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ABSTRACT

This project focuses on discrete element modelling of fracturing of concrete material 

at meso-scale, and particularly on calibration of the particle assembly parameters to 

reproduce phenomenological properties of concrete, and on applying the discrete 

element method to analyze the failure mechanisms in a three-point bending test and 

debonding between the FRP sheet and the concrete. The particle flow code PFC2D 

and PFC3D are employed to carry out the parametric study but only PFC2D is used 

in the case studies.

The calibration of properties of the numerical samples is conducted to determine the 

effects of the particle level input parameters on the elastic constants, the uniaxial 

compressive strengths and failure mode of particle assembly. The input parameters are 

divided into two groups, model constitutive parameters (e.g., particle and bond 

stiffness, bond shear and normal strengths and friction coefficient) and geometric and 

physical parameters (e.g., particle and specimen size, particle distribution and loading 

velocity.). The analysis is constructed using dimensional analysis and numerical 

uniaxial tests.

A random aggregate generation algorithm is incorporated in the DEM code to 

reproduce the aggregate structure in real concrete material. The aggregate generation 

algorithm utilizes polygon and polyhedron as the basic shapes of aggregate and is 

capable of producing multi-graded concrete specimens with aggregate content up to 

80% and 60% for two-dimensional and three-dimensional samples respectively.

The mode I fracture behavior of three-phased concrete is then simulated by 

performing a virtual three-point bending test. The mortar matrix phase is simulated 

with the linear elastic-pure-brittle and softening bond model to ensure a fair

hi



comparison. The dynamic debonding process between the FRP sheet and the concrete 

is simulated with a particle assembly by a regular hexagonal packing arrangement 

where the heterogeneity of concrete is taken into account by incorporating the Weibull 

distribution.

Based on the analysis of the modelling results, it is conclude that the fracture behavior 

of concrete can be satisfactorily captured by meso-scale DEM model and 

comprehensive parameter study allows more confidently implementation of particle 

flow code.
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Chapter 1 

Introduction

As an artificial quasi-brittle material, modeling the mechanical behavior of concrete is 

one of the most challenging fields of modem computational solid mechanics. 

Concrete is one of the most common engineering materials applied in a wide range of 

engineering applications (e.g, dams, bridges, offshore platforms, nuclear power 

stations, tunnels). Since the nineteen seventies, researches on concrete materials and 

engineering structures have advanced from linear elasticity to nonlinear elastic-plastic 

fracture mechanics; from continuum mechanics to discrete mechanics; from 

homogeneous isotropic medium to heterogeneous anisotropic medium; from small 

deformation assumption to large deformation and simulation of damage process; from 

macro mechanical model to investigation of mechanical behavior from meso and 

micro scale point views. The remarkable progress of the above aspects mainly relies 

on the rapid development in modem science and technology.

Traditional concrete mechanics is based on the assumption of homogeneity. However, 

in reality the heterogeneity of concrete manifests itself at various levels. As a 

synthetic composite material, natural or man-made defects, damage, microcracks, 

cavities and inclusions exist in concrete. In order to reflect these characteristics, 

Wittmann (Wittmann et al., 1985b) pointed out that concrete is a typical multiscale 

material with different structural details appearing at different levels of observation.
1



The three distinct levels are micro-, meso- and macro-levels.

Crystalline Hydrated Concrete Laboratory Structure
atomic calcium particles scale
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Figure 1.1: Schematic diagram of concrete material (Wittmann e ta l , 1985a).

At meso-scale level, concrete is a nonhomogeneous material which consists of sand 

and aggregates embedded in a cement paste matrix and that the fracture mechanism is 

related to its meso- and micro-structure. The weak interfaces between the aggregates 

and the mortar matrix dominate the properties of the material on the macro-scale 

(Bentz et a l , 1995). The deformation and fracture of concrete are associated with 

complicated progressive failure, as characterized by initiation, propagation, and 

coalescence of microcracks due to material heterogeneity (Tang et a l , 2009).

Over the last two decades, two distinguished approaches, micromechanical or 

phenomenological based, have appeared in the field of brittle material science. The 

micromechanical approach is physically well-grounded but suffers from inherent 

complexity and restricted applicability; The phenomenological approach introduces 

the intrinsic variable to describe damage states of the material while at the mean time 

remains a macro-mechanical constitutive relationship (Halm et a l , 2002).

In recent years, there has been growing interest in numerically modeling the fracture 

process and evaluating the macro-scale response of concrete by meso-scale models. 

Typically meso-scale models includes: the M-H meso-scale mechanical model 

presented by Mohamed and Hansen (Mohamed and Hansen, 1999a, b), the lattice 

model presented by van Mier et al. (Schalangen and J.G.M. van Mier, 1994), the



meso-scale elastic-brittle model presented by Tang (Tang et a l, 2000a; Tang et al, 

2000b) and the particle based model presented by Cundall et al. (Cundall and Strack, 

1979), and Bazant et al.(Bazant et a l, 1990).

This research project intends to numerically investigate the fracture process of 

concrete by meanings of the meso-scale particle based DEM model. The discrete 

element code PFC (particle flow code) (Itasca, 1999) will be used to carry out the 

modelling.

The discrete element method, one of the most popular particle based approaches, was 

originally proposed by Cundall (Cundall, 1971) for rock-mechanics problem, then 

applied to soils (Cundall and Strack, 1979). Since then it has been widely used as one 

of numerical methods for modeling soil and rock-like materials. The DE approach is 

based on discontinuous mechanics and the basic idea is to model the elements as rigid 

simple geometric entities such as disks, spheres, ellipses, or ellipsoids, so that 

Newton’s equations of motion can be applied to entities individually. In addition, in 

order to obtain the response as an assembly system, the specified interaction forces 

between the particles are introduced based on an appropriate physical interaction law. 

The most significant advantage over the traditional continuum approach is the way 

that DEM discreteness a material domain, as dynamic material behaviour of 

composites, crack tip singularities and crack formulation criteria can all be avoided 

due to the naturally discontinuous representation of concrete materials via particle 

assemblies (Fakhimi and Villegas, 2006).

In general, DEM specifies properties for both particles and the contacts between them 

at a micro-scale, e.g., contact stiffnesses, bond strengths, friction coefficient between 

particles. However, unlike the continuum approach, the input parameters for the 

discrete particle assembly are unknown in advance. The discrete element models will 

behave differently for different input micro-parameter values, and accurate results can 

only be obtained if a correct relationship between the micro-parameters and the



macro-properties are specified. To determinate the proper input micro-parameters 

becomes one of the main challenges in the field of particle based approaches.

1.1 Objectives and scope of the dissertation

The overall aim of this research is to improve the understanding of the fracture 

behaviour of concrete by meanings of the meso-scale DEM model. The specific 

abjectives are:

1. To develop 2D and 3D random aggregate structure generation algorithms to 

accurately and efficiently describe aggregate distribution of concrete at 

meso-scale level.

2. To exam factors at meso scale that influence macro material deformability, 

strength and fracture behavior in DEM modeling, and to investigate the potential 

benefits of discrete element techniques, as well as the shortcomings.

3. To model the damage progression in concrete at meso-scale level under mode I 

fracture by utilizing random aggregate structure generation algorithms 

developed earlier.

4. To simulate the dynamic failure process in the FRP-to-concrete interface by 

adopting regular particle assembly.

1.2 Layout of dissertation

This dissertation consists of eight chapters. The present chapter is the introduction. 

The brief synopsis of the remaining chapters is as follows:

Chapter 2 presents a concise review of numerical methods for modelling the concrete 

damage at various scales, together with an overview of aggregate generation and
4



disposition algorithms and studies of the discrete element model and micro-parameter.

Chapter 3 introduces the theoretical background and constitutive laws of the discrete 

element method.

Chapter 4 describes methodology and rationale of the generation of random 

aggregate structures in detail. In particular, the background grid based algorithm 

which is employed in later meso-scale concrete fracture simulations is tested and 

verified.

Chapters 5 and 6 establish the scaling laws between the macro-material properties 

and governing factors at meso scale for DEM models. The factors governing the 

elastic constants, uniaxial compressive and failure mode of parallel bonded model are 

identified. Both 2D and 3D models are considered and compared with each other. The 

governing factors are dividing into two distinguished groups. Chapter 5 mainly 

focuses on physical parameters such as loading velocity, degree of discretization and 

particle size distribution. Chapter 6 investigates the effects of model constitutive 

micro-parameters and empirical equations are presented.

Chapter 7 presents a meso-scale DEM model for concrete under pure mode-I fracture. 

Both linear elastic-purely-brittle and softening contact models are considered for the 

mortar matrix phase to compare their effects.

Chapter 8 simulates the dynamic failure process in the FRP-to-concrete interface by 

meanings of a regular packed DE model. The heterogeneity of concrete is taken into 

account statistically by utilizing a Weibull distribution to micro-parameters.

Chapter 9 concludes the research work done in this dissertation and recommends 

some potential future work.

5
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Chapter 2 

Literature review

2.1 Concrete damage and fracture mechanism and failure 

characteristics

Concrete is a typical heterogeneous composite material consisting of microscopic 

defects such as microcracks, macro crack, slag, bubbles, pores and segregation. The 

strength, deformation and damage mode are mainly governed by crack initiation and 

propagation. Submicroscopic analysis of concrete internal structure (Mindess, 1991) 

revealed that the existence of cracks even before loading due to the intrinsic volume 

changes in concrete caused by shrinkage or thermal movements. These pre-exist 

cracks can be classified into two groups: 1) random distributed microcracks which 

govern the tensile and compressive strength; and 2) oriented macro cracks which lead 

to the anisotropic behavior of concrete. Ortiz (Ortiz, 1988) suggested that pre-exist 

microcracks have double effects on the fracture process. On one hand, macro crack 

growth is initiated by coalescence of microcracks, on the other hand, micro-cracks 

cause toughness degradation and shielding. Damage of concrete is originally caused 

by the inherent defects in the system, and the failure process is essentially the process
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of cracks initiation, propagation, coalescence which eventually cause concrete 

fractured into separate pieces.

One of the most important issues is the recognition that concrete is not a perfectly 

brittle material in the linear sense, but that it has some residual load-carrying capacity 

after reaching the tensile strength (de Borst, 2002). A substantial non-linearity exists 

before the maximum stress (Fig.2.1). Thus, concrete is often classified as a 

quasi-brittle material. The failure process can be divided into at least three stages 

(Neville, 1995). Taking uniaxial compression or tension as an example, the first stage 

within the 30-40% compressive strength range (60% for tensile strength), strain 

localization appears at isolated points throughout the specimen where the tensile 

strain concentration is the largest. Localized microcracks are initiated but they are 

stable and do not propagate. Because the energy released by these microcracks is very 

small, the stress-train curve is almost linear. As the applied load is increased beyond 

the first stage, initially stable cracks begin to propagate. There will not be clear 

distinction between the first stage and the second stage since stable crack initiation is 

likely to overlap crack propagation and there will be a gradual transition. However, in 

some literatures the transition point is still referred to as the proportional limit. During 

this stage the crack system multiplies and propagates in a slow stable manner. If 

loading is stopped and the stress level remains constant, propagation ceases. The 

extent of the stable crack propagation stage will depend upon the applied state of 

stress, being very short for predominantly tensile stress states and longer for 

predominantly compressive states of stress. This steady-state propagation of crack 

implies that there is a small fracture process zone ahead of the crack tip. The 

mechanisms of deformation beyond the proportional limit are not fully understood. 

The final stage occurs when the crack system becomes unstable and the release of 

strain energy is sufficient to make the cracks self-propagate until a complete 

disruption and failure occurs. This stage starts at about 70-90% of the ultimate 

strength (referred to as initiation of strain localization in Fig.2.1), once this stage is



reached failure will occur whether or not the stress is increased.

Initiation of strain 
localization

Proportional
limit

Strain

Figure 2.1: Typical tensile stress-strain curve for quasi-brittle material.

2.2 Fracture mechanics of concrete materials

Fracture mechanics applies the physics of stress, strain and energy release rate, in 

particular the theories of elasticity and plasticity, to the microscopic crystallographic 

defects to predict the macroscopic mechanical failure. The foundation for fracture 

mechanics was laid by Griffith in the early thirties for brittle materials (Glass) 

(Griffith, 1921). His work was largely ignored by the engineering community until the 

early 1950s. Irwin (Irwin, 1957) made significant modification and since then it has 

been mostly applied to metallic materials and formed linear elastic fracture mechanics 

(LEFM). Irwin stresses out that any fracture can be described in terms of the three 

fundamental cases of fracture: I. the symmetrical opening case, II. the sliding case, 

and III. the tearing case (Fig.2.2).

The pioneering effort to apply linear elastic fracture mechanics to concrete is

conducted by Kaplan (Kaplan, 1961). Since the work of Kaplan, many attempts have

been made to apply LEFM principles to fracture in concrete (Barsoum, 1976;

Ingraffea et al., 1984; Ingraffea and Manu, 1980; Shih et a l, 1976). As realized in

1971 by Shah and McGarry (Shah and McGarry, 1971) LEFM with one fracture
10



parameter cannot be directly applied due to the presence o f a sizeable facture process 

zone in concrete material.

M o d e l :  M o d e  II: M o d e  III:
O p e n i n g  I n - p l a n e - s h e a r  O u t - o f - p l a n e  s h e a r

Figure 2.2: The fundamental cases of fracture

D u ctile -b rittle  m ate ria ls  (m eta ls) Q u asi-b rittle  m a teria ls  (concre te)

Figure 2.3: Fracture process zone in brittle-ductile materials.

The fracture behaviour o f concrete is greatly influenced by the fracture process zone 

although it is quite small in concrete. The inelastic fracture response due to the 

presence o f fracture process zone may be taken into account by cohesive pressure 

acting on the crack faces. Fig.2.3 illustrates fracture process zone in brittle-ductile 

materials (Bazant, 2002).

Substantive nonlinear fracture models have been reported to capture essential 

behavior mechanisms in cracked concrete. Generally, two basic approaches have been 

followed.: first method uses the finite element method or the boundary element 

method such as the cohesive crack model (CCM) or the fictitious crack mode (FCM)

11
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(Hillerborg et a l , 1976) and the crack band model (Bazant and Oh, 1983) in the 

smeared-cracking framework; second approach uses the modified LEFM concept 

such as two-parameter fracture model (TPFM) (Bazant and Kazemi, 1990; Jenq and 

Shah, 1985), size effect mode (SEM) (Bazant and Kazemi, 1990), effective crack 

model (ECM) (Karihaloo and Nallathambi, 1989), double-K fracture model (DKFM) 

and double-G fracture model (DGFM).

Based on different description of displacement field used, the numerical simulation of 

concrete fracture can be classified as the discrete crack model and the smeared crack 

model. In late 1967, Ngo and Scordelis (Ngo and Scordelis, 1967) introduced the 

discrete crack model to simulate concrete fracture. The model is aimed at stimulating 

the initiation and propagation of dominant cracks. A crack is introduced as a 

geometric entity. Initially, this was implemented by letting a crack grow when the 

nodal force at the node ahead of the crack tip exceeds a tensile strength criterion. 

Then, the node is split into two nodes and the tip of the crack is assumed to propagate 

to the next node. When the tensile strength criterion is violated at this node, it is split

| and the procedure is repeated (Borst et a l, 2004). Based on Barenblatthe (Barenblatt,
[

| 1962) and Dugdale’s (Dugdale, 1960) works, a major advance in concrete fracture

modelling was made by Hillerborg et al (Hillerborg et al., 1976) who included the

tension softening process zone through a fictitious crack ahead the pre-existing crack.

It is known that the cohesive crack model requires a unique stress-strain curve to

quantify the value of energy dissipation and the choice of the curve significantly

influences the prediction. Many different shapes of curves, including linear, bilinear,

trilinear, exponential and power functions, have been reported in the literatures.

However, the original discrete crack approach has several disadvantages. Cracks tend

to form and propagate along the element boundaries, i.e. a mesh bias will appear.

Automatic remeshing technique (Ingraffea and Saouma, 1984) allows the mesh bias to

be reduced but will aggravate a computational difficulty, namely, the continuous

change in topology. Advent of meshless methods, such as the element-free Galerkin
12
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method (Belytschko et a l , 1994), alleviated the change in topology but lead to 

significant computational costs.

Rashid (Rashid, 1968) introduced smeared crack models which are based on the 

concept of replacing the crack by a continuous medium with altered physical 

properties .When the combination of stresses satisfies a specified criterion, a crack is 

initiated. The isotropic stress-strain relation at the integration point is replaced by an 

orthotropic elasticity-type relation with the direction normal to the crack and the 

direction tangential to the crack being axes of orthotropy. In early studies, both the 

normal stiffness and the shear stiffness across the crack were equal to zero upon 

cracking. Modification of the model was conducted by introducing strain softening 

and the shear retention factor. The first modification allows results that are physically 

more appealing and numerically more stable. The later modification enables 

representation of some effects of aggregate interlocking and friction within the crack. 

Bazant (Bazant and Oh, 1983) developed the crack band model in which the fracture 

process zone is modeled as a band of parallel cracks that are uniformly and 

continuously distributed in the finite element. The material behavior is characterized 

by the constitutive stress-strain relationship. The width of the fracture process zone is 

assumed to be constant in order to avoid spurious mesh sensitivity. This assures that 

the energy dissipation due to fracture per unit length of crack is equal to the fracture 

energy of the material. The major advantage of the smeared crack model is that the 

remeshing is not required. The disadvantages include spurious mesh sensitivity and 

convergence of the solution for decreasing mesh size which cannot be checked. In the 

smeared context, a method is known as the extended finite element method has been 

applied for cohesive zone modeling. This method use the partition-of-unity property 

to avoid the numerical difficulties associated with the smeared cohesive zone 

modeling (Meschke and Dumstorff, 2007; Wells and Sluys, 2001).
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2.3 H ie ra rch ica l o f concrete  m odelling

Wittmann (Wittmann, 1986) incorporated a multi-scale model into concrete study and 

introduced three structural levels to link crack formation and failure o f a composite 

material such as concrete with structural features.

1. Macroscopic Level

Figure 2.4: Concrete at macroscopic level.

At the macroscopic level ( 10'1-103m ), the characteristic size o f concrete specimens and 

structures is much larger than the aggregate size, thus concrete can be assumed to be 

homogenous. Most concrete mechanics are based on this hypothesis. However, many 

experimental observations, such as the size effect, cannot be explained by such an 

assumption, permeability o f concrete is much higher than cement mortar, and under fire 

loading, Young’s modulus reduces more significantly than strength, etc.

2. Mesoscopic Level

At the mesoscopic level (10'4-10''m ), concrete is a three phased composite material 

consisting o f mortar matrix, aggregate and interfacial transition zone. The interfacial 

transition zone is the weakest component. When loaded the microcracks often occur 

between aggregate and mortar first. Thus, the interfacial transition zone influence the 

overall performs o f concrete significantly. This could well explain the fact that the

14



strength o f concrete decreases with increasing aggregate size and the strength o f 

concrete is smaller than aggregate strength and larger than mortar matrix strengths. In 

order to investigate the mechanical properties o f interfacial transition zone, we have to 

go deeper into microscopic level

Figure 2.5: Concrete at mesoscopic level.

3. Microscopic Level

AGGREGATE
T r o n s i h o n  Z o n e  Bulk C em en t  P a s t e

Figure 2.6: Interfacial transition zone and matrix at microscopic level (Mehta and
Monteiro, 1993).

• • Q _A .
At the microscopic level (10' -10’ m), concrete is heterogeneous where the paste is

observed to be a mixture o f different types o f crystalline structures, at varying degrees

o f hydration, which form an amorphous gel. Loss o f water to the hydration o f cement
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particles and evaporation, as well as entrained and entrapped air, cause voids to form in 

the heterogeneous mass and in particular the interface between aggregate and matrix. 

Maso (Maso et a l, 1995) suggests that the main reason of concrete strength is lower 

than mortar matrix due to the existence of these voids.

It has become clear that meso-scale level models are promising tools which can 

describe both qualitative and quantitative effects of independent mechanical 

properties of different material components on the global mechanical properties of the 

concrete material. The present project mainly focuses on the meso-scale level 

simulation of fracture behavior of the concrete.

2.4 Pre-process of meso-scale models

In order to capture the heterogeneous morphological features of concrete at 

meso-scale level, it is essential to introduce a preprocessor in the numerical modeling 

to reproduce the aggregate structure in which the shape, size and distribution of the 

aggregate particles resemble real concrete material. There may be two different 

methods to incorporate the aggregate structure. In the first method, the details about 
the structure can be measured and translated directly into a finite/discrete element 

mesh (Karihaloo et a l, 2003). Details about aggregate size distribution, interface 

geometry and so on are used directly. As a result distinct regions of varying stiffness 
and strength will be present in the mesh. In the other method, the structure 

information is translated into a statistical distribution that is subsequently used to 

assign strength and stiffness properties to different elements in a finite/discrete 

element mesh (Van Mier et a l, 2002). Although the second approach saves much 

computational effort, more realistic results are obtained by projecting directly the 

aggregate structure.

The aggregate structure can be either computer-generated or scanned from 

experimental specimen (Man and van Mier, 2011; Schlangen and Garboczi, 1997). 

Kim (Kim and Buttlar, 2009) developed a heterogeneous fracture model, based on the 

discrete element method, to investigate various fracture toughening mechanisms of 

asphalt concrete using image processing technique. The image processing technique
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maps out the cross-sectional aggregate structure images o f a typical material and then 

the digitized images were projected onto a two dimensional discrete element mesh 

(Figure 3.1). However, the image processing technique is limited by the requirement 

of experimental specimen sample. For this reason computer-generated approach is 

adopted in this research.

M « t k *

'KRrrfcate

Figure 2.7: Digitized specimen images and DEM mesh (Kim and Buttlar, 2009).

In general a preprocessor consists o f two stages:

•  Generation o f mesoscopic geometric model: the geometric model o f aggregate 

structure can be either randomly generated by utilizing various random aggregate 

structure generators or scanned from experimental specimen by using image 

processing technique. Determination o f shape and size o f aggregates, aggregate 

content and grading will also be involved.

•  Projection o f three-phased geometric model onto element mesh: each element is 

assigned to its corresponding phase according to coordinates o f the element. Then 

intrinsic mechanical properties are assigned for each element.

2.4.1 Single aggregate generators

In order to simulate the structure and components o f the concrete material, a single
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aggregate should be generated first. The first step towards aggregate generation is the 

determination o f the shape o f aggregate. Many single aggregate generators assumed 

that the aggregate particles are circular or spherical (Bazant et al., 1990; Hafner et al., 

2006; Schalangen and J.G.M. van Mier, 1994; Schom and Rode, 1991). Assuming that 

aggregate particles are circular or spherical is suitable for modeling gravel aggregates, 

simpler algorithms might be proposed. However, the obtained (artificial) material has 

more uniform consistence, and underestimates natural phenomenon such as clustering 

o f particles (Yang and Xiang, 2012).

