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Summary

This work is focused on the numerical modelling of fluid-structure interaction in three 
dimensions. Both internal and external laminar flow around flexible bodies are considered.

The fluid flow simulated is based on the incompressible Navier-Stokes equations and 
the general focus is on laminar Newtonian flow. The streamline upwind/ pressure stabil­
ising Petrov-Galerkin (SUPG/PSPG) method is employed to achieve a stable low order 
finite element discretisation of the fluid, while the solid is discretised spatially by a standard 
Galerkin finite element approach. The behavior of the solid is governed by Neo-Hooke elas­
ticity. For temporal discretisation the discrete implicit generalised-a method is employed 
for both the fluid and the solid domains. The motion of the fluid mesh is solved using an 
arbitrary Lagrangian-Eulerian (ALE) scheme employing a nonlinear pseudo-elastic mesh 
update method. The fluid-solid interface is modelled using a finite element interpolation 
method that allows for non-matching meshes and satisfies the required conservation laws.

The resulting sets of fully implicit strongly coupled nonlinear equations are then de­
composed into a general framework consisting of fluid, interface and solid domains. These 
equations are then solved using different solution techniques consisting of strongly coupled 
monolithic Newton and block Gauss-Seidel methods as well as a weakly coupled novel stag­
gered scheme. These solvers are employed to solve a number of three dimensional numerical 
examples consisting of:

External flow:

•  a soft elastic beam fixed at both ends

• a thin cantilever plate
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4 Summary

Internal flow:

• a slender flexible pipe fixed at both ends

• a slender pipe with a ’weak patch’

• a slender pipe fixed at one end

The criteria of rate of convergence, stability, accuracy and computational cost are used 
to determine the relative suitability of each solver. Where possible, these strategies are 
also compared to available references or analytical solutions.
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Chapter 1

Introduction

1.1 Introduction to FSI

The study of fluid-structure interaction (FSI) may be applied to a wide variety of situations 
occurring in both nature and controlled environments. Some physical phenomena which 
merit numerical simulation include:

Aerospace engineering: The study of flutter and vortex induced vibration is essential to 
the stability of aircraft in flight.

Civil engineering: Natural wind flow around slender structures such as lattice towers, 
bridges, sky scrapers and power grids may sometimes result in small oscillating deflections 
which grow larger over time. Such oscillations occurring at the resonant frequency of the 
structure may result in catastrophic failure.

Mechanical engineering: Internal flow problems such as those found in internal combustion 
engines require careful simulation during design to ensure optimum performance.

Biomedical engineering: The human body contains many examples of fluid-structure in­
teraction, particularly when dealing with blood flow. The design of biomedical implants 
such as a replacement heart valve is heavily dependent on the accurate simulation of the 

impact of the apparatus on blood flow in the area.

In general, the term fluid-structure interaction may be said to describe the strongly 
coupled behavior of a fluid flowing around a solid object that exerts a traction force on

9



10 CHAPTER 1. INTRODUCTION

the body, resulting in a deflection of the solid which in turn affects the fluid flow through 
moving boundary conditions. While solutions of individual problems governed by fluid 
and solid mechanics are standard, the solution of coupled FSI systems is currently an 
area of intense research. With the continuous advancement of computational resources 

available resulting in the steady growth of computer-aided engineering (CAE), many new 
applications of numerical approximation techniques to computational simulation of FSI 
have been developed in the last decade. It should be noted that while the computational 
implementation techniques may be new, many of the numerical iteration techniques they 
are based on, such as the Newton-Raphson method, are not. This work employs solution 
techniques developed and implemented primarily in two dimensions by Prof. D. Peric 
and Dr. W. Dettmer. Publications of these solution strategies include: the monolothic 
Newton method, see e.g. Dettmer and Peric [16, 19, 20, 21, 51, 22], the block Gauss-Seidel 
procedure, see e.g. Joosten et al [39, 40], and the novel staggered scheme, see e.g. Dettmer 
and Peric [23].

At present the scientific community has yet to establish a set of widely available three 
dimensional benchmarks in the numerical simulation of FSI behavior. Additionally, it is 
still relatively unclear which of the many solution techniques currently available is most 
suitable. It is the aim of this work to provide some advancement in the available knowledge 
in these areas of research. In the following sections of this chapter, additional details of 
the aim of this work and the layout of the subsequent chapters are briefly provided.

1.2 A im  of the Thesis

The aim of this work is to employ stabilised finite element numerical solution techniques to 

solve a variety of three dimensional FSI problems in order to present the results obtained 
with the objective of establishing useful benchmark models. A performance analysis of the 

monolithic Newton, block Gauss-Seidel, and novel staggered solution methods is also to be 
presented in order to assess their relative suitability. All of the solvers employed in this work 

may be considered to be robust and applicable to a wide range of FSI problems, however 
due to a lack of established benchmark model problems in three dimensional FSI analysis 
it is currently unclear which of these methods may be the most suitable. The analysis 
to be presented will be based on the criteria of: rate of convergence, stability, accuracy,
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and computational cost. This work therefore aims to present a variety of external and 
internal flow FSI model problems in three dimensions. The focus in this work is restricted 
to laminar incompressible Newtonian fluid flow, with the fluid domain discretised using 
stabilised finite elements adapted to capture the motion of the fluid mesh along the fluid- 

solid interface.

1.3 Layout of the Thesis

Chapter 2: The application of numerical modelling to FSI is introduced using simple one 

dimensional galloping and flutter model problems. A small analysis of the Newton-Raphson 
and Gauss-Seidel iterative methods in the context of the model problems is then presented.

Chapter 3: The mathematical formulation of the governing equations employed in this 
work to describe the moving reference frame, incompressible Navier-Stokes equations and 
boundary conditions in both the fluid and the solid is provided. An introduction to time 
integration is also presented, to be described in more detail in Chapter 4.

Chapter 4 • The finite element discretisation of both the fluid and solid domains is de­
scribed, with a detailed adaptation of the fluid finite element discretisation to the moving 
reference frame to be provided in chapter 5. The stabilisation of fluid elements using the 
SUPG/PSPG technique, and the application of the discrete implicit generalised-a method 
for time integration is presented. A few examples of two dimensional Eulerian fluid finite 
element meshes employed to solve fluid flow are then provided.

Chapter 5: A detailed description is presented of the application of the arbitrary Lagrangian- 
Eulerian description of fluid flow to adapt the finite element discretisation of the fluid to a 
moving mesh. The nonlinear pseudo-elastic method used to describe the mesh movement 

is provided, as well as the finite element interpolation technique employed to describe the 
fluid-solid interface.

Chapter 6 : A decomposition of the full FSI system into fluid, interface and solid domains 
is presented in order to present a simple description of the solution techniques employed 
in this work. The monolithic Newton, block Gauss-Seidel and novel staggered solution 

methods are then described, and a summary of their applied algorithms provided.

Chapter 7: An external flow model problem consisting of a soft elastic beam, fixed at both
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ends and subjected to a steady fluid flow is solved using the three solution methods and a 
comparison of results obtained is provided.

Chapter 8: A more complex external flow model problem than chapter 7 is presented, 
consisting of a thin flexible plate fixed at one end to a fully rigid body and subjected 
to steady fluid flow. In addition to a comparison of the three solution methods, results 
obtained are also compared to existing publications containing the same model problem 
presented by von Scheven [53] and Kassiotis et al [41, 42].

Chapter 9: First, an internal flow model problem consisting of a thin flexible pipe subjected 
to an oscillating fluid flow is presented. The pipe is fixed at both ends, with the downstream 
end fixed in such a way as to allow radial deflection only. A second model problem is then 
presented in which a small section of the pipe is set to half of the stiffness of the pipe in 
order to present a fully asymmetric model problem.

Chapter 10 An internal flow model problem consisting of a thin flexible pipe fixed only at 
one end, and subjected to a steady internal flow is presented using a range of increasing 
inflow velocities in order to obtain the critical velocity at which the free end of the pipe 
will begin to oscillate. This value for the critical velocity is then compared to an analytical 
solution presented by Blevins [5].

Chapter 11: The results obtained from the previous example chapters are summarised, and 
the relative suitability of the different solution techniques observed throughout is discussed. 
Final conclusions are presented, along with a discussion of room for future work.



Chapter 2

Basics of FSI w ith M odel Problem

2.1 Introduction to Solving FSI

A body subjected to a steady, incompressible fluid flow may sometimes undergo oscillating 
translational displacement of increasing amplitude, known as ‘Galloping’. In this section, 
a one dimensional, one degree of freedom model of this behavior is considered, such as 
the mass-spring system shown in figure 2.1. This model is then used as a basis for an 
introduction to solving FSI using numerical methods.

UkP

Figure 2.1: Damped mass-spring system.

The system consists of a mass m, supported by a spring of stiffness k and damping
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factor c, free to oscillate in the vertical direction only and subjected to a horizontal steady, 
incompressible fluid flow of velocity Uoo and density p. Applying equilibrium to this sys­
tem results in the following governing equation of motion, in which the sum momentum, 
damping, and stiffness of the structure are equated to the vertical force produced by the 
fluid acting on the structure.

m y + cyi) + kyy = Fy (2.1)

In the simplified system being considered, the single degree of freedom is in the y
direction. Therefore only vertical force is considered in equilibrium. The vertical force
generated by a horizontal, inviscid fluid flow can be calculated by applying the laws of 
conservation of mass and momentum to obtain a relationship of known structural and 
material properties.

Fy = \ PU lD C y{a), (2.2)

where Cy(a) is an aerodynamic coefficient dictated by the solid geometry and the angle of 
the fluid flow relative to the horizontal axis, known as the angle of attack, a. Inserting this 
identity into equation (2.1) gives a governing equation of motion where only the y, y, y 
values are unknown.

m y  +  cyy +  kyy = ^ oUl0DCy{a) (2.3)

2.1.1 D iscretising the System

Before attempting to solve this system of governing equations computationally, it is nec­
essary to apply an appropriate time integration scheme. For this exercise, a single step 
implicit time integration scheme was chosen. Examples of such schemes include the back­
ward Euler, generalised midpoint and the generalised-a methods, however, in this case the 
trapezoidal rule was implemented to integrate y, y, and y  in time as follows.

V n+ l Vn “1“ 2 [2/ra+l 4“ 2/n]
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2/ti+I — Vn “I” A t y n “1“ ^  [l/n+1 “1“ j/n] (2.4)

In order to identify the forward values of y  and y, these equations are rearranged to give:

4(2/n+i ~  Vn) 4y,'n (2.5)

2.1.2 Solving the System  N um erically

In order to solve this system for the unknown values of y, y, y, a variety of numerical 
solution methods could be implemented, such as Newtonian or Gaussian methods. In this 
case the Newton-Raphson iterative method was employed. This method was implemented 
by taking the second integration in time using the trapezoidal method.

Vn+l “I- Vn 2yn A yn
2/n+i 2 2

2 / t i + I  2 / t i  ^ 2 / t i

A t A t

2(2/n+i 2/ti) 2yn  2A yn 2yn
~At2 A t ~  A t2 ~ ~At ’

(2 .6)

and rearranging the governing equation in the residual form as:

R = m y + Cyy + kyy -  ^pU ^D C y(a)

Then solving for the unknown vertical displacement y  iteratively using:

(2.7)



16 C H APTER 2. BASIC S OF FSI W ITH  MODEL PRO BLEM

2.1.3 1-DO F M odel Problem

In order to produce viable results using this method, the properties of the body and its 

support were set to k = 3.0, c = 2.0, m = 20.0. The chord length of the body was set to 

D  =  1.0. The density of the surrounding fluid was set to p — 1.0, with a range of inflow 

velocities considered up to a maximum of UQ0 =  2.5. Solving this system produced a range 

of maximum steady amplitudes of oscillation corresponding to  the range of inflow velocities 

considered, shown in Figure 2.2.

Max Steady Amp of Square Profile with Time

y/D
0.7

O 0.6

q. 0.5
E 
<

n
<D
oo 0.3
X
(0

2  0.2

0.4

0 0.5 1 1.5 2 2.5

U (m/s)

Figure 2.2: 1-DOF Model Problem: Max Steady Amplitude vs Inflow Velocity

Figure 2.2 shows tha t the oscillations of the system as a result of the inflow velocity 

are positively damped up to the critical velocity of Ucrit ~  1-5, a t which point the system 

begins to experience increasingly large am plitude oscillations known as divergence. At U 

=  2.5 the maximum steady amplitude of the system is ^  =  0.75751.
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2.2 Com parison of N -R  and G-S m ethods solving 2-

Flutter is defined by aerospace terminology as the coupled torsion-plunge instability of a 
structure by such texts as e. g. Blevins [5] and Den Hartog [27]. More specifically, the 
fields of mechanical, civil and aerospace engineering have a vested interest in the effect 
that flutter can have on slender structures, as this can result in large-scale deformations or 
even total structural failure, such as the collapse of the Takoma Narrows bridge in 1940.

2.2.1 D escrip tion  o f M odel Problem

As an introduction to the computational modelling of flutter, a simplified set of equa­
tions governing flutter behavior were derived and solved using the Newton-Raphson and 
Gauss-Seidel iterative methods in order to highlight some of the differences between them. 
Consider the same mass-spring system used in section 2.1, allowed to deflect in both vertical 
translation and rotation, as shown in figure 2.3.

DOF Flutter

y

U..P

W W W  \ \ \  \ \  \ \  \ \

D

Figure 2.3: 2-DOF damped mass-spring system.

By applying equilibrium to this system we obtain the following set of stongly coupled 
equations of motion:
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IpO +  z m y  +  ce0 +  k<>6 =  L u I >D 2C m {o:(0, 0, y))

a = a0 + 6 + - ^ -  + ^ -  (2.9)
Uoo U oo

For the coefficients of lift and torque a linear relationship to the angle of attack was 
chosen, based on the data presented in Dettmer and Peric [19].

Cl {oc) = 2.5 +  0.11a

CM{a) = -0 .15 +  0.004a (2.10)

where a is the angle of attack in radians.

2.2.2 D iscretisation: Trapezoidal Rule

The displacement, velocity, and acceleration of the rigid body in twist and plunge were 
discretised using the trapezoidal rule as in 2.1. The system was then solved at each time 
step by employing a numerical method within an iterative loop. The intermediate values of 
the system variables were discretised using the trapezoidal rule for the half step as follows.

un+i +  u n 2un +  A ur
U n + I  =

Un+1 Un A un
, 1 =
2 A t A t

2(un+i -  Un) 2un 2Aun 2un
u„ . x = ----- t— --------------t— =  ———------ -— where un =

n+5 A t2 A t A t2 A t
Vn

0n
(2 .11)

The coupled governing equations were then rewritten in the discrete residual form.



2.2. COMPARISON OF N-R AND G-S METHODS SOLVING 2-DOF FLU TTER  19

o  /  2 A?/n 2 yn >. / 2A6n 29n . . A yn . . 2 yn +  A?/n .
*  =  m (' A T  -  a F} +  2m (- A *  -  A t ) +  ^ +   2------ >

+  -/!>£/£, £ > (2 .5  +  0 .1 1 (a ;o  +
2«„ +  Afl„ , Ay„ Atfn/?

