m echan ics NLFM is an extension of the 

LEFM, and has been developed by researchers to account for non-linear effects during 

fracture. Several models utilize NLFM principals either combined or individualized in order 

to be capable of simulating the quasi-brittle material. The post-failure models used by the 

Elfen-Explicit application are listed below:

• Rankine plasticity with softening governed by fracture energy, which is an isotropic 

plasticity model with failure governed by the tensile strength and isotropic softening. Model 

08.

• Rotating crack model with softening governed by fracture energy, which is an 

anisotropic damage model with failure governed by the tensile strength and anisotropic 

softening. Model 14.

• Rate dependent rotating crack model, an extension of the standard formulation by 

inclusion of a rate dependent tensile strength and softening governed by a combination of 

fracture energy and material viscosity.

• Non-Associated Mohr-Coulomb model with softening, which is a pressure dependent

yield function allowing yielding in shear.

• Drucker-Prager Cap model, which is a pressure dependent yield function that allows

yielding in shear and compaction in compression.

• Non-Associated Mohr-Coulomb model with tensile strain softening model, which is a

pressure dependent yield function allowing yielding in shear, combined with a rotating crack 

strain softening model for tensile stress states. Model 19.

Two models have been selected in this research to represent the concrete material using 

Elfen. Both models simulate the quasi-brittle material in 3D formulation under strain-rate 

independent loading. They are:

l- Rankine failure criterion associated with micro-fracturing isotropic plastic softening 

model, known as Smeared Crack model, and also supplemented with optional fracture 

mechanism, known as Model 08.
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2- The isotropic M ohr-Coulom b failure criterion with tension cut-off, associated with 

anisotropic dam aging m o d e l know n as Rotating Crack model. K now n as M odel 19.

6.4.1 Rankine Failure Criterion with Fracture (Model 08)

The Rankine failure, or yield, criterion is based on the critical value o f  tensile stress o f  the 

m odelled m aterial. Once the critical tensile strength o f  the quasi-brittle material is exceeded 

the resulting strains enter the plastic softening stage, hence the Rankine m odel is a softening 

plasticity m odel.

The Rankine tensile corner introduces an additional yield criterion defined by:

G i -  f t  =  0 (6.8)

where a L are the principal stress invariants (012,3) and f t is the tensile strength o f  the 

m aterial. Both Rankine & Rotating Crack criteria model the tensile failure o f  a brittle 

m aterial for M ode (I) fractures according to the criterion shown in the Figure 6.10, and 

expressed as:

<?. =  f t

Initial Yield ,  O,
Surfact

— —  f

Figure 6.10 Yield surface for both rotating crack and rankine models

As the softening strains increase betw een the failure initiation point and the zero failure 

stress, the failure energy is built up and fracture begins in this direction, as previously shown 

in the Figure 6.7. If stress is unloaded before reaching total failure, as previously shown in 

the Figure 6 .8 , it is reloaded without dam age, i.e. the stress-strain curve in this direction is 

still isotropic. This m eans that no dam age is considered unless total failure is reached.

Rankine failure is a tensile fracture type, which has the fracture M ode (I). Flowever, w hen the 

principal stresses are com pressive, no failure is detected by Rankine, and consequently no 

fracture applies. It should be known that R ankine’s flexural failure is restricted to tensile 

principal stresses only, and no failure takes place due to com pressive principal stresses.
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Quasi-brittle m aterials such as concrete have an anisotropic softening response [2] since the 

resulting fracture is generally an anisotropic phenom enon. How ever, the Rankine model is an 

isotropic plasticity m odel which considers equivalent strength degradation in all directions. 

This could be a m ajor shortcom ing in the Rankine model [2], nevertheless the application o f  

the Rankine m odel to concrete system s can be very successful for the restrictive case o f 

M ode (I) failure, where failure is due to tension only.

6.4.2 Mohr-Coulomb Failure Criterion Combined with Rankine 
(Model 19)

In order to sim ulate a brittle m aterial such as concrete, the M -C failure criterion is slightly 

m odified by having its conic envelope at the tensile stresses cut off, to conjugate with the 

tensile strength o f  the concrete. In this case the tensile failure in th is m odified M -C criterion 

would be as sim ilar to that in Rankine, as can be seen in Figures 6.11 and 6.12.

Rankine yield  
surface \ Tension cut­

o ff surface

Figure 6.11 Rankine and M-C yield surfaces in 2D space

at

Figure 6.12 Rankine and M-C yield surfaces in principal stress space
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The tension cut-off surface boundaries are to be defined by an additional yield criterion such 

as:

a* — o t =  0 f o r  i = 1,2 a n d  3 (6.9)

where, Gt = principal stresses a t =  tensile strength of the concrete. The M-C criterion is a 

generalization of the Coulomb friction failure law and is defined by:

t  = c — a n ta n  0  ( 6 .1 0 )

where r  is the magnitude of the shear stress, o n is the normal stress on the internal plane, c is 

the cohesion and 0 is the friction angle.

When the compressive principal stresses are combined in certain magnitudes a deviatoric 

stress, a d =  gx — <72, initiates, leading the principal stresses coordination point to approach 

towards the M-C failure envelope. When the M-C envelope is violated, a failure shear stress 

t f  generates on the internal failure plane of the specimen. However, a shear mode failure, 

Mode (II), is activated by reaching the M-C envelope, but no consequent fracture is allowed 

in this modelling algorithm. In this case the finite elements fail in strength but do not fracture 

since Mode (I) tensile fracture is the only fracture mode that is assigned in this modelling 

algorithm.

6.4.3 Non-associative Flow Rule in M-C Compressive Strains 
(Strains Dilation)

As being different from Rankine, the M-C is associated with shear stress in the internal 

failure plane. It is not a softening model since it doesn’t consider softening in the 

compressive field. However, M-C is conjugated with the F low  R ule , which controls the 

direction of the principal strains. Principal strains are responsible for the volume change in 

concrete, which is known as D ila tion .

Plastic principal strains A s  can consist of two parts; deviatoric strains A sq and volumetric 

strains A ev . Concrete can dilate when the volumetric strains A sv exist, leading to a possible 

tensile fracture. However, concrete will not dilate when the plastic strains have no 

contribution of volumetric strains, i.e. they consist of deviatoric strains A sq only. In this case 

they are known as n on-associa tive  strains since they do not follow the same directions of the 

plastic principal stresses A o , i.e. they are not associated with their direction.

Therefore, when dilation exists, the plastic strains envelope, known as the P la stic  P o ten tia l  

Surface (Q ), creates an angle with the M-C envelope, which is known as the Y ield  Surface
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(F). This angle is known as the angle o f  D ila tion , (p, as illustrated in Figure 6.13. W hen this 

angle equals the angle o f  friction 0 .  the plastic potential is fully associated with the yield 

surface, otherw ise it is either partially associated or a non-associative case.

-O

Ae
A s

.o

Figure 6.13 M-C yield surface (F) and plastic potential surface (Q), with associated and non-associated

flow rule cases |4J

The angles o f  dilation decrease as hardening strains increase. In this problem , concrete 

hardening strains are increased from 0, 0.03 up to 1.0, and in correspondence, the angles o f  

dilation (p are decreased from 15, 5 to 0, respectively. All strains in the softening stage are 

calculated according to the Flow Rule th a t's  associated with the plastic theory o f  the applied 

softening model. How'ever, w hen reaching a non-dilation angle, the Plastic Potential Surface  

(Q) which is normal to the plastic strains is not associated w ith the Yield Surface (F) ,w h ich  

implies that the com pressed m aterial becom es a non-dilatent m aterial and the flow o f  the 

plastic strains will be deviatoric only; i.e. not straining in the direction o f  the applied stresses.

In concern with the proposed problem , it was concluded that this phenom enon has a 

relatively small effect on the overall fracture behaviour o f  the concrete colum n. It is believed 

that the influence o f  dilatency is little in unconfm ed problem s, and such phenom enon is m ore 

significant in problem s with structures that have relatively thick geom etry and in soil 

continuum  problem s [4].
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6.4.4 Definition of pre-failure, post-failure and post-softening 
stages

The simulation of concrete in a 3D problem is based on defining the different mechanical 

stages o f the problem, by updating the stresses at the level of an element for every iterative 

loading process. This is summarized in the following:

a) Definition of the linearly elastic behaviour by applying the Hook’s law for the elastic 

properties of the material.

b) Definition of the pre-failure behaviour to consider plasticity as a non-failure process. 

For concrete this occurs in the compressive stresses field, with hardening stresses preceding 

the yield point.

c) Definition of the failure initiation point which occurs due to either compressive or 

tensile overloading. Once the element stresses are updated and reach the plastic surface, the 

material is said to have entered the softening stage.

d) Definition of the post-failure stage, where failure softening process initiate micro 

cracks to occur in association with the softening strains. When strains reach their maximum 

value all stresses drop to zero and all of the fracture energy is totally released. At this stage 

visible cracks should initiate, and the discrete algorithm is put into function.

e) Definition of a post-softening.

This stage is a response after the softening stage has been completed. When the strain energy 

is totally released, i.e. it reaches the proposed fracture energy Gf, which is usually 100 to 150 

N/m for concrete, a discrete fracture is formed, which is equivalent to all micro-fracturing 

that has been associated with the stress softening stage.

Fracture is now introduced using an algorithm that updates the topology of the mesh through 

insertion of discrete fractures in the “failed” regions. A visible crack is now allowed to 

initiate, and also propagate, after all fracture energy is released as mentioned before. It is 

important to know that the Elfen code is applying fracture for the first mode of fracturing, 

Mode (I), which is the tensile fracture. The Elfen algorithm of fracture is explained as the 

following:

1- The level of damage is calculated in the softening stage for every Gauss point of each 

element as according to the stress update algorithm of the material model.

2- Such failure information for the brittle material is known as the fa ilu re  fa c to r  Ff , 

which is the percentage of tensile softening in the principal strain.
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3- T he Failure Prediction A lgorithm  then constructs a fa ilu re  map  for the w hole dom ain, 

based on the previously defined failure inform ation, or the level o f  dam age, which was 

calculated at every Gauss point for each elem ent.

4- The m axim um  failure factor Ff and the average failure factor are calculated from the 

fa ilu re  m ap  for the whole dom ain.

5- A searching loop process is activated to determ ine the highest average fa ilure fa c to r

Fr  ■

6- The corresponding average direction is also determ ined and a crack is inserted in that 

point to form  a crack initiation by inserting new  nodes in the critical elem ents, as in Figure 

6.14.b, or inserting a new edge betw een two adjacent elem ents, as in Figure 6.14.C.

7- A crack propagation is also perform ed in the sam e procedure for the sam e elem ents 

by inserting new nodes then new  edges, and so forth.

Figure 6.14 Crack insertion procedure; a) Initial state, b) New nodes through element, Or c) New edge

along element boundary |5|.

6.5 MODELLING OF REINFORCEMENT BARS IN ELFEN

The constitutive model o f  reinforcem ent steel bar elem ents subjected to seism ic loading can 

be m odelled using a rate independent plastic m odel, w ith an isotropic V on-M ises failure 

criterion. This m odel is utilised by Backw ard  Euler stress update algorithm s, w ith the Von- 

M ises model being im plem ented in a nonlinear isotropic hardening form , (which is the 

plasticity m odel 07 in Elfen library). Flowever, piecew ise linear hardening data are specified 

using the hardening properties o f  steel. This is because the linear hardening form  is more 

efficient as the stress update is perform ed in a closed form, whilst the nonlinear hardening 

model requires an iterative update procedure [2, page 36 ].
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At post hardening, the m aterial suffers softening, where the m aterial strength starts to 

deteriorate as it strains until fracture occurs, where the topology o f  the m esh is updated by 

insertion o f  a discrete fracture in failed regions. However, the stress-strain constitutive curve 

for the steel reinforcem ent bars does not contain the softening nature w hich probably exist in 

other V on-M ises m aterials. Therefore, its fracturing behaviour is sudden and occurs after 

relatively  high ductility behaviour takes place. On the other hand, the Elfen Explicit 3.7 is 

capable o f  inserting a discrete fracture in the failed regions, but only for 2D stress states. For 

these reasons fracture is not m odelled in the proposed 3D problem , w hich is considered as 

one o f  the defects in this com putational process. Figure 6.15 shows an idealized elasto-plastic 

constitutive steel curve with hardening.

a  ya

Strain
ep

Figure 6.15 Uniaxial steel stress-strain curve with hardening

6.5.1 Von-Mises model

The Von Mises failure criterion takes the form  o f  a right cylinder sym m etrical around the 

space diagonal. The only significant invariant is the second deviator stress invariant a ,  which 

determ ines w hether a stress state has reached the lim it o f  an elastic behaviour. The other two 

invariants, namely; am m ean stress and 6 m easure o f  the angular position o f  the stress point 

on the 7T-plane. are not functions o f  this criterion. The V on M ises, therefore, can be expressed 

in term s o f  the 2D stress invariants (am , a )  in the plane strain. For the plane n the Von M ises 

criterion is shown in Figure 6.16, and given by its strength as:

F = a  -  2 cu = 0 (6.11)
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w h e r e ,  cu = ———  is  th e  s h e a r  s t r e n g th  , o r  c o h e s io n ,  o f  th e  m a te r ia l .
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Figure 6.16 yield function for Von Mises model

6.6 ASSUMPTIONS IN THE DE/FE MODELLING

M odelling assum ptions have been m ade to m ainly suit the requirem ents o f  the dynam ic 

analysis and, at the same tim e, reduce the com putational effort as much as possible.

6.6.1 Methods of Applied Loading

There are different ways for loading this problem . Either o f  the follow ing m ethods can 

possibly be used, but m ight result in differing perform ance due to the different engineering 

assum ptions. The follow ing are the different possible loading m ethods:

6.6.1.1 The Ground Acceleration Loading

Acceleration load is applied directly to the base o f  the structure. This is the ideal loading 

m ethod which represents the realistic response under a full record o f  ground acceleration 

loading. It will however, consum e a large com putational tim e since the displacem ent 

response will have a tim e delay shift from its corresponding acceleration loading.

If  a part o f  the ground acceleration record is applied, a better response is obtained if  at least a 

record o f  one peak acceleration betw een two zero accelerations is applied, so that to include 

paths o f opposite directions o f  loading. This is im portant since the change o f  direction in the
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acceleration loading will give more analysis time to allow the top free-moving mass to 

respond to the peak acceleration loading.

It is important to know that it is not possible to calculate the resulting base-shear if the 

ground acceleration loading was used. This is because the entire structure would be moving 

in absolute motion, with no fixities providing the required base-shear force at the base of the 

structure.

6.6.1.2 The Equivalent-Force Loading

Equivalent load is applied at the C.G of the structure, representing the motion intensity and 

direction of the virtual force that’s equivalent to the ground acceleration effect. This force 

may be applied to the column top side surface of the top mass.

This force could be approximated by either multiplying the mass of the structure by the 

ground acceleration according to Newton’s 2ed law, or applying the base-shear forces, which 

is extracted from “another” external analysis, as an equivalent-force loading. Either loading 

method should have the same effect in a theoretically elastic static analysis. However, in 

elastic-plastic dynamic analysis the equivalent loading due to base-shear forces and ground 

forces is different. This is due to the dynamic effect and strength degradation of the structure. 

However, as an approximated method of loading for the peak loading value for the DE/FE 

analysis, the peak base-shear forces are selected as equivalent loading, since that the load is 

applied at the top mass, and its rate of loading should be similar to the rate of base-shear 

forces.

In Elfen, there are different loading methods for applying such a force-based loading. They
9 3are namely; surface loading assigned in N/m , body loading assigned in N/m and point 

loading assigned in N. As an equivalent-force loading for this modelled problem in particular, 

the point loading method should be avoided since it causes unrealistic effects on the elements 

adjacent to the point of application, especially during the non-linear stage of the analysis. 

Moreover, point loading requires special arrangements, recommended by the Elfen Help 

manual, concerning special changes to be done in the N eu tra l file. In this research surface 

loading is applied as an equivalent-force loading.

6.6.1.3 The Displacement-Based Loading

In this type of loading, displacement response of the C.G. of the structure is obtained from 

“another” external analysis first then applied into this FE analysis. This method will restrain
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the displacement according to the previously obtained responses for each time-step, and thus, 

it will cancel out the mass inertia dynamic effect. Accordingly, this makes the analysis appear 

to be more like a quasi-static problem, but without excluding the possible damping effect. 

This loading method must be taken with care, since there are two different movement choices 

of the top mass:

a) Movement in the longitudinal z-direction of the bridge structure, where the top- 

element’s movement is vertically restrained due to relatively large moment of 

inertia of the bridge deck, and the horizontal movement of the top part of the 

structure is a straight path displacement in the z-direction.

b) Movement in the transverse x-direction of the bridge structure, where the top 

mass follows a curved path movement of the C.G. point, and thus, requires more 

than one component of displacement at a time; the lateral x-component and the 

vertical y-component. In the x-y plane, both x & y components of the 

displacement time-history loading must be applied having the same time-steps. 

However, this choice did not give the correct response since the controlled vertical 

motion of the loaded surface, or loaded volume, at the y-direction will apply 

overstressed zones in the column elements, resulting in a topology error in the 

mesh. On the other hand, the x-displacement cannot be applied alone since it will 

result in unrealistic straight path movements for the top part of the structure. Such 

a straight path will enforce a different mode of the column deformation response, 

and thus, causes unrealistic stressed zones especially in the non-linear stage.

Another problem involved with this choice is the difficult procedures of loading if applying a 

multi-directional loading on the bridge column problem. Such a problem will need two more 

displacement components to be assigned in each of the x and z directions in addition to the 

vertical y-direction.

6.6.2 Axial Loading

The R/C bridge column is bearing a permanent static loading representing the dead load of 

the bridge. This can be represented in the Explicit-Elfen model by either one of the following:

a. Having an artificial mass structure with density and volume producing an equivalent 

loading effect.
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b. Applying a permanent face-load value on the column’s top surface.

c. Or, applying pre-stressed values in all of the column elements, to represent the axial 

load effect.

In this analysis an artificial mass structure is built on the top of the analysed column, and the 

global gravity loading is activated to produce the dead load effect.

6.6.3 Geometric Modelling

To lower the computational effort, the model body is reduced to half since the loading is 

applied in one direction only. All parts of the analysed column core, cover and reinforcement 

bars are analysed for the non-linear behaviour with fractural representation. However, the top 

mass of the model is analysed linearly and the footing is nonlinearly analysed but without 

fracturing. This choice was selected to save more computational efforts since the top and 

footing’s contribution to the overall analysis is less important.

6.6.3.1 Geometric and Loading Symmetry

The geometric and loading symmetry of the proposed problem enabled to run the dynamic 

analysis for half of the problem only to save the computational effort substantially. Another 

benefit is to be able to explore the contour results along the core cross section and 

reinforcement bars directly and more clearly, without the need to work out more post-analysis 

requirements.

With regard to obtaining fracture representation in a half symmetric structure, it was reported 

by one user of the Explicit-Elfen code that a better fracture can be obtained by analysing the 

full geometry and loading in the 3D structure, rather than analysing half volume of the 

symmetric problem [5]. However, this might not be true for the case of strain-independent 

problems such as earthquake problems.

6.7 DIFFICULTIES IN ACTIVATING THE CRACKING 
PROCESS IN THE EXPLICIT-ELFEN FRACTURE 
MODEL

The fracturing process is activated post to the completion of the softening process. The 

characteristics of cracks, however, are sensitive to both pre-fracturing and post-fracturing
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parameters. However, the scope of this problem is more towards the pre-fracturing 

parameters, which are the elastic and plastic parameters of the material, since they determine 

the intensity and rate of initiation and growth of the cracks, whilst post-fracturing parameters 

govern the motion of the discrete elements after fracture is produced.

The main target in analysing this problem was to attain an active fracturing process that falls 

between ‘explosive, or progressive’ fracturing and Tack o f  fracturing. So many trials of 

computational runs have been conducted under a variety of parameters in order to reach the 

targeted fracture. This took a longer time than expected, and can be considered as the major 

difficulty in analysing fracturing problems using the Elfen program.

Two important parameters of the FE analysis; the time step and the element size, affect the 

fracturing process significantly. If the time step is too big, quite a few elements would satisfy 

the fracture criterion within a few analytical time steps, but the process ends up with an 

explosive type of fracture, which is not realistic. Also if the applied mesh is too coarse at the 

critical zones, elements cannot express the stress concentration around the fracture tip and 

therefore, an error of element topology would be prompted.

Therefore, it is more effective to have time step that is as small as possible, and create as finer 

mesh over the expected fracture plane. The difficulty in setting up such problem parameters 

is to reach a suitable time step size and mesh size for every different analysed problem, and 

with every different loading rate.

The explicit algorithm in Elfen computes the size of the time-step automatically, by

^  j  E last ic  M odulus  . . . . .  . . . .
computing the wave speed, c =  I density » wh10*1 1S inversely proportional to the

critical time-step, At cr =  -  . Therefore, the time step can be controlled by changing the

density. Thus if the density is increased by 100 times, the time step will increase by 10 times, 

and the time of analysis will consequently reduce substantially.

Another way of controlling, or decreasing, the time step is that the time-step is factorised by 

the fa c to r  o f  cr itica l tim e s tep  fcr that is set through the control section of the Explicit-Elfen. 

This factor is multiplied by the critical time step to reduce the actual time step. As a default 

this factor is set to 0.9, but it has been recommended by one of the local users to use less than 

0.6 for fracture propagation projects.
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6.7.1 Effect of Mass Density on this Problem

Mass density has a major influence on the analysis of dynamic problems since mass inertia is 

one of the resisting forces against the external applied force. However, when the applied load 

is chosen to be a displacement-based loading, the mass inertia will not be effective in the 

analysis, and therefore mass density of that controlled part of the structure can be assigned to 

any required value without being affected.

However, if the structure is loaded by an external force loading, mass density would be very 

effective, and only the densities of elements that can be changed are those that do not 

constitute the top mass. This technique can be used without affecting the main dynamic 

parameter of mass inertia.

6.7.2 Modelling of Reinforcement Bars

The greatest difficulty that was encountered in this research was the time consuming analysis 

runs when using the Explicit-Elfen on a PC system. Modelling and running the beam 

elements, or bar elements, as reinforcement bars within the concrete continuum of tetrahedral 

elements for this dynamic non-linear problem subject to a seismic record of about 1 second 

only would take about one week to solve the problem. This shows that engineering 

assumptions must be taken to reduce many modelling parameters, size and geometry. The 

most time consuming among all other parameters is the analysis of reinforcement bar 

elements within the concrete continuum elements.

In this problem, two reinforcement types are modelled; longitudinal bars and transverse 

stirrups. Elfen allows analysing bar elements, or beam elements, together with the tetrahedral 

elements, with the condition of placing every bar element at the line edge of the modelled 

volume of a tetrahedral element. This condition assumes orthogonal placements of the 

reinforcements only, which is not representing the spiral reinforcements for columns, and 

assuming horizontal typical stirrups, or hoops.

Moreover, no bond effect between concrete and reinforcement is modelled. Elfen assumes 

full bond between the two different elements, which means that the possible friction effect 

between the concrete and the longitudinal bars during the dynamic motion is not included. 

Therefore, the main function of the modelled longitudinal bars is to simulate the overall 

stiffness of the R/C column member, and the main function of the modelled transverse bars is 

to simulate the confinement effect of the stirrups.
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The non-linearity of the beam elements is controlled by the Von-Mises failure criterion with 

tensile strength = 475MPa, ultimate strength= 655 MPa and hardening rates of strain-stress 

couples as follows: (0, 475MPa), (0.0125,475MPa), (0.07, 655MPa) and (0.12, 655MPa).

6.7.3 Modelling of Reinforcement Stirrups

The transverse reinforcement, or stirrups, are modelled as beam elements between the cover 

and the core of the concrete column, and placed at the edge of the tetrahedral elements as 

required by Elfen’s method for modelling beam elements and tetrahedral elements. For a 

lower number of nodes, the beam elements are modelled as straight element segments and not 

circular bar element segments. The latter type requires 3 nodes to be built for each element 

segment. The horizontal distance between two adjacent longitudinal bars is small, and no 

effect is caused by this assumption.

The stirrups apply confinement forces on the concrete core of the member, and thus, increase 

its compressive strength. Seiesmo-Struct uses equivalent confinement parameters to 

approximate the expected strength of a confined section. This approximation depends on 

many parameters such as spacing, number of stirrups and others. In the proposed column 

problem, stirrups are supposed to produce this confinement effect, but no evidence is known 

about the validity of this assumption in Elfen models.

The expected non-linearity of the stirrups beam elements is controlled by the Von-Mises 

failure criterion, with tensile strength = 475MPa, ultimate strength= 655 MPa and hardening 

rates of strain-stress couples as follows: (0, 475MPa), (0.0125, 475MPa), (0.07, 655MPa) and 

(0.12, 655MPa).

From the Explicit-Elfen analysis for the proposed R/C column problem, results for the xx-In- 

plane Forces (local axial forces) of the stirrups elements showed very small values at most of 

the analysed time-steps.

This concludes that there is approximately no effect of transverse reinforcement stirrups 

found in the proposed problem. The low confinement action found in this problem is 

attributed to the low gravity load that’s applied by the top mass of the structure. 

Consequently, for larger top mass problems, larger gravity dead load is applied and thus 

larger confinement will be found.

Other xy & zx Inplane forces (local shear forces), yy & zz Inplane moments (local moments) 

and torque forces, also showed very small magnitudes at most of the analyzed time-steps.
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This showed that stirrups actions, including confinement, shear and torque, in this particular 

problem analysis did not affect the global flexural mode of failure that the structure is 

accounted for, and had no other effect either in the elastic or the inelastic stages of response. 

This encouraged modelling the RC column member without including transverse beam 

elements for this particular problem, yet still obtaining similar elastic and non-linear 

responses. This cuts down the analysis time to a great extent. As a comparison between a RC 

column model with stirrups and a RC column model free of stirrups, the computer running 

time ratio was 3:1 respectively.

It should be noted that the stirrups are modelled along the estimated length of the plastic 

hinge PH for this problem, which is 1.18 meters. It should also be noted that the structure is 

considered as a generalized SDOF structure that vibrates in the 1st mode of the structural 

motion, and thus, the only generated plastic hinge is near to the column base. Therefore, the 

only stirrups needed are along the PH near to the column base only, and there is no need to 

model stirrups at other parts of the column since no PH is expected. Moreover, it will not be 

practical to conduct the analysis in terms of computer running time if stirrups are modelled 

along the entire length of the column.

6.7.4 Computational Size of the Analyzed Problem

The proposed problem has only 5164 finite elements, (3D tetrahedral & 2D bar elements). 

The calculated critical time-step size is 0.316625E-06 seconds, which is factorized by the 

time-step factor that’s chosen for this problem as 0.2, and the applied time-step size becomes

0.6332E-07 seconds. It should be noted that the applied time-step is important for the 

performance of the fracture mechanism in the Explicit-Elfen, and it is crucial to adjust its 

value independently in order to avoid both Tack o f  fracturing and ‘progressive or explosive’ 

fracturing. Definition of the most accurate time-step factor is unique for each analysis 

independently, since it depends on the loading rate and size of the problem.