Figure 2.8 Random aggregate structure model

In order to represent crushed rock aggregates which generally appear in angular and 

convex shape, more sophisticated random aggregate generators are required. By using 

the morphological law developed by Beddow and Meloy (Beddow and Meloy, 1980) 

Wittmann (Wittmann et al., 1985b) have generated rounded aggregates as polygons 

each having the number o f edges and the corresponding angles randomly chosen. One 

o f the most generally applicable techniques to generate two dimensional random 

aggregate structure was developed by Wang (Wang et al., 1999). In their research a 

procedure for generating random aggregate structures for rounded and angular

(a) Circular aggregate structure 
(Schalangen and Mier, 1994)

(b) Polygonal aggregate structure 
(Wang etal, 1999)
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aggregates based on the Monte Carlo random sampling principle was proposed. 

Rounded aggregates were generated with shapes following Beddow and Meloy’s 

morphological law while angular aggregates were generated as polygons with 

prescribed elongation ratios.

2.4.2 Aggregate disposition procedure and overlap detection algorithm

In order to reproduce the aggregate structure of a particular specimen, the aggregate 

disposition procedure must satisfy the following requirements:

• Randomness of the aggregate distribution

• Reasonable aggregate grading

• Compatible and sufficiently high aggregate content

Based on these requirements of size and spatial distributions various algorithms and 

models have been developed. Many researchers (Bazant et al., 1990; Schalangen and 

J.G.M. van Mier, 1994; Wang et a l , 1999) adopted the so called take-and-place method 

in which the aggregates were placed one by one. The aggregates with prescribed size 

and shape were generated and stored by aggregate generation procedure first. Then at 

the start of aggregate allocation procedure, one aggregate was restored from the 

database and placed into 2D or 3D Euclidian space randomly, if overlaps are detected 

then the aggregate will be replaced to a new position until no overlap can be found. This 

take-and-place loop continues until the generation is completed. Leite (Leite et a l , 

2004) proposed a stochastic-heuristic algorithm which is capable of generating a high 

aggregate content and realistic distributed aggregate structure in 3D space. Two 

dimensional analyses can be conducted by slicing from 3D specimen. The allocation 

procedure starting with the largest aggregate and after each successful allocation the 

aggregate position is fixed and settled.
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Figure 2.9 Idealised slice cut-outs from a 3D specimen for 2D analyses (Leite et al., 
2004)

Alternatively a random aggregate drop method can be adopted (Tang et al., 2009; 

Vervuurt, 1997). The random generated aggregates were dropped into the prescribed 

space and settled at the deepest position one by one. Tang (Tang et al., 2009) improved 

the effectiveness o f previous algorithm using a layering disposition method. Each 

aggregate is packed into its external tangent rectangular box and the length and height 

o f each box is recorded. Then the numbered boxes are dropped into the space layer by 

layer.

Aggregates
disposition

area

Figure 2.10 Layering disposition method (Tang et al., 2009)



Other algorithms such as the divide-and-fill method bases on Delaunay triangulation 

(De Schutter and Taerwe, 1993) are also available. The benefit of this particular 

divide-and-fill algorithm is that a good representation of aggregate structure can be 

obtained quickly with low computational cost because no overlaps searching process is 

required. The disadvantage is the aggregate grading and distribution can be hardly 

controlled.

2.5 Numerical methods for meso-scale modelling of concrete 

fracture

The most commonly applied numerical methods for concrete problems are:

(1) Continuous methods: Finite Different Method (FDM), Finite Element Method 

(FEM) and Boundary Element Method(BEM)

(2) Discontinuous methods: Discrete Element Method (DEM), Discrete Fracture 

Network (DFN) methods.

(3) Hybrid continuous/discontinuous methods: Hybrid FEM/BEM, Hybrid

FEM/DEM.

The FEM is a mainstream numerical tool in engineering sciences due to its flexibility 

in handling material inhomogeneity and anisotropy, complex boundary conditions and 

moderate efficiency in dealing with complex constitutive models and fracture. The 

FDM is easy to implement and it has been proved to be effective to simulate crack 

propagation when the geometry shape is simple. The BEM method is considered the 

best tool for simulating fracturing process in solids by many researchers and engineers. 

The BEM’s advantage of smaller computer memory and block-like matrix structure 

when the multi-region technique is used makes it more suitable for solving large-scale 

problems with reduced degrees of freedom (Jing, 2003).
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The discrete element method DEM was initially applied for the analysis of 

discontinuous media, e.g. rock mechanics and soil mechanics. Recently the DEM has 

been used in the fracture studies of continuous media, for example concrete. The most 

significant advantage over the traditional continuum approach is the way that DEM 

discretises a material domain, as dynamic material behaviour of composites, crack tip 

singularities and crack formulation criteria can all be avoided due to the naturally 

discontinuous representation of concrete materials via particle assemblies (Fakhimi 

and Villegas, 2006).

One of the current limitations of particle based methods for fracture analysis is related 

with the high number of particles required for larger structures. To overcome such 

limitation Azevedo proposed a hybrid discrete element/finite element method for 

fracture analysis of plain concrete. (Azevedo and Lemos, 2006). The coupling 

between the two different discretization is done by introducing interface elements 

with shear and normal spring in the boundaries between the two different 

discretization. When compared to a pure DEM model, the hybrid model allows 

significant computer savings. The model gives good results in terms of crack patterns, 

crack localization process and pre-peak load displacement relationship for both mode 

I and mixed mode fracture beam experiments. However, further work is still required 

in order for the particle model to display a more ductile post-peak response.

By combining different numerical methods with meso-scale modelling concepts, 

many different types of meso-scale models have been developed to model the failure 

process and the global mechanical properties of concrete in the past. The random 

particle model developed by Bazant (Bazant et a l , 1990), UDEC presented by Vonk 

et al., micromechanical model proposed by Mohamed and Hansen(Mohamed and 

Hansen, 1999a, b), the lattice mode, the random aggregate structure (RAS) and the 

fracture-based interfacial elements approach are all typical mesoscopic models that 

can simulate the damage process and the deformation of concrete.
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Lattice model

Lattice model is a typical meso-scale model based on theoretical physics. The main 

concept o f the lattice model is that the medium consists o f a mesh o f regular or 

irregular beam elements. Then the mesh is projected onto random aggregate structure. 

If two nodes o f  a beam element are within aggregate or matrix phase, then aggregate 

or matrix properties is assigned to the element, the rest o f  elements are defined as 

interfacial trisection zone elements. Stiffness and strength o f the beams may have 

local variations and be generated randomly for representing statistical inhomogeneity 

o f the medium. Fracture processes are reproduced by sequential removal o f elements 

from the mesh and it is assumed that such elements have linear-elastic behaviour until 

failure. At each step, the element to be removed is that with maximum value o f the 

ratio between the effective stress and the tensile strength (Lilliu and van Mier, 2003).

m atrix

aggregate

mm®

Figure 2.11:Overlaying the lattice mesh on top of computer-generated aggregate
structure. (Lilliu and van Mier, 2003)

Such type o f material modelling has already been used in the 1940s for simulating 

problems o f elasticity. More recently it has been introduced in the field o f statistical 

physics for studying fracture o f disorder materials (Herrmann et a l ,  1989).

Schlangen (Schlangen and van Mier, 1992) incorporated both statistic model and 

aggregate structure model into lattice model to simulate the typical failure mechanism,

crack face bridging, in concrete. Input parameters for the beam elements are proved to
23



be important in the approach with the aggregate structure. The exact value of these 

input parameters should be determined from a parameter study and comparison with 

experimental measurements.

Schlangen (Schlangen and Garboczi, 1997) performed a study on the effect of lattice 

element type and lattice orientation on the fracture pattern by simulating a shear 

loading experiment. The effect of element resolution on fracture results was also 

investigated. Heterogeneity in the model was implemented by using digital images of 

the real aggregate structure of concrete material. A new fracture law base on the 

maximum tensile stress in each node has been developed. It has been found that crack 

pattern strongly influenced by element type, elements with three degrees of freedom 

per node gave the best agreement with experimentally observations. The orientation 

of beams also influenced the crack patterns, as cracks tending to follow the mesh lines. 

Further work is still required such as how to determine the input parameters such as 

stiffness and strength, in particular the for the interfacial zone element.

Lilliu (Lilliu and van Mier, 2007) performed 2D and 3D simulations to investigate the 

sensitivity of three-phase concrete to variations in the aggregate content and the 

thickness of the interfacial transition zone. It has been found that 2D and 3D analyses 

give qualitatively the same result. The extreme brittleness of the 2D analysis 

disappeared in 3D model.

To overcome extremely large computational effort, Liu (Liu et a l , 2007) proposed the 

generalized beam lattice in which aggregate is modeled by one single node rather than 

10-100 nodes in beam lattice model by proposal of two-node and three-phase 

elements. The numerical results indicate that the model can reproduce the fracture 

process well and also reduce the computational effort significantly.

Sagar (Vidya Sagar et al., 2010) verified the lattice model by AE study of concrete in

the three-point bend test. The model was attempted to reduce the simulation time by

using a regular triangular lattice network only over the expected fracture process zone
24



width and the rest of the beam specimen was discretized by a coarse triangular mesh. 

Reasonable load-deformation diagrams and cumulative number of fracture were 

reproduced.

Man (Man and van Mier, 2011) utilized 3D lattice model to study size effect in 

numerical concrete. A realistic aggregate structure was obtained from CT-scans of real 

concrete and overlaying these images with a 3-dimensional hcp-lattice. A large 

number of microcracks and just a few large cracks were observed at peak load. One of 

the larger cracks grew when loading was continued in the softening regime and no 

further microcracks developed.

Micromechanical model

Mohamed and Hansen (Mohamed and Hansen, 1999a, b) proposed a micromechanical 

model utilizes the finite element method as a numerical tool where the truss element is 

used as the basic element in the finite element mesh.. Randomness of the aggregate 

phase and the probabilistic nature of the properties of the three phases are considered. 

The constitutive relations of the elements are described according to the smeared 

cracking concept that is based on the fictitious crack model. The model considers 

tensile cracking as the only fracture criterion at the microlevel. Thus, it is capable to 

reproduce good predictions for tensile failure dominated problems.

Further development of M-H model was conducted by Tang and his colleagues (Zhu 

et al., 2005; Zhu et a l , 2004a, b). The constitutive law of each phase is defined on the 

basis of elastic damage mechanics, and the maximum tensile strain criterion and the 

Mohr-Coulomb criterion are adopted as damage thresholds. A simple method 

analogous to the smeared crack method is used for tracing the crack propagation 

process and for capturing the interaction of multiple cracks. This model predicted well 

the fracture process of concrete when subjected to tensile, shear and uniaxial and 

biaxial compression load.
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Particle model

Bazant et al. (Bazant et a l, 1990) proposed a particle model for brittle aggregate 

materials such as concretes. The material domain is discretized as a randomly 

distributed circular particle system. The particles are assumed to be elastic and have 

only axial interaction as in a truss. The interparticle contact layers of the matrix are 

described by a softening stress-strain relation. Fracture process of concrete and the 

size effect are investigated by performing three-point bending test and uniaxial tensile 

test.

Zhong et al. (Zhong and Chang, 1999) modified the random model by considering the 

interparticle contact layers with microcracks and these microcracks will grow when 

loaded. The fracture criterion can be expressed in terms of stress intensity factors. 

Other model input parameters, including elastic contacts and geometric parameters, 

first mode and second mode fracture toughnesses, interfacial friction angle, 

crack-interfacial cohesion, must be well defined in order to obtain accurate results.

Fracture of quasi-brittle materials, which is characterized by large zones of distributed 

cracking, can be effectively modeled by a particle system with braking bonds. 

Mechanical analysis of large systems of particles was initiated by Cundall (Cundall, 

1971) to simulate the behavior of granular solids by rigid particles. This approach was 

developed and extensively applied by Cundall and Stack (Cundall and Strack, 1979). 

2D disk code Ball and 3D sphere code Trubal have been developed which were 

prototypes of commercial software PFC2D and PFC3D (Itasca, 1999).

In particle flow code, medium is treated as an assembly of rigid discs or spheres. The

movement of particles obeys Newton’s law of motion while the interaction of the

particles is defined through contact models. The elastic response of the contact is

described by a linear contact law or Hertz-Mindlin contact model. The inelastic

response of the contact is described through a slip model and a bond model. The

conventional DE method does not consider the tensile resistance. Introduction of bond
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model enables one to simulate cohesive-frictional materials such as concrete and rocks. 

The bond can be visualized as a set of springs with normal and shear stiffnesses and 

allows the transfer of both force and moments through the contacts. The fracture 

process is naturally captured by meanings of bond breakages when bond strength or 

energy is exceeded. Because of the naturally discontinuous representation of the 

material, problems such as the dynamic behaviour of material at meso-scale, crack tip 

singularities, crack formulation criterions can all be avoided. A brief review of particle 

flow code will be presented in the next chapter.

2 .6 Parameter study of particle flow code

The particle approach contains several micro-properties such as normal and shear 

stiffness of particles and bonds, size of particles, tensile and shears strength of bond etc. 

Unlike the continuum approach, such as FEM, input parameters for the discrete particle 

assembly are unknown in advance. Not all of these parameters are directly linked to 

measurable physical material properties, but have a significant impact on the 

macroscopic behaviour of particle system. The relationship between the microscopic 

particle and bond properties and the macroscopic properties must be well understood 

before one can try to effectively control the behavior of the model and tune it up to 

match the real behavior of the material so that practical problems can be solved.

Two distinct approaches are proposed followed for the determination of 

micro-properties.

Direct analysis, where the micro-parameters are determined a set of specific simplified 

models prior to simulating the target application.

Back analysis, where the parameters by evaluated by solving the target simulation 

iteratively and optimising the micro-parameters to provide the best fit.
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Direct analysis is obviously an attractive procedure simply because once the relation is 

determined, the target application can be solved without interactive correction of the 

micro-parameters. Griffiths and Mustoe (Griffiths and Mustoe, 2001) proposed the 

direct analysis for contact bond model to evaluate the bond stiffness. They utilise a 

representative unit cell consisting of bonded particles and determine the bond 

parameters equivalent to the macroscopic Young’s modulus and Poisson’s ratio by 

ensuring that the strain energy of the representative unit closely approximates that of 

the equivalent elastic continuum body. Based on strain energy and two-dimensional 

Hooke’s law the relationship between elastic constants and stiffness in hexagonal 

arrangement have been obtained by Sawamoto (Sawamoto et a l , 1998), Tavarez and 

Plesha (Tavarez and Plesha, 2007) and Kim (Kim et a l , 2008). Both methods reached 

to the same solution and showed their effectiveness for evaluating equivalent 

micro-properties for characterisation of elastic response. However, above direct 

analysis assume regularly aligned particles with uniform radius. Consequently, the 

evaluated micro-properties may not be appropriate when the assembly consists of 

randomly distributed particles with various particle sizes.

The correlations of the micro-parameters to the macroscopic response of material have

been extensively studied. Huang (Huang, 1999) obtained some scaling laws for an

irregular disc assembly with a contact bond model by using dimensional analysis and

numerical uniaxial and biaxial tests. Potyondy and Cundall (Potyondy and Cundall,

2004) proposed a parallel bond model and performed parameter study. Yang et al.(Yang

et a l , 2006) investigated the relationships of between microparameters and

macroproperties for parallel bond model using PFC2D. Dimensional analysis was

adopted to obtain theoretical formulations while numerical simulations of uniaxial

compression test were conducted to quantify the relationships. Fakhimi and Vilegas

(Fakhimi and Villegas, 2006) employed dimensional analysis to establish a fast and

efficient tool for calibration of a so-called slightly overlapped circular particle

interaction model. Koyama and Jing (Koyama and Jing, 2007) proposed a numerical
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procedure to determine the equivalent micro-mechanical properties of intact rocks 

using a stochastic representative elementary volume (REV) concept. The investigation 

is performed base on numerical simulation of uniaxial compression tests on 

parallel-boned PFC2D materials. Yoon (Yoon, 2007) developed a new approach for 

calibrating contact-bonded model using ‘experimental design’ and ‘optimization’ in 

uniaxial compression simulation. Sensitivities of micro-parameters with respect to 

material properties were tested by the Plackett-Burman design method. Wang and 

Tonon (Wang and Tonon, 2010) developed algorithms to calibrate model 

micro-parameters by utilizing their own DEM code. Deformability parameters were 

identified through parameter sensitivity analysis while strength parameters were 

identified by a global optimization process. The main findings are summaries as 

following:

Bond Stiffness

The elastic constants are affected by the bond or contact stiffness and the ratio of 

normal to shear stiffness. Yang et al. (Yang et al., 2006) use uniaxial compression test 

simulations to observe the effect of the bond stiffness of parallel-bonded model on the 

macroscopic elastic constants such as Young’s modulus ( E ) and Poisson’s ratio (v ). 

The macroscopic Young’s modulus is calculated by dividing stress at the start point to 

mid-point of the axial stress-strain curve by the corresponding strain. Using the same 

increment and assuming plane stress conditions, the Poisson’s ratio is defined by:

v1 = -Asx / Aey. To reduce the number micro-parameters, grain stiffnesses are set equal

to bond stiffnesses. By envisioning the bond at each contact as an elastic beam with its 

ends at the particle centres Potyondy and Cundall (Potyondy and Cundall, 2004) 

suggested that the grain and bond modulus are related to the corresponding normal 

stiffnesses. Based on several numerical tests they found: The macroscopic Young’s 

modulus of specimen subjected to uniaxial compression is linearly proportional to a 

particle contact modulus. The Young’s modulus is also affected by the stiffness ratio. In
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terms of Poisson’s ratio, Huang (Huang, 1999), Potyondy and Cundall (2004), 

(Fakhimi and Villegas, 2006), Yang et al. (2006), and Cho et al. (2007) showed the 

bond stiffness ratio link strongly with the equivalent macroscopic Poisson’s effect. As 

the stiffness ratio is increased, the macroscopic Poisson’s ratio also increases.

Inter-particle Friction

According to Huang (Huang, 1999) and Yang et al. (Yang et a l, 2006), peak 

compressive strength in uniaxial compression of particle assemblies is only slightly 

affected by the inter-particle friction coefficient. Wang and Mora (2008) also derived 

the same conclusion from uniaxial compression simulations with a pre-existing crack. 

Huang (Huang, 1999) concluded that the macroscopic residual strength is only slightly 

related to the inter-particle friction coefficient. They suggest instead that the residual 

strength can be linked to force anisotropies and the slip surface evolution. Cho et al. 

(Cho et a l , 2007) also investigate the effect of inter-particle friction coefficient and 

arrived at the conclusion that the friction coefficient only slightly affects dilation and 

has no effect to the macroscopic tensile strength to compressive strength ratio.

Bond Strength

Potyondy and Cundall (2004) suggest setting the same value for both bond normal and 

shear strength in order to include both micro-tensile and micro-shear failure 

mechanisms. They show that including both micro-failure mechanisms leads to more 

sophisticated damage evolution adjacent to a circular hole than the case excluding 

micro-shear failure.

Huang (Huang, 1999) investigated the influence of bond normal and shear strength by 

simulation of uniaxial compression tests of granular assemblies with different ratios of 

bond shear strength to normal strength. They conclude that a low ratio of shear strength 

to normal strength (less than 2) results in unrealistic response. Yang et al. (Yang et a l , 

2006) also suggest the same threshold for the bond strength ratio, noting that when the
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ratio larger than 2, the compressive strength is mainly determined by bond normal 

strength, otherwise bond shear strength is dominant.

Cho et al. (Cho et a l , 2007) conducted uniaxial compression test and Brazilian test 

simulations and found that the ratio of tensile to uniaxial compression strength of the 

predicted macroscopic behaviour is not influenced by the bond strength ratio. This 

discrepancy may come from the micromechanics modelling between parallel bond and 

contact bond models. Two factors are important;

1) Moment resistance system: moment resistance between particles is included in 

parallel bond model while the contact model does not provide moment resistance, 

especially in 2D case, since there are no contributions of moment to the tangential 

direction in 2D case. The additional moment resistance of the parallel model reduces 

the macroscopic displacement required to reach the normal strength than the contact 

bond model

2) Slip mechanism: in PB model grain friction or slip are independent from the bond 

behaviour, hence the model can consider the frictional force separately. In contrast, CB 

model does not allow friction before bond breakage occurs. Thus the friction effect in 

PB model increases the shear resistance relative to the CB model and may also prevent 

the microshear failure.

Degree of discretization effect

In number of literatures (Fakhimi and Villegas, 2006; Huang, 1999; Potyondy and 

Cundall, 2004; Yang et a l , 2006) the ratio L/R was considered as a measure of the 

degree of discretization, where L is the characteristic length of the discrete medium and 

R is the average particle size. According to Potyondy and Cundall (Potyondy et a l , 

2002; Potyondy and Cundall, 2004), Young’s modulus and Poisson’s ratio appear to be 

independent of particle size as long as L/R ratio is large enough. Yang et al. (Yang et a l , 

2006) conclude the critical limits for the size independence to valid is 130. Huang
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(Huang, 1999) omit the effect of particle size on the elastic contacts. In terms of the 

effect on the macroscopic strength, there are no significant contributions to the uniaxial 

compressive strength due to particle size variation, while particle size has a major effect 

on the tensile strength. Since the macroscopic fracture toughness is proportional to 

Brazilian tensile strength, fracture toughness is also dependent on the particle size. 

Koyama and Jing (Koyama and Jing, 2007) scrutinized the particle size effect utilizing 

a stochastic representative elementary volume (REV) of particle assemblies in a 

statistical manner. According to their research, there are certain thresholds of both 

particle size and particle size distribution that are material dependent, hence care should 

be paid to determine a suitable particle size and its distribution. Results indicate that the 

variance of the calculated mechanical properties decrease significantly as the degree of 

discretization increase. The calculated macromechanical properties from random 

samples can be fitted to normal distribution curves approximately.

2.7 Findings

It has been noticed through the literature review that many numerical models can 

describe the mechanical behavior of concrete with acceptable accuracy. Particle based 

approach seems to be a attractive options to simulate the fracture behavior of concrete 

because of its simplicity and naturally discontinuous representation of the material.

In order to capture the heterogeneous morphological features of concrete at meso-scale 

level directly, it is essential to incorporate a random aggregate structure generation 

algorithm in the DEM code to reproduce the aggregate structure in real concrete 

material. Since the thickness of the interfacial transition zone (ITZ) is very small, the 

ITZ will be treated as particle contacts between aggregate particles and mortar 

particles in this study.

It has also been noticed that most of DEM parameter studies are based on
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two-dimensional analyses to match deformability and strength rock material. 

Although it can be argued that the fracture behavior of rock and concrete are very 

similar, there is a big difference in terms of the range of Young’s modulus and 

strength of these two materials. A comprehensive parameter study including dynamic 

effects will be performed in order to gain a better understanding of the calibration of 

particle flow model.
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Chapter 3

Discrete Element Modeling of Concrete -  Basic 

Formulation

The distinct element method or discrete element method is the most widely adopted 

non-continuum mechanics based numerical approach in the field of rock and concrete 

structure. Originally used in numerical simulation of the progressive failure of the rock 

slopes, its most important feature was able to reflect the slip, separation and rotation on 

contact surfaces between rock blocks and calculation of deformation and stress within 

rock blocks. The discrete element method splits blocks into tetrahedral elements and 

utilizing finite difference method to analysis deformation and stress. Since the 

discrete element method was proposed, further developments including extensions to 

three-dimensional applications and deformable blocks instead of rigid blocks have been 

conducted. Williams (Wiliam et a l , 1987) utilized the modal method to analyse 

deformation of blocks; Ghaboussi (Ghaboussi, 1988) modeled blocks as single 

quadrilateral elements; Lemos (de Lemos, 1997) developed the discrete element 

method and applied it to study dynamic interaction between structures and foundations. 