+
A tU n + AtU, :))

^  ~ + f  ̂ + ̂
4 ^ ( - o- - o.oo4 K  +  ^  +  ^  +  ^ ) )

(2 .12)

2.2.3 Solving the System  N um erically

In the interest of comparing rates of convergence and stability, the system was solved using 
both the Newton-Raphson and Gauss-Seidel methods.

T h e  N ew to n -R ap h so n  M eth o d

The Newton-Raphson method is based on the principle that at the solution:

R (u) +  K A u =  0 where K  =
d K

d A u

dR ,  d fli  
d A y  d A  0

d R i  dR  
. d A y  d A  0.

(2.13)

Therefore the system can be rearranged to provide updated values of displacement itera­
tively converging on the solution using:

A u =  —R (u)
K

(2.14)

By first inserting the values:

K  =

2 zm  
A t 2 +  y u i D i o . u a  + a g - j )

2 zm  
A  t*

(2.15)
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The calculated values for the changes of displacement are then used to update the system 
for each step in time. Applying this numerical method to the system of equations being 
considered for a variety of time step sizes resulted in the solutions displayed in figures 2.4 
and 2.5.

N-R vertical deflection w.r.t. dt
0

dt 0.01 
dt 0.1 
dt 0.5 
dt 1.0-0.5

1

-1.5

■2

-2.5
10 20 30 40 50 60 70 80 90 1000

Time (s)

Figure 2.4: Comparison of uy with dt

N-R rotation w.r.t. dt
0.3

dt 0.01 
dt 0.1 
dt 0.5 
dt 1.0

0.2

0.1(A<DQ)
05 n<D UT5,

I  -0.1ro
oa:

- 0.2

-0.3

-0.4
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 2.5: Comparison of ug with dt
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T h e  G auss-Seidel M e th o d

The Gauss-Seidel iterative method is based on the principle that a discrete system of 
equations in the form:

A A u =  b, (2.16)

with the matrix A consisting of the coefficients of the variables represented by the vector 
u  and the vector b  consisting of the system constants, may be solved for the unknown 
values of A u provided that the matrix A may be decomposed into a diagonal matrix D 
and an off-diagonal matrix N  such that:

A =  D +  N

An 0 0 A 12

A = +
0 A 2 2 _A2i 0

(2.17)

(2.18)

This gives us:

(D +  N )A u =  b  

D A u =  b  — N A u
(2.19)

Which allows the iterative calculation of the changes in the system variables in the form:

Aui+i =  D -1(b — N A ui) (2.20)

Rewriting the system of equations to be solved in this form gave:

A  =
tS? +  a* +  if  +  +  m z ) )

2 zm 
At2 &  +  £  +  \PU~ D 2{0.004(| +  ^ - ) )

A u =
A y
AO

(2.2 

(2 .22)
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b =
— 2 +  0.11(ao +  On)) +  TuiVn +  zOn) — kyy.

^ p U ^ D 2 (-0 .15 -  0.004(ao +  On)) +  xi(IpOn +  zm yn) -  keOn

(2.23)

Which were then solved for a variety of time step sizes to obtain the solutions displayed in 
figures 2.6 and 2.7.

G-S vertical deflection w.r.t. dt

dt 0.01 
dt 0.1 
dt 0.5
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Figure 2.6: Comparison of uy with dt
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Figure 2.7: Comparison of uq with dt
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2.2.4 Com parison of N um erical Solution M ethods

While both the Newton-Raphson and Gauss-Seidel methods converge on the same solu­

tions, the number of iterations required for convergence and the stability of the different 

methods vary. By analyzing and comparing these criteria, it is possible to determine the 

conditions under which a particular solution would be more appropriate. In the case of the 

model problem considered, with the trapezoidal method employed for time integration, the 

Newton-Raphson method achieved a significantly greater rate of convergence, as shown in 

table 2.1, figure 2.8 and figure 2.9.

Table 2.1: Comparison of Convergence

Iterations to Achieve Tolerance
Numerical Method

St 1.0s 0.5s 0.1s 0.01s

Newton-Raphson 3 3 3 3

Gauss-Seidel 18 30 100 218

N-R and G-S convergence al dt 1.0
2
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N-R and G-S convergence at dt 0.01
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Figure 2.8: Convergence at <5t =  1.0 Figure 2.9: Convergence at $t =  0.01 

s. s.



Chapter 3

M athem atical Problem  Description

3.1 D iscussion of Strong Coupling in Fluid-Structure  

Interaction

In the previous chapter some simplified models for the behavior of galloping and flutter 
were presented, however the focus was on the behavior of the solid with the behavior of 
the fluid simply present in the traction forcing terms. In reality fluid-structure interaction 
displays strong coupling between the fluid and solid behavior due to the fluid forces acting 
on the solid causing a deformation of solid geometry, which in turn results in new boundary 
conditions for the fluid and thus altered fluid behavior. The following chapter presents the 
mathematical formulation of governing equations which may be considered to express this 
behavior.

3.2 M echanics of Fluids

3.2.1 M oving R eference Frame

In order to achieve a suitable mathematical model for solving fluid-structure interactions, 
a method of applying the finite element method to a fluid body with moving boundary 
conditions must first be considered. The geometry of the fluid mesh must be allowed to 
deform as the boundary conditions dictate while the particles of the fluid body flow through

24
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the domain. One possible solution to satisfying these conditions is the formulation of a 
moving reference frame.

First, we may consider the fluid body (B), the reference domain (f2), and their respec­

tive initial configurations (B 0 ,fio)- We may then further define the relevant coordinate 

systems x  E B, x 0 E Bo, x  G f2, xo E f2o> related by the unique mappings:

x  =  0(xo, t), x  =  A(x0, t). (3.1)

Note tha t for each x  =  x  there will exist the unique mapping

x 0 =  ^ (x o ,f)  =  A- 1  (0 (x o, *),*). (3.2)

W ith these three relationships, each x  =  x  E (B flfi) is therefore associated with a material 
point (x 0) and a reference point (x0) illustrated by figure 3.1:

Figure 3.1: Mappings between the different regions of the moving reference frame.

It may then be written tha t

X  =  0(xo, t) = A(x0, t) = A('0(xo, t), t) =  X . (3.3)

Now it is possible to define an expression for the velocity (u) of a material particle (xo) 
passing through a position (x) at time (t), known as the material time derivative of u, by 
first differentiating equation (3.3) with respect to time and a constant material reference 
point x 0 which gives
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cty(x0,£) =  dA(x0,£) d \( x 0,t)d ip (x0,t)
dt dt dx0 dt 1 ‘ }

From here we can see that the LHS of equation (3.4) is an expression for the current 
velocity u of material particle X p , and the first term of the RHS is an expression for the

current velocity v  of reference point x 0, which allows us to rearrange this equation to the
form

d\(xo,t)chp(xo,t) „
-a * ;— at = u ~ v (3-5)

It should be noted that u may be given in terms of x0 or x.

u =  u(x0, t) — u(x, t) (3.6)

From this, we may formulate an expression for the material time derivative of u as

D u  =  d u (x0,t) dijj{x0,t)  du(x0, t)
D t d x0 dt dt

=  du(x, t) aA(x0, t) dip(-xp, t) du(x0, t)
d x  d x  p d t d t

r \  / a  j_\

Now, by inserting equation (3.5) into equation (3.8) and defining u = ---- r̂—̂— one obtains
dt

D u  „  . /rt
—  =  V*u(u -  v) +  u, (3.9)

known as the fundamental Arbitrary Lagrangian-Eulerian Equation (ALE). Note that V*(») 
denotes the derivatives to the current referential coordinates x. Throughout this work, 
V(«) without a subscript refers to the derivatives with respect to the coordinates of the
domain the expression is formulated within. For cases where this may be ambiguous,
subscripts will be used.

In equation (3.9) li refers to the change of material particle velocity relative to the 
referential coordinate xp.

The term ALE stems from the combination of:
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• Lagrangian refers to the condition of the reference frame being fixed to the fluid 
particles, i.e. u  =  v, causing the convective velocity term (u — v) to be zero, resulting 
in the relation

g  =  u, (3.10)

which is the basis of Lagrangian solid mechanics.

•  Eulerian refers to the condition of having a reference frame fixed in space, i.e. v  =  0, 
resulting in the relation

^  =  (V *u)u +  u, (3.11)

which is employed in standard Eulerian fluid flow analyses. For more information
on coordinate mapping and the derivation of the fundamental ALE equation see e.g.
[61, 25, 56, 7, 4].

3.2.2 Form ulation o f G overning Equations

Conservation of mass: Consider an arbitrary subregion Q' within f2, consisting of a fixed 
set of reference points and filled with fluid. Given the assumed incompressibility of the 
fluid, the principle of conservation of mass states that the volume of fluid particles leaving 

or entering Q' must equal the change in volume of O'. This can be expressed as

/  (u -  v) • n d a  =  [  —v - h d a ,  (3-12)
JT> J V

where T' represents the boundary of fi', and the vector n  represents the outward normal 
unit vector of T'. By applying the divergence theorem to this we obtain

f  V ’ Udv = 0. (3.13)
Jn>

Since conservation of mass applies to any Q' at any time t G / ,  the local form of the mass 
conservation law is obtained as
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v • u  =  o, v ( * , t ) e n x j ,  (3.14)

where I  =  [0, Ten<j\ denotes the time interval of interest. This relation may be referred to 
as the continuity equation.

Conservation of Momentum: To apply the law of conservation of momentum we must 

first consider the forces acting on the fluid particles within Q' at time t  £ I. Namely, 
the body forces as a function of mass, and the surface forces acting on the boundary T' 
resulting from the fluid internal stress. Newton’s second law balances these forces with the 
fluid intertia, resulting in the relation

[  p i dv +  [  a h  da = f  p(V u(u — v) +  u) dv , (3.15)
J n' J r  Jw

where a  is the Cauchy stress tensor, f  the body force vector per unit mass and p the scalar 
fluid density. The application of the divergence theorem on the second integral renders the 
entire relation in terms of the volume of any region f2', resulting in the local form of the 
conservation of momentum,

p(V u(u -  v) +  u  -  f) -  V • a  =  0, V(x, t) G il x I. (3.16)

The equations (3.14) and (3.16), along with the constitutive equation for Newtonion fluids

a • =  - PI  + 2/uVsu, (3.17)

are commonly referred to as the Navier-Stokes equations for incompressible fluid flow. Here 
p denotes pressure, I  the identity tensor, p  the fluid viscosity, and V s(») represents the 
symmetric part of the gradient, i.e. Vsu  =  - (V u  +  VTu).

A

3.2 .3  Flow  Behavior and Incom pressibility

Flow Behavior: The behavior of fluid flow may be simplified into the categories of Laminar 
and Turbulent flow based on the ratio of inertial forces to the fluid viscosity,
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Re =  (3.18)

known as the Reynolds number , where p , [Too, and p  denote the fluid density, flow 
velocity, and viscosity respectively, and D the characteristic length.

Turbulent flow behavior generally consists of high frequency vortex shedding and fluid 
rotation in such a way as for the movement of fluid particles to appear chaotic. Fluid flow 

will generally be considered turbulent when the Reynolds number describing the flow is 
above a certain critical value specific to the system being considered; however, this value 
is generally of the order Rear «  103. While the formulation of a suitable approach to the 
numerical modelling of turbulent flow continues to be an area of intense focus, a detailed 
review of which is provided by Ferziger and Peric [26] , the focus of the examples analyzed 
in this work is instead on laminar flow which occurs at Reynolds numbers lower than those 

of turbulent flow and thus Re < Rea- & 103 is observed throughout.

Incompressibility: Real fluids are compressible, however the degree of compressibility
may be considered negligible under specific circumstances. In general, a fluid may be
regarded as incompressible if the ratio of characteristic flow velocity to the speed of sound
in the fluid, known as the Mach number , is of the value M a = —— < 0.3. Due to the

c
fact tha t this condition is satisfied by most naturally occurring examples of fluid flow, in 
particular those of natural wind flows interacting with civil engineering structures, all fluid 
flow modelled in this work is considered incompressible.

3.2 .4  Introduction  to  Boundary C onditions and T im e Integra­

tion

In the interest of computing the fluid flow within Qf for all times t G / ,  steps towards the 
solution may begin at such points where some or all components of the fluid flow are known. 
These regions of the domain generally occur at the internal and external boundaries, and 
may be described as detailed in this section.

•  Inlet boundary condition r in: At the inlet to the fluid domain the velocity terms of 
the flow are generally known due to the application of a prescribed value, and as such 
r in may be described as
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u  -  u in =  0 V(x, t) G Tin x I. (3.19)

Outlet boundary condition Tout: At the outlet to the fluid domain the velocity terms
of the flow are generally unknown, however the traction forces may be set to 0. It
must also be noted that for the solution to be formed to satisfaction, at least a single 
point in Qf must be fixed in pressure, and this point is generally chosen at the centre 
of the outlet Xc0. Therefore, Tout may be described by

crh = 0 V(x, t) G Tout x  I, 

p = 0 for (xco, t) G Tout x I. (3.20)

Slip boundary condition Tsup: Throughout this work slip boundary conditions are 
generally employed to describe the outer fluid domain boundaries running parallel 
to the direction of the flow. This boundary condition is such that the flow velocity 
components normal to the boundary are fixed at 0 , while all tangential terms are 
free, i.e.

u  • n =  0, (<rn) m  =  0 V(x, t) G r s/ip x 7, (3.21)

with n and m  representing the normal and tangential unit vectors of Tsiip.

No-slip boundary condition Tno_siip: Similar to the slip boundary condition, Tno- siip 
fixes the velocity terms normal to the boundary at 0, however all other velocity terms 
at the boundary are also fixed, resulting in the description

u  =  0 V(x, t)  G r no- siip x 7. (3.22)

Fluid-solid interface T/_s: Similar to the static boundary conditions detailed above, 
it is possible to describe the interface of the fluid and solid domains by slip and no­
slip conditions. Due to the primary focus of this work being the numerical modelling
of fluid-structure interactions at low Reynold’s numbers, which are primarily driven 
by vortex shedding, no-slip conditions are employed throughout due to being more
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accurate in approximating the physics involved. It is also necessary when describing 
this boundary to account for the geometrical response of the interface resulting from 
the displacement and deformation of the solid domain, thus the no-slip condition 
may be described by

u  =  d  V(x,t)G I7_s x / ,  (3.23)

where d  is a vector describing the displacement of the solid domain. Additionally, the 

normal component of the reference frame velocity v  must equal the normal component 
of the fluid velocity u  along the boundary, thus

(u — v) • n  =  0 V(x, t) G F f- s x I  (3-24)

must be satisfied for all t G I. In the application of r^_ s detailed in section 5.2, this
is done by setting v  =  u. Finally, the equilibrium of stresses in the interface may be 
described by

(ah)f = ~(crh)s V(x, t) G Ff - S x / ,  (3.25)

where (<rn)/  and {ern)a indicate the traction forces exerted on the interface by the
fluid and solid respectively.

