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Summary
In this thesis we study pseudo-differential operators of the form

(13,, $n+1) € Rg-tlv

A:l: = ¢(Dz') + 6$n+1’
where 9(D,) is an operator with real continuous negative definite symbol 9: R” — R,
acting on functions depending on z' € R™. Further we consider the fractional powers
(—A41)% 0 < a < 1, of —Ay. After determining the domains in L,,(Rg;"l) of these
operators in terms of Bessel-type potential spaces and studying some properties of these
function spaces, we prove that with these domains —(—A4)* are generators of L,-sub-
Markovian semigroups. Then we extend this result and show that the operators

—(=A+)* — p(z, Dar)

also generate L,-sub-Markovian semigroups, if the pseudo-differential operator p(z’, D)
is (—A+)*-bounded and the symbol p(z’, &’) of p(z’, D) is with respect to £’ a continuous
negative definite function. In the end we proved the continuity of the pseudo-differential
operator with continuous negative definite symbol (with certain condition on the growth
of the Lévy measure) between the Besov spaces.
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Chapter 0

Introduction

In this thesis we study pseudo-differential operators of some special type, and give con-
ditions under which these operators are generators of L,-sub-Markovian semigroups, i.e.
strongly continuous contractions semigroups on L,, which have the sub-Markovian prop-

erty.
More precisely, we consider operators of the form
g
—Ax = —p(D) & 5 o (z', Tn+1) € RGFY,
n

acting on functions depending on =’ € R™. Further we will consider the fractional powers
(-A+)* 0 < @ < 1, of —Ax. We determine the domains in L,(R3{!) of these opera-
tors, and prove that with these domains —(—A4)* are generators of L,-sub-Markovian
semigroups. Then we extend this result by proving that the operators

—(=Ax)* = p(a’, D)

also generate L,-sub-Markovian semigroups, if the pseudo-differential operator p(z’, D)
is (~A+)*-bounded and the symbol p(z’, £’) of p(z’, D) is with respect to £’ a continuous
negative definite function.

We are interested in y-Bessel potential spaces HY** on the half-space R 1<p< oo,
—00 < 8§ < 00, 1 is a real-valued continuous negative definite function. Such spaces were
defined in Farkas, Jacob, Schilling [FJS1} on R™, and they are some generalization of
Triebel-Lizorkin spaces F,(= H,), which are called Bessel' potential spaces of order s.
Our main references on function spaces are Triebel ([T1] and [T2]), see also the books of
Adams [A], and Besov, II’in, Nikol’skii [BIN]. Such function spaces can be constructed
as spaces of functions which can be approximated by sequences of smooth functions with
finite support (see Triebel [T1]) or as sets of functions which together with their (fractional)
derivatives belong to some Banach space (see Sobolev [So], Lizorkin [Liz2], [Liz3]); see also
Nikol’skii [N2], Besov [Bel], [Be2]).



However Bessel potential spaces can also be defined as in Bagby [Bag] or Aronszajn
and Smith [AS]. Namely, in this paper the spaces H; are defined as the images of the
spaces L, under certain operators, i.e.

Jof = F7H(1+ [z>+it)~*/%f), zeR™t€R,
(see[Bag]), or
Gof =F Y1+ |z>)*"*f), zeR",

(see [AS]). For the extensive references on Bessel potential spaces as domains of Riesz and
Bessel potentials we refer to the survey of fractional derivatives and integrals of Samko
et al. [S], see also Rubin [R] for a lot of results on mapping properties, restrictions and
extensions of fractional integrals and derivatives, etc.

We want to define the R-Bessel potential spaces on the half-space R(’)‘Il, where £ =
Re(x+ ()%, x+ = ¥(£')£i€n+1, and ¢ is a continuous negative definite function which sat-
isfies certain assumptions. The assumptions we need (see A1 and A2, Assumption 2.1.17)
are such that the function e**®™9X is an L,-Fourier multiplier (for Fourier multipliers see for
example Triebel [T1], and also the paper of Lizorkin [Liz1]). This enables us to show, that
the (x+(&))™-Bessel potential space (i.e. the space constructed with the complex-valued
continuous negative definite function (x+(£))®) is equivalent to the R-Bessel potential
space (i.e. the space constructed with the real continuous negative definite function R).
Since the set Rgi'l has a boundary, we have (see for the case of Bessel potentials Triebel
to define the R-Bessel potential space on Ry}

i) as Hf_;_’ —the space of restrictions to Rp}of functions in H¥*(R"+1);

ii) as fIﬁ" —the space of functions from HJ*(R"*!) which have support in REFL

As soon as we have defined these spaces, many questions arise, i.e. the dense sets
in H%® and in gge "°, the problems of extensions to Hy*(R™*1) and the restriction to
the initial spaces, the embedding and interpolation results, isomorhic mappings, etc. Such
problems for Sobolev spaces, Triebel-Lizorkin spaces, Besov spaces, and many others, were
studied a lot. See Triebel [T1] and [T2], the books of Adams [A], Besov, I’in, Nikol’skii
[BIN], Nikol’skii [N2] for the L,-theory of Sobolev spaces. In particular for methods of
restriction and extensions across the boundary and embedding theorems we refer to Lions
and Magenes [LM] for the Ly theory of Sobolev spaces. Bennett and Sharpley [BS] is a
good reference on interpolation theory, see also the references given there. As far as our
task is concerned, we solve these problems for Hgi’s and in I:T;z’_’.

We also consider the Lipschitz spaces in order to find conditions under which a pseudo-
differential operator (which satisfies additional assumptions) is continuous between some
Sobolev spaces (W, = By, s is not integer, see [T2]). For the Lipschitz spaces we refer
to Krein [Kre], Stein [S2], see also Kufner, John and Fucik [KJF], and Triebel [T1].

The results on function spaces enable us to solve some boundary-value problems related



to the equation

O+(=AL)*)f(2) = g(z), @ = (z',Tn41) €RF, )
fED((—A1)*), g€ L,(R}™), 0<a<l

As the domains of (—A4 )™ we take Hfjrs and I?gef. For the solutions of boundary-value
problems for elliptic differential operators in H, we refer to Taira [Ta] and Edmunds,
Triebel [ET], see also Lions and Magenes [LM], Hérmander [H] for the case p = 2.

Now we turn to the probabilistic part, namely, to applying these results on function
spaces to construct an L,-sub-Markovian semigroup. However, it is not trivial to associate
a Markov provess to an L,-sub-Markovian semigroup. It was done in the case p = 2, see
[FOT).

To construct a random process (X;):>o means to give a triple (Q, F, P(dz)), where
Q is a set, F is a o-algebra on 2, and P(dz) is a probability measure. To construct
a Lévy process, i.e. a process with stationary and independent increments, continuous
in probability, this complicated problem becomes easier, since the characteristic function
E[e%Xt] of a Lévy process X; has a very special form: it can be expressed as (see for
example Jacob [J1], or Bertoin [Ber])

B¢t = WO, ¢eR", t>0,

P(E) =c+i(€,b) + D gisbis +/ (1—e %= — : fi;lz) v(dz),

i,5=1 Rm\{0}

where ¢ > 0, b € R™, the quadratic form szﬂ ¢i;€:i€; is positive semidefinite, and v(dz)
is a Lévy measure, i.e. it is a measure such that

/ (1 A J[?) v(d) < oo.
R"\{0}

For the processes with independent increments we refer to Skorokhod [Sk], see also the
classical treatise of Gikhman and Skorokhod [GS2].

To construct a random process one may use probabilistic approaches, i.e. knowing its
sample paths, for example solving stochastic differential equations, see Ité [I], or Gikhman,
Skorokhod [GS3], or analytical approaches, solving Kolmogorov’s equation, see Feller [Fe]
and Dynkin [Dy]. The approach we will use is the second one, namely we will construct a
semigroup of operators (T3):>0 having a generator (4, D(A)):

T.f —
Af = lim tft f, f € D(A).




Certainly, if we obtain a sub-Markovian semigroup, i.e. a strongly continuous contraction
semigroup in L, such that 0 < u <1 a.e. implies 0 < Tyu < 1 a.e., then we may associate
a Markov process ((X:):>0, P%)zern» With (T3):>0. This process and the semigroup are
linked by

Tou(z) = E* (u(Xs))

or with u = x4 we find
pi(z, A) = (Ttxa)(z)

for the transition function. However in both relations one has to take into account certain
exceptional sets.

Not all operators with continuous negative definite symbols are generators of strongly
continuous contraction semigroups. To be a generator of a strongly continuous contraction
semigroup an operator A must satisfy the conditions of the Hille-Yosida Theorem. We
will follow the formulation of this theorem given in Jacob [J1], or Pazy [Pa], for a different
formulation of it see [GS1]. In addition, for an operator to be a generator of an L,-
sub-Markovian semigroup, it is necessary to be a Dirichlet operator: it must satisfy the
inequality:

/ Au((u— 1)+)p_1dx <0.

For the Dirichlet operators we refer in the case p = 2 to Ma and Rockner [MR], Bouleau,
Hirsch [BH], and [J1] in the general case. Moreover, having a generator A of an L,-sub-
operator (A + B, D(A)) is still a generator of some sub-Markovian semigroup. For such
perturbation results we refer to Pazy [Pa), Jacob [J1], [J2].

In the first chapter we provide definitions and results from the theory of one-parameter
operator semigroups. We give the definitions of Lp-sub-Markovian semigroups, Dirichlet
operators, and quote the Hille-Yosida theorem, which gives us the necessary and sufficient
conditions under which a closed operator is a generator of a strongly continuous contrac-
tion semigroup. The theory of subordination in the sense of Bochner gives us a way of
constructing new semigroups starting with a strongly continuous contraction semigroup
(T:)t>0 and a convolution semigroup of measures (7;);>0 with supports in [0,00). Such
convolution semigroups of measures correspond to so-called Bernstein functions, which
will play a great réle in the second chapter. We also provide some examples of Bernstein
functions, one of them, namely, f(z) = z%, 0 < a < 1, corresponds to the one-sided stable
semigroup of order @, (0o (z,t) dz)>0, which are the the probability measures (which have
“Lévy stable” densities o4(z,t)) related to an a-stable process (see Ibragimov, Linnik [IL]
for more about such processes). We only list some properties of the stable density func-
tions (0q(z,t))t>0, which are important for us, and discuss related Mittag-Leffler-type
functions, see Podlubny [Pod]. In the end of Section 1.1 the definition of Bessel functions
is given in order to provide our work with examples in Section 3.2.

In Section 1.2 after some preparations we prove for two generators (A, D(A4)) and
(B, D(B)) of strongly continuous contraction semigroups in L,(R™) and L,(R™), respec-



tively, that the closure of the operator A@® B, defined on the product space D(4) ® D(B),
is a generator of a strongly continuous contraction semigroup, which is sub-Markovian, if
(A, D(A)) and (B, D(B)) generate sub-Markovian semigroups. A similar result for Feller
semigroups was proved in Krageloh [Kr].

In Section 1.3 we give the definition of a pseudo-differential operator, and of A-bounded
operators. Actually the restriction in Definition 1.3.1 that 0 < £ < 1 is not necessary for
the A-boundedness of an operator @ (see [KK] or Pazy [Pa] for a more general definition of
A-boundedness). It is essential when we want to prove that having a generator (A, D(A4))
of a sub-Markovian semigroup in Ly, the perturbed operator (A + Q, D(A)), where Q is
A-bounded with 0 < € < 1, is a generator of an L,-sub-Markovian semigroup too.

Section 2.1 is devoted to the studying of R-Bessel potential spaces on R**! and on
the half-space R{{!, where ® = Re(x+ (€))%, x£(€) = ¥(¢') £ i€n+1, and 9 is a con-
tinuous negative definite function. First, we show, that under the conditions stated in
Assumption 2.1.17 the functions e*%"9X, 0 < Imz < 1, are L,-Fourier multipliers, which
enables us to find the domains of operator (—A4)%, symb(—A1) = x4 in L,(R™*1), and
show, that the operator (—A4)® is an isomorphism between Hf” and Hg"“"2 (or between
H,',Xlﬂ’s and H},Xlw-z, since the result that e?°m9X, 0 < Imz < 1, is an L,-Fourier mul-
tiplier gives us also the equivalence of the spaces H,”,Q*s and H,’,Xla’z, see Remark 2.1.23).
Next we obtain an interpolation theorem, which says that we can obtain the space Hff’z
by complex interpolation between the spaces L, and Hz"z*l, see Theorem 2.1.27. Further,
we define the spaces Hff and I;ng’:s on RYf! (see Definition 2.21), and prove that the
operators (—A4)* are isomorphisms-between I;ngf -and ﬂfﬂ’:s-_z as well as between Hf:;s
and Hg;"’. In the proof of the first statement we use the same method as given in the
proof of Theorem 2.10.3 [T2], and the proof of the second statement is based on the fact
that the spaces qu’:s are the factor spaces of Hff’s with respect to I??f.

The proofs of the existence of the retraction and the corresponding coretraction are
different to those in Triebel [T2], because the method given there is not applicable in our
situation. But we can construct the isomorphisms from the spaces Hf's , I?gz_l'_‘ and Hf_,’_s
to the classical Bessel potential spaces (on the whole space R™"*! and on the half-space
]Rgil), and in such a way we can reduce our problem to the problem already solved.

We also prove embedding and interpolation theorems for I?,ﬁ” and Hf_f, (see Theo-
rem 2.2.9, Theorem 2.2.15 and Remark 2.2.16), and find dense sets in these spaces (The-
orem 2.2.10).

Chapter 3 is devoted to constructing Lp-sub-Markovian semigroups.

While checking the third condition of the Hille-Yosida theorem, i.e. the solvability of
equation (1) for any g € L,(R3{!) with some boundary conditions, we see that different
boundary conditions lead to different semigroups. We consider two types of boundary
condition, namely, Dirichlet and Neumann boundary conditions. We find a representation
of the L,-sub-Markovian semigroups, generated by —(—A+)%*, 0 < o < 1, with some
domain in L, (R’O‘“), with these boundary conditions, as well as the correponding resolvent

+
operators.



First we consider the case & = 1, in which the operators —A; = —¢(Dy) = B%H’
(z',Zn41) € RGY!, are defined on the product spaces HY'?(R")®H}, | (Ro+) and HY*(R™)®
I?;,+(Ro+). Theorem 1.2.3 gives that the closure of (—A4, H},"’2®H§,+) and (—Ay4, H;,l”2®
H;, +), respectively, with respect to the graph norm of Ay, generates L,-sub-Markovian
semigroups. In both cases we find the corresponding semigroups and the resolvent op-
erators. In the first case we consider non-zero Dirichlet boundary conditions, and zero
Neumann boundary conditions in the second.

The results obtained in Chapter 2 give the necessary background to extend the case
a=1t00 < a<1,ie to prove that the operators —(—A;)* on some domains are
generators of Ly-sub-Markovian semigroups, and we find these domains. More precisely,
we find in Chapter 2 the domains D((—A44)®) of —(—A4)?, and Theorems 2.2.5 and
2.2.6 give that (—A4)* is an isomorphism between these domains and L,(R37"), which is
essential when we solve the boundary value problem (1). Therefore, we have all necessary
tools to prove that the operators (—(—A+)®, D((—A+)®)) are the generators of L,-sub-
Markovian semigroups, for different D((—Ax)®) C Lp(R3}?).

Since we know the semigroups generated by (—Ax, D(A+)), subordination in sense
of Bochner gives us the candidates for semigroups generated by (—(—A4)%, D((—A+)%))
(with some boundary conditions). As in the case o = 1, different boundary conditions
lead to different semigroups, see Theorems 3.1.4, Remark 3.1.2 and Theorem 3.1.5. In
Chapter 3.2 in order to illustrate our work we gave a few examples of such generators and
semigroups.

(—A4)*-bounded pseudo-differential operator still generates an L,-sub-Markovian semi-
group. We also give a few examples of such pseudo-differential operators.

Finally, in Chapter 3.4 we proved that a pseudo-differential operator with negative
definite symbol is continuous between the Lipschitz spaces of order A, 0 < A < 1, if we
pose a condition on the growth of the density of the corresponding Lévy measure. This
result leads to the continuity of such a pseudo-differential operator between the Besov
spaces Wy. For the case of elliptic pseudo-differential operators see Edmunds, Triebel
[ET].

I would like to thank my supervisor Prof.Niels Jacob and the head of the department
Prof.Aubrey Truman for their warm support while working on my PhD-thesis, and I am
grateful to my supervisor Prof.Niels Jacob for his guidance and a lot of highly inspiring
discussions.

Also many thanks to Prof.Aubrey Truman and to Dr. René Schilling who argeed to
be the internal and the external referees.



Chapter 1

Preliminaries

1.1 Sub-Markovian semigroups. Basic defini-
tions

We refer to the books of Jacob [J1] and Yosida [Y] in presenting some definitions and
theorems from the theory of one-parameter semigroups (see also the monograph of Hille

and Phillips [HP]).

Definition 1.1.1. A. A one-parameter family (73;):>0 of bounded linear operators T :
X — X is called a (one parameter) semigroup of operators, if Tp = I and T4+s = Ty o T}

hold for all s,¢t > 0.
B. We call (T;):>0 strongly continuous if

lim [|Teu ~ uf|x =0

for all u € X.
C. The semigroup (Tt ):>0 is called a contraction semigroup, if for all £ > 0

IT: <1

holds, and we denote by ||T;|| the operator norm || 13| x,x-
D. We call a strongly continuous contraction semigroup (T3)¢>0 on L,(R™,R),1 < p <
00, sub-Markovian if for all u € LP(R™, R) such that 0 < u < 1 almost everywhere (a.e.)

it follows that 0 < Tyu <1 a.e.

Definition 1.1.2. Let (T;);>0 be a strongly continuous semigroup of operators on a
Banach space (X, || - | x). The generator A of (T;):>o is defined by

Tiu—u
strongly,

Au:=Iim
t—0



with domain

Tt’U. -

D(A)y:={ueX ] }l_l:% exists as a strong limit.}

Proposition 1.1.3. A. For each strongly continuous contraction semigroup (T});>0 on
X there exists a closed operator A with domain D(A), dense in (X, || - ||x), which is the
generator of (T3)¢>o0.

B. For each t > 0 the operator T; maps D(A) into itself.

Conversely, if (A, D(A)) is the generator of strongly continuous semigroup on X, then A4
is a closed operator and D(A) is dense in X. (See [J1] or [Y]).

We are especially interested in sub-Markovian semigroups and their generators. For
the semigroup to be sub-Markovian it is necessary and sufficient that its generator is a
Dirichlet operator, see Definition 4.6.7, [J1].

Definition 1.1.4. A closed, densely defined linear operator A : D(A) — L,(R™",R) ,
1< p< oo, D(A) C Lpy(R™,R), is called a Dirichlet operator if for all u € D(A) the
relation

/ (Au)((w-1)*)P dz <0 (1.1)

holds.

00, generates a strongly continuous contraction semigroup (T3)¢>0 on Lp(R™, R). Then
(Tt)t>0 is sub-Markovian.

The next proposition is the consequence of Theorems 4.6.11 and 4.6.12, [J1].

Proposition 1.1.6. Let (A4, D(A)) be a Dirichlet operator on L,(R™,R). Then it is
dissipative, i.e.
[Au — Aullp 2 Alull,

for all u € D(A) and XA > 0.