The hybrid distinct element-boundary element analysis was first implemented by Long 

(Lorig et a l , 1986); Munjiza (Munjiza et a l , 1995) successfully implemented the 

coupled finite element and discrete element method.
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Base on the framework of the block discrete element method, Cundall (Cundall and 

Strack, 1979) proposed granular assemblies and constructed layout of particle flow 

method. 2D disk code Ball and 3D sphere code Trubal have been developed which 

were prototypes of commercial software PFC2D (PFC2D, 1999) and PFC3D (PFC3D, 

1999). Since then the particle flow code has been widely used to solve rock, soil and 

concrete mechanics and engineering problems, mainly focusing on resolving 

mechanisms of damage and fracture of materials from meso-mechanical perspective. 

The macro-properties of bulk materials are affected by particle and bond stiffness and 

strength, particle size, shape, packing arrangement and density and other medium 

interaction factors. Utilizing particle flow code, meso-structure of materials can be 

simulated and compared with the macro-response of material properties obtained from 

experimental tests to establish a quantitative relationship between both 

micro-parameters and macro-properties. The particle flow code has also been widely 

adopted in powder processing, milling and crushing technology, mining engineering 

and chemical pharmaceutical. This chapter reviews the basic formulations of the 

discrete element method, and also introduce the particle flow code.

3.1 Overview of the discrete element method

|

I The discrete element method as a particle based approach was originally proposed by 

Cundall (Cundall, 1971) for rock-mechanics problems, and then applied to soils by 

Cundall and Strack (Cundall and Strack, 1979). Since then it has been widely used as a 

numerical method for modeling soil and rock-like materials. The discrete element 

approach is based on discontinuous mechanics and the basic idea is to model the 

elements as rigid simple geometric entities such as disks, spheres, ellipses, or ellipsoids, 

so that Newton’s equation of motion can be applied to entities individually. In addition, 

in order to obtain the response as an assembly system, the specified interaction forces
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between the particles/elements are introduced based on appropriate physical interaction 

laws.

The contact model of two rigid entities in the discrete element approach can be 

classified as ‘soft-contact’ and ‘hard-contact’(Duran, 2000). Fig.3.1 illustrates 

schematically the differences between these two approaches. The essential difference is 

that in the soft-contact model a small overlap between two rigid particles is allowed and 

the magnitude of this overlap is related to the contact forces developed through various 

predefined interaction laws. On the other hand, the hard-contact model (Hoomans et a l , 

1996) calculates the particle motion by considering the energy loss during the impact. 

Most particulate mechanics models adopted the soft-contact approach, while the 

hard-contact model is suited for simulation of classic Newtonian mechanics problem 

(O’Sullivan, 2011).

Before impact During impact After impact

2

a) Hard Contact The coefficient o f restitution e = abs((v,‘-v,2) /(v j-v/))  
when e=l:E lastic impact (Energy conservation) 
e< l :lnelastic impact (Energy dissipation)
Impact is instantaneous 
No impact force can be obtained

2

b) Soft Contact • Small overlap allowed to representing deformation
• Impact force is modelled by a predefined interaction law
• Motion o f bodies is determined by solving dynamic

equations
• Velocities & impact force obtained

Figure 3.1: Soft and hard contact model.
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The particle flow method is based on the following assumptions (Cundall and Strack, 

1979):

• The particles are circular or spherical rigid bodies with a finite mass.

• The particles move independently of one another and can both translate and 

rotate.

• The particles only interact at the contact.

• The soft contact model is adopted and the overlap between the two particles 

in contact is allowed to represent deformation.

• All overlaps are small in relation to the particle size such that contacts occur 

over a small region and can be treated as point contact.

• Bonds with finite stiffness can exist at contacts, and these bonds carry load 

and may break. The particles at a bonded contact need not overlap.

By assuming circular and spherical rather than polygonal-shaped particles, the contact 

detection is much simpler and can be performed with a much higher computational 

efficiency. The calculation cycle is illustrated in Fig 3.2. At the beginning of each 

timestep, the set of contacts is updated from the known particle and boundary positions. 

The contact forces are calculated by applying the force-displacement laws to each 

contact based on the relative motion between the two particles at the contact and the 

predefined constitutive models. Next, to update particles accelerations, velocities and 

positions as well as boundary walls positions, the law of motion is applied to each 

particle taking into account the resultant force and moment arising from the contact 

forces and body force acting on the particle. The calculations performed parallel 

between law of motion and force-displacement law because the set of input data 

remains fixed during the execution.
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Displacement boundary 
condition

Contact Forces

Forces boundary 
condition

Updated 
positions 
and contacts

Force-Displacement Law 
(Applied to each contact)

Law of Motion 
(Applied to each particle)

Figure 3.2: Calculation cycle in discrete element method.

The sections below will discuss force-displacement laws, law of motion and timestep 

determination in detail, it should be noticed that all formulas presented in this chapter 

are extracted from PFC manual (Itasca, 1999).

3.2 Principle formulations

3.2.1 Force-displacement laws

The force-displacement laws link the contact forces between two particles in contact to 

their relative displacements. The contact between two circular or sphere in soft-contact 

model occurs at a point. The contacts behavior between ball-ball and ball-boundary 

wall described in this section ignore any cementatious bond effect which will be 

discussed in detail in later sections. Fig 3.3 illustrates the notations used to describe 

typically contact where A, B, b represent the particles, w is boundary wall, R is particle

radius, w, is unit normal vector, x and U n denotes coordinates and overlap 

respectively.
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contact plane

(a) ball-ball contact (b) ball-wall contact

Figure 3.3: Notations used to describe contacts (Itasca, 1999).

The unit normal vector of the ball-ball contact plane is given by:

x™ -x™  n.  ------  — (3.1)

where x fA] and are the position vectors of the centers of balls A and B, and d is

the distance between the ball centers:

a =U[sl- x i * \ = (3.2)

For ball-wall contact, nt is directed along the line defining the shortest distance d

between the ball center and the wall. Once the unit normal is defined, the overlap U n,

which is defined to be the relative contact displacement in normal direction, and the

[Clpoint of contact x( are given by (2.3) and (2.4) respectively:

R[a] + R[b] -  d ball-ball contact
Un =

Rlb]- d ball-wall contact (3.3)
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x}A] + (/?M] -  i  U[n])«, ball-ball contact

x}b] + (R[b] -  i  U[n] )nt ball-wall contact
(3.4)

The shear component of the contact displacement is calculated in an incremental form. 

The increment of shear contact displacement at each time step is evaluated as:

Once the normal and shear component overlaps are known, the force-displacement 

laws can be applied to calculate the contact forces. Note that the normal stiffness, K n , 

is a secant modulus in that it relates the total displacement and the normal force. The

shear stiffness, k*, is a tangent modulus in that it relates the incremental displacement

and the tangential force. At the end of each timestep, the new shear contact force is 

updated by summing the old shear force existing at the start of the timestep with the 

shear elastic force increment.

A Us = Vs At (3.5)

(3.6)

{A, B) ball-ball contact 
{b, w} ball-wall contact

(3.7)

where x(l°7 J and G)[®J] are the translation and rotational velocity and tt = {-fy ,«,}.

F  = F n+Fs (3.8)

F n = K nUn (3.9)

AFs = -ksAUs with Fs <nFn (3.10)
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3.2.2 Law of motion

The motion of a rigid particle can be described in terms of the translational motion of 

the center of mass and the rotational motion of the particle. The equations of motion can 

be expressed as two vector equations, one of which relates the resultant force to the 

translational motion, and the other relates the resultant moment to the rotational motion. 

The equation for translational motion is express as:

mxl =Fi +mgi (3.11)

where F, is the resultant force; m is the total mass of the particle; and g, is the body 

force acceleration vector. The equation for rotational motion:

M,=H, (3.12)

Where M i is the resultant moment; and Hi is the angular momentum. If the local 

system lies along the principal axes of inertia of particle, then Eq. 3.12 reduces to:

Af] =/,&?, + (/3 — I2 )<y3̂ y2
M 2 = I2cb2 + (/, -  I2 (3.13)
M3 = /3&J3 + (/2 — Il)0)l6)2

where Ij are the principal moments of inertia of the particle; d)j are the angular

accelerations about the principal axes; and M j  are the components of the resultant

moment. For either a spherical or disk-shaped particle with the mass uniformly 

distributed then the center of mass coincides with the sphere or disk center. For a 

spherical particle, the three principal moments of inertia are the same. For disk-shaped

particle, G\=O)2=0. Eq. (3.13) can be simplified as:

M3 = Icb3 = {pmRr )<y3 (3.14)
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2/5 spherical particle 
1/2 disk-shaped particle

(3.15)

The equations of translational and rotational motion are integrated using the central 

finite-difference procedure and the translational and rotational accelerations can be 

expressed as:

Submitting Eqs. (3.16) and (3.17) into Eqs. (3.11) and (3.12) respectively results in

v * y

Finally, the velocities in Eq. (3.19) are used to update the position of the particle centre 

as

The solution process is computational intensive because of the small time-steps 

imposed in the explicit-integration procedure and the contact detection routines that 

need to be executed at every time step. The equations of motion are integrated using the 

centered finite-difference scheme. The computed solution process will remain stable 

only if the timestep does not exceed a critical timestep that is related to the minimum 

eigenperiod of the total system. However, global eigenvalue analysis is impractical to 

apply to a large and constantly changing system. Therefore, a simplified procedure is

( /+ A //2 ) (3.16)

a)-! = — (®,('ta"2) -<y,('-i"2)) 
At

(3.17)

£ (/+A//2)
7

• (t-At/2) (3.18)

(t+At/2)
T

(3.19)

(t+At/2) (3.20)

3.2.3 Timestep determination
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implemented to estimate at the start of each cycle and the actual timestep used in 

simulation is taken as a fraction of this estimated value.

First, consider a single mass-spring system as shown in Fig. 3.4. The motion of this 

system is governed by the differential equation: -kx = nix, and the critical timestep for a 

second-order finite-difference scheme is given by Bathe and Wilson (Bathe and Wilson,

1976):

(3.21)

k

x

Figure 3.4: Single mass-spring system (Itasca, 1999).

k k k k
- JW V ——V A — — W V — •— V W  -  (a)m m mm

2k 2k

4k
(c)

Figure 3.5: Multiple mass-spring system (Itasca, 1999).
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For computational efficiency reasons the infinite series of point mass-spring system can 

be simplified as the system shown in Fig. 3.5 and the critical timestep for such system 

is:

T  _ [m fm______________________ ____ _
t cn, ~ x ~ i 4 k ~ n  ( )

For the rotational system, the same approach can be applied to obtain:

0.23)
rot

Then the overall critical timestep for each calculation cycle is given by:

At = m in (V m /r" , (3.24)

where m is particle mass; /  is the moment of inertia of the particle; k,ran and krot are 

the translational and rotational stiffness.

3.3 Contact constitutive models

In order to simulate the complex mechanical behavior of a material, the constitutive 

model at each contact consists of three parts: a stiffness model, a slip model, and a 

bonding model. The stiffness model provides an elastic relation between the normal 

contact force and displacement. The slip model imposes a relation between shear and 

normal contact forces. The bonding model limits the total normal and shear forces that 

the contact can carry.

3.3.1 Contact-stiffness models

In the Particle Flow Code, two contact-stiffness models are provided: 1) linear model; 2)

simplified Hertz-Mindlin model. In linear contact model the two entities in contact are
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treated as two springs acting in series, therefore the normal stiffness and shear stiffness 

is given by Eqs. (3.25) and (3.26):

r  K \ B 
k.A+ k Bn n

1cAk B
ks =

k A+k

(3.25)

(3.26)

where kj and kj is the entity stiffness. The simplified Hertz-Mindlin model is a

nonlinear model in which the contact stiffness is related to the entities’ shear modulus 

G and Poisson’s ratio v:

K ” =
2{G)-f2k  
3(1-(v))

•JU" (3.27)

K ’ = \F"\
11/3

(3.28)

where U n denotes the overlap, and |ẑ "| is the magnitude of the normal contact force.

The multipliers R,(G) and (v) depend on geometric and material properties of the 

entities in contact.

For ball-ball contact:

R = 2 Rw t f B]
r W + r W

(G) = h G I'll+G181) 

(v) = ̂ (v M +v[sl)

(3.29)

(3.30)

(3.31)
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For ball-wall contact:

R = R[hall] (3.32)

(G) = G[ball] (3.33)

(3.34)

(3.35)

3.3.2 The slip model

The slip model is an intrinsic property of the two entities in contact. It does not provide 

normal tensile strength and allows slip to occur by limiting the shear force. This model

is always active unless a contact bond model presents (refer to Section 3.3.3), in which 

the contact bond model behavior supersedes the slip model. The maximum allowable 

shear force is expressed as

where // is the minimum friction coefficient of two entities in contact. The slip occurs 

when IFn > , and the magnitude of shear force F* is equal to F^m .

The previous sections present basic formulations of the discrete element method, the 

interactions between particles specified in terms of contact laws which enforce the 

impenetrability of the particles, but no tensile resistance is introduced to the particles in 

contact. However, most of geomaterials exhibit a certain amount of cohesion/bonding 

effect between grains as shown in Fig.3.6. Also in order to simulate a material that is a 

continuum at the microscopic level, introduction of bonding effects between discrete 

element particles to represent the initial state is required. Such bonding effects can be

F* =V\F”max ‘ I I (3.36)

3.3.3 Bond model
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modelled by the Bond Particle Model (BPM) which has been widely applied to 

geotechnical applications.

Contact bond model

The contact bond model extends the conventional contact law for a bonded pair of 

particles such that it resists against the tensile elongation as well as compression by 

introducing bonding effect at contact point. It behaviors like a pair of elastic springs 

with constant normal and shear stiffness acting at the contact point. In the presence of a 

contact bond model, the shear contact force is limited by a predefined contact bond 

shear strength. The bond breakage occurs when either normal or shear contact force 

exceeds the contact bond strength. The constitutive behavior relating the normal and 

shear components of contact force and relative displacement is shown in Fig.3.6. 

Huang (Huang, 1999) and Diederichs (Diederichs, 1999) reproduced the rock 

constitutive behavior by utilizing the contact bond model. Diederichs investigates the 

role of bond tensile strength and damage accumulation prior to the peak strength at low 

confinement for Lac du Bonnet granite and points out that the effect of rotation may be 

significant after the deformation band formation.

Bond breaks

Bond breaks

Slip model

Slip model lf>0—►
I f

(a) Normal component of contact force (b) shear component of contact force

Figure 3.6: Schematic of contact bond model and slip model (Itasca, 1999).



Parallel bond model

One of the major drawbacks of contact bond model is that the moment and rolling 

resistance have not been taken into account. Wang and Mora (Wang and Mora, 2008) 

conducted the uniaxial compression tests with a pre-existing crack to reproduce the 

wing crack extension mechanism and they suggested that the failure mechanisms 

remains stable only when normal, shear and bending stiffness exist and particle rotation 

is permitted. Iwashita and Oda (Iwashita and Oda, 1998) introduced the rotational 

resistance between particles with an additional moment related slider and showed its 

effectiveness not only for improving the representation of the macroscopic stress strain 

relationship but also for reproducing the experimentally observed microstructural 

development. Jiang (Jiang et a l , 2007) also take into account the rotational resistance 

between particles but they assume a finite bond contact width evenly distributed with 

infinite basic elements in the normal and tangential directions to a contact bond.

Potyondy and Cundall (Potyondy and Cundall, 2004) proposed a model that considers 

the grains and bonds separately. The parallel bond inserts an additional cementatious 

material with finite area between two contact particles. This model can be envisioned as 

a beam-like material with a finite area connecting two particles centroid. By 

introducing such mechanism, resistance to bending moment or oppose rolling can be 

incorporated. Bond breakage is evaluated either by the maximum tensile or shear stress, 

which are obtained from the total force and moment acting on the bond. This model acts 

in parallel with the slip or contact bond model thus does not preclude the possibility of 

slip. Fig.3.7 illustrates the schematic of the grain contact model while Fig.3.8 denotes 

the contact and deformation modes of the parallel bond model.
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K.

Separator

rAAAAAAn Friciton 
Slider F ,< /iF ,

(a) Normal  Direction (b) Tangential  Direction

Figure 3.7: Schematic of the grain contact model.

Figure 3.8: Parallel contact model and deformation modes.

The interaction laws for bonding behavior are

A F n = k nA A U n 

AF s = - k sAA U s 

AM" = -k 'JAO*

A M S = - k n I A 6 S

(3.37)

The modulus-stiffness scaling relations are
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K = 

K = 

E =

2tEc, t  = \, PFC2D 

4 REC, PFC3D

E
(*./*.)

£,
(3.38)

” R^  + R^
T K
s ’ W K )

where R is the particle radius and A, I  and J are the area, second moment of area and

polar moment of inertia of the beam-like element, respectively. These values are 

dependent on the inserted beam with 2R :

_ 2Rt, t = 1, PFC2D, 

j ttR 2, PFC3D,

/ =

J  =

- R 3t, t = 1, PFC2D, 3
- ttR \  
4

(3.39)
PFC3D,

NA PFC2D,

ttR 4.
12
- n R \  PFC3D.

Hence, the bond radius R has a significant impact on the stress-displacement 

relationship at a microscopic level, and in the particle flow code package, it is defined 

by the expression:

R = X min(/?(̂ ) + R(B)) (3.40)

where R (A) and R (B) are the bonded particle radii. The additional parameter I  is 

denoted as the radius coefficient and determines the ratio of the bond width to the 

minimum radius of the particles in contact.
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Utilizing the beam theory in conjunction with a finite contact width allows the contact 

forces to be related to contact stresses. This leads to evaluation of the maximum tensile 

and shear stresses acting on the bond as follows:

=max - F n t \ M° \ R
<T = ----------1---------------

A I
_ mav \ F\ S \ M n \ R

(3.41)

J

Softening model

Both contact and parallel bond model behaviour linear elastically and fracture of 

bonds is brittle and sudden, for this reason, those two bond models are ideally suited 

to model brittle materials such as rock. More sophisticated bond model required to 

simulation plastic or adhesive materials. One of many alternative models is 

displacement softening model and its bilinear behavior is shown in Figure 3.9.

Elastic Plastic Separation

f ;

pm  ax pm ax

(a) Normal direction (b) Shear direction

I f

Figure 3.9: Strength-softening curve.

The displacement softening model is similar to cohesive zone model in continuum 

mechanics. Before bond force reaches its peak value Fc displacement softening

model behaves like contact bond and accumulate plastic deformation after peak value 

by linearly softening the bond strength. The area under local softening model is the 

fracture energy required to open the crack surface. The initial slope of the curve 

denotes material modulus.
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If the contact is in tension, the contact strength, Fmax , is calculated from the two

strength parameters {F"and Fcs) as a function of the current orientation of the 

contact force. It is assumed that contact strength varies as a linear function of the

angle, a

Km = 0 - — ) -F” +— ■ f ;  (3.42)
n  n

where a  is the angle between the directions of the contact force and line segment 

connecting the centers of the two particles. The yielding of the bond in tension is 

determined by comparing the resultant contact force,i.e.,

F  = -jF"2+Fs2 (3.43)

with the bond strength. The contact yields if the contact force is larger than the 

contact strength:

F > F m  (3.44)

In the case of yielding of contact bonds, the increment of contact displacement, AUk 

can be decomposed into elastic and plastic contact displacement increments. The 

force increment, AFk, is a function of the increment of the elastic displacement only:

AFk = K kAUke (k = n,s) (3.45)

The increment of the plastic displacement obeys the ‘flow rule.’ It is assumed that, if 

the normal force is tensile, the plastic displacement increment is always in the 

direction of the resultant contact force:

AUp = +(A U p 2 (3.46)

It the normal contact is compressive, the maximum contact shear force is defined by
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the slip condition:

F;max (3.47)

The contact strength are functions of the accumulated plastic displacements:

Fc(Up /Upnm) = F / ( l - T ^ )  where Up = £ |A t7 ,| (3.48)

3.4 Mechanical quantity measurement

Stress and strain are two essential continuum quantities, however, these two quantities 

do not exist at each point in a particle assembly because the discrete element approach 

computes only the contact forces and displacements at each contact. Stress and strain 

are very useful when investigating material behavior in the macro-scale. To transfer the 

forces and displacements information to the stress and strain in the continuum model, 

averaging procedures are necessary.

3.4.1 Stress measurement

In the context of continuum mechanics the average stress tensor o in a volume V is 

defined by:

(3.49)

For a discrete system the stress only exist in particles, thus the integral can be replaced 

by a sum over the numbers of particles ( N p ) within the volume as



where cr? denotes the average stress tensor in particle p which can be computed as

s S = - k \ a <idVP (3.51)vpr  y P

Any tensor StJ can be expressed as Eq. (3.52), where notation [,*] denotes 

differentiation with respect to .

îj = ̂ ik̂ fg = Xi,k̂ lg = (Xfilg ),k ~ Xfilg,k (3.52)

Applying Eq. (3.52) to Eq. (3.51) results in

(3-53)
"  y P

a p =

Applying the Gauss divergence theorem to the first term in the right hand side, and 

taking into the fact that the second term vanishes in the absence of body forces, lead to

< = 7 7 7 l  (*<< h * ® ” =777 J x f i dSP (3-54)y p  J \  1 'J /  * y p
Y sp sp

where S p is the particle surface; nk is the unit outward normal to the surface; tp is the 

traction vector. Replacing the integral by a sum over the contacts (N c) as

^ = - 7 ? 7 l ^  (3.55)
V Nc

where F. is the contact force and x. is the contact location which can be written as

x‘ =xp + \x‘ - x p K c’p) (3.56)
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where xp is the location of the particle centroid; and nf 'p) is the unit-normal vector

directed from the particle centroid to the contact location. Substituting Eq. (3.56) to Eq. 

(3.55) and noting that

To apply the above procedure to the particle within the area defined by a measurement 

circle, a correction process is necessary to account the additional area of particles that is 

being neglected because the particle centroid is not within the measurement domain.

The correction factor is based on the porosity of measurement circle (n) and assuming

that a uniform stress field O"0 exists within the measurement domain. The correct 

expression for the average stress a  is given by

If only these particles centroid within the measure circle to be accounted, the incorrect 

average stress a  is given by

(3.57)

for a particle in equilibrium, we obtain:

1
(3.58)

a  = — Y a pVp = - l - v pY v pym Z—rf ym Z—*

(3.59)
=  <To y p r  = < T o O - « )

(T.vp
(3.60)

The relation between the correct and incorrect average stress is given by
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<T
<7

1 -  n

Y / 7
\ Nr

(3.61)

Eliminate a  using Eq. (3.59) to obtain final corrected expression for the average stress

< j =
1 - n

T r
j

£ a pVp
Np

(3.62)

The final expression used to compute the average stress tensor is found by substituting 

Eq. (3.58) into Eq. (3.62) to obtain

a u = -

r \  
1 - n

Y y *
j

(3.63)

3.4.2 Strain measurement

Different approaches should be adopted to compute the local strain rate within a 

particle assembly. When considering the local stress of discrete assembly, the average 

stress within a volume can be expressed directly in terms of the contact forces, since the 

forces in the voids are zero. However, the velocities in the voids are nonzero. Therefore, 

the local strain rate is calculated by employing the best-fit and least-squares procedure.

