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Abstract

This thesis presents results for spectral functions extracted from imaginary-time cor­

relation functions obtained from Monte Carlo simulations using the Maximum En­

tropy Method (MEM). The advantages this method are (i) no a priori assumptions or 

parametrisations of the spectral function are needed, (ii) a unique solution exists and 

(iii) the statistical significance of the resulting image can be quantitatively analysed.

The Gross Neveu model in d = 3 spacetime dimensions (GNM3) is a particularly 

interesting model to study with the MEM because at T  =  0 it has a broken phase 
with a rich spectrum of mesonic bound states and a symmetric phase where there 
are resonances. Results for the elementary fermion, the Goldstone boson (pion), 
the sigma, the massive pseudoscalar meson and the symmetric phase resonances are 
presented.

U kqcd Nf = 2 dynamical QCD data is also studied with MEM. Results are 

compared to those found from the quenched approximation, where the effects of 

quark loops in the QCD vacuum are neglected, to search for sea-quark effects in the 

extracted spectral functions. Information has been extract from the difficult axial 

spatial and scalar as well as the pseudoscalar, vector and axial temporal channels. 

An estimate for the non-singlet scalar mass in the chiral limit is given which is in 

agreement with the experimental value of Mao =  985 MeV.



Declaration

This thesis has been written and composed by me and contains the results of my 

work except where explicitly stated by references. The derivations which appear in 
§ 4.4 were the work of my collaborator Dr. S. J. Hands.

The results in Chapter 4 appear in:

• J. E. Clowser and C. G. Strouthos, Nucl. Phys. B (Proc. Suppl. ) 106 (2002), 

489-491

• C. R. Allton, J. E. Clowser, S. J. Hands, J. B. Kogut and C. G. Strouthos, 
hep-lat/0208027, submitted to Phys. Rev. D

and the results in Chapter 5 are a result of my work as part of the U kqcd collabo­
ration and will appear in:

• C. R. Allton and J. E. Clowser, in preparation 

Other publications to which I have contributed

• C. R. Allton, D. Blythe and J. E. Clowser, Nucl. Phys. B (Proc. Suppl. ) 109 
(2002), 192-196

• C. R. Allton, D. Blythe and J. E. Clowser, in preparation

iv

Signature of Author



Acknowledgem ents

I would like to thank my family, and my girlfriend Karen for the past few years for all 

their love and support throughout my time at University. Thanks to all my friends 
who have made my time in Swansea one I shall look back on with the fondest of 

memories.

Many thanks to my supervisor Chris Allton for all his help over the course of my 

Ph.D. and for the thorough proof reading of this thesis. I would also like to thank 
Simon Hands and Costas Strouthos for many helpful discussions on the work included 
in Chapter 4. Thanks also to U kqcd Collaboration for the use of their dynamical 

QCD data used for Chapter 5.

v



Contents

1 Introduction 1

1.1 Lattice QCD .............................................................................................  2

1.1.1 Path integral formalism of Q C D ..................................................  2
1.2 The continuum QCD a c t io n .................................................................... 4

1.3 Lattice gauge theory fo rm alism ................................................................ 6

1.3.1 Spacetime d iscretisation ..............................................................  6

1.3.2 Lattice representation of the fermion and gauge fie ld s..............  7

1.3.3 Discretisation of the action...........................................................  9

1.3.4 The integration m easu re ..............................................................  10
1.3.5 Numerical sim ulation..................................................................... 11

1.4 Simulating QCD .......................................................................................  13
1.4.1 The quenched approximation ......................................................  13

1.4.2 Nf  =  2 dynamical quarks ...........................................................  15

1.5 0(a)  improvement ....................................................................................  16

1.6 The Gauge ac tio n .......................................................................................  16

1.7 The fermion a c t io n ....................................................................................  17

1.8 Hadronic correlation functions.................................................................. 18

1.9 Why M E M ?................................................................................................  19

1.10 Overview of thesis.......................................................................................  21

2 Maximum Entropy M ethod 23

2.1 Bayes’ Theorem .......................................................................................... 23

vi



CONTENTS vii

2.2 The likelihood function..............................................................................  24

2.2.1 Normalisation.................................................................................  26
2.2.2 Comparison to standard x2-fitting ...............................................  26

2.3 The prior probability .................................................................................  26

2.3.1 Discretisation of frequency, u  ...................................................... 27

2.3.2 Normalisation.................................................................................  27

2.4 MEM algorithm ..........................................................................................  28

2.4.1 Step 1 - Find the most probable f(uj) for a given a ................ 28

2.4.2 Step 2 - Calculate final im a g e ...................................................... 29

2.4.3 Step 3 - Error an a ly sis ................................................................... 30
2.4.4 Condition for integrating over a ................................................... 31

2.5 Maximising Q .............................................................................................. 32
2.5.1 Extremum c o n d itio n .....................................................................  32

2.5.2 SVD of lattice k e rn e l.....................................................................  33
2.5.3 Bryan’s algorithm ...........................................................................  34

2.5.4 Newton search for solution............................................................ 35
2.5.5 Diagonalising Eq. 2 .5 0 ..................................................................  36
2.5.6 Getting Su from y -1£u ...............................................................  38
2.5.7 How to deal with small/negative f ’s ............................................  38

2.5.8 Diagonalising Eq. 2 .6 2 ..................................................................  40

2.6 Uniqueness of the solution in M E M ........................................................  42

3 Testing the Maximum Entropy M ethod 45

3.1 Test data g en era tio n .................................................................................  46

3.1.1 Delta function.................................................................................. 46

3.1.2 QCD-like d a ta .................................................................................. 47

3.2 The te s ts ....................................................................................................... 49