•  Free surface boundary condition T free: Though not employed within this work, it 
must be mentioned that when simulating fluid flow it may at times be necessary to 
describe boundary conditions associated with a free surface of the fluid body. This 
set of conditions requires the detailing of such terms as the surface tension of the 
fluid body and the geometrical displacement of the boundary. A detailed description 
of the formation and application of this boundary condition may be found in the 
works presented by Dettmer [16].

3.3 M echanics of Flexible Solids

Due to the Lagrangian manner in which the kinematics of flexible solids is commonly de­
scribed it is unnecessary to formulate a moving reference frame as was done in section
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3.2.1. The configuration of the solid body is therefore directly represented by the compu­
tational domain Da, with the current position of the solid particles being represented by 
x  =  x 0 +  d, where x 0  represents the initial set of solid coordinates at t = 0 , and the vector 
d  represents the solid displacement by d  =  d (x 0, t). The material velocity and acceleration 

are therefore obtained as

<9d(x0 ,t) •
=  d,dt

D 2 d  d2d  (x0,£)
~ m  = at2 =  d, (3.26)

in a similar fashion to obtaining u  in equation (3.10).

Conservation of Momentum: Applying the law of conservation of momentum to the 
system results in the expression

p(d — f) — V • <T =  0  V(x, t) e  n s x I. (3.27)

Note that in this study solid elements may experience volumetric deformation, and there­
fore adjustments must be made to equation (3.27) to account for the separate densities 
of the undeformed (p0) and deformed (p) solid elements. Bonet and Wood [6 ] account 
for this volumetric deformation by rearranging (3.27) in terms of the initial configuration 
n a,o and modifying the stress term accordingly. It can therefore be noted that for small 
displacements d, Cls may be approximated by o, enabling the application of classical 
small strain analysis.

Application of Material Properties: Throughout this work, all solid materials are as­
sumed to exibit Neo-Hookean elastic behavior. The constitutive equation employed is 
therefore

<7 =  G J ~ i(B -  I tr (B )I)  +  (3.28)

where the scalars G and K  represent the solid shear and bulk moduli, B the left Caughy- 
Green tensor , and the scalar J the determinant of the deformation gradient F, related to 
B by
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B =  F F t , J  = det(F),

where
d x  dd  , .

F  =  — = I + — . (3.29)
dx. o axo

For small strain elasticity, equation (3.28) may be reduced to

cr =  2 G(V*d -  i ( V  • d)I) +  K (V  ■ d)I. (3.30)
o

3.3.1 Solid B oundary C onditions

Similar to the boundary conditions of Of described in section 3.2.4, the boundary of 
may be described using the following conditions:

•  Fixed boundary condition TfiXed'- used to represent a boundary joined to a support 
resulting in displacement being fixed in one or more axes, T fixed may be described 

by

d =  0 V(x, t) e  r fixed X I. (3.31)

Free boundary condition T free: this condition is applied throughout this work to 
describe any boundary of Os not fixed to a support, and thus allowed to deform

crn  =  0 V(x,t) 6  T free x I. (3.32)

• Fluid-solid interface T /_ s: being directly related to the Of boundary described in 
equations (3.23) and (3.25), this boundary condition is described by

d =  u, (<rn)s =  — (crh)f V(x, t) 6  r / _ s x I. (3.33)

• Symmetry Boundary Condition r sym: While this boundary condition is not imple­

mented in this work, it must be mentioned that in the case of an axisymmetric model
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problem, computational cost may be reduced by applying r sym along the axis of sym­
metry and omitting the symmetrical duplicate components of the model. Similar to 
the boundary condition described in equation (3.21), r sym may be described by

(<rn) • m  =  0, d  • n  =  0 V(x, t) G r sym x / ,  (3.34)

where n  and m  describe the unit vectors normal and tangential to the boundary 
respectively.



Chapter 4

Introduction to  Finite Element 
M odelling

4.1 Solution Procedure

In the decades since the finite element method was first applied in the context of computer- 
aided engineering, a wide variety of techniques for its application have been developed. 
Each of these applications, however, follows a common general method consisting of:

• The subdivision of a complex system into smaller regions known as finite elements .

•  The approximation to solution values of the complex governing equations being ap­
plied over each element, the sum of which form an approximate solution to the entire 
domain.

• The application of constraints to these approximations, designed to restrict the error 
of approximation to within acceptable levels.

In this chapter, the methods for the application of the finite element method to linear 
and non-linear governing equations employed within this work are described. Further 
information on the general formation of the finite element method may be found in text 
books such as, e.g. [32, 1, 62, 14, 11].

35
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4.1.1 Form ing an A pproxim ate Solution: The W eak Form and  

T he C lassical Galerkin M ethod

Consider a set of governing equations, such tha t they may be described by

C(u) = —f  Vx E fl, (4.1)

where £(•) describes the linear differential operator, u the unknown dependent variable, 
and Q the domain of the system. Arranging the equation in this manner is generally known 
as the Strong Form of the differential equation. The boundary of the domain of this system, 
T, may also be described by

u — g =  0 Vx E Tg (4.2)

q(u) • n  — t =  0 Vx E Tt, (4.3)

where n  denotes the outward normal unit vector to the boundary T, the flux q(u) is a 
linear function of the first derivatives of u, and the conditions Tg and T* describe the
boundary such tha t T = Tg U Vt. By directly assigning a value to the unknown variable u,
equation (4.2) describes a Dirichlet boundary condition . Likewise, by assigning a value to 
the derivatives of u, equation (4.3) describes a Neumann boundary condition.

In the interest of forming an approximate solution to this set of governing equations, 
it is possible to lower the order of the highest derivatives through first multiplying with 

an admissible virtual perturbation u;, known as a test or weighting function, and then 
integrating over the domain 0. If we consider the set of values i f 1(fl) such that u G H 1^ )  
then we may consider all u  G { oj G H l ( 0 )  \ oj = 0 Vx G T5} as admissible. Integrating
this system by parts results in the Weak Form of the governing equation

a(uj,u) = F (uj), (4.4)

where a(u ,u )  and F (uj) represent a bilinear and linear form on Q. The exact solution 
u of the strong form will satisfy the weak form for all admissible test function u. The
advantage of rewriting the equations in the weak form is that if we consider the space
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W  =  G =  0 |  and define W h C  W as a finite dimensional subspace of W, it
can be shown that there exist solutions uh in W h C  W where u ^ W fc, if u G simply 
means that u = uh. By contrast, the strong form of the equation can only be satisfied by 
the exact solution u. This relaxation of constraints in the weak form creates the basis for 

the formation of an approximate solution. By establishing the relationship between the 
solutions uh e W h and w G W it  can be shown that uh —> u as W h —> W.

This process of obtaining an approximate solution uh £ W h such that

a(uh,u h) = F(ujh) Vuh e W h (4.5)

is known as the Classical Galerkin or Bubnov-Galerkin method. It should be noted that this 
method satisfies the Dirichlet boundary condition exactly, however the Neumann boundary 
condition is only weakly satisfied. A detailed description of the mathematical foundation 
behind the Galerkin method may be found in, e.g. [49, 8 , 13, 54].

4.1.2 Isoparam etric F in ite E lem ents

In the previous section it was shown that the classical Galerkin method may be employed 
to form an approximate solution uh over a finite dimensional space VV̂ . This section 
details how the standard finite element method uses this in a way that may be solved 
computationally.

The finite spaces W h used to approximate fI are commonly defined as spaces of contin­
uous piecewise polynomials such that =  U e= i Oe describes the decomposition of domain 
Cl into nei subdomains, known as finite elements , Cle. These finite elements consist of 

geometric shapes defined by nodes at the corners joined together by the node connectivity . 
Typically, in two dimensions these shapes are squares or triangles, and in three dimensions 
they are quadrilaterals or tetrahedrals. W h may therefore be described by

W h = {w* e  e  Pk(Q.e), u / l^ e r ,  =  o} (4.6)

where Pk(Cle) denotes a space of polynomials of order k on domain Cle.

In order to interpolate the values of the approximate solution uh over the domain of
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each finite element f2e, a distribution of the nodal solution values is applied across the 
intermediate spaces. These distributions are known as shape functions and are commonly 

represented by Ni(i,j) where [i, j  = 1 , 2 , . . . ,n node\ denotes which node the shape function 
and parametric coordinate system £, refer to in such a way as Ni(t,j) = 1 for i = j  and 0  

for i 7̂  j .  The finite element mesh consists of finite elements connected together such that 
they share common nodes along their connected edges. The combination of all element 
shape functions Ni referring to a single node i allows the construction of a global shape 
function N f. The set of all global shape functions forms the nodal representation of W^, 
with the number of nodes (excluding those on T5) defining the dimension of W h. Any 
function ujh £ W h may therefore be written as

nei
<*/“ =  ! > / ( £ , )  Wi (4.7)

e = l

where w* represents the value of u h at node i. Further information on the construction of 
finite element discretisations may be found in the previously mentioned [1, 62, 11, 49, 8 ].

4.2 Finite Elem ents in Solid M echanics

In this section, an introduction to the application of the finite element method in solid 
mechanics is detailed. It must be noted that the computational framework employed in 
this work does not impose limitations on which solid finite elements may be used. As such, 
this section will provide a general introduction to solid discretisation as well as examples 
of some solid finite elements.

4.2.1 Linear E lasticity

As detailed in section 4.1.1 the governing equation of linear elastic behavior may be written 
as
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£ (u ) =  V • <t (u ) =  — f Vx G ft (4.8)

<r(u) =  A(V • u )I +  2fiVsu  (4.9)

u  — g =  o Vx e  r g (4.io)

<r(u)n — t  =  0 Vx G Tt (4.11)

where a  is a second order tensor introduced as a linear function of the displacement vector 
field u. The scalars A and ji represent the Lame constants, f  the body forces and t  the
prescribed boundary traction forces. Applying a weighting function to obtain the weak
form of the linear elastic governing equations is known as the principle of virtual work and 
results in the equation

/  Vcj  : <r(u) dv = [  cj • t  da + [  lj • f  dv (4.12)
J n J rt J n

with

f  V lj : <t (u ) dv = [  A(V • u) +  2//Vcc : V su  dv. (4.13)
Jn Jn

These expressions may then be rewritten in the form a(u,u) = F (uj) as will be detailed in 
the next section.

E xam ple: C o n tin u u m  E lem en ts

In two dimensions, this work represents continuum elements with nine-noded fully inte­
grated finite elements. For use in three dimensions these may be extrapolated to form 
twenty-noded quadratic elements. Due to the tendency of continuum elements to exhibit 
volumetric locking near the incompressibility limit, their application in this work is re­
stricted to very slender structures. For all other solid structures in this work, eight-noded 
linear brick elements with suitable modifications to account for incompressible deformation 
are employed.

The local form of equilibrium excluding body forces may be represented by

pd — V • a  = 0 V(x, t) G D x I (4.14)
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where Q denotes the current configuration of the solid domain and d  the displacement 
vector field. Assuming pure Neumann Tt and Dirichlet Tg boundary conditions, the weak 
form of this equation may be written as

/  pd  ■ cj dv +  /  cr : Vo; d v =  t  • cj da. (4-15)
Jn Jn Jvt

For small strains and deformations it is possible to integrate this equation over the initial
configuration of 0 , and assume the relation

cr = 2ft ( v sd -  i ( V  • d ) l)  +  K (V  • d)I (4.16)

where p  and K  represent the shear and bulk moduli of the solid. Discretising the vector 
fields d  and w over each element results in the equations

d h = Nidi, u h =  NjWj, i , j  = 1,2, ...,nnode (4.17)

where the shape functions A^, Nj are specific to the element type. Using these equations
to discretise the weak form in equation (4.15) with arbitrary virtual displacements gives 
rise to the matrix equation

M d +  K d =  P  (4.18)

where the stiffness matrix K , external force vector P  and mass matrix M  are formed by 
the assembly of elemental contributing factors ke, p e and m e respectively. This may be 
expressed by

K  =  A Jiik 6, kf, =  /  A V N i ® V N j +  p(V N i • N jl  +  V N j ® V N {) dv (4.19)
J Jne

P  =  A ^ lPe, &*= [  N it da + [  N ifd v  (4.20)
Jvt(~\i'g J ne

M  = A ^ 1m e, m j, = [  p N iN d d v  (4.21)
J J ne

In order to model large strains and displacements which require taking geometrical defor­
mation into account, this work employs the Neo-Hooke elastic material model. As such, 
the Cauchy stress tensor employed is
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<r =  i i j i  ( b  -  I t r  (B) i )  +  (4.22)

By integrating the weak form over the current spacial domain Q and discretising the ele­
mental domains as done with small strains, the complete matrix equation for large strains
is obtained as

M d +  F(d) -  P  (4.23)

where F(d) represents the nodal internal force vector which is nonlinear in terms of the 
displacements d. It must be noted that whether the weak form is discretised with respect 
to the initial (x0) or material (x) coordinate systems, the finite element assembly results 
in the same matrix equation (4.23). Once the matrix equation has been assembled, the 
application of a time discretisation method allows for the formation of the approximate 
solution via an appropriate numerical iteration scheme. In this work the Generalised-a 
method is employed for time discretisation in both solid and fluid domains. A detailed 
description of this method is provided in section 4.3.2.

Additional information on the finite element modelling of elastic continua at small and 
large strains may be found in such texts as e.g. [6 , 32, 1, 62, 14, 15].

4.3 Finite Elem ents in Fluid M echanics

In order to introduce the formulation of the weak form of the incompressible Navier-Stokes 
equations in a simple manner, this section will focus on steady state flow over fixed domains. 
The extension of this method to unsteady flow over moving domains will be covered in 
Chapter 5. For fixed domains, v  =  0 V(x, t) £ Lt x / ,  which results in the Navier-Stokes 

equations (3.14)-(3.17) with standard Neumann and Dirichlet boundary conditions being 
reduced to
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/)((V u)u — f) -  V • cr =  0 V x E 0 (4.24)

oII3>

V x e n (4.25)

u  g — 0 V x e r g (4.26)

crn — t  =  0 V X e r t (4.27)

with

cr = —pi +  2pV su  (4.28)

Applying virtual terms for velocity u) and pressure q results in the weak form

[  [u • p ( (V u)u  — f) — (V • lj)p  +  2//Vw : V su  +  q(V  • u)] d v— [  u - td a  = 0 (4.29) 
Jn J rt

Using a standard Galerkin formulation results in the approximate solution: find u h E Uh 
and ph E V h such that for all ojh E W h and qh E V h

f  \wh -p  ((V u /l)u /l -  f) -  (V • a)h)ph +  2pN7uh : V su h +  qh(V  • u h)] d v -  [  u A thda = 0
(4.30)

with

uh = {u'1 e (Hi(n))n“,iu*i^£n. e ufei^€ri!= g}

W h =  {w'1 € (ff1(n))’*-‘|a>'V<En« € (Pfc(ne))n-J, w 'V er, =  0} (4.31)

P h =  { /  € ( ^ ( s ^ b V e n *  e (p*(fte))}

where nsd =  2,3 indicates the dimension of the space.

While the standard Galerkin method is generally adequate in modelling solid mechanics, 
equal order velocity-pressure Galerkin formulation has been shown to exhibit spurious 
oscillations in velocity and pressure and thus is not considered suitable for formulating 
the incompressible Navier-Stokes equations. Detailed investigation into the origin of these
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instabilities may be found in Dettmer [16] and references therein. This work solves this 
issue with the implementation of the streamline-upwind/ and pressure-stabilising/Petrov- 
Galerkin methods (SUPG/PSPG).