The relation between displacements at two adjacent points is described by the 

displacement gradient tensor CCy and this tensor can be decomposed into a symmetric 

and an anti-symmetric tensor as Eq. (3.64)

dut = ut jdXj = (XgdXj (3.64)
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eij = ^  (M».y -  uj,i) infinitesimal strain tensor (3.65)

co„ = ,) rotation tensorv 2 V J’ o )

Similarly, the relation between velocities is given by velocity gradient tensor dg

dvt = \ j d X j  = dydXj (3.66)

a „ = -  0)i,<j u u

e,, v , +  V,
V 2 '

I J  J

_ 1 I
(b„ v — Vu ~  2 V J -1 >

(3.67)

The average velocity and position of the N particles contained in a certain domain 

can be expressed as follows:

Z y,p
v = Nm

Z *
(3.68)

y " -

For a particular particle the measured relative velocity values are given by

V*=V>-Vt (3.69)

The predicted relative velocity values v/ can be obtained for a given d(j

vp = cc x p 

x p = xp — XI J  I

(3.70)

A measure of the error in these predicted values is given by



To minimize this error the following condition must be satisfied

(3.72)

Substituting Eqs. (3.70) into Eq. (3.71) and differentiating obtains

(3.73)

N  N  N1 p 1 p _ I  ‘ p

Then solving Eq. (3.73) to obtain the strain-rate tensor.

3.4.3 Energy measurement

Following energy terms can be traced within a discrete particle assembly:

1. Body work: total work done by all body forces including gravity loading and 

applied forces and moments:

where Np,m,gi,Fi,M3, AUj andA#3 are respectively the number of particles,

mass, gravitational acceleration vector, externally applied force, externally 

applied moment, computed displacement increment, and computed rotation 

increment.

2. Bond Energy: total strain energy stored in the parallel bonds:

E„*-Eb+ X((mg, +F,)AUi +M,A03)
n.

(3.74)

Z(l^l7(^")+l^ l7 (^ ) +l^ l7 K ))H. '  '
(3.75)

P

where N pb is the number of parallel bonds.



3. Boundary work: total accumulated work done by all boundaries:

K  < - Ew + £ (  W ,  +M3A60  (3.76)
N„

where N w is the number of boundary walls; Ft and are the resultant 

force and moment acting on the boundaries and assuming to remain constant 

throughout the timestep; and A[/; and A#3 are the applied displacement and 

rotation during the current timestep.

4. Friction work: total energy dissipated by frictional sliding at all contacts:

<3-77)
Nc '  1

where Âcis the number of contacts; and and ^ A t/f^ a re  the average 

shear force and the increment of slip displacement.

k e/as
sl‘P (  > m \ elas . )

(3.78)
(a  u; )s lp = a  u; -  ( a  u; )e as = a  u; +

= a u;+-
ks

5. Kinetic energy: total kinetic energy of all particles accounting for both 

translational and rotation motion.

(3.?9)

6. Strain energy: total strain energy of the entire assembly stored at all contacts 

assuming a linear contact-stiffness model:

Ec = \ l j \ F " \ l kn+\F^ l k ')  (3-8°)
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Chapter 4 

Discrete Element Modeling of Concrete 

-Preprocessor

Concrete is a composite material with a variety of heterogeneities and is generally 

treated as a typical cementatious granular material. It is usually considered as 

two-phase materials of consisting aggregate particles and cement mortar. Further 

research has revealed that there exists an interfacial transition zone (ITZ) between 

coarse aggregates and cement mortar. Therefore, concrete should be modeled as a 

three-phase material at meso-scale.

The heterogeneity of concrete manifests itself at various scales. At meso-scale, the 

presence of coarse aggregates influences the strength of concrete by developing a 

zone of weakness in the form of aggregate-matrix interface (Mungule and 

Raghuprasad, 2011). In order to capture the heterogeneous morphological features of 

concrete, it is essential to introduce a preprocessor in the numerical modeling to 

reproduce the aggregate structure in which the shape, size and distribution of the 

aggregate particles resemble real concrete material. It should be noted that the term 

‘aggregate’ in this research denotes coarse aggregate (i.e., gravel, crushed stone and 

blast-furnace slag) with size over 4 mm as classified in the European Standard 

(British Standards Insitution, 2009). Also, the assumed spatial randomness can only



be correct in the overall sense and cannot capture the effect of random local material 

inhomogeneities on the localization of damage and failure. It is for these reasons that 

a direct simulation of the random microstructure of these materials is useful (Bazant 

etal,  1990).

A preprocessor generally consists of two stages:

• Generation of mesoscopic geometric model: the geometric model of aggregate 

structure can be either randomly generated by utilizing various random 

aggregate structure generators or scanned from experimental specimen by 

using image processing technique. Determination of shape and size of 

aggregates, aggregate content and grading will also be involved.

• Projection of three-phased geometric model onto particle assembly: each 

particle is assigned to its corresponding phase according to coordinates of the 

particle center. Then the intrinsic mechanical properties are assigned for the 

simulation.

4.1 Single aggregate generators

In order to simulate the structure and components of the concrete material, a single 

aggregate should be generated first. In this study, the single aggregate generator 

algorithm is adopted following the concepts proposed by Gao and Liu for 2D and 3D 

random convex polygon or polyhedron aggregates (Gao and Liu, 2003; Liu and Gao, 

2003). The benefits of this algorithm includes:

• Simplicity and computational efficiency

• Homology and unitarity between two and three dimensional random 

aggregates generation algorithms
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4.1.1 Area-based and volume-based methods

Area-based and volume-based methods discussed in this section have been adopted 

by many other researchers as a contact detection scheme. It can also be applied to 

calculate the area or volume of any arbitrary polygon or polyhedron.

a) Area-based method (2D)

As shown in Fig.4.1, a random convex polygon ax _ a n which its vertices and aM 

with coordinates (xt , y .) a n d (x +1, y M ). For any in plane point P (x , y ) , the area S,- for 

the triangle /Aza+/ can be obtained as:

If s, > 0 (/ = 0,1, • • -n) then point P is inside the polygon (Fig.4.1.a); if at least one

= 0  then point P is on the edge of the polygon; if any Sj < 0  then point P is 

outside the polygon.

x y

1 , (P,  /,/ + !) in counterclockwise order (4.1)

2

3 3 3
4 4 4

a) Point  P inside polygon b) Point  P o n  the edge c) Point  P ou ts id e  polygon

Figure 4.1: Illustration of area-based overlap detection.

b) Volume-based method (3D)
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Let at _ a n represents a convex polyhedron with triangular faces and the vertices 

at,ai+] m d a i+2 with coordinates >

P(x, y) is an arbitrary point in space. Then the volume Vt of the tetrahedron 

Patai+lai+ 2 can be obtained as:

X y z 1

1 x i y t Zi 1
6 X M y i+1 /̂'+1 1

X i+2 y  i+2 Zi+2 1

, (/, i +1 and i + 2) in countercloclwise order (4.2)

If Vt > 0 (i = 0,1,* • •n) then point P is inside the polyhedron; if at least one V{ =0then

point P is on the edge of the polyhedron; if any Vt < 0 then point P is outside the 

polyhedron.

4.1.2 Growth of single convex polygon aggregate

In order to generate a random polygon aggregate, a seed aggregate with either 

triangular or quadrilateral shape is generated first. The seed aggregate governs the 

dimensions and geometrical outcomes of final polygon aggregate. The random 

number is generated by adopting multiplicative congruential method originally 

developed by Lehmer (Lehmer, 1951; Taussky and Todd, 1956). It is one of the most 

wildly used methods to generate pseudorandom numbers because they are easily 

implemented and fast. A general formula of a random number generator of this type 

is:

•*„+1 =axn{m d M )  (4.3)

where the modulus M is a prime number, the multiplier a is an element of high 

multiplicative order modulo M, and the seed jcq is coprime to M.
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A set of pseudorandom numbers uniformly distributed between 0 and 1 is returned by 

calling the library function rand(seed), then random numbers between a and b are 

obtained via Eq.4.4.

The generation of convex polygon aggregates is shown in Fig.4.2 and can be 

described as following:

• Generation of auxiliary circles that control the size of the seed aggregate: 

Different quantity and size of the auxiliary circles are generated according to 

required aggregate grading. The aggregate size can be approximated by the 

diameters of each auxiliary circle.

• Formation of triangular or quadrilateral seed aggregate: divide the each 

auxiliary circle into three or four equal curves then randomly pick a point from 

each curve to be a vertex of triangular or quadrilateral seed aggregate. Monitor 

and revise shape of the triangles or quadrangles to avoid sharp angles.

X  - a + { b - a ) X (4.4)

(a) G ro w th  o f  co n v ex  p o ly g o n  a g g re g a te  from  t r ia n g le  seed

(b) G ro w th  o f  c o n v ex  p o ly g o n  a g g re g a te  from  q u a d r i la te ra l  seed

Figure 4.2: Growth of convex polygon aggregate from seed aggregate.
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• Formation of polygon aggregates by extension of seed aggregates: The growth 

process is shown in Figs.4.2a and 4.2b. As shown in Fig.4.3, point P is a new

vertex and a P  and PaM are new edges. Conditions are applied to extend the

seed polygon such as: at least one of the edges of polygon is greater than the

prescribed maximum limited length Lmax ; new edges must be greater than the

prescribed minimum limited length I hlin ( L, > and  L, > Lhlin ); the

direction of extension is along the outward normal. In order to maintain a 

convex polygon, the area of each triangle formed by this vertex and each

aggregate edge apart from edge +1 must be positive. The area is calculated

by applying Eq.4.1 and all vertices in counterclockwise order. As the previous 

polygon is already convex, the calculation can be reduced to that the areas of

two triangles formed by the new vertex and edge ajaj+]'s two neighboring 

edges are positive ( >  0 and > 0).

Figure 4.3: Formation of a new vertex for polygon aggregate.

4.1.3 Growth of convex polyhedron aggregates

Similar to growth of convex polygon aggregates, the generation of convex polyhedron 

starts from a seed aggregate. The seed aggregate is an arbitrary convex octahedron 

with triangular faces as shown in Fig.4.4. The growth of polyhedron always starts 

from the longest edge.
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S eed  a g g reg a te  F irst grow th  S eco n d  grow th

Figure 4.4: Growth of convex polyhedron aggregate from seed aggregate.

As illustrated in Fig.4.5, point a is a new randomly generated vertex from the 

common edge bd  shared by triangular face m and n.  The projection of point a on 

the edge bd  denoted as point A is randomly generated in the same manner as

growth of polygon aggregate. Then direction vector Va is obtained by adding two 

unit outward normal Vm and Vn at the point a . The position of point a  is obtained 

randomly along the direction vector Va. To maintain a convex polyhedron, the 

volume Vka calculated from Eq.4.2 must be negative, where the index k denotes all 

triangular faces of the polyhedron apart from face m and n .

m

Figure 4.5: Formation of a new vertex for polyhedron aggregate.
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4.2 Aggregate disposition procedure and overlap detection 

algorithm

In order to reproduce the aggregate structure of a particular specimen, the aggregate 

disposition procedure must satisfy the following requirements:

• Randomness of the aggregate distribution

• Reasonable aggregate grading

• Compatible and sufficiently high aggregate content

In this study, a convex aggregates disposition procedure base on take-and-place 

philosophy is adopted to optimize the computational cost and the maximum aggregate 

content. The overlap detection algorithm, such as area-based and volume-based 

methods, is computational expensive. Therefore, a more efficient algorithm, 

grid-based overlap detection algorithm, is developed and with minor modification the 

same concept can be extended to three dimensional applications. The algorithm 

utilizes a set of dense and uniform background grid of the disposition domain to

detect the overlaps and a status matrix M fj to store information at the each node. This

algorithm is capable of generating both single-size and multi-size graded aggregate 

structure and the minimum and maximum value of each aggregate size range can be 

easily controlled. A pre-described grading curve and aggregate volume fraction can 

also be fitted and achieved precisely.

4.2.1 Background grid generation

Consider a LxW rectangular disposition domain as shown is Fig.4.6, and place a 

ftxmuniform background grid to this domain. A status matrix M (m x n) is adopted

to restore the status information of each node at all time during the disposition. The 

value of each node indicates that if this spatial location is occupied by aggregates.
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n

Figure 4.6: Schematic diagram of discretization of disposition domain into grid.

At the beginning of disposition, all elements of status matrix M tj is initialized to 0

which indicates there is no aggregate in the disposition domain. As a new aggregate is 

placed and settled in the disposition domain, the status matrix is upgraded. As shown 

in Fig.4.6, the value of status matrix elements corresponding to the grid nodes

within the aggregate is assign to 1. The status matrix keeps updated until the 

disposition is completed.

[ 0 outside aggregates 
Mtl=\ (0<i<m,0< j  <n)

II within an aggregate
(4.5)

A series of numerical simulation has been carried out to determine the optimum grid 

cell size. Our study suggests that the optimum grid cell size should be chosen at 

around 1/10 of the minimum aggregate diameter Dagg to 1/5 of the minimum
iniii

aggregate diameter. Thus the number of rows and columns of status matrix should be 

chosen as follows:

5 W/ D™ < m < \ m  ID aJ gnun nun

5L I D agg <n< 10L/Daggmin ' min

(4.6)
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With minor modification the same theory can be extended to three-dimensional 

applications.

4.2.2 Grid-based aggregate overlap detection algorithm

Following the algorithms described in section 4.1.2, convex polygonal or polyhedral 

aggregates can been generated and stored in an aggregate database. A robust and 

effective algorithm to detect overlaps between convex aggregates is essential. As 

shown in Fig.4.7, the bold solid lines illustrate the settled aggregates and thin solid 

lines represent the aggregate to be deposited, the shaded areas denote the overlapping 

areas between aggregates and black dots on the grid lines correspond to status matrix 

elements with value 1. All the vertices, the centroid of polygon and the midpoints 

between them are defined as characteristic points.

C h a r a c te r i s t i c  p o in ts

S e t t le d  a g g r e g a t e s

S e t t le d  a g g r e g a t e s

a) Initial determ ination-regular overlaps b) Detailed determ ination-com plex overlaps 

Figure 4.7: Aggregate characteristic points and overlap determination.

The overlaps between aggregates can be classified into two types: (1) Regular 

overlaps as shown in Fig.4.7a, where at least one characteristic point is included in the 

overlapping areas; (2) Complex overlaps as shown in Fig.4.7.b, where no 

characteristic point can be found in the overlapping areas. The algorithm is adopted to 

detect these two groups of overlaps is different from each other as computationally 

the regular overlaps are easier to deal with when compared to the complex overlaps.
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Therefore, the detection algorithm is composed of two stages, namely initial 

determination and detailed determination.

Initial determination: after placing an aggregate at a random position in the 

disposition domain, the spatial locations of characteristic points can be obtained by 

the known vertices coordinates. Then associate each characteristic point with its 

nearest node and restore the corresponding value from the status matrix, if it is equal 

to 1 then it overlaps with at least one of the settled aggregate engaged, the aggregate 

is replaced to another random location in the disposition domain. If all corresponding 

elements in the status matrix are 0 then a successful initial disposition is obtained and 

it can proceed to the detail determination.

Detail determination: As shown in Fig.4.7b, characteristic points could not be 

detected in the overlapping area. Upgrade of the status matrix in the whole disposition 

domain is necessary. During the upgrade process, complex overlaps can be 

determinate if any status matrix element M tj has already been assigned to 1 (as

those black dots in Fig.4.7b, indicating the common grid points between settled 

aggregate and depositing aggregate). In this case, terminate detail determination and 

any update of status matrix elements will be abandoned. Otherwise a successful 

disposition is reached and the updated status matrix is saved.

One of the major benefits of this algorithm is that for most cases overlaps can be 

detected by only performing the initial determination and the complex overlap rarely 

appears. By taking this advantage the computation cost can be reduced significantly. 

Moreover, the detailed determination stage only requires calculations and updates of 

corresponding matrix elements of grids that surrounding the current aggregate.

4.2.3 Disposition algorithm according to size range

The algorithm is designed to produce both single-size graded or multi-size graded

aggregate structures. Multi-size graded concrete is composed of a number of
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aggregate size ranges and each size range occupies a certain percentage of the total 

aggregate volume. For a multi-size graded aggregate structure, in order to achieve a 

maximum aggregate volume fraction, the disposition starts with placing aggregate 

from the largest size range. The overall disposition algorithm can be described as 

follows and the flow chart is shown in Fig.4.8.

Stage 1: Generate random convex aggregate and store them into aggregate database. 

Discretize the disposition domain into grid and create a status matrix.

Stage 2: Take an aggregate from database which within the current size range and 

place the aggregate into random position within the disposition domain. Detect the 

possible overlap as described in section 4.2.2. If overlaps with previous aggregates 

are encountered, then relocate the aggregate in the translational direction and perform 

overlap detection again. Update the status matrix when aggregate disposition 

successful.

Stage 3: Calculate the aggregated volume fraction for the current size range, if the 

required aggregate volume fraction is not satisfied, repeat stage two. Otherwise, carry 

on disposition for the next size range.

Stage 4: Repeat the last three stages until the required aggregate volume fraction for 

all size ranges is satisfied.
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A ggregate database >  Disposition o f  multisize graded aggregate by size range

N o

>  Random ly take an aggregate from current size  range

Place it into disposition domain

Overlaps ? •Yes

N o

N o

Y esN o

N o

V'req for current size  range satisfied ?

Overlaps ?

Save M,

R epositionInitial determ ination

Detailed determ ination

Proceeding to the 
next size range

Y es

Vreq for all size ranges
Satisf ied  ?

Figure 4.8: Disposition algorithm flow chart 

4.3 Geometric model examples

The distribution of the diameters of aggregates in concrete mix space can be described 

as grading curve and Fuller curve has been widely adopted to achieve the optimum 

density gradation and strength. Their basic equation is:
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r  j  v
P =

\ D )
(4.7)

where P  is the percentage that finer than the sieve; d  is the aggregate size being 

considered; D  is the maximum aggregate size to be used; ms a parameter which 

adjusts the curve for fineness or coarseness (the maximum particle density n « 0.5)

However, in order to obtained a two-dimensional grading curve, an assumption has to 

be made for the distribution of the diameters of the intersection circles in a 

cross-section of a concrete body. On the basis of probability and statistics 

considerations, Walraven (Walraven and Reinhardt, 1981) derived a transformation 

formula from the Fuller aggregate size distribution below, representing the probability

Pc that an arbitrary point in the concrete body, lying in an intersection plane, is located

in an intersection circle with a diameter D<D0:

P(D<D0) = P 1.455
/  \ ° - 5 D '

V ^m ax J

-0 .5 r D V

V ^m ax J

+ 0.036 ( D ^  ^o
V ^m ax J

+ 0.006
/' D

V ^m ax J

+0.002 r D ^

V ^m ax J

+ 0.001
/  \ 10' D  ^o
V ^m ax J

(4.8)

where Z ^ i s  the maximum aggregate diameter; Pk is the volume fraction of the 

aggregate. Subsisting volume fraction Pk, upper and lower limit of each aggregate 

size range into Eq.4.8 to computer the probability Pc of each size range appearing in 

an intersection plane, then two-dimensional grading curve can be obtained.
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a) Square sp e c im e n  b) R e c ta n g u la r  sp e c im e n

Figure 4.9: Two-dimensional aggregate structure geometric model.

Figs.4.9 and 4.10 illustrate the two-dimensional and three-dimensional aggregate 

structure geometric models generated by following the above algorithms. Up to 80% 

of aggregate volume fraction can be achieved in two-dimensional applications while 

up to 60% of volume fraction can be achieved in three-dimensional specimens.

Figure 4.10: Three-dimensional aggregate structure geometric model.

82



4.3.1 Three-phase composition recognition for particle flow code

After discretizing the concrete as a rigid circular or spherical particle assembly that 

are bonded at their contact points and reproducing the aggregated structure of 

concrete material in statically sense, the particle assembly is projected on the top of 

the generated aggregate structure, different micro-parameters (i.e. strengths and 

stiffnesses) are assigned to the respective particle elements.

Firstly, the particle elements are distinguished as either rock element or matrix 

element according to their spatial locations; then the bond properties and contact 

model for each contact is distinguished by the category that the pair of particles in 

contact belong to. Finally, different values of micro-parameter and bond models can 

be assigned to the respective particles and bonds.

Assuming an arbitrary particle element with its centroid located at if the

value of corresponding element in the status matrix M (j is equal to 1 (black dots in

Fig.4.11) then the particle is classified as rock element, otherwise the particle is 

categorized as matrix element. Two rock element grains or two matrix element grains 

in contact form a rock bond or a matrix bond (black and green solid lines in Fig.4.11), 

while a rock element grain and a matrix element grain in contact form an interface 

bond (highlighted as red solid lines in Fig.4.11).

Fig.4.12 displays a three-phased cubic specimen that is sliced by a plane at its 

midpoint. The red colored particles represent the aggregate elements while the blue 

particles denote matrix elements. Fig.4.13 illustrates each phase within a 

two-dimensional three-phased discrete element model in detail.
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Q  Rock E lem ent (j> Matrix Element   Rock Bond

  Matrix Bond   Interface Bond Background Grid

Figure 4.11: three-phase composition recognition for particle flow code.

Figure 4.12: Three-dimensional three phased DEM model.
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e) M atrix contact f) Interface contact

Figure 4.13: Two-dimensional DEM model of particles and contacts for each
phase.
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4.3.2 Effect of the degree of discretization

As shown in Figs.4.12 and 4.13, more or less detail may be lost when the size of the 

particles varies. Due to the computational limitations, a lower cut-off for the 

minimum particle size must be made. Therefore, chosen an appropriate degree of 

discretization in order to balance the results accuracy and computational efficient is 

significant. The ratio L/R, where L is the specimen characteristic length and R is 

particle average radius, is usually chosen as a measure of the degree of discretization.

A 100mm x 100mm square specimen and a 100mm x 100mm x 100mm cubic 

specimen have been generated in order to study the effect of degree of discretization 

on the phase fraction. In the two dimensional analysis, the particle radius is uniformly 

distributed from the given minimum radius to the maximum radius and the radius 

ratio between both maximum and minimum particle radii is set to 1.66. On the other 

hand, the radius ratio is set to 1 which implies all particles have an identical radius. 

Fig.4.14 shows the variation of the different phases, ‘aggregate’, ‘matrix’ and 

‘interface’, as a function of the degree of discretization.