3.2.1 Simple pole analysis .....................................................................  49

3.2.2 Input data quality ........................................................................  50

3.2.3 Changing the default m o d e l.........................................................  51



CONTENTS viii

3.2.4 Changing the prior probability for a  .......................................... 52

3.2.5 Spectral width ..............................................................................  52

3.3 S u m m a ry .................................................................................................... 53

4 Modelling QCD: The Four-Fermion Interaction 55

4.1 Essential properties....................................................................................  57

4.2 Mean field analysis at zero temperature and d ensity ............................. 60

4.3 S im ulations................................................................................................. 63

4.3.1 Data sets .......................................................................................  66

4.4 Theoretical spectral function fo rm .............................................................  66

4.4.1 Broken phase 7r, /  and PS channels..............................................  66

4.4.2 Symmetric p h a s e ...........................................................................  68

4.4.3 Broken phase sigm a........................................................................  69

4.5 R esults.......................................................................................................... 71

4.5.1 Broken phase 7r, /  and PS channels..............................................  71

4.5.2 Symmetric p h a s e ...........................................................................  75
4.5.3 Broken phase sigm a........................................................................  82

4.6 Conclusions................................................................................................  86

5 Dynamical QCD 88
5.1 Simulation p a ram ete rs ..............................................................................  88

5.2 MEM technicalities....................................................................................  91

5.3 R esults.......................................................................................................... 91

5.3.1 Quenched data s e t ........................................................................  92

5.3.2 Matched Unitary S e t .....................................................................  95

5.3.3 Lightest ttsea d a t a ...........................................................................  100
5.4 Non-singlet scalar m eson ...........................................................................  101

5.5 Conclusions................................................................................................  105

6 Conclusions 107
6.1 Summary of the GNM3 analysis (Chapter 4 ) ........................................... 107



CONTENTS ix

6.2 Summary of QCD analysis (Chapter 5 ) ................................................  108

6.3 Future w o rk ..............................................................................................  109

6.3.1 GNM3 ............................................................................................. 109

6.3.2 Dynamical QCD ..........................................................................  109

A Entropy definition 110

A.l Monkey argument for entropy and prior p robab ility ............................  110

A.2 Axiomatic construction of entropy.........................................................  112

B Singular value decomposition 116

Bibliography 119



Chapter 1 

Introduction

Quantum Chromodynamics (QCD) is well established as the theory of the strong 

interaction. This has been due to the success of perturbative methods in describing 

the short distance (large momentum transfer) behaviour of quarks and gluons. How­

ever, QCD also needs to exhibit experimentally observed phenomenon, such as quark 

confinement (i.e. quarks bound in colour singlet states). This necessitates calculating 

at low energies, // < lGeV, associated with the characteristic length scale of a hadron 

of approximately lfm. Since QCD exhibits the property of asymptotic freedom, at 

such energies, the strong coupling becomes of 0(1).  Thus perturbative methods fail, 

and a non-perturbative approach, such as Lattice QCD, is required.

Lattice QCD was originally formulated in 1974 by K. G. Wilson [1]. It provides a 

non-perturbative mechanism for confinement in the strong coupling limit and enables 

numerical studies of the low energy behaviour of QCD. The first numerical results 

were reported in [2, 3]. Reproducing the experimentally observed hadron spectrum 

validates both QCD and the lattice approach, and confidence in the results obtained 

means that it can be used to predict other phenomenology which cannot be measured 

directly from experiment. Due to the considerable computer time required to simulate

1
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QCD, the quenched approximation (in which the quark loops in the vacuum are 

neglected) has been used, and in fact is still used to this day. The applicability of 

this approximation can be measured by comparing the light hadron spectrum with 

experiment. In order to make precise comparisons it is necessary to have good control 

over systematic effects such as lattice artifacts. Comparisons of this type all seem to 

agree that the quenched light hadron spectrum agrees with experiment at the 10% 

level [4, 5].

Now with the recent theoretical developments and additional computational power, 

it is possible to simulate full QCD (i.e. include quark loops in the vacuum). Al­

though the simulations have not reached the stage where precision measurements of 

the spectrum can be made it is hoped that the 10% discrepancy seen in the quenched 

approximation is reduced. It is also interesting to see if the effects of these dynamical 

quarks can be seen, for example the decay of p —> nn. Using the Maximum Entropy 

Method (MEM) the spectral function of the particles can be extracted directly from 

the lattice correlation data. This method is described in detail in Chapter 2.

1.1 Lattice QCD

In this section a brief outline of the fundamental elements of lattice QCD is given. For 

more detailed information see the textbooks [6, 7] or introductory lecture courses [8, 

9].

1.1.1 Path integral formalism of QCD

All information about the physical observables in the theory are contained within an 

infinite number of vacuum expectation values of time-ordered products of quantum
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field operators, known as Green’s functions. Using the path integral formalism [10]

these quantum probability amplitudes can be directly related to the probability dis­

tribution of the classical fields

product of fermion, anti-fermion and gauge fields. The time ordering of the operators

Note that here and throughout this thesis the usual nomenclature, known as natural 

units, c =  h =  1 has been used.

The functional integral in Eq. 1.1 is extremely hard to evaluate numerically due 

to it being both complex and strongly oscillating. To deal with these problems and 

make the numerical simulation much easier a Wick rotation, xq —> —ix4 can be used to 

analytically continue from Minkowski to Euclidean spacetime. The partition function 

is altered to

(O |f{0 [iM , A.ftlO) =  1  f  Vi>Vi>VAflO[4,<i},A li}eis^ A‘‘\  (1.1)

where AJ  corresponds to a product of quantum operators , A to a

is denoted by T  and S  is the classical action. The partition function, Z , is defined as

J  VipVipVA, (1.2)

J  VipVipVA, (1.3)

where Se is the Euclidean action (see § 1.2 for definition). The weight, e Se in the
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partition function is now very similar to that used in Statistical Mechanics, provided 

that Se is both real and bounded from below.