The number of numerical steps performed for the first 0.30 second of analysis for this 

problem was about 2,000,000 steps, which lasted for about 24 hours of running time. This 

rate is not consistent for successive numerical steps since other stages of non-linear analysis 

with an implemented fracturing mechanism may take much more running time than this rate. 

It is worthy to mention that the running analysis for approximately 1 second of analytical 

time took about 13 days, using a 3 GHz PC machine with Intel Core 2 Duo CPU E8400. The
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analysis consumed 17,183,404 time-steps which occupied a space of 30GB, to give the 

solution for a problem with only 5164 finite elements and time step size of 0.6332e-07 

seconds.

The total mass of this problem is 294,118 kg which is applied in any direction. The mass 

centre for the structure is calculated for every time-step. At time 0.30 seconds the mass centre 

is located at x=0.709242E-01m, y=10.2045m and z=0.999004m. It should be noted that y and 

z co-ordinations are approximately stable but x-coordination changes versus time since the 

applied loading is in the x-direction.

6.8 PROBLEM SET-UP FOR DE/FE ANALYSIS

This is the same case study that was adopted in chapter 5. A summary description for the 

analysed problem is repeated in this section for convenience. The RC bridge column structure 

has the following properties; aspect ratio h/D=10.97m/1.83m=6, natural period Tn of its first 

mode is 1.3 sec, where D is the column diameter and h is the height between the footing and 

the centre of gravity C.G. of the top mass. The column is subjected to an axial load of 4.5 

MN, which is the dead load of the single-cell box-girder bridge, and is equivalent to 5% of 

the RC column’s strength capacity. The RC column has a longitudinal reinforcement ratio of 

1.18% and transverse reinforcement ratio of 0.61% [5].

The structure is given a 5% damping ratio, using the Point Damping of the Explicit-Elfen 

algorithm.

The structure is subjected to the Lexington Dam record, from the Loma Prieta earthquake 

1989 [6], as previously mentioned. As equivalent to the peak ground acceleration PGA of this 

ground motion, an equivalent force is applied on the centre of gravity C.G. of the top mass. 

This equivalent force is extracted from the base shear analysis for the structure under this 

ground motion. The structural analysis is performed by the SeismoStruct dynamic solver, and 

the base shear forces for the whole analysis are shown in Figure 6.17.

The required axial loading is due to the dead load which is modelled by having an artificial 

mass structure with density and volume producing an equivalent loading effect. For less 

computation efforts in the analysis, the following procedures have been taken:
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Figure 6.17 Base-shear force response of the Lexington ground motion as load factors (N)

1. A pplying only half a structure since both geom etry and loading are sym m etric about 

the xy vertical plane.

2. Excluding m odelling o f reinforcem ent stirrups apart from the PH zone, since the 

confinem ent o f concrete core is m ore im portant in that zone.

3. Out o f the total record time o f 40 seconds, only the peak loading values are selected 

from the base shear analysis. The m axim um  lateral force loading is approxim ately 

2.2e6 N, and the corresponding time is from 3.48 seconds up to 5.98 seconds, lasting 

for 2.5 seconds only, as shown in Figure 6.18.
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Figure 6.18 Selected peaks of  the base-shear forces as laod factors (N)
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6.7 RESULTS AND DISCUSSION

By using the equivalent-force m ethod o f  loading, it is possible to obtain the base-shear forces 

from  the DE/FE analysis. This analysis was perform ed for the proposed problem , using the 

previously described m odelling assum ptions, and M ohr-Coulom b failure criterion  with the 

Rotating Crack m odel, or m odel (19) in the Elfen code.

The curve o f  base-shear versus lateral displacem ent is plotted as shown in F igure 6.19. 

together w ith the hysteretic quasi-static curve and the non-linear dynam ic hysteresis curve 

previously obtained by the Seism oStruct analysis for the same structure.
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Figure 6.19 Load-deflection curves by quasi-static, dynamic and fracture analyses for the RC column

structure under Loma Prieta earthquake

C om paring betw een the Seism oStruct analyses in Figure 6.19, the difference betw een quasi­

static and dynam ic analyses is due to the difference betw een the cyclic loading effect and 

dynam ic loading applied by the fibre elem ent analysis, where more energy is dissipated by 

the cyclic effect, producing the hysteresis loops with m ore strength degradation.

Com paring betw een the Seism oStruct and fracture analyses in Figure 6.19, the linear stiffness 

o f  both quasi-static and dynam ic analyses curves have good agreem ent with the fracture



analysis by Elfen. How ever, degradation o f  strength is noticed before reaching the m axim um  

loading, and base-shear force rem ains approxim ately at 1 .OMN during the rest o f  the analysis 

until total collapse occurs. Due to severity o f  dam age, the structure is deflecting tow ards an 

unstable position as the plastic hinge PH becom es severely fractured.

Table 6.2 show s the structural response at selected tim es o f  the analysis. The responses are: 

lateral displacem ents at the e.g. o f  the top m ass and stresses o f  the longitudinal bars at the 

plastic hinge zone, base-shear forces, bars stresses at mid level o f  the plastic hinge PH zone

and evaluation o f  dam age occurred at the plastic hinge.

Time
(s)

Applied
Lateral
Load
(MN)

Lateral
Displacement
(m)

Base-
Shear
Forces
(MN)

Bar 
Tensile 
Stress at 
PH, MPa

Bar
Compressive 
Stress at 
PH, MPa

Evaluation of 
Damage at PH

0.1 0.838 0.0205 0.60 154.6 -77.3 Few  cracks
0.2 1.0753 0.0844 1.15 464.0 -309.3 Propagation o f 

cracks
0.3 1.273 0.196 1.35 477.8 -77.3 Core cracks 

and slight 
spalling o f  
cover

0.4 1.661 0.367 1.2 525.0 -61.8 Core cracks 
and cover 
spalling and 
One bar tend to 
buckle

0.5 2.039 0.618 1.0 572.0 -61.8 Severe core 
cracks and 
severe cover 
spalling

0.6 1.964 0.961 1.0 618.6 -32.4 Severe 
cracking and 
buckling o f  
Two bars

0.7 1.490 1.388 1.0 626.3 -46.4 Collapsing and 
buckling o f  
Five bars

0.8 0.717 1.873 0 626.3 -46.4 Total collapse
0.9 -0.081 2.358 0 626.3 -46.4 Total collapse
1.0 -0.648 2.771 0 626.3 -30.9 Total collapse

Table 6.2 Fracture Analysis Responses of  The RC Column Structure Under Loma Prieta Earthquake

The base-shear values are approxim ated in Table 6.2 because o f  the fluctuation o f  values, as 

appearing clearly in the load-deflection curve in Figure 6.19. The base shear tends to decrease 

at time 0.4 seconds when one bar tends to buckle. The base-shear rem ains at 1 .OMN when 

severe core cracking occurs at tim es 0.5, 0.6 and 0.7 seconds. At tim es 0.8, 0.9 and 1.0
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seconds, the structure does not respond to the applied load since no base shear is found, but 

rather m oving laterally in the sam e x-direction tow ards total collapse.

In respect to bar tensile stresses, the yield strength and ultim ate strength o f  the longitudinal 

reinforcem ent bars are 475.0M Pa and 655.0M Pa respectively. Bars tend to yield between 

0.20 and 0.30 seconds o f  the analysis tim e, as can be seen in Table 6.2. Then, they start 

hardening until reaching their ultim ate strength at 0.70 seconds o f  the analysis time. Then, 

they d o n 't exceed 626.3M Pa during the stage o f  total collapse.

The follow ing Figures 6.20, 6.21, 6.22, 6.23 and 6.24 show the fracture in concrete and axial 

forces in the reinforcem ent bars at the analysis tim es o f  0.1, 0.2, 0.3 0.4 and 0.5 seconds 

respectively. The pictures show the plastic hinge zone o f  the RC colum n.
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Figures 6.20, 6.21, 6.22, 6.23 and 6.24 Fracture in concrete and axial forces in the reinforcement bars at

0.1, 0.2, 0.3 0.4 And 0.5 seconds, respectively
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Figure 6.25 shows the time history of axial forces of the reinforcement bars at some level in 

the plastic hinge zone. Bars of tension stresses reach 626.3MPa during the collapse stage, 

which is close to the ultimate strength (655.0MPa) of the steel bars. Some bars alternate from 

compression to tension and lose their efficiency in compression, since they lose the assumed 

full bond effect when concrete fractures at the plastic hinge. Figure 6.25 shows that when 

exceeding 0.3, 0.4, 0.5 and 0.6 seconds some bars under compression tend to lose 

compression stresses because of buckling. This is also shown in Table 6.2, in which many 

bars lose their compression stresses from -309.3MPa to become as low as -61.8MPa and - 

32.4 MPa.

l.M.m
timm

Figure 6.25 Axial tensile & compressive forces (N) on longitudinal bars at plastic hinge zone

Figure 6.26 shows a picture of longitudinal reinforcement bars only, buckling in the 

compressive stress bars, with tensile stress of 626.3MPa in the tensile stress bars. As the 

analysis is running and more cracks are growing, the structure loses its stability, causing fully 

damaged core elements. This indicates a severe damage state in the PH zone with total 

failure, as the longitudinal reinforcement bars are completely or partially destroyed.

However, in cases where bars are not totally exposed and not severely deformed, they tend to 

prevent the structure from totally collapsing, even though residual displacements still exist. 

Elfen does not model fracture in reinforcement bar elements, but is rather able to show their 

elastic and plastic axial stresses, in addition to their deformation due to both tensile and 

compressive actions.
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Figure 6.26 Buckling of  some bars causing instability at 626.3MPa of bar tensile stresses

Figure 6.27 Confinement of  stirrups reaching only 4.5% of ultimate steel tensile stress

Figure 6.27 show s that in this proposed exam ple very low confinem ent around the concrete 

core is achieved, since the tensile stress in the stirrups reached only 6.5%  o f  the tensile stress 

o f  steel (475.0M Pa). This is because the axial dead load is very low in this exam ple, reaching 

only 5% o f  the capacity o f  the RC colum n as previously m entioned. This am ount o f  stirrups 

confinem ent does not contribute m uch to the integrity o f  the confined core, and thus, cracks 

grow and spread densely, leading to total collapse.
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6.7.1 Comparison of Collapse Performance Between Mohr- 
Coulomb and Rankine

Figure 6.28 shows a comparison of base-shear/deflection curves between two fracture 

analyses, using two failure criteria; Rankine failure criterion and Mohr Coulomb failure 

criterion with tension cut-off surface. Both analyses are supplemented with fracture models, 

but differences exist in the two responses.

In the beginning of the plastic range, the Mohr-Coulomb response curve is more conservative 

than the Rankine response curve. This is because Model (19) in Explicit-Elfen is utilizing the 

M-C criterion together with the dilation-hardening properties, whilst the Rankine criterion is 

not associated with the dilation-hardening properties. In Model (19), concrete is assigned a 

pre-failure plastic behaviour in the compressive stresses field, with hardening stresses 

preceding the failure point.

The angles of dilation decrease as hardening strains increase. As mentioned before, concrete 

hardening strains in this problem are increased from 0, 0.03 up to 1.0, and in correspondence, 

the angles of dilation (p are decreased from 15, 5 to 0, respectively. All strains in the 

softening stage are calculated according to the Flow Rule that’s associated with the plastic 

theory of the applied softening model.

However, once the failure point is exceeded for the majority of elements in the PH, fracture is 

processed as soon as the fracture energy value is reached. In this sense, the Rankine criterion 

is less conservative than the M-C criterion, since its failure surface is wider than Mohr 

Coulomb’s surface, as can be noticed from both failure surfaces in Figure 6.11. As a rule of 

thumb, the Rankine failure criterion accounts for tension failure mode only, while the M-C 

failure criterion accounts for both tension and shear failure. This is the reason why the base- 

shear/displacement curve with the Rankine response is less conservative than the M-C 

response curve during the fracture and collapse stages of the majority of elements in the 

analysis, as clearly seen in Figure 6.28.
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Figure 6.28 Base-shear v ersus displacement curves of collapse under different failure criteria

6.7.2 Fracture and axial plastic strains

The Explicit-E lfen can indicate the fracture state o f  the m odelled problem  by using a range o f  

dam age betw een 0 and 1, as shown in Figure 6.29 for the m odel when subjected to 1.619M N 

lateral loading. The coloured zones on the tension side o f  the colum n are not necessarily 

fractured. How ever, w hen they are below  1.0 they are still w ithin the softening stage, as 

shown in the upper part o f  the colum n, and they fracture w hen they exceed 1.0. Figure 6.30 

indicates a few plastic zones with axial strains in the y-direction, or vertical direction, at the 

upper part o f  the colum n and the footing part, w hile the fractured zone does not indicate any 

plastic strains since it is a post-softening zone.
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Figure 6.29 & 6.30 Fracture state indicator and axial plastic Y-strains under 1.619MN lateral load.

The rest o f the structure elem ents show  zero or very small com pressive and tensile axial 

strains in the y-direction. It should be noted that the crack m odel in this analyser is applied 

with tension mode (I) only, and therefore, all fractures on the tensile parts o f  the colum n 

crack perpendicular to the axial strains in the y-direction, and all cracks on the com pression 

parts are perpendicular to the axial strains in the x-direction, as can be clearly noticed in 

Figure 6.30.
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6.8 CONCLUSION

• The combined DE/FE analysis using the Elfen-Explicit application is a successful tool to 

solve RC column structures under dynamic loading, investigate the non-linear behaviour 

and determine the expected local damage state.

• The time-step size in the explicit central difference solution algorithm is relatively smaller 

than that in the implicit approach. This requires a very large number o f time steps to 

maintain stability. The explicit central difference time integration scheme is 

computationally expensive, especially for combined DE/FE analysis problems that 

require a large overall time history such as in earthquake problems.

• The combined Discrete/Finite Elements DE/FE method performs the analysis for both 

pre-fracture and post-fracture behaviour. The post-fracture properties are not significantly 

useful to the field o f seismic engineering, but it is necessary to run the problem analysis. 

However, the pre-fracture process is essential to define the expected local damage for the 

structure.

• Two models for solving the RC structure are used under the principles o f N o n - lin e a r

fr a c tu r e  m e c h a n ic s  NLFM principals to simulate the quasi-brittle material in 3D

formulation and under strain-rate independent dynamic loading. They are; 1) Rankine 

failure criterion associated with micro-fracturing isotropic plastic softening model, known 

as Smeared Crack model, and also supplemented with optional fracture mechanism, 

Model 08 in Elfen. 2) The isotropic Mohr-Coulomb failure criterion with tension cut-off, 

associated with anisotropic damaging model, known as Rotating Crack model, Model 19 

in Elfen. The Differences between the two models lead to slight differences in the load- 

deflection curves during the plastic pre-failure stage of the analysis and during the post­

fracture stage. Model 19 is more suitable to simulate quasi-brittle 3D structures since it 

contains more detailed properties of the material such as hardening, dilation and both 

tension and shear failure modes. It is also provided with the Rotating Crack Model which 

is more sophisticated than the Fixed Crack Model.

• Reducing the computational effort and time o f the analysis requires that engineering

assumptions must be taken to reduce many modelling parameters, size and geometry. In 

contrast, the computational size o f the problem needed to be increased by decreasing the 

time step by 0.4 or 0.2, since it is strongly recommended that the time-step must be 

factorised by less than 0.6 to obtain fracture propagation. Therefore, practical judgements 

must be taken to run such problems on PC systems. The most time consuming among all

227



other parameters was the analysis o f reinforcement bar elements within the concrete 

continuum elements.

• The Explicit-Elfen algorithm is not capable of modelling realistic bond effect between 

concrete and reinforcement. Explicit-Elfen assumes full bond between the two different 

elements, which means that no possible frictional effect between the concrete and the 

steel bars could exist during the dynamic motion. However, a damping ratio o f 5% was 

implemented in the analysis to account for possible viscous damping due to resisting 

factors such as friction between elements.

• No fracture is simulated for the reinforcement 2D bar elements in the Explicit-Elfen 

algorithm, but rather elastic and plastic axial stresses are processed together with 

consequent strains.

• When concrete fractures at the plastic hinge zone, longitudinal bars lose some o f their 

efficiency in tension and compression, since they lose the assumed full bond effect. This 

causes buckling of bars, and at advanced loading, some bars under compression tend to 

lose compression stresses because of buckling. The structure loses its stability as more 

cracks are growing, causing a fully damaged core zone and largely deformed bar 

elements.

• High confinement action can prevent much of crack penetration inside the concrete 

column core, however, the formation of confinement stresses around the core is a 

function o f the axial load on the section, and it produces the balance between outward 

strains o f the concrete core and inward stresses of the steel hoops. If the axial loads are 

not sufficient, very low confinement is produced, and therefore, more cracks may 

penetrate inside the column core.

• Very low confinement around the concrete core is achieved in this example, since the 

tensile stress in the stirrups achieved only 6.5% of the tensile stress of steel (475.0MPa). 

This is because the axial dead load is very low, reaching only 5% of the column capacity. 

Such confinement does not contribute much to the integrity o f the confined core, and 

thus, cracks grow and spread densely, leading to a total collapse.

• The crack model simulates fracture according to the tension mode (I) only. Consequently, 

all cracks on the tensile stresses zone o f the column are perpendicular to the axial strains 

in the y-direction (vertical direction), and all cracks on the compressive stresses zone of 

the column are perpendicular to the axial strains in the x-direction (horizontal direction).
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• The SDC seismic design criterion that’s used by many building codes is based on the 

principle of seismic demand/seismic capacity balance. This principle functions effectively 

to achieve Performance-Based Seismic Design, but requires an effective ductility of the 

members to function properly during the non-linear stage. However, in RC sections this 

principle lacks to sufficient members ductility, since that ductility is disrupted by concrete 

cracks which cause less concrete/steel bond, and thus, the steel bars become vulnerable to 

large deformation or buckling. Therefore, the seismic demand/capacity principle is not 

sufficiently fulfilled.

• Single RC columns supporting single or multiple-cell box-girder bridges are vulnerable to 

high risk damage at their plastic-hinge zones, since they have less confinement action 

failing in the flexural mode and are subjected to strong ground motion or long duration 

ground acceleration.
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7.0 INTRODUCTION

In this chapter, two important applications of fracture-based analysis are introduced. The first 

is concerned with the effect o f loading rates on the RC column of a bridge structure in terms 

of its vulnerability to damage.

The second part is concerned with re-modelling of loading and boundary conditions of a 

structural problem, to reduce its computational capacity from a large-scale model to a small- 

scale model, by introducing a transformation technique for multi-scale problems, and named 

herein as the Relative Response Technique RRT.

(PART ONE) 

7.1 CLASSIFICATION OF LOADING RATES

Different loading rates can have significant effects on the performance of a RC structure. The 

uncertainty of intensity and rate o f earthquake loading increases the challenge to predict 

responses of high risk excitements. In general, there are two important methods to classify the 

rate of loading on structures; the first deals with loads classified by the strain rate response of 

the structure. The second deals with seismic loads in specific, which are classified by the 

ground acceleration rate, or shortly, its loading rate.

7.1.1 Strain-Rate Dependent Problems

The mechanical behaviour of structures varies according to the different loading rates, 

leading to different strain rates responses. Approximate ranges of the expected strain rates for 

different loading conditions are shown in Figure 7.1, which contains most types o f loading; 

quasi-static, earthquake, impact and blast loading types. A high loading rate such as impact 

loading, causes a response of high strain rates o f 10 s '1, and thus, altering the dynamic 

mechanical properties of the structure. This has a significant effect on the fracture mechanism 

of various structural elements. In general, higher strain rates would increase the material 

strength of the structure, and thus, it is said that the structural problem is a strain-rate 

dependent problem when subjected to a higher rate loading type.
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A strain-rate dependent problem will have a varying constitutive relation to its materials, due 

to the change in the yield strength and the change in the softening slope. This is due to the 

effects of inertia on the micromechanical response [1]. As a result, the area under the 

softening curve is no longer equal to the fracture energy Gf of the material, and thus 

minimizing the expected damage in the structure, as shown in Figure 7.2.

Key features of dynamic fracture propagation at a high strain rate identified from the 

experimental tests are [1]:

• Low strain rates (10°) - Fracture propagation is independent of time or strain rate

• Medium strain rates (10 ) - The stress sustained prior to fracture increases and fracture 

propagation occurs at a higher velocity

• High strain rates (106) - The microstructure deformation mechanisms require a finite time to 

propagate a crack [1].
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Figure 7.1 Strain rate associated with different types of loading [2]
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Figure 7.2 Softening slope as a function of strain rate [1]
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As can be seen from the strain-rate range diagram, Figure 7.1, structural problems subject to 

earthquake loading produce low strain rate responses, ranging from 10-3 s -1 to 10-1 s -1 ,
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and thus, are considered below low strain-rate problems, or strain-rate independent problems, 

which have no effect on the constitutive initial model of the material, and thus no change on 

the expected fracture mechanism.

7.1.2 Acceleration Pulse

The PGA peak ground acceleration is most often associated with the severity of ground 

motion, since inertial forces are proportionally related to acceleration according to the second 

law of Newton. PGA is a major intensity measure of earthquakes, and its applications are 

widely used in Earthquake Engineering.

There are two useful classifications of the ground acceleration records that are relevant to the 

expected damage in the structures. The first is the phenomenon o f long duration impulses 

with low frequency in ground acceleration records, known as the Acceleration Pulse, or Fling

[3]. The second is the acceleration peak associated with short duration impulses of high 

frequency, known as an Acceleration Spike [3]. It has been found that an Acceleration Spike 

is not as severely damaging to the RC bridge columns as an Acceleration Pulse [3]. The 

Acceleration Pulse increases the seismic hazard and brings more challenges to performance- 

based seismic engineering PBSE in the field o f RC bridges design and assessment.

The reason behind having such a high potential damage in a long duration impulse is that it 

allows for a high velocity, and thus, high displacement responses. However, short duration 

impulses in a record o f high frequencies, i.e. acceleration spikes, can also be very damaging 

if their high frequencies are within the range of the structure’s natural frequencies. However, 

PGA’s of high frequencies, (short periods), can seldom initiate resonance or produce large 

scale damage, since most structures are not within the range o f high frequencies records [4], 

Therefore, large PGA alone can seldom initiate resonance or produce large scale damage. 

According to Newmark-Hall spectral representation, vibration periods are divided into: very 

low (from 0.0 to 0.25 seconds), low (from 0.25 to 0.7 seconds), medium (from 0.7 to 1.5 

seconds) and long periods (from 1.5 to 3 seconds or more) [5].

In general, the typical range of fundamental periods Tn o f the majority of bridges is as 

follows: 0.2 < Tn < 1.0 seconds [6, pgl650], which are apart from very short periods, and 

therefore, resonance does not occur. However, other bridge structures can have even longer 

fundamental periods. As mentioned in the analytical investigation for a variety o f RC 

columns [9], a range of single-cell box-girder RC structures have fundamental periods 

ranging between 0.44 and 2.71 seconds.
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To have a w ider view. Figure 7.3 shows different fundam ental periods for different 

structures. M ost o f  these periods o f  structures are longer than periods o f  peak ground 

accelerations. In this figure, a period o f  approxim ately 0.5 seconds is the fundam ental period 

for the shown single-cell box-girder bridge which is supported by single RC colum ns.

The dam aged single-cell box-girder bridge is due to the N orthridge earthquake in 1994 

January 17, located 35 km northw est o f  Los A ngeles city. It caused the death o f  55 people, 

injury o f  m ore than 7000 people and direct econom ic losses o f  $ 20 billion, which is 

classified as the loss o f  the w orst loss caused by an earthquake in the history o f  the United 

States.

M=6.5. R=25 km; D=5 km
------ Firm Soil
----- Soft Rock

P sn o d  lA»c)

Figure 7.3 Different fundamental periods for different structures

W ith respect to A cceleration pulse, Singh [3] explained the effect o f  frequency in two 

different earthquake events with different frequencies o f  ground acceleration in the follow ing 

two examples:

The first is the Parkfield earthquake, C alifornia in June 1966, with PGA= 50% g, only 200 

feet from the fault trace and m axim um  Increm ental Velocity IV = 35 inches/sec.

The second is the Bucharest earthquake, Rom ania in M arch 1977, with PGA= 20% g, a large 

distance from the epicentre and m axim um  IV =  50 inches/sec.
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The first example has less IV than the second one even though it has got a higher PGA, and is 

very close to the fault trace. The Bucharest earthquake had a large damage impact and caused 

severe destruction. However, the Parkfield earthquake had a very low effect and received 

limited attention [3].

Many researchers have shown that the frequency, pulse duration, incremental velocity and 

incremental displacement can have profound effects on the structural response more than the 

effect of the PGA alone, especially in the inelastic range [4]. Cosenza and Manfredi stated 

that the PGA is a basic measure o f earthquake potential but is not totally reliable [5]. 

Examinations of recorded seismic events have shown that earthquakes with a very large PGA 

could not produce appreciable structural damage, while earthquakes with a very low PGA 

produced an unexpectedly high level o f destruction [5]. Instead, the PGV seems to be a more 

representative measure of earthquake intensity, since it is directly connected with energy 

demand [7]. Singh [3] considers PGA as an Intensity Measure, IM, is a poor parameter for 

evaluating the damage potential.

7.2 DAMAGE APPROACH

7.2.1 Stress-Based Damage

Damage can be estimated by measuring the loss of stresses at the critical zones in a plastic 

hinge. In inverted pendulum problems, such as bridge column problems, most of the damage 

is due to excessive axial compressive and tensile strains. Thus, classified as flexural damage. 

However, a very limited portion of the damage is caused by shear failure in these problems, 

especially in relatively small diameter members, therefore, no shear failure is expected.

The elasto-plastic constitutive relationship for a selected element can be used to 

approximately indicate the damage state at that zone. The local compressive damage index 

for concrete fibres is based on the ratio between axial compressive stresses G i j ibre and the 

ultimate strength of concrete Gult, and can be obtained during the strain softening o f the 

analysed fibres, as in the following equation:

(7.1)
f fUl t

where i is the time-step, or pseudo time in case o f quasi-static analysis. When D t equals 1, the 

fibre has lost its strength and is not capable o f resisting any more axial compressive stresses, 

indicating a local totally damaged state under compression.
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This index is sufficiently expressive, but it is m ostly used for elem ents under com pressive 

stresses only since that concrete elem ents with tensile stresses are considered fully dam aged 

due to their very lim ited strength to resist tension.

Using the Fibre Elem ent M ethod, the non-linear analysis for the RC colum ns is perform ed, 

by using the Seism oStruct dynam ic solver [8], which is capable o f  plotting the constitutive 

curves o f  the stressed fibre elem ents. The fibre elem ents are designed to com pute the n o n ­

linear axial forces w ith the flexible failure mode. How ever, shear forces are also obtained 

from the coupled stiffness m atrix, but their corresponding shear stresses are not calculated 

since the shear failure mode in these problem s is not dom inant.

The follow ing exam ple o f  RC single-cell box-girder bridge colum ns, shown in Figure 7.4, 

has a dam ping ratio o f  5% and subjected to artificial ground accelerations applied at the base 

o f  the structure. The relative change in the duration o f  acceleration pulses o f  ground 

acceleration is conducted in 3 different slope rates; 1.414 g/s, 1.880 g/s and 2.801 g/s, w here 

g is the gravity constant, as shown in Figure 7.5. These loading rates have been taken based 

on the PGA o f  Lexington Dam record from the Lom a Prieta earthquake 1989, w hich reaches 

approxim ately 6.0 m /s2.