From the results, we can see that for both two-dimensional and three-dimensional 

cases, the degree of discretization has a significant influence on the fraction of each 

phase. The fraction of aggregate particle and matrix particle remain almost constant as 

the degree of discretization varies. The slightly discrepancy is caused by the 

instability of low degree of discretization. The fraction of interface bond decreases as 

the degree of discretization increases and the fraction of pure aggregate and matrix 

bond increases. It can be expected that fraction of each phase will converge to a 

certain value where the degree of discretization becomes large enough.

Since different values of micro-parameter and bond models will be assigned to each 

phase, attention should be paid to the selection of specimen size and particle radius. It 

has been noted that when the degree of discretization is low, the numerical results
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become unstable. Further discuss regarding the effect of degree of discretization will 

be conducted in the later chapters.
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Figure 4.14: Phase fraction verse degree of discretization.
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4.4 Numerical tests

A number of numerical tests are conducted to demonstrate the efficiency of this 

algorithm; and to perform a parametric study of the algorithm itself. The problem 

domains are chosen to be square (2D) and cubic (3D). Aggregate structures of both 

specimens are multi-size graded and include four size ranges and the upper and lower 

limits for each aggregate size range are shown in table 2.1. The area or volume 

fraction ratio between the different size ranges is 2:2:3:3. All the results are obtained 

on an Intel (R) Core (TM) i5-2410M CPU @ 2.30GHz with 4GB RAM.

Table 4.1 Upper and lower limits for each aggregate size range

Size range (mm)

1 2 3 4

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

4 8 8 16 16 32 32 64

First, the CPU costs for the random convex aggregate generator algorithm is study. 

The number of aggregates generated is controlled by specifying the required area or 

volume for each size range. The numerical results are shown in Figs.4.15 and 4.16.

600-

500-

j= 300-

£ 200 -

100 -

0 10000 20000 30000

N u m b e r  o f a g g r e g a te s

Figure 4.15: CPU time verse number of aggregates for two-dimensional case.
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Figure 4.16: CPU time verse number of aggregates for three-dimensional case.

As expected the algorithm is sensitive to the number of aggregate required. A larger 

number of aggregate leads to a higher CPU time. Regression analysis indicates that 

the tendency of two-dimensional and three-dimensional curves can be described as 

third and second order polynomial functions respectively.

This algorithm is capable of achieving an aggregate volume fraction up to 80% and 

60 % for two and three dimensional application respectively. However, the 

probability of successful disposition and CPU costs are affected by the required 

aggregate volume fraction. A set of numerical tests are conducted to demonstrate the 

aggregate volume fraction influences on probability of successful disposition. The 

disposition procedure is performed 50 times for each selected aggregate area or 

volume fraction. The results are illustrated in Figs.4.17 and 4.18.

From Fig.4.17, we can see that 100% success rate can be guaranteed when the 

aggregate area fraction is less than 70%. Success rate starts decreasing when 

aggregate area fraction reaches 70% benchmark and falls dramatically beyond 80% of 

the targeted maximum aggregate area fraction. Similar results can be observed from 

three-dimensional disposition outcomes. Success rate begins to reduce at 50% and 

descends sharply beyond 60% of the maximum achievable aggregate volume fraction.
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Figure 4.17: Success rate verse aggregate area fraction.
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Figure 4.18: Success rate verse aggregate volume fraction.

Different sized specimens have been generated to investigate the CPU costs of 

deposition algorithm at various aggregate area or volume fractions. Three cubic 

specimens with edge length 300 mm, 400 mm and 500 mm have been investigated. 

CPU costs have been recorded at the chosen aggregate area fraction (40%, 50%, 60%, 

70% and 80%). The same approach applied to three-dimensional CPU costs analyses. 

Two different sized specimens (100 mm and 150 mm) and six volume fraction points 

for each specimen have been inspected. The results are shown in Figs.4.19 and 4.20.
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Figure 4.19: Deposition CPU costs verse aggregate area fraction.
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Figure 4.20: Deposition CPU costs verse aggregate volume fraction.

The results above indicate that the CPU time required for the disposition procedure is 

affected by both designed aggregate fraction and specimen size. Three dimensional 

applications require much more computation resources than two dimensional cases 

although similar results can be found. The CPU costs increases as the required 

aggregate fraction and specimen size increase since more aggregates need to be 

placed.
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4.5 Conclusions

In this chapter a preprocessing procedure for discrete element modeling of 

three-phased concrete material has been reviewed. The preprocessor was capable of 

producing up to 80% (2D) and 60% (3D) aggregate fraction specimens. The 

multi-size graded concrete aggregate structure also can be well obtained. Numerical 

examples and parametric studies have proven the algorithm was computationally 

efficient and effective.

The preprocessor adopted the ‘take-and-place’ approach and could be subdivided into 

three stages: aggregate generator, aggregate disposition and phase recognition. Status 

matrix played a major role throughout different stages and by integrating with domain 

background grids the computational time could be significantly reduced. The phase 

recognition was a straight forward approach as hardly any calculation is required. 

However, the fraction of each phase was affected by the degree of discretization of 

discrete element model. The fraction of the weakest link interfacial zone decreases as 

the degree of discretization increases. Since different values of micro-parameter and 

bond models will be assigned to each phase, attention should be paid to the selection 

of specimen size and particle radius.

Parametric studies of the algorithm itself indicated that the CPU time for both 

aggregate generator and disposition procedure were governed by the number of 

aggregates. High disposition success rates can be guaranteed before the maximum 

aggregate fraction is achieved.

When compared with other similar purposed algorithms, the clear advantages of the 

proposed algorithm include:

• Higher aggregate fraction achieved.

• More realistic aggregate distribution by utilizing multi-size graded disposition.

• Lower computational costs.
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Chapter 5 

Param etric study of parallel bonded DE m odel in 

com pression -  Experim ental and specim en geometric 

and physical parameters

In this research, the particle based discrete element approach adopted utilizes a 

collection of rigid particles which are bonded together at their contact points to simulate 

the behaviour of concrete material. However, unlike the continuum approach, such as 

FEM, input parameters for the discrete particle assembly are unknown in advance. The 

discrete element model is impressionable to the input micro-parameters values and 

accurate results only can be obtained if the correct relationship between 

micro-parameters and macro-properties are specified. To determinate the proper input 

micro-parameters becomes one of the main challenges in the field of particle 

approaches.

Despite the previous research done in the field of parameter calibration, most studies 

have been carried out to evaluate the Young’s modulus, Poisson’s ratio and ultimate 

strength for application of rock (Fakhimi and Villegas, 2006; Yang et al., 2006; Yoon, 

2007). Limited information is available regarding effects of specimen size and 

geometry, test conditions and micro-parameters on the failure and post-peak 

characteristic of concrete material. In the literature available, to the best knowledge of



author, 3D micro-parameters study and comparison with 2D parameter calibration have 

not been reported.

The next two chapters aim to investigate the effects of constitutive and physical 

parameters on the macro response of synthetic material. The brittle contact and bond 

model is adopted in this research rather than the softening model as Van Mier (Van 

Mier, 2004) suggested that adopting the softening contact model may hide important 

features if the main interest is to study fracture mechanisms. The parallel bond model as 

originally proposed by Potyondy and Cundall (Potyondy and Cundall, 2004) is used to 

glue particles together. Then uniaxial compression test is performed to investigate 

effect of each parameter.

The parametric study is carried out by utilizing widely used commercial software 

particle flow code (PFC2D/3D). Both two and three dimensional simulations are 

performed simultaneously to enable comparison study of possible different relations 

between micro-parameters and macro-properties. It should be noted that the two 

dimensional elastic constants are obtained by assuming the plane strain condition.

In this chapter, effects of experimental and specimen geometric and physical 

parameters (loading velocity, degree of discretisation and particle size distribution) are 

investigated by performing a series of numerical uniaxial compressive tests.

5.1 Parameters and dimensional analysis

Due to the lack of a complete theory, if it is possible, to predict the macro response of 

particle assembly, Huang (Huang, 1999) and Yang (Yang et al., 2006) proposed scaling 

law between micro-parameters and macro-properties for contact bond and parallel bond 

model respectively using PFC2D. The determination of scaling law consists of 

dimensional analysis and performing numerical simulations of laboratory test.
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Huang characterized a discrete particle assembly with contact bonds into two groups at 

micro-scale: Specimen geometric and physical parameters, i.e. average disc radius,

Kn [FL2] , normal strength Tn [FL '] , shear stiffness KS[FL2] , shear strength

simulation with large degree of discretization, the set of numbers governing the elastic 

constants and failure of the specimen under uniaxial loading reduces to:

Yang (Yang et al., 2006) argues that the particle assembly porosity n is not an 

appropriate index to represent the particle size distribution. As the porosity of particle 

assembly generated in particle flow code is independent of particle size distributions. 

Indeed, the particle size distribution is controlled by specifying the upper and lower

particle radius ( and Rnin ) then particle size distributed uniformly over the

specified range, therefore, particle radius ratio ( R ^  / Rmin) is more appropriate 

parameter to represent particle size distribution effect.

Size effect will eventually diminish when model degree of discretization becomes 

sufficiently large. However, the particle size of DEM model cannot be chosen too small 

due to the limitation of computation cost. Additionally, specimen cracks are 

represented by the breakage of particle bonds, initiation and propagation of cracks and 

final damage pattern exhibit clear size dependence. In order to determine the optimum 

model resolution, investigation on the particle and specimen size effect is conducted by

density p [ F L lT2\ and porosity n, and constitutive parameters, i.e. normal stiffness

Ts [FL]] and friction coefficient p .  By assuming quasi-static loading condition and

(5.1)
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considering LI R ( L  is specimen characteristic length and R is average particle 

radius) as a measurement of degree of discretization.

Comparing to contact bond model, more micro constitutive parameters are involved in 

a parallel bond model, i.e. bond normal and shear stiffness kn and ks [F/L3], bond 

normal and shear strength a c , fc [F/L2] , and bond radius R [L]. Modulus-stiffness 

scaling relations described in Eq.3.38 relate the grain and bond normal and shear 

stiffness to grain and bond contact modulus Ec and Ec (F/L‘ ). Bond modulus and

stiffness ratio are often set equal to grain modulus and stiffness to simplify calibration 

process (Lei, 2003; Potyondy and Cundall, 2004). Their works have demonstrated that 

this simplification was an efficient approach to reproduce the behaviour of rock-like 

material. The bond width R has a significant effect on the stress-displacement 

relationship at a macroscopic level, and the bond radius is defined by radius multiplier 

(1) as in Eq.3.40.

Another difference between contact bond and parallel bond arises from the effect of 

particle friction. Unlike contact bond model where the particle friction affects only 

post-peak response (Potyondy and Cundall, 2004) . Once a contact bond between two 

touching particles breaks, then slip model is activated and the slip model is only 

governed by particle friction. The parallel-bond model, on the other hand, slip model 

is active in conjunction with the bond model. For this reason the friction effect in 

parallel bond model increases the shear resistance relative to the contact bond and 

may also prevent microshear failure.

Based upon the contact model and loading path we adopted in this study, prior to any 

bond failure, the set of parameters involved in the response of the synthetic material are

\ kn,ks, R , ^ - , p , L , V , I , / j  I .After dimensional analysis and assuming quasi-static loading
I ^min J

condition, the following scaling law for material elastic constants can be obtained:
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E = Ec4>cA , ± ^ , m,A) 
kr R R .s mm

(5.2)

(5.3)

The failure of particle assembly is controlled by \k„,ks,Tbm,erbm,ju,R,—— ,p ,L ,V ,A  (and

scaling law for compressive strength is illustrated as following:

cr =<j , CD (c b.m  c '■ (5.4)

5.2 Numerical test of uniaxial compression and selection of

benchmark parameters

By far the most common laboratory test carried out on concrete is the uniaxial 

compressive test because it is easy and inexpensive to perform.

Figure 5.1: Uniaxial compression test model set-up and specimen dimension.

Figure 5.1 shows the model setup for uniaxial compression test and discrete element

discretisation. The loading platens are modeled as rigid wall segments and the top and
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bottom platens move towards each other at the identical velocity. The loading velocity 

must be low enough to satisfy the quasi-static condition. Detailed discussion of the 

dynamic influence caused by large strain rate is conducted in section 5.3. The model is 

heavily damped by setting a large damping coefficient equal to 0.7. Stiffness of the 

loading platens is defined as a fraction of the average particle stiffness. The loading 

platens are accelerated from 0 to their final velocity in a controlled fashion in order to 

produce a stable microproperties response. The specimens are represented by a random 

packing of non-uniform-sized circular or spherical particles that are bonded together at 

their contact points by parallel bond and porosity of this particle assemblies generated 

in particle flow code are 16% and 36%.

Table 5.1 indicates microparameters selected to match macroproperties of concrete. 

Those mircoparameters are chosen to be the reference data and when investigating 

effects of specific parameters, only the investigated parameter is changed while others 

keep unchanged.
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Table 5.1: Reference Micro-parameters for calibration.

Parameters Symbol 2D 3D

Specimen length (mm) L 200 100

Specimen width (mm) W 100 100

Specimen height (mm) H 0 100

Wall friction coefficient Mw 0 0

Minimum particle size (mm)
K i n

0.631 2

Particle size ratio m̂ax  ̂ m̂in 1.66 1.66

Particle density (kg/m ) P 2400 2400

Particle contact modulus (GPa) Ec 20 19

Particle stiffness ratio
K / k s

2 1.4

Particle friction coefficient p 0.5 0.5

Parallel-bond radius multiplier I 1 1

Parallel-bond modulus (GPa) % 20 19

Parallel-bond stiffness ratio
K / k s

2 1.4

Parallel-bond normal strength, mean (MPa) crb,m
18 27

Parallel-bond normal strength, standard deviation (MPa)
^b,std

2 4

Parallel-bond shear strength, mean (MPa)
^b,m

36 54

Parallel-bond shear strength, standard deviation (MPa)
7b,std

4 8

5.3 Effect of experimental parameter (loading velocity)

In order to obtained quasi-static loading condition, determination of the appropriate 

loading velocity is critical. Strain rate, defined as the rate of change in strain with 

respect to time, is commonly used when material is subject to dynamic load. In a 

conventional displacement-controlled experiment, the strain rate is defined as the ratio 

of the velocity of the loading platen and the specimen height along the loading 

direction:
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(5.5)

Bischoff and Perry (Bischoff and Perry, 1995) studied the dynamic behavior of plain 

concrete by performing uniaxial compression tests and summarized regimes of strain 

rate as Figure 5.2.

Blasts

Earthquake and induced shocks

Creep Quasi­ Vehicle Plane Hard impacts
static impacts crash (missiles) ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂ Ŝtrain rate

10* 10'7 10'* 10'J 10‘4 10'3 10J 10'1 10° 10* 102 103 

Figure 5.2: Regimes of strain rate (Bischoff, 1991).

When concrete material is subjected to high strain rates, the apparent strength of 

concrete can increase significantly. The dynamic increase factor (DIF), i.e. the ratio of 

the dynamic to static strength, is normally reported as a function of strain rate. For 

concrete, the dynamic increase factor can be more than 2 in compression, and more 

than 6 in tension. The DIF formulation for concrete in compression has widely been 

accepted by most researchers, and is presented by the CEB Model Code (Comite 

Euro-International du Beton, 1993). Direct applications in numerical analysis (Bischoff, 

1991; Fu, December 1991; Malvar, December 1997; Williams, March-April 1994) 

have showed that it was an accurate representation of actual behaviour. The 

formulation is given as follows:

' C 0.0260 £
A

fa
Vs/

/>(*)

s  < 30s'1 

£ > 30s-1

(5.6)

where f c = dynamic compressive strength at s 

f cs = static compressive strength at ss
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f c / f cs = compressive strength dynamic increase factor (DIF) 

e -  strain rate in the range of 30 x 10'V 1 to 300 s' 1 

es = 30 x 10'6 s'1 (static strain rate)

logrs =6.156 a 2

a  = 1/ (5+9 f j f c 0)

f c o =  lOMpa

As prescribed displacement loading is adopted in this research, the influence of the 

loading velocities is performed by comparing the stress strain curves and the 

distribution of the contact force chain obtained at different strain rates.

5.3.1 Stress-strain curve

The results in Figure 5.3 show that the uniaxial compressive strength increases as the 

strain rate increases. Static compressive strength can be reproduced when the strain rate 

is less than 0.1 which corresponds to the wall velocity 0.01 m/s. When the strain rate is 

as low as 0.01/s, the macro-failure of synthetic material occurs immediately beyond the 

peak stress, resulting in a brittle failure process. Increasing the strain rate the failure 

becomes more ductile. It is found that, as the strain rate decreases the specimen 

behaviors more close to the local constitutive law for the individual bonds. It is 

reasonable to argue that the ideal static loading condition can be obtained under strain 

rate value 0.1 /s.
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Figure 5.3: Simulation stress strain curve at different strain rate.

5.3.2 Contact force fabric

In the discrete element approach the concept of the force fabric at the macro-level is a 

transmission path of the external load in the specimen. At meso-level it is a chain 

structure created by connecting contact force between particles in contact. As shown in 

Figure 5.4, the black lines denote the contact forces between particles and the thickness 

of the line represents magnitude of contact force.

( a)0 .1  (Max:0 .08KN/mm)  (b) 10 (Max: 0 .18KN/m m)

(c) 30 (Max:0 .64KN/mm)  (d) 100 (Max: 1,52KN/mm)

Figure 5.4: Contact force chain at different strain rate.
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Figure 5.5: Cracks distribution at peak stress for different strain rate.

As the strain rate increases the maximum force increases. When the strain rate is 

lower than 0.1/s, the maximum force remains constant. When the strain rate value 

exceeds 10/s the maximum contact force increases dramatically. The force chain 

distribution becomes increasingly nonuniform with the increased strain rate and the 

damage is eventually highly localized at the two ends of specimen, as in Figure 5.5.

5.3.3 Dynamic increase factor

It can be predicted that the dynamic behavior of model material exhibits particle size 

dependence, as the size of time step is related to the minimum particle radius in the 

system. Three different models consisting of 7589, 1994 and 511 particles are 

generated then each specimen is loading under strain rate varying from 0.01/s to 100/s. 

The resultant dynamic increase factor (D.I.F.) observed is shown in Figure 5.6.

Higher dynamic increase factors are found when finer model resolutions are used. 

Comparing to the value obtained from the empirical CEB formula, the model dynamic 

increase factor is slightly lower in the range of 0 .0 1/s to 0.1/s. In the range of 1/s to 

107s, the coarse model appears to be more close to the CEB formulation and 

experimental data (Malvern et al., 1985).
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Figure 5.6: Dependence of dynamic increase factor on model resolution.
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Figure 5.7: Variation of material deformability for different strain rate.

Figure 5.7 indicates that not only the compressive strength of model material increases 

with increase strain rate, both Young’s modulus and the Poisson’s ratio vary 

significantly but at lower intensity than the compressive strength which is in good 

agreement with experimental findings by Bischoff (Bischoff, 1991). Up to 80% 

increase of Young’s modulus and 40 % decrease of the Poisson’s ratio can be found. 

The major turning point is around strain rate 1/s.
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Figure 5.8 demonstrates the different intensity of rate dependence for 2D and 3D 

models obtained by keeping the model resolution at a constant level. All three 

measured material properties of 2D models exhibit more intense rate dependence than 

3D models

5 y -------------------- T----------------T----------------------T----------------- n

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -It-
Young's modulus 3D / ;
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2  3 fr ....................... ] - * - Strength 3D "~j................. f  " \ '
& -Youna's modulus 2D /

1

0.01 0.1 1 10 100 

Strain rate

Figure 5.8: Comparison of increase factors between 2D and 3D model.

Based upon the above analysis, extensive calibration and attention must be paid when 

utilizing PFC to perform dynamic simulation. Our attention mainly focus on finding an 

appropriate loading velocity to obtain static behavior and all three results indicate that 

when the strain rate value is as low as 0.1 /s the measured macro-properties change as 

little as 2%, therefore, in this research strain rate 0.1/s is adopted which in our case the 

opposite wall move towards each other at 0.01 m/s.

5.4 Effect of specimen geometric and physical parameters

5.4.1 Degree of discretisation

2DHuang (Huang, 1999) utilized commercial software PFC~ (particle flow code) to study 

the scaling-law between micro-parameters and macro-properties of contact-bond

model. The ratio L/R was used as a measure of the degree of discretization and
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concluded that the particle size has little effects on the macro material response during 

uniaxial compression test while L/R is large enough.

Yang(Yang et al., 2006) performed similar analysis by adopting parallel bond and 

argue that when L/R smaller then 80, the Young’s modulus and Poisson’s ratio are 

effected significantly but the compressive strength is hardly affected.

Nardin (Nardin A, 2005) obtained a similar scaling-law using self-defined bonding 

model and found that uniaxial compressive strength increases when L / R  is small.

Potyondy (Potyondy and Cundall, 2004) also performed particle size effect analysis by 

simulating biaxial and triaxial tests at confinements of 0.1 and 10 MPa. The Poisson’s 

ratio and compressive strength appeared to be independent of particle size and Young’s 

modulus increased slightly (less than 5 %) as particle size decreased. However in the 

literature only a small L / R  range (11, 22, 44, 88 for biaxial tests) has been covered in 

the their study.

Koyama and Jing (Koyama and Jing, 2007) scrutinized the particle size effect utilizing 

a stochastic representative elementary volume (REV) of particle assemblies in a 

statistical manner. According to their research, there are certain thresholds of both 

particle size and particle size distribution that are material dependent, hence care should 

be paid to determine a suitable particle size and its distribution.

All above mentioned researcher were based on two dimensional simulation of the rock 

material. The characteristic behaviors of three dimensional models could be different 

(e.g. one extra dimension increases anisotropy of numerical model).In this study, two 

and three dimensional investigations of effect of model resolution on material elastic 

constants and ultimate strength are carried out simultaneously over a wide range of 

L / R (20-240 for 2D and 10-90 for 3D). Both approaches to vary the ratio L / R ,  

changing specimen size (Case I) and particle size (Case II), are considered. By 

changing the random seed, 20 randomly packed particle assemblies for each specimen
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are under investigation. Particle radii are distributed uniformly from the selected 

minimum to maximum value. Table 5.2 and Table 5.3 show the specimen dimensions 

and particle radii have been studied to investigate the effect of discretisation. It is 

expected that as the particle size continues to decrease, the coefficient of variation will 

converge. These values should be a true measure of the effect of both packing and 

strength heterogeneities.

Table 5.2: Geometric and physical parameters for different L/R PFC2D.
Case I -  Varying Sample Size Case II -  Varying Particle Radius

Height
(H)

Width
(L)

L/R R m in
No. of 

particles
Height

(H)
Width

(L)
L/R R m in

No. of 
particles

65.57 32.79 20 1.25 207 200.00 100.00 20 3.840 205
131.15 65.57 40 1.25 831 200.00 100.00 40 1.910 829
200.00 100.00 61 1.25 1934 200.00 100.00 60 1.270 1879
262.30 131.15 80 1.25 3327 200.00 100.00 80 0.949 3355
327.87 163.93 100 1.25 5199 200.00 100.00 100 0.758 5262
393.44 196.72 120 1.25 7487 200.00 100.00 121 0.631 7600
459.02 229.51 140 1.25 10191 200.00 100.00 141 0.540 10370
590.16 295.08 180 1.25 16843 200.00 100.00 181 0.419 17211
655.74 327.87 200 1.25 20807 200.00 100.00 200 0.380 20935
786.89 393.44 240 1.25 29950 200.00 100.00 237 0.321 29339

Table 5.3: Geometric and physical parameter for different L/R PFC3D.