4.3.1 S U P G /P S P G  Stabilisation  Techniques 

S U P G  - V elocity  S tab ilisa tio n

The simplest technique for stabilizing velocity is to add an artificial diffusion term fiart to 
the existing physical diffusion p. The ideal value of fiart is dependent on the vector of local 
properties a e =  { |ae|, / / ,he} where a e is the local divergence free velocity field and he is 
the local characteristic length. Using this technique alone, however, may exhibit diffusion 
perpendicular to the streamlines known as crosswind diffusion. In order to prevent this 
undesirable behavior the artificial diffusion may be restricted to the direction a  of the 
flow. This restricted artificial diffusion r ( a e) may then be expressed in the finite element 
formulation as

n el r

Y ] I ujha. • Vt*fc +  pVujh • V u h +  r ( a e)(a • Vwfc)(a • V u h) dv = 0, (4.32)
e=!

known as the streamline diffusion method. It should be noted that r ( a e) has the dimension 
of time and approaches zero as he —> 0. In the case of linear finite element interpolations 
this element formulation may be written as

/* r
/  u ha .'V u h +  pN7ujh ’ V u h dv +  /  r ( a e)(a • Vo;/l)(a • V u h — /j,Auh)d v  = 0. (4.33)
Jn Jne

This may also be written as

nel r
y  /  £ ft(a • V u h -  fiA uh) dv = 0, (4.34)

where ujh is a modified weighting function defined as

Ljh = u h +  r ( a e)(a • Vo)h). (4.35)
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This application of different trial spaces u h /  u>h is known as the Petrov-Galerkin method, 
resulting in equation (4.34) being identified as the streamline-upwind/Petrov-Galerkin 
(SUPG) method. It should be noted that the SUPG method defines the weighting func­
tions u)h, u)h such that within an element the upstream nodes are weighted more heavily 
than the downstream nodes. Additionally, in order for equation (4.34) to agree with the 
strong form of the problem, the finite element interpolation is required to be quadratic or 
higher. In the case of linear finite element interpolation the SUPG method may be called 

weakly consistent.

Credit for being the first researchers to present the streamline diffusion method strictly 
in the format of a Petrov-Galerkin formulation goes to Brooks and Hughes [10]. Additional 
information on the fomulation and accuracy of the SUPG method has been presented by 
Johnson et al [36, 37].

P S P G  - P ressu re  S tab ilisa tio n

Similar to the application of the SUPG method for velocity stabilisation, this work employs 
the pressure-stabilised/Petrov- Galerkin (PSPG) method for pressure stability. First intro­
duced by Hughes et al [33] this method was based on work done by Brezzi and Pitkaranta 
[9], and Johnson and Saranen [38]. The PSPG method is defined as follows: Find u h E Uh 
and ph E V h, such that for all ljh E W h and qh E V h

nei
V  I  u>h ■ (V ph -  2pV  • V ‘n h) +  q'‘(V • u '1) dv =  0, (4.36)
e = l J a ‘

where

U)h =  w h +  T(he, p ) V q h. (4.37)

Using integration by parts results in equation (4.36) being rewritten as
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/  — (V • uj )p +  2 /iVu; : V su  +  q‘ (V • u  ) dv 
Jn

n ei -
+  Y  /  r (he. W 1 • (Vp* -  2 /iV • V V )  du =  0 ,

(4.38)

which displays the PSPG method as a standard Galerkin formulation combined with an 
additional stabilisation term. In the case of piecewise linear interpolation the diffusion part 
of the second term of equation (4.38) disappears. The parameter r  would then be required 
to tend to zero as he 0  in order to remain consistent with the strong form of the problem. 
It should be noted that, similar to the SUPG method, linear finite element interpolation 
results in the PSPG method being weakly consistent. Additionally, a priori error estimate 
presented by Hughes et al [33] indicates that the method is stable, and achieves optimal 
convergence if r{h ,p) is of 0 (h 2).

S U P G /P S P G  Formulation

Tezduyar et al [60] suggests the combination of both the SUPG and PSPG methods in order 
to obtain a stable finite element formulation of the incompressible steady state Navier- 
Stokes equations (3.14)-(3.17). This combination, referred to as the SUPG/PSPG method 
reads: Find G Uh and ph G V h such that for any ljh G W h and qh G V h

J  [wk • p ((V u1* )^  -  f) -  ( v  • w'1) /

+  2fj,Vu)k : V“u ,‘ +  (V • u ^ )^ ] dv — j  u h ■ t h da

n ei *
+ E  /  kp(V u> '“)u '‘ +  TpV qh\ ■ Lo ((V uh)u h -  f)  +  VpN dv =  0 , (4.39)

e=l

where Uh, W h and V h are identified by inserting k = 1 to equation (4.31)
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Uh =  {u'* € (H \ 6  ( f t ( n ') ) n" ,  u k|*»£r,  =  g}

W h = {w/‘ e (tf1(fi))"“'|w'VEn- e (Pi(ne))"‘J, w V s r .  =  o} (4.40)

Vh =  { /  € e (Pi(He) ) } .

It should be mentioned tha t while there exist versions of (4.40) based on higher order 
polynomials (i.e. k > 1), they are not necessarily more efficient. As such in this work the 

focus is restricted to k = 1. It should also be noted that the employment of two stabilisation 
parameters ru and rp allows the velocity (SUPG) and pressure (PSPG) stabilisations to 
be controlled independently. Due to both the convection term and the dependence of r u 
and rp on u h the SU PG/PSPG  formulation is non-linear and thus requires the use of a 

numerical iteration scheme to solve for the nodal values.

While the numerical methods employed in this work are detailed in Chapter 6 , the 
application of numerical iteration schemes to solve unsteady, incompressible flow is a sub­
ject of great academic interest. Publications on this subject include Dettmer and Peric
[17, 18, 19, 20, 21, 23], Dettmer et al [24], Tezduyar et al [58, 59], Behr and Tezduyar [3],
and Peric and Slijepcevic [46, 55].

S tab ilisa tio n  P a ra m e te rs

The stabilisation parameters r u and tp  are both defined as

2 ||U " '’ •Fm M  2"

with different, independent scaling parameters ft\ and /%, where /ie, u e and Ree represent 
the element characteristic size, the fluid velocity at the centroid of the element, and the 
element Reynolds number respectively. Throughout this work the values for and /32 are 
as follows:

r„ : f t  =  1, #2 =  i
tp  : f t  =30 ,  f t  = (4.42)
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Generally, the influence of fa and fa  has been found to be small unless very large or very 
small values are chosen. The relatively large value of rp : fa has been thought to be 
beneficial for very coarse meshes in a few cases. A detailed justification of the choice of 

stabilisation parameters employed may be found in Dettmer [16].

4.3.2 T im e Integration Scheme: The G eneralised-a M ethod

The Generalised-a Method is a discrete, single-step implicit time integration procedure that 
has been shown to possess both good accuracy and user controlled high-frequency damping. 

This method employs three variable time integration parameters (a / ,  a m, 7 ) which allows 
for a significant degree of flexibility when implemented in the solution algorithm. As such, 
this method was selected to discretise the numerical models employed throughout this 
work.

In this section an overview of the generalised-a method and its application in this 
work will be provided. Detailed justification for the method and proofs of its accuracy 
have been presented by Chung and Hulbert [12] and Jansen et al [35]. A comparison of 
the generalised-a method with other single-step implicit time integration methods in the 
context of unsteady flow governed by the Navier-Stokes equations has been presented by 
Dettmer and Peric [16, 17].

Overview

The generalised-a method is based on the relationships

un + 1 =  un +  A t(( l  -  7 )un +  7 itn+i) (4.43)

'Un+af — (1 ^ /)^n  “1“ ^f^n+1 (4.44)

hn+am — (1 ^rn)hn “|“ amUn+\ (4.45)

where un represents the value of the system solution u at time instant tn such that 0  =  

to < t\ < ... < tN = Tend is the partition of the time scale I  to be considered. For example, 
consider the non-linear model problem
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un -  A(un)un =  0 V£n G /  (4.46)

with known initial solution uQ. Applying the generalised-a method results in the discrete 

form

'U’Tl+am A('iXn+Q;y )un_|-Qy. 0 . (4.47)

By rewriting equation (4.43) as

1 1 — 7
I^n+l * , (^n+1 ^n) (4.48)

7 Ar 7

and inserting into (4.45), the expression

Un+am =  ^  ~  1 -  « n )  ( 4 - 4 9 )

is obtained. Equations (4.49) and (4.44) may then be inserted into (4.47), resulting in an 
equation with un + 1 as the only unknown.

r(un+i,Un,un) =  0 (4.50)

Thus equations (4.50) and (4.48) may be used to compute the unknown solution values 

un+i > un+i for each time step. In summary, the computer implementation of the solution 
procedure is

1 . Solve (4.50) and (4.48) for un + 1 and un+i

2 . (un, Un) 4 (^tx+I, 1)

3. Goto 1 .

Finally, it should be noted that the parameters a / ,  am and 7  have been shown to reduce 
to a single free integration parameter provided the conditions for second order accuracy and
user controlled high-frequency damping are met. The condition for second order accuracy
has been shown to be
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y  = -  + a m -  a f , (4.51)

and the control for the higher frequency damping has been shown to read

* '  =  I T S  (4'52)

where 0  <  p1̂  <  1 is the only remaining time integration parameter, and represents the 

spectral radius, defined as the modulus of the amplification factor

ph00 = lim&t^ 00ph, ph = \^LLL\. (4.53)
un

It is this parameter that provides the flexibility of the generalised-a method. For example, 
if =  1 , the method becomes identical to the trapezoidal rule. Details of the formation 
of equations (4.51) and (4.52) are provided in Dettmer and Peric [16, 17] and Jansen et al 

[35].

In co m p ressib le  N avier-S tokes E q u a tio n s

In section (SUPG/PSPG) the spatial finite element discretisation of the incompressible 
Navier-Stokes equations is presented in equations (4.39) and (4.40). Combining these with 
the discrete generalised-a time integration method is known as a semi-discrete solution 
procedure, and results in the introduction of the time derivatives u j  and ujj,

Ja [uh ■ P («i£ +  (v u 4 K  -  f ) -  ( v  • «* ) Pha

+ 2fxVujk : V su* +  (V • u£)gh] dv — J  a /  ■ t£ da

n e l

+  £  /  +  rpVgh] ■ [p (u j +  (V u £ K  -  f )  +  Vp*l dv =  0 , (4.54)
e_i J$le

where ru and rp are evaluated based on u j , and
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u £ =  « /un+l +  (! -  a lW ,

Vi'S =  “
7A t~ n+1 7 A«_n ' v‘ 7

=  +  (4-55)

lih =   ̂ uf t ___ —u,‘ —  ̂~ ^uh
n+1 7 a A +1 j A t  7

are the time discretised values of the system variables. It should be noted tha t the pressure 
serves as a Lagrangian multiplier ensuring incompressibility, and thus does not need to be 

discretised in time. Instead, the term p% denotes the pressure associated with the same 
time instant as uj|; and uj*. The final combined semi-discrete formulation reads: For a 

given u j  and u j, find uj +̂1 G Ẑ +1 and p% G V h such that for any ujh G and qh G V h 
equation (4.54) is satisfied, where

Ut  =  {u£ e € (Pj(fi'))"-, u£|*„er.  =  gn}

W* =  {w'1 € (f f1(« ))n*', |w/*|ik6[1. € (P ,(n '))" -, =  0 } (4.56)

Vh =  [qh e  e  (Pi(f2e))} .

4.3 .3  2-D Fluid Flow Exam ples

Exam ple 1: Square Profile

In this section, a two dimensional finite element solver is used to predict the variation of 
aerodynamic forces acting on a body of square cross section with various angles of attack 

(a). A lm  square cross section was chosen as the profile to be modeled in the finite 
element solver, and a 2-D incompressible viscous fluid-only mesh was generated, centred 
on the square within an 80m by 60m domain. Element sizes ranged from having 0.05m 
sides along the solid boundary to having 1 0 m sides at the outer range boundaries, and the 

overall mesh consisted of 7662 triangular elements. The material properties of the fluid 
domain were chosen as being p =  1.0 kg m-3 , p  =  0.01 N s m - 2  and Uoo =  2.5 m s-1 , 
leading to a Reynolds number of Re =  pD̂ °° = 250. The square profile was represented as 
a fully fixed, rigid boundary condition. By rotating the geometry of the square profile and
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maintaining a constant, horizontal fluid flow, the lift and drag reaction forces at each node 

on the surface of the profile were obtained for varying a. This data was then interpolated 
for values of a  ranging from 0  to 8  degrees in order to calculate the aerodynamic coefficients 
of the profile, and thus plot the relationship of Cy with a.

Cn =
2  FiD

pDulc CL =
2  Fr

pDu Cm —
2Fm 

pDbu2 .

■u

D

(4.57)

Figure 4.1: Angle of attack on a square profile

Figure 4.1 displays the orientation of the local forces acting on the rotated square with 
reference to the global forces of the domain. The aerodynamic coefficient Cy can thus be 
determined by calculating the resultant vector of Cd and Cl as:

Cy = CLcos(a) +  C osinfa) (4.58)
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Figure 4.2: Detail of the fluid-only mesh

Figure 4.2 shows the fluid-only mesh employed in this example. It should be noted 

th a t the regions of higher mesh density near the sharp edges of the internal boundary are 

necessary to capture the shear separation of the fluid from the boundary. Likewise the 

wake region downstream of the internal boundaries requires a higher mesh density than 

the surrounding fluid region in order to accurately capture the behavior of the vortices 

tha t shed off of the internal boundaries. By isolating the areas of high mesh density to the 

regions in which they are necessary it is possible to significantly reduce the to tal number 

of degrees of freedom to be solved, and thus the com putational cost of the simulation.
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Figure 4.3: Lift, drag, and moment amplitudes for varying a. In the interest of simplicity, 

some plots have been represented by maximum (red) and minimum (green) amplitude only.

In figure 4.3 each column relates to the lift, drag and moment forces acting 011 the 

square profile respectively. The first and third columns display only the maximum and 

minimum values of the am plitude oscillation for clarity. It can be seen from the above 

graphs th a t vortex shedding occuring at a frequency of «  1.6 s -1  is causing a significant 

fluctuation of the forces acting on the square profile. In the case of a  = 8 a fluctuation of 

±18% is observed.