0.6
E
OL
~  0.2 csmm

e3ou
1.414 g/s
1.880 g/s 
2.801 g/s

-0.4

- 0.6
T im e, seconds

Figure 7.4 Displacement in RC bridge columns Figure 7.5 Loading rates

As a nonlinear response to the effect o f  different loading rates, the constitutive curves show n 

in Figures 7.6, 7.7 and 7.8 show that for longer durations o f  an acceleration pulse the 

response tends to have more plastic stresses, and for shorter durations the response tends to 

have less plastic stresses. The corresponding dam age can then be determ ined for the stressed 

fibres at selected points on the cover and core o f  the co lum n’s section, using equation (1). 

The loading rate o f  1.414 g/s, (longer duration loading), showed an extended constitutive 

curve with large plastic strains and degraded strength on the core and cover in Figure 7.6.
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Figures 7.6, 7.7 and 7.8 Stress-strain curves at 1.414 g/s, 1.88 g/s and 2.801 g/s loading rates,

respectively
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In Figure 7.7 less plasticity is expressed on the core and cover with 1.880 g/s loading rate, 

and almost linear constitutive curves are found with 2.801 g/s loading rate, (shorter duration 

loading). This indicates that much less damage occurs with larger loading rates, and more 

damage occurs as the loading rate decreases.

In the methodology o f SeismoStruct software, it should be noticed that fibres that fail to resist 

tensile stresses on the opposite side of the column section at some time step are still valid to 

resist compressive stresses at successive time steps. Only those fibres that lose strength under 

excessive compressive stresses are not utilised in the proceeding loading operations.

7.2.2 Fracture-Based Damage

This method is based on modelling the fractured elements o f the model by using a DE/FE 

Explicit Dynamic solver. The Explicit-Elfen code is used to perform the non-linear dynamic 

analysis for a limited time of applied loading, since fracture analysis takes a relatively long 

computational time to attain the analysis of a few seconds of loading.

The non-linear dynamic analysis in this approach is governed by Mohr-Coulomb/Rankin with 

the tension cut-off model, covering both tensile and shear failure modes, Mode (I) and Mode

(II), respectively. The failure model is characterised by shear strength, angle of friction, angle 

of dilation and tensile strength. The fracture model is characterized by tensile strength and 

fracture energy, to simulate the tensile cracking mode Mode(I) only, and is known as the 

Rotating Crack model. Mode (I) is suitable for representing the cracks in the column’s 

dynamic oscillation motion, since the fracture in the column base is mostly due to tensile 

cracking mode.

The applied dead load in the proposed example is 4.5MN, which is only 5% of the column’s 

capacity for axial load, and thus, the confinement reached by the transverse reinforcement 

stirrups is found to be only 4.5% of the steel yield stress fy. This leads to less confinement, 

and thus, the principal stresses o f the concrete become closer to the failure envelope, and 

concrete is more vulnerable to fail.

In this FE analysis the bond effect is not simulated since 2D steel bar elements are fully 

conjugated with the edges of the tetrahedral 3D concrete elements. In general, bond friction 

could have some effect on the fracture mechanism and crack growth, but its existence could 

also increase the computational effort significantly.
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7.2.2.1 Problem Set-up for the FE Analysis

The analysed structure is the single RC colum n with an aspect ratio o f  6 that has been 

previously described, and subjected to the Lexington Dam record, from the Lom a Prieta 

earthquake 1989 [5], as previously m entioned.

A force equivalent to the peak ground acceleration PGA o f  this ground m otion is applied to 

the centre o f  gravity C.G. o f  the top m ass. This equivalent force is extracted from the base 

shear analysis for the structure under this ground m otion, by using the Seism oStruct dynamic 

solver as previously explained. The required axial loading is due to the dead load w hich is 

m odelled by having an artificial m ass structure w ith density and volum e producing an 

equivalent loading effect.

Out o f  the total record tim e o f  40 seconds, only partial loading with the PGA value is selected 

from the Lexington Dam record o f  the Lom a Prieta earthquake 1989. The m axim um  loading 

lateral force is approxim ately 2.2e6 N, and the corresponding tim e is from 3.48 seconds up 

to 5.48 seconds, lasting for 2.0 seconds only. This applied peak forces vary in rate, from 0.70 

to 2.0g per second, as shown in Figure 7.9.

A nother dynam ic loading rate is applied, with a loading rate o f  2.27g per second on the same 

exam ple, to com pare its analysis with the previous one, and discover the influence o f  rate 

change.
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Figure 7.9 Different Rates of Applied Forces at Top of Structure
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7.2.2.2 Results and Discussion

Com paring the responses o f  these two different loading rates, Figure 7.10 show s the load- 

deflection curves by DE/FE fracture analysis for the RC colum n with an aspect ratio o f  6. It 

also shows the load-deflection curves obtained by the Seism oStruct analysis which were 

previously illustrated.

U nder different rates o f  loading, different responses have been obtained for the same 

m agnitudes o f  lateral loads, as shown in Figure 7.10. The figure shows that the base shear 

curve is m ore resisting when a higher loading rate, 2.27g/s, is applied, and less resisting when 

a lower loading rate, 0.7g/s, is applied. This indicates that less dam age is obtained with a 

higher rate o f  loading, and m ore dam age is obtained with a low er rate o f  loading. Due to the 

severity o f  dam age in both cases, the structure top m ass is deflecting tow ards an unstable 

position as the plastic hinge PH becom es severely fractured, but with different rates, leading 

to total collapse.

00 E 0 6

0.7
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Dynamic Analysis 

Fracture Analysis (Load Rate 2.27

Fracture Analysis (Load Rate 0.7
g/sI

Lateral Displacement, m

1 .50E + 06

I nnc+Afi .U U C T U O

Figure 7.10 Load-Deflection curves by different analyses for the structure  under Loma Prieta

earthquake
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Table 7.1 show s the responses o f  tim e, displacem ents, degree o f  dam age and bar tensile 

stresses for both long and short duration lateral loads. The table shows 8 selected responses 

for the two cases o f  loading, 4 o f  them  are responses o f  the 4 applied loads of: 0.821, 1.208, 

1.619 and 2.03 M N, which were previously indicated in Figure 7.9 as m arked black dots for 

the tw o curves o f  proposed loading rates.

Applied

Lateral

Load

(MN)

Case (A): Long D uration, Low 

Frequency Acceleration Pulse, 0.70g 

per second.

Case (B): Short D uration, High 

Frequency Acceleration Spike, 2.27g 

per second.

Tim e (s) Lateral

Displacement

(m)

B ar 

Tensile 

Stress at 

PH, M Pa

Time (s) Lateral

Displacement

(m)

B ar 

Tensile 

Stress at 

PH, M Pa

0.76 0.01 0.0163 9.92(comp.) 0.076 0.002 1.9

0.821 0.09 0.04093 98.7 0.082 0.007 11.5

1.04 0.14 0.10242 269.0 0.104 0.0141 94.7

1.208 0.22 0.24028 474.8 0.121 0.022 121.9

1.44 0.33 0.29027 491.8 0.144 0.0365 221.1

1.619 0.36 0.43260 524.3 0.162 0.0517 399.0

1.83 0.43 0.43260 524.3 0.183 0.074 475.0

2.03 0.47 0.53106 550.6 0.2 0.095 r 475.0

Table 7.1 Responses of RC column under long and short duration applied lateral loads

For these 4 selected applied loads, 4 dam age pictures are captured in Figures 7.11, 7.12, 7.13 

and 7.14, w hich correspond to the 4 responses o f  case (A) respectively.

The states o f  dam age caused by the same 4 applied loads but with a shorter duration o f 

loading, case (B), were also captured in Figures 7.15, 7.16, 7.17 and 7.18.

It is obvious that cracks tend to grow  densely in the long duration case m ore than in the short 

duration case, even though both loading cases have the same peak m agnitudes.

As the structure is sym m etrically m odelled and loaded, the pictures show an obvious growth 

o f  cracks inside the colum n core itself, especially with the low er rate o f  the dynam ic loading. 

Such cracks are obtained for a partial loading range, only 0.47 seconds, but m ore cracks 

could have accum ulated if  the rest o f  the loads o f  the record had been included.
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Figures 7.11, 7.12, 7.13 and 7.14 Concrete fracture and steel tensile forces due to applied loads of 

0.821, 1.208, 1.619 and 2.03 MN, respectively, for longer duration case (A)
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Figures: 7.15, 7.16, 7.17 and 7.18 Concrete fracture and steel tensile forces due to applied loads of 

0.821, 1.208, 1.619 and 2.03 MN, respectively, for shorter duration case (B)
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Damage is the result o f lateral displacements, and the maximum displacement in case (B) is 

approximately 20% of that in case (A) even though both are subjected to the same load value, 

but with different loading rates.

In respect o f tensile stresses in the reinforcement bars, stresses are consequently less in case 

(B), and their ductility is less consumed than in case (A). However, bar tensile stresses in 

case (B) rise fast as loading rises, and then reach 86% of the tensile stresses in case (A). This 

shows that a huge part o f the seismic energy is dissipated by the steel reinforcement bars, 

causing less damage to the concrete body. At displacement o f 0.095m, the tensile stresses in 

case (B) reaches 475MPa, while a displacement of 0.102m, the tensile stresses in case (A) 

does not exceed 269MPa. This is because that less damage is found in case (B), and 

therefore, more concrete-steel bond exists in the context of the plastic hinge, while in case 

(A) more crack growth formation with less concrete-steel bond exists, and thus, less tensile 

stresses may be produced. This indicates that ductility is affected and the member does not 

follow the demand/capacity principle sufficiently in the nonlinear stage. Therefore, the SDC 

seismic design criterion based on this principle could fail due to a lack of ductility.

1.2.23  Conclusion

• The damage o f quasi-brittle materials such as concrete is very sensitive to the rate of 

loading, and the inconsistency of loading rates in earthquake motion makes the 

damage pattern in such low-confinement RC columns unpredictable and difficult to 

generalize. Therefore, it is very much recommended to analyse each loading case 

independently for fracture simulations.

• At load 2.03MN, the bar tensile stresses reach 550MPa and 475MPa in the two non­

linear analyses o f long duration and short duration loads, respectively. This is because 

less displacement is reached in the short duration loading case, and therefore, less 

damage is found, while more displacement is reached in the longer duration loading 

case, and thus more crack growth is formed at the same loading.

• Lower loading rates have longer durations and lower frequencies, or relatively, 

acceleration pulses, are more vulnerable to damage than higher loading rates that have 

shorter durations and higher frequencies, or relatively, acceleration spikes.

• Base shear forces are more resisting when higher loading rates are applied, and less 

resisting when lower loading rates are applied. This indicates that less damage is
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obtained with higher rates of loading, and more damage is obtained with lower rates 

o f loading.

• Due to the severity o f damage in both applied cases o f loading rates, the structure top 

mass is deflecting towards an unstable position as the plastic hinge PH becomes 

severely fractured, but with different rates of crack growth, leading to total collapse.

( PART TWO ) 

7.3 MULTI-SCALE SEISMIC ANALYSIS

The global damage in (RC) reinforced concrete structures with performance-based seismic 

design PBSD is aimed to be relatively low after an earthquake, assuming that concrete cores 

and reinforcement bars of the structural members remain undamaged in the stressed zones. 

These assumptions need to be verified by using fracture analysis, which has become 

significantly important in non-linear dynamic solutions to RC skeleton structures subjected to 

earthquake strikes.

The Finite Element Method applications with fracture-based analysis are most suitable to 

analyse such stressed zones in a small-scale model. However, the Finite Element method 

associated with non-linearity, fracturing algorithm and simulating 3D RC members requires a 

huge number of 3D tetrahedral elements associated with 2D bar elements. Moreover, the 

mesh elements for the important zones such as at intensive stresses in the concrete cover and 

around the steel bar need to be substantially refined, especially for a 3D fracturing task so 

that the fracture mechanism wouldn’t fail due to topological mesh errors. Such analysis 

performed for the global 3D RC structure will be excessively time consuming with a lot of 

computational capacity and processing time. Moreover, the analysis under long earthquake 

records will, obviously make the task unpractical to perform.

In this chapter, the (RRT) Relative-Response Technique is introduced, and used to re-produce 

the targeted RC members and joints out of their global context, and re-model them into a 

small-scale model with new constraints, loading vectors and boundary conditions.

Several restrictions and limitations concerning the set up of loading, constraints and meshing 

are considered when using this technique. In the proposed example, the global relative 

displacement response is obtained by a global-scale analysis using any dynamic solver that 

incorporates a non-linear algorithm. In this chapter, SeismoStruct is used to produce the
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response o f the global-scale analysis. Such a response becomes the applied loading record for 

the local-scale finite elements in their selected directions. To cut down the computational 

effort, only peak portions o f the full record may be selected for the analysis, as this depends 

on the capacity and speed of the available computing system.

The small-scale model is built based on the (RRT) Relative Response Technique, which will 

be introduced herein.

7.3.1 Relative Response Technique RRT

Two types o f analysis are associated with this technique; the large-scale and small-scale 

analyses. The response vectors of the large-scale analysis are obtained analytically or 

experimentally, and utilized by the small-scale model as applied loading vectors. The 

response vectors can be static or changing with time in a dynamic mode. They may also be 

displacements, forces, accelerations, stresses or of any parametric quantity.

However, their values are computed for each joint independently relative to the other joint of 

the same member, which will be remodelled as a stationary joint in the small-scale model.

As an application to this technique, a relative displacement response between the two joints 

o f a member, is obtained from the large-scale model, and is considered as a displacement 

load vector applied at one joint in the small-scale model, having the other joint constrained in 

the same working direction. For more than one member analysis, the joint connected to 

several members is the stationary joint, and should be fully constrained in the working 

directions of the other joints.

In the small-scale analysis, the relative displacement magnitudes of the same direction for the 

joints should be applied on their correspondent joints but in opposite directions, so that all 

displacements are relative to the stationary joint.

Figure 7.19 shows the sequence of steps performed by the RRT with large-scale via small- 

scale models. The large scale non-linear response is obtained by the global model, which is 

built by the SeismoStruct. This model and the relative response data are used as loading and 

constraints for the small-scale non-linear local model made by the Elfen. This analysis 

produces the fracture response for the required members.

Theoretically, both models employ non-linearity and dynamicity, therefore, there is no 

contrast in the method of analysis concerning the constitutive relation or the dynamic 

characteristics. However, the main difference is in terms of modelling formulation between 

the fibre element approach and the tetrahedral element approach. Theoretically, this should
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not affect the final results even though differences are expected in the analyses before 

reaching the final points.

Fracture R esponse

R elative  R esponse 

D ata L oading & 

C onstrain ts

R e-m odelling  o f 

selected  m em bers

Smal l -scale non­

linear analysis.

Local  Model

(El fen)

Large-scale  non­

linear analysis.

Figure 7.19 Flow-chart of the Relative Response Method

7.3.2 Set-up of Problem Modelling

As shown in Figure 7.20, the global structure consists o f two RC fram es with two bays and 

two floors height, and the earthquake loading is a ground acceleration applied at the base of 

the structure. The earthquake record is from the Lom a Prieta earthquake, 1989, near fault 

Lexington Dam Record, with epicentral distance = 6.3 km and m agnitude o f 7.0 [9]. As 

shown in Figure 7.20, the seism ic m otion lasts for 40 seconds but the peak accelerations are 

clustered in the first 8 seconds with PGA= -6.73 m /s“.
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l l
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Figure 7.20 Large-scale non-linear analysis of RC frame structure subject to Lexington Dam Record
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The analysis is perform ed by using the Seism ostruct dynam ic solver for the global structure, 

and the Explicit-E lfen DE/FE package to solve the local-scale m odel. Only 5 structural 

m em bers are selected from the global structure to be re-m odelled in the sm all-scale FE non­

linear m odel analysis. They are namely; the 1st & 2nd floor level colum ns and associated 

beams. These m em bers are re-m odelled in the Elfen environm ent with new  boundary 

conditions and loading applications.

As show n in Figure 7.21. the first floor and second floor jo in ts are labelled as J l ,  J2 and J3 

respectively. Sim ilarly, the first and second floor colum ns are labelled as C l and C2.

The relative d isplacem ent responses obtained from the fibre elem ent analysis by the 

Seism oStruct package are shown in Figure 7.22. They belong to the upper J3 and lower J l 

jo in ts; labelled as n313 and n 3 1 1 respectively, and they are relative to the m iddle jo in t J2, or 

n312. w hich has no degree o f  freedom . These relative responses are used as loads applied on 

the C l and C2 colum ns in the sm all-scale model.

C2

Cl

Figure 7.21 Small-scale FE model

In order to low er the com putational effort in the sm all-scale analysis for this particular 

exam ple, the follow ing assum ptions have been considered to sim ulate the proposed exam ple 

num erically:
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Figure 7.22 Displacement relative responses of joints J3(n313) & J l(n311), used as applied loads

relative to the stationary joint J2(n312)

•  C onsidering three degrees o f  freedom s only, lateral x, axial y and rotational 0 Z as 

active freedom s.

•  C onsidering a Rigid Frame structure, in which a floor m em ber is considered relatively 

m uch stiffer than colum ns, and consequently given one degree o f  freedom  only, 

nam ely; the lateral m otion x. The other freedom s, axial y and rotational 0 Z are 

considered very small, and num erically ignored.

•  Considering a ha lf sym m etric 3D m odel, in which only the longitudinal h a lf o f  the 

selected m em bers is m odelled, and the longitudinal xy-plane surface is constrained in 

the z, 6X and 0y  directions, but letting the lateral x-direction and axial y-direction free 

to m ove. This is possible since both geom etry and loading on the structure are 

sym m etric about the longitudinal xy plane.

•  The lateral loads are applied as relative displacem ents on the upper and low er floors 

in opposite directions, while the m iddle floor beam is restricted w ith no allow able 

freedom s. This will produce the lateral relative m otion in this local-scale structure 

equivalent to its corresponding m otion in the global-scale w hen subjected to the 

ground acceleration m otion at the base o f  the structure.

•  W hen the applied displacem ent loading is directed in the lateral x-direction only, the 

loaded surface will not allow  any rotational m otion in the sm all-scale m odel to take 

place, thus applying additional unrealistic stresses to the associated m em bers. 

H ow ever, this is acceptable in the proposed exam ple, since the structural fram e is 

assum ed as a Rigid Frame structure, and its m otion is lateral only.
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In another configuration for the RRT, the relative response can also be assigned as forces and 

m om ents w hich are obtained from the dynam ic solver, and then applied on the cross section 

o f  the colum n in the sm all-scale model. As shown in Figure 7.23, forces and m om ents have 

been applied in this exam ple as axial stresses on the surface o f  the colum n cross section. 

H ow ever, stresses due to m om ents may unrealistically deform  the loaded elem ents. 

T herefore, it is preferable to apply the forces and m om ents at positions where m om ents are 

m inim um , or approxim ately equal to zero in that m em ber, such as at the zero-m om ent 

inflection points at approxim ately the m iddle length o f  the m em ber. How ever, m om ents can 

also be applied as rotational forces on the cross sectional area o f  the m em ber, to avoid such 

unrealistic probable deform ation. Explicit-E lfen v3.7 does not account for rotational forces 

loading or rotational restraints although the possibility o f  their input data is available.

0.672825^ B  0.79991)6 P I  0.727186 C 654469
  0.581750
bssr 0-509031 b i t -  0 4 36313 MB- 0.363694 B B  0.290876 BB- 0.216166 
BB '■I r.

0.000000

Figure 7.23 half-member configurations of small-scale modelling

7.3.3 Discussion of Results

The targeted jo in t is the stationary jo in t J2, and the targeted m em bers are the first and second 

floor colum ns. The fracture response for these targeted m em bers is shown in Figures 7.24 and 

7.25, where positions and intensities o f  the plastic hinges PH are determ ined and captured. 

Joint J2 is dam aged at the upper and lower plastic hinges o f  colum ns C l and C2, respectively. 

The zones near to the fractured elem ents are m icro fractures, reaching up to 0.5 o f  the 

fracture state index, as can be seen in Figure 7.25.

The progress o f  the crack growth shows that the tension side is severely affected, and 

dam age is m ostly concentrated in the colum ns cover only, and very little penetrates to parts 

o f  the core. In this exam ple, cracks start to grow  as the stress in the longitudinal bars reaches 

betw een 200 and 250 MPa. In this exam ple, the transverse reinforcem ents, stirrups, have no 

effect on the confinem ent o f  the concrete core, since the axial vertical load on the colum ns is
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relatively sm all. This leads to less confinem ent, and thus, the principal stresses o f  the 

concrete becom e closer to the failure envelope, and concrete is m ore vulnerable to fail.

In this FE analysis the bond effect is not sim ulated since the 2D bar elem ents are fully 

conjugated with the 3D tetrahedral elem ents edges, and thus bond friction does not exist. This 

also affects the behaviour o f  the fracture m echanism  and crack growth, as previously 

discussed.

5 6 1 9 0 .5 9
5 2 9 1 6 .U6
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Figure 7.24 Displacement of column members relative to the stationary joint J2, showing cracks and

reinforcement bars forces

Figure 7.25 Crack growth and the fracture state indicator in stationary joint J2

7.3.4 Conclusion

• Dam age in RC beam -colum n jo in ts and plastic hinges need to be investigated in 3D 

sm all-scale m odels with a sufficient m esh refinem ent in order to obtain reliable results 

for the fracture analysis.

• The Relative Response Technique RRT is introduced in this chapter and used to re­

model a part o f  the global structure into a sm all-scale m odel. This part should contain

0 9565:9 
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0 716539 
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0.558950 

1 ’Si 14 
0.399179 
0.319343 
0 .3 2 9 5 0 7  
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the targeted joints and members for the proposed example, so that the fracture 

analysis can be performed with a computational capacity that’s significantly less than 

performing the global model.

•  A dynamic solver of non-linear analysis for the large-scale models are efficiently 

utilised to perform elasto-plastic analysis for RC members o f skeleton frame 

structures, and provide a sufficient loading record for the small-scale model.

•  Re-modelling o f the loading and boundary conditions is performed for each case 

study independently, and is uniquely different for every targeted joint and 

corresponding members.

•  The Relative Response Technique RRT can be extended via relative rotations and 

forces which are also obtained from the dynamic solver, and then applied on the 

members o f the small-scale model.

•  Further size-reduced models for the small-scale simulation can be made by modelling 

symmetric members in symmetric problems. Another possibility of size reduction is 

by applying the relative response RR at zero-moment inflection points, so that only 

half o f the members are modelled. The validity o f these modelling methods depends 

on the nature o f the problem, its loading directions and boundary conditions.
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8.1 CONCLUSIONS

8.1.1 Chapters Conclusions

The following are concluding summaries of the main remarks in the chapters of this research:

1. There is a large variety of numerical models for simulating non-linear and damage 

behaviour of RC bridge columns under seismic loading. Selection of a specific numerical 

model depends on the range and quality o f output results required for the analysis.

2. The fibre element method is an effective method for modelling RC framed structures 

under dynamic loading. It is still a powerful method even when applied with simplified 

assumptions such as linearization of the tangential stiffness, in which errors can be 

minimized by reducing the time-step interval to a relatively small value. The un-loading 

and re-loading non-linear material paths o f constitutive relations can also be simplified by 

linearizing the constitutive relation. Such simplifications can be implemented, yet 

produce acceptable approximate results.

3. Energy dissipation of the RC bridge columns under dynamic loading is one of the useful 

representative measures for a global damage index, which is described by the damage 

state in a qualitative manner based on previous experimental and site observations. 

However, the local damage measure in this research is based on determination of the axial 

stress o f concrete fibres after losing some of their strength during the plastic unloading 

and reloading cycles.

4. Damage can be controlled by using seismic isolation bearings which absorb dynamic 

shocks and partially dissipate the seismic energy. The performance of the isolated sub­

structure/super-structure zones based on the yield energy curves is a useful method to 

evaluate and control the seismic performance of the RC column. Such evaluation methods 

help to design the mechanical properties o f the isolation devices.

5. Despite o f its excessive time and huge computational capacity, the combined DE/FE 

analysis using Elfen-Explicit application is a successful tool for investigating the plastic 

hinge zone for RC columns under dynamic loading.

6. Engineering assumptions must be taken to reduce the size and geometry o f the problem. 

In contrast, the computational size o f the problem needed to be increased by factorising 

the time-step by less than 0.6 as it is strongly recommended to obtain fracture 

propagation. Therefore, practical judgements must be made to run such problems on PC 

systems. Furthermore, users should be aware that reinforcement bar elements in such
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problems are the most time consuming among all other parameters, even though they are 

not under fracturing mechanism, and follow a non-linear constitutive algorithm only.

7. The Elfen-Explicit code is best working with Model 19 for quasi-brittle 3D structures 

since it contains detailed properties for the material such as hardening, dilation and both 

tension and shear failure modes. It is also provided with the Rotating Crack Model which 

is more sophisticated than the Fixed Crack Model. However, the modelled fracture is due 

to the tensile mode only, Mode (I), and other modes such as shear, torsion and the 

compression are not included.

8. The interaction between the tetrahedrals and bar elements o f the concrete and steel 

respectively is considered as full bond, with no possible frictional action between the two 

materials, and thus a damping ratio of 5% was implemented in the analysis to account for 

possible viscous damping due to particle frictions.

9. Due to the very low confinement around the concrete core in the proposed model, there is 

no contribution to preserve the integrity of the confined core during the dynamic action, 

and thus, cracks grow and spread densely, leading to a total collapse.

10. Ductility o f the RC section is totally dependent on the reinforcement since concrete starts 

to fracture even before steel bars become plastically ductiled. Therefore, the overall 

ductility of the section is disrupted by the concrete cracks which cause less concrete/steel 

bond, and thus, the steel bars become vulnerable to large deformation or buckling. 

Therefore, the seismic demand/capacity principle is not sufficiently fulfilled.

11. The damage state for RC piers in the zone of a plastic hinge is unpredictable, mainly 

because o f its sensitivity to the rate o f loading. The rate o f applied seismic loading could 

lead to an acceleration pulse, affecting the displacement response, and thus increasing the 

amount o f damage. In an acceleration pulse, the relatively lower loading rates have longer 

durations with lower frequencies. In other words, longer-duration loading causes higher 

displacements, and consequently more damage, while shorter-duration loading causes less 

displacements. Thus different intensities o f crack growth can be formed under the same 

loading magnitude.

12. This challenges the level o f seismic performance of the structure. The effect of 

acceleration pulses with long durations in a seismic record may not be predicted if  the 

demand was not determined through a full dynamic history analysis for the MDOF 

structure.

13. Plastic hinges need to be investigated in 3D small-scale discrete element modelling with a 

sufficient mesh refinement in order to obtain reliable results for the fracture analysis.
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14. Techniques that are used to reduce the computational efforts are recommended, such as 

the Relative Response Technique, but more investigations are required to verify the 

accuracy o f results for different problems with different loading rates.

8.1.2 General Conclusions

8.1.2.1 The Damage Mechanism

When viaducts supported by RC single piers are subjected to seismic loading, the seismic 

energy is dissipated, mainly, through the formation of plastic hinges in which part o f the 

column base is partially or severely damaged. It should be noticed that the geometry o f such 

structures supported by single piers lead to experiencing a flexural failure mode which is 

resisted by the ductility action o f the single piers. Pure flexural mode permits crack growth to 

interfere with the concrete core, and the longitudinal reinforcement bars overburden 

dissipating the hysteretic energy independently, and not in association with the concrete 

material due to its lack of ductility. This, obviously leads to buckling of the longitudinal bars, 

and thus to a progressive collapse of the structure.