Case I - Varying Sample Size_____________Case II - Varying Particle Size
No. Side length L/R No. of particles L/R Rmin No. of particles

1 32 12 270 10 8 128
2 64 25 2161 20 4 1030

3 100 38 8244 31 2.5 4221

4 125 48 16103 39 2 8244

5 163 63 35706 51 1.5 19543

6 200 77 65958 62 1.25 33770

7 280 89 101235 77 1 65958

8 - - - 87 0.8 93685
Note: Particle size ratio value 1.66 for all specimens. Minimum radius is fixed to 2 mm for 
case I and specimen side length is fixed to 100mm for case II.
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PFC2D material response
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Figure 5.9: Effect of specimen size PFC2D

Results are shown in Figure 5.9 in which black square dots represent the mean value

and upper and lower error bars denote the minimum and maximum value obtained from

20 samples. Similar results have been obtained from both case studies and the results

indicate that the elastic constants appear to be independent of particle size. The mean
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values of Young’s modulus increase slightly as the degree of discretisation increases (4% 

and 8%). Potyondy (Potyondy and Cundall, 2004) also found the same result and 

concluded that this slight increase in Young’s modulus may be an artifact of having too 

few data points to obtain a true measure of the mean values. No obvious trend can be 

concluded for the mean value of Poisson’s ratio. The mean uniaxial compressive 

strength increases slightly as the particle size decreases but no clear statement can be 

made to describe its trend.

The variance study in Figure 5.10 indicates that smaller U R  ratio leads to larger 

respective variation. The Poisson’s ratio and compressive strength are very sensitive to 

the degree of discretization. Therefore, in order to obtained reliable results (expectable 

error of 5%) in a computational efficient manner, specimen with LI R ratio larger 120 

is recommended (by varying particle radius). To analysis the randomness of simulation 

results, Koyama and Jiang studies (Jiang et al., 2010; Koyama and Jing, 2007) 

performed frequency distribution analysis on three macroproperties and concluded that 

the macro-mechanical properties were fitted to normal distribution. However, based on 

the results obtained from our studies, no obvious distribution trends can be concluded.
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Figure 5.10: Coefficient of variation at different degree of discretization for
PFC2D.
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Further 2D parametric study will be performed on a rectangular specimen with fixed 

dimensions (100mm x 200mm) and the minimum particle radius is equal to 0.631 mm 

which produces an L! R value equal to 120.

PFC3D material response
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Figure 5.11: Effect of specimen size PFC3D.
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Similar to the PFC2D materials response, the Poisson’s ratio from the PFC3D 

simulation also appears to be independent of particle and sample size. Coefficient of 

variation of three macro-properties decreases with the increase of L/R and an 

acceptable variation appears when the L / R  ratio is larger than 50. The Poisson’s ratio 

is more sensitive to packing randomness than the other two macro-properties, Young’s 

modulus and compressive strength obtained from 20 specimens hardly vary when L/R 

ratio is beyond 30.
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Figure 5.12: Coefficient of variation at different degree of discretization for
PFC3D.

Unlike PFC2D results, the Y oung’s modulus and uniaxial compressive strength exhibit 

clear size dependence. The Y oung’s modulus increases as the L/R increases. 14% 

difference can be observed between the maximum and minimum scaled modulus and 

the peak value is found when L/R equals 77 for both cases. The most significant 

increase is noticed when the L/R increase from 10 to 20. The size dependence of 

Young’s modulus is reflected in the modulus-stiffness scaling relation Eq.3.38 in terms 

of particle and bond strengths.

The unconfined compressive strength of PFC3D model increases significantly with the 

increase of model resolution. From the results, we can see that the compressive strength
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is converging but the final convergence values could not be obtained. Up to one 

hundred thousand particles ( L /  R = 89) have been used in the simulation, the run-time 

of each model becomes extremely costly, and eventually is beyond the simulation 

capability of particle flow code. Potyondy (Potyondy and Cundall, 2004) discovered 

this size dependence of compressive strength and the reason for this size effect is 

remained unknown. One possible explanation is provided by Wong (Wong et al., 2006) 

which states that microstructural strength heterogeneity increases with the increase of 

grain size, and plays a key role in lowering the uniaxial compressive strength, which 

contributes to the overall decrease of strength with the increase of grain size. To verify 

this explanation we repeat the degree of discretization study and reduced the 

heterogeneity effect by setting the standard deviation of bond strength to zero.
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Figure 5.13: Effect of heterogeneity of bond strength on macroscopic strength.

Figure 5.13 indicates that despite the heterogeneity of the strength is reduced, the 

macroscopic material strength increases with the increase of LI R ratio. Both cases 

draw the same conclusions where the identical growth rate of compressive strength is 

obtained and the coefficients of variation of macro properties remains unaffected.

Taking the specimen size effect further, specimens with different geometric shapes are 

generated to investigate the possible variation of macro responses. Three PFC2D
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specimens (lOOx 100,100x 150 and lOOx200) and four PFC3D specimens

(100 x 100 x 100 and 100x 100 x 200 cylinder and parallelepiped) with constant LI R 

ratio have been investigated. However, no significant variation can be observed.

5.4.2 Particle size distribution

The randomness of particle size distribution in particle flow code is governed by 

minimum particle radius, particle size ratio and random seed. To determinate the 

influence of particle radius ratio, PFC2D and PFC3D models with the particle size ratio 

value range from 1.25 to 5.0 were tested. The particle assembly becomes more 

heterogeneous as the particle size ratio increases as shown in Figure 5.14. Porosity of 

each specimen remains unchanged to avoid any unnecessary disturbance.

1.25 2.5 5.0

Figure 5.14: PFC2D packing pattern with different radius ratios.

Fig5.15 suggests that the scaled modulus and uniaxial compressive strength of the 2D 

model decrease when the particle radius ratio varies from 1 to 2, and then remain almost 

unchanged. The macroproperties of PFC3D material are more sensitive to the change of 

the particle radius ratio and up to 21% reduction is observed in compressive strength. 

The mean value of the Poisson’s ratio of both 2D and 3D model oscillates with the 

increase of particle radius ratio. However, no clear statement can be made for the mean
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value of Poisson’s ratio. The calculated coefficients of the variation of three major 

macroproperties increase with the radius ratio as the specimen becomes more 

heterogeneous. In order to achieve an acceptable coefficient of variation of 5%, the 

radius ratio ranging between 1 and 2 is recommended.
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Figure 5.15: Effect of particle size ratio PFC2D and PFC3D.
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Figure 5.17: Distinguish the influence of heterogeneity by means of changing
specimen radius ratio.

As a consequence of increasing radius ratio the average particle radius will increase and 

LI R ratio decreases. It is necessary to distinguish the effect caused by changing the 

radius ratio alone. In Figure 5.17 the solid and dot lines denote the variation of the 

scaled modulus and compressive strength with respective to L/R from the previous 

results in the previous section and the scatters correspond to different material 

responses obtained for different radius ratios. It can be seen that Young’s modulus and
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compressive strength obtained from the PFC3D specimens with different radius ratios 

are in good agreement with the curves. Therefore, the actual influence from increasing 

specimen heterogeneity by means of changing the radius ratio can be neglected. Instead, 

it can be viewed as another approach to modify the model resolution.

5.5 Conclusions

In this chapter, the influence of experimental and specimen geometric and physical 

parameters on behavior of parallel-bonded PFC model in uniaxial compression were 

investigated. The findings can be summarized as follows:

• Experimental parameter loading velocity has significant effect on Young’s

modulus, Poisson’s ratio, ultimate strength stress-strain curve and damage

model. Comparing to experimental results the dynamic increase factors 

obtained by PFC simulations are too large especially when specimen is 

submitted to high strain rates. The dynamic increase factors were affected by 

the model resolution and coarser resolutions leaded to lower dynamic increase 

factors. Comparison study of intensity of strain rate dependence between 2D 

and 3D models showed that 2D models exhibited more intense rate dependence 

than 3D models. Static macro properties were obtained when strain rate smaller 

than 0.1/s.

• The influence of model resolution (LIR)  and particle size distribution

(̂ max / ^min) on lhe mean value of Young’s modulus and Poisson’s ratio

obtained from 20 random packed specimens was indistinctive. However, the

variance of macro-properties decreases significantly for large (L/R)  .

Compressive strength of 2D models converged when L / R  is large than 120.

On the other hand, compressive strength obtained from 3D models increased

with the increase of the model resolution and due to limitation of computing
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power the convergence value has not been obtained. It has been found that the 

influence due to the increasing of specimen heterogeneity was weak.

i

i

119



References

Bischoff, P.H., Perry, S.H., 1995. Impact behavior of plain concrete loaded in uniaxial 
compression. Journal of engineering mechanics 121, 685-693.

Bischoff, P.H., Perry, S.H., 1991. Compressive Behavior of Concrete at High Strain 
Rates. Materials and structures 24, 425-450.

Comite Euro-International du Beton, 1993. CEB-FIP Model Code 1990 Redwood 
Books, Trowbridge, Wiltshire, UK,.

Fakhimi, A., Villegas, T., 2006. Application of Dimensional Analysis in Calibration of 
a Discrete Element Model for Rock Deformation and Fracture. Rock Mechanics and 
Rock Engineering 40, 193-211.

Fu, H.C., Erki, M.A., Seckin, M., December 1991. Review of Effects of Loading Rate 
on Concrete in Compression. Journal of Structural Engineering 117, 3645-3659.

Huang, H.Y., 1999. Discrete element modeling of tool-rock interaction. American: 
University of Minnesota.

Jiang, S.Q., Tan, Y.Q., Li, C., Yang, D.M., 2010. Studyon Mechanics Properties and 
Size Effect of Monocrystalle Silicon Using Discrete Element Method. 21.

Koyama, T., Jing, L., 2007. Effects of model scale and particle size on 
micro-mechanical properties and failure processes of rocks—A particle mechanics 
approach. Engineering Analysis with Boundary Elements 31,458-472.

Lei, S., 2003. Distinct element modeling of laser asisted machining of silicon nitride 
ceramics. Service and Manufacturing Grantees and Research Conference Proceedings, 
1270-1281.

Malvar, L.J., Ross, C.A., December 1997. Review of Static and Dynamic Properties of 
Concrete in Tension,. ACI Materials Journal.

Malvern, L., Jenkins, D., Tang, T., Ross, C., 1985. Dynamic compressive testing of 
concrete, Proc. Second Symposium on the Interaction of Non-Nuclear Munitions with 
Structures, Panama City Beach, Florida, pp. 194-199.

Nardin A, S.B.A., 2005. Modeling of cutting tool-soil interactin-part II: 
Macromechanical model and upscaling. Computer Mechanics 36, 343-359.

Potyondy, D.O., Cundall, P.A., 2004. A bonded-particle model for rock. International 
Journal of Rock Mechanics and Mining Sciences 41, 1329-1364.

Van Mier, J.G.M., 2004. Discussion of lattice modelling of size effect in concrete 
strength by Ince et al. . Engng Fract Mech 71, 1625.

120



Williams, M.S., March-April 1994. Modeling of Local Impact Effects on Plain and 
Reinforced Concrete. ACI structural journal 91, 178-187.

Wong, T.-f., Wong, R.H.C., Chau, K.T., Tang, C.A., 2006. Microcrack statistics, 
Weibull distribution and micromechanical modeling of compressive failure in rock. 
Mechanics of Materials 38, 664-681.

Yang, B., Jiao, Y., Lei, S., 2006. A study on the effects of microparameters on 
macroproperties for specimens created by bonded particles. Engineering computations 
23,607-631.

Yoon, J., 2007. Application of experimental design and optimization to PFC model 
calibration in uniaxial compression simulation. International Journal of Rock 
Mechanics and Mining Sciences 44, 871-889.

121



Chapter 6 

Parametric study of parallel bonded DE model in 

compression -Micro constitutive parameters

The previous chapter has reviewed the parameters that might impact calibration 

outcomes and the most important experimental and specimen geometric and physical 

parameters have been investigated. This chapter will begin with the examination of 

different macro responses of 2D and 3D synthetic materials caused by varying the 

micro constitutive parameters. Then investigation on different failure modes, final 

crack patterns and post-peak stress-strain curves of specimen is conducted. Finally, 

based upon the results of obtained in this parametric study, recommendations on how 

to calibration PFC models to reproduce desired elasticity and ultimate strength is 

presented.



6.1 Effect of individual micro constitutive parameters on 

material deformability and strength

6.1.1 Contact modulus

Theoretical prediction by Chang (Chang, 1993) for randomly packed specimens with 

identical particle size found that the Young’s modulus was linearly related to particle 

contact modulus while the Poisson’s ratio was not affected. The numerical simulation 

result in Figure 6.1 indicates that both 2D and 3D Young’s modulus of material are 

linearly related to the particle contact modulus and can be expressed as:

E = \ .21Ec - 0 . 0 5  

E  =  1. 2 4 £  - 0 . 0 2

R2 =  I PFC 2D  

R2 = 1  PFC3D
(6.1)

■ PFC2D 
•  PFC3D50-

O 40-

y> 30 -

20-

20 2515 30 35 40

Contact Modulus (GPa)

Figure 6.1 Effect of Contact Modulus on Young’s Modulus for PFC2D and
PFC3D

Since contact modulus is directly linearly related to normal stiffness as in Eq.3.38, the 

linear relationship can be obtained between the Young’s modulus and normal stiffness 

in 2D model and exhibits size dependence in 3D model. The PFC2D Poisson’s ratio 

have not been affected by particle contact modulus, the results have a very good

agreement with theoretical prediction for random packing of identical particle sizes
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made by Walton (Walton, 1986). Poisson’s ratio of 3D model fluctuates noticeably 

with increasing contact modulus and approximately 17% difference is observed 

between the maximum and the minimum. The influence on compressive strength 

appears to be insignificant.
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6.1.2 Contact stiffness ratio

Hence the normal stiffness is defined in terms of contact modulus (Eq.3.38) and this 

parametrical study is based upon the assumption that only one parameter is changing 

while the others keep are kept same. The contact stiffness ratio effect can be seen as 

the effect of shear stiffness. The shear contact stiffness decreases with the increase of 

the contact stiffness ratio. Results indicate that the Y oung’s modulus and 

compressive strength decrease and Poisson’s ratio increases as the contact stiffness 

ratio increases. Both scaled modulus and Poisson’s ratio can be expressed as a 

logarithm function of contact stiffness ratio. The compressive strength is linear or 

second order polynomial function of the stiffness ratio for PFC2D and PFC3D 

respectively as shown in Eqs.6.2 and 6.3.
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Figure 6.4: Effect of stiffness ratio on elastic constants PFC2D.
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6.1.3 Radius Multiplier

Model characteristic Eqs.3.40 and 3.41 suggest that the significant impact of bond 

radius on the stress-displacement behavior is observed at microscopic level. The

beam-like element can be scaled in terms of radius multiplier ( A ) . Numerical

simulation results indicate that the radius multiplier has a clear impact: for 2D model 

the material Young’s modulus and compressive strength increase linearly and 

Poisson’s ratio decreases as the radius multiplier increases. Similar results can be 

obtained for 3D models where the increasing trend of Young’s modulus and 

compressive strength can be expressed as a second order polynomial. After regression 

analysis the following empirical relationships have been established:
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6.1.4 Bond strength ratio

Potyondy and Cundall (Potyondy and Cundall, 2004) suggest setting the same value 

for both bond normal and shear strength ( <7t, = r* ) in order to include both

micro-tensile and micro-shear failure mechanisms. They show that including both 

micro-failure mechanisms leads to more sophisticated damage evolution adjacent to a 

circular hole than the case excluding micro-shear failure. Huang (Huang, 1999)
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investigates the influence of bond normal and shear strength of contact bond by 

simulation of uniaxial compression tests of granular assemblies with different ratios 

of bond shear strength to normal strength. They conclude that a low ratio of shear 

strength to normal strength (less than 2) results in unrealistic response. Yang (Yang et 

al., 2006) also suggest the same threshold for the bond strength ratio, noting that when 

the ratio larger than 2, the compressive strength is mainly determined by bond normal 

strength, otherwise bond shear strength is dominant. Cho (Cho et al., 2007) conducted 

uniaxial compression test and Brazilian test simulations and found that the ratio of 

tensile to uniaxial compression strength of the predicated macroscopic behaviour is 

not influenced by the bond strength ratio.

According to previous dimensional analysis, the material uniaxial compressive 

strength can be scaled by either bonded mean value of normal or shear strength. In 

this section we keep the hond normal strength at a constant level and varies the bond 

strength ratio by changing bond shear strength. Figure 6.12 shows the material 

elasticity is not affected by the variation of bond strength ratio.
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Figure 6.12: Effect of bond strength ratio on elastic constant.
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Figure 6.13: Number of cracks at peak stress PFC2D.

Similar compressive strength response can be found in PFC2D and PFC3D specimens. 

Both of results can be divided into three parts by two characteristic bond strength ratio 

values 0.5 and 1.5 (2.0 for PFC3D). As the bond shear strength to normal strength 

ratio increases, the material compressive strength increases linearly up to the lower 

bound. The compressive strength keeps rising up to the upper bound but not as fast as 

before. Then compressive strength reaches a constant value when bond strength ratio 

is equal to the upper bound. At this point a higher uniaxial compressive strength can 

be obtained by specifying a higher bond normal strength.

Figure 6.13 indicates the number of cracks at peak stress for micro-shear and 

micro-tensile failure. The material failure is dominated mainly by micro-shear bond 

breakage when the bond strength ratio is smaller than the lower-bound value,. To 

reproduce both micro-tensile and micro-shear failure mechanisms the bond strength 

ratio should be defined between the lower and upper bounds. The parallel bond tensile 

failure dominates the macro-failure mechanism and the number of cracks remains at a 

constant level when the bond strength ratio is larger than the upper bound value.

■ Bond breakage due to normal failure 
*  Bond breakage due to shear failure

t <----------1----------1----------r
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Figure 6.15: Effect of bond strength ratio on compressive strength PFC3D.

The effect of the parallel bond strength ratio on the uniaxial compressive strength 

obtained can be expressed as following:
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Once the bond strength ratio between the bond shear strength and the bond normal 

strength is selected, desired material macroproperty uniaxial compressive strength can 

be reproduced by multiplying the mean normal and shear strength and their standard 

deviation by a scale factor. Figure 6.16 shows that a linear relationship between 

compressive strength and scale factor is obtained for different bond strength ratios.
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Figure 6.16: Scale factor for different bonding strength ratio.

6.1.5 Friction coefficient

Huang (Huang, 1999) and Yang (Yang et al., 2006) performed a study on effect of 

friction coefficient for contact bond and parallel bond model respectively and reported 

that peak compressive strength in uniaxial compression of particle assemblies is only 

slightly affected by the inter-particle friction coefficient. Wang and Mora (Wang and
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Mora, 2008) also derived the same conclusion from uniaxial compression simulations 

with a pre-existing crack. Huang (Huang, 1999) concluded that the macroscopic 

residual strength is only slightly related to the inter-particle friction coefficient. They 

suggest instead that the residual strength can be linked to force anisotropies and the 

slip surface evolution. Cho (Cho et al., 2007) also investigated the effect of 

inter-particle friction coefficient and arrived at the conclusion that the friction 

coefficient only slightly affects dilation and has no effect on the macroscopic tensile 

strength to compressive strength ratio.

However previous studies mainly focus on the strength of two-dimensional synthetic 

material. Figure 6.17 indicates that the deformability is clear affected by grain friction 

coefficient. Young’s modulus increases with increasing friction coefficient while 

Poisson’s ratio decreases with increasing friction coefficient. Friction coefficient has 

more significant impact on PFC3D model than PFC2D model. Up to 22% and 29% 

increase or decrease rate can be found for scaled modulus and the Poisson’s ratio 

respectively material where 18% and 23% are for two dimensional model. After 

aggression analysis both tendencies can be approximated by a second order 

polynomial function as expressed in Eqs.6.8 and 6.9. PFC3D material compressive 

strength increases 24% while on the other hand the PFC2D compressive strength 

fluctuate as little as 8% and no clear trend can be observed. It is reasonable to argue 

that the impact of particle friction coefficient on the compressive strength for PFC2D 

model is weak and can be ignored.

—  = -0.2/i2 + 0.44/i + 1.1 R2=1
Ec
v = 0.07//2 -0.13//+ 0.26 R2=1

—  = -0.17/i2 +0.45/i + l R2=1
Ec
v = 0.06>w2-  0.15/i + 0.25 R2=1
qu = -8.86//2 +19.11/  ̂+ 33.5 R2 = 1

PFC2D (6 .8)

PFC3D (6.9)
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Figure 6.17: Effect of coefficient on material elasticity.
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Figure 6.18: Effect of coefficient on Compressive Strength.

6.1.6 Crack-initiation stress

To better describe the heterogeneity characteristic of brittle material such as concrete, 

the bond strength at each contact was assigned random strength values drawn from a 

probability distribution. For one of the most popular normal distribution specification 

of two parameters, namely the mean value and standard deviation, are required. The 

crack-initiation stress is defined as the axial stress at which non-elastic dilation begins,

and is identified as the point of deviation from linear elasticity on a plot of axial stress
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versus volumetric strain (Potyondy and Cundall, 2004). During the uniaxial 

compressive test the crack-initiation stress is recorded as the axial stress at 1% of the 

total number of cracks at peak strength. Numerical results indicate that the 

crack-initiation stress is affected only by the ratio between the standard deviation of 

bond strength and mean value bond strength. As the standard deviation of bond 

strength increases, both crack-initiation stress and compressive strength decrease as 

shown in Figure 6.19 while the crack-initiation stress drops more significantly than 

the compressive strength. The most noticeable reduction of fraction of crack-initiation 

stress can be observed when the coefficient of variation of bond strength is between 

20% and 50%.

Compressive Strength PFC3D 
Ci-stress PFC3D 

-± — Compressive Strength PFC2D 
▼ Ci-stress PFC2D

40-

?  30-

c  2 0 -

1 0 -

0 20 40 60 80 100
Bond strength ceofficient of variation (%)

Figure 6.19: Compressive and crack initial strength verse coefficient of variation
of bond strength.
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Figure 6.20: Fraction of ci-stress verse coefficient of variation of bond strength. 

6.2 Failure mode and post-peak stress-strain curve 

6.2.1 Crack pattern

As discontinuities are an inherent part of the DEM method, without any additional 

descriptions are required for the evolution of cracks. The breakage of bonds between 

particles automatically initiates crack pattern. In laboratory experiments, two 

specimen’s results are never identical even the same conditions are applied. The 

failure crack patterns are phenomenological similar but the exact positions of the 

cracks and spalling vary. Thus the exact damage pattern cannot be replicated in 

experiment and numerical simulations, even the state of the art algorithms can only 

determine the major crack path. However, valuable information such as failure type, 

crack initiation, and propagation direction can be obtained from modelling.

It has been well understood that the elastic mismatch between loading platen and the 

specimen leads the different lateral deformation in platen and specimen. In the case of 

loading platen stiffer than specimen, the friction force caused by interaction between 

platen and specimen will develop a confining compressive stress at the end of
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specimen then cause triaxial compressive stress fields in the specimen near the 

loading platens (Fig.6.21a). As a consequence, the famous hourglass failure mode 

appears (Fig.6.21b).

v  \r u  f  qjr Jf

Stiff loading platen

Stiff loading platen

t i i i i t
(a) (b)

Figure 6.21: Cubic concrete specimen failure mode (a) Triaxial compressive 
stress fields cause by shear stress between loading platen and specimen; (b) 

experimental observation of hourglass failure mode (Tang et a l 2010).

In this study, we intended to analyze the variations in the crack pattern due to the 

micro-parameters of the parallel boned discrete element model. Note that the 

numerical analysis is carried out by assuming that the bond strengths are identical to 

minimize disturbance raised from strength heterogeneity, and the random seed keeps 

constant to construct an identical particle packing configuration. Images of bond 

breakages are represented by black and red line segments which distinguishes 

micro-tensile failure mode from micro-shear failure mode.

The results indicate that final crack pattern in the synthetic material is affected by the 

local stiffness ratio ( kn /  ks ) and bond strength ratio ( rh m / o h m ). This is illustrated by

the damage pattern for the synthetic specimens with different local stiffness ratios and
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bond strength ratio values in Figure 6.22. When the external loading reaches the crack 

initial stress, the cracks, representing by bond rupture, began to uniformly form inside 

the specimens. Further loading leads to cracks concentrating along the major shear 

band which results in specimen failure. As the stiffness ratio increases more diffuse 

crack pattern is observed. For those models consisting of both micro-tensile and 

micro-shear failure models, increasing the stiffness ratio leads to a larger percentage 

of bond rupture in the micro-tensile failure model. It is due to the fact that by 

increasing the normal stiffness, greater local normal stresses and hence tensile cracks 

are developed in the specimen. As suggested by Potyondy and Cundall (Potyondy and 

Cundall, 2004), by keeping the strength ratio smaller than 1, both micro-tensile and 

micro-shear failure mechanisms are replicated. According to results from Figure 6.22 

much more realistic rupture path can be reproduced in the models by setting strength 

ratio to 0.5 and stiffness ratio larger than 2. A major inclined shear band is formed at 

the post-peak loading regime, the top and bottom block sheared against each other, 

and sliding results in shear bond breakages and frictional slips between particles 

adjacent to the shear band (Yoon, 2007).

139



Bo
nd

 
S

tr
en

gt
h 

R
at

io
St iffness Ratio 

0.5 2 20
•V3&" • V*/*" 

'’ -W' '■
\S'
. W - ‘V ' % '-V:;. " -

v.V 
.. •„:
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Figure 6.22: Crack pattern in the damaged specimens.

The lateral constraint can be simulated by defining friction to the loading platen. As 

the loading platen wall is rigid in particle flow code, introduction of frictional restraint
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leads to shear forces developed between boundary particles and the loading platen. 

These shear forces can be seen as confining compressive stress at the specimen ends. 

As a consequence, the compressive strength will increase. Moreover, change in 

frictional end confinement will affect the contact force chain in the end zone. Fig.6.23 

indicates that one additional main crack arising from the bottom comer at peak stress 

caused by the end constraint which leads to spalling of specimen, although the exact 

damage pattern observed from experiment could not be replicated. However, it has 

been found that by introducing interface friction increases the probability of 

reproduce shear band.

0 0.5 1
Figure 6.23: Crack pattern for different friction coefficients of load plates.

The crack pattern observed in laboratory experiments is sensitive to the shape of the

specimen (del Viso et al., 2008) where cylinders broke by a diagonal fracture plane

and cubes present a busting rupture combined with a dense columnar cracking have

been reported. The slenderness, defined as the ratio of height to diameter of specimen,

has been considered as the major component of specimen geometry effect. Increasing

the specimen high causes perturbation of the nominally homogeneous stress field

discussed above. A rectangular and cubic simulation model can be considered as

approximation of cylinders and cubic specimen in laboratory experiment respectively.

As shown in Figure 6.24 the damage pattern reproduced by the calibrated PFC2D is in

good agreement with laboratory observation.
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Figure 6.24: Comparison of numerical final damage modes under uniaxial
compressive loading and experiment data (Vonk, 1993) without frictional

restraint.

S lenderness ra tio  -  2 S lenderness ra tio  =1

Figure 6.25: Replication of hour-glass failure mode with lateral restraint.
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6.2.2 Post-peak response

Although the linear elastic bond constitutive model is adopted the overall stress-strain 

curve of synthetic material appears to be nonlinear and post-peak strain softening can 

be simulated. As mentioned in section.5.3 not only the apparent ultimate strength is 

sensitive to strain rate, but also the post-peak stress-strain curve exhibits strain rate 

dependence. The descending portion of the stress-strain curve becomes steeper by 

lowering the strain rate, or in other words, the material fails in a more brittle fashion.

From the normalized complete stress-strain curve in Figure 6.26, we can see that a 

minor improvement of ductility and residual strength of synthetic material can be 

achieved by increasing inter-particle friction.
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Figure 6.26: Effect of inter-particle friction on post-peak stress-strain curve.

6.3 Recommendations on calibration elastic constants and 

compressive strength

An inverse analysis of the calibration process for the discrete element simulation 

could be time-consuming and tedious as many micro-properties involved and each



parameter has its effect on macro-response of a synthetic material. The following 

sections describe how to match elastic properties, peak strength and crack initiation 

stress under uniaxial loading to minimize iterations for a parallel-bonded material.

As demonstrated previously, setting grain and bond stiffness equal to each other is an 

effective approach. Although previous study has showed that the each material 

macro-property could be affected by multiple micro-parameters, it’s important to 

assume a one-to-one relationship. In this research we assume that Young’s modulus is

mainly governed by particle contact modulus (£c), Poisson’s ratio is dominated by

contact stiffness ratio (kn / ks) and peak strength is controlled by bond strength

(ab and fb) .By doing so a better understanding and more efficient calibration process 

could be obtained.

1. Determine geometric and physical parameters: sample characteristic length (L), 

particle size distribution ( R ^  and R^ n) , particle density ( p ). If a

nonuniform particle size distribution is employed, the radius ratio should be 

set less than 2 to avoid unstable response and large variation. When 

considering the ratio LI R as a measure of the degree of discretization, the 

previous analysis has shown that special attention should be paid to the 

selection of UR for the discrete media. For low UR ratio the randomness 

packing of particle assembly leads to large variation of elastic constants and 

peak strength while on the other hand high LI R ratio requires more 

computational time. L IR  larger than 120 or 50 is recommended for 

two-dimensional or three-dimensional model.

2. Determinate experimental parameter: loading velocity (v). In order to 

eliminate the inertial effects within the specimen and damage caused apply 

this velocity in a single step the platen acceleration should be applied in a 

controlled manner. If a static or quasi-static loading condition is desired the
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dynamic effect should be prevented by following the previous discussion on 

dynamic increase factor. The loading velocity should be selected so that the 

overall strain rate is less than 0.1/s.

3. Selection of micro-parameters: Setting bond normal and shear strength

(ah and fb) to large value and reproduce material Poisson’s ratio (v) by

changing stiffness ra tio (kn/ k s). Then varying contact modulus (£  )to  match

material Young’s modulus with a linear relationship can be expected. It is 

necessary to perform a few iterations to match both values. Match 

compressive strength by varying grain and bond normal and shear strength. 

Figure 6.27 demonstrate that the stress-strain curve obtained from calibrated PFC 

model is in good agreement with experimental results.

° Experim enta l
 PFC3D
 PFC2D A

40 -

30 -

r  2 0 -

10 -

-0.003 -0.002  -0.001 0.000 0.0030.001 0.002

Figure 6.27: Stress-strain curves for uniaxial compressive test, experimental data
(Tran et a i, 2011).

6.4 Conclusions

In this chapter, the influence of the micro constitutive parameters of the 

parallel-bonded PFC model in uniaxial compression was investigated. The findings 

can be summarized as follows:
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• Young’s modulus is mainly governed by contact modulus and stiffness ratio 

has the most significant influence on Poisson’s ratio. Compressive strength is 

mainly governed by micro-tensile when the strength ratio is smaller than 0.5 

and dominated by Micro-shear failure when the strength ratio is larger than 1.5 

or 2 for 2D or 3D models.

• Failure mode and crack distribution is affected by the stiffness ratio and the 

bond strength ratio. Inclusion of both micro-shear and micro-tensile failure 

leads to more sophisticated damage modes.

• Introducing interface friction between specimen and loading platen increases 

the probability of reproducing shear bands and the hour-glass failure mode.

• Shape of post-peak stress-strain curve is mainly governed by loading velocity 

and increasing inter-particle friction has a minor effect.

• It should be noted that the relationships between micro-parameters and 

macro-properties obtained are empirical in nature. Modifications may be 

required for a specific problem. These quantitative relationships still provide 

valuable information such as the sensitivities of each microparameters and 

demonstrate the differences between 2D and 3D model.
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Chapter 7 

Meso-scale discrete element modelling o f concrete

At the meso-level concrete is a three-phase composited synthetic material consisting 

of mortar matrix, aggregate and interfacial transition zone. Its overall physical and 

mechanical characteristics are significantly affected by the properties of each 

component phase. Utilizing the 2D random aggregate generation algorithm introduced 

in Chapter 3, aggregate structures are generated and projected onto a random particle 

assembly. A user-defined FISH program in particle flow code is developed and 

implemented in order to recognize the aggregate structures. As a quasi-brittle 

composite material, the aggregate and interface phase in all specimens are assumed to 

break in brittle and softening manner respectively. Both brittle and softening contact 

models are considered for mortar phase and the results are compared with each other. 

Concrete specimens with 40% and 60% aggregate content are investigated. 

Simulations of virtual notched three-point bending test are performed and the results 

including the complete load-CMOD response and fracture process are presented. The 

numerical predictions are verified against experimental observations followed by a 

brief discussion. It should be noticed that since random particle size is used, where all 

particle have different radius, thus, different stiffness and strength, disorder is already 

introduced at the ‘geometrical’ level.
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7.1 Model configuration

The concrete beam geometry is 400 mm x 100 mm x 100 mm and the notch size is 10

mm in depth and 3 mm in width. The concrete beam is discretized using random 

particle arrangement with minimum particle radii and size ratio 1 mm and 1.2 

respectively. A total number of 8831 particles have been used in the simulation. A 

constant displacement rate of CMOD of O.Olmm/s is applied at the middle span, 

leading to an equivalent strain rate of 0.1/s which is slow enough to satisfy 

quasi-static loading conditions. During the simulations, the particle packing 

configuration is kept unchanged. Then by utilizing the polygonal aggregate generator 

introduced in Chapter 3 different aggregate structures are generated and projected 

onto the particle assembly.

Load

100

400

Figure 7.1: Three-point bending test setup and dimensions of concrete specimen.

Figure 7.2 illustrated a four-grade concrete specimen that consists of 60% coarse 

aggregate and the aggregate gradation curve is shown in Figure 7.3. The proportions 

of the coarsest to finest in the specimen are 3:3:2:2. The configuration aggregate 

structure can be easily controlled by specifying the lower and upper size limits and 

required the area or volume fraction of each grade. It should be noted that the actual 

aggregate fraction in the DEM model may be slightly different from the geometrical 

model due to the fact that the particle size is not infinitesimal as shown in Fig.7.4. An
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assumption has been made in the analysis: All particles within a radius of 10 mm of 

notch tip are assumed belong to mortar phase. This simplification can avoid 

disturbance caused by the presence of aggregate at the crack initiation stage.

Ao /
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Mort ar

k

Interface

Figure 7.2: Geometrical and constitutive models for each material phase.
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Figure 7.3: Aggregate gradation in four-grade concrete specimen.

Aggregate number in each group

Range Quantity

5-10 104

10-16 35

16-20 29

20-25 19
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Figure 7.4: Four-grade concrete specimen in DEM model.

In the last chapter, the cement mortar specimen was treated as linear elastic material 

with brittle failure behaviour. However, some scholars (Bazant et ah, 1990) suggests 

that concrete material displays some ductility after reaching its ultimate strength. Thus 

softening model such as cohesive zone model originally proposed by Hillerborg and 

co-workers (Hillerborg et al., 1976) has been widely adopted in FE analysis. The 

numerical predications have been proved to be very accurate for both Mode I and 

mixed mode loading (Elices et ah, 2002). As the displacement softening contact 

model is very similar to cohesive zone model, both brittle parallel bond and bilinear 

displacement softening bond have been considered then a comparison study is 

performed.

One of the major challenge of modelling composite material such as concrete is

determination of the appropriate mechanical relationship between each component

materials, specially, the mechanical properties of interfaces. Various experimental

investigations have been reported in the literatures. Depending on the types of

concrete, the weakest component is different. The strength of coarse aggregates plays

a different role in conventional concrete (compressive strength < 4 1  MPa) and high

strength concrete. Conventional concrete mixtures typically correspond to a

water-cement ratio in the range of 0.5-0.7. Within this range, the weakest components

are the transition zone between the mortar and the coarse aggregate (Mehta, 1986; Zhi

Yuan and Jian Guo, 1987). Unless the aggregate contains some constituents (e.g.

reactive silica mineral), the mineralogy of coarse aggregate is rarely of concern
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(Aitcin and Mehta, 1990). On the other hand, researchers have noted that the strength 

of the coarse aggregate control the ultimate strength of concrete rather than mortar 

and transition zone (Neville, 1995).

In the field of conventional concrete, Wong (Wong et al., 1999) utilized notched 

three-point bending test to investigated the mechanical properties of mortar-aggregate 

interface and found that the flexural strength of interface is one third of mortar 

flexural strength; Rao (Rao and Prasad, 2002) reached a similar conclusion by 

performing tensile tests on sandwiched composites specimens.

Experimental investigations on mortar-aggregate interfacial fracture energy (e.g., 

three-point bending test by Wong (Wong et al., 1999), the aggregate push out test by 

Mistui et al. (Mitsui et al., 1994) and the wedge splitting test by Tschegg et 

al.(Tschegg et al., 1995)) indicate that the interfacial fracture energy is only about 10% 

of the corresponding mortar fracture energy.

In this study we assume that the aggregate type is hard limestone with the ratio 9:3:1 

for the aggregate to matrix to interface strength. The material properties adopted in 

the calculation are given in Table 7.1 where the Poisson’s ratio of mortar and 

aggregate is taken to be 0.16 and 0.22 respectively. The micro-parameters of DEM 

model are calibrated by performing virtual tensile tests on each component phase and 

then incorporated in the later simulations.

Table 7.1:. The macro material properties adopted in the analysis

Material Young’s modulus (GPa) Fracture energy (N/m) Tensile strength (MPa)

Aggregate 70 - 9.6

Mortar 35 170.4 3.2

Interface 25 18 1.1

152



7.2 Results and discussions

7.2.1 Load-CMOD response

The results presented in Fig.7.5 indicate that the numerical predictions of both parallel 

bond and softening bond models are capable of reproducing reasonable load-CMOD 

response during the three-point bending test. Despite the assumed brittleness of local 

bond, global softening can be obtained in brittle model. Five loading phases can be 

identified: in the early stage of loading, the load-CMOD response is almost linear 

elastic and the deformation is uniformly distributed along the whole specimen; As the 

microcracks distributed within the concrete, the curves becomes nonlinear; maximum 

load; steep softening stage; shallow softening stage. Overall the softening model 

provides a better predictions than the brittle model.

In the ascending branch of brittle model load-CMOD curve the nonlinear portion of 

the curve appears to be very short which implies that the predicted cracking strength 

(which is defined as the stress level at which crack starts to propagate in the present 

study) is slightly higher than expected. This defect can be overcome by incorporating 

probabilistic model (e.g., assuming the phase material properties conform to the 

Weibull distribution law, as demonstrated in Chapter 4 and Chapter 6, the non-linear 

and softening behavior of concrete can be controlled by specifying appropriate 

heterogeneity index). On the other hand, up to ultimate flexural strength, a very good 

agreement between the softening model and that experimental data was established. 

However, the brittle model leads to closer predictions of the ultimate load. The 

softening model slightly underestimates the peak load and overestimates the 

corresponding displacement.
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Figure 7.5: Numerical predictions and experimental results (Zhang et al., 2005)
of load-COMD curves.

The descending branch of load-CMOD curve consists of a steep softening stage and a 

relative shallow softening stage. The post-peak load-CMOD curve of the parallel 

model fluctuations, and strengthening appears due to the local instability. This 

disturbance is probably caused by different rupture behaviors of component materials. 

It has been found that that softening model exhibits the same fluctuations and 

strengthening when reducing the maximum plastic displacement allowance in local 

contact model. This unstable response can be reduced by increasing model resolution 

and slowing down the loading velocities, but in a consequence that a much higher 

computing cost is required (e.g., Kim et al. (Kim et al., 2009)).

As the load-CMOD curve is obtained, the fracture energy can be evaluated by 

computing the area under the curve. The fracture energy value and the residual 

strength for brittle model are lower than the experimental data.

7.2.2 Crack propagation

Two different four-grade concrete specimens consisting of 40% and 60% aggregate

were investigated. Fig.7.6 indicates the amount of contacts in each component
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material for two specimens. It can be seen that 60% specimen contains more the 

strongest (aggregates) and weakest links (interfaces). The dynamic crack 

propagation processes is shown in Figs. 8.7 and 8.8.
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1  Aggregate contact 
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A ggrega te  con ten t

Figure 7.6: Relationship between the amount of contacts in each component
material.

The crack preparation is naturally captured in DEM by means of debonding of 

particles. The crack path is color coded to distinguish the location where a crack is 

situated, i.e. in the mortar, aggregate or interface. When the applied force excesses the 

bond strength, the brittle bonds fail immediately and this breakage is denoted by a 

magenta line. Softening bonds yield when their strength exceed, any further force 

leads to plastic deformations (black lines) until complete failure (black lines replaced 

by red lines).
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(a)  Britt le m o d e l

(b) Softening model

Figure 7.7: Crack propagation in concrete specimen consisting of 40% aggregate.

(a) Brittle mode  1

(b) S o ften in g  model

Figure 7.8: Crack propagation in concrete specimen consisting of 60% aggregate.



Since the models were notched and therefore, as the load increases, stress 

concentrates near the tip of initial notch. Plastic deformation starts to accumulate. 

This interface or mortar bonds plastic deformation is the cause of the considerable 

non-linear behaviour in the pre-peak part of the load-CMOD curve.

Just after the peak load, a sharp decrease in the load carrying capacity is observed as 

complete local bond breakages take place. In the brittle model, complete bond 

breakages first take place at the mortar phase while interface bond failure occures first 

in the softening model.

In the brittle model, further load leads to the growth of the initial damage in the 

mortar phase, the direction of the cracking depends on the local contact forces and 

bond strength. Interfacial bonds yielding in the region just ahead of the crack tip 

always occurs before the macrocrack passes or parapogates towards the aggregates.

I The presence of aggragete blocks or alters the crack development significantly. It is
|
| well known that when concrete is loaded cracks prefer to propagate along the weaker

| phase. When the macro crack meets an aggregate, it is forced either to propagate
|
I throught the touher aggregate or deflect and travel around the interface. Since the
I
| interface toughtness is lower than the matrix and aggregate, the advancing crack is

| prone to travel around the aggregate resulting in a tortuous cracking path. The final

crack path of britlle specimens in Figs.7.7 and 7.8 is denoted as a single line joined 

toghter by magenta (mortar bond failure) and red (interface bond failure) segments. 

Comparing the crack path between the 40% and 60% specimens, the crack path in the 

60% speciemn is more tortuous and consists of more interfacial debondings than the 

40% specimen (Fig.7.9) for two reasons: Firstly, due to the fact that the 60% 

specimen consists of more interface bonds; secondly, the 40% specimen has more 

space and freedom between the aggregates, the chance of cracking penetrates through 

the martor phase instead of joining the interfaces is higher.
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Figure 7.9: Damage in brittle models.

The softening model predicts a rather different fracture process: micro cracks first 

take place at the interfacial transition zone then propagate along the interface. Just 

before the peak load is reached, mortar cracks start to develop and then join the 

interface cracks to form the final damage pattern. These observations are in better 

agreement with the experimental findings (Lilliu and van Mier, 2007) for uniaxial 

tension than the brittle model.

7.3 Conclusions

Meso-level DE model, with both linear elastic-purely-brittle and softening failure 

laws were adopted for simulating the fracture process of concrete specimens in 

three-point bending test. The DE model is intended to provide insight into the fracture 

behaviour of concrete. The virtual specimen of concrete was conceived as a 

three-phase material, composed of mortar matrix, aggregates and an interfacial
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transition zone. In the present study, concrete is modeled at meso-level: the aggregates 

were represented as polygons and their distribution obeys a Fuller curve. The 

aggregate diameters ranging from 5 to 25 mm were employed for all aggregate 

contents. Results including the complete load-CMOD curve and fracture process have 

been analyzed and discussed. Both brittle and softening models obtained reasonable 

results compared to experimental observation. However, the results suggest that the 

softening model leads to more realistic predictions than linear elastic-purely-brittle 

model. The multi-grade polygon aggregates generation algorithm have been 

successfully implemented and proved to be reliable and efficient for the multi scale 

simulations.

Based on these encouraging results, the DE model developed can be extended to 

investigate more sophisticated problems, such as the effect of aggregate size 

distribution, content, types and shape on the mechanical properties, load-deformation 

relationship and damage behavior of normal or high strength concrete under various 

loading conditions. With better computer infrastructures becoming available, 3D 

models can be implemented and it is reasonable to expect that more realistic 

numerical results will be obtained.
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Chapter 8 

DEM modelling of debonding in FRP-to-concrete 

interface

Fiber reinforced polymer (FRP) laminates are being successfully adopted for 

strengthening of existing reinforced concrete (RC) and prestressed concrete (PC) 

structures. The interface between the external FRP reinforcement and the concrete 

substrate is of critical importance for the effectiveness of the technique, since it is the 

means for the transfer of stresses between concrete and FRP in order to develop 

composite action (De Lorenzis et al., 2001). A number of failure modes in 

FRP-strengthened RC members are directly caused by debonding of the FRP from the 

concrete (Sebastian, 2001; Smith and Teng, 2002). Therefore, understanding of the 

fracture behaviour of FRP-to-concrete interfaces is essential for safe and economic 

design of externally bonded FRP systems.

Yuan et al. (Yuan et al., 2004) proposed that if it is assumed that both concrete and 

FRP are only subjected to axial forces and any bending effect is neglected, the 

debonding would be dominated by mode II fracture. The stress state of the interface is 

similar to that in a pull test specimen in which a plate is bonded to a concrete prism 

and is subjected to tension (Fig.8.1). Extensive experimental and theoretical works 

have been conducted based on pull tests on bonded joints. Most of theoretical 

solutions were based on Cohesive Zone Model. According to different global



traction-separation laws assumed, the analytical solutions can be classified as linear, 

bilinear, and nonlinear models (Wang, 2006, 2007). Most of the experimental 

investigations were carried out using the mode II single or double shear test to 

characterize the traction-separation law, with mounted strain gages on top of the 

bonded FRP laminate. Empirical equations have been reported in numerous literatures 

(Ferracuti, 2006; Popovics, 1973).