By taking the average of the forces acting 011 the square profile it is possible to determine 

the relationship of the aerodynamic coefficients with the rotation of the square geometry 

as displayed in figure 4.4.
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Figure 4.4: Variation of time averaged forces and derived aerodynamic coefficients of square 

profile with ro tation a

E xam ple  2.1: B rid g e  C ross-S ection

In this section, the same method used in section 4.3.3 was used to predict the forces 

acting on a simplified cross-section of a typical bridge deck. In this case, an 80m by 80m 

domain was centred on a 12m x 2.4m x 0.3m "H Beam" profile representing the bridge 

deck, based on work presented by Dettm er [16], and Hiibner et al [30]. Element sizes of 

the incompressible, viscous fluid-only mesh ranged from having 0 .0 1 m sides along sections 

of the solid boundary to having 10m sides a t the outer range boundaries, and the overall 

mesh consisted of ~  7000 triangular elements, depending on the orientation of the bridge 

deck, as shown in figure 4.5. The material properties of the fluid domain were chosen as 

being p =  1.0 kg m~3, p = 0.01 N s m ~ 2 and Uqq =  1.0 m s_1, leading to a Reynolds number 

of Re =  =  1200. In this case the range of rotation considered was a = 0 : 5 : 45

degrees. Given the relatively more complicated geometry of the solid boundary compared 

to the previous section, a more refined mesh was necessary in order to ensure stability 

under large rotations. This was achieved by concentrating high mesh density around the 

sharp corners of the H profile, as well as the inclusion of a higher density wake region 

region downstream of the deck. Results of this analysis are shown in figures 4.6 and 4.7.



4.3. FINITE E L EM E N TS IN FLUID MECHANICS  55

Figure 4.5: Detail of the fluid-only mesh 

E xam ple  2.2: 2 -D O F S im ulation  of R ig id  B ridge  Deck F lu tte r

By using a Fourier curve fitting tool to plot the variation of the bridge deck aerodynamic 

coefficients with o (shown in figures 4.8 and 4.9), and including the Fourier series obtained 

into the Newton Raphson solver described in section 2.2.3 it is possible to  construct a simple 

simulation in order to predict the critical velocity Ucr above which the deck will undergo 

flutter. The curve fitting tool used for this purpose was the least squares method package 

included in the open source program gnuplot. Due to the physical nature of the structure 

being modeled, the range of a  considered in section 2.2.3 was ±  45°, however in order to 

ensure numerical stability for large deformations above the expected physical range, the 

data set obtained from the 2-D solver was extrapolated by a simple linear relationship of 

Cy and Cq —y 0 as ot >  45° —> 90°. Results obtained are shown in figures 4.10 and 4.11.

The material param eters of the bridge deck were based on work presented by Dettm er 

[16] and Hiibner et al [30]; however, the stiffness of the bridge was increased and a value 

for structural damping included due to the simplified nature of the model problem. The 

geometry remains the same as in section 4.3.3 with the bridge profile being 12.0m x 2.4m 

x 0.3m considered over a unit span. The fluid properties are set to p — 0.1 N s m ~2 and p 

= 1.25 kg m ~3 and a range of inflow velocities from 0.01 m s -1  to 15.0 m s -1  leading to a 

range of Reynolds numbers considered Re =  =  1.5: 2250. The rigid body properties

were set to ky =  4000 N m -1 , m =  3000 kg, cy = 200 N s m -1 , he = 40000 N m, cq =  200 

N m s, and Iq =  25300 kg m 2.
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Figure 4.6: Lift, drag, and moment forces for varying a
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Chapter 5

FE M odelling for FSI

5.1 The Arbitrary Lagrangian-Eulerian Description  

of Fluid Flow

As described in section 3.2.1 the numerical modelling of fluid-structure interaction ne­
cessitates the employment of numerical techiniques capable of adapting to moving fluid 
boundaries. The arbitrary Lagrangian-Eulerian (ALE) description of fluid flow consists of 
a compromise between a reference frame fixed in space (Eulerian) and a reference frame 
fixed to the motion of the fluid particle (Lagrangian). This compromise results in a refer­
ence frame allowed to move independently of the fluid flow, thus enabling the fluid mesh 
to deform along moving boundaries such as the fluid-solid interface. It should be noted 

that the regions of the fluid mesh that do not need to deform to accomodate the moving 
boundary conditions may be restricted to a purely Eulerian flow, resulting in a significant 
increase in computational efficiency. Publications presenting the application of the ALE 
scheme include: Hirt et al [28], Hughes et al [34], Donea [25], Ramaswamy and Kawahara 

[47, 48], Huerta and Liu [31], Soulaimani et al [56], Tezduyar et al [58, 59], Nomura and 
Hughes [44], Sackinger et al [50], Masud and Hughes [45], Soulaimani and Saad [57], Behr 
and Tezduyar [3], Braess and Wriggers [7], Belytschko et al [4], Hiibner et al [30], Sarrate 
et al [52], and Dettmer and Peric [16, 18, 19, 20, 21].
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5.1.1 Fluid F in ite Elem ent Form ulation on a M oving D om ain

Replacing the Eulerian finite element formulation presented in equation (4.54) with the 

ALE framework results in the mesh coordinates x  being free to deform. Similarly, the 
velocity field v  now denotes the current mesh motion. The newly defined unknowns x  and 
v  are then discretised using the same piecewise linear finite element method used to obtain 
(4.54). The governing equations for a moving reference frame described in section 3.2.1 
result in the fluid velocity term u j  being replaced by the relative velocity term u£ — v j, 
integrated over the deformed spatial domain given by x~. The subscripts & and & 
denote time discretised parameters which will later be defined. The final fomulation of the 
stabilised finite element method for a moving domain reads: For a given u j  and u j ,  find 

u n + i  €  Mn+ 1  a n d  Pa €  "Ph such t h a t  f ° r  a n y  w h €  W h and qh G V h

f  [ c ^ - ^  +  t V u M - v * )  -  f) -  ( V - « k) j £
J ilg

4 - 2 : V su£ +  (V • u^)gh] dv — J  u h • da

n e l  r r -|
+  £  L [w (V u ,/l)(uJ; -  v£) +  TpVqh]

e=l

■ [p (u£ +  K ) ( u J  -  V *) -  f) +  Vj£] dv =  0, (5.1) 

where the finite element spaces are defined

Un+1 =  { < + 1  e  ( f f 1(na))B"‘|u5+1 |*«.en | e  (P i(n |))"*d, =  gn}

W h =  {a;'* 6 € (P i(n i))n'J, « V er«,a =  o} (5.2)

V h = j?'* e  ( t f 1^ * ))!  < ?V enS e (P i(n j) )} .

The stabilisation parameters are likewise now based on the relative velocity term u® — v |

t  — „  t - - r - & _____ . a *  -  ll(n‘J (5.3)

As discussed in Chapter 4 the generalised-a method is employed to discretise all but the 
moving reference frame parameters x~ and v^, therefore equations (4.51), (4.52) and (4.55)
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remain unchanged. A simple generalised midpoint scheme is used to discretise x j  and v |,  
resulting in the relation

X* =  “ /*£+i +  (! -  « /)*£

=  a /v j+ i +  (1  -  a / ) v j

.a _  1 ~  7 
' /A t" n+1 yA t'~n 7^ + i  =  ------— (5-4)

where 7  is an integration parameter 5  < 7  < 1 which is set to 7  =  7  allowing the 
choice of p1̂  to define all time integration parameters. Assuming the nodal mesh positions 
defining the current mesh configuration xn are known, this system may be solved for the 
unknowns u ^+1 and using an appropriate numerical iteration technique such as the 
Newton-Raphson method.

5.1.2 M esh U pdate M ethod: Non-Linear P seudo-E lasticity

In the interest of obtaining a robust and efficient overall solution procedure, the method 
of updating the nodal positions of the mesh to account for moving boundary conditions is 
required to:

• have low computational cost

• maintain optimal mesh quality to avoid severe distortion of elements

• work on both structured and unstructured meshes

•  be able to adapt the finite element mesh to accomodate severely distorted geometries

•  allow for linearisation in order to be solved using the Newton-Raphson method. For 

example: by taking the derivative of the internal node positions with respect to the 

boundary nodes dkint/dkboun-

In this work, these criteria are met by the application of the non-linear pseudo-elastic 
method. This method treats the mesh as an elastic body, allowing for the movement 
of the mesh to be discretised using a standard Lagrangian finite element formulation, as
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described in section 4.2. By employing a straightforward linear finite element fomulation, 
only one Gauss point is required to integrate over each element. The behavior of the mesh 
is described by hyper-elastic Neo-Hookean properties with the pseudo-material properties 
of the mesh described by the shear and bulk moduli, fimesh and K mesh respectively. This 
behavior is then linearised and solved using a Newton-Raphson procedure. It should be 

noted that in this context, any volumetric locking that may result from finite element 
elasticity may be considered irrelevant.

This method may be better adapted to repeated oscillating solid deformation by re­

taining a ’stress-free’ reference mesh configuration, typically obtained from x  at t = 0 . 
Alternatively, large-scale deformations have been shown to be better accounted for by 
using the previous mesh configuration 5tt- i  as the ’stress-free’ reference configuration to 
obtain x*.

5.2 Interface M odelling Strategy: Fluid-Solid Inter­

face

This section describes the approach taken to the numerical description of the boundary 
between a fluid finite element mesh and a moving flexible body employed within this work.

5.2.1 N on-M atching M eshes: N odal Interpolation

Generally in a fluid-structure interaction simulation, the fluid mesh will require a higher 
level of spatial discretisation, or mesh density , than that of the solid mesh. Increasing the 
solid mesh density to match is both tedious in the mesh generation stage and computation­
ally expensive, as it increases the number of interface degrees of freedom which governs 
the overall computational cost of the solver. Instead, a means of interpolating between 
the fluid and solid meshes along the interface is employed, allowing for independent mesh 
density.

Due to the Lagrangian nature of the solid numerical model, the boundary nodes of the 
solid mesh provide an accurate description of the interface configuration, even for large 
deformations. The fluid interface nodes may therefore be considered as "glued" to the
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surface of the solid, and the method described in section 5.1.2 may then be employed to 
adjust the position of the internal fluid nodes to the updated configuration of the interface. 
The no-slip boundary condition described by equation (3.22) shows that the fluid particles 

adjacent to the interface will also stick to the solid surface, resulting in the fluid particle 
velocity matching the fluid mesh velocity at the interface.

Fluid

Solid

Figure 5.1: Diagram of interpolation of fluid nodes on the interface.

The behavior of the fluid and solid particles matching that of the fluid and solid meshes 
at the interface allows for the kinematic data of the fluid to be expressed in terms of the 
solid through the finite element interpolation method displayed in figure 5.1. This results 
in the fluid behavior being expressed as

=  Cb ,a (*b ,o +  d#) (5.5)

Ua = VA =  cb ,a d s  (5.6)

i*A =  £b ,a d s , (5.7)

where x^, Ua , 11,4, are vectors representing the interface nodal values of x/1, u fc, u h,
and v h. Likewise, xB)0, d#, xB, and xB represent the interface nodal values of the solid 
initial configuration, displacement, velocity and acceleration. Finally, the interpolation 

coefficient cb ,a = N b (E,a ) represents the value of the structural shape function of point 
B at the location of fluid node A. The enforcement of equations (5.5) - (5.7) ensures that 
kinematic consistency is maintained along the interface.
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Similar to the kinematics of the interface, the equilibrium of forces at the interface is 
calculated using the finite element interpolation method and the principle of virtual work. 
Expressing a virtual displacement of the interface as

Sd = N sB5dB , (5.8)

allows the sum work of the fluid and solid forces done over the virtual displacement to be 
written as

SW  =  gfAN sB(£A)6dB +  £ b M b  =  0, (5.9)

where the vectors gA and g B denote the residual nodal forces in fluid node A and solid

node B respectively. The sum over all nodes A and B along the interface therefore reads

g fAc b ,a  +  S b =  0. (5.10)

On the topic of computational implementation it should be noted that the values of 
cb>a remain constant throughout the simulation, and the computational effort associated 
with the transfer of kinematics and forces at the interface is negligible. In the case of 
rotational degrees of freedom found in some structural elements such as beams or shells, 
as well as pressure in the fluid, transfer across the interface is not needed. In the case 
of two dimensional beam, plate, or membrane elements that are "wet" on both sides, the 
kinematics and forces of the solid are simply transferred to the fluid nodes on both sides.

Enforcing the kinematic consistency conditions (5.5) - (5.7) at the discrete time instants 
tn, tn+1 , ••• allows for the separate temporal discretisation of fluid and solid domains. In this 
work the generalised-a method is employed to discretise both domains, however different 
formulae for am and a / ,  as well as different values of the user controlled free integration 
parameter p1̂  are employed.



Chapter 6

Solvers

Having discussed the finer details of discretising numerical models of fluid-structure inter­
action in previous chapters, the focus of this chapter will be the general implementation of 
the computational solution strategies employed in this work. Section 6.1 details the gen­
eral decomposition of the problem into separate fluid, interface and solid domains. This 
decomposition results in three strongly coupled sets of highly non-linear equations, as well 
as allows for a high degree of modularity in the solution algorithm. The final sections of 
this chapter detail the differences between the monolithic, weakly coupled and partitioned 
solution schemes employed. As mentioned in Chapter 1 , the solvers employed in this work 
have been developed and presented by D. Peric and W. Dettmer. These publications in­
clude: the monolothic Newton method, see e.g. Dettmer and Peric [16, 19, 20, 21, 51, 22], 
the block Gauss-Seidel procedure, see e.g. Joosten et al [39, 40], and the novel staggered 
scheme, see e.g. Dettmer and Peric [23].

6.1 Dom ain D ecom position

In this work, the interface domain is discretised using isoparametric finite elements com­
prised of nodes and interpolated using shape functions in an approach similar to those 
employed in the fluid and solid phases, with the interface degrees of freedom detailing the 
current configuration of the interface and the transfer of information between the other 
two phases.

66
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Figure 6.1: Decomposition of the system into separate domains.

Figure 6.1 details the decomposition and interaction of the three phases considered, 

while highlighting the modular separation of the solvers applied over each domain. The 

degrees of freedom of the fluid and solid phases associated with the interface (W’\  x^’\  d s,z) 
consist of the element nodal values in each phase located directly on the interface. As such, 

the governing equations of these phases may be w ritten as

r^(u /,U i) =  0 (Fluid Body) (6.1)

r m(x /,u ')  =  0  (Fluid Mesh) (6.2)

;f (uf ,Ui)  +  gs(u i,d s) =  0 (Interface) (6.3)

r 5 (uj, d s) =  0  (Solid) (6.4)

where U f  = { u ^ , u - b * } ,  x / =  {x/,:x/>z}, U j  =  { u \x 1} and d s =  {ds,l,d s} are vectors 

representing the system unknowns to be calculated in the fluid, interface, and solid phases
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respectively. The vectors g 1 and g s denote the traction forces exerted by the fluid and solid 

phases 011 the interface, while r^, r m, and r s represent the fluid and solid phase solvers.

6.2 M onolith ic  N ew to n  M eth o d

This solution method consists of solving the entire fluid-structure interaction system si­

multaneously using the Netwon-Raphson method. In order to accomplish this the fluid, 

solid, and interface domains must first be combined to form a linearised monolithic system 

m atrix as described by figure 6 .2 .

r^ (u /,U j) =  0 (Fluid Body)

r m(x^, 11*) =  0 (Fluid Mesh)

r l (u f , Ui , d s) =  0 (Interface)

r s(u ?:, d,s) =  0 (Solid)

K // ^ /m K fi 0

0 Kmm *̂ -mi 0

K if K u K is
0 0 K si

r~ 
'

<1
1 ---- c

<X<1 j.rn

Auj r *

A d s r s

uf

0

0 A  rXf

u‘

0 d ‘

Figure 6.2: The monolithic system matrix.
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System (6.5) is then solved by first guessing initial values for the system variables 
U n+i. Using these values the monolithic system matrix K  is then solved iteratively using 
the Newton-Raphson method for the values of U n+i that satisfy the governing equations 
R (U ) to an acceptable level of accuracy. Once the desired level of accuracy has been met, 

the system variables are updated and the method may now move on to the next time step. 
A summary of this process is provided in box 6.1.