The severity o f damage is related to the amount of energy dissipated during the inelastic 

stage, and in RC structures concrete starts to undergo the damaging process much earlier 

before the steel reinforcement tends to yield [1]. Therefore, as damage is related to the 

hysteretic energy and maximum ductility, the fracture energy could be released in some 

critical members during minor damage stages o f the structure [1].

8.1.2.2 The Seismic Design Criterion

A seismic performance-based design of a structure implies that the seismic capacity of a 

structural response should meet the seismic demand o f that structure under the target ground 

motion excitations. However, when a shortage o f seismic capacity exists, certain damage 

would occur as corresponding to that shortage. However this concept may not be valid for 

single RC columns, since severe damage could grow inside the column core much earlier 

before the steel reinforcement tends to yield, as mentioned earlier.

In terms of the seismic design criterion (SDC) o f California Transportations (CALTRANS), 

the Demand/Capacity balance principle is assumed to occur with minor damage of cover 

spalling at the plastic hinge region. However, shaking table tests, especially under multi­

directional load effect, prove severe crack growth inside the concrete core o f RC columns
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which are designed according to the demand/capacity principle, and consequent progressive 

collapse occurs as a result. The demand/capacity principle does not guarantee the exemption 

of the column core from being severely damaged, especially under strong ground motions or 

when experiencing acceleration pulses. Further damage could also occur due to the lack of 

core confinement when axial stresses of the transverse bars are relatively low.

8.2 RECOMMENDATIONS

8.2.1 Numerical Modelling

Numerical modelling using fibre elements and beam-column (bar) elements to solve non­

linear RC structures are mainly based on a constitutive relationship for updating strength and 

ductility. Both strength degradation and ductility o f the members are based on the parameters 

of stresses and strains. However, they have no connection with the damage evolution o f the 

quasi-brittle material nor are they related to fracture energy release due to the stress drop 

during the crack growth, but they still give approximate analytical results in terms o f the 

hysteresis and time history in terms o f global behaviour o f the structure, without describing 

the damage in the plastic hinges. A major drawback in such RC numerical models is that they 

are not capable o f detecting core fracturing since the overall strength and ductility o f the 

section is still functioning due to the steel bars’ properties, i.e. they are not capable of 

detecting all stages of the progressive collapse for the structure, since they were designed to 

simulate the structure mainly based on its elastoplastic constitutive behaviour.

In one of their conclusions, S. Yavari et al. in 2009 [2] concluded that the overall-scale 

modelling using overall global equilibrium forces are not suitable for strong ground motion 

loading.

The commonly used damage descriptors such as damage indices and damage states for the 

expected damage are based mainly on the global parameters which are obtained from those 

numerical investigations, such as drift ratios and energetic computations. Such damage 

descriptors are practically approved for global scale assessment, but not accurate for small- 

scale investigations.

As a summary, the following drawbacks are listed below:

1- In fibre elements modelling, failed fibres (due to tension or compression) do not sustain 

further stresses, but due to steel strength and ductile limit the overall structure is capable of
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withstanding further loading before steel collapses. In reality, the overall collapse of RC 

structures may have occurred much before the steel collapse limit.

2- In bar elements modelling, a failed element is due to the built-in elastoplastic hysteresis 

model of the combined RC section that is based on quasi-static loading tests, without 

considering the damage effect inside the core.

3- In bar elements modelling, a failed element is due to the built-in damage constitutive 

model of the combined RC section that is based on theoretical assumptions o f the damage 

evolution theory which needs to be verified experimentally for different cross section 

geometries.

Furthermore, none of these numerical models are capable of predicting bar buckling which is 

the threshold o f the progressive collapse o f the structure.

The fracture due to multi-directional dynamic loading on the quasi-brittle material in 3D 

structures is a complex problem. If fracture-based small-scale FEM models are technically 

improved, they should be capable o f simulating such problems more than fibre elements and 

bar-element models which are based on global damage concepts such as energy dissipation 

and the control o f joints mechanism for the non-linear behaviour. More research is still 

needed for FE models to approximate the fracturing behaviour in RC structures from the 

following points of view:

1- Modelling o f concrete as a heterogeneous material.

2- Simulating fracture due to compression and twisting, since multi-directional loading 

causes more damage than lateral loading.

3- Including bonding o f rebars with concrete in the RC combined section.

4- Including refined damping values which are verified with shaking table tests.

In general, numerical methods using fibre elements and bar elements can predict the overall 

hysteretic behaviour, and produce hysteresis curves and approximate displacement responses, 

yet not indicating the collapse state of the column, regardless of the severe damage that’s 

attained by the concrete core of the column. Such hysteresis cannot be reliable to investigate 

the behaviour o f single piers without having investigated the crack growth in the concrete 

section by means of experimental testing or explicitly analytical crack modelling.
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8.2.2 Alternative Systems

Alternative systems should be substituted for the monolithic system of single RC columns

supporting box-girder bridges, since they are vulnerable to severe damage when subject to

strong ground motion. However, existing bridges with monolithic structures o f single RC

columns are widely used even in seismically active regions.

Alternative systems can be based on many approaches, which are listed below:

1. Yielding energy dissipating devices such as seismic isolation bearings SIB’s, which 

utilize rubber bearings (RB) or lead rubber bearings (LRB).

2. Sacrificial yielding braces, or buckling-resistant braces, which are specially designed 

members to deform plastically in a controlled manner during an extreme seismic event, 

keeping the main structural members to remain elastic.

3. Damping energy dissipating members such as the sacrificial damping braces which 

absorb dynamic shocks during the earthquake event and mitigate a large amount of the 

seismic energy.

4. The approach o f weakened-column base which formulate the plastic hinge (PH) as being 

a zero-moment region, while the rest of the column body remains elastic.

5. Self-Another alternative system is designed to post-tensioning strands (tendons) or steel 

jackets to increase confinement of the columns.

6. Re-centring or self-centring techniques such as post-tensioning strands (tendons) which is 

based on applying axial compressive stresses on the column section to reduce the residual 

strains. In addition, other re-centring techniques such as steel plate jacketing are used to 

increase the section’s confinement and reduce the damage growth. In these techniques, 

the lateral drifts are reduced to some extent as well as they do a perfect job in preventing 

residual deformations. However, the concrete core damage could still exist but with 

cracks being closed after the re-centring action. This is still a hazardous situation for the 

bridge columns that could lead to collapse at subsequent seismic actions, even with 

moderate ground motions. In fact, many o f these techniques are still under research.

7. Another alternative is changing the design from single piers to multi-columns that support 

the bridge and strengthen it against the pure flexural mode of failure in order for the 

columns to behave in a less damaging manner.

8. Other structures with similar geometry as single piers, such as RC columns supporting 

elevated water tanks, should also fall under the same hazards o f damage under seismic 

loading, and should also be considered.
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8.2.3 A Criticism on the Eurocode8, (part 2: Seismic Design on 
Bridges)

Three important topics in the Eurocode8 regulations for the seismic design of bridges are 

given by EC8-2 [3], and specified in the observations listed below, and criticism remarks are 

then followed:

• There are two basic requirements of seismic design; the non-collapse requirement, and 

the minimization of damage requirement. In general, the bridge, according to EC8-2, 

‘should retain its structural integrity and adequate residual resistance’. In particular, 

the resulting damage in some bridge components due to their contribution to energy 

dissipation is described by the EC8-2 as in the following points:

1. For the whole structure, it should be damage-tolerant i.e. the structure can 

sustain emergency traffic actions, and allow performing inspections and repair 

easily.

2. For secondary components and for parts that are intended to contribute to 

energy dissipation during the earthquake event, the damage should be minor 

with a high probability o f occurrence.

3. For non-critical structural components, such as deck movement points and 

abutment back-walls, a predictable mode of damage is expected to hit the 

details o f such components, with the possibility o f permanent repair.

• As a design criterion, the EC8-2 is imposing a (compliance criterion) in the non-linear 

analysis o f ductile RC members, i.e. those members associated with a flexural mode of 

motion, that the plastic hinge rotation demands 0p E should be lower than the design 

rotation capacities 6 p d , or:

®p,E — @p,d

• As a more specifying measure o f capacity, the EC8-2 is defining the seismic 

deformation capacity of bridge piers as the maximum displacement o f a structure 

capable o f sustaining at least 5 full cycles o f load-deflection hysteresis curves without 

initiation o f failure o f the confining reinforcement or drop exceeding 20% of the 

maximum resisting forces for RC ductile members.
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Criticism Remarks:

In respect to the above mentioned Eurocode8 regulations, the following are my criticism 

remarks introduced in correspondence with the aforementioned three points respectively;

• The flexural failure mode in case of single RC piers supporting viaducts, dissipate the 

hysteretic energy through initiated plastic hinge, which is likely to cause severe 

damages under strong ground motions, as was proved by several shaking table tests 

under transversal and multidirectional seismic excitations [4,5,6]. The damage is 

severe in the way that crack growth is damaging the concrete core leading to a total 

collapse, especially when longitudinal reinforcement bars buckle at the plastic hinge 

zone. Such damage is mainly attributed to the yield energy dissipation in the 

reinforcement bars only as ductile materials [7], while concrete is not dissipating any 

energy but rather become fully damaged as a brittle material under tensile and 

compressive stresses. Such a mechanism is likely to occur in this flexural mode of 

motion.

• Using the seismic design criterion SDC, the RC piers are designed according to the 

principle o f demand/capacity balance [3,8], which is best functioning in cases where 

both steel reinforcement bars and concrete are working together in the best manner, so 

as to effectively exploit their workability limits o f strength and ductility, respectively, 

and dissipate the seismic energy with the most minor or reparable damages possible. 

However, this mechanism does not apply in single RC piers subjected to strong ground 

motion, since pure flexural mode permits crack growth to interfere with the concrete 

core, leading to possible total collapse. Therefore, the principle of demand/capacity 

balance stated by the EC8-2 [3] may not be sufficient for single RC columns [9].

• The numerical methods based on non-linear behaviour of beam-column elements 

represent the overall dynamic, or quasi-static, response of severely damaged piers as 

hysteretic loops with degrading strength, showing no clear indication o f the damage in 

the disintegrated sections. This is because they are not based on the theory of damage 

evolution and its effects on crack growth. The requirement of the EC8-2 concerning 

having sustained least 5 full cycles of the load-deflection hysteresis curves with 

limited degradation [3] may not be sufficient in this case. However, alternative 

numerical methods which simulate the fracture mechanism are significantly needed to 

investigate the suspected damage inside the concrete core of the column.
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8.3 FUTURE WORK

The following project is chosen since it combines research work and practice together in the 

field o f earthquake engineering and structural dynamics. Furthermore, it forms the basis for 

the infrastructure o f bridges as it provides an engineering system for a proposed seismic 

evaluation program for the existing bridges.

One o f the important objectives for the Department of Transportation in Libya is to establish 

a seismic evaluation system for the local motorway bridges and viaducts, which are needed to 

function properly during earthquake events, especially for those that exist in seismically 

active regions along the south coast of the Mediterranean, as can be seen in Figure 8.1, [10].

There are three parts o f in this project associated with establishing this evaluation system; 

definition of parameters, modelling of the structure and construction of damage and fragility 

charts. The project parts can be summarised as follows:

1- Utilizing the technique of Ambient Vibrations, such as in [11,12], to define the dynamic 

characteristics and structural parameters of the bridge as a first step towards building an 

analytical model based on realistic structural parameters. A numerical model of free-vibration 

motion is used to calibrate the structural parameters of stiffness and mass for the bridge 

members, based on the realistic dynamic characteristics of frequencies, damping ratios and 

effective mode participation factors. For bridges that could experience seismic excitements, 

the technique o f System Identification (SI), such as in [13,14,15], is more likely to be used to 

obtain more reliable information. In contrast to the ambient vibration technique, the SI 

requires permanent accelerometers to be previously installed along the bridge members using 

techniques similar to the field of Structure Health Monitoring (SHM).

2- Building the numerical model as based on the calibrated parameters. Selection o f the 

model depends on the required output data. From the literature review, it was found that the 

moment-curvature damage model, built by S. Oiler and A. H. Babat [16], is very suitable for 

the seismic evaluation project since it is based on the damage evolution theory o f isotropic 

damage constitutive law. It is also provided with soil-structure interaction and formulated by 

using classical structural analysis which enables modelling the RC bridge structure easily as a 

whole. The model was partially funded and supported on a European governmental level; 

namely the European Commission, Environmental program RTD Project, the Spanish
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G overnm ent (Ministerio de Educacio 'n  y Ciencia), and the Spanish G overnm ent (Ministerio 

de Fom ento) [16], as was previously mentioned in Chapter 2.

3- Using the analytical methodology procedure made by Moschonas, Kappos et al. [17] to 

produce seismic fragility curves for different categories o f  classified bridge types. The 

procedure is based on defining the damage states which are obtained from the pushover 

analysis for the entire bridge [17]. The methodology has different definitions for damage 

states according to energy dissipation m echanism in each bridge, either with yielding piers or 

non-yielding walls [17]. The procedure was applied on the Greek m otorway bridges in which 

11 different classes o f  bridge types have been evaluated by fragility curves versus PGA 

measures [17].
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Figure 8.1 Earthquake intensities in Libya from 1907 to 2005, magnitudes from 2.6 to 7.1 110]
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APPENDICES

Appendix |A]

This MatLab code applies fibre element modelling to perform non-linear dynamic analysis for a 

MDOF RC column using N ew m ark’s method. It applies simplified constitutive modelling o f  the 

envelop curves for the concrete and steel fibres, and displacement-based formulation for solving 

the equation o f  motion. A complete list o f  the written code is in this Appendix [A].
c l e a r  a l l ;  
c l c ;

..................MDOF A l g o r i t h m  ....................... ..

. . . . . .  MDOF A l g o r i t h m  .................. N o r m a l ,  M o r e  f i b r e s .............

..............  MDOF A l g o r i t h m   .................... w i t h  R e d u c e d  K
. . . . w i t h  D a m a g e a p p r o x i m a t i o n  
. . . . w i t h  u u u  i s  m o v e d  b e l o w  P ( : , l )

( ( ( ( ( (  . . .  WITH E m e r l y v i l l e  G r o u n d  m o t i o n
P r o b l e m  i n  S e i s m o - S t r u c t . . . ) ) ) ) ) ) ) ) ) )

E c o n c  & E s t e e l  a r e  F u l l  v a l u e s  f o r  ALL F i b r e s
M a s s  i s  d i v i d e d  u n t o  2 n o d e s  .
L a t e r a l  L o a d  i s  a c c o r d  t o  M a s s  v a l u e s  F o r  ALL N O D E S . . .
I n i t i a l  a x i a l  P e r m e n a n t  l o a d  i s  p r o v i d e d ..................................
I n i t i a l  S t r a i n  i s  p r o v i d e d   .........................
D a m p i n g  i s  c h a n g i n g  a c c o r d  t o  k k k  s t i f f  M a t r i x  
STA TI C r u n  b y  m u l t i p l y i n g  c  S m b y  0 . 0 0 0 0 1  i n  K - m a t r i x  

No T o p  M a s s  . . . . . . .  o n l y  C o lu m n  .................

. U s i n g  t h e  NewM ark  M e t h o d  t o  s o l v e  a  D y n a m i c  p r o b l e m  w i t h  N o n - L i n e a r  

. b e h a v i o u r  o f  ( c o n c r e t e  + s t e e l  b a r s ) , U s i n g  t h e  F i b r e  E l e m e n t  

. M e t h o d

( I )  PART ONE : D e f i n i t i o n s
( I )  PART ONE : D e f i n i t i o n s
( I )  PART ONE : D e f i n i t i o n s

. . . . . .  ( i )  D e f i n i n g  c o n s t a n t  p a r a m e t e r s .
DOF = 1 8 ;

r e s t  = 3 ;  i  N u m b e r  o f  r e s t r a i n e d  n o d e s . . .  
e l e m  = 5 ;

LP 11 = 0 ; % L a t e r a l  L o a d  p o i n t  a t  n o d e  32 
L P 1 0  = 0 ;
LP9 = 0 ;
LP8 = 0 ;
LP7 = 0 ;
LP6 = 1 7 ;
LP5 = 1 4 ;
LP4 = 1 1 ;
LP3 = 8 ;
LP2 = 5 ;
LP1 = 2 ;

LPX= 1 6 ;  ; A x i a l  L o a d  p o i n t  a t  n o d e  16
L P 2 = 2 9 ;  L P 3 = 2 6 ;

EDOF=6;
f i b r e s = 5 7 ;  % f i b r e s = 2 9  
w i d t h  = 0 . 7 0 ;  % .........................

s i z e  = 8 0 0 ;

s i z e =  1 5 0 0 ;  % n u m b e r  o f  t i m e - s t e p s  . ( s i z e  o f  f i l e s ) . . . % SHOULB BE
% 5 5 ....................

L = 1 . 2 ;  » L e n g t h  o f  E l e m e n t  = L e n g t h  o f  F i b r e s  ...............................
b a r s l = 5 ;  b a r s 2 = 2 ;  b a r s 3 = 0 . 5 + 0 . 5 ;  n u m b e r  o f  b a r s  a t  f i b r e  s t r i p ,  b a r s 3  i s  n o t  i n c l u d e d .
a u g m e n t a t i o n ^  3 0 0 0 0 * 1 0  ;  % t h i s  i s  t h e  TOP l a t e r a l  l o a d  u s i n g  t h e  TOP MASS ...................
a u g m e n t a t i o n 2 =  7 3 5  * 1 0  * 0 ;  t h i s  i s  t h e  C o lu m n  l a t e r a l  l o a d  u s i n g  t h e  COLUMN M A S S . . .

AXIAL = 1 9 7 0 0  * - 9 . 8 1  * 1 ;  % A x i a l  L o a d  p o i n t  a t  n o d e



' AXI AL = - 3 0 0 0 0 0 ;  % - 5 4 5 1 0 0 0  ;  S A x i a l  L o a d  p o i n t  a t  n o d e
AXIAL = - 3 ;  t o  c a n c e l  a x i a l  l o a d  ( M e t h o d  2)

A X I A L l o a d =  - 8 . 2 3 e 6 ;  - 2 1 0 0 0 . 0 0 0 ;  - - 5 . 4 5 1 0 0 ;  A x i a l  l o a d  a t  T o p  n o d e  . . . .
* A X I A L lo a d =  - 3 . 0 0 e 5 ;  %
A X I A L l o a d =  - 3 0 0 0 0  * 1 0  ; * 0 . 0 0 0 0 1  ; BY ZEEEEEEEEEEEEEEERRRROOOOOOOOO

m a s s r e d u c  = 1;
a c c e l = l ;  I  0  t e s t i n g  0 u u u ( : , l )
d t = 0 . 0 1 ;  % t i m e  s t e p
i g r = - 1 0 ;  % - 9 . 8 1  ;  % g r a v i t y  g r o u n d  f o r c e

EC = 2 . l O e l O ;  % = 2 1 0 0 0  MPa = 2 . 1 0 e l 0  P a  (N/m2 )
ES = 1 . 7 5 e l l ;  = 1 7 5 0 0 0  MPa = 1 . 7 5 e l l  P a  (N /m2)  .................................................... NNNNNNNNNNN
%AAA= 3 . 5 ;  % t h i s  i s  r e d u c e  0 . 0 0 2  s i n c e  F y  i s  r e d u c e d  b y  3 . 5  l o o k  l i n e  4 3 3 ,  o r  r a i s  D e p s  b y 3 . 5  l o o k  l i n e  5 77
AAA=1;
<■868= 1 . 0 0 0 0 5 ;  % t o  e n l a r g e  D e p s
BBB= 1 ;

Fy = 3 . 4 e 8  /  AAA ;  :r N/ m2 S t e e l  A x i a l  S t r e n g t h  ................................... F y  = 3 . 5 e 8  ;

FC = - 4 . 2 e 7  ; • FC = - 1 . 2 e 7  ;  N/m2 C o n c r e t e  A x i a l  S t r e n g t h   NNNNNNNNNNNNN
BIGG = - 4 3 e 7  ; % BIG N u m b e r ........................

 ( i i - a )  D e f i n i n g  STRUCTURE p a r a m e t e r s .................( t i m e - s t e p  p a r a m e t e r s ) . . .

P = z e r o s ( D O F , s i z e ) ;
P P = z e r o s ( D O F , s i z e ) ; 
P c a p = z e r o s ( D O F , s i z e ) ; 
d P = z e r o s ( D O F , s i z e ) ;
D P = z e r o s ( D O F , s i z e ) ; 
D P r e d = z e r o s ( D O F - r e s t , s i z e ) ;

E x t e r n a l  l a o d  
' C o m p u t e d '  E x t e r n a l  l a o d  
( n o t  n e e d e d )  C a p  E x t e r n a l  l a o d  

N o d a l  I n c r e m e n t  o f  E x t e r n a l  l a o d  
N o d a l  C a p  I n c r e m e n t  o f  E x t e r n a l  l a o d  

d e f i n i t i o n  o f  D P r e d .................

f s = z e r o s ( D O F , s i z e ) ; 
d f s = z e r o s ( D O F , s i z e ) ,

N o d a l  R e s t o r i n g  f o r c e s  ( a x i a l .  S h e a r  a n d  m o m e n t )
N o d a l  R e s t o r i n g  I n c r e m e n t a l  f o r c e s  ( a x i a l ,  S h e a r  a n d  m o m e n t )

u = z e r o s (D O F , s i z e ) ; 
u u = z e r o s ( D O F , s i z e ) ; 
u u u = z e r o s ( D O F , s i z e ) ,

N o d a l  d i s p l a c e m e n t  
I  N o d a l  v e l o c i t y

N o d a l  a c c e l e r a t i o n

d u = z e r o s ( D O F , s i z e ) ; 
d u r e d =  z e r o s ( D O F - r e s t , s i z e ) ; 
d u u = z e r o s ( D O F , s i z e ) ; 
d u u u = z e r o s ( D O F , s i z e ) ;

N o d a l  d i s p l a c e m e n t  i n c r e m e n t  
r e d u c e d  d u  

N o d a l  v e l o c i t y  i n c r e m e n t  
N o d a l  a c c e l e r a t i o n  i n c r e m e n t

k k k = z e r o s ( D O F ) ; > STRUCTURE s t i f f n e s s  m a t r i x ...............
k k k r e d = z e r o s ( D O F ) ;  STRUCTURE s t i f f n e s s  m a t r i x ................
A x i a l = z e r o s ( D O F - r e s t , 1 ) ;  r e d u c e d  i n i t i a l  A x i a l  F o r c e s
I n i t i a l = z e r o s ( D O F - r e s t , 1 ) ;  r e d u c e d  i n i t i a l  d i s p l a c e m e n t

u G = z e r o s ( D O F - r e s t , 1 ) ;  r e d u c e d  G r a v i t y  d i s p l a c e m e n t

( i i - b )  D e f i n i n g  ELEMENT p a r a m e t e r s .................( E L m e n t  S t i m e - s t e p  p a r a m e t e r s ) .

d d u = z e r o s ( E D O F , e l e m ) ;  ELEMENT d i s p l a c e m e n t  i n c r e m e n t
k = z e r o s ( E D O F ) ; % ELEMENT s t i f f n e s s  m a t r i x ...............
km = z e r o s ( E D O F , E D O F , e l e m ) ;  % ELEMENT s t i f f n e s s  m a t r i x ..............
kk = z e r o s ( D O F , D O F , e l e m ) ; G l o b a l  d i t r i b u t i o n  f o r  s t i f f n e s s  t e r m s  o f

o f  o n e  e l e m e n t  ONLY..............

E c o n c  = z e r o s ( f i b r e s , s i z e ) ; * D e f i n e d  h e r e ,  O U T s i d e  t h e  t i m e - s t e p  LOOP 
E s t e e l = z e r o s ( f i b r e s , s i z e ) ; D e f i n e d  h e r e ,  O U T s i d e  t h e  t i m e - s t e p  LOOP

% i n p u t  d a t a  . . . . m a t e r i a l s  v e c t o r s . . . .
% i n p u t  d a t a  . . . . m a t e r i a l s  v e c t o r s . . . .

V  LUMPED M a s s .  . .w/LOCAL r o t a t i o n a l  m a s s ...................

m v = ( 7 3 5  7 3 5  1 0 5 8  ] ;  - d i a g o n a l  e l e m e n t s  . . .
f o r  i j = l : 3 : DOF

m ( i j  + 0 , i j  + 0 ) =  m v ( 1 ) ;  
m ( i  j  + 1,  i j  + 1) = m v ( 2 ) ;
m ( i j + 2 , i j + 2 ) = m v ( 3 ) ;

e n d
% E x c e p t  f o r  : .....................................

0 1 ( 1 , 1 ) -  7 3 5 / 2 ;  m ( 2 ,  2 )  = 7 3 5 / 2 ;  m ( 3 , 3 ) =  0 . 1 ;

m ( D O F - 2 , D O F - 2 ) = 3 0 0 0 0  ;  HERE; i g n o r i n g  t h e  v e r t i c a l  m a s s  e f f e c t
m (DO F -1 , D O F -1 ) =  3 0 0 0 0 ;  

m (D O F,D O F)= 4 3 2 0 0  ; t o  b e  c a n c e l l e d  i f  u s i n g  ( G l a b a l )  r o t a t i o n a l  M a s s

% ............................................................... LUMPED M a s s  . .  .w/LOCAL r o t a t i o n a l  m a s s

%mv=[ 7 3 5  7 3 5  4 . 1 4  ] ;  % d i a g o n a l  e l e m e n t s  . . .
% f o r  i j = l : 3 : DOF
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% m ( i j + 0 , i j + 0 ) =  m v ( 1 ) ;
m ( i j  + l ,  i  j  + 1 ) = m v ( 2 ) ;

: m ( i j + 2 ,  i  j + 2 ) = m v ( 3 ) ;
V e nd

E x c e p t  f o r  : .....................................
m ( 1 , 1 )  = 7 3 5 / 2 ;  m ( 2 , 2 )  = 7 3 5 / 2 ;  m ( 3 , 3 )  = 4 . 1 4 / 2 ;

V m ( D 0 F - 2 , D O F - 2 ) = 3 0 0 0 0  ;  % HERE; i g n o r i n g  t h e  v e r t i c a l  m a s s  e f f e c t ,
m (D O F - 1 , D O F -1 ) =  3 0 0 0 0 ;  

m ( D O F,D O F) =  5 6 3 0 . 1 4  ;  t  t o  b e  c a n c e l l e d  i f  u s i n g  ( G l a b a l )  r o t a t i o n a l  M a s s•..........................................................................................
................................................................LUMPED M a s s . . .w/GLOBAL r o t a t i o n a l  m a s s ................................

m ( 6 , 6 ) = 1 0 5 8 . 4 ;  m ( 9 , 9 ) = 4 2 3 3 . 6 ;  m ( 1 2 , 1 2 ) = 9 5 2 5 . 6 ;  m ( 1 5 , 1 5 ) = 1 6 9 3 4 . 4 ;  
m ( 1 8 ,  1 8 ) = 1 0 8 0 0 0 0 ;

................f o r m i n g  CONSISTANT m a s s  m a t r i x  m ...........................................
s m = z e r o s ( D O F ) ; 
m v l =  7 3 5 ;  % c o l u m n  m a s s
mv2=  3 0 0 0 0 ;  % TOP m a s s
m = M a s s  ( EDOF, DOF, e l e m ,  m v l , m v2 ,  L ) ; V c o n s i s t a n t  MASS

G e o m e t r y  & A r e a  D e f i n i t i o n s  f o r  ( C o n c r e t e  S STEEL) f i b r e s  . . . .

f u n c t i o n  ( 1 )  .......................
f u n c t i o n  ( 1 )  .......................

y = z e r o s ( f i b r e s ,  1) ;
[ y , A c o n c ,  A s t e e l ] = G e o m H ig h  ( L , f i b r e s , w i d t h ,  b a r s l ,  b a r s 2 ) ;

..................................  Sa m e A s  ( i v )  2 . 4 . d  Sa m e A s .......................
g e t  E c o n c r e t  S E s t e e l  f o r  e v e r y  f i b r e  .......................

