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Summary

This thesis presents a finite element methodology for the numerical simulation 
for plastic flow of orthotropic composites governed by the Hoffman yield criterion.

All numerical procedures were developed for plane strain and axisymmetric 
states with infinitesimal strains. Thermal effects were ignored and the loading was 
assumed quasi-static. It was further assumed that no fracture or debonding occurred. 
The hardening behaviour was isotropic.

The strategy used for the numerical simulation was based on implicit 
displacement finite element procedures. An operator split methodology and fully 
implicit backward Euler elastic predictor / plastic corrector algorithm were used to 
find a stress state at the Gauss point. During the plastic corrector part the Newton- 
Raphson method was used. A line search algorithm based on dichotomy concept was 
developed to find an improved initial guess for the Newton-Raphson method in order 
to obtain a physically reasonable solution for materials with high degree of elastic 
anisotropy. The tangent modulus consistent to the state update algorithm was 
obtained to ensure a quadratic rate of convergence.

Attention was focused on elastically anisotropic composites.
The robustness and correctness of the proposed algorithms is illustrated by 

means of numerical examples and comparison with results obtained by other authors.
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Chapter 1. Introduction

To gain an advantage over the competitors, modem engineers have not only to 

create sophisticated structural designs, but also use new materials with superior 

properties. In this context composites have become materials of paramount 

importance as they offer advantages such as low weight, improved strength, 

corrosion resistance, high fatigue strength, faster assembly, low thermal expansion 

coefficient, etc. They are used in different industries such as aerospace, underwater, 

automobile, chemical, electrical, leisure, to name but a few.

In many cases composites are more efficient than traditional materials such as 

metals. For example, in the highly competitive airline market there is a constant 

search for reductions in the overall mass of an aircraft without reducing the stiffness 

and strength of its components. Reducing 1 lb (0.453 kg) of mass of a commercial 

aircraft can save up to 360 gal (1360 1) of fuel per year. Hence, a company will 

become more profitable as fuel expenses are 25% of the operational expenses of a 

commercial airline (Kaw, 1997).

Composite materials are those that consist of two or more constituent materials 

that together produce required properties for a particular application. These materials 

are combined at a macroscopic level and do not penetrate into each over. One 

constituent is called the reinforcing phase (it can be in the form of fibres, particles or 

flakes) and the other is called the matrix (which is usually continuous). Fibre- 

reinforced composites are the most commonly used forms nowadays and they are 

composed of high strength and high modulus fibres in a matrix material. In these 

composites fibres are the principal load carrying components, and the matrix material 

simply keeps the fibres together, acts as a load transfer medium between them and 

protects them from the environment. Geometrically, fibres have near crystal-sized 

diameter and a very high length-to-diameter ratio (Kaw, 1997; Reddy and 

Miravete, 1995).

Composites have a long history. Significant examples include the use of 

reinforced mud walls in houses with bamboo shoots, glued laminated woods by the 

Egyptians (1500 BC), and laminated metals in forging swords (1800 AD). In the 

twentieth century fibreglass (where glass fibres are embedded in a resin) were first 

used in 1930. Later, in 1960-1970, new fibres such as carbon, boron and aramide and
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new matrixes of metal and ceramics appeared (Kaw, 1997; Matthews and 

Rawlings, 1994).

Obviously, as more complicated materials appear, more sophisticated 

mathematical models and numerical methods are required to perform a stress 

analysis of structures made of these materials. It should be mentioned that the 

majority of problems of practical interest are nonlinear. For instance, taking into 

account the plastic response of a structure allows an increase in its performance and 

reduction in weight.

Consequently, two major problems arise:

1. creating a mathematical model capable of describing all essential 

material properties (for example, different elastic moduli and plastic 

anisotropy i.e. different yield stresses and / or hardening in different 

directions);

2. development of methods capable of solving engineering problems of 

practical interest for these material models.

This thesis is dedicated to the study of plastic behaviour of elastically and 

plastically orthotropic composite materials with a Hoffman yield criterion 

(Hoffman, 1967). This criterion is suitable if a composite has significantly different 

tensile and compressive yield stresses. Actually, many fibrous composites have such 

differences (Koh et al. 1995). In such cases the popular Hill yield criterion 

(Hill, 1947) is inadequate and a more general Hoffman, yield criterion should be 

used. Needless to say, a flow theory will be used in this work as it allows 

calculations to be performed for a complicated deformation history.

Originally the Hoffman yield criterion was designed as a fracture condition for 

brittle anisotropic materials (Hoffman, 1967). The criterion itself is a modification of 

the criterion proposed by Hill (Hill, 1947) through inclusion of terms which are 

linear in the stress. This can overcome the restriction of the Hill criterion, according 

to which the tensile and the compression yield strength should be equal.

On the other hand, obtaining an analytical solution of mechanics problems 

requires integration of systems of partial differential equations over a domain, on the 

boundary of which unknown functions must satisfy given boundary conditions. As it 

is very difficult to find such a solution analytically especially in the case of nonlinear 

problems, numerical methods are widely used. Nowadays, the finite element method, 

which combines the variational formulation of a problem and special basis functions,
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is one of the most universal and popular methods. Modem commercial finite element 

software allows the analysis of a complete structure or structural system. They also 

permit the incorporation of design simulation and virtual prototyping into a product 

development process in order to minimize costs and improve time-to-market. Such 

systems as ABAQUS, ANSYS, Elfen, NE/Nastran, etc. are widely used by engineers 

nowadays.

In this thesis the HYPLAS finite element code is dealt with. This program is 

supplied with a text book “Computational plasticity: small and large strain finite 

element analysis of elastic and inelastic solids” by de Souza Neto et al. (2003). 

HYPLAS is a finite element software for implicit small and large strain analysis of 

hyperelastic and elasto-plastic solids in plane stress, plane strain and axisymmetric 

states. Its main purpose is to illustrate the computational implementation of 

numerical procedures for material models described in the mentioned text book. 

HYPLAS source code is written in FORTRAN.

1.1. Scope of the thesis

The purpose of this work is to implement computational algorithms within the 

HYPLAS program for the numerical simulation of plastic flow for orthotropic 

composite material with the Hoffman yield criterion.

These numerical procedures will be developed for plane strain and 

axisymmetric states for infinitesimal strains. This loading is quasi-static (i.e. inertia 

effects are ignored) and thermal effects are also ignored. It was assumed that no 

fracture or debonding occurs. The hardening behaviour is assumed to be isotropic.

Both elastic and plastic anisotropy are taken into account. Appropriate 

numerical examples, together with an accuracy analysis via iso-error maps for the 

state update algorithm at the Gauss point level, are provided.

To the best of our knowledge, studying the influence of elastic anisotropy for 

the Hoffman material is a new issue. For instance, in surveyed articles by Hashagen 

and de Borst (2001), Schellekens and de Borst (1990), and Xikui Li et al. (1994) all 

numerical examples for the Hoffman material were provided for elastically isotropic 

cases only. An accuracy analysis using iso-error maps provided by the article by 

Schellekens and de Borst (1990) was also limited to the elastically isotropic case. On 

the whole, it must be said that an extremely limited number of references dealing 

with composite materials with the Hoffman yield criterion was found.
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1.1.1. Numerical methods adopted

The full Newton-Raphson algorithm is used in HYPLAS to solve the nonlinear 

system of finite element equations for displacements during the global system 

iteration. This method was chosen due to its quadratic rate of convergence.

As for the Gauss point level, an operator split methodology and fully implicit 

backward Euler elastic predictor / plastic corrector algorithm were used to find a 

stress state satisfying the yield criterion. During the plastic corrector part of this 

algorithm the full Newton-Raphson method was used to solve the appropriate 

nonlinear equations. A line search algorithm based on dichotomy concept was 

developed to find an improved initial guess for the Newton-Raphson method in order 

to obtain a physically reasonable solution.

To ensure the quadratic rate of convergence of the global system iteration a 

tangent modulus consistent to the state update algorithm was also derived.

1.2. Thesis layout

This thesis is divided into six chapters.

After the introductory Chapter, Chapter 2 reviews the general strategy of the 

finite element method and its application to solving nonlinear problems of solid 

mechanics. The HYPLAS structure and subroutines are also described.

Chapter 3 is dedicated to a description of the Hoffman yield criterion for 

orthotropic composite materials. A corresponding elasto-plastic constitutive material 

model is also discussed.

Chapter 4 is dedicated to an explanation of the two main subroutines necessary 

for computational implementation of the Hoffman material model: state update for 

the Gauss point level and consistent tangent computation. All algorithms, appropriate 

numerical methods as well as accuracy verifying techniques are described in detail. 

Influence of the degree of elastic anisotropy at the accuracy of the state update 

procedure is discussed.

In Chapter 5 test examples are provided.

Chapter 6 contains a short summary and the conclusions of this work along 

with the suggestions for future research.
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1.3. Notations and conventions

In this work the following conventions were adopted:

• Tensors are written in greek or capital latin letters with italic bold font,

i.e. e or W ;

• Vectors are written in small latin letters with italic bold font, i.e. u ;

• Matrices and finite element arrays are written in greek or latin letters with 

upright bold font, i.e. e  or S;

• Components of tensors or vectors are written with italic font, i.e. e(J or

“ / •

The main notations are as follows:

u is the displacement vector and w, (/ = 1,2,3) are its components; 

e is the Cauchy full strain tensor and etj ( i , j  = 1,2,3) are its components;

£e is the Cauchy elastic strain tensor and £y ( i , j  = 1,2,3) are its components; 

s p is the Cauchy plastic strain tensor and £p ( i , j  = 1,2,3) are its components;

£p is the plastic strain rate tensor;

£ p is the accumulated plastic strain;

a  is the Cauchy stress tensor and <Jlj ( i , j  = 1,2,3) are its components;

a  is the set of internal variables;

X is the plastic multiplier;

E is the Young’s modulus for an anisotropic material; 

v  is the Poisson ratio for an anisotropic material;

El9E2,E3 are Young’s moduli in corresponding directions for an orthotropic 

material;

Gi2 ,G23 ,G3i are shear moduli in corresponding directions for an orthotropic 

material;

v\2 ’v 23’v3\’v 2i’v3 2 ’ v ]3 are Poisson ratios in corresponding directions for an 

orthotropic material;

C is the elasticity tensor;

F(<r,k) is the yield function;
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k is the hardening variable;

c},...c9 are nine independent material parameters of the Hoffman material 

model;

<j y is the reference yield stress;

a ilT , criiCo are the yield stresses in the direction i in tensile and compressive

tests respectively and subscript "0" means that the corresponding yield stresses 

are initial;

<jjJS is the yield in shear tests in the direction ij and subscript "0” means that 

the corresponding yield stresses is initial;

n and t  are respectively the unit (in Euclidian norm) normal and tangent 

vectors to the yield surface;

«djm is the number of spatial dimensions;

nnode is the number of nodes of the finite element;

N* is an element shape function associated with a node i ;

nelem is the total number of elements;

npoin is the total number of nodal points in the mesh;

N f  is the global shape function associated with a node i ;

rj is the virtual displacement vector and T)i (i = 1,2,3) are its components;

uf is the global array of nodal displacements;

T|f is  th e  g lo b a l  a r r a y  o f  n o d a l  v i r tu a l  d i s p la c e m e n ts .  

b is  a  v e c to r  o f  th e  b o d y  lo a d s ;  

w  is  a  v e c to r  o f  th e  s u r fa c e  lo a d s ;

u is a vector of the boundary conditions on the displacements;

K t is the global tangent stiffness matrix;
A

D is a consistent tangent matrix;

B8 is the matrix of the global strain displacement operator;

Be is the matrix of the element strain displacement operator;

Nc is the element interpolation matrix;

N g is the global interpolation matrix;

f m is the internal force vector;
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f ext is the external force vectors;

W  and V  are the tensors used in the yield function;

P is a matrix used in the yield function; 

q is a vector used in the yield function; 

a  is a finite element array of stresses; 

ee is a finite element array of elastic strains;

Aep is a finite element array of increments of plastic strains; 

s e mal is the elastic trial strain;

<jtrial is the elastic trial stress;

se tnal is a finite element array of elastic trial strains;

e*'fj is a finite element array of elastic trial strains where the shear component 

is multiplied by 2 (engineering shear strain)

C7tr,al is a finite element array of trial stresses;

D is the finite element array corresponding to the elasticity tensor 

S is the finite element array used in the derivative of the yield function;

I  is identity fourth order tensor;

I is the identity matrix of the 4th order (a finite element array corresponding to 

the identity fourth order tensor);

D ep is the tensor of the consistent tangent modulus;

Dep is the finite element array corresponding to the tensor of the consistent 

tangent modulus;

0 0 0"

1 0  0 
0 2 0 ’

0 0 1,

: denotes the double contraction operator, i.e. A  :B = AjBij» C : B — CijklBkl.

Z =

'1
0
0



14

Chapter 2. The finite element method and an overview of the 

HYPLAS program

In this Chapter the general strategy of the finite element method and its 

application to solving nonlinear problems of solid mechanics is discussed briefly. 

Hence the goal of the given work is implementation of the Hoffman material model 

into the HYPLAS program (de Souza Neto et a l 2003), the HYPLAS structure and 

subroutines is also described.

2.1. General concepts of the finite element method

The finite element method is the most powerful general technique for the 

numerical solution of applied engineering problems. Although the method was 

initially developed for analysis in structural mechanics, a large amount of research 

devoted to it made it possible to solve many other classes of problems. For example, 

the method can be applied to stress analysis of solids, solving acoustical, neutron 

physics and field problems such as heat transfer, and analysis of fluid flows (Hinton 

and Owen 1977; Bathe 1996; Zienkiewicz and Taylor 2000a).

The main idea of the method is discretisation, i.e. approximating a continuous 

mechanical problem with infinite number of degrees of freedom by a discrete 

problem having a finite number of degrees of freedom. Such substitution can be 

performed by dividing (meshing) a model by a finite number of components. The 

second step is choosing the type and number of degrees of freedom and making an 

assumption how an approximate solution depends on them. The final step is finding 

the values of the degrees of freedom by solving a system of linear algebraic 

equations.

The benefit of the finite element method is that a discrete problem can be 

solved on a computer easily even if the number of elements is very large. On the 

other hand, the exact solution of a continuous problem can be obtained only via 

mathematical manipulations, which can be extremely difficult or even impossible to 

perform.

At the beginning, in the 1940s, in articles by McHenry (1943), 

Hrenikoff (1941), Nemark (1949) it was shown that reasonably good solutions to an 

elastic problem can be obtained by replacing the small portions of the continuum by 

an arrangement of simple elastic bars. Later, in 1950s, original articles by Argyris
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and Kelsey (1955) as well as by Turner et al. (1956) appeared. The name ‘finite 

element’ first appeared in an article by Clough (1960). There was a very important 

early article by Zienkiewicz and Cheung (1964) showing an application of the 

method. Since 1960, a very large number of publications have appeared - a historical 

development of the subject was presented by Zienkiewicz and Taylor (2000a). There 

are also the compilation of references made by Noor (1991) and the Finite Element 

Handbook edited by Kardestuncer and Norrie (1987).

Finite element techniques used to obtain a solution of a quasi-static plasticity 

problem with infinitesimal strains are presented below following the definitions and 

description given in the text book by de Souza Neto et al. (2003).

Let the body X occupy the region Q with a boundary dQ in space. There are 

volumetric and surface loads affecting the body as well as some constraints on the 

displacements. The loading is assumed to be quasi-static (i.e. inertia effects are 

ignored), thermal effects are ignored and strains are infinitesimal. The material 

model is path-dependant, i.e. the stress tensor is not a function of the current value of 

strain tensor only, it depends on the whole history of deformations.

So, the initial boundary value problem can be stated as follows:

Given the initial values a(t0) of the internal variables a  and the history of

volumetric loads b (t) and surface loads w (t) (pseudo-time increment t e [/0,f]) for

each point of the body X , find the functions o ( t \  a ( /) , u (t) and s(t) which 

satisfy the following equations at each point of the body X :

2.1.1. Problem statement

dXj

(2 .1)

(2 .2)

(2.3)

relations between <j(t), a(t) and e(t) defined by a material model (2.4) 

and boundary conditions

CTyYlj = wi (I) on St c  , (2.5)
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ut = u{ on Su = dQ. \ S t , (2.6)

where

<7 is the Cauchy stress tensor and cry ( i, j  = 1,2,3) are its components;

£ is the Cauchy full strain tensor and £y ( i j  = 1,2,3) are its components; 

«, ( i = 1,2,3 ) are the components of the displacement vector;

/  is a function defined by a material model;

nt (i = 1,2,3 ) are components of the normal vector n to the surface St;

Uj ( i = 1,2,3 ) are boundary conditions on the displacements.

Expression (2.1) is an equilibrium equation, expression (2.2) is a definition of 

the Cauchy strain tensor, expression (2.3) shows the rate of the internal variables, 

and expressions (2.4) are defined by a constitutive material model (see Chapter 3 for 

an example).

The numerical solution of problem (2.1)-(2.6) by the finite element method 

will be shown below in Section 2.1.3. However, in order to find this solution the 

principle of virtual work has to be obtained (Section 2.1.2).

Expression (2.1) is an equation of equilibrium in a certain point of the 

continuum. In this section the corresponding weak (global or integral) form of this 

expression will be derived.

The space ¥  of virtual displacements 77 on body X consists of sufficiently 

regular arbitrary displacements which satisfy the following condition:

The principle of virtual work states that “the body X is in equilibrium if  and

2.1.2. The principle o f  virtual work

ri, = 0  on Su.

only if its stress field a(t) satisfies the following equation:

f a ( t f a d v -  fb ,( t fo d v - fa ( t )n ,d s = o , (2.7)
Q

where

^ k + f U l
ckj cki
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When the stress field is sufficiently smooth, virtual work expression (2.7) is 

equivalent to equilibrium expression (2.1). In order to prove this the following 

calculations must be performed.

First of all, as the stress tensor is symmetric the following expression is valid 

(pseudo-time dependence is omitted):

\ a .,£.,d V =\  R
SU,—L + —- 

^ckj ck.

\
dV =

(2 .8)

DU: Bid;
— +

2 a

( dUj dut  ̂
ck, dx.

j  y o

Expression (2.7) can be rearranged using expression (2.8) and the divergence 

theorem:

ja r ^ d V  -  fb,r/,dV -  jw ^ d S  =  \<jtJ ~ d v  ~ jb,n ,dV  -  \w,rj,dS =
Cl Cl S, Cl Cl S'

= - f a i r * * -  f b" ‘dV ~ f w‘V d S =
a a

(2.9)

= “  ~  + b, dV  + jV, (a i)nj -  w, )dS = 0.

Finally, since expression (2.9) is valid for any virtual displacement // then it 

follows that each bracketed term in the last line of expression (2.9) is equal to zero at 

every point within their respective domains.

Since the principle of virtual work has been proved, the finite element 

procedure can be described now.

2.1.3. The finite element method

The material presented in this Section covers the basic procedures that are 

necessary for computational implementation of the displacement finite element 

method. From here on in this Section the material will be presented according to the 

text book by de Souza Neto et al. (2003).

Two major numerical approximations are necessary for obtaining a finite 

element solution of the problem stated in Section 2.1.1:

1. Pseudo-time discretisation. A numerical integration scheme will be 

used to solve the problem which requires history of deformations to
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calculate stresses. So, the original problem is transformed into an 

incremental (time-discrete) one.

2. A finite element discretisation i.e. a finite element approximation of the 

virtual work statement where the domain of the body and associated 

functional are replaced with finite-dimensional counterparts generated 

by finite element interpolation functions.

After applying these two approximations, the original problem is transformed 

into a set of incremental (generally nonlinear) algebraic finite element equations to 

be solved at the end of each time interval. In this section the solution of the 

associated nonlinear algebraic system using the quadratically convergent Newton- 

Raphson algorithm will be given.