1.2 The continuum QCD action

The QCD action is invariant under local SU(3) gauge transformations, G(x). The 

fermion and gauge fields transform as

Thus the continuum QCD action in four-dimensional Euclidean spacetime is given by

where Nf  is the number of fermion flavours and //, v =  1 . . .  4. The first term describes 

the dynamics of the gluon gauge fields, A/i. The gauge field strength tensor, Flil/(x), 

is defined in terms of the commutator of the covariant derivative, H- A ^ x ) ,

as

ip(x) —¥ G(x)ip(x),

'ip(x) -» ,ip(x)G~1(x),

An(x) -> G(x)Afi(x)G~1(x) — (dfiG(x))G~1(x).

(1.4)

(1.5)

( 1 .6 )

F ^ x )  =  [£)m, Dv\ =  d^Au(x) -  duA^x)  +  [A^(x), Au{x)] (1.8)

The eight gluon gauge fields are defined in terms of the generators of *S'£/(3), T.
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AU X) = -A»(x),  A ^ x )  = - ig 0Al(x )Ta, a = l , . . . , 8. (1.9)

The following commutation relations and normalisation conditions are satisfied by 

the generators

[T“, T6] =  i / atcTc, IV[r“, T b] =  (1.10)

where f abC are the anti-symmetric structure constants and the generators are repre­

sented by the eight Gell-Mann matrices, T° =  Aa/2.

The second term in Eq. 1.7 is the Euclidean Dirac action describing the interaction 

of the fermion fields. The Dirac spinor and colour indices have been suppressed and 

m / is the mass of the fermion with flavour / .  Note that p =  From now on the

sum over the flavours, written in explicitly in Eq. 1.7, will be omitted. The Euclidean 

Dirac matrices, 7 , are related to the Minkowski matrices, 7m, by

74 =  To*. l j  =  j  = 1,2,3, (1.11)

and satisfy the condition of Hermiticity and commutation relations below.

7j  =  7/ji {7„, 7«,} =  2<5(1„. (1.12)
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This action can now be inserted into the path integral formalism. Due to the gauge 

invariance of the action, this path integral is not well defined, hence the integration 

is performed over an infinite number of physically equivalent gauge configurations. 

This problem can be solved by discretising spacetime on a four dimensional lattice.

1.3 Lattice gauge theory formalism

The original formulation of lattice gauge theory was proposed in [1]. A detailed 

description of the steps involved in discretising the continuum theory, outlined briefly 

below, can be found in [6, 7].

1.3.1 Spacetim e discretisation

Spacetime is discretised onto a four dimensional isotropic hypercubic lattice, A#

Ae = {x e M4|x^/a e Z, n =  1, . . .  ,4}, (1-13)

where a is the lattice spacing. The integration in the action is now replaced by the 

sum over all lattice sites, re,

f  dAx —>-a4^T^. (1-14)
X

All dimensionful variables are re-scaled by the lattice spacing, a, to yield dimensionless 

quantities, e.g. the fermion mass m  is replaced by am, since in natural units (c = h = 

1) mass has the dimensions of inverse length.



CHAPTER 1. INTRODUCTION 7

1.3.2 Lattice representation of the fermion and gauge fields

The fermion fields are represented by anti-commuting Grassmann variables on the 

lattice sites. Since the action is bi-linear in the quark fields, the integration over the 

fermion variables can be performed analytically.

The representation of the gauge fields on the lattice is not so straight forward. 

If field variables situated on the lattice sites are used then the gauge invariance is 

spoiled due to the discretisation of the derivative by a finite difference. To retain the 

gauge invariance of the theory the following procedure can be used.

In the presence of a gauge field in the continuum, a quark field transported from 

x to y gains a phase factor

= V e x p ^ -  J  A ^ d z ^  ^(x)  =  U(y,x)ip(x) (1.15)

where V  denotes a path ordered product, which is required due to the non-abelian 

nature of the gauge fields. Under a local SU(3) gauge transformation, the parallel 

transporter, U(y,x), transforms as

U{y,x) G(y)U(y, x)G~1(x), (1.16)

hence

ip(y)U(y,x)ip(x) (1.17)
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x+av , A , A x+ap+av

v M
> U,(x)

X x+ap

Figure 1.1: Lattice variables, quarks are defined on the lattice sites, gluons on the 
links.

is gauge invariant. This parallel transporter is represented by a link variable, U^(x), 

from lattice site x, oriented in the direction /i.

U^x)  =  e- aA“(x+^ \  (1.18)

where [l is a unit vector in the direction p. From the path ordering condition it 

follows that U^x)  =  U-n(x +  a/i). These link variables are represented by 3 x 3 

unitary matrices with unit determinant in the fundamental representation of SU(3). 

They transform as

Un(x) ->• G{x)Ull{x)G~l {x +  a/i), (1-19)

provided G(x) belongs to the same representation of the group as the gauge links.
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Two types of gauge invariant objects can now be formed on the lattice, this can be 

seen from Eqs. 1.4, 1.5 and 1.19. Firstly a string defined by

^(y)U^{y) • • • Uv(x -  aOMx),  (1.20)

where the trace over the colour indices is implicit and the gauge links are path ordered. 

Secondly the trace of a product of gauge links forming a closed loop, referred to as a 

Wilson loop. The simplest example of this is the plaquette, TtC/q, where

UQ =  U„(x)Uv(x +  aft)Ul(x +  au)Ul(x)  (1.21)

is the product of links around an elementary square on the lattice.

1.3.3 Discretisation of the action

The QCD action could be discretised in many ways, but a vital condition to be 

satisfied is that the continuum action must be reproduced in the limit where the 

lattice spacing goes to zero. This means higher order terms can be added into the 

lattice action so long as they disappear in the continuum limit.

The lattice action is constructed from the gauge invariant quantities defined in 

§ 1.3.2.

(1.22)
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where So is a pure gauge term and Sp depends on the fermionic fields and is defined 

as

SF[i>^,U] =  X ^ ( z ) M x>v[tfhKy), (1.23)
x,y

where M  is the fermion matrix.