E c o n c  = z e r o s ( f i b r e s , s i z e ) ; D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP . . . .  
E s t e e l = z e r o s ( f i b r e s , s i z e ) ; • D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP . . . .

f o r  j  = 1 :  f i b r e s
E c o n c ( j , 1 : 2 )  = EC ; % CONSTANT s i n c e  i n i t i a l  % t o  b e  c o r r e c t e d
s i f  y o u  p u t  HIGH v a l u e s ,  s i g m a k  w i l l  n o t  b e  c o r r e c t  .......................
E s t e e l ( j , 1 : 2 )  = ES ; % CONSTANT s i n c e  i n i t i a l  % t o  b e  c o r r e c t e d

e n d

% f o r  j  = ( f i b r e s - l ) / 2  : f i b r e s  
■E c o n c ( j , 2)  = EC ;

% E s t e e l ( j , 2)  = ES ;
% e n d

s .................................Sam e A s  ( i v )  2 . 4 . e  S am e A s  ....................

% c o n s t r u c t  k -  m a t r i x . . .  f u n c t i o n  (4 )  t o  g e t  t h e  s t i f f n e s s  m a t r i x  
% C o n v e r t  k ( i , j ) f r o m  LOCAL t o  GLOBAL s t i f f n e s s  m a t r i x

i  s t e p  1 :  c o n s t r u c t  e l e m e n t  s t i f f  m a t r i x . . .
V ..............  e l e m e n t  l o o p  ...................... (1 ) .... ....................
s h i f t  = 0 . ;  
f o r  e = l : e l e m

i = l ;  t h i s  i s  t o  c a l c u l a t e  k  f o r  ONE i t e r a t i o n  ONLY; t h e  I n i t i a l  C o n d i t i o n  ONLY, 
k = e l e m s t i f f m a t r i x  ( i , f i b r e s , E c o n c , A c o n c , E s t e e l , A s t e e l , y , L ) ;  f o r  t h e  I n i t i a l  C o n d i t i o n  ONLY,
km ( : ,  : ,  e ) = k ;

% i f  e = = 1 0
i  km ( : ,  : ,  e ) = k ; 

i  e n d

s t e p 2 :  T r a n s f o r m  e l e m e n t  s t i f f n e s s  m a t r i c e s  t o  g l o b a l  c o o r d i n a t e s  NOT NEEDED) 
s t e p 3 :  C o m b i n e  e l e m e n t  s t i f f n e s s  m a t r i c e s  t o  f o r m  g l o b a l  s t i f f n e s s  m a t r i x  

f o r  i i i  = l : E D O F  
f o r  j j j  =  l : E D O F
k k ( i i i + s h i f t ,  j j j + s h i f t ,  e )  = k m f i i i ,  j j j ,  e ) ;
e n d
e n d
s h i f t  = s h i f t  + 3 ;

e n d
. . . e n d  o f  e l e m e n t  l o o p  .................... (1 )  .......................

k k k  = s u m ( k k , 3 )  ; 
f s 2 k i n i t i a l ( : , i + l ) =  k k k ( 2 , : ) ;  
h h h = k k k ;

■ s t e p 4 :  S e t  t o  Z e r o s  B o u n d a r y  P o s i t i o n s  i n  g l o b a l  s t i f f n e s s  m a t r i x  w i t h  c o n s t r a i n t s  . .
k k k r e d  = k k k ;  d e f i n i t i o n  o f  K r e d ..................
k k k r e d  ( : ,  3) = [ ] ;  k k k r e d  ( 3 , : )  = []  ;  
k k k r e d ( : , 2 ) =  [ ] ;  k k k r e d ( 2 , : )  = [ ) ;  
k k k r e d ( : , l ) =  [ ] ;  k k k r e d ( l , : )  = [ J ;
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%
%

e n d  o f  c o n s t r u c t i n g  G l o b a l  s t i f f n e s s  m a t r i x  
e n d  o f  c o n s t r u c t i n g  G l o b a l  s t i f f n e s s  m a t r i x

%  S i m i l a r  T o . . . . ( i v )  2 . 4 . f    S i m i l a r  T o . . . .
% g e t  i n i t i a l  d i s p l a c e m e n t  

A x i a l = z e r o s ( D O F - r e s t , 1 ) ;  d e f i n i n g  a l l  E x t .  i n i t i a l  L o a d i n g = 0
G r a v r e d = z e r o s ( D O F - r e s t ,  1)  ; ; d e f i n e  t h e  r e d u c e d  G r a v i t y  L o a d  
G r a v i t y = z e r o s ( D O F , 1 ) ;  - d e f i n e  t h e  G r a v i t y  L o a d
u G r e d = z e r o s ( D O F - r e s t , 1 ) ;  % d e f i n e  t h e  r e d u c e d  G r a v i t y  L o a d
u G = z e r o s ( D O F , 1 ) ;  d e f i n e  t h e  G r a v i t y  L o a d

%A x i a l ( L P 1 1 - 1 - r e s t , 1 ) = A X I A L l o a d ;  
A x i a l ( L P 1 0 - l - r e s t , 1 ) = A X I A L l o a d ;  
A x i a l ( L P 9 - l - r e s t , 1 ) ^ A X I A L l o a d ;

%A x i a l ( L P 8 - l - r e s t , 1 ) = A X I A L l o a d ;
%A x i a l ( L P 7 - l - r e s t , 1 ) = A X I A L l o a d ;  
A x i a l ( L P 6 - l - r e s t , 1 ) = A X I A L l o a d : 
G r a v r e d ( L P 6 - l - r e s t , 1 ) = A X I A L l o a d ;  
%A x i a l ( L P 5 - l - r e s t , l ) = A X I A L l o a d ;  
i A x i a l ( L P 4 - l - r e s t , 1 ) = A X I A L l o a d ;
% A x i a l ( L P 3 - l - r e s t , l ) = A X I A L l o a d ;  

A x i a l ( L P 2 - l - r e s t , l ) = A X I A L l o a d ;

% d e f i n i n g  t h e  TOP L o a d  a s  t h e  A x i a l  F o r c e s  ( m e t h o d  1,

( NO NO NO N o t  n e e d e d  )

% D e f i n e  t h e  G r a v i t y  l o a d

I n i t i a l ! : , 1) = i n v ( k k k r e d )  * A x i a l ( : , l ) ;  d e t e r m i n e  t h e  i n i t i a l  d i s p l a c e m e n t

u G r e d ( : , l )  -  i n v ( k k k r e d )  * G r a v r e d ( : , 1 ) ;  D e f i n e  t h e  d i s p l a c e m e n t  d u e  t o  t h e  G r a v i t y

u G ( l : r e s t , l )  = 0 ;  % d e f i n i g  uG f o r  t h e  w h o l e  s t r u c t u r e . . .
u G ( r e s t + 1 : D O F , 1) = u G r e d ( : , l ) ;  % d e f i n i g  uG f o r  t h e  w h o l e  s t r u c t u r e . . .
^ G r a v i t y ( 1 : r e s t , 1) = 0 ;  d e f i n i g  G r a v i t y  L o a d  f o r  t h e  w h o l e  s t r u c t u r e . . .
% G r a v i t y ( r e s t + 1 : D O F , 1) = G r a v r e d ( : , 1 ) ;  d e f i n i g  G r a v i t y  L o a d  f o r  t h e  w h o l e  s t r u c t u r e .  
G r a v i t y ! : , 1) = k k k  * u G ( : , l ) ;  i  O b t a i n  t h e  P e r m e n a n t  G r a v i t y  L o a d  

% e n d  o f  ( i v )  2 . 4 . f  ....................

% f o r m i n g  E l e m e n t  d a m p i n g  m a t r i x  c . . . . .  LINEAR, s o  i t  i s  NOT u p d a t e d ............
c = z e r o s ( D O F ) ;
J c =  0 . 9 1 9 8  * m + 0 . 0 0 2 1  * k k k ;  R e i l a y  D a m p i n g  t o  b e  c o r r e c t e d .........................
%c-  0 . 2 1 9 8  * m + 0 . 0 0 2 1  * k k k ;
%c= 0 . 2 1 3 8 *  m + 0 . 0 0 0 0 0 0 5 2 4  * k k k  NOT WORKING; % R e i l a y  D a m p i n g  F r o m  S e i s m o _ S t r u c t  
i c =  0 . 7 1 8 0 7 *  m ;  % M a s s - P r o p o r t i o n a l  D a m p i n g  F r o m  S e i s m o _ S t r u c t
%c= 0 . 0 0 8 9 1 2  * k k k  ;  % S t i f f n e s s - P r o p o r t i o n a l  D a m p i n g  F r o m  S e i s m o _ S t r u c t
% t o  b e  c o r r e c t e d .......................

c l =  1 . 7 1 8 0 7 *  m ;  
c20= 2 0 . 7 1 8 0 7 *  m ;
c =  1 . 7 1 8 0 7 *  m ; % * 0 . 5 8 2 0 4 8 4 6 1 ;  % t h i s  i s  t o  m a k e  c  = m

h h h = z e r o s ( D O F , D O F ) ; 
f o r  q = l : DOF

h h h ( q ,  q )  = k k k ( q ,  q ) ;
e n d
%c= 0 . 2 3 1 *  m + 0 . 0 0 0 5 0 1  * h h h  ; c a l c u l a t e d  f r o m  C h o p r a  E q u a t i o n  1 1 . 4 . 1 0

%  ( i i i )  D e f i n i n g  N e w M a r r k  ( C o n s t a n t s )  . . . .

g a m a  = 0 . 5 ;  b e t a = 0 . 2 5 ;  t h e  A v e r a g e  A c c e l e r a t i o n  M e t h o d . . .AAM — > ( u s e d )
t g a m a  = 0 . 5 ;  b e t a = 0 . 1 6 6 ;  % t h e  L i n e a r  A c c e l e r a t i o n  M e t h o d . . . L A M .................( n o t  u s e d )
i b e t a = 0 . 1 6 6 ;

a = z e r o s ( D O F ) ; 
b = z e r o s ( D O F ) ;

a  = ( 1 / ( b e t a * d t ) ) *  m + ( g a m a / b e t a )  * c ;
b  = ( l / ( 2 * b e t a ) )  * m + d t * ( ( g a m a / 2 * b e t a ) - 1 ) *  c  ;

Aa= g a m a / ( b e t a * d t )  ;  Bb= g a m a / b e t a  ; C c=  d t * ( 1 - ( g a m a / ( 2 * b e t a ) ) )  ;
Dd= 1 / ( b e t a * d t * d t )  ;  E e =  l / ( b e t a * d t ) ;  F f =  1 / ( 2 * b e t a )  ;

( i v )  i m p o r t i n g  ( t h e  L a t e r a l  D i r e c  o n l y )  o f  t h e  E x t e r n a l  L o a d  P

P v = z e r o s ( s i z e , 1 ) ;  % d e f i n i n g  ( t h e  l a t e r a l  d i r e c t i o n  o n l y )
% P & d P  a l r e a d y  d e f i n e d  . . . .

% l o a d ( ' e x t f o r c e . t x t ' ) ;  % E l c e n t r o  a c c e l e r a t i o n  
% f i d  = f o p e n ( ' e x t f o r c e . t x t ' ) ;  % o p e n n i n g  t h e  f i l e  
%CCC = t e x t s c a n ( f i d ,  ' %f i f  ' ) ;  % s c a n i n g  t h e  f i l e
% f c l o s e ( f i d ) ;  % c l o s i n g  t h e  f i l e

% l o a d ! ' E m e r y v i l l e _ L o a d i n g . t x t ' )  ;
% l o a d ( * c y c l i c _ z i g z a g _ f u l l . t x t ' )  ;
% f i d  =■ f o p e n  ( ' c y c l i c _ z i g z a g _ f u l l . t x t ' ) ;  o p e n n i n g  t h e  f i l e  
l o a d ( ' c y c l i c z 2 0 . t x t ' )  ;  %
f i d  = f o p e n ( ' c y c l i c z 2 0 . t x t ' )  ; o p e n n i n g  t h e  f i l e  
CCC = t e x t s c a n ( f i d ,  ' f  f  ' ) ;  s c a n i n g  t h e  f i l e

STATIC)
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f c l o s e ( f i d ) ; c c l o s i n g  t h e  f i l e

t i m e  = C C C f l } ;  % t h i s  i s  f o r  t h e  I s t - c o l u m r .  d a t a  f i l e

P v  = C C C 1 2 ) ;  t h i s  i s  f o r  t h e  2 e d - c o l u m n  d a t a  f i l e

. n o w  f i n d i n g  t h e  i n c r e m e n t  o f  E x t  l o a d i n g

:p l o t ( P v , ' * - r ' ) ;  ; h o l d  o n ;  g r i d  o n ;  a  h y s t e r e s i s  l o o p ............
>■ P ( L P 1 1 , 1 : s i z e ) “ a u g m e n t a t i o n  + P v ( l : s i z e ) ;  % d e f i n i n g  t h e  E x t .  L o a d  a s  t h e  l a t e r a l  F o r c e  o f  t h e  2 e d  n o d e )

% P ( L P 1 0 , 1 : s i z e ) = a u g m e n t a t i o n 2  * P v ( l : s i z e ) ;
% P ( L P 9 , 1 : s i z e ) = a u g m e n t a t i o n 2  + P v ( l : s i z e ) ;
% P ( L P 8 , 1 : s i z e ) = a u g m e n t a t i o n 2  * P v ( l : s i z e ) ;
% P ( L P 7 , 1 : s i z e ) = a u g m e n t a t i o n 2  + P v ( l : s i z e ) ;

P ( L P 6 , 1 : s i z e ) “ a u g m e n t a t i o n  * P v ( 1 : s i z e ) ;

P ( L P 5 , 1 : s i z e ) “ a u g m e n t a t i o n 2  * P v ( 1 : s i z e ) ; 
P ( L P 4 , l : s i z e ) = a u g m e n t a t i o n 2  * P v ( 1 : s i z e ) ; 
P ( L P 3 , 1 ; s i z e ) “ a u g m e n t a t i o n 2  * P v ( 1 : s i z e )  ;

P ( L P 2 , 1 : s i z e ) = a u g m e n t a t i o n 2  * P v ( 1 : s i z e ) ; 
P ( L P 1 , l : s i z e ) = a u g m e n t a t i o n 2  * P v ( 1 : s i  z e )  ;

c a n  b e  c a n c e l l e d  w h e n  NOT c o m p a r e d  w i t h  
G r o u n d  A c c e l .  L o a d e d  p r o b l e m

P ( LPX, 1 ) “ A XI AL ;
P ( L P X , 2 : s i z e ) = 0

d e f i n i n g  t h e  E x t .  L o a d  a s  t h e  A x i a l  F o r c e s ( m e t h o d  2 , D y n a m i c )

d P ( L P X , 1 ) “ A XI AL ; > d e f i n i n g  t h e  E x t .  L o a d  a s  t h e  A x i a l  F o r c e s ( m e t h o d  3 , D y n a m i c )  
d P ( L P X , 2 : 1 0 : s i z e ) “  0 ;  P ( L P X , 2 : s i z e )  i s  c o n s t a n t ,  t h e r e f o r e  d P  “ a p p r o x  0
d P ( L P X , 6 : 1 0 : s i z e ) = 0 ;  P ( L P X , 2 : s i z e )  i s  c o n s t a n t ,  t h e r e f o r e  d P  = a p p r o x  0

f o r  i j j = l  : s i z e - 1
$ n o t  n e e d e d  P ( L P , s i z e + l ) =  0 ;  % t h i s  i s  t o  a v o i d  e r r o r ,  a n d  f i n d  a  v a l u e  d P ( L P , s i z e )  w h i c h ' s  n o t  n e e d e d
■d P ( L P l l , i j j )  = P ( L P 1 1 , i j j + 1 ) -  P ( L P 1 1 , i  j  j ) ;
% d P ( L P X , i j j )  = t h i s  i s  a  c o n s t a n t  v a l u e ............... i t s  d P  = 0 ;  B u t
% d u u u | : , l )  i s  a d d e d  t o  u u u ( : , l )  a n d  DP i s  f o r m e d  w i t h  t h e  I n i t i a l  
% C o n d i t i o n .  . . 

d p ( L P 1 0 , i  j  j ) = P ( L P 1 0 , i j j  + 1 ) -  P ( L P 1 0 , i j  j  ) ;

d P  ( L P 6 ,  i j  j  )

d P ( L P 4 , i j j ) 
d P ( L P 3 , i j j )

= P ( LP9 , i j  j + 1 ) -  P I L P 9 , i j j )
= P ( LP8 , i j  j  + D -  P ( L P 8 , i j j )
“  P ( L P 7 f id j+1) -  P ( L P 7 , i j j )

= P ( L P 6 , i j  j  + D - P (L P 6 ,  i j j )  ;
= P ( L P 5 , i  j  j  + D - P ( L P 5 , i j  j ) ;
= P ( L P 4 , i j  j+D - P ( L P 4 , i j j )  ;
= P ( L P 3 , i j  j  + D - P ( L P 3 , i j  j ) ;
= P (L P 2 , i  j  j  + D - P ( L P 2 , i j  j  > ;
= P ( L P 1 , i j  j  + 1 ) - P ( L P 1 , i j j ) ;

(v )  D e f i n i n g  N ew Mark  ( I n i t i a l )  p a r a m e t e r s .

P ( 1 : 3 : D O F - 2 , 1 ) =  m ( D O F - 2 , D O F - 2 ) + g r ;  i n i t i a l  E x t e r n a l  l a o d  = ( G r a v i t y  l o a d i n g  o f  t o p  m a s s  ONLY)
* f s ( 2 8 , 1 ) “ AX IAL;  ■ i n i t i a l  R e s t o r i n g  f o r c e s  ( a x i a l  f o r c e s )  

u u u ( : , l ) =  a c c e l + i n v ( m ) * (  p ( : , 1 ) — (c *  u u ( : , l ) )  -  f s ( : , l )  ) ;  i n i t i a l  a c c e l e r a t i o n

■u u u ( l : r e s t , : ) “ 0 . 0  
> u u ( l . - r e s t ,  : )  = 0 . 0  

u ( 1 : r e s t , : ) = 0 . 0

B o u n d a r y  c o n d i t i o n s  
■ B o u n d a r y  c o n d i t i o n s  

B o u n d a r y  c o n d i t i o n s

*  ( I I )  PART TWO: C a l c u l a t i o n s  f o r  e a c h  t i m e - s t e p  .
................................................( I I )  PART TWO : C a l c u l a t i o n s  f o r  e a c h  t i m e - s t e p

%  ( I I )  PART TWO : C a l c u l a t i o n s  f o r  e a c h  t i m e - s t e p

, VERY I N I T I A L  D E F IN I T IO N S  f o r  (F IB RES ) 
, , (BEFORE) g e t t i n g  i n t o  t i m e - s t e p  LOOP

N u m b e r  o f  f i b r e s  a l r e a d y  d e f i m e d  ( f i b r e s  = . . . . )

e p s k = z e r o s ( f i b r e s , s i z e + l , e l e m ) ; s i z e  i + 1  NO No NO

* e p s k ( : ,  1 , : ) =  - 0 . 0 0 0 5  ; I n i t i a l  S t r a i n s .

s i g m a k = z e r o s ( f i b r e s , s i  z e + 1 , e l e m ) ; , s i z e  i + 1  NO No NO

D a m s i g = z e r o s ( f i b r e s , s i z e , e l e m ) ; 
D a m s i g m a = z e r o s ( f i b r e s ,  s i z e ,  e l e m ) ; 
D a m a g e = z e r o s ( f i b r e s , s i z e ,  e l e m ) ;

% . .  e f f e c t i v e  s t r e s s
% . .  e f f e c t i v e  s t r e s s  . . R e - d e f i n e d . .  

% . . . t h e  D a ma ge . . . .

s i g m a k S = z e r o s ( f i b r e s , s i z e + 1 , e l e m ) ;

B r u s h = o n e s ( f i b r e s , s i z e + 1 , e l e m ) ; 
B r u  = o n e s ( f i b r e s , s i z e + 1 , e l e m ) ;

, , , , , , , , , , , s i z e  i + 1  NO No NO

  t h i s  i s  a  s i g n  (= 1 )  f o r  L i n e a r i t y  . . . .
% ............ t h i s  i s  a  s i g n  (= 1 )  f o r  L i n e a r i t y  . . . .

D e p s k  = z e r o s ( f i b r e s , 1 ) ;  D e f i n e d  h e r e ,  ALSO i n s i d e  t h e  t i m e - s t e p  LOOP
D e p s = z e r o s ( f i b r e s , s i z e , e l e m ) ;
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1 . . . . ( A )   I n i t i a l  c o n d ' n s  f o r  C o n c r e t e  f i b r e s . . . .
% ....................
% EC = a l r e a d y  D e f i n e d  = 2 1 0 0 0  MPa = 2 . 1 e l 0  P a  (N /m2)
c r u s h = - 0 . 0 0 8 ;
CRUSH =  z e r o s ( f i b r e s , s i z e , e l e m )  ; , , , , , , , , , , ,
T o p  = z e r o s ( f i b r e s , s i z e , e l e m ) ; f , , , , , , , , , , ,
B o t t o m =  z e r o s ( f i b r e s , s i z e , e l e m ) ; , , , , , , , , , , ,

' T o p = - 0 . 0 0 0 5 ;  u p d a t e  a l l  T o p - v a l u e s  t o  b e  - 0 . 0 0 2
T o p = - 0 . 0 0 2 ;  u p d a t e  a l l  T o p - v a l u e s  t o  b e  - 0 . 0 0 2

Tx= z e r o s ( f i b r e s , s i z e , e l e m ) ; , , , , , , , , , , ,
Bx= z e r o s ( f i b r e s , s i z e , e l e m ) ; , , , , , , , , , , ,
Cx= z e r o s ( f i b r e s , s i z e , e l e m ) ; , , , , , , , , , , ,

% ...............................................
% . . . . ( B )   I n i t i a l  c o n d ’ n s  f o r  STEEL f i b r e s . . . .
%.................................................................
% ES -  a l r e a d y  D e f i n e d  = 1 . 7 5 e l l  = 1 7 5 0 0 0  MPa = 1 . 7 5 e l l  Pa (N /m2)
'  F y  = a l r e a d y  D e f i n e d  = 3 . 5 e 8 ;
D i f f S =  Fy / E S ;  i  i s  r e p e a t e d  l a t e r  i n  t h e  f u n c t i o n . . .
T o p s  = z e r o s ( f i b r e s , s i z e , e l e m ) ;  , , , , , , , , , , ,
B o t t o r a S =  z e r o s ( f i b r e s , s i z e , e l e m ) ; , , , , , , , , , , ,
T o p S ( : , : , : )  = 0 . 0 0 2  /  AAA ; /  AAA
B o t t o m s ! : , : , : )  = - 0 . 0 0 2 /  AAA ;  /  AAA
M i d d l e =  z e r o s ( f i b r e s , s i z e , e l e m ) ;  , , , , , , , , , , ,
T S x=  z e r o s ( f i b r e s , s i z e , e l e m ) ;  , , , , , , , , , , ,
B Sx= z e r o s ( f i b r e s , s i z e , e l e m ) ;  , , , , , , , , , , ,
Mdx= z e r o s ( f i b r e s , s i z e , e l e m ) ;  , , , , , , , , , , ,
%...............................................

. . . . ( C ) . . . .  G e o m e t r y  6 A r e a  f i b r e s  D e f i n i t i o n s  . . . A l r e a d y  D e f i n e d . . . .

, e n d  o f  VERY I N I T I A L  D E F IN I T IO N S  f o r  ( F IB R E S)

: . . s t a r t i n g  MAJOR T I M E - ST E P  LOOP,
t  . . s t a r t i n g  MAJOR T I M E - ST E P  LOOP,

f o r  i = l  : s i z e - 1  
% . . s t a r t i n g  MAJOR T I M E - ST E P  LOOP.
% . . s t a r t i n g  MAJOR T IM E - ST E P  LOOP.

. c h a n g i n g  c  D a m p i n g  ................ ( ( ( b e g i n  h e r e ) ) )

c =  0 . 2 1 3 8 *  m + 0 . 0 0 5 2 4  * k k k  ;  R e i l a y  D a m p i n g  F ro m  S e i s m o _ S t r u c t  
* c =  0 . 7 1 8 0 7 *  m ;  i  M a s s - P r o p o r t i o n a l  D a m p i n g  F r o m  S e i s m o _ S t r u c t
t c =  0 . 0 0 8 9 1 2  * k k k  ; % S t i f f n e s s - P r o p o r t i o n a l  D a m p i n g  F r o m  S e i s m o _ 3 t r u c t
% t o  b e  c o r r e c t e d .......................
%c= 1 . 7 1 8 0 7 *  m ;

f o r  q = l : D O F
h h h ( q , q )  = k k k ( q , q ) ;  t h i s  i s  t o  m a k e  t h e  k k k - m a t r i x  LATERAL??

e n d
%c= 0 . 2 3 1 *  m + 0 . 0 0 5 0 1  * h h h  ; I c a l c u l a t e d  f r o m  C h o p r a  E q u a t i o n  1 1 . 4 . 1 0

%   ( i i i )  D e f i n i n g  N e w M a r r k  ( C o n s t a n t s )  . . . .
g am a = 0 . 5 ;  b e t a = 0 . 2 5 ;  t h e  A v e r a g e  A c c e l e r a t i o n  M e t h o d . . . A A M .............— > ( u s e d )

g a m a  = 0 . 5 ;  b e t a = 0 . 1 6 6 ;  >t h e  L i n e a r  A c c e l e r a t i o n  M e t h o d . . . L A M .................( n o t  u s e d )
> b e t a = 0 . 1 6 6 ;

a = z e r o s ( D O F ) ; 
b = z e r o s ( D O F )  ;

a  = ( 1 / ( b e t a * d t ) ) *  m + ( g a m a / b e t a )  * c  ;
b  = ( l / ( 2 * b e t a ) )  * m + d t * ( ( g a m a / 2 * b e t a ) - 1 ) *  c  ;

Aa = g a m a / ( b e t a * d t )  ; Bb= g a m a / b e t a  ;  Cc= d t * ( 1 - ( g a m a / ( 2 * b e t a ) ) ) ;
Dd= 1 / ( b e t a * d t * d t ) ; E e =  l / ( b e t a * d t ) ;  F f =  1 / ( 2 * b e t a )  ;

. e n d  o f  . . . . c h a n g i n g  c  D a m p i n g  ...........................e n d  h e r e .