Box 6.1: Summary of Monolithic Newton Algorithm

1. Guess initial values of U^+1.

2. Insert initial values of U ^+1 into equation 6.5 to determine if ac­
curacy is within tolerable levels.

3. If tolerance is not met, calculate new estimate =  U^+j +  AU 
where

ATT =  R (U n+l)
K

and return to step 2 using as the new estimate. If tolerance 
has been met go to step 4.

4. Update system variables by setting U n =  U n+i and go to next 
time step.

6.3 W eakly Coupled Staggered Scheme

This solution method is based on the consideration of separate fluid and solid phases. First, 
a value for the traction forces exerted on the solid by the fluid is predicted and used to solve 
for the solid, and thus the interface, displacement. This updated interface configuration is 
then used to calculate new values for the fluid body behavior and traction forces. Finally, 
a weighted average of the predicted and calculated values of the traction forces is taken for 
use in the next time step. This method may sometimes result in a violation of equilibrium 
at the interface, particularly in the case of small solid over fluid mass ratios and is thus 
considered to be weakly coupled .
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The application of this method requires the modification of equations (6.1) - (6.4) by the 

inclusion of an interface traction force vector t*, and the separation of the interface phase 
into fluid and solid interface terms. It should be noted that for simplicity of exposition 
solving for the mesh motion has been omitted throughout the remainder of this chapter.

Fluid (6 .6)

rs(uhds) =  0 
gs(u i,d s) =  - t  i

Solid (6.7)

Box 6.2 provides a summary of the novel staggered solution algorithm. Note that 
the structural displacement is calculated using the predicted traction vector t j n+1. The 
difference, e, between the predicted traction vector and the calculated traction vector t j  +1  

quantifies the violation of equations (6 .6 ) and (6.7).

The weighted average parameter /? employed in step 4 is chosen by the user and is typically 

set to 0.5. If P is set to 0, the traction force vector determined by the fluid is completely 
ignored. It must be noted tha t while reducing the value of j3 increases the ability of this 
solution method to accomodate smaller solid over fluid mass ratios, doing so results in a 
loss of accuracy which becomes more significant as approaches zero.
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Box 6.2: Summary of Staggered Scheme Algorithm

1. Predict traction force:

^i,n+ 1 =  2 tfjTl — t j jn_i

2. Load solid with predicted traction force and solve for interface dis­

placement:

ra(uin+i,dan+i) =  0 l o i r  ^
. . p i Solve for U ijn+ i , d S)n+i

SS(ui,n+l? dS)n+i) = — ti n+1 J

3. Update fluid mesh, then solve fluid body for calculated traction 
force:

r/ (u/ ,„+i,u it„+i) =  0 1 c i  f
N 1 Solve for U/ .n + l'V + l

g J ( u / ,n + l .U i ,n + l )  =  - t * n+1 J

4. Calculate the average of the traction forces:

4 j , n + l  =  0 1 > i tn + l  +  ( 1  —  0 ) t > i , n + 1

5. Go to next time step.

6.4 Partitioned Block Gauss-Seidel

Similar to the approach taken in the staggered scheme, the Block Gauss-Seidel method 
separates the coupled FSI system into fluid and solid domains.

Rf(» / ,ui) =  0 Flu.d (g9)
Rf(u/,Ui) = ti j

R f K d 5) = o 1 Solid 
Rf(uj,ds) = - t j  J

(6.10)
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This method forms the solution at the next time step by first guessing an initial interface

displacement, u?n+1. This displacement is then used to solve the fluid domain for an 
updated interface traction force, t i>n+i, which is used in turn to solve the solid domain 
for a calculated interface displacement, u*n+1. If the error quantified by the difference 

u f ,n + 1 ~  u i ,n + i  is larger than the desired tolerance, the calculated value of u *n+1 is used 
as an updated prediction for uf n+1 and the systems are solved again. Box 6.3 displays a 
summary of the solution algorithm.

Box 6.3: Summary of Block Gauss-Seidel Algorithm

1 . Guess interface displacement uf n+1

2. Use Ilf,n + i  to solve solid domain for d S)n+i and t i>n+7:

3. Use t i>n+7 to solve fluid domain for U/jn+i and u * n+1

Solve for u /in+1, u * n+1

4 - I f  K n+ 1 -  u i ,n + i  > toZ, set u? n+1 =  u * n+1 and go to step 2 .

5. If required accuracy is met, update system and go to next time 
step.

It should be noted that while this method solves the fluid and solid domains separately, 
the strong coupling of the integrated system is maintained via the iterative communication 
of the interface traction force and displacement.



Chapter 7

Flexible Beam

7.1 General Description of Problem

As an entry exercise into full 3D numerical FSI modelling, it was decided to begin with 
a simple external flow simulation. This was done by constructing a model problem con­
sisting of a long slender beam, fully fixed at both ends and subjected to a steady uniform 
transverse fluid flow. This model was then solved using the monolithic Newton, block 
Gauss-Seidel and weakly coupled solvers in order to establish a comparison between the 
solution methods.

7.2 Formulation of M esh and Boundary Conditions

As a starting point for this model problem, it was decided to take the geometrical properties 

of the rigid rectangular body from Dettmer and Peric [19] and extrapolate them into three 
dimensions. This resulted in a rectangular beam 4xlx30m long fully submerged in a 
fluid domain of 80x60x30m. The solid domain was discretised using 60 eight-noded brick 
elements, while the fluid mesh consisted of 146.5k four-noded tetrahedral elements. The 

material properties of the flexible beam were taken as ps =  70.588, Ip = 400, K s = 1783.6 
and Gs = 823.2 equating to a Young’s modulus of Es = 2140.32 and a Poisson’s ratio 
of vs = 0.3, while the fluid properties were pf = 1.0, p f = 0.01 and inflow velocity 
UQo =  2.5 ramped up sinusoidally from 0 over the first 1 0  seconds of simulation and then

73
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held constant. W ith a chord length of D = 1.0 this results in a Reynold’s number of
Re = PfUooD = 250.

N

80

Uniform Inflow Slip

P = 0
Slip

Outflow

29.5 Slip

23

Figure 7.1: Diagram of boundary conditions and dimensions.

Figure 7.1 displays the boundary conditions and geometry of the model problem being 
considered, with the flexible beam fully fixed at both ends. The boundary conditions of 
the fluid domain were such that the fluid velocities were fixed at the inlet, one point at the 
outlet fixed in pressure, and all other outer boundaries slip. Figures 7.3 and 7.2 display 
the fluid and solid meshes employed in this simulation. It should be noted that a higher 
mesh density is required at certain critical areas of the fluid mesh, such as any sharp edges 
on the fluid-solid interface where shear separation may occur, as well as the wake region 
downstream of the solid in order to resolve the behavior of the fluid vortices.
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Figure 7.2: Image of the fluid mesh domain

Figure 7.3: Images detailing the fluid mesh density on the interface, and the solid mesh.
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7.3 Analysis of Simple Elastic Beam  Bridge

Figures 7.4 - 7.6 display the solution results obtained by all three solvers, while Figure 7.7 
displays contour plots of the pressure acting on the surface of the deformed solid mesh. 
The elastic beam displays flutter behavior when subjected to the constant uniform inflow, 
resulting in large-scale deformations suitable for displaying the capability of the solvers to 

handle severely deformed meshes. The results of all three solvers agree very strongly until 
approximately 500s of simulated time, where the novel staggered scheme begins to lose 
agreement. Over the course of this analysis the monolithic Newton and block Gauss-Seidel 
solvers displayed a similar computational cost while the novel staggered scheme required 
roughly one third of the cost of the other solvers. While the strongly coupled solvers display 
a higher level of accuracy, the significant difference in computational cost poses a strong 
argument for the employment of the novel staggered solution scheme.

Displacement perpendicular to the flow over time.
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Figure 7.4: Vertical displacement of the central upstream point of the bridge. Legend 
denotes the Monolithic Newton, Weakly Coupled and Gauss Seidel solutions for A t = 0.5s.
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Displacement parallel to the flow over time.
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Figure 7.7: Contour plots displaying pressure on the surface of the deformed solid mesh.



Chapter 8

3-D Flexible P late

8.1 Introduction

In the interest of modelling a more complex external flow example than the previous 
chapter, it was decided to construct a simulation of a thin flexible plate fixed to a rigid 
support. This system can be expected to behave in a very unstable manner, as the sharp 
angles of the rigid support should result in high levels of vorticity in the flow over the thin 
plate. Additionally, this example has been presented in two dimensions by Dettmer and 
Peric [16, 20], Wall and Ramm [61], Hiibner et al [30] and later in three dimensions by von 
Scheven [53] and Kassiotis et al [41, 42] and as such was considered a suitable problem to 
test the capabilities of the 3-D solution methods employed in this study and compare to 
other published solution methods.

The problem itself consists of a thin, flexible solid material fully submerged in a fluid 
body, and fixed to a rigid rectangular beam. Far upstream from the body, a uniform 
inflow velocity £/«, is applied gradually over a period of time, resulting in vortices forming 

on the rigid rectangular body causing the flexible plate to be displaced. In the interest of 
comparison with other presentations of this problem, as well as general exploration, two 
sets of material properties for the system were simulated using various meshes and solution 
methods.

79



80 CHAPTER 8. 3-D FLEXIBLE PLATE

8.2 M aterial Properties

8.2.1 Case 1: Light and Stiff

This case was based on the work presented by Dettmer and Peric [16, 20]. The fluid 
properties were set as having viscosity p f  =  1.82 x 1 0 -4 , density p f  = 1.18 x 1 0 -3 , and 
uniform flow [/«, =  51.3 applied gradually from 0 over t = [0.5 : 1.0], resulting in a 

Reynolds number of Re = = 333. The solid parameters were set as having a
density of p s = 0.1, shear modulus Gs = 9.92593 x 105 and bulk modulus K s = 2.78 x 106 

corresponding to a Young’s modulus Es =  2.5 x 106 and Poisson’s ratio va = 0.35.

8.2.2 Case 2: H eavy

The second test case was based on the work presented by von Scheven [53] and Kassiotis 
et al [41, 42]. The fluid properties were set to p f = 1.82 x 10-4 , pf = 1.18 x 10- 3  and 
uniform inflow velocity Uqq = 100.0 resulting in a Reynolds number of Re = 650(648.35). 
The solid density was set to a much higher value than case 1 of ps = 2.0. The solid bulk 
and shear moduli were set to K s =  2.223 x 106 and Gs = 7.4074 x 105, corresponding to a 
Young’s modulus of Es =  2.0 x 106 and Poisson’s ratio of us = 0.35.

Table 8 .1 : Comparison of material properties

Benchmark C/oo Ramp
J PS PI Es vs Ps

Dettmer Bench 51.3 1 .0 0.1542 1.18 x 1 0 " 3 2.5 x 106 0.35 0 .1

von Scheven/ 

Kassiotis Bench
1 0 0 .0 2 .0 * 0.1542 1.18 x 1 0 " 3 2 .0  x 1 0 6 0.35 2 .0

It should be noted that Kassiotis et. al. do not initiate the ALE strategy until U = Uqq. 
This is done by beginning the ramp at -2s to reach full inflow at 0s.

8.3 Geom etrical Properties

All of the cases investigated in this study share identical geometrical properties detailed in 
figures 8.1 and 8.2. The solid domain consists of a thin plate 4m long by 3m high, with a
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thickness of 0.06m fixed at one end to a rigid support 3m high with width and thickness 
of lm. Due to the rigid nature of the support, only the thin plate was chosen to interact 
with the fluid. The solid was then suspended in a fluid domain 20m by 11m by 11m.

20

Uniform Inflow Slip

p = 0

Outflow
Slip

Slip

Figure 8.1: Diagram of domain boundary conditions and dimensions.

8.4 Formulation of M esh and Boundary Conditions

The fluid body was represented numerically using both a coarse (8 8 k elements) and a dense 
(166k elements) mesh of four-noded tetrahedral elements. Images of the 166k element fluid 
mesh are displayed in figures 8.3 and 8.4(a). In both meshes the boundary conditions 
applied were the same, with the inlet being fixed, one point of pressure in the outlet 
fixed, and all other outer boundaries slip. As mentioned previously, the rigid support was 
represented as fully fixed no-slip boundaries within the fluid domain, and the flexible plate 
chosen as the only part of the structure to be included in the FSI interface.
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Rigid Boundary Only

0.06

Plate Interacts 
With Fluid

3

1

Figure 8.2: Diagram of structure boundary conditions and dimensions.

Table 8 .2 : Comparison of fluid mesh properties

Mesh Incompressible 
Fluid Elements/Cells

D.o.f. Solution Strategy St

Mpap1 166 x 103 Stable 751 x 103 (total) Finite Elements 0.005

Kassiotis et. al. 290 x 103 1159 x 103 Finite Volume 0 .0 0 1

von Scheven 2 0 0  x 1 0 3 794 x 103 (total) Finite Elements 0 .0 1

Due to the slender nature of the solid geometry being considered, special care was 
taken in selecting which type of solid elements were to be used to represent the behavior 
of the plate. It was therefore decided to conduct a solid-only analysis of the undamped 
natural frequency of vibration of the plate represented by a variety of solid element types 
and compare the values obtained to the analytical solution for the natural frequency of a 
cantilever beam.

Three solid mesh configurations were analysed in this manner, consisting of: an 8 -noded 

Fbar solid mesh of 600 elements, and two 20-noded quadratic solid element meshes of 300, 
and 2400 elements respectively. Both the 8 -noded Fbar and the dense 20-noded quadratic 
meshes contain two layers of elements in the thickness of the plate, while the coarse 2 0 - 
noded quadratic mesh consists of only one layer. Additionally, as mentioned previously,

1Note that "Mpap" is an abbreviation of "Multiphysics Analysis Program" used to denote the solvers
employed in this work as a group for the sake of brevity.



8.4. FO RM U LATION OF MESH AN D  B O U N D A R Y CONDITIONS 83

Figure 8.3: Image of the 166k element fluid mesh domain.

all solid elements considered employ the Neo-Hooke elastic behavior model.

Table 8.3: Comparison of results for solid only test case.

System Frequency of Oscillation

Analytical Rayleigh calc, for solid only f n 0.6057, 3.687

Mpap 8 N FBar Solid Only 600 ele 1.2

Mpap 20N Solid Only 300 ele 0.62

Mpap 20N Solid Only 2400 ele 0.62

It can be seen from the results presented in table 8.3 tha t the 20-noded quadratic 

elements behave in a manner th a t compares favorably with the analytical solution for the 

first mode of vibration, resulting in a relative error of 2.36%. Due to the identical behavior 

of the two meshes using this element type and in the interest of reducing com putational 

cost, the 300 quadratic element mesh was selected to be employed throughout the remainder
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* 1

Figure 8.4: Images detailing the IGGk element fluid mesh density on the interface, and the 

300 element 20N solid mesh.

of this study. An image of this mesh is displayed in figure 8.4(b).