1.3.4 The integration measure

The partition function can now be expressed in terms of the lattice variables

Z =  J  V$VipVUe~SG[u]-^* ’V^{x)Mx'v[uM y\  (1.24)

where

= VU = Y ld U ^ x ) .  (1.25)
x,n

After performing the integration over the Grassmann valued fermion fields ana­

lytically the partition function becomes

Z =  J ' [ [ d U ll{x)A6tM[U}e-Sa{u]. (1.26)

dU, defined by the conditions below, is known as the Haar measure [6] and is gauge 

invariant.
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[  dUf(U) = [  dUf(UV) = [  dUf(VU ), (1.27)
J g  J g  J g

where V  G SU(3) and f{U) is an arbitrary function over the group. Since the gauge 

links are elements of a compact group the normalisation condition

f  dU = 1 (1.28)
Jg

can be imposed, which reduces the path integral down to a large, but finite, number 

of integrations and removes the need for gauge fixing. The remaining integration, 

over the gauge links, is performed numerically.

1.3.5 Numerical simulation

In terms of lattice variables, the physical observables, expressed in the path integral 

formalism become

(0|f{d(Vi1V ',^)} |0 ) =  1 J  V^Vi>VUO(ip,il),U)e-s['i’’m . (1.29)

There are only a few types of terms which do not vanish, those which contain equal 

numbers of fermion and anti-fermion fields, due to the Grassmann integration rules [6]. 

So for a general operator

=  det M[U] (1.30)
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and

j  =  M~*y, detM[U\.  (1.31)

Dividing Eq. 1.31 by Eq. 1.30 gives the quark propagator in a background gauge field, 

(x , y\ U) in terms of the inverse fermion matrix

Gaaf(x ,y -U )  = M - ^ . AbJU], (1.32)

where (a, b) are the colour indices and (a, ft) are the Dirac spinor indices. It is from 

this propagator that the correlation functions are constructed.

Once the fermionic part of the integration has been performed analytically, the 

expectation value of an operator is given by a path integral over the gauge fields

{0\T{O$,il>,U)}\0) = |  f  DC/0(C/,M-1[J7])e-s'»l[/l, (1.33)

where Seff is the effective action

Seff = S g [U]  -  In det M [ U \ .  (1.34)

Provided 5eff is real valued, the remaining integration over the gauge links can be 

performed numerically. This is done using Monte Carlo techniques, by generating 

gauge field configurations { U } i  (assignment of a link variable to every link on the
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lattice) with a probability proportional to e-5eff^ .  Subsequent configurations are 

then generated via an algorithm and are separated by several algorithmic updates, 

known as sweeps or trajectories. This is to reduce the correlations between subse­

quent configurations. An observable is then calculated as the ensemble average of the 

observable measured on each configuration.

1 N
< 0 |f{ d [ iM ,4 J } |0 >  «  - £ © ( { [ / } < , M - 1™ )  (1.35)

1=1

The statistical error in such an average is 1/y/N  for independent configurations, for 

correlated configurations this estimate is increased.

1.4 Simulating QCD

To achieve reliable results with acceptable statistical errors from QCD simulations, a 

sizeable computational effort is required. In order to achieve this an approximation, 

known as the quenched approximation, is often used. One of the main aims of MEM 

is to be able to see unquenching effects, i.e. differences between quenched data and 

dynamical data.

1.4.1 The quenched approximation

The most intensive part in a QCD simulation is calculating the determinant of the 

fermion matrix, M, in the effective action (Eq. 1.34). This is due to the considerable 

size of the fermion matrix ((4spins x 3coiours x lattice sites)2 elements) and the non­

local nature of the inverse of M, which is required for the algorithmic update of the 

configurations. If the approximation
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det M[U] = const (usually set to 1) (1.36)

is made then the computational overhead can be significantly reduced. This is known 

as the quenched approximation and corresponds to neglecting the quark-anti-quark 

loops in the vacuum (i.e. these quarks, commonly called dynamical fermions, are 

made infinitely heavy and therefore decouple from the theory).

The quenched theory of QCD retains most of the important features seen in full 

QCD such as confinement and chiral symmetry breaking, but there are consequences. 

For example, a resonance such as the p meson become stable, in full QCD the p 

receives a contribution from an intermediate state, consisting of 2 7r’s. This is one of 

the signals MEM will seek, a peak corresponding to two pions in the spectral function.

One of the main effects of quenching is to shift the coupling, this means that 

quenched and dynamical simulations should not be compared at the same value of 

the coupling, rather at the same lattice spacing. Such data sets are known as a 

“matched” ensemble [11].

Although the quenched approximation has yielded good results for observables 

such as the light hadron spectrum (i.e. to an accuracy of 10% with experimental re­

sults), with the advancement in computer power, along with algorithmic development, 

it is now feasible to simulate two light flavours (Nf = 2) of dynamical quarks.
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1.4.2 Nf =  2 dynamical quarks

The effective action in Eq. 1.34 needs to be real so that importance sampling can be 

easily implemented. Hence det M[U] needs to be real and positive. To check that 

the determinant of the fermion matrix is real is relatively simple, it follows from the 

lattice Hermiticity relation

M[U] =  75Mf[[/]75. (1.37)

This does not guarantee the positivity of the determinant though. For example con­

sider an action with two fermion terms (u and d). When the integration over the 

fermion fields is performed the following determinant is obtained

det M[U] -> det MU[U] det Md[U] =  (det MU[U])2 > 0 (1.38)

Where the last statement of positivity only holds if Mu =  M^. Hence in the case of 

pairs of degenerate quarks, positivity is guaranteed.

Whether simulating using the quenched approximation or full QCD, the inversion 

of the fermion matrix is necessary. This can be very computationally intensive, espe­

cially when using the physical masses of the light quarks. It is for this reason that the 

quark propagators are generated at heavy quark masses, and then the lattice masses 

calculated are extrapolated to the physical light quark masses.
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1.5 0(a) improvement

The discrete nature of the lattice is one of the major sources of error in lattice sim­

ulations. Due to the computational cost of simulating at an arbitrarily small value 

of the lattice spacing, simulations must be run at small, yet finite lattice spacings. 