 ( i )  2 . 1

D P ( : , i )  = d P ( : , i )  + a  * u u ( : , l ) + b  * u u u ( : , i ) ;  r e s t  o f  D O F . . .
D P I : , i )  = d P ( : , i ) + 0 . 0 0 0 0 1 *  a  * u u ( : , i )  + 0 . 0 0 0 0 0 1 *  b  * uuu( : , i ) ;  s t a t i c

f o r  j = l :  D O F - r e s t
D P r e d ( j , i )  = D P ( j  + r e s t , i )  ;  B o u n d a r y  c o n d ’ n  1 s t  3 DOF = 0 . 0  r e s t r a i n e d . . . .
e n d

.................................. ( i i )  2 . 2
g e t  t h e  E l e l m e n t  s t i f f n e s s  m a t r i x  e s p e c i a l l y  m a d e  f o r  (TH IS) t i m e - s t e p  
a l r e a d y  o b t a i n e d  f r o m  ( P r e v i o u s )  t i m e - s t e p  o r  f r o m  
i n i t i a l  c o d n ’ s  ( k , k k , k k k )

.................................. ( i i i )  2 . 3
K = z e r o s ( D O F ) ;  ! D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP ............
% K r e d  w i l l  b e  d e f i n e d  n e x t  s t e p .......................
K = k k k  + A a  * c  + Dd * m ;
%K = k k k  + 0 . 0 0 0 0 0 1 *  Aa * c  + 0 . 0 0 0 0 1 *  Dd * m ;  % s t a t i c
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• s t e p  4 :  R e d u c e  g l o b a l  s t i f f n e s s  m a t r i x  w i t h  c o n s t r a i n t s
K r e d  = K;  % d e f i n i t i o n  o f  K r e d .....................
K r e d  ( : ,  3)  = [ J ;  K r e d ( 3 , : )  =  [ ] ;
Kred ( : ,  2)  = [ ] ;  K r e d ( 2 , : )  =  [ ] ;
K r e d  ( : ,  1)  = []  ; K r e d ( l ,  : )  =  [ ] ;

%  ( i v )  2 . 4
% g e t  D e l t a  d i s p l a c e m e n t  f r o m  C a p  s t i f f  m a t r i x .......................

d u r e d ( : , i )  = i n v ( K r e d )  * D P r e d ( : , i )  ;
A l s o  d u r e d  ( : ,  i  ) = K \  DP ( : ,  i ) ;

% i f  i = = l
% d u r e d ( : , l )  = I n i t i a l ( : , 1 ) ;  % t h i s  i s  t o  d e f i n e e  t h e  I n i t i a l  d i s p l a c e m e n t

%end

d u ( l : r e s t , i )  = 0 ;  i  d e f i n i g  d u  f o r  t h e  w h o l e  s t r u c t u r e . . .
d u ( r e s t + 1 : D O F , i )  = d u r e d ( : , i ) ;  d e f i n i g  d u  f o r  t h e  w h o l e  s t r u c t u r e . . .

%  (iv) 2 . 4 . a  -  2 . 4  . g » » >  FIBRE S LEVEL « « «

g e t  a  (n e w  E c o n c ,  E s t e e l ) f o r  t h e  n e x t  t i m e - s t e p  ....................
t h e n  g e t  a  ( n e w  k)  f o r  t h e  n e x t  t i m e - s t e p  .................

% ....................................................................................
% ....................................................................................
%  ( i v )  2 . 4 . a

g e t  D e l t a  s t r a i n s  & u p d a t e  t h e  s t r a i n s  f o r  NEXT t i m e - s t e p  

% ...........................
' C o n v e r t  d u ( . . . . ) f r o m  (GLOBAL) t o  LOCAL d i s p l a c m e n t  i n c r e m e n t s
4 C o n v e r t  d u ( . . . . ) f r o m  (GLOBAL) t o  LOCAL d i s p l a c m e n t  i n c r e m e n t s

C o n v e r t  d u ( . . . . ) f r o m  (GLOBAL) t o  LOCAL d i s p l a c m e n t  i n c r e m e n t s

e l e m e n t  l o o p ...............( 2 ) .................
j j-1;
f o r  e = l  : e l e m

d d u  ( 1 , e) = d u  (; j + 0 i )
d d u  ( 2 , e ) = d u  (; j  + 1 i )
d d u ( 3 , e ) = d u  (; j + 2 i )
d d u  ( 4 , e ) = d u  (; j  + 3 i )
d d u ( 5 , e ) = d u  (; j  + 4 i )
d d u  ( 6 , e ) = d u  (; j  + 5 i )

j j = j j + 3 ;
id
e n d  o f  e l e m e n t  l o o p  (2 )

4 e l e m e n t  l o o p ................( 3 ) ................
: e l e m e n t  l o o p ................( 3 ) ................
f o r  e = l  : e l e m

% f u n c t i o n  (2 )   g e t  t h e  D e l t a  s t r a i n s ..................
D e p s k  = z e r o s ( f i b r e s ,  1) ;  D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP ............

D e p s k  ] =  D e l t a s t r a i n s ( i , d u , L , y , f i b r e s ) ;  OR OR OR 
D e p s a  = ( d d u ( 4 , e ) - d d u ( 1 , e )  ) /  L ;

D f a i  -  ( d d u  ( 6 ,  e )  - d d u  ( 3 ,  e )  ) /  L ;

f o r  j = l  : f i b r e s
^ D e p s k ( j )  = D e p s a  -  ( D f a i  * y ( j ) ) ;
% D e p s ( j , i , e )  = D e p s k ( j ) ;

D e p s ( j , i , e )  = ( D e p s a )  + ( BBB * D f a i  ) * y ( j ) ; s To p u t  t h e  f o r m a l  e q u a t i o n

D e l t a a ( j , i , e ) =  D e p s a ;
D e l t a f ( j , i , e ) = D f a i ;

e n d
%    b a c k  t o  f u n c t i o n  ( 2 ) ............

f o r  j = l  : f i b r e s
e p s k ( j , i + 1 , e )  = D e p s k ( j )  + e p s k ( j , i , e ) ;  f u t u r e  U n i - a x i a l  s t r a i n s

e p s k ( j , i + 1 , e )  = D e p s k ( j ) 1 + e p s k ( j , i , e ) ;  f u t u r e  U n i - a x i a l  s t r a i n s
% I  c l a i m  B o t h  a r e  w o r k i n g  ( w i h  * & w i t h o u t  ’ )

e p s k  ( j  , i  + 1 ,  e )  = D e p s ( j , i , e )  + e p s k  ( j  , i ,  e )  ;  To p u t  t h e  f o r m a l  e q u a t i o n  

i f  e = = l
e p s e p s l ( j , i + 1 ) = e p s k ( j  , i  + 1 , 1) ;
D e p s e p s ( j ) =  D e p s k  ( j ) ;

D e l t a e p s a ( j , i ) = D e l t a a ( j , i , 1 ) ;
D e l t a f a i ( j , i ) = D e l t a f ( j ,  i ,  1 ) ;

e n d
i f  e = = 2

e p s e p s 2 ( j  , i + 1 ) = e p s k ( j , i + 1 , 2 )  ;
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D e l t a e p s a ( j , i )=  D e l t a a  ( j  ,  i , 2 )  ; 
D e l t a f a i ( j , i ) =  D e l t a f ( j , i , 2 )  ;

e n d
i f  e = = 3

e p s e p s 3 (j , i + 1 ) = e p s k (j  , i + 1 ,  3)  ;

e n d
e n d

%...... .................................. ( i v )  2 .  4 - b
1 g e t  s t r e s s e s  f r o m  C o n c r e t e  & S t e e l  m o d e l s .................
% i f  e = = 2  
%Top(2, i ,  2) 
l e n d

% f o r  j = l : f i b r e s
£ i f  T o p ( j , i , e )  < - 0 . 0 0 2
% Top(j , i , e )

% e n d  
%end
% f u n c t i o n  (3 )  ..............  i n  a  F u n c t i o n .M - f i l e ................

[ s i g m a k  s i g m a k S  D a m s i g  Tx Bx Cx Tx S  BxS MdS B r u  ) = G D s t r e s s e s (
, e ,  f i b r e s ,  s i z e , e p s k , c r u s h , E C , E S , F y , T o p , B o t t o m , C R U S H , T o p S , B o t t o m s , M i d d l e , B r u s h  ) ;  

f o r  j = l  : f i b r e s
. . . . u p  d a t i n g .
. . . . u p  d a t i n g .
. . . . u p  d a t i n g .

T o p  ( j  ,  i + 1 ,  e )  = T x ( j , i + l , e )  
B o t t o m  ( j  , i  + 1 , e )  =Bx ( j , i + l , e )  
C R U S H ( j , i + 1 , e )  = C x ( j , i + l , e )

B r u s h  ( j , i  + 1 , e )  = B r u ( j , i  + 1 , e )  ;  f o r  t h e  n e x t  i t e r a t i o n  f o r  t h e  F U N C t io n  G D s t r e s s e s .
a n d  a l s o  f o r  s e c t i o n  ( i v )  2 . 4 . d

T o p S ( j , i  + 1 , e )  = T x S ( j , i + 1 , e ) ;  . . . . u p ........................... d a t i n g ....
B o t t o m s ( j , i  + 1 , e ) = B x S ( j  , i  + 1 , e ) ; * . . . . u p  d a t i n g ..............................
M i d d l e  ( j , i  + 1 , e )  = M d S ( j , i  + 1 , e ) ;  % . . . . u p  d a t i n g ............................
e n d

%   D am ag e PART ....................
f o r  j = l :  f i b r e s
D a m s i g m a  ( j  , i + 1 ,  e )  = D a m s i g  ( j  , i + 1 ,  e )  ; t h i s  i s  t o  R e - D e f i n e  t h e  p a r a m e t e r . ,
e n d

. e n d  o f  D am ag e PART

I f o r  ] = l : f i b r e s  
% i f  T o p ( j , i + 1 , e )  < - 0 . 0 0 2  

% T o p ( j , i + l , e )

r e n d
i e n d

% T o p S ( : , i + 1 , e )  = T S x ( : , i + 1 , e ) ;  % . . . . u p  d a t i n g . , .......................
{ B o t t o m s ( : , i  + 1 , e ) = B S x ( : , i  + 1 , e ) ; I  . . . . u p  d a t i n g ............................
t M i d d l e ( : , i + 1 , e )  = M x( : , i + 1 , e ) ;  % . . . . u p  d a t i n g .............................

 TS x BSx M x ..............................t o  b e  a d d e d  . . . .
r  ' T x  '
1 T x  ( : ,  i + 1 ,  e ) ;

% .................................. ( i v )  2 . 4 . c
% g e t  D e l t a  s t r e s s e s  f o r  e v e r y  f i b r e .....................................
% D s ig m a k  = z e r o s ( f i b r e s , 1 ) ;  % D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP
% D s i g m a k S = z e r o s ( f i b r e s , 1 ) ;  % D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP

% .................................. ( i v )  2 . 4 .  d
% g e t  E c o n c  S E s t e e l  f o r  e v e r y  f i b r e  .......................
? E c o n c  = z e r o s ( f i b r e s , s i z e ) ; D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP

E s t e e l = z e r o s ( f i b r e s , s i z e ) ;  D e f i n e d  h e r e ,  i n s i d e  t h e  t i m e - s t e p  LOOP

f o r  j  = 1 :  f i b r e s

E c o n c ( j , i + l )  =  s i g m a k  ( j  , i  + 1 , e )  /  e p s k  ( j  , i + 1 ,  e )  ;
E s t e e l  ( j  , i  + 1 ) = s i g m a k S  ( j , i  + 1 ,  e )  /  e p s k  (j , i + 1 ,  e ) ;

. E x c e p t i o n s  f o r  E c o n c  S E s t e e l

■ i f  s t r a i n  i s  p o s i t i v e ,  (TENSION SID E o n l y ) ,  a n d  HAS NOT BEEN PLASTIC YET ( B r u s h = l  < 2 0 0 ) ,  t h e n  E c o n c  = EC 
% B u t  i f  i t  h a d  b e e n  P l a s t i c  ( B r u s h  = 2 0 0 ) ,  t h e n  E c o n c  MUST NOT = EC . . .
% i f  e p s k  ( j  , i + 1 ,  e )  > 0 S& B r u s h  ( j , i + 1 ,  e )  ==  1 
% E c o n c ( j , i + l )  = EC ;
% e nd
% i f  E s t e e l  ( j  , i  + 1 ) < 0
% E s t e e l ( j , i + 1 ) = 0 ;  t h i s  i s  t o  c a n c e l  o u t  t h e  E s t e e l  N e g a t i v e  ( n o n - r e a l )  v a l u e s . . .
%end

% E c o n c ( j , l )  = EC ; % CONSTANT s i n c e  i n i t i a l  t o  b e  c o r r e c t e d
i f  y o u  p u t  HIGH v a l u e s ,  e i g m a k  w i l l  n o t  b e  c o r r e c t  .......................

% E s t e e l ( j , l )  = E S ;  % CONSTANT s i n c e  i n i t i a l  % t o  b e  c o r r e c t e d .

% ................................ e n d ..o f .................E x c e p t i o n s  f o r  E c o n c  S E s t e e l  .............................

i f  e = = l



E E E 1 ( j , i + 1 ) = E c o n c ( j , i + 1 ) ;
E E E S 1 ( j , i + 1 ) = E s t e e l  ( j , i  + l ) ; 
s i g s i g l ( j , i + 1 ) =  s i g m a k ( j  , i + 1 , 1 ) ;  
s i g s i g S l ( j , i  + 1 ) =  s i g m a k S ( j , i  + 1 , 1) .

e n d
i f  e = = 2

E E E 2 ( j , i + 1 ) = E c o n c ( j  , i + 1 ) ;
E E E S 2 ( j , i + l ) = E s t e e l ( j , i  + 1 ) ; 
s i g s i g 2 (j , i + 1 ) =  s i g m a k ( j  , i + 1 , 2 ) ;  
s i g s i g S 2 ( j , i + l )  = s i g m a k S ( j  , i  + 1 ,  2 )  ,

e n d
i f  e = = 3

E E E 3 (j , i + 1 ) = E c o n c (j , i + 1 ) ;  
s i g s i g 3 ( j , i + l ) =  s i g m a k  ( j  , i + 1 ,  3)  ; 
s i g s i g S 3 ( j , i  + l ) =  s i g m a k S ( j , i  + 1,  3)  ,

( i v )  2 . 4 . e

* c o n s t r u c t  k -  m a t r i x . . .  f u n c t i o n  (4 )  t o  g e t  t h e  s t i f f n e s s  m a t r i x  
% C o n v e r t  k ( i , j ) f r o m  LOCAL t o  GLOBAL s t i f f n e s s  m a t r i x

% s t e p  1 :  c o n s t r u c t  e l e m e n t  s t i f f  m a t r i x . . .

k = e l e m s t i f f m a t r i x  ( i , f i b r e s , E c o n c , A c o n c , E s t e e l , A s t e e l , y , L ) ; 
k m ( : ,  : ,  e ) = k ;

.e n d  o f  e l e m e n t  l o o p . . . .  . (3 )  .
% . . . . . . . e n d  o f  e l e m e n t  l o o p  (3 )

. s t a r t  o f  e l e m e n t  l o o p ..............(4)

. s t a r t  o f  e l e m e n t  l o o p ..............(4)

s h i f t  = 0 ; 
f o r  e = l  : e l e m

s t e p 2 :  T r a n s f o r m  e l e m e n t  s t i f f n e s s  m a t r i c e s  t o  g l o b a l  c o o r d i n a t e s  NOT NEEDED) 
s t e p 3 :  C o m b i n e  e l e m e n t  s t i f f n e s s  m a t r i c e s  t o  f o r m  g l o b a l  s t i f f n e s s  m a t r i x

f o r  i i  = 1 : EDOF
f o r  j j  = 1 : EDOF
k k ( i i + s h i f t , j j + s h i f t , e )
e n d
e n d
s h i f t  = s h i f t  + 3 ;

km ( i  i , j  j  , e ) ;

..................e n d  o f  e l e m e n t  l o o p  ( 4 ) ................

..................e n d  o f  e l e m e n t  l o o p  ( 4 ) ................
k k k  =  s u m ( k k , 3 ) ;  '■ t h i s  i s  t o  s u m  t h e  e l e m e n t  m a t r i c e s  i n  ONE m a t r i x

f s 3 k ( : , i + l ) =  k k k ( 3 , : ) ;  « M om en t  p e r  u n i t  r o t a t i o o n . .
f s 2 k ( : , i + l ) =  k k k ( 2 , : ) ;  ■ S h e a r  f o r c e  p e r  u n i t  l a t e r a l  d i s p l
f s l k ( : , i + l ) =  k k k ( l , : ) ;  A x i a l  f o r c e  p e r  u n i t  ROCKING d i s p l

s t e p 4 :  S e t  t o  Z e r o s  B o u n d a r y  P o s i t i o n s  i n  g l o b a l  s t i f f n e s s  m a t r i x  w i t h  c o n s t r a i n t s
■ kkk ( 1 , :  

k k k ( 2 , :  
k k k  ( 3 ,  :

0 ;  k k k ( : , 1 )  -  0 ;  NNNNOOOOOO
0 ;  k k k ( : , 2 )  = 0 ;  NNNNOOOOOO
Q; k k k  < : , 3 )  = 0 ;  NNNNOOOOOO

.e n d  o f  c o n s t r u c t i n g  G l o b a l  s t i f f n e s s  m a t r i x .
.e n d  o f  c o n s t r u c t i n g  G l o b a l  s t i f f n e s s  m a t r i x .

( i v )  2 . 4 .  f

% g e t  f u t u r e  d i s p l a c e m e n t  g e t  u ( l : 6 , i + l )  
i  a l r e a d y  d e f i n e d  OUT s i d e  t h e  l o o p . . . .
u ( : , i + l )  = d u ( : , i )  + u ( : , i )  ; D i s p l a c e m e n t  u p d a t i n g .

i  ....................................( i v )  2 . 4  . g
% g e t  f s
- a l r e a d y  d e f i n e d  OUT s i d e  t h e  l o o p . . . .

d f  s  ( : , i ) = k k k  + d u  ( : , i ) ;
f s ( : , i + l l  = f s ( : , i )  + d f s ( : , i )  
f  s i  ( : ,  i + 1 ) = k k k  + u ( : , i + l )  ,

GET f u t u r e  R e s t o r i n g  I n c r e m e n t a l  f o r c e  

n o t  c o r r e c t  . . . . b a d

% ........................................(v )  ______ 2 . 5

d u u  ( : ,  i  = A a  + d u ( : , i )  -  Bb + u u ( : , i )  + Cc + u u u ( : , i )

- 9 -



I  ..................................... ( v i )  _______2 . 6
d u u u  ( : ,  i )  = Dd * d u ( : , i )  -  Ee * u u ( : , i )  -  F f  * u u u ( : , i )

%  ( v i i )   2 . 7
u u ( : , i  + l )  -  d u u ( : , i )  + u u ( : , i ) ;  V e l o c i t y  u p d a t i n g ...............
u u u ( : , i  + l )  = d u u u  ( : , i ) + u u u ( : , i ) ;  1 A c c e l e r a t i o n  u p d a t i n g . .

P P ( : , i ) =  k k k  * u ( : , i )  + c  * u u ( : , i )  + m * u u u ( : , i ) ;
P c a p  ( : ,  i ) = K * u ( : , i )  ;

% . . E N D  OF MAJOR TI M E - ST E P  LOOP..............................
% . . E N D  OF MAJOR TI M E - ST E P  LOOP..............................

e n d
% . . E N D  OF MAJOR T I M E - ST E P  LOOP..............................
% . . E N D  OF MAJOR T IM E - ST E P  LOOP..............................

 A d d i n g  t h e  STATIC c o n t r i b u t i o n  o f  G r a v i t y  t o
%  t h e  DYNAMIC s o l o t i o n  ........................................................
f o r  i = l :  s i z e

u T ( : , i ) =  u ( : , i ) + u G ( : , 1 ) ;  
f s T ( : , i )  =  f s ( : , i )  + G r a v i t y ( : , 1 ) ;

e n d

% p l o t ( u ( 3 2 , : ) , f s ( 5 , : ) , ' o - r ' ) ;  h o l d  o n ;  g r i d  o n ;  * THE h y s t e r e s i s  l o o p  
f p l o t ( e p s k ) ; g r i d  o n ;
% p l o t ( s i g m a k ! ; g r i d  o n ;  i

p l o t ( e p s e p s l ( 1 , ; ) , s i g s i g l ( 1 , + - r ' ) ; h o l d  o n ;  g r i d  o n ;
; p l o t ( e p s e p s 2 ( 3 , : ) , s i g s i g S 2 ( 3 , : ) , ' + - b ' ) ; h o l d  o n ;  g r i d  o n ;  
p l o t ( e p s e p s l ( 1 , : ) , s i g s i g S l ( 1 , + - r ' ) ; h o l d  o n ;  g r i d  o n ;

% p l o t ( t i m e ( i : 1 2 0 0 ) , k k , ' o - r ' ) ;

- p l o t ( u ( 1 7 , 1 : 7 2 1 ) , - f s ( 2 , 1 : 7 2 1 ) , ' - r ' ) ;  h o l d  o n ;  g r i d  o n ;  THE h y s t e r e s i s  l o o p . . . .
p l o t ( u ( 1 7 , : ) , - f s ( 2 , : ) , ' - r ' ) ;  h o l d  o n ;  g r i d  o n ;
i p l o t ( e p s e p s l ( 1 , 1 : 7 0 0 ) , s i g s i g l  ( 1 ,  1 : 7 0 0 ) , * - r ' ) ;  h o l d  o n ;  g r i d  o n ;
» p l o t ( e p s e p s l ( 1 , 1 : 7 0 0 ) , s i g s i g S l ( 1 , 1 : 7 0 0 ) , ' - r ’ ) ;  h o l d  o n ;  g r i d  o n ;

% p l o t ( u ( 3 2 , : ) , f s ( 3 2 , : ) , ' o - r ' ) ;  h o l d  o n ;  g r i d  o n ;  i  THE h y s t e r e s i s  l o o p . . . .
p l o t ( u ( 3 2 , : ) , V ( 1 , : ) , ' o - r ' ) ;  h o l d  o n ;  g r i d  o n ;  = THE h y s t e r e s i s  l o o p . . . .

% p l o t ( u ( 3 2 , : ) , P P ( 3 5 , : ) , ' o - r ' ) ;  h o l d  o n ;  g r i d  o n ;  % THE h y s t e r e s i s  l o o p . . . .  
i p l o t ( u ( 3 2 , : ) , P c a p ( 2 6 , : ) , ' o - r ' ) ;  h o l d  o n ;  g r i d  o n ;  THE h y s t e r e s i s  l o o p . . . .

..................... miTLmmmmrnmiimimininrrjnininrruni^^ ..................................
% ..................... mmmmmmmmmmranmmmmmmmmnvrmvanuimmrminiraTimnmmmitumrimnimm...................................

FUNCTIONS for the main code:

f u n c t i o n  [ y , A c o n c , A s t e e l ] = G e o m H i g h ( L , f i b r e s , w i d t h ,  b a r s l , b a r s 2 )

\  ............ f u n c t i o n  ( 1 )  t o  g e t  a r m s  d i s t a n c e s  y ( j ) a n d  A r e a  o f  e a c h  f i b r e  A ( j ) . . .

f o r  j  = l  : f i b r e s

w= w i d t h /  ( f i b r e s - 1 )  ;
y ( j ) =  -  ( ( ( f  i b r e s - l ) / 2 )  -  ( j  - 1 ) )  * w ; *, n e g .  s i g n

% y ( j ) =  ( ( ( f i b r e s - l ) / 2 ) -  ( j - 1 ) )  * w ;  $ POS s i g n

e n d
y:

f o r  j = l  : f i b r e s

A c o n c ( j )  = w * w i d t h ;
A s t e e l ( j ) =  0 . 0 ;

e n d

%    57  f i b r e s ................................................................................
A s t e e l  ( 3 ) =  0 . 0 0 0 2 4 5  * b a r s l  ; A s t e e l ( 5 4 ) =  A s t e e l  ( 3 ) ;
A s t e e l ( 4 ) =  0 . 0 0 0 2 4 5  * b a r s l  ; A s t e e l ( 5 5 ) =  A s t e e l ( 4 ) ;

A s t e e l ( 1 4 ) =  0 . 0 0 0 2 4 5  * b a r s 2  ; A s t e e l ( 4 3 ) =  A s t e e l ( 1 4 ) ;
A s t e e l ( 1 5 ) =  0 . 0 0 0 2 4 5  * b a r s 2  ;  A s t e e l ( 4 4 ) =  A s t e e l ( 1 5 ) ;

A c o n c ( 3 ) =  A c o n c ( 3 ) - A s t e e l ( 3 ) ;  A c o n c ( 5 4 ) =  A c o n c ( 5 4 ) - A s t e e l ( 5 4 ) ;
A c o n c ( 4 ) =  A c o n c ( 4 ) - A s t e e l ( 4 ) ;  A c o n c ( 5 5 ) =  A c o n c ( 5 5 ) - A s t e e l ( 5 5 ) ;
A c o n c ( 1 4 ) =  A c o n c ( 1 4 ) - A s t e e l ( 1 4 ) ;  A c o n c ( 4 3 ) =  A c o n c ( 4 3 ) - A s t e e l ( 4 3 ) ;  
A c o n c ( 1 5 ) =  A c o n c ( 1 5 ) - A s t e e l ( 1 5 ) ;  A c o n c ( 4 4 ) =  A c o n c ( 4 4 ) - A s t e e l ( 4 4 ) ;
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...........................................................  2 9  f i b r e s ...............................................................
% A s t e e l ( 3 )  = 0 . 0 0 0 4 9  * b a r s l  ;  A s t e e l ( 2 7 ) =  A s t e e l ( 3 ) ;  

' A s t e e l ( 9 ] =  0 . 0 0 0 4 9  * b a r s 2  ;  A s t e e l ( 2 1 ) =  A s t e e l ( 9 ) ;

A c o n c ( 3 ) =  A c o n c ( 3 ) - A s t e e l ( 3 ) ;  A c o n c ( 2 7 ) =  A c o n c ( 2 7 ) - A s t e e l ( 2 7 ) ;  
A c o n c ( 9 ) =  A c o n c ( 9 ) - A s t e e l ( 9 ) ;  A c o n c ( 2 1 ) =  A c o n c ( 2 1 ) - A s t e e l ( 2 1 ) ;

e n d

. . . . . . . .  . mmmmmmnunnunimiuimmmaimmimimmminnimmmmnuiimminmmnmimmmmm.

f u n c t i o n  k = e l e m s t i f f r a a t r i x  ( i , f i b r e s , E c o n c , A c o n c , E s t e e l , A s t e e l / y , L )

■ f u n c t i o n  (4 )  t o  g e t  t h e  k m a t r i x

EAT = z e r o s ( f i b r e s , 1) ;
EGT = z e r o s ( f i b r e s , 1) ;
E I T = z e r o s ( f i b r e s , 1)  ;
EA = 0 . 0 ;
EG = 0 . 0 ;
E l = 0 . 0 ;
%
EAT1 = z e r o s ( f i b r e s , 1 )
EGT1 = z e r o s ( f i b r e s , 1)
E I T 1 = z e r o s ( f i b r e s , 1)
EA1 = 0 . 0 ;
EG1 = 0 . 0 ;
E l l = 0 . 0 ;
%

+ E s t e e l  ( j , i  + 1 ) ‘ A s t e e l ( j ) ) ;

+ E s t e e l ( j , i + 1 ) ‘ A s t e e l ( j ) + y ( j ) ) ;  c o u l d  b e  NULLED t o  s e e  t h e  e f f e c t

f o r  j = l  : f i b r e s
E A T ( j ) =  ( E c o n c  ( j  , i + 1 )  ‘ A c o n c  ( j  )
% i f  y ( j ) < 0 
% y( j >— l*y( j>;
4 e n d
EGT ( j  ) =  ( E c o n c  ( j , i  + 1 ) ‘ A c o n c  ( j  ) + y  ( j  )

E I T  ( j  ) = ( E c o n c  ( j  , i  + 1) ‘ A c o n c  ( j  ) * y ( j  ) * y  ( j  ) 
EA = EA + EAT ( j  ) ,

E s t e e l  ( j , i + 1 ) ‘ A s t e e l ( j ) * y ( j ) * y ( j )  ) ;

EG = EG 
E l  = E l

+ E G T ( j )  
+ E X T ( j )

$  C o n s t a n t  E... .....................................
E l = 2 . l e l O ;
E s l =  1 .  7 5 e l 1;
E G T l ( j ) =  ( E l ‘ A c o n c ( j ) * y ( j ) + E s 1 ‘ A s t e e l ( j ) * y ( j ) ) ;  4 c o u l d  b e  NULLED t o  s e e  t h e  e f f e c t

E I T 1  ( j  ) =  ( E l  ‘ A c o n c  ( j ) * y ( j ) * y ( j )  + E s l  ‘ A s t e e l  ( j  ) ‘ y  ( j  ) ‘ y  ( j  ) ) ;
EA1 = EA1 + E A T 1 (j ) ;
EG1 = EG1 + EGT1 ( j )  ;
E l l  = E l l  + E I T 1  ( j )  ;

% .................................................................. C o n s t a n t  E .....................................

