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Summary
In this thesis we study pseudo-differential operators of the form

- A ±  = —ip(Dx>) ±   -------, {x\ x n+1) e R q+ \
OXn + 1

where ip(Dx>) is an operator with real continuous negative definite symbol ip: Rn —► R, 
acting on functions depending on x'  € Rn. Further we consider the fractional powers 
(—A±)a , 0 < a < 1, of — A±. After determining the domains in L ^R o*1) of these 
operators in terms of Bessel-type potential spaces and studying some properties of these 
function spaces, we prove that with these domains — (—A±)a are generators of Lp-sub- 
Markovian semigroups. Then we extend this result and show that the operators

~ (~ A ± )a - p ( x ' , D x>)

also generate Lp-sub-Markovian semigroups, if the pseudo-differential operator p(x', Dx>) 
is (—A±)a-bounded and the symbol p(x!, £') of p(x', Dx>) is with respect to £' a continuous 
negative definite function. In the end we proved the continuity of the pseudo-differential 
operator with continuous negative definite symbol (with certain condition on the growth 
of the Levy measure) between the Besov spaces.
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Chapter 0 

Introduction

In this thesis we study pseudo-differential operators of some special type, and give con­
ditions under which these operators are generators of Lp-sub-Markovian semigroups, i.e. 
strongly continuous contractions semigroups on Lp, which have the sub-Markovian prop­
erty.

More precisely, we consider operators of the form

- A ±  = ±  > {x' ,xn+i) € R £ j \

where ip(Dx>) is an operator with real continuous negative definite' symbol '!/’: Rn —> M, 
acting on functions depending on x'  € Rn. Further we will consider the fractional powers 
(—A±)a, 0 < a  < 1, of —A±. We determine the domains in L ^R g^1) of these opera­
tors, and prove that with these domains — (—A±)“ are generators of Lp-sub-Markovian 
semigroups. Then we extend this result by proving that the operators

~ ( - A ± ) a -  p(x' ,Dx>)

also generate Lp-sub-Markovian semigroups, if the pseudo-differential operator p(x ' ,Dx>) 
is (—A±) “-bounded and the symbol p(x', £') of p{x', Dx>) is with respect to £' a continuous 
negative definite function.

We are interested in ■0-Bessel potential spaces H p s on the half-space RS+1 , 1 < p < 00, 
—oo < s < oo, ^  is a real-valued continuous negative definite function. Such spaces were 
defined in Faxkas, Jacob, Schilling [FJS1] on Rn, and they are some generalization of 
Triebel-Lizorkin spaces =  ifp), which are called Bessel potential spaces of order s. 
Our main references on function spaces are Triebel ([Tl] and [T2]), see also the books of 
Adams [A], and Besov, Il’in, Nikol’skii [BIN]. Such function spaces can be constructed 
as spaces of functions which can be approximated by sequences of smooth functions with 
finite support (see Triebel [Tl]) or as sets of functions which together with their (fractional) 
derivatives belong to some Banach space (see Sobolev [So], Lizorkin [Liz2], [Liz3]); see also 
Nikol’skii [N2], Besov [Bel], [Be2]).
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However Bessel potential spaces can also be defined as in Bagby [Bag] or Aronszajn 
and Smith [AS]. Namely, in this paper the spaces Hp are defined as the images of the 
spaces Lp under certain operators, i.e.

J . f  =  F _1((i +  |x|2 +  i t ) - s'2f ) ,  i e E " , i e R ,

(see[Bag]), or
Ga/  =  F - 1((l + |x |2)-* /2/ ) ,  z € R " ,

(see [AS]). For the extensive references on Bessel potential spaces as domains of Riesz and 
Bessel potentials we refer to the survey of fractional derivatives and integrals of Samko 
et al. [S], see also Rubin [R] for a lot of results on mapping properties, restrictions and 
extensions of fractional integrals and derivatives, etc.

We want to define the 5ft-Bessel potential spaces on the half-space Rq^1, where 3? =  
-Re(x±(£))a > X± = and ip is a continuous negative definite function which sat­
isfies certain assumptions. The assumptions we need (see A l  and A2, Assumption 2.1.17) 
are such that the function eLCLar9 x is an Lp-Fourier multiplier (for Fourier multipliers see for 
example Triebel [Tl], and also the paper of Lizorkin [Lizl]). This enables us to show, that 
the (x±(£)) ““Bessel potential space (i.e. the space constructed with the complex-valued 
continuous negative definite function (x±(£))a ) is equivalent to the 5ft-Bessel potential 
space (i.e. the space constructed with the real continuous negative definite function 5ft). 
Since the set RJ+1 has a boundary, we have (see for the case of Bessel potentials Triebel 
([Tl] .and [T2]), also. Lions,. Magenes. [LM], in the. special case P .=. 2) two possibilities how 
to define the 5ft-Bessel potential space on Mq+1;

i) as -the space of restrictions to Rg^1of functions in JET̂ ,s(Rn+1);
ii) as Hp+ -the space of functions from i7^ ,s(Rn+1) which have support in Rq^1-
As soon as we have defined these spaces, many questions arise, i.e. the dense sets

in and in Hp+, the problems of extensions to H ^ ,s(Rn+1) and the restriction to 
the initial spaces, the embedding and interpolation results, isomorhic mappings, etc. Such 
problems for Sobolev spaces, Triebel-Lizorkin spaces, Besov spaces, and many others, were 
studied a lot. See Triebel [Tl] and [T2], the books of Adams [A], Besov, Il’in, Nikol’skii 
[BIN], Nikol’skii [N2] for the Lp-theory of Sobolev spaces. In particular for methods of 
restriction and extensions across the boundary and embedding theorems we refer to Lions 
and Magenes [LM] for the L 2 theory of Sobolev spaces. Bennett and Sharpley [BS] is a 
good reference on interpolation theory, see also the references given there. As far as our 
task is concerned, we solve these problems for Hp+ and in Hp+ ■

We also consider the Lipschitz spaces in order to find conditions under which a pseudo­
differential operator (which satisfies additional assumptions) is continuous between some 
Sobolev spaces (W* = B*p, s is not integer, see [T2]). For the Lipschitz spaces we refer 
to Krein [Kre], Stein [S2], see also Kufner, John and Fucik [KJF], and Triebel [Tl].

The results on function spaces enable us to solve some boundary-value problems related
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to the equation

(A + ( - A ± ) a)f(x)  = g(x), x = (x' ,xn+i) e
f e D ( ( - A ± )a), g e L p(R l+1), 0 < a < l .

As the domains of (—A±)a we take H ^ 3 and Hp+ ■ For the solutions of boundary-value 
problems for elliptic differential operators in we refer to Taira [Ta] and Edmunds, 
Triebel [ET], see also Lions and Magenes [LM], Hormander [H] for the case p =  2.

Now we turn to the probabilistic part, namely, to applying these results on function 
spaces to construct an Lp-sub-Markovian semigroup. However, it is not trivial to associate 
a Markov provess to an - sub- M arko vi an semigroup. It was done in the case p = 2, see
[FOT].

To construct a random process (Xt)t>o means to give a triple (Cl,P,P(dx)),  where 
ft is a set, T  is a a-algebra on ft, and P(dx ) is a probability measure. To construct 
a Levy process, i.e. a process with stationary and independent increments, continuous 
in probability, this complicated problem becomes easier, since the characteristic function 
E[el^Xt] of a Levy process X t has a very special form: it can be expressed as (see for 
example Jacob [Jl], or Bertoin [Ber])

E[e*Xt] = e-W®,  £ G Rn, t > 0,

where is a continuous negative definite function. It is known that any continuous 
negative definite function ^ ( 0  has a Levy-Khinchin representation:

= c  + i ( f , 6) +  ^  qijtitj + f (1 -  e .g) v(dx),
i j ±:l J Kn\{°} 1 +

where c > 0, b £ Rn, the quadratic form Y^i,j=l Qij&Zj positive semidefinite, and u(dx) 
is a Levy measure, i.e. it is a measure such that

/  (1 A |x |2) v{dx) < oo.
JRn\{Q}

For the processes with independent increments we refer to Skorokhod [Sk], see also the 
classical treatise of Gikhman and Skorokhod [GS2].

To construct a random process one may use probabilistic approaches, i.e. knowing its 
sample paths, for example solving stochastic differential equations, see ltd [I], or Gikhman, 
Skorokhod [GS3], or analytical approaches, solving Kolmogorov’s equation, see Feller [Fe] 
and Dynkin [Dy]. The approach we will use is the second one, namely we will construct a 
semigroup of operators (Tt)t>o having a generator (A, D(A)):
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Certainly, if we obtain a sub-Markovian semigroup, i.e. a strongly continuous contraction 
semigroup in Lp such that 0 < u < 1 a.e. implies 0 < Ttu < 1 a.e., then we may associate 
a Markov process ((Xt)t>o, P x)xeRn with (Tt )t>o- This process and the semigroup are 
linked by

for the transition function. However in both relations one has to take into account certain 
exceptional sets.

Not all operators with continuous negative definite symbols are generators of strongly 
continuous contraction semigroups. To be a generator of a strongly continuous contraction 
semigroup an operator A  must satisfy the conditions of the Hille-Yosida Theorem. We 
will follow the formulation of this theorem given in Jacob [Jl], or Pazy [Pa], for a different 
formulation of it see [GSl]. In addition, for an operator to be a generator of an Lp- 
sub-Markovian semigroup, it is necessary to be a Dirichlet operator: it must satisfy the 
inequality:

For the Dirichlet operators we refer in the case p = 2 to Ma and Rockner [MR], Bouleau, 
Hirsch [BH], and [Jl] in the general case. Moreover, having a generator A  of an Lp-sub- 
Markovian semigroup we. may. perturb. it by an A-bounded Dirichlet operator B, and the 
operator (A 4- B,D(A))  is still a generator of some sub-Markovian semigroup. For such 
perturbation results we refer to Pazy [Pa], Jacob [Jl], [J2].

In the first chapter we provide definitions and results from the theory of one-parameter 
operator semigroups. We give the definitions of Lp-sub-Markovian semigroups, Dirichlet 
operators, and quote the Hille-Yosida theorem, which gives us the necessary and sufficient 
conditions under which a closed operator is a generator of a strongly continuous contrac­
tion semigroup. The theory of subordination in the sense of Bochner gives us a way of 
constructing new semigroups starting with a strongly continuous contraction semigroup 
(Tt)t>o and a convolution semigroup of measures {r]t)t>o with supports in [0,oo). Such 
convolution semigroups of measures correspond to so-called Bernstein functions, which 
will play a great role in the second chapter. We also provide some examples of Bernstein 
functions, one of them, namely, f ( x ) =  x“ , 0 < a  < 1, corresponds to the one-sided stable 
semigroup of order a , (cra (x, t) dx)t>o, which are the the probability measures (which have 
“Levy stable” densities aa(x , t )) related to an a-stable process (see Ibragimov, Linnik [IL] 
for more about such processes). We only list some properties of the stable density func­
tions (cra (x, t))t>o, which are important for us, and discuss related Mittag-Leffler-type 
functions, see Podlubny [Pod]. In the end of Section 1.1 the definition of Bessel functions 
is given in order to provide our work with examples in Section 3.2.

In Section 1.2 after some preparations we prove for two generators (A, D{A)) and 
(B,D(B))  of strongly continuous contraction semigroups in Lp(Rn) and Lp(Rm), respec-

Ttu(x) =  E x(u(Xt))

or with u = xa  we find
Pt ( x , A )  = CTt X A ) { x )
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tively, that the closure of the operator A @ B , defined on the product space D(A)® D(B ), 
is a generator of a strongly continuous contraction semigroup, which is sub-Markovian, if 
(.A , D{A)) and (B , D{B)) generate sub-Markovian semigroups. A similar result for Feller 
semigroups was proved in Krageloh [Kr].

In Section 1.3 we give the definition of a pseudo-differential operator, and of A-bounded 
operators. Actually the restriction in Definition 1.3.1 that 0 < e < 1 is not necessary for 
the A-boundedness of an operator Q (see [KK] or Pazy [Pa] for a more general definition of 
A-boundedness). It is essential when we want to prove that having a generator (A, D(A )) 
of a sub-Markovian semigroup in Lp, the perturbed operator (A +  Q, D(A)), where Q is 
A-bounded with 0 < e < 1, is a generator of an Zp-sub-Markovian semigroup too.

Section 2.1 is devoted to the studying of -IR-Bessel potential spaces on Rn+1 and on 
the half-space Rq^1, where =  R e(x± (0)a > X±(0 =  V’CO ±*£n+i, and 'i/j is a con­
tinuous negative definite function. First, we show, that under the conditions stated in 
Assumption 2.1.17 the functions ezaT9X, 0 < I m z  < 1, are Lp-Fourier multipliers, which 
enables us to find the domains of operator (—A±)a , symb(—A±) — x±  in £ p(Rn+1), and 
show, that the operator (—A±)a is an isomorphism between Hp ,s and Hp 's~2 (or between

Hp^ and , since the result that ezar9X, 0 < I m z  < 1, is an Lp-Fourier mul­
tiplier gives us also the equivalence of the spaces H ^ ,s and ’2, see Remark 2.1.23). 
Next we obtain an interpolation theorem, which says that we can obtain the space Hp '2 
by complex interpolation between the spaces Lp and H x'2,1, see Theorem 2.1.27. Further, 
we define the spaces Hp± and Hp± on Rq^1 (see Definition 2.21), and prove that the 
operators (—A±)a are isomorphisms between and H ^ f ~ 2 as well as between Hpj? ■ 
and Hp -̂S. In the proof of the first statement we use the same method as given in the 
proof of Theorem 2.10.3 [T2], and the proof of the second statement is based on the fact 
that the spaces Hp-£ are the factor spaces of H ^ ,s with respect to Hp± .

The proofs of the existence of the retraction and the corresponding coretraction are 
different to those in Triebel [T2], because the method given there is not applicable in our 
situation. But we can construct the isomorphisms from the spaces H ^ ,s, Hp+ and Hp+ 
to the classical Bessel potential spaces (on the whole space Rn+1 and on the half-space 
R S I1). and in such a way we can reduce our problem to the problem already solved.

We also prove embedding and interpolation theorems for and (see Theo­
rem 2.2.9, Theorem 2.2.15 and Remark 2.2.16), and find dense sets in these spaces (The­
orem 2.2.10).

Chapter 3 is devoted to constructing Lp - sub- M ar kovi an semigroups.
While checking the third condition of the Hille-Yosida theorem, i.e. the solvability of 

equation (1) for any g G Lp (Rq^1) with some boundary conditions, we see that different 
boundary conditions lead to different semigroups. We consider two types of boundary 
condition, namely, Dirichlet and Neumann boundary conditions. We find a representation 
of the Lp-sub-Markovian semigroups, generated by — (—A±)“ , 0 < a  < 1, with some 
domain in Lp(Rq+x), with these boundary conditions, as well as the correponding resolvent 
operators.
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First we consider the case a  =  1, in which the operators — A± = —il){Dxi) ±  ■>
(,x x n+\) £ R £+ \ are defined on the product spaces f ^ ,2(Mn)®iTp!+(Ro+) and f f ^ ’2(Rn)<S> 
Hpt+(Ro+). Theorem 1.2.3 gives that the closure of (—A+, H^ '2®Hp+) and (—A +, H^ '2® 
JTp +), respectively, with respect to the graph norm of A+, generates Lp-sub-Markovian 
semigroups. In both cases we find the corresponding semigroups and the resolvent op­
erators. In the first case we consider non-zero Dirichlet boundary conditions, and zero 
Neumann boundary conditions in the second.

The results obtained in Chapter 2 give the necessary background to extend the case 
a = l t o O < a < l ,  i.e. to prove that the operators — (—A+)a on some domains are 
generators of Lp - s ub- Markovian semigroups, and we find these domains. More precisely, 
we find in Chapter 2 the domains D((—A±)a) of — (—A±)a, and Theorems 2.2.5 and 
2.2.6 give that (—A ± )a is an isomorphism between these domains and L^R™^1), which is 
essential when we solve the boundary value problem (1). Therefore, we have all necessary 
tools to prove that the operators (—(—A±)a , L>((—A±)a )) are the generators of Lp-sub- 
Markovian semigroups, for different D((—A±)a) C Lp(Ro+1).

Since we know the semigroups generated by (—A±, D(A±)),  subordination in sense 
of Bochner gives us the candidates for semigroups generated by (—(—A ± ) a , D((—̂ 4±)a )) 
(with some boundary conditions). As in the case a = 1, different boundary conditions 
lead to different semigroups, see Theorems 3.1.4, Remark 3.1.2 and Theorem 3.1.5. In 
Chapter 3.2 in order to illustrate our work we gave a few examples of such generators and 
semigroups.

. . . In Chapter. 3.3 we proved that ;an operator (—(—A ±)a, P ( (—A.±)a)) .perturbed by 
(—A ±)“-bounded pseudo-differential operator still generates an Lp-sub-Markovian semi­
group. We also give a few examples of such pseudo-differential operators.

Finally, in Chapter 3.4 we proved that a pseudo-differential operator with negative 
definite symbol is continuous between the Lipschitz spaces of order A, 0 < A < 1, if we 
pose a condition on the growth of the density of the corresponding Levy measure. This 
result leads to the continuity of such a pseudo-differential operator between the Besov 
spaces Wp. For the case of elliptic pseudo-differential operators see Edmunds, Triebel 
[ET].

I would like to thank my supervisor Prof. Niels Jacob and the head of the department 
Prof. Aubrey Truman for their warm support while working on my PhD-thesis, and I am 
grateful to my supervisor Prof.Niels Jacob for his guidance and a lot of highly inspiring 
discussions.

Also many thanks to Prof.Aubrey Truman and to Dr. Rene Schilling who argeed to 
be the internal and the external referees.



Chapter 1 

Preliminaries

1.1 Sub-Markovian semigroups. Basic defini­
tions

We refer to the books of Jacob [Jl] and Yosida [Y] in presenting some definitions and 
theorems from the theory of one-parameter semigroups (see also the monograph of Hille 
and Phillips [HP]).

Let (X, || • || )x  be a real or complex Banach space.

D efinition 1.1.1. A. A one-parameter family (Tt)t>o of bounded linear operators Tt : 
X  —> X  is called a (one parameter) sem igroup of operators, if To =  /  and Tt+S = T t oTs 
hold for all s, t > 0.

B. We call (Tt )t>o strong ly  con tinuous if

lim ||Ttu -  u\\x =  0 t-» o

for all u G X.
C. The semigroup (Tt)t>o is called a con trac tion  sem igroup, if for all i > 0

imn < i

holds, and we denote by ||Tt|| the operator norm IITtHx.A’-
D. We call a strongly continuous contraction semigroup (Tt)t>o on Lp(Rn, M), 1 < p < 

oo, sub-M arkovian  if for all u G Lp(Rn, M) such that 0 < u < 1 almost everywhere (a.e.) 
it follows that 0 <  Ttu < 1 a.e.

D efin ition  1.1.2. Let (Tt)t>o be a strongly continuous semigroup of operators on a 
Banach space (X, || • ||x)- The g e n e ra to r A  of (Tt)t>o is defined by

A u := lim ——— -  strongly, t-»o t
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with domain

D(A) := {u G X| lim —-  exists as a strong limit.}

P ro p o sitio n  1.1.3. A. For each strongly continuous contraction semigroup {Tt )t>o on 
X there exists a closed operator A with domain D{A), dense in (X, || • ||x), which is the 
generator of (Tt)t>o-
B. For each t > 0 the operator Tt maps D(A)  into itself.
Conversely, if (A, D(A)) is the generator of strongly continuous semigroup on X , then A 
is a closed operator and D{A) is dense in X.  (See [Jl] or [Y]).

We are especially interested in sub-Markovian semigroups and their generators. For 
the semigroup to be sub-Markovian it is necessary and sufficient that its generator is a 
Dirichlet operator, see Definition 4.6.7, [Jl].

D efinition 1.1.4. A closed, densely defined linear operator A  : D(A)  —> Lp(Rn,R) , 
1 < p < oo, D(A)  C Lp(Rn,R), is called a D irich let o p e ra to r if for all u G D{A) the 
relation

f  ( J u ) ( ( u - l ) +)p 1 d x  < 0 (1.1)
JlRn

holds.

. P roposition  1.1.5.. Suppose that a Dirichlet operator (A, D[A)) on Lp(Rn, R), 1 < p < 
oo, generates a strongly continuous contraction semigroup (Tt)t>o on Lp(Rn, R). Then 
{Tt)t>o is sub-Markovian.

The next proposition is the consequence of Theorems 4.6.11 and 4.6.12, [Jl].

P ro p o sitio n  1.1.6. Let (A, D(A)) be a Dirichlet operator on Lp(Rn,R). Then it is 
dissipative, i.e.

||Au A u ||p ^  Allwllp

for all u G D{A) and A > 0.

Now we can formulate the necessary and sufficient conditions for the operator (A, D(A)) 
to be the generator of a strongly continuous contraction semigroup, see for example [Jl], 
Theorem 4.1.33. Denote by R{A) the range of operator A.