For Nf = 2 dynamical fermion simulations, which already have high computational

costs the lattice used must be even coarser than for the quenched approximation,

a «  O.lfm. As a consequence of this, the discretisation errors become larger, hence 

the need to use an 0(a) improved action.

1.6 The Gauge action

Although the gauge action can be improved, the data analysed in Chapter 5 of this 

thesis is generated using the standard Wilson gauge action [1] defined in Eq. 1.39

•Sg[C/] =  P ( 4 -  > 0 = - ^  I1-39)

where (3 parameterises the dependence on the strong coupling constant. The sum is 

over all positively orientated plaquettes Uu defined in Eq. 1.21. Substituting Eq. 1.18 

into 5g[Z7], the Yang-Mills term in the continuum action is obtained up to discreti­

sation errors of O(a2). Improved gauge actions can be used, however. The CP-PACS 

collaboration use an improved gauge action given in Eq. 1.40 for their “full” QCD 

simulations [12]

Sh[U\ =  P \ £ ,  ^1*1 -  00907 £  )  - W " '  =  KTrt/D t1'40)
\ l x l  1x2 /
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where W \ X2 denotes the real part of a trace over a 1 x 2 rectangular Wilson loop. 

The sums are always over positively orientated loops. The motivation and method 

used in obtaining this action can be found in [13] and will not be discussed further in 

this thesis.

1.7 The fermion action

The fermion action used for the QCD work in Chapter 5 is the 0(a)  improved Wilson 

fermion action

Sf [4, 4, U] = 4, U] + s sFw [ i 4, u], (1.41)

The first term is the standard Wilson fermion action [14] and the second term is a

counterterm, known as the Scheikoleslami-Wohlert or Clover term [15] which can be

tuned in order to cancel to O(a) discretisation errors arising from the Wilson fermion 

action. The discretised form is

SFW[t>, '0, u] = - cswy  i){x)G^Fllv(x)'il){x) (1.42)
x,y,n

where =  §[7^ ,7//] and the lattice field strength tensor, is defined by

F ^(x)  = ^ ( Q ^ ( x ) - Q U ( x ) )  (1.43)

where Q^u is the sum of the four plaquettes around lattice site x  in the /i, v plane
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= Ufa)Uv[x + p )U fa  + 0)Ufa)

+ Uu(x)Ufa  -  A + v )U fa  -  p)U^{x -  A)

+ U f a  -  p )U fa  -p.  -  i>)Û {x -  A -  v)Uu(x -  0) 

+ U f a  -  fyU^x -  v)Uu(x + A -  v)Ufa).

The O(a) improved action is then

*>y

with the fermion matrix, MXty[U], defined by

fj, v

k 'y [̂̂ z+A>y(̂  lii)Un{x) +  5x- ^ y{l +  0V*)̂ /x(?/)]

csw is known as the clover coefficient and is a function of the bare coupling g0. 

be tuned in order to remove 0 (a) discretisation errors.

1.8 Hadronic correlation functions

The interpolating operator, J(x ), for a meson is given by

(1.44)

(1.45)

(1.46) 

It can

J(x) = i/>(x b/z75^(z)- (1.47)
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The (zero-momentum) hadronic correlation function for mesons is defined as

GaW =  £  £ < ° l  J(x,t)J*(0,0)\0) (1.48)
{ U }  X

Introducing a full set of states this becomes

GaW = £  £  1 0 < O |J (x ,t) |P 4(k)>(Pi(k)|/t(o,O)|O> (1.49)
{^},x i J

and performing the sum over x

GaW = E E ^ 7 < 0 lJ (0)lPi(0)><P‘(0)lj t (0)l°)e- M“ - (i-50)
{[/} i

Eq. 1.50 is a sum of exponentials, one for each state in the channel each with a 

different mass M*. The largest mass will decay fastest and the lightest (ground) state 

will decay the slowest. In the standard x2-fitting method, only large times, when the 

excited states have all decayed away and only the ground state remains are fitted to.

Ilm 0M ,  noiJ(Q)i;(o))i! e- » . ,  (1JS1)
t large 2M q

1.9 Why MEM?

The hadronic spectral functions in QCD play a vital role in understanding all the 

properties of hadrons and the QCD vacuum structure. For example, consider e+e“
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annihilation into hadrons, this can be expressed in terms of the spectral function 

corresponding to the correlation function of the QCD electromagnetic current.

Numerical simulations of QCD have so far been very successful at extracting 

“static” properties such as hadron masses and decay constants. It is desirable to ex­

tend its powers to the extraction of the hadronic spectral functions. However, there 

is much difficulty in accessing the “dynamical” quantities, such as spectral functions, 

from the finite set of discrete points in imaginary time generated by the Monte Carlo 

simulations. The analytic continuation from imaginary to real time using the limited 

and noisy lattice data available is a typical ill-posed problem, where the number of 

data points is much smaller than the degrees of freedom to be reconstructed. The 

standard method (x2-fitting) is clearly inapplicable here, since many degenerate solu­

tions would be found. This is why the first attempts at extracting spectral functions 

relied on fitting to a specific ansatze [16, 17, 18, 19, 20, 21]. There are two major 

drawbacks to these previous approaches

• a priori assumptions for the spectral shape prevent the study of the fine struc­

tures contained in it, and

• the result does not remain stable under a change in the number of parameters 

used in the specific spectral function ansatze used.

Both of these problems become even more severe at finite temperature where very 

little is known about the spectral shape.

The maximum entropy method provides a way to extract the spectral functions 

from the lattice correlation data in which Shannon’s information entropy [22] plays
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a vital role. The first application of information entropy to statistical mechanics was 

made by Jaynes [23] and to optical image reconstruction by Frieden [24]. Since then 

MEM has been applied to many different scientific fields including analysis of quantum 

Monte Carlo simulations in condensed matter physics [25, 26, 27, 28, 29, 30, 31] and 

image reconstruction for crystallography [32] and astrophysics [33]. In the context 

of QCD, MEM uses Bayesian probability theory [34] to make a statistical inference 

on the most probable spectral function from a given Monte Carlo data set. A priori 

assumptions about the functional form are not made, nevertheless, for any given 

lattice data, a unique solution exists. Furthermore, error analysis can be carried out 

on the resultant image so the statistical relevance of any feature can be evaluated. 