. lua Li i

EA

X ............................

0 -EG -EA 0 EG
0 1 2 * E I / ( L * L ) 6 * E 1 / L 0 - 1 2 * E I / ( L * L ) 6 * E I / L

-EG 6 * E I / L 4 * E I EG - 6 + E I / L 2 * E I
-E A 0 EG EA 0 -EG

0 1 2 ‘ E I / ( L * L ) - 6 * E I / L 0 1 2 + E I / ( L * L ) - 6 ‘ E I / L
EG 6 + E I / L 2 ‘ E I -EG - 6 + E I / L 4 + E I  ) ;

[ EA1 0 -EG1 -EA1 0 EG1
0 1 2 + E I 1 / ( L * L ) 6 * E I 1 / L 0 - 1 2 + E I 1 / (L+ L) 6 + E I 1 / L

-EG1 6 + E I 1 / L 4 * E I  1 EG1 - 6 + E I 1 / L 2 + E I 1
-EA1 0 EG1 EA1 0 -EG1

0 - 1 2 * E I 1 / ( L * L ) - 6 ‘ E I 1 / L 0 1 2 + E I 1 / ( L + L) - 6 + E I 1 / L
EG1 6 ‘ E I 1 / L 2 * E I 1 -EG1 - 6 * E I 1 / L 4 + E I 1

i k  = 0 . 7 5 *  k l  + 0 . 2 5  
%k = 0 . 5 *  k l  + 0 . 5  ‘

f u n c t i o n  D e p s k  = D e l t a s t r a i n s ( i , d u , L , y , f i b r e s )

HERE D I S P L ' S  u ( l , i + l ) S  u ( l , i )  ARE (IMPORTED) FROM 1ST PROGRAM (MAIN PROGRAM) 
f u n c t i o n  (2 ) t o  g e t  t h e  D e l t a  S t r a i n s

D e p s a  = ( d u ( 4 , i ) - d u ( 1 , i )  ) /  L ;
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D f a i  = ( d u ( 6 , i ) - d u ( 3 , i ) ) /  L;

f o r  j = l  : f i b r e s
D e p s k ( j )  = D e p s a  — y (j ) * D f a i ;

e n d

e n d

% , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
% , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
f u n c t i o n  [ s i g m a k  s i g m a k S  D a m s i g  Tx Bx Cx Tx S BxS MdS B r u )  = G D s t r e s s e s (
i , e ,  f i b r e s ,  s i z e , e p s k , c r u s h , E C , E S , F y , T o p , B o t t o m , C R U S H , T o p S , B o t t o m s , M i d d l e ,  B r u s h  )
% T h i s  f u c t i o n  t o  g e t  s t r e s s e s s  4 u p d a t e  t h e  s t r e s s e s s  f o r  NEXT t i m e - s t e p

% g e t  s t r e s s e s  f r o m  C o n c r e t e  S S t e e l  m o d e l s .................
% f u n c t i o n  (3)

. . .  T h i s  i s  t h e  2 e d  p r o g r a m  t o  o b t a i n  t h e  c o m p o n e n t s  o f  t h e  S t i f f n e s s  
M a t r i x  f r o m  t h e  F i b r e s .....................................

%  ( i )  g i v e  O - v a l u e s  f o r  s i g m a k  s i g m a k S  Tx Bx Cx TxS BxS MdS
t o  a v o i d  p r o g r a m  t e r m i n a t i o n  w h e n  C R U S H ( j , i , e ) = 10

TH IS  m e a n s  i f  NONE o f  t h e  f o l l o w i n g  L o o p s  i s  e n t e r e d ,
% b e c a u s e  o f  CRUSH =“ 1 0 ,

t h e s e  8 p a r a m e t e r s  a r e  g i v e n  a  0 - v a l u e  t o  PROCESS BACK t o  t h e
M a i n  P r o g r a m .  O t h e r w i s e ,  t h e  P r o g r a m  i s  t e r m i n a t e d . . .

f o r  j = l  : f i b r e s
i f  CRUSH ( j , i , e ) = =  10  
s i g m a k ( j , i + l , e )  =  0 . 0 ;
%' T e n s i o n '
T x ( j , i  + 1 , e ) =0 ; . . . . u p  d a t i n g ..............................
Bx ( j , i  + 1 , e ) = 0 ;  S . . . . u p  d a t i n g ............................
Cx ( j , i  + 1 , e ) “ CRUSH( j , i , e ) ; . . . . u p  d a t i n g .............................

B r u ( j , i + 1 , e )  = B r u s h (j , i , e ) ; • f o r  s e c t i o n  ( i v )  2 . 4 . d
e n d
e n d

% ..........................g i v e  0 - v a l u e s  f o r  D a m s i g
t o  a v o i d  p r o g r a m  t e r m i n a t i o n  w h e n  e n v e l o p e  i s  n o t  e n t e r e d

%   D a m a g e PART..................................................................
D a m s i g ( j , i + 1 , e )  = 0 ;

% . . .   ..................... e n d  o f  D a m a g e PART . ................. . ................

%  ( i i )  o b b t a i n  D e l t a  o f  U n i - a x i a l  F i b r e  S t r a i n  &
a n d  U n i - a x i a l  F i b r e  S t r a i n s . . .

% ............... MAJOR LOOP ......................

f o r  j = l  : f i b r e s  

% ............... MAJOR LOOP ......................

% . . . . ( A )  . . . . T e n s i o n  ....................................................................
% ................................................................
i f  e p s k  ( j , i + 1 ,  e )  > 0 ;
s i g m a k ( j , i + 1 , e )  = 0 . 0 ;  I  CANCELLED TH IS  STEP TEMPORARILY TO SEE HAVE k k k =
%sum o f  E = h i g h e r  v a l u e  s o t h a t  I  g e t  b e t t e r  H y s t e r e s i s  s h a p e ...........
, s i g m a k ( j , i + l , e )  = e p s k ( j , i + 1 , e ) + EC; % T H I S  I S  ALSO TEMPORRILY 

%' T e n s i o n '
T x ( j , i + 1 , e ) = T o p ( j , i , e ) ;  . . . . u p  d a t i n g ............................
B x ( j , i  + 1 , e ) “ B o t t o m ( j , i , e ) ;  . . . . u p  d a t i n g ............................
C x ( j , i  + 1 , e ) - C R U S H ( j , i , e ) ; . . . . u p  d a t i n g ............................

B r u ( j , i + l , e )  = B r u s h ( j , i , e )  ; % f o r  s e c t i o n  ) i v )  2 . 4 . d
e n d

% . . . . ( B )  . . . L i n e a r i t y  a t  ( l i n e a r  L o a d i n g ) ,  ( R e - l o a d i n g )  a n d  ( U n - l o a d i n g )  ............
% ..........................................................................
i f  e p s k ( j , i + 1 , e )  >= T o p ( j , i , e )  && e p s k ( j , i + 1 , e )  <= B o t t o m ! j , i , e )  && CRUSH( j , i , e ) < 1 0 ;

s i g m a k ( j , i + 1 ,  e )  = ( e p s k  ( j , i + 1 , c  
T o p ( j , i  + l , e )  = T o p ( j , i , e ) ;
B o t t o m ( j , i + 1 , e ) =  B o t t o m ( j , i , e )  
% ' L i n e a r i t y '
T x ( j , i + 1 , e )  = T o p (j , i + 1 , e )  ;
Bx ( j  , i  + 1 ,  e)  = B o t t o m (  j , i  + 1 ,  e )  ;  : 
Cx ( j ,  i + 1 ,  e)  “ CRUSH ( j ,  i  + 1 ,  e )  ;

B r u ( j , i + l , e )  =  B r u s h ( j , i , e )  ;

* i f  T o p ( j , i , e )  < - 0  
% T o p  ( j , i ,  e )

%e

: ) -  B o t t o m !  j ,  i ,  e )  ) * EC;
.............. k e e p  t h e  s a m e . . u p d a t e

% .............. k e e p  t h e  s a m e . . u p d a t e

. . .  . u p  d a t i n g ............................

. . . .  u p  d a t i n g ............................

. . . . u p  d a t i n g ............................

% f o r  s e c t i o n  ( i v )  2 . 4 . d

002

t h e  L i m i t s  ____  NNOO NNEEEEDD
t h e  L i m i r s  ..............  NNOO NNEEEEDD
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• e n d

e n d

. . . ( C )  . . . . N o n - l i n e a r t y ,  ( E n v e l o p e ) ...................................................
? ...........................................................................
i f  e p s k  ( j  , i  + 1 , e )  < T o p ( j , i , e )  4& e p s k  ( j  , i + 1 ,  e )  > c r u s h  S& CRUSH ( j  , i ,  e )  < 1 0 ;  

o m i t t e d  && e p s k  ( j  ,  i + 1 , e )  < e p s k ( j , i , e )

s i g m a k ( j , i + 1 , e )  =  ( - 6 . 7 e 0 9  * e p s k ( j , i + 1 , e )  ) - 1 . 3 0 e 0 7 ;  % T e m p o r a r y  
s i g m a k ( j , i  + 1 , e )  = ( - 7 . 0 e 0 9  * e p s k  ( j , i  + 1 , e )  ) - 4 . 4 0 e 0 7 ;  % T e m p o r a r y  

s i g m a k ( j , i + 1 , e )  = ( - 7 . 0 e 0 9  + e p s k ( j , i + 1 , e )  ) - 5 . 6 0 e 0 7 ;  T e m p o r a r y
s i g m a k ( j , i + 1 , e )  = ( - 6 . 5 e 0 9  * e p s k ( j , i + 1 , e )  ) - 5 . 1 7 e 0 7 ;  % T e m p o r a r y

T o p ( j ,  i  + 1 , e ) =  e p s k ( j , i + 1 , e ) ;  %........................ u p d a t e  t h e  L a n d M a r k  p o i n t . . . .
D i f  f  ( j  ,  i + 1 ,  e )  = s i g m a k  ( j , i + 1 ,  e )  / E C ;

B o t t o m t j ,  i + 1  , e ) =  T o p ( j , i + 1 , e ) - D i f f ( j , i + 1 , e ) ; % . . u p d a t e  t h e  L/M p o i n t . . . .

T x ( j ,  i + 1  , e ) = T o p ( j , i + 1 , e ) ; . . . . u p  d a t i n g
B x ( j ,  i + 1  , e ) “ B o t t o m ( j , i + 1 , e ) ; . . . . u p  d a t i n g
C x ( j , i + 1 , e ) “ CRUSH( j , i + 1 , e ) ; . . . . u p  d a t i n g . .

.......................................... D a m a g e  PART........................
D a m s i g ( j , i + 1 , e )  = s i g m a k ( j , i + 1 , e ) ; 

% ................................. e n d  o f  D a m a g e PART . . .

1  a  s i g n  f o r  N O N - L i n e a r i t y ... .............................
B r u s h ( j ,  i : s i z e + l  , e )  = 2 0 0  ; t h i s  i s  t o  ( p r o h i b i t )  E c o n c  f r o m  b e i n g  EC i n  ( i v )  2 . 4 . d
R r u ( j , i  + l , e )  = B r u s h ( j , i , e )  ; f o r  s e c t i o n  ( i v )  2 . 4 . d

................e n d  o f  a  s i g n  f o r  N O N - L i n e a r i t y  .............................

U f  T o p  ( j ,  i + 1 ,  e )  < - 0 . 0 0 2  
T o p ( j , i + 1 , e)  

%e 
k e n d  

> i  f  e = “ 2 ;
% i f  i > 1 0 0 ;

• ' E n v e l o p e . '
%i

B o t t o m ( 2 , i , 2 )  
e p s k  ( 2 , i  + 1 , 2 )
T o p  1 2 , i , 2)  

e n d ;

e n d

% . . . ( D )   N o n - l i n e a r  ( R e / U n - l o a d i n g )  ( B e y o n d  t h e  B o t t o m ) . .k..................................................................................
i f  e p s k ( j , i + 1 , e )  > B o t t o m ! j , i , e )  SS e p s k ( j , i + 1 , e )  < 0 . 0 0 0 0 0 0 0 3  SS CRUSH( j , i , e ) < 10 
s i g m a k ( j , i + 1 , e )  = 0 . 0 ;

B o t t o m ( j , i + 1 , e i = e p s k ( j , i  + 1 , e ) ; .......................... .................... u p d a t e  t h e  L a n d M a r k  p o i n t . .

T o p ( j , i + 1 , e ) = ( - 2 1 0 0 * B o t t o m ( j , i + 1 , e ) + 5 . 6 0  ) / ( —2 8 0 0 ) ;

B o t t o m ( j , i  + 1 , e ) = B o t t o m ( j  , i , e )  ;  k e e p  t h e  s a m e  p r e v i o u s  L a n d M a r k  p o i n t . .
T o p ( j , i  + l , e )  “  T o p ( j , i , e )  ;   k e e p  t h e  s a m e  p r e v i o u s  L a n d M a r k  p o i n t . .

T x ( j , i + 1 , e ) “ T o p ( j , i + 1 , e ) ;  . . . . u p  d a t i n g .............................
B x ( j  , i  + 1 ,  e ) “ B o t t o m ! j , i  + 1 , e ) ; . . . . u p  d a t i n g .............................
C x ( j , i  + 1 , e ) “ C R U S H ( j , i  + 1 , e ) ; % . . . . u p  d a t i n g .............................

B r u s h ! j ,  i : s i z e + l  , e )  = 2 0 0  ; : t h i s  i s  t o  ( p r o h i b i t )  E c o n c  f r o m  b e i n g  EC i n  ( i v )  2 . 4 . d
B r u ( j , i  + l , e )  = B r u s h ( j , i , e )  ;  f o r  s e c t i o n  ( i v )  2 . 4 . d

e n d

f . . . I E )   E n v e l o p e  c r u s h i n g

i  CRUSH( j , i : s i z e + 1 , e ) = 0 ;  t h i s  i s  t o  d e f i n e  CRUSH = 0 i f  NOT C r u s h i n g . .
% I  d o n ' t  t h i n k  t h i s  i s  u s e f u l . . .  i t  i s  a l r e a d y  d e f i n e d . . . .

i f  e p s k ( j , i + 1 , e )  <=  c r u s h  
s i g m a k ( j , i + l  : s i z e + 1 , e )  = 0 . 0 ;
CRUSH( j , i : s i z e + 1 , e ) = 1 0 ;  * t h i s  i s  t o  d e f i n e  CRUSH = 10 i f  C r u s h i n g . .
« ’ CRUSH'
T x ( j , i  + 1 , e ) “ T o p ( j , i + 1 , e ) ;  . . . . u p  d a t i n g ..............................
B x ( j , i  + 1 , e ) “ B o t t o m ! j , i  + 1 , e )  ;  . . . . u p  d a t i n g .............................
C x ( j  , i  + 1 ,  e ) “ C R U S H ( j ,  i  + 1 ,  e )  ; . . . . u p  d a t i n g ..............................

B r u s h l j ,  i : s i z e + l  , e )  = 2 0 0  ; k t h i s  i s  t o  ( p r o h i b i t )  E c o n c  f r o m  b e i n g  EC i n  ( i v )  2 . 4 . d
B r u ( j , i  + l , e )  = B r u s h ( j , i , e )  ; f o r  s e c t i o n  ( i v )  2 . 4 . d
e n d
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% .............. END MAJOR L O O P ................

f o r  j = l  : f i b r e s  
i f  T o p ( j , i + l , e )  < - 0 . 0 0 2  

T o p ( j , i + 1 , e )
% e

s e n d
e n d
% .............. END MAJOR LOOP ................

V -----------------------------------------------• ;
p l o t ( e p s k , s i g m a k , ' b - o ' ) ; h o l d  o n ;  g r i d  o n ;

% .................. ( i v )  ( U p d a t e )  STEEL FIBRE STRESS ................
% f o r  e a c h  ( F i b r e )  S e a c h  ( t i m e - s t e p )  . . .

% ......................................................................
e p s k S ( j , i + 1 , e )  = e p s k ( j , i + 1 , e ) ; % T h i s  i s  t o  kn ow  t h e y  a r e  t h e  s a m e% ......................................................................

i  ................START MAJOR LOOP ....................
f o r  j  =1  ; f i b r e s  
% ................START MAJOR LOOP ....................

. . . . ( A )  . . . L i n e a r  U n / R e - l o a d i n g  
%............................................
i f  e p s k  ( j  , i + 1 ,  e )  <= T o p S ( j , i , e )  && e p s k  ( j , i  + 1 ,  e)  >= B o t t o m s  ( j  , i ,  e )
s i g m a k S  ( j ,  i  + 1 ,  e )  = ( e p s k  ( j  , i + 1 ,  e ) - M i d d l e  ( j  , i ,  e)  ) * E S ;   M o d i f i c a t i o n

T o p S  ( j  , i + 1 ,  e )  = T o p S ( j , i , e ) ;  % ....................u p d a t e  t h e  L i m i t s
B o t t o m s ( j , i + 1 , e ) = B o t t o m s ( j , i , e ) ; - ....................u p d a t e  t h e  L i m i t s

T x S ( j , i + 1 , e ) “ T o p S (j , i , e ) ; % . . . . u p  d a t i n g ............................
B x S ( j , i  + 1 , e ) “ B o t t o m s ( j , i , e ) ; . . . . u p  d a t i n g ..............................
M d S ( j , i  + 1 , e ) “ M i d d l e ( j , i , e ) ; 1 . . . . u p  d a t i n g ............................
e n d

• . . . ( B )  . . . . N o n - l i n e a r i t y ,  T o p  E n v e l o p e ...............................
% ......................................................................
i f  e p s k  ( j  , i  + 1 ,  e )  > T o p S ( j , i , e )

s i g m a k S ( j , i  + 1 ,  e )  = F y ;
T o p S ( j , i + 1 , e ) = e p s k  ( j , i + 1 , e ) ; . . . u p d a t e  t h e  l a n d m a r k  p o i n t . .
D i f f S =  Fy  / E S ;
B o t t o m s ( j , i + 1 , e ) = e p s k ( j , i + 1 , e ) -  2 * D i f f S ;  - . . u p d a t e  t h e  L/M p t . .
M i d d l e  ( j , i + 1 , e ) =  ( T o p S (j , i + 1 , e ) +B o t t o m s ( j ,  i + 1 ,  e ) ) / 2 ;

T x S ( j , i + 1 , e ) = T o p S ( j , i + 1 , e ) ;  ? . . . . u p  d a t i n g
B x S ( j , i + 1 , e ) “ B o t t o m s ( j , i + 1 , e ) ; . . . . u p  d a t i n g
M d S ( j , i + 1 , e ) “ M i d d l e ( j , i + 1 , e ) ;  . . . . u p  d a t i n g ,
e n d

i  . . . ( C )  . . . . N o n - l i n e a r i t y ,  B o t t o m  E n v e l o p e . . .

i f  e p s k  ( j , i  + 1 , e )  < B o t t o m s ( j , i , e )  
s i g m a k S  ( j , i  + 1 ,  e )  = - F y ;
B o t t o m s ( j , i  + 1 , e ) = e p s k  ( j , i + 1 , e ) ;  % . . . u p d a t e  t h e  l a n d m a r k  p t . .
D i f f S =  F y  / E S ;
T o p S ( j , i + 1 , e ) “  e p s k  ( j , i  + 1 , e )  + 2 * D i f f S ;  . . u p d a t e  t h e  L/M p t . .
M i d d l e  ( j , i + 1 , e ) = ( T o p S (j , i  + 1 , e ) + B o t t o m S ( j , i + 1 , e ) ) / 2 ;

TxS ( j  , i  + 1 ,  e )  = T o p S  ( j  , i  + 1 ,  e )  ;  . . . . u p  d a t i n g .......................................M o d i f i c a t i o n  T op S  ( j  , i + 1 ,  e )  ; )
B x S ( j , i + 1 , e ) “ B o t t o m s ( j , i  + 1 , e ) ; 1 . . . . u p  d a t i n g ............................... M o d i f i c a t i o n  B o t t o m s ( j , i + 1 , e ) ; )  . .
M d S ( j , i  + 1 , e ) “ M i d d l e ( j , i + 1 , e ) ;  - . . . . u p  d a t i n g ............................... M o d i f i c a t i o n  M i d d l e ( j , i + 1 , e ) ; )
e n d
% ................END MAJOR LOOP
e n d
% ................END MAJOR LOOP

p l o t ( e p s k ( : , : , 2 ) , s i g m a k 2 ) , ' b - o ' ) ; h o l d  o n ;  g r i d  o n ;

e n d

rnirannurnnmiraimmuniTuii rriiruttinrrirnrruTtininî  ̂ ininminiTiiniiuiTinrrtrM nuruninirirninrnjn

. M o d i f i c a t i o n  T o p S ( j , i + 1 , e ) ; )  

. M o d i f i c a t i o n  B o t t o m s ( j  , i + 1 ,  e ) ; )  . .  
M o d i f i c a t i o n  M i d d l e ( j , i + 1 , e )  ; )  .

M i d d l e  ( j , i ,  e )

-  14 -



Appendix [B|

Sadeghi's  method to produce energy-based damage curve is applied. The global damage is 

calculated for a RC bridge column structure exhibiting an oscillation movement due to a cyclic 

loading effect. The steps for calculating the global damage from a hysteresis curve are written in 

a MatLab program, and lsted in this Appendix [B]:
c l e a r  a l l  ;  
c l  c ;

.......................................D e t e r m i n i n g  D a ma ge  f r o m  A r e a  U n d e r  H y s t e r e s i s  L o o p s . . . S a d e g h i ' s  M e t h o d ....................

.......................................D e t e r m i n i n g  D a ma ge  f r o m  A r e a  U n d e r  H y s t e r e s i s  L o o p s . . . S a d e g h i ' s  M e t h o d ....................
%  F r o m  S e i e s m o - S t r u c t ................ ....
% ....................................................................... ..................................................... P O SI T IV E  s i d e  ONLY...................
* .............................................................................................................................P O SI T IV E  s i d e  ONLY...................
% .............................................................................................................................P O S I T IV E  s i d e  O N L Y . . . _____

( i )    D e f i n i t i o n s

s i z e  = 9 3 5 ;  % 2 0 0 0  f o r  c v l . t x t
d t  = 0 . 0 1 ;
l o o p s  = 1 0 ;  1 5 0  f o r  c v l . t x t  t o  b e  t a k e n  f r o m  t h e  H y s t e r s i s  g r a p h  ( w i t h  + )

p e a k  = z e r o s ( l o o p s , 1 ) ;  
k j  = z e r o s ( l o o p s , 1 ) ;
a r e a  = z e r o s ( s i z e , 1 ) ;  i  v e r y  i m p o r t a n t  t o  d e f i n e  t h e  a r e a  . . . .
A = z e r o s  ( s i z e ,  1) 
a a  = z e r o s ( s i  z e ,  1 
D a ma ge = z e r o s ( s i z e ,  1 
u  = z e r o s ( s i z e , 1 
d i s p l  = z e r o s ( s i z e , 1 
f s  = z e r o s ( s i z e , 1) 
d i s p l u p d a r e  =  z e r o s ( s i z e , 1 ) ;
% .............. ( i i )   I m p o r t i n g  D i s p l a c e m e n t s  & B a s e  S h e a r  f o r c e s

* f o r  i = l :  s i z e
? u ( i )  = s i n ( i ) ;

f s ( i  = 0 . 0 4 * s i n ( i * 0 . 0 1 / s i n  ( i ) ) ,
e n d

a s p 6 _ H y s t e r e s i s  
a s p 3 _ H y s t e r e s i s  
a s p l O _ H y s t e r e s i s  

S A K A I _ H y s t e r e s i s  
H y s t e r e s i s _ Y a k u t

l o a d ( ' a s p l O _ H y s t e r e s i s . t x t  ’ ) ; L o a d i n g  a  t e x t  f i l e . . . .
f i d  = f o p e n ( ' a s p l O _ H y s t e r e s i s . t x t ' )  ; o p e n n i n g  t h e  f i l e  ( c v l . t x t )
CCC = t e x t s c a n ( f i d ,  ’ f  f  ' ) ;  s c a n i n g  t h e  f i l e  
f c l o s e ( f i d ) ; * c l o s i n g  t h e  f i l e

u  = C C C ( l ) ;  % t h i s  i s  f o r  t h e  l s t - c o l u m n  d a t a  f i l e

f s  = C C C { 2 ) ;  t h i s  i s  f o r  t h e  2 e d - c o l u m n  d a t a  f i l e

( i i i ) . . . . . .  D e t e r m i n i n g  t h e  N u m b e r  o f  V o r t i c e s  ( P e a k s ) ,

j = l ;
f o r  i = 2  : s i z e

i f  u ( i )  > 0 && f s ( i )  > 0  % O n l y  t h e  p o s i t i v e  q u a r t e r  o f  t h e  c u r v e s . . . .
i f  u ( i )  > u ( i - l )  && u ( i )  > u ( i + l )  % t h e  r e - t r e e i v i n g  P e a k  d i s p l a c e m e n t

p e a k ( j )  = i ;  % f i n d  t h e  p e a k s  n u m b e r s  ..................
j = j  +1 ; a  c o u n t e r  f o r  p e a k s  . . . .

e n d
e n d
c o u n t e r = j ;

e n d

f o r  j  = 1 :  c o u n t e r  
i f  j  < c o u n t e r

j  ;
p e a k  ( j )
e n d
e n d

. D e t e r m i n i g  t h e  a r e a  u n d e r  e a c h  l o o p  C u r v e

. . . . F i r s t .................. D e t e r m i n i n g  a r e a  o f  t h e  f i r s t  P e a k .............
f o r  i = 2  : p e a k ( l )

i f  u ( i )  > 0 &s f s ( i )  > 0 O n l y  t h e  p o s i t i v e  q u a r t e r  o f  t h e  c u r v e s . . . .
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i f  u ( i )  > u ( i - l )  SS u ( i ) < u ( p e a k ( l ) )  % O n l y  d i s p l  b e f o r e  t h e  1 s t  p e a k ..............
a r e a ( i )  «  f s ( i ) + (  u l i ) - u ( i - l )  ) ;  a r e a  f o r  e v e r y  s l o t . . .

d i s p l ( i )  = u ( i ) ;  % t h i s  i s  t o  g e t  t h e  c o r r e s p o n d i n g  ONLY
e n d

e n d
e n d
i s p l = d i s p l ;

r . . . . S e c o n d ............... D e t e r m i n i n g  a r e a  o f  A l l  P e a k s  E x c e p t  t h e  f i r s t  P e a k ............
j = 2 ;  i   i m p o r t a n t  t o  s t a r t  w i t h  ....................
f o r  i = 2  : s i z e

i f  u ( i )  > 0 S4 f s ( i )  > 0 O n l y  t h e  p o s i t i v e  q u a r t e r  o f  t h e  c u r v e s . . . .
i f  j  < c o u n t e r

i f  u ( i )  > u ( i - l )  SS u ( i )  > u ( p e a k ( j - l ) )  SS u ( i ) < u ( p e a k ( j ) )  O n l y  d i s p l  b e t w e e n  2 p e a k s

a r e a ( i )  = f s ( i ) M  u ( i ) - u ( i - l )  ) ;  % a r e a  f o r  e v e r y  s l o t . . .
d i s p l ( i I  = u ( i ) ;  % t h i s  i s  t o  g e t  t h e  c o r r e s p o n d i n g s  ONLY

e n d

i f  u ( i ) = =  u ( p e a k ( j ) )  % ..............  t o  U p d a t e  t h e  P e a k  l o o p  . . .
j = j + i ;

e n d
e n d

e n d
e n d

% ..........................( v ) .......................... a c c u m u l a t i n g  a r e a ..........................................................
i i - 1 ;
f o r  i = l  : s i z e

A ( i i + 1 ) =  A l i i )  + a r e a ( i ) ;  * t o t a l  a r e a
i i = i i + l ;
a a = A ( i + l ) ;

e n d

%  ..............  (v )  .................. d a m a g e  i n d e x ..............................
f o r  i = l  : s i z e

D a m a g e ( i )  = ( A ( i )  /  a a  ) ;
e n d

» .......................( v i )    r e - a r r a n g i n g  d i s p l a c e m e n t s  a r r a y s  t o  d o c u m e n t
%  f o r w a r d  d i s p l a c e m e n t s  ONLY... ........................................