T heorem  1.1.7 (Hille-Yosida th eo rem ). A closed linear operator (A ,D{A)) on a 
Banach space (X, || • ||x) is the generator of a strongly continuous contraction semigroup 
{Tt)t>o if and only if the following conditions hold:

1. D(A) C X  is dense;

2. A is a dissipative operator;
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3. R (A — A) = X  for some A > 0.

In Chapter 2 we will deal with the subordinated semigroups. As a preparation we 
present already now some definitions, see [Jl].

Define by 6y (dx) the D irac m easure  at y

=  V1Aa (1-2) (.0, y $ A

which has the property that

f{x)8y {dx) = f ( y )L<G

for all functions which are locally integrable (with respect to Lebesgue measure) on some 
domain G, y E G.

D efinition  1.1.8. A family (fit)t>o of Borel measures on Rn is called a convolution
sem igroup on Rn if i) //t(Rn) < 1 for all t > 0; ii) fis * fit =  Ht+s, s , t  > 0  and fiq = 8q',
iii) fit —> <50 vaguely as t —► 0.

The convolution semigroups are closely related with negative  defin ite  functions, 
i.e. with functions ip : Rn —► C such that ^(0) > 0 and the function £ i—> (2Tr)~n^2e~t^ ^  
is positive defin ite  for t > 0. Recall that a function u : Rn —> C is positive definite if for 
every fceN , A i,. . . ,  A* EC , and for any vectors £i E Rn we have

k
^  ! u (£i ~  — 0.

i , j  =  1

Denote by g the Fourier transform of a function g G Li(Rn),

p(f) =  (2tt)_ti/2 f  e~lixg{x)dx,  (1.3)
J Rn

and by fit the Fourier transform of the measure fit'.

MO = (2* rn/2 f  e~**M<lx)- (1-4)J Rn

For Fourier transforms we refer to [RS2].

T heo rem  1.1.9. For any convolution semigroup (fit)t>o on Rn there exists a uniquely
determined continuous negative definite function ip : Rn —i► C such that

= (27r)-n/ 2e - ^ (0, t > 0  and ( G R n (1.5)

holds and the converse is also true, i.e. for every continuous negative definite function ip 
there exists uniquely determined convolution semigroup, such that (1.5) holds. (See for 
the proof [Jl]).
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Taking a convolution semigroup, o supported by [0, oo) and a strongly continuous 
contraction semigroup (Tt)t>o we may define the su b o rd in a ted  sem igroup

p O O

T?f(x)  = /  Tsf(x)r)t (ds) as a Bochner integral. (1.6)
Jo

By Theorem 4.3.1. [Jl] the semigroup (T^)t>o is again a strongly continuous contraction 
semigroup. There is a one-to-one correspondence between (r}t)t>o and some special class 
of functions, called Bernstein functions.

D efin ition  1.1.10. A real-valued function /  G C°°((0, oo)) is called a B ern ste in  func­
tion  if

/ > 0  and ( - D ^ < 0

holds for all k G N.

Similar to Theorem 1.1.9 we have (see [Jl])

T heorem  1.1.11. Let /  : (0, oo) —> R be a Bernstein function. Then there exists a unique 
convolution semigroup (r]t)t>o supported by [0, oo) such that

L(rjt )(x) =  e-4- ^ ,  x > 0, t > 0

holds, and the converse in also true.

Here L(f)(x)  and L(rj)(x) denote the Laplace transform (see [Pod]) of the function /  
and of the measure rj respectively:

pO O  pO O

L (f) (z ) = e~ztf (t ) dt, L(rj){z) =  / e~ztr}(dt), (1.7)
Jo Jo

where the measure 77 is such that supp7y C [0,00) and f£° e~xsr)(ds) < 00 for all x > 0.
Therefore if ip is a continuous negative definite function with convolution semigroup 

(Ht)t>o, and /  is a Bernstein function with convolution semigroup {vt)t>o> then the func­
tion f(ip) is again continuous negative definite, and the convolution measure which corre­
sponds to /(V>) is

pO O

f i{(dx)=  /  fis(dx)vt {ds). (1 .8)
Jo

We will give some examples of Bernstein functions /  which we will use later, and the 
corresponding families of measures {vt)t>o-

I. f ( x )  = x a, x > 0, 0 < a  < 1, which corresponds to the convolution semigroup 
(r}{ta))t>o. The family of measures r][a\ d x )  — cra(x,t)dx,  is called one-sided stab le  
sem igroup of o rd er a , and the functions <ra(x, t ), t > 0 , are called the Levy s tab le  
density  functions. For the properties of these functions see [Y], section IX. 11, or [Pod]. 
We only note some properties of cra (x, t ) which are necessary for us.
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1. The Laplace transform of <ja(x,t), t > 0 with respect to x  is

pO O

/ e~xzcra (x, t) dx =  e~tz , R e z  > 0; (1.9)
Jo

2. The Laplace transform of cra (x, t), x  > 0 with respect to t is

[  e~4M<7a (x, t) dt = e°L̂x '> ^ ; jJ L >  oj (1-10)
Jo ~LL

where

- p x g f r  ( . . . )

is the derivative of the M ittag-Leffler type function ea(x , //), ii > 0:

OO /  \  Qck

ea (x,ii) —  E a<i { - f i y a ) =  x  >  0. (1.12)
I S  r (aA: + x)

Here
OO L

s ^ )  =  g f ( 5 ) t T « ’ “ •/ J > 0  (L13)

is the M ittag-Leffler function. For the properties of such functions see [BE], 
vol.3, §18.1'..........................................................................................................................

3. The Laplace transform of — in x  is

re!a( x ^ i)l
-v>

1
n + za

, R e z  > 0; (1-14)

4. The Laplace transform of ea(x , fi) in x  is

z
Lx^ z [ea(x,fi)] =  R e z > 0 .  (1.15)

We also note, that only for a  =  ^ we know an explicit expression for cra (x , t ):

1 t2
^ 1/2(x,t) = - ^ = x ~ 3/2t e ~ ^ , t , x >  0. (1-16)

For the following two examples see [Jl], Chapter 3.9.
II. The Bernstein function f ( x )  =  ln(l +x)  corresponds to the convolution semigroup

of measures
vt {dx) =  A(1)(dar)x(0iOo)(^) (1.17)
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where X^ (dx )  is one-dimensional Lebesgue measure.
III. The Bernstein function f ( x ) =  1 — e~xs corresponds to discrete measures, namely 

the Poisson semigroup with jumps of size s, i.e.

00 t k
e~* 1̂' 18)fc= 0

For later purposes we will need a subclass of Bernstein functions.

D efin ition  1.1.12. A function /  : (0, + 00) —► R is called a com plete  B ern ste in  func­
tio n  is there is a Bernstein function g such that

f (x)  = x 2L(g)(x)

holds for all x  > 0, where L(g) is the Laplace transform of function g.

For the following statement see [Jl], Theorem 3.9.29.

L em m a 1.1.13. A function /  is a complete Bernstein function if and only if it is a 
Bernstein function having the representation

pO O

f{x)  =  a +  bx +  / (1 — e~sx) p(ds), x  > 0,
J  0+

where a, b  > 0, the measure /jl is given by g,(ds) = m(s) ds , and the density m(s) satisfies

poo
m(s ) =  / e~tsr(dt), s > 0 

J 0+

and r{dt) is the measure on (0, + 00) which satisfies

f 1 r(dt) f°° r(dt) ^
L ~ r + h  — < 0 ° '

While solving the equations of the form

(A/  — A)u =  u, v € X,  u E D ( A ) ,

we need to know what is the resolvent set of the operator (A, D(A)), defined on the 
Banach space X  (see for example [B]).

D efin ition  1.1.14. The resolvent set p(A) of A  consists of all A € C such that XI — A is 
surjective and one has a continuous inverse (AI  — A)-1 defined on R(XI  — A) =  X.
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Knowing the strongly continuous contraction semigroup generated by the operator 
(A,D(A)),  we can construct the resolvent R \  := (A — A)~l , A G p{A) (see [Y], IX.4, or 
Lemma 4.1.18, [Jl].

Lemma 1.1.15. Let {Tt)t>o be a strongly continuous contraction semigroup on the Ba­
nach space (X , || • ||x) with generator (A, D{A)). Then {A G C| ReX > 0} C p(A) and we 
have

pO O

R xg =  (A -  A y ' g  =  /  e - xtTtgdt  (1.19)
Jo

for all g G X  and Re X > 0.

In Chapter 2 we will find with help of this lemma the solution to the equation 

(\ + (-A)“)f = g, g e L p( RJ+1) 

for different extensions of the operator —(—A)a , 0 < a < 1.

In the end of this paragraph we want to give the definition and some properties of the 
function which will occur later in Chapter 2 while constructing some examples of strongly 
continuous semigroups. For the definitions below see [BE], vol.2, §7.2.

First we suppose that v is not an integer.
The function

00 / '_ 1  \ m  ( z \ 2 m+ 1'

...............................................................=  V + i ) ...........................................('1;20>m=0 v '
is called the Bessel function of order v of first kind, and the function

I v(z) — e ~ ^  Jv{ze%) (1-21)

is called the modified Bessel function of first kind. Further, the function

=  2 sin(i/7r) ~ I v ( 1 '22)

is called the modified Bessel function of third kind. For real v  and positive z  the 
functions Iu{z) are real, so for such v and z K v{z) is real too.

Note that
!£■(_„)(*) =  K„(z).

For v being an integer, v =  n, the function K n is defined as

K n (z) = lim K v{z) =  —■ r d l - v d lv I
dv dv J v=n

For many other representations of Bessel functions we refer to [BE], vol.2.
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1.2 Semigroups on product spaces
Consider the measure spaces (X, pi)  and (Y,p2) such that Lp(X,dp  1) and Lp(Y,dp2), 
1 < p < 00, are separable.

In this section we will study an operator of the type C = A  +  B, where the domains 
of A  and B, D(A) and D(B),  are in Lp{X,dpi)  and in Lp(Y,dp2) respectively. The 
theorem we will prove states that the operator (C,D(C)),  where D(C)  is the closure 
of D(A)  <S> D(B ) with respect to the graph norm of C, i.e. D{C) =  D(A) ® D(B),  is a 
generator of strongly continuous contraction semigroup, or even sub-Markovian semigroup, 
if (A, D(A)) and (B , D (B )) axe. To prove this theorem we need some notions of topological 
tensor products, see for the definitions the book of Treves [Tre].

D efinition 1.2.1. A. Let E { X ) and E ( Y ) be two spaces of complex-valued functions 
defined on X  and Y  respectively. We shall denote by /  ® g the function on X  x Y:

( f® g) (x ,y )  = f(x)g(y).

B. We denote by E{X)  ® E(Y)  the linear subspace of the space of all complex functions 
defined on X  x Y  spanned by elements of type f  ®g, i.e. a function h : X  x Y  —> C belongs 
to E(X)  ® E(Y)  if and only if there exist finitely many functions / 1, / 2, • • •, /n  € E(X),  
gi , 9 2 , • ■ • j 9n € E(Y),  n € N, such that

n
............................  h = ^ 2 f i ^ 9 i . . ...............................................................

i= 1

C. For the linear mappings A : E (X)  —> E(X)  and B  : E(Y)  —> E(Y)  respectively the 
tensor product A  <g> B  is a linear operator on E{X)  ® E { Y ), defined as

{ A ® B ) { f ® g )  = { A f ) ® { B g )

(see [Tre], Proposition 29.2).

For our purposes we will consider E(X)  =  Lp( X }dp 1) and E(Y)  = Lp(Y,dp2), 1 < 
p < 00. In this case for /  £ LP(X, dpi), g £ LP{Y, ^ 2)

II/® g\\P, x x Y  =  ll/l|p,x|Mlp,y-

Lem m a 1.2.2. Let E\  and E 2 be the dense subsets in Lp(X ,dp  1) and in Lp(Y,dp2)- 
Then, the set E\  ® E 2 is dense in LP(X  x Y, dpi  ® dp2 ).

Proof. From Corollary 39.3 [Tre] we can deduce that LP(X, dpi) ® LP(Y, dp2 ) is dense 
in LP(X  x Y, dpi ® dp2 ). Therefore, for z £ LP(X  x Y, dpi ® dp2 ) ,and e > 0 there exists 
h £ LP(X, dpi) ® LP(Y, dp2 ) such that

\ \ z -  h\ \p , X x Y  <
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Since h G LP(X, dfii) ® LP(Y, dg,2), it has the representation

n

h = ^>2fi ®9ii fi  € Lp(X,d^i) ,  g{ E Lp(Y,dg2), t =  l , . . . , n

for some n. Therefore in order to prove the lemma we may approximate each term fi<8>gi, 
i = 1 , . . . ,  n by a function from E\ <S> E 2. Since E\  is dense in LP(X, dg 1) and E 2 is dense 
in Lp(Y,dg2), for fo G Lp{X,dg\),  gi G Lp(Y,dg2) and an arbitrary e > 0 there exists 
<f>i G Ei, ipi G E 2, i =  1 , . . . ,  n such that

where K  is a constant which we will define later.
Consider fi  ® gi, i = 1 , . . . ,  n.

||f i ® 9 i -  <Pi ® 1pi \ \p ,XxY =  IIf i 9 i -  <Pigi +  lpigi -  <Pi1pi \ \p ,XxY <  \\9 i \ \p,Y\\fi  -  lPi\\p,X +

Setting K  = maxi=i i...)n( ||^ ||P)y, ||<^||p,x) we obtain \\fogi -  (pM \p,xxY  < for each 
i = Let v =  X)"=1 Pi ® i ’i- Then

I\ z — u|[p;X x y <  \\% — h\\p-XxY + ||/l— v\\p-x-xY < .........................................................
71 71 71

proving that E\  <g> E2 is dense in LP(X  x Y, dg 1 <g> dg2). □

Using Lemma 1.2.2 we can construct sub-Markovian semigroups on product spaces.

T heorem  1.2.3. Consider the operators (A,D(A))  and (B ,D ( B )), D{A) C Lp(X,dgi) ,  
jD(B) C Lp(Y,dg2), such that they can be extended to generators of strongly continu­
ous contraction semigroups (Xi(f))t>o and (T2(t))t>o on Lp{X,dg{) and Lp(Y,dg2) re­
spectively. Then, the closure (C, D(A)  <g) D(B)^ ^°) of the operator Co =  A  © B  = 
A  ® I x  +  I y  <8> B  with domain D{Cq) = D{A) <g> D(B),  generates a strongly continu­
ous contraction semigroup (T(t))t>0 on LP{X x Y,dg  1 <g> dg2)

Here | | / | |c  =  | |C / | |P ,XxY +  | |/ | |PljJCxy is the graph norm of operator C.

Proof. First we show that (Ti(t) <S>T2(t))t>o is a semigroup of contractions on LP(X  x 
Y, dpi 0  dg2).

t = l
n
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That (Ti(t) <g> T2(t))t>0 is a semigroup is clear if we rewrite Ti(t) <g> T2 (t) as

T\(t) ® T2(t) = (Ti(t) ® I y ) o ( Ix  ® T2(£)) =  (Ti(t) ® I) o ( /  <g> T2(t)).

Consider h G Lin(fi,gi) := {h : h = J2i=i f i®9h f i G TP(X, rf/xi); gi G Tp(y, d/x2)}- Since 
for y G y  we know that X)?=i f i ( ' )^2 (t)gi(y) G Lp(X,dg  1) a.e., and Ti(t) is a contraction 
then

ll(T1(i)®T2(«))h||'xxV' =  =
i = l

=  ||m ( t) (E /i® J i( t) f f i) l l? ,A - ||'y
4=1

— IIII ® v
i = i

and further, since for each x  G X  it holds that ^27=1 f i(x )9i(') ^ LP(X, d/i2) a.e., and T2 

is a contraction, then, by Fubini’s theorem

|| ||T2(t) ® 9i\\lx\\l,Y = II HT2 W ® QiW^y \ \ l x
4=1 i = 1

— IIII ^  fi  ® 9i\\p,y ||P)x  =  ll^llp.Xxy 
 1 = 1 ......................................................................................................................................

Since Lin(fi,gi)  is dense in LP(X  x Y, dg\ ® d/i2), the operators (Ti(t) ® T2 (t))t>o can be 
extended by continuity to a contracting operator T(t), t > 0, on LP(X x Y ,  dg, 1 ® dg2)- 

Now we will prove the strong continuity of (Ti ®T2)t>o- For h G Lin(fi,  gi) and t > 0 
we have

71
u rn ©  ® m m  -  m  < m m  ®

i—l
n

< ^ 2  l|Ti(t)/i ® T2(t)gi -  f iT2(t)gi +  f iT2(t)gi -  /t&HJ 
i—1

< i t m m  - MixmmK.Y + m ix m ^  - m uw-
4=1

Since (Ti(£))t>o and (T2 (t))t>o are strongly continuous contraction semigroups on LP(X, dgi) 
and on LP(Y, dg2) respectively, we can choose such 6 > 0, the same for all i = 1 , . . . ,  n 
such that for 0 < t < 6



and thus
||(T i( t)® r2( t) )h - fc ||J <  |  for 0 < t < 6 ,

which gives is that (T\(t) T2(^))t>o is strongly continuous on Lin(fi,gi).  Because of the 
density of this set in LP(X  x Y, dfi 1 <g> dfi2 ), for /  6 LP(X  x Y, dfi 1 ® dfi2 ) there exists h 
(let us take the same h as before) such that

11/ ~  ^llp.xxy < f  ■

Then for 0 < t < 6, since T(t) = Ti(t) ® 22(0 on Lin(fi,gi)

\ \ m f  -  /II? =  II -  T(t)h) + (T( t ) -  7)A -  /  +  All?
< ||T (t)(/ -  A)||? +  ||(T(t) -  /)A||? +  lift-/II?  < £.

Thus, (T(t))t>0 is strongly continuous on LP(X  x Y,d/j, 1 <g> d/i2). By Proposition 1.1.3 
there exists a closed operator (C, D(C)) which generates this semigroup. We will show 
that Di  =  22(A) ® 22(B) C 22(C) and C\Di = C. Take h = £ ? =i fi  ® Pi, /» € 22(A), 
gi € 22(B), i =  1 , . . . ,  n. For t > 0:

1 1 ^ ^  _  +  B)/l||> x x y  < £  (||(Z iM z A  _  ^ > * 1 1 ^ +
i=1

..........................+  ll^i (t)/i ® ( T2{t)gl ~ 9i r . B * ) \ Z j c x r +.

and choosing for e > 0 a 6 > 0 such that for 0 < t < 6, i =  1 , . . . ,  n,

1 \(Tl{t)f; - fi -  Afi)\\ix M\i,y < | | ( H M t o i  _ Bgi) \ \ i j firP,x <3n ,|V t Pi *"p,yL 3n

and
l|2"i(t)/i — /tll^xll-^Pillp.y ^ 0^

we get

11̂ 7 —~ ~ C h \\PP, x x Y  <£ for 0 <t<S,
and therefore Di  C 22(C). Since the closure of (A, 22(A)) and (B, 22(B)) generates a 
strongly continuous contraction semigroup on Lp(X,dfi  1) and on Lp(X,d/i2), then, by 
Proposition 1.1.3 Ti(t) : D(A ) —► 22(A), X2(t) : D(B) —► 22(B) and thus T(t) : Di  —> D\.  
By Lemma 1.2.2 D\  is dense in LP(X  x Y, d/i 1 <g> dfi2) and therefore by Proposition 4.3.6 
[Jl] 22i is a core for C, i.e. D\  C 22(C) and =  C. Then, by Theorem 4.1.40 [Jl] C 
and C generate the same semigroup, {T(t))t>o, and C =  C. □

Remark 1.2.4. Under the conditions of Theorem 1.2.3 the closure of the operator (C, 22(C)) 
is a generator of an Lp-sub-Markovian semigroup if (A, 22(A)) and (B , 22(B)) are.
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Proof. Consider h G LP(X  x Y,dpi  <8>d/r2), and a sequence (hn)n>o C Lp(X ,dp i) <8> 
LP(Y, dp2), such that hn —> h as n —> oo, hn = fi,n ® 9i,n• Since

m(n)

(Ti(t) ®T2(t))hn (x,y ) =  ^  Ti(t ) fi>n(x) ®T2(t)gitn(y)
i=i

and for all i, n

0 < Ti(£)/i,n < 1, 0 < T 2(% i(n < l  a.e. if 0 < /» ,„ ,& ,«<  1 a.e.,

then
0 < (Ti(£) ® T2(t))hn < 1 a.e. (1.23)

By the Riesz theorem (see for example [B], Theorem 4.3) there exists a subsequence 
(h'nfc)fc>o of (^n)n>o such that

(Ti(£) (8> T2(t))hnk -> {Ti(t) ® T2{t))h a.e.,

and therefore passing to the limit as k —» oo in

0 < (T i( £ )® r 2(£))/infc< l ,

we have, extending the operators (Ti(£) <8> T2(t))t>o to (T(£))t>o

........................................................... 0 <’T(t)'h'< 1 ' a .e .; ...........................................................

i.e. the semigroup (T(t))t>o is sub-Markovian. □

Remark 1.2.5. The statements similar to Lemma 1.2.2 and Theorem 1.2.3 were proved 
in the work of A.Krageloh, [Kr], for the Feller and strong Feller semigroups.