This method opens up a whole host of possibilities for further study beyond the 

conventional methods of fitting lattice data.

1.10 Overview of thesis

In chapter 2 the MEM algorithm used throughout this thesis to obtain the images 

will be discussed in detail. Chapter 3 presents some results from runs on test data, 

showing that the method works for a variety of cases. Also the image quality and 

variation will be tested by varying a number of factors including the data quality (i. e. 

number of time slices, noise levels and number of configurations). In chapter 4 the 

results from a model of QCD are presented, preceded by some basic theory for the 

model and the expected forms for the spectral functions. This is the first attempts at 

applying MEM to data with dynamical fermions. Chapter 5 presents results obtained 

from U kqcd Nf = 2 dynamical data as well as a quenched data set for reference. 

This is the first application of MEM beyond the quenched approximation. Finally in
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Chapter 6 a summary of the conclusions from this results presented in this thesis is 

given.



Chapter 2 

M axim um  Entropy M ethod

In the chapter a detailed discussion on the maximum entropy method (MEM) will be 

given. Beginning with the foundation of Bayes’ theorem and going onto a detailed 

proof of Bryan’s algorithm [35], the method used for all the results presented in this 

thesis.

2.1 Bayes’ Theorem

The theoretical basis for MEM is Bayes’ theorem in probability theory [34], This 

states that

P[Y\X]P[X]
P[Y} ’ 1 ]

where P[X|T] is known as the conditional probability of X  given F , i.e. the prob­

ability that event X  occurs given that event Y  has already happened. P[X] is just 

the probability that event X  occurs independent of event Y.

Now re-write this in terms of the Monte Carlo lattice data, D , and the spectral 

function, / .  Included also in the following expression is a hypothesis term, H, which

23
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represents all the a priori knowledge (e.g. f(u> > 0) > 0), i.e. the spectral function 

for a particle is positive semi-definite and only defined for positive energies). Bayes’ 

theorem now reads

p\f\rin p {D\fH][P[f\H]
p [ f l D H ]  -  — m m — • (2-2)

The terms on the right hand side of Eq. 2.2 are known as:

P[D\fH] - likelihood function

P[f\H] - prior probability

P[D\H] - normalisation (independent of / )

The most probable image will be the f (u)  which satisfies

6 P[f\DH\
Sf

= 0. (2.3)

2.2 The likelihood function

For a large number of Monte Carlo measurements of a correlation function, the input 

data, D  is expected to obey the Gaussian distribution law according to the central 

limit theorem.

P{D\fH] = ± e - L, (2.4)

L =  l E W r , )  -  F i r M C j M T j )  -  F M ) ,  (2.5)
hJ
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where the indices i and j  run over the actual time window used in the analysis, 

< hj i  < ~ ^  (a is the lattice spacing). Define the number of data points used 

(for later use)

N  =  Tjnax _  Tmin +  j  ^
a a

D{ti) is the averaged lattice data at time T{

D fa) =  a t -  E  (2-7)'c/5 m — 1

where Ncfg is the total number of gauge configurations available and D m{ri) is the 

data for the mth configuration. Ffa)  is the correlation function data calculated from 

/ ,

poo
F{t ) = /  K(r,uj)f{uj)duj, (2.8)

Jo

K ( t , u ) is the lattice kernel,

K{ji, uj) = e~UT. (2.9)

Cij is the standard NT x NT covariance matrix defined as

Cij =  Ncf9 (Ncfg -  1) S W )  “  ^ f a W ^ f a i  ~ D M ) -  (2-10)
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For real lattice data it is essential to take account of the off-diagonal elements of 

as correlations between different r  are generally strong.

2.2.1 Norm alisation

Zl is a normalisation factor calculated from the integration of P[D\fH] over D using 

the measure [dD] given below.
T m a x

m  =  n  (2-11)
A— Tmin 

a

ZL =  (27r)^v/det C (2.12)

2.2.2 Comparison to standard ,\'2-fitting

If the prior probability, P[f\H\, is constant then maximising P[f\DH] is identical to 

maximising P[D\fH\. This corresponds to minimising the likelihood, L, defined in 

Eq. 2.4. This is just standard x2-fitting. Generally the number of data points on a

lattice, Nt , is (9(10) and too get good resolution on sharp features in /  the number

of points required is (9(103). Hence x2-fitting alone will not work as there are many 

different / ’s which will minismise x2- The role of the non-constant prior probability 

is essential for MEM to overcome this ill-posed problem.

2.3 The prior probability

The prior probability used is defined as

P[f\Ham] = 4~eaS, (2.13)
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where a and m  are auxiliary parameters which will be discussed in more detail later. 

S  is the Shannon Jaynes entropy.

S = [  f(u>) -  m(ui) -  }{u) log ( I j - T ]  du>. (2.14)
Jo .

On the lattice the discretised form of this is required

s = E  fi lo8 (2.15)
1 =  1 L

a is a real positive parameter and m(uj) is a real positive function known as the default

model (sometimes called the prior estimate). a  and m  are part of the hypothesis, 

i / ,  but are now written in explicitly to all terms involving H  including the likelihood

be integrated out and therefore eliminated from the final result. The default model, 

m , remains in the final result, but the sensitivity of the results against a change in m  

will be studied 3.2.3.

2.3.1 Discretisation of frequency, uj

As seen in Eq. 2.15, then the frequency u  is discretised as follows. There are Nu 

points with equal spacing A lj so ft =  /(cu*), mi = m(ui) and lji = lAu.