Finite element interpolation

Let a(x) be a generic field defined over the domain Qe of a finite element. In 

this case the finite element interpolation ah (x) of this field within a finite element is 

defined as follows:

"node

»*(*)=
/ = ;

where

nnode is number of nodes of the finite element;

N- (x) is an element shape function associated with a node i whose coordinate is x'

( N ‘ (x‘)= \;N ‘(xJ) ^ 0  i * j )  and

a' is the value of a(x) at node i: a' = a(x‘).

y v ^elem

An interpolation of a(x) over the whole domain hn = U Qe (where nelem is the
e-l

total number of elements) is defined as follows:

^poin

a " M =  zLa 'N f{ x )
i= I

where

npoin is the total number of nodal points in the mesh;

N f(x )  is the global shape function associated with a node i .
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Finite element interpolation in matrix notation

The global array of nodal displacements is defined as follows:

 « s r]T ,

where

is the number of spatial dimensions; 

uj is the i -th component of the displacement vector at node j .

The global interpolation matrix can be defined as follows 

Ng (x) = (diag[N‘ (x)],....... d ia g ^ f ^  (x)j[

where

(2.10)

P0i" ”dimx"dimV»>

rN f 0 0 >

diag[Nf(x)]=
0 N f  ••• 0

, 0 0 •. .  MSIyi J

is the ndim x diagonal matrix.

"dtâ d™.

An array expression corresponding to the displacements’ finite-dimensional set 

u b(x)= ^Tdiag[N f(x)^i\ u1 = « '(* ')  i f  x l g ( u is the displacement
i=]

vector at node i ) appears as follows:

'  Nf(x)u,l + . . .+ N ^ { x y r '

n i V K *  + - + » : J * V £ ,
An array expression corresponding to the following virtual displacements’ 

finite-dimensional set r)b( x ) = ^ jdiag[Nf(xtyjl, 77'= 0  i f  x l ed Q u , can be
1=1

obtained in similar way:

uh(jc)= Ng(x)uf =

iib(x )= N e(x)nf>

where

Tif = (rj\ ,... 77*d.m, ....... , r ff0'",... 77 ”2" J is the global array of nodal virtual

displacements.

It must be mentioned that each global array of nodal virtual displacements rjf 

on body X consists of nodal virtual displacements which are equal to zero on the
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part of border of the body on which boundary conditions on displacements are 

assigned. All these arrays belong to the space 4^.

As strains are used in expression (2.7) of the principle of virtual work, a strain 

vector and the global strain displacement operator should be introduced. For 

example, for a three dimensional problem the strain finite element array appears as 

follows:

E = ( £ 'l l  £ 22 £ 33 Y \ 2 = '^ £ \2  ^ 2 3  =  2 ^ 2 3  7^13 ^  ^ ^ 1 3 )  *

For an axisymmetric case this array has to be ammended as follows:

'22 y 12 '33 f .

The global strain displacement operator B g is defined as follows:

e = Bguf .

For example, in the two dimensional case this operator appears as follows:

Bg =

dNf
dx

0

0

dNf

M l
dx

0

0

dNf
dy dy

dNf dN f dNf dNf

dNf __ v
dx

0

dNf __ v
dy

0

dNf __ v
dy

dNf __ v
dxdy dx dy dx 

It is reasonable now to introduce a stress array for a three dimensional problem:

G ’ =  { p i i O  22 O  33 0 12 0  23 & 13 )  '

Analogously, for the plane strain or axisymmetric cases this array has to be 

ammended as follows:

CT = ((7yy 022 012 •

The finite element equations

Virtual work expression (2.7) can be rewritten using the appropriate matrix

notations:

\o (t)B % dV  -  fb(f)N*tifrfF -  fw(r)NBt|f<iS’ = 0, Vii, e Y ,. (2 U )
s,

Having rearranged expression (2.11) one gets

J(b 8)to( ^ F -  |(N s)Tb(?)rfF- |(N g)Tw(f)dS tl, = 0 , Vri, e ¥ ,
(2.12)
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As expression (2.12) is satisfied Vr|f e 'F f , it follows that the expression in 

brackets is equal to zero.

It should be pointed out that the material is path-dependant. Usually numerical 

algorithms for integration of such problems are obtained by implementing a pseudo­

time discretisation of the loads and deformation path.

A pseudo-time increment [t„,tn+i] is considered below and it is assumed that

both the set a n of internal variables of the converged state at tn and the strain tensor 

en+x at the end of the time interval are known. Within the context of the pure 

mechanical theory a n and €n+l together must determine <rn+l - the stress at the end 

of the time interval. The constitutive function for the stress tensor can be defined as 

a n+] = ° ’(a i.>f n+i)- The outcome of this function must lead to the exact solution of 

the actual problem with very small strain increments. Internal variables can be 

obtained as follows: an+1 = a(an,8n+1). Further details regarding the integration 

algorithm can be found in Chapter 4.

Equation (2.12) can be rewritten in the following way for pseudo-time moment

K+i •

j(Bs)Tafa,8„+1(uf J ) d V - {(N‘ ) \ +|</F- j W V . r f S
q n st

where

bn+] and wn+x are the body and surface loads at the pseudo-time moment tn+].

Global internal and external force vectors are defined in the following way:

(2.14)

C  = J(N8)Tb„.1rfr+  {(n ' ) t w „ ^ ,s\
Q  S,

These vectors are assembled from the appropriate element vectors (the same 

integrals which are taken over one element only):

n<*>

C - , =  J(NeR +1̂ + J(n ' K +1̂ ,
Q<e) S (e)

(2.13)
n f =o, v tifS T ,
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where

Be =

dN* dm em
dx dx dx

0
dN;

0
dN*

0
dN*

” node

dy dy dy
dN* dN* dm2 dN' dN*

" node
dN*

node

dy dx dy dx dy dx

is the matrix of the element

strain displacement operator;

Ne (*)= [diagim, (*)} diag[Ne (x )\

N; 0 
0 N*

0 0

^node 

\

^dim dim** node
is the element interpolation matrix;

m

is the x ndim diagonal matrix.

i J wdimxwdim

Hence, the finite element problem (2.13) can be reformulated as follows: 

find the nodal displacement array uf n+1, such that

r(u( J = f ‘nl(u, J - C , = 0  (2.15)

As the material is path-dependant, equation (2.15) is nonlinear and has to be 

solved numerically. The full Newton-Raphson algorithm discussed in the next 

Section is suitable for this due to its quadratic rate of convergence.

The Newton-Raphson algorithm and a tangent stiffness matrix

The Newton-Raphson iteration scheme for integration of equation (2.15) is 

described below.

In order to get a solution of the k th iteration, the correction 8 u /k̂  is added to

the solution which was obtained during the ( k - \ ) th iteration:

( k )  ( k - i )li,:., =u (k)
f ~ . — f«i +*»r •

(k)

(2.16)

In order to obtain the correction 8uf one must solve the following linear 

system:

K t6u(W = - r (k-" = ) (2-17)

where

K x is the global tangent stiffness matrix:
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K t = dr

aufD+1

(2.18)

. (k-0
*fn+l

This matrix (2.18) is the assembly of the element tangent stiffness matrices

i f  (e) . JV y

Kf> = |(b ' )T DB'rfF (219)
a">

where

D is a consistent tangent matrix:

(2 .20)
o ( k - l )  •

n+1

One should note that matrix (2.20) contains the derivative of a generally 

implicit function a (a n,e n+1) which is defined by an integration algorithm for the 

constitutive equations of a material model. In the article by Simo and Taylor (1985) 

it was shown that in order to obtain the quadratic rate of convergence of the iterative 

solution for problems of rate-independent elastoplasticity it is necessary to ensure 

that the tangent operator and the integration algorithm are consistent. Please refer to 

Section 4.2 for detailed procedure to obtain the consistent tangent matrix (2.20).

Finally, the Newton-Raphson iteration scheme for obtaining the finite element 

solution at the n + 1 load step (loads are bn+l and wn+]) of problem (2.1)-(2.6) may 

be represented as the following algorithm:

1. k = 0. Set initial guess u(,„“,l = u(ll; r = f tot (ufn) -  f “ .

do2. Calculate consistent tangent matrices D =
de„.i

n|»»»p /  \T  ^
3. Assemble element tangent stiffness matrices K^c) = ^  j D,.!*,.6

i=l

(where zf is the Gaussian weight and n is the number of Gauss points).

4. k = k + 1. Assemble the global stiffness and solve the system 

K T8uf(k) = - r (k‘l).

5  Apply a Newton correction to the displacements u ,^  = + 8uf .
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6 . Update strains = Bgu f^  .

7  Update stresses and internal variables = a(an, s[j$ ), a (k+\ = a (a n, e ̂  ).

n8«“»p / \ j

8 - Compute element internal force vectors f(e) ~ X! Z/M®e) ^n+i . (where j.
i=l

is the determinant of the Jacobian).

j*int ( (k)  |
9. Assemble global internal force vector 1 \u fn+i/ and update residual

_  f  int /  (k) \ f t
r “ f  \  fn+1 /  n

• ext 
l n+l

10. Check for convergence. If f C l t
n+1

< tol then goto 1 1  else goto 2 .

\ ( k )

f n + 1 '1 1 . Update solution (•)„, =(■)[

2.2. Overview of the HYPLAS program

In this section a brief description of the HYPLAS program is provided. 

Detailed description is provided in the text book by de Souza Neto et al. (2003).

HYPLAS is a finite element code for implicit small and large strain analysis of 

hyperelastic and elasto-plastic solids in plane stress, plane strain and axisymmetric 

states. In general, its structure includes (de Souza Neto et al. 2003):

1. A general displacement-based incremental finite element procedure;

2. Iterative schemes (for example, Newton-Raphson) for solution of 

nonlinear incremental finite element equations;

3. An arc-length scheme for problems involving structural instability.

To ensure material and element modularity HYPLAS was designed in such a 

way that element-specific and material-specific procedures are connected to 

relatively local parts of the program. That is why it is quite easy to incorporate a new 

material model into HYPLAS. The developer should write associated numerical 

procedures only and then ensure that these subroutines will be called at appropriate 

points.

The HYPLAS program can be divided into three basic parts (these parts are 

practically independent of the finite element types and material models adopted):
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1. Data input and initialisation. This phase is carried out at the beginning 

of the program execution and includes reading from files all the 

necessary data and initialising all arrays.

2. The incremental finite element procedure. This procedure is the main 

part of the program and consists of a loop over load increments with a 

nested loop over equilibrium iterations.

3. Output of converged results to the result file and/or dumping an image 

of the database into a restart output file.

2.2.1. Data input and initialisation

Input data can be read either from an input file only or from an input restart file 

and an input data file. The input data file is an ASCII file containing all the 

information defining the problem to be analysed including the data related to the 

definition of the proportional load incrementation programme. The input restart file 

contains the image of the database where most arrays and program control 

parameters required in the solution process are stored. This database contains 2 types 

of data:

1. Problem-defining data which does not change during the solution 

process and consists of nodal coordinates and connectivity; material 

and element properties; boundary conditions such as kinematic 

constraints and external loads. It is worth noting that material properties 

can be divided into real (elastic constants, yield stresses and points of 

piece-wise linear approximation of the hardening curve) and integer 

(number of points of this linear approximation; material class and type 

numbers). This data is set once according to the input file.

2. Solution-related data that changes during the solution process. These 

data include nodal displacements, stresses and state variables at Gauss 

points, internal forces, etc.

Geometry of the problem, mesh topology and boundary conditions are also 

read during this stage.

2.2.2. The load incremental loop

This incremental loop is the central part of the finite element analysis code. 

This loop carries out the proportional loading programme. Within each step of the
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loop an iterative procedure (typically the Newton-Raphson algorithm) is carried out 

to solve the non-linear equilibrium problem. The main concept of this loop was 

discussed in Section 2.1.

The structure of the programme code of the load increment loop under fixed 

increments option can be seen in Figure 2.1. Detailed explanation of the HYPLAS 

subroutines is provided in the text book by de Souza Neto et a l (2003). Under fixed 

increments option the incremental load factors are taken from the input data file.

data input & initialisation

(y aw n

NO

YES
maximum number

incramant external 
load vector

INCUM

SWITCH

OFCOMT

OUTPUT, RSTART

SWITCH

Figure 2.1. The load incrementation loop with fixed increments 

(de Souza Neto et a l 2003).

There is also an increment cutting option in HYPLAS. This procedure is 

activated when a converged equilibrium solution can not be attained in the 

equilibrium iterations. Whenever this happens the current step is restarted with a 

reduced increment size. There are the following causes for the absence of 

convergence:
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1. Load increment is too large. The total load of the structure is beyond 

the limit load of the structure or the initial guess is out of the 

convergence radius of the iterative solution method.

2. The algorithm for numerical integration of the path-dependant 

constitutive equation (the state update procedure) fails to give a solution 

at a Gauss point. This may be caused by too large strain increments.

3. The system of linear equations can not be solved because of a zero 

pivot in the stiffness matrix (the tangent operator is singular).

So, the loop over load increments is ended either if  the load programme is 

successfully finished or if  the number of increment cuts (Figure 2.1) causes the sub­

increment stack array to become full.

The equations of the linear system are assembled with the contribution of each 

element to the global system matrix and the load vector. This system is solved using 

the classical frontal method where the system is solved by Gauss elimination. Details 

of the technique can be seen in the book by Hinton and Owen (1977).

2.2.3. Material modularity

The basic idea of HYPLAS is isolating element and material-specific 

operations to special code areas to avoid interference with general procedures that 

are non-related to special elements or materials. This concept is illustrated on the 

Figure 2.2.

Hn««f equation eyeteme

iWtneea computation

•tiffneee computation

ST3TD2 3TTBA2

tangent operator lot 
In—retetticmetenit

jpetial tangent modu 
lor Ogden model

CTTJl

Figure 2.2. Consistent tangent computation. 

Modular structure (de Souza Neto et al. 2003).
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It is easy to see that the consistent tangent computation is split into two levels:

1. The element level on which all element related quantities (matrix B )  are 

computed. From this level an appropriate subroutine is called for each 

Gauss point to obtain the tangent modulus. Finally, the element tangent 

matrix is assembled.

2. The material level that is the lowest layer of code. It receives the stress 

conditions and state variables from the element level, and computes the 

consistent tangent modulus for the Gauss point.

2.2.4. Implementation o f  a new material model

There is a material database in HYPLAS in which materials are identified by 

types and grouped into classes. Grouping materials into classes is not necessary for 

modularity but is valuable particularly in the finite strain regime where different 

models require the same transformation of the kinematic variables.

Within the HYPLAS modular structure the incorporation of a new material 

model requires coding of the following material-specific subroutines (their names 

were chosen to follow the HYPLAS style):

1. State update procedure SUHF. This subroutine calculates new stresses, 

algorithmic (such as the plastic multiplier) and state variables at the end 

of load increment for each Gauss point (Section 4.1).

2. Tangent computation procedure CTHF. It calculates the consistent 

tangent operator using converged values of stresses, algorithmic and 

state variables for each Gauss point (Section 4.2).

3. Switching / initialisation subroutine SWHF. It is used for the 

initialisation of variables as well as switching between current and 

converged values in material specific routines.

4. Data input procedure RDHF that reads all material model/algorithm- 

related data and stores them in the appropriate HYPLAS arrays.

5. Output subroutine ORHF writes the results to a result file.

Moreover, to incorporate a new material model into the HYPLAS code one

should perform two additional steps:

1. Adding a new material type identification parameter to the material 

database
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2. Adding calls to 5 material interface routines to the existing HYPLAS 

material interfaces.
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Chapter 3. Elasto-plastic constitutive Hoffman material model

This chapter is dedicated to a description of the Hoffman yield criterion for 

orthotropic composite materials (Hoffman, 1967). A corresponding elasto-plastic 

constitutive model used in state update procedure (Section 4.1) is discussed as well.

3.1. The Hoffman yield criterion

It is well known that composite materials are highly anisotropic in terms of 

elastic moduli and yield strengths. They are weaker in the transverse direction than in 

the longitudinal one. A typical ply of a composite structure can be considered as 

orthotropic with three principal material directions. In the case of fibrous composites, 

the direction parallel to the fibres is normally referred to as the longitudinal direction 

(one in the plane of the ply and one normal to it). These three material directions are 

denoted as material axes jc, , x2 and x3 respectively (Koh et al. 1995).

Composite materials controlled by plastic flow are studied in this project. So, it 

is assumed that no fracture or debonding occurs. In this context it should be 

mentioned that many fibrous composites have significantly different tensile and 

compressive yield stresses, particularly in the transverse directions (Koh et a l 1995). 

That is why in these cases the commonly adopted Hill yield criterion (Hill, 1947) is 

inadequate and a more general Hoffman yield criterion should be used.

Originally the Hoffman yield criterion was designed as a fracture condition for 

brittle anisotropic materials of which fibre-reinforced plastics are the most important 

examples (Hoffman, 1967). It should be mentioned that there are some other fracture 

criteria for these materials such as Tsai-Hill and Tsai-Wu (Schellekens and 

deBorst, 1990; Gurdal, 1999).

The Hoffman yield criterion is a modification of the criterion proposed by 

Hill (Hill, 1947) through inclusion of terms which are linear in the stress. This can 

overcome the restriction of the Hill criterion, according to which the tensile and the 

compression yield strength should be equal (in other words, a Bauschinger effect is 

neglected).

Hoffman originally formulated his failure criterion by a quadratic function 

Q ( ° 2 2  — ̂ 3 3  ) + C2 ( ^ 3 3  — ̂ 11) +C3 (<Tn — (722 ) +

+  C 4 <TU  +  C 5 < J 22 +  C 6 C 3 3  +  C r7 C7 23 +  C g ( 7 j 3  +  C g < J ] 2  —  1  *
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where the constants Ci , / = 1 9 are nine independent material parameters which

can be uniquely defined from three tensile tests, three compression tests and three 

shear tests. It is evident that this expression does not allow hardening to be taken into 

account as it was designed to predict failure, not to describe a plastic flow. The 

possibilities to take different types of hardening (both isotropic and anisotropic) into 

account will be discussed later.

The geometric form of the Hoffman failure surface is described by a quadratic 

function of nine independent variables C ,. When the criterion is represented

graphically in the principal stress space it is an elliptic paraboloid (Schellekens and 

de Borst, 1990). The intersections of the limit surface with planes parallel to the 

deviatoric plane are ellipses, the shapes o f which are determined by the quadratic 

part of the function (Figure 3.1).

Figure 3.1. Cross section of an anisotropic Hoffman yield surface and the 

deviatoric plane (Schellekens and de Borst, 1990).

3.2. The Hoffman material model in tensor notation

Having discussed the Hoffman yield criterion, it is possible to write down the 

Hoffman plasticity model for orthotropic composite material with isotropic 

hardening (anisotropic hardening will be discussed later):

£  =  £ e +  £ P (3.1)

<y = C : e ' (3.2)

(3.3)
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* = = S  ) F w d t = J l  flio o o
\ep\dt = e p

(3.4)

b P _ X SF(cr,k) (3.5)
d a

F{a,k)<  0 i > 0  AF(<t,A:) = 0
. > ’ j

(3.6)

where

e  is the Cauchy full strain tensor;

£ e is the Cauchy elastic strain tensor; 

e p is the Cauchy plastic strain tensor;

<7 is the Cauchy stress tensor and cr (z',y = 1,2,3) are its components;

C is the elasticity tensor;

F(<r,k) is the yield function; 

a Y is the reference yield stress;

^ is the hardening variable;

: denotes the double contraction operator, i.e. A :  B  = ■AyBgi C : B  — CljklBkl;

£ p is the plastic strain rate tensor;

£ p is the accumulated plastic strain;

c\ >• • *c9 are nine independent material parameters (3.7);

X is the plastic multiplier.

The expression (3.1) is an additive decomposition of the strain tensor, 

expression (3.2) is a linear elastic law, expression (3.3) is the Hoffman yield function 

for isotropic hardening, expression (3.4) defines the hardening parameter for strain 

hardening model, expression (3.5) is a standard associative flow rule, and 

expressions (3.6) show the loading/unloading criterion.