1.3 Some notions about pseudo-differential 
operators

An operator p(x, D) defined on Co°(En) is said to be a pseudo-differential operator with 
symbol p(x, £) if it allows the representation

p(x, D)f (x)  = (27r)_n/2 f  elxtp(x,£)f(£)d£, x  G Rn. (1.24)
J R n

In general it is not possible to find the domain of such operators in Lp in terms of function 
spaces. Later for our purposes we will consider such operators as perturbations of operators 
(A, D{A)), which are the generators of Lp-sub-Markovian semigroups. To do this we need 
the operator p(x, D) to be A-bounded.
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D efinition  1.3.1. Let (A, D(A)) and (Q,D(Q)) be two linear operators on the Banach 
space (X , || • ||x), such that D{A) C D(Q) and for some e £ [0,1) and /? =  /3(e) > 0

\ \Qf\ \x<e\ \Af \\x + m \ x  (1-25)

for all /  £ D{A). Then the operator Q is called A-bounded and e is called an A bound 
for Q.

Remark 1.3.2. Let (—A, D(A)) be a generator of a strongly continuous contraction 
semigroup on a Banach space (X , || • ||x). For 0 < a  < 1 the operator (—A)a is A-bounded 
and (1.25) holds for all 0 < e < 1.

(For the proof see [Jl], Proposition 4.3.25).
Adding an A-bounded operator to a generator (—A, D{A)) of an Lp-sub-Markovian 

semigroup we again obtain a generator of an Lp - sub- M ar ko vi an semigroup, see [J2], The­
orem 2.8.1:

Theorem  1.3.3. Let (—A, D{A)) be a pseudo-differential operator which generates a 
sub-Markovian semigroup in Lp, 1 < p < oo. If an operator — p(x, D) is Lp-dissipative, 
A-bounded, and if in addition (—A — p(x, D), D(A)) is an Lp-Dirichlet operator, then 
(—A — p(x, D) ,D(A )) is a generator of an Lp-sub-Markovian semigroup.

In Chapter 2 we will give examples of such A-bounded operators, where the symbol 
of it isacontinuous'negative definite function'satisfying's'ome additional conditions,' and' ' 
so (—A — p(x, D), D(A)) generates an Lp-sub-Markovian semigroup if (—A, D(A)) does.
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Chapter 2 

B essel-type potential spaces

2.1 Bessel-type potential spaces on IR"
We will start with ^-Bessel potential spaces on Rn. For the following definitions see [J2] 
and [FJS1].

D efinition 2.1.1. Let (T}pS))t>o, 1 < p < oo, be an Lp-sub-Markovian semigroup on 
Lp(Rn;R). We define the gamma transform (K-^)r>o by

 l ' " r°°..............................................................................
— / £r/ 2-1e- t r / p)udt, u £ L p {Rn;R).

(.2/ Jo

The following theorem shows a connection between the gamma transform of the 
strongly continuous contraction semigroup and its generator.

Theorem  2.1.2. Let ( T ^ ) t>o be an Lp-sub-Markovian semigroup on Lp(Rn;R) with 
generator (A^p\  D ( A ^ ) ) .  For all r > 0 and u € Lp(Rn;R) we have

V^p)u = ( / -  A {p))~r/2u.

In particular, each VrP̂ is injective!

(See for the proof Theorem 3.1.9 [J2]).
Since the operators V r P\  r >  0, are injective, we can give

Definition 2.1.3. The Bessel-type potential spaces associated with { T ^ ) t>o are 
defined by

JFr)P(Rn; R) :=  VrW (Lp(Rn;R)) (2.1)

with the norm
IMlFriP := \\v\\Lp for u =  Vr{p)v. (2.2)
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We are interested in the case when the Lp-sub-Markovian semigroup o is asso­
ciated with a continuous negative definite function ip : Rn —> R. Denote by (A^p\  D ( A ^ ) )  
the generator of such a semigroup, and we know (see [Jl]) that S(Rn) C D ( A ^ ) .  On 
5'(Mn) the generator has the representation (see Example 4.1.13, [Jl])

A ^ u { x )  =  — ip(D)u(x) =  — (27r)_n/ 2 f  elx'^,0(£)u(£) d£. (2.3)
J Rn

Further, since the representations of A ^  and A ^  coincide on S(Rn), for u € 5(Rn) we 
find

=  ( / -  A ^ ) - r/ 2u =  (J -  A(2))~r/2u =  V ^ u ,

and
l / ( 2 V ( x )  =  ( 2 7 T ) - " / 2  [  e i z  H l  + i > ( ( ) ) - r / 2 u ( ( ) d ( ,

J R"
which implies on 5(Rn) that

M l * , ,  =  1 1 ( 1  + ^ m r l 2 u \ \Lr  =  | | F - 1 ( ( l  +  V ' ( - ) ) , ' / 2 * ) l l i . p - ( 2 . 4 )

Consider the continuous negative definite function ip : Rn —;► R with the representation

V>(£) =  /  (1 ~cos(y-g))v{dy)  (2.5)
jRn\{0}

where the Levy measure i'(dy) is such that

[  (|y|2 A 1) v(dy) < oo.
jRn\{0}

We call a continuous negative definite function with such a representation a continuous 
negative defin ite  function  o f ty p e  1.

We will also consider continuous negative definite functions

X(0  = ±  i£n+i (2.6)

where -!/>(£') is of type 1, £' € Rn , £n+i e R. A continuous negative definite function with 
the representation (2.6) we will call a continuous negative defin ite  function  o f type
2.

D efinition 2.1.4. Let ip : Rn —► R be a continuous negative definite function having the 
representation (2.5). For s > 0 define the ^-B essel p o ten tia l space of o rder s as

H p s = H p s{Rn) := J s iP(Rn) =  ( /  -  A(p)) - s/2(Lp(Rn))

(or D ((l -  A)s/2) =  H p s, A  is an operator with the symbol ip(£), see [J2], p.279-281).
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We will understand ip{D)u in the following sense: if 0(£), £ £ Rn, is a real continuous 
negative definite function with the representation (2.5), then the function

M O  = (1 -  cos(yO)1BH(o)(y) v{dy),JRn\{0}

is from C°°(Rn). Therefore F ~ l (ipR(fp)f((p)) is we^ defined for /  € S'(R), and

*!>{£>) f  = +  [  (u(x) -  u(x -  y)) v(dy).
J b%( o)

Thus ir_1((l+^(0)V(0) and ^ -1 ('0s(0 /(0 ) are understood as (l+ip(D))s f  =  ir-1((l+ 
0(O )S/(O ) and ('0(-^)))s/  =  ^ -1 (0s(0 /(0 )>  and it was proved that

(2.7)

see [J2] or [FJS2].

D efinition 2.1.5. Let 0  be of type 1, 1 <  p < oo, and s < 0. The space H p s(Rn) is 
defined as the closure of S(Rn) with respect to the norm

=  ll-F"1̂ 1 + ^ (- ))s/2w(-)IUp, s < 0 .  (2.8)

Lem m a 2.1.6. The Schwartz space 5(Rn) is dense in H p 3 for every 1 < p < oo, —oo < 
s < oo (see Proposition 3.3.14, [J2]).

For the spaces H p s, ip of type 1, the following interpolation theorem was proved (see 
[J2], p.295, Theorem 3.3.38).

T heorem  2.1.7. Let ip : Rn —► R be a continuous negative definite function, 0 < po,Pi < 
oo, so, si G R, 0 < 9 < 1. For s =  (1 — 6)sq 4- 0si, ^ it follows that

holds.

We will also be interested in some other spaces related to continuous negative definite 
functions.

D efinition 2.1.8. Denote by B ^ p(Rn), 1 <  p <  oo, s € R, the space

=  {u\u 6 5', ||(1 +  |V>(f)|),/2u(f)||ip <  oo} (2.9)

Here ip : Rn —>• C is a continuous negative definite function.
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Similar to Theorem 2.1.7 we can prove

T heorem  2.1.9. Let i/j : Rn —> C be a continuous negative definite function, 9 G [0,1], 
s =  (1 -  B)si + $S2 , i  =  +  pj> 1 ^ P 1»P2 < oo. Then

= (2-10)

Before we give the proof of Theorem 2.1.9, we recall some definitions taken from [J2], 
p.293-294, or [T2], §1.9.1.

Let G = {z G C; 0 < R e z  < 1}. For two complex Banach spaces' (Xo, || • ||x0) and 
(Xl, || • Hxj) both embedded into some Hausdorff space X,  set X  := X q +  X i, equipped 
with the norm || • \\x '■= max(|| • ||x0> || • l lx j  which is equivalent to the norm || • ||â 0 + 1| • ||x i> 
and which turns X  into a Banach space. Denote by W(G, X )  the space of all continuous 
functions u) : G —* X  with the following properties:

1) w\G is analytic and supze^ ^ ( z ) ^  < oo;
2) aj(iy) G Xo and u>( 1 +  iy) G X i, for y G R with continuous maps y i—> <jj{iy) and 

y •-» u ( l  +  iy).
3) \\v\\w(G,X) :=max(sup||w(iy)||A:o,sup||w(l + iy)\\x1) <  oo.
By the maximum principle (W (G , X), || • ||w(g,x)) is a Banach space. We call {Xo, Xi} 

an interpolation couple, and for any interpolation couple define its com plex in te rpo la­
tio n  space

...................... [Xo;Xi]<? {u'G X; - there- exists-u G W(G-, X)  such that u{9) =  u]  (2.11) •

and on [XojXij# we introduce the norm

IM|[x0,Xi]* := inf{||w||iv(G,x), w € W (G ,X)  and u(9) = u} (2.12)

W ith this norm ([Xo,Xi]e, || ■ ||[x0)Xi]fl) is a Banach space too.

L em m a 2.1.10. Let {Xo,Xi} be an interpolation couple and let 0 < 9 < 1. Then we 
have

IM|[x0,Xi]e =  inf {(sup ||w(iy)||xo)1_0(sup ||w(l +  ^ l l x j * }  (2.13)
y € R  y €R

where the inf ranges over all uj G W (G , X) such that uj{9) = u . □

P ro o f  o f T heo rem  2.1.9. Let X  := B £ pi +  B$>pa ^  S "(R n ), and G =  {z G C,
0 < R e z  < 1}. Let u e  Bo, Bo = [B^pi, B ^ p2]o, and choose any u; G W {G,X)  with
u(9) = u. We define on G

/ /\\ 2 (1 — z)st+ zs2
9„(z) = e<-*> (1 + |V>(f)|)-----^ -* F {(U(*)).
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It is clear that gu,(z) is analytic in G, continuous in G , and since su p ^ ^  ||u;(.z)||x < oo 
then goj(z) is also bounded in G. For y € R we have

g„(iy) =  + |V-(OI)i£̂ ( i  + W O ir ^ M n /) )

and
9u{i + w)  =  e{iy+1- e)\ i  + |^(0I)tw(,la "2)(i + MOI)*872̂ ^ 1 + iy))-

Since |(1 +  IV’D^I =  I exp{01n(l +  |'0|)}| < 1, /i 6 R, then

\\gUiy)\\pi <M ilM iy)||B -i
W , P  1

and
l | y « ( l  +  * y ) l |p a  <  M 2 | |o; ( 1 +  i y ) | | B «a .

• V .P  2

L etv(f) =  (l +  |V<0l)s/2^ ( w(0)- Since Lp =  [LPl,L P2]e for ± =  i ^  +  ^ ,  1 < P i ,P 2 < 
oo, 0 < 9 < 1, we have, using Lemma 2.1.10 for the spaces LPl and LP2, that

h i i B ^ H i ( i  +  H r /2^ w ) i i p  =  ii^ip =
=  inf {(sup ||y(iy)||Pi ) 1-fl(sup ||y(l + iy)\\P2)e}</eIV(G,S'(R”)) y&R y£R

g( 6)=v

.....................................$ .(su p j|^ (iy ) ||p ;)1_fl(sup \\gu {\  +  iy)\\P2)9
y £  R ‘ 2/ 'e R ............................................ ; .......................................................

< M } - 0M$(sap\\uj(iy)\\B*i )1_*(sup ||w(l +  iy)\\BaJ  Y
3/GR *-pi yg R  V,'P2

and applying again Lemma 2.1.10 now to the spaces B ^  and B ^ p2, we obtain

IMIbj„  <

Now we prove the converse imbedding. Let g be an arbitrary function from W{G , S"(Rn)), 
9(0) = v> 9{iy) € LP1 (Rn), g( 1 +  iy) e LP2(Rn). Define

u a(z) =  e(z_0)2(l +  |^ (0 I ) (1 Z)S* Z°2 Fd9(z))-

We have for y € R

ivg(iy) = e(ty~d)\ i  + 1-0(01)v(sia a2)d  +  MO I)sl/2Fdy(iy))

and
«,(1 +  iy) = e ^ +1- ^ ( l  + |V-«)|)M£̂ ( 1  + W 0 i r /2f{(p(l +<»)).
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and then, again applying Lemma 2.1.10 we have

inf {(sup||o;(iy)||Bn  p  *(sup ||u;(l +  iy)||B-2 )*}
I £ W ( G , X )  y £  K V-.Pl y £ R  V-.P2
u (6 ) —u

< (sup||ws (is/)||BM Y  ®(sup||£Js (l +  iy)||B«3 )e 
ye R veR * ,P3

< Mj"®Af|(sup ||p(iy)||Pl)1_0(sup ||p(l + iy)\\P2)e,
y e R y€  R

and then

Thus p C  Bo, which completes the proof. □

D efin ition  2.1.11. Let * =  *+(£) =  ip(?) +  i£n+1 or * =  X -(0  =  ^ ( O  -  i£n+1 be a

where i7p(R) =  { / G LP(R), / '  G LP(R)} is a classical Sobolev space of order 1, and || • ||a 
is the graph norm \\Af\\p + \\f\\p of the operator A  with symbol symb(-A)  =

To proceed further we quote some results from [J2] and [FJS1] to show that if ip is 
of type 1, then (-ip(D), H p 2) generates an Lp-sub-Markovian semigroup. We can also 
state this for a function-of type 2,- namely that- {—A, H p 2,1)-, symb(A)■ =  x,  generates an 
Lp-sub-Markovian semigroup.

Consider first the case when ip is of type 1.
In Theorem 2.1.15 [FJS1] or Theorem 3.3.11. [J2] it was proved that for 1 < p < oo 

D (A ) =  H p 2, and S^R71) is an operator core for (—A , H p 2), symb(-A)  =  ip(£).
Since for ip : Rn —► C-a continuous negative definite function, the operator A, symb(-A)  

=  ip, satisfies on C'o°(Rn)

and extends from Co°(Rn) to D(A)  with (2.14) (see Example 4.6.29, [Jl]), it is a Dirichlet 
operator on D(A) =  H p 2, and therefore it is dissipative on H p 2 (see Propositions 4.6.4- 
4.6.12, [Jl]). In Corollary 3.3.13 [J2] it was proved that for t , s  > 0 and 1 < p < oo

continuous negative definite function of type 2. We define

=  H p s,1(M.n x  R) := H p s(Rn) ® H ^ R ) 1 U s > 0

(2.14)

(I  +  A)s/2 : H p t+S H p t

is bijective, continuous with continuous inverse. Then, the equation

( I + A ) u  = f

u G H p 2, f  G Lp, has a unique solution.
Summarizing the statements we listed, we deduce
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T heorem  2 .1 .12 . Let 1 < p < oo, and consider the operator A, symb(-A)  = ijj, if) is 
of type 1. The operator (—A , H p 2) is a generator of a strongly continuous contraction 
semigroup on Lp(Rn) which is sub-Markovian.

The next theorem which we need later on we have taken from [J2] (Theorem 3.3.18).

T heorem  2.1.13. For u £ S(M.n) and 1 < p < oo the estimates

hold and by Lemma 2.2 (2.15) extends to all u £ H p 9.

Consider now the operators of type 2. For example, let symb(—A ) =  +  i£n+i-
Since ,0(£/) is of type 1, then (—i()(Dx>), H p 2) is a generator of an Lp-sub- Markovian 
semigroup.

and then it is closable (see [G], Theorem II.2.6). Taking the closure of 5(R) with respect

where the equality is understood to hold a.e., and /  £ Hp. Thus, all conditions of Hille- 
Yosida theorem are satisfied, and therefore we have proved

semigroup which is sub-Markovian.

Note that the main point in this lemma is that we have a precise knowledge of the 
domain of the generator.

Take now the tensor product of spaces H p 2 and Hp, H  = H p 2<g>Hp , and consider the 
operator —A  on the closure of H  with respect to the graph norm. Applying Theorem 1.2.3 
to the operator (—A, H p 2,1) we obtain

7o ( | | F - V / 2u)||p +  |M |P) < \\u\\Ht ,s < 7 l ( \ \ F - \ r /2u)\\P +  H ip) (2.15)

Consider the operator — ̂  on S'(R). We can see, that — ̂  is the conjugate operator 
to 4-  : for u, v £ ^(M71)

to the graph norm of — ̂  when considered as a closable operator in Lp we deduce that
the domain is / f p.- 5 in.ce the symbol of — ̂  is a cpntinuous negative definite
function, — ̂  is a Dirichlet operator on Co°(R), and therefore it is a Dirichlet operator 
on Hp, and we conclude, that it is dissipative on Hp. Further, we can see, that

is the solution to the equation

A/ +  f  — g, g £ LP(R)

L em m a 2.1.14. The operator generates a strongly continuous contraction
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T heo rem  2.1.15. The operator (-A , H*’2'1) is the generator of an Lp-sub-Markovian 
semigroup.

The equivalence of the graph norm of —A and the norm

Ill/Ill =  \\(I + A)f\\p = \ \ F - 1( i  + i > ( i ' ) ) f ) - f L n+i\\p = Ili^a+V-tO +  iCn+i)/)!!., 

= W F - ' R e x i d f  +  i F - 1I m x ( t ) f \ \ v  =■ ll/Ik,2,1

follows from Theorem 3.1.25 [J2] for r =  1:

T heo rem  2.1.16. Let (—A, D(A)) be the generator of an Lp-sub-Markovian semigroup, 
and 0 < r < 1. Then for all u £ D(A) we have

Now we want to extend Definition 2.1.4 to the case when ip is not only real.
Let (A, D(A)) be a generator of a strongly continuous contraction semigroup (Tt )t>o 

on the Banach space X.  Then we can define its fractional powers:

where 0 < a  < 1 (see [S], equations (5.84), (5.86) and [Y], equation IX.11.5).
Formulas (2.16) and (2.17) are called Balakrishnan’s formulas.
Consider the fractional power of — A±, symb(—A±)  =  ip(£') ± i£ n+i =  X±(£)> where 

ip is of type 1. On 5(Rn) the operators (—A±)“ have the representation

where £ =  (f',&i+i) and x  =  (x ' , x n+i).
We need an additional assumption on ip.

A ssum ption  2.1.17. Let ip be a continuous negative definite function such that 
A l. ip(£) =  /(<£(£)), where /  is a Bernstein function, and <p, 0(0) > 0, is a continuous 
negative definite function such that for allz, 1 < i < n, exists and does not depend on 

, i 7  ̂j  (we will denote by g[ the derivative of function g(£i, . . . ,  £n) with respect to &);

(2.16)

and
.(2-17)

(n+1)/2

or
( - A ± ) af (0 = ( C ) ± ^ i ) “/(f)

A2.
| < oo, VA;, k =  1, . . . ,  n.
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Such functions (p exist, for example, Assumption 2.1.17 is satisfied for ip = / ( I  4-1£|2), 
where /  is a Bernstein function.

Exam ple 2.1.18. The continuous negative definite functions

V>«) =  (1 +  \ £ f 0 < / ? < 2  (2.19)
,/-(?) =  ln(l +  (1 +  \Z\2f ' 2), 0 < /3 < 2  (2.20)

V<£) =  (l +  I£|2)W2M 1 +  (1 +  I ? i y /2), 0 < P <1  (2.21)

satisfy Assumption 2.1.17 A2.

For the last example we refer to [FL]. For a continuous negative definite functions 
(x±(£))a > where x±(£) =  we will consider {x±)a -Bessel potential spaces,
ifp ’* and H®'*, where 9? =  Re(x±(€))a , 1 < P < oo, t G R .

We claim that the operators (—A±)a, symb{—A ± ) =  x±-> are isomorphisms between 
JTpX±' ’* and i7pX±' ,t~2.

For the proof we need the notion of a Fourier multiplier (see [J2], Definition 3.3.34, or 
[Tl], §5.1).

D efin ition  2.1.19. Let 1 < p, q < oo. We call a distribution m  G S " ( R n ) a Fourier 
multiplier of type (p, q) if

IMImp,, := su p { ^  M  ^  ^ 5(Rn} < oo (2.22)

The set of all Fourier multipliers of type (p, q) is denoted by Mp>q.

In order to prove that a function is an Lp-Fourier multiplier, we will check whether 
the conditions of Lizorkin’s Fourier multiplier theorem (see [Lizl]) are satisfied:

T heorem  2.1.20. Let m  G I / o ^ R 71) be a function such that

sup |(£ • <9)am(f)| < c (2.23)
feRn

for all a  G Nq, ctj G {0,1}, j  =  1 , . . . ,  n, and (f • d)a =  (£i.<9i)ai • . . .  • (£ndn)an• Then m  
is an Lp-Fourier multiplier for 1 < p < oo.