2.3.2 Norm alisation

Once again there is a normalisation factor, Z5, involved in the definition of the prior 

probability (Eq. 2.13). The integration of P[f\Ham\  over /  using the measure [df]

even though it is independent of both a  and m. At the end of the calculation a  will



CHAPTER 2. MAXIMUM ENTROPY METHOD 28

(defined below) is normalised to unity.

(2.16)

(2.17)

In Appendix A two derivations for the Shannon-Jaynes entropy are given. Firstly

There are three steps involved in calculating the image, f (u).

2.4.1 Step 1 - Find the most probable f(uj) for a given a

This involves maximising

Eq. 2.18 is obtained by combining Eqs. 2.2, 2.4 and 2.13 and noting that P(D\H) 

is independent of /  and is therefore an independent constant. It is easy to see from 

Eq. 2.19 that a just plays the role of the relative weight between S  (which fits to 

m(uj)) and L (which fits to D).

The most probable image for a given a is / a , which satisfies the condition

by using the so-called “monkey argument’ [36, 37, 38] and secondly a derivation based 

on an axiomatic argument [39].

2.4 MEM algorithm

P[f\DHam]  oc 1 eQ

Q =  a S - L

(2.18)

(2.19)
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(2 .20)

For a detailed description on the algorithm used for solving Eq. 2.20 see Sec. 2.5.

2.4.2 Step 2 - Calculate final image

Once f Q has been found the choice for the final result depends on the MEM procedure 

being used. The three options are

1. Classical - choose a  such that x 2 =  NT [36]
2. Historic - choose the f Q which maximises P[a\DHm\ [36]

3. Bryan’s - Perform an average over /  and a  weighted by P(a\DHm)  [35]

If P[a\DHm] is fairly strongly dependent on a then Bryan’s algorithm is required, 

and is used throughout this work.

Using Bryan’s algorithm the final image, f out, is defined as

The last expression here is obtained by using the assumption that P[f\DHam] is 

sharply peaked around / Q(uj), which should be satisfied for good data with small 

errors. P[a\DHm] can be calculated using Bayes’ theorem

font =  j  W l  I  d a f ( w ) P [ f \ D H a m ] P \ a \ D H m ) 

~  J  d a f a ( u i ) P [ a \ D H m } .
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P[a\DHm] =  J  [df] P[D\fHam}P[f\Hocm]P[a\Hm]
P[D\Hm]

OC P[a\Hm] j [ # ] - ! ■ e Q ,

oc P[a\Hm] exp
2 ° a  +  A*

k

(2.23)

(2.24)

, (2-25)

where the At’s are eigenvalues of a real symmetric matrix defined by

A 1,1' =  yf f lQflQfv ' f f l
f —fa

(2.26)

Choosing prior probability for o

P[a|i7m] is known as the prior probability for a. There are two rules for choosing 

this, either the Laplace rule (P[a\Hm] = const) or Jeffrey’s rule (P[a\Hm] = [34],

This choice is arbitrary as long as P[a\DHm] is concentrated around its maximum a

2.4.3 Step 3 - Error analysis

An advantage of using MEM to construct the image f (u )  is that it allows one to 

analyse the statistical significance of the peaks found. Since neighbouring points are 

heavily correlated, the error needs to be calculated over some interval in uj [25]. First 

define the unweighted average of f (u )  over a region I  in u.

n  \ _  f[df]J,duif{ui)P\f\DHam] _ fjdu>fa(u)
\ J a )  I  — f idw Jr dui

(2.27)
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where to get the last expression it has been assumed that P[f \D Ham] is strongly 

peaked around / Q(o;).

The variance of (fa)i is similarly estimated by

^  _  J W ] J IXJSuSu'Sf(u)Sf(u')P[f\DHam]
{ { 5 f a ) ) l  =  J l x j  S ojS ui1 ( 2 ' 2 8 )

f .  .  S u i S u '  (
 ---------------f X x ■ ■ 2-29J I x I S oj5 cj'

where 6 f(uj) = f(uj) — / Q(o;). To get the last expression, the Gaussian approximation 

has been made for P[f\DHam\. As the final output image f out is an average over a , 

the same is done to find the final value of the variance

((Sfout)2), = J  da{{5faf)iP[a\DHvn\. (2.30)

These errors are shown on the plot of the spectral function as an ordinary error 

bar cross, but the meaning is slightly different. The horizontal position shows the 

central position of the peak, and the extent shows the region I which was averaged 

over (chosen to be the full width at half maximum). The vertical position indicates 

the average height of the peak (see Eq. 2.27) and the extent shows the variance (see 

Eq. 2.30). The way in which these errors are interpreted is as follows. If the variance 

of the peak is much smaller than the average height then the peak is a physical feature, 

but if it is larger then the peak is considered to be statistically insignificant.

2.4.4 Condition for integrating over a

The range of a  over which the averaging is performed is determined using the criterion
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P[a\DHm\ > 1% x P[a\DHm]. (2.31)

This probability is then renormalised so that

daP[a\DHm] =  1 (2.32)

then the integration in Eq. 2.22 is carried out.

2.5 Maximising Q

This is the most computationally intensive part of the algorithm since the functional

degrees of freedom. Fortunately Bryan [35] found that, by using a singular value 

decomposition (SVD) on the kernel, K , the search space can be restricted to, at 

most, the number of data points ~  (9(10). In this subsection, the algorithm originally 

proposed by Bryan [35] is followed.

2.5.1 Extremum condition

The extremum condition again is

space of /(cj), in which the global maximum of Q is found, has typically (9(103)

i.e.

(2.33)

(2.34)

Using
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poo
F(t,  k) =  / K (r , i j ) f (u ,k )du  

Jo
(2.35)

where k is the momentum of the channel being studied. Eq. 2.34 can be re-written 

as

a  log

T m a x

( £ ) - . £'  ' ' mi r

dL
dFi

=  0 . (2.36)

2.5.2 SVD of lattice kernel

The explicit form of the SVD is shown below.