A model is said to be isotropic hardening if the evolution of the yield surface is 

such that, at any state of hardening, corresponds to an uniform (isotropic) expansion 

of the initial yield surface, without any translation. In other words, yield stresses 

(including the reference yield stress) have the same hardening rate. That is why for 

the isotropic hardening model c15...c9 are constants and appear as follows 

(Koh etal. 1995):



where subscripts nr ' 9"C' and "S" denote the yield stresses in tensile, compressive 

and shear tests respectively and subscript "0" means that the corresponding yield 

stresses are initial.

The anisotropic Hill material is recovered when the yield stresses are equal in 

the tensile and compressive directions leading to c5 = c6 = c7 = 0. For isotropic von

Mises material the constants are the following: cx = c2 = c3 = 1, c4 = cs = c9 = 3 and

cs = c6 = c7 = 0.

In the case of anisotropic hardening all 9 stresses a T,crc and <rs in all 3 

directions depend on their own corresponding hardening variables ki9 i = 1 ...9 . So, 

the nine independent material parameters clf...c9 are not constants any more. At the
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same time, <j y  in the expression (3.3) does not change and is equal to the virgin yield 

strength of the material in the first material direction. This model of hardening is 

discussed in detail in the article by Hashagen and de Borst (2001).

For an orthotropic material components of the elasticity tensor C appear as 

follows:

Q m  = Ai
9

C2222 “  ^22
9

Q 333 = A 3

^ 1 1 3 3  — ^33 1 1  — B 13

C2 233 — ^ 3 3 2 2  — B 23
9

r  - r  = B  0 ' %)' “'1122  ''■'2211 12
9

Cl212 =  Q 22I =  ^ 2 1 1 2  =  ^*2121 =  A 4 / 2
9

Q 313 =  ^ 1 3 3 1  =  ^ 3 1 1 3  =  Q l 31 =  B 5 5 / 2
9

C3232 =  ^3223 =  ^2332 =  ^2323 =  ^ 66
9

where these 9 coefficients are uniquely determined by 9 elastic constants, i.e. 

Young’s moduli ElyE2,E3, shear moduli Gl2,G23,G3] and Poisson ratios v12,V23,v3]:

B  =  ________________

( l  -  ^31^13 X l  -  ^2 3 ^ 3 2  ) - ( ^ 1 2  +  V 13V 32 X ^ ,  +  V 23V 3 l )  ’

B  = ______________ ^ ( i - n i vi3)______________
+ l / 21l / n X l / 32 +  ' / 3 l ' / l 2 ) ’

=  ________________

0  -  V 23V 32 X l _  V12 V 21 ) _  ( V 31 +  X ^ .3  + VnVliY

R (v2, +V23V3i) n
12 ~ \ 1̂1 > 

(I-V 23V/32)

r (v32 +v31v,2) „
23 — \  22 ’

I1"  ̂ 13)

n  _  13 " ^ ^ 1 2 ^ 2 3 )  7-)
D \3 ~  \  33 >

^ 4 4  =  2 G n ,

A 5 = 2^31 >

(3.9)
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By definition,

6̂6 — 2^23 J

Ei
V 21 = V 1 2 r ’E,

V 32 V 23 E  ̂ > ( 3  9 )

E ,
vn = v3iTT>E ,

contraction in the i — th direction
vr = -----------------------------------------------

lJ extension in the i - th  direction

As the HYPLAS program (de Souza Neto et al. 2003) was designed for such 

two-dimensional problems as plane strain or axisymmetric cases

( c,e3 = c23 = c/J = = 0 and cr13=<j23= 0 ) and the aim of this project is to

implement a Hoffman material model in HYPLAS (de Souza Neto et al. 2003), all 

further calculations will be restricted to these two cases.

The associative flow rule (3.5) consists of a tensor derivative. That is why the 

Hoffman yield function (3.3) should be used in a tensor form. To obtain this form 

the following calculations are necessary to perform:

= [̂ C1 - • y j ( crii -o-33)2 + ̂ c2 -<r33)2 -o -22)2 +

+  C40 ’12 + C 5<JJ] + C 6<J2 2 + ^ 7 ^ 3 3  =

= - y j ( ^ n 2 -2^11^33 +^33^+^2  +°'332)+

+ — (<Tii — 2<Jij(722 + <J22 )+ C4C712 + C5<Jn -I- C6<J22 + c7cr33 =

= ~  f a ci ~ c 3 )(pn — 2cTj !CJ33 + <j33 )+ (2c2 — c3icr22 — 2cr22cr33 + cr33 j |+

= — ̂ 3 (cru — 2<j11ct22 + <t22 )}+ c4c u + c5c ll + c 6<j 22 + c7cr33 =

— — jzCjCTjj + 2 c2(j22 + (2c, + 2 c 2 — 2c3)a 33 — 2(2c, — c3)c n <j33 j+
+ — {— 2(2c2 — c3)cr22cr33 — 2c3<jn c722 + 2c4c712 }+

+  C5 < 7 n + C 6CT22 + C 7CT33 + V y ( T y =
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= — <j:W :cr + V :<j
2

where

W"in i = 2 q

W2222 = 2 c29

w3333

II to + 2c2 - 2c3

w1133 = w"3311 = c3 --2cj

w"  2233 = w"  3322 = c3--2c

W1122 = w  "  2211 c3
9

w"1212 -  w  "1221 = w  = "2112

'c5 0 0"
V = 0 c6 0

O o C1J

In this case

3 fW )_
d a

= W : a  + V .
(3.10)

3.3. The Hoffman material model in matrix notation

As was shown in Chapter 2, the HYPLAS program (de Souza Neto et al. 2003) 

uses matrix and vector notations. So, the same data structure should be used in order 

to numerically implement the model (3.1)-(3.6) in HYPLAS.

For example, the three-dimensional elasticity relationship for orthotropic 

materials in matrix notation is:

A . B\2 Bn 0 0 0 ' (  e \£ u

^22 ■̂12 B22 Bn 0 0 0 £e 22
<t33 Bn B33 0 0 0 £ C33

&12 0 0 0 B44 0 0 £e\2

^13 0 0 0 0 B 55 0 S S\3

V°23 J 0 0 0 0 B66 ; K8  23 >

However, for the plane strain or axisymmetric cases this relation in matrix 

notation has to be amended:

ct = Dee,
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where

CT =
22

12

8 =

V°"33y

'22

12

c ev*33y

D =

Bn B] 2 0 V
Bn B22 0 B23

0 0 B44 0
B] 3 Bj3 0 B33 ,

Furthermore, in matrix notation the Hoffman yield function (3.3) will appear as

F(a,k)=  -̂ -CTTP a + q Ta -  crl(k\

where
r

P =

2c, c3 0
2 c2 0

0 0 2c,
2c, + c3 — 2 c 2 + c3 0

q =

\ C 1 J

— 2 c ,  +  c 3

-  2 c 2 + c3
0

2 c ,  + 2 c 2 - 2 c 3 /

Finally, expression (3.10) for the tensor derivative should be put in matrix form 

in order to rewrite the associative flow rule (3.5) in matrix form. It is easy to see that
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W :a  =

2cio’11+(cj 2cx̂ g33 c3<j 22 cag4 12

2 C 2 O 22

c,cr4 12

0 0

+ (C3 2 c2 )c7 3 3  

— C2CT]1
( 2 cj +  2 c 2 — 2 c 3 /CT33 +

+  (c 3 - 2 c , ) c r 11 +

+  (c 3 — 2  c 2 ) a 22 j

In matrix notation the inner tensor product W : a  corresponds to a matrix 

vector product Sct , where

S =

2 c,

- c .
“ C3 
2 Co

0
0
c.

- 2 c ,+ c 3 
-  2c2 + c3

0 0 c4 0
- 2 c x + c 3 - 2  c 2 + c 3 0 2c, + 2c2 - 2 c 3J

It is evident that the vector q corresponds to a second order tensor V . That is 

why the right part of the derivative (3.10) may be rewritten in matrix notation as 

£ < 7  +<7 .
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Chapter 4. Computational implementation of the Hoffman material 

model

Due to the mathematical complexity of the flow theory the exact solution of 

boundary value problems of practical engineering interest can be obtained under very 

simple conditions only. The existing analytical solutions are normally restricted to 

perfectly plastic models and are used for the determination of limit loads and steady 

plastic flow of bodies with quite simple geometries (de Souza Neto et al. 2003). That 

is why the analysis of the elasto-plastic behaviour of structures under realistic 

conditions requires the creation of adequate numerical methods that produce solution 

within reasonable accuracy. In this project the finite element method is used in this 

context. This method is the most commonly adopted for the solution of elasto-plastic 

problems and is used by the majority of commercial software packages for elasto- 

plastic stress analysis.

This chapter is dedicated to a detailed description of 2 main numerical 

subroutines - state update SUHF and tangent computation CTHF. These procedures 

must be added to the existing HYPLAS code (de Souza Neto et al. 2003) in order to 

obtain the finite element solution of small strain plasticity problem for the Hoffman 

material model.

There are also 3 other material-related subroutines to be coded: data input 

RDHF; switching / initialisation SWHF and output ORHF.

All these 5 procedures were briefly described in Section 2.2.

4.1. State update procedure SUHF and the integration algorithm

As was mentioned in the second chapter, the state update procedure is a 

material level subroutine. It uses kinematic variables computed at the element level 

to update stress and other state variables at every Gauss point of the element and 

returns it to the element level to assemble an element internal force vector.

If the material model is path dependent then the stress tensor is no longer a 

function of the instantaneous value of the infinitesimal strain only. It is dependent on 

the whole history of strains to which the solid body has been subjected and the 

analytical solutions of the initial value problems are generally unknown for complex 

deformation paths.
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For the general path-dependant case the state update procedure defines an 

incremental constitutive function within the typical (pseudo-) time increment 

[*n>*«+i] (^e Souza Neto et al. 2003):

(4.1)

where

n is the iteration number of the global Newton-Raphson structural iteration scheme

for the fixed load incrementation step;

a n is the set of internal variables of the converged state at tn;

s n+l is the given strain at the end of the interval tn+l;

crn+l is the stress at the end of the interval tn+].

The outcome <Jn+1 must tend to the exact solution of the actual evolution

problem with vanishingly small strain increments.

The incremental constitutive function (4.1) may be also expressed in the 

equivalent form

=o'(a.»A f). (4.2)

where

Ae  = £n+l -  s n is the incremental strain.

The numerical constitutive law (4.1) is non-linear and path-dependant within

one argument. That is, within each increment a n+i is a function of £n+\ alone ( a n is

constant within frn >Cn]), analogous to a non-elastic law. The integration algorithm 

also defines a similar incremental constitutive function for the internal variables of 

the model:

“ ,+i = « (“ . . «„+i). (4-3)

The incremental constitutive functions (4.1), (4.3) are defined by the 

integration algorithm adopted and the stress delivered by (4.1) is used to assemble 

the element internal force vector.

The operator split method and elastic predictor / plastic corrector algorithm 

described below were used as the integration algorithm of the state update procedure 

SUHF for the Hoffman material model.
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4,1.1. The general operator split method

The additive decomposition of the total strain into elastic and plastic 

contributions makes algorithms based on the so-called operator split methodology 

particularly suitable to integrate numerically the initial value problem of 

elastoplasticity. The basic idea underlying the operator split algorithm is illustrated 

by taking the initial value problem following an example provided in texts by 

de Souza Neto et a l (2003) and Simo and Hughes (1987).

Let A  be a linear operator (tensor) in the space of vectors in in'” and assume 

that A  can be split additively as A  = B + C . The basic initial value problem is the 

following:

Problem A. Find the vector-valued function x(f) that satisfies the differential 

equation

i:(f) = Ax(f)

with the initial conditions

4 0 = * « •

The analytical solution to Problem A (Hirsh and Smale, 1974) is given by the 

expression

4<) = e x p [(* -O 4 x 0,

where exp[ J denotes the tensor exponential of [•]. Thus at the time t0 + At the exact

value of x(t) appears as follows:

x(t0 + At) = exp[AL4]x0 = exp[A/(l? + C )]x0. (4.4)

The numerical approximation to the exact solution x(t0 + At) at a point t0 + At

can be derived by splitting Problem A into the following sequence of two problems 

B and C.

Problem B. Find the vector-valued function y{t) that satisfies the differential 

equation

4 0 = « 4 ')

with the initial condition

4 0 = * o -

Problem B is solved first and its exact solution at the time t0 + At appears as 

follows:
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y(t0 + 4t) = exp[A/2?]jc0.

Problem C. Find the vector-valued function x{t) that satisfies the differential 

equation

x(t) = Cx(t)

with the initial condition

* ( <o ) = . K * » + A / ) -

The solution y(t0 + A*) to Problem B is taken as an initial condition in Problem 

C, whose exact solution is

x(t0 + At) = exp[AfC ]exp[Arff]jt0. (4.5)

Formula (4.5) provides a first order accurate approximation to the exact 

expression (4.4), i.e. the difference between the exact value of x(t0 + A/) and its 

operator split approximation vanishes faster than the interval At. However, 

expression (4.5) is exact if  tensors B  and C commute.

So, a first order accurate (in the sense of time discretisation) algorithm for the 

numerical solution of the Problem A, can be obtained by splitting the original 

problem into a sequence of the two subproblems B and C. The resulting operator 

split algorithm comprises the following steps:

1. Solve Problem B, whose initial condition is that of the original Problem A.

2. Solve problem C, taking the solution of Problem B as initial condition. The 

solution to Problem C is a numerical approximation to the solution of the 

problem A.

This operator split idea remains valid when the operator A  is non-linear. There 

were exact solutions to subproblems B and C used in the considered algorithm. 

However, upon construction of a first order accurate operator split algorithm it is 

required that the adopted solutions to the associated subproblems be only first order 

accurate.

Application of the above operator split algorithm to a numerical solution of the 

elasto-plastic problem can be found below in Section 4.1.2.

4.1.2. Elastic predictor /  plastic corrector algorithm

Following the operator split concept introduced in Section 4.1.1 an elastic 

predictor / plastic corrector algorithm for numerical integration of the elasto-plastic 

constitutive equations is derived below following the text book by de Souza
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Neto et al. (2003). The name of this algorithm means that the original initial problem 

of elastoplasticity will be split in two: the elastic predictor and the plastic corrector.

It is worth reminding that the state update procedure updates stresses and 

hardening parameters at an element’s Gauss point for the incremental strain As at 

this point.

The main assumption of the elastic predictor problem is that the given 

incremental strain As  corresponding to a typical (pseudo-) time increment [/„,£„+1] 

is purely elastic. Hence, no plastic flow or hardening occurs. The state variables 

\s" , £" } are also given at the time tn,

The solution of this linear elastic predictor problem at time tn+] is evident and

is denoted with superscript "trial" and subscript "« +1". It is easy to see that the 

elastic trial strain, plastic trial strain and trial accumulated plastic strain appear as 

follows:

= < + A e ,  (4.6)

(4-7>

3 " “ = s ’ . (4-8)

The corresponding trial stress is computed by the expression

< 1  = C : c r  ■ (4 9 )

Having the elastic predictor problem solved, two alternatives can be faced: 

either the obtained solution is plastically admissible or not.

The solution is plastically admissible if lies inside the trial yield surface,

i.e. F {o X ,k {e :))  < 0. This means that the state update procedure has already 

provided the required solution (4.6)-(4.9). Note that for the pure elastic state A \=  0 

If cr^f lies outside the trial yield surface, i.e. ,k(e£ ))> 0, it can not be

the problem’s solution and the following plastic corrector algorithm (return mapping 

procedure) has to be applied.

As was mentioned above, the operator split methodology requires that each of 

the associated subproblems be solved by a first order accurate algorithm only. One of 

the choices of numerical integration procedures is a fully implicit backward Euler 

scheme to discretise the plastic corrector equations.
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The following system was obtained after application of this discretisation 

scheme to the constitutive material model:

_ e  _ e  trial
n+1 ~  £ n+1 - A \

3F(<7 , £ p)
+1 da

A ep = A \
dF[a,s p)

n+1

+1 da

(4.10)

n+1

= snp + p A e ? A e ’ /3  

/(<*■„♦ i ) - ^ f e i ) = 0

V, = C : e ‘n̂

which has to be solved for s e x, e pn+1» n+1 ’ n+1 and A/ln+1; and where AAn+l = Xn+1 - X n.

The above system (4.10) written in a matrix notation will appear as follows 

:+; = C f ' - A \ +;(S(T„+,+ q )

= A\ , >(Sg,+< +q) 
i ' , = s :  + a/2(a6 ')Tz (a6 '')/3 , (4.11)

/ ( ^ +/ ) - ^ ( e L ) = 0

= De:+;

where

.e trial

f  _e trial \
en

e trial 
22
e trial 
12
e trial

\ £ 33 y

Azp =

Z =

/Is'’u c n

&22 
Asp2
ApP \ /UC33 y

^1 0 0 0N 
0 1 0  0 
0 0 2 0 
0 0 0 1

In particular, the discrete analogue of expression (3.5) appears as follows:

^ £ n + ; = ^ \ + ; ( S ^ n + /  + * 1 ) .
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Having applied the Euler discretisation scheme to the definition (3.4) of the 

accumulated plastic strain for a plane strain / axisymmetric problem one gets:

That is why the Z matrix has to be used to provide lA s^A s^  in the norm 

expression in the second equation of system (4.11).

The point is that each of systems (4.10) or (4.11) is very difficult to solve as 

they consist of four equations. It is possible, however, to reduce them to one 

nonlinear equation in terms of one scalar unknown AAn+l. This will be shown in 

Section 4.1.3.

In this section it will be proved that system (4.11) can be reduced to one 

nonlinear equation in terms of one scalar unknown AAn+]. So, e en+x, e%+x, <xn+1 has to 

be expressed via AAn+l.

By definition,

(4.12)

4.1.3. Reducing the discrete system to a single equation

(4.13)

From expression (4.13) for elastic strain vector and from the linear elastic law it 

follows that

<*„+, = Ds'„, = d (e‘ *“ ' -  A \tl (S<r„, + q))= -  A \+1D(Sa„+1 + q ).

So, an expression for ct*“/ can be written as follows:

= W„+1 + A \+,D(S<t„+1 + q) = ct„+] + A \+1DSa„, + A \„D q =

~(^4v4 -1

where

1 =

f i 0 0 0>
0 1 0  0
0 0 1 0

^0 0 0 1,
Hence, an expression for a n+1 via AAn+l appears as follows:
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<V, (A \+, ) = (I + A \+,DS)-' ( < “' -  A\ tIDq). (4-14)

The following expression may be obtained after using expressions (4.12) and

(4.13) together:

< 4 - , 5 )

It was proved in Chapter 3 that the last equation /(<?„+1)-ffj(s£+1)= 0  of 

system (4.11) can be rewritten in matrix form in the following way

F { a , k ) =  | a TP a+qTa -  o \ (AJ/+j + s / )  = 0. <-4J6'>

Finally, substituting expressions (4.14) and (4.15) into expression (4.16) one 

gets one nonlinear equation in terms of one scalar unknown AAW+1:

i [ ( l  + A \+1D S )-(< ”' - A \ tlD q f  P(l + A \„ D S r (< “' - A \ +1Dq)+
2 (4.17)

+qr(l + AV1DS)-,(a'" - A \ tlDq)- 

-  a 2J e ;  + J l / 3  • A \+, V(Sa(A\t;)+ q)T Z(Sa(A\+;)+ q)) = 0.

For the sake of convenience equation (4.17) was denoted in the following way:

>P (A = f  (a„+1 = (4.18)

So, it was proved that the system (4.11) can be reduced to one single equation 

(4.18). As this equation is nonlinear, a numerical method has to be applied to its 

solution. This method will be described below.

4.1.4. A Newton-Raphson iteration scheme

To solve equation (4.18) the Newton-Raphson iteration scheme will be used. 

This choice was motivated by its quadratic rate of convergence, which results in a 

very computationally efficient return mapping procedure.