Table 8.4: Comparison of solid mesh properties

Mesh Solid Elements D.o.f. Solution Strategy Coupling Strategy

Mpap 300 20-Noded n /a NeoHooke Elastic­ MN /  GS /  WC

Q uadratic ity
Kassiotis et. al. 300 27-Noded 7425 St.-Venant- DMFT-BGS with

Q uadratic Kirchhoff Aitken relaxation

von Scheven 432 7 Param eter n /a St.-Venant- Block Gauss-Seidel

Shell Kirchhoff with Aitken relax­

ation
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8.5 A n alysis  o f S im ulations

It should be noted that all nodal deflections presented in this section are of the free end of 

the flexible plate. W here necessary, results relating to the top, middle, and bottom  of the 

plate will be specified.

8.5.1 Case 1: Ux  = 51.3, =  2.5 x 106

Displacement perpendicular to the flow over time. Displacement perpendicular to the flow over time.

 wvWVAAAM

0 5 10 15 20 0 5 10 15 20
Time (s) Time (s)

Figure 8.5: 88k fluid mesh with 20N quadratic solid elements. Legends identify Monolithic 

Newton and Weakly Coupled solutions as well as time step size.

-0.05

-0.1

-0.15

■§ -0.05

|  -0.1 
CL

-0.15

Displacement perpendicular to the flow over time

Time (s) Time (s)

Displacement perpendicular to the flow over time

MN dl 0.01

Figure 8 .6 : 166k fluid mesh with 20N quadratic solid elements. Legends identify Monolithic 

Newton and Weakly Coupled solutions as well as time step size.

In all simulations investigated in this case it can be seen th a t the steady flow parallel 

to the plate eventually results in a steady oscillating response in the solid, presenting 

behavior which agrees with the known phenomena of vortex induced vibration. Due to 

the high com putational cost of the monolithic Newton and block Gauss-Seidel solvers,
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simulations employing these solution techniques were limited to a lower simulation time 

interval than  simulations employing the novel staggered solution method. Figure 8 .6 (b) 

shows th a t a steady-state response of the solid mesh is reached by approximately 10s of 

simulation time. It was therefore decided to restrict the interval considered for the analysis 

of the three solvers to 10s (2500 time steps at A t = 0.004).

c
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0o

_0
CL
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0
3O
~oc
0
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0
Q.

0.15 

0.1 

0.05 

0

-0.05 

-0.1 h 

-0.15
0

Displacement perpendicular to the flow over time. 
 1 1----------------

MN dt 0.004 
WC dt 0.004 
GS dt 0.004

i f

4 6
Time (s)

8 10

Figure 8.7: 166k fluid mesh with 20N quadratic solid elements. Legend identifies Monolithic 

Newton, Weakly Coupled, and Gauss Seidel solutions as well as time step size.

Figure 8.7 displays a strong agreement between the solution methods considered, which 

is consistent with the results obtained from the analysis presented in C hapter 7. Due to 

the consistency of the results obtained and in the interest of performing a higher number of 

simulations during the time interval of this work, the novel staggered scheme was selected 

as the prim ary solution technique employed for the remainder of this study, with the 

monolithic Newton solver employed to justify the accuracy of results.
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Table 8.5: Comparison of solutions.
Analysis Amplitude Frequency

2D 2.8 1.6

3D Coarse 88k mesh 0.6 3.0

3D Dense 166k mesh 0.29 3.5

Table 8.5 highlights the differences of the two dimensional results presented in Dettmer 
and Peric [16, 20] with the three dimensional results obtained in this study. It is possible 
that this may be a result of the two dimensional model problem being an idealisation of the 
three dimensional case, requiring the length of the plate in the dimension not accounted 
for to be assumed as infinitely long. It is to be expected that the presence of steady flow 
above and below the flexible plate would have a significant impact on the behavior of both 
the fluid and solid bodies considered. As an additional supporting argument for the three 
dimensional results it should be noted that the frequency of oscillation presented by the 
166k fluid mesh simulation (3.5) agrees quite strongly with the analytical result for the 
second mode of vibration for the cantilever plate (3.687). This second modal response of 
the solid mesh would account for a reduction in the maximum amplitude of oscillation of 

the free end of the plate.
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Figure 8 .8 : Images of countour plots detailing pressure acting on the surface of the deformed 

mesh.
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8 . 5 . 2  Case 2: Ux  = 100.0, E s = 2.0 x 106

89

Displacem ent perpendicular to the flow over time.

0.12

0.1

1  0.08
e
8  0.06J2
I  0.04

■§ 0.02
0

1 o §
£  -0.02

-0 .04 

-0.06 j____ I____ i_
8 10 12 

Time (s)

D isplacem ent perpendicular to the  flow over time.

0.1  1------------ 1------------ 1------------ 1------------ p-----
MN dt 0 .005

D isplacem ent perpendicular to the flow over time.

-0.02 
0 2 4 6 8

Tim e (s)

0.1 

0.08
<u 
E
8  0.06 ro 
o.

-  0.04ro
D| 002 I
“■ o 

-0.02
0 5 10 15 20

Time (s)

Figure 8.9: All figures above on 88k fluid mesh with 20N quadratic solid elements. Legends 

identify Monolithic Newton and Weakly Coupled solutions as well as time step size.

Figures 8.9 and 8.10 display the results obtained from the simulations performed on 

the coarse and dense fluid meshes respectively. On the coarse mesh the displacement of 

the flexible plate damps down to 0 after the initial disturbance with strong agreement 

between the monolithic Newton and novel staggered solutions, while on the dense mesh 

the plate responds both in lateral displacement and torsion. This behavior is indicative of 

the complex nature of the fluid flow being modelled, and it may therefore be observed tha t 

the coarse mesh is not capable of fully discretising the flow around the complex geometry 

of this model problem. Additionally, the multimodal response of the flexible plate is a clear 

indication of the unstable nature of the model problem with this set of system properties. 

As such, any difference in the model solution may be expected to result in a significant 

difference in solid response. This behavior is further highlighted by the disagreement of 

the 8-noded solid mesh and 20-noded solid mesh solutions presented in figure 8 .10 : col(a)

WC dl 0 .005
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and col(b) respectively.

Displacem ent perpendicular to  the flow

8NC WC dt=0.005

30 40 50
Time (s)

D isplacem ent perpendicular to the flow

Middle
Bottom

Time (s)

D isplacem ent perpendicular to the flow

0.08
2QN WC dt=0.005

0.06

£  0.04
E
8 0.02ro
Q.f  0
f -0.02o
?  -0.040)&£ 43.06

-0.08

-0.1
50 700 10 20 30 40 60

Time (s)

D isplacem ent perpendicular to the flow

Time (s)

0.05
Top

Middle
Bottom

0.04

£  0 .03  -
E
8  0.02 -
JS
3  0.01

|  0 I
1  -001 -e
£  -0.02 -

-0.03

-0.04
2010 12 14 16 18

Figure 8.10: Figures above on 166k fluid mesh. First column: 8-noded solid mesh, second 

column: 20-noded solid mesh. Legends identify solid mesh density used to obtain the 

Weakly Coupled solution as well as time step size.

A summary of the results obtained for this test case, along with those presented by von 

Scheven [53] and Kassiotis et al [41, 42] is presented in table 8 .6 . It can be seen tha t full 

agreement is not present between any of the presentations of this model problem. However, 

it should be noted th a t the plate behavior presented by Kassiotis et al is of the second 

mode of translational displacement with no torsional rotation, while the results obtained 

in this work and those presented by von Scheven exhibit both translational and torsional 

responses in the solid. As was established previously in this section, the model problem 

being considered is highly unstable and is prone to transition between translational and 

torsional modes of response. As such, it is the belief of the author th a t the m agnitude of the 

disagreement between the different presentations of this solution does not fully reflect the 

difference in accuracy of the various solution techniques employed. Additionally, it must
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be mentioned that the time intervals considered in the solutions presented by von Scheven 
and Kassiotis et al may not be sufficient to describe the final fully-realised response of the 
system.

Table 8 .6 : Comparison of results for second test case.

System Frequency of 
Oscillation

Amplitude of 
Oscillation

Time
Interval

Kassiotis e. al. FSI 4.0 0.5 6 s
von Scheven FSI 0.9 or 10 (2 modes) 0 .1 1 2 s

Mpap 8 8 k Fluid, 20N Solid 1 .1 0.05 (damped to 0) 2 0 s
Mpap 166k Fluid, 8 N Fbar Solid 2 .1 * 0.07 75s

Mpap 166k Fluid, 20N Solid 0.7* 0.08 70s
*In both cases for the 166k mesh, the vibration of the solid consists of both lateral 

displacement and torsional rotation. The linear solid mesh experiences more torsion than 
the quadratic solid and thus experiences both a smaller amplitude and higher frequency. 
It should also be noted that there is strong agreement between the monolithic Newton

and weakly coupled solvers.



Chapter 9 

3-D Tube FSI

9.1 General Description of Problem

In order to present a suitable internal flow FSI model problem, a simple "flow through a 
flexible pipe" model was chosen. As discussed previously, there is currently a shortage of 
well established benchmarks in the area of three dimensional fluid-structure interaction, 
however, Dettmer and Peric [21] present this problem in two dimensions, and similar three 
dimensional internal flow simulations have been presented by Hron and Turek [29], and 
Bazilevs et al [2 ]. Setting up this problem posed some interesting challenges in several 
areas. Considering tha t this was effectively the first time this particular model was to be 
simulated, special care had to be taken when choosing the geometry, material properties, 
and boundary conditions.

9.2 Constructing the M odel Problem

It was decided that the model problem would consist of a long slender elastic tube with 
a sinusiodal internal flow, parabolic at the inlet. In the interest of having a very slender 

pipe, the length of the tube was set to 50 times the internal radius. It was also decided 
that the ratio of external radius to internal radius would be \ / 2 , resulting in the fluid and 
solid domains having equal cross-sectional area. By choosing an internal radius of 1, an 
external radius of y/2 and length of 50 were obtained.

92
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Figure 9.1: Diagram of geometrical ratios.

A fluid mesh was then constructed, consisting of unstructured four-noded tetrahedral 

elements with a higher mesh density towards the interface boundary on the outer edges of 

the fluid cylinder, and coarser elements towards the centre of the fluid domain, resulting 

in a mesh of 7.6 • 104 stabilised incompressible fluid elements, as displayed in figure 9.2.

The solid mesh consisted of structured eight-noded linear elements with three divisions 

on the radial length, twenty four along the circumference and one hundred along the length 

resulting in mesh consisting of 7200 NeoHooke Elastic solid elements, as displayed in figure 

9.3.

Figure 9.2: Image of the fluid mesh domain.

The interface nodes were identified by interpolating between the internal surface nodes
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Figure 9.3: Image of solid mesh configuration.

of the solid mesh in order to identify all of the fluid nodes in contact with the solid boundary. 

Once this was completed, the final system was assembled with the fluid boundaries set as 

fixed at the inlet, joined to the solid mesh at the interface, and free at the outlet with 

one point fixed in pressure. The solid mesh was fixed at the inlet, and fixed in the axial 

direction a t the outlet in the interest of negating any displacement in the axial direction. 

This was done in order to ensure tha t any solid deflection would be in the radial direction. 

Figures 9.4 and 9.5 detail the boundary conditions described.

9.2.1 Test Case 1

As an initial test of the solver’s ability to handle internal flow, an arbitrary set of fluid 

m aterial param eters were chosen as pj = 1.0, p j =  0.01 , and parabolic inflow with 

maximum velocity =  2.0 . This inflow was applied sinusoidally, oscillating between 

0 and Uoo with a period of t = 20s. The solid m aterial param eters were chosen as

K s = 7.2 • 104, Gs = 3.2 • 104 equating to a Young’s modulus of E s = 8.36 • 104 and

Poisson’s ratio vs — 0.306 .

9.2.2 Test Case 2

The second test case consisted of the same fluid properties as Case 1, however the solid 

stiffness was reduced by a factor of roughly twenty, resulting in K s = 3600, Gs = 1800
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Solid Mesh Boundary Conditions

■Outlet boundary nodes 
free radially, but fixed 
in axial displacement.

Intermediate boundary nodes- 
free along the lengthFully fixed- 

at the inlet

Fluid Mesh Boundary Conditions

No-slip conditions along interface 
ALE fixed to movement of solid mesh

-Single node in centre 
fixed in pressure.Ux, Uy, Uz fixed- 

at the inlet

Figure 9.4: Diagram of boundary conditions.

Intermediate nodes free.

Outlet

Figure 9.5: Details showing nodes fixed in axial deflection, but free to deform radially.

equating to a Young’s modulus Es = 4628.5 and Poisson’s ratio v =  0.286 . Additionally, 
the inflow was set to the same sinusoidal oscillation as Case 1, however the maximum 
inflow velocity UQ0 was set to increase by 2.0 every 80 seconds of simulation time, up to a 
maximum value of Uqq = 8 .0 .
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Radial deflection over time.
0.00015
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Figure 9.6: Radial deflection over time at outlet for Case 1. Legend indicates time step 

size employed in analysis.

9.3 D eterm in in g  a R esonan t C ase

From the results obtained displayed in figures 9.6 and 9.7 it may be concluded th a t the 

system configurations of the test cases do not result in any significant response of the elastic 

pipe, and th a t greater care must be taken in forming a three dimensional model problem. 

Therefore, it was decided to  first choose a set of fluid and solid material param eters pf — 

1.0, p j  = 0.01, ps = 1.0, K s = 5000, Gs = 100, E s = 298, vs =  0.49, and then determine 

the values for and T tha t would induce a significant response in the solid. By setting 

the inflow velocity to an adequate magnitude oscillating at a non-resonant frequency of 

the pipe, a suitable steady-state response of the pipe would be achieved.

The principle of standing waves with reference to acoustic resonance of a fluid in an
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Radial deflection over time.
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Figure 9.7: Radial deflection over time at outlet for Case 2. Legend indicates time step 

size employed in analysis.

open pipe equates the resonant frequency of the wave to the speed at which a vibration 

travels through the fluid, conventionally referred to  as the speed of sound in the medium 

as described by such texts as Kinsler and Frey [43]. This equation may be written as:

/ a =  ^ , A  =  2L. (9.1)

W here n is the integer mode of resonance, v is the speed of sound in the medium, A is 

the wavelength of the vibration and L is the length of the open pipe. By applying this 

principle to set up a standing wave between the periodic inflow of the fluid and the reactive 

vibration in the solid it is possible to determine a set of inflow param eters resulting in a 

resonant solid response. This resonant case may then be modified by altering the inflow 

frequency in order to achieve a significant steady-state response in the solid. In order to
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achieve this it was necessary to first determine the speed of sound in the solid. This was 
done by constructing a numerical simulation consisting of the solid mesh only subjected 
to a radial deflection at one end. This radial deflection was then released, and the rate 
at which the resulting vibration travelled through the solid was recorded. This value for 
vs = 16.667 was then inserted into equation (9.1) in order to obtain the resonant frequency 
f a = 0.167. However, the focus of this work was to be on Reynold’s numbers below the 
order of Re = 103, and an inflow velocity of UQ0 =  16.667 would result in a Reynold’s 

number of Re = 1667. It was therefore decided to reduce the scale of the solid geometry 
by a factor of 10, resulting in a corresponding factor 10 reduction of the Reynold’s number 

and increase in resonant frequency while allowing all other properties to remain unchanged. 
As a final check for these values, a numerical simulation was set up, consisting of the solid 
mesh only subjected to a periodic radial force equivalent to the pressure of a periodic fluid 
inflow with U00 =  vs and f  — f a. This equivalent force was calculated using Bernoulli’s 
equation for incompressible flow to determine the fluid pressure acting on the solid:

F = \ P!U l,An (9.2)

Where A n is the area of fluid pressure acting on the solid associated with each radial node 
of the solid.