B i g  = 0 ;
f o r  i  = 1 : s i z e

i f  d i s p l  ( i )  > B i g
B i g  = d i s p l  ( i ) ;

e n d
d i s p l u p d a t e ( i ) =  B i g ;

e n d

% ......................  ( v i i i )  . . . . R e - a r r a n g i n g  t i m e - s t e p  a r r a y s  t o  b e  t i m e  i n  s e c o n d s . . .

f o r  i  = 1 : s i z e
t i m e ( i )  = i  * d t ;

e n d

% .................................... ( v i i )   P l o t t i n g ......................... ............................ ............................
s p l o t l  t i m e .  D a m a g e ,  ' x - b ' ) ; h o l d  o n ;  g r i d  o n ;

% p l o t (  d i s p l u p d a t e ,  ' x - b ' ) ; h o l d  o n ;  g r i d  o n ;
■ p l o t !  d i s p l u p d a t e , D a m a g e ,  ' x - r ' ) ;  h o l d  o n ;  g r i d  o n ;  
i p l o t l  d i s p l ,  ' x - b ' ) ;  h o l d  o n ;  g r i d  o n ;  
i p l o t l  D a m a g e ,  ' x - r ' ) ;  h o l d  o n ;  g r i d  o n ;

f o r  i = 2  : s i z e
i f  d i s p l u p d a t e ( i ) = =  d i s p l u p d a t e ( i - 1 ) ;

D a m a g e ( i ) =  D a m a g e ( i - 1 ) ;
e n d

e n d

p l o t (  d i s p l u p d a t e , D a m a g e ,  ' x - g ' ) ;  h o l d  o n ;  g r i d  o n ;
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Appendix [C]

Local damage curves are obtained using a MatLab programming code according to the local 

stress concept. The code is listed in this Appendix [C].
c l e a r  a l l ;  
c l c ;

.D e t e r m i n i n g  LOCAL D a m a g e  f r o m  S t r e s s  D i a g r a m  R e s p o n s e  o f  t h e  S e i s m o - S t r u c t
.D e t e r m i n i n g  LOCAL D a m a g e f r o m  S t r e s s  D i a g r a m  R e s p o n s e  o f  t h e  S e i s m o - S t r u c t

( i )    D e f i n i t i o n s

s i z e  = 9 3 0 ;  % 90 1
d t  = 0 . 0 1 ;

% s t r e n g t h  f o r  c o r e
E l a s t i c  = - 0 . 0 0 4 0  ; - f o r  c o r e
U l t i m a t e  = - 4 . 4 5 e 7  ; f o r  c o r e  . . . .  N o t e ,  i f  U l t i m a t e  < s o m e  v a l u e s  i n  t h e  s t r e s s ,  » >  D a ma ge  w i l l  t u r n  N e g a t i v e

'S s t r e n g t h  f o r  c o v e r  .............................
^ E l a s t i c  = - 0 . 0 0 2  ;  % f o r  c o v e r ,  - 0 . 0 0 2

U l t i m a t e  = - 3 . 4 5 e 7  ;  f o r  c o v e r ,  - 3 . 4 5 e 7    N o t e ,  i f  U l t i m a t e  < s o m e  v a l u e s  i n  t h e  s t r e s s , » >  D a m a g e  w i l l  t u r n  N e g a t i v e

s t r a i n =  z e r o s ( s i z e , 1) 
s t r e s s =  z e r o s ( s i z e , 1) 
d i s p l  = z e r o s ( s i z e , 1) 
D a m a g e=  z e r o s ( s i z e , 1) , 

p e a k  = z e r o s ( s i z e ,  1) ;

( i i )  ......................I m p o r t i n g  S t r e s s - s t r a i n  d i a g r a m

a s p 6 _ c o r e 9 0
a s p 6 _ c o r e 8 0
a s p 6 _ c o r e 7 0
a s p 6 _ c o r e 6 0
a s p 6 _ c o v e r

a s p 3 _ c o r e 9 0
a s p 3 _ c o r e 8 0
a s p 3 _ c o r e 7 0
a s p 3 _ c o r e 6 0
a s p 3 _ c o v e r

a s p l 0 _ c o r e 9 0
a s p l 0 _ c o r e 8 0
a s p l 0 _ c o r e 7 0
a s p l 0 _ c o r e 6 0
a s p l 0 _ c o v e r

s t r e s s _ s t r a i n _ c o r e

SAKAI c o v e r  ? ?

l o a d ( ' a s p 6 _ c o r e 6 0 . t x t ' )  ; L o a d i n g  a  t e x t  f i l e . . . .
f i d  = f o p e n ( ' a s p 6 _ c o r f e 6 0 . t x t ' ) ;  o p e n n i n g  t h e  f i l e  
CCC = t e x t s c a n ( f i d ,  ' f  f  f  ' ) ;  % s c a n i n g  t h e  f i l e
f c l o s e ( f i d ) ;  % c l o s i n g  t h e  f i l e

T i m e  = C C C i l } ;  t h i s  i s  f o r  t h e  l s t - c o l u m n  d a t a  f i l e

s t r a i n  = C C C ( 2 ) ;  t h i s  i s  f o r  t h e  2 e d - c o l u m n  d a t a  f i l e

s t r e s s  = C C C ( 3 } ;  t h i s  i s  f o r  t h e  3 e d - c o l u m n  d a t a  f i l e

( i i )  . . . . . . . .  I m p o r t i n g  D i s p l a c e m e n t  d i a g r a m

l o a d ( ' D i s p l a c e m e n t l . t x t ' )  ;
f i d  = f o p e n ( ' D i s p l a c e m e n t l . t x t ' ) ;  
CC = t e x t s c a n ( f i d ,  ' I f  I f  ' ) ;  
f c l o s e ( f i d ) ;

% L o a d i n g  a  t e x t  f i l e .  
% o p e n n i n g  t h e  f i l e  
% s c a n i n g  t h e  f i l e  
% c l o s i n g  t h e  f i l e

T i m e  = C C { 1 ) ;  

d i s p l  = C C ( 2 ) ;

■ t h i s  i s  f o r  t h e  l s t - c o l u m n  d a t a  f i l e  

t h i s  i s  f o r  t h e  2 e d - c o l u m n  d a t a  f i l e

( i i i )  D e t e r m i n i n g  t h e  V o r t i c e s  ( i t e r a t i o n l  s  p e a k ( j )  )
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j - i ;
f o r  i = 2  : s i z e - 1

i f  s t r a i n  ( i )  < E l a s t i c  % t h i s  i s  t o  g o  t o  t h e  n o n - l i n e a r  s t r a i n s  o n l y  
s t r e s s ;

i f  s t r e s s ( i - l )  > s t r e s s ( i )  && s t r e s s ( i + l )  > s t r e s s ( i )  s c a n n i n g  f o r  t h e  p e a k  s t r e s s e s . .  
p e a k ( j )  = s t r e s s ( i ) ;  f i n d  t h e  p e a k  s t r e s s  v a l u e . .
i t e r a t i o n l ( j ) = i ;  ; f i n d  t h e  p e a k  s t r e s s  ( f i r s t )  i t e r a t i o n . . . ( i t e r a t i o n l ) . .  .

j = j + l  ; % a  c o u n t e r  f o r  p e a k s  . . . .
e n d
c o u n t e r = j - l ;
e n d

e n d

f o r  j - 1 :  c o u n t e r  
i f  j  < c o u n t e r

j :
e n d
e n d

% ...............( i v )  f i n d  t h e  p e a k  s t r e s s  ( f i r s t )  i t e r a t i o n . . . .  ( i t e r a t i o n 2 )  . . .
% i t e r a t i o n l ( c o u n t e r + 1 ) =  s i z e ;

f o r  j  = l  : c o u n t e r - 1

f o r  i =  i t e r a t i o n l ( j ) : i t e r a t i o n l ( j + 1 ) 
i f  s t r e s s ( i )  < p e a k  ( j  + 1)  $ d e t e r m i n i n g  a l l  s t r e s s e s  o n  t h e  e n v e l o p  o n l y

i t e r a t i o n 2 (j ) = i  ; 
e n d  

e n d
e n d

% . . . . . . . .  ( i v )  ..........................D e t e r m i n i g  t h e  ALL E n v e l o p e  s t r e s s e s  ............

d i f f =  c o u n t e r - j ; % t h i s  i s  t h e  d i f f e r e n c e  b e t w e e n
f o r  j = l  : c o u n t e r - 1

% t h i s  i s  f o r  t h e  e n v e l o p  s t r e s s e s  b e t w e e n  i t e r a t i o n s  1 & 2 f o r  t h e  
% s a m e  j  : 

f o r  i = i t e r a t i o n l  ( j  ) ; i t e r a t i o n 2  ( j )
e n v e l o p ( i )  = s t r e s s  ( i )  ;
s t a t i o n  ( j )  =  e n v e l o p  ( i ) ;  r e c o r d i n g  t h e  l a s t  e n v e l o p  i n  t h e  l o o p  j .  
e n d

% t h i s  i s  f o r  t h e  e n v e l o p  s t r e s s e s  b e t w e e n  i t e r a t i o n  2 o f  j  S
% i t e r a t i o n  1 o f t  t h e  n e x t  l o o p  j + 1  .............. w h i c h  h a s  c o n s t a n t - v a l u e s :
f o r  i = i t e r a t i o n 2 ( j ) : i t e r a t i o n l ( j + 1 )
e n v e l o p ( i )  * s t a t i o n ( j ) ;  % d e f i n i n g  t h e  l a s t  e n v e l o p  i n  l o o p  j
% a s  c o n s t a n t  f o r  ALL n o n - e n v e l o p  s t r e s s e s .
e n d

e n d

% t h i s  i s  f o r  t h e  e n v e l o p  s t r e s s e s  o f  t h e  L a s t  l o o p  j = c o u n t e r - l  
f o r  i = i t e r a t i o n l ( c o u n t e r )  : s i z e  
e n v e l o p ( i )  = s t a t i o n (c o u n t e r - 1 ) ;

e n d

%   D e t e t r m i n r e  t h e  d a m a g e  . . . .

f o r  i = l  : s i z e

D a m a g e ( i )  1 -  ( e n v e l o p ( i )  /  U l t i m a t e  ) ;
i f  e n v e l o p ( i )  = =  0 

D a m a g e d )  = 0 ;
e n d

% .................................. ( v i i ) ...........................P l o t t i n g

p l o t (  T i m e ( 1 : s i z e )  , D a m a g e ( 1 : s i z e )  , ' x - g ' ) ;  h o l d  o n ;  g r i d  o n ;
% k j = u ( p e a k ( : ) ) ;

% p l o t ( u , f s , ' x - b ' ) ;  h o l d  o n  ; g r i d  o n ;

% p l o t  ( p e a k , ' o - b '  ) ;
% p l o t  ( k j , ' o - b ' ) ;

i p l o t ( e n v e l o p ) ;
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Appendix [D|

Definition o f  the dissipating yield energy for this purpose will require computing the 

accumulating dissipated yield energy in an ascending-order basis, i.e. the dissipating yield 

energy values must be summed up in an order that is corresponding to an ascending order o f  the 

displacement values. This has been performed by processing the output data attained from the 

dynamic analysis for the column, and have them written in a MatLab program as listed in this 

Appendix [D].

c l e a r  a l l ;  
c l c ;

. D e t e r m i n i n g  Y i e l d  E n e r g y  f r o m  A r e a  U n d e r  H y s t e r e s i s  L o o p s  
• D e t e r m i n i n g  Y i e l d  E n e r g y  f r o m  A r e a  U n d e r  H y s t e r e s i s  L o o p s
...........................F r o m  S e i e s m o - S t r u c t ... ............................... ..............
.....................................................................................PO SI T IV E  s i d e  ONLY...................

.P O S I T I V E  s i d e  ONLY.

.UPPER s i d e  ONLY____
•UPPER s i d e  ONLY____

D e f i n i t i o n s

i t e r  = 1 0 9 5 9 ;  % SAKAI E x p e r i m e n t
i t e r  -  9 6 2 7 ;  % SAKAI E x p e r i m e n t

d t  = 0 . 0 0 5 ;

u  =  z e r o s t i t e r , 1 ) ;  i  x - d i s p l a c e m e n t s ................
f s  = z e r o s ( i t e r , 1 ) ;  % B a s e  s h e a r  f o r c e s . . . .
u u = z e r o s ( i t e r , 1 ) ;  7 u p d a t e d  x - d i s p l a c e m e n t
u d u = z e r o s ( i t e r ,  1 ) ;  't u p d a t e d  x - v e l o c i t i e s , , , , , , , , , ,  t h i s  i s  t o  n u l l  u n - r e q u i r e d  ( n e g a t i v e )  v a l u e s .  
f s u = z e r o s  ( i t e r , 1 ) ;  u p d a t e d  B a s e  s h e a r  f o r c e s , , , , ,  t h i s  i s  t o  n u l l  u n - r e q u i r e d  ( n e g a t i v e )  v a l u e s .

( i i )   I m p o r t i n g  D i s p l a c e m e n t s  4 B a s e  S h e a r  f o r c e s  & V e l o c i t i e s ,

f o r  i = l : i t e r
■ u ( i ) = s i n ( i ) ;

f  s ( i ) = 0 . 0 4 * s i n ( i * 0 . 0 1 / s i n  ( i ) ) ,
e n d

a s p 6 _ H y s t e r e s i s  
a s p 3 _ H y s t e r e s i s  
a s p l O _ H y s t e r e s i s  

S A K A I _ H y s t e r e s i s  
H y s t e r e s i s _ Y a k u t

l o a d ( 1 S a k a i _ D i s p l _ H y s t e r s i s _ r o t . t x t ' )  ; i  L o a d i n g  a t e x t  f i l e . . . .
l o a d ( ' S a k a i _ D i s p l _ H y s t e r s i s _ r o t _ i s o l a t i o n 3 . t x t ' )  ; * L o a d i n g
a  t e x t  f i l e . . . .

% t h e  o r i g i n a l  H y s t e r e s i s  i s  G i v e n  a  f l i p p e d  o v e r  G r a p h  f o r  a  m o r e  c o n v e n i e n t  H y s t e r e s i s  l o o k
f i d  = f o p e n ( ' S a k a i _ D i s p l _ H y s t e r s i s _ r o t . t x t ' ) ;  o p e n n i n g  t h e  f i l e
% f i d  = f o p e n ( ' S a k a i _ D i s p l _ H y s t e r s i s _ r o t _ i s o l a t i o n 3 . t x t ' ) ;  \  o p e n n i n g  t h e  f i l e
CCC = t e x t s c a n ( f i d ,  ' f  f  ' ) ;  s c a n i n g  t h e  f i l e
f c l o s e ( f i d ) ;  i  c l o s i n g  t h e  f i l e
1 = 4 . 4 1 ;
u  = C C C ( 1 ) * L ;  l s t - c o l u m n  d a t a  f i l e  R e l a t i v e - r o t a t i o n * c o l u m n  H g h t =  R e l a t i v e - D i s p l a c e m e n t
n  = C C C | 1 ) * L ;  * l s t - c o l u m n  d a t a  f i l e  R e l a t i v e - r o t a t i o n * c o l u m n  H g h t =  R e l a t i v e - D i s p l a c e m e n t
f s  = C C C ( 2 } / L ;  2 e d - c o l u m n  d a t a  f i l e  B a s e M o m e n t / c o l u m n  H g h t = B a s e S h e a r

. v e l o c i t y  t o  c h e c k  t h e  + v e  a n d  - v e  q u r t e r s .

l o a d ( ' S a k a i _ V e l o c i t y . t x t 1) ; L o a d i n g  a  t e x t  f i l e . . . .
l o a d  ( ' S a k a i _ V e l o c i t y _ i s o l a t i o n 3 . t x t ' )  ; L o a d i n g  a  t e x t  f i l e . . . .

f i d  = f o p e n ( 1S a k a i J V e l o c i t y . t x t ' ) ;  o p e n n i n g  t h e  f i l e  
i f i d  = f o p e n ( ' S a k a i _ V e l o c i t y _ i s o l a t i o n 3 . t x t ' ) ;  o p e n n i n g  t h e  f i l e
CC = t e x t s c a n ( f i d ,  ' f  f  ' ) ;  s c a n i n g  t h e  f i l e  
f c l o s e ( f i d ) ;  ? c l o s i n g  t h e  f i l e

t i m e  = CC{ 1 ) ;  t h i s  i s  f o r  t h e  l s t - c o l u m n  d a t a  f i l e

u d  = —CC { 2 } ;  t h i s  i s  f o r  t h e  2 e d - c o l u m n  d a t a  f i l e  . . . .  G i v e n  - v e  s i g n  s i n c e
■ t h e  o r i g i n a l  H y s t e r e s i s  i s  G i v e n  a  f l i p p e d  o v e r  G r a p h  f o r  m o r e  a  c o n v e n i e n t  H y s t e r e s i s  l o o k
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% ( i i i -1) . . . S e n d i n g  O f f  a l l  U n - L o a d i n g  D i s p l a c e m e n t s  w i t h i n  t h e  P o s i t i v e  
Q u a r t e r  ONLY............

iter

i f  u ( i )  > 0 && f s  ( i )  
i f  u ( i  + l )  < u ( i )  

u ( i )  = 0 ; 
u d u n l o a d e d ( i ) = u d ( i ) ; 

e n d

% O n l y  t h e  p o s i t i v e  q u a r t e r  o f  t h e  c u r v e s . . . .
% O n l y  t h e  r e - t r e e v i n g  U N - L o a d i n g  d i s p l a c e m e n t s ,

% t h i s  i s  s e n d i n g  d i s p l a c e m e n t s  O F F ......................
% t h i s  i s  t h e  u n - l o a d e d  v e l o c i t y  o n l y

e n d

% ...................... ( i i i - 2 )    a l l  r e - L o a d i n g  D i s p l a c e m e n t s  w i t h i n  t h e  P o s i t i v e
Q u a r t e r  ONLY............

f s r e l o a d e d =  z e r o s ( i t e r , 1 ) ;  
u d r e l o a d e d ”  z e r o s ( i t e r , 1 ) ;  
f o r  i =  1 :  i t e r

i f  u ( i )  > 0 SS f s  ( i )  > 0  
i f  u ( i + l )  > u ( i )

% O n l y  t h e  p o s i t i v e  q u a r t e r  o f  t h e  c u r v e s . ,  
O n l y  t h e  r e - L o a d i n g  d i s p l a c e m e n t s , , ,

u d r e l o a d e d ( i ) = u d ( i ) ,  
f s r e l o a d e d ( i )  =  f s ( i ) ,  

e n d

% t h i s  i s  t h e  R E - l o a d e d  v e l o c i t y  o n l y  i n  t h e  f i r s t  q u a r t e r . ,  
i  t h i s  i s  t h e  R E - L o a d e d  f o r c e s  m a t r i x  o n l y  i n  t h e  f i r s t  q u a r t e r

, < iv ) . R e - O r d e r i n g  t h e  D i s p l a c e m e n t s  i n  a n  A s c e n d i n g  O r d e r

f o r  j j =  1 :  i t e r

s m a l l  = 1 0  ; t  t h e  l a r g e s t  p o s s i b l e  v a l u e  f o r  a  v i a - d u c t  l a t e r a l  d i s p l a c e m e n t . . .
i f  u ( j j )  > 0 S i  f s ( j j )  > 0  i  O n l y  t h e  p o s i t i v e  q u a r t e r  o f  t h e  c u r v e s . . . .

f o r  i i =  1 : i t e r
i f  u ( i i )  > 0 s s  f s ( i i )  > 0  % O n l y  t h e  p o s i t i v e  q u a r t e r  o f  t h e  c u r v e s . . . .

i f  u ( i i )  < s m a l l  
s m a l l  = u ( i i ) ;  
s m a l l l ( i i ) =  s m a l l ;  
q = i i ;  

e n d

e n d
e n d

u u ( j j )  = s m a l l ;  
u o r d e r ( j j ) = u ( q ) ; 
u ( q )  = 1 0 0 0 ;  
q ;

u d u ( j j ) = u d ( q ) ; 
f s u  ( j j ) =  f s ( q ) ;

e n d

t h i s  i s  t h e  n e w  r e - o r d e r e d  D i s p l a c e m e n t  m a t r i x ,  a l s o  u u ( j j ) =  u ( q ) = s m a l l
% t h i s  i s  t h e  d i s p l  i n  o r d e r
% u s e d  v a l u e s  o f  o l d  m a t r i x  m u s t  b e  s e n t  o f f  .................
% t h i s  i s  t h e  n e w  o r d e r i n g

% t h i s  i s  t h e  c o r r e s p o n d i n g  n e w  r e - o r d e r e d  V e l o c i t y  m a t r i x . .
t h i s  i s  t h e  c o r r e s p o n d i n g  n ew  r e - o r d e r e d  R e s t o r i n g  a n d  Y i e l d  f o r c e s  m a t r i x . .

e n d

...................... (v )   t h e  N u l l e d  U p d a t e d  D i s p l a c e m e n t s  u u  n e e d  t o  b e
  r e - w r i t t e n  a s  t h e  l a s t  v a l u e  u u ( i - l ) ......................

% .................................................................
f o r  i = 2  : i t e r

i f  u u ( i ) ==  0
u u ( i ) = u u ( i —1 ) ;

e n d
e n d

% ...................... ( v i )   Y i e l d  E n e r g y   U U s ........................................................
% .................................................................
% .................. D e c l a r a t i o n  o f  f o r c e  & E n e r g y  c o m p o n e n t s  ...........

U U s = z e r o s ( i t e r ,  1) ;
c o u n t f s = z e r o s ( i t e r ,  1 ) ;  a c c u m u l a t e d  E n e r g y  . . .

%  E n e r g y  c o m p o n e n t s ... ..........
% N u m e r i c a l  i n t e g r a t i o n  f o r  s t i f f n e s s  f o r c e - v e l c i t y  r e l a t i o n ( k * u - v s - u d )  t o  o b t a i n  E n e r g y  . . .
% i . e .  L i n e a r  o r  n o n - l i n e a r  r e l a t i o n s . . . .

f o r  i = 2  : i t e r

c o u n t f s ( i )  = c o u n t f s ( i )  + f s u ( i )  * u d u ( i )  * d t ;  r e - o r d e r e d  i n  a n  a s c e n d i n g  d i s p l a c e m e n t  o r d e r
s c o u n t f s ( i )  = c o u n t f s ( i )  + f s r e l o a d e d ( i )  * u d r e l o a d e d ( i ) * d t ;  n o t  r e - o o r d e r e d
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U U s ( i )  = U U s ( i - l )  + c o u n t f s ( i ) ;
* C h o o s e  e i t h e r  o n e  ( r e - o r d e r e d ,  o r  N o t  r e - o r d e r e d ) t o  g e t  w h a t  y o u  w a n t  

e n d

-------------------------------------------------------------
. . . d e c l a r a t i o n s  f o r  G r a p h i c s  ............

g r i d  o n ;
p l o t ( n ( 1 : 1 0 9 5 0 ) , f s ( 1 : 1 0 9 5 0 ) , ' m - ' ) ;  ' t h i s  i s  t h e  H y s t e r e s i s  

p l o t ( u u , U U s , ' m - ' ) ; h o l d  o n ;

p l o t ( u u ( 1 : 3 9 5 0 ) , U U s ( 1 : 3 9 5 0 )  , ' m - * ' ) ; h o l d  o n ;  
p l o t ( t i m e ( 1 : 1 0 9 5 9 )  , U U s ( 1 : 1 0 9 5 9 ) ,  ' m - ' ) ; h o l d  o n ;  

y l a b e l ( '  K e n i t i c  S s t r a i n  e n e r g y  U =  UK+ UUS1 , D a m p i n g  a n d  Y i e l d  U U S 2 ' ) ;

t i t l e ( ' A c c u m u l a t e d  Y i e l d  E n e r g y  D i s t r i b u t i o n  ' ) ;

x l a b e l ( ' x - D i s p l a c e m e n t  ( m ) ' ) ;  
x l a b e l f ' T i m e  t  ( s e c )  ' ) ;  

y l a b e l ( '  A c c u m u l a t e d  Y i e l d  E n e r g y  (N .m) ' ) ;
g r i d  o n ;

•End o f  P r o g r a m
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