However, in case that the degree of non-linearity of the plasticity model is very 

high, the convergence radius of this method becomes relatively small which may 

lead to physically inappropriate solutions such as AAn+l < 0 It means that the method

depends critically on an initial guess of the root. To decrease this dependence, i.e. to 

increase the convergence radius, a line search procedure (Dutko et al. 1993) can be 

incorporated within the Newton method procedure. The designed line search 

algorithm is described in Section 4.1.5.
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A general Newton-Raphson iteration scheme for solving equation (4.18) 

appears as follows:

."̂ FvT.
(4.19)

where i denotes the iteration number.

To use the scheme (4.19) the corresponding derivative must be obtained. 

Having used the chain derivation rule one gets:

d a do2r ( s p) QgP

^ ( a\ +1) d<7
/

9 (A \+1) d e p 3 A \t ,
1

(4.20)
I

To calculate the derivative (4.20) the derivative 5a
5(a \ +, )

From expression (4.14) it follows that

(i + A>&DS)»®, (A>&) = -  A>&Dq.

Having differentiated equation (4.21) one gets:

5a

must be obtained.

(4.21)

Finally,

5a n+1

3 ( A \ J

DSo®, (a)& )+ (l +

= -(r + A^,DS)',D(S0 ^ ,+ q ).

=-D q.

(4.22)

The second product term of expression (4.20) can also be found by using the 

chain rule:

do2r {e ^ ,)  ag*
d £ pn+1 9 K +,)

,  sdoY(ep ,\ Q c P

2 ° r f a , )  K ’ "+d £ pn+1
(4.23)

d£pn+1

It easy to see that

e -  + ^ 3 - A ) g ^ ( & C  +q)TZ(Sc& +q)l

S ( ^ , )

So®, +q)Tz ( s < ; +q)
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^Sofl,+q)Tz(S(/j:; +q)+A}& 1 4 s < , + q N ^ + q ) )

2\/(s<& +q)Tz(Sa», +q)
The derivative of the following expression was calculated separately:

a((sq®, + q)Tz( s < ; +q))_ aftsqfl, +q)TZ(S°!L +q)) t e „ „  

a (A \J  a(A \+;) , '
To do this, the following derivative must be obtained:

+ q)T + q)) a f q ^ V z S q ^  + a ^ / s TZq + qTZSqjL + qTZq)
t e (L d a (‘{n+1

a(q;LTSTZSqiL + < , TSTZq + qTZ S a ^ ) 2S1 ZSqJjJ., + 2Z Sq.
t e t ,

It should be mentioned that <j „+/ S Zq = q ZSct̂ +; as S = S ,Z  = Z , and Z

is a diagonal matrix. That is whySZ = Z S .

Finally, expression (4.23) appears as follows:

*?(«£# ) a«£.
d e pn+1

(4.24)

V (S q ^ + q )Tz ( S q ^ + q )  + STZ S q ^ + Z S q da (0
n+1

A/(Sq®; +q)Tz ( s q ^ + q ) 5(AV ')

It should be also mentioned that the derivative of function

+qTq„+( is

df(a)  D- - = Pa + q . 
da

(4.25)

Having substituted expressions (4.22), (4.24) and (4.25) into equation (4.20), 

one obtains the derivative of function xiJ(&An +,):

= + q)' (i + A^DS)"1 D(sq®, + q )-

So® ,+q) z (S a® ,+ q) +

(4.26)

[ 2  / doY j
+ 2,/—(7V ( £ . ) i i

V 3 n  ”+' '
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CO
+1

STZ S a^ ,+ Z S q

•J(s ®?+, +q)Tz(sCT  ̂+q)
(l + A C D s) ''D (sa® ,+ q )

Finally, the Newton-Raphson iteration scheme (4.19) may be represented as the 

following algorithm:

1. Set initial guess = 0.

2 . Calculate ^ ( ^ 1 , )  = f ( < j , ) - o 2r ( e ! )

3. For i = 0 to MXITER (MXITER - maximum number of iterations -  

HYPLAS variable)

i. Calculate
.  .

n + \ii. Calculate AA.™ = A r a z o
.  d (AA«+i) _

iii. In order to calculate ¥  ( )  = /  ( ( £„+y )|

1 . update ^ ( ^ " / ^ ( i  + A ^ D S ^ X a ^ ' - A ^ D q )

2 . update £>n+1 i+1
= + A C ^ | ( S a l + q ) Tz ( S a ^ + q )

iv. Check for convergence. IF

(to/ = 10-6  -  HYPLAS variable) THEN GOTO 4 ELSE 

GOTO 3

4  update solution (n  is the iteration number of the global Newton- 

Raphson structural iteration scheme for the fixed load incrementation 

step)

b . a a ^ = a a<;::>,
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1 C  P — £  P
d .  C n+1 b n+l i+1 ’

e. s L = £ : +r - A \ +,(S a n+,+ q ) .

4.1.5. A line search algorithm

There were some tests performed which have showed that the convergence 

radius of the Newton method depends on the degree of elastic anisotropy of the 

material.

If the degree of elastic anisotropy is relatively low, the typical graph of the 

yield function (4.18) appears as in Figure 4.1. It is evident that in this case the initial 

guess AA^ = 0 lies within the convergence radius of the Newton method and that

allows to obtain a physically reasonable solution AA„+1 > 0.

On the other hand, if the degree of elastic anisotropy is relatively high (a good 

example of it can be found in the article by Koh et al. (1995)) the initial guess 

AA^ = 0 does not lie within the convergence radius of the Newton method and that

results in physically wrong solutions AAn+1 < 0. A typical ‘bad’ yield function can be 

seen in Figures 4.2-4.4 (elastic constants are close to those used in the article by 

Koh et al. (1995) and are the following: Ex= 25000000kN / m2,

E2 =E3 =1700000k N/ m2, vl2 =v23 = v 31 =0.25, Gn =500000k N/ m2).

A line search algorithm was designed to obtain physically reasonable solutions 

in such cases when the yield function is ‘bad’. Moreover, this algorithm is always 

used in the state update procedure not only to ensure physically reasonable solutions 

but also to increase the convergence rate of the Newton method by providing a better 

initial guess.

"Good" yield function

l.2 e+ 0 9
’h :\1\g0 0 d yield function .gnu '

6e+08
c
£
uc3
S

-4e+08

-6e+08 0 2e-08 4e-08 6e-08 8 e-08 1.2e-07

delta  g am m a

Figure 4.1. The graph of the ‘good’ yield function when the degree of elastic

anisotropy is relatively low.
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"Bad" yield function

2e+l0

1.5e+10

1e+10

5e+09

-5e+09

h:\1\byf.gnu

2e-08 4e-08 6e-08 8e-08 le-07 1.2e-07

delta gamma

Figure 4.2. The graph of the ‘bad’ yield function when the degree o f elastic

anisotropy is relatively high

"Bad" yield function - close look

6e+13
'h:\1\byf.gnu'

4e+13
co
c3 3e+l3

2e+13

1e+13

1e-10 2e-10 3e-10 4e-l0 5e-10 6e-l0 7e-l0 8e-10 9e-10 le-090
delta gamma

Figure 4.3. The graph of the ‘bad’ yield function when the degree of elastic 

anisotropy is relatively high (zoom in of Figure 4.2).

"Bad" yield function - close look N2

2e+09
'h:\1\byf.gnu'

1 5e+09

1e+09

5e+08

0

-5e+08 0 2e-08 4e-08 6e-08 8e-08 1e-07 1.2e-07

delta gamma

Figure 4.4. The graph of the ‘bad’ yield function when the degree o f elastic 

anisotropy is relatively high (zoom in of Figure 4.2).
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This algorithm consists of two parts.

First of all, a value A A* such that T^AA* )< 0 should be found. In order to do 

this a step value should be chosen and values of the yield function (4.18) at the 

following points: AX  = step, h X  =2* step, AA* = 3 *step and so on should be 

calculated until such A A* is found for which T^AA*):^ 0. From expression

^ £ n+I =  n+l + q) it is evident that AA* has the order of strain . That is why
stress

it was chosen

step =
1 trial 1 , 1 _  trial 
|£ . l  | +  |£ 22 +

trial 1 , 
33 | “r

c trial 1 
12 |

_  trial 
^ 1 1 +

— trial 
22 +

— trial 
33 +

_  trial 
12

(4.27)
n+l

During the second step of this line search algorithm an improved initial guess 

is searched using the bisection method with initial segment [0, AA *]. The dichotomy 

search is continued until the current segment’s length becomes less than step/ 15 (a 

number 15 had been chosen experimentally to increase the convergence rate of the 

entire algorithm). The initial guess is finally equal to

a a (0) = a+b  4̂'28^

where

a,b are the ends of the final segment.

Since two phases of this line search algorithm are completed, the Newton- 

Raphson iteration scheme (Section 4.1.4) with the improved initial guess (4.28) can 

be started.

4.1.6. Verifying accuracy o f  the state update procedure

Following the text book by de Souza Neto et a l  (2003), by the term accuracy it 

is understood the so-called finite step accuracy. It is measured by means of numerical 

experiments in which the state update procedure is used to integrate the elasto-plastic 

equations under a wide range of initial conditions and strain increment sizes and 

directions. Finite step accuracy measurements can give important information on the 

practical limitations of integration algorithms, especially with regard to the 

permissible size of strain increments for which the error remains within reasonable 

bounds.
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There were 3 different methods used to check the accuracy of the state update 

procedure for the Hoffman material model: comparing with HYPLAS (de Souza 

Neto et al  2003) results for elastically isotropic von Mises material; comparing with 

self-created test examples and iso-error maps. All these methods are described 

below.

Comparing with HYPLAS results for elastically isotropic von Mises material

As was mentioned before in Chapter 3, if cx = c2 = c3 = 1, c4 = 3  and 

c5 = c 6 = c 7 = 0  the Hoffman material corresponds to an isotropic von Mises one.

On the other hand, the von Mises model featuring the standard associative law 

and linear isotropic elastic behaviour with non-linear isotropic strain hardening was 

developed within HYPLAS (de Souza Neto et al. 2003).

Therefore, the HYPLAS von Mises routine was used to check results of the 

state update procedure for the Hoffman material. The tests were made for different 

materials, different stress conditions (pure shear, longitudinal strains and both) and 

different elastic trial strain increments. All the results were identical.

In Figure 4.5 one can see results for isotropic material in plane strain 

conditions with linear hardening. Please note that for the von Mises model described 

in text book by de Souza Neto et a l  (2003) AX= e p and that is why results for AA 

are different. However, the results obtained for stresses, accumulated plastic strain 

and elastic strains are identical.

The material used for the test was steel with the following parameters:

E = 200GPu v = 0.3

a r = 1000MPa > H  = 40GPa . hardening modulus. (4 29)

The elastic trial strain was the following:

(  0.01 N

e trialo
0.007
0.002
0.002
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Results of the State Update Procedure for Hoffnan 
stresses 1 3650115305.232 3254566514.533 263699230.5294 2595318417.48
DGAMa 3.614659701854E-13
Accumulated plastic strain 7.444596867903E-04
Engineering elastic strain <eng>1 9.475749168722E-032 6.904681890457E-033 3.428090421317E-034 2.619569028365E-03

Results of the State Update Procedure for von Mises 
stresses 1 3650115359.552 3254566573.013 263699242.1904 2595318482.89
DGAMa 7.444598554481E-04
Accumulated plastic strain 7.444598554481E-04
Engineering elastic strain1 9.475749059298E-032 6.904681870562E-033 3.428090250119E-034 2.619569157684E-03

Figure 4.5. Results provided by designed state update procedure for the Hoffman 

material and the state update procedure for von Mises from HYPLAS 

(de Souza Neto et al. 2003).

Comparing with self-created test examples

Another way to check the State update procedure is to create test examples 

assuming that the answer is known. For instance, for material with linear isotropic 

hardening:

1. It is assumed that the elastic strain sen+l is known.

2. Hence, a n+I = De*+y is known.

3. H e n c e ,/(a w+y) is known.

4. Hence, the reference yield stress <JYn+l corresponding to this stress state is 

known.

5. Hence, Aef+1 = ° Yn+I— °Jjl corresponding to <xy/i+] is known.

6. Hence, having used the expression (4.15) AAn+l is known.

7. From expression Ae£+y = A \+y (Saw+y + q) it is possible to obtain Ae£H
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8. Finally, the elastic trial strain e*+'"a/ = z en+1 + Az pn+1 is known.

These tests were used to check results of the state update procedure for the 

Hoffman material. The tests were performed for different materials (both elastically 

isotropic and anisotropic) with different yield surfaces (von Mises, Hill, and 

Hoffman), different stress conditions (pure shear, only longitudinal strains and both) 

and different elastic trial strain increments. R results obtained by state update 

procedure and identical to test examples.

Within the context of the state update procedure it is desirable for this 

procedure to be sufficiently accurate at the Gauss point level for sufficiently large 

strain increments to ensure that that the global finite element solution also remains 

within reasonable bounds of accuracy. That is why studying the finite step accuracy 

of such algorithms is very important.

A survey of the relevant literature is given in the text book by de Souza 

Neto et al. (2003). Such finite step accuracy analysis of elasto-plastic algorithms was 

firstly performed by Krieg and Krieg (1977) who investigated the behaviour of 

procedures for integration of the von Mises plastic model.

In the text book by de Souza Neto et al. (2003) it is remarked that iso-error 

maps have proved very effective and are currently accepted as the most reliable 

(if not the only) tool for the assessment of the finite step accuracy of integration 

algorithms for elasto-plasticity.

To generate an iso-error map an arbitrary stress state at a point P  on the von 

Mises (just for example) yield surface in the deviatoric plane is considered as shown 

in Figure 4.6. From this point a sequence of strain increments which corresponds to 

specified normalised elastic trial stress increments is applied (de Souza 

Neto et al. 2003):

where

Acrtrial is the elastic trial stress increment;

n and t are respectively the unit (in Euclidian norm) normal and tangent vectors to 

the yield surface;

s is the von Mises equivalent stress;

The iso-error maps

(4.30)
n,

s s
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AaT and AaN are appropriate factors.

Figure 4.6. Iso-error map. Typical increment directions in the deviatoric plane

(de Souza Neto et al. 2003).

State update procedure computes an approximated stress a num for elastic trial 

stress a 6™7. It is assumed that the exact solution a " 1"* is known. In this case the 

error in % associated with each increment Act"™7 can be defined as follows:

J (CTexact — a 11131 V faexact ) (4-31)
ERROR = ^ -------- . - <lV-   }- x 100%.

/ —exact . —exactV : ct

A contour plot for an error field (the iso-error map) can be obtained by varying 

the increment sizes AcrT and A crN .

In fact, analytical solution a exact is generally not available. That is why a exact is 

obtained by dividing each stress increment Aa*™1 into a sufficiently large number of

subincrements (in this project this number is equal to 1000).

It is also important to say that for von Mises model the starting point P is 

immaterial due to the material isotropy. However, for the Hoffman material 

(Figure 3.1) this point is important due to material anisotropy.

To compare obtained results with the results provided in the article by

Schellekens and de Borst (1990) the stress increments and appropriate factors have

been chosen according to the mentioned article. For the radial and tangential stress 

increments in the deviatoric plane, the unit stress magnitude is defined to be equal to 

a stress increment which, starting from a stress-free state, induces initial yielding in 

the corresponding direction. The radial and tangential trial stresses ranges up to 5 

times the unit magnitude (the factors from 0 to 5 are shown on the borders of an iso­

error map).

There were tests performed and iso-error maps obtained for the following 

materials:
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1. Steel with material properties (4.29). It was assumed that no hardening occurs. 

Results obtained by SUHF can be seen on the Figure 4.7. Results obtained by 

von Mises state update procedure SUVM from HYPLAS can be seen in Figure 

4.8. An iso-error map for the von Mises yield function (unknown material 

properties) from the article by Schellekens and de Borst (1990) is represented in 

Figure 4.9 for reference only.

2. Four materials with anisotropic yield surface from the article by Schellekens and 

de Borst (1990) whose material properties are represented in Table 4.1. It is 

worth saying that in this article the elastic properties of these materials are 

isotropic but not specified. That is why they were chosen by the author (4.32). It 

was assumed that no hardening occurs. Iso-error maps for different starting 

points (points of smallest and strongest curvature of the Hoffman yield surface as 

well as normal and tangent vectors will be obtained later) and their comparison 

with the results obtained in the article by Schellekens and de Borst (1990) are 

represented in Figures 4.10-4.20.

Results of these tests will be analysed later in a separate section.

k N /m 2

°il T0

kN  / m2

< 7 22C0

k N /m 2

c r 227’0

kN / m2

° 3 3 C 0

k N /m 2

^ 3 3  T0

k N /m 2

Material 1 10000 1000 10000 1000 10000 1000

Material 2 5000 1000 1000 1000 1000 1000

Material 3 10000 1000 1000 1000 1000 1000

Material 4 20000 1000 1000 1000 1000 1000

Table 4.1. Material sets for iso-error maps.

E = 25000000kN/m\ 
v  = 0.25, 

oy =1000k N /m 2.M>

(4.32)
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Iso -erro r nap of s tee l according to SUHF routine

0
3 520 1 4

Figure 4.7. Iso-error (error shown in %) map obtained with SUHF for steel (4.29). 

Factors for tangential and radial trial stresses are shown on axis X and Y respectively

Iso -e rro r  nap of s te e l according to  SUVM ro u tin e  from HYPLAS

0
2 3 50 1

Figure 4.8. Iso-error (error shown in %) map obtained with von Mises State update 

procedure from HYPLAS for steel (4.29). Factors for tangential and radial trial 

stresses are shown on axis X and Y respectively

R
4 -

T

Figure 4.9. Iso-error (error shown in %) map for the von Mises yield function 

(unknown material properties) from the article by Schellekens and de Borst (1990). 

Factors for tangential and radial trial stresses are shown on axis X and Y respectively
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Iso-error map of m aterial 1

6
4

0
0 2 31 4 5

x

Figure 4.10. Iso-error (error shown in %) map of material 1 with properties (4.32) 

obtained with SUHF. Factors for tangential and radial trial stresses are shown on axis

X and Y respectively

R

3 4 5
T

Figure 4.11. Iso-error (error shown in %) map of material 1 obtained by Schellekens 

and de Borst (1990). Factors for tangential and radial trial stresses are shown on axis

X and Y respectively
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Iso -e rro r map of m aterial 2 a t  the po in t of sm allest curvature

0
31 2 50 4

Figure 4.12. Iso-error (error shown in %) map of material 2 with properties (4.32) 

obtained with SUHF at point of smallest curvature. Factors for tangential and radial 

trial stresses are shown on axis X and Y respectively

Iso -e rro r map of m aterial 2 a t  the point of s trongest curvature

0
2 3 30 1 4

Figure 4.13. Iso-error (error shown in %) map o f material 2 with properties (4.32) 

obtained with SUHF at the point of strongest curvature. Factors for tangential and 

radial trial stresses are shown on axis X and Y respectively

-4-
10%

0 1 2  3 5 0 1 2 3 4 54

Figure 4.14. Iso-error (error shown in %) map of material 2 obtained by Schellekens 

and de Borst (1990). Left - point o f smallest curvature; right - point of strongest 

curvature. Factors for tangential and radial trial stresses are shown on axis X and Y

respectively
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Iso-error nap of material 3 a t  the point of smallest curvature

14 -------

6 --

0 1 2 3 4 5

Figure 4.15. Iso-error (error shown in %) map of material 3 with properties (4.32) 

obtained with SUHF at point of smallest curvature. Factors for tangential and radial 

trial stresses are shown on axis X and Y respectively

Iso -e rro r map of m aterial 3 a t  the po int of s trongest curvature

24 -------
22 -------
20 -------

16 -------

0
2 3 50 1 4

Figure 4.16. Iso-error (error shown in %) map of material 3 with properties (4.32) 

obtained with SUHF at the point of strongest curvature. Factors for tangential and 

radial trial stresses are shown on axis X and Y respectively
R

-4-1
6%

2%

2%2%

3 4 55 0 22 3 40 1
T T

Figure 4.17. Iso-error (error shown in %) map of material 3 obtained by Schellekens

and de Borst (1990). Left - point of smallest curvature; right - point o f strongest 

curvature. Factors for tangential and radial trial stresses are shown on axis X and Y

respectively
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Iso-error map of material 4 a t  the point of sm allest curvature

0
2 3 51 4

Figure 4.18. Iso-error (error shown in %) map of material 4 with properties (4.32) 

obtained with SUHF at point of smallest curvature. Factors for tangential and radial 

trial stresses are shown on axis X and Y respectively

Iso-error map of material 4 a t the point of strongest curvature

18 -------
16 -------
14 -------

10 --------

Figure 4.19. Iso-error (error shown in %) map of material 4 with properties (4.32) 

obtained with SUHF at the point of strongest curvature. Factors for tangential and 

radial trial stresses are shown on axis X and Y respectively

R

7%

6*

I V 2%
4%

0 2 3 4 5 0
T  T

Figure 4.20. Iso-error (error shown in %) map of material 4 obtained by Schellekens

and de Borst (1990). Left - point of smallest curvature; right - point o f strongest

curvature. Factors for tangential and radial trial stresses are shown on axis X and Y

respectively
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Obtaining points of extreme curvature of the intersection of the Hoffman yield 

with the deviatoric plane surface for materials N 2-4

First of all, the intersection of the Hoffman yield surface and the deviatoric 

plane for materials N2-4 should be obtained (for material N1 such point will be 

obtained in the next section).