Now we are ready to prove our result.

T heorem  2 .1 .21 . Let % ± ( £ )  =  ±  i £ n + i ,  €  =  ( € ' > € n + 1) £  R n + 1 , and ip : R n —> R  is
a continuous negative definite function, which satisfies A 1 and A 2 . Then the functions 
ezargx± are ^ p_Fourier multipliers for z  G C, — 1 < I m z  < 1.
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Proof. We will consider x+ — X> the proof for x~  is similar. First, we prove that 
e1 argx is an Lp-Fourier multiplier, 1 < p < oo.

Since

gi arg x — _L I  =  -------- 1._______I_____ ^ n+1____  = In+ iJn
\ x \ + ixi w + a +i ) i/2 w + a + i )i/2 0 0

we have to prove that I q and Jo are Tp-Fourier multipliers. To do this let us check the 
conditions of Theorem 2.1.20.
First consider I q . Differentiating I q with respect to £n+i, we obtain

dlQ £n+1^ T
=  h

din+l W2 + a + l )3/2

with
sup |£n+i / i |< o o ,  

feRn+1

and

e t i  *n+ u  ^ + ^ 2+1)3/ 2 +  w + e n+, ? /2) 2 '

Analogously,

dJo 1 £n+1 j
' ■ ■ = • > 1 1

ae»+i. w 2 + a +1)1/2 ( r + a +i f 2

and we see, that 

Further,

sup |fn+ iJi| < oo. 
£€Rn+1

dJi W i  , 3£ n + i# i  T“  +  , ,0 .  TT7T7 =  *>2'
(^2 + a + l ) 3/2 (^2 + a +l)5/2

Note, that since ifj satisfies A 1 and A 2 , and since for a Bernstein function f{s)  we have 
(see [Jl], Theorem 3.9.34)

\ f {k)(s)\ < ^ f ( s ) ,  s >  0, k >  0, 
sK

we obtain the estimates:
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where &*, i > 1, are some constants.
Therefore, since ?/>(£) > 0; £ £ Rn+1, we obtain:

SUP |£l£n+1^2| < Ul SUp { 1 ^ 1 + 3 1 ^ 1 )  < 00,
^ R " + i  fG R n+1 L <P <P J

and

sup Ififn+iThl < ai sup { |& ^ 1 | +  3 | ^ | } < o o ,
fgRn+i £GRn+1 L J

where ai is some constant.
To see the general rule, let us find the third derivatives of I q and Jo- We obtain, that

d h  _  c f  02,i 30V,20iSHl = c /  _  
^n+1i%  S W l  ( 0 2 +  ^ + l ) 3/2 ( 0 2 +  £n + l)5/2

600201 +  0 202,1 15'03'0201
(02 +  ^ +i)5/2 ~ ( 0 2 + £ 2+i)7/2

+ } = / 3 -

and

%  _  0201 +  02,1 3'02020 i

» 2 + ^ + i ) 3/2 W2 + a +i)5/2 
^n+lWV’l + V'2,1) 15?2+it/’2V>2V,'l _  .

+ g + i )5 /2 ' ' ' W2 +  f 2+ i)7/2' '

By A 2 we have

and

sup l^flfn+l-fel < a2 sup 1 2 | < oo
fG R n+1 £GRn+1 0

sup |6ClCn+1^3| < 02 sup | ---- 75-----1 < OO,
£l& 0 102

£GRn + 1 ' ' £GRn+1 * 0 ^

where <Z2 is again some constant.
QT Q T

We see, that the derivatives and consist of the terms with the representation 
(up to multipliers which may depend on £n+i):

0*01 -, r  =  l ,2  and Z < 2r  +  1,
« ’2 + & n ) (1+2r)/2! 

and the representation of the derivatives and contains the terms

0 zP ( 0 ',0 ',0 " i )

(0 2 + ^ + i )(1+2r)/2
, r  =  l ,2 ,3  and Z < 2 r  +  1.
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Here P(ip'i, i>2 , ip'2 1 ) a polynomial expression of the first degree by each variable: it 
consists of the terms ^4^2 and (with some coefficients, maybe dependent on £n+i)- 
This leads to a proposition, that all terms of k-th derivatives and are of the form

ip^Pk(0i • • • )
^ 2  + f 2+1)(i+2r)/2 ’ r = l , 2 , . . . , h  and Z < 2 r  +  1, (2.25)

where Pk(ip'i, • • • > 'i/’fc, • • •, V’l^ i )  is a polynomial expression of the form

’ E  c(( l (2-26)
£1H Ms =fc

where all the derivatives in \  are with respect to different variables, and in
-0(h), i =  1 , . . . ,  5 the derivatives in appear exactly once.
We will prove by induction that (2.25) holds for all k, 1 < k < n. For m = 1 we already 
showed, that (2.25) holds. Suppose that (2.25) holds for m = k, and let us consider the 
case m  = k +  1. Differentiating (2.25) with respect to £fc+i, we obtain

l i ’l - 14’'k + 1 P k +  4>, m k + l P ^ l+1i >'k + .

( r + e n+1 )<i+2^ 2 + ( 1 + 2 r V + e H )(i+2’'>/2+i ( ’

(of course we skip differentiation of ip1 if I = 0). Since ip'k+1Pk and (Pk)k+1 again consists 
the terms of form (2.26), we see, that for m =  fc +  1 our proposition is also true. Therefore

RT & 7
by induction we obtain that and are of form (2.25).
Having (2.25) with I < 2r +  1 and with P*, calculated as (2.26), we see, that since

we come to the estimates (we denote by Ik+i =  and by Jk+i = for 1 < k < n:

sup |& .. .flfn+l/fc+ll < OO (2.28)
^eRn+1

and
SUp |& • ■ • £l£n+l«-A:+l | OO (2.29)

£eRn+1
and thus

sup |& . . .  C iC n+i^.t^n+ie" argx| < 00, k = 1 , . . . ,  n. (2.30)
feRn+1

We may write n+leta'Tgx as

5fe*X1i ln+ic<“ gX =  etargxQ((argx)/, (arg*)", • • •, (argx)(fc)),
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where Q (•, is a polynomial of arguments arg x ^ \  i =  1 , . . . ,  A:, with some complex 
coefficients. Similarly,

^ . t 1i,n+ie' aargX =  emargxQ i((argx)', (a rg * )" ,. . . ,  (arg*)(A:), a), - 1  < a  < 1,

and

aw ; n + i ee“ *x =  e<’“ 'g*< M argx)', (a rg * )" ,. • (argx)<4>,0), 6 S R,

where the polynomials Q i and Q2 are different from Q only in coefficients, which now 
depend on a  and 6 respectively. Note, that since —̂  < argy < j ,  then the function 
|e0argx(£)| js bounded for all £ € Mn.

Therefore, since (2.30) holds, then

sup |£fc .. •6 & i+ i4 ttV ,n+ ie*0!arSXl < 00 (2-31)fgRn+1

and
sup |& .. .£i£n+idfcfc+1in + ie<?argXl < OO, (2.32)

fGRn+l

hold for alTA; =  1 , . . . ,  n. It can be seen from the calculations that the order in which
we take the derivatives does not matter. We considered the situation when the derivative
in £n+i appear in the begining, but it can be proved that the estimates will be the same 
if it appears in between or in the end; the order of the derivatives with respect to 
i = 1 , . . . ,  n does not matter.

Therefore we have proved, that ez argx, 0 < I m z  < 1, H ez G M, is an Lp-Fourier 
multiplier. □

Recall that 3R =  Re(x±(£))Q, 0 < a  < 1, is again a continuous negative definite 
function.

T heorem  2.1.22. Under the conditions of Theorem 2.1.21 the operator (—A ±)a : H ^  —> 
H ^ - 2, symb(—A±) = x±,  is an isomorphism.

Proof. Consider x+ =  Xi and denote by 6 = #(£) = aargx(£)- Prom the proof of 
Theorem 2.1.21 (see (2.28)) we can see that sin 6 is an Lp-Fourier multiplier. We will 
prove that CQgg is an Lp-Fourier multiplier too, which gives us that tan# is an Tp-Fourier 
multiplier, because for u G Lp

< ^ W F - H s m e i O f m i p  < OzMp-

Note that for 0 < a  < 1 we have |#(£)l =  argx(01 < and cos#(£) > 0 for all 
f  G R n + 1 .
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We find that

, sin0 f , ( k - 1) 
COS0 1 'COS2 0  1- ' 2

✓ 0j_02(cos3 ^ — 2sin0cos0>. (fc-2) 
COS4 0  )k, . . . , 3

_  Pfc (01, 021 • • • » flfc» • • •» f̂cfc)--1 ’ sin C0s g) 
cos2fc 0

where P& is a polynomial (compare (2.26))

iW i ,0 2 ......... ^  C - , i ' sine ' cosS) =  E
ii H Ms =fc

such that the coefficients c(Zi,. . . ,  ls) depend on 0 only as sin1 0 and cos-3 0, 1 < i, j  < k, 
and all the derivatives in 9 ^  . . .  are with respect to different variables.
Further, since 6 =  0(0  =  a a r g x (0  =  &arctan , x (0  =  VKO) +  i£n+i> for i = 
1 , . . . ,  n, (V>(0) > 0, 0  G Rn in view of A l)

^  tn+llp'i ot£n+=  - a -
(V>2 + £n+ l)1/2 V>2 t y 2 +

and for i  =  n.+ 1 we h a v e ........................ a
n+1 «-2 +  £ h ) 1/2’

which gives that O0((O> i =  l , . . . , n + l i s  bounded for all £ E Rn+1. 
Therefore we conclude (see the proof of Theorem 2.1.21) that

sup
£GRn+1

/  1 \  (*)
T—  > \coso

= sup £l . . . £n

0(0
Pfc(0i, 02, • • •, 0fc, • • •, 0fc*)„lli sin 0, cos 0)

s i  • • • s n  9 L. /)
I COS U

< c(a ) V '  sup | f i .. -Cn0(/l) • • -0(Zs)| < oo,
/l+-+«s=fce6Rn+1

i.e. is an Lp -Fourier multiplier.
Further, since

Xa(0  =  ^ (fX 1 +  itan(0(O)), 
and 3?(0) ^  0, then, by Theorem 2.1.13

l | i r - 1 ( x “ « ) / « ) ) l l H ? . . -  <  c i | | ^ - 1 c s e < t - 2 ) / 2 » ( i  +  i t a n f l ) / ) | | p

< < csII/IIb j ,.
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and, since x  a =  ^  X(1 — itanQ) cos2 9

l|i?- I( x - “ (0 /(« ))llB « .t <  c4| |F - 1(5R‘/ 23 i - 1( l  -* ta n f l)c o s 2 f l/) | |p 

< < cell/ll^*.,,

which proves our theorem. □

Remark 2.1.23. Since cos(aargx) is a Fourier multiplier by Theorem 2.1.21, we can see, 
that the spaces Hp's and Hjfi ,s coincide, and thus (—A±)a : Hp^ ’* —► ’* 2, is a
continuous, bijective mapping with continuous inverse.

Theorem 2.1.24. The operator (—(—A±)a, H p ’2) is a generator of an Lp-sub-Markovian 
semigroup, symb(—A ± ) =  x±-

Proof. From Theorems 2.1.22 and 2.1.16 we deduce, that the graph norm of (—A ±)a 
is equivalent to the norm || • ||&,2 and Hp'2 is the domain of (—A±)a , and — (—A±)a is a 
Dirichlet operator (and so it is dissipative) on H ^ ’2.
We are going to use the following theorem, see [B], Theorem VIII.3.3:

Let Ei,  E 2 be two Banach spaces. If A  G L ( E i ,E 2 ) is invertible, and B  G L { E \ ,E 2 ) 
is such that ||B|| < ||A-1 ||-1 , then A  +  B  is invertible (here L {E \ ,E 2 ) is the space of all 
continuous linear operators from E\  to E 2 , and ||A|| means the norm of an operator A ,

.i.e . =  supii^u^! H ^ rr ll^ ) . ...............................................................................................................
This theorem and Theorem 2.1.22 give us that since (—A )a is bijective from H p ’2 to Lp, 
then for A : |A| < ||(—A)- a ||-1 the operator A +  (—A)a is invertible and therefore the 
equation

A/ +  (-A )°7  =  S

is uniquely solvable for any g G Lp, |A| < ||(—A)- a ||-1
So, we have that Ao +  {—A)a is invertible on H ^ ’2, |Ao| < ||(—A)~a |[-1 and then Ao G 
p(—(—A)a )-the resolvent set of — (—A)a . But then by Lemma 4.1.27 [Jl] (0,oo) C 
p{—(—A)“ ), and then the equation

A f  + { - A ) af = g

is uniquely solvable for all A > 0, g G Lp.
Thus, all conditions of Hille-Yosida theorem are satisfied, and the theorem is proved.

□

Remark 2.1.25. We can also see from Theorem 2.1.21 that if satisfies A1,A2, and 
TpiZ') > (1 +  l^'l2) ^ 2, then the function ^ is an Lp-Fourier multiplier.
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Prom Theorem 2.1.21 we see that the spaces H ^  ’* and H f ' 1 are equivalent, where 
x(C) — ' i p iO  +  ̂ n+i) ip satisfies A l  and A2. In order to make our notation less awkward, 
we will work with iiZ^-spaces, having in mind that all the statements that are valid for 
H ^ '1, are also true for

In the next step we will give a link between the spaces H*,2)1 and H ^ ’2. It is es­
sential that these spaces are the domains of generators of strongly continuous contraction 
semigroups.

For —A±, symb (—A±) = x±,  being a generator of a strongly continuous contraction 
semigroup, we can define (at least on 5(Rn+1) the complex powers (—A±)t(9, 6 € R, of 
—A± as a continuation of (2.16) to the the complex plane.

Considering the operator (—A±)lB on S^R71"1"1), we may calculate that

= (x±(?))“7«), ( s r " +i,

so in this case (x ± (0 )^  is the symbol of (—A±) i6.
Our next step will be the following lemma.

L em m a 2.1.26. Let ip be a, continuous negative definite function which satisfies A l  and 
A2. Then the operators (—A±)10, symb(—A ± ) =  x±  =  ^  ®fn+i> are bounded in
Xp(Rn+1) for all 0 G R.

. Proof.. Again we.will show that the. conditions of Theorem 2.1.20 are satisfied for 
X =  X+» the proof for is similar.
Let Iq =  {ip{£') +  i£n+1 )19■ We see, that

Ip - = iS(i9 -  1)(V> + if „ + i) " - W 2  + i0(i> + if„+1)1* - 1*  =  h,

=  i0(iO -  1 ){%0 -  2){ip -f i f n + i ^ V i V W  +  + i£n+i)ie~2

({(i6 -  l)lp2iIps +  1p'21p'zi} +  1p$ 1p2l) +  W t y  +  ^ n + l)t0_V321 =  72, ( 2 ‘3 3 )

+  t f n + l ) * ®  Y ,  C( 1' m l» * • • ’ • • •

. . . lP{mi) ■ .. .lP{mi)

{lp +  i£ n + l ) 1

where the sum is taken over alH, 1 <  I < k, m\  +  ... +  m/ =  k — 1, and the indexes j... 
such that in every term </>i^h4_1+...+mi+1 we have Jm(+mj_1+...+roi+1, >

(m \
jmi+mi- 1+...+m1 > -  > Jm4_1+...+m1+1, m the product • • ■
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j (THi) • / (77lj ) • I!
‘ ‘ ' t  +1’ ■ ’ • Jmi_i+...+mi+l • • • V j m i + m i - 1+ . . . + m 1+ l ^  ' • • Jmi_i+...+mi+l all
the indexes are different, and one of the indexes j m i+ i ,  jm i + m 2+ i ,  ■ ■ ■,jmi+---+m 1+1 equals 
k. Let us prove (2.33) by induction. For k = 1 it holds. Suppose (2.33) holds for k , and

f) T
let us see what we obtain in the case k + 1. Differentiating Ik =  ^ ~ 1 we obtain 

d l k  iQ^'k+l Ik , / ; \i0 ; n   ̂ / (m 1)
5̂ —7 = l . v .. +  ^ L  mi  - • • ■ ■ ■ ■ ■dffc + l ^  + *£n+l ^  Jmi•

4"rri£ — 1 +  +  Jm i j +  ...-f-m.2 + l?*** >3 m i_j-f*...+771^4*1 aJ’t I

(^ 4 i£ „ + i)z+1

+  + ^ n+l)t05 Z Ĉ >m l ’ • ■ + ■ • '

3mi + m i _ 1 +.. .+mi  +  l +  . . .+mi + l ‘ ’ ' ^jmj +m j_j  +.. .+mj + 1 1■ •• d m i _ ^  +..  ,+mj + l ' fc +  1

(V» +  * £ n + l )

One may notice, that the right-hand side is of the same form as (3.11). Therefore (3.11) 
is true.

Further,

fl(^  + ^ + 1 ) ^ 4  | / < . t  (i \( 1 \ 1 (™-i)  +{i> + <n+i) h . . .
d £ n + 1 i p  +  i U + i  ^  J m i '

;  + •  • ■H"77l i  + 1  * * *' y J m ^ ^  j  +  . .  . + m  j  4*3 J m i  4 * t t i j_  1 4-- • 4 ^ 1 4 * 1  »• • • y J m ^  j  4"* • . + 71114" 1

(ip +  i t n + 1 ) l+1

Thus, in view of (2.24) and A2, we have that

sup
feK’’1*1

£ l  ■ • -£ fc£n+1'  ^  fc
<9£n + l

< c sup
fgRn+i

£ 1  • • • £ fc< />  1 • • •

(pk <  00

for all &, 1 < k < n, and thus (x(£))^ is an Lp-Fourier multiplier for all 9 € M, which 
leads to the estimate

Note that for an operator —A  being a generator of a strongly continuous contraction 
semigroup the operator (—A )z , 0 < R e z  < 1 is an analytic function of z. To show 
this, consider again the representation of (—A)a via Balakrishnan’s formula (2.16). From 
Lemma 2.1.26 (—A)tG is well defined and bounded in Lp(Rn+1), then we may extend
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(—A)a to the strip G =  {z : 0 < R e z  < 1} in the following way:

r ( - z )  J o  a

“ a
_ i  r 0- ^ A T x - m x )
" r ( - z ) X  e . d \ -

= 7 T ~ ^  f  e~™(Teu - I ) f ( x ) d u ,  
f \ ~ z ) JR

and we can see that (—A)z is a bilateral Laplace transform (see [DS], VIIL2.1, p.642) in 
u of (Teu — I ) f (x) .  Since (Tt ) t>o  is a strongly continuous contraction semigroup, then for 
/  £ D(A ) the latter function belongs to L l°c(R):

f  \{Teu — I ) f  [x) \  du = f | TxfS X-l ~  f ( - ). | d \  for all —oo < a, 6 < oo.
J a  J e a ^

Therefore, (—A)2 is an analytic function in G as the Laplace transform of an Lj°c-function 
(see [DS]).
Later we will need the analyticity of (—A)2, —l < R e z < 0 ,  which follows, since the 
operator-valued function (—A)2-1, 0 < R e z  < 1, is analytic, and —1 < Re  (1 — z) < 0. 

Let x  satisfy the condition's of Lemma 2.1.26, and suppose we have a theorem such as:

T heo rem  2.1.27. Let D(A) be the domain of the operator —A, symb(-A)  =  x(£) =  
+  i£n+h satisfies A l and A2, and 0 < a  < 1. Then

P((-A )0).D((-^)1)]o = = D((—A)a).

(This theorem is a modification of Theorem 1.15.3 [T2], see also [See]).
Then, since D((—A)a) = H p ’2, 3?(£) =  Re(x(£))a > we obtain the following relation 

between H *’2,1 and H p ’2:

P roof o f Theorem  2.1.27 Let u e  Ho =  [Lp, H ^,2,1]a , X  = Lp +  if* ’2,1 and the 
space W{G , X )  as we defined before, in particular we have G — {z : 0 < R e z  < 1}. Define 
the function g(z) = e^z~a 2̂(—A)a~zf  for /  £ D(A) =  Hp'2,1. Note D(A)  is dense in 
D{{—A)a ). First we check that g(z) belongs to W(G, X).

1) g{z) is analytic (since (—A)2 is) and supze^  \\g{z)\\x  < oo (because /  £ D(A));
2) For /  £ D(A)  the inequalities

llsfe/)!!, =  \ \ e ^ \ - A r y ( - A r f \ \ p < c||(—A)“/||p  < oo;
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Ils(l +iv)||jr*.».i = \\e<'1+iy~a)( - A ) - i,> ( - A )*-1
<  C l | | ( - . 4 ) “ ~ 1/ | | j jx ,a . l  <  C2 \ \ ( - A ) a f \ \p  <  oo

hold, and g{iy) G Lp, g(l  +  iy) G H x,2,x.
Then by the definition of the norm in W (G, X)

\ \ 9 \ \ w ( g , x )  =  max{sup||^(i?/)||p,sup||p(l + i y ) | | i? x ,2, i}
y€R y€K

< c3| | ( - ^ ) “ / | |P.