K t = U W V T
( U\i . . .  U\Mr

\  uNui . . .  uNuNr y y o

vn  • •• vNt i

\  V i N t  ’ • • v N r N r J
0 wNt )

,(2.37)

where V  and U are Nu x NT and NT x NT orthogonal matrices respectively (-/VT is 

the number of time slices defined in Eq. 2.6 and Nu is the number of points in the 

spectral function, /(cu)). W  is an NT x NT diagonal matrix with diagonal elements 

Wa =  Wi, i = 1 , . . . ,  Âr . The Wi are conventionally ordered w\ > w<i > . . .  > w^T. For 

a matrix close to singularity only s < NT diagonal elements will be non-zero. These 

are known as the singular values of K  [40] and s = rank(K)  and this s-dimensional
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space spanned by the first s columns of U will be referred to as the “singular space” 

for convenience.

2.5.3 Bryan’s algorithm

The solution to Eq. 2.36 can be represented in terms of a new variable u where 

log (^ )  = K Tu. From

d F d L ( F , D )  T dL(  F ,D )
V L  ~  d f  OF ~ K  dF ' (2'38)

it is obvious that VL lies in the singular space of K  and thus the problem can be 

reduced into s-dimensions. So

s

fi =  mi exp 'E'VuUt. (2.39)
t-1

Now writing V S  in terms of Vu  and then using the fact that the columns of V 

are orthonormal Eq. 2.36 becomes
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2.5.4 N ew ton search for solution

To solve Eq. 2.41 by fixed-point iteration (i.e. starting with a trial u, calculating g

and then calculating an improved u via u =  J) will not work since the convergence

criterion is IIs I. * . , , < a.I a u I largest singular value

However a Newton search method can be used to solve Eq. 2.41. The increment 

at each iteration is given by

J 8 u = —cm — g, (2.42)

where J  is the Jacobian of the system and is given by

J  =  a l  + (2.43)<9u
=  W U T C - (2 44 ) 

du 13 df  du { '

and by the chain rule

r\n

—  = diag{f}V. (2.45)

So

| l  =  WUTC~1 {JWV^diag{f}V  = MT,  (2.46)

df
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where the s x s matrices M  and T are defined as

M  = WUTC-jlUW  (2.47)

T  = V Tdiag{f}V. (2.48)

The equation to solve is now in the form

(a l  +  MT)Su  =  — cm — g. (2.49)

To get Eq. 2.49 a second order approximation has been used in the Newton search. 

To ensure that this approximation remains true, the size of the increment <hi needs

to be restricted. This is achieved by augmenting J  with multiples of the identity

matrix [41]

((a +  p )/ +  M T ) k = - a u - g ,  (2.50)

where /i, known as a Marquardt-Levenburg parameter, is chosen such that 5uT5u < 

0 (^2 , f) (i-e- the increment size #u is small enough to guarantee that the lowest order 

approximation in the Newton search method is valid).

2.5.5 Diagonalising Eq. 2.50

The search for <$u can be optimised by diagonalising Eq. 2.50 so that only O(s)

operations are required for each a - /j, pair tried rather than 0 ( s 3). This is done by

first diagonalising T  by solving the eigenvalue problem
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T P  =  PE,

where S =  diag{^} and P TP  =  I. Next define B

B  =  diag{£1/2}PTMPdiag{t1/2},

and solve the further eigenproblem

B  R  = RA,

where A =  diag{A} and RTR  =  I. Next define the following quantity

Y  =  Pdiag{C1/2}R,

and note that the following relationships hold

T  =  Y~TY ~ l 

A =  Y - lM Y ~ T.

The diagonalised form of Eq. 2.50 is

((a +  n)I  + A ) Y - 16u = - a Y ~ 1u  -  T " 1 g.

37

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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This gives s independent equations for the components of Y  Mu and the step 

length is now given by

5ut T8u =  5uTT _Ty~Mu =  |y~Mu |2 (2.58)

2.5.6 G etting <hi from F -1<hi

Often, in practice, f  has a high dynamic range. In our case f  is a mesonic spectral 

function, and is therefore likely to have a high peak for the ground state. In such a 

situation, T (defined in Eq. 2.48) may be close to singular, which means that some 

of the f  calculated in Eq. 2.51 are effectively zero. In such cases merely multiplying 

the answer for y _Mu by Y  would lead to a numerical instability as Y  contains a 

£-1/2 term. The solution to this problem is to notice that a simple rearrangement of 

Eq. 2.50 gives

(a +  fY)8u = - a u  — g — MTSu

= — a u  — g — M Y ~ T[Y~l5u]. (2.59)

2.5.7 How to deal with sm all/negative f ’s

When there are very small (or even negative) values for £ they should be considered 

to be zero. In such a situation the matrix of eigenvectors from T, P  should be 

partitioned into 2 parts. One part for those associated with the zero f ’s (the null
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space, designated with a subscript 0) and another part for those associated with the 

non-zero £’s (the non-null space, designated with a subscript 1). i.e.

T  = PEP t

Hi 0 \  (  P?

3o

P  is partitioned in this way (opposite to that given in Bryan [35]) since the 

eigenvalues are organised largest to smallest by the eigenvalue subroutine used [41].

Now multiplying Eq. 2.50 on the left by P T, writing p =  P Tu and using Eq. 2.60 

to partition gives.

(2.61)

This gives two equations, Eq. 2.62 for 5pi which is of the same form as Eq. 2.50

and Eq. 2.63 into which the answer for <Spi is substituted to obtain the answer for

8 p0.

(a +  fj)Spi + PfMPiEiSpi  = - a p i  -  PxTg (2.62)

(a +  fi)6 p 0 +  Pq MPxEiSpi =  - a p 0 -  P0Tg (2.63)

Calculating the right hand side of these two equations can be done in one step 

since there is no mixing between the null and non-null space.
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- a p  -  P1 g = P1( - a u  -  g) =  | P̂T ) ( -a u  -  g)

PI ( - “ »  -  g)
P0T(-o :U -g )  

- a p i  -  P'f g

-« P o  -  Pq g
(2.64)

For similar reasons the product of P TