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Summary

In order to develop MFCs to their full potential, the mechanisms by which 
organisms such as S. oneidensis transfer electrons extracellularly need to be 
researched and understood, and key to this are the physical and chemical 
interactions between the cell surface and the surrounding environment, 
including other cells, minerals and MFC-relevant substrates. The research 
presented here characterises the physical interactions of anaerobically grown 
S. oneidensis MR1 under varying chemical conditions, using aerobically 
grown cells in identical experiments for comparison.

An array of experimental methods are used, including techniques for 
estimating cell concentration for growth profiles, C-potential of cells in 
solution, and Atomic Force Microscopy imaging of cells in different growth 
phases. A novel method using Surface Plasmon Resonance is used to 
quantify the kinetics of binding of cells to surfaces approximating MFC 
electrodes. This method is assessed for suitability and reviewed as a 
potential answer to other research problems based on cell-device interfaces. 
Finally, novel force spectroscopy using custom-made mineral probes is used 
to gather mechanical data about cells of S. oneidensis MR-1 and to quantify 
the interaction of cells with iron oxide and graphite.

The results show the differences in growth profiles between aerobically and 
anaerobically grown cells. Different results were also seen for aerobically 
grown and anaerobically grown cells in preliminary SPR studies using poly- 
L-lysine, and in the force spectroscopy results including adhesion force and 
Young's moduli. The effects of pH and salinity on cell surface interaction 
were investigated using measured isoelectric points from the zeta-potential 
studies as a guide and found to change the measured values of Young's 
modulus, and the maximum change in SPR response, for both types of cell.

The demonstrable effects of ambient chemistry on cell-cell and cell-surface 
interaction provide a reference point for bio-device design with the potential 
for multi-organism devices utilising the multiple electron transfer pathways 
of S. oneidensis MR1. The use of SPR for real time measurement of whole­
cell binding to electrode-approximating surfaces and the resultant interaction 
kinetics is established as a novel, repeatable and accessible way of 
investigating cell-surface interaction.
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Chapter 1: Introduction

1. Introduction
One of the defining challenges of the century is the need for safe, clean and 

renewable energy sources. Demand for energy is growing just as fossil fuels 

are becoming harder to obtain leading to rising costs for businesses and 

domestic users. In addition to this, the problem of increasing carbon dioxide 

levels and the associated climate change add urgency to the need to wean 

humanity off fossil fuels and traditional combustion methods of energy 

production. In tackling this challenge innovative answers are required to 

make renewable energy sources cost effective and up to the job of powering 

our world.

To this end, some changes will need to start on the small scale. This thesis is 

concerned with bacteria which can be used to generate electricity. The 

current output recorded for this bacterium is small-scale, of the order of mA 

according to the literature (as will be described), but it is a stepping stone on 

the way to harnessing existing natural energy production.

The organism in question is Shewanella oneidensis MR-1, described in detail in 

section 1.2.6. This study has identified key questions about the effects of 

environment on this organism, and its interactions between cells themselves 

and between cells and important substrates. In this first chapter the context 

of study and the aims and objectives of this thesis are outlined. The 

following chapter describes the experimental methodology. Chapters 3, 4 

and 5 present and discuss the results and their significance in line with pre­

existing results in the literature. Chapter 6 discusses the findings, their 

relevance, and to what extent the questions asked in this chapter have been 

answered.
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Chapter 1: Introduction

1.1 Biotechnology

There is a wealth of "engineering" in the natural structures of the world we 

inhabit: some motile bacteria swim using a molecular motor to drive an 

extending flagellum as a form of propellor[l]; the lotus, lauded in 

mythology for its purity, is now known to have leaves which are nano­

structured to repel dirt[2]; and DNA self-assembles from its component 

nucleotides guanine, adenine, cytosine and thymine paving the way for the 

"assembly" of living beings[3].

Biotechnology has long existed as the adaptation of the natural world for 

technological development. It can generally be divided into two main areas: 

biomimetics and bioinspiration, and biocomposite technology. The 

biomimetic process has, for example, given us Velcro (inspired by burdock 

clinging to dog hair) and colour changing car body paint based on the 

nanoscale structuring of iridescent butterfly wings. These are examples in 

which biology has provided a precedent that can be mimicked with 

inorganic materials or in inorganic devices. Biocomposite technology uses 

biological systems directly and at some point has an organic/inorganic 

interface. Often the interface is the crux of this technology, as it is in 

biosensors: these devices usually detect the presence of a substance through 

the effect it has on an organic molecule which is part of an organic/inorganic 

interface, thus triggering an electrical signal in the sensor[4].

Biocomposite engineering itself can be exemplified on the nanoscale. In 2007 

Ruiz-Hitzky and his team published a report in Advanced Materials 

detailing the progress of development of nanoscale organic/inorganic hybrid 

materials that they termed "bionanocomposites" [5]. These novel materials 

were formed from naturally occurring polymers and inorganic solids with at 

least one dimension on the nanoscale, and the authors described not only 

manufacture but also potential applications. The two desirable attributes for
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such materials are biocompatibility and biodegradability. The main areas of 

impact for such biohybrids are biomedical: building structures to aid 

regeneration of tissues or even bone, and environmental: such materials can 

biodegrade more easily than wholly inorganic constructs. Further to this, 

functional bionanocomposites, which can be used in optical, electrochemical 

or photoelectric systems, are described. As the authors intimate, there is a 

wealth of possibilities in this area as there is an abundance of natural 

polymers to use in synergy with inorganic materials. Further research could 

conceivably provide a multitude of composite materials with varying 

components and production processes in order to improve properties and 

multi-functionality.

There is also arguably a third area of biotechnology: wholly biological 

technology where biological systems have been manipulated to suit hum an 

design criteria. Genetic engineering is an example of this, in particular the 

manipulation of stem cells for gene therapy or organ transplant solutions.

As technology has allowed us to view and understand how biological 

systems operate on the nanoscale, the resulting knowledge has been tied into 

what we understand on the macroscale. This is certainly the case in 

molecular biology and bacteriology: a nanometre is 10 times larger than an 

Angstrom, A, a unit of measurement often used to describe atomic radii or 

the length of chemical bonds. Thus, macromolecules (large molecular 

structures made up of hundreds of atoms) can be perfect raw material for 

nanoscale design. Molecular biology is the study of biology on a molecular 

(near-nano) scale, looking at how biological molecules interact. Once again, 

DNA research and genetics are excellent examples of the impact of molecular 

biology on macroscale understanding.

Bacteriology also requires the understanding of biology on a small scale. 

Most bacteria cultivated in laboratory conditions have dimensions between
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0.5 and 15(am in diameter or as minimum width and maximum length, 

depending on their morphology. However the largest known bacterium, 

Thiomargarita namibiensis, grows in chainlike formation of cocci (spherical 

bacterial components) and can grow up to 750pm in length (just visible to the 

naked eye). In contrast the smallest, Mycoplasma pneumoniae, which can 

cause a form of bacterial pneumonia, is 0.2pm (200nm) in diameter[l].

One automatically associates bacteriology with medicine and hum an health 

science, aided by public perception of "superbugs" such as MRSA 

(methicillin-resistant Staphylococcus aureus) and Clostridium difficile and 

"probiotic" products such as yoghurts that include specifically added live 

bacterial cultures intended to aid digestion. Bacteriology is not, however, 

only useful in terms of medical research. Bacteria are important in geology, 

waste treatment, water management, and also in nanotechnology.

One of the most exciting novel uses of bacteria is in the Microbial Fuel Cell 

(MFC), in this application electrical energy is generated using microbial 

metabolic functions[6]. What makes this developing technology even more 

exciting is the design of MFCs that use waste as a fuel source, even to the 

point of removing harmful substances from soils (bioremediation) or 

wastewater. There is no such thing as free energy, but this is energy where 

the cost in fuel provides the ultimate bonus.

1.1.1 Energy production with waste reduction

One of the greatest challenges facing the global community in the 21st 

century is the increased demand for energy; caused by widespread adoption 

of high-energy lifestyles throughout the developed and developing world. 

Catchy phrases such as "climate change" and "carbon footprint" are 

ubiquitous as the global consciousness struggles to come to terms with the
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finitude of fossil fuels, our greatest source of energy, and the effects of global 

warming from the use of such fuels.

According to the UK Government Department for Environment and Climate 

Change the UK's total final user consumption of energy (including all 

industry, transport, and domestic use) in 2009 was the equivalent of 152.7 

million tonnes of oil, the majority of which comes from gas and petroleum[7]. 

Emissions of greenhouse gases are caused by such electricity production as 

well as the use of oil derivatives in all forms of motorised transport. Climate 

change and energy production are two sides of the same problem: can there 

be renewable, clean energy production that makes a dent in our voracious 

consumption?

Nuclear energy is often put forward as an alternative to burning fossil fuels. 

There is a public unease about nuclear power plants due to their connection 

to the development of nuclear weapons and the Chernobyl disaster of 1986. 

Even more pressing a disadvantage is the production of nuclear waste by 

nuclear power plants. This problem with waste is actually common to all 

traditional methods of power production, and is another reason why 

renewables such as Wind and Solar power are termed "clean".

Modem society is incredibly wasteful and alongside our need for energy is 

the need for clean water. There is plenty of water on the Earth, but that 

which is drinkable is a precious commodity that needs to be managed 

appropriately. Methods exist which make undrinkable water suitable to 

drink, such as desalination, but when these methods are used on a large scale 

they are huge consumers of energy. Using so-called "grey water", a term for 

water that has already been used in domestic activities such as laundry, for 

watering plants or washing cars is one way to cut down on clean water 

consumption. The ideal situation would be finding a method of removing 

waste products from polluted water, allowing the water to be used again.
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The ultimate answer to these two major problems: clean energy production 

and the removal of water pollutants, would be a method that combines the 

two. As will be discussed later in this chapter, Microbial Fuel Cell research 

has taken steps toward this goal.

1.2Microbiology in biotechnology

Humans coexist with a wide spectrum of microbial faunae, some of which 

are inherent in the human body, within the digestive system for example[l]. 

The use of microorganisms in human systems and technology has a rich 

history. Microbial processes were harnessed when yeasts such as 

Saccharomyces cerevisiae were used in the production of beer, bread and wine 

by the first farming cultures [8]. These staples have sustained people 

throughout thousands of years of hum an history. Cheese is created using a 

process that begins when bacteria convert milk sugars into lactic acid. Today 

bacteria are even being promoted as aids to digestion that can be taken as 

over the counter preventatives for bloatedness in the form of yoghurts. 

Despite human reliance on microbiota, the science of microbiology has only 

developed over the last 350 years; beginning in the late 1600s with the first 

time man ever saw single-celled organisms[l]. This man was Antoni van 

Leeuwenhoek who, using a microscope of his own design, viewed and 

described minute creatures or "animalcules" that could not be seen with the 

naked eye.

In the 1800s Frederick Cohn founded the sub-discipline of Bacteriology: he 

proposed the first taxonomic system for labelling the bacteria he studied. 

The contributions of Louis Pasteur and Robert Koch in the same century 

rooted microbiology firmly in science with the understanding of microbe
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reproduction, pasteurisation for food preservation, vaccination for disease 

prevention, and the germ theory of disease[9].

Currently, microbiology is an ever-expanding science involving the study of 

microbial habitats, metabolism, physiognomy, function and environmental 

interactions. Such studies have benefits for medicine and health science in 

understanding the effects of microbial faunae on humans (virology, medical 

microbiology); in understanding the use of microbes in industrial processes 

for food manufacture and agriculture; even the corrosion of metals and the 

formation of our chemical environment require reference to microbial action 

to be fully understood. However the story does not end there, as 

microbiology offers an insight into true "bottom-up" technology: designs 

that have evolved over millennia which we can finally dismantle and 

recreate in order to further our own development of devices and systems on 

the nanoscale.

1.2.1 Bacteria and Biophysics

The lives of microbes offer insights into physics on a cellular scale. The 

means of propulsion for motile bacteria are a brilliant example of microbial 

physics, and biochemistry, in action. Motility comes at a premium in terms 

of energy use and thus it must be worthwhile for the bacterium. Some 

bacteria swim, using flagellar motion, others are motile without flagella 

(gliding motility), or use chemotaxis, whereby the chemical gradient of the 

environment causes a randomly moving cell to move according to the 

chemical bias[l]. These mechanisms for motility are one way in which cells 

adapt to their environment. Mitchell and Kogure wrote a mini-review in 

2005 describing the efforts of biophysicists to understand bacterial motility 

and the advantages of this understanding[10]. The review describes tools
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and techniques for studying bacterial motility, looking at how these 

approaches further investigation of the mechanisms employed by bacteria 

and how these mechanisms are achieved by bacterial design and affected by 

environmental factors.

1.2.2 Microbial Surfaces

The surface of a microbe serves as its interface with its environment. The 

bacterial cell membrane or cell wall defines the extent of the cell and 

functions to maintain the integrity of the cell, as well as to control the uptake 

and excretion of substances to or from the cell. Thus the functioning surface 

of a unicellular organism is vitally important to its survival.

In general bacteria can be grouped into two types: gram-negative and gram- 

positive. The definition of these comes from gram staining; in this procedure 

(named after Christian Gram who developed the process in 1884) gram- 

positive bacteria appear purple and gram-negative bacteria appear pink after 

staining with a basic dye (such as crystal violet) and treatment with ethanol. 

Differences in the cell wall structure cause ethanol to decolourise gram- 

negative cells, but not gram-positive ones[9]. Gram-positive cells are 

bounded by cytoplasmic membranes with a rigid outer layer of 

peptidoglycan whereas the walls of gram-negative cells are more complex 

multilayer structures comprising a cytoplasmic membrane, one or more 

layers of peptidoglycan and an outer membrane[l]. Studies of the cell wall 

have been greatly helped by the introduction of electron microscopy, with 

the existence of the outer membrane (OM) being confirmed by electron 

microscopy of thin sections, such as that shown in figure 1.1.
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Outer membrane

Periplasm

Cytoplasmic
membrane

Figure 1-1 :Thin section transmission electron micrograph of the cell envelope of 
Eschericia coli with the outer membrane, periplasm and cytoplasmic membrane 
labelled. From Brock Biology of Microorganisms Unit 1 Chapter 4 by Madigan, 
Martinko, Dunlap and Clark111.

The cytoplasmic membrane acts as a highly selective permeability barrier of 

about 6-8 nanometres in width. Its general structure is that of a phospholipid 

bi-layer, whose homogeneity is broken up by m em brane proteins that act to 

bind substrates, process large molecules and allow transport of materials into 

and out of the cell (e.g. metabolites, waste). The strength of the cell wall is 

usually due to the peptidoglycan layer, and it is this strength that maintains 

the cell's structure and rigidity[1]. The presence of peptidoglycan between 

inner and outer membranes was shown using lanthanum -stained thin 

sections[ 11]. It is thought that in the vast majority of bacterial cells, with only 

a few possible exceptions, the maintenance of bacterial shape is governed by 

the cell wall[12]. A diagram showing this structure is shown in figure 1.2.
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Figure 1-2: The gram-negative cell wall. In this diagram the differences between the 
outer membrane and the cytoplasmic membrane can be seen such as the arrangement 
of membrane components, for example lipopolysaccharides and in the inclusion of 
porin proteins. Cross section o f porin shown in (b). Diagram from Brock Biology of 
Microorganisms[l] Unit 1, Section 4.

1.2.3 Metal reducing metabolism

In most organisms metabolism is pow ered via the respiration process, which 

allows energy to be produced from food or fuel. The respiratory process 

produces Adenosine triphosphate (ATP), which carries chemical energy vital 

for powering processes that w ould otherwise be energetically unfavourable.

The basic respiratory reaction is a redox reaction: it involves the oxidation of 

an electron donor and the reduction of an electron acceptor. As a result of
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this reaction energy is produced and used to form ATP. For example, in this 

overview of the aerobic respiration of glucose oxygen is reduced:

C6H U°€, + 6 0 2 6 C 0 2 + 6H 2 °  1 1

The reaction actually takes several stages, forming ATP via a method called 

"electron transfer phosphorylation" in which a series of protein-mediated 

reactions result in Adenosine diphosphate (ADP) and inorganic phosphate 

molecules combining to form as many as 30 molecules of ATP as a result of 

the oxidation of one molecule of glucose[13].

When the respiration process occurs without oxygen present, electrons must 

still be transported out of the cell to terminal electron acceptors. The greater 

the variety of minerals the bacteria can use for this purpose the better as far 

as species survival is concerned. Competition with other species for 

resources is less when bacteria can utilise a variety of electron acceptors. 

One of the most well known examples of such "extracellular respiration" is 

the electron transfer between microbial cells and minerals in their 

environment. In the review paper Extracellular Respiration, Gralnick and 

Newman present various examples of the title phenomenon! 14]. As they 

discuss, the underlying molecular mechanisms are the basis for extracellular 

respiration and dictate the strategy by which a bacterium respires. Four 

potential pathways for extracellular respiration are put forward: direct 

contact between protein on the cell surface and the extracellular substrate, 

contact between the cell and substrate via an electrically conductive 

appendage, and two types of chemically mediated respiration. The 

chemically mediated strategy can either cause the cell or substrate to 

approach via chemical gradients (chemotaxis) or can be enacted at a distance 

using a chemical shuttle.

From the point of view of the cell, the terminal electron acceptor must simply 

be a material that the cell has the capability to reduce either through direct

11



Chapter 1: Introduction

contact or through the production of mediating chemicals [15]. Certain 

bacteria are known to use metals and metal oxides in their environment as 

the terminal electron acceptors in their respiratory process [16]. This ability 

enables them to live in anoxic or low oxygen environments such as marine 

sediments and oxygen depleted soil[17]. The exogenous transfer of electrons 

where oxygen is not available has been termed "electrogenesis" by 

Logan[18]. The types of bacteria he terms "exoelectrogens" will transport 

electrons out from within the cell body to an external terminal electron 

acceptor.

1.2.4 Biotechnological Applications of Microorganisms

As mentioned above, there are numerous applications for which 

microorganisms can be used in biotechnology. Some of these are outlined in 

more detail in this section to give an idea of the breadth of applications.

1.2.4.1 Microbial Synthesis

Bacterial systems can process inorganic materials in their environment by 

transporting them into cells and then expressing them either intra- or extra- 

cellularly in another form, thus synthesizing inorganic material on the 

nanoscale[19]. Nanoscale materials or "nanoparticles" are of interest due to 

their novel optical, photoelectrochemical, and electronic properties. For 

example: quantum dots are nano-scale semi-conductor crystals. These 

particles exhibit the characteristics of a confined semi-conductor and as such 

they have distinct optical qualities. The energy of photons they can absorb is 

dictated by their size, and so under UV light for example they will re-emit 

photons of specific energy levels and hence fluoresce with a unique colour. 

Larger quantum dots tend toward the red end of the spectrum with smaller 

quantum dots at the blue end. These materials have applications as tags for
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biological macromolecules, or in other nanodevices as part of a circuit. They 

can be produced by a variety of bacteria. Schizzacharomyces pombe, for 

example, will produce cadmium selenide nanocrystals when challenged with 

cadmium in solution[20].

Gericke and Pinches investigated a number of different microorganisms, 

including bacteria, yeast and fungi, for their ability to produce gold 

nanoparticles[21]. One of their conclusions was that controlling the 

parameters of production in order to manufacture nanoparticles of consistent 

sizes and shapes would remain difficult until the cellular mechanism of 

synthesis was fully understood. To that end, they tried changing parameters 

such as pH, temperature, and growth stage of cells for two fungal cultures. 

They found that for these cultures pH affected the nanoparticle size, and 

growth stage affected the number of nanoparticles. Findings like this are a 

demonstration of how environmental factors and stage of growth are 

important considerations for studies of living things in bionanotechnology.

It is not only dot-like nanoparticles that can be manufactured with microbial 

synthesis: Kumar and colleagues describe use of a bacterium,

Magnetospirillium magnetotacticum, as a catalyst for producing multi-walled 

carbon nanotubes [22]. Interestingly the nanotubes produced were of 

consistent diameters, around 13nm. This works because "The MS-1 

bacterium synthesizes intracellular, linear, single-domain magnetic 

nanoparticles through highly regulated biomineralization" and these 

nanoparticles, which do not aggregate due to cellular structures, become the 

catalyst for the lateral alignment of carbon nanotubes on the silicon oxide 

substrate. This technique shows further potential for biosynthesis as the 

nanoparticles synthesized are then used to influence the production of other, 

more complex, structures.
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1.2.4.2 Corrosion Protection

The process of rusting or metal corrosion is an electrochemical reaction 

where the surface of the metal has sites that become "corrosion cells" with 

different sites on the surface acting as anode and cathode. The anodic sites 

produce metal compounds such as oxides: metal atoms on the surface have 

become ions and formed bonds, for example with oxygen. Concurrently the 

cathodic sites will take part in electrochemical reactions, such as the 

reduction of oxygen gas. The metal oxide may form a surface coating, 

preventing exposure and therefore limiting corrosion when the oxide film is 

complete. However corrosion also causes degradation: for example rust will 

flake away from iron, exposing new surfaces to the phenomenon. 

Microbially influenced corrosion (MIC) is the name given to processes by 

which corrosion rate is accelerated due to the presence of bacteria, for 

example acid producing bacteria accelerating the corrosion of carbon steels. 

Microbial action can also inhibit corrosion (this is called microbially 

influenced corrosion inhibition or MICI), an example being the prevention of 

pitting of A12024 in the presence of certain Shewanellae strains[23].

1.2.4.3 Antibiotic Production

Penicillin is widely recognised as the first antibiotic ever produced: it came 

from the mould Penicillium notatum[9], famously observed in 1928 by 

Alexander Fleming to inhibit the growth of bacteria. Antibiotics are 

produced by microorganisms as a method of removing competing 

microorganisms from their vicinity. A large number of important antibiotics 

used in modem medicine were discovered in studies between 1939 and 1963, 

largely from organisms commonly found in soil and air. Other Penicillium 

species have also been used to produce penicillin.
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Antibiotic production is one of the key properties of Streptomyces species, 

with about 50% of Streptomyces species that have been isolated being able to 

produce antibiotics[l], and at least 500 different antibiotics being classified 

from these bacteria.

1.2.4.4 Bioremediation

Increased industrialisation has resulted in the pollution of our environment: 

soils and water are contaminated with heavy metals and industrial toxins in 

many sites worldwide. The process of environmental clean-up may simply 

be summarised as removing the unwanted pollutants, however in practice it 

is a lot more complicated. Contaminants may be so ingrained in the 

environment at a particulate level that in order to remove them they must 

first be processed into a more manageable form. In an example described by 

Wall and Krumholz in 2006, uranium contaminants, in the form of soluble 

uranyl salts, can be reduced to the insoluble mineral uraninite by bacterial 

action, causing the uranium to be immobilised [24]. In this way, the uraninite 

can be removed from the soil, instead of remaining in the groundwater, 

possibly moving with water flow to contaminate other areas. Such natural 

attenuation is known as bioremediation. An assessment of the use of this 

and other means of natural attenuation at a Brazilian oil refinery showed 

biodegradation of regulated compounds, such as benzene and toluene and 

mixed hydrocarbons, by local microbiota, and suggested that encouraging 

this process could be part of the overall plan for site decontamination[25]. As 

well as biodegradation of pollutants, indigenous microorganisms can be 

used for environmental assessment: the response of such organisms to 

pollutants may be monitored as a bioindicator in a specified area[26]. 

Approaches like this need to be part of a bigger picture approach including
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geographical and ecological information about the contaminated site coupled 

with an understanding of the chemistry of the contaminants.

1.2.5 Microbial Fuel Cells and Biosensors

As well as observing microbial action in response to environmental factors, 

the response of microbes to their environment can be used integrated into the 

man-made devices. The interface between microbes and inorganic 

components can be key to the utilisation of microbial response for biosensors 

and for the exploitation of microbial respiration in devices such as microbial 

fuel cells.

1.2.5.1 Microbial Fuel Cells

Microbial fuel cells (MFCs) generate "bioelectricity" [27] from biomass using 

bacteria. The MFC reactor is set up to take advantage of the release of 

electrons from the bacteria during respiration. The concept of a biofuel cell is 

not a new one, in fact Lewis's Symposium on Bioelectrochemistry of 

Microorganisms, 1966[28], refers to work by Potter in 1911: in Potter's study a 

comparison was made of the potential difference between electrodes 

immersed in a live bacterial culture and a sterile culture respectively. The 

system he used contained six battery cells, each with one yeast-glucose half­

cell and one glucose half-cell, and may be considered the first ever MFC.

In a recent review[29], Debabov discusses the molecular mechanisms behind 

extracellular electron transfer with a view to the development of MFCs. 

Specifically the review focuses on two organisms that have been the subject 

of many MFC studies: Shewanella oneidensis and Geobacter sulfurreducens.

Originally MFCs were designed using electrochemical mediators such as 

thionine, methyl viologen and neutral red among others. Their role is to
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shuttle electrons from the bacterial cells to the electrode within the MFC. In 

2002, however, Kim et al. released a paper describing a mediator-less 

MFC[30]. This was part of a revolution in MFC design based on bacteria that 

could transfer electrons directly to electrodes without a terminal electron 

acceptor added. Electricity production by G. sulfurreducens using electrodes 

as electron acceptors was reported by Bond and Lovely in a 2003 paper[31]. 

In 2006 this was developed further by the same group using genetic analysis 

of G. sulfurreducens in relation to its extracellular electron transfer specifically 

to electrodes[32]. The expression of conductive nanowires by G. 

sulfurreducens was also shown to be beneficial to current production in fuel 

cells with this organism[33]. Research has also been conducted into the 

ability of a selected microbial consortium to generate energy from 

wastewater[34]. The variety of organisms used within MFC systems can 

affect their efficacy and output, and in fact MFCs have been shown to select 

groups of organisms that can self-mediate electron transfer[35].

The limitations of MFCs are being pushed further and further, however there 

are discussions of the problems in MFC design and limiting factors: cathodic 

activation, ohmic and mass transport losses and substrate crossover[36], fuel 

diffusion, limits to maximum power density from internal resistance, and 

fuel oxidation at the anode surface[37].

1.2.5.2 Biosensors

The premise behind a biosensor is that a biological component that has a 

known response to a specific chemical stimulus is used to generate a signal in 

a connected sensor system[9]. The obvious applications are in environmental 

monitoring and medical diagnostics.
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In some cases the biological component can be a whole cell, in others 

enzymes harvested from biological cells are used. To get an idea of this dual 

approach to biosensors using bacteria or bacterial components, consider 

Svitel's Review from Biotechnology Letters, 2006[4], describing how bacteria 

from the genus Acetobacter and the genus Gluconobacter have been used in 

biosensors as whole cells, as well as having enzymes harvested from them 

for use in biosensors. At the time of writing Svitel pointed out that there was 

only one commercially available Gluconobacter enzyme, which illustrates why 

using whole Gluconobacter cells has been popular: cells can be grown cheaply 

and the various enzymes each cell has do not need to be isolated but can be 

used in their natural environment, the cell surface. The ratio of enzymatic 

activities is hard to control however, when using whole cells, and for that 

reason some designers of biosensors would rather use isolated enzymes. 

Despite being more difficult to manufacture, enzyme based biosensors are 

desirable for their greater selectivity. Gluconobacter and Acetobactor whole cell 

and enzyme sensors are used in various studies reviewed by Svitel to detect 

the presence of a variety of analytes including glucose, ethanol, fructose and 

lactose.

When cells are used in biosensors their response to the analyte is due to the 

necessary biological process of metabolism: Gluconobacter feed off glucose 

and so they have a metabolic response to its presence and are geared towards 

detecting and utilising it, hence Gluconobacter produces enzymes which 

respond to sugars. Another example of this is the use of denitrifying 

bacteria, which metabolise nitrogenous compounds, to detect nitrate in a 

microsensor as described by Larsen in 1996[38]. This paper is not a review 

but rather details the process of developing the microsensor: the bacteria 

were isolated from soil and sediments, their capacity for nitrate reduction 

was tested, and the microsensor was finally constructed of a capillary
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containing a culture of these bacteria connected to a nitrogen oxide detector. 

The bacteria reduced any nitrate to nitrogen oxide (in the presence of 

acetylene), which was then detected. The amount of nitrogen oxide detected 

was proportional to the amount of nitrate present. The bacteria were simply 

used to functionalise the nitrogen oxide detector to detect nitrate levels 

instead.

1.2.6 Shewanella oneidensis MR-1

Although the gram-negative y-proteobacteria Shewanella oneidensis MR-1 is 

able to respire in the presence of oxygen, it is this organism's ability to thrive 

in anoxic environments with suitable alternative electron acceptors that 

makes it interesting[39][40]. First isolated from Lake Oneida in New York 

State, USA, it has become the subject of a great deal of research, resulting 

from its ability to reduce ambient metals and metal oxides as part of its 

anaerobic electron transfer process[15]. The wealth of information about S. 

oneidensis means that it can be used as a model or reference organism, 

although perhaps Pseudomonas aeruriginosa and Eschericia coli strains are more 

traditional choices for research in characterising gram-negative y- 

proteobacteria[39].

The species Shewanella oneidensis was described for the first time in 

Venkateswaran's 1999 paper on the genus Shewanella[41]. Preceding this 

paper, MR-1 was classified as a strain of the species Shewanella putrefaciens 

since its original classification in 1988. However genetic analysis of MR-1 

compared with S. putrefaciens, performed by Venkateswaran and colleagues, 

showed MR-1 to be deserving of reclassification as a distinct species. The 

first part of the paper describes numerous assays with various Shewanella
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species in order to develop a schema of their characteristics for identification 

of distinct species within the genus.

The description of S. oneidensis MR-1 was further expounded in 2002 when 

Heidelberg et al. published the genome sequence of the organism[42]. The 

authors of this paper note that S. oneidensis MR-1 is "an important model 

organism for bioremediation studies because of its diverse respiratory 

capabilities". In fact it is these respiratory capabilities and the variety of 

electron transport systems reported in the bacteria that made MR-1 

interesting enough for this group to study its entire genome. The findings of 

this paper were used to support later research including a comparison of 

genomes of various y-proteobacteria[39], in which predictions were made 

about genomic similarities and differences amongst this taxonomic group.

1.2.6.1 Extracellular electron transfer

Not only is S. oneidensis a dissimilatory metal reducer, but also it is highly 

adaptive to circumstance and environment, employing one or several 

pathways to export electrons to extracellular acceptors. In section 1.2.3 the 

four main possible pathways of extracellular electron transfer were discussed 

for bacteria in general. All four methods are potentially used by S. oneidensis 

under certain circumstances. In situations where the external electron 

acceptor is insoluble, such as a solid mineral surface or an electrode, it has 

been shown that electron transfer can occur through direct contact between 

cell and surface, or remotely through chemical shuttles [43] [44]. The 

utilisation of conductive nanowire appendages, similar to the pili of Geobacter 

metallireducens[45\, has even been posited since the pili on S. oneidensis MR-1 

have been shown to be conducting using STM[46]. However it m ust be said
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that there is no evidence demonstrating that they have a specific role in 

electron transfer thus far.

To form direct contact between cell and an insoluble electron acceptor the 

cells must adhere to the surface of the electron acceptor. There must be 

enough attraction between the cell surface and the substrate surface for the 

cell to attach despite any repulsive forces, such as steric interaction. In 

comparison with £. coli, S. oneidensis was found to implement specific 

bonding mechanisms with goethite (an iron hydroxide mineral with formula 

FeO(OH)), meaning that the latter organism was more strongly bound to the 

goethite surface, but only when grown anaerobically[47]. Cells of each 

organism were attached to glass beads coated w ith amino-silane such that 

the silane would act as linkers between the cells and bead. The beads were 

then used as colloid probes in AFM force studies, in which the cell-coated 

probes were brought into contact with the mineral surface. The strength of 

adhesion for the S. oneidensis probe was also shown to increase with contact 

time, suggesting that the cells optimised their surface to interact specifically 

with the goethite once it was clear that this specific pathway was open to 

them. The difference in force curves of aerobic and anaerobic S. oneidensis 

probes show that the anaerobic cells have a more rapidly increasing affinity 

for goethite, supporting the hypothesis that the cells adaptive respiratory 

functioning responds to environmental circumstances[48].

It is apparent that S. oneidensis can bind to electron accepting surfaces via 

mineral specific proteins, such as outer membrane (OM) polypeptides 

suggested by Lower et al[49] on the basis of AFM force profiles. The 

sawtooth shape of retraction profiles of cell probes was interpreted by 

Lower's group as the unfolding and breaking of protein linkers between cell 

and substrate. Various approaches to the interpretation of AFM force curves 

are described in greater detail in Section 1.4.
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It has been shown that S. oneidensis MR-1 can reduce metal oxides at a 

distance. Nanoporous glass beads were adapted by precipitating ferric 

hydroxide (glass beads incubated in iron chloride solution, precipitate 

formed through addition of potassium hydroxide) and the ability of cells to 

reduce iron within these beads was assessed using energy-dispersive x-ray 

spectroscopy (EDS) and transmission electron microscopy (TEM) to 

characterise the beads before and after suspension with cells[50]. Despite 

being unable to directly contact the interior pores of the beads, S. oneidensis 

was able to reduce more than 85% of the iron, demonstrating its ability for 

extracellular electron transfer at a distance.

1.2.6.2 Surface characterisation, studies so far:

The surface structure of S. oneidensis MR-1 has been characterised under 

various circumstances with a variety of methods. However a comprehensive 

survey of these studies is lacking, as is an understanding of the cellular 

interface as a whole. The general composition of bacterial surfaces has been 

described earlier in this chapter. There are specific surface features of S. 

oneidensis however that are vital to the organism's functionality, and these 

are under scrutiny both as isolates and in situ.

The effect of environment on cell surface characteristics and cell structure 

must be understood in order to optimise ambient conditions for devices 

using the organism.

1.2.6.3 Other key studies

S. oneidensis cells grown aerobically and anaerobically exhibit different 

morphology, as studied by AFM and surface enhanced Raman spectroscopy

22



Chapter 1: Introduction

(SERS). In a study by Biju, nanoscale structures on the OM of S. oneidensis 

MR-1 cells were shown to be present when the cells were grown in the 

absence of electron acceptors, however these structures disappeared when 

electron acceptors were abundant[51]. The variation in cell morphology 

depends on the availability of the electron acceptors and appears to be 

physical evidence of the mechanisms of extracellular electron transfer via 

OM surface proteins. In a study by Elias et al. the variability in dissolved 

oxygen under certain aerobic culture conditions, i.e. shake flasks, was shown 

to cause cells to exhibit electron-acceptor-inhibited characteristics even when 

grown in oxygen[52]. The paper recommended that bioreactors, with their 

ability to monitor and control dissolved oxygen concentration, will produce 

more homogenous microbial cultures, in which all cells will exhibit electron- 

acceptor-abundant morphology and composition, as determined by mass 

spectrometry and 2D gel proteomic analysis.

Interestingly, temperature can have a direct affect on cellular morphology, as 

demonstrated by Abboud et al using epifluorescent microscopy and protein 

analysis, as well as optical density for assessing concentrations of cells over 

time[53]. Decreasing the temperature from 22°C to 3°C increased the lag 

time, whilst increasing the doubling time from 40 to nearly 70 hours, it is 

worth noting that the lag time depended on the temperature at which the 

inoculum had been grown: if the inoculum was grown at 3°C, the lag time 

for 3°C cultures was reduced to 48 hours. The cold cells were not rod-like so 

much as filamentous, up to 16pm in length (average 8.57pm) compared with 

those grown at 22°C which averaged 1.7pm in length. The presence of 

spheroplast structures in the cold cell cultures was also noted. The variance 

in phenotype depending on temperature suggests that as well as diverse 

methods of achieving respiration S. oneidensis MR-1 has diverse mechanisms 

of growth and propagation, depending on environment.
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Biffinger et al. explored the effect of pH on growth and electron transfer 

capabilities of S. oneidensis MR-1 in their 2008 study. The case for relevance 

to MFC design was made, as most MFCs operate at around pH 6 to pH 8. 

When comparing the S. oneidensis DSP10 strain with MR-1 it was found that 

the former had a greater energy output at neutral pH, but not at pH 5. 

DSP10 cultures exhibited a significant reduction in riboflavin concentration 

at pH 5, leading Biffinger to suggest that the synthesis of mediators by cells 

for electron transfer is affected by pH, and that MFC output will depend on 

the ability of bacteria to produce mediators rather than just on the 

concentration of bacterial cells[54].

1.3 SPR and potential studies of cel! properties.

At the micro and nano scale surface properties start to become more 

important than bulk properties[55], and thus the surface interfacial 

physiology of the cell is an important area of study to understand its 

interactions with its environment. One of the important functions of the cell 

surface is adhesion, or non-adhesion to selected surfaces. In laboratory 

situations, microbial cultures can be grown on solid or in liquid media, 

illustrating the adaptive nature of microbes, which can grow attached to a 

surface or planktonically in suspension.

^-potential provides a way of predicting whether or not cells are likely to stay 

separate in solution or flocculate, forming clusters of cells. As a parameter 

related to surface charge, ^-potential allows researchers to learn more about 

the cell surface and its impact on cellular life. Surface Plasmon Resonance 

(SPR) by contrast offers information about functional cellular binding to a 

substrate, rather than to other cells. Both ^-potential and SPR provide results 

that vary with environmental factors such as temperature and the ionic 

strength and pH of the suspension. This illustrates the connection between
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cells and their environment: the electrochemical environment informs the 

properties of the cells, as described in section 1.3.2. Both ^-potential and SPR 

can be used to monitor environmental effects on cellular qualities such as 

surface charge or propensity for substrate binding.

1.3.1 Surface Plasmon Resonance

The principles of Surface Plasmon Resonance (SPR) have their origin in the 

phenomenon of total internal reflection. When light travelling through a 

medium of high reflective index impacts upon an interface with a medium of 

lower reflective index at an angle greater than 0, the critical angle, it is totally 

reflected back into the original medium at the same angle. This is classically 

demonstrated in practical terms using a ray of light and a glass prism. The 

ray of light travels through the prism and can be transmitted wholly through 

the second interface (glass to air), partially transmitted and partially 

reflected, or totally reflected from this interface. The effect on the 

transmission of the light beam by the interface is governed by the incident 

angle. Effectively at a specific angle the interface acts as a mirror.

Surface Plasmon Resonance explores a similar effect using glass coated on 

one side with a thin metal film. Research into the absorption of light by thin 

metal films shows that although there would be no net loss in the energy of 

the light beam on total internal reflection (TIR) an electrical field intensity 

called an evanescent field wave would be generated by the impact of 

photons on the surface of the second medium, as shown in figure 1.3. In 

Turbadar's work in 1959 it was shown that at the thickness of film required 

for zero reflection, no light would be transmitted[56]. The normal 

component of the complex amplitude of emerging light, theoretically, is 

shown to be normal to the surface; hence the resulting wave propagates
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along the surface. This is the evanescent wave, or ''surface plasm on" 

exploited in Surface Plasmon Resonance.

(In < Pli

Incident
light

Reflected
l ig h t

Figure 1-3: From Biacore Technology Note 1[57]. Total internal reflection for non­
absorbing media. The field E is a result of electrical field intensity oscillation. The 
evanescent wave that results has a wavevector kx.

This effect can be amplified by constructing the m edia interface with specific 

properties. If the interface between the two media is coated with a 

conductive layer (a metal film) of appropriate thickness then the p-polarised 

component of the evanescent wave is able to move through the conducting 

layer. Thus it may then excite electromagnetic surface plasm on waves that 

move within the conductor surface that is in contact w ith the m edium  of 

lower refractive index. If the metal film is non-magnetic, the surface 

plasmon wave will also be p-polarized and will create an enhanced 

evanescent wave as shown in figure 1.4 below.
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E A A

G la ss

Figure 1-4: From Biacore Technology Note 1[57]. The p-polarised light incident on 
the surface is totally reflected however there is a dip in light intensity at the 
particular reflection angle, dependent on the surface Plasmon wave. This is detected 
in SPR.

The intensity of light reflected from the interface is reduced at a specific 

angle, the angle of resonance, due to the energy taken up in the generation of 

surface plasmons[58]. The resonance angle (or SPR angle) is highly 

dependent on the nature of the interface and thus reflects any changes in the 

metal surface layer.

The premise behind SPR detectors is that functionalising the metal layer 

(usually gold) with different organic groups changes the angle at which the 

SPR phenomenon occurs and the change in this angle can be measured. The 

response of the SPR angle shows changes in the metal film surface and thus 

can be used to measure interaction of different molecules w ith those bound 

to the film[59]. The change in angle is indicative of a change in the refractive 

index of the material near the surface. In the BIAcore series of apparatus the 

change in refractive index is recorded as "response units" (RU). The 

response, R, of the SPR sensor can be given as:

R  =  ^0 + Rbuffer + ^binding 1-2
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Where Ro is the background or baseline level, Rbuffer is the response due to the 

sample buffer, and Rbinding is the response due to the actual binding of 

material to the surface[60].

The SPR detector has varied applications in organic and biochemistry, 

including immunosensing[61]. Especially since information about molecular 

binding can be gathered by attaching various groups to the gold surface and 

measuring changes in SPR angle for SPR response. As well as stoichiometric 

binding information, SPR sensors can be used for kinetic analysis and the 

determination of association/dissociation constants[62][63][64]. It has even 

been used for the detection of whole cells[58, 65] binding to a surface, as 

described further in section 3.1.2.

SPR detectors can be used for assays of varying complexity. The change in 

SPR angle (also measured in response units, RU) will change when a new 

buffer is put in contact with the surface, however if any particles in that 

buffer attach to the surface, then some of that change will remain even when 

the system returns to the original buffer. In this way SPR can be used for a 

simple yes/no binding assay confirming whether or not a specific substance 

has bound to the surface. M odem systems such as those from BIAcore keep 

the surface under flow of a running buffer. Qualitative measurements such 

as yes/no binding or comparisons between levels of binding are relatively 

straightforward: quantitative results are more difficult as the binding must 

be able to fit a model so that adhesion rates can be calculated[66].

1.3.1.1 Binding and kinetic models

Adhesion in SPR can be studied in a static system, or under constant flow. 

Systems such as the BIAcore range of SPR detecting apparatus use 

controllable flow rates as a parameter which can be changed in order to
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study its effect. Low flow rates mean a greater contact time, which may 

cause an increase in binding, and higher flow rates may not allow enough 

contact time between sample and substrate. A higher flow rate may also 

increase dissociation of sample from the substrate, due to the forces exerted 

by buffer flowing past.

The binding of the analyte to the sensor surface can be described as the 

interaction of two components, A and B to form a complex AB, where A is in 

the injected analyte and B is the surface immobilised material.

A + B++AB 1.3

Thus there is a rate of formation of complex, AB, and also a rate at which the 

complex decouples into A and B. These are analogous to the rate of 

association of analyte to the surface and the rate of dissociation of analyte 

from the surface. The former is dependent on the concentrations of A and B, 

whereas the latter is dependent on the concentration of the complex AB. 

Thus the association rates of analyte will depend on the concentration of 

analyte injected, but the dissociation rates are independent of this 

concentration[67].

The rate of change of concentration of complex AB can be written as: 

dt

where k a  (also called k o n )  and k d  (also called k o f f )  are the association and 

dissociation constants respectively. Since the concentration of AB is the same 

as the amount of analyte bound to the surface, it can be said that [AB] = R 

and so the rate of change in response R can be thought of as:

~  = KC[R„m - R ) - k dR  1 3
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where C is the concentration of the analyte, and the concentration of surface 

immobilised substance is given by the maximum value of R (i.e. saturation of 

binding sites) less the value of R recorded, in other words the number of 

unused binding sites[67].

Most models consider one-on-one binding, in other words binding of one 

particle of analyte to one site on the sensor surface. More complicated 

analysis of interaction takes into account scenarios such as more than one 

ligand, mass transfer, and heterogenous samples. Often in published 

research the kinetic analysis is skimmed over, with no association or 

dissociation rates calculated, and a simple comparison between total change 

in RU is drawn on in order to highlight the more successful interactions [64, 

68, 69]. This comparison is enough for purpose in many cases, as long as it is 

done consistently. However, since there is much more information about the 

process of binding that can be gleaned from comparisons of association and 

dissociation rates and equilibrium, the kinetic analysis is worth looking at.

The rate of adhesion of particles to a surface will decrease as accessible space 

on the surface becomes rarer since the particles already on the surface will 

obstruct new particles' access to the surface. At some point the number of 

particles detaching from a surface in a given time will match the number 

attaching to the surface in that time, with the system achieving an 

equilibrium state. If no more particles flow into the system, then the 

detachment rate will decrease the total numbers attached until such time as 

only strongly fixed particles, which will not detach under normal 

circumstances, remain.

Karlsson uses linear transform methods to find values for the association and 

dissociation rate constants, and this may be thought of as the starting point 

for any analysis of similar data[70].
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The linear transform analysis has its limits, for example if the data does not 

adhere to the first order rate equation a plot of the rate of change in response 

against response will produce a curved plot, making it harder to determine 

ka. The case has been made for using exponential curve fitting in order to 

determine association parameters instead. Exponential curves can be fitted 

with great success, however the selection of experimental data is key, since 

the changeover from ordinary buffer to sample solution will entail the 

influence of changes in temperature and bulk refractive index. These can be 

minimised experimentally but as shown they can affect the accuracy of the 

fit. In work by Gill et al, the requirements of the method were explored 

including minimum exposure times, to ensure enough data for a 

representative fit[71]. These were shown to be dependent on concentration 

for the association constants (not the dissociation, which is independent of 

concentration). The importance of quality of data was also stressed.

In later work, Karlsson exploits competition between two ligands in order to 

observe interactions of a ligand of low molecular weight. Since detector 

response is proportional to the mass of the analyte, observation of binding 

for a low molecular weight (<5000Da) is not possible under common 

experimental practice. In order to detect ligands of low molecular weight, 

Karlsson uses two ligands: one of observable high molecular weight (hmw), 

the other with a low molecular weight (lmw), which both bind to the 

immobilised receptor[60]. When recording the equilibrium constants for the 

hmw ligand, both in the presence and absence of the lmw competing ligand, 

the difference is due to the binding sites being taken up by the lmw 

competitor. Karlsson gives a detailed explanation of the theory and then 

uses two model experimental systems based around interactions with 

antibody functionalised surfaces to illustrate the method. The competition
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method is furthered by Nieba et al in an attempt to get past the problem of 

rebinding and multivalent binding in SPR experiments[72].

Part of the problem with the more simplistic models for binding is that they 

assume a 1:1 interaction of analyte with surface sites, leading to a first order 

time dependence. As well as Nieba's paper on using a method based on 

competition binding to analyse more complex binding scenarios, there is 

work by O'Shanessy and Winzor that outlines reasons behind deviations 

from first order kinetics[73]. They found that it was most likely to be due to 

non-uniformity of binding sites.

When researching the effect of a particular component of the methionine 

repressor protein MetJ in £. coli, the SPR sensor surface was functionalised 

with an idealised operator fragment of DNA, rather than unprocessed 

DNA[74]. The component under study, S-adenosylmethionine (SAM) 

increases the affinity of MetJ for operator DNA, whereas similar molecules 

with a slightly different structure do not. Through comparison with these 

analogous molecules the researchers were able to suggest that the effect of 

SAM on the binding of MetJ is electrostatic in origin, since the other 

molecules in the study each contained a positively charged atom in a 

different location to that within SAM molecules. In this work rate constants 

were calculated using the BIAcore evaluation software for SAM and the 

analogues used for comparison. It was found that the data did fit well with 

the software's pseudo first order model, despite the fact that the interactions 

were multi-component.

13.1.2 Biological and Whole Cell SPR studies

Whole cell studies using SPR are more rare than studies of biological 

components such as isolated proteins or antibodies and antigens[64],[66]. In
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the latter the interaction of functional macromolecules can be observed 

directly, and without the complication of non-specific interactions occurring. 

The role of type IV pili of P. aeruginosa cells has been investigated using SPR 

without flow conditions, comparing the attachment of whole cells of the wild 

type strain to a gold surface with that of a pili-deficient mutant, and a m utant 

with pili that cannot be retracted. The kinetics of attachment were observed 

from the change in the angular minimum of the reflected light as plotted 

against time. Although each curve displayed the same basic shape: rapid 

increase and subsequent slower decrease in attachment, there were 

differences between each type. The pili deficient and wild type start off with 

a high attachment, and a more rapid detachment than the strain with the un- 

retractable pili, which does not decrease in attachment. This suggests that 

the pili are involved in microbial attachment to the surface, and that 

retractable pili are used by the wild type for temporary surface binding[62]. 

This research was conducted under static conditions and flow over the 

surface was, therefore, not considered.

Using the same static SPR system, the adhesion of living cells of P. aeruginosa 

was compared to the adhesion of cells killed by thermal shock to a gold 

sensor surface functionalised with mercaptounadecanoic acid. The dead 

cells were found to be easily removed from the surface by rinsing, unlike the 

living cells, which maintained a presence on the surface, suggesting that 

active adherent function was not present in the dead cells[63].

BIAcore instrumentation has been used in a variety of whole cell studies, 

including research into the binding of tooth colonising bacteria under 

environmental conditions. In one study BIAcore sensor chips were 

functionalised with salivary agglutinin, with the subsequent adhesion under 

steady flow of mutants and wild type Streptococcus gordonii cells compared in 

order to evaluate the role of the gene sortase A (srtA) in cell wall binding[68].
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It was found that srtA acts as an accessory gene in order for the cells to 

express adhesin proteins, since mutants missing srtA were still able to adhere 

to agglutinin but with less success than the wild type. Agglutinin was also 

the functional surface species used to investigate the effect on S. mutans 

adherence of surface adhesin PI [69]. In this study the adhesion of whole S. 

mutans cells to the agglutinin functionalised SPR sensor surface was 

demonstrated to be disrupted by the addition of monoclonal anti-Pl 

antibodies, and inhibited yet further in the presence of polyclonal anti-Pl 

rabbit immune serum.

Using similar experimental methods, the binding of S. sanguis, S. mutans and 

S. mitis to saliva functionalised sensor surfaces was observed using SPR. 

Association and dissociation rates for the bacterial cells were calculated using 

a concentration dependent binding study for each type to calculate the 

association constant, which was then used with BIAcore's BIAevaluation 

software to calculate the dissociation rates from curves[75]. S. sanguis had 

both the highest association rate and the highest dissociation rate, however S. 

mutans had the highest equilibrium constant (association constant divided by 

dissociation constant).

Some approaches to whole cell studies are not as straight forward 

experimentally as injecting cells over a functionalised surface. Several 

studies take very different approaches including immobilising cells onto the 

sensor surface first and then flowing sample molecules over the 

functionalised surface[76], incubating sample molecules with whole cells 

before injecting the molecules unbound by the cells (separated using 

centrifugation) over a specified surface to see if the sample was changed by 

the presence of the cells in order to use SPR to detect cellular contamination 

[77], and using different experimental hardware such as fibre optic SPR 

sensors[78].
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1.3.2 Zeta (Q Potential and Microbe-microbe Interaction

The surface charge of a microbe is a vital property of the cell wall, which is 

important for maintenance of cell shape and turgor, growth and division, 

and allowing the right constituents into and out of the cell[12]. All particles 

have surface charge properties to some extent, even if they have no net 

charge. Bacteria are known to have negative surface charge due to the 

ionised functional groups of cell surface macromolecules; in gram-negative 

bacteria these groups are phosphoryl and carboxylate groups as part of 

surface lipopolysaccharides. The surface charge can also be affected by 

extracellular polysaccharides. The surface charge of relatively small particles 

such as bacteria cannot be measured directly, however the ^-potential of 

small particles in solution treated as a colloidal system can be used as a 

measure of surface charge[79][80].

In order to visualise what ^-potential actually represents, imagine a 

negatively charged particle in a salt buffer, it is easy to imagine that the 

positively charged ions will be attracted to the negative particle surface. In 

that way it will form a layer of positive ions, which in turn will attract 

negative ions, which form another layer of charge. The opposite case can be 

imagined with a positively charged particle and all the resulting charges 

swapped, resulting in a layer of counter-ions (opposite charge to surface) and 

a further layer of co-ions (same charge as surface) [81]. In fact, even particles 

which have an overall neutral charge may have a charge distribution across 

the surface that will attract ions of the opposite charge to that area and these 

ion layers will still form. Thus the description of the surface of such a 

particle in solution is actually quite complicated; the particle surface is 

overlaid with the Stem layer (the counter-ion layer) and then the second ion 

layer, these form the electrical double layer.
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The perimeter of the electrical double layer is called the shear plane or 

slipping plane, this is where the bulk solution begins, although the charges in 

the second ion layer are part of the diffuse layer of charge interaction with 

the bulk solution[79]. The size of the electrical double layer and therefore the 

measurements of each distinct particle boundary are dependent not only on 

the surface charge of the particle but also on the ionic strength of the bulk 

solution[79]. Figure 1.5 shows how the different layers are related for a 

negatively charged particle. The zeta potential (^-potential) is related to the 

surface charge: it is the potential difference in mV between the particle 

surface and the plane of shear (known also as the slipping plane, although 

this is more commonly for large flat surfaces[79]).

Electrical double 
layer

Slipping plane

Particle with negative 
surface charge

Stern layer 

-100 ~

Diffuse layer

Su'lace potent* 
 S tc rn potential

mV

Distance from particle surface

Figure 1-5: Diagram showing zeta potential as the difference in potential from the 
particle surface to the slipping (or shear) plane, from Malvern Instruments' 
website[82].
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The ^-potential is inherently dependent on pH, since the pH affects the net 

charge of a particle as it affects the ionisation of the molecular groups on the 

particle surface[81]. For a colloidal system there is a pH value at which the 

net charge of the particle (and thus the ^-potential) is equal to zero, this is 

called the iso-electric point and can be estimated from graphs of ^-potential 

against pH. Large ^-potentials of ±30mV indicate that the particles in the 

suspension will repel one another more than they will attract one another, 

and hence the suspension can be thought of as stable. This means that the 

particles will remain separate within the suspension. An unstable 

suspension, where the attractive forces between particles may be greater than 

the repulsive force of like charge, will result in particles gathering together or 

"flocculating". If flocculation continues, when the particles are dense 

enough compared to the host solution they will fall under gravity and form a 

sediment layer, leading to phase sedimentation between colloid and 

suspension media. Sedimentation can also occur due to coagulation in the 

case of particles being less dense or comparatively dense compared to the 

suspension media, in this case the coagulated particles will eventually 

become large enough and heavy enough to sink, leading once again to phase 

sedimentation[81].

The prediction of suspension stability from ^-potential allows an insight into 

the adhesive quality of the suspended particles, especially in respect to one 

another. More extreme pH values (highly acidic or highly alkaline) will 

result in greater surface charge, increasing the repulsion of like charges 

between particles and decreasing any tendency to flocculate. The isoelectric 

point is the point at which the suspension is most unstable, and at this pH 

the particles are most likely to attract one another and link together. 

Understanding how the isoelectric point and stable regions of high £- 

potential relate to the native or artificially induced pH of cells can shed light
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on their propensity for sticking together or keeping their distance from one 

another in different chemical environments.

1.3.2.1 Measuring (-Potential

When an electric field is applied to a solution containing particles with 

electric charge, the charged particles will necessarily be affected by the 

electric field. These electrokinetic effects can be measured in a colloidal 

system where one phase is made to move with respect to the other (e.g. solid 

particles with respect to liquid or vice versa). Two of these effects are more 

appropriate for a fixed surface: streaming potential, where fluid is forced 

past a fixed surface, generating a potential, and electo-osmosis, in which an 

electric field is applied to make the liquid move past a fixed surface[81].

In order to measure the ^-potential of suspended particles a different 

approach must be taken, since the position of the particles cannot be fixed. 

One method is to use the effect of sedimentation potential. This can be 

measured when the particles settle either due to gravity or during 

centrifugation. The downward movement of the particles forces the 

electrical double layer to become a dipole, the sum of these dipoles resulting 

in a measurable potential difference between the top and bottom of the 

suspension[79]. From this observed potential the ^-potential can be 

estimated.

Another method of using electrokinetic effects to calculate ^-potential is 

electrophoresis. This is the effect whereby an electrical field is applied to the 

solution, causing the particles to move within it. Their speed of motion is 

measured and from this their electrophoretic mobility, i.e. their velocity in a 

unit electric field, is gained. The experimental set up requires a method of 

measuring the particles' velocity so that an average mobility can be
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calculated. One popular method in modem research is electrophoretic light 

scattering (ELS), as used by Malvern Instruments[79]. Two coherent beams 

of light cross paths in a capillary cell holding the sample suspension. An 

interference fringe pattern is formed at this intersection of the light beams, 

which is interrupted by particles moving under the applied electric field. 

The amount of light scattered is detected, and the frequency of fluctuations 

in this detected signal is related to the velocity of the particles under study. 

The particles will be subject to random (Brownian) motion as well[83], 

however the system is set to measure only the component of motion due to 

the electric field. The resulting data is a distribution of mobility, a spectrum 

of particle mobility rather than a single averaged value.

The measurement of electrophoresis requires that an electric field is applied 

to the system such that the particles will move with respect to the liquid in 

which they are suspended. However, as the electric double layer is fixed to 

the particle it does not move with respect to the particle. The surface plane 

of shear is the region where the liquid first begins to move with respect to the 

particle[79]. The potential at this plane, which can be regarded as the 

effective surface of the particle, is the ^-potential. Electrophoretic mobility 

(pE) is then used to evaluate the ^-potential using one of two approximating 

equations: Huckel's or Smoluchowski/s[84] both of which are derived from 

Henry's equation:

Where eo is the permittivity of a vacuum, £r is the relative permittivity 

(dielectric constant) of the suspension liquid, e is the product of eo and £ r ,  r\ is

1.6

which becomes

2<   ̂
3*7

1.7
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the coefficient of viscosity of the suspension liquid and fi(Ka) is a correction 

factor depending on the particle shape (usually assumed to be near 

spherical), with a being the particle radius.

The approximation put forward by Huckel sets the correction factor fi(ica) to 

1 ( x a «  1), whereas that of Smoluchowski uses f i (xa)  = 1.5 (k o » 1). Thus 

Huckel's equation is:

3*7

and Smoluchowski's equation is simply:

V

The ^-potential can therefore be calculated by rearranging Smoluchowski's 

equation for C using measured values of the electrophoretic mobility [ie, s o  

long as the particle under study has a relatively thin double layer compared 

to the particle size[83].

^ = tJMe 1.10
£

Smoluchowski's equation, and Henry's equation from which it derives are 

based around rigid particles with a well-defined slipping plane. Dague et al 

set out in their 2006 paper to show that since cells can be viewed as soft 

bioparticles, rather than rigid particles, a different approach is required for 

studying their electrophoretic mobility[85]. The main problem with the rigid 

particle approximations is that the cell surface is not homogenous, but rather 

it features a variety of molecular species, some of which may extend through 

what would otherwise be a distinct double layer, which means that the cells 

have an ambigious slipping plane. The paper's authors evaluate the 

"softness" of cells with and without polymer fringes, using modelling
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methods based on theory developed by others from their group in previous 

papers.

1.3.2.2 potential studies o f biological systems and whole cells

In 2000 Wilson et al were invited to write a review of methods of measuring 

bacterial cell surface charge using ^-potential measurements[83]. 

Electrophoretic Light Scattering methodology was reviewed in depth with 

regard to bacterial samples. The review outlined several studies in which £- 

potential of bacterial cells is measured in order to derive conclusions about 

intercellular interactions and interaction between cells and ambient surfaces.

In a study by van Loosdrecht et al in the late 1980's[86] twenty-three 

different microbial strains were studied in order to compare their 

hydrophobicity with their electrophoretic mobility (as a measure of the 

electrostatic state of the bacterial surface) since these qualities affect cellular 

adhesion. Arguably this study was one of the first to compile electrokinetic 

information alongside hydrophobicity in order to develop a more 

comprehensive understanding of the forces involved in cellular adhesion. 

Interestingly, although no correlation was apparent between electrophoretic 

mobility and adhesion, combining these data with hydrophobicity 

measurements by contact angle demonstrated that when cells are more 

hydrophilic, surface potential becomes a bigger factor. Increasing 

hydrophobicity was found to match increasingly negative potentials. It is 

noted that hydrophobic cells with small electrokinetic potentials would be 

likely to clump together and therefore be absent from the harvested, refined 

cell sample, and as these qualities would prevent the cells from spreading or 

colonising it could also be argued that there would not be many of them to 

be observed anyway. Considerations like this lend perspective to the results,
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which overall seem to show that terrestrial and shallow-water organisms are 

more adherent under optimal growth conditions, whereas deep water or 

oceanic organisms are more adherent under challenging conditions, in this 

case starvation. Quite sensibly, the author suggests that this may encourage 

microbial migration when times are hard, either by detaching from habitat 

substrates, or by attaching to organisms or materials that may transport cells 

to more habitable environments.

Using ^-potential and hydrophobicity studies, the adherence mechanisms of 

different strains of Streptococcus sanguis and Streptococcus mutans were 

compared by Satou et al[87]. Electrophoretic mobility was measured for both 

the bacterial cells and dental restorative particles and the ^-potential 

calculated using Smoluchowski. The number of S. mutans cells adherent to 

dental restorative plates increased as the ^-potential became less negative, 

suggesting that electrostatic interactions play a part in this organisms 

adherence. 5. sanguis did not show a correlation between ^-potential and 

numbers of cells adhering to the restorative plates, however numbers of S. 

sanguis cells adhering to the plates did increase with contact angle, 

suggesting a greater role for hydrophobic interactions for the adhesion of this 

organism.

Electrostatic interactions did not seem important for the adhesion of P. 

aeruginosa to stainless steel, as investigated by Vanhaecke et al[88]. There 

was no correlation between electrophoretic mobility of the cells and the 

number of cells adhered after incubation of the plates with cell suspensions, 

as measured by bioluminescence assays. However hydrophobicity, as 

measured by hydrocarbon and contact angle methods, did affect the 

adhesion rates determined in this study.

As well as medical and dental applications, such information about cell 

interactions can be used in geology: microorganism migration is looked at in
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order to predict the usefulness of bioremediation by microbes in specific 

geological sites, with hydrophobicity and surface charge affecting microbial 

movement through geological formations. In one study the movement of P. 

aeruginosa through dolomite was found to depend on growth phase. Cells 

in the stationary phase had higher C-potential than those in logarithmic 

growth and stationary phase cells were furthermore found to adhere to 

dolomite to a greater extent as well[89].

1.4 Atomic Force Microscopy

1.4.1 History of Surface Probe Microscopy

Surface Probe Microscopy or SPM is any microscopic technique that involves 

near-surface scanning with a designed probe. Originally these techniques 

were furthered in order to map surface features at a size too small to be 

resolvable using optical microscopy techniques [55]. Although the most 

obvious application for SPM is imaging, different types of SPM are used for 

sensing, measurement of surface properties, and manipulation of surface 

features, even on the atomic scale[90].

The first successes of SPM were found with the Scanning Tunnelling 

Microscope. Binnig and Roehrer's 1987 paper provides a first hand narrative 

account of the origins and development of this microscope[91], for which 

they won the Nobel Prize for Physics in 1986. It was an implementation of 

the phenomenon of tunnelling, in which electrons may jump across 

energetically forbidden gaps with a probability depending on the size of the 

gap and the potential difference across it[80]. A current produced as a result 

of that tunnelling can be measured and hence the STM: electrons tunnel 

between a nanoscale tip and a surface, with an increase in tunnelling (and 

hence current) when the separation decreases (i.e. over raised surface
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features) or when the potential difference between tip and surface is higher 

(for example if the surface or tip are charged) the change in tunnelling 

current is translated into a topography of the surface showing surface 

features and surface charge properties. However, the surface m ust be either 

conducting or semi-conducting in order for STM to provide useful images.

A further application of the concept behind STM in combination with the 

stylus profilometer was Atomic Force Microscopy (AFM), introduced in 

1985[92]. AFM was developed in order to be able to see topography for 

insulating surfaces: unlike STM, AFM does not require samples to be 

conducting. The main differences between AFM and the other SPM 

techniques are the ease of sample preparation and that surface interaction is 

achievable with AFM.

Ln the first few years of use AFM produced high resolution images of stiff 

inorganic material, with resolution on the angstrom scale achieved, for 

example in Marti et al's study of highly ordered pyrolytic graphite and 

sodium chloride, both covered in paraffin oil to prevent surface effects due to 

moisture[93].

In recent years the study of biological systems using AFM has exploited both 

the imaging and force measurement applications of AFM. The minimal 

sample preparation and physiological conditions have allowed the imaging 

of the surface of dormant and germinating spores of fungi[94], the 

photosynthetic transmembrane pigment-protein complexes of 

phytobacteria[95], and even different surface layers of bacteria[96].
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1.4.2 Basic operation o f the Atomic Force Microscope

M eans of sensing the 
vertical position of the tip

A feedback system to 
control the vertical 
position of the tip A probe tip

A coarse positioning 
system to bring the 
tip into the general 
vicinity of the sample

A piezoelectric scanner that moves 
the sample under the tip (or the tip 
over the sample) in a raster pattern

A computer system that 
drives the scanner, 
measures data, and 
converts the data into 
an im age

Figure 1-6: Basic AFM  set up. Diagram from Veeco's “A  Practical Guide to 
SPM "[97].

The set-up of the AFM is shown in the diagram  above. For basic AFM 

studies a sharp tip is fixed at the end of a cantilever. The cantilever is 

lowered until the tip 's interaction with the surface causes the cantilever to 

flex. This deflection is most commonly measured using the optical deflection 

scheme, shown below in figure 1.7, whereby a beam from a laser diode is 

reflected from the end of the cantilever to a PSPD (position-sensitive 

photodetector)[98].
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Mirror _  I 11 I
^  ™  ™  ™  ™  ™  ^  Loser dtode

Sample

PZT scanner

Figure 1-7: Optical deflection scheme of AFM, from Veeco's "A Practical Guide to 
SPM "[97].

The AFM is then used to take surface images by raster-scanning the tip in 

lines across the surface, forming an image from topographical data line by 

line. The AFM can also be used for slightly varied applications such as force- 

distance curves and m anipulation of surface features.

The forces that cause the deflection of the cantilever are dependent on the tip 

sample separation, as the diagram  below shows:

Repulsive force

Intermittent
contact

Distance 
(tip-to-sample separation)

^  Non contact

A ttractive fo rce

Figure 1-8: Force against separation between tip and surface. From Veeco's "A 
Practical Guide to SPM"[97].
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At a large distance, there is very little force between the tip and sample. 

However as the tip-sample separation decreases, so the long range attractive 

forces increase. Then as the tip comes into contact with the surface, the force 

becomes increasingly repulsive. The repulsive and attractive regimes 

correspond to different modes of AFM operation, which are discussed in the 

next section.

1.4.3 Atomic Force Microscopy techniques

There is more than one approach with which atomic force microscopy 

measurements can be obtained: these different AFM operating modes are 

dependent on the type of cantilever and probe used as well as the feedback 

system employed. The specific requirements of the sample to be studied will 

inform the choice of which mode to use. The three principle modes of AFM 

are described in section 1.4.3.1 to 1.4.3.3. There are also a number of related 

microscopy techniques using different probe qualities, which are 

summarised in section 1.4.3.4.

1.4.3.1 Contact

Contact mode is a static mode of AFM operation, in which the cantilever only 

moves in response to interaction with the surface. When in contact with the 

surface, the feedback signal is the force on the lever which causes the 

cantilever to bend, detected as laser deflection by the PSPD[98]. The 

cantilever is deemed to be in "contact" when the cantilever-surface system is 

in the repulsive regime of the inter-molecular force curve.
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AFM tips that are used in contact mode can be subject to strong lateral forces 

resulting in damage to the tip or deformation of the surface. The effect of 

lateral forces is exploited in Lateral Force Microscopy (see section 1.4.3.4).

1.4.3.2 Tapping (Intermittent contact)

In the tapping mode of operation, also known as intermittent contact mode, 

the cantilever oscillates at its resonant frequency and thus contact with the 

surface is intermittent. The system experiences feedback as damping of this 

oscillation. As the duration of contact is a small fraction of the oscillation 

period any lateral force effects are greatly reduced. This means that tapping 

is more suitable than contact for imaging soft surfaces (e.g. organic and 

biological samples).

A by-product of tapping mode has become one of its strengths: not only is 

topographical data obtained from the change in force, but also amplitude 

and phase data are obtained and give their own information about the 

sample.

The amplitude will actually be maintained at the same level, however the 

voltage required to alter the z height using the piezoelectric system is 

recorded. This can be displayed and will usually show greater contrast of 

surface images than the topographic image. The phase data is the difference 

between the phase of the measured oscillation and that of the driving 

oscillation of the cantilever. This can provide information on surface 

properties such as adhesion and friction.
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1.4.3.3 Non-contact

Although this is often considered the same as intermittent conctact, this 

mode has some different applications and can be defined separately. In non- 

contact imaging, the cantilever is oscillated above the surface, never coming 

into contact[99]. Instead it operates in the attractive regime of the inter- 

molecular force curve. The advantage of this mode is that it does not risk 

any damage to the surface, however a disadvantage is that it can be difficult 

to bring the cantilever near to the surface and yet keep it distant enough to 

not "jump into contact" with the surface due to the attractive forces between 

tip and sample. In ambient conditions such a jump could even be caused by 

a capillary bridge between water on the tip and on the sample[99]. The force 

is detected in the same way as for tapping mode.

1.4.3.4 Related force microscopy methods

The distribution of electrical charge on a surface can be studied in a non- 

invasive/non-destructive manner by using non-contact force microscopy to 

probe the long-range electrostatic Coulomb forces. In order to eliminate the 

influence of charge from other sources of tip-sample interaction forces 

Electrostatic Force Microscopy (EFM) has been developed in which an AC 

voltage is applied between tip and sample. The frequency of oscillation of 

this signal is far lower than that of the cantilever oscillation. The force 

gradient between the tip and sample is measured experimentally, and its 

oscillation depends on the charge on the surface, allowing the surface charge 

to be mapped. Interestingly the study of the charge decay over time is often 

used to look at surface characteristics particularly charge mobility! 100].

Although lateral force effects are often seen as a disadvantage when scanning 

using contact mode AFM, they can be specifically exploited to give
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information about the friction of a flat surface in Lateral Force Microscopy 

(LFM) also referred to as frictional force microscopy[98]. In LFM, regions 

with different friction exhibit different contrasts when imaging, although the 

line profile is not the same in the trace and retrace, reflecting the "push or 

pull" of the cantilever as it scans. The result is both normal and lateral force 

data being obtained[101].

1.4.4 Force Measurements

As the tip moves across the surface it experiences forces of attraction or 

repulsion depending on its proximity to the surface and the composition of 

the surface. This interaction can also be used to measure the tip's adherence 

to the surface at a specific point, providing information about the surface 

properties locally. The interaction between tip and sample at its most basic is 

due to van der Waals forces, as well as electrostatic forces, and in ambient 

conditions there is a capillary effect due to moisture on the surface.

To measure this interaction the tip is lowered into contact with the surface at 

one point or sequentially over a series of points, to a specified set point, and 

then raised from the surface. The force of the interaction is measured 

throughout this down-and-up motion, resulting in a force curve. These 

resulting graphs have distinctive shapes for different interactions [102]. A 

surface that repels the tip will give a different force curve to one that is 

"sticky" from the tip's point of view. The presence of compressible layers, or 

breaking structures on retraction of the tip, can also be observed.

The force on the cantilever during contact can be described simply by 

Hooke's Law

F = -kx  1.11
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in which F is the force, k is the spring constant of the cantilever, and x is the 

deflection of the cantilever. The force laws governing the interaction 

between the tip and the sample are expressed in terms of force as a function 

of the tip-sample distance, D, hence F(D). Often with AFM systems D is 

worked out from the piezo movement and cantilever deflection rather than 

independently. On a hard surface, when surface contact is established, at 

"zero separation", the cantilever deflection is directly dependent on the 

piezo movement, which is seen in the force curve as a straight line of unit 

slope[103], also known as the slope of constant compliance[102]. On other 

surfaces this point of separation can be hard to determine. The rest of the 

curve shows the forces experienced by the cantilever on approaching and 

retracting from the surface.

Force studies include the measurement of adhesion forces, the calculation of 

properties such as elastic modulus of a surface from indentation studies [104], 

protein folding/unfolding studies, and even the study of cellular creep under 

a constant compressive force[105].

1.4.4.1 Force in liquid

In aqueous conditions, the problem of the capillary force is eliminated and 

there is no jump into contact due to moisture bridging the tip-surface gap. In 

liquid, electrostatic forces can play a much stronger role in the tip-surface 

interaction[106]. This is because even in water, many surfaces have a net 

charge, either through the dissociation of groups present on the surface, or 

through the adsorption of ions onto the surface. An electric field is then 

present at the surface, the strength of which decreases with distance 

exponentially. As described in section 1.3.2, the surface charge then attracts a 

layer of co- and counter-ions forming the electrical double layer[81]. The
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interaction of the tip with the surface is subject to electrostatic interaction. 

There is also an osmotic pressure near the surface due to the concentration of 

ions, which adds to the repulsive force on the tip.

In a study by Butt, the impact of salt concentration and pH on force curves 

on mica and glass with tips of varying material, and hence varying surface 

charge, was observed [106]. For example, increasing the salt (KC1) 

concentration caused the repulsive force to decrease. The repulsive force 

also decayed more steeply and the van der Waals component of the 

interaction was more easily observed. In work by Muller and Engel the 

effect of pH and electrolyte concentration on measuring biomolecules due to 

electrostatic forces was found to be significant, suggesting that the 

environment for investigations needs to be controlled and consistent[107].

1.4.4.2 Measuring adhesion

Adhesion of tips to cells is one way of investigating the cellular surface. 

Some research has taken the approach of using cells as the probe instead of a 

regular AFM tip to allow direct measurement of single cell interaction forces 

with a substrate[108, 109]. Physiological properties of cells such as surface 

charge and hydrophobicity are found to play an important part in such 

interactions. The adhesion force is the attractive force maximum on 

retraction from the surface, relative to the baseline force[102,110]. However, 

there is more information to be gained from looking at the curve shape as 

well as this simple value. When the tip is being kept in contact with the 

sample during retraction due to adhesion the cantilever is still being 

removed from the surface, so the range of separation for which the adhesion 

interaction continues is also important! 102].
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1.4.4.3 Modelling indentation

Indentation studies can lead to host of mechanical information about whole 

cells [104], such as elastic moduli, spring constants and even the internal 

turgor pressure of the cell[lll, 112]. Investigation using indentation of 

surfaces with the AFM requires both the sample surface and a hard reference 

surface to be probed for comparison. The loading force for the interaction 

can be varied, allowing a graph of force vs. indentation to be plotted and 

then analysed. The most commonly used analytical model is based on the 

Hertz theory[104, 113] and describes the deformation of two homogenous 

bodies touching under an applied load. There are two other large 

assumptions for this model: that the indenting body is parabolic in shape, 

and that the indentation depth is much smaller than the thickness of the 

indented body, less than 10%. When the material from which the tip is made 

is much harder than the material of the sample, the elastic interaction is used 

to calculate the force dependent on the indentation F(h) using the following 

equation:

4 E s[ r  3/  1.12F{h) = 1 I L 2
3(1- v 2)

Where h  is the indentation depth, E is the elastic modulus of the sample, v is 

the Poisson ratio (usually set at 0.5 for biological surfaces[114]), and the tip 

has a radius of R[103].

Hertz modelling for this interaction has some problems however; it does not 

take into account the adhesion between the tip and the sample. Thus if tip- 

sample adhesion is negligible a Hertzian approach is adequate, but if tip- 

sample adhesion is not negligible it needs to be accounted for in some way.

The Sneddon approach develops the Hertz model for a flat, deformable 

substrate and a hard indenting tip which can be modelled as a conical shape.
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At times Sneddon is used alongside Hertz for comparison[115]. Other 

possible models include the JKR (Johnson, Kendal and Roberts) model, and a 

model suggested by Sirghi and Rossi, both of which account for the effect of 

the adhesion force in indentation[116]. The latter is used in a study on live 

mice fibroblast cells, under physiological conditions, in which the theoretical 

predictions for the elastic moduli of cells match well with the force 

displacement curves resulting from indentation.

The shape of the tip is key to this kind of study, and approximation of the tip 

shape is required for determining the elastic modulus. Conical and parabolic 

approximations for the tip are commonly used[104]. It is also likely that the 

shape of the tip will affect the indentation quality of the sample, for example 

a sharp tip will exert a more localised force than a rounded tip. The tip 

should also experience negligible deformation.

The following diagram from the Heinz and Hoh paper which appeared in 

Nanotechnology in 1999[103] neatly summarises the force equations for 

various approach and retract scenarios. This paper gives a thorough 

overview of the force spectroscopy techniques, the origin of the methods and 

its uses in biology.

54



C hapter 1: Introduction

App'oach

a v an  der  W aa ls

F i D  ) * 12D-

Retract on

e  A d h e s io n

b Electrostatic

r \v

__ 4xRtA>jC>.
f Capil lary  fo rce

oiL

c B r u s h

- o ,i-iD \  *  e*

u ••«. am  -  ov

g Polym er ex tension

dJ- W —1a  \ , \ s  >

ri-T

d Elastic

30-v7}

h  B i n d i n g

0  -  k / ini'r. t

i?9v

Definitions

A H3T3«*r constaTi T Ac some ieTp*r3tu'e A Cnarac!ei60c lengti o' to rd
i Monomer ie*>gn U E :rd e"e a> X Debye leogtn or n e  Teaicm
c F-ooe-samcie separsucn d stare* K E oro3ton*of p:iyner V Angle - ta le  3 to tie geometry or
E Easii: r o c ju i the tp -saT p e  contan
t EofizrarVi constant 6 hcertatJcn deptn O h Cu**3ce“cr,jrge censity of spre'e
L E-vsn n»:xn**s i  a go:d so vent t Oieiecrc of tie nreaiLT Os Su"3ce-crarge censity of saTpie
L’ inverse n rjrero" 7 Surface e ie 'g . cei*een tp t F*'03 over vsflch ire Cord vvl

N iT te r s f jn ^  np:»yr>er and sanpe r-p-re
R Rad js  or p-o:e s:r»er’e ft Surface eoe*gy :f tre iqi a *c Recip-ccai c* ire r.atrai to*'a
t Mean d stance oeraeer c o d e 's V Pcisscn rano frequency

Figure 1-9: Typical force spectra and the formulae to describe them, from Heinz and 
Hoh 19991103].

As Heinz and Hoh discuss, the next step in elasticity studies is the generation 

of spatially resolved force data. By compiling data over a variety of points 

on a surface a force m ap can be generated, providing information about the 

changing elastic properties of a surface[115]. An example of this kind of 

study is the m apping of canine kidney cells by A-Hassan et al, who 

developed force integration to equal limits (FIEL) m apping, which is
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independent of the tip-sample contact point and the cantilever spring 

constant, and works by relating the work done by the cantilever to a local 

elastic constant[114].

1.4.5 Atomic Force Microscopy and Biology

There are many studies that use AFM to image the topography of biological 

surfaces. It is useful to be able to see of what the surface structure comprises 

w ith greater than optical resolution. With different AFM approaches the 

sample's mechanical, chemical, adhesive and electrostatic properties can be 

studied[110]. In general, biological surfaces are soft in comparison to 

inorganic surfaces and thus low force setpoints are used in biological AFM 

studies[80]. Force spectroscopy studies are also used often for characterising 

biological samples, either to measure adhesion or to calculate mechanical 

properties, or to look at specific binding between a functionalised tip and 

surface[117]. Studies of protein or single molecule characterisation have also 

been conducted with the molecules in situ on a cell surface. Wright et al's 

paper from 2010 reviews in depth the use of AFM to study cell surface 

molecules, whole cells and biofilms[118].

1.4.5.1 Liquid imaging

Liquid imaging using AFM requires a suitable scanner if it is to be successful, 

in order that the liquid does not damage the scanner. The image can be 

gathered in the same ways as AFM in air but the sample is kept under a 

liquid layer, usually contained within a liquid cell. The liquid used depends 

on the nature and purpose of the study, for example using paraffin oil to 

maintain a water-free environment[93]. When imaging in liquid the laser 

m ust be realigned when the cantilever is in the liquid as the change in
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refractive index from air to water affects the apparent angle of deflection of 

the laser from the cantilever. Despite this extra preparation, liquid imaging 

has great advantages. There are two main reasons for a preference for liquid 

imaging in biological AFM: firstly the quality of image obtained, and 

secondly the opportunity to image under conditions that mimic those of 

living environments. The quality of images produced under liquid have the 

potential to be better than those in air as the effects of ambient noise are 

reduced, since vibrations pass more easily through air than through liquid 

media. This means that greater resolution of surface features can be achieved 

with liquid imaging.

Sample preparation needs more thought when the imaging is to be 

undertaken in liquid. It is impossible to use AFM to image material that is 

floating freely in a liquid medium. Samples must be fixed to the substrate 

under the liquid. This is where the imaging of living cells becomes much 

more complex. How can the cells be fixed to a substrate under liquid 

without interrupting their living processes? This problem has been solved in 

a number of ways for different reasons, as discussed in the next section.

1.4.5.2 Live cell imaging

Imaging cells that are immobilised usually means that they are no longer 

living. However, live cell imaging is possible and proffers new insight into 

the cell surface. Kasas et al imaged cells that were cultivated on glass slides, 

after being washed and then re-immersed in new media, in 1993[119]. The 

researchers experienced problems in that the cells were not strongly bound 

to the surface, with some of them missing from subsequent scans of the same 

area, presumably due to being knocked off the surface, as well as difficulty in 

imaging whole cells individually. When rescanning the same area on a cell
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surface every five minutes, height changes resembling a wave were seen to 

propagate across the surface. This change in surface height was argued, 

alongside microcinematography, as evidence that the cell was alive with 

some function occurring at its surface.

Kasas also worked on a mechanical entrapment method for living cells, using 

a Millipore filter with a pore size comparative to the diameter of round 

cells [120]. This method ensured that the cells would not be removed from 

the surface by the action of the AFM tip, allowing them to be repeatedly 

imaged. Subsequently this method has been used in other research, such as 

the timelapse study of enzyme digestion of the cell wall of S. cerevisiae 

cells [121]. The limitations of this method of immobilisation are the shape of 

the cells being studied, as rod like cells will not sit in the pores in the same 

way as round cells, and also the possibility of force measurements being 

affected by the anchoring method, since the cell is supported in a pore and 

cannot expand if indented as it might on a flat surface. The amount of cell 

accessible within the pore may also limit the extent to which cellular living 

processes can be observed.

Chemical immobilisation of cells for imaging under liquid can also work for 

live cells. Cells are incubated onto a surface which has been coated in a 

chemical for adhesive purposes, such as poly-L-lysine[105, 122, 123], or 

gelatine[124]. Cells partly embedded in agarose gel have also been imaged, 

without any other buffer as the gel layer was seen to provide suitable local 

aqueous conditions for the cells[122].

1.4.5.3 Time-lapse AFM

Changes in morphology and life functions of bacteria have been observed 

through repeated AFM scanning of the same area at different times. In this
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way the digestion of S. cerevisiae cells by protease has been observed to cause 

an increase in roughness due to the breakdown of the outer layer of the 

cells[121]. The variation in cellular topography with growth phase has been 

observed, alongside a study of response to colistin for Acinetobacter baumanii 

strains, showing a variation from rod-like colistin-susceptible cells to 

spherical colistin-resistant cells[125]. Time-lapse AFM has also been used to 

demonstrate the bactericidal application of treatment with low-temperature 

plasma[126].

Combined AFM and Raman spectroscopy has shown that the amount of 

material expressed at the cell wall, including proteins, lipids and 

carbohydrates, changes over time. This corresponds to a change in surface 

roughness [127]. Using Raman spectroscopy with AFM allows the 

composition of the surface under study to be explored at the same time as 

gaining topographical AFM data.

1.4.5.4 Imaging o f cellular components

The structure of cellular machinery can be examined using AFM imaging. 

An example is the imaging of the assembly FliG proteins, functional 

components of the "nano-motor" that drives flagellar motion in motile cells, 

on both mica and bilayer membranes used to imitate a cellular surface[128]. 

Conducted in liquid media this work looks at how these proteins aggregate 

in terms of size and shape of aggregation under varying circumstances, in 

order to understand their role in the model of the nanomotor.
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1.4.6 Force spectroscopy: biological applications

Force spectroscopy in biology has been used to evaluate cell to tip adhesion, 

cell probe to surface adhesion, the elastic moduli of cells, the turgor pressure 

of cells, cell surface charge, forces between biomolecules, forces within 

biomolecules, and the deformation of cells via constant compressive 

force[108, 111, 117,129-134].

Single molecule force studies can involve the probing of individual 

macromolecules by a sharp or functionalised tip[135, 136]. Once attached in 

contact to the tip, these molecules can be stretched, the resulting unfolding of 

the molecules affecting the shape of the resultant force curves. These studies 

can be conducted in situ, when the macromolecules are present on a cellular 

surface[137, 138]. Studies in which a specific molecule is immobilised at the 

tip, such as an antibody, which will "recognise" through binding a co­

molecule, such as an antigen, have termed this method molecular recognition 

force microscopy (MRFM)[117]. This was used in conjunction with imaging 

of Bacillus subtilis spores, where an antibody tethered to the tip was used to 

bind to a surface antigen after imaging revealed the surface structure of the 

spores[139].

Research into oral bacteria and their adhesive capability has an obvious 

application in dental hygiene. Oral Streptococci convert sugar the diet into 

glucan molecules which they use to adhere to dental surfaces and the acid 

they produce as a by product of their living processes erodes teeth. Research 

by Cross et al investigated the adhesion on teeth of Streptococcus mutans wild 

type and gene inactivated mutants, which were impaired in their production 

of the glucosyltransferases (Gtf proteins) that are used in glucan 

production[128]. It was found that S. mutans mainly adheres through 

glucans in the presence of sucrose. Local glucan adhesion strength has also 

been shown to increase over time[140]. Other than making one want to
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brush one's teeth, this example illustrates how macromolecular mechanical 

properties (probing the glucan molecules) can be compared with force 

measurements on individual cells to evaluate adhesion.

Similar studies have looked at polysaccharides on the surface of Lactobacilus 

rhamnosus GG, which promotes health, being a "probiotic" bacterium present 

in the hum an body[141]. The surface polysaccharides were investigated 

because they were reported to contribute to biofilm formation by this 

bacterium. It was found that several different polysaccharide types were 

present on the cellular surface.

The polymer brush layer of Pseudomonas putida KT2442 was studied using a 

sharp tip, allowing the effect of salt concentration, from pure water to 1M 

KC1, on the cell surface polymers to be compared with theoretical 

predictions[142]. At salt concentrations higher than 0.01M the brush layer 

became more rigid and compressed and adhesion forces increased. The 

researchers make a good case for the effect of environment on the 

conformation and associated adhesion of extracellular polymers.

Salt concentration and pH were also found to be important in work with 

Aspergillus niger spore probes[134]. The adhesion of these cells to mica was 

measured under varied salt and pH conditions, and a study of the effect of 

loading force on the adhesion was also carried out. It was found that long- 

range electrostatic repulsive force was decreased as the pH became more 

acidic, but this did not correlate with changes in adhesion. These kinds of 

experiments demonstrate that the interaction is heavily influenced by the 

environmental conditions.

Other experiments have examined the effect of more complicated substrates, 

such as work using a yeast cell probe to calculate adhesion to surfaces of 

varying roughness, including smooth silicon and silicon coated with 

hydrophilic silica particles of either llOnm or 240nm diameter[143]. A silica
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particle probe was also used for comparison on these surfaces. It was found 

that increasing roughness reduced the silica particle's adhesion, and slightly 

increased the yeast cell's adhesion. The influence of the loading force 

applied and the surface hydrophobicity was found to have more impact than 

the roughness however. The effect of hydrophobicity on interactions 

between an AFM tip and Lactobacillus strains showed that when the cell and 

tip were both hydrophobic or hydrophilic there were stronger interaction 

forces than when they had opposing hydrophobicities, with little influence 

from ionic strength[144].

Elasticity maps of lactic acid bacteria have shown variation in the surface 

properties of different strains. Lactobacillus crispatus and L. helveticus showed 

homogenous stiffness, which was postulated to be due to the s-layers of these 

bacteria, whereas L. johnsonii strains were found to have high adhesion 

forces, correlating with their polysaccharide dense surfaces. Interestingly 

one L. johnsonii strain showed less adhesion and through imaging its 

topography showed depressions on the surface, leading the researchers to 

suggest that its surface has a pattern of bare s-layer areas alongside 

polysaccharide rich regions [123].

1.5 Aims and objectives of thesis

The organism S. oneidensis is important for both microbial fuel cells and 

biosensor applications. It is also useful as a model organism due to the 

genomic[42] and interaction[47] research that has been discussed in this 

chapter. For these reasons S. oneidensis merits further research in its own 

right and as a model organism in the consideration of MFCs and related 

research. Within MFCs the chemical environment is a key factor in the 

microbe-electrode interaction. Since S. oneidensis is capable of electron
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transfer through direct contact and at a distance[50] it is likely that this 

organism will work in MFCs with varied chemical environments, however in 

order to control cell-electrode contact, especially with a view to multi­

organism MFCs [35], a working knowledge of environmental effects on cell- 

surface binding is essential.

To begin with a comprehensive microbiological picture of MR-1 growth and 

colony development in liquid media is needed. To develop this will require 

monitoring cell population growth, and developing concentration estimates 

and specific growth rates. Further to this the size, shape and surface features 

of MR-1 cells over time will be recorded and verified against existing data in 

the literature[41]. All of these studies will be undertaken for cells grown in 

oxygen-rich and anoxic environments in order to better understand the 

necessary metabolic differences between organisms adapting to different 

environments, and how these differences are manifested physically. This is 

particularly relevant to MFCs as it S. oneidensis MR-1 is maintained in an 

anoxic environment in the MFC set up. Comparisons between anaerobic and 

aerobic populations may also provide insight into naturally occuring 

populations living in lake sediments which are likely to bridge both oxygen- 

rich and oxygen-depleted zones depending on the depth of sediment and the 

lake environm ental]. Thus the first aim of this research is to create a 

comprehensive profile of aerobically and anaerobically grown populations 

including growth profiles, microbe morphology, and surface charge in 

relation to chemical environment. Colony growth will be investigated using 

optical density as a measure of concentration over time, and correlated with 

dry mass and colony forming units. The physical presentation of the 

microbes over time will be observed using AFM imaging due to ease of 

sample preparation. The surface charge will be investigated by calculating C- 

potential from electrophoretic mobility measurements. As well as
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monitoring the C-potential over time it will be calculated for varying salt 

concentrations of buffer. All of these assessments will be done for both 

aerobically and anaerobically grown populations and with two different 

types of growth media.

Once this context is established the next goal is to assess and measure the 

interaction of MR-1 cells with surfaces relevant to gram-negative cell binding 

in general, to metal-reducing metabolism specifically, and to materials used 

in microbial fuel cells as well. The two methods used as part of this study 

will be SPR and AFM, the former providing information about cells in 

solution under flow and the latter providing information about cell-coated 

surfaces probed both with sharp tips and with mineral colloid probes. The 

mineral probes will be iron oxide, in order to be able to compare work with 

that done by Lower et al using cell-coated probes and goethite surface[48], 

and graphite as this is the material most commonly used to make MFC 

electrodes[145].

A study of the interaction behaviour of MR-1 when presented with a 

substrate approximating an MFC electrode will be undertaken in order to 

demonstrate that cell-electrode interaction kinetics can be quantified before 

MFC construction allowing design factors such as chemical environment to 

be considered in isolation. The basis for this study is in work by Lockett et al 

in which SPR was used to assess binding to a carbon coated sensor 

surface[146]. This method has only been used so far to assess the binding of 

DNA arrays to the carbon surface and has never previously been used with 

whole cells. Describing the non-specific binding of cells to an electrode- 

approximating surface will be the next challenge and will look to other 

whole cell SPR studies[69],[63] in order to present the data in line with recent 

publications.
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The overall aim is to present a comprehensive profile of the organism S. 

oneidensis MR-1 and to demonstrate new methods of characterisation with a 

view to both MFC design and wider characterisation of microbe-manmade 

interfaces.
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2. Materials and Methods

2.1. General laboratory methods

At all stages of study reproducibility, accuracy and safety were the foremost 

considerations. Preparation of cell cultures and harvesting of cells for 

sampling was undertaken in a specialist laboratory run according to 

Biosafety Level 2 guidelines. Glassware and other equipment, where 

appropriate, was sterilised before use by autoclaving using a steam autoclave 

(Priorclave, London) at a temperature of 120°C for 15 minutes. Glassware 

was then allowed to cool to room temperature before being rinsed 

thoroughly with deionised water. Used glassware was autoclaved in a 

similar way, then the contents rinsed out and the glassware soaked for at 

least 2 hours in hot water and Decon 90 glass wash detergent (Decon 

Laboratories Ltd, Hove, East Sussex), before being thoroughly rinsed and 

allowed to dry at room temperature.

When preparing media, liquid volumes were measured by either 10-50pL, 

50-1000pL or l-5mL Thermo Scientific Finnpipette adjustable pipetters. 

Larger volumes were measured using sterile measuring cylinders. Solid 

ingredients were weighed out to an accuracy of 0.001 grams using a Voyager 

precision balance (Ohaus, New Jersey, USA).

Unless otherwise stated, chemicals were laboratory grade and sourced from 

Sigma-Aldrich, Gillingham, Dorset. Laboratory consumables other than 

chemicals such as glassware were sourced from Fisher Scientific, 

Loughborough, Leicestershire.
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2.2. Bacterial culture

Stocks of Shewanella oneidensis MR-1 were subcultured from an original 

ampoule ordered from NCIMB Ltd, Aberdeen (bacterium account number 

14063, reference 49:721). Two types of media were used, each being 

prepared as solid agar based media, aerobic liquid media, and anaerobic 

liquid media.

Type of media Components Concentration (g/L)

Luria Bertani (LB) agar Nutrient Agar 25

LB powder 20

LB aerobic liquid LB powder 20

Lactic acid 6.7ml in 1L

LB anaerobic liquid LB powder 20

Lactic acid 6.7ml in 1L

Sodium fumarate 9.6

Tryptone soy (TS) agar Nutrient agar 25

Tryptone 15

Soya protein 5

Sodium chloride 5

Dipotassium phosphate 2.5

TS aerobic liquid Tryptone 15

Soya protein 5

Sodium chloride 5

Dipotassium phosphate 2.5

TS anaerobic liquid Tryptone 15

Soya protein 5

Sodium chloride 5

Dipotassium phosphate 2.5

Sodium fumarate 9.6

Table 2.1: Ingredients for each different type of media used.
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Cells were cultivated initially on agar, with new plates inoculated every 5 

days. Agar plates were incubated at 30°C and sealed with plastic film to 

prevent them from drying out. Fresh agar plates were inoculated from 

established agar colonies using a sterilised scraper to collect living cells and 

to deposit them on the fresh agar. Pre-prepared agar plates were made using 

autoclaved agar mixture made according to the composition shown in table

2.1 and treated with UV light to maintain sterility. They were then sealed 

and stored.

Aerobic liquid media was poured to a volume of 100ml in 250ml conical 

flasks stoppered with cotton wool and sealed with foil before being sterilised 

by autoclaving. Anaerobic liquid media was made up and then heated until 

boiling. Whilst cooling down in a water bath oxygen-free nitrogen gas (BOC, 

Guildford, Surrey) was bubbled through the media. Nitrogen gas was also 

piped into 100ml serum bottles that were then filled with media via a 

syringe. Once the desired amount of media had been put into the serum 

bottles they were closed with a rubber injection stopper after "double 

dosing" with nitrogen to ensure lack of oxygen, and the bottles were sealed 

with aluminium crimp seals clamped around the lip of the bottle opening. 

The prepared serum bottles were then autoclaved.

Solid media was prepared in 1L conical flasks, and then autoclaved. 

Afterwards the media was poured into sterile petri dishes when still hot, 

under asceptic conditions, and sterilised again under UV light (Bioquell UV 

lamp, Bioquell, Andover, Hampshire) once set.

Cells were harvested at 20 hours (except during studies where the culture 

age was varied) and washed by spinning down twice at 6000rpm for 2 

minutes, pipetting off the supernatant and diluting the pellet with distilled 

water each time.
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2.3. Initial studies ofShewanella oneidensis

2.3.1. Growth curves by optical density

Cells were harvested, as described above, every hour from inoculation for a 

24 hour period. The resulting suspension was then diluted: 1ml cell solution 

to 2ml pure water, for 3 samples. The optical density (OD) of the dilute 

solution was then measured for each sample using a Unicam UV 300 UV- 

visible spectrophotometer (Pye-Unicam, Cambridge) at a wavelength of 

660nm, with the resulting measurements used to provide an average. This is 

a method providing results rapidly after minimal sample preparation.

The OD values were then plotted against time to give a curve. As OD is an 

indication of concentration, this curve demonstrates the growth of cell 

population over time from inoculation. In order to convert OD to 

concentration the OD at a specific age of culture was compared with other 

cell quantifying methods, as described in the next sub section.

2.3.2. Determination of concentration

Concentration of microbes in solution can be determined by three 

mainstream methods. The first is cell counting using a Haemocytometer. 

Although this method is the most suitable as it provides a total concentration 

in cells per unit volume (including both living and dead cells, distinguishing 

between the two would require staining), it does require viewing the 

microbes (in a specified volume cell) through an optical microscope in order 

to count the number of cells per unit volume. Unfortunately, since the size of 

S. oneidensis MR-1 cells is close to the resolution limit of optical microscopy in 

air this method was not possible using the equipment available to this study.

W ithout a haemocytometer count, determining the total number of cells both 

living and dead is a matter of estimation, as the other two methods are a)
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colony forming unit (CFU) counts, which takes into account only living cells 

that can form new colonies, and b) dry weight estimation, which gives a 

concentration in terms of mass per unit volume not numbers of cells.

In order to determine the number of colony forming units, the sample was 

first harvested from culture in the same manner as detailed earlier. This was 

then diluted with varying amounts of M9 salt solution (which halts growth 

until the sample is plated out) and the resulting solution was plated out onto 

LB agar.

M9 salt solution Component Concentration (g/L)

Sodium phosphate dibasic 60

M onopotassium phosphate 30

Sodium chloride 5

Ammonium chloride 10

Table 2.2: Composition ofM9 salt solution

After allowing 24 hours of growth, the number of colonies on the plates was 

counted. Each separate colony represented one live cell or CFU in the 

solution used for that plate, and so an estimate of CFU in the original sample 

could be made using the concentration calculated from each plate. This was 

done by a simple calculation taking into account the concentration of the 

solutions and the volume.

Concentration of colony forming units = number of colonies/dilution of sample

Dry weight measurement gives the amount of biomass per unit volume. 

Weighing boats fashioned from foil were weighed for a baseline mass 

measurement, and then a specific volume of washed cell solution, harvested 

as described, was placed in the boat to dry. The mass of the boat and

70



Chapter 2: Materials and Methods

solution was measured at regular intervals and once the sample was fully 

dry these measurements converged. When the mass was the same on 

repeated consecutive weighing, that mass was taken as the biomass of the 

sample. This method provides a concentration in grams per unit volume. 

Three foil boats were used and the average of the biomass in each was taken 

to provide a concentration value, which was then used to convert OD curves 

into concentration in terms of mass against time.

Once the cell concentration was known in dry mass against time, the curves 

were analysed further by plotting semilogarithmic graphs, in which the y 

axis was converted to the natural logarithm of the concentration. In the 

semilogarithmic plots the exponential growth phase appears as a straight line 

and the slope of that line is the specific growth rate of the bacterium[l].

2.3.3. Cell size using High Performance Particle Sizer

The size of harvested cells was measured using Malvern Instruments High 

Performance Particle Sizer or HPPS (Malvern Instruments Ltd, Malvern, 

Worcestershire) with NIBS DTS software. This uses dynamic light scattering 

to measure the size of particles in solution. Samples of a minimum volume 

of 5ml were prepared in "disposable sizing cuvette DTS0012" with care to 

prevent air bubbles that would affect results. The cuvette was placed into 

the HPPS cuvette holder and measurement taken.

The results are presented in graph form showing numbers of particles for 

each size, displaying a peak at the most common particle size. The sharper 

the peak the more homogenous the sample in terms of particle size.
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2 3  A. Potential

Electrophoretic mobility measurements were made using the Malvern 

Instruments Zetasizer 2000 (Malvern Instruments Ltd, Malvern, 

Worcestershire) using electrophoretic light scattering as described in section 

1.3.2.1. Cells were harvested by the same method as previously described 

and made up into solutions of 20ml (2ml of undiluted solution and 18ml of 

water or saline solution). For the study comparing harvested aerobic and 

anaerobic cells from LB and tryptone soy growth media, sample solutions 

were made up in either pure water or salt solution varying from 1M to 

0.0001M NaCl, and with a range of pH values from pH 1 to pH 10 (10 

values). For the studies of aerobic and anaerobic cells harvested every hour 

over a period of 24 hours, solutions were made up in pure water at five pH 

values ranging from pH 2 to pH 10.

For each zeta potential measurement, 20ml of sample solution was injected 

into the Zetasizer, with care to avoid air bubbles, and 20 measurements were 

taken with the second ten used to calculate an average for that solution. The 

C-potential was calculated from the measured mobility values using 

Smoluchowski's equation rearranged to give C-potential in terms of viscosity, 

r\, permittivity, e, and mobility, jur:

£

C-potential and mobility were plotted against pH to show regions of 

stability/instability. The cell suspension was deemed stable, and therefore 

more likely to maintain dispersion of cells throughout the buffer at pH 

values resulting in a C-potential of 30mV or higher, or -30mV or lower. The 

isoelectric point, at which dispersion stability is lowest and cells are most 

likely to flocculate, for the cells in each solution could also be estimated from
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the plot as the point in pH at which the resultant plot line crossed zero on the 

C-potential axis.

The m easurem ent chamber was rinsed thoroughly w ith pure w ater between 

each measurem ent. Between each set of results the system was double 

checked by taking m easurem ents w ith pure water to ensure consistency of 

results.

2.4 . SPR e x p e r im e n ts

SPR studies were carried out using a BIAcore X system (GE Healthcare UK 

Ltd, Little Chalfont, Buckinghamshire) with compatible test surfaces, known 

as sensor chips, also sourced from the system provider. Sensor chips are able 

to be functionalised according to established protocols in the BIAcore 

handbooks. The system was m aintained according to the protocols advised 

by the BIAcore handbooks and a system check was undertaken before each 

new round of experiments, with any problems being addressed by specific 

maintenance procedures before repeating the system check to ensure the 

problems were fixed.

Figure 2-1: CM5 sensor surface, mounted onto plastic frame to form sensor chip 
which fits  into plastic holder. The holder keeps the surface dust free and covered 
until installed into the BIAcore system.
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For the first set of experiments the amine-coupling protocol was used to bind 

poly-L-lysine to the surface of a CM5 (dextran on gold) chip. Samples were 

dissolved in a basic buffer: 0.01M Hepes, 0.15M NaCl initially, at the 

appropriate pH, and the same buffer was used as the running buffer in these 

experiments to prevent buffer effects from affecting the response. Later 

assays were conducted, changing the buffer salinity, at concentrations of 

0.1M, 0.01M, 0.001M and 0.0001M NaCl. Sample injections and running 

buffer had a flow rate of 20 pL/minute and 30pL of sample was injected at a 

time.

The net change in response units (RU) from before injection to post-injection 

was recorded and then averaged over three separate measurements. The 

change in response was used as an indication of the mass bound, and 

therefore of the adhesive qualities, of the cells for comparison between 

samples. After each injection the chip surface was regenerated using a 30pL 

injection of 1M NaOH. This regeneration protocol was developed in several 

assays to assess the suitability of different common regeneration solutions.

For the study of binding against culture age for both aerobic and anaerobic 

growth media, cells were harvested every hour from the growth media and 

suspended in water at x5 dilution (1ml harvested cells to 4ml pure water). A 

volume of 30pL of the resulting solution was then injected over a poly-L- 

lysine functionalised CM5 chip at a flow rate of 20pL. For each sample three 

different injections were made and the average net change in response 

calculated. The surface was regenerated after each test with 30pL of 1M 

NaOH.

The final study required a specially made surface coated with amorphous 

carbon. Plain gold sensor surfaces (from BIAcore SLA Kit Au) were coated 

with a layer of amorphous carbon by physical vapor deposition (PVD), using 

a PVD 75 (Kurt J. Lester Company, Hastings, East Sussex), to a thickness of
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2nm for the first surface and lOnm for the second. The resulting sensor 

surfaces were then mounted onto the plastic supports provided with the bare 

surfaces, so as to be usable in the same way as pre-prepared BIAcore chips. 

Sample concentration and flow rate were varied for both aerobic and 

anaerobically grown bacteria on each carbon coated surface. Regeneration of 

the carbon surfaces was achieved using BIAcore desorb solution 1, normally 

used in the BIAcore desorb protocol for maintaining the system, after testing 

the suitability of the common regeneration solutions and finding that no 

others were able to regenerate the surface. For comparison cell solutions 

were also injected over a plain gold, untreated, sensor surface.

2.5. AFM

For AFM studies sample preparation is an important factor. Biological 

samples can be allowed to dry, but this will affect the results. Thus it is 

important to view AFM data in context of how the sample was prepared and 

maintained. AFM imaging in air was undertaken using a Veeco Dimension 

3100 (Veeco Instruments, Cambridge). Force measurements in liquid and 

liquid imaging were undertaken using a JPK Instruments Nanowizard (JPK 

Instruments, Berlin, Germany).

2.5.1. Imaging

For the most basic tapping mode in air images, cells were harvested in the 

usual way and then a droplet of solution was placed onto freshly cleaved 

mica and allowed to dry in air (minimum drying time of half an hour for a 

droplet of volume 50 pL). The mica had been previously affixed to glass 

sample slides using double sided sticky tape to provide a sturdy base.
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Veeco non conductive silicon-nitride tapping cantilevers, with spring 

constant k=42N/m and frequency f=300kHz, were used at a setpoint of 

around IV. Different size images were taken at scan rates appropriate to the 

sample, using 1Hz as a starting point and decreasing to 0.5Hz or 0.2Hz if 

necessary. Laser alignment and cantilever oscillation frequency were 

calibrated before scanning and double checked between sets of image scans.

To match up with the OD/Biomass against time growth curves, an AFM 

study was conducted with cells harvested every hour for preparation on 

mica and AFM scanning after drying in air for half an hour.

2.5.2. Probe preparation

Functionalised AFM probes were constructed using the Singer Instruments 

MSM micromanipulator array, comprising an optical microscope with a 

moveable chip holder and camera connected to a computer on which images 

could be saved.

To functionalise a cantilever, a 'tipless' cantilever chip (Park Scientific 

Contact Tipless Ultralevers, model ULCT-NTHW, Park Systems, 

Leatherhead, Surrey) was installed into a holder, which was then held in 

place underneath a glass slide on the microscope. These cantilevers do have 

small tips, however these are so small compared to the attached colloids that 

they do not affect the colloid-surface interaction. The glass slide was cleaned 

thoroughly beforehand. A drop of Loctite UV curing glass bond was put 

onto one end of the glass slide and spread thinly using a cardboard spreader. 

At the opposite end of the slide either iron oxide powder or graphite powder 

was deposited using clean tweezers, and the slide tapped to remove large, 

loose, clumps of powder. The glass slide was then put into place with the
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glue and pow der side facing dow nw ards. The set up for the preparation of a 

colloid probe is sum m arised in Figure 2.2.

O ptical v iew

G lass slide,

Glass bond Mineral particles

C antilever

Light so u rce

Figure 2-2: Diagram showing method of attaching mineral particles to cantilever. 
Cantilever stage can he raised and lowered and the slide stage moved from side to 
side, in this way the cantilever is brought into contact first with the adhesive and 
then with the desired particle.

The position of the pow der particles was used to focus the microscope on the 

lower surface of the slide. The chip holding stage was then raised until the 

cantilever was just visible, m eaning that it was near the surface. The slide 

stage was moved (using a joystick controller) to bring the glass bond into 

view above the cantilever. The end of the cantilever was dipped into the 

glass bond by raising the stage such that the cantilever m ade contact w ith the 

slide. After removing the cantilever from the glass bond it was brought 

dow n onto clear glass to remove any excess glue. The slide stage was then 

m oved once more so that the FeO or graphite particles were visible. Once a 

suitable particle was selected, the cantilever was m anoeuvred into place and
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then brought up to the slide surface such that the end of the cantilever 

contacted the particle. On removing the cantilever from the glass slide the 

particle would be removed as it was now attached to the cantilever. 

Snapshots of the particle and cantilever were taken just before, during, and 

after this procedure.

Figure 2-3: Graphite powder particle shown on glass slide before capture by 
prepared cantilever. The cantilever is out of focus but visible due to proximity to the 
surface, with the target graphite particle just in front of the apex of the cantilever. 
This particle was measured as 5pm by 7.5 pm on the image by comparison with the 
graticule image.

Once the particle was attached to the cantilever, the cantilever chip and 

holder were placed under a UV light source in order to set the glass bond. 

Meanwhile a snapshot was taken of a reference graticule at the same 

magnification and focus position so that the scale of the graticule could be 

correlated w ith the size in pixels of the saved images, allowing the diam eter 

of the particles to be m easured from the "before" pictures pictures with an 

accuracy of ±0.4pm. Once fixed the cantilevers were imaged under the 

microscope to confirm the presence of the attached particle, as shown in 

Figures 2.4 and 2.5.

78



Chapter 2: Materials and Methods

Figure 2-4: Optical microscope image o f iron oxide probe after preparation

Figure 2-5: Optical microscope image of graphite probe after preparation.
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From the graticule images, the diameters of the probes be between 4pm and 

7pm for the iron oxide probes and 5pm and 6pm for the graphite probes. 

During use there is a possibility of deformation or damage to the probes, as 

well as the potential for biological material to become attached to the probe. 

In order to monitor for such problems the probes were photographed under 

the microscope in a similar way regularly in between setting up different 

samples for force studies.

2.5.3. Measuring force interactions

Force curve studies were conducted under aqueous conditions. For the first 

study harvested cells were deposited onto clean glass coverslips of 25mm 

diameter and allowed to dry overnight. The coverslips were mounted onto 

glass slides using capillary forces (a droplet of water was placed onto the 

slide, with the coverslip placed on top of the droplet). Using silicone gel, a 

seal was formed between the coverslip and a plastic ring, forming a dish 

with the sample at the bottom into which approximately 1ml of water or pH 

adjusted salt solution was pipetted, ready for force curve measurements in 

liquid.

The JPK Nano wizard scanning software allows thermal tuning of cantilevers 

in order to correlate the deflection with force via the spring constant. In 

order to do this the probe was first brought into contact with a hard, bare 

surface, in this case clean glass, in air. The JPK system then requires the 

probe to be retracted from surface contact by about 6 pm, in order for force 

spectra to be taken. After taking a force curve on the surface at a default 

relative setpoint of 0.4V, the calibration protocol could be used to fit a line to 

the repulsive regime of the curve of deflection against height. This gave the 

sensitivity in nm/V. The next stage in calibration is the determination of the

80



Chapter 2: Materials and Methods

spring constant, k, using the cantilever response to thermal noise. The spring 

constant is in N/m and thus the deflection in V could be converted to an 

applied force in nN.

Once the calibration had been performed, the probe was used for reference 

curves on plain glass in the solution to be used for the sample measurements 

in order to determine which aspects of interactions were due to the sample 

and which, if any, were due to the glass substrate. For both FeO and 

graphite probes, aerobically and anaerobically grown bacteria were 

compared in water, and then in low salt buffer (0.0001M NaCl) at the 

isoelectric point pH for that type of cell as determined from the C-potential 

studies. The comparison for each began with force ramping, with the 

relative setpoint varied from lOnN to the maximum force at which 

serviceable data could be garnered, and a speed based study, under which 

the approach time was varied from 0.5s to 5s. These investigations suggested 

appropriate speed of approach and force to be applied for useful force 

spectra to be obtained. Using these values two hundred curves were taken 

for each probe/sample/buffer combination over two 30x30pm areas.
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3. General characterisation of Shewanella oneidensis
This chapter provides a comprehensive study of measurable qualities of S. 

oneidensis MR-1 comparable with those in the literature for other bacteria, 

such as colony growth and C-potential as an indicator of surface charge. This 

is the first study to show comparisons of growth for aerobically and 

anaerobically grown MR-1 bacteria in this way, as well as the first to detail 

the effect of pH and salt concentration on the C-potential of MR-1.

3.1. Colony growth and population estimates

The numbers of colony forming units and biomass at 20 hours are 

summarised in the table below, along with the optical density at 20 hours, for 

both aerobic and anaerobic growth media.

Growth condition Colony forming units/L Dry weight (g/L) Optical Density

Aerobic 1010-10n 1.5 0.52

Anaerobic 1010 0.43 0.27

Table 3.1 ‘.Equivalent measures of concentration at 20 hours of growth.

From these data a conversion factor for transforming optical density into 

concentration by mass can be calculated. For aerobically grown cells this 

factor is 2.9, and for anaerobically grown cells it is 1.6.

Figures 3.1 and 3.2 show plots of mass against time using the conversion of 

optical density measurements to biomass. The error bars on these curves 

show one standard deviation either side of the mean value. The errors are 

far larger for the aerobically grown inoculum, however the values, in g/L, 

for the aerobic cultures reach a maximum more than four times that of the 

maximum for the anaerobic cultures. Since the mass is indicative of 

concentration, the larger maximum for the aerobically grown cells 

demonstrate that cell numbers at their maximum are higher for the
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aerobically grown cells than for the anaerobically grown cells, despite the 

same volume of m edium  being used. Therefore, it can be surm ised that the 

aerobic environm ent fosters a m ore successful cell colony in terms of size. It 

m ust also be considered that the aerobic cultures were kept in shake flasks, 

with the aim of consistently oxygenating the whole culture, whilst the 

anaerobic cultures were static. In fact the cells of the anaerobic culture could 

be observed as a residue in the base of the serum bottles as well as the 

clouding of the m edium  due to the presence of cells.
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Figure 3-1: Mass against time for aerobically grown MR-1 cells, as calculated by 
conversion from optical density measurements. Errors shown are one standard 
deviation from the mean. Line o f best fit, 6th order polynomial generated by Excel, 
shown in red.

The plot of concentration against time for the aerobically grown bacteria, 

figure 3.1, shows a lag phase, a phase of grow th and then a plateau around 

hour 15, before growth continues from hour 20 onwards, in w hat appears to 

be a second grow th phase.
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Figure 3-2: Mass against time for anaerobically grown MR-1 cells, as calculated by 
conversion from optical density measurements. Errors shown are one standard 
deviation from the mean for each data point. Line of best, 6lh order polynomial, f i t  
shown in red.

In order to compare the aerobic and anaerobic grow th quantitatively the 

natural logarithm of the concentration was plotted against age of the culture 

in hours, as shown in Figures 3.3 and 3.4. From this the duration of each 

growth phase can be m easured, excepting the death phase as the m ethod of 

calculating concentration does not discriminate between dead or living cells 

and so both dead and living cells are included in the total concentration. For 

the aerobic cells the lag phase is about 3 hours long, before the exponential 

phase which continues for three hours, and then the stationary phase starts 6 

hours after inoculation. W hen spinning dow n the harvested cells, a visible 

pellet is only seen from 5 hours onwards. For the anaerobic cells the lag time 

is less than 1 hour, as no lag is seen on the curve. A visible pellet of cells is 

however only noted from 4 hours onwards. The anaerobic exponential phase 

is seen from hour 1 to hour 6, after which it enters the stationary phase.
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Figure 3-3: Natural logarithm of concentration against time for aerobically grown 
MR-1 cells. The errors are calculated by dividing the error in concentration by the 
concentration, in other words the error is given by r/(ln(x)) = d ( x ) / x .
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Figure 3-4: Natural logarithm of concentration against time for anaerobically grown 
MR-1 cells. Errors given by r/(ln(*)) = d ( x ) / x .
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The straight line representing the exponential phase on the following graphs 

can be used to calculate a specific growth rate from its gradient.
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Figure 3-5: The trendline and equation fi t  from Excel for the exponential growth 
phase, represented as a linear increase on the plot o f ln(concentration) against time, 
for both aerobic (A) and anaerobic (B) cultures.

The slope for the aerobic is 1.7 and for the anaerobic is 0.4 according to 

trendlines fitted to the data points for the exponential phase in Excel. Thus 

the specific growth rate for the aerobically grown cultures is just over 4 times 

that of the anaerobically grown cultures.

Table 3.2 summarises the data from the grow th curves for both aerobically 

and anaerobically grown cells for comparison.

Growth medium Aerobic Anaerobic

Specific growth rate p [hours'1] 1.7 0.4

Doubling t im e [hours] 2.5 1

Duration of  Lag Phase [hours] 3 <1

Duration of Exponential Phase [hours] 3 6

Table 3.2: Quantitative data from growth curves showing comparison between cell 
populations grown in aerobic and anaerobic growth media.

It is interesting however that there is no obvious lag time for the anaerobic 

culture, indicating that any lag time is less than 1 hour. Thus it seems that 

the aerobic bacteria adapt almost immediately to the anaerobic environment, 

which at first seems to suggest that they already have the ability to respire
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without oxygen and are able to successfully reproduce in an oxygen free 

environment. However it can also be argued that they rapidly reproduce 

due to the need to create a generation of wholly anaerobically active cells 

straight away, without wasting any energy in the lag phase, to ensure the 

survival of the culture.

Work by Abboud et al has demonstrated that S. oneidensis cells grown 

aerobically at 22°C have a doubling time of 0.66 hours, compared with a 

doubling time of 67 hours for cells grown at 3°C[53]. The doubling time 

obtained at 30°C in this study is actually slower than that obtained by 

Abboud for 22°C, which suggests that the optimum temperature for growth 

is lower than 30°C. However, the doubling time for both the aerobically and 

anaerobically grown cells at 30°C are of similar magnitude to the referenced 

doubling time at 22°C and the low temperature doubling time is an order of 

magnitude greater.

Abboud et al also observed using TEM that the morphology of the cells was 

different when grown at low temperatures; cells formed long filaments up to 

70 pm in length (too large for their size to be evaluated from TEM images so 

confirmed with optical microscopy). Transferring the cold grown cells to a 

higher temperature resulted in their shape and size changing, becoming 

shorter and thinner with lengths of an average of 5.33pm and diameters of an 

average of 0.39 pm after 100 hours at the higher temperature had elapsed.

3.1.1. Change in pH over time

During the 24 hour optical measurement study of the aerobically grown cells, 

a concurrent study was conducted measuring the pH of the growth media 

during the 24 hours after inoculation. This could not be done for the 

anaerobic media in the same way as the anaerobic media needed to remain
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sealed. The following graph shows the change in pH  in the hours after 

inoculation.

Figure 3-6: Plot of pH of aerobic culture during growth against the time after 
inoculation in hours. The total change in pH is 1.1. Errors shown are 0.05pH based 
on pH meter limitations and a polynomial line of best fit is shown in red.

The pH becomes more alkaline as time passes, from a pH of 7.3 to a pH of 

8.4. There is a stalling of the increase up to hour 3, followed by a steady 

increase in pH from hour 4 to hour 16 after which the rate of increase slows, 

before stalling again after hour 21. Interestingly the change in pH continues 

after the end of the lag phase which is 6 hours after inoculation.

Previous work has shown that pH  affects the roughness and nanomechanical 

properties of polystyrene surfaces incubated w ith cells from the Shewanella 

genus, Shewanella putrefaciens CIP 8040[145]. Com paring systems at pH 10 

and pH 4 it was found that the lower, more acidic, pH  resulted in a rougher 

surface and multiple adhesion signatures in the retract part of force spectra, 

suggesting the presence of polymeric substances.

There is nothing in the literature to date that outlines how or even if S. 

oneidensis MR-1 affects the pH  of its environment, although there has been 

discussion of how am bient pH, as a control factor, affects the organism. 

Leaphart et al investigated changes in gene expression by S.oneidensis MR-1
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in response to changes in environmental pH [146]. After being challenged 

with acid or alkaline environment for 60 minutes gave rise to changes in gene 

expression including genes involved in amino acid metabolism and cell 

membrane structure.

3.2. Cell size using High Performance Particle Sizer (HPPS)

In the paper by Venkateswaran which first defines S. oneidensis MR-1 as a 

new species, the size and shape of the cells of this organism were observed 

using TEM after staining with osmium chloride and found to be rod-like 

with a length of 2-3pm and a w idth of 0.4-0.7pm[41]. No measurement was 

made of anaerobically grown bacteria for comparison in Venkateswaran's 

study.

For the aerobically grown bacteria which had been washed with pure water 

and suspended in pure water there were two peaks of average size: the first 

at 2.7pm and the second at 1.6 pm. The first peak compares well with the 

measurement of the length of aerobic bacteria in Venkateswaran's paper. 

The second peak gives a value over twice as large as that given in 

Venkateswaran's TEM study for the cell diameter, and so cannot simply 

correspond to an average w idth of the cells.

A second experiment was conducted using unwashed cells straight from the 

culture flask. This gave an average size of 0.556 pm. It is possible that there 

was small cellular debris that would normally be removed through washing 

which contributed to this low average size, or that the medium in which the 

cells were suspended affected the size measurements.

The anaerobic bacteria in water showed only one peak, the average size from 

this was 0.720nm. However, as will be shown using AFM imaging in the 

next section the majority of anaerobically grown cells are longer in one 

direction, although the difference between width and length is less than for
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aerobically grown bacteria. For this reason it is possible that the measured 

size is part-way between the length and width of the bacteria under 

observation.

3.3. potential study of Shewanella oneidensis MR-1

The isoelectric points for S. oneidensis MR-1 suspended in different 

concentrations of saline solution are shown in Table 3.3.

Concentration of NaCI 

(M) LB aerobic

LB

anaerobic TS aerobic

TS

anaerobic

W ater 4.1 3.6 3.7 3.6

0.00001 4.2 4.6 3.5 4.1

0 .0001 4.4 4.1 3.9 2.9

0.001 3.5 4.2 3.8 3.8

0.01 4.2 5.1 4.3 6.4

0.1 3.7 3.5 4.2 3.3

Table 3.3: Isoelectric points (pH), where the zeta-potential is zero as calculated from 
graphs of zeta-potential against pH, are shown for each growth environment and 
concentration ofNaCl.

As can be seen from table 3.3.1, and even more clearly in the following graph 

(figure 3.3.1), the anaerobic samples show a greater range of values for the 

isoelectric points, indicating that the salt concentration affects the stability of 

anaerobic suspensions more strongly than the aerobic suspensions.
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Figure 3-7: pH against the base ten logarithm o/N aC l concentration showing the 
Isoelectric pH points for samples from different growth media.

There is also a greater variation in the samples grown in tryptone soy media 

rather than Luria Bertani media. Any difference between the two growth 

media indicates that environm ental factors affect surface charge; however 

both growth media show less disparity under aerobic grow th conditions. 

Isoelectric points are a way of seeing at which pH particles are most likely to 

flocculate. However flocculation is still a possibility at all pH values where 

the zeta-potential is between +20mV and -20mV. Where the zeta-potential is 

above or below this range the particles are thought to be stable and will 

remain individual from one another and will not flocculate. Table 3.4 shows 

at w hat pH values the MR-1 cells are stable in suspension. MR-1 grown 

anaerobically in tryptone soy m edia shows the least stability whereas MR-1 

grown anaerobically in Luria Bertani m edia shows the most stability.
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Concentration 
NaCl (M)

Aerobic LB Anaerobic LB Aerobic TS Anaerobic TS

W ater 10 6 10.5 10
0.00001 2, 9+ 6+ 1.5 not stable
0 .0001 2, 9+ 6+ 1.5,10.5 not stable
0 .001 not stable 6+ 2,6,10.5 not stable
0.01 2, 9+ 6+ not stable not stable
0.1 not stable not stable not stable not stable

Table 3.4: pH values at which zeta potential is stable are given for each type of 
growth media and each concentration of NaCl. A  + after the pH value indicates all 
values studied which are higher than that value are also stable.

The buffer pH necessarily affects the zeta potential of the cells, and it 

highlights further the differences between aerobic and anaerobic cells and 

also shows that changing growth media will change the surface chemistry of 

the cells. Most bacterial cells are neutrophiles and have mechanisms for 

maintaining internal neutral pH levels, with limitations on the external pH in 

which they can survive[l]. In the literature the effects of pH on S. oneidensis 

MR-1 have been observed in a few different ways. In one study cells 

exposed to acidic (pH 4) and alkaline (pH 10) environmental conditions for 

30 and 60 minute periods showed no decrease in viability when plated out 

compared with that grown in pH 7 media with no exposure to other pH 

conditions, however transcriptome analysis of the different cells showed that 

gene regulation had been activated in the cells[146]. The exposure to pH 4 

showed the greatest change in gene expression, and due to the large number 

of genes shown to be differentially expressed, the study concluded that the 

organism implements a diverse array of changes to respond to external pH 

conditions affecting transporters, amino acid consumption, central 

metabolism, and cell envelope composition.

In MFCs pH is a consideration in design of the chemical environment, and 

has been shown to affect the suitability of different bacterial strains for 

certain MFC environments. In work by Biffinger et al S. oneidensis MR-1 was 

found to be more suitable than S. oneidensis DSP10 for use in MFCs with
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greater acidity [54]. The current produced by MFCs with each organism was 

compared under pH neutral or acidic (pH4-5) conditions and was shown to 

vary with pH, without a direct dependence on the size of the cell population, 

although that variable was also affected by pH. This paper demonstrates the 

insights into MFC design that can be directly uncovered simply by changing 

one environmental condition, in this case pH. Characterising the interaction 

of MR-1 cells with one another in suspension under varied pH and salt 

concentration provides a reference guide to suspension stability that can be 

used in the design of MFCs to encourage cells to stay in suspension or to 

flocculate, depending on what is desired.

The isoelectric point determined for cells showed no correlation with the age 

of the culture for the anaerobically grown cells, however for the aerobic cells 

the variation in isoelectric point was greater in the first few hours and 

became more consistent after 12 hours. In a study by Grasso et al C- 

potentials for P. aeruginosa were compared at different stages of growth and 

found to vary from -17.59mV in the logarithmic phase, -26.17mV in the 

stationary phase and -18.5mV in the decay phase[89]. All of these values are 

negative and at the limit of stability for the cells in suspension. The small 

variation in C-potential for P. aeruginosa, a gram-negative bacterium, suggests 

that a similarly small variation would be expected for S. oneidensis which is 

borne out by the minimal change over time of isoelectric point for S. 

oneidensis.

3.4. AFM imaging over time

In order to visualise the development of the bacteria under both aerobic and 

anaerobic conditions, AFM images were obtained at hourly intervals after a 

time, t = 0, when the new medium was inoculated. The aim of this study was
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to find out what microbes in each of the defined growth phases looked like, 

and whether their morphology changed depending on the stage of growth. 

The anaerobic cells and aerobic cells of S. oneidensis MR-1 have a different 

morphology. In order to see the change in a culture of aerobic cells when 

transferred into anaerobic media, AFM images at intervals after anaerobic 

inoculation were taken. The variation in the cells as observed with AFM 

imaging is outlined for both aerobically and anaerobically grown cells over 

time in the next two sections.

3.4.1. Aerobically grown cells

As one might expect from the growth curves, for the first 4 hours there were 

few cells to be imaged. The surface areas scanned were often devoid of cells 

but many featured clusters of material spreading outwards from epicentres 

in an asymmetric snowflake like fashion, as shown in figure 3.8. These 

clusters do not feature in samples from 5 hours of growth onwards, this 

corresponds with a visible pellet only being noted on spinning down 

samples harvested after 5 hours from the time of inoculation. Extracellular 

material is referred to in several papers on AFM imaging of bacteria, 

including a study of how varying the washing process of E. coli affected the 

images obtained[147]. However there are no studies showing AFM imaging 

of liquid cultures in the early stages after inoculation from bacteria grown on 

solid medium, so there is little basis for comparison in the literature. It is 

likely that these clusters are down to components from the growth medium, 

such as salt crystals since there was no pellet visible on spinning down the 

harvested sample and hence the sample is a very dilute solution of the 

growth medium.
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Figure 3-8: 30 pm scan o f sample taken from aerobic culture 1 hour after inoculation 
showing no cells and a number of clusters of material assumed to be salt crystals.

At 6 hours after inoculation the surface shows a larger num ber of cells w ith 

unusually long cells that cross one another, as shown in figure 3.9. It is 

possible that some of these long cells are dividing into smaller cells which 

more closely match the size and shape expected from MR-1 [41], but they 

appear to be continuous. Both the long and shorter cells are surrounded by 

extracellular material appearing as granules of various size. Flagella are also 

visible but prove difficult to assign to specific cells.

Figure 3-9: Images of cells grown in liquid media 6 hours after inoculation from  
solid medium grown bacteria of scan size A. 30pm and B. 10pm. Extracellular 
material seen around cells. In the 10pm scan a flagellum can just be seen on left 
hand side in the top half o f the image.
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Figure 3-10: Aerobically grown cells as seen at 7 hours. This 10 x lOym AFM  
image shows a cell dividing at the end of a longer cell strand. Also visible are a 
flagellum and extra cellular material.

The cells shown in figure 3.10 have similar extracellular material and appear 

to show a cell dividing away from the end of a longer cell strand. In the top 

left quarter of the image a flagellum can be seen. Extracellular material is 

visible around all the cells in the image.

Individual cells can be m ade out more clearly from 8 hours and after 10 

hours the surface is predom inantly covered by individual cells and pairs of 

dividing cells rather than the long chains or strands of cells.

In dividing pairs the two cells are the same length in the vast majority of 

cases, dem onstrating that the division into two discrete cells only occurs 

w hen the cells are of suitable length. This can be seen in figure 3.11, where 

there are six discernible dividing pairs. The surfaces of some of the cells in 

this image appear mottled, indicating a variation in height over the surface, 

although there is no regular pattern. O ther cells appear to have a channel of 

lower height in the centre along their length. It is possible that this is due to 

collapse of the cell caused by drying, as these images were taken in air.
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Figure 3-11: 10 x 10pm AFM  image of aerobic cells after 11 hours of growth 
showing multiple dividing pairs.

From 11 to 15 hours of grow th the cells are mostly individual and are found 

in clusters with some isolated. At 16 hours of growth surface structures 

become more visible on the cells.

Figure 3-12: 10 x  10pm AFM  image of aerobic cells after 17 hours of growth. Some 
cells maintain previously seen morphology but others show large surface features.
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Figure 3.12 shows aerobic cells after 17 hours growth. The cells maintain the 

long rodlike shape, flagella numbers have increased and so have the number 

of cells with relatively flat surfaces punctuated by globular clusters. In this 

image there are no clear dividing pairs.

After 17 hours the number of cells with the surface features like those in 

image 3.12 become more prevalent, however cells with surfaces like those in 

figure 3.11 are still present. Highly populated areas on the surface show cells 

constrained by available space.

3.4.2. Anaerobically grown cells

From images of the anaerobic culture it can be shown that groupings of cells 

and individual cells are present from hour 1, which is understandable since 

cells in liquid were injected directly into the anaerobic medium. The 

anaerobic growth curve showed no lag phase and therefore the cells are 

already multiplying after an hour post-inoculation. There is more debris 

outside of the cells in the anaerobic images for the first 3 hours, perhaps from 

cells damaged in the transfer from aerobic to anaerobic culture. However 

there are none of the snowflake-like clusters in any of the images for the 

anaerobically grown bacteria.

In the first 2 or 3 hours after inoculation the cells in the anaerobic culture 

appear to have less distinct edges than the aerobic cells. They are in clusters 

of 3 or more cells and there is some extracellular material visible. An image 

of a cluster of cells after 2 hours of growth is shown in figure 3.13.
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Figure 3-13: Cells harvested from anaerobic culture 2 hours after inoculation from  
aerobic culture, in 10 x 10[um AFM  image.

In the images taken for the cells during the grow th phase there appear to be 

dividing cells but the long chains of dividing cells as seen for the aerobically 

grown cells are not present. The surface becomes cleaner with individidual 

and small groupings of cells consistently from 5 hours onwards.

X T -
Figure 3-14: Anaerobic cells 7 hours after inoculation. 10 x lOum AFM  image.
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Figure 3.14 shows anaerobically grown cells after 7 hours of growth. The 

cells are more rounded and less rod-like than the aerobic cells. This is mainly 

because they are not as long as the aerobically grown cells. After 7 hours the 

cells remain similar in size and shape, how ever w hen the culture gets to 16 

hours growth the same surface features as seen on the aerobic cells at 16 

hours can be seen, as shown in figure 3.15.

Figure 3-15: 10 x lOfum AFM  image of anaerobic cells after 16 hours growth.

It is possible that the flattened cells w ith the distinct surface protrusions are 

old or dead cells breaking down, and that the cells whose surface match 

those of cells from sooner after inoculation are the still living or new er 

generation of cells. This seems increasingly likely when it is considered that 

the num bers of cells that have less height overall and m arked protrusions 

increase after 16 hours growth, becoming the overwhelm ing majority by 20 

hours grow th for the anaerobic cells.

The other possibility is that the surface protrusions are features of anaerobic 

cells, and that the cells from the aerobic culture displaying them were 

growing in an increasingly anoxic environm ent due to increasing population
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(and hence less oxygen availability) and unequal distribution of oxygen in 

the shake flask, as discussed by Elias et al[52].

In work by Elias et al in 2008 the effects of different growth environments 

was studied by comparing the dissolved oxygen concentration, consumption 

rates, and proteome expression for cells grown in bioreactors with those 

grown in shake flasks [52]. The greater environmental control exercised over 

the bioreactor cultures led to less variability in measurements than seen in 

the shake flask cultures. Evidence was put forward to show that oxygen 

availability in the shake flasks was far from consistent, with proteins 

normally found in anaerobic cultures found to a greater extent in the shake 

flask cultures than in the bioreactor cultures. The variability of the shake 

flask (aerobic) cultures in terms of cell size and surface properties so far is in 

keeping with Elias et al's assertion that shake flasks are non-uniform growth 

environments in which variability is inevitable. The more homogenous 

anaerobic growth cultures by contrast show that adapting to their 

environment requires a more rigidly defined morphology and surface 

properties.

The morphological differences between S. oneidensis MR-1 cells grown with 

abundance of electron acceptors and those grown in the absence of electron 

acceptors have been demonstrated previously[51]. In this work redox heme 

proteins were identified as prevalent in protruding nanoscale structures 

when electron acceptors were absent, however addition of electron acceptors 

caused these structures to diminish.

Cytochromes OmcA and OmcB have been shown to be expressed on the 

outer membrane surface of S. oneidensis MR-1 cells by Myers and Myers[148], 

In this particular study only anaerobically grown cells were investigated, 

with the presence of OmcA and OmcB on the outer membrane demonstrated 

via degradation by proteinase K. OmcA was shown to be the most
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prominent of the two on the cell surface and the surface exposure of MtrB, a 

noncytochrome protein, was also noted.

In the early hours of the anaerobic culture however, most of the cells do not 

present the surface structures seen later in both cultures. It is possible that 

oxygenated media, extracted with the cells for injection into the anaerobic 

media, provided enough oxygen for the cells to continue metabolising 

aerobically initially. This might also account for there being virtually no lag 

time for the anaerobic growth curve as seen in section 3.1.

Global transcriptome analysis has also given insight into the effect of limiting 

oxygen in S. oneidensis MR-1 cultures. In work by McLean et al[149] 

chemostat cultures with a maintained level of dissolved oxygen formed 

aggregates when challenged with 0.68mM CaCh. These aggregates were 

stabilised by extracellular matrix material comprising DNA, protein, and 

glycoconjugates as observed by confocal microscopy using multiple stains, 

which bound to different molecules. However, when the oxygen levels 

dropped below detection the aggregates dispersed. Global transcriptome 

analysis of cells in this study showed that gene expression patterns consistent 

with biofilm formation was higher in the cells grown aerobically than with 

those in the oxygen limited culture. Perhaps counter-intuitively, cells from 

the oxygen-abundant culture also expressed genes thought to be involved in 

anaerobic electron transfer, McLean suggests that this is due to anoxic 

conditions within the interior of the cell aggregate.

What McLean's work, and others comparing transcriptome analysis of S. 

oneidensis MR-1 under different conditions, based on the original sequencing 

of the MR-1 genome[42], demonstrate is that environment determines the 

physicochemical composition of MR-1 cells. This alteration in gene 

expression in response to ambient conditions is demonstrated in the 

difference in cell size and shape, confirmed with HPPS particle sizing and
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AFM imaging, and in the differences in surface charge as shown by the 

difference in C-potential, particularly in regard to the isoelectric points and 

stability.

3.4.3. Flag ell a

Flagella were visible on both aerobic and anaerobic images. The role of the 

flagellum is as a device for propulsion in motile cells. Clear AFM images of 

measurable flagella attached to cells can be difficult to obtain, due to the 

height difference between the cell and the flagellum. This difference means 

that although the data scale could be adjusted to display the surface of cells 

or the surface around the cells including flagella, adjusting the scale to view 

both simultaneously was problematic. In order to obtain better AFM 

topographical data about flagella then was more easily done by imaging 

them without their attached cells, by choosing areas containing only flagella 

from larger scan areas.

Figures 3.16 to 3.18 show the same 4.4(am by 4.4(am area in height, phase and 

amplitude. In the height image, figure 3.16, the surface features of the cells 

are harder to make out and the height difference affects the area surrounding 

the cells making the flagella harder to see. This is why it is interesting to 

compare the phase and amplitude images to see which features are 

preserved, less prominent, or more prominent in each set of data. The cells 

in these images are from an anaerobically grown culture at 5 hours of 

growth.
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Figure 3-16: AFM  height image showing cells with flagella. Scan size 4.4 x  4.4pm.

Figure 3-17: AFM  phase image showing cells and flagella, scan size 4.4 x 4.4pm.
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Figure 3-18: AFM  amplitude image showing cells and flagella, scan size is 4.4 x  
4.4pm.

The flagella here and in images from other cells at different ages of culture, 

for aerobic and anaerobic cells, were not shown to vary with these 

differences. The length of a flagellum was usually hard  to measure as they 

lay curved on the surface, often tangled with others or under cells, and so 

from this study there is no reliable average length. A m eaningful average 

length w ould be unlikely anyway as flagella may be dam aged by the 

centrifugation used in washing cells when harvested.

The w idth or thickness of the flagella was easier to measure, and for both 

aerobic and anaerobic cells it was found to be approxim ately 74 ± lnm . The 

image shown in figure 3.19 is a closer look at the flagella seen in figures 3.16 

to 3.18.
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Figure 3-19: 2 x 2pm AFM  height image showing three sections o f flagella, area 
selected from larger area shown in figure 3.10.

Work by Paulick et al in 2009 studied the driving mechanisms for the single 

polar flagellum of S. oneidensis MR-1 cells, showing that the organism is 

unique am ongst its closest neighbours for having one flagellum w ith two 

possible stator systems to drive it depending on the environment! 150]. The 

PomAB stator system is sodium -dependent, and the MotAB stator system is 

driven by the proton motive force, allowing MR-1 cells to take advantage of 

different ambient chemistry in the wild type. This is another example of the 

organism s highly opportunistic adaptability. The Paulick study does not 

explore differences in oxygen availability, although nutrient limited m edia is 

shown not to prevent cellular motility, nor does it describe the flagella 

themselves, since the main work of the paper is focussed on the stator 

systems and their genetic origin.
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3.5. Chapter summary

Although there are differences in size and surface morphology between 

aerobic and anaerobically grown cells as demonstrated by comparing AFM 

images under identical preparation methods, the lack of any lag phase in the 

growth curves for anaerobically grown bacteria implies that the aerobic 

bacteria used to inoculate anaerobic cultures are capable of functioning as 

anaerobes immediately on removal of oxygen. Therefore the pathways used 

in alternative electron transfer, in this case using dissolved fumarate as the 

electron acceptor, are already present in aerobically grown cells. This effect 

may be exacerbated by the distribution of oxygen in the aerobic cultures 

being non-uniform, as discussed by Elias et al[52], leading to anaerobically 

functioning bacteria existing in the aerobic culture. This is in line with the 

transcriptome analysis findings by McLean et al[149] demonstrating that 

anaerobic-type bacteria are present in the centre of otherwise aerobically 

grown aggregates, and thus that differential oxygen levels in static or shaken 

cultures can lead to supposedly aerobic bacteria presenting with anaerobic 

cell metabolism.

The effect of pH on the surface charge on S. oneidensis MR-1 cells differs with 

salt concentration, and with the growth environment of the cells. The surface 

charge, as approximated by the C-potential, of anaerobically grown cells is 

more sensitive to salt concentration than that of aerobically grown cells, as 

shown by greater variation with changing salinity. C-potential as a measure 

of surface charge can be calculated by approximating cells as solid colloidal 

particles, although modelling them as soft particles with less defined 

boundaries is more correct.
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4. Surface Plasmon Resonance characterisation of 
Shewanella oneidensis MR-1

The attachment of cells to a substrate can be monitored rapidly and 

reproducibly by SPR using a simple experimental set-up, as demonstrated by 

Jenkins et al in their 2005 paper comparing the adhesion of different strains 

of Pseudomonas aeruginosa to a plain gold surface[62]. This study used static 

SPR, as opposed to SPR under flow achieved using the BIAcore X system in 

this chapter, however the sensitivity of response to small mass changes 

allowed Jenkins et al to determine that the retractable pili expressed by the 

wild type P. aeruginosa cells allowed more cells to bind to the surface than 

mutant strains without pili or with non-retractable pili. In Jenkins7 work the 

"early attachment kinetics" are mentioned and described to some extent 

qualitatively by discussing the maximum response, resonance angle of 600 

for the wild type and 420, 300 for the two mutants, however association rates 

are not discussed. In previous work by Jenkins using static SPR cells of P. 

aeruginosa were killed using heat treatment, and these dead cells were found 

not to adhere to the sensor surfaces, unlike live cells in the same tests [63].

Uchida et al[151] used a BIAcore study to show that certain strains of L. 

Acidophilus recognise and bind with hum an colonic mucin (HCM) by 

injecting whole cells over HCM treated sensor chips. The results were 

discussed in terms of whether or not the cells bound to the chips and how 

much mass was bound to the surface, indicated by the net change in RU. 

Rate analysis was not applied to this study. The authors took care to point 

out that in the BIAcore the system detects changes in refractive index at 

distances of up to 0.3pm from the sensor surface, and that the dextran layer 

to which their HCM was bound was about 0.1pm thick, so that since the cells 

did not penetrate the dextran layer any change in response would only be 

due to cells bound close to the HCM molecules. Cells bound to other cells or
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loosely attached at a distance greater than 0.3jam would not affect the 

response. Other papers suggest that aggregation of bacterial cells may have 

an effect on the regularity of response profiles in BIAcore sensorgrams[152], 

and although each result in the studies reported in this chapter was an 

average from 3 or more measurements there is the possibility of cellular 

aggregation affecting the results.

Rates of association and dissociation are a complicated issue for whole cell 

studies, and are sometimes by-passed in favour of comparisons of total 

response after injection. In her review paper, Otto describes the problems of 

describing whole cell binding data from SPR using rate constants[58]. Otto 

compares work by Kawashima et al in looking at binding of whole cells of 

oral streptococci to salivary components [75] with work by Oli et al 

concerning the specific binding of an adhesin on S. mutans cells and salivary 

agglutinin[69]. Oli's work finds changes in response that are ten times 

higher than Kawashima's which Otto suggests is due to the more specific 

nature of binding in Oli's experiment.

Oli et al state that they do not attempt to determine binding constants for the 

interaction due to the complexity of whole cell interaction, instead they use 

changes in response units for comparison between different cell mutants[69].

In the analysis of results in this chapter, the primary focus is on comparison 

of changes in total response after sample injection, bringing the level of 

quantitative analysis in line with published work such as that by 01i[69], 

Jenkins[63], Nobbs[68] and Uchida[153]. Further analysis was made of the 

kinetics of binding for the carbon coated sensor surfaces to demonstrate that 

rate constants can be used to examine the interactions even for undefined 

binding, so long as the rate constants are used as comparative values within 

the context of the study. This is in line with published work by Kawashima 

et al[75], as discussed in section 4.4.3. The successes and limitations of
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analysing sensorgrams using BIAcore software model fitting to find these 

rate constants are also discussed in this chapter.

4.1. Initial BIAcore assay: poly-L-lysine functionalised 

surface

The poly-L-lysine functionalised surface was first used to determine a 

suitable regeneration solution for the surface after the addition of MR-1 cells, 

as described in the appendix. 1M NaOH was found to fit the requirements 

and was used to regenerate all the poly-L-lysine surfaces after cell injections 

by the injection of 10pL, or 30 pL if the amount of cells on the surface was 

very large.

It was found that greater concentrations of bacteria in samples increased the 

net response, which was indicative of the mass attached to the surface after 

the sample injection had finished. Interestingly this increase was more 

apparent at the strongest salt concentrations. The highest difference in 

response due to concentration was at pH 7 for concentrations of 0.15M and 

0.1M NaCl, for the weaker saline solutions the highest difference in response 

due to concentration was at pH 3 to 4.

Comparing the change in total response (in RU) with respect to pH  for each 

saline solution, gives markedly different results for aerobically grown S. 

oneidensis MR-1, as shown in figure 4.1, and for the anaerobically grown 

bacteria, as shown in figure 4.2. It is worth pointing out that the highest 

average response for the anaerobic samples is almost twice as large as the 

highest for the aerobic samples at low pH values.
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Figure 4-1: Response in RU against pH for aerobically grown MR-1 cells, diluted by 
a factor of 5 in buffers of varying concentration o f NaCl, using poly-L-lysine 
functionalised CM5 sensor chip. Errors shown are one standard deviation from the 
mean above and below the average.
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Figure 4-2: Response in RU against pH  for anaerobically grown MR-1 cells, diluted 
by a factor of 5 in buffers of varying concentration of NaCl as recorded on poly-L- 
lysine functionalised CM5 sensor chip. Errors shozvn are one standard deviation 
from the mean for each point.
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For the anaerobic there is a huge peak of response at pH 2 for NaCl 

concentration of 0.1M, 0.01M and 0.001M, and a smaller peak at the same pH 

for the lowest concentration. The strongest concentration, 0.15M NaCl, 

shows a distinct peak at pH 7.

The aerobic samples show a peak between pH 2 and 4 for all salinities. A 

second peak is apparent at pH 7 for 0.15M, 0.1M, and 0.01M solutions, and a 

third at pH 9 for 0.1M, 0.01M, and 0.001M solutions.

4.2. Age of culture assay

In this study a poly-L-lysine functionalised surface was used to compare the 

change in response due to injections of cells from the same culture medium 

over time. The age of the culture was measured as the time from inoculation. 

The study was undertaken for both aerobic and anaerobic cultures in order 

to compare the two. The change in response in RU is proportional to the 

amount of mass bound to the surface, and so a greater increase in RU from 

before the sample injection to after the injection means a greater mass bound 

to the surface. When comparing the aerobic and anaerobic samples taken 

over a 24 hour time period, as shown in figure 4.3, it is clear that the aerobic 

cells show a far greater variation than the anaerobic cells.
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Figure 4-3: Post-injection change in response (net change in response) in RU for 
cells from aerobic and anaerobic cultures over the age of the culture in hours.

Looking at the aerobic and anaerobic studies separately, including errors of 

one standard deviation from the mean for each data point, this difference in 

variability is apparent in both the mean values and the variation (figures 4.4. 

and 4.5). Not only do the aerobic values vary more throughout the 24 hour 

time period but also the standard deviation from the m ean also varies 

greatly, from less than 10% of the m ean value (at t = 20 hours) to 155% of the 

m ean value (t = 10 hours), with 11 data points having a standard error of 

over 50% of the value itself. The variability of results is the defining 

characteristic of the aerobic data for this study, w ith no trend discemable 

relating change in response w ith age of culture.
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Figure 4-4: Post injection response for samples o f aerobically grown cells against age 
of culture with errors showing one standard deviation from the mean.

When comparing the anaerobic study in figure 4.5 to the aerobic study in 

figure 4.4, there is clearly more regularity between results, and a lower 

average standard deviation. Only six values have a standard deviation of 

higher than 50% of the mean. In addition to this there is a trend which 

shows a jum p in response from t = 1 hour to t = 2 hours, followed by a further 

increase around t = 6 hours, and then a gradual decrease until t = 22 hours, 

after which there is a sharp drop in response.
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Figure 4-5: Change in response after injection in RU for samples of anaerobically 
grown cells at different ages of culture with errors shown.

The change in response after injection for the anaerobic samples is above 

200RU after t = 2 hours and until t = 22 hours.

4.3. Carbon modified surface.

In order to approxim ate an electrode surface, sensor surfaces were coated 

with am orphous carbon. As a dem onstration of this methodology this was 

sufficient, although future work in approxim ating electrodes with SPR 

sensors will require them to be coated w ith graphite to approxim ate graphite 

electrodes, or other materials specifically relevant to the process being 

investigated. The physical vapour deposition (PVD) approach was based on 

a similar approach in work by Lockett et al[154] rather than on the 

recom m ended surface immobilisation procedures em bedded in the BIAcore 

control software. These program m ed surface immobilisation procedures are 

based on coupling chemistries between organic and biological molecular 

species and have no established protocol for unusual surface preparation 

such as immobilising carbon. Instead the chip assembly kit (SIA Au kit)
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available from BIAcore was used. In this kit the sensor surfaces are plain 

gold and are not yet mounted on the plastic frames used to handle the chips. 

In the same manner as Lockett et al, two plain sensor surfaces were coated 

with amorphous carbon using PVD to a thickness of 2nm and lOnm 

respectively. As a basis for comparison whole cell binding of S. oneidensis 

MR-1 to a plain gold sensor surface was also recorded.

In order to compare multiple injections of varying concentrations over the 

same sensor surface the resultant curves for each injection could be overlaid. 

The curves therefore needed to be normalised to starting at the same points 

in response (y-axis) and time (x-axis) so that they could be compared. This 

normalisation becomes more important when fitting curves for different 

concentrations simultaneously using the BIAcore software.

To adjust the curves in x and y for overlay comparison the following 

procedure was used.

Firstly the chosen sensorgram was selected, such as the one in Figure 4.6a. 

The first step, as for the sensorgrams in the previous sections, was to select 

and cut the parts of the sensorgram recorded during regeneration of the 

surface, as shown in Figure 4.6b. After this each curve is selected, cut, and 

re-pasted in a new colour so as to distinguish it from the other curves, as 

shown in Figure 4.6c. After this the curves are all normalised in time, x-axis, 

by selecting a starting point for the injection on each curve (Figure 4.6d). 

Once normalised in x, the curves can be normalised to the same starting 

response using the y-transform tool on the BIAEvaluation software, shown in 

Figure 4.6e. The baselines for all curves are highlighted at once and the 

average y-position calculated, which is then used as the starting point for all 

the curves. The final overlaid plot will look similar to Figure 4.6f.
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Figure 4-6a: Sensorgram showing repeat injections over a surface increasing the 
concentration of the sample for each successive injection. The rectangular peaks 
represent regeneration o f the surface. The sample used here is aerobically grown cells 
injected over the 2nm thick carbon sensor surface.

Figure 4.6b: Highlighting and removal of regeneration signal from the sensorgram.
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Figure 4.6c: Selection and cutting o f individual curves, followed by pasting in a new 
colour.

u

'~L

Figure 4.6d: Crosshairs indicate starting point of injection on each curve, 
repositioning the crosshairs allows the user to change the position of this point. 
Once all are selected the curves are overlaid.



Chapter 4: Surface Plasmon Resonance characterisation of Shewanella oneidensis MR1

-  j U *  K -r -  ! P i

•----

l / " ~ ur

■ m o m  i*» two j j j  .'Sdc MOa y.ix

s«»cN»t>.i-r/yi.«afct |________________________________________________________________
Figure 4.6e: Y-axis normalisation: the baselines for all curves are highlighted and 
the y-position for all of them adjusted to the average.

Figure

4.3.1. Plain gold sensor surface

Although the surfaces for the carbon-coated, sensors were of uniform 

thickness, the binding of cells to a plain gold surface was briefly investigated 

for comparison. There is no reason to expect that the cells w ould not bind to 

the gold surface, however it is clear that the binding is different qualitatively 

from that of the cells to the carbon surfaces. The removal of cells from the

• 1   1   1   1   1   1 * 1   1   1

4.6f: Resultant overlaid plot of curves taken at different concentrations.
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gold surface proved difficult, as the SDS solution used for the carbon-coated 

chips did not regenerate the surface consistently if at all, even though it had 

the best effect compared w ith the other recom m ended regeneration solutions 

that were tested: NaOH, EDTA, and ethanol, as described in the appendix.
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Figure 4-7: Response against time for lOOpL injections o f aerobically grown cells 
over plain gold SPR sensor surface. The cells were injected at the same 
concentrations as for the carbon-coated sensor study.

It is notable that the binding does not drop post injection, the cells are bound 

and do not dissociate once the injection is ended. This and the problems 

with regenerating the gold surface suggest that the cells may even bind more 

strongly to the gold surface, or to one another on the gold surface, than they 

do on the carbon-coated surface. The curves were fitted using the same 

model as for the carbon-coated surface. The fit was poorer for all 

concentrations than for the carbon-coated surface curves.
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The interaction between the gold surface and the whole cells provides a 

comparison showing that the carbon-coated surface binding is distinct from, 

but not preferred to, the binding to the plain gold surface.

4.3.2. Carbon layers

In the work by Lockett et al, the aim of coating the sensor with amorphous 

carbon was to provide a substrate which would support DNA arrays, since 

arrays prepared on carbon-based substrates were known to be more stable 

than those on plain gold [154]. Amorphous carbon was used as it could be 

deposited at room temperature with no other changes to the sensor surface 

structure. The paper outlines that SPR measurements were taken to assess 

any effects on the sensor function due to the carbon layer, and it was found 

that although the carbon layer did not alter the gold film layer, a carbon layer 

of 7.5nm thickness (the thickness required for support of the DNA arrays) 

decreased the sensitivity of the sensor system by 42%, where sensitivity is 

defined as the maximum change in reflectivity as a function of the change in 

refractive index of buffer. The goal of the researchers in this case was to 

construct a surface with a DNA array in order to use SPR to measure binding 

to that DNA array.

In this study of whole cell binding, both aerobic and anaerobic cells were 

injected over the surfaces varying concentration of cells and the flow rate of 

the sample. In terms of simple net response after injection comparisons were 

drawn between aerobic and anaerobic cells, and between the two thicknesses 

of carbon.

The regeneration of the surface was the first problem. The BIAcore 

handbook suggests various possible regeneration solutions. Although 1M 

NaOH worked for the poly-L-lysine coated CM5 chips used in the previous 

experiments, it had no effect on the cells bound to the carbon. Other
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recom m ended regeneration solutions were trialled (see appendix), to no 

avail. In the end sodium  dodecyl sulphate solution (provided as part of the 

BIAcore maintenance protocol "desorb" to remove any bound biological 

material) proved to meet the requirem ents for regeneration for both aerobic 

and anaerobic cells on the carbon coated sensor chips.

In general, the lower the dilution (higher concentration) of the cells the 

greater the response measured, which is as expected. The response levels 

drop off rapidly from no dilution to a dilution factor of 100.

For the lOnm thick carbon sample the aerobic sample shows a faster drop in 

response than the anaerobic, with a response of around 230 RU at no dilution 

dropping to a response of 55RU at 5x dilution, with the lowest response 

being just over 10RU for lOOx dilution.
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Figure 4-8: Change in net RU against concentration of celt samples for aerobically 
grown cells in water using a sensor chip with a lOnm thick layer of amorphous 
carbon deposited onto a plain gold sensor surface.

For the anaerobic sample however, the response has a m aximum of 180RU 

decreasing to 140RU for 5x dilution and then decreasing more slowly to a 

low of 60RU for lOOx dilution. The range of values for the change in
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response for the anaerobic is 60-180RU, whereas for the aerobic it is 10- 

255RU.

Both sets of data show an increase in response from 5x dilution to lOx 

dilution, how ever as the error bars show, when the error is taken into 

account it cannot be said with great certainty that this is a feature of the 

concentration-response relationship, and an argum ent can still be made for 

the trend of decreasing concentration causing a decrease in response.
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Figure 4-9: Change in net RU against concentration for samples of anaerobically 
grown cells in water using a plain gold sensor chip prepared with lOnm thick layer 
of amorphous carbon.

For the 2nm carbon surface the anaerobic cells have the same kind of 

response as for the lOnm surface, how ever the aerobic cells show a disparity 

with this pattern, w ith the maximum response being for the lOx dilution 

sample. The change in RU increases from no dilution to 5x dilution, to a 

m axim um  of 165RU for the lOx dilution, decreasing then dow n to 35RU for 

lOOx dilution. By contrast the anaerobic samples go from a change in RU of 

265 for no dilution, to 97RU for 5x dilution, then falling off more slowly to
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40RU for the lOOx dilution sample. The range of the anaerobic change in 

response is over one and a half times that of the aerobic change in response.
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Figure 4-10: Net change in RU for aerobically grown cells against concentration of 
cells in sample as measured on a plain gold sensor chip with a 2nm thick layer of 
amorphous carbon.

300

250

200

% 150 U)

100

0.0E +00 8.0E +09 1.0E+10 1.2E+102.0E +09 4.0E +09 6.0E +09

C o n c e n tra t io n  (cells/L )

Figure 4-11: Net change in RU for samples of anaerobically grown cells diluted in 
water and injected over 2nm thick layer of amorphous carbon prepared on plain gold 
sensor surface.
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As well as varying the concentration of the cells, the flow rate at which the 

sample was injected, and at which the running buffer was maintained, was 

varied from 3pL/min to lOOpL/min. The net response left after the end of the 

injection was plotted against flow rate in order to compare the amount of 

cells bound (response) with respect to flow rate for each thickness of carbon 

layer and type of cells. The concentration of the cells was kept constant for 

each injection of cells.

Initially increasing the flow rate, from 5 to lOpL/min leads to an increase in 

the amount of cellular mass bound, for the aerobically grown cells on both 

carbon surfaces (figure 4.12 and figure 4.14) and for the anaerobically grown 

cells on the 2nm thick carbon surface (figure 4.15). The response for the first 

two flow rates is the same for the anaerobically grown cells on the lOnm 

thick surface (figure 4.13). As the flow rate increases to 30pL/min and then 

50pL/min all cases show a decrease in response. Increasing the flow rate 

from 50pL/min to lOOpL/min causes no change in response for either aerobic 

or anaerobic cells on the lOnm thick carbon surface. For the 2nm thick 

carbon surface there is an increase in response for the aerobic cell response 

from 50 to lOOpL/min, and for the anaerobic on the same surface there is a 

decrease in response of a similar magnitude.
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Figure 4-12: Plot o f response in RU against flow  rate in pL/min for aerobically 
grown cells on a sensor with a lOnm thick carbon layer.
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Figure 4-13: Change in net response (RU) against flow  rate (pL/min) for 
anaerobically grown cells on lOnm thick carbon coated surface.
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Figure 4-14: Change in response in RU plotted against flow  rate in pL/min for  
aerobically grown cells on the 2nm thick carbon layer sensor.
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Figure 4-15: Change in response from before to after injection for different flow  rates 
using anaerobically grown cells and the 2nm carbon layer sensor.

Unlike the other plots of net response against flow rate, the lowest flow rate 

increases net response in Figure 4.13. However the net response in RU is 

very low for all flow rates for the 2nm carbon layer sensor (maximum 40RU),
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as shown in Figures 4.13 and 4.14 which means that any error in response 

levels will make a larger difference proportionally.

As well as the comparisons drawn above, by varying the flow rate for each 

combination of aerobic/anaerobic cells with the 2nm or lOnm thick carbon it 

can be seen that the binding rates are dependent on the flow rates, which 

indicates that the interaction is subject to mass transfer effects. This can 

affect the compatibility of binding models to the data, as will be discussed in 

the next section

4.3.3. Rate constants from BIAcore curves

The BIAcore Evaluation software allows the fitting of standard models to 

experimental data using the Marquardt-Levenberg algorithm which 

improves the fit of values for the model parameters by minimising the sum 

of the squared residuals, starting with initial values defined in each model.

S = ± ( r , - r x)> 41
1

In the above equation for the algorithm S is the sum of squared residuals, rt is 

the fitted value at a given point and rx is the experimental value at that point. 

Squaring the residuals ensures that deviations above and below the curve 

have equal weight in the fitting process.

The resultant values for the fit are based only on the mathematical process 

and it is for the user to interpret their relevance to the experimental reality. 

The simplest model for simultaneous fitting of ka and kd is a model 

describing 1:1 binding, based on the Langmuir isotherm for adsorption to a 

surface. The only input parameter required is the molar concentration of the 

analyte, A. The available binding sites are of a concentration B, which is zero 

when the response R is at Rmax, that is to say when all the binding sites are
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filled. When A binds with B a complex AB is formed (association), this 

complex can also decay back into separate components over time 

(dissociation). The rate equations for this simple 1:1 binding scenario are:

= ~(ka x A x B) -  (kd x AB) ^

= (kax A x B ) - (kd x AB) ^
dt

In this scheme ka and kd are the association and dissociation rate constants 

respectively. The total response is defined as AB+RI, where RI is the bulk 

refractive index contribution. The model gives rise to calculated parameters 

as well as fitted ones, including equilibrium affinity and dissociation 

constants K a and K d, the level of response for steady state binding Req, and 

the observed rate constant kobs which is the slope of ln(dR/dt) against time t.

Other supplied models in the BIA Evaluation software include variants on 

the 1:1 binding model to take into account a drifting baseline or mass transfer 

effects, as well as models based around bivalent analytes, competing analyte 

reactions, and a system in which the complex AB can change conformation to 

form a new complex structure AB*.

The problem with fitting a model to the binding of cells to a surface is that 

the binding is not specific and it is also multi-valent. In using the pre­

prepared models in the BIA Evaluation software the 1:1 with drifting

baseline, and the 2-state (complex conformation change) model provided the 

best fits to the flow rate data when assessed separately. It is harder to get a 

good fit at the faster flow rates where the increase in response is very rapid 

and the duration of the injection is not very long.

The association constants of the aerobic cells on the lOnm carbon surface 

were very similar, as were most of those for the anaerobic cells although the 

association rate for the anaerobic cells at flow rate 50 pL/min were an order of
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m agnitude higher than the others. The values of k a  as a function of flow rate 

are shown in figure 4.16. The consistency of the values of fitted param eters 

for both the aerobic samples suggests that the mass transfer effects are 

minimal, which was not expected. The anaerobic cells on the 2nm carbon 

layer show a steady increase in k a  w ith increasing flow rate.
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Figure 4-16: Plot showing the association constant ka calculated using the 1:1 with 
drifting baseline model in the BIAcore Evaluation software for various flow  rates for  
both aerobically and anaerobically grown cells on lOnm thick carbon (labelled clO) 
and 2nm thick (labelled c2) carbon sensor surfaces respectively.

The m axim um  am ount that can be injected into the system in one injection is 

lOOpL, and so this maxim um  volume was the am ount injected for each 

different concentration w ith the aim of achieving equilibrium  during the 

injection at a flow rate of 20pL/min. The resulting sensorgrams could then be 

com pared at equilibrium. The sensorgram s for each concentration for 

aerobic cells are shown overlaid onto one graph in figure 4.16 for the lOnm 

thick carbon coated sensor and in figure 4.17 for the 2nm thick carbon coated 

sensor.

In figure 4.16 the highest concentration of cells gives rise to the highest 

response, shown in purple on the figure. The shape of this curve is more 

rounded than those of the lower concentrations which show a levelling off
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very soon after injection, although the height at which the curves reach some 

kind of equilibrium is greater as the concentration increases.
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Figure 4-17: Overlaid plots of different concentrations of aerobic cells binding to the 
lOnm thick carbon surface. The net response is higher for the highest concentration 
(purple line), decreasing with concentration. However, the curve shape for the 
different concentrations is also different.

In order to fit parameters to the data in figure 4.16 simultaneously in order to 

obtain rate constants for the sample, rather than individually fitting rate 

constants to each curve, the 1:1 binding model with drifting baseline was 

adjusted by changing Rmax from a globally fitted parameter to a locally fitted 

one. This is because the Rmax for each curve is going to be different due to the 

variance in concentration. The fit was found to be better for the lower 

concentration curves, with the difference at the end of injection for the 

highest concentration curve being the most obvious disparity between fitted 

curve and experimental curve, as shown in Figure 4.18.
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Figure 4-18: Simultaneous ka and kd f i t  to curves for the same sample at varying 

concentrations using 1:1 binding with drifting baseline.
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Figure 4-19: Response against time for various concentrations of aerobic cells on the 
2nm carbon sensor surface.

Fitting param eters simultaneously to the aerobic cells on the 2nm carbon 

surface was conducted in the same way as for those on the lOnm thick 

carbon surface, despite the differences in the curves. Interestingly, the 

m aximum response is higher for the thicker carbon layer, which can be seen 

just by looking at the scale of the y-axis on figure 4.19 com pared with figure
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4.18. The curves on the 2nm carbon surface show a marked change from 

rapid binding on injection (line rises vertically) to a steadily decreasing 

amount of new binding over time (curved part of lines). This is in contrast 

with the shape of the curves for aerobic cells taken on the lOnm thick carbon 

layer.

The two sets of curves for the anaerobic cells on lOnm and 2nm thick carbon 

(figures 4.10 and 4.21 respectively) also show differences in shape compared 

to one another although the difference in maximum response is smaller than 

for the aerobic cells. Changing the concentration has a greater effect on the 

binding of anaerobic cells to the 2nm carbon layer than to the lOnm carbon 

layer and there is very little drop in response after injection for the thinner 

layer suggesting that the anaerobic cells detected during injection are 

prevalently binding to the surface, rather than simply near it.

RU

Purple line = 1.6x1013M 
Green line = 3.2 x 10-14M 
Light Blue line = 1.6 x 10-14M 
DarkBlue line = 0.8 x 10-14M 
Red line = 1.6x10-15M ^

eoo

900

400

300

200

100

0

320 390 440 50020 60 140 200 260

Figure 4-20: SPR response against time for injections of increasing concentrations 
of anaerobic cells over a sensor chip with a lOnm thick layer of carbon. All 
concentrations show a similar level of response except for the strongest 
concentration, the non-diluted cell solution, which shows a much greater level of 
response.
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“ Purple line = 1.6 x 1 0 13M 
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Figure 4-21: Response against time for varying concentrations of anaerobically 
grown cells using the 2nm thick carbon layer sensor chip. The lower concentrations 
are not grouped so closely as for the lOnm carbon layer chip. The maximum  
response level for the highest concentration is similar, however the curve for the 2nm  
carbon layer chip is less smooth than that for the lOnm carbon layer chip. This is the 
same for the aerobic cells.

The association and dissociation rate constants as well as the equilibrium 

association and dissociation constants were calculated for each set of data. 

As expected from the shape of the curves, the param eters calculated for both 

of the sam ple sets with anaerobic cells are very close to one another. The 

aerobically grown cells have a lower ka on the 2nm carbon layer than on the

lOnm carbon layer, how ever they have a similar kd.

lOnm carbon layer 2nm carbon layer

Parameter Aerobic Anaerobic Aerobic Anaerobic

ka(M'V) 9 .2 3 x l0 7 3 .2 9 x l0 8 2 .8 6 x l0 7 2 .67x10s

kd (s'1) 0 .0372 0 .0456 0 .0346 0 .0432

M M 1) 2 .4 8 x l0 9 7 .2 2 x l0 9 8 .28x10s 6 .1 8 x l0 9

Kd (M) 4 . 0 3 x l 0 10 1 . 3 8 x l 0 10 1 .2 1 x l0 ’9 1.62xlO ‘10

Table 4.1: Fitted and calculated association and dissociation rates for cells grown 
aerobically and anaerobically as measured when bhiding to a plain gold BIAcore 
sensor with lOnm and 2nm coatings of amorphous carbon.

The rate constant data provides a comparative m easure describing the 

experimental curves numerically. However in the case of whole cells caution
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must be exercised in apportioning significance to these parameters. The 

BIAcore system itself offers no way of understanding what cell constituents 

are binding to the surface unless an assay is conducted using different 

isolated cell surface components to confirm binding. The cell surface has a 

variety of molecular surface species that will interact with the substrate. The 

rate constants can therefore only be used as comparative values or to 

evaluate binding in the context of the cell-chip interaction.

This need for context and relative interpretation of kinetic parameters is the 

reason that many published BIAcore studies using whole cells only describe 

yes/no-binding assays, and do not investigate the rate constants involved. 

Even in studies of non-cellular material the kinetic analysis is sometimes 

neglected, for example in work by Takeuchi et al[64] which examines the 

binding of mucin to various polymers, the quantitative analysis simply 

comprised of comparison between percentage RU decrease after the injection 

of different adhesive polymers to remove mucin from the sensor surface. The 

rate constants are more directly applicable to specific monovalent binding 

however some kinetic analysis of the binding mechanism is still achievable 

and provides another method of comparison for different samples and 

substrates.

Even when kinetic analysis is undertaken it is presented with the caveat that 

these are the rate constants for an over-simplification of the binding process. 

Medina et al calculated "apparent rate constants" for the binding of antibody 

anti-E. coli 0157:H7 to pre-immobilised E. coli cells[76]. The rate constants 

were calculated at equilibrium and used to compare the effects of 3 different 

pHs on the binding of the cells to the surface during sensor chip preparation.

However, rate constants for whole cells have been calculated in work on oral 

streptococci by Kawashima et al[75]. In this study S. mutans, S. sanguis and S. 

mitis were injected over sensors functionalised with hum an salivary
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components. The overall change in response for S. mutans binding to the 

salivary components was found to be approximately 106RU, a value of the 

same order as the changes in response found for S. oneidensis MR-1 on the 

carbon and plain gold surfaces and the poly-L-lysine surface, although at 

higher concentrations MR-1 showed net changes compared with that 

reported by Kawashima. However, S. mutans binding to BSA and mlgG was 

found to give lower changes in response of only 72RU and 45RU 

respectively, the latter being close to the lower end of net responses found 

with S. oneidensis MR-1 on the carbon surfaces. In comparison E. coli binding 

to galabiose surfaces studied by Salminen et al were found to cause 

maximum changes in response of 60 to 140RU[152], binding of wild type S. 

gordonii to salivary agglutinin reached a maximum change in response of 

around 200RU in work by Nobbs et al[68], and Uchida et al found changes of 

350RU for L. crispatus cells binding to biotinyl polymer surfaces[153].

In order to calculate kon, Kawashima determined the gradient of the graph of 

response against optical density, which was related to bacterial 

concentration, defining kon as the increase in RU per single bacteria. For the 

bacteria S. mutans, S. sanguis, and S. mitis kon was calculated to be 2.4xlOn, 

4.1xlOn and 1.3X1011 RU/cell respectively. The same parameter calculated 

for aerobic and anaerobic S. oneidensis MR-1 for each thickness of carbon is 

shown in table 4.2. The values of kon were calculated using a line of best fit to 

find gradients for the graphs showing change in response against 

concentration in section 4.3.2. The fit was very good for the aerobic cells on 

the lOnm carbon layer, and for the anaerobic cells on the 2nm carbon layer 

but those for the other two cases were not so well fitted. The last data point 

(lowest concentration) was omitted from the fit for the aerobic cells on the 

lOnm thick carbon layer in order to get a usable fit.

136



Chapter 4: Surface Plasmon Resonance characterisation of Shewanella oneidensis MR1

lOnm carbon layer 2nm carbon layer

Parameter Aerobic Anaerobic Aerobic Anaerobic

kon (RU/cell) 2 x l0 '9 8 x l0 '9 4 x 1 0 10 2 x l0 '8
Table 4.2: Values ofkon calculated for aerobic and anaerobic cells on lOnm and 2nm 
thick carbon layers.

The values of kon for S. oneidensis MR-1 attaching to the lOnm carbon coated 

surface are two orders of magnitude greater than those for the oral 

streptococci attaching to salivary components in Kawashima's study. Those 

for the 2nm thick layer are also larger than those for the oral streptococci, by 

three orders of magnitude for the anaerobic, but for only one for the aerobic. 

As well as demonstrating a greater difference in kon for the thinner carbon 

layer, this also suggests that the binding of S. oneidensis MR-1 to carbon is 

qualitatively and quantitatively different to that of S. mutans, S. sanguis and 

S. mitis to salivary components, with a greater change in response per cell. 

This difference is not surprising when considering the differences between 

the cells, streptococci are gram-positive for example, whereas MR-1 is gram- 

negative, but the two scenarios also differ in terms of substrate and so cannot 

be directly compared.

Kawashima uses the BIAcore evaluation software to determine koff, which is 

described as kd and shown for S. oneidensis MR-1 in table 4.1. For S. mutans, 

S. sanguis and S. mitis koff values are 0.0029, 0.0047, and 0.0035s1. The values 

recorded in table 4.1 are 0.0372, 0.0456, 0.0346, and 0.0432s1 for aerobic and 

anaerobic cells with the lOnm and aerobic and anaerobic cells with the 2nm 

thick carbon layers respectively. The values for S. oneidensis are an order of 

magnitude higher for this dissociation constant as well.

Finally, Kawashima explores the ratio of kon to koff, with values of 8.2xl0*9, 

7.2xl09 and 3.8x10-9 (RU s)/cell for S. mutans, S. sanguis and S. mitis 

respectively. The results of the same calculation for the S. oneidensis MR-1 

cells under study in this chapter are given in table 4.3.
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lOnm carbon layer 2nm carbon layer

Parameter Aerobic Anaerobic Aerobic Anaerobic

kon/M R U s/cell) 5 x l0 '8 2 x l0 '7 lxlO '8 5 x l0 '7

Table 4.3: Values of k o J k o ff for aerobically and anaerobically grown cells on sensor 
surfaces coated with a lOnm and 2nm carbon layer.

Once again these values are larger than those found by Kawashima for the 

oral streptococcal strains binding to salivary components. It is more 

interesting, however, to see that the two aerobic results are of the same order 

of magnitude, whilst the two anaerobic results are one order of magnitude 

larger, showing a pattern not seen when looking at kon and koff separately.

4.4. Chapter summary

In this chapter there are two key areas of investigation that have been 

explored. The first is the continued examination of the differences between 

aerobically and anaerobically grown S. oneidensis MR-1. The second is the 

development of a method for measuring in real time the binding under 

specified flow of whole cells to inorganic surfaces.

Regarding the differences between aerobic and anaerobic MR-1, the BIAcore 

based assays have further outlined the physical and chemical variability of 

aerobically grown cells, contrasted with the relative uniformity of 

anaerobically grown cells. It can be inferred from this that the restrictions of 

the anaerobic growth environment require cells to conform to the anaerobic 

regime in order to survive, whilst aerobic cells are more varied. The aerobic 

cells, although grown in a shake flask, may not have equal access to 

oxygen[52] and therefore some of them may be more anaerobically active 

than others.

The use of amorphous carbon to approximate an inorganic surface using the 

BIAcore to detect binding is interesting, as it leaves the question of what
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other material could be used in this way? The next step in further 

investigation of electrodes would be to use graphite. Beyond that there is the 

possibility of using metals, for example those which are susceptible to 

microbially aggravated (or inhibited) corrosion. Although binding can be 

assessed using other techniques, SPR requires minimal sample preparation 

for cells, does not require cells to be labelled, and also during the injection 

SPR is sensitive to mass near the surface, not just that which binds 

completely and remains after the injection. The potential for layering 

analytes including cells is also there to look at different interactions, which 

may not be possible with other methods.
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5. Force Study characterisation of Shewanella 
oneidensis MR-1

Force spectroscopy has been used to study the mechanical properties of fixed 

and living cells[155, 156]. As discussed in the introduction, the shape of the 

approach and retract curves that constitute the force spectrum reflects the 

nature of the interaction between the probe and the surface. In this chapter 

the interactions between two different types of colloid probe and cells grown 

aerobically and anaerobically, each probed in water at pH 7 and in a weak 

salt solution at a pH corresponding to the relevant isoelectric point 

determined in Chapter 3, are compared. The key elements of interaction 

under study are the snap-in force when the probe approaches the surface, the 

adhesion force when the probe is retracted from the surface, and the 

indentation of the cell surface from which the Young's modulus of the cell 

can be calculated.

To study indentation requires using the piezo movement and the cantilever 

deflection measured on a soft sample as well as on a hard surface (usually 

glass) for a reference curve[104]. The point at which the tip is in contact with 

the surface is considered to be at a tip height of zero. Should the tip continue 

to move into the surface after this point it is considered to be indenting the 

sample. The indentation depth is therefore calculated as the tip height 

(which will be less than zero) minus the cantilever deflection for the sample, 

minus the deflection at the same height on the reference curve. Once 

indentation is calculated the Young's modulus can be worked out by relating 

the indentation to the modulus according to established models, such as 

Hertz. Although there is precedence in the literature for using the Hertz 

model to interpret indenting force spectra on bacterial cells, there are 

arguments for the use of variant models, and as ever such models must be 

interpreted in relation to the physical reality of the force interactions. In 2005
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Butt et al published "Force measurements with the atomic force microscope: 

technique, interpretation and applications"[157]. This work is a 

comprehensive summary of the underlying theory involved in force 

spectroscopy as well as reviewing experimental approaches.

The Hertz model is used in many studies of bacterial cells, although cells do 

not meet the original criteria for the model since it assumes a homogenous 

deformable flat surface and a rigid indenter. Despite this, Hertz is a useful 

approximation if the probe used is much stiffer than the sample and so it is 

often used in comparative studies, and has become the default model in 

much of the literature. Hertz also assumes that the effect of adhesion forces 

is negligible, and is not suitable for modelling interactions where adhesion 

forces are large. For a spherical probe Butt[157] gives the following equation 

in summary of the model:

r  2e 4 r  j3/2 5.1
3(1-i'2)

Where E is the Young's modulus, R is the radius of the spherical probe, 5 is 

the indentation, and v is the Poisson's ratio, assumed to be a value usually 

between 0.3 and 0.5, with the latter being more commonly used for cells[157]. 

The Hertz model has been developed for other geometries such as a 

parabolic tip or a conical tip, and much of the literature will term these 

alternate versions as part of the Sneddon approach. Other authors refer to 

any of these models simply as Hertzian.

For a parabolic indenter[103,114,158] with R as the radius of curvature:

3(1- v 2)

For a conical indenter[158] with a half opening angle a:
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2 tan a  2 5.3F = z-Eo
7 T ( \ - V  )

All Hertzian models assume that the any adhesion forces are negligible in 

comparison with the maximum loading force. When there are large 

adhesion forces it is necessary to use a model that encompasses the effect of 

adhesion, such as JKR theory. JKR is applied to scenarios with softer 

samples, large probes and large adhesion[157].

Interactions between S. oneidensis MR-1 and a mineral have been observed 

through probing a mineral surface with a cell-coated probe by Lower et al, 

publishing their findings in 2001 [48], and in a later paper by Lower where 

the S. oneidensis MR-1 results were compared with analogous results for E. 

coli K12[47]. The mineral used in these studies was goethite, a naturally 

occurring iron oxide-hydroxide with the formula FeO(OH). The presence of 

the Fe(III) ion in goethite was the reason for using this mineral, as these 

studies had the aim of demonstrating that MR-1 would recognise the Fe(III) 

ion and adapt its metabolism to suit electron transfer pathways resulting in 

the reduction of Fe(III) to Fe(II). When comparing the interaction between 

the goethite and a probe functionalised with cells of MR-1 it was found that 

forces of adhesion were stronger between the mineral and cells in an 

anaerobic environment. Lower's conclusions were that when the oxygen 

pathway is removed the electron transfer from cell to mineral is the main 

pathway and the cells develop greater affinity for the mineral. The 

interaction between the E. coli cells and goethite were described by Lower as 

non-specific, compared with a specific bond between S. oneidensis and 

goethite.
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5.1. Plain tip

In order to gain insight into possible problems with force spectra in liquid 

using cell samples an initial study was conducted using a plain silicon 

contact tip (Park Scientific, model ULCT-NTHW, Park Systems, Leatherhead, 

Surrey). The cantilever was thermally tuned in air to determine the spring 

constant, using the force spectroscopy calibration tool in the JPK operating 

software. A force spectrum was taken on a clean glass cover slip securely 

fixed to a glass slide and the spring constant calculated. This calibration was 

required whenever the chip was replaced or moved as its position on the 

holder affects the values obtained.

For the following results the sensitivity was 60.05nm/V and k=0.21N/m. 

From these values the deflection was converted from volts (V) to newtons 

(N), and thus the resulting curves showed data in terms of force, rather than 

deflection, against distance.

With the plain tip it was possible to image the surface clearly before 

proceeding with the force spectra. Thus the force spectra targeted specific 

sites on the surface. The sample investigated was a suspension of aerobically 

grown cells, harvested at 20 hours growth, and air dried onto a clean glass 

coverslip overnight, imaged in pure water. In a 25 pm area there were about 

20 whole cells, of which 4 were solitary or just barely touching other cells.
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Figure 5-1: 25pm by 25pm AFM  image using plain tip to image aerobic cells in 
water. The tip came away from the surface for the lines at the top o f the image, which 
was a problem when imaging in liquid. The cells in this image that were probed 
using force spectroscopy are numbered 1 to 4.

On this sample, on a part of the surface away from any cells, there was no 

snap-in force. On retract there was a maximum attractive force of 15nN. The 

approach and retract curves m atched in the contact regime. Although this 

site appeared to be on a "clean" part of the sample surface it is possible that 

extracellular material was present there causing adhesion on retraction.

Curves taken on cells showed a difference between the approach and retract 

curves in the contact regime: a "loading-unloading hysteresis" [157] implying 

some deformation of the cells. Figure 5.2 shows an example of this 

hysteresis. In this plot of force against distance there is no force on the 

approach until the contact regime, followed by a linear increase in force. 

H owever on retraction from the surface the decrease in force is not linear, 

and as the curve moves past the contact point it does not return to the 

baseline force of the approach curve.
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Figure 5-2: Plot of data points for interaction with loading force of 7nN showing 
loading-unloading hysteresis between approach (dark blue) and retract (purple) 
phases of interaction. Plot generated in Excel using raw data exported from JPK 
Nanowizard software.

The adhesive force for a load force of InN  was O.lnN, an order of m agnitude 

less than the adhesive force on cell-free parts of the surface; there was no 

snap-in force for any of the cells. Successive curves were taken increasing 

the force up to lln N , in general showing a decrease in adhesive force and an 

increase in difference between the approach and retract curves. This 

suggests that repeated force spectra of increasing load force on the same site 

deformed the surface, dam aging or removing the source of the adhesive 

force. In one extreme case a particular cell was re-imaged after unusual force 

data in which the force spectra taken at the centre of the cell were found to 

match exactly w ith the reference from a cell-free site, and it was found to 

have been rem oved during the force study, leaving an outline of material 

behind, as shown in figure 5.3 below. This dislodging of the cell was 

certainly due to the action of the AFM tip.
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Figure 5-3: AFM  image o f cell site after force spectra, cell has been removed leaving 
outline of material. The size of the scan is 6pm by 6pm. This cell was visible in 
figure 5.1 marked as cell number 2.

5.1.1. Young's modulus

The Young's m odulus for the plain tip probe was calculated for comparison 

with the values m easured for the iron oxide and graphite probes, in sections 

5.4 and 5.5.2 respectively. For the plain tip the Hertz model for a conical 

indenter was used, calculating the Young's m odulus from a plot of the force 

against the indentation to the pow er of 62.

7Tie m odulus was calculated for the aerobic cells in w ater only, and was 

found to be 25.4 ± 3.3 kPa for the one cell site investigated. This initial value 

w as obtained in order to have a baseline figure with which to compare the 

m ineral probe results.

5.2. Iron oxide colloid probe

W hen using the iron oxide probe or the graphite probe imaging of the 

surface prior to conducting force spectroscopy was difficult. The resultant 

images, such as those in Figure 5.4 below, showed no discem able details of 

individual cells on the surface, although there were sites on the surface that 

w ere clearly higher topographically due to groupings of cells, as expected
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from looking at the images taken with sharp tips described in chapter 3. This 

problem was due to the radius of curvature of the probes with respect to the 

size of surface features (e.g. probes of 5pm  diam eter com pared w ith cells of 

l-3pm  in w idth/length) and required the resulting force data to be carefully 

considered to identify curves on cells as distinct from those on the 

background.

Figure 5-4: 20pm by 10pm scan o f surface using iron oxide probe images generated 
using trace (A) and retrace (B) data. Groups of cells are discernible as raised areas 
however comparison of trace and retrace shows artefact (right hand side of A, left 
hand side of B) as distinct from cell groups. Comparison of trace and retrace as well 
as error signal images(C and D) were used to differentiate between such artefacts 
and areas of raised topography, assumed to be cells. In these images the cells are 
anaerobically grown and the liquid is water.
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Figures 5.5 and 5.6 below show force spectra for aerobically grown cells in 

water and salt solution respectively, as acquired using an iron oxide probe. 

The contact point is harder to determ ine for the curve taken in water, 

suggesting a soft contact w ith the cell on approach.
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Figure 5-5: Force spectrum for aerobically grown cells probed in water at pH 7 by an 
iron oxide probe.
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Figure 5-6: Force spectrum obtained using an iron oxide probe with aerobically 
grown cells in low salt solution at pH 3.5.
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The next two figures show spectra for the anaerobically grown cells taken 

using an iron oxide probe. The spectrum  for the cells in w ater shows a 

jagged retract profile typical of multiple adhesion forces being overcome. 

The forces in this spectrum  and others from the same site on the sample are 

larger than for any other on this sample, and yet not the same as spectra 

taken on glass, which have one large adhesion event. The average adhesion 

to cell sites for this sample is lower than m easured from this spectrum  

how ever adhesion to this sample is the highest for all the sample- 

environm ent combinations, as discussed in the next section. The force 

spectrum  for the anaerobically grown cells in the salt solution is very similar 

to that taken in water, although with less adhesion and a repulsive effect 

w hen nearing the contact point on the approach curve.
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Figure 5-7: Force spectrum obtained for anaerobically grown cells in water at pH 7 
using an iron oxide probe
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Figure 5-8: Force spectrum for anaerobically grown cells in salt solution at pH 4 
obtained with an iron oxide probe.

5.3. Adhesion

When studying the force curves using the JPK Data Processing software it is 

possible to reposition the curve by adjusting the baseline force on the 

approach to zero, and to alter the x-offset such that the contact point is at 

zero distance, after converting the deflection to force and the height to 

distance. Once this initial preparation has been done the JPK Data 

Processing has an option for finding the lowest point on a selected part of the 

curve, either approach or retract, allowing m easurem ent of any snap-in force 

on the approach and any adhesion force on retract. The software can also 

calculate the area between the retract curve and the zero force baseline. This 

area represents the work of adhesion and is an energy m easurem ent in 

Joules. W here a classic adhesion profile is seen this can be useful in 

com paring the energies involved.

The iron oxide probe generated the following adhesion and surface energy, 

w ith different sam ple-environm ent combinations, as outlined in Table 5.1.
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The errors shown in this table are one standard deviation from the mean and 

are in most cases very large in comparison with the mean values.

Surface Energy (J) Force of adhesion (pN)

Aerobic cells in water at 
pH 7

5.5 ± 7.0 xlO'17 0.23 ± 0 .2 1

Aerobic cells in 10'4M 
NaCI at pH 3.5

4.5 ± 4 .0  x lO 17 0.15 ± 0 .0 6

Anaerobic cells in water at 
pH 7

1.2 ± 0.95 x lO 17 0.34 ± 0 .24

Anaerobic cells in 10'4M 
NaCI at pH 4

2.2 ± 2.7 x lO 17 0.15 ± 0 .1 4

Table 5.1: Surface energy and adhesion force values obtained using JPK data 
processing software for aerobically and anaerobically grown cells in water and low 
salt solution using the same iron oxide probe with a diameter of 5pm.

The adhesion forces are of the order of 0.1 pN for all sample-environment 

combinations. The surface energies are also all on the same scale, however 

the energies for both experiments using aerobically grown cells are higher 

than those using anaerobically grown cells. The adhesion force is higher 

when the force spectra are obtained in water than in the salt solution, which 

is consistent w ith findings from van der Mei[159] and Dufrene[160].

Building on earlier work by the group that was principally authored by van 

der Mei, Dufrene et al investigated the effect of salt concentration on probe- 

microbe interaction! 160]. In experiments with two different strains of 

Streptococcus salivarius it was found that probes approaching strain HB, 

which has a fibrillated surface, in water experienced a long-range repulsion 

at around lOOnm from the surface. The range of this repulsion decreased to 

around lOnm in a solution of 0.1M KC1. For strain HBC12, which has a plain 

non-fibrillated surface, the ranges of repulsion in water and 0.1M KC1 were 

20nm and lOnm respectively. From this evidence the researchers concluded 

that the increased salt solution caused a "collapse of fibrillar mass" for strain 

HB, allowing the probe to approach without repulsion. The largest adhesion
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force using bacteria in this study was found between the probe and the 

fibrillated strain in water, at 0.9 ± 0.4nN. The extension and related adhesion 

of surface fibrils or polymers is the suggested reason for HB in water having 

the highest adhesion. In contrast with S. salivarius HB, S. oneidensis MR-1 is 

not fibrillated, however surface polymers on the MR-1 surface may similarly 

extend further in water than in salt, causing greater adhesion on retraction of 

the probe from the surface. The adhesion for MR-1 is far less than that for 

HB, on the scale of pN rather than nN, however since the adhesion is also 

higher for anaerobically grown cells in water than in salt, it can be posited 

that surface molecules on both types of cell are better able to adhere to the 

probe in water, due to greater extension from the cell surface.

This aligns with similar effects on long cell-surface polymers which were 

found with Pseudomonas putida by Abu-lail and Camesano in 2003[142]. In 

low salt solution a large brush layer of 440nm extended from the surface of 

the cells, increasing salt concentration compressed this layer and in 1M KC1 it 

extended only 120nm from the cell surface. However in this study the force 

of adhesion increased with the increase in salt concentration and decrease in 

brush layer extension, suggesting that for P. putida the cell surface is more 

adherent when the probe can get closer to it w ithout the obstacle of an 

extended brush layer.

5.4. Young's modulus

In order to model the indentation the Hertz model adapted for a spherical 

indenter was used. The contact part of the curve on approach was used to 

generate a plot of the force against the indentation to the power of 3/2. The 

slope of this line was used to calculate a single value for the Young's 

m odulus of the sample at a particular site and an average value was taken
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for all of the estim ated cell sites probed. This was done both in water at 

neutral pH  and in 0.1 mM NaCI with the pH adjusted to that of the isoelectric 

point for each sample.
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Figure 5-9: Indentation region of curve plotted as force against S ' 2 for aerobically 
grown cells in water with a linear trend-line fitted. From the equation for the trend- 
line the Young's modulus E can be calculated.

For initial comparison between the aerobically and anaerobically grown cells 

in water at neutral pH, and then in salt solution at adjusted pH, a maximum 

loading force of lOnN was used. After this initial study the loading force 

used for each sam ple/environm ent combination was increased by increments 

of lOnN. A m aximum loading force for generating usable force spectra was 

found for each sample. Loading forces above this m aximum gave rise to 

incoherent spectra.

For the aerobically grown cells in w ater an average Young's m odulus of 11.0 

± 2.8 kPa was calculated. In contrast anaerobically grown cells in w ater 

dem onstrated a Young's m odulus of 35.5 ± 4.2 kPa, and a maxim um  loading 

force of 88nN. The anaerobically grown cell force spectra showed snap-in 

forces of a maxim um  of 1.3nN, but w ith the majority of spectra showing 

snap-in force 0.2nN or smaller.

In the pH adjusted salt solution, with a pH  to match the isoelectric points as 

found in chapter 3, the Young's m oduli for the aerobically grown cells was

153



Chapter 5: Force Study characterisation of Shewanella oneidensis MR1

higher than that for the anaerobically grown cells, the reverse of the situation 

in water. The Young's modulus for the aerobically grown cells in the pH 

adjusted salt solution was 25.3 ± 7.7 kPa. The measured Young's modulus 

for the anaerobically grown cells decreased from that measured in water to 

0.35 ± 0.06 kPa, a hundred times smaller.

In comparing adhesion for the two types of cells and the two different 

environments for each of them, both aerobically and anaerobically grown 

cells showed lower adhesion in salt solution than in water. Conversely, 

aerobically grown cells were stiffer in salt than water whilst for the anaerobic 

cells the reverse was seen.

Maximum load force (nN) E(kPa)

Aerobic cells in w ater at 
pH 7

70 11.0 ± 2.8

Aerobic cells in 10‘4M 
NaCI at pH 3.5

76 25.3 ± 7.7

Anaerobic cells in water at 
pH 7

76 35.3 ± 4 .2

Anaerobic cells in 10‘4M 
NaCI at pH 4

88 0.35 ± 0.06

Table 5.2: Maximum load force and Young's modulus values for each sample as 
measured with the same iron oxide probe, iron oxide particle of diameter 5pm.

5.5. Graphite colloid probe

As with the iron oxide probe, the graphite probe was not good for imaging 

the surface or distinct cells, so the force spectra taken were considered 

carefully in comparison to force spectra taken on a plain surface. The 

indentation was modelled using Hertz for a spherical indenter, as for the iron 

oxide probe.
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Figure 5-10: Force curve obtained for aerobically grown cells in water at pH 7 using 
a graphite probe.
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Figure 5-11: Force spectrum for aerobically grown cells in salt solution at ph 3 
obtained using a graphite probe.

As can be seen in figures 5.10 and 5.11 showing force curves using 

aerobically grown cells, the contact regime for the cells in salt solution is less 

linear. There is no snap-in force for either curve, both curves show a 

difference between approach and retract and both return to the baseline force
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on retraction from the surface. The curve in salt solution appears to show 

more adhesion how ever when averages using values for all the curves taken 

in each environm ent were calculated it was found that adhesion forces were 

of a similar m agnitude and variation for both environments, as will be 

described in the next section.

In figures 5.12 and 5.13 force spectra for anaerobically grown cells in water 

and salt solution respectively are shown. The force spectrum  for these cells 

in water shows repulsion as the probe approaches the contact point, which 

drops beyond a certain range. This means that there is a clear difference 

between the approach and retract curves, which is not seen on the spectrum  

for the anaerobically grown cells in the salt solution. There is no adhesion on 

the spectrum  shown in w ater compared with a small adhesion shown in the 

salt solution, how ever when the averages are taken this difference 

disappears, as discussed in the next section.
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Figure 5-12: Force spectrum obtained for anaerobically grown cells in water at pH 7 
using a graphite probe.
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Figure 5-13: Force spectrum obtained using a graphite probe for anaerobically 
grown cells in low salt solution at pH 4

The disparity between baselines for approach and retract does affect the 

measured surface energy for the anaerobically grown cells in w ater however, 

as it stands out as the largest measured energy with the largest variation. 

This is seen in table 5.3.

5.5.1. Adhesion

The force of adhesion with the graphite probe was in all cases lower than the 

equivalent with the iron oxide probe, by a factor of ten. The surface energy 

was higher for the anaerobically grown cells than for the aerobically grown 

cells, bu t it was also less consistent w ith the error (one standard deviation 

from the mean) for the anaerobically grown cells in w ater being larger than 

the m ean value itself.
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Surface Energy (J) Force of adhesion (pN)

Aerobic cells in water at 
pH 7

6.7 ± 1.3 x lO 17 0.26 ± 0.09

Aerobic cells in 10'4M 
NaCI at pH 3.5

3.3 ± 0 .6  xlO'17 0.23 ± 0.08

Anaerobic cells in water at 
pH 7

12.4 ± 1 7 .1  x lO 17 0.18 ± 0.06

Anaerobic cells in 10'4M 
NaCI at pH 4

4.7  ± 2.4 x lO 17 0.16 ± 0 .0 9

Table 5.3: Surface energy and adhesion force values obtained using JPK data 
processing software for aerobically and anaerobically grown cells in water and low 
salt solution from force spectra obtained using the same graphite probe, made with a 
graphite particle of diameter 5pm.

For the graphite probe the aerobically grown cells showed similar adhesion 

in both environments, as did the anaerobically grown cells, showing that the 

type of cell was more of a factor in the differences in interaction than the 

chemical environment for the graphite probe. This differs from what was 

found with the iron oxide probe

5.5.2. Young's modulus

The Young's modulus as measured by the graphite probe varied from the 

Young's modulus as measured by the iron oxide probe, and was also more 

variable. The average Young's modulus for aerobically grown cells in water 

was 26.7 ± 15.6 kPa, larger than the equivalent value for the iron oxide probe. 

The maximum loading force was around 76nN, slightly lower than that for 

the iron oxide probe. For anaerobically grown cells the average Young's 

modulus was 50.7 ± 24.6 kPa and the maximum loading force was 105nN.

In the pH adjusted salt solution the measured Young's moduli for the two 

types of cell are much higher. For aerobically grown cells the Young's 

modulus is 79.3 ± 23.9 kPa, which is around 3 times larger than that 

measured in water. The Young's modulus measured for the anaerobically 

grown cells is 116.2 ± 16.5 kPa, which is over twice that measured in water
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and also has the lowest proportional error of any of the measured Young's 

moduli.

Maximum load force (nN) E(kPa)

Aerobic cells in water at 
pH 7

76 26.7 ± 15.6

Aerobic cells in 10'4M 
NaCI at pH 3.5

77 79.3 ± 23.9

Anaerobic cells in w ater at 
pH 7

106 50.7 ± 24.6

Anaerobic cells in 10'4M 
NaCI at pH 4

106 116.2 ± 16.5

Table 5.4: Maximum load force and Young's modulus values for each sample as 
measured using the same graphite probe of diameter 5pm.

Graphite is a softer material than iron oxide. Iron oxide crystals are known 

to have Young's moduli between 215 and 350GPa, although when 

considering a volume of powdered iron oxide the modulus is demonstrably 

lower [161]. By contrast the Young's modulus of manufactured forms of 

graphite is around 28-31 GPa[ 162], varying depending on the form of the 

graphite. The difference between the Young's modulus for graphite and the 

range of Young's modulus for cells should be large enough for the Hertz 

model to be applicable. If the softness of graphite were a problem for the 

probe at all, it would be due to repeated force spectra taken on the plain glass 

surface, which is harder than the graphite, probe itself.

5.6. Chapter summary

The values for Young's modulus of the cells and near-cell surface are for the 

most part in the expected region of 10 to lOOkPa for cells[157]. The Young's 

modulus for glass is in the region of 65GPa[163] and although this value will 

vary for different types of glass the relative softness of the biological surfaces 

is apparent by six orders of magnitude when comparing Young's modulus
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values with that of the substrate, and in comparison with the Young's 

moduli of the probes used.

The pH and salt concentration of the buffer affects the recorded force- 

distance spectra. This is to be expected as the chemical environment changes 

any double layer effects and may also affect the conformation of cellular 

surface components, as described by van der Mei[159], Dufrene[160], and 

Abu-lail and Camesano[142].

Adhesion forces were ten times higher for the iron oxide probe than for the 

graphite probe, which adds further evidence to Lower et al's assertion that S. 

oneidensis MR-1 forms a specific bond with iron minerals due to recognition 

of the presence of Fe(III)[47, 48]. Their finding that adhesion to the iron 

oxide-hydroxide goethite was greater under anaerobic conditions than under 

aerobic conditions is also borne out here as the adhesion force for the 

anaerobically grown cells is higher than that for the aerobically grown cells. 

However since the force spectra in this thesis were conducted in an aerobic 

environment this effect may have been diminished. Lower et al used a cell- 

coated probe in contact with a mineral substrate, in a reverse of the 

experiments conducted for this thesis, demonstrating the versatility of AFM 

force studies and also demonstrating that the findings about S. oneidensis 

MR-1 are consistent even using different approaches in AFM.
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6. Conclusions
This investigation for the explores in detail the effect of ionic strength and 

growth environment on S. oneidensis MR-1, particularly with regard to its 

microbe-microbe and microbe-surface interaction. Novel experimental 

methods that use a commercially available SPR system are used to 

investigate microbe-substrate interaction where the substrate approximates 

MFC electrodes. For the first time comparison of interactions between cells 

grown aerobically and anaerobically and probes of different material are 

made as measured by force spectroscopy. The aim of providing a 

comprehensive microbial profile for MR-1 as set out in the aims and 

objectives is achieved, as is the aim of providing information useful in the 

design of biosensors and MFCs. The development of novel methodology for 

investigating whole cell interaction with SPR sensor surfaces approximating 

device components is an added achievement of this research.

There are questions raised in this study that would be the starting point for 

further work and these are discussed later in this chapter with reference to 

the literature and the potential use of other existing techniques, as well as the 

further development of methods used in this research.

6.1. Key outcomes of research

6.1.1. Characterisation ofMR~l

The oxygenated environment is a more successful environment for MR-1 

than the anaerobic environment, in terms of longevity, due to the second 

phase of growth after 20 hours which is present for aerobic but not for 

anaerobic cells, and maximum concentration. Although these results point to 

the limitation of growth in the anaerobic environment, it can be argued that
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the anaerobic environment is more successful in that there is no lag phase, 

compared with a 3 hour lag phase for the aerobic culture, and in that the 

doubling time for the anaerobic cells is 1 hour, less than the 2.5 hours for the 

aerobic cells. In conclusion, whilst the population will be larger and survive 

longer under aerobic conditions, anaerobic conditions will result in more 

rapid growth. The lack of lag phase for the anaerobic system suggests that 

aerobically grown cells are able to function and reproduce as anaerobes as 

soon as is necessary. It is possible that the decreased doubling time is due to 

shorter lifetimes for individual cells requiring them to reproduce earlier, as 

the methods used did not distinguish between living and dead cells.

The growth of aerobic and anaerobic cells is therefore shown to have 

inherent differences, demonstrating the adaptation to ambient conditions of 

which S. oneidensis is known to be capable. This is further supported by the 

AFM imaging of cells harvested at different stages of growth. The images of 

aerobic cells in long chains which cannot be distinguished as doubling pairs 

compared with obvious doubling pairs of anaerobic cells in the growth phase 

shows that the two types of cell look very different when reproducing (for 

example comparing Figure 3.10 with Figure 3.14).

This study is the first to investigate surface charge of MR-1 through C- 
potential and the first to compare the effect of salt concentration of 

aerobically and anaerobically grown cells respectively. The organism was 

found to form stable suspensions at certain pH values, in most cases at pH 2 

or lower and pH 6 or higher. Measured isoelectric points, all between pH 3 

and pH  6, changed with salt concentration, with this change being greater for 

anaerobically grown cells than aerobically grown cells, suggesting that their 

surface chemistry is more strongly affected by the chemical environment. 

The organism has been reported in the literature to be halotolerant, perhaps 

due to seawater origins before adaptation to the environment of Lake
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Oneida[41]. However, no zeta potential investigation of S. oneidensis MR-1 

has been carried out before and so there was no information about the effect 

of salt concentration on the surface charge of MR-1 microbes before this 

study.

Variability in binding to a poly-L-lysine coated SPR sensor surface was 

greater for the aerobically grown cells than for the anaerobically grown cells, 

as can be seen when comparing Figure 4.1 with Figure 4.2. The variability in 

size and shape over time for the aerobically grown cells using AFM imaging 

in combination with the SPR data is evidence for the heterogeneity of 

aerobically grown cells, compared with the anaerobically grown cells which 

showed less variation in size and shape according to the AFM images in 

Chapter 3, and less variation in binding over time to the poly-L-lysine 

functionalised SPR sensor chip as can be seen when comparing Figure 4.4 

with Figure 4.5.

Novel work was carried out using probes of different materials, iron oxide 

which is a mineral S. oneidensis MR-1 has shown "directed affinity" for, 

according to previous research[48], and graphite which is commonly used 

for MFC electrodes [164], to investigate interactions between these materials 

and cells grown aerobically and anaerobically. Adhesion forces measured 

using the iron oxide probe showed a greater difference between samples in 

water and samples in pH adjusted salt solution, 0.08pN for the aerobic and

0.19pN for the anaerobic cells, than those measured using the graphite probe, 

which showed differences of 0.03pN for the aerobic and 0.2pN for the 

anaerobic. Thus the adhesion of cells to the graphite probe is more consistent 

than the adhesion of cells to the iron oxide probe as regards ambient 

conditions, and the errors in the measured adhesion are lower in proportion 

to the adhesion values for the graphite probe than for the iron oxide probe. 

This relates to Lower et al's findings[47] that MR-1 shows stronger adhesion
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to goethite than another gram negative bacteria, E. coli, the reason being that 

MR-1 reduces iron as part of anaerobic respiration and therefore responds to 

its presence with increased adhesion force compared to adhesion force to 

other materials and compared to adhesion by non-metal reducing bacteria. 

The largest adhesion force was measured for anaerobic cells in water at pH  7 

using the iron oxide probe as 0.34 ± 0.24pN, however the error associated 

with this value is proportionally large, indicating the inconsistency of 

adhesion values for this sample-probe combination.

Further to the adhesion measurements, the indentation of cell surfaces by 

probes was measured and used to calculate Young's modulus, E, for both 

aerobic and anaerobic cells. For the iron oxide probe the average value of E 

measured for the cells suspended in 10‘4M NaCl at pH 3.5 (E = 25kPa) was 

14kPa higher than for the cells in water at pH 7 (E = llkPa). For the 

anaerobic cells measured with the iron oxide probe the average value of E for 

cells in 104M NaCl at pH 4 was ten times smaller (0.35kPa compare with 

35kPa) than that for cells in water at pH 7. For the iron oxide probe the 

anaerobic cells in salt solution at the isoelectric point were the softest by an 

order of magnitude (0.35kPa). The graphite probe data matches the trend for 

the aerobic cells, with E being 52kPa larger for the salt solution at pH 3.5 than 

for water (79kPa and 27kPa respectively), but shows the reverse of that seen 

for the iron oxide probe for the anaerobic cells, for which E is 66kPa larger 

for the pH adjusted salt solution (E = 116kPa) than for the water sample 

(50kPa). For the graphite probe the anaerobic cells in salt solution at the 

isoelectric point were the stiffest by an order of magnitude (116kPa). The 

ionic strength of the solution will affect the configuration of molecular 

species on the cell surface as well as the cell wall itself and this is the origin of 

the difference between E measured in water at neutral pH and E measured in 

salt solution at an adjusted pH.
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A recurring observation throughout this research has been the heterogeneity 

of aerobically grown cells compared with the relative homogeneity of 

anaerobically grown cells. This was observed with AFM imaging, in the C~ 

potential measurements and in the SPR studies using poly-L-lysine. This 

suggests that cells living in the anoxic environment must maintain a specific 

morphology and surface chemistry that facilitates electron transfer to the 

replacement electron acceptor, whereas cells growing in an oxygen rich 

environment are able to grow larger and more varied as electron accepting 

oxygen is abundant and therefore respiration is not limited.

The experimental findings of this research are specific to the organism S. 

oneidensis MR-1 but the theory based on these findings can be expanded to 

include characterisation of gram-negative bacteria, dissimilatory metal 

reducers and facultative anaerobes in general using MR-1 as a model 

organism.

6.1.2. Experimental Design

Investigating via SPR the adhesion of whole cells to a PVD coated sensor 

surface was a further development of work using carbon-coated sensors to 

look at bio-molecule adhesion by Lockett et al[154], extending Lockett's idea 

into hitherto uncharted territory. The possibilities for further research 

presented by successful application of this experimental design are many 

and varied: in Chapter 1 the interactions of cells with inorganic surfaces such 

as microbially activated corrosion are briefly outlined, coating sensor 

surfaces with nanometre thick layers of metal could allow the use of SPR to 

investigate the adhesion of microbes to metal under various buffer 

conditions in order to understand better the environmental causes of 

corrosion for example. Applications for the coatings of medical implants that
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need to be resistant to the formation of microbial biofilms can also be 

envisioned. Comparative binding assays involving different strains or even 

genetically modified strains of bacteria, already undertaken using BIAcore 

systems with conventional surface preparation, could also be conducted on 

PVD coated sensors.

The limitation for this kind of investigation however, is the non-specificity of 

the binding due to the various binding possibilities on the surface of most 

bacteria. Use of simple binding models can only give comparative rather 

than absolute data, and must be applied consistently for the resultant rate 

constant values to have any meaning. In the comparative studies in this 

research aerobically grown cells were shown to have association rates of the 

order of lCPMV1 on both the 2nm and lOnm thick carbon surface, with the 

association rates for the anaerobically grown cells being an order of 

magnitude greater.The dissociation cases were of the same magnitude for 

both aerobic and anaerobic on both surfaces. Using the kon parameter as 

described by Kawashima et al it was interesting to see that the aerobic and 

anaerobic values of kon from the lOnm carbon layer data were similar, 2x1 O'9 

and 8xl0 9 RU/cell respectively, whereas those from the 2nm carbon layer 

differ by 2 orders of magnitude: 4x10 10 RU/cell for the aerobically grown and 

2xl0 8 RU/cell for the anaerobically grown cells. This may indicate that the 

2nm carbon layer is not as complete as the lOnm carbon layer, allowing cells 

to interact with and bind to the gold surface beneath. Alternatively, since the 

depth of the carbon layer is shown by Lockett et al to affect the sensitivity of 

the SPR system the difference between the aerobic and anaerobic binding 

may not be as strongly measured by the sensor surface with the thicker 

carbon layer. Further studies would be required to discover which of these 

explanations is correct.
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6.2. Applications and wider context

Microbial fuel cells and biosensors are dependent on the interface between 

biological components and inorganic circuitry. In this research the nature of 

interaction of whole S. oneidensis MR-1 cells with graphite and amorphous 

carbon approximated the interaction of such cells to MFC electrodes. 

Adhesion of cells to graphite was compared, using force spectroscopy, to 

adhesion of cells to iron oxide, which as a common naturally occurring near­

surface mineral is reduced by MR-1 in oxygen limited environments. The 

salt concentration and pH of the solution in which the MFC is maintained 

can be used to alter the level of binding of cells to electrodes as demonstrated 

in the poly-L-lysine SPR assay.

The interaction of whole cells with surfaces mimicking electrodes of different 

composition could be investigated using the new experimental method 

outlined in the latter part of Chapter 4.

Microbial fuel cells are important as they have the potential to fulfil energy 

requirements for low power, autonomous, devices. The development of 

multi-organism MFCs offers the opportunity to develop such devices that 

take advantage of the optimum combination of microbes using different fuels 

and different electron pathways to give continuous power. Research into 

such poly-species MFCs has already shown that microbial populations will 

adjust to the environment of the MFC system establishing a natural order of 

successful organisms[35], showing preference for those which self-mediate 

electron transfer.

The introduction to Logan's 2008 book, Microbial Fuel Cells, outlines his 

vision for the development of MFCs, believing that they will be developed 

initially as a method of reclaiming energy from wastewater[18]. Having 

initially stated that "requirements for making MFC's economically viable as a 

method for energy production are demanding", Logan makes the case that as
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domestic, animal and food processing wastewaters in his native USA contain 

an estimated 17GW in the form of biodegradable organic matter, recovering 

this energy would be enough to make the water infrastructure of the USA 

self sufficient. He envisions that this goal is an achievable milestone in the 

development of MFCs and is a strong incentive for further MFC research.

Research into wastewater treatment using microbial fuel cells has been an 

ongoing concern since studies in the late 1990's by Kim et al[15, 165]. 

Successes have included the development of mediator-less MFCs[30]. Now 

armed with greater knowledge of the surface molecules[166-168] and 

electron transfer pathways [46, 169, 170] which has been developed in the 

intervening years, and the effect of environment on cell-cell and cell-surface 

interaction of a commonly used MFC organism along with novel 

methodology for investigating cell-electrode interaction developed in this 

thesis, further research into MFCs can be targeted for specific situations and 

take advantage of specific features of S. oneidensis MR-1. If energy can be 

recovered from wastewater using MFCs such that the drain on energy 

resources to treat wastewater is mitigated, this will pave the way for novel 

alternative energy sources such as MFCs and related biomass conversion 

methods to be taken seriously in the wider realm of energy production.

In the immediate future innovative approaches to energy production are 

needed to meet rising global demands and to concurrently tackle the 

problems of increased carbon dioxide levels in the atmosphere by reducing 

the global reliance on fossil fuels. Although production of current from 

MFCs in laboratory environments is on the scale of mA there is potential for 

scaling up the technology, and in the future as fossil fuels become scarcer 

and the effects of climate change become more apparent, all possible safe, 

renewable energy sources will have their part to play.
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6.3. Future work

Of the many directions in which future work could be taken, the priorities 

are:

• Application of the effect of environmental conditions on the MR-1 

bacteria to the design of MFCs using this bacterium.

• Use of the BIAcore SPR system to investigate whole cell binding to 

PVD coated surfaces approximating practical cell-surface interactions.

• Force spectroscopy of living cells under various process relevant 

environmental conditions.

In 2008 Biffinger et al examined the influence of pH on MFC output, using 

two different strains of S. oneidensis: DSP10 and MR-1 [54]. MFC systems 

were maintained at pH 5, 6 and 7 for each strain. Further work could use 

Biffinger's methodology to measure current and power density for MFC 

systems optimised for cellular adhesion to electrodes, or for those optimised 

for stable suspension of cells in order to examine the effects of posited 

mediators excreted from cells such as flavins, described as mediating 

extracellular electron transfer in a 2008 study by Marsili et al[44].

Since S. oneidensis can transfer electrons extracellularly via direct contact and 

self-expressed chemical mediation, the chemical environment can be 

adjusted so that these cells adhere or remain planktonic, with the MFC 

continuing to produce a current. Therefore design of MFCs using more than 

one organism could be constructed such that the other organisms' 

requirement to be in electrode contact is met whilst S. oneidensis continues to 

be active in current production.

Many MFCs use graphite fibre brush electrodes at the anode, which have 

high specific surface area and porosity compared with other forms of 

graphite or carbon-based electrodes such as carbon cloth[18].
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Approximating a fibre brush electrode in SPR would be complicated by the 

limits of detection away from the surface, as would any approximation of 

such an electrode surface with force spectroscopy. Both methods allow 

researchers only to assess the interaction on a very small scale, at the scale of 

a point on the surface of one fibre rather than at the scale of a whole graphite 

brush anode.

Research into binding interaction using the PVD coated SPR sensor for whole 

cells could be developed for MFC research by using graphite rather than 

amorphous carbon to more closely match the anode properties. The problem 

with non-specific binding inherent to whole cell studies such as this would 

suggest that isolated molecules from the cell surface, such as surface 

cytochromes, could be injected over the PVD coated surface in order to 

identify the active surface molecules involved in binding. This kind of study 

would be closer to the original use of BIAcore and other SPR equipment for 

specific one-on-one binding. The influence of pH and salt concentration in 

running buffers and sample solutions could be investigated further in this 

way.

Alternatively, whole cells of m utant S. oneidensis species designed to be 

deficient or artifically abundant in specific OM molecules could be used in 

comparison with the wild type MR-1 in the SPR study. Such a comparative 

strain of the bacteria could also be used for comparison throughout all the 

studies in this research from growth monitoring to C-potential as well as 

forces spectroscopy.

Research into the growth of S. oneidensis MR-1 has shown the effect of 

temperature on growth, and the effect of pH on gene expression, and with 

the growth curves and quantitative growth data in this thesis as a starting 

point the effect of pH and salinity on cell culture growth could be used to 

find the limits of survivability for MR-1 in diverse environments. This in
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turn would provide information about the limitations on chemical 

environment for working MFCs using this organism, as well as the 

sustainability of MFCs. The need for continuous energy supply from MFCs 

will require an understanding of how the microbial community will progress 

in the different phases of growth and how a stable, living, culture can be 

maintained over time.

Further AFM research could include single molecule force spectroscopy 

experiments designed to measure adhesion of a sharp AFM tip to OM 

molecules on cells imaged by such a tip. This set up would require high 

resolution AFM in liquid. In contrast a colloid probe coated with isolated 

OM molecules could be used to measure adhesion between an estimated 

number of molecules and a substrate such as graphite or iron oxide.

S. oneidensis MR-1 presents a vital model organism for MFCs, as well as 

biosensors using gram-negative metal-reducing bacteria. Applicable areas of 

research using this organism include genomic studies, bioremediative 

studies, biosensors, MFCs, generic microbe-inorganic interface studies, 

isolation and characterisation of surface molecules, and electron transfer 

pathway identification. Insight into the metabolic function and the cellular 

interface of MR-1 allows understanding of the evolutionary adaptation of 

microbes for the environments they encounter and the strategies they 

develop for variation in environment. The "design" of microbial machinery 

used by individual cells for survival provides precedent for man-made 

design on similar scales as well as ready made nano-devices for use in 

biotechnology applications. From energy production, as described 

previously, to medical applications either encouraging or removing biofilms, 

as well as corrosion and other effects of microbial action, a fundamental 

understanding of the lives of bacteria such as MR-1 is essential as science
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hurtles towards a world where technology is ever smaller and more complex 

and its application ever more wide-reaching.
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Appendix -  BIAcore regeneration protocol

In order to successfully re-use a sensor surface, a suitable regeneration 
solution is used to remove bound material from the functionalised surface. 
The suitability of regeneration solutions is determined through testing for 
two criteria:

• That the solution removes all of the bound material

• That the solution leaves the functionalised surface able to be used 
again without diminishing binding

In order to test for this a sensorgram is run using the functionalised surface. 
Analyte is injected, and then the regeneration solution under test. The 
volume of each solution injected is also considered (larger volume means 
longer time of contact between solution and sensor surface which can lead to 
more interaction depending on flow rates).

After the injection of regeneration solution is over, the sensorgram should 
return to the baseline level seen before the sample was injected.

A second batch of sample is then injected. The sensorgram should reach the 
same maximum as the first sample injection reached, and the same net 
response should be seen after the sample injection has finished.

The regeneration solution is then injected again. Once again the sensorgram 
should return to the baseline level seen at the very start once the regeneration 
solution injection is over.

This process is repeated one last time. Any decrease in net ARU after 
injection or maximum RU levels during injection of sample needs to be noted 
as this means that the regeneration solution is not ideal.

This process is repeated for different regeneration solutions, starting with the 
least abrasive in smaller volumes. If the least abrasive potential regeneration 
solution does not fit the first criterion then a more abrasive potential 
regeneration solution is tested, and so on. If a potential regeneration solution 
is too harsh and despite fitting the first criterion does not fit the second 
criterion then varying concentration, volume injected or flow rate need to be 
considered and tested.

There is a list of suggested regeneration solutions in the BIAcore X 
handbook, but it is not exhaustive. For some interactions considering the 
chemistry of the analyte and functionalised surface may indicate which
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regeneration solutions are likely to work, or lead to the use of a regeneration 
solution that is not suggested by BIAcore.

Regeneration solutions tested for use in BIAcore studies in this research:

0.1M, 1M NaCl

0.001M, 0.01M, 0.1M, 1M NaOH

0.1M, 1M HC1

70% Ethanol

1M EDTA

50% Glycerol

BIAdesorb solution 1 (0.5% sodium dodecyl sulphate solution)
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