Therefore, by the definition of the norm in the interpolation space (see (2.12))

WIWho < \\g\\w(G,x)

and arrive at
n / i k o < c 5 i i ( - A r / i i p .

For the proof of the inverse inequality choose ga(z) =  e^z~a^  (—A)zu){z), u(a)  =  u 
Clearly, ga (&) = {—A)au G Lp, and applying Lemma 2.1.10 to the space Lp (see also [J2] 
equation (3.218)), we obtain

||(—A)au||p =  inf {(sup ||p (^)||p )1_a(sup ||p(l +  M/)||p)a } 
y y

..................................................<.(sup|J^a,.(^)||P)1r a ( s u p ||^ ( l  +  iy)||P)a } . . .
y y

< c(sup ||o;(ty)||p)1” a (sup ||w(l +  iy)\\Hx.*.i ) a 
y y

and taking inf over all iv such that uj(a) = u we obtain

\ \ ( -A)au\\p < c|M|tf0

which proves our theorem. □

2.2 Bessel-type potential spaces on RS+
Now we turn to the half-spaces.

D efin ition  2.2.1. Let if) be of type 1 or 2. We define

H*'i = i f  : 3S 6 /  =  S|R;+}

with the norm
ll/IIV',3,-1- =  \\f\\lp,S,p,+ =  inf H^IU.S.P)

9€ H p 3, f = g  |Rn
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and
H * i  =  { / : /  6 H p ‘ , supp f C K +}

with the same norm as on H p s.
Similarly we can define the spaces H p j  and H p l .

R em ark  2.2.2. The space Hp'+ is a closed subspace of Hp+. Indeed, consider a Cauchy 
sequence ( f n ) n > i ,  f n  £ Hp+- For such a sequence there exists a function /  G Hp+ such 
that f n  —> /  as n —» oo. Therefore, by Riesz’ lemma, there exists a subsequence ( f n ( k ) ) k > i  

of ( f n ) n > i) such that / n(fc) —> /  a.e. as k —> oo. Suppose that there exists D  C Rq_, 
/\(«)(/)) > o (where is the n-dimensional Lebesgue measure) such that /  ^  0 a.e. in 
D. Then there exists at least one f n (k0) such that f n (k0) ^  0 a.e. on D ’ C D , A(n)(-D') > 0, 
which is a contradiction to that f n (kQ) £ -^ + -  Therefore, supp f  C Mq+ t°o, and thus 

is closed.

For the next definition we refer to [DS], 1.11, p.38, and II.4.21, p.72, or [Zhu], 1.1.8.

D efin ition  2.2.3. Let X  be a Banach space, and B  its closed subspace. The factor space 
X / B  is the set of all sets of the form x +  B, x  G X.  It is a Banach space with the norm

lllx +  Bill =  inf ||x +  z\\x-
z £ B

R em ark  2.2.4; Since H p l  is closed, we can take the factor-space of H p 3 with respect 
to Hp'l,  and this factor-space consists of sets /  +  H p l ,  and

and we can see, that the norm ||| • ||| is equivalent to the norm of the function /  in 
and therefore

H p ^  = H p s/ H p i ,  s g R .  (2.34)

Our next aim is to prove the lifting property of the operator (—A +)a, symb(—A +) = 
X+, in H *;l

Theorem 2.2.5. Let —oo <t < oo, 1 < p < oo. Then

(-A+)* : HU  -

isomorphically, where —A + is an operator with the symbol %+.

Proof. We will do similarly to Theorem 2.10.3 [T2]. Thanks to Theorem 2.1.22 we 
know that (—A +)a: Hp*  —> Hp*-2 . What we need to know is that if /  G C'o°(Rn+1) with
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supp/  C R £+ \ then supp(—A+)af  C Ro^1- For this we use the Paley-Wiener theorem 
(see [Y], p.226-229).

Let g G Cq^R) be such that suppg G (—00, 5) for some e > 0. Then we derive the 
estimate for the Fourier-Laplace transform g{z) of g , where z =  £ +  ir}\

J - 00 (2
exr)

e ( l - ( - A  )1' 2)Ng(x)dx

( i - ( - a  ) v y 9(x)dx

Leo (2tt)V2
g xri~ix£

(2.35)

(2 tt)V 2
(1 _  ( -A ) 1̂ ) ^ ) dx

<  C» we”*

for all N  G N and some constant C9jn- 
Consider

./R" J -00

Since the function iz + ^(£/), 2 £ C, has a root zo \ Re zq = 0, Imzo  = ipiZ') > 0, 
we extend (see [T], §3.1) the function (iz +  V,(£/))a /(£ /j z ) t°  the lower half-plane of C. 
Consider the rectangle {—k < R e z  < k, —N  < I m z  < 0}, where k , N  < 0. Since in view 

•of (2:35) for /  e  C £°(R n-+1), supp /■ C R n- x -(-oo,-e); ......................................................................

\(l + W )  + \z\)Nf { d \ z ) \ < C f ,N,ee ^

or

!/(£>*) I <
C f , N , e & e (2.36)

| ( l + ^ ' )  +  |* |)" |

holds for some constant CftN,e (uniformly in £', because we can make N  large, and the 
growth in £' in the denominator will “kill” the grouth in £' in the nominator).

The integrals along {Rez  =  —k, I m z  from —N  to 0} and {Rez  =  /c, I m z  from 0 to 
—N }  tend to 0 as k —> 00. Indeed, integrating along {Rez  =  —k, I m z  from — N  to 0} we 
obtain

r 0
/ ei ( x ' , a - i k x n+1- x r ^ _ ik  _ T +  ^ , ( ^ ) ) « / ( ^ j _ k + jT) d r  

J - N

<  Cf,N,e f °  
J - N

w ( t2 +  ( ^ ) - r ) y ;
1 +  </.«') +  (t2 +  A2)V2)W

dr,

and the right-hand side tends to 0 as k —» 00 by the Lebesgue’s dominated convergence 
theorem.
For the integral along {Rez  = k , I m z  from 0 to —N }  the estimate is similar.
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Therefore in view of the Cauchy theorem, we obtain

e i{x' , t ' )+ixn+1z ( i z  +  ^ ( f ' ) ) “ / ( f ' ,  z ) d z
■iN-k

/ —iN+oo
e i ( s ' , n + i z n +i z ( i z  +  ' ) ) “ / ( £ ' ,  z )  d z

- iN—oo

/ oo
ei { x ' £ ) + i x n+1T - N x n+i (i r  +  N  +  t / , ( £ ' ) ) « / ( £ ' ,  r  -  i N )  dr .

-OO

In view of (2.36) we have for some large N  and a constant C f tN,e

et ( * ' , m « n +iT-Ar*n+1 ( -T +  N  +  ^ ( £ ' ) ) * / ( £ /  r  -  i N )

^  C f iNiee~^£~ Xn+1 N̂ ( r 2 +  ( N  +  ip) 2) a / 2 

-  ’ |(i +  ^ )  +  ( r2 +  Ar2)1/2)JV| ’

and thus by the Lebesgue’s donimated convergence theorem we get

/ OO
gt(x ,£ j+tan+i*^ +  ijj(xi'))a f{£,', z) dz —> 0 as iV —> oo.

-OO

Thus, if /  € Co°(Mn+1) and supp /  C  Rn x (—00, varepsilon) then

+  lK«'))“/(f )) (s '.* » + i)  =  0, (2.37)

and letting e —> 0 we obtain (2.37) for /  G Co°(Rn+1), s u p p /  G Rn x (00,0]. By the 
density agruments

suppF -1 ((i£n+i + ^ ( f 0 ) Q7(£))0c',Zn+1) C  Rn x [0,00) 

for all /  G # * + . □

From Theorem 2.2.5 we immediately obtain 

T heo rem  2.2.6. Let —00 < t < + 00, 1 < p < 00. Then

{ - A - ) a : H ^ ~ 2 (2.38)

isomorphically, where — A -  is an operator with the symbol x~ ■

Proof. First, notice that since argx+ =  ~ ar9 X-i  we have

IjRe(x+)oc,t = H p e x̂~^a,t =  H^'*.

43



Similarly to the proof of Theorem 2.2.5 we can prove that

In this case we must go to the upper half-plane of C, and take functions f  G Co°(Rn+1) 
with supports in Rn x (—e, + 00). Since by Remark 2.2.2 it holds that H®’* = 
it follows that we have (2.38). □

Next we prove some density results and embedding theorems. In the rest of this 
Chapter we assume that all the spaces are defined on Rn or on the half-spaces Rq+ or

and the norms |M|i/,,s and =  \\(id + iPr (D))s/ 2il\\p are equivalent (see [J2], p.281-
282). For the next theorem see [J2], Theorem 3.3.28.

T h eo rem  2.2.7. Let ipi ,02 be of type 1. Further let s ,  r G R and 1 < p, q < 00. Then 
the continuous embedding

c_v ZT^2,r
V Q

holds if and only if m  =  (1 +  '02)r/ 2̂(l +  "0i )- s ^  € Mpq.

Using this theorem we can prove (see also Lemma 3.3.31 and Corollary 3.3.34 [J2]) 

T h eo rem  2.2.8. Let t, s > 0 and ip be of type 1. Then

Let ip be of type 1 and

l  +  V ’ « ) > c o ( l  +  | £ | 2 ) r o , 0  <  r 0  <  1 (2.39)

In Lemma 3.3.31 and the proof of Corollary 3.3.34 [J2] it was stated that

G Mp>q if t > s +  n.

where ipR^) i

(1 -  cos(y£))xB(o)(yM<fy)
Rn\{0 }

(2.40)

and H ‘+
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Proof. The first embedding follows from th e .definition of the space Hp '+ and The­
orem 2.2.7, since the operator of the embedding (id) does not change the support of a 
function.

From Theorem 2.2.7 we have

t n,
IMIl-p.t < s > ------- , (2.41)r o

Consider u as an extension of an element of (or Hp+) to Rn. Taking in (2.41) inf 
over all such extensions, we obtain the statement for and H p +. □

Note that if ip satisfies assumptions A l  and A2, then the statement of Theorem 2.2.8 
holds if

(i +  ^ « ) ) s /2 > ( i  +  ifi2)l/2,

see the proof of Theorem 2.1.21.
For /  e H, H  is a subspace of Hp, t > jj, define by restt f  the operator

„ * /  =  {/(*-, < » , « M  9 M 1 , 7 g - 0)}.
d x l~ * ]

where [x]- -denotes the largest integer, less then x. From Theorem 2.2.8 we can derive 
- another- embedding- th e o r e m .......................................................................................................

T h eo rem  2.2.9. Let 1 < p <  oo, ip is of type 1 and satisfies (2.39), s > n ,
k e  N. Then

and -  C£,(RS+)

where C* (RJ+) =  { / : / £  C* (RJ+), r e s t t f  = 0}, C*,(R?+) =  C* ( R " ) ^ ,  k +  a  <
t < sro — n.

Proof. From Theorem 2.2.8 we know that c-» Hp + and HPi+ > 77p,+ for
s > "\fQn • Since + (Mo+)>  ̂ ^ which follows from Theorem 4.6.2 [T2],

we have H*£  -  C£,(RS+) for s > ^ + f f i  + n .
Consider now Hpt+- Let t not be equal to ^ +  k, where k is an integer. Then by 

Theorems 2.9.3.a and 2.10.3.a [T2]

H tp>+ =  H tp>+ =  { f : f e H tp>+, restt f  =  0}

which gives us the second statement of the Theorem. □

Using Theorem 2.2.8 it is easy to find dense subsets in and H**.
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T heorem  2.2.10. a) The set Co°(Ro+) =  Q?°(Rn) |Rn is dense in H for all s > 0. 

b) The set Co°(R+) =  { / : / £  Co°(Rn) ,su p p / C R$+} is dense in H p ’+ for all s > 0.

Proof, a) From Lemma 2.1.6 we have that Co°(Rn) is dense in H p s. Let /  £ H p s. 
Then given e > 0 there exists ipo £ C'o°(Rn) such that | | /  — < £• Define g =  / | Rn ,

¥>i =  V?o|Rn • Then ||p — ĉ i ||v-,s,+ < 11/-<A)IU,s < e, which shows the density of C£°(Rft+)

in H*$.  °+
b) The proof follows from Theorem 2.2.8 and Corollary 2.10.3/1 [T2], in which it was 

proved that Co°(R+) is dense in □

Denote by L(A, B ) the space of continuous linear operators from A  to B, where A  and 
B  are normed vector spaces.

For the next definition see [T2], §1.2.4.

D efinition 2.2.11. Let A  and B  be two complex Banach spaces. The operator R  £ 
L(A, B)  is called a retraction, if there exists an operator S  £ L ( B , A) such that

R S  = I. (2.42)

An operator S  such that (2.42) holds is called a coretraction which corresponds to R.

Now we want to prove the existence of a retraction and a coretraction in the spaces
H P, + '

T heorem  2.2.12. Let l < p < o o ,  s £ R .  Then for all s there exists a coretraction from 
to Hp,s, and for all s, |s| < 2N  there exists a retraction from H ^ ,s to Hp +.

Before we prove this theorem we recall Theorem 2.10.4/2 proved in [T2].

T heorem  2.2.13. Let 1 < p < oo, —oo < s < oo. Then the mapping

S f = U ,  * „ > o
[0  xn <  0

is the coretraction from Hp + to H* which corresponds to the retraction R , which is the 
extension of an operator R  to a continuous operator from H* to #*  +, |s| < iV, where

N + l

R<p(x) =  X + ( x ) ( ( p ( x )  -  aM x'> ~ Xj xn))-
3 = 1

Here ip £ C'o°(Rn), x+ is the characteristic function of Rq+, 0 < Ai < • • • < Aiv+i < oo 
and the coefficients a,j are such that

d ‘k n+i Qk
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We also refer to Theorem 2.10.3.a [T2] in which it was proved that

J s f  — F  1(ixn +  (1 +  |x '|1/2)s/)

is the isomorphic mapping from Hp>+ to Hp~̂ .s•
P ro o f  o f T heorem  2.2.12. From Theorem 2.1.22 we can derive, applying (—A+)±a 

N  times, that (—A +)aN: H p ,2N —» Lp isomorphically, and then, from Theorem 2.2.5 
we have, that (—A +)aN: H®’2N —> Lp isomorphically. Then, using Theorem 2.2.13 and 
Theorem 2.10.3.a [T2] we can construct the diagrams

Ro

f j i b ,2 N  (-A+Y
K +  1-------- Jp ,+

Hi

R

H:p ,+

and
Eri/>,2iV

P

So

£ r ip ,2 N
H P,+

i - A + y

( -A+Y
Jp ,+

Hi

p ,+

•and without loss of generality we. can put. s =  2 N .in .the definition of ,JS,
Since all the operators are isomorphisms, Sq = (—A +)~aNJ2N S J 2 j^(—A +)aN is the 

coretraction from H ^ '2N to H ^ )2N which corresponds to the retraction 
Ro — (—A+)~aNJ2N R J 2N(~A+)aN- The same is true for the spaces Hp ^ 2N and 
H ^ ~ 2N. Then, after applying Theorem 1.2.4 [T2] we obtain that RoSo =  / ,  or that 
So and Rq are the coretraction and the retraction for the spaces Hp + and Hp ’s, |s| < 2N. 

□

[T2]:
The interpolation theorem for the spaces Hp + follows after applying Theorem 1.17.1/1

T h e o rem  2.2.14. Let {Ao,Ax} be an interpolation couple, and B  is a complement sub­
space of Ao -f Ai,  and the projection to B  is from L({Ao,Ai},  {Ao, -Ai})- Let F  be an 
arbitrary interpolation functor. Then ({.Ao fl B, A\  fl B})  is also an interpolation couple 
and

F({Ao n B,  Ai n £}) =  F({Ao, Ai})  n B.

(See [T2] for the definition of the complement subspace).
Then, if we take A 0 = H ^ so, A \  =  H ^ Sl, B  =  { / e  Ao +  Ax, supp /  C R++1} and 

since for finite s the restriction to B  is a retraction, we have
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T heorem  2.2.15. Let 1 < po,Pi < oo, -oo  < si, s0 < oo, 0 < 9 < 1, i  
s =  (1 — 9)sq +  9si. Then

r T r i K ,S o  r r i K . S i l .  _  r7 - iK ,s  
l P0,+ ’ Pi , +  i & P)+ '

R em ark  2.2.16. Since the space is the factor space of H ^ ,s with respect to H ^ '2
then for 1 < p0,Pi < oo, -oo  < si, s0 < oo, 0 < 9 < 1, £ =  +  s = ( 1 - 9 )sq+9s i ,
we have

The proof follows from the theorem below, taken from [T2] (see Theorem 1.17.2):

T heorem  2.2.17. Let {Ao,Ai} be an interpolation couple, and C  be complemented 
subspace of A\  + A 2, and Q is a projection on C  such that Q €  L{{Aq,  Ai}, {Ao, Ai}). 
Further, let F  be an arbitrary interpolating functor. Then {Aq/Aq n C, A \ j A \  D C} is n 
interpolation couple as well, and

T heorem  2.2.18. For all s , —00 < s < + 00, 1 < p < 00, ip is of type 1, the restriction 
from H p,s to is a retraction and for all N  there exists a coretraction which does not 
depend on p and s, |sj < N.

Proof. The proof of this theorem is a modification of the proof of Theorem 2.2.12 by 
taking the coretraction Si

instead of S, Si corresponds to the retraction Ri  -the restriction to the half-space Rq+ , and 
by applying the operators Iaf  =  F _1((l +  \i'\2) 1̂ 2 — i£n)sf )  and (—A_)±a to construct 
the retraction and coretraction between s p a c e s a n d  H ^ ,s. □

In the end of this section we give another consequence of Theorem 2.1.21.
Let ip be a continuous negative definite function. By the same argument as in the 

proof of Theorem 2.1.21 we can prove (if A l  and A2 hold for ip), that

F( { Ao / A0 n C, A 1/ A 1C})  =  F ( { A0, A1})/(F({A0, Ai } )  n C).

We only need to put A0 = H A i  = H®’*1, C  =  { /  G A 0 +  Ai,  supp /  C M++1}.

xn > 0 
x n < 0

(2.43)

is a Fourier multiplier, since

(2.44)
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Moreover, for a < b the function £ i—► M(£) is again a continuous negative definite function 
(see [J1], Corollary 3.6.14).

Similarly, the function

* « >  = <2-45)

where ip* is another continuous negative definite function which also satisfies A1 and A2 
els well as

dip <ip*< C2ip, (2.46)

is an Lp -multiplier. Indeed, we can calculate (as we did in the proof of Theorem 2.1.21) 
that (M i)^ } j +1 consists of the terms of the form:

 n „ , „
--------------------------- w + w ----------------------------’ 0 ^ r ^ n’

where

Pl(lpl{1\  • • • ,1p*(1\  • • • , 1p*^li , ^ ,  • • • , 1p[, ■ • • , ^Zt?..,l)

=  c( i i , . . . , is)ip(1̂ . . . ip^ip*^ii+i^ . . . ip*(i*\
li H =l

Since both ip and ip* satisfy A1 and A2, and (2.46) holds, we find

Pisup
feRn

£ l  • • - C l f n + l - < 00
(,b +  ip y

for all 0 < I < r < n +  1, i.e. Mi is an Lp -Fourier multiplier. We obtained .

C oro llary  2.2.19. Let ip\ and ip2 be two continuous negative definite functions satisfying 
A1 and A2, and such that

0 < C <  < d < oo.
1 + ^ 2

Then H $ 1,s = H$2's for —oo < s < o o ,  l < p < o o .

Proof. Clearly, from A1 and A2 the function

1 + ipi 
1+^2*

is n times differentiable, and the Corollary follows from the results above. □
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Chapter 3

Some generators of 
Lp-sub-Markovian semigroups

3.1 Generators of Lp-sub-Markovian 
semigroups

Now we can formulate results similar to Theorem 2.1.24 for the half-plane. Consider the 
operator —A+ with the-symbol x + (0 ' = ‘V,(C/)‘+  *£n+i; where 0  is of type-1 and satisfies 
A1 and A2. By Theorem 2.1.12 we have that (—0(DX/), H p 2) is the generator of an Lp- 
sub-Markovian semigroup. Further, (—pp,Hp+) is closed as well as (— ̂ , H p+), where

Hp + = H p<+ = C^°  ̂ ^ p ( R +) (see Theorem 2.9.8 [T2] for the definition of H sp + and 

Theorem 2.10.3.b [T2] for the proof that if s ^  n +  ^ then Hp+{Rn) =  H £ + (Rn)). The 
spaces Hp + and Hp + are dense in Lp{R+) (see the proof of Theorem 2.2.10) and since 
— ̂  is a Dirichlet operator on Hp (see the proof of Lemma 2.1.14), it is also a Dirichlet 
operator on Hp + and on Hp+.

We can solve the equation
A u + u' = f

uniquely for any A > 0 and /  £ LP(Ro+) with Neumann or Dirichlet boundary condi­
tions (we may take Neumann or Dirichlet conditions when u. £ HPl+ and zero Dirichlet 
conditions when u £ Hp+, because for any u £ Hp + u(0) =  0).

Therefore, by the Hille-Yosida theorem, (—̂ ,  Hp+) and (—̂ :> # p,+) are the gener­
ators of Lp-sub-Markovian semigroups.

In the following assume that

^ « ' ) > ( i  +  r i Y
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for some 8 > 0.
Applying Remark 1.2.4 we have

T heo rem  3.1.1. The operators (—A +, Hp'2'1) and (—A +,H*'2,1) are generators of Lp- 
sub-Markovian semigroups o and ( T ^ ) t>o respectively. In addition we find

J R n  (47T) 2

( f  f{x '  - y /,0)WXn+1(y/)dy>
+  / ------------- -prTE.------------- l{*n+i<t}WJRn  (Z7T)2

(3.1)

and
rp(2) f (~ \   [  f ( x '  - y ' , x n+1- t ) W t (y')dy'

f{X) — / M V" M^n+l >*}(•*') (2-2)
J R n  ( 2 7 T j ^

where Wt = F ~ 1{ e ~ ^ ' ^ t ) exists as the function 'ip satisfies A1 and A 2 , and f (x ' ,  xn+i) =  
0 for rrn+i < 0 in (3.2).

Proof. First we show that Hp '2,1 and Hp '2,1 are the domains of A+, i.e. that

and Hp'2 ® Hpt+ = H £ + 1-
Since

=  { / : / £  s u p p /  C  JR J+ 1} ,

th e n .............................................................................. ......................................

H $ ’2 ® H 2I+ = { f  : f  e H*'2 ® H 2 , s u p p  /  C  R JJ+ 1} =  ■ffp,+’1

and analogously since

H p 2 ® Hl + = { /  : there exists g € H p 2 <g> Hp, p |r m-i =  /} ,

then

H p 2 ® H ^ + =  { /  : there exists g G H p 2 ®  , p|Rn+i =  / }  =  # £ ’+’1.

By Remark 1.2.4 we obtain that (—A+, H*'2'1) and (—A+iH*'2'1) are generators of Lp- 
sub-Markovian semigroups. To find these semigroups, we will do the following. Consider 
the equation

(A + A+ ) f ( x )= g(x ) ,  r e R f .  (3.3)

In the following calculations denote by <?(£, 77) the function LXn+1̂ r)Fx>^>{g{x', rrn+i)), 
where LXn+1̂ v is the Laplace transform, Fx> ^  the Fourier transform, and denote <?(£', 0) =  
Fx'^a>{g{x', 0)), g ( ? , z n+i) = Fxf^>(g(x ' , xn+1)).
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Taking the Fourier transform Fx/_>f/ of the left-hand part of (3.3),

Fx'^z> ((A +  A+)f)  (£', x n+i)
.. r a  t

dx'=  (2tt) n/2 [  e [(A +  'ip(Dx/)) +  ^ / ( s ',  s w+i)
L C/^n+l'E n

=  A /(^,a;n+i) +V»(C/)/(C',®n+l) +  / ( ^ ^ n + l) .aa:n+i

and then the Laplace transform LXn+1->rj,

-((A + A+)/)«',xn+1)
poo

_  / e-^ n + lJPa;/̂ / ^ A +  j4+)y )(^ )Xn+1)^ Xn+1
Jo

pO O

= (A +  V>(0) / e~VXn+1 f  (£', x n+i)dxn+1 
Jo

d+ / e tjx̂ +x  /(f'.Xn+Ofiten+i
Jo G^n+l

we finally derive that

=  (A +  V>(0 +  7?)/(f, rj) -  /(£ ', 0),

(A +  iK O  +  ??)/(£, rl) ~ fit', 0) = <?(£> v),

or
?/. X _  9(Z,r}) +  f ( ? , 0 )  (o  4 n

(A +  V.«') +  r;) { ]
is the Z/Xn+1_+̂ Fx/_f̂ -transform of the solution to (3.3) with some boundary conditions. 
Consider the operator

f  9 (x’ - y ' , x n+1- t) W t{y ' )dy '
T t 9 { x )  =  /  ZTTn------ l{xn+1>t}(x)

JWLn
( f  g(x' - y ' , 0 ) W Xn+1(y')dy'

Jfljn (Z7T)  2

where g G L ^ R g ^ 1).

It is bounded in ^ ( R q ^ 1). Indeed, since Wt(y') = F -1 (e_t^ ^  )) is an Lp-multiplier, 
then T ^ g ( ' , x n+i) £ Lp(Rn) for g G LP(RS+1). Further, the first term in the representa­
tion of T ^ g ( x ' , •) belongs to Lp(Ro+) since g(x', •) does, and the second is bounded and 
with finite support with respect to £n+i-

Let us do the following. Let 5(Ro+L) =  5(Rn+1) n+i. If we show that g G S ^ R ^ 1)
Rn

the resolvent 'OO
' 0+

poo
R\g  =  / e~xtT ^  g(x) dt 

Jo
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leads to (3.4), then by density of S'(Rq+1) i*1 -kp(^o+1) and since A + is an isomorptism 
between H*'2,1 and Lp(Rn+1), we obtain that ( T ^ ) t>o defined on Lp(Rq+*) is a semigroup 
generated by — A +.

We may rewrite T ^ g ( x )  as

T^gix)  =  (2 t t )-" /2 f  -  t ) l [ o , s „ + 1 ) ( t )
J Rn

+  P « ' . 0 ) l [ x „ + 1 ,Oc ) W } d f ' .

Since

e - A‘ + i t l ''r ) - , ' i (r ) { f f K ' ^ n + 1 - t )1 [0 ,x„+ l ) W + 5 K ' . 0 ) l [x „ + 1 ,Oc ) ( i ) } ^ ' .

belongs to Li(Rn) w.r.t. and to Li(0,oo) w.r.t. t, then we can apply Fubini theorem 
and obtain

Lt^T^g = (2n)-̂ 2 f  f° e‘(*'.e')-«*(0-At{S(f/i X n + 1  _  t ) l p ,x „+ l ) ( t )
J R n JO

+  £(£'>  0 ) l [ Xri+1)OO) ( * ) }  d t d g  

=  F ^ x l [ L t - + \ { e - t 'K t ' ) { g ( £ , , x n + i  - t ) l [ 0 ( ln + 1 ) ( t )  +  9 ^ \ 0 ) l [Xn+lyOo)( t ) } } ] .

But Fxi =  !•> and we come to

Lxn+i-+r)F'x/—>Z'IJt-^\(Tt

=  - ^ i n+i-»77-^t->A {6 ^  5 x n + 1 — ^ )l[O ,x n + i ) ( 0  +  § ( £  ) 0 ) l [ x n + i ,o o ) (^ )} } -

Actually from now the order of integration does not matter, but we can change

=  Lt—+\LXn+i —*1qi

since the function

belongs to Z q ( R n ) w.r.t. £', and to Li(0,oo) w.r.t. t  and xn+i-
We want to check if the Laplace transform of semigroup ( T ^ ) t>o gives us the solution 

to (3.3) with some boundary conditions. Therefore we will calculate

LXMl^ F x, ^ L t^ x (Ttm g). (3.5)
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Applying the Fubini theorem to (3.5) we get:

Lt-*\LXn+1—>r)F'X'^>£, (Tt ^g)

^M 71 ,/R 71 I / 71/

J R 71 ./R 71 v 7̂*/
= Lt^ xLXn+1̂ r][g(€,, x n+1 -  t )e - t^ ' h [tt00){xn+1) +  l[Ojt)(xn+i)p (^ ,0 )e-a:’l+ll/'(e,)]

poo
=  Lf_+A / e-t,:Cn+1p(f/, zn+i -  t)l[t,oo)(zn+i) dxn+1

Jo
pO O

+  9(f'.O) /  e - ’'a’»+>e-I”+"l'« ')l|o,t)(x„+1)dxn+1]
Jo

=  I t-A [ e - '^ O  f °  7) *  +  (2 -
7o + ^

=  Z ^ A [ e - « « i ( r , , )  +  ^ f ^ ( l  -

g(?,0)  r l _______ 1 -I
A +  ^(f ' )+*7 + A A +  V;(^') +  r?

  g(?,v )  +  <?(£', o)
A H- ^(^0 H- A(A +  V>(£') +  ??)'

From (3.3) we see, that if A+ f(x ' ,  0) = 0, then

A/(x',0) = g(x', 0).

Therefore

r r it  , r n W ^ _  9 ( ? , V )  , / ( £ ' ,  0 )(Tt g) -  A +  ^ () +  ^ +  A +  ^  +  ^ ,

which equals to (3.4).
Therefore, the Laplace transform of T ^ g  indeed gives the solution to (3.3) with 

the boundary condition A +f ( x 0) =  0. Since there is one-to-one correspondence be­
tween the images and pre-images of Fourier-Laplace transform, we conclude that the op­
erators ( T ^ ) t>o form a strongly continuous contraction semigroup with the generator 
(—A+iHX’2-1), which proves (3.1).
To prove (3.2) we only need to put g(x ' ,0) =  0, x'  € Rn. □

R e m a rk  3.1.2. The semigroup generated by (—A +, iJ* ’21) can be different, if we pose 
different boundary conditions for (3.3). If we take

9 f{x' ,  0) =  0,dxn+1
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then the semigroup generated by (—A+, H*’2'1) is the following:

f ( x ' - y ' , x n+ i - t ) W t (y ' ) d y \  ^  ,
d-t 9\x ) — fo \ -  l[t,oo)(2:n+l)

h "  ( 2 0 2 („ 6)
f  f ( x '  - y ' ,0 )Wt{y ' )dy '

+ / --------- TTTTn------------ l[0,t)(x„+i).7Kn (27r) 2

Proof. Indeed,

Lt-^\I jxn+1-^T)F'x/ >̂€/{T't 9̂)

-  L t ^ L Xn+1^ v [l{*n+1>t} (2?r)n dy dx ]

+ it^ „ [1(0£,„+1<t}/  /  € ^ 2 9 ^ m m d y ld A
J Rn ./R 71

=  Lt^x [ e - ^ g t t ' ,  n) +  §((', 0)e-‘*«'> f  e ^ * '  dXn+1]
Jo

=  L t^ x { e - i W ( ')+r,)g ^ , v )  +  -  <r”*)]

=  $(£'> V) [  e~t{X+̂ ' )+^  dt +  M j-51  [  (c-t(A+iK€')) _  e-ta+VKO+f?))
Jo V Jo

- • ■ • 9(C>Vl ■ +. . . . <?(£'> 0 ) ..............................................................................
a +  ^(^ ') +  7? (A +  ^ (f '))(*  +  ^ ( f ' ) +  *7)’

and since in view of the zero Neumann boundary condition

A/(x', 0) +  ^{Dx> ) /(x ', 0) =  p(x', 0),

we obtain

T ,T  F  . ( T ^ o )  ^ ,7?) I ^ ,Q)O — A +  ^  +  v +  A +  ^  +  r}-

Therefore, the Laplace transform of T /1 g € I/p(Ro+1) is the solution to the equation
(3.3) with zero Neumann boundary conditions, and thus the operator (—A +, H *’2-1) with

(l/)this boundary condition is the generator of the Lp-sub-Markovian semigroup (Tt )t>o- 
□

T heo rem  3.1.3. The operator (—A - ,  is the generator of Lp-sub-Markovian semi­
group (Tt(3))t>0:

^c3) -  f  f ( x ' ~  y'>x n+1 + OWt(y') dv' ^  ^



Proof. By the same considerations as we gave in the proof of Theorem 3.1.1 we 
may obtain that (—A - ,  H*’+ 1) is a generator of some strongly continuous contraction 
semigroup. We show now, that (3.7) is one of (depends of the boundary condition) the 
possible semigroups. Proceeding as in the proof of Theorem 3.1.1,

L t ^ x L x„+l^ F x. ^ (,(T<3)g) =  L „ x l x„+l^ ( g ( ? , x n+1 +
rO O

= /  e - ’ <*“+‘+‘>9 ( f , z n+i+ t )< t e n+1)
Jo

/oo

)g(( ' ,Xn+1+ t ) d x n+i

_  e - t m O - n )  J  e - v ( * n + 1+ t ) § ( f / j X n + 1  + 1 )  d X n + l )

pO O  p t

Jo Jo

= \ +  r  e"X' +1 r  e - tW<«')+A)9(f'.-X n+ i +  « ) d i ^ n+1A + V { ¥ )  - V  Jo J x n+1

= Y T T i 'J v — + e - T<-x+* ^ g ( ( ' , r ) d T d x n+1
A + V>(£') - V  Jo Jo

= 9(C,V) +P(^ /»A +  ^(C/)) 
A +  ip(€') -  V

Thus, L t^> \T ^g  is the solution to (A +  A - ) f  = g with the boundary condition

/ ( * /,0) =  F€7 i x, ( ^ /,A +  ^ (O )) ,

and therefore the semigroup ( T ^ ) t>o is generated by ( - A - ,  H '^2,1). □

Now let us consider the fractional power of — A+, (—̂ 4+)Q, 0 < a < 1. First consider 
functions from D\ = Hp’+ 1 and From Theorem 4.3.7 [Jl] the domain of the
generator A+ of strongly continuous contraction semigroup is dense in D((—A|_)a ), and 
D(A+) is a core for (—A +)a, 0 < a  <  1. Then

= d ! 11"'2 =  { /  : | | / | |r ,2 < oo, supp f  C RJ+1} =  Hfj+

and analogously

- p r l H I ( - A + ) “  y r l H l s R . 2  □  ii  N 7  I T r l M I » . 2D 2 + = D 2 = { f  :3g:  \\g\\x ,2,i < oo, g |R„+! =  /}

=  { /  : : 11̂ 11̂ 2 <  oo, p |R„+i =  /}  =  Hpt+-

For the operator — (—A - ) a, symb(—A - )  =  the situation is similar.
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To solve the boundary problem for the operator (—A±)a , we need the existence of the 
trace /( - ,x n+i) if /  G D ( ( - A ± ) a). Since

» 2( f ) + i i +1r ' 2 > ^ ^ + i ^ + i |a ,

then by Theorem 2.1.21 and Lizorkin multiplier theorem we obtain that

Hf; l  ^  ®-ff?(«o+)

where the closure is taken with respect to the graph norm of the operator ip(Dx>)a +  
(—A Xn+1)Q/ 2. Thus, since the trace in the space Hp (Mo+) exists for ^ < a  < 1, for such

jo n i
a  the trace will exist in the space Hp '+ . Analogously, for ^ < a  < 1 the trace exists in

~ jp Q
the space Hp '+ and equals to zero.

Now we are ready to prove that (—(—A+)a , and (—(—A _)a , are the gen­
erators of Tp-sub-Markovian semigroups.

T heo rem  3.1.4. For 1 < p < oo and ^ < a < 1 the operators (—(—A+)a, and
(—(—A - ) a , symb (—A±)  =  x±(£0 =  ±  ^n+i> ^  satisfies A1 and A2, are the
generators of Lp-sub-Markovian semigroups (T^ ) t>o and (T^ ) t>o given by

■ • • Tt(4)/(x ) =  (27r.)-n/2 [.  [  . ./(? ' ~ y'.,x.n+l -  s)Ws{y')aol{s, i)dsdy'  (3.8)
J R« JO

and
t / 5)/(x ) =  (2n)~n/2 [  f  f ( x r -  y ' , x n+1 +  s)Ws(y')aa(s,t) ds dy' (3.9) 

J Kn J o

where <ra (s, t) is the measure which corresponds to the Bernstein function x a, 0 < a  < 1, 
by the formula

p O O

e- tz ° =  / e~zsaa(s,t) ds, t >  0 R e z >  0.
J o

Proof. To prove this theorem we apply again the Hille-Yosida theorem.
1)From Theorem 2.2.10 it follows that the spaces HPf+ and Hp ^aie  dense in L p i K i 1)-
2) Since — (—A+)01 and — (—A - ) a are Dirichlet operators on H f ' 2 (by Theorem 2.1.24), 

and by Theorem 2.2.5 and Theorem 2.2.6 and (—A _)a respectively are isomor-
~ sp o sp o • sfj 2phisms between Hp '+ and Hp '+, then these operators are Dirichlet operators on HPi'+ and 

Hp'+, and therefore they axe dissipative on these spaces.
3) In Theorem 2.2.5 and 2.2.6 we have proved that



are isomorphisms. Therefore the equations

(~A+)af(x) =g(x) ,  x e R l +1 (~A_)af{x)  = g(x), x  G R++1 ,
f (x ' ,  0) =  0 a d  f (x ' ,0)  = h(x') ( j

are uniquely solvable in and in Hp +, respectively, g G Lp W t 1), h G Lp(Rn) and it
JR 2can be expressed in terms of g, since the operator (—A - ) a is an isomorphism from Hp 

to i p W l 1).
(Note that if we can solve equations (3.10), we can also solve for g € L p W l 1), h 6 £-„(»") 
the equations

(A + ( - A . ) ° ‘) f  = g, z s R r * - 1 (3.11)

subject to the boundary conditions

f i x ' ,  0) =  h(x'),

where h again depends on g, and

(A +  (—A +)a) f  =  g, x s r f +1 (3.12)

with f (x ' ,  0) =  0, for all A > 0).
Note also, that (—(—A+)a, H^t+) and (—(—A _)a , Hp +) are Dirichlet operators as the re- 

• strictions to Rq.^1 operators (—(—;̂ 4+)a-, Hp '2) and (—(—A _)“ , H^ '2),:which are DirichT
let operators, see Theorem 2.1.24.

Thus, all conditions of Hille-Yosida theorem are satisfied, and the operators
-  jp a SP O

(—(—A +)a ,H p ’+) and (—(—A - ) a,H p ’+) are the generators of some Lp- sub-Markovian 
semigroups.

Let the semigroups (T^ ) t>o and ( T ^ ) t>o be obtained by subordination of (T^ ) t>o 
and (T^) t>o  respectively with the convolution semigroup r][a\d s )  =  <ra (s, t)ds , see (1.6).
To see that they are generated by (—(—A +)a, H^+)  and (—(—A - ) a , we will do the
following:

We know from Balakrishnan’s formula (2.17) that for g G Hp '2 we have as represen­
tation for (—A - ) ~ a:

W - r k)L
OO rp(5)

11~a
1 r °  [  -  y’, xn+1 +  t )Wt (y') , , ,

r ( a ) 7 0 A n (2* )**-*  d y d t ’

Let g G 5(Rq+1)- We can rewrite

T ^ g  = F{-_Jai(e - t<*«'>-if”+')“p).
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The function
e- t ( x + W ) - i t n +i)°)fi e  L1(Rn+1 x (0, oo)),

therefore
= F f ^ L ^  A( ).

Thus, with the help of (1.10), (1.12) and Lemma 1.1.15, we find by Lebesgue dominated 
convergence theorem that for g G <S'(Ro+1)

poo
(—A - ) ~ ag — lim R \ g  — lim / e~xtT ^ g d t  —

A—►O A—►O J q

=  lim r  f  9 ( x ' - y ' , x  +1 + t )Wt (y')e'<t(t X ) dy, dt 
Jut* (27 t) 2 —A

=  - J —  r  [  - y ' ^ n + i + t ) W t ( y ' )  ,  ,

r (a ) Jo Ju* (27r)?t1- a

and by the density arguments (—A - ) ~ a has the same representation for g G Lp(Rq+1). 
Thus, the operator (—(—A - ) a, with the boundary condition

f i v  m  1  f ° °  (  9 ( x , - y , , t ) w t {y ' )  l

f { x ' 0 ) = m J o  L  (2* )* » > -  dy dt

generates the semigroup (T ^ . ) t>o- By the same consideration the operator
(—(—A +)a, Hpt+) with zero Dirichlet boundary conditions generates the semigroup
(Tt(% >  o. □

We also can show that (—(—A+)a, Hp +) is a generator of an Lp-sub-Markovian semi­
group. The difference from the previous theorem is that the operator (—A+)a is not 
an isomorphism between Hp + and Lp(Rq+*), and we need to solve the boundary-value 
problem

(A + (-A+n/(x) = S(i), x€R ;+1,9 eLp(RS+I), (3.13)
for some boundary conditions, and show, that the solution belongs to Hp,+ -

We obtained in Theorem 3.1.1 and Remark 3.1.2 that (T^ ) t>o and (T/1 ^)t>o are 
strongly continuous contraction semigroups generated by (—A +, H’*’̂ ’1) with different 
boundary conditions. By (1.6) the candidates for the semigroups generated by 
(—(—A+)a , H^+)  are the semigroups obtained by subordination with the Bernstein func­
tion f ( x ) =  x a, x  >  0, 0 < a  < 1:

T^6)g(x) = (27r) n/2 [  [  g(x' -  y', x n+1 -  s)Ws(y')aa(s, t) dy' ds
Jo Jun

+  (2tt)~n/ 2 f  f  g{x>-y ' ,0 )W Xn+1(y')aa(s,t)dy'ds,  
Jxn+1

(3.14)
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which is obtained by subordination with / (x ) from ( T ^ ) t>o, and

Tt(6 }#(x) =  (27r) n/2 [  f  g(x' -  y7, xn+i -  s)Ws(y')(Ta (s, t) dy7 ds 
do djRn

+  (2tt)~n/ 2 f  f  g ( x ' - y ' , 0 ) w s(y')aa (s, t )dy'ds,
Jxn4.i JlBLn

(3.15)

which is obtained by subordination with /(x ) from (T/1 ^)t>o- These semigroups are again 
(by Theorem 4.3.1, [Jl]) strongly continuous and contracting.

T heo rem  3.1.5. For l < p < o o ,  ^ < a < l ,  the operator (—(—-A+)a , i?^+), symb(—A +) 
— X+(f) — Tp(€') +  ^ n + i5 where satisfies A1 and A2, is the generator of the Lp-sub- 
Markovian semigroups (3.14) and (3.15), depending on the boundary conditions.

Proof. As we proved in Theorem 3.1.4, the space is dense in ^ ( R q̂ 1), and
by Theorem 2.2.10 and — (—A+)Q is a Dirichlet operator on as a restriction of the 
Dirichlet operator (—(—A+)a , Hp'2) to the half-space.
We need to check whether problem (3.13) is solvable for all g (with some
boundary conditions) and that the solution belongs to H  +.
We may decompose the solution to (3.13) into two parts: /  =  / i  +  / 2, where f i  is the 
solution to

............................................ (A -+(-A +)a )/i(x ).=  £(x),. i G l f 1, ..............................
/ i ( x 7, 0) =  0

and / 2 is the solution to

(A +  (—A+)a) /2(x) = 0 , x E R J+1 (3.17)

for some boundary condition.
We already know (from Theorem 3.1.1) that the solution to (3.16) exists for all g E 

£p(Mo+1) and belongs to
To find the solution to (3.13), we will follow the proof of Theorem 3.1.1, namely, first 

take the Fourier transform Fx> o f  the left-hand part of (3.13), and then the Laplace 
transform L Xn+1-+v. Since F ~ 1symb(—(—A+)a~1) =  F -1 ((x+ (£))a -1 ) exists, then

LXn+l-,vFx,-.(, ((A +  ( -A +)“) /)  =  A + LXn+1->nFx'- t{’((—A+)a~1(—A +)f)

=  A /( f  ,7,) + L x„+1̂ F x^ (, ( - ( - A +r - 1)[LXn+1̂ F x, ^ , ( t t ( D x,) +
C/Xn-)-i

= v) + OKf') + 77)a_1 '» v) + v) -  /(£'. o))
=  ( i  +  + r i ) a ) K z i , v )  -  o).
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Therefore the LXn+1->vFX'-+£> -transform of the solution to (3.13) is

$(* ^  _  9(?, V) +  M ? )  +  ^)a~1/(C/, 0) /q iS N
f * ’V) A +  ( ^ ' )  +  »7)a

Note, that since a  > lfp  then for /  6 -£7^+ the trace exists, and f(x ', •) e Coo([0, oo)).
Then /(a:',a:n+i) —* f(x ', 0) as a:n+i —> 0, re' is fixed. Let x n +i G [0,£], e > 0. For such
x n+i the integral

•oo x^1)f ( x f, x n+1 - t ) -  f (x)
jJo t 1+a

converges uniformly, i.e.

'O O  T ^ f i x ' i X n + i  ~ t ) ~  f (x)

dt

sup
x n=i G[0,e]

t l+a dt 0 as A —► oo.

Therefore we construct the fractional power of — A + with help of the semigroup ( T ^ ) t > o, 
see Balakrishnan’s formula (2.16), and get, passing to the limit at x n+i —> 0,

with \ f ( x ' , 0 ) =  g(x', 0). From (3.16) and (3.17) we see that if X f (x \0 )  =  g(x',0), then 
Xf2(x,,0) = g(x',0).

We need to check whether / 2, /2 (£',??) = ^(A + M O  + 17̂  G H*'+ ’ where 9 e
Z/p(Ro+1)-the right-hand side of (3.16). But it follows from (3.17) that it is enough to 
check whether f 2 £ Lp(Ro+1)-

Suppose that in (3.17) f 2 = f 2 ' l{zn+i>o}> f°r some / | . Then, we obtain, taking the

Fourier transform of both sides of (3.17), that F ( f 2)(£) =  ^ a ( A ^ ( ^ |^ )  + 
and we can apply the theorems about Fourier multipliers we got before.
Let 8 > 0 be such that

C((i+ e=+1)( i+ i€'i2))5 < a + ix+(€)r-

(Clearly, 6 should be less then ^  and it depends on a). From Remark 2.1.25 we can derive 
that

c ( ( i + e » ) ( i + i f i 2))* 
A+  (*+(«))“

is an Lp-Fourier multiplier. In such a way we reduced the estimate of F ( f 2)(£) to an 
estimate for

§(?, 0)
( a + e H H i + i f W
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The inverse Fourier transform of ^  |2 is (see [BE1], vol.l)

-K(S- 1/2)(M),,(|e|2 +  l ) ^  1 2  J T{6)*

where K v{x) is he Bessel function of third kind. Since K u{x) ~  cie-1 as x  —> oo, and
K u(x) ~  C2 X~V as x —> 0 (see [BE]), we see that

Further for g(-, 0) G Lp(Rn)

f _ I ( ( l w ) € i p ( K n ) ’

and therefore

p . i  ( ( x + i o r - ' m ,  o) A+(x+(0)“ <
~ ( A+  (* + « ))“

<  OO.

Thus, by Hille-Yosidatheorem, (—(—A+)a , with the boundary condition (—A+)af(x ' ,  0)
=  0 is the generator of an Lp-s ub- Markovian semigroup. It remains to prove that this 
semigroup is (3.14).

We will follow the same onsiderations as in the proof of Theorem 3.1.1. Let g G 
[0+1). Rewrite T /6  ̂ as

f p X n + \  p

Tt(6 ]g = (2ir)~n/2 /  /  xn+i -  s)cra (s, t) d£f ds
Jo Jr71

poo
+  (27r)"n/2 / ei(x t ,)- s^ g ( Z ' , 0 ) a a(s,t)dZ, ds.

Jxn+1
Then since

e- â (e,)+t(*',e,) -A t^ £ /j Xn+1 _  s )(7q(Sj t) -  £(£', 0)<ra (s, t)]

belongs to L i(Rn) w.r.t. £', and to Li(0, oo) w.r.t. s and t, we can applying Fubini
theorem and using (1.19), that for the solution of (3.13)

p O O

f{x)  =  R\g{x)  =  / e~xtT^6)g(x) 
Jo

r Xn + 1  r  

JO J K

+ r  i

r Xn + 1  r

Jo J  R

dt

Xn+1 f  g{xf -  y', xn+1 -  s)Ws(y')e'a (s, A) ,
------------= A ( 2 ^ ----------------- y 3
g(x ' -  y ' , 0)WXn+1 (y') e^(s, A) ^

(27r)n / 2 -A
Xn+1 f  g { x ' - y ' , x n+i -  s)Ws(y')e'a (s , \ )  ,

 = W 75---------------
f  g(x' -  y', 0)WXn+1 (y')ea (xn+i, A) ,

+ L  w s ---------------
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holds. Taking the Fourier transform Fx>->£> and then the Laplace transform LXn+1->v of 
the right and the left side of this equality, we obtain, using (1.14) and (1.15) that

/(£ jv) = LXn+1-+v [J^ g(Z',xn+1 -  s)e s^ ,] —

+  g(£,  0)e- a:" + x ^ ,) ea^ ,Aj  ds]
A

< 7 ( £ ' ^ )  +  A _ 1  ( V > ( £ ' )  +  7 7 ) a _ 1 ^ ( f , 0 )

A +  +  r})a

which is equal to (3.18), regarding that A/(£ ', 0) =  #(£',0).
Thus, the strongly continuous contraction semigroup ( T ^ ) t>o is indeed generated by 

(—(—A +)a, with the boundary condition (—A +)af ( x f, 0) =  0.
Now we want to prove that the operator (—(—A+ )a , with zero Neumann bound­

ary condition — /(x ',0 )  =  0 generates the semigroup (t / 6v^n+1
To do this we will follow the proof of Theorem 3.1.4, i.e. we calculate (—A+)~a for 

pe5(RS+1)as

f 00 /

(—A +)~ag — lim R\g = lim / e~XtTf6 ^gdt
A—>0 A—> 0 7  0

=  lim (  n  f ' ~  yl' Xn+1 ~ A> dv1 i :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j K o W 0  7 r „  - A ( 2 7 t ) " / 2  a y d s

+  r  f  9 i x ' - / \ o ^ y ' ) e ^ d y ’ d s ) .............................
y * „ + 1  A -  ( 2 t t ) " / 2  - a  )

1 f Xn+1 f  9(x' -  y', x n+i -  s)W,(y')
= rW ) l  L   dyds

1 r  f  g ( s ' - » , ,o)w.(y')
r ( a )  i In+1 L  S1- “ (2^ / 2 V  ■

But this is exacly the operator obtained with help of Balakrishnan’s formula:

( ~ A + )  » W  =  r w / o  --------- ^ ---------

1 f Xn+1 f  g(x'  -  y \  Xn+1 -  s)Ws(y') , , ,
= f w  Jo L   dy dS

[°° r g (xr — y',0)Ws(y') 
r  ( a ) X „ + 1 L  5 1 - a (27r)n / 2 V ■

(Since g e  6,(Rq+1) the trace exists, and by the density argument the same representation 
for (—A +)a holds for g € Lp(Rq+1)).
It remains for us to show, that f ( x ) =  L t^ \ T ^ Q ^g(x) is the solution to (3.13) with zero 
Neumann boundary condition.
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We have:

,(6')f (x )  =Lt^ xT} )g(x)

Rn —A(27r)n/2
f°°  f  g { x ' - y ' , 0 ) W s(y')e'a (xn+l, \ )

+ L ,  I   y

=  f Xn+1 f  g ( x ' - y ' , x n+1 - s ) W s( y ' y a (s,X) ^ ^  
Jo W r»_ \r , /9

Differentiating with respect to x n+\, we get

°— t M =  /  5 *
dx

9   ̂ f Xn+1 f  d ^ 9 ( x ' - y ' , x n + i - s ) W s { y f )e'a { s , X )

^ f { x ) = I  L  ^  dy ds
g ( x ' - y ' , 0 ) W Xn+1(y/)e,a (xn + u X)

+ L   dy

-JJ R
g(x'  -  y', 0)WXn+1 (y')e'a {xn+i , A) ^  , 

fKn — A(27r)n/ 2 dy'

rxn+1 /•

Jo JR7/Rn —A(27r)n/ 2

which tends to zero in a.e. sense if :rn+i —► 0: 

......................................................d

dy ds,

dx n + 1
-/(x /,0) =  0 a.e.

Thus, the operator (—(— A + r  , with the zero Neumann boundary condition
jf-r-— f ( x f, 0) =  0 generates the semigroup (T*6 ^)t>o- □C'Xn-hl —

3.2 Examples
In this section we want to give several examples. We will give the representations of some 
semigroups generated by (—A±,  and (—A+, H * w h e r e  symb(—A ± ) =  x±i
because the properties of the fractional powers of these operators follow via subordination. 

First consider the two-dimensional case.
I. Consider a real-valued continuous negative definite function p(£) of the form

p(C)— 28\ncosh{^-).  (3.19)

This function is a particular case of the characteristic exponent of the M eixner process: 

i>m,6,a,b(€) - i ™ £  +  2£ (in  cosh -Z n c o s(^ )) , (3.20)
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where m £ R, <5 > 0, a > 0  and —7r < b < 7r. The densities of the measures which 
correspond to ipm ,6,a,b are given by

(For more references on the Meixner processes see [Gr], and also [BB]).
Since we are interested in real-valued symbols ip, we posed m = b = 0. In this case 

the density of the convolution measure is

^ ( x ) = P̂ ° W  = 5̂ | r ( i t + f ) | 2. (3.21)

For a continuous negative definite function p(£) defined in (3.20) we define y±(£, rj) = 
1 + K 0  ^  iV- We added 1 in order to make V>(£) =  1 +p(£) > 0, since as we saw this was 
essential in Theorem 2.1.21 and Theorem 2.2.5.

Since
p'(£) = batanh{j^-)

is a bounded function, we find (see the proof of Theorem 2.1.21)

sup \£r)df r.eiaar9X±\ < oo
......................................................(£,*7)€R2 _

as well as
sup \^d^exotar9X± I < oo, sup \r)dveiaar9X± I < oo.

(£,*7)eR2 (£,r?)€R2

Thus the function eiaar9X± is an Lp-Fourier multiplier, and therefore we can apply the re­
sults obtained in the previous section to construct the semigroups generated by (—(A±)a, 
and ( - ( -A + )° ‘, where R = Re(x±(£,r)))a, sy m b( -A ± ) =  *± (£ ,77).

Knowing (3.21), we can explicitly construct the semigroups generated by (—A ± , H p ’̂ ’1) 
and ( - A + , 5 } ; } 1).

Note that the density (with respect to the Dirac measure) of the convolution measure 
which corresponds to a constant continuous negative definite function ip(£) =  A is

!H,x(x) = e~xt. (3.22)

Therefore the density of the convolution measures \xt (dx) associated with the continuous 
negative definite function £ h-* 1 +  p(£) is

p t ( x )  =  i r ( _ 1 ) ( e “ t(1 + p (e ))) ( x )  =  f j * , i  * p 6t , a ( x )

=  e~V£’a(:r)-
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Thus, substituting /j,t (x) in (3.1), (3.2) and (3.7) we obtain that the strongly continuous 
contraction semigroups

_ i  < 5 , a .

(3.23)

and

and

r r ( i ) ^  f  f ( x i - y i , x 2 - t ) e  V t’a (yi)dyi.,
T t JKX) =  / ---------------7T--------------- l [ t ,o o ) (® 2 )J

+ J/ {Xl- yi’0)£ Pf°iVl)dVlMoA(Z2)

T f> /(x ) =  J  (3.24)

T<3> / W  =  f  +
J  E 27r

are generated by (—A+,id* ’2’1), (—A + ,# * ’2’1) and (—A - ,# * ’̂ ’1) respectively (with the 
boundary conditions as in Theorems 3.1.1 and 3.1.3), symb(—A±)  =  x(£, ??).

II. Consider the Bernstein function f (x )  =  ln(l +  x), x > 0. The corresponding 
convolution semigroup is (see (1.17))

vt (dx) = A(1)(dx)l(o,00) ( r r ) ^ y x t“ 1e_a:, (3.26)

where X^\(dx)  is one-dimensional Tebesgue measure.
Denote by ip(£) =  / ( I  +  |£|2) =  ln(2 4- |£|2), £ 6 Kn. Such function ip satisfies A1 

and A2. To find Wt(y) =  F^~1\ e ~ t'^^)(y), i.e. the density of the convolution measure 
corresponding to ip, we use (1.8).

We know, that the convolution measure

H^\ dx)  =  X(<n\ d x )
e Tt

(47rt)n/ 2

(where Ân\ d x )  is the n-dimensional Lebesgue measure) is associated with the continuous 
negative definite function |£|2. Then, with help of (3.22) we obtain the convolution measure 
of function </>(£) =  1 +  |£|2:

iXt(dx) =  A W ( d x ) a _ a _  (3.27)

Further, with the help of (1.8) we obtain the convolution measure corresponding to ip =
m -

f°° p~2sP- ^ r  <,4-1

^ dx) = L  T m W *  (3.28)
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We used that

L , ^ p( e - * s " - 1') =  /  e~pas'/~l e~% ds =  2 ( ^ Y ' 1 K„(J5p),

where K v (x) is the modified Bessel function of the third kind.
Substituting (3.28) into (3.1), (3.2) and (3.7) we obtain the following strongly contin­

uous contraction semigroups

r r W * ,  \ f  2 t t X ’ - y ' , x n + l - t ) K t - n ( ^ 2 \ y ' \ )  (  I  1Tt m = L  ---- (w)
( f  2 / ( x '- y , ,0)Kt-%(y/2\y'\) (  1 ,

/ r» (47r)»/2r(t)(27r)» V|y'l2'  y t0’t)(rEn+l)

rrW) t( f  2 f ( x ' — y' ,Xn+i — t)Kt-%(V2\y' \){  1 , 1 (  ̂ fo or\\
t f { x ) ~ L  (45r)"/2r(t)(2ir)J ^ (^«+i) (3-30)

and
(3) f  2 f ( x ' - y ' , x n+1+ t ) K t- n ( y/2 \y ' \ ) f  l - i

r‘ = L  (4x)V*r(t)(2»)» W  dy (3-31)
which are generated by (—A +, H*'*'1), (—A|_, H *;’2,1) and (—A - , H p '+l) respectively,
symb{-A±)  =  *±(£) =  ln(2 +  |£ '|2) ±  i£n+i, f  e  Rn+1.

3.3 Perturbation of the generator of an L p -
sub-Markovian semigroup

In the previous section we discussed the class of operators of the form A = (ip(D) ±
-pr-r— )a, 0 < a  < 1, that are the generators of Lp-sub-Markovian semigroups. Now weO&n+l
want to extend this class by adding a perturbing operator p{x\  Dx>), x'  € Rn.
Suppose that p(x', Dx>) satisfies the estimate

\\p{x\Dx>)f\\p < cll/llw-Mo^n) (3.32)

with some 0 < po < 1, where Wp is a Sobolev space,

W s = i Hp> s is an integer, 
p (Bpp, s s in not an integer.

Since for p > 2 the embedding Hp{Rn) C Bpp(Rn) holds for s > 0, see [T2], Remark
2.3.3/4, then

\\p(x', Dx')f\\p < c ||/ ||# £ 0(Rn). (3.33)
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Let (A, _D(A)) and (B , D ( B )) be some operators, D(A ) C Lp(Rn), D(B ) C Lp(Rm), and 
the Schwartz spaces on Rn and Rm are dense in D(A) and D{B)  respectively.

Denote by D(A®B)  the closure of the space 5(Rn+m) with respect to the graph norm 
of A  0  B.  Also, we assume that for /  G D(B )

ll/lip < 4 B f \ \ p

holds.

L em m a 3.3.1. Let (A, D(A)) and (B,D(B))  be as before, and let an operator Q be 
defined on D{A) and A-bounded. Then (Q <g> / ,  D(A  <8> B)) is A <g> R-bounded.

Proof. Prom Lemma 1.2.2 we know, that the space C'o°(Rn) <g> Co^R771) is dense in 
Lp(Rn+rn). Prom the conditions of our lemma we see, that C ^ (R n) ® C o^R 771) is dense in 
D(A) <S> B(B) ,  which is in turn is dense in D(A  <g> B). Then for /  G D(A  ® B)  there exists 
a sequence ( /n)n>o =  (f in  <8> / 2n)n>o which converges to /  as n —> oo. For this sequence 
we have, since Q is A-bounded,

II (Q ® I) (fin <8> /2n)|| Lp(Kn+m) =  ||Q/ln||Lp(Mn) ||/2n||Lp(Rm)
<  ( e | | - A / l n | | L p ( R " )  + ^ | | / l n | | L p ( R " ) ) | | / 2 n | | L p ( B m )

<  ^ | | A / i n  <g> B f 2n  || Lp(Rn+Tn) +  ^ | | / l n  ®  / 2n ||z ,p (R n+ m )

=  e\\A <8> -S/n ||Lp(Kn+m) +  ^||/n||Lp(Rn+m)
.................... (3:34)

for some 0 < e < 1 and 6 > 0. Passing in (3.34) to the limit as n —> 00, we obtain

II (Q ® -^)/||Lp(Rn+m) < e\\A ® Bf\\ lJp ( R n + m )  + <5||/||Lp(R"+m)5

proving the lemma. □

W ith help of Remark 1.3.2 we see from (3.33) that p(x', Dx>) is (1 — A x>)M/ 2-bounded 
with an arbitrary e-bound, if po =  0 < K,p < 1. Applying Lemma 3.3.1 with
A  =  (1 -  A ,,)"72, B  =  (1 -  A Xn+iy ' 2, we obtain that p(x ' ,DX>) is C-bounded, where 
C  =  ((1 -  A x/)(1 -  A Xti+1))m/2.

But for symbC  =  p(£) =  ((1 +  [^'|2)(1 +  <f2+i))^72 we have

P (0  < (1 +  I?!2)", 0 < n < 1,

and
o ( f c + l )  / £ . x  (  2  ) 2 (  2  ~  1 )  • • • (  2  ~  k  +  %  • • • & & * + 1

J (1 +  |^ '|2)fc“ 2 (1 +  |Cn+l|2)1 -2

Then
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by the same way as in the proof of Theorem 2.1.21 we derive that ^  an
Lp-Fourier multiplier, which leads to the estimate

iic/iiP < c | i ( i - A r / n P.

Thus, the operator p(x ' ,Dx>) which satisfied (3.32) with po = fiK, where 0 < p < 1, 
0 < k < 1, is C-bounded, C =  (1 — A )M.

We want p(x ' ,Dx>) to be controlled by the operator (x±(-^))a -

Lem m a 3.3.2. Let satisfy A1 and A2, and

(i + lei2)"< ix±(€)r, o < M<i.

Then
H f 2 C H 2/ .

Proof. Denote X ~ X + i  f°r the case x  =  X -  the proof is similar. 
Differentiating with respect to £n+i we obtain

(3.35)

d
d£n+1 Vx£ ) ~ ;

ia
A+oc 1

Let now £n+i be fixed. For fixed £n+i the functions x  and x a satisfy A1 and A2 if 'ijj 
does: We can calculate t h a t .......................................................................................................

/  1 \W < Cl <f>'k
\ x * ) Xa <f)k

and

from where

/ l \ ( f c ) < C2 <Pi . • • <f>'k

X <t>k

1

& < C3
/1+a

( Yl- • - 9k \
\  <j)k J

follows. Further (see again the proof of Theorem 2.1.21),

,  , ,  / ( i + i i j Y )sup
feRn-fi

I2'!**

( 1  +  | g | 2 r  ( fc+ 1 )

Xa (0   ̂£fe i -• - i£l j£n+l
< oo.

/1 I l£\2\j j .
In such a way x  (£) *S a ^p-^ourier multiplier and H^’2 C H 2(i. □

C orollary  3.3.3. Suppose that x  and p> are as in Lemma 3.3.2. Then

rr5R,2 — rr2fJ- _  fr2 /zn p + C t/p i+, n p + C ttp}+-
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Proof. Prom (3.35) we have that

l l / I k -  ^  4 f \ l H.«•’ (3-36)

for /  G To prove the first embedding we may consider the function /  in (3.36) as
extensions to Rq- 1- Taking infimum over all such extensions, we obtain the first embed­
ding.
To prove the second, we only need to take the functions with support in R0+1 in (3.36).

□

T h eo rem  3.3.4. Let (—A)a be an operator with a continuous negative definite symbol 
(x (0 )a =  + i)a > 0 < a  < 1, such that for some 0 < p < 1

a  + iei2r  < c ix ( o r ,

the function i/j satisfies A1 and A2, and further let a pseudo-differential operator p{x\  Dx>), 
satisfy (3.32) with go =  ng, 0 < k, < 1, and be an Lp- Dirichlet operator. Then the oper­
ator ( - ( - A ) “ - p ( x ' , D X' ) , H f ' 2) is a generator of an Lp-sub-Markovian semigroup.

Proof. We obtained before that p(x ' ,Dx>) is (1 — A x)M-bounded (with an e-bound 
0 < e < 1), x = (x ' , xn+i) G Rn+1. Prom Lemma 3.3.2 we see that p(x ' ,Dx/) is also 
(—A)“-bounded. The statement of oyr theorem follows after applying Theorems 2.1.24 
and 1.3.3. □

As an example of a pseudo-differential operator p{x , D) for which (3.32) holds we take 
p(x, D) of the form

—p(x, D ) f  = f ( f (x  - y )  -  f (x))v(x,dy) ,
JRn\{  0}

with the Levy kernel v(x, dy) — g(x, y)dy} and g{x, y) : Rn x Rn —> R+ is a measurable 
function satisfying with 0 < <5 < po < 1 the estimate g(x,y) < •

We want to give a few examples of (—A)a -bounded pseudo-differential operators with 
symbols of special kind.

Consider a pseudo-differential operator the symbol of which is of the form:

P ( z , 0 = /  a(x,y)q(y,€)dy  (3.37)
J e

where E  C Rd for some d, the function <7(2 , £) is a symbol of another pseudo-differential 
operator 5(2 , D) which satisfy with some real continuous negative definite function -00 the 
inequality

M y , D ) f \ \ LAdx)<<y)\\ f \ \H*°-' for / e - H ? 0'2. v e -E . (3-38)
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|a(x, y)| < a(y) Vz G Rn, y G E, (3.39)

and for a{y) it holds

[  \a(y)c(y)\ dy < c0. (3.40)
j e

Then
||p(-, D)f\\p < 11/11^0,2 \a(y)c(y)\dy < co ||^o (£ )/||P +  6\\f\\p (3.41)

for some Co and 6. Therefore, for 0 < Co < 1 the operator p(x, D) is -bounded.
For example, q(cr, £) may be a continuous negative definite function which depends on
parameter <r, for example, q(a, f) =  (a2 +  |£|2)a , 0 < a  < 1.

Note that when the domain of integration E  is bounded, the situation becomes simple 
because of mean value theorem (see, for example, [Fik], Vol.II, §644): there exists cro G E  
such that for the symbol p(x , £) it holds:

P (z > 0 =  /  a(x,o-)q(a,£)da = V(E)a(x,(To)q(a0,£),
J E

where V (E ) is the volume of Z?, and then

- p (x ,D ) f ( x )  = (27r)"n/2 f  ê *p(x, £)/(£)
J Rn

.................................................. = V (£)(2 ir)-" /2 /  *>)?(<*>, ...................
J R n

=  - V (E )a(x , <To)q(<To, D)f{x) .

As another example consider the case when in (3.45) the operator q(ij, £) =  1 — ,
which is for fixed a > 0 is a continuous negative definite function, and a(x, a) is a density 
of some convolution measure with support on [0, oo):

a(x,cr)dcr =  px (dcr).

C oro llary  3.3.5. Let p(x' ,D X>) be a pseudo-differential operator with symbol

P { x ' , 0 =  [  a{x',a)q(a,Z')d(T 
J E

which satisfies (3.38), (3.39) and (3.40) with 0 < cq < 1 and ipo =  ^ a , and suppose 
that —p(x' ,Dx/) is a Dirichlet operator on Co°(Rn). Then the operator (—p(x ,D ) — 
( - A ± ) a,Hp>'+) and (~p(x,D) -  (~A+)a, H*'?), with sym b( -A± ) =  V>(f') ±  ifn+i, ^  
satisfies A1 and A2, are generators of Lp - sub- M ar ko vi an semigroups.

The proofs follow from Lemma 3.3.1, Theorem 1.3.3, Theorem 3.1.4 and Theorem 3.1.5.

71



3.4 Continuity of certain pseudo-differential 
operators in Besov spaces

Our next purpose is to prove some mapping property of a pseudo- differential operator of 
special kind. For this we need the L ipschitz  spaces of o rd e r  a.

D efin ition  3.4.1. For 0 < a  < 1 define the L ipschitz space of o rd er a  by

on it.
For o =  l define the L ipschitz space of o rd e r  1, namely, Ai as the closure of the 

space C'o°(Rn) with respect to the norm (3.43) with a  =  1.

Note that in Aa , 0 < a  < 1, the space Cq° is NOT dense. We need to work with the 
subspace A° of Aa .

D efin ition  3.4.2. We will say that /  e A ° , 0 < o < l ,  i f / € A a and

For the spaces A° we have 

T h eo rem  3.4.3. The closure of the space Ai with respect to the norm || • | |a q is equal to

equivalent to Cg0  ̂ Â“ .
We will follow the proof given in [Kre] for [0,1], Chapter III, §3.2.
Clearly, for all functions from Ai (3.44) holds. Let f m £ Ai and f m —» /  in Aa , i.e. 
f  £ Aa . Fix e > 0. There exists No, such that

Aa = { f £  Coo(Rn), ||/(- -  t) -  / ( • )Hoc < A\t\a}, (3.42)

with the norm

\ \ fU a — ll/lloo + (3.43)

(3.44)

Proof. Since Cq° C Ai C Aa and Cq° is dense in Ai, we see, that the space Ax A“ is

||/m ||Ai 5: C, || f m / | | a q <  ^

for all m >  N q and let S > 0 be such that for |£| < 6
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a n d  /  satisfies (3.44).
L et now  /  G Aa and  sa tisfy  (3.44), i.e. /  G A®. W e w ill show  th a t  th e re  ex ists  a  sequence 
( f m ) m > o from  Ai, th a t  converges to  /  in  th e  || ■ ||Aa -norm .
Consider

r x + l / m  p l / m

fm(x) = m n f (r )  dr — m n /  f{r)dr.
Jx  Jo

H ere an d  fu rth e r  we w rite

» rc + l /m  / * x j + l / m  p xn + l / mp x - \ - i  /  m  p x i - f i / m  p

/ ■ ■ ■J x  J x  1 » / x

and / 01/m. . .  d r is defined analogously.
The functions / m, m > 0, are once continuously differentiable (with respect to each a^), 
and therefore belong to Ai. Making a change of variables, we obtain

rl/m
f m(x)  = m n [f{x +  6 ) -  f(9)\ d$,

Jo

which gives
rl/m

fm(x) -  f (x)  =  m n /  [f(x +  6 ) -  f{6) -  f(x)\  de .
Jo

Define
[fm(x ~ t ) ~  f { x  +  *)] -  [fm(oc) -  f(x)] =  T ( / m -  / ,  t);

in this notation

||/m -  /Ha* =  ||/m -  / l l o o  +  sup
| t |> 0  H

Since /  G Aa and (3.44) holds, then for e > 0 there exists 6 > 0 such that for |£| <  <5 the 
function /  satisfies

\ f(x +  t ) - f ( x ) \  _£



Therefore

m f r n - f , t ) \  = m ^  e + t ) _ f {x  + t)
|i |a \t\a 7o

-  f ( x  +  0) +  f(x)\  d9

r (
Jo V |t|a

< mn / 1/m/ l / f r  +  A+  * ) - / ( * +  0)1

|/(x  +  t) ~ / (x)| 
1*1“

< mn ■ +  ?) =  e- mn 2 2 '

Let It I > <5. Then

- / ,* ) !  ^  w f 1/m [0)“ ( \ f(x  +  0 + 1) -  /(x  + 1) |
Jo 1*1“ V\t\a -  Jo \t\a V |0|«

■ 0) ~

\0\ «

+ W x. + A - m \ ) d9 
|0 |“ )  

r l / r h  \ q\a
< 2mn ||/ | |Aa ^ d 9

r l / m
....................................................... < 2 tf -“ ||/ | |A,m "  \9\a d9,

J o ................................................................
and we again may chose No such large that for all m > No

' ‘ ■ r ^ “ < w 4 j i t

Therefore ||/m -  f\\Aa < £ for m > N 0. □

Consider now the integro-differential operator of the form:

p ( x ,D ) f ( x ) =  f  (/(x  - y )  -  f (x))v(x ,dy)  (3.45)
J R n \ { 0 }

T h eo rem  3.4.4. Let p(x, D) be as in (3.45), z/(x, dy) =  g(x , y)dy, 0 < a , cr, 6 < 1,
6 < a  < a, the function g(x , y) is differentiable in x,

and

ls(a:,w)l < ]^p+T- (3-46>

f  \y\a9'x(x,y)dy+ [  g'x (x ,y)dy < oo (3.47)
J\y\<i ^lvl>i

uniformly in x.
Then p(x, D) : A° —> A°_a continuously.
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Proof. Let /  G A°. For such /  we have

l l / ( - -y ) - /( - ) l lo osup
|2/I>0 \y\a

<  00.

Since

||K'> £)/ll«*> =  sup |p(x, D) f ( x ) | =  sup [  (f (x - y ) -  f(x))i / (x,  dy) 
x e R n x e R n J R n

f  f i x  -  y) -  f {x)

' |y |< i
< sup 

xeRn |y |‘
■\y\ffu(x,dy)

<

+  211/1100 sup  /  v(x,  dy)
x € R n J\y\>l

| | / ( -  -  V) - / ( O l l o o  f  | | a  f j  \sup  J-----------f-r------ ------ sup  /  \y\av(x,dy)
y£  R n |3/| x € R n 7 | j / | < l

+  211/1100 sup  I v ( x , d y ) <
x eR n

then it remains to check that 

1

Note, that if |h| > 1 we obtain 

1

/  ( /( •  - h - y )  - / ( ■  - h ) ) v { - - h , d y )  
J Rn

-  [  (/(• - y )  -  f  ( O M s  dy)
J Rn

<  C f  A-

| h\a~a
[  {f(x — h — y) — f { x  — h))v{x — h, dy)

J Rn

- f  [ f i x - y ) -  f(x))u(x,  dy)
J Rn

f  ( f (x - h - y )  -  f { x -  h))v{x -  h , dy) 
J Rn

f  U ( x - y ) -  f (x) )v(x,dy)
J Rn

and therefore for /  G A®

sup
\h\>i

< oo,

where r^g =  #(• — h), and thus p(x,D)  maps A® continuously into Coo(Mn)- 
Next consider the case \h\ < 1. If we rewrite

p{x -  h, D) f (x  -  h) -  p(x, D)f (x)

(3.48)

(3.49)

(3.50)
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as

p(x -  h, D) f ( x  -  h) -  p(x, D) f (x)  =

= [  i ( f ( x  -  h -  v) -  f ( x  -  h)) -  ( f ( x  - y ) ~  f ( x ) ) }y{x,  y) dy
J R n

+  /  ( f (x — h — y) — f ( x  — h)){g{x - h , y ) -  g(x, y)) dy 
J R n

= h{x )  + I2{x).

Since from the mean-value theorem

\ g{x~h, y)  - g (x , y ) \  =  |h\g'x(6,y), 

for some 0, in view of condition (3.47) we obtain

h { x )  <  \ h \  s u p  f  ] y ] ° g 'x { 9 : y ) d y
|y |>0  \y\  j \ y \ < l

+  2MII/lloo f  g'x(0,y)dy < \h\ ||/ | |A(J,
J\v\>i

and therefore
(3-51)

To estimate we divide it into two parts\h\

\h(x)\
\ u \ j Q  =  \h \a  a (  \  { ( f ( x  - h ~ y )  -  f ( x  - h ) )  -  ( f ( x - y )  -  f ( x ) ) } g ( x > y ) d y
\h \ ^ J \ y \ < \ h \

+  /  {{f (x -  h - y )  -  f ( x  -  h)) -  ( f (x - y ) ~  f (x))}g(x,  y) dy)

 »(/(• - h - y ) - f ( - - h ) ) - ( f ( - - y ) - / ( • ) )  Ho c  f h cdy
~  Z -----------------iyF----------------- W I

IICT -  n - y )  -  j y  -  n)) -  - y )  -  J u;iloo |ft|g-o- I *
\y\>o

+  sup sup " ( / ( • - f c - v ) - / ( • - » ? ) - ( / ( • f
0< | / i | < l | y | > | h |  \ h \ J h

a — 6< c i l f U M

and thus for all \h\ < 1 and some constant cq

S U P  m ^ .  ( 3 . 5 2 )
|fc|<l \ h \

Combining (3.52) with (3.50) we arrive at

S U P  l b ( - - ^ ^ ) / ( -  - y  - K - . 0 ) / ( - ) l l o o  <  C | | / | | A ^  ( 3 . 5 3 )

\h\>0 N
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and together with (3.49) we obtain that

p(x,D)  : A° -4 ACT_a .

Moreover, we can see from (3.52) that

l i m  | | p ( - h . J ) / ( - - f t ) - P ( - . P ) / ( - ) I U = 0  ( 3  5 4 )

o \h\a~a v '

which gives us the statement of the theorem. □

Let (X0, II • \\xo) be a Banach space and X \  C Xo a dense subspace such that there is 
a norm || • \\x1 turning (Xi, || • HxJ into a Banach space and

11/IUo < cll/Hx, for all f e X 1.

For the following theorem is taken from [Kre] (see also [Jl], Theorem 2.8.7).

T heorem  3.4.5. Let (Xo, || • ||*0) and (Xi, || • HxJ be two Banach spaces as above and 
further let (Lo? II • ||y0) and (Li, || ■ ||ya) be two Banach spaces satisfying the same conditions 
as Xo and X\ .  Suppose that T : Xo —► Xi is a bounded linear operator such that A f  e  Yk 
for /  G Xjt, and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M / l l n  <  M k\\f\lxk, k .  0 . 1 .

Then A  maps continuously X q =  [X0, Xi]^ into Yq = [Yo,Yi]o, where Xg and Yg are 
complex interpolation spaces, and we have the estimate:

M / l k  < M l - ' M ! \ \ f \ \ x „ 6 € [0,1], (3.55)

Applying this theorem, we derive

T heorem  3.4.6. Let p(x, D) be as in Theorem 3.4.4, and assume in addition that for 
t > a  +  1 +  7j the operator p(x , D ) is such that

p(x, D):  H 1 H l- a. (3.56)

n
continuously, where H t = H\  is the Sobolev space of order t. Then for p =  s =
(1 — 9)a +  9t, and 0 < 9 < 1 we obtain

V( x , D) :  W ; -* W ‘~a, (3.57)

where 0 < a < a < 1.
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Proof. We know from Theorem 3.4.4 that p(x,D): A° —> A°_Q, and for t > a  +  
1 +  |  the spaces H* and H t~a are dense in C ^ .  Then, since the last space is dense 
in A° and A°_Q, the space H* is dense in A° and the space H l~a is dense in A°_a . 
Therefore, applying Theorem 3.4.5 we obtain that p(x, D) is continuous from [A°, H l)e to 
[A°_q, for some 0 < 0 < 1. But by the definition of the space A° the norm on it is
|| • ||act j therefore the norm on the space [A°, H l)e is equivalent to the norm on the space 
[A^jiy*]#. For 0 < a < 1 we have Aff =  -B£o,oo (see [Tl], §2.3.5), and since H t =  B\ 2i
then

(1 - 9 ) a + 6 t  
2 2 e»e (3.58)

Analogously
[A =

Equations (3.58) and (3.59) gives us that for /  € Cq0 it holds

(3.59)

(3.60)

and since the set Cq° is dense in both W* a and W*, then (3.60) holds for /  e  W*. □



N otation

General N otation
x + x, if x > 0, and 0, when x < 0

a Ab = min(a , b)

R real numbers

Rn Euclidean vector space of dimention n

R ^ J1 =  Rn+1 x [0, oo)

. R”+1 . . =; Rn+X x. (0, o o ) ................................................................

C complex numbers

I m  f  imaginary part of /

Re f  real part of f

supp /  support of a function

D closure of a set D

1 £> characteristic function of a set D

A(p) an operator A  defined on a subspace of Lp

D{A) domain of an operator A

R{A ) range of an operator A

p{A) resolvent set of an operator A, Definition 1.1.14

R \  resolvent of an operator A at A

(Ft)t>o one-parameter semigroup of operators, Definition 1.1.1
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Functions and Distributions
g, Fg Fourier transform of a function, (1.3)

(it Fourier transform of a measure, (1.4)

L{ f ) Laplace transform, (1.7)

f  * g convolution of functions

f o g  composition of functions

/  <g) g tensor product of functions, Definition 2.1.4, A

A ®  B  tensor product of operators, Definition 2.1.4, C

E( X)  <8) E(Y)  tensor product of spaces, Definition 2.1.4, B

T(  subordinated semigroup, (1.6)

/i{ subordinate convolution semigroup, (1.8)

T(t) Gamma function

<ta(x,t) density of one-side stable semigroup of measures of order a\ (1.9)

ea (x,/i) Mittag-Leffler type function, (1.12)

E a,g(z) two-parameter Mittag-Leffler function, (1.13)

Jv(z) (1.20)

Iu{z) (1.21)

K v {z) (1.22)

idx) n-dimensional Lebesgue measure

6x (dx) Dirac measure, (1.2)

K = R e ( x ± ( 0 ) a

W t Theorem 3.1.1

'ip(D) pseudo-differential operator with symbol -0(0

M O  (2-40)
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p(x,D) pseudo-differential operator

P(x, 0 symbol of a pseudo-differential operator p(:r, D)

Vr(p) Gamma-transform, Definition 2.1.1

7 ^ ( 1 )±t (3.1)

1t (3.6)

r p ( 2 )

1t (3.2)

r p ( 3 )

-Lt (3.7)

7 ^ ( 4 )
x t (3.8)

r p ( 5 )

-Lt (3.9)

r p ( 6 )

-Lt (3.14)

T p (3.15)

Pt’°(*) density of the Meixner process, (3.21)

Function Spaces and Norms
LP{G) Lebesgue space over a set G C Rn with respect to the Lebesgue measure \{dx)

L(A, B)  space of continuous linear operators from A  to B

^>iP(Rn ,R) Bessel-type potential space, Definition 2.1.3

IMI^r.p norm in the space ^>)P(Rn,R), (2.2)

S'(Rn) Schwartz space

^ '(R 71) dual to the Schwartz space

H p s V'-Bessel potential space, Definition 2.1.4

B ^ p Definition 2.1.8

HX’3'1 Definition 2.1.11

Hp + Definition 2.2.1
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Hp£ Definition 2.2.1

Bpq Besov space

Wp Sobolev space in Lp of integer order s

H s =  L2-Sobolev space of fractional order s

Aa Lipschitz space of order a, Definition 3.4.1

II/IUq norm in the Lipschitz space of order a , see (3.43)

Definition 3.4.2 

W{ G, X)  p .16

[Xo,ATi]e complex interpolation space, (2.11)

C(Rn) space of continuous functions on Rn

Coo(Rn) space of continuous functions on Rn vanishing at infinity

C£,(Rn) = { /  e Cco(Rn), 9<‘>/ e  C ^ R " ) ,  |/| < k}

■ Co°(Rn) ■ ■ space of infinitely many times differentiable functions .on.Rn with compact support

(Rq+) Definition 2.2.9

C'(̂ 3(Ro+) Definition 2.2.9

C'o°(Ro+) Definition 2.2.10, a

Co°(R” ) Definition 2.2.10, b
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