Now we can formulate the necessary and sufficient conditions for the operator (4, D(A))
to be the generator of a strongly continuous contraction semigroup, see for example [J1],
Theorem 4.1.33. Denote by R(A) the range of operator A.

Theorem 1.1.7 (Hille-Yosida theorem). A closed linear operator (A4, D(A)) on a
Banach space (X, || - [|x) is the generator of a strongly continuous contraction semigroup
(Ti)t>o0 if and only if the following conditions hold:

1. D(A) C X is dense;

2. A is a dissipative operator;

10



3. R(/\—A) = X for some A > 0.

In Chapter 2 we will deal with the subordinated semigroups. As a preparation we
present already now some definitions, see [J1].

Define by 6, (dz) the Dirac measure at y
1, yed

0, y¢A (1.2)

511 (A) = {

which has the property that
| @) = 1w

for all functions which are locally integrable (with respect to Lebesgue measure) on some
domain G, y € G.

Definition 1.1.8. A family (u¢):>0 of Borel measures on R™ is called a convolution
semigroup on R™ if i) us(R™) < 1 for all t > 0; ii) ps * iy = ftts, S, > 0 and po = bo;
iii) py — 8 vaguely as t — 0.

The convolution semigroups are closely related with negative definite functions,
i.e. with functions 9 : R — C such that 1(0) > 0 and the function ¢ — (27)~"/2e "t (&)
is positive definite for ¢ > 0. Recall that a function » : R™ — C is positive definite if for
every k € N, A1,..., Ax € C, and for any vectors &, ...,E € R™ we have

Denote by § the Fourier transform of a function g € L;(R"),

n

3O = @m* [ (e, (13)
and by fi; the Fourier transform of the measure u;:
) = ()0 [ o) (14)

For Fourier transforms we refer to [RS2].

Theorem 1.1.9. For any convolution semigroup (¢):>0 on R™ there exists a uniquely
determined continuous negative definite function 9 : R™* — C such that

fe(€) = 2m) "2 O, t>0 and £ eR" (1.5)

holds and the converse is also true, i.e. for every continuous negative definite function v
there exists uniquely determined convolution semigroup, such that (1.5) holds. (See for
the proof [J1]).

11



Taking a convolution semigroup, (7:):>0 supported by [0, c0) and a strongly continuous
contraction semigroup (73);>0 we may define the subordinated semigroup

T f(z) = /Ooo Tsf(z)n:(ds) as a Bochner integral. (1.6)

By Theorem 4.3.1. [J1] the semigroup (7}"):>0 is again a strongly continuous contraction
semigroup. There is a one-to-one correspondence between (7;);>0 and some special class
of functions, called Bernstein functions.

Definition 1.1.10. A real-valued function f € C*°((0, 00)) is called a Bernstein func-

tion if 4 (z)
k z
fZO and (—I)WSO
holds for all £k € N.
Similar to Theorem 1.1.9 we have (see [J1])

Theorem 1.1.11. Let f : (0,00) — R be a Bernstein function. Then there exists a unique
convolution semigroup (7;);>0 supported by [0, co) such that

Ln)(z)=et7@® >0, t>0

holds, and the converse in also true.

Here L(f)(z) and L(n)(z) denote the Laplace transform (see [Pod]) of the function f
and of the measure 7 respectively:

(o <]

Ln@ = [ et LneE = [ e, 1.7)

where the measure 7 is such that supp#n C [0, 00) and f0°° e~ %n(ds) < oo for all z > 0.

Therefore if ¥ is a continuous negative definite function with convolution semigroup
(it)t>0, and f is a Bernstein function with convolution semigroup (v¢):>0, then the func-
tion f(3) is again continuous negative definite, and the convolution measure which corre-
sponds to f(%) is

ul (dz) = / " 1s(dz)va(ds). (1.8)
0

We will give some examples of Bernstein functions f which we will use later, and the

corresponding families of measures (v4)>0.
I f(z) = z% z > 0, 0 < o < 1, which corresponds to the convolution semigroup

'(nt(“))tzo. The family of measures nfa)(da:) = o04(z,t)dz, is called one-sided stable

semigroup of order o, and the functions o,(z,t), t > 0, are called the Lévy stable
density functions. For the properties of these functions see [Y], section IX.11, or [Pod].
We only note some properties of 64 (,t) which are necessary for us.
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1. The Laplace transform of o4(z,t), t > 0 with respect to z is

/ e %04 (z,t)dz = e ", Rez>0; (1.9)
0

2. The Laplace transform of o4(z,t), £ > 0 with respect to t is

[o <] /
/ e Hou(z,t)dt = ea_(x,_u_), uw>0, (1.10)
0 —H
where s
€a(Z; 1) -1 = ak(—p)ky*k-t
& = —uz* 'E - 1.11
is the derivative of the Mittag-Leffler type functlon ealz, 1), p > 0:
o0 k, ok
(=m)"y*
= By (—uy®) = . 1.12
€a(T, 1) := Ea1(—1y®) kﬂrwk+n’$>° (1.12)
Here
E ,8>0 1.13

is the Mittag-Lefﬂer function. For the properties of such functions see [BE],

3. The Laplace transform of e—"l_z—l;-&z inzis

!
L,, [ea(x, N)} S , Rez>0; (1.14)
—u Pz

4. The Laplace transform of ey (z, 1) in z is
{04

;—j_—;, Rez > 0. (1.15)

Lyzlea(z, 1)) =

We also note, that only for o = % we know an explicit expression for o4(z, t):

2

o1/2(z,t) = #z"a/zte"%ﬁ, t,z > 0. (1.16)

For the following two examples see [J1], Chapter 3.9.
II. The Bernstein function f(z) = In(1 +z) corresponds to the convolution semigroup
of measures

vi(dz) = AV (dz)x o, w)(x)f‘(t) zt"le72, (1.17)
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where A()(dz) is one-dimensional Lebesgue measure.
III. The Bernstein function f(z) = 1 —e™** corresponds to discrete measures, namely
the Poisson semigroup with jumps of size s, i.e.

ie 6ks (1.18)

k=0
For later purposes we will need a subclass of Bernstein functions.

Definition 1.1.12. A function f : (0,+00) — R is called a complete Bernstein func-
tion is there is a Bernstein function g such that

f(z) = 22L(g)(z)
holds for all z > 0, where L(g) is the Laplace transform of function g.
For the following statement see [J1], Theorem 3.9.29.

Lemma 1.1.13. A function f is a complete Bernstein function if and only if it is a
Bernstein function having the representation

where a,b > 0, the measure p is given by u(ds) = m(s) ds, and the density m(s) satisfies
0o :
m(s) =/ e r(dt), s>0
0+

and 7(dt) is the measure on (0, +00) which satisfies

While solving the equations of the form
(M —Aju=v, veX, ueD(A),

we need to know what is the resolvent set of the operator (4, D(A)), defined on the
Banach space X (see for example [B]).

Definition 1.1.14. The resolvent set p(A) of A consists of all A € C such that A\J — A is
surjective and one has a continuous inverse (A\I — A)~! defined on R(AI — A) =

14



Knowing the strongly continuous contraction semigroup generated by the operator
(A, D(A)), we can construct the resolvent R, := (A — A)71, A € p(A) (see [Y], IX.4, or
Lemma 4.1.18, [J1].

Lemma 1.1.15. Let (T}):>0 be a strongly continuous contraction semigroup on the Ba-
nach space (X, || - | x) with generator (A, D(A)). Then {) € C| ReX > 0} C p(A) and we
have

o
Ryg=0)—-A)"1g= / e MT,gdt (1.19)
0
for all g € X and Re ) > 0.

In Chapter 2 we will find with help of this lemma the solution to the equation
A+ (-A)*)f =9, geL,(RG}
for different extensions of the operator —(—A4)*,0 < a < 1.

In the end of this paragraph we want to give the definition and some properties of the
function which will occur later in Chapter 2 while constructing some examples of strongly
continuous semigroups. For the definitions below see [BE], vol.2, §7.2.

First we suppose that v is not an integer.

The function

is called the Bessel function of order v of first kind, and the function

I(2) = e 5 J,(z¢7) (1.21)
is called the modified Bessel function of first kind. Further, the fu'nction

K, (2) I_,(2) — L(2)] (1.22)

T2 sin({v) [

is called the modified Bessel function of third kind. For real v and positive z the
functions I,,(z) are real, so for such v and z K, (z) is real too.
Note that
K (2) = K, (2).

For v being an integer, v = n, the function K, is defined as

) G (< S
Kn(Z) = J-I_IELKV(Z) - _—2—[ 61/ B—I/] u=’n'

For many other representations of Bessel functions we refer to [BE], vol.2.
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1.2 Semigroups on product spaces

Consider the measure spaces (X, u1) and (Y, ug) such that Lp(X,du;) and Ly(Y, dus),
1 < p < o0, are separable.

In this section we will study an operator of the type C' = A 4+ B, where the domains
of A and B, D(A) and D(B), are in L,(X,du1) and in L,(Y, dus) respectively. The
theorem we will prove states that the operator (C, D(C)), where D(C') is the closure
of D(A) ® D(B) with respect to the graph norm of C, i.e. D(C) = D(A)Q® D(B), is a
generator of strongly continuous contraction semigroup, or even sub-Markovian semigroup,
if (4, D(A)) and (B, D(B)) are. To prove this theorem we need some notions of topological
tensor products, see for the definitions the book of Tréves [Tre].

Definition 1.2.1. A. Let E(X) and E(Y) be two spaces of complex-valued functions
defined on X and Y respectively. We shall denote by f ® g the function on X x Y-

(f ®9)(z,y) = f(z)g(y)-

B. We denote by E(X) ® E(Y') the linear subspace of the space of all complex functions
defined on X xY spanned by elements of type f®g, i.e. a function h: X xY — C belongs
to E(X) ® E(Y) if and only if there exist finitely many functions fi, fo,..., fn € E(X),
91,92;---,9n € E(Y), n € N, such that

C. For the linear mappings A : E(X) — E(X) and B : E(Y) — E(Y') respectively the
tensor product A ® B is a linear operator on E(X) ® E(Y'), defined as

(A®B)(f®9)=(Af)®(By)
(see [Tre], Proposition 29.2).

For our purposes we will consider E(X) = Ly(X,dp;) and E(Y) = L,(Y,dua), 1 <
p < oo. In this case for f € L,(X,du1), g € Lp(Y, u2)

If ® gllp.xxy = | fllp.x lI9llp,y-

Lemma 1.2.2. Let F; and E; be the dense subsets in L,(X,du1) and in L,y (Y, dus).
Then, the set E; ® Ej is dense in Ly(X x Y, du; @ dus).

Proof. From Corollary 39.3 [Tre] we can deduce that L,(X, du1) ® L, (Y, du2) is dense
in Lp(X x Y,dp1 ® dua). Therefore, for z € Ly(X % Y, du1 @ dus) and € > 0 there exists
h € Lp(X,du1) ® Ly(Y, dusg) such that
€

|z = hllp,xxy < 5

16



Since h € Lp(X,du1) ® Ly(Y, dusz), it has the representation

n
h=2fi®g‘h fieLp(X’dul)a gieLp(}/’d/“u), 'i=1,...,n

=1

for some n. Therefore in order to prove the lemma we may approximate each term f; ® g;,
i=1,...,n by a function from E; ® E,. Since E; is dense in L,(X, du1) and E; is dense
in L,(Y,dps), for f; € Lpy(X,du1), 9i € Lp(Y,du2) and an arbitrary € > 0 there exists
w; € By, ¥; € E5,i=1,...,n such that

€

iy <
4Kn7 ”g‘l. ¢z|lp,y -

€
| fi = willpx < n

where K is a constant which we will define later.
Consider f; ® g;, i =1,...,n.
1 fi ® g — 0i ® Yillp,xxy = || figi — igi + ¥igs — ivillp,xxy < |9illp,¥ || fi — @illp,x+

£
+lpillxlg = willy < max (gl il ) g

Setting K = maxi=1,...n(||gillp,¥, [l@illp,x) We obtain ||figi — pitbi|lp,xxy < 7 for each
i=1,...,n. Let v= 37 »; ® ;. Then

""" 12 = vllpxexy < Hz = Allpoexy + R —vllpxsy <o

n n n
<| Zfi ® g — Z% ®"/J1'Hp’x)<y = || Z(fi ®gi— ¥i ®1/)i)||p,x><y

i=1 =1 =1

n
<Y Nfi®gi— @i ®Yillpxxy <€

i=1
proving that By ® Ey is dense in L,(X X Y,dy; ® dug). O

Using Lemma 1.2.2 we can construct sub-Markovian semigroups on product spaces.

Theorem 1.2.3. Consider the operators (4, D(A)) and (B, D(B)), D(A) C Lp(X, dus),
D(B) C Ly(Y,duz), such that they can be extended to generators of strongly continu-
ous contraction semigroups (7T1(t)):>0 and (T2(t))e>0 on Ly(X,dus) and L,(Y, dus) re-
spectively. Then, the closure (C, D(A) ®D(B)"'”C) of the operator Co = A® B =
A ® Ix + Iy ® B with domain D(Cy) = D(A) ® D(B), generates a strongly continu-
ous contraction semigroup (7(t)):>0 on Lp(X x Y, duy @ dus)

Here ||fllc = ||C fllp,xxy + || fllp,xxy is the graph norm of operator C.

Proof. First we show that (T3 (t) ® T2(t))s>0 is a semigroup of contractions on L,(X X
Y, du1 ® dusz). '
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That (T1(t) @ T2(t)):>0 is a semigroup is clear if we rewrite T3 (t) ® T2 (t) as

Ti(t) @Ta(t) = (Ti(t) ® Iy) o (Ix @ Ta(t)) = (T1(t) ® I) o (I ® T2 (t)).

Consider h € Lin(fi, gs) :={h:h =31, fi®g:, fi € Lp(X,du1); 9: € Lp(Y, dp2)}. Since
for y € Y we know that Y- | fi(-)T2(t)9i(y) € Lp(X,du1) a.e., and T1(¢) is a contraction
then

(T2 (t) @ Te@)RIE x iy = I(T1(t) @ T2(t)) D £i ® gillE xy =

i=1

= I e T@alEx|?,

1=1
n
<1 £ B@alixl? ,

i=1

and further, since for each £ € X it holds that 31, fi(z)gi(-) € Lp(X,dp2) a.e., and Ty
is a contraction, then, by Fubini’s theorem

N7 D fi®ailly xlyy = T2 > fi @ ailp v ll;
i=1 i=1

i=1

Since Lin(f;, ¢:) is dense in Ly(X x Y, du; ® dus), the operators (T1(t) ® T2(t)):>0 can be
extended by continuity to a contracting operator T(t), t > 0, on Lp(X x Y,du; ® dus).

Now we will prove the strong continuity of (T3 ® T2)¢>0. For h € Lin(f;,9:;) and t > 0
we have -

I(T2(5) @ T @)k — A5 < Y I T1(t)fi ® Ta(t)gs — figillp

=1

<Y T fi @ Ta(t)gs — £iTa(t)gi + fiTa(t)g: — figills

=1

< D AT@ s = £lE x 1 Te@gilll v + 1£ills x 1 T2(2)gi — gillb ).
i=1

Since (T1(¢)):>0 and (T2(t))s>0 are strongly continuous contraction semigroups on Ly, (X, du1)
and on L,(Y, dus) respectively, we can choose such § > 0, the same for alli =1,...,n
such that for 0 <t < §

1T 05 = Sl xlgily < o

€
1T2(0)g: — gilb I fillh x < on
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and thus

(T2 (2) ® To(t))h — h|E < % for 0<t<S§,

which gives is that (T3 (t) ® T2(t)):>0 is strongly continuous on Lin(f;, ;). Because of the
density of this set in L,(X x Y,du; ® dus), for f € Lp(X x Y,du; ® dus) there exists h
(let us take the same h as before) such that

€
If = hlE xxy < 3
Then for 0 < t < §, since T'(t) = T1(t) ® T2(t) on Lin(f;, gi)

IT@)f - £l = (T@)f = T(@®h) + (T(E) — Db — f+ A}
<NTOS = WIE+ ITE) - DAl +11h - flIF <e.

Thus, (T(t)):>0 is strongly continuous on L,(X X Y,du; ® dus). By Proposition 1.1.3
there exists a closed operator (C, D(C)) which generates this semigroup. We will show
that D; = D(A) ® D(B) C D(C) and C|, = C. Take h = i, fi ® gi, fi € D(4),
g€ D(B),i=1,...,n. Fort>0:

[ ()t (A-I-B)h“prY—'Z ([(—=— l)f /i —Afi g‘”prY

+ ”T1(t fz (TZ(t)gz

and choosing fore >0ad >0suchthat for0<t< é,t1=1,...,n,

Ty(t)fi — fs € t)gz
t

I ~ AR oy < 0 [ L Bl Il x

and .
1T2(8) fi = fill® x| Baillb y < o

we get
T(t)h—h
=5
and therefore D; ¢ D(C). Since the closure of (4, D(A)) and (B, D(B)) generates a
strongly continuous contraction semigroup on Ly(X,du1) and on Ly(X,dus), then, by
Proposition 1.1.3 T1(t) : D(A) — D(A), Tx(t) : D(B) — D(B) and thus T'(t) : D; — D;.
By Lemma 1.2.2 D; is dense in L,(X x Y,dp; ® duz) and therefore by Proposition 4.3.6
[J1] D; is a core for C, i.e. Dy C D(C) and C|p, = C. Then, by Theorem 4.1.40 [J1] C

and C generate the same semigroup, (T(t)):>0, and C =C. O

—~Ch|P xxy <€ for 0<t<$,

Remark 1.2.4. Under the conditions of Theorem 1.2.3 the closure of the operator (C, D(C))
is a generator of an L,-sub-Markovian semigroup if (A4, D(A)) and (B, D(B)) are.
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Proof. Consider h € L,(X x Y, du; ® duz), and a sequence (hn)n>o C Lp(X,du1) ®
L,(Y,dus), such that hy — hasn— 00, hy = Eﬁ(ln) fin ® gin. Since

m(n)
(T1(t) @ To(t)) hn(z,9) = Y Ti(t) fin(z) ® To(t)gin(y)
i=1
and for all 3,n

0<Ti(t)fin L1, 0L Tp(t)gin<1 ae if 0L fin,9in<1 ae,

then
0<(Ti(t) @ T2 (t))hn <1 a.e. (1.23)

By the Riesz theorem (see for example [B], Theorem 4.3) there exists a subsequence
(hni)k>0 of (hn)n>0 such that

(T1(t) ® T2(t)) hny — (Ta(t) ® T(t))h ae,
and therefore passing to the limit as ¥ — oo in
0 < (T1(t) ® T2 (1)) hny, <1,

we have, extending the operators (T1(t) ® T2(t)):>0 to (T'(t))t>0

i.e. the semigroup (T'(t)):>0 is sub-Markovian. O

Remark 1.2.5. The statements similar to Lemma 1.2.2 and Theorem 1.2.3 were proved
in the work of A.Krageloh, [Kr], for the Feller and strong Feller semigroups.