For the deviatoric plane crn + cr22 + <j33 = 0 . Since cr33 = -o ’u - o ,22 , stress 

component cr33 can be excluded from the expression of the yield function:

f ( a ) = ̂ ci — + (°22 ^ 33)

C 2+ — (cr, , — (J22) + c4cr12 + c5cr, , + c6cr22 + c7cr33 =

c, - (2 CTji +<T22) + (2ct22 + 0 - J 2 + y ( ^ „  -c r22)2 +

+ C4<J12 + C 5C j  j  + C6C722 c7 (<T, j + CT22 ) —

'i~~^j{4cr2n + cr222 + 4cr,,er22)+^c2 +4cr222 + 4ĉ ,,ê 22)-l-

+^-(0-2̂  + ct222 -2<rncr22)+

+ c4cr12 + c 5<r,j  + c 6o-22 — c 7 (c7j| + O’22 ) —

= <72h(4Cj - 2 c3 + c2)+ ct222(4c2 - 2 c3 + c,)+cr,,<T22(4c, - 2 c3 +4c2 - 2 c3 - c3)+

~ ^ C 4 (̂ 1 2  “^ ( C 5 C 7 ) Cr 11 "*"(C 6 ~ C 1 ^ 2 2 '

Finally, the following expression was obtained:

/  (cr) = cr2,, (4c, -  2c3 + c2) + <t222 (4c2 -  2c3 + c,) + (4.33)

1 ° 2 2 ( ^ C ,  ^  ^ C2 _  ^ C3 )  C4CT12 ( C5 _  C1 )  ^ 1 1  ( C6 _  C7 )  ^ 2 2 '

For tests using iso-error it was assumed that <x,2 = 0. In this case expression 

(4.33) will appear as follows:

/(< j)  = a 2,, (4c, -  2c3 + c2)+ a 222 (4c2 -  2c3 + c,) +
+<t,,<j 22 (4c, + 4c2 — 5c3) + (c5 —c7) ct,1 + (c6 — c7)<t22.

Expression (4.34) can be rewritten in matrix notation:

(4.34)

/ ( C7) = (CTII
4c, -  2c3 + c2 2c, + 2c2 -  2.5c3

2c, + 2c2 -  2.5c3 4c2 -  2c3 + c,

+ ((c5 — c7) (c6 — c7))

\

\ P 2 2 j

+

 ̂_. Acr, (4.35)

\ G 2 2 J
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It was denoted that:

L =
4c, -  2c3 + c2 2cx + 2c2 -  2.5c3

2q + 2c2 -  2.5c3 4c2 -  2c3 + cx

A — 4cj — 2 c3 + c2,
B = 4c2 -  2c3 + Cj,
C = 2cx +2c2 -2 .5 c3.

A C 
C B

(4.36)

Expression (4.35) contains a quadratic form from an equation of an ellipse. To 

find its points of smallest and strongest curvatures it must be rotated to the main axis 

of the ellipse (i.e. matrix L should be diagonalysed). So, the eigenvalues and 

eigenvectors of the matrix L should be found.

The characteristic equation of the matrix L appears as follows 

( A - X  C \
det = (A -A X b - Z ) - C 2 =A2- ( A  + B)A + A B - C 2 = 0,

 ̂ C B — XJ

and its roots (eigenvalues of the matrix L ) are:

(4.37)
\ , 2  ~

A + B±-yJ(A + B)2 +4C2-4 A B

In order to find the first eigenvector of this matrix the following matrix 

equation should be solved:

r A - \
C B - X l

C Y jO

\ X2J

Let xx = 1. In this case x2 Xl - A
C

The second eigenvector can be obtained after solving another matrix equation:

( A - A ,
C B - A 2 y

y\
\ y 2)

Let y x = 1. In this case y 2 = ^  .

It is well known that if a symmetric matrix L has real entries then it has real 

eigenvalues and its eigenvectors corresponding to different eigenvalues are 

orthogonal (Perry, 1988). In the basis of its eigenvectors such a matrix will be 

diagonal.
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A matrix U (4.38) such that the eigenvectors of matrix L are its columns is 

considered below. In this case a matrix A = U_1LU is diagonal as U is an 

orthogonal matrix (U T = U_1). Hence, UAUT = L .

U =
\ x2 y 2 )

After all, the quadratic form of expression (4.35) can be rewritten as

(a„  a22)L  "  = (<r„ <j22)UAUt "  = (o',, <t'22)A
22 J

r 0 f > u 11

\ 0,22J

where new variables appear as follows:

( n' .A11

\ u  22 J

= U
r0 \  f  u u
\ ° 22 j

'11

A =

x i x
yyj y2)\?22) 

0 '

u
f ( j t  \u a
o'\ u  22 j

( Q  ̂U11
\ ° 22 J

Finally, expression (4.35) may be rewritten in the following way:

x , yi

(4.38)

(4.39)

(4.40)

/ ( » )  = (<« o'22)K "  + ((c5- c 7) (c6 - c 7))
\?  22 J \ X2 y 2 ) \°  22)

+  (C5 ~ C 7) (x  j(T  n  + y iC  22 )  "^ ip  6 ~ ClY<X2(*  11 22 )  =

“  h(° 'l lY  + \ ( (jf22Y +

—/li(cTii) + A7(o’ 2 2 ) + c rn ((c5 ct)x\ + {C6 c7)x2) + c r 2 2 ((c5 c?)y, + (c6 c7)y2) -

( r r 1 V  I ^   ̂ rr*  I f  C? ̂
K n)  2 /1, 11 I 2 4

2\

-^1 (cs - c7k + ( c6- g 7K
2 4

\ 2
+

+ a , ( f f .  V  +  ^  ( C 5 -  C 7 V l  +  ( C 6 -  C 7 J ,  J  ( c 5 - C 7 M  +  ( C 6 - C 7 ) y

22, I 2/lj

,2\

-A,
(c5 - c 7)y,+(c6- c 7)y2 

22,

a u +
22,

+ 2, o-'22+ (c5 -  c7 )yi + (ce -  c7 )y-. 
2A,

\ 2
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- 4
(c5 ci)x \ + (c6 ci)x:

2X,
V (

- - / L
ics -  ci)y  i+(c6 - ci)y 2 T

2 /1.

Finally, expression (4.35) is equal to

, , (C5 - C7)^ l+ (C6 - C7)^
\ 2

O’11+ + ̂ 2 o-'22+ ('c5 - ci)yx+{c6~ci)y2
2X,

(4.41)

(c5- c 7)xx+{c6- c 7)x2) 2 ({c5- c 7)yx+(c6- c 7)y
2Xx

\ 2
-A .

2/L

For the initial state the yield function is equal to F(ff,0) = f(o)-<rjo = 0. 

Substituting expression (4.41) into this equation one gets:

K crn +- 2 \

'(c5- c7)xl +(c6- c 7)x2 
2Xy

\ 2

Y f

+ x2 a
y \

( (
-X 2 VC 5

22 2/L

(c5- c 7)y, +(c6- c 7)y. 
2A,

\2 (4.42)
-e rf = 0 .•*n

Evidently, expression (4.42) is an equation of an ellipse. It was denoted:

E = k i
(cs - c 7)xx+(c6- c 7)x:

2X,

\ 2 (  
+ X,

(c5 c-j)yx +(c6 c7)y2\2

2X,
+ <7y .

Then expression (4.41) appears as follows:

C7,i  +
2A,

+ A. a '22+
2X,

\ 2
=  E ,

or, equivalently

, (c5- c 7)x,+{c6- c 7)x2V

2A,
—I . 5 C7 ).̂ l +(̂ -6 C7 )-V;

2 A,
+ ■ = 1.

(4.43)

(-I m J  ' (-J W ^ l

Expression (4.43) is an equation of an ellipse with the centre point

f  (c5- c 7)x,+(c6- c 7)x2 ( c , - c 7)yl +(cf - c 7)y2''
(  2A, 2X2 )

and semi-axes y-E/A, and - jE jX ^ .

The point of strongest curvature corresponds to the greater semi-axis and the 

point of smallest curvature corresponds to the small semi-axis.
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These 4 points of extreme curvature are listed below:
\

^  )= f+  I e / x  ^Cs + ^ 6 ^7 ) ^ 2  ( c 5 ci)y\ (c6 ci)y.
V 11 227 [ _V 2 \  9 1X2

^   ̂_ (gS ~ C7 )* 1  + (C6 ~ C1 ) * 2  _ | _ j  ̂  (CS ~ C1 )Tl + ( C 6 ~ C1 ) t

2

J

\  (4.44)

2X, v ' 2A.2 y

In order to obtain points (4.44) in old coordinate system (crn a 22) one should 

use expression (4.40).

Obtaining points of the intersection of the Hoffman yield with the deviatoric

plane for material N 1

Results of the previous section will be used to obtain a point at the intersection 

of the Hoffinan yield surface for material N1 and the deviatoric plane. It should be 

mentioned that as the material 1 has an isotropic yield function, any point at this 

intersection curve can be chosen.

In case crn = cr22 the yield function .F(<7 , 0 ) = / ( c r )-a jo appears as follows:

cr2n(4c1 -2 c 3 + c 2 +4c2 - 2 c3 +c, +4cx +4c2 -5 c 3 )+(c5 - c 7 +c6- c 7)cr]l - o f  = (4-45)

— C \] (9q + 9c2 — 9c3 )+ (c5 + c6 — 2c7)cr,j — cjyo ~ 0*

The quadratic equation (4.45) has the following roots:

_ ~(c5 + c 6 - 2 c 7) ± a/(c5 + c6- 2 c7)2 +4(9c, +9c2 -9 c 3)a l  <4 '46)

2(9Cj + 9c2 -  9c3 )

Obtaining normal and tangent vectors to the Hoffman yield surface

To obtain an iso-error map one should know not only a point on a yield 

surface, but also the normal and tangent vectors to this yield surface. Evidently, these 

vectors should belong to the deviatoric plane.

It is well known that a gradient of a yield function is a normal vector to the 

yield surface. That is why a projection of this gradient to the deviatoric plane will 

belong to the deviatoric plane and be also a normal vector to a curve which is an 

intersection of the yield surface and the deviatoric plane. In general,
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gradf(o) =

c3cr22 + c52c]crn - ( 2 c i - c 3)cj;

2c2cr22 — (2c2 — c3) (T33 — j + c( (4.47)
2̂ 4̂ 12

(2cj + 2c2 2 c3 J 0*33 (2 ^ 3̂ ) ^ 1 1  (2 c2 c3 ô"2 2 +c7

If cr]2 = 0 than the gradient (4.47) may be reduced as follows as the yield 

function does not depend on a shear stress:

a = gradf(o) =
2 qoii — (2 C[ —c3 )<t33 —C2C22 +C5

2̂ 2̂ 22 ~ (2^2 _ C3 ) ̂ 33 _ ̂ 3̂ 11 6̂ 
(2cj +2c2 —2c3)<t33~(2cj <̂3) i ~( 2 c2 — +c-j

(4.48)

A projection b of the gradient a (4.48) onto the deviatoric plane, having the 

normal vector / = (l/V3 l/V3 1 /V 5), may be found according to the following 

expression:

b = a - l ( a l ) .  (4.49)

Finally, the required normal n and tangent t vectors to the Hoffman yield 

surface appear as follows:

b _

^ 9 (4-50)
n =

t = n x l .

Iso-error maps comparison analysis

On the basis of Figures 4.7-4.20 with different iso-error maps the following 

remarks can be made:

1. Results for steel with material properties (4.29) obtained by SUHF and by 

von Mises state update procedure SUVM from HYPLAS are identical. 

Moreover, it is very similar in shape to the iso-error map for the von Mises 

material (Figure 4.9) from the article by Schellekens and de Borst (1990).
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2. Before analysing results obtained for materials with properties represented in 

the Table 4.1 which was taken from an article Schellekens and 

de Borst (1990) it should be reminded that in this article neither elastic 

properties nor the reference yield stress were specified. Normal and tangent 

vectors to the Hoffman yield surface were not represented either. That is why 

it was impossible to perform exactly the same tests that were performed in 

this article.

3. However, the similarities in shape and error distribution between the iso-error 

maps obtained by SUHF and the iso-error maps found by Schellekens and de 

Borst (1990) are evident.

4. Moreover, the same tendencies were found both for iso-error maps obtained 

by SUHF and iso-error maps found by Schellekens and de Borst (1990):

a. When the anisotropy of the yield surface becomes more pronounced, 

the errors in numerical results decrease. The observed tendency of 

decreasing error at points with a strong curvature may be explained by 

the fact that implicit integration at comers of the yield surface leads to 

exact results (de Borst, 1987).

b. The calculated errors are comparable to the errors obtained for the von 

Mises criterion

c. When an initial stress point is located at the strongly curved part of 

the yield surface, it is evident that for large Acfn /A<j t ratios the 

errors become less dependant on the tangential stress increments when 

a material becomes more anisotropic.

Finally, a conclusion can be drawn that the accuracy analysis of the state 

update procedure SUHF for the Hoffman material model gave good results. So, 

correctness of the designed algorithm has been proved.

4.1.7. Influence o f  the desree o f  elastic anisotropy at the iso-error maps

Since correctness of the state update algorithm was proved in the previous 

Section, it may be used to present iso-error maps for material that is both plastically 

and elastically anisotropic. Tests for materials with elastic moduli listed in Table 4.2 

and other properties (4.51) have been performed. It should be mentioned that plastic 

properties of all these materials are the same as those of material 1 (Table 4.1). It is
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shown that the accuracy decreases as the degree of elastic anisotropy increases 

(Figures 4.10, 4.21-4.27)

k N / m 2 E2 =E3, k N / m 2

Material 5 25000000 20000000

Material 6 25000000 15000000

Material 7 25000000 10000000

Material 8 25000000 5000000

Material 9 25000000 2000000

Material 10 25000000 1500000

Material 11 25000000 1000000

Table 4.2. Elastic moduli of anisotropic material sets for iso-error maps

V 12 = V 23 =  V 3l  = 0 . 2 5 ,

G]2 =500000kN/m2,

^HCo = 2̂2C0 = <*33c0 =10000kN / m 2, 

= <722t0 = <733t0 =1000kN / m2,

crK =1000k N / m 2.

(4.51)

Iso-error map of material 5

0
0 2 31 4 5

Figure 4.21. Iso-error (error shown in %) map o f material 5. Factors for tangential 

and radial trial stresses are shown on axis X and Y respectively
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Iso-error map of material 6

8
6

0
3 50 1 2 4

x

Figure 4.22. Iso-error (error shown in %) map of material 6. Factors for tangential 

and radial trial stresses are shown on axis X and Y respectively

Iso-error map of material 7

10 --------
8

0
30 21 4 5

x

Figure 4.23. Iso-error (error shown in %) map o f material 7. Factors for tangential 

and radial trial stresses are shown on axis X and Y respectively

Iso-error map of material 8
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Figure 4.24. Iso-error (error shown in %) map of material 8 Factors for tangential 

and radial trial stresses are shown on axis X and Y respectively
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Iso-error map of material 9
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Figure 4.25. Iso-error (error shown in %) map of material 9 Factors for tangential 

and radial trial stresses are shown on axis X and Y respectively

Iso-error map of material 10
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Figure 4.26. Iso-error (error shown in %) map of material 10 Factors for tangential 

and radial trial stresses are shown on axis X and Y respectively

Iso-error map of material 11
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Figure 4.27. Iso-error (error shown in %) map of material 11 Factors for tangential 

and radial trial stresses are shown on axis X and Y respectively
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Most probably, such large errors for materials 10 and 11 were caused by the 

fact that components (3.9) of the elasticity tensor become negative (for other material 

they are positive).

So, to decrease an error, the stress increments should be relatively small when 

the degree of anisotropy is very high. This means that load steps in this case should 

be much smaller.

4.2. The consistent tangent modulus

The computation of the consistent tangent modulus is a material specific 

subroutine and is required to assemble element tangent stiffness matrices in order to 

obtain the global tangent stiffness matrix.

To derive an element tangent stiffness matrix one requires the consistent 

tangent matrix -  the matrix form of the fourth order consistent tangent operator:

da.D = n + l

(4.52)

In the article by Simo and Taylor (1985) it was shown that for problems of 

rate-independent elastoplasticity the notion of consistency between the tangent 

operator and the integration algorithm employed in the solution of the incremental 

problem plays a crucial role in preserving the quadratic rate of asymptotic 

convergence of iterative solution schemes based upon Newton’s method. That is why 

system (4.10) has to be used in order to obtain the tangent modulus.

In the case of a purely linear elastic material the stress is an explicit function of 

the strain tensor and the consistent tangent modulus is the standard elasticity 

tensor C .

For path-dependant elasto-plastic material stress tensor is defined implicitly via 

an algorithmic constitutive function (4.1), defined by a state update procedure 

(Section 4.1). As only the total strain en+l changes during the global Newton-

Raphson iteration, the stress a n+l is a function of the total strain only. The function

(4.1) with fixed a n defines a stress/strain relation equivalent to a non-linear elastic

law. The consistent tangent modulus is the derivative of this non-linear elastic law 

(de Souza Neto et al., 2003) appears as follows:

d a n+x d aZ) =
d£n+\ d£n+j
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It is worth remarking that the actual input to the SUHF procedure is the elastic

trial strain e„ “ , not the total strain s n+l. So, one can write

o-„*i

Due to the definition of the total and elastic trial strains one can write

A s  = d e „ i= d e % .

So, expression (4.52) after straightforward differentiation will appear as 

follows:

d o  (4.53)
D =

de.trial
«+]

This expression is the derivative of the implicit function defined by the return 

mapping equations and is derived by standard procedure for differentiation of 

implicit functions.

4.2.1. The consistent tansent modulus for elasto-plastic material in tensor

notation

Using the definition of the elastic trial strain and the associative flow rule one 

can write the following expression:

C .  = K  + A s '  = s„' + A s  -  A*' = s i r  -  A \ +1 (W : cr„+1 + V ) . ( 4 . 5 4 )

Having applied Hook’s linear elastic law to expression ( 4 . 5 4 )  one obtains 

<7„+1 =  c : s„ '+1 =  C : (<+r  - A \ +,  ( W : <x„+1 +  V ) )  =  0 %  -  A \ +;C  : ( j r : v m t + V ) .  ( 4 -5 5 )

From expression ( 4 . 5 5 )  it follows that 

° » + f  =  ° » + i  + A \ +i C : ( j F : a ,„+1 +  F ) = < t „ +1 + A \ t l C : ( > F  :< t„ +1) + A \ +1C : J / . ( 4 - 5 6 )

It is necessary to prove that

C :(w  :<r)={c :W ):a  = T : a '

where T = C :W  is a fourth order tensor.

One component of the tensor H  - C  :(JV :o )  looks as follows:

f  \

Hij = ^  ̂ Wklab̂ ab ) = ^  Yd ̂ klab^ab (f^Ul l&U + ^t/I2°12 + ■ • • + Wld33(J33 ) =
k,l V a>b J  k>1

f  \

= Y d  ̂ ~'ijkl^kl\\<J\ 1 +  Y d  CijkiWm i 0 2 \ ^'ijkl^kl33(J33 = Y .  Y .  ̂ ijkl^klab
k j  k j  k j  a,b V k,l

®ab ’̂ 'ijab^ab

Finally, expression (4.56) will appear as follows



where /  is identity fourth order tensor whose Cartesian components are

lykl = + ̂ il^jk ) *

Finally one gets:

<rB+1 = ( /  + A \+ir ) - ‘ : ( < “' -  A \+1C : v )  (4-58)

Equation (4.57) was differentiated to find a differential of <Jn+]:

d A \ +lT : <x„+1 + (/ + A \+lr ) : </<r„+1 = C : -  </A\+1C : K .

Finally,

( I  + A \ +, J ) : =  C :d s™  ~ d A \ t l (C :V  + T :<r„t l ) ,

or

rf<7„+, = ( /  + A \+ir ) - ‘ : (C : -  </A\+1 ( c : V  + T : <T„+1)). (4 59)

A differential dAAn+] must be obtained in order to use expression (4.59). The 

yield condition f ( o n+l)-O y  (e„+l) = 0 may be rewritten in the following way:

| o ' , +! w  :CT.+i +v  : - a \ (s„' + A«„',)= 0 .

Expression (4.60) was differentiated as follows:

(4.60)

w  '■ °nu -dcr^+V:d<Tntl - 2or - ^ - d A s l ,  = 0
d s l ,

dov .  (4.61)

In order to find dAe„+x it is necessary to differentiate expression (4.12) for the 

effective plastic strain As^+X = ^2/3 A s p|| = ^2/3 • A ep :Aep :

A
d A s l ,  = p j l   ---------    dAs" =

yjAsp : Ae p

= H w  {W  i T u P  v M * U f r - o ^ + v )).
W  :<Tn* + V Y W  '.<?n+x+ V )

where
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d(A \+, ( W : <r„+1 + V)) = d& \^  ( W : <r„tl + v)+ A \ +lW : rf<r„+l.

Finally,

d A e ^ = j 2 f 3
{W + V ) + A \ J V  :da„tl) (4.62)

J (W :< T ^+ v y .{W :< j^+ V )

Hence, equation (4.61) may be rewritten as follows:

_2  !Ka (W :eT ^ + v y . ( d A \ J W : a n, l + V )+ A \ , lW : d a HJ  n
3 r depn+1

(4.63)

J ( W: <r mtt+ V ) : { W : e r ma+ V )

Items with d(Tn+l were grouped on one side of the equation (4.63) and items

with dAAn+l on the other.

(W :c r^ + V ) :W
3 Vd e L  yJ(fV:<Tntl+Vy.(}V-.cr„t l +V)

=dAX„r 2. H , .  d °* ( v - ^ + n e r - . ^ + v )

• d&n+i

3 '  dE^  V (^  = »■«. +V):(W:  <r„+, + V) 

Having substituted (4.59) into the above equation one obtains:

r :<7„t l + F - A \ +12 A t,  4 ?
{ W : a ^ + V ) : W

3 '  d e l ,  -J(W +V):(JV:o ^ , +V)

:[(/ + AV,7’)-1 : ( c : d a %  -rfA \+1(c:K  + r:<T„J]= (4.64)

3 d s ^  : crn+l +V):(fV +V)

Items with d e were grouped on one side of the equation (4.64) and items

with d&Xn+l on the other.

W :< 7 ^+V - A (W:<rM +V):W
3 d e ^  J(,V:a„t l + V):(fV :amtl+V) 

: ( l  + A \.,7 ') '1: C : d e ^ f  = 

= dA K ^  . 2 f l a y ^ { W - . ^ V ) \ W - . a ^ V )  +

(4.65)
/

+ d A \ +i W : ct„+1 + V -  AA„+12 ,1—a  d° r (W:<t„ ,+ V ):W

V 3 " d d L  4 ( y v - . a ^ + v y x w - .a ^ + v )

:[(/ + A \+ir)-1:(c:K + r : CT„+1)l
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A =

Notations (4.66) were introduced to make equation (4.65) more readable: 

f  ^  ' {W -.a^+ V )-.W  AW - .a ^ + V -  A \ tl2 j l * r ^ r
V 3 r : <7„tl + V ) : (W : <t„+, + V)

4 (/ + A \+lr ) - ' :C \

B = o /L (W.a^+vy.iw-.a^+v) ,

V3 y de l ,  J(W:<T^+V):Qr:trmtl+V) (4.66)

+
(W : t7 ^ + v y .W

3  r J{W -.<T^+V):{W-.<T^+V)

: l(/ + A \+17’) " 1 '.{c :V + T: <7 „ +1 )J 
In this case expression (4.65) may be re written as

B
(4.67)

With the substitution of equation (4.67) in expression (4.59) for dcrH+l one

finally obtains the tangent relation consistent with the implicit return mapping 

algorithm for the Hoffman material model:

d a ^ = ( l  + AX^T)-':C:d£: : ‘ ~

((C :V  + T : a mil) » A- ( /  + A V .J)-1:
V B

d£Mal =U b n+l (4.68)

C - *
v B

( /  + A \+, r ) - ' : 

where R  = ( c : V  + T : <r„+1)® ̂  is the 4th order tensor.

4.2.2. r/tg consistent tansent modulus for elasto-plastic material in matrix

notation

In order to use expression (4.68) for coding the appropriate subroutine for 

HYPLAS it must be put in a vector and matrix form.

Matrix form of a tensor of 4th order is defined as follows using a general tensor 

equation

E  = F : G , (4.69)
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where E,G  are symmetric tensors of the 2nd order (it was assumed that 

E \3  =  E 23 =  G n  =  G 23  = 0) and F  is a symmetric ( Fijkl = Fklij) tensor of 4th order and 

the F  tensor’s form is similar to that of the elasticity tensor (i.e. that only the 

following components are NOT equal to zero Fn n , F2222, F3333 , Fl]3 3 =F33n,

F2233 = F3322 , F] J22 = F22U) Fl2 l2 = Fy2 2 i = 7 ^ 1 12 =  ^ 2 1 2 1  )• Evidently, E  and G tensors 

have the same form as the stress and strain tensors.

In vector-matrix notation equation (4.69) can be written as follows:

E = FG , (4.70)

where 

f zr \

E =

'u
4 22

412

G =

\E 33j  

fn>n '
' 22

' - ' i  2 

\G 3 3j

(  Fr  m i
77 
1 1122 0 F \1 1133

77
1 2211

77
1 2222 0 77

1 2233

0 0 2F1212 0

77
\  3311

77
1 3322 0 77i  3333 j

F =

The third column of matrix F is multiplied by 2 to take into account shear 

components of tensors E,G  because of the following expression:

F =F  G = F  G +F G + F G +F G +F G -^ i j  1 i j k l ^ k l  1 ijl 1 11 T  1 ij22 22 ^  1 i/12 12 ^  1 f y 2 1 2 1  ^ r ij3 3 ^ 3 3  —

= F. G  +F. G  +2F. G  +F. G1 ij 11^1 1  T  1 0 2 2 ^ 2 2  y l2  12 ^  1 *>33^33*

Matrix F is called the tensor matrix o f the tensor F  and E, G are called the 

tensor vectors o f the tensors E ,G  respectively.

It is easy to see that the tensor matrix of the tensor T = C -W  appears as 

follows:
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T =

T T1 1111 A 1122

T T1 2211 1 2222

0  0  

T TV 3311 3322

( ĉ 1 1 1 1
r

1122

c
2211

r
2222

0 0

r
\  3311

r
3322

c

2 C1212

1133

'2233

0

'3333  )

0 T  ^1133

0 T1  2233

2T A J  1212 0

0 T± 3333

( w  r r  1111 Wr r  1122 0 w  \r r  1133

wn  2211 wr r  2222 0 wr r  2233

0 0 2W  *  r r  1212 0

J ^ 3 3 1 1 ^ 3322 0 W 3 3 3 3 >

For example,

2-̂ 1212 — 2 ^ C 12Ŵ y 12 ~ ^ ^ '1212^ 1212'
kj

As it was proved already that D and S are the tensor matrixes of the tensors 

C and W  respectively, it is evident that T = DS .

The tensor vector of the 2nd order tensor A  (4.66 ) appears as follows:
f  r- , . \  (4.71)

A = 

where

S a „ ,+ q - A \ , )2 ,P a r - ^ >'
S(Sa„+, +q)

V 3  r dei* V(ScT̂ +(i)z (Scr^ +<i)
[(I + A ^ D S ^ D

Z =

( l  0  0  0 ^
0  1 0  0

0 0 2 0
^ 0  0  0  1 ^

On the other hand, expression (4.66) for B in matrix notation appears as

follows:

[2 dar (Sq„^+q)Z (Sq„t ,+ q )
B = 2. —a

" de^  V(S<T̂  + q) Z(So„+/ + q) '

S(Sq„+i +q)
+

r  I—  . . . . .  x A
. 2 doY

"+/ +  ^ ~  ^1+1 A 7?V  / / o  X / >.v 3 de„+l y(Sq„+/ + q)Z(Sq„+/ +q) (4.72)

■ z[(l+ ̂ \+/D S) ' (Dq + DSq„+l)].

A tensor product in expression (4.68) has to be expressed in matrix notation as 

well. It is evident that the 2nd order tensor L  = ( c : V + T : <Jn+1) (expression (4.68))

has the corresponding vector notation L = (Dq + DScrn+y).
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i t .

Now the tensor matrix of the 4 order tensor R = L®  A  has to be obtained. By 

definition of a tensor product, Rijkl = LyAkl. That is why the tensor matrix of the

tensor R  should appear as follows (the third column of matrix RM is multiplied by 

2  to take into account shear components of tensor de*“l ):

R =

or

( I  A^ iiAn Ln A22 2 LnA ,2 L A ' )^  11̂ -33
L22Au T A22 22 2 L22 A12 L 22̂ 33
LI2Au T A12 22 2Ln An L 12̂ 33
T A^ 33S1]J L 33-̂ 22 2L33Aj2 T A^ 33-̂ 33 J

L ,A j LtA2 2 L jA 3 l . a ;

L 2A j L2 A2 2L2 A3 L2 A4

L 3A j L3 A2 2L3A3 L3A4

J^4^1 l 4 a 2 2L4A3 L4 A4 J

R =

Finally, expression (4.68) in matrix notation appears as follows:

d® n+i — (I + A ^ D S )- '
B.

de trial 
n+1 *

(4.73)

It should be mentioned that e jjj is a Cauchy trial strain vector. However,

according to the structure of the HYPLAS (de Souza Neto et al, 2003) software, a 

matrix form of the consistent tangent modulus should be obtained for a trial strain 

vector where the shear component is multiplied by 2  (engineering shear strain)

= Zefr,w (4.74)n+1 n+1 > v 7

From expression (4.74) it follows that = Z~lde*‘“] , and the tensor matrix 

(4.73) of the consistent tangent modulus should be changed as follows

(4.75)
Dep = (l + A \+;D S ) - ' f D - |A z-\

to ensure that the expression d a n+J = Depde*‘°j is correct.

4.2.3. Verifying accuracy o f  the consistent tansent modulus

There were 2 different methods used to check the accuracy of the consistent 

tangent modulus for the Hoffman material model: comparing with HYPLAS 

(de Souza Neto et al, 2003) results for isotropic von Mises material and comparing 

with numerical derivatives. These methods are described below.
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Comparing with HYPLAS results for elastically isotropic von Mises material

The HYPLAS routine for calculation of the consistent tangent modulus for von 

Mises material was used to check the consistent tangent modulus for the Hoffman 

material. The tests were made for different materials and different stress conditions 

(pure shear, only longitudinal strains and both). All the results were virtually 

identical.

In Figure 4.28 one can compare results for steel with parameters (4.29). The 

elastic trial strain was the following:

^0 .0 0 2 ^

.e  trial 0.003
0.005 

v0 .0 0 1 y

and the corresponding stress vector (obtained as a result of SUHF computations) was 

equal to:

^1000000058MV 
1119228226MPa 
596140884MPa 

v 880771 %15MPa,

Comparing with numerical derivatives

Having looked at expression (4.75) of the consistent tangent modulus one can 

easily see that

CT =

r\ e p _
ij a t r i a lde'

(4.76)

n+1

That is why it was natural to calculate numerical derivatives to estimate 

expression (4.76) in order to check its accuracy. However, as numerical derivation is 

complex itself, its errors will be discussed before its application.
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Consistent tangent modulus for Hoffman
i j D<i,j>
1 1 246152121808.1 2 126923945337.1 3 -360.0700106711 4 126923945481.
2 i 126923945337.2 2 244296335162.2 3 -9278933220.622 4 128779732128.
3 i -360.0700329753 2 -9278933736.533 3 13219421177.23 4 9278934096.60
4 1 126923945481.4 2 128779732128.4 3 9278933580.694 4 244296335018.

Consistent tangent modulus for von Mises
i J D<i,j>
1 1 246152125938.1 2 126923946740.1 3 -360.0700091951 4 126923946884.
2 1 126923946740.2 2 244296339393.2 3 -9278933044.952 4 128779733429.
3 1 -360.0700091953 2 -9278933044.953 3 13219422732.33 4 9278933405.02
4 1 126923946884.4 2 128779733429.4 3 9278933405.024 4 244296339249.

Figure 4.28. Results obtained by the designed consistent tangent modulus

procedure for the Hoffman material (CTHF) and the analogous procedure for von

Mises from HYPLAS (de Souza Neto et al., 2003).

Accuracy of numerical derivation

There were 3 formulas of numerical derivation used in this project: right 

derivative (first order of accuracy)

y f c )  / ( *  + &)-/(■*). (4-77)
h

left derivative (first order of accuracy)

y . / . )  = / ( * ) - / ( *  "A) . (4-78)
h
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central derivative (second order of accuracy)

r(x~) f ( x+ h ) - f ( x ~ h) (4-79)
W  2  h

Applied uncritically, formulas (4.77)-(4.79) are almost guaranteed to produce 

inaccurate results. There are two sources of errors: truncation error and roundoff 

error. The truncation error comes from higher terms in the Taylor series, which are 

not taken into account in expressions (4.77)-(4.79). The roundoff error has various 

contributions: a round off error in h and in expressions (4.77)-(4.79) themselves 

(Press et al, 1992). It is very important to remind that the exact value of the function 

/ (* )  = a, is unknown. This happens because only an approximate solution of

equation (4.17), which corresponds to system (4.11), is obtained by the state update 

procedure. This fact causes additional error to expressions (4.77)-(4.79).

In the books by Press et a l (1992) and Bahvalov et a l (2000) it was clearly 

shown that the total error of expressions (4.77)-(4.79) depends on h significantly. 

For example, the total error of expression (4.77) is represented in 

Figure 4.29 (Bahvalov et al, 2000).

2E

Figure 4.29. Total error of expression (4.77) (Bahvalov et al, 2000).

In Figure 4.29 the following notations were used: f" (g )< M 2, where g is a

point in the vicinity of the point x ; \e(^)| < E , where s(g) is the error with which

function f ( x )  is calculated. So, g(x)= + ̂ - 9 where A/2/z/2 estimates
2  h

influence of the truncation error and 2E/h estimates the influence of the fact that 

the exact value of function f ( x ) is unknown.

Practical experience shows, however, that to find h0 is very difficult.
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In the book (Press et al, 1992) it was shown that expressions (4.77) and (4.78) 

give at best only the square root of machine accuracy s m and expression (4.79)

gives only s%3. In the same reference book the conclusion is made that no one of 

expressions (4.77)-(4.79) give an accuracy comparable to the machine accuracy em 

or even the lower accuracy to which / ( jc) is evaluated.

In the book by Bahvalov et al. (2000) there is an even stronger statement: no h 

exists such that the error g(h) will have the same order as -J~E .

Results of comparing CTHF results with numerical derivatives

Since the error of expressions (4.77)-(4.79) depends on h significantly, a 

special program was created to find numerical derivatives (4.77)-(4.79) for different 

values of h lying within an interval (l0 "n .. .1 0 -5) in order to find the value of h0.

The results obtained by the CTHF routine for calculation of the consistent 

tangent modulus for the Hoffman material were compared with numerical derivatives 

for different materials and different stress conditions (pure shear, only longitudinal 

strains and mixed). The following materials were used for tests:

1. Steel (isotropic elasticity with von Mises yield surface),

2. Anisotropically elastic material with von Mises yield surface,

3. Anisotropically elastic material with the Hill yield surface,

4. Anisotropically elastic material with the Hoffman yield surface.

For all 4 material types mentioned before the results obtained by the CTHF 

routine and numerical derivation were identical, i.e. first 5-7 digits of the consistent 

tangent modulus and corresponding numerical derivatives were the same.

It should be also mentioned that the inequality

|a(e'"°' + h )- a(e'"‘,/ J > |a(e'r“' + h )- (a(e'™')+ Deph)|

was always correct for all calculations (D ep were obtained by the CTHF routine ).

This fact once more proves that the CTHF subroutine delivers accurate results.

Finally, a conclusion can be drawn that the accuracy analysis performed for the 

consistent tangent modulus procedure CTHF for the Hoffman material model gave 

good results. So, correctness of the designed algorithm has been proved.
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Chapter 5. Numerical examples

In this Chapter numerical examples are provided in order to illustrate the 

numerical algorithms discussed in Chapter 4 for the Hoffman material model 

(Chapter 3). Despite the fact that the correctness and reliability of these algorithms 

was successfully proved in Chapter 4, these examples are necessary to show that all 5 

subroutines (Section 2.2.4) were correct and were able to work together with the 

main body of the HYPLAS program (de Souza Neto et al. 2003).

5.1. Model construction

A long pipe (Figure 5.1) with fixed ends loaded by internal pressure only is 

considered as a model construction. This pipe is therefore in a plane strain state 

(Section 5.2). However, this problem can be also treated as an axisymmetric one 

(Section 5.3). The loading is quasi-static (i.e. inertia effects are ignored), thermal 

effects are ignored, and strains are infinitesimal.

All calculations will be run for a pipe with inner r and outer R radii of 

1 0 0 mm and 2 0 0 mm respectively.

A Y

Figure 5.1. The cross-section of the pipe.

5.2. A plane strain model problem for von Mises material

As was shown in Chapter 3, for the specific values (cx =c2 =c2 =1, c4 = 3 ,

c5 = c6 = c7 = 0) of material constants (3.7), the Hoffman material model is equal to

the isotropic von Mises case. That is why it was decided to solve the same problem 

for the pipe (Section 5.1) made of isotropic steel using both von Mises subroutines 

developed in the HYPLAS program (de Souza Neto et al., 2003) and designed 

subroutines (Chapter 4). The results obtained were then compared.
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5.2.1. Problem statement

The problem statement for the steel pipe is as follows:

Given the initial value k(t0)= 0  of the internal variable k  and the history of 

internal pressure P(t) for pseudo-time interval t e [/0 ,f]for each point M  of the pipe 

find the functions cr(M,i), k (M ,t), u(M ,t) and e{M ,t) which satisfy the following 

equations at each point M  (all equations are written in the Cartesian coordinate 

system and xx corresponds to X , x2 corresponds to Y , and x3 corresponds to Z ):

8 cr(M,t)I, | da(M ,t)n
dxx dx2

dcr(M,t)2] dcr(M,t) 22

dxx
+  ■

CbCn
0 ,

e { M A = ^ A t
axx

dx2

2 e (M ,t \ 2 =^ M + M m A  
y ,n dx2 ’

= e{M,t% = s{M ,t)pa = e(M ,t)l, = = 0 ,

s ( M , t \ = e ‘( M ,t \  i,y = 1,2,3,

= Cm e ‘(M ,t)a > i , j ,k ,l  = 1,2,3;

(5.1)

(5.2)

(5.3)

(5.4)

+
'  c . '
C2 ~~

V  ̂J
{a22{M ,t)-G 33{M ,t)f + y (o -u (M ,/)-o-22(M ^ ) ) 2 +c4af2 (M,t)+  (5.5)

+c5<ju (M, / )+ c6cr22 (M , /) -I- c7(J33 (M, /) -  cr̂  (k(M, /)) 

k(M ,t)=  ' f j j  (6 p( M , t \ t p(M ,t \)d r  = ^ % s p{M ,t\dT=  (5.6)

i , j  = 1,2,3,
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8 F (u (M ,t\k (M ,t))
da

(5.7)

(5.8)

and boundary conditions

cr, j (H ,t)nx ( //)+  cr12 (H,t)n2 ( h )  = -P (t)  on the internal pipe surface,

Expressions (5.1) are equilibrium equations, expressions (5.2) are a definition 

of Cauchy strains, expression (5.3) is an additive decomposition of the strain tensor, 

expression (5.4) is a linear elastic law, expression (5.5) is the Hoffman yield function 

for isotropic hardening, expression (5.6) defines the hardening parameter for the 

strain hardening model, expression (5.7) is a standard associative flow rule, and 

expressions (5.8) show the loading/unloading criterion.

As for material constants, they should correspond to a fully isotropic von Mises 

material as the pipe is made of steel.

So, the elastic constants appear as follows:

= 0  on the internal pipe surface, 

<t„ (H )+ a l2 {H,t)n2 {H) = 0  on the external pipe surface,

a n (H,t)nSH)+CTdH,t)n2 {H) = 0  on the external pipe surface.

= C _ , = E v
(l-2vXl + v)> (5.10)

= C—. =

where

E  is the Young’s modulus; 

v  is the Poisson ratio.

At the same time, plastic constants appear as follows
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Cj =  c 2 =  c 3 =  1 ,

c4 = 3, (5.11)

C5 = C 6 = C7 = 0 .

As the problem (5.1)-(5.9) is also an axisymmetric one, only part of the pipe’s

cross-section (Figure 5.2) is taken into account. Hence, the boundary conditions on

the radii HG and EF should be the following (in polar coordinate system):

■<r„=0,  (5.12)

ur =0.

Figure 5.2. Domain for problem (5.1)-(5.9), (5.12).

5.2.2. Parameters o f  the numerical example

The steel had the following material parameters:

E = 200GPa, v = 0.3, <r. =1000MPa. (513)
r0

The hardening curve is multi-linear and is presented in Figure 5.3. Its 

parameters can be seen in Table 5.1.

Accumulated plastic strain Yield stress, MPa

0 1 0 0 0

0.0005 1 0 2 0

0 . 0 0 1 1039

0.0015 1057

1 . 0 0 0 4000

Table 5.1. Hardening curve’s parameters for steel (5.13).
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yield s t r e s s

a c c u m u l a t e d  p l a s t i c  s t r a i n

Figure 5.3. Hardening curve for steel (5.13).

Internal pressure for the problem (5.1)-(5.9), (5.12) was equal to:

P(t)=900MPa. (5.14)

5.2.3. Finite element solution for hardening material

As was mentioned in Chapter 2, the HYPLAS program (de Souza 

Neto et al, 2003) uses proportional loading. So, there were 6  load steps according to 

Table 5.2.

Number of load step Percentage from the final load (5.13)

1 2 0

2 40

3 60

4 80

5 90

6 1 0 0

Table 5.2. Initial load steps for hardening material.

A mesh of four 8 -noded isoparametric quadrilateral elements was used for this 

test example. Both von Mises and Hoffman calculations were performed using the 

same mesh. It should be mentioned that in HYPLAS (de Souza Neto et al., 2003) the 

boundary of a domain is represented by a quadratic function. That is why a 

sufficiently thin slice of the pipe has to be used to ensure better solution accuracy as 

a circle is not congruent to a parabola.
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It is easy to see from Table 5.3 that the nodal displacements obtained by the 

numerical algorithm developed for the Hoffman material model are virtually 

identical to the node displacements obtained by the von Mises numerical subroutines 

developed in HYPLAS (de Souza Neto et aL, 2003). The same correspondence was 

proved for stresses and accumulated plastic strains as well.

Node Von Mises Hoffman

U x u y U x u y

1 0.480714E-02 0.000000E+00 0.480714E-02 0.000000E+00

2 0.480712E-02 0.125850E-04 0.480712E-02 0.125850E-04

3 0.480707E-02 0.251700E-04 0.480707E-02 0.251700E-04

4 0.444380E-02 0.000000E+00 0.444380E-02 0.000000E+00

5 0.444374E-02 0.232676E-04 0.444374E-02 0.232676E-04

6 0.413414E-02 0.000000E+00 0.413414E-02 0.000000E+00

7 0.413413E-02 0.108232E-04 0.413413E-02 0.108232E-04

8 0.413409E-02 0.216462E-04 0.413409E-02 0.216462E-04

9 0.380734E-02 0.000000E+00 0.380734E-02 0.000000E+00

1 0 0.380729E-02 0.199351E-04 0.380729E-02 0.19935 IE-04

1 1 0.353408E-02 0.000000E+00 0.353408E-02 0.000000E+00

1 2 0.353407E-02 0.925219E-05 0.353407E-02 0.925219E-05

13 0.353403E-02 0.185043E-04 0.353403E-02 0.185043E-04

14 0.322163E-02 0.000000E+00 0.322163E-02 0.000000E+00

15 0.322158E-02 0.168683E-04 0.322158E-02 0.168683E-04

16 0.297259E-02 0.000000E+00 0.297259E-02 0.000000E+00

17 0.297258E-02 0.778222E-05 0.297258E-02 0.778222E-05

18 0.297255E-02 0.155644E-04 0.297255E-02 0.155644E-04

19 0.272277E-02 0.000000E+00 0.272277E-02 0.000000E+00

2 0 0.272274E-02 0.142563E-04 0.272274E-02 0.142563E-04

2 1 0.253314E-02 0.000000E+00 0.253314E-02 0.000000E+00

2 2 0.253313E-02 0.663174E-05 0.253313E-02 0.663174E-05

23 0.253310E-02 0.132634E-04 0.253310E-02 0.132634E-04

Table 5.3. Nodal displacement of the pipe (plane strain problem) from initial

configuration in case of hardening.
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5.2.4. Finite element solution for perfectly plastic material

If the pipe’s material is perfectly plastic, i.e. no hardening appears, the pipe has 

a limit load. For example, the limit internal pressure is equal to (Kachanov, 1969)

i R (5-15)P = 2 r y ln—,
r

where

rr = 1000/JiM Pa  is the shear yield stress.

For the steel (5.13) pipe the limit internal pressure is P* = 800.37742MPa. 

There were 11 load steps during the finite element computation taken 

according to Table 5.4.

Number of load step Percentage from the limit load (5.15)

1 2 0

2 40

3 60

4 80

5 90

6 95

7 97

8 98

9 99

1 0 99.8

1 1 99.975

Table 5.4. Initial load steps for perfectly plastic material.

All calculations were made with the same mesh used in Section 5.2.3.

The following results were achieved:

1. Both the von Mises and Hoffman algorithms converged for all loads less 

then 99.975% of the limit pressure (5.15).

2. Displacements obtained by the developed algorithm for Hoffman material 

were identical to displacements obtained by the von Mises subroutines 

developed in HYPLAS (de Souza Neto et al., 2003).

3. As the load reached 99.3% of the limit pressure (5.15) the effective stress in 

all Gauss points reached the yield stress according to both algorithms.



92

5.2.5. Concluding remarks

By comparing the results obtained by the developed algorithm for the Hoffman 

material and by the von Mises subroutines developed in HYPLAS one can make the 

conclusion that for a plane strain problem for an isotropic material all 5 developed 

subroutines (Section 2.2.4) were correct and were able to work properly together 

with the main body of the HYPLAS program (de Souza Neto et al, 2003).

5.3. An axisymmetric model problem for von Mises material

Analogously to the procedure described in Section 5.2, it was chosen to solve 

the same axisymmetric model problem for the pipe (Section 5.1) made of isotropic 

steel using both the von Mises subroutines realised in the HYPLAS program 

(de Souza Neto et al., 2003) and subroutines designed in Chapter 4.

However, to perform an axisymmetric problem test, another domain was 

used: a different pipe’s cross-section (Figure 5.4). Problem statement (5.1)-(5.9), 

(5.12) had to be amended as well.

The results obtained were then compared.

Figure 5.4. Domain for an axisymmetric model problem.

5.3.1. Problem statement

In order to take into account the differences between a plane strain and an 

axisymmetric problem the problem statement (5.1)-(5.9), (5.12) has to be amended.

First of all, all equations (5.1), (5.3)-(5.8) will remain the same. As for 

expressions (5.2) defining the Cauchy strains, they should be amended to take into 

account that e(M ,t ) 33 *  0 any more (all equations are written in the cylindrical 

coordinate system and xx corresponds to R , x2 corresponds to Z , and x3 

corresponds to (p ):
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(5.16)

2 e (M ,t)n = m ^ a + m m a

Moreover, the boundary conditions (5.9) and (5.12) should be amended as 

well. There are two reasons for this. First of all, the normal vector to lines BC and

should ensure that the pipe is in a plane strain state. Finally, boundary conditions 

appear as follows:

In this Section the finite element solution of problem (5.1), (5.3)-(5.8),

(5.16)-(5.17) is provided. In order to compare the results obtained with the ones for a 

plane strain problem (Section 5.2.3), a pipe made of the same piecewise linear 

hardening material described in Section 5.2.2 was used.

A mesh of four 8 -noded isoparametric quadrilateral elements was used for this 

test example. Both von Mises and Hoffman calculations were performed using the 

same mesh. The same load steps (Table 5.2) were used.

AD has coordinates (± 1, 0). Secondly, boundary conditions on lines AB and CD

a u (H ,t)= -P (t); a n (H ,t) = 0 on A D ,

crn (H,i)=  0; <j2l(H ,t) = 0 on B C , 

cr12 = 0; u2 = 0 on AB and CD .

(5.17)

5.3.2. Finite element solution for hardenins material
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Node Von Mises Hoffman

Ur Uz Ur Wz

1 0.480714E-02 0.000000E+00 0.480714E-02 0.000000E+00

2 0.480714E-02 -0.561427E-19 0.480714E-02 -0.299395E-18

3 0.480714E-02 0.000000E+00 0.480714E-02 0.000000E+00

4 0.444380E-02 0.000000E+00 0.444380E-02 0.000000E+00

5 0.444380E-02 0.000000E+00 0.444380E-02 0.000000E+00

6 0.413414E-02 0.000000E+00 0.413414E-02 0.000000E+00

7 0.413414E-02 -0.200601E-18 0.413414E-02 0.916329E-19

8 0.413414E-02 0.000000E+00 0.413414E-02 0.000000E+00

9 0.380734E-02 0.000000E+00 0.380734E-02 0.000000E+00

1 0 0.380734E-02 0.000000E+00 0.380734E-02 0.000000E+00

1 1 0.353408E-02 0.000000E+00 0.353408E-02 0.000000E+00

1 2 0.353408E-02 0.139158E-19 0.353408E-02 0.118733E-18

13 0.353408E-02 0.000000E+00 0.353408E-02 0.000000E+00

14 0.322163E-02 0.000000E+00 0.322163E-02 0.000000E+00

15 0.322163E-02 0.000000E+00 0.322163E-02 0.000000E+00

16 0.297259E-02 0.000000E+00 0.297259E-02 0.000000E+00

17 0.297259E-02 0.949537E-19 0.297259E-02 0.772097E-19

18 0.297259E-02 0.000000E+00 0.297259E-02 0.000000E+00

19 0.272277E-02 0.000000E+00 0.272277E-02 0.000000E+00

2 0 0.272277E-02 0.000000E+00 0.272277E-02 0.000000E+00

2 1 0.253314E-02 0.000000E+00 0.253314E-02 0.000000E+00

2 2 0.253314E-02 -0.323609E-19 0.253314E-02 0.139458E-19

23 0.253314E-02 0.000000E+00 0.253314E-02 0.000000E+00

Table 5.5. Nodal displacement of the pipe (axisymmetric problem) from initial

configuration in the case of hardening.

It is easy to see from Table 5.5 that the nodal displacements obtained by the 

developed numerical algorithm for the Hoffman material model are identical to the 

nodal displacements obtained by the von Mises numerical subroutines developed in 

HYPLAS (de Souza Neto et al., 2003). The same correspondence was proved for 

stresses and accumulated plastic strains as well.
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The results obtained are physically reasonable as uz = 0 for all nodes. This fact 

proves that the pipe is also in a plane strain condition.

5.3.3. Finite element solution for perfectly plastic material

Analogously to the procedure described in Section 5.2.4, tests for the pipe 

made of perfectly plastic material were performed. The limit internal pressure (5.15) 

remains the same as the material has the same properties.

There were 11 load steps during the finite element computation according to 

Table 5.4. All calculations were made on the same mesh used in Section 5.3.2.

The following results were achieved:

4. Both the von Mises and Hoffman algorithms converged for all loads less 

then 99.975% of the limit pressure (5.15).

5. Displacements obtained by the developed algorithm for the Hoffman 

material were identical to displacements obtained by the von Mises 

subroutines developed in HYPLAS (de Souza Neto et al., 2003).

6 . As the load reached 99.8% of the limit pressure (5.15) the effective stress in 

all Gauss points reached the yield stress according to both algorithms.

5.3.4. Concluding remarks

By comparing results obtained by the developed algorithm for the Hoffman 

material and by the von Mises subroutines developed in HYPLAS one can make a 

conclusion that for an axisymmetric problem for an isotropic material all 5 developed 

subroutines (Section 2.2.4) were correct and were able to work properly together 

with the main body of the HYPLAS program (de Souza Neto et al., 2003).

5.4. Comparing plane strain and axisymmetric problems

This Section is dedicated to comparison of results obtained by the developed 

algorithm for the Hoffman material both for plane strain and axisymmetric problems.

5.4.1. Comparison for von Mises material

It is worth saying that radius HG (Figure 5.2) contains nodes 1, 4, 6 , 9, 11, 14, 

16, 19, and 21 in the direction from H  to G respectively. Node 1 is located at 

point H , and node 21 is located at point G . This radius is interesting as the X  axis of 

the Cartesian coordinate system is identical to the R axis of the cylindrical
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coordinate system. That is why correct solutions of plane strain and axisymmetric 

problems should be identical along this radius.

From Tables 5.3 and 5.5 it follows that the nodal displacements obtained as 

finite element solutions of plane strain and axisymmetric problems for the pipe made 

of isotropic material are identical at all 9 mentioned nodes located on radius H G . 

These displacements are represented in Figure 5.5. The same correspondence was 

proved for accumulated plastic strains and stresses which are represented in Figures 

5.6 and 5.7. When P(f) = 900MPa the whole pipe has plastic deformations.

In the text book by Kachanov (1969) stress distribution in a steel cylindrical 

pipe loaded by internal pressure are shown (Figure 5.8) for the pipe which has both 

elastic and plastic areas. To compare with these results calculations were made for 

the same pipe made of von Mises material (5.13) but loaded by smaller pressure 

equal to P(t)=100M Pa . Stress distributions are shown on Figures 5.9 and 5.10 and 

they look the same to results obtained by Kachanov (1969).

Radial displacements
0.005

0.0045

0.004

5
0.0035

0.003

0.0025
0.1 0.12 0.14 0.16 0.18 0.2

Figure 5.5. Radial displacements for the von Mises material (5.13). P(t) = 900MPa.
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Figure 5.6. crrr for the von Mises material (5.13). P(t) = 900M Pa .
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Figure 5.7. <7 ^  for the von Mises material (5.13). P{t) = 900M Pa .

Figure 5.8. a  and a rr for a steel pipe loaded by internal pressure. The circle with

radius C is a boundary between plastic (inside) and elastic areas of the

pipe. (Kachanov, 1969).
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Figure 5.9. crrr for the von Mises material (5.13). P(t) = lOOMPa.
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Figure 5.10. crw for the von Mises material (5.13). P(t) = lOOMPa.

It is evident now that the developed algorithm for the Hoffman material gives 

correct solutions both for plane strain and axisymmetric problem in case of a von 

Mises material.

5.4.2. Comparison for composite materials

Analogously to Section 5.4.2, finite element solutions of plane strain and 

axisymmetric problems for the anisotropic pipe has been compared. Both elastic and 

plastic anisotropy were taken into account.

The problem statements (5.1)-(5.9), (5.12) and (5.1), (5.3)-(5.8), (5.16)-(5.17) 

will remain the same for plane strain and axisymmetric cases respectively. However, 

material constants should be calculated according to expressions (3.7), (3.8).

Several tests were performed for different types of composite materials. The 

results obtained are presented below.

Comparison for elastically isotropic composites

Two tests for a pipe made of material having Young’s modulus E  = 200GPa 

and Poisson ratio v = 0.3 were performed.

The first test was performed on a material whose plastic properties (5.18) are 

similar to the ones material 1 (Table 4.1) has. The yield surface is isotropic, but the 

material has different yield stresses for tension and compression:
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g y =1000MPa , 

isotropic hardening occurs according to Table 5.1;

^\\t0 ~& 22T0 ~ ®33Ta = 1000MPa,
(5.18)

°"iic0 — <J22c0 ~ cr33c0 —1200MPa

<?ns0 = ° 13S0 = ° 23S0 = 500MPa .

Internal pressure for the problem was equal to:

P(t) = 100MPa. (5.19)

There were 10 load increments, each being 10% of the total load (5.19). Nodal 

displacements along the pipe’s radius are presented in Table 5.6 and on Figure 5.11.

It is easy to see from Table 5.6 that the nodal displacements along the pipe 

radius obtained by the developed algorithm for the Hoffman material model for plane 

strain and axisymmetric problems are identical. The same correspondence was 

proved for stresses and accumulated plastic strains.

Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.768807E-03 0.768806E-03

0.116000 0.676013E-03 0.676012E-03

0.136000 0.59973 IE-03 0.599730E-03

0.164000 0.532593E-03 0.532593E-03

0 . 2 0 0 0 0 0 0.481825E-03 0.481825E-03

Table 5.6. Vodal displacements along the pipe’s radius for elastically isotropic

material with isotropic plastic properties (5.18).

Radial displacements
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Figure 5.11. Nodal displacements along the pipe’s radius for elastically isotropic 

material with isotropic plastic properties (5.18).



100

The second test was performed on a material whose yield surface is anisotropic 

and yield stresses for tension and compression are different (axes are defined 

according to Figures 5.1 and 5.4):

g y =1000MPa , 

isotropic hardening occurs according to Table 5.1;

=°>yT, = SOOMPa, a aC' = 0 lvCt= 9 OOMPa, (S-20'>

g zzTo =1000MPa, g 2zCq =1200MPa,

&12S0 ~ (J\3S0 = ^23So = ^00MPa .

Internal pressure for the problem was equal to (5.19). There were 10 load 

increments, each being 10% of the total load (5.19). Nodal displacements along the 

pipe’s radius are presented in Table 5.7 and Figure 5.12.

It is easy to see from Table 5.7 that the node displacements along the pipe 

radius obtained by the developed algorithm for the Hoffman material model for plane 

strain and axisymmetric problems are identical. The same correspondence was 

proved for stresses and accumulated plastic strains.

Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.495480E-02 0.495485E-02

0.116000 0.436086E-02 0.436093E-02

0.136000 0.381578E-02 0.381589E-02

0.164000 0.328378E-02 0.328389E-02

0 . 2 0 0 0 0 0 0.283764E-02 0.283775E-02

Table 5.7. Vodal displacements along the pipe’s radius for elastically isotropic

material with plastic properties (5.20).

Radial displacements
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Figure 5.12. Nodal displacements along the pipe’s radius for material with elastic 

properties (5.21) and plastic properties (5.20).
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Comparison for elastically anisotropic composites

Two tests for a pipe where fibres are located along the Z axis (Figure 5.13) 

were performed. Elastic material properties of such a material are shown in set (5.21)

E E
with the ratio between elastic moduli —*- = —*- = 2. Axes used in set (5.21) were

E Ex  ^ y

defined according to Figures 5.1 and 5.4. Different numbers of these axis and 

material properties used in the state update procedure for plane strain and 

axisymmetric problems are represented in Table 5.8.

For the plane strain case the domain shown in Figure 5.14. This domain differs 

from the one shown in Figure 5.2 as symmetry about the X  axis has to be ensured to 

avoid rotation of axes while defining material properties for the anisotropic material. 

A very small angle EOH was used as well.

Figure 5.13. Fibres located along the Z axis.

t—
i

Figure 5.14. Domain for the plane strain case.

Ez =200GPa, 

E = E = \ 0 0 G P a ,

v —v — v =0.3,xy yz zx ■

G =G =G =15 GPaxy xz zy ^  ^

(5.21)

LIBRARY



102

Plastic properties in the first example are identical to von Mises with yield 

stress cry =1000MPa. Hardening is isotropic and occurs according to Table 5.1. 

Internal pressure for the example was equal to P(t) = 550MPa. There were 10 load 

increments, each being 10% of the total load. Nodal displacements along the pipe’s 

radius are presented in Table 5.9 and Figure 5.15.

Plane strain problem Coordinate notation Axisymmetric problem

1 Axis X 1

2 Axis Y 3

3 Axis Z 2

El Ez

e 2 Ey E ,

e 3 Ez e 2

V 12 % va

^ 2 3 V 32

V 3l V 2l

Table 5.8. Numbers of coordinate axes and material properties used for the 

plane strain and axisymmetric problems.

It is evident from Table 5.9 that the nodal displacements along the pipe radius 

obtained by the algorithm developed for the Hoffman material model for plane strain 

and axisymmetric problems are identical. The same correspondence was proved for 

stresses and accumulated plastic strains.

Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.102765E-02 0.102764E-02

0.116000 0.894168E-03 0.894160E-03

0.136000 0.786130E-03 0.786123E-03

0.164000 0.688527E-03 0.688521E-03

0 . 2 0 0 0 0 0 0.615788E-03 0.615783E-03

Table 5.9. odal displacements along the pipe’s radius for elastically anisotropic

material (5.21) with Von Mises yield surface.
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Radial displacements
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Figure 5.15. Nodal displacements along the pipe’s radius for elastically 

anisotropic material (5.21) with Von Mises yield surface.

The second example will be performed for a fully anisotropic material having 

elastic properties (5.21) and plastic properties (5.20). Internal pressure for the 

example was equal to P(t) = 500MPa. There were 10 load increments, each being 

10% of the total load. Nodal displacements along the pipe’s radius are presented in 

Table 5.10.

It is quite clear from Table 5.10 that the nodal displacements along the pipe 

radius obtained by the algorithm developed for the Hoffman material model for plane 

strain and axisymmetric problems are identical. The same correspondence was 

proved for stresses (Figures 5.5 and 5.6) and accumulated plastic strains.

Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.101901E-02 0.101900E-02

0.116000 0.883682E-03 0.883675E-03

0.136000 0.774090E-03 0.774083E-03

0.164000 0.677979E-03 0.677974E-03

0 . 2 0 0 0 0 0 0.60635 IE-03 0.606346E-03

Table 5.10. Nodal displacements along the pipe’s radius for anisotropic material

with elastic properties (5.21) and plastic properties (5.20).
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Figure 5.16. Nodal displacements along the pipe’s radius for anisotropic material 

with elastic properties (5.21) and plastic properties (5.20).
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Figure 5.17. Comparison of erw for plane strain and axisymmetric problems with

elastic properties (5.21) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.
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Figure 5.18. Comparison of cr^ for plane strain and axisymmetric problems with 

elastic properties (5.21) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.
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5.4.3. Concluding remarks

In Section 5.4 it was shown that finite element solutions obtained by the 

algorithm developed for the Hoffman material for plane strain and axisymmetric 

problems were identical in cases of isotropic/anisotropic elasticity and 

isotropic/anisotropic plasticity. For the von Mises material a comparison was also 

made with results given in a text book by Kachanov (1969).

Finally, one can make a conclusion that all 5 developed subroutines (Section 

2.2.4) were correct and were able to work properly together with the main body of 

the HYPLAS program (de Souza Neto et al., 2003) both for plane strain and 

axisymmetric cases for anisotropic material.

5.5. Further tests for different structure designs when the degree of elastic 

anisotropy is high

Despite correctness of all 5 developed subroutines was proved in Section 5.4, 

further tests have to be performed to check if the high degree of elastic anisotropy 

and the structure design influence the solution accuracy. These tests had to be 

performed since the fact that high degree o f elastic anisotropy may cause significant 

error in iso-error maps (Section 4.1.7). On the other hand, there may be errors in the 

directions of smaller elastic rigidity.

Two tests for two pipes with different design have been performed. The first 

pipe is made of fabric material laid in the XY  plane (Figure 5.19). Fibres of the 

second one are located along the Z axis (Figure 5.13). It is evident that the first pipe 

has a larger rigidity in the XY  plane than the second one, whilst the first pipe has a 

smaller rigidity along the Z axis.

Figure 5.19. Fabric material laid in the XY  plane.

In all examples plastic properties (5.20) were used, which are anisotropic with 

different tension and compression yield stresses.
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5.5.7. Results for the pipe made o f  fabric laid in the XY plane

E E  1
Two tests for two pipes with different ratios of elastic moduli: —  = — = —

E E  3x y

E E  1
(elastic properties (5.22)) and —-  = — (elastic properties (5.23)) were

E E  5x y

performed:

E 2 = 6 6 .6 GPa, E = E =  200GPa,z  x  y

V x y = V y z = V z x = 0 3 ’ G xy =  G xz =  G zy =  1 5 G P d  J

Ez = 40GPa , E = E =  200GPa ,

V xy. =  V yz = V z x =  0 ‘3  » G xy =  G xz =  G zy =  1 5 G P a  I

(5.22)

(5.23)

Internal pressure for both examples was equal to P(t) = 600MPa. There were 

1 0  load increments, each being 1 0 % of the total load.

E E  1
Nodal displacements along the pipe radius for the pipe having —̂  ^ = —

E E  3x y

are presented in Table 5.11 and Figure 5.20. It is easy to see from this Table that the 

nodal displacements along the pipe radius obtained by the algorithm developed for 

the Hoffman material model for plane strain and axisymmetric problems are 

identical. As for the stresses, they are also identical (in Figures 5.21 and 5.22, results 

for the plane strain problem are shown by a solid line). Accumulated plastic strains 

are identical too.

Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.835277E-03 0.835076E-03

0.116000 0.737530E-03 0.737437E-03

0.136000 0.656047E-03 0.656032E-03

0.164000 0.587539E-03 0.587545E-03

0 . 2 0 0 0 0 0 0.536545E-03 0.53655 IE-03

Table 5.11. Nodal displacements along the pipe’s radius for material with

elastic properties (5.22) and plastic properties (5.20).
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Radial displacements
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Figure 5.20. Nodal displacements along the pipe’s radius for material with 

elastic properties (5.22) and plastic properties (5.20).
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Figure 5.21. Comparison of <7 for plane strain and axisymmetric problems with

elastic properties (5.22) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.
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Figure 5.22. Comparison of a rr for plane strain and axisymmetric problems with 

elastic properties (5.22) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.



Nodal displacements along the pipe radius for the pipe with —L = — = — are
Ex Ey 5

presented in Table 5.12 and Figure 5.23. It is quite clear from this Table that the 

nodal displacements along the pipe radius obtained by the algorithm developed for 

the Hoffman material model for plane strain and axisymmetric problems are 

identical. As for the stresses, they are also identical (Figures 5.24 and 5.25, results 

for the plane strain problem are shown in a solid line). Accumulated plastic strains 

are identical too.

Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.820963E-03 0.820778E-03

0.116000 0.732724E-03 0.73265 IE-03

0.136000 0.658979E-03 0.658976E-03

0.164000 0.595892E-03 0.595898E-03

0 . 2 0 0 0 0 0 0.546612E-03 0.546619E-03

Table 5.12. Nodal displacements along the pipe’s radius for material with

elastic properties (5.23) and plastic properties (5.20).

Radial displacem ents

0.00085
'h:\1\displ512.gnu'

0.0008

0.00075

0.0007

5
0.00065

0.0006

0.00055

0.0005
0.1 0.12 0.14 0.16 0.18 0.2

r

Figure 5.23. Nodal displacements along the pipe’s radius for material with 

elastic properties (5.23) and plastic properties (5.20).
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7e+08
^VKsigmaphips5a6.gnu' -----
7i:\1\si§rnaphias5a6.gnu' —

>.5e+08

6e+08

ro
gj 5.5e+08 «

5e+08

4.5e+08

4e+08
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Figure 5.24. Comparison of <rw for plane strain and axisymmetric problems with

elastic properties (5.23) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.
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Figure 5.25. Comparison of crrr for plane strain and axisymmetric problems with 

elastic properties (5.23) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.

5.5.2. Results for the pipe with fibres located along the Z axis

E E
Two tests for two pipes with different ratios of elastic moduli: —̂ - = —̂ - = 3

E Ex y

E E
(elastic properties (5.24)) and —̂  = —*- = 5 (elastic properties (5.25)) were

E„ E„

performed:

£  = 200GPa, E = E =  6 6 .6 GPa ,

V xy =  V yz  = V 2X = 0 -3 » G xy = G xz =  G z ,  = ^ 5 G P a ;
(5.24)
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Ez = 200GPa , Ex = Ey = 40GPfl, 

v „ = v „ = v „ = 0 . 3 ,  = GX1 =GV = \5GPa; ( 5  25)

Internal pressure for both examples is equal to P(t) = 500MPa. There were 10 

load increments, 1 0 % of the mentioned total load each.

E E
Nodal displacements along the pipe radius for the pipe with —  = —-  = 3 are

E Ex y

presented in Table 5.13 and Figure 5.26. It is quite clear from this Table that the 

nodal displacements along the pipe radius are identical. As for the stresses, they are 

also identical (Figures 5.27 and 5.28). Accumulated plastic strains are identical too.

Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.144346E-02 0.144345E-02

0.116000 0.124189E-02 0.124189E-02

0.136000 0.107364E-02 0.107363E-02

0.164000 0.926391E-03 0.926387E-03

0 . 2 0 0 0 0 0 0.817479E-03 0.817475E-03

Table 5.13. Nodal displacements along the pipe’s radius for material with 

elastic properties (5.24) and plastic properties (5.20).
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Figure 5.26. Nodal displacements along the pipe’s radius for material with

elastic properties (5.24) and plastic properties (5.20).
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Figure 5.27. Comparison of <rw for plane strain and axisymmetric problems with

elastic properties (5.24) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.
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Figure 5.28. Comparison of crrr for plane strain and axisymmetric problems with 

elastic properties (5.24) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.

Nodal displacements along the pipe radius for the pipe with —L = —L = 5 are
E Ex  y

presented in Table 5.14 and Figure 5.29. It is quite clear from this Table that the 

nodal displacements along the pipe radius are identical. As for the stresses, they are 

also identical (Figures 5.30 and 5.31). Accumulated plastic strains are identical too.
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Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.215039E-02 0.215039E-02

0.116000 0.182628E-02 0.182628E-02

0.136000 0.153989E-02 0.153989E-02

0.164000 0.127787E-02 0.127787E-02

0 . 2 0 0 0 0 0 0.108502E-02 0.108502E-02

Table 5.14. Nodal displacements along the pipe’s radius for material with 

elastic properties (5.25) and plastic properties (5.20).

Radial displacements
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Figure 5.29. Nodal displacements along the pipe’s radius for material with 

elastic properties (5.25) and plastic properties (5.20).
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Figure 5.30. Comparison of Gf(p for plane strain and axisymmetric problems with

elastic properties (5.25) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.
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Figure 5.31. Comparison of a rr for plane strain and axisymmetric problems with 

elastic properties (5.25) and plastic properties (5.20). Results for the plane strain

problem are shown by a solid line.

5.5.3. Concluding remarks

In Section 5.5 it was shown that finite element solutions obtained by the 

algorithm developed for the Hoffman material for plane strain and axisymmetric 

problems were identical for two pipes with fibres laid in the X Y  plane and along the 

Z axis respectively in case of high rates of elastic anisotropy.

5.6. Checking of solution’s convergence

Since the integration algorithm is first order accurate it is quite easy to check 

its convergence. So, solutions of the same problem obtained with 10 and 1000 load 

steps respectively have to be compared. A problem solved in Section 5.5.2 for a pipe 

made of material with elastic properties (5.25) and plastic properties (5.20) was 

chosen.

Nodal displacements along the pipe radius are presented in Table 5.15.

A comparison between Tables 5.14 and 5.15 (i.e. solutions obtained with 10 

and 1000 load steps) is presented in Figure 5.32. Comparison of stresses obtained 

with 10 and 1000 load steps are presented in Figures 5.33 and 5.34. The mentioned 

results are nearly identical which means that an accurate solution was obtained using 

1 0  load steps.
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Radius r , m ur for a plane strain problem, m ur for an axisymmetric problem, m

0 . 1 0 0 0 0 0 0.214175E-02 0.214175E-02

0.116000 0.181991E-02 0.181991E-02

0.136000 0.153502E-02 0.153502E-02

0.164000 0.127390E-02 0.127390E-02

0 . 2 0 0 0 0 0 0.108165E-02 0.108165E-02

Table 5.15. Nodal displacements along the pipe’s radius for material with 

elastic properties (5.25) and plastic properties (5.20) calculated with 1000 load steps.

Radial displacements 10 /1000 load steps
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Figure 5.32. Comparison of nodal displacements along the pipe’s radius 

obtained with 1 0  (solid line) and 1 0 0 0  load steps for pipes made of material with 

elastic properties (5.25) and plastic properties (5.20).
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Figure 5.33. Comparison of a  obtained with 10 (solid line) and 1000 load steps 

for problems with elastic properties (5.25) and plastic properties (5.20).
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Figure 5.34. Comparison of <rrr obtained with 10 (solid line) and 1000 load steps for 

problems with elastic properties (5.25) and plastic properties (5.20).
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5.7. Checking the rate of the solution convergence

To ensure the quadratic rate of asymptotic convergence of an iterative solution 

scheme based upon Newton’s method, the tangent operator consistent to the 

integration algorithm employed in the solution of the incremental problem has to be 

used.

So, showing that the tangent operator provides the quadratic rate of 

convergence is one more (apart from results presented in Section 4.2.3) proof of 

correctness of the CTHF routine.

Such convergence is demonstrated below for axisymmetric and plane strain 

problems for the pipe examined before. Results are provided for two following 

materials having isotropic hardening that occurs according to Table 5.1:

1. Anisotropically elastic material (5.24) with the Hill yield surface (5.26), 

P(t ) = 500MPa;

2. Anisotropically elastic material (5.24) with the Hoffman yield surface 

(5.20), P(t) = 500MPa.

<7y =1000MPa ,

CT„ 7 i  =  =  0 - „ C . =  ° y y C ,  =  S O O M P a  ,

(5.26)
=1000MPa,

1̂2S0 =<T13S0 = (T23S0 500.V//V/ .

The convergence rate was assessed via considering a relative residual norm in 

percent for equation (2.15) during the last load step that is equal to 1 0 % of the total 

load. The results are presented below in Tables 5.16-5.17. It is quite clear from these 

Tables that the rate of convergence is quadratic which means that the tangent 

modulus is consistent to the integration algorithm, i.e. it was obtained correctly.
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Iteration

number

Relative residual norm, % 

plane strain problem

Relative residual norm, % 

axisymmetric problem

1 0.343621 1.49886

2 0.732665E-03 0.278609E-02

3 0.832604E-06 0.159354E-05

4 0.191147E-10 0.646178E-09

Table 5.16. Relative residual norm, for material with elastic properties (5.24)

and plastic properties (5.26).

Iteration

number

Relative residual norm, % 

plane strain problem

Relative residual norm, % 

axisymmetric problem

1 0.138319E-01 1.22917

2 0.152500E-02 0.708428E-01

3 0.388614E-04 0.118858E-03

4 0.993903E-08 0.539122E-06

5 0.284289E-09

Table 5.16. Relative residual norm, for material with elastic properties (5.24)

and plastic properties (5.20).
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Chapter 6. Conclusions

The aim of this work was to develop a finite element procedure for the 

numerical simulation for plastic flow of orthotropic composites governed by the 

Hoffman yield criterion. The criterion overcomes the restriction of the Hill criterion 

as it allows taking into account of different tensile and the compressive yield 

stresses.

All algorithms were implemented within the HYPLAS finite element code 

which is supplied with a text book by de Souza Neto et a l , (2003). This software is 

used for implicit small and large strain analysis of hyperelastic and elasto-plastic 

solids in plane stress, plane strain and axisymmetric states.

Hence, all numerical procedures were developed for plane strain and 

axisymmetric states. Strains were considered infinitesimal and thermal effects were 

ignored. This loading was assumed to be quasi-static. It was also assumed that no 

fracture or debonding occurred. The hardening behaviour was isotropic. Both elastic 

and plastic anisotropy were taken into account.

In order to implement these numerical algorithms within the HYPLAS structure 

the following subroutines for the Hoffman material were coded:

1. State update procedure which calculates new stresses, algorithmic and 

state variables at the end of the load increment for each Gauss point.

2. Tangent computation procedure which calculates the consistent tangent 

operator using converged values of stresses, algorithmic and state 

variables for each Gauss point.

3. Switching / initialisation subroutine which is used for the initialisation of 

variables as well as switching between current and converged values in 

material specific routines.

4. Data input procedure that reads all material model/algorithm-related data 

and stores them in the appropriate HYPLAS arrays.

5. Output subroutine that writes the results to a result file.

The strategy used for the numerical simulation of the Hoffman material model 

was based on implicit displacement finite element procedures. The full Newton- 

Raphson algorithm is used in HYPLAS to solve the nonlinear system of finite 

element equations during the global system iteration.
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An operator split methodology and fully implicit backward Euler elastic 

predictor / plastic corrector algorithm were used to find an appropriate stress state at 

the Gauss point. During the plastic corrector phase of this algorithm the full Newton- 

Raphson method was used to solve the corresponding nonlinear equations. A line 

search algorithm based on dichotomy concept was developed to find an improved 

initial guess for the Newton-Raphson method in order to obtain a physically sensible 

solution for materials with high degree of elastic anisotropy. The tangent modulus 

consistent to the state update algorithm was obtained to ensure the quadratic rate of 

convergence of the global system iteration.

The objective of this work was successfully achieved. Validation of the 

algorithms developed was carried out separately for both state update and tangent 

computation procedures. Moreover, a number of model boundary value problems for 

different materials were solved. Solutions of certain plane strain and axisymmetric 

problems were compared and their results were in good agreement. The results 

obtained in this thesis were compared to results obtained by other authors where 

possible.

It was also shown that when the degree of anisotropy is very high the load 

steps should be very small as the state update procedure gives a less accurate solution 

in this case.

6.1. Suggestions for future research

There is still much scope for future work in this project.

One aspect is the extension of the technique to three-dimension problems. This 

will require extension of the developed algorithms.

The second possible extension is to consider an anisotropic hardening described 

in the article by Hashagen and de Borst (2001). As in this article there were no 

examples with anisotropic elasticity provided, it will be interesting to find out how 

the degree of elastic anisotropy influences the accuracy of the algorithm.
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