Figure 9.8 displays the resonant response of the solid subjected to the forces calculated 
using equation (9.2). It can be seen that after a sufficient period of time the vibrating 
response of the solid propagates throughout the entire length of the pipe and the radial 
deflection reaches magnitudes as large as double the original internal radius. Having con­
firmed tha t this particular loading condition results in a resonant response, it follows that 
a full FSI simulation constructed with an inflow velocity of Uqq = 16.667 oscillating at 
a frequency non-harmonic to f a = 1.67 would display a suitable steady-state response in 
the solid.

9.4 Fully 3-D case (Aneurism)

Following the construction of a resonant case, it was decided to increase the complexity of 
the simulation by the creation of an asymmetric solid structure. It was therefore decided
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Radial deflection over time.
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Figure 9.8: Radial deflection over time at "outlet" of solid-only simulation showing reso­

nance.

to model a rough approximation of an aneurism by creating a weakened portion of the 

solid mesh. The resulting "weak patch" was located at the centre of the pipe, 0.5m long 

and spanning half of the circumference of the pipe as described by figure 9.9. The material 

properties of the solid were set to the same values used to determine a resonant case, with 

ps = 1.0, K s = 5000, and Gs =  100 equating to a Young’s modulus of E s = 298 and 

Poisson’s ratio vs =  0.49. The density of the "weak patch" was set to the same value as the 

rest of the solid, however, the material properties were set to half tha t of the surrounding 

solid, resulting in the values of K patch = 2500 and Gpatch — 50 equating to Epatch = 149 

and vpCLtch — 0.49. The fluid properties were set to pj =  1.0 and Pf = 0.01, with parabolic 

inflow velocity oscillating between 0 and Uoo = 16.667. Selecting an inflow frequency of 

f  = 2 =  0-833 results in a fluid inflow th a t is non-liarmonic with the frequency calculated 

using acoustic resonance but may still be expected to produce a significant response in the
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new solid structure.

Geometry of Pipe with "Weak Patch"

"Weak Patch" located at the centre 
of the pipe spanning half 

of the circumference.

0.5

Figure 9.9: Diagram of geometry of asymmetrical flexible pipe.

The solid boundary conditions selected were similar to those of the previous test cases 
shown in figures 9.4 and 9.5, with the inlet being fully fixed, and the outlet being free 
to deform radially but fixed in the axial direction. In anticipation of the asymmetric 
loading conditions expected to be acting on the pipe, it was decided to also fix the outlet 
in translation in such a way as to still allow radial deflection. This was done by fixing the 
nodes falling on the axes in their respective perpendicular axial directions as described by 
figure 9.10.
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Figure 9.10: Diagram of outlet boundary conditions of asymmetric flexible pipe.

Figure 9.11: Solid mesh behavior of the weakened pipe with inner solid boundary free.

LIBRARY 1O



102 C H A P TE R  9. 3-D TU B E FSI

Figure 9.12: Fluid pressure in the weakened pipe with inner solid boundary free.
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Figures 9.11 and 9.12 highlight the fact tha t this set of boundary conditions provides 
insufficient support along the length of the pipe, resulting in lateral bucking rather than the 
desired radial deformation. To solve this, a new set of boundary conditions was applied in 
which the solid boundary conditions at the outlet were applied throughout the entire length 

of the pipe, as displayed in figure 9.13. This new set of boundary conditions successfully 
resulted in the radial only response of the solid, as shown in figures 9.14 and 9.15. As may 
be expected when considering the nature of the solid structure, the majority of the solid 
response to the fluid is located at the "weak patch", with the rest of the solid maintaining 
a relatively constant cross-sectional area. In addition to the very significant deformation 

of the "weak patch" a relatively minor radial deflection of the solid was observed upstream 
of the "patch".

Solid Mesh Boundary Conditions

Outlet boundary conditions 
applied to intermediate boundary 

nodes
■Outlet boundary nodes 
free radially, but fixed in 
translation and axial 
displacem ent

Fully fixed 
a t the inlet

L = 5.0.

Figure 9.13: Diagram of final boundary condition configuration.
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Figure 9.14: Solid mesh behavior of the weakened pipe with inner solid boundary transla­

tion fixed.
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Radial deflection over time of centre of weak patch.
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Figure 9.16: Radial deflection over time of central point in weak patch. Legend indicates 

time step size employed in analysis.

Figure 9.16 displays the results obtained by solving this model using the novel staggered 

scheme with various time step sizes. It should be noted th a t the solution weighted average 

param eter /3 was set to  a value very close to 0 (/? =  0.00005) in anticipation of difficulties 

in solving for the solid over fluid mass ratio of 1. This sacrifice in accuracy may account 

for the solution failing to converge using a time step size of A t = 0.001.

Due to the time constraints of this work and the high com putational cost of this sim­

ulation, a more in-depth study of solving this model to a higher degree of accuracy was 

not performed. However, a quantitative comparison with a known analytical solution to 

an alternate internal flow model problem is presented in Chapter 10.

1 I I T
dt 0.001 s 
dt 0.005 s 

dtO 01 s

J_____________ I_____________ L



Chapter 10

3-D Hose FSI

10.1 Analytical Solution and Selection of M aterial Prop­

erties

A classic example of an internal flow fluid-structure interaction problem is the onset of 

translational instability in a cantilever pipe caused by the internal flow reaching a critical 
velocity, at which the traction forces from the fluid overcome the inertia and stiffness of 
the solid pipe. This instability can result in large scale deformations with amplitudes of 
oscillation reaching higher than 50% of the length of the pipe. Some commonly known 
examples of this would be a fireman’s hose needing to be restrained by hand, or even a 
common garden hose with the pressure too high. Not only is solving this problem useful 
from an industry standpoint, as such deformations could be catastrophic if not taken into 
account during design of cantilever pipes, but it is also very useful for the purpose of this 

investigation due to the existence of an analytical solution, as presented in Blevins [5]. 
This presents an opportunity for comparison in order to gauge the relative accuracy of 
the monolithic Newton solution scheme employed within this work. The purpose of this 
chapter is therefore to set up a numerical model problem based on material properties 

obtained using the analytical solution and then solve for a range of steady inflow velocities 
in order to obtain the numerical critical velocity for the onset of instability.

In Chapter 10.1.2 of "Flow Induced Vibration" by Blevins [5], the analytical solution to 
the critical flow velocity for onset of instability in a cantilever pipe is derived by the forma-
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tion of the equation of motion for the free transverse vibration of a straight, tension-free 
fluid conveying pipe. This is done by first applying the equilibrium of small deformations 
in the y direction to obtain

d2Y  ( d  d \ 2 dQ d2Y  d2Y
F - p A w = p A ( d t  + ’/ d i )  Y ' i £  + T w - F  = m w  (101)

where F  is the pressure force per unit length of the pipe walls acting on the fluid, T  is the 
longitudinal tension in the pipe, m  is the mass per unit length of the empty pipe, Y  is the 
transverse displacement of the pipe, and Q is the transverse shear load acting on the pipe 
related to the deformation and bending moment of the pipe by

Combining these equations to eliminate F  and Q, and applying the outlet boundary con­
dition pA — T  =  0 results in the equation of motion

„ rdAY A od2Y  n A d2Y  %jrd2Y  .
dx4 +  P d x 2 +  P d x d t +  d t 2 ’  ̂ ^

where M  = m  + pA is the combined mass per unit length of the pipe and fluid. Finally, 
applying the cantilever boundary conditions

y (o ,t ) =  g ( o , t )  =  o, g ( L , o  =  5 r ( L , t )  =  o, (10.4)

and inserting the trial solution

Y( x, t )  = Recd\V(y)e%ut], where e%UJt = cosut +  is in u t (10.5)
L

into the equation of motion, results in the equation:

W"" +  V 2V" +  2 -  n 2W = 0 (10.6)

where f3 = 0  = u L 2 , V  = vL  an(  ̂' denotes the derivative with respect
to jt. It can be seen that the stability of the system depends on whether the dimensionless
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constant Q is greater or less than 0. By setting f2 =  0 the onset of instability can therefore 
be expressed as a function of V  and (3. By choosing the values for all but one of the variables 
required to solve the system it was possible to obtain a full set of material properties for 
which the analytical solution for Ucr is known.

The geometry of the pipe was chosen as L = 5.0, Di =  0.2, D0 =  \p2D^ and the desired 

critical inflow velocity was chosen as Ucr = 10.0. Setting pf = 1.0 and pbf = 0.01 resulted

in a critical Reynolds number of Rear = pf UcrDi = 200. By choosing -— —t t  =  0.8
M/ (PfAf  +  psA s)

the relationship vL(^£ ^ / )* = 13.5 was obtained. This relationship was then solved for
the unknown value Es = 1829.0.

10.2 Formulation of the Num erical Solution

An FSI simulation was performed by constructing a coupled system consisting of an un­
structured fluid mesh of 34.5k 4-noded tetrahedral elements, and the same uniform solid 
mesh employed in the beginning of the previous chapter, consisting of 7200 8 -noded linear 
elements. A range of constant flow velocities, parabolic at the inlet and stepped up sinu­
soidally from 0  over the first second of simulation, were then solved using the monolithic 
Newton solution method, and the translational behavior of the pipe recorded. The solid 
boundary conditions were set to being fully fixed at the inlet and free throughout the 
length of the pipe. The fluid boundary conditions were set as having the fluid fixed to the 
solid boundary, with a specified inflow and one point at the outlet fixed in pressure.
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Solid Mesh Boundaiy Conaaotn

L *  5.0

Fluid Mesh

"7e^C°nditionsalongintl ^ e d  to movement of Zed

In centre"xed ln Pressure.

Diagram of boundary conditions
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Translational d isp lacem ent over time for U = 5.0. Translational disp lacem ent over time for U = 10.0.
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Figure 10.2: Diagrams displaying translational displacement of the free end of the pipe 

over time for varying steady inflow velocities.
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X/Y translational displacement.

0.5

0.4

0.3

0.2
E

8 0.1o
5= 0(U uQ
> ■  - 0.1

- 0.2

-0.3

-0.4
2 -1.5 1 -0.5 0 0.5 1 1.5 2

X deflection (m)

Figure 10.3: X vs Y translational displacement for hose with inflow velocity of 15 m /s.
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10.3 D iscussion of R esults

One noticeable shortcoming of the analytical solution considered in this investigation is tha t 
it does not take into account radial and axial deformation of the pipe, only translational 
stability. By observing the behavior of the pipe at sub-critical inflow velocities it can be 
seen that these displacements can be as large as 5%. By taking the radial deformation into 

account and applying the principle of conservation of mass, an effective critical velocity 
can be calculated.

Ucr x A f = Q = U'crxA'f (10.7)

Solving the above equation resulted in an effective critical velocity U^  =  11, however this 
still resulted in an error of 20.5% when compared to the numerical solution Ucrn — 13.25. 
This disagreement may be a result of the alteration of the solid properties I s, Es and L  due 
to the radial and axial deformation of the pipe. In order to dismiss the possibility of the 
numerical solution for a critical velocity not displaying an appropriate solid response due to 
the axisymmetric nature of the model problem, a numerical simulation was performed with 
an inflow velocity of U^  < U < Ucm and a temporary force perpendicular to the length 
was applied at the end of the pipe for a small duration once the flow was fully realised 
throughout the length of the pipe. Figure 10.5 displays the results of this simulation, 
in which the pipe may be seen to return to a neutral displacement position after being 
displaced by the temporary force. This is a strong indication that the pipe is in a stable 
configuration, confirming tha t the inflow velocity of U = 12.0 is sub-critical for the 
numerical solution. It may therefore be concluded that the numerical result displays a 
good correspondence with the analytical solution considering the assumptions that are 
made in the formation of the analytical solution.
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Translational displacement over time.
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Figure 10.5: Translational displacement vs time for inflow U =  12 m /s with small perpen­

dicular force at t=4.0-4.5s.



Chapter 11

Discussion and Conclusions

As detailed in section 1.2 the aim of this thesis was to present various three dimensional 
FSI model problems as well as to analyse the relative suitability of the monolithic Newton, 
block Gauss-Seidel, and novel staggered schemes presented in Chapter 6 . Through the use 
of the three dimensional numerical examples presented in Chapters 7 - 1 0  this aim has 
been achieved. The relative strengths and weaknesses of the solvers have been presented 
based on criteria easily identified in the conceptual stage of a model problem, allowing the 
preemptive selection of the most suitable solver without the need for numerical analysis. 
Section 1 1 . 1  presents a summary of the conclusions reached throughout this work.

11.1 Final Assessm ent of R elative Solver Suitablility

Monolothic Newton Solver: Being the most computationally expensive and accurate solu­
tion method, this solver should only be employed when accuracy is the highest priority.

Block Gauss-Seidel Solver: Equal in computational cost and accuracy to the monolithic 
Newton method, this solver is rendered undesirable by the difficulty of handling small solid 
over fluid mass ratios.

Novel Staggered Scheme: Sacrificing a small amount of accuracy for one third the 
relative computational cost, this solver should be considered the most suitable for the 
majority of computational FSI problems. The exceptions being problems in which the 
highest accuracy is required, or those with a solid over fluid mass ratio less than one.
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Table 11.1: Summary of Relative Criteria

Criteria MN
Solver

GS NS

Computational Cost More More Less

Convergence Quadratic Linear Quadratic
Accuracy More More Less

Stability w.r.t. —a°lid
f l u i d

More Less Less

11.2 Discussion and Recom m endations for Future Work

The analysis conducted in this work is focused solely on the context of incompressible 
Newtonian fluid flow interacting with flexible solid structures. Logical extensions of this 
work for future research include:

• The three dimensional rendering of compressible or turbulent flow.

• Extending the interface to account for free surface flow and fluid-fluid interaction.

•  Reduction of computational cost in order to apply computational FSI modelling to 
more complex model problems.

• Repeating the analysis performed in Chapter 10 using a stiffer material in order to 
reduce the radial and axial deformation of the solid, allowing for a more accurate 
comparison. This analysis may also be performed using other solution techniques in 
order to quantify relative accuracy.

• The establishment of quantitative values for the accuracy of solution techniques 
through comparison with reliable experimental data.
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