1.3 Some notions about pseudo-differential
operators

An operator p(z, D) defined on C§°(R™) is said to be a pseudo-differential operator with
symbol p(z, £) if it allows the representation

o@ D)f(e) = )™ | oz f(e)de, z e R (1.24)

In general it is not possible to find the domain of such operators in L, in terms of function
spaces. Later for our purposes we will consider such operators as perturbations of operators
(4, D(A)), which are the generators of L,-sub-Markovian semigroups. To do this we need
the operator p(z, D) to be A-bounded.
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Definition 1.3.1. Let (A4, D(A4)) and (@, D(Q)) be two linear operators on the Banach
space (X, | - |lx), such that D(A) C D(Q) and for some € € [0,1) and 8 = B(e) >0

1Qfllx <ellAfllx + Bllfllx (1.25)

for all f € D(A). Then the operator Q is called A-bounded and ¢ is called an A bound
for Q.

Remark 1.3.2. Let (—A, D(A)) be a generator of a strongly continuous contraction
semigroup on a Banach space (X, ||+ ||x). For 0 < & < 1 the operator (—A)® is A-bounded
and (1.25) holds for all 0 < ¢ < 1.

(For the proof see [J1], Proposition 4.3.25).

Adding an A-bounded operator to a generator (—A, D(4)) of an Ly-sub-Markovian
semigroup we again obtain a generator of an L,-sub-Markovian semigroup, see [J2], The-
orem 2.8.1:

Theorem 1.3.3. Let (—A, D(A)) be a pseudo-differential operator which generates a
sub-Markovian semigroup in Ly, 1 < p < oo. If an operator —p(z, D) is Lp-dissipative,
A-bounded, and if in addition (~A — p(z, D), D(A)) is an L,-Dirichlet operator, then
(-A —p(z, D), D(A)) is a generator of an Ly,-sub-Markovian semigroup.

In Chapter 2 we will give examples of such A-bounded operators, where the symbol

so (—A — p(z, D), D(A)) generates an L,-sub-Markovian semigroup if (—A, D(A)) does.
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Chapter 2

Bessel-type potential spaces

2.1 DBessel-type potential spaces on R"

We will start with 1-Bessel potential spaces on R™. For the following definitions see [J2]
and [FJS1]. ’

Definition 2.1.1. Let (Tt(p ))tZO; 1 £ p < oo, be an L,-sub-Markovian semigroup on
L,(R™ R). We define the gamma transform (Vr(p ))-,-20 by

The following theorem shows a connection between the gamma transform of the
strongly continuous contraction semigroup and its generator.

Theorem 2.1.2. Let (Tt(p ))tZO be an L,-sub-Markovian semigroup on L,(R"™;R) with
generator (A®), D(A®)). For all r > 0 and u € L,(R™ R) we have

ViPly = (I — AP))~7/2y,

In pa.rticﬁlar, each ,-(p ) is injective.

(See for the proof Theorem 3.1.9 [J2]).
Since the operators Vr(p ), r > 0, are injective, we can give

Definition 2.1.3. The Bessel-type potential spaces associated with (Tt(p))tzo are
defined by
Fr (R R) := V) (L, (R R)) (2.1)

with the norm
”u”Fr,p = ”v”Lp for u= VI‘(p)’U' (22)
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We are interested in the case when the Lp-sub-Markovian semigroup (Tt(p ))Qo is asso-
ciated with a continuous negative definite function 1 : R — R. Denote by (A®), D(A®)))
the generator of such a semigroup, and we know (see [J1]) that S(R") C D(A®). On
S(R™) the generator has the representation (see Example 4.1.13, [J1])

APu(z) = ~p(D)u(z) = ~m) ™ [ )i de (2.3)

Further, since the representations of A®® and A®) coincide on S(R™), for u € S(R™) we
find
V,.(P)u =(I—- A(p))—r/2u =(I—A®)T/2y = Vr(2)u,

and

V®uy(z) = (2m)"/? / = E(1+9(8)7T72a(E) de,
R™
which implies on S(R™) that
lull .., = (1 +%(D)"?ullz, = |FH(1 +9())"*d)| L, (2.4)

Consider the continuous negative definite function 3 : R®™ — R with the representation

where the Lévy measure v(dy) is such that

/ (9% A 1) w(dy) < oo.
R\ {0}

We call a continuous negative definite function with such a representation a continuous
negative definite function of type 1.
We will also consider continuous negative definite functions

x(€) = ¥(&) £ ibnt1 . (2.6)

where (&) is of type 1, £ € R™, £,41 € R. A continuous negative definite function with
the representation (2.6) we will call a continuous negative definite function of type
2.

Definition 2.1.4. Let ¢ : R® — R be a continuous negative definite function having the
representation (2.5). For s > 0 define the 1-Bessel potential space of order s as

P = B} (RY) i= Fy p(R") = (I = A®)~/2(L,(R))

(or D((1 — A)*/?) = H¥»*, A is an operator with the symbol %(¢), see [J2], p.279-281).
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We will understand ¥(D)u in the following sense: if (&), £ € R™, is a real continuous
negative definite function with the representation (2.5), then the function

vn(®) = [ (1= costye)aeio ) v(d),
R"\{0}
is from C°°(R™). Therefore F~1(yr(€)f(€)) is well defined for f € S(R), and

WD)f = FR©FE) + [ (ulz) - e~ ) v(dy).

B%(0)

Thus F~X((1+4())° f(€)) and F~1(3* (€) f(€)) are understood as (14+9(D))* f = F~1((1+
$(€))°£(€)) and (¥(D))* f = F~H(y°(€)f(£)), and it was proved that

lull gg.s = IFH(Q + %())**a()] 2, (2.7)
see [J2] or [FJS2].

Definition 2.1.5. Let 1 be of type 1, 1 < p < o0, and s < 0. The space Hg"s(Rn) is
defined as the closure of S(R™) with respect to the norm

lull gg.s = IF7H@ +9())**2()z,, s <0 (2.8)

5 < 00 (see Proposition 3.3.14, [J2]).

For the spaces H;,/”s, ¥ of type 1, the following interpolation theorem was proved (see
[J2], p.295, Theorem 3.3.38). :

Theorem 2.1.7. Let % : R®™ — R be a continuous negative definite function, 0 < pg,p1 <

00, 59,81 €ER, 0 < § < 1. For s = (1 — 8)so + s, ]1,7 = 1;0'9 —}—pi1 it follows that

(s Bl = 3
holds.

We will also be interested in some other spaces related to continuous negative definite
functions.

Definition 2.1.8. Denote by By, ,(R"), 1 < p < oo, s € R, the space
B}, =Bj,(R") ={uluc s, |1+ )", < oo} (2.9)

Here 9 : R™ — C is a continuous negative definite function.
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Similar to Theorem 2.1.7 we can prove

Theorem 2.1.9. Let ¢ : R® — C be a continuous negative definite function, 6 € [0, 1],
s=(1—6)s1 + 0sq, % = lp_—le+i 1 < p1,p2 £ 0. Then

P2’
[Blil.m’Bj:pz]g =By p- (2.10)

Before we give the proof of Theorem 2.1.9, we recall some definitions taken from [J2],
p.293-294, or [T2], §1.9.1.

Let G = {z € C; 0 < Rez < 1}. For two complex Banach spaces (X, || - ||x,) and
(X1, - l|x,) both embedded into some Hausdorff space X, set X := X, + X, equipped
with the norm |- || x := max(]|- || x,, || - || x,) Which is equivalent to the norm || ||x, +|| - || x;,
and which turns X into a Banach space. Denote by W(G, X) the space of all continuous
functions w : G — X with the following properties:

1) wl is analytic and sup, ¢z [w(z)]lx < oo;

2) w(iy) € Xo and w(1l +14y) € Xy, for y € R with continuous maps y — w(iy) and
y — w(l +1y). :

3) lwllw(e,x) = max(sup [|w(iy)||x, , sup lw(1 + )] x,) < co.

By the maximum principle (W(G, X), ||-|lwc,x)) is a Banach space. We call {Xo, X1}
an interpolation couple, and for any interpolation couple define its complex interpola-
tion space

"""" [Xo0; Xi]g == {we X; - there existsw € W(G, X) such that w(f) =u} - - - (2.11)

and on [Xo, X1]¢ we introduce the norm
lullix0,x1)6 == inf{[lwllw(c,x), we€ W(G,X) and w(f) =u} (2.12)
With this norm ([Xo, X1]s, || - ll[xo,X1]s) is @ Banach space too.

Lemma 2.1.10. Let {Xp, X1} be an interpolation couple and let 0 < § < 1. Then we
have
lullxo, 3130 = inf{(sup [lw (i)l x,)*~° (sup w(l + iy)llx, )%} (2.13)
y€R yeR

where the inf ranges over all w € W(G, X) such that w(8) =u. O

Proof of Theorem 2.1.9. Let X := B}, + Bj’ < S'(R"), and G = {z € C,

0 < Rez < 1}. Let u € By, By = [be‘ym,B;’:m]g, and choose any w € W(G, X) with
w(f) = u. We define on G

0u(2) = €= (1 + [9()]) TIFE Fe(w(2)).
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It is clear that g, (2) is analytic in G, continuous in G, and since sup, g |lw(z)|[x < oo
then g,,(2) is also bounded in G. For y € R we have

guliy) = e~ (1L+ [p(©) “FH (1 + [9(©) ) Fe(w(i))

and
1y(.!

G (1 + ) = eI (14 [(e)) * S (1 + (&) )/ 2Fe(w(1 + ).
Since (1 + |¢|)*| = |exp{ipIn(1 + |¥))}| £ 1, 4 € R, then

g (@)l < Millw(iv)lze:

and
190+ )llp, < Maflw(l+)lpy

Let v(§) = (1+[9(§)])*/2F¢(w(6)). Since Ly = [Lp,, Lo for § = L84+ L1 <py,pp <
00, 0 < @ < 1, we have, using Lemma 2.1.10 for the spaces L,, and Lm, that

lullzy , =N+ %) 2F @@y = floll, =

= 1-6
1+
9EW (G, s’(m")){( up [l9(&9)llp ) (suP lg(t + i)llp,) %}

9(0)—v

< Mll 9M2 (Sup ||w(2y)||15z’1 D e(SuP lw(1 + %3/)||15e=2 i
and applying again Lemma 2.1.10 now to the spaces By}, and By’ , we obtain
-8
lull s, , < M} ~°M3|lull 5,

Now we prove the converse imbedding. Let g be an arbitrary function from W (G, S'(R™)),
9(6) =v, 9(iy) € Lp, (R"), g(1 +iy) € Ly, (R™). Define

we(z) = == (1 4+ [(€)) F T Fe(9(2))-
We have for y € R
waliy) = €W~ (14 [(€)]) T (1 + [w(&)])**/*Fe(g(iy))

and e s
w(l +dy) = W= (1 4 jy(e)) F 2 (1 + [(€) ) Fe(g(L + i),
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and then, again applying Lemma 2.1.10 we have

- : . \1-#6 : . )8
lellss = inf X){(iléﬁ lw(@y)lipsy, ) (zgg lo(t +)llsg2, )7}
w(8)=u

< (sup lwg(@)ll g2, )~ (sup [lwg (1 + i) g2z )°
y€ER »P1 yeR Y.p2
< M3~ M7 (sup [l9(iy)llp: ) ~*(sup lg(L + i) 15, )°,
yER yER

and then
lull B, < M3 =8 M |jv]l, = M]|us, .

Thus be,p C By, which completes the proof. [J

Definition 2.1.11. Let x = x+(§) = ¥(&') + i€nt+1 or x = x=(§) = Y(€') — ifn41 be a
continuous negative definite function of type 2. We define

Il

HY*' = HY*'(R® x R) := HY*(R*) @ HY(R) ~, 520,

where Hy(R) = {f € Lp(R), f' € L,(R)} is a classical Sobolev space of order 1, and || - ||
is the graph norm || Af||,+| f|l, of the operator A with symbol symb(—A) = (&) £ién41.

To proceed further we quote some results from [J2] and [FJS1] to show that if 4 is
of type 1, then (—w(D),H;f"z) generates an L,-sub-Markovian semigroup. We can also

" state this for a function-of type 2, namely that- (—A, H:f'z'l); symb{A) = :x; generates an

L,-sub-Markovian semigroup.

Consider first the case when 1 is of type 1.

In Theorem 2.1.15 [FJS1] or Theorem 3.3.11.[J2] it was proved that for 1 < p < oo
D(A) = H¥?, and S(R™) is an operator core for (—A, HY?), symb(—A) = 9(¢).

Since for 9 : R® — C-a continuous negative definite function, the operator A, symb(—A)
= 1, satisfies on C§°(R")

(mAuw)(u—-17)P"1dz <0 (2.14)
Rn

and extends from C§°(R™) to D(A) with (2.14) (see Example 4.6.29, [J1]), it is a Dirichlet
operator on D(A) = H¥*2, and therefore it is dissipative on H¥? (see Propositions 4.6.4-
4.6.12, [J1]). In Corollary 3.3.13 [J2] it was proved that for ¢,s >0 and 1 < p < 00

(I+A)s/2 . Hz‘l’/),t+s —_ H;/),t
is bijective, continuous with continuous inverse. Then, the equation
(I+Ayu=f

u € H;;L"2, f € Ly, has a unique solution.
Summarizing the statements we listed, we deduce
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Theorem 2.1.12. Let 1 < p < o0, and consider the operator A, symb(—A) = ¢, ¥ is
of type 1. The operator (—A, H;,f"2) is a generator of a strongly continuous contraction
semigroup on L,(R™) which is sub-Markovian.

The next theorem which we need later on we have taken from [J2] (Theorem 3.3.18).

Theorem 2.1.13. For u € S(R™) and 1 < p < oo the estimates
Y(E @)l + lullp) < lull g < nUF @285 + lull) (2.15)

hold and by Lemma 2.2 (2.15) extends to all u € HY**.

Consider now the operators of type 2. For example, let symb(—A4) = ¥(£') + in+1-
Since 9(¢') is of type 1, then (—y(Dy ), H¥?) is a generator of an L,-sub-Markovian
semigroup.

Consider the operator _afdg on S(R). We can see, that ‘Edi is the conjugate operator

to % : for u,v € S(R™)
/uv'd:r=—/u’vd:r
R R

and then it is closable (see [G], Theorem II.2.6). Taking the closure of S(R) with respect
d . .
to the graph norm of — = when considered as a closable operator in L, we deduce that

function, _2% is a Dirichlet operator on C§°(R), and therefore it is a Dirichlet operator
on H,}, and we conclude, that it is dissipative on H;. Further, we can see, that

o0
flz) = / e Mgz —t)dt
0
is the solution to the equation

AM+f =g geLy(R)

where the equality is understood to hold a.e., and f € H;. Thus, all conditions of Hille-
Yosida theorem are satisfied, and therefore we have proved

Lemma 2.1.14. The operator (——adE,H;) generates a strongly continuous contraction
semigroup which is sub-Markovian.

Note that the main point in this lemma is that we have a precise knowledge of the
domain of the generator.

Take now the tensor product of spaces H¥'? and H}, H = HY2®H}, and consider the
operator —A on the closure of H with respect to the graph norm. Applying Theorem 1.2.3
to the operator (—A, HX*1) we obtain .
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Theorem 2.1.15. The operator (—A4, H;,C’Z’l) is the generator of an L,-sub-Markovian
semigroup.

The equivalence of the graph norm of —A and the norm

A= I+ A fllp = IFHQ+YENS) = fanallp = IF L+ 9(E) + inr) Do
= |F~'Rex(&)f +iF " Imx()fllp = [|flx21

follows from Theorem 3.1.25 [J2] for r =1:

Theorem 2.1.16. Let (—A, D(A)) be the generator of an L,-sub-Markovian semigroup,
and 0 < 7 < 1. Then for all u € D(A) we have

%(ll(—A)rUflp +llullp) < 17— A)7ullp < I(=A4) ullp + ull,.

Now we want to extend Definition 2.1.4 to the case when % is not only real.
Let (A, D(A)) be a generator of a strongly continuous contraction semigroup (7T3):>0
on the Banach space X. Then we can define its fractional powers:

a, 1 oo —a—

40 = 5 /0 Ty~ g)dt, ¢ € D(A), (2.16)
and 1 o

..................... (._A)—.&.=.1—,(7)./6. 5 hpdt,. p € X, 21T

where 0 < a < 1 (see [S], equations (5.84), (5.86) and [Y], equation IX.11.5).

Formulas (2.16) and (2.17) are called Balakrishnan’s formulas.

Consider the fractional power of —~Ax, symb(—Ax) = Y(¢') £ i€ns1 = x+ (&), where
% is of type 1. On S(R™) the operators (—A4)* have the representation

(A0 7@ = @y [ ) igun) fO k. 18)

or

(“AL)*f(€) = (') + ibns1)*F(6),

where { = (€, én+1) and z = (2', Tn41).
We need an additional assumption on %.

Assumption 2.1.17. Let 1 be a continuous negative definite function such that
Al. () = f(¢(€)), where f is a Bernstein function, and ¢, ¢(0) > 0, is a continuous
negative'deﬁnite function such that for all 4, 1 < 1 < n, ¢} exists and does not depend on
&, © # 7 (we will denote by g the derivative of function g(&i,.. ., &) with respect to &);
A2, , ,

sup Ii—jﬁ?——qﬁil <oo, Vk, k=1,...,n.

¢eRn ¢
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Such functions ¢ exist, for example, Assumption 2.1.17 is satisfied for v = f(1+ [¢]?),
where f is a Bernstein function.

Example 2.1.18. The continuous negative definite functions

(&) =1+ ¢, 0<p<2 (2.19)
Y(€) =ln(1+ 1 +¢2)P?), 0<pf<2 (2.20)
$(€) = 1+ €21+ (1 +]¢%)P?), 0<pB<1 (2.21)

satisfy Assumption 2.1.17 A2.

For the last example we refer to [FL]. For a continuous negative definite functions
(x+ (€))%, where x+(€) = ¥(€') £ i€n41, we will consider (x4)* -Bessel potential spaces,
H},Xila’t and HJ', where ® = Re(x+(£))*, 1 <p<oo,t €R.

We claim that the operators (—A+)®, symb(—A+) = x4, are isomorphisms between
H,I,Xi]&'t and HLXi[a:t—z'

For the proof we need the notion of a Fourier multiplier (see [J2], Definition 3.3.34, or
[T1], §5.1).

Definition 2.1.19. Let 1 < p,q < oco. We call a distribution m € S'(R"™) a Fourier
multiplier of type (p, q) if

............... ”m”Mpq : sup{”F—l(m‘ﬁ)”q, . O#wGS(Rn}< oo e (222) e

llell
The set of all Fourier multipliers of type (p, ¢) is denoted by My, 4.

In order to prove that a function is an L,-Fourier multiplier, we will check whether
the conditions of Lizorkin’s Fourier multiplier theorem (see [Lizl]) are satisfied:

Theorem 2.1.20. Let m € Lo, (R™) be a function such that

sup |(§-9)*m(£)] < c (2-23)
£ER™

for all « € Ng, aj € {0,1}, 5 =1,...,n,and (£-0)* = (£&.01)** - ... (€n0n)*". Then m
is an Lp-Fourier multiplier for 1 < p < oo.

Now we are ready to prove our result.

Theorem 2.1.21. Let x4+ (€) = ¥(¢') £ ibnt1, € = (€',€nt1) € R* L and ¢ : R - R is
a continuous negative definite function, which satisfies A1 and A2. Then the functions
e*2T8X+ are L,-Fourier multipliers for z € C, -1 < Imz < 1.
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Proof. We will consider x4+ = yx, the proof for y_ is similar. First, we prove that
€'®'8X js an L,-Fourier multiplier, 1 < p < 00.
Since

£iATEX i + i€n+l Y int1

X T T W) T R

we have to prove that Iy and Jo are Ly-Fourier multipliers. To do this let us check the
conditions of Theorem 2.1.20.
First consider Iy. Differentiating Iy with respect to £,41, we obtain

ol Ent1?

=1Io+iJo

= — =T
6§n+1 (¢2 + ‘5721+1)3/2 !
with
sup [nt1]1] < o0,
EGR"+1
and 51 " 32y
1 1 1
— =&, - + =1,
06 na (Y2 +€2,1)%% (2 +§121+1)5/2) 2
Analogously,
aJO — 1 _ 51’2).4-1 — Jl
O PHEL R
and we see, that
sup |[&n+1J1| < 0.
Eekn+l
Further,
oL _ Wl . 3w o

% WP WP+
Note, that since 9 satisfies A1 and A2, and since for a Bernstein function f(s) we have
(see [J1], Theorem 3.9.34)

]
1) < So6), >0, k20,
we obtain the estimates:

il = 17 (@) < ba| 252
voids |
g

[y 1| = 7" (¢)$105] < b (2.24)

.........

[0 1= 175 (9)¢105 - o4l < bkl%%ﬂl,
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where b;, i > 1, are some constants.
Therefore, since ¥(¢) > 0, £ € R**!, we obtain:

£19] §197
f;ﬂ‘:’gl [€1€n+1J2] < ag E:ﬂg’al {|_¢ | +3] & l} < oo,
and

aéy) g6t
£§£g1l§1§n+112|Salgesngal{f 5 | + 3] 5 |}<oo,

where a; is some constant.
To see the general rule, let us find the third derivatives of Iy and Jy. We obtain, that

oL _, {_ Vi1 L 3yu

86 P (W2 +82,,)%2 T (P2 + 824,52
6UYsYl + 92, 159y Vo1
WP+&.)7  WHe)7 T

and

dJ, Yoy + 95y 3yl

ot (W24 E2,1)%% (W2 +€2,,)%°
36n1 (Va1 + 45, 1582 Yy
TN

Wy

By A2 we have
£2624145

sup |€261€n41l3] < az sup | 7| < o0
gER™H (ERmH ¢

and

14
sup |&261€nt1Js| Sag sup |23 < oo,
{ER™H1 £CRn+1 o3

where a; is again some constant.
We see, that the derivatives g%]{ and %‘—g consist of the terms with the representation

(up to multipliers which may depend on &,41):

T
P + &) 7

r=1,2 and [<2r+1,

and the representation of the derivatives aéz and %6722 contains the terms

Y P (Y1, %5, ¥51)

Wt e,aem Thh3 and 1<l
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Here P(11,v5,%4%;) is a polynomial expression of the first degree by each variable: it
consists of the terms ;44 and v¥4; (with some coefficients, maybe dependent on &nt1)-
This leads to a proposition, that all terms of k-th derivatives 3—11 and 3—51 are of the form

D AT
(wz + §721+1)(1+2r)/2 ?

r=1,2...,k and l<2r+1, (2.25)

where Pe(¥], ..., %, .. .,w,(c'i).l) is a polynomial expression of the form

Pe(s oW B501) = 3 el ds) 900, (2.26)

L=k

where all the derivatives in ¥®), ... 1{2) are with respect to different variables, and in
%) i =1,..., s the derivatives in appear exactly once.

We will prove by induction that (2.25) holds for all k, 1 < k < n. For m = 1 we already
showed, that (2.25) holds. Suppose that (2.25) holds for m = k, and let us consider the
case m = k + 1. Differentiating (2.25) with respect to £x+1, we obtain

Pty
(¢2 + &121+1)(1-j—2'r)/2+1

W P+ Y (Pr)ieas
@2 + )07

(2.27)

+(1+2r)

(of course we skip differentiation of ¢! if [ = 0) Since %y 1 Px and (Py)},; again consists

“the terms of form (2.26), we see, that for m = K +1 our proposition is also true. Therefore

by induction we obtain that Fh and -‘3‘—111 are of form (2.25).
Having (2.25) with | < 2r+1 and with Pk calculated as (2.26), we see, that since

¢1---¢%

[Pe| <ec o

we come to the estimates (we denote by Ix41 = E—h and by Jg41 = %E—I:) for1<k<n:

sup €k .. &1én41lks1[ <00 (2.28)
¢ERn+1
and
sup €k .. Exéns1Tkt1] < 00 (2.29)
geRn+1
and thus
sup [k ... E16n180 ) L1678 <00, k=1,...,n. (2.30)

eemn-l-l

We may write B(k+ 1 n+161 88X as
k .
BHY 1€V = e MEXQ((arg x)', (arg X)”, - .., (arg x)®)),
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where Q(:,...,-) is a polynomial of arguments arg x®,i=1,...,k, with some complex
coefficients. Similarly,

oY) 1 EX = e¥isEXQy ((arg x)', (arg x)", ..., (arg )™, @), -1<a <1,
and

oEt) | 78X — P 2BXQy((arg 1), (arg X)”, .- -, (arg X)), 6), O €R,

where the polynomials Q; and @ are different from @ only in coefficients, which now
depend on « and 6 respectively. Note, that since —5 < argx < %, then the function
|e?27€X(€)] is bounded for all £ € R™.

Therefore, since (2.30) holds, then

sup [k - -§1€n+131(cl,c.f,11),n+1emargxl <00 (2.31)
§€Rn+1
and
sup |- . .§1£n+18,(c’f_f}l),n+1ee’“gxl < 00, (2.32)
Ee]Rﬂ.+1
hold for all kK = 1,...,n. It can be seen from the calculations that the order in which

we take the derivatives does not matter. We- considered the situation when the derivative
in &n4+1 appear in the begining, but it can be proved that the estimates will be the same
1 =1,...,n does not matter.

Therefore we have proved, that e*2™8X 0 < Imz < 1, Rez € R, is an L,-Fourier
multiplier. O

Recall that ® = Re(x+(£))*, 0 < a < 1, is again a continuous negative definite
function.

Theorem 2.1.22. Under the conditions of Theorem 2.1.21 the operator (—A+)* : Hg“ —
H®'=2 symb(—A+) = X+, is an isomorphism.

Proof. Consider x4+ = x, and denote by § = 6(§) = aargx(£). From the proof of
Theorem 2.1.21 (see (2.28)) we can see that sinf is an L,-Fourier multiplier. We will
prove that - is an Lp-Fourier multiplier too, which gives us that tan6 is an Lp-Fourier
multiplier, because for u € L,

15 (g FEDI, < el PGB €l < call 1

Note that for 0 < o < 1 we have |§(€)| = |aarg x(€)| < &F, and cos§(¢) > 0 for all
E c Rnt+1L
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We find that
( 1 )(k) —~( sinf 9,)(k—1)
!

cos0 k1T N5z " k2
_ 0165(cos® 6 — 2sinf cos b (k-2)
- ( cost @ k,...,3
Pr(01,05,. .., jc,...,G,Ef.)._’l,sinG,COSB)
- cos?k § ’

where Py is a polynomial (compare (2.26))

P60y, 0., 00 L sinfcos8) = Y clly,...,L)oM) .00,
Lt +ls=k

such that the coefficients c(y,...,1s) depend on 6 only as sin®é and cos’ 8, 1 < 4,5 < k,
and all the derivatives in §%1) ... 6%) are with respect to different variables.

Further, since § = 6(¢) = aargx({) = aarctan %, x{&) = (&) + i€pt1, for i =
1,...,n, (¥(') >0, & € R™ in view of Al)

0= o Y bna¥; _ _ abnni?
* (Y2 +&2.)12 42 (Y2 +€2,.1)V2’
.and for 1 = n.+ 1 we have . o

o
s = W2 + &)V
which gives that &6/(¢),i=1,...,n+ 1 is bounded for all £ € R™+1.
Therefore we conclude (see the proof of Theorem 2.1.21) that

k
o2 o6 () =
_ Pu(6,,65,...,0;,...,0%) | sinb, cosb)
=£esul!igx G- v
<c(a) Z sup |€1...6,00) ... 009 < oo,
bl =k EERH

ie. &)_ls? is an L, -Fourier multiplier.
Further, since

x*(§) = R(§)(1 + itan(8(¢))),
and R(0) # 0, then, by Theorem 2.1.13

IF7 () F(©) g2 < el FTHREDPR(L+ itan6) /)],
<l FH Rl < callfll g
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and, since x™® = R71(1 — itan6) cos? §

IF () f @Dl e < cal P~ (R/PR7I(1 — itan6) cos® 6)l,
< | FTHRED2 ) < coll Fll e,

which proves our theorem. 0O

Remark 2.1.23. Since cos(aargx) is a Fourier multiplier by Theorem 2.1.21, we can see,
that the spaces Hgczs and H, ]X " coincide, and thus (—A4)* : H|X| 't Hlx| 2 s a
continuous, bljecmve mappmg with continuous inverse.

Theorem 2.1.24. The operator (—(—Ax)*, HX?) is a generator of an L,-sub-Markovian
semigroup, symb(—A1) = X+.

Proof. From Theorems 2.1.22 and 2.1.16 we deduce, that the graph norm of (—A4)®
is equivalent to the norm | - ||z 2 and H}? is the domain of (—A4)®, and ~(—A+)* is a
Dirichlet operator (and so it is dissipative) on H "2,

We are going to use the following theorem, see [B], Theorem VIII.3.3:

Let E;, E, be two Banach spaces. If A € L(E}, E2) is invertible, and B € L(E,, E»)
is such that ||B|| < ||A~1||", then A + B is invertible (here L(Ej, E3) is the space of all
continuous linear operators from E; to Ej, and ||A|| means the norm of an operator A,

e [|Allg~E, = SUpP|lz|l=1 | Az 2,). . N
This theorem and Theorem 2.1.22 give us that since ( A)" is bijective from H32 to Ly,
then for A : |A\| < ||[(=A)=2||~! the operator A + (—A)* is invertible and therefore the
equation

Af+(-A)f=g
is uniquely solvable for any g € Ly, |A| < ||(=A4)~¢|~?
So, we have that Ao + (—A)* is invertible on H}2, |Xo| < [[(—A)~]|~! and then X €
p(—(—A)%*)-the resolvent set of —(—A)*. But then by Lemma 4.1.27 [J1] (0,00) C
o(—(—A)*), and then the equation

AMf+(-A)f=g

is uniquely solvable for all A > 0, g € Ly.
Thus, all_ conditions of Hille-Yosida theorem are satisfied, and the theorem is proved.

O

Remark 2.1.25. We can also see from Theorem 2.1.21 that if (') satisfies A1,A2, and
I 2 2
P(€') > (14 |¢/|?)P/?, then the function % is an L,-Fourier multiplier.
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From Theorem 2.1.21 we see that the spaces H,I,X|Q’t and Hf’t are equivalent, where
x(€) = P(&') + i€nt1, ¥ satisfies A1 and A2. In order to make our notation less awkward,
we will work with Hf't-spaces, having in mind that all the statements that are valid for

[-3
¢
Ht, are also true for HXI™E,

In the next step we will give a link between the spaces H;"z'l and Hgm. It is es-
sential that these spaces are the domains of generators of strongly continuous contraction
semigroups.

For — AL, symb(—Ay) = xa, being a generator of a strongly continuous contraction
semigroup, we can define (at least on S(R™*!) the complex powers (—A41)®, 6 € R, of
—Ay4 as a continuation of (2.16) to the the complex plane.

Considering the operator (—A)* on S(R™*!), we may calculate that

—(“AL)f(€) = (x(€)?f(€), €eR™,

so in this case (x4 (€))% is the symbol of (—A4)%®.
Our next step will be the following lemma.

Lemma 2.1.26. Let 9 be a continuous negative definite function which satisfies A1 and
A2. Then the operators (—A+)%, symb(—Ax) = x+ = ¥(¢') £ i€n+1, are bounded in
Ly(R™*1) for all § € R.

. Proof.. Again we.will show that the conditions of Theorem 2.1,20 are satisfied for
X = X+, the proof for x_ is similar.
Let Io = (¥(¢') + i€n+1)™. We see, that

oI ) . i6—
'5'5—(1) =i0(y +ibns1) MYy = 1,
oI s . i6—2 11 . . i6—
_3?; = i6(i0 — 1)(¥ + in11)" 210 +10( + ibns1) W = Do,
ol vnye . . i0—3 . . 10—
G2 = 0030 — 1)(18 — 2)(1 + i6n42) SRS + 6 + i)
({(36 — )wiyws + wasi } + ¥59y) + 304 + ibnr) 55 = I, (2.33)

6.[ — . 1 my

6’gk L= P+ i) elma, ., m)p{T)

(m) | (m) |

T Pimgdmy_q4eFmytlieadm_y44my+l T Vimpdmy g+ dmyeendmyp g+ 4my +1

(¥ + 1én1) ’

where the sum is taken over all [, 1 <[ <k, my +...+m; = k — 1, and the indexes j. .
such that in every term (™ .
Imi+mi_1+...+mi+lsaImi_1+...+my+1

. . . (ma)
Fmidtmi1ddtmy > -+ > Jmi1+...4mq +1, i the product I/)jmll-{-l,u-,jl ...

we have fm, 4mi_i+...4ma+1s >
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(mi) : (mu) ; all
- my Fmim1 e Amy 100 9 Imicitdma+l - ¥ JmyFmu—1Ama 4L 1 M tma 4
the indexes are different, and one of the indexes Jmi+1s Jmitma+ls - - 3 Jmite+ma+1 €Quals
k. Let us prove (2.33) by induction. For k = 1 it holds. Suppose (2.33) holds for k, and

let us see what we obtain in the case k£ + 1. Differentiating I = Q(‘;%;—l we obtain
Ol WYL 11Tk : i (m1)
= § le(l,my,..., e .
Ok+1 Y +ibns W+ i) et m MY -

] 1/)("11‘) ¢(ml)

’
Cmimy 4 Amy Lo dmy 4 4mydl T jml-}-ml_l+..,+m1+11---)jm1_1+u.+m1+11’[)k+1

(¥ + i&ngr) i1
+ @+ ) D el )W,

R ) )i
Jmidmi_q14.+mi+tendm,_q+...4my+1 Jmi+mi_1+-Ami+liadmp_q 4. dmy+1 k+1

(d) + Z§n+1)l

One may notice, that the right-hand side is of the same form as (3.11). Therefore (3.11)

is true.
Further,

8Ik — (1/" + i£n+1)i0'[k . 0 (ml)
A 4 D ifn + (W + €)Y el ma, ) (=il

w(mi) w(m;O
Jmidmi_y+oHmi+leadmg g+ Amy+1 T T I mydmy g dmy e dmyp g+ my 1

(¢ + i€py1)tH?

Thus, in view of (2.24) and A2, we have that

§1...§;;:i’1...¢§€ <

sup (£1. §k§n+la ' <c sup
geRn+1 €n+1 geRn+1

for all k, 1 < k < n, and thus (x(£))* is an L,-Fourier multiplier for all § € R, which
leads to the estimate :

I(=A)*Fllp = IF () FONl» < cllfllp- O

Note that for an operator —A being a generator of a strongly continuous contraction
semigroup the operator (—A)?*, 0 < Rez < 1 is an analytic function of 2. To show
this, consider again the representation of (—A)* via Balakrishnan’s formula (2.16). From
Lemma 2.1.26 (—A)%® is well defined and bounded in L,(R™*!), then we may extend
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(—A)* to the strip G = {z: 0 < Rez < 1} in the following way:

Carfe =g [ P -

A\l+z
_ ® L (D-DiE) , _
e /; A A aX

1 *° _zln)\(TA_I)f(x) —
P(~z>/o ’ x0T

- e @ - Di@)au,

and we can see that (—A)? is a bilateral Laplace transform (see [DS], VIII.2.1, p.642) in
u of (Tew — I) f(z). Since (T3):>0 is a strongly continuous contraction semigroup, then for
f € D(A) the latter function belongs to Li°°(R):

/l(Teu—I z)| du = / IT—A}i(—)/\iE)—M/\ for all —oo < a,b < 00.

Therefore, (—A)? is an analytic function in G as the Laplace transform of an L{°°-function
(see [DS]).
Later we will need the analyticity of (—A)?, —1 < Rez < 0, which follows, since the
operator-valued function (—A4)*~!, 0 < Rez < 1, is analytic, and —1 < Re (1 — z) < 0.

© Let "x satisfy the conditions of Lemima 2.1.26, and suppose we have a‘theorem such -as:

Theorem 2.1.27. Let D(A) be the domain of the operator —A, symb(—A4) = x(§) =
Y(€') + i€ni1, Y satisfies A1 and A2, and 0 < a < 1. Then

[D((~=4)%), D((=A)"a = [Lp, HY*']a = D((=4)*).

(This theorem is a modification of Theorem 1.15.3 [T2], see also [Seg]).
Then, since D((—A)*) = H}?, R(¢) = Re(x(£))™, we obtain the following relation
between HX>! and HI2:
®,2
(Lp, HY®Yo = HY?.

Proof of Theorem 2.1.27 Let u € Ho = [Lp, H¥*1,, X = Ly + HX?! and the
space W (G, X) as we defined before, in particular we have G = {z: 0 < Rez < 1}. Define
the function g(z) = e(*=®*(—A)*=*f for f € D(A) = HX)*1, Note D(A) is dense in
D((—A)®). First we check that g(z) belongs to W (G, X).

1) 9(2) is analytic (since (—A)* is) and sup, .z ||9(2)l|x < oo (because f € D(A));

2) For f € D(A) the inequalities

lgw)llp = =" (—A) (= 4)* fllp < ell(—4)* fllp < o3
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(1 + i)l zreain = (€0 (=A)"H(=A)* 7 fll gree2a
< all(=A4) fllaxea < coll(=A)* fllp < 00

hold, and g(iy) € Ly, g(1 +iy) € H*>1
Then by the definition of the norm in W(G, X)

lgllw(c,x) = max{sup [lg(s)llp, sup lg(1 + &) gx2.1 }
y€R yER
< csl (=A)* fllp-
Therefore, by the definition of the norm in the interpolation space (see (2.12))
1 llao < Nlgllwe,x)

and arrive at

1 flle < esll(=A)*fllp-
For the proof of the inverse inequality choose go(2z) = ela=a)’? (—A)*w(z), w(a) = u.
Clearly, go () = (—A)*u € Ly, and applying Lemma 2.1.10 to the space L, (see also [J2],
equation (3.218)), we obtain
[(=A)*ull, = inf{(Sl;P llg(iy)llp)l_a(sgp llg(1 +i)ll»)*}
< (sup ll9.(i)ll)* % (sup llgw (1 + i)ll5)} .
y

< c(sup [lw(iy)llp) "~ (sup [lw (1 + iy) || gx22)
v Yy
and taking inf over all w such that w(a) = u we obtain

I(=A)%ullp < cllull#

which proves our theorem. [

2.2 Bessel-type potential spaces on Rf,

Now we turn to the half-spaces.

Definition 2.2.1. Let 9 be of type 1 or 2. We define
H;b,’i={fzag€H;ﬁ’s, f=g,R3+}

with the norm

1 fllw,s,+ = I fll,s,04 = v }nf l91l,5,p5
' 9€H,", f=glag,
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and

flﬁj ={f:fe€ H}","’s, supp f C RG,}
with the same norm as on H;”'s.
Similarly we can define the spaces H;ﬁ ** and ﬁ;ﬁ s,

Remark 2.2.2. The space fI;’,b, ¥ is a closed subspace of H;/” t. Indeed, consider a Cauchy
sequence (frn)n>1, fn € flgj 7. For such a sequence there exists a function f € I?;f v such
that f, — f as n — oco. Therefore, by Riesz’ lemma, there exists a subsequence (fy(k))i>1
of (fn)n>1, such that f,k) — f a.e. as k — oo. Suppose that there exists D C Rj_,
A (D) > 0 (where A\(®) is the n-dimensional Lebesgue measure) such that f # 0 a.e. in
D. Then there exists at least one fy,(xy) such that f,k,) # 0a.e. on D' C D, 2™ (D) > 0,
which is a contradiction to that fn,) € I;r;.f v. Therefore, supp f C Rf, too, and thus
IQ';;{: 'y is closed.

For the next definition we refer to [DS], I.11, p.38, and I1.4.21, Ip‘72, or [Zhu], 1.1.8.

Definition 2.2.3. Let X be a Banach space, and B its closed subspace. The factor space
X/B is the set of all sets of the form z + B, z € X. It is a Banach space with the norm

lllz+ Blll = inf |lz + 2||x.

‘Remark 2.2.4. Since FI;ﬁ ** is closed, we can take the-factor-space of H;f"" with respect

to I?;/j ** and this factor-space consists of sets f + I;T;/j ', and

f+HY|| = inf ||f+hlg,,,
I pel] hof, I+ hllay...

) 2t

and we can see, that the norm ||| - ||| is equivalent to the norm of the function f in H;,l’, "
and therefore _
HY? = HY*/HY®, seR. (2.34)

Our next aim is to prove the lifting property of the operator (—A4 )%, symb(—A4) =
X+ in H;R, :t

Theorem 2.2.5. Let —o0 <t < 00,1 < p < 0o. Then
(—A4)®  Hob — B2
isomorphically, where —A_ is an operator with the symbol x4.

Proof. We will do similarly to Theorem 2.10.3 [T2]. Thanks to Theorem 2.1.22 we
know that (—A4)* HM* — H¥*=2, What we need to know is that if f € C§°(R"™*!) with
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supp f C ]jo_‘ , then supp(—A4)*f C Rgf. For this we use the Paley-Wiener theorem
(see [Y], p.226-229).

Let g € C§°(R) be such that supp g € (—o0,¢) for some € > 0. Then we derive the
estimate for the Fourier-Laplace transform §(z) of g, where z = £ + in:

0+ 000 = | [ o= (<817 Vo(a) de

- [ oo oy ad -
< / (~)2)Vg(z)| dz

<C ,Ne"'E

6

for all N € N and some constant Cg n.
Consider

F oM (irr +9(E)F@) = [ [ e mistons iy 4 (€)% F(€) s d'

Since the function iz + ¥(¢’), z € C, has a root zp : Rezg = 0, Imzy = ¢(¢') > 0,
we extend (see [TJ, §3.1) the function (iz + %(¢'))*f(¢’, z) to the lower half-plane of C.
Consider the rectangle {—k < Rez < k, —N < Im 2z < 0}, where k, N < 0. Since in view
“of (2:35) for f € CS(R™*1), supp f-C R™ x-(—~00;¢€); . <

L+ (&) +12)VF (€, 2)] < Cpnee™

or
Cy,N,e€™

TEATS @) + ]

holds for some constant Cf n, (uniformly in ¢’, because we can make N large, and the
growth in £’ in the denominator will “kill” the grouth in ¢’ in the nominator).

The integrals along {Rez = —k, Im z from —N to 0} and {Rez = k, Im z from 0 to
—N} tend to 0 as k — 0o. Indeed, integrating along {Rez = —k, Im 2z from —N to 0} we
obtain

(2.36)

0
l / i@ &) =tkmnti=at ik _ o 4 (e f (€, —k + i) dT
-N

0 2 N \2ye/2
(E—In+1)7' (k + (1/)(6 ) T) )
< Gume [ & e s T

and the right-hand side tends to 0 as ¥ — oo by the Lebesgue’s dominated convergence
theorem.
For the integral along {Rez = k, Imz from 0 to —N} the estimate is similar.
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Therefore in view of the Cauchy theorem, we obtain

| [ e sy o s
—iN

+k )
= Jlim iz 4 y(€)" F(€',7) dz
k—oo J_iN—k

—iN+oo o .
= [ ey () e 2) d

—iN—o00

— / ei(mlvfl)+iz“+lT—Nz"+1 (1’7_ + N+ w'(é-l))af(éd, r— ’LN) dr.
—00
In view of (2.36) we have for some large N and a constant Cy n,e

(@ €T T=Nons1 (7 4 N 4 4p(¢"))* (€, 7 — iN)

< CranaeCmmN (12 4 (N 4 4)2)072
= T a e T 07 NN

and thus by the Lebesgue’s donimated convergence theorem we get
00 . ’ ’ . -~
/ @) FiEn 1z (15 4 y(2i))* f (¢, 2)dz = 0 as N — .
Thus, if f € C$°(R™*1) and supp f C R™ x (—oo, varepsilon) theﬁ
F7 (a1 + (€N F () 2ni1) =0, (2.37)

and letting € — 0 we obtain (2.37) for f € C{,’°(R”+1), supp f € R™ x (00,0]. By the
density agruments

supp F~*((in1 + $(€))*F(€)) (', 2n41) C R* x [0, 00)
forall fe A3 O
From Theorem 2.2.5 we immediately obtain
Theorem 2.2.6. Let —0co < t < 400, 1 < p < 0o. Then
(—A_)  Hyyt — HB? (2.38)
isomorphically, where —A_ is an operator with the symbol x_.

Proof. First, notice that since arg x4+ = —arg x—, we have

R ¢ _ rrRe(x_)%t _ 1Rt
Hpe(x+) _Hpe(x) —Hp .
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where $pr(-) is -

Similarly to the proof of Theorem 2.2.5 we can prove that
(~A_)*: ARt B2

In this case we must go to the upper half-plane of C, and take functions f € C§°(R™*1)
with supports in R™ x (—¢, +00). Since by Remark 2.2.2 it holds that Hg*'t = H;ﬁ’f EBH:F_”’,
it follows that we have (2.38). O

Next we prove some density results and embedding theorems. In the rest of this
Chapter we assume that all the spaces are defined on R™ or on the half-spaces Ry, or

n
0—-
Let 9 be of type 1 and
1+9(6) 2 co(1+ €)™, 0<ro<1 (2.39)

In Lemma 3.3.31 and the proof of Corollary 3.3.34 [J2] it was stated that

1+ 32 . t+n
(1+¢R(.))s/2€Mp,q if s > ~

(1+ Yn()*/?
T+ D)7

,t>0,

EMy, ift>s+n.

vr(©) = [ (1= cos(ut)xam () (240)
R\ {0}

and the norms ||ully,s and |[ul|y,r,s = ||(id +¥r(D))*/?ull, are equivalent (see [J2], p.281-

282). For the next theorem see [J2], Theorem 3.3.28.

Theorem 2.2.7. Let 91,17 be of type 1. Further let s,7 € Rand 1 < p,q < oo. Then
the continuous embedding
H;h,s PN Hg””’

holds if and only if m = (1 + 12)"/2(1 4+ 91)~%/2 € Mp,.

Using this theorem we can prove (see also Lemma. 3.3.31 and Corollary 3.3.34 [J2])

| Theorem 2.2.8. Let t,s > 0 and % be of type 1. Then

ST Y, wd HY oL

ifs> t;,*;”.
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Proof. The first embedding follows from the.definition of the space sz;’,b’ 't and The-
orem 2.2.7, since the operator of the embedding (id) does not change the support of a
function.

From Theorem 2.2.7 we have

t+n

lullyze < cllullg,e, s> ===, (2.41)

Consider u as an extension of an element of Hﬁ 'y (or H} ) to R™. Taking in (2.41) inf

over all such extensions, we obtain the statement for H;f 7 and Hztr. 4 O

Note that if ¢ satisfies assumptions A1 and A2, then the statement of Theorem 2.2.8
holds if
(1 +9(€)*? > 1+ 1€))/2,

see the proof of Theorem 2.1.21.
For f € H, H is a subspace of H},, t> %, define by rest:f the operator

rest:f = {f(2’,0), H

af(z',0) 95l f(z',0)
o

" h 3:1:2_%]—

where [z]™ denotes the largest integer, less then z. From Theorem 2.2.8 we can derive

-another-embedding theorem

Theorem 2.2.9. Let 1 < p < o0, 9 is of type 1 and satisfies (2.39), s > g%%ﬁ,
k € N. Then

Hy o C&(REy) and HpY o CE(RE,)
where CE(RE,) = {f : f € CE(R},), restf = 0}, CE(RZ,) = CE (R™)|
t< srg—n.

n
R3+,k+p <

Proof. From Theorem 2.2.8 we know that H}» — Hf, and Ay} — H:, for

s> t;.';n. Since H}, , — Ck(Rp,), t > k+ %, which follows from Theorem 4.6.2 [T2],

we have H;f,i — CE (R2,) for s > (k+mp+n +;.f+n.

Consider now I:I;,’j ’_f_ Let t not be equal to 1—17- + k, where k is an integer. Then by
Theorems 2.9.3.a and 2.10.3.a [T2]

~ o
H;’+=H;’+={f:f€H;,,+, rest.f =0}
which gives us the second statement of the Theorem. [J

. o : P,t frst
Using Theorem 2.2.8 it is easy to find dense subsets in H;f and HJ",.
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Theorem 2.2.10. a) The set C§°(Rg, ) = C’S"(R”)IW is dense in H;p,’_i for all s > 0.
04

b) The set CR%Y) = {f : f € C§°(R"),supp f C Rf, } is dense in H;fj’_i for all s > 0.

Proof. a) From Lemma 2.1.6 we have that C§°(R™) is dense in HY*. Let f € HY*.
Then given € > 0 there exists po € C§°(R™) such that ||f — @o|ly,s < €. Define g = fan ,

0+
w1 = goolmn . Then ||g—¢1ly,s,+ < | —¢olly,s < €, which shows the density of C§°(RE,
04

in H;,/j’j. _

b) The proof follows from Theorem 2.2.8 and Corollary 2.10.3/1 [T2], in which it was
proved that C§°(R?) is dense in I-IT:,’ + O

Denote by L(A, B) the space of continuous linear operators from A to B, where A and

B are normed vector spaces.
For the next definition see [T2], §1.2.4.

Definition 2.2.11. Let A and B be two complex Banach spaces. The operator R €
L(A, B) is called a retraction, if there exists an operator S € L(B, A) such that

RS =1 (2.42)
An operator S such that (2.42) holds is called a coretraction which corresponds to R.

Now we want to prove the existence of a retraction and a coretraction in the spaces
TR, s
Hp’+-

Theorem 2.2.12. Let 1 < pl< tA)o,.s e R. Then for all s there exists a coretraction from

I:Ig?i to Hf’”, and for all s, |s| < 2]V there exists a retraction from Hg‘” to I?sz.
Before we prove this theorem we recall Theorem 2.10.4/2 proved in [T2].
Theorem 2.2.13. Let 1 < p < 00, —00 < § < co. Then the mapping

>
Sf= f’ Z’I‘I._O
0 z,<0

is the coretraction from ﬁ;, + to Hy which corresponds to the retraction R, which is the
extension of an operator R to a continuous operator from Hj to fI;’ 4+ |8| < N, where

) N+1
Rep(z) = x4 (2) () — D aje(a’; —Ajzn)).
j=1

Here ¢ € C§°(R™), x4+ is the characteristic function of Rf,, 0 < A\; < -+ < Ang1 < 00
and the coefficients a; are such that

ok N+1 k
— (', z ’ = a;j——p(@', -z
63:2(;7( ] ‘n) Zn=0 ; Jax580( ’ '] n) Zn=0
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We also refer to Theorem 2.10.3.a [T2] in which it was proved that
Jof = F~Y(izn + (1 +[2')1/%)°f)

is the isomorphic mapping from ﬁ; 4 to I-:T;,’, g

Proof of Theorem 2.2.12. From Theorem 2.1.22 we can derive, applying (—A4, )**
N times, that (—A4)*N: H}N — L, isomorphically, and then, from Theorem 2.2.5
we have, that (—A44)*V: ﬁgffN — L, isomorphically. Then, using Theorem 2.2.13 and
Theorem 2.10.3.a [T2] we can construct the diagrams

(—=Ap)eN ot
H;,/”zN — L, H;
lRo l R
Fp 2N (—Ag)"N s 7
Hp1+ Lp’+ o H;)+

and

o (—Ay)TeN J, .
HY? L, H:

T T

aN -1
p2N (—A4) Js 3,
Hy W ———— Lpy —— Hj,

-and without loss of generality we.can put. s = 2N .in the definitionof Js. . . . =
Since all the operators are isomorphisms, Sp = (—A4+)"*NJon S Ty (—A4+ ) is the
coretraction from ﬁgffN to H,{R’ZN which corresponds to the retraction
Ry = (—A4)"*NJonRJ;n(—A4)*N. The same is true for the spaces ﬁ;f’ij and
HP=2N_ Then, after applying Theorem 1.2.4 [T2] we obtain that RoSo = I, or that
So and Ry are the coretraction and the retraction for the spaces flsz and H;?”, |s| < 2N.
]

8

The interpolation theorem for the spaces fI;f 'y follows after applying Theorem 1.17.1/1
[T2]:

Theorem 2.2.14. Let {Ag, A;} be an interpolation couple, and B is a complement sub-
space of Ag + Az, and the projection to B is from L({Ao, A1}, {Ao, A1}). Let F be an
arbitrary interpolation functor. Then ({Ao N B, A; N B}) is also an interpolation couple
and

F({Ao NB,AI N B}) = F({Ao, A1}) N B.
(See [T2] for the definition of the complement subspace).

Then, if we take Ay = Hgg’“, A = Hgi’sl, B={f€Ay+ A1, suppf C Ri“} and
since for finite s the restriction to B is a retraction, we have
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Theorem 2.2.15. Let 1 < pg,p1 < 00, —00 < 81,89 < 00, 0 < 6 < 1, % = lp—OG + 7791-,
s =(1—6)so+60s1. Then
FR.s0 7R,s17. TR,
[Hpo,s-g’Hm,sﬁi]e = Hp,:'

Remark 2.2.16. Since the space ijf is the factor space of Hf’s with respect to ﬁff: )

then for 1 < pg, p1 < 00, —00 < 81,80 < 00,0 <8 < 1,%=1p_—06+£—1,3=(1—9)80+981,
we have

R,s0 R,811  _ R,s
[Hpo,+’ Hp1,+]9 =H,x.

The proof follows from the theorem below, taken from [T2] (see Theorem 1.17.2):

Theorem 2.2.17. Let {Aq, A1} be an interpolation couple, and C' be complemented
subspace of A; + Az, and @ is a projection on C such that Q € L({Ao, A1}, {Ao, 41})-
Further, let F be an arbitrary interpolating functor. Then {Ag/AoN C, A;/A1NC}isn
interpolation couple as well, and

F({Ao/AoNC, A1/A1C}) = F({Ao, A1})/(F({Ao, A1}) NC).
We only need to put Ag = Hﬂg’”, A = Hfl’s‘, C = {f € Ao+ Ay, supp f CR}*'}.

Theorem 2.2.18. For all s, —00 < s < 400, 1 < p < 00, ¥ is of type 1, the restriction
from H}* to Hif’_ﬁ is a retraction and for all NV there exists a coretraction which does not

_depend on p and s, |s] < N.

Proof. The proof of this theorem is a modification of the proof of Theorem 2.2.12 by
taking the coretraction S} '

f! zn Z 0
Sif = N+1 /
2 =1 4 f(Z'5=AiTn), Ta <0

instead of S, S) corresponds to the retraction R; -the restriction to the half-space Rf, , and
by applying the operators I, f = F~1((1 + |¢/|?)}/? — i¢,)* f) and (—A_)** to construct
the retraction and coretraction between spaces, Hﬁf and Hf”. O

In the end of this section we give another consequence of Theorem 2.1.21.
Let 9 be a continuous negative definite function. By the same argument as in the
proof of Theorem 2.1.21 we can prove (if A1 and A2 hold for ), that

_Y¢) +a
is a Fourier multiplier, since
sup |&;...&0F M(£)| < oo. (2.44)

£ER
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Moreover, for a < b the function & — M (&) is again a continuous negative definite function
(see [J1], Corollary 3.6.14).

Similarly, the function
Yr(§) +a (2.45)
P(€) +b
where ¢* is another continuous negative definite function which also satisfies A1 and A2
as well as

Mi(§) =

e <P < e, (2.46)
is an L, -multiplier. Indeed, we can calculate (as we did in the proof of Theorem 2.1.21)
that (Ml),(ck)ln 41 consists of the terms of the form:

* * *(l l
B(¢1(1)> v ‘7¢l (1)7 e ~,¢z,,(,,),1>¢'1, © ')wllv v ')wl(,.)..,l)

, 0<i<r<m,
(¥ +b)r

where

*(1 * *(l 1
PV ®, O e )
= Y el b))l (),

Lt o=l

Since both 1) and y* satisfy Al and A2, and (2.46) holds, we find

Py
ce —_— <
5Seun£1 '51 §1€n+1 Groyl <%

forall0 <l <r<n+1,ie M isan L, -Fourier multiplier. We obtained .

Corollary 2.2.19. Let 9; and 12 be two continuous negative definite functions satisfying
A1l and A2, and such that

0<C§i+¢1

<D < o0.
2

Then H;fl’s = H;b” for —c0 <8< 00,1l <p<oo.
Proof. Clearly, from A1l and A2 the function

1+
149’

is n times differentiable, and the Corollary follows from the results above. [
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Chapter 3

Some generators of
Ly-sub-Markovian semigroups

3.1 Generators of L,-sub-Markovian
semigroups

Now we can formulate results similar to Theorem 2.1.24 for the half-plane. Consider the

" operator —Ay with the symbol x4 (£) =9¥(£')+ t€n+1; where 9 is of type 1 and satisfies -

Al and A2. By Theorem 2.1.12 we have that (—¢(D,), HY'?) is the generator of an Ly~
sub-Markovian semigroup. Further, (-a%, H ) is closed as well as (—%, ITIZ}’ +), where

A, = POI},,_F =Cqy Illzc3 (R4+) (see Theorem 2.9.8 [T2] for the definition of I?I;’+ and

Theorerrj 2.10.3.b [T2] for the proof that if s # n + Jl? then ITI;’_{_(R") = Hj . (R")). The
spaces H} , and H | are dense in Ly(R4) (see the proof of Theorem 2.2.10) and since
_Ed?: is a Dirichlet operator on H; (see the proof of Lemma 2.1.14), it is also a Dirichlet
operator on H} . and on I-I;’ 4

We can solve the equation
u+u =f

uniquely for any A > 0 and f € Ly(Ro4+) with Neumann or Dirichlet boundary condi-
tions (we may take Neumann or Dirichlet conditions when u. € H;, + and zero Dirichlet
conditions when u € I;T;, +» because for any u € I?;’ + u(0) =0).

Therefore, by the Hille-Yosida theorem, (_Edi’ H} ) and (_EdE’ ﬁ;’ 4) are the gener-
ators of Lp-sub-Markovian semigroups. .

In the following assume that

P(E) = 1+ [¢7)°
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for some 6 > 0.
Applying Remark 1.2.4 we have

Theorem 3.1.1. The operators (—A+,HI’,‘,’+2_’1) and (—A+,fll’f’f’l) are generators of L,-
sub-Markovian semigroups (Tt(l))tzo and (Tt(z))tzo respectively. In addition we find

f@' =y, Znp —tOWL(Y) dy
Tt(l)f(x)z R™ ( : (;:r)%) ) 1{1n+12t}(x)
3.1
F& — ¢, OWanin () dy' | (3.1)
+ - n)? {2ns1<t} (T)
e F& o nss ~ W) dy
T -y ,Tpe1 —

7 f(z) = Vo lntl 20 02 ) o2} (@) (3.2)

where W, = F~1(e=%€")%) exists as the function 1 satisfies Al and A2, and f(z', Tn4+1) =
0 for zp4+1 < 01in (3.2).

Proof. First we show that H;‘y’f_’I and I;T;’_,Z_’l are the domains of A,, i.e. that
fI-lla II-1la

HY?@H),  =HYMand HY?e@H,, ~ =HXP
Since
HY?@H!, ={f:fe H*®H}, suppfCRy{'},
‘then

———=—la — 'l ~
HY*@HL, " ={f:feHY*®HL , suppfCRy}'}=HY!
and analogously since
HY?@H} ={f: thereexists g€ HY?®H,, g|}R3j:1 = f},

then

. ‘A
s I

HY?® Hj, ={f: thereexists ge HY?® HI glleI‘ =f}= Hz’f,’_f_’l.
By Remark 1.2.4 we obtain that (—A4+, HX?") and (—A+,}~II’,‘,’_|2_’1) are generators of L,-
sub-Markovian semigroups. To find these semigroups, we will do the following. Consider

the equation
(A +44)f(z) = ga), @R (3.3)

In the following calculations denote by ‘§(€,7n) the function Lq,,, nFr—e (9(2', Tny1)),
where Lz, ., is the Laplace transform, F,/_.¢ the Fourier transform, and denote §(¢’,0) =

Ffv'—*f' (g(at', 0)), g(él’ m'Il+1) = FI'—'f’ (g("r/, x'n+1))'
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Taking the Fourier transform Fy_,¢ of the left-hand part of (3.3),

Fz’—'f’ ((A + A+)f) (6,7 xn+1)

=) [ D[k (D)) + g & i) 0
0

f(gl’ Tnt1),
n+l

= )‘f(fla $n+1) + w(gl)f(gl7$n+1) + oz

and then the Laplace transform L, _n,

L-Tn+l—“'7FT'—'f' (()‘ + A+)f) (g,v :L"n.+1)
= / e~ MFn+1 Fz’-—»f’ (()\ -+ A+)f) (5’, $n+1) d$n+1
0

=0+ww»A 50 (€ 2 ) dene

* —NTn41 6 £l
+-/0 e~ MTnt __8a:n+1 F& Zpt1)dTnsr
= (A + (&) +n)f(&n) - f(€,0),
we finally derive that
A +9(E) +n)f(&m) — F(€,0) = a(&,n),
or -

7 _ ﬁ(f,n)""f(f',o)
f&mn) = OEOE (3.4)

is the L, nFz _¢-transform of the solution to (3.3) with some boundary conditions.
Consider the operator '

' — 4y, Ty — OWL(Y') dy
Tt(l)g(x)z/mn g(z' —y n(;r)%) +(y') yl{let}(x)

+ / 9(z' =y, )Wy, ., (v) dy’
n (27'(')%

1{zn+1 <t}(x)

where g € L,(R3 ).

It is bounded in L,(R3F"). Indeed, since W;(y') = F~1(e~*¥«)) is an L,-multiplier,
then Tt(l)g(~, Tn+1) € Ly(R™) for g € L,(RGF'). Further, the first term in the representa--
tion of Tt(l)g(:c’ ,+) belongs to L,(Roy) since g(z’,-) does, and the second is bounded and
with finite support with respect to z,41.

Let us do the following. Let S(R3{!) = S(R™*!)

. If we show that g € S(R3F)
0+ .
the resolvent

R)\g=/ e MM g(z) dt
0
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leads to (3.4), then by density of S(R3}?) in L,(R}{') and since A is an isomorptism
between HX®! and L,(R™*?), we obtain that (Tf) >0 defined on L,(R3H!) is a semigroup
generated by —Ay.

We may rewrite Tt(l) g(x) as

TMg(z) = (2m) /2 /R e E) (58 iy — )1[0,20,0) (E)

+ .@(511 0)1[2:"+1,00) (t)} d§I

Since

e M= E (G0t — D)1 j0zmen) (8) + G(E 0) 1oy ,00) (E)} dE”.

belongs to L;(R™) w.r.t. £, and to L1(0,00) w.r.t. t, then we can apply Fubini theorem
and obtain

o0
Lt—»ATt(l)g = (27r)-n/2/ /0 eI )—M{g(gl’xrwl - t)1[0,$n+1)(t)

+ g(flv 0)1[1n+1 ,00) (t)} dtd&,
= FoL [ Lema{e ™ E{G(¢ Tnt1 = ) 10,2ni2) () + 5(E', 0) [z 00 (D) }}):

But ‘.Fx'.—'ffFﬁ_'ix’ = I, and we come to

LG+1—>an’—>€’Lt—')\(Tt(1))
= Loy i—nLeea{e YO {G(E, Tnt1 = )10,20,0) (8) + 8, 0)Lienyr 00y (1}
Actually from now the order of integration does not matter, but we can change
LG+1 —»th—v)\ = Lt—n\L::,,_H -1
since the function
e—)\t—xn+17]-t¢(£'){g(§l, Tn+1l — t)1[0,2n+1)(t) + g(5,1 0)1[In+1 ,00) (t)}
belongs to L;(R™) w.r.t. ¢, and to L1(0,00) w.r.t. t and Zp41.
We want to check if the Laplace transform of semigroup (Tt(l))tzo gives us the solution

to (3.3) with some boundary conditions. Therefore we will calculate

LapyrnFormg Li-n(T3g). (3.5)
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Applying the Fubini theorem to (3.5) we get:

Lt_,/\LI"+1_,an/_,£; (I“t(l)g)

e~ g(x) — y  Tpy1 — OWL(Y/
= Lt—'kLmnH—Wl [l[t,oo)(xn_,_l)/ / g( Y +1 ) t(y) dy' d:l:’]
n Jrn (2m)m
e € gz’ — ', ) Wa,,, (V'
+ LiaLepii—n [l[o,t)(:rn+1)/ / o (271_3;“ Wani ¢) dy dz'}
R» n

= Lt-aLopyy—n[0(€ Tnsr — )e 1L ooy (Tnt1) + Lo,y (@n41)d(€, 0)e2n+1¥(E))

o0
= Lt [e'—ﬂl!(f ) / e—nzn+1g(§-l’ Tn+l — t)l[t,ooj (zn+1) dxn+l
0
m s
+3(€',0) / emmEm1 e B (5 41) ]
0

_ —ee) [T —nraer 90 s+
Lisale /0 e g(f,T)dT+¢(§/)+n(1 e )]

— Lo [ 5 ) + 1/)-‘2(5_5,)’%(1 — et )]
(G N (<) IS S W
A+yE)+n  P(E)+n A A+y(E)+n
_ g€ §(€,0)
A+PE)+n  XA+Y(E) +0)

"From (33) we see, that if A, f(z',0) =0, then

Af(z’,0) = g(z',0).
Therefore

FIG%) f(,0)

L—)L —)F’—)’T(l) = ’
t=ALan i1 Forme (T3 9) A+9E)+n  A+9(E) +n

which equals to (3.4).
Therefore, the Laplace transform of Tt(l) g indeed gives the solution to (3.3) with

the boundary condition A4 f(z’,0) = 0. Since there is one-to-one correspondence be-

tween the images and pre-images of Fourier-Laplace transform, we conclude that the op-

erators (Tt(l))tzo form a strongly continuous contraction semigroup with the generator

(A4, HX*1), which proves (3.1).

To prove (3.2) we only need to put g(z/,0) =0,z’ eR*. 0O

Remark 3.1.2. The semigroup generated by (—Ay, Hz’f’z'l) can be different, if we pose
different boundary conditions for (3.3). If we take

OTn+1 1,0 =0,
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then the semigroup generated by (—A+, Hg’z'l) is the following:

7 II —_ l,x —t W / d d
TWg(z) = A fle'—y rz;lr)%) +(y') Y 1oy @nt1)
i (3.6)
o — ', 0W, () d
+ A V. OWy/) dy Lio,t)(Tn+1)-

Rn (271') %
Proof. Indeed,

Lt-—)ALIn.Ll—Vr;FI'—)E’(T(ll) )

——1,(5 (E) x _ xn —t W
= LiaLanyi—m l{wn+z>t}/ /n “ (gﬂ') #1 = Oy )dy' d:z:’]

—z(f,:c) ! — ,,OW /
+ Lt—u\LIn+1 —n [1{05mn+1<t} / / g((Zﬂ)g ) t(y ) dyl dl‘l]

t
= Lo [ E5(¢ ) + 4(€, 0)e= ) /0 € dip ]
—ty(¢)
e (1 — )]

o0 A ! (o]
— 5, m) /0 e tOHVEN ) gy 4 @ / (et HHEN _ mtOHE)+0)Y gy
0

__- 9. S . g,0) . .
A+9E)+n  (A+9E)A+9(E) + n)

and since in view of the zero Neumann boundary condition

Pyl
= Lo [ € (e oy 4 (¢,

Af(z',0) + (D) f(a',0) = g(z,0),

we obtain

ay oy _ 9 f(¢,0)
LS—’/\L%H—"IFI’—'&’(Tt g) DY +¢(€/) +7 Y +,¢)(§/) +,7'

Therefore, the Laplace transform of T( ) g, g€L (R"+1) is the solution to the equation
(3.3) with zero Neumann boundary conditions, and thus the operator (—A, HX?1) with

this boundary condition is the generator of the L,-sub-Markovian semigroup (Tt(l’) )t>0-
O

Theorem 3.1.3. The operator (—A_, Hz’,‘,’f_’l) is the generator of L,-sub-Markovian semi-

group (Tt(s))tzo:

Tt(s)f(l') — /n f(xl - yla x?;-:r;:%t)wt(y’) dy’. (37)

35



Proof. By the same considerations as we gave in the proof of Theorem 3.1.1 we
may obtain that (—A_,H;‘,’f’l) is a generator of some strongly continuous contraction
semigroup. We show now, that (3.7) is one of (depends of the boundary condition) the
possible semigroups. Proceeding as in the proof of Theorem 3.1.1,

Li-2LopysnFormer (TV9) = Loa Lo sy —n (96 g1 + t)e ¥ E))

o0
=Ly (e—tW(E')—ﬂ)/ e—ﬂ(zn+1+t)g(£/’xn+1 T 1) d$n+1)
0

oo
=L (e—t(¢(£ )—=n) / e—n(zn+1+t)g(§’, Tny1 +t) dTnir

—t

0
—e‘t(‘/’(f')"’)/ et G(¢ Ty + 1) dTnga)
-t

[ee} t
= Ly (3(€, me™tEI=-m) 4 / / e MR G(E g 1 t) dong dt
0 0

_ &) + /oo een+l /oo et G gy +t) At dTns
)\ + w(fl) - "7 0 Tn+1

=M o Q€)= [ OB 5 d
A+1/)(5')—n+/0 T /0 e 97 dr dansn
9, m) +9(€, A +9(&))

A+p(E) - '

Thus, L;—, ,\Tt(s) g is the solution to (A + A_)f = g with the boundary condition

F@',0) = Fzl . (36, X+ 9(£))),

and therefore the semigroup (1}(3))20 is generated by (—A_, H} X’2 . O

Now let us consider the fractional power of —Ay, (—A4+)%, 0 < & < 1. First consider
functions from D; = I?,’,fﬁ’l and Dy = H) X’2 !, From Theorem 4.3.7 [J1] the domain of the
generator A4 of strongly continuous contraction semigroup is dense in D((—A4)%), and
D(A,) is a core for (—A4+)%, 0 < a < 1. Then

Dy 10" = DI = (1 fllma < 0, supp S CREF} =

and analogously

Hlllapye  =lhin, [Ills,2
D, (=A% D, R2 _ {f :dg: ”g”x’z,l < 00, glR{,‘i‘ = f}
={f:39: lglmz <00, glgen = f} = Hy%.

For the operator —(—A_)%, symb(—A_) = x—, the situation is similar.
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To solve the boundary problem for the operator (—A4)®, we need the existence of the
trace f(,Tn41) if f € D((—A1)%). Since

(W (E) + €2y 2 LV "

)

then by Theorem 2.1.21 and Lizorkin multiplier theorem we obtain that

s -1
HY? < HY*?(R) © H2(Ro4)

where the closure is taken with respect to the graph norm of the operator ¥(Dy/)® +
(=2z,,,)*/?. Thus, since the trace in the space HZ(Ro4) exists for % < a < 1, for such
« the trace will exist in the space H, g? ’f Analogously, for % < a < 1 the trace exists in
the space A% gl 2 and equals to zero.

Now we are ready to prove that (—(—A4)e, Hm 7)) and (—(—A-)%, Hff) are the gen-

erators of Lp-sub-Markovian semigroups.

Theorem 3.1.4. For 1 < p < oo and % < a < 1 the operators (~(—A+)°‘,I:Ig?f) and
(—(—A_)* H, +) symb(—AyL) = x+ (&) = ¥(€') £ i€ +1, Y satisfies A1 and A2, are the

generators of L,-sub-Markovian semigroups (Tt(4))t20 and (Tt(s))tzo given by

CT¥f(z) = (277.)—71/2‘/111}» »/o Tfﬂ F@& vzt = s)Ws(V)oals,t)dsdy’  (3.8)

and :
TO f(z) = (2m)~ / / f@ = Tngr + Wa(W)oa(s t) dsdy’  (3.9)
R JO

where 04(s,t) is the measure which corresponds to the Bernstein function z%, 0 < a < 1,
by the formula

oo
e~ t® =/ e *°04(s,t)ds, t>0 Rez>0.
0

Proof. To prove this theorem we apply again the Hille-Yosida theorem.

1)From Theorem 2.2.10 it follows that the spaces I;Tf’f and H, ge are dense in L,(R31).

2) Since —(—A4)* and —(—A_)* are Dirichlet operators on H}"? (by Theorem 2.1.24),
and by Theorem 2.2.5 and Theorem 2.2.6 (—A4)* and (—A_)* respectlvely are 1som0r-
phisms between Hf f and ng f , then these operators are Dirichlet operators on g% ot % and
H ;/" _f, and therefore they are dissipative on these spaces.

3) In Theorem 2.2.5 and 2.2.6 we have proved that

(—A+)°‘ . Hsz Ny (Rn+l) .

and
(—A-)%: Hpf = LyRg!
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are isomorphisms. Therefore the equations

(-44)%f(z) = g(z), z€RYT . (-A-)*f(z) =g(z), z€RI"

f(z',0)=0 F(z',0) = h(z) (3.10)

are uniquely solvable in ng f and in Hp 'Z, respectively, g € LP(R"‘H) h € L,(R™) and it
can be expressed in terms of g, since the operator (—A_)% is an isomorphism from Hgff
to Lp(RGF).
(Note that if we can solve equations (3.10), we can also solve for g € Lp(R"+1) h € L,(R™)
the equations

A+ (-A-))f =g, zeR (3.11)
subject to the boundary conditions
f(a’,0) = h(z'),
where h again depends on g, and
A+ (-4)*)f =g, zeR}M (3.12)

with f(z',0) =0, for all X' > 0).
Note also, that (—(—A4)%, Hm+) and (—(—A_)2, ijf) are Dirichlet operators as the re-

- strictions to Ry {" of operators (—(—A4)®, Hgt'?) and (=(=A-)%, H}?), which are Dirich-

let operators, see Theorem 2.1.24.

Thus, all conditions of Hille-Yosida theorem are satisfied, and the operators
(—(—A.,.)"‘,fff, f) and (—(—A-)*, H, +) are the generators of some L,- sub-Markovian
semigroups.

Let the semigroups (Tt(4))t20 and (1}(5))20 be obtained by subordination of (Tt(z))tzo
and (Tt(a))tzo respectively with the convolution semigroup nt(a) (ds) = aa(s t)ds, see (1.6).
To see that they are generated by (—(—A4)%, I?f"z) and (—(—A-)*, H, +) we will do the
following:

We know from Balakrishnan’s formula (2.17) that for g € Hgff we have as represen-
tation for (—A_)~%:

A Vg =
(=A% r(a)/o = &

1: — y Tn+1 + t)Wt(y ) '
dy’ dt.
T / ] . (27) 3ti-a y

Let g € S(R3}'). We can rewrite

Tt(5)g - Fejx (e—t(w(E')—iﬁnH)“g)_
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The function
e tO+WE) i) g) € I (R™** x (0, 0)),

therefore
LionF () = Ft L)

Thus, with the help of (1.10), (1.12) and Lemma 1.1.15, we find by Lebesgue dominated
convergence theorem that for g € S(R3{)

(—A_)"%g = hm Ryg= hm/ ’\tT(s)gdt

A—0 (27r) —)\
/ / 9(z' =y, Tni1 +)W(Y') dy dt,
n (2m)3tl-a

and by the density arguments (—A_)~* has the same representation for g € L (]R”"'l).
Thus, the operator (—(—A_)%, nyf) with the boundary condition

f(z,0) = 1_‘_(13)/000/“ 9@’ — 9, OWY) 41 g

(2m)Eti—=

- generates the semigroup. (T( ))t>0 By the same consideration the operator

(—(—=44)%, H;R f) with zero Dirichlet boundary conditions generates the semlgroup
(T)iz0. O

We also can show that (—(—A4)%, H, +) is a generator of an Ly-sub-Markovian semi-
group. The difference from the previous theorem is that the operator (—A4)* is not
an isomorphism between H:2 o and Ly (R3H), and we need to solve the boundary-value

problem
A+ (—A44+)%)f(z) = 9(z), z R}, g€ LR, (3.13)

for some boundary conditions, and show, that the solution belongs to Hif’f.

We obtained in Theorem 3.1.1 and Remark 3.1.2 that (Tt(l) )t>o0 and (Tt(1'))t20 are
strongly continuous contraction semigroups generated by (—A+,H;,"’f_’1) with different
boundary condltlons By (1.6) the candidates for the semigroups generated by
(—(—A4)*, H, +) are the semigroups obtained by subordination with the Bernstein func-
tlonf(x)—m z>0,0<a<l:

(6) n/2 e / ’ ’
g(z) = (2m)~ — Y, Znt1 — SHWs (¥ )oa(s, t) dy' ds

(3.14)
+ (2m)~n/2 / / (@ — ', 0 W, (v')0a(s, ) dy ds,
Tn+1 it
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which is obtained by subordination with f(z) from (Tt(l))tzo, and

’ Tntl
Tg(@) = @)™ [ [ 9@~ anss = W )oa(s ) ds
0 R
. (3.15)
+ (217)_"/2/ / g(z’ — v, 0)Ws (¥ )oa(s, t) dy ds,
Tnt1 n

which is obtained by subordination with f(z) from (Tt(ll))tzo. These semigroups are again
(by Theorem 4.3.1, [J1]) strongly continuous and contracting.

R,2
Theorem 3.1.5. For1 < p < oo, % < a < 1, the operator (—(—A+)%, H,), symb(—Ay)

= x+(&) = ¥(¢') + ©€n+1, where ¢ satisfies A1 and A2, is the generator of the L,-sub-
Markovian semigroups (3.14) and (3.15), depending on the boundary conditions.

Proof. As we proved in Theorem 3.1.4, the space H;f’_f is dense in L,(R3}?), and
by Theorem 2.2.10 and —(—A+)® is a Dirichlet operator on Hff ’_f as a restriction of the
Dirichlet operator (—(—A4)%, Hi?) to the half-space.

We need to check whether problem (3.13) is solvable for all g € L,(R3}") (with some
boundary conditions) and that the solution belongs to Hg‘:‘ _f

We may decompose the solution to (3.13) into two parts: f = fi + fo, where fy is the
solution to :

O+ (—ADN@E) = 9(@), = eRYT,

F(@0) =0 (3.16)

and f> is the solution to
A+ (~44))fa(@) =0, o eRH (3.17)

for some boundary condition.

We already know (from Theorem 3.1.1) that the solution to (3.16) exists for all g €
Lp(R3}') and belongs to 7.

To find the solution to (3.13), we will follow the proof of Theorem 3.1.1, namely, first
take the Fourier transform F,._¢ of the left-hand part of (3.13), and then the Laplace
transform L, ,, . Since F~lsymb(—(—A4)*™1) = F71((x4(£))*!) exists, then

L$n+1—"le-’5'-*E' (()‘ + (_A+)a)f) = ’\f(gla 'fl) + L$n+1—>nF-’D’—>€' ((_A+)a—1(—A+)f)
= M (€M) + Lanps—n Formgr (—(=A4)* ") [Lap s onForsgr ($(Dar) + 0 )1)]

5$n+1
= A(€,n) + W) +n)>" (W€ ) f(E,n) +nf(E,m) — F(€,0))
= (1+ @) +m)*) F(€&,m) — &) +n)>"1f(€,0).

60



Therefore the L, , ., Fr—¢ -transform of the solution to (3.13) is

3(€,m) + (WY€) + )1 f(¢,0)
X+ e+ (3.18)

Note, that since a > 1/p then for f € HR’ the trace exists, and f(z/,-) € Coo([0, 00)).
Then f(z',Zny1) — f(2,0) as Zpny1 — 0, 2’ is fixed. Let zp41 € [0,€], € > 0. For such
Zn4+1 the integral

f(g’) 77) =

/°° TV 2 —1) ~ f(3)
0

t 14+«
converges uniformly, i.e.

/°° TV f (@', 2ni1 ~ 1) ~ f(2) i

iita —0 as A— 0.

sup
Tp=1€ [0:5]

Therefore we construct the fractional power of —A, with help of the semigroup (Tt(l))tzo,
see Balakrishnan’s formula (2.16), and get, passing to the limit at 41 — 0,

a TV f(a',0) — f(',0)
)/ at

(—A4)*f(2,0) =

r(1 - tl+a
f(=',0) = f(=',0) .,
P(l - Q) / t1+° di =0,

‘with X f.(:c’., Oj = g(x’ ,.O).‘ From (3.16) and (3.17) we see that if Af(z’,0) = g(z’ ,:0),‘ then’

Afa(e',0) = g(', 0).

We need to check whether fa, f2(€',n) = (%f\l’tﬂg;lﬁ%”?) € H ‘%_,, , where g €

L,(R3F)-the right-hand side of (3.16). But it follows from (3.17) that it is enough to
check whether fo € L(R3{).
Suppose that in (3.17) fo = f5 - 1(z,,,>0, for some f3. Then, we obtain, taking the

Fourier transform of both sides of (3.17), that F(f2)(¢) = w(i()/\":_lf;*('é))a:g(f j))(g) 02,

and we can apply the theorems about Fourier multipliers we got before.
Let 6 > 0 be such that

(1 + &)L +IE1%)° < A+ Ix (9

(Clearly; § should be less then % and it depends on ). From Remark 2.1.25 we can derive

that
((L+E.)0+1¢3)°
A+ (x+(8)>

is an Ly,-Fourier multiplier. In such a way we reduced the estimate of F(f2)(€) to an
estimate for "
§(¢,0)

(A+&.)a+1¢2))s”
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The inverse Fourier transform of —ﬁ is (see [BE1], vol.1)

(1€1°+

P () = () et

where K, (z) is he Bessel function of third kind. Since K, (z) ~ c1e™% as z — oo, and
K, (z) ~ coz™" as £ — 0 (see [BE]), we see that

-1 1
F (W) € L,(R).
Further for g(-,0) € L,(R™)
-1 §(§l70) n
7 (e o) < B E:
and therefore

I (5 e Ol < I e, <=

Thus, by Hille-Yosida theorem, (—(—A4+)%, H, p’;_) with the boundary condition (—A4)*f(z’, 0)
= 0 is the generator of an Lp-sub-Markovian semigroup. It remains to prove that this
semigroup is (3.14). ‘
We will follow the same onsiderations as in the proof of Theorem 3.1.1. Let g €
(R”'H) Rewrlte Tt

T(6 )g = (2m)~ "/2/ / ’(“f) “I’(f )g(E Tnt1 — s)oa(s t) d§ ds

+ (2%)'"/2/ e EE) =€) 5(¢ 0)o, (s, t) de’ ds.

Tn+1

Then since
eV EIHEENR(E, 2y — 5)0a(s,t) — §(€,0)0a(s,1)]

belongs to Ly(R™) w.rt. ¢, and to L1(0,00) w.r.t. s and t, we can applying Fubini
theorem and using (1.19), that for the solution of (3.13)

@) = Faglo) = [ e i)
- /’"“ / 9@ — Y, Tny1 — YWs (Y )en (s, A) dy' ds

—)\(277)”/2
_ /mx /n 9z’ ~y ,xn:-)l\(; :)):’/V;(y’)ea(s,A) dy' ds
+ /,. g(w’—y',O)l;‘V(zzn;)lS/;)ea(zn+1,>\) ay
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holds. Taking the Fourier transform Fg/ ¢ and then the Laplace transform L, , ., of
the right and the left side of this equality, we obtain, using (1.14) and (1.15) that

Tn+1 ) (e e’ ,,\
f(&, ) :cn+1—>n[/o 9(€ Tns1 — s)em V) ai’f)\ )

+ §(€',0)e=2n¥(E) ea(:—/\) 45

_ € m) + AT () +m)*19(¢’,0)
A+ ($(E) +m)* ’

which is equal to (3.18), regarding that Af(¢’,0) = §(¢’,0).

Thus, the strongly continuous contraction semigroup (T(G) )t>o0 is indeed generated by
(—(—A4)e, Hm'+) with the boundary condition (—A4)*f(z’,0) = 0.

Now we want to prove that the operator (—(—A4)%, H, gf ’y) with zero Neumann bound-

ary condition 3%4-1 f(z',0) = 0 generates the semigroup (Tt(sl))tzm
To do this we will follow the proof of Theorem 3.1.4, i.e. we calculate (—A4+)™® for
g € S(Rp}!) as '
(—AL) g = hm Ryg = hm/ e MT) g 4t
Tn41 — — ! /
— hm / x y y Tn4l S)Ws(y )ea(s) )‘) dy, ds

A—#O —A 271')"/2
9(z’' — ¥, OWs(y) (s, )
\/f;n+l /n 27T n/2 —A d ds)

1 /zn+1/ 9(z' — ¥, Tny1 — S)Ws(y)d 'ds
o) . sean

gz’ =y, OWs(y') .,
+ @) /z,.+1 /n sl=a(2r)n/2 dy' ds.

But this is exacly the operator obtained with help of Balakrishnan’s formula:

1 IMg@) - g(=)
(a)/ §l-a

Tn+4l 7 /
9z’ =y, Tny1 — )Ws(v')
= T(a) / / " si=e(2m)n/2 dy ds

g(z’' =y, 0)Ws(y')
vt L, e s ds

(Since g € S(R”"'l) the trace exists, and by the density argument the same representation
for (—A4)® holds for g € L,(Rg}1)).

It remains for us to show, that f(z) = L:—, ,\Tt(s’)g(:r) is the solution to (3.13) with zero
Neumann boundary condition.

(—A+)™%(z) =
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‘We have:

F(@) =L T g(z)
Tn4l ! ! AW}
9@ — 1, Tnp1 — WL (¥)EL(5,N)
— dy' d
/o / . —A(2n)? v as

o0 / ! s s
9@’ =y, 0)Ws(y)eg (Tnt1,A) ,
+/$ﬂ+1 /n —A(2m)n/2 dy' ds

Differentiating with respect to 11, we get

3 i) = /’”"“/ 75279(2 = ¥, Tni1 — S)Ws(y)eln (s, A) ' ds
Ot 0 . —X(2m)n? Y
+ / g(xl - y/’ 0)W$n+1 (yl)ezz (m'n-l—l, )‘) d ]
- A(2m)2 4
_ / g(z’ -/, O)Wxn+1 (y’)e; (Tr+1, ) dy'
R —A(2ﬂ')n/2
_ /="+1 / 52 9(@ = Y, Tngr — $)Ws (¥ )en (s, ) 4y’ ds
0 Rn —)\(27r)”/2 ’

which tends to zero in a.e. sense if 41 — 0:

8

I
axn+1f(:z,0)—0 a.e.

Thus, the operator (—(—A44)%, Hg?’f) with the zero Neumann boundary condition

3—,;(3 . f(z',0) = 0 generates the semigroup (Tt(sl))tzo, O

3.2 Examples

In this section we want to give several examples. We will give the representations of some
semigroups generated by (—Ai, Hz’f_,z_l) and (—A4, ﬁ;"ﬁ’l), where symb(—Ay) = x4,
because the properties of the fractional powers of these operators follow via subordination.
First consider the two-dimensional case.
I. Consider a real-valued continuous negative definite function p(§) of the form

p(§) =26 lncosh(%g)- (3.19)

This function is a particular case of the characteristic exponent of the Meixner process:

Ym,6,0,(€) 1= —imé€ + 25(1ncosh(aE 2_ ib) —Incos (g)), (3.20)
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where m € R, § > 0, a > 0 and —7 < b < w. The densities of the measures u; which
correspond t0 ¥ 5,05 are given by

26t
sy _ (2908(3)" beimy T —mt, |2
Pe (z) = 2ral'(26t) ¢ [r(6t +1 a I

(For more references on the Meixner processes see [Gr], and also [BB]).
Since we are interested in real-valued symbols 1, we posed m = b = 0. In this case
the density of the convolution measure is

0:6:a.0(2) = ) [Tt + %m)|2. (3.21)

2
6,a —
p(e) =p = 2nal (26t

For a continuous negative definite function p(¢) defined in (3.20) we define x+(¢,7) =
1+ p(€) £1n. We added 1 in order to make 9(€) = 1+ p(§) > 0, since as we saw this was
essential in Theorem 2.1.21 and Theorem 2.2.5.

Since

p'(€) = ba tanh(%&)
is a bounded function, we find (see the proof of Theorem 2.1.21)

sup |§na§,,,em"9><i| < 00
EmeRr?

as well as

sup |£8ge’ X% <00,  sup |nBne'**TIXE| < oo.
(6.m)€R? (6,m)€R?

Thus the function e**79X+ is an L,-Fourier multiplier, and therefore we can apply the re-
sults obtained in the previous section to construct the semigroups generated by (—(A+ )%, Hgf ’f )
and (—(—44)%, ﬂﬁf)’ where ® = Re(x+ (€, 7)), symb(—Ax) = x+(§,n).

Knowing (3.21), we can explicitly construct the semigroups generated by (—A+, H;"f’l )
and (—Ay, HXPN).

Note that the density (with respect to the Dirac measure) of the convolution measure
which corresponds to a constant continuous negative definite function ¥(£) = X is

pea(z) = e (3.22)

Therefore the density of the convolution measures u:(dz) associated with the continuous
negative definite function & + 1 4 p(€) is

ue(z) = F(—l)(e-—t(l+P(€)))(m) =iy *pf’“(a:)

—t 6,
=€ tpt a(x)-
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Thus, substituting u:(z) in (3.1), (3.2) and (3.7) we obtain that the strongly continuous
contraction semigroups

F(x1—y1, 22 — t)etpl® (y1) dyn

7 f(z) o L0 (2)
i (1) d (3.23)
,0)e”
/ - 1,0 Pt Y1)ay: 1. (z2)
and
T ,Tg —t)e” d
T(z)f f( 1= Y1,T2 272 tp2® (y1) dyn 1.0y (@) (3.24)
and s
7O (o f(z1 = y1, 22 + t)e " py* (y1) dyn (3.25)
2 )

are generated by (—Ay, H;,‘f b, (—A+, Hz’fy’f_ 1 and (—A_,H;‘)’f’l) respectively (with the
boundary conditions as in Theorems 3.1.1 and 3.1.3), symb(—A+) = x(&, 7).

II. Consider the Bernstein function f(z) = In(l + z), £ > 0. The corresponding
convolution semigroup is (see (1.17))

ve(dz) = X (dz)1o, w)(m)f‘(t) rile®, (3.26)

.where A\(Y)(dz) is one-dimensional Lebesgue measure.

Denote by %(£) = f(1 + [¢]?) = In(2 + |¢]?), € € R™. Such function 9 satisfies A1
and A2. To find W,(y) = F-1(e~t¥())(y), i.e. the density of the convolution measure
corresponding to 1, we use (1.8).

We know, that the convolution measure

2
'

(1) _(n)
.u‘t (d.'L') A (dx)(47rt)"/2

(where A (dz) is the n-dimensional Lebesgue measure) is associated with the continuous
negative definite function |¢|2. Then, with help of (3.22) we obtain the convolution measure
of function ¢(¢) =1 + |¢|*

__.I_I_t

It
(4 t)"/2

Further, with the help of (1.8) we obtain the convolution measure corresponding to ¥ =

f(#):

e (dz) = A (dm) (3.27)

f oo 6-236—%18-2-st—1 )
uf (dz) =/ €2 T 5 gsAM(dx) _
= ) TR (3.28)

N (zlfr)—f/zl“m(r:rz)t—%—lf{t—%(ﬁlxl)A‘”’(dx).
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‘We used that

a o0 a 2 V_l
Lsp (e"ﬁs”'l) =/ e Pssvlem4s ds = 2(@) K, (\/ap),
0

where K, (z) is the modified Bessel function of the third kind.
Substituting (3.28) into (3.1), (3.2) and (3.7) we obtain the following strongly contin-
uous contraction semigroups

24—\ onss ~OKg (VAW ( 1\t
105() = [ moEt (R W)

n (4m)n/2D(t)(2m) 3 /]2 00)
+/ 2f(""—y"°)Kt—%(\/5ly’l)( 1 )t—%-ld,l ar)
n (4m)n/20(t)(2m) & /]2 Y 1j0,¢)(Tn+1
2 ! /, n —)Ks_n 2 / t—%— /
Tt(z)f(z) - /n = 1{473n7;F(tt))(27:);(\/—|y ) (nylz) ldy Lit,00) (Tn41) (3.30)
and
@ [ 2@ =V T + K3 (V2 ), 1 \t-31
B _/” (47")"/21_‘(t)(27r)§ (|y,|2) dy (3.31)

which are generated by (—-A+,H;,f’_i’l), (-—A.,.,I;T,’,‘,L,Z_’l) and (—A_,H;’_,z_’l) respectively,
symb(—Ax) = x2(€) = In(2 + |¢]2) % i€y, € € RFH.

3.3 Perturbation of the generator of an L,-
sub-Markovian semigroup

In the previous section we discussed the class of operators of the form A = (y(D) £
Bma_.u)a’ 0 < a- < 1, that are the generators of Ly-sub-Markovian semigroups. Now we
want to extend this class by adding a perturbing operator p(z’, Dy/), z’ € R™.

Suppose that p(z’, D) satisfies the estimate

Ip(@', Dz) fllp < cllfllwpomny (3.32)

with some 0 < pg < 1, where W, is a Sobolev space,

4 Bs

pp?

W — Hj, s is an integer,
s s in not an integer.

Since for p > 2 the embedding H;(R™) C B,,(R") holds for s > 0, see [T2], Remark
2.3.3/4, then
Ip(z", Dz ) fllp < cll Fll o ey (3.33)
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Let (A, D(A)) and (B, D(B)) be some operators, D(A4) C L,(R™), D(B) C L,(R™), and
the Schwartz spaces on R™ and R™ are dense in D(A) and D(B) respectively.

Denote by D(A® B) the closure of the space S(R™*™) with respect to the graph norm
of A ® B. Also, we assume that for f € D(B)

[ fll, < cllBfllp
holds.

Lemma 3.3.1. Let (A, D(A)) and (B, D(B)) be as before, and let an operator Q be
defined on D(A) and A-bounded. Then (Q ® I, D(A ® B)) is A ® B-bounded.

Proof. From Lemma 1.2.2 we know, that the space C°(R™) ® C$°(R™) is dense in
L,(R™™). From the conditions of our lemma we see, that C§°(R™) ® C§°(R™) is dense in
D(A) ® D(B), which is in turn is dense in D(A ® B). Then for f € D(A ® B) there exists
a sequence (fn)n>0 = (fin ® f2n)n>0 which converges to f as n — oo. For this sequence
we have, since @ is A-bounded,

(@ ® I)(fin ® fon)llL,®n+my = |Q finllL,@n) | fonll L, ®m)
< (el Afinlly@ny + 8l finll 2, @) | fonll 2, @m)
< el|Afin ® BfonllL,@ntmy + 6]l fin ® fonllL,®n+m)
- =elA®Blnllz,meemy + 8l fnllz,@nemy
‘ (3:34)

for some 0 < & < 1 and 6 > 0. Passing in (3.34) to the limit as n — oo, we obtain

Q@ ® I)fllL,®n+m) < €llA® Bf|lL,@n+m) + 8l fllL,®r+m),
proving the lemma. O

With help of Remark 1.3.2 we see from (3.33) that p(z’, Dy/) is (1 — A,/ )*/2-bounded
with an arbitrary e-bound, if uo = Kk, 0 < Kk, < 1. Applying I_Lemma 3.3.1 with
= (1— Q)% B = (1~ Ag,,,)*/?, we obtain that p(z’, D) is C-bounded, where

C=(1-2)1= w))“ﬂ
But for symbC = p(€) = (1 + |€'|>)(1 + €2,,))*/* we have

p&) SA+[EP)H, O<p<l,

and

EPE-1)...(5—k+1)&.. -§k§n+1‘
A+ 51+ [psr|?)? %

(k+1) =
6&, 1£1)§n+1p(€) -

Then
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by the same way as in the proof of Theorem 2.1.21 we derive that a_f—(é%;v is an

L,-Fourier multiplier, which leads to the estimate

ICHllp < ll(X = 2)Flp.

Thus, the operator p(z’, D,/) which satisfied (3.32) with po = pk, where 0 < p < 1,
0 < kK < 1, is C-bounded, C = (1 — A)*.
We want p(z’, Dy) to be controlled by the operator (x4 (D))%.

Lemma 3.3.2. Let ¢ satisfy A1l and A2, and

(1+ €% < Ixx @)%, 0<p<1l.

Then
H}? c H*. (3.35)

Proof. Denote x = x4, for the case x = x—~ the proof is similar.
Differentiating with respect to &,+1 we obtain

s () =~

Let now £,4;1 be fixed. For fixed §n+1 the functions x and x“ satlsfy Al and A2 if ¢

“ does: We can calculate that -

‘(xia) <’=>‘ ;i 1. = #...
and I(l)(k)'< c2 4. k¢k’
< 3 )

from where " "

k ! N2
o) < i (%)
Yo+l xite oF
follows. Further (see again the proof of Theorem 2.1.21),

QLlepyy e

x*(€)

1 --§k§n+1(

sup

£ERN+H1 Ekyr€1:6n+1

] .
In such a way %ﬁ is a Lp-Fourier multiplier and A2 c H2*. O

Corollary 3.3.3. Suppose that x and u are as in Lemma 3.3.2. Then

R,2 2 FR2 2w
Hpy CHpy, Hpy CHpL.
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Proof. From (3.35) we have that
| fllgze < clFll o (3.36)

for f € ng,z_ To prove the first embedding we may consider the function f in (3.36) as

extensions to R3+!. Taking infimum over all such extensions, we obtain the first embed-

ding.

To prove the second, we only need to take the functions with support in Rg_tl in (3.36).
O0

Theorem 3.3.4. Let (—A)* be an operator with a continuous negative definite symbol
(x(€)* = (Y(¢') + i€n+1)*, 0 < a < 1, such that for some 0 < pu < 1

(1+ e[ < elx(@)l°,

the function 9 satisfies A1 and A2, and further let a pseudo-differential operator p(z’, D),
satisfy (3.32) with po = ku, 0 < k < 1, and be an Lp- Dirichlet operator. Then the oper-
ator (—(—A)* — p(z', Dyr), H?) is a generator of an L,-sub-Markovian semigroup.

Proof. We obtained before that p(z’, Dy/) is (1 — Az)#-bounded (with an e-bound
0<e<l),z= (2 zn41) € R*. From Lemma 3.3.2 we see that p(z’, D,/) is also

- (=A)>-bounded. The statement of our theorem follows after applying Theorems 2.1.24

and 1.3.3. O

As an example of a pseudo-differential operator p(z, D) for which (3.32) holds we take
p(z, D) of the form

—p(z, D)f = / (f(z — ) — f(@))v(z, dy),
R\ {0}

with the Lévy kernel v(z,dy) = g(z,y)dy, and g(z,y) : R® x R® — R, is a measurable
function satisfying with 0 < § < ug < 1 the estimate g(z,y) < M—"‘,ﬂ;
We want to give a few examples of (—A)® -bounded pseudo-differential operators with

symbols of special kind.
Consider a pseudo-differential operator the symbol of which is of the form:

p(z,€) = /E oz, ¥)a(w, €) dy (3.37)

where E C R? for some d, the function ¢(z,¢) is a symbol of another pseudo-differential
operator g(z, D) which satisfy with some real continuous negative definite function 1 the
inequality _

190 D) Flzen) < c@flygon for feHP?, yeE, (3.38)
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la(z,y)| < a(y) Vz€R", y€E, (3.39)
and for a(y) it holds
/E la(y)e(y)| dy < co. (3.40)

Then
IpCs D) fllp < 1 £ 1l rgo-2 [E la(y)e()| dy < collvo(D)fllp + 61l (3.41)

for some cg and 6. Therefore, for 0 < ¢y < 1 the operator p(z, D) is ¥(D) -bounded.
For example, g(c,£) may be a continuous negative definite function which depends on
parameter o, for example, ¢(c,¢) = (¢ +¢]?)*, 0 < a < 1.

Note that when the domain of integration E is bounded, the situation becomes simple
because of mean value theorem (see, for example, [Fik], Vol.II, §644): there exists o9 € E
such that for the symbol p(z, £) it holds:

p(z, ) = [E a(z, 0)q(0,€) do = V/(E)a(z, 00)a(00, £),

where V(FE) is the volume of F, and then

—p(z, D)f(z) = (2m)""/? ] e p(z, €)F(€) de

n

=VEEDT [ o oalon, OF € de
= —V(E)a(a:, 0'0)(](0’0, D)f(.’L‘)

As another example consider the case when in (3.45) the operator q(0,8) = 1—e~7%(&),
which is for fixed o > 0 is a continuous negative definite function, and a(z, ) is a density
of some convolution measure with support on [0, 00):

a(z,o)do = g (do).
Corollary 3.3.5. Let p(z’, D) be a pseudo-differential operator with symbol
2(@,€) = [ ole',0)a(o,) do
which satisfies (3.38), (3.39) and (3.40) with 0 < ¢p < 1 and 9o = ¥*, and suppose
that —p(z’, D,/) is a Dirichlet operator on C§°(R™). Then the operator (—p(z,D) —

(—Az)*, Hy?) and (—p(z, D) — (~A+)%, HP), with symb(—Ay) = $(€') £ ifnt1, ¥
satisfies A1 and A2, are generators of L,-sub-Markovian semigroups.

The proofs follow from Lemma 3.3.1, Theorem 1.3.3, Theorem 3.1.4 and Theorem 3.1.5.
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3.4 Continuity of certain pseudo-differential
operators in Besov spaces

Our next purpose is to prove some mapping property of a pseudo- differential operator of
special kind. For this we need the Lipschitz spaces of order a.

Definition 3.4.1. For 0 < d < 1 define the Lipschitz space of order o by

Ao ={f € Co(R™), [If( =)= f()lloo < Alt]}, (3.42)

with the norm

1 = 2) = FOllo (5,49

lfllae = [ flloo + sup
e [t|>0 [t]=

on it.
" For a = 1 define the Lipschitz space of order 1, namely, A; as the closure of the
space C§°(R™) with respect to the norm (3.43) with o = 1.

Note that in Ay, 0 < & < 1, the space Cg° is NOT dense. We need to work with the
subspace A9 of Ag. ‘

Definition 3.4.2. We will say that f € A9, 0 < a < 1,if f € A, and

hm ”f(x_t)_f(z)”oo=0 o .(3_.44.)
|t —0 [t|>

For the spaces AS we have

Theorem 3.4.3. The closure of the space A; with respect to the norm || - ||a, is equal to
AL, .

Proof. Since C§° C A1 C A, and Cg° is dense in A;, we see, that the space KQ.IIAQ is

equivalent to C’g°”’”"° :

We will follow the proof given in [Kre] for [0,1], Chapter III, §3.2.
Clearly, for all functions from A; (3.44) holds. Let fm € A; and f, — f in A,, ie.
f € A,. Fix e > 0. There exists Ny, such that
€
[fmllay ¢ |fm = fllaa < 2
for all m > Np and let § > 0 be such that for |t| < §

€
tl—o: )
% < o
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Then
[fz—t) = f@)] _ [flz—1) = fm(z = 1) = (f(z) = fm(2))]
[¢]* B |t]e

@ —t) — fm(3)]
* TE

< fm = Fllag + I fmllay 61
<fifoc
22 7

and f satisfies (3.44). ,

Let now f € A, and satisfy (3.44), i.e. f € AY. We will show that there exists a sequence
(fm)m>o from A, that converges to f in the || - ||s,-norm.

Consider

z+4+1/m 1/m
fm(z) = mP / f(r)dr — mn /0 f(r)dr.

Here and further we write

z+1/m z1+1/m Tn+l/m
/ ...d'r=/ / ...dm...dm,
T T Tn

and fol/ ™ ...dr is defined analogously.

" The functions f,,, m >0, are once continuously differentiable (with respect to each z;);

and therefore belong to A;. Making a change of variables, we obtain

1/m
fm(z) = m" /0 £ +6) — £(8)) d6,

which gives . y
(@) = f(@) =m” [ 1f@+0)- 1(0) - @) b
Define
[fm(x - t) - f(:r +t)] - [fm(x) - f(:E)] = \I’(fm - f t);

in this notation
I‘I’(fm - fa t)l .

|l fm = fllae = | fm — flloo + sup -
[£]>0 [¢]

Since f € A, and (3.44) holds, then for € > 0 there exists § > 0 such that for |t| < § the
function f satisfies '
|f(z +1) - f(z)|

It

< Yz € R™.

€
2
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Therefore

_ n 1/m
Wzl%[/o [fz+0+1) = flz+1)

— fz+6)+ f(m)]d0~
on [T 1f @041 ~ fz+6)]
< /0 (

[t[
|f(z +¢) — f(z)|
+ e ) a0
1
<m"-7;;(-;-+§) = E.

Let |t| > 6. Then

Wm0 _ o (™ 18% 12+ 0+2) = flz+1)]
e =" / e ( e
|[f(z+8) — f(z)]
+ o )de

n N i
<2m™|fllAg "t,—,;dH
0

1/m
<25 lagmn [ 61,
o ;
and we again may chose Ny such large that for all m > Ny

1/m
mn / 16]% d6 <
0

Therefore || frm — flla, <€ form > Ny. O

&
26~ fllae

Consider now the integro-differential operator of the form:

P, D)f@) = [ (@1~ f@)v(zdy) (3.45)
R\ {0}
Theorem 3.4.4. Let p(z, D) be as in (3.45), v(z,dy) = g(z,y)dy, 0 < @, 0,6 < 1,
§ < a < o, the function g(z,y) is differentiable in z,
c
lg(z,y)] < Ty (3.46)

and
/ [y|° g% (z, ) dy + / gx(z,y) dy < o0 (8.47)
lyl<1 ly1>1

uniformly in z.
Then p(z, D) : A — A%__ continuously.
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Proof. Let f € A9. For such f we have

wup =) = FOlo _

ly|>0 Iyl‘7

Since

Ip D)l = sup p(a, DYf(@) = sup | [ (7o =) = f(&)(a,dy)
z€ERN z€R" Rn
/ fz—y) - flz)
lyl<1

[yl

< sup ly|°v(z, dy)l

z€R™

+ 2| flloc sup / v(z,dy)
zeR™ Jjy|>1
< sup ”f( - y) - f()”oo sup / Iyl”l/(x,dy)
yER™ ly|° zeR™ Jiy|<1 '

42| flesup [ vl@dy) <clfln,,
z€R™ J|y|>1

then it remains to check that

1
Sup
>0 [h|o—

L 6= k=) = £ = Rt = )

R™

Note, that if |k| > 1 we obtain
] [ (@ —h=) = fa = m)w(e — b
- [ (G-~ )iz,
<| [ (e =h=1) = fla— W)tz hd)
+| [ (=)= s@)w.a),

and therefore for f € A2

sup Iap(, D)F() = p( D)F (Ol
[h|>1 |h|o—e

where 7,9 = g(- — h), and thus p(z, D) maps A% continuously into Coo (R™).
Next consider the case || < 1. If we rewrite

p(z — h, D)f(z — h) — p(z, D)f(.’L‘)
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(3.49)
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p(z — b, D)f(z — ) ~ pla, D) (z) =
= [ (U@=h=-1) -1 - 1) - (fe =) - F}a(e.s)dy

+ [ (e =h=9) = fla - D)ol = h.1) ~ @) dy
‘= Ii(z) + L(z).
Since from the mean-value theorem
l9(z — h,y) — g(z,y)| = |Rlg; (6, v),

for some 6, in view of condition (3.47) we obtain

L(z) < Jh| sup HHC =R =) = £~ Pllee

/ 1v1°9(6,v) dy
lyl<1

y]>0 lylo
+2pll e [ G6.9)dy < WISl
ly|>1
and therefore
”'[2”00 < h1+a—a 3.51
o < I fl,. (3.51)

To estimate ]llllel’ig we divide it into two parts

IIl(x)I a—o
e = ([ (G —h9) = S~ 1) = (e ~9) = Sbole ) dy

+ [ (@ —h=3) - flo = k) - (f=3) ~ F@)}alz. 1) dy)
lyl2[h]
h
I =h=)= S =)= (=) = e [*

< su
- |'y|>pO |yl ly|nté=e .
MG —h—y) = f( =)= (FC=h) = fF( oo, 1a [Z cdy
4+ sup sup [h| —
0<|hl<1 |y|> |kl |h|® |y|n+e
< Cliflla, B>,
and thus for all [h| <1 and some constant cp
.—h,D)f(- = h) — p(-, D) f(-
Sup “p( )f( aza p( )f( )”00 SCO”f”Ad- (3.52)
|h|<1 |R
Combining (3.52) with (3.50) we arrive at
. —h,D)f(- — h) — p(-, D) f(-
aup 1PC=BDIC =B =5 DOl 1 65
Ih[>0 1
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and together with (3.49) we obtain that
p(x,D): A2 = A,_q.

Moreover, we can see from (3.52) that

oo IpC = B D)FC = 1) = p(, DY C)leo

L, s =0, (3.54)

which gives us the statement of the theorem. O

Let (Xo, || - || x,) be a Banach space and X; C X, a dense subspace such that there is
amnorm | - || x, turning (X1, || -|lx,) into a Banach space and

Ifllxo < cllfllx, forall feXi.
For the following theorem is taken from [Kre| (see also [J1], Theorem 2.8.7).

Theorem 3.4.5. Let (Xo, || - ||x,) and (X3, | - ||x,) be two Banach spaces as above and
further let (Yo, ||-|lv,) and (¥1, |- |ly,) be two Banach spaces satisfying the same conditions
as Xp and X;. Suppose that T : Xo — X is a bounded linear operator such that Af € Y;
for f € X, and

”Af”Yk < Mk”f”Xk’ k =0,1.

Then A maps con‘cmuously Xy = [Xo,Xl]g into Y:q = [Y('),Yl]g, Where Xg and Yb are

complex interpolation spaces, and we have the estimate:
1Afllve < My=° M| fllx,, €€ [0,1]. (3.55)

Applying this theorem, we derive

Theorem 3.4.6. Let p(z, D) be as in Theorem 3.4.4, and assume in addition that for
t > a+ 1+ % the operator p(z, D) is such that

p(z,D): H'— H"™“ : (3.56)

continuously, where H® = H} is the Sobolev space of order ¢t. Then for p = %, s =
(1-6)0+6t, and 0 < 6 < 1 we obtain

pz,D): W — W™, (3.57)

where 0 < a <o < 1.
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Proof. We know from Theorem 3.4.4 that p(z,D): A — AS__, and for t > a +
1+ % the spaces H® and H'* are dense in CL. Then, since the last space is dense
in A and AY__, the space H? is dense in AQ and the space H'~% is dense in AJ_,,.
Therefore, applying Theorem 3.4.5 we obtain that p(z, D) is continuous from [A%, H?], to
[AS_,, Ht=%]4 for some 0 < § < 1. But by the definition of the space A9 the norm on it is
Il - lla, , therefore the norm on the space [A%, H?], is equivalent to the norm on the space
[As, H)g. For 0 < 0 < 1 we have A, = BZ, , (see [T1], §2.3.5), and since H* = B} ,,

then

—0)o+6
(Ao, Ho = [BS o0, B olo = By 377" = By, = W} (3.58)
Analogously
[Ao—a, H™%p = Wy~ (3.59)

Equations (3.58) and (3.59) gives us that for f € C§° it holds

lp(z, D) fllwg-= < cll fliwg, (3.60)

and since the set C§° is dense in both W,;~* and W}, then (3.60) holds for f € W;. DO
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Notation

General Notation

xt z,ifz >0, and 0, when £ <0
aAnb = min(a, b)
R real numbers
R™ Euclidean vector space of dimention n
R = R**! x [0, 00)
R L =R x(0,00)
C complex numbers
Im f imaginary part of f
Re f real part of f
supp f support of a function
D closure of a set D
1p characteristic function of a set D
A®) an operator A defined on a subspace of L,
D(A) domain of an operator A
R(A) range of an operator A
p(A) resolvent set of an operator A, Definition 1.1.14
R, resolvent of an operator A at A
(T1)t>0 one-parameter semigroup of operators, Definition 1.1.1
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Functions and Distributions

§,Fg Fourier transform of a function, (1.3)
' fi Fourier transform of a measure, (1.4)

L(f) Laplace transform, (1.7)

f*g convolution of functions
| fog composition of functions
:% f®g tensor product of functions, Definition 2.1.4, A
| A®B tensor product of operators, Definition 2.1.4, C

EX)®E(®Y) tensor product of spaces, Definition 2.1.4, B
| T subordinated semigroup, (1.6)
E p,{ subordinate convolution semigroup, (1.8)
I{ L(t) Gamma function
{ © oq(z,t) demnsity of one-side stable sernigroup of measures of order a, (1.9)
ealz, 1) Mittag-Leﬂ‘ler type function, (1.12)
E, p(2) two-parameter Mittag-Leffler function, (1.13)

Ju(2) (1.20)

I,(2) (1.21)
: K, () (1.22)
| A (dr) n-dimensional Lebesgue measure

6z(dz) Dirac measure, (1.2)
R = Re (xx(£))*
Wi Theorem 3.1.1
(D) pseudo-differential operator with symbol 1(£)

Yr(£) (2.40)
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p(z, D)

p(z,8)

’

67
py % (z)

pseudo-differential operator
symbol of a pseudo-differential operator p(z, D)
Gamma-transform, Definition 2.1.1
(3.1)

(3.6)

(3.2)

(3.7)

(3.8)

(3.9)

(3.14)

(3.15)

density of the Meixner process, (3.21)

Function Spaces and Norms

L,(G)
L(A,B)
Frp(R™,R)
lull7.,
S(R")
S'(R™)
HYp

B},

X,8,1
Hp)l

P,
Hp1+

Lebesgue space over a set G C R™ with respect to the Lebesgue measure A(dz)
space of continuous linear operators from A to B

Bessel-type potential space, Definition 2.1.3

norm in the space F,,(R", R), (2.2)

Schwartz space

dual to the Schwartz space

1-Bessel potential space, Definition 2.1.4

Definition 2.1.8

Definition 2.1.11

Definition 2.2.1
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g
Hpy
Byg

Wy

H* = H;
Ao

£l A
Ad
W(G, X)
[Xo, X1]e
C(R™)
Coo(R™)
C&L(R™)

- C°(R™) -

Coo(RE
C& (RE,
C5°(Rg4)
Ce°(R%)

Definition 2.2.1

Besov space

Sobolev space in L, of integer order s

Lo-Sobolev space of fractional order s

Lipschitz space of order «, Definition 3.4.1

norm in the Lipschitz space of order a, see (3.43)
Definition 3.4.2

p.16

complex interpolation space, (2.11)

space of continuous functions on R™

space of continuous functions on R™ vanishing at infinity
={f € C(R™), 8V f € Coo(R™), |I] < k}

space of infinitely many times differentiable functions on.R™ with compact support .
Definition 2.2.9
Definition 2.2.9
Definition 2.2.10, a

Definition 2.2.10, b
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