Besides experimental and theoretical studies, numerical methods particularly finite 

element method have also been used to study debonding in FRP-to-concrete interface. 

From early linear elastic FE analysis (Teng et al., 2002) to more recently development 

of nonlinear analysis, the FE analysis aimed at the simulation of the entire debonding 

process. However, the accuracy of FE simulation highly depend on the definition of a 

correct interface law and its unknown parameters require extensive calibration. 

Furthermore, the crack propagation has to be predefined according to experimental 

investigations.

In this chapter, taking the full advantage of intrinsic characteristics of DEM, the 

dynamic failure process in the FRP-to-concrete interface is simulated. Displacement 

softening model is used to represent the FRP-to-concrete interface. The heterogeneity 

of concrete is taken into account statistically by utilizing the Weibull distribution to 

micro-parameters.

Free end J. Loaded end

Free zone

Adhesive

^Fracture plane

Figure 8.1: Schematic of a pull test (Lu et al., 2006).
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8.1 Discrete element modelling of pull test

A typical delamination test setup and DEM model is shown in Fig.8.2a. DE model 

with 50 mm bonded length and 100 mm free zone is adopted to enable comparison of 

numerical results with experimental results conducted by Mazzontti et al (Mazzotti et 

ah, 2008). The height of the concrete prism modeled is only 30 mm, as the lower part 

of the concrete prism is not believed to exert a significant effect on the result.

g f >
Load
cell

(a) Typical delamination test setup

Free zoneFree end Bonded length 

Strain gauge

Reaction elements

50 mm 100 mm

(b) Discrete element model

-►
Load

Figure 8.2: Typical experiment setup and DEM model configuration for
delamination test.

Meso-scale simulation of full scale experimental data requires extensive computing 

effort as the concrete specimen height to thickness of FRP sheet ratio is relatively 

large. The 1.2 mm thick FRP sheet is modeled as a single layer of particles in 

six-particle hexagonal packing arrangement. The particle size is uniformly distributed 

over specimen and has a radii value of 0.2 mm. A total of 35561 particles and 105308
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contacts are arranged according to the hexagonal particle arrangement. A total of 1161 

particles are labeled as FRP, 34400 particles are labeled as concrete, and 125 contacts 

are used to represent the adhesive interfaces between FRP and the concrete.

In experimental test, concrete block is positioned on a rigid frame with two steel 

reaction elements in order to prevent horizontal and vertical displacements. In DE 

model, boundary conditions are applied to restrict of the horizontal movement in the 

right end of concrete specimen and the vertical movement in the low end of concrete. 

Simulations are carried out under control of loaded end displacement and the final

displacement rate, 1 //m / s , is applied to the loading end of FRP in a controlled fashion

to neglect possible inertia effect. The applied traction force is recorded by computing 

the out-of-balance forces at loading particles. A series of strain gauge is installed to 

record longitudinal strains. The position of these gauges start from the starting end of 

adhesive layer and distributed uniformly over the bonded FRP sheet.

In this study, the pull test is simulated as a 2D problem, but in reality, the width of the 

FRP plate and that of the concrete specimen may be different (the width of FRP sheet 

and concrete specimen is 50 mm and 80 mm. in this study). In comparing DE 

predications with experimental results, the numerical simulation results should be

adjusted by the following width ratio factor /^proposed by Chen and Teng (Chen 

and Teng, 2001).

where bf  and bc are the widths of FRP plate and the concrete specimen, respectively.

The adjustment involves the multiplication of a factor to the simulated values of the 

applied load and the stress and strain in the FRP plate based on the relationship of 

Eq.8.1.

(8.1)
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8.1.1 Hexagonal packing arrangement

In discrete element modeling, the material is generally discretized by adopting one of 

particle arrangements in Figure 8.3 (Chang et al., 2002). The square arrangement is 

very simple to implement. However, material response may be inadequate due to the 

inability of this packing arrangement to generate a Poisson’s effect (theoretically, the 

Poisson’s ratio of this packing arrangement is zero.) (Mustoe and Griffiths, 1998). The 

random arrangement is the closest to the real material in which Poisson’s effect and 

random crack paths can be included. Difficulties will be encountered when particle 

radius appears in local contact or bond model formulation (e.g. parallel bond model 

and contact softening model). Hexagonal packing arrangement has nearly the same 

benefits as the random packing and a directly relationship between micro-parameters 

and material properties (i.e., Young’s modulus and Poisson’s ratio) has been reported 

and verified in the literatures. Therefore, the hexagonal packing arrangement is 

adopted in the simulations presented in the present study.

(a) Square (b) Hexagonal (c) Random

Figure 8.3: Common packing arrangements for discrete element modeling (Kim
et al., 2008).

Based on strain energy and two-dimensional Hooke’s law the relationship between 

elastic properties and stiffness of particles in contact have been obtained by numerous 

scholars. Sawamoto (Sawamoto et al., 1998), Kim (Kim et al., 2008), and Taverez 

(Tavarez and Plesha, 2007) derived equations for isotropic materials while Liu (Liu et 

al., 2004; Liu and Liu, 2006) concluded a general formula for anisotropic and
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isotropic materials. Validity and accuracy of each formula and DEM models have 

been demonstrated by performing DEM simulation and comparing numerical results 

to the theoretical solution, continua approach (e.g., FEM, FVM) or experimental data. 

Considering discrete isotropic materials into hexagonal packed particle assembly with 

unite thickness:

Plane strain

K n =

Plane stress

Sn +v)a-2v)
KS_ E{ l-4 v ) 

V3(l + v ) ( l-2v)

K n =

^ (1- V) (8.3)
£ (l-3 v )

8.1.2 Heterogeneity characterization of concrete material

As pointed out by Wittmann (Wittmann, 1983), concrete is a typical multi-scale 

material with different structural details appearing at different levels of observation, 

so the research of concrete material have been focused mainly on these three distinct 

levels, namely the micro, meso- and macro-level. The meso-level was generally

considered to be 10 3m when we study the laboratory scale responses of concrete 

(Van Mier and Van Vliet, 1999). At the macro-level, the concrete is generally assumed 

to be a homogeneous material. In order to characteristic the heterogeneity and discrete 

nature of the internal structure of concrete, micro-parameters are assigned to each 

particle and bond drawing from given Weibull distribution. The probability density 

function of a Weibull random variable x  can be expressed as:
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where x  denotes material properties (i.e. modulus and strength); A is the scale 

parameter of the distribution which is related to the average value of material 

properties; k  is the shape parameter defining the shape of the Weibull probability 

density function. The micro constitutive parameters of each component phase are 

randomly assigned to particles and bonds from the pre-defined Weibull distribution. 

Figure 8.4 shows the Weibull probability density function with different parameters 

where the shape parameter reflects dispersion of concrete material properties. When 

increasing shape parameter the distribution of micro parameters becomes centralized 

around the scale parameter A . Shape parameter k can be seen as a measurement of 

material homogeneous degree, a large value of k leads to a more homogeneous 

material.

co
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M ic ro -p a ra m e te r va lue

Figure 8.4: Micro-parameter probability density functions with various shape
parameters.

8.1.3 Calibration of material phase

The DEM model of delamination test consists of three material components: FRP 

sheet, concrete and interface zone between FRP and concrete. FRP and concrete 

materials are modeled as particles packed in hexagonal arrangement as shown in 

Fig.8.5. Different local constitutive models are adopted for different components in



which both FRP sheet and concrete particles are bonded by parallel bonds. Although, 

the FRP sheet exhibits elastic-plastic behavior, the elastic parallel bond models can 

rarely account for the plastic deformation. Softening model seems to be more 

appropriate chosen, however, it is reasonable to argue that the tensile strength of FRP 

is always much larger than concrete and interface strength and the failure of 

delamination test is mainly governed by debonding of FRP and concrete interface. 

Thus, the linear elastic assumption for the FRP sheet is sufficient. The epoxy adhesive 

layer is treated as contacts between FRP and concrete particles contact while 

displacement softening model is applied at each contact. Both parallel bond and 

displacement softening constitutive behaviors are described in Chapter 3. The 

heterogeneity of concrete material is taken into account statistically by applying the 

Weibull distribution to micro-parameters.

FRP sheet In terface  C oncre te

65

Figure 8.5: FRP interface and concrete in DEM model.

It’s has been found that the theoretical equations derived by Kim et al exhibited size

dependence and could not guarantee an accurate prediction of micro-parameters for

all circumstances. Thus, an inverse analysis based on virtual simulation laboratory

tests is still required to obtain the desired macro mechanical properties. Compressive
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and tension tests are carried out on concrete and FRP materials respectively.

The material properties are shown in Table 8.1 according to the experimental study 

carried out by Mazzotti et al (Mazzotti et al., 2008). 50x1.2 mm FRP and

60x30 mm concrete specimen is utilized in virtual tension and compression tests

respectively. The calibrated stress-strain curves are shown in Figs. 8.6 and 8.7. The 

tensile strength of FRP sheet is set to a large value to prevent any bond breakage. 

Then the calibrated micro-parameters for different material phases then are applied to 

benchmark delamination simulation.

Table 8.1: Macro properties of each component material.

Concrete compressive strength 52.6MPa

Concrete tensile strength 3.81MPa

Concrete Young’s modulus 30.7GPa

Concrete Poisson’s ratio 0.23

FRP Young’s modulus 195.2GPa

FRP tensile strength Infinite

Interfacial tensile strength 30.2MPa

Interfacial elastic modulus 12.8GPa

Interfacial fracture energy (mode II) 525.1 N/m
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Figure 8.6: Stress-strain curve in DEM simulation of FRP tension test.
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Figure 8.7: Stress-strain curve in DEM simulation of concrete compressive test.
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8.2 Results and discussions

8.2.1 Strain distribution in FRP

During numerical simulation strain distribution in the FRP plate are recorded at 

various loading level and four of them (4KN, 8KN, 12KN and 14 KN) have been 

selected to compare with experimental results. Fig.8.8 illustrates the comparisons of 

strain distribution in the FRP plate between the numerical results and the test results 

from (Mazzotti et al., 2008) where the strains at 0 are calculated from values of the 

applied force as:

£o
E t  b np p n

(8.5)

A good agreement with experimental and FE model results can be found.
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Figure 8.8: Comparison of test and DE strain distribution in the FRP plate.
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8.2.2 Load-carrying capacity

An important feature of the behaviour of the bonded joints is that there exists an 

effective bond length beyond which an extension of the bond length cannot increase 

the ultimate load. This is a fundamental difference between an externally bonded plate 

and an internal reinforcing bar for which a sufficiently long anchorage length can 

always be found so that the full tensile strength of the reinforcement can be achieved. 

Parametric study on the load-carrying capacity is conducted by varying the boned 

length. Fig.8.9 indicates that the load-carrying capacity is a function of the bonded 

length and the increase of loading-carrying capacity slows down when the bond 

length reaches 100 mm. The difference between the DE model results and the 

experimental observation within a reasonable range. Both comparisons suggest that 

the DE model proposed in this study can correctly simulate the debonding process.
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Figure 8.9: Load-carrying capacity verse bonded length: experimental results,
FE results, and DE results.
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8.2.3 Failure progression

When a plate is bonded to a concrete specimen and is subject to axial loading up to 

failure (i.e., in tangential direction with respect to the interface), Mode II shear failure 

occurs (Bazant and Pfeiffer, 1986). For single or double shear tests, there are six 

possible distinct failure modes in theory for an FRP or steel plate bonded to concrete, 

although they may be mixed in an actual failure. These are listed below in the order of 

their likeliness, based on existing test data (Chen and Teng, 2001) and a schematic 

view of failure modes is shown in Fig.8.10.

1. Concrete failure

2. Plate tensile failure including FRP rupture

3. Adhesive failure

4. FRP delamination for FRP-to-concrete joints

5. Concrete-to-adhesive interfacial failure

6. Plate-to-adhesive interfacial failure

4. FRP d e lam ina tion  2. FRP rup tu re

A dhesive

6. P la te -to -ad h esiv e  in te rfac ia l fa ilu re  
3 .A dhesive  fa ilu re
5. C o n cre te -to -ad h esiv e  in te rfac ia l failu reC oncre te

1. C oncrete  fa ilu re

Figure 8.10: Schematic view of failure modes.

Literature survey indicates that most experimental joints fail in the concrete part. 

Adhesive and interfacial failure, between either the adhesive and the concrete or the 

adhesive and the FRP, is rare. Because of the availability of strong adhesives that

bond well to FRP and concrete. For this study, the adhesive has a much higher tensile
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strength than the concrete (about 8 times) and smaller elastic modulus (about 40%), so 

under the same deformation, concrete cracking occurs first. As a result, the failure 

process can be expected to depend strongly on the initial and propagation of cracking 

in the concrete.

With the increase of the applied load, a concentration of contact force is developed at 

the beginning point of the anchorage. When this contact force reaches the strength of 

concrete, micro-cracking occurs by means of local bond breakage. As the 

micro-cracking grows, this concentration of contact force shifts with crack tip as 

indicated by the red lines in Fig.8.11. Crack is initiated a few millimeter beneath the 

FRP and the adhesive layer in the concrete substrate at every early loading stage, 

where most of the concrete is still in elastic range. When the load increases to 31% of 

the ultimate load, the cracking region becomes larger and micro-cracks can be 

observed in a deeper level of concrete. As the load continues to increase the cracking 

region continues to propagate. Depending on the local bond strength of concrete 

particles, traverse crack appears and propagates towards the deeper level of concrete. 

As the applied load increases to 92% of load-capacity, the cracking region spreads 

over the whole bond length and a transverse crack appears near the free end of the 

bonded region. Eventually, the FRP sheet is deboned from concrete with a thin layer 

of concrete attached to it. Comparing numerical results with experimental finding 

obtained by Wu and Jiang in Fig.8.13, it is clearly that the developed model validated.

Figure 8.11: Contact force at crack tip.
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Figure 8.12: Crack propagation in FRP-to-concrete interface

Figure 8.13: Fail mode in experimental test (Wu and Jiang, 2013).
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8.2.4 Effect of free zone length

In the above analysis, numerical simulation is conducted by considering a large value 

of free zone where no bond is presented at the contacts between FRP and concrete 

particles. It has been found that the bond failure is sensitivity to the starting position 

of bonded surface along the specimen.

Bonded length Free zone

Bonded length

w/f//miff/tf/.
////////ftf '///////,

/!!//////uecec^  .  v .  v

'ff/fffS/fff/fSffffl

Figure 8.14: Bond force chain fabric before any bond brakeage: (a) Bonded FRP 
starting from front of concrete specimen; (b) Bonded FRP far from the front of

concrete specimen.

When the FRP plate is pulled starting from the front side of concrete specimen, a 

much higher contact force will be developed in concrete (Fig.8.14a). On the other 

hand, by setting the bonded length far from the* front side (Fig.8 .14b), the contact 

force is much smaller due to the confinement effect and a more regular growth of 

delamination along the specimen can be followed during test. Similar behavior has 

been reported by FE analysis (Mazzotti et al., 2008).

The effect of free zone length was investigated and the results indicate that the

load-carrying capacity increases with the increase of the free zone length. When the
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free zone length is zero, early failure typically occurs due to concrete splitting of a 

prism with triangular section has been observed in experimental test (Figure 8.16). 

This failure mode can be captured well by the DE model (Fig.8.15). The shape of 

concrete prism is independent of bonded length. Similar observations have also been 

reported in pull-out test of steel or composite bars embedded in concrete (De Lorenzis 

et al., 2002). Numerical simulation in Fig.8.15 indicates that this failure mode can be 

well captured by the DE model.

' nj ' j j j j .

Figure 8.15: DEM model damage pattern for FRP bonded starting from the front
side of concrete.

Figure 8.16: FRP plate bonded starting from the front side of concrete specimen 
after debonding (Mazzotti et al., 2008).
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8.3 Conclusions

Pull tests on FRP reinforced concrete specimens were modeled by means of a lattice 

type DE model. The DE model employed displacement softening model to count for 

the adhesive between FRP and concrete. Heterogeneity characterization of concrete 

material has been considered statistically by applying the Weibull distribution to 

micro-parameters. Comparison with the experimental data was performed to verify 

the validity of the procedure. Numerical results of strain distribution in FRP and 

load-carrying capacity were found agreed well with results from experimental 

findings and finite element analysis. Then the calibrated DE model was utilized to 

predict the initiation and propagation of interfacial debonding. It has been found that 

the failure mode is mainly governed by the crack in a thin layer of concrete beneath 

the FRP and adhesive layer, this is because the FRP and adhesive have a higher tensile 

strength and lower elastic modulus than concrete. This result is in very good 

agreement with experimental observation. The effect of free zone length has also been 

investigated and the results indicated that the load-carrying capacity increased with 

the increase of free zone length. The early failure mode due to the boundary effect has 

also been captured well. The comparison studies confirm that the DEM model is 

capable of modelling delamination and capturing the failure propagation.
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Chapter 9 

Conclusions

9.1 Conclusions

The main results of this study consists of two parts, namely, the scaling laws for 

material properties of discrete disc and spherical assemblies, and the discrete element 

modelling of the fracture of concrete.

1. Scaling law. For irregular disc (2D) and spherical (3D) assemblies with linear 

elastic bond model (refer as parallel bond in particle flow code), the relationships 

between macro-scale material properties (deformability , strengths, post-peak 

behaviors and failure modes) and the micro-scale constitutive and physical 

parameters are established using dimensional analysis and numerical uniaxial 

tests. Parameters are categorized into two groups, experimental and specimen 

geometric and physical parameters (loading velocity, degree of discretisation and 

particle size distribution) and contact model constitutive parameters (contact 

stiffnesses, strengths, etc.).
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• Loading velocity has a significant effect on Young’s modulus, Poisson’s ratio, 

ultimate strength stress-strain curve and damage model. Comparing to 

experimental data, the dynamic increase factors obtained by PFC simulations 

are too large especially when specimens are submitted to high strain rate. The 

dynamic increase factors obtained in numerical simulations are sensitive to 

model resolution where coarser resolutions lead to lower dynamic increase 

factors. Comparison study of intensity of strain rate dependence between 2D 

and 3D models shows that 2D models exhibit more intense rate dependence 

than 3D models.

• Numerical results indicate that the influences of model resolution (L / R) and

particle size distribution ( R ^  / ̂ min)on the mean value of Young’s modulus

and Poisson’s ratio obtained from 20 random packed specimens are 

indistinctive. However, the variance of macro-properties is reduced 

significantly. The mean compressive strength of 2D models starts to converge 

when L /R  reaches the critical value of 120. On the other hand, the mean 

compressive strength obtained from 3D simulations increases with the increase 

of the model resolution, but due to limited computing power the convergence 

value has not been obtained.

• Young’s modulus is mainly governed by the contact modulus, and the stiffness 

ratio has the most significant influence on Poisson’s ratio. The compressive 

strength is mainly governed by micro-tensile when the strength ratio is smaller 

than 0.5 and dominated by micro-shear failure when the strength ratio is larger 

than 1.5 or 2 for 2D or 3D models.

• Failure mode and crack distribution are affected by the stiffness ratio and the 

bond strength ratio. Inclusion of both micro-shear and micro-tensile failure 

leads to more sophisticated damage modes. Introducing the interface friction 

between the specimen and the loading platen increases the probability of 

reproducing shear bands and the hour-glass failure mode.



• The shape of the post-peak stress-strain curve is mainly governed by the 

loading velocity, and increasing inter-particle friction has a minor effect.

2. Meso-level DE models, with both linear elastic-purely-brittle and softening 

failure laws, are adopted for simulating the fracture process of concrete 

specimens in the three-point bending test. The virtual concrete was conceived as a 

three-phase material, composed of mortar matrix, aggregates and an interfacial 

transition zone. Results including the complete load-CMOD curve and fracture 

process have been analyzed and discussed. Both brittle and softening models 

have obtained reasonable results compared to experimental observation. However, 

the results suggest that the softening model leads to more realistic predictions 

than the linear elastic-purely-brittle model. The multi-grade polygon aggregates 

generation algorithm has been successfully implemented and proved to be 

reliable and efficient for multi-scale simulations.

3. Pull tests on FRP reinforced concrete specimens were modeled by means of a 

lattice type DE model. The DE model employs a displacement softening model to 

account for the adhesive between FRP and the concrete. Heterogeneity 

characterization of the concrete material has been considered statistically by 

applying the Weibull distribution to micro-parameters. Numerical results of strain 

distribution in FRP and the load-carrying capacity were found to agree well with 

results from the experimental findings and finite element analysis. It has been 

found that the failure mode was mainly governed by the crack in a thin layer of 

concrete beneath the FRP and the adhesive layer. The effect of the free zone 

length has also been investigated and the results indicate that the load-carrying 

capacity increases with the increase of the free zone length. The early failure 

mode due to the boundary effect has also been captured well. The comparison 

studies confirm that the DEM model is capable of modelling delamination and 

capturing the failure propagation.
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9.2 Future work

The following topics are suggested as future work to gain a further understanding of 

both the constitutive behavior of discrete assemblies and the mechanism of concrete 

fracture simulation.

1. Discrete element method

• Current parametric studies of the parallel bond particle assembly are mainly 

based on uniaxial compression tests. The effect of micro-parameters on the 

macro-properties of synthetic material under mix mode loading is still not 

fully understood. To establish a complete and universal parameter calibration 

procedure remains to be a big challenge.

• Parametric studies of other micro-scale contact models (e.g., displacement 

softening model) are needed to improve the reliability and repeatability of the 

simulated results. Particularly when various contact models are involved in 

one single model.

• In recent years, parallel computing technology growths rapidly and has been 

successfully implemented in large-scale analysis. Meso-scale modelling 

requires extensive computing effort. Thus development of relevant parallel 

algorithms will significantly improve the computational efficiency. More 

recently, GPU (Graphics Process Unit) based DEM code has been 

successfully implemented and the performance appears to be inspiring.

2. Meso-scale concrete fracture modelling

• Statistic description should also be introduced into the contact parameters for 

each component phase to realistically model the macro-scale constitutive 

behavior of concrete. In our meso-scale simulations, contacts within the same 

phase are assigned the same stiffnesses and strengths. The resultant



load-deformation relationship appears to be brittle. Only a few micro-failure 

events occur. The ductility of synthetic material could be better controlled.

• The constitutive behavior of the interfacial transition zone between mortar 

matrix and aggregates is extremely complicated. Additional experimental 

investigations and more sophisticated numerical model are necessary. The 

thickness of interfacial transition zone is neglected in the present study. In 

reality, the thickness of a typical interfacial transition zone is around 10-30 

micrometers and contains a gradient of properties and can have a significant 

effect on material properties.

• The DE model developed here can be extended to investigate more 

sophisticated problems such as: the effect of aggregate size distribution, 

content, types and shape on the mechanical properties, load-deformation 

relationship and damage behavior of normal or high strength concrete under 

various loading conditions. With a better computer infrastructure becoming 

available, three dimensional models can be implemented and it is reasonable 

to expect more realistic numerical results can be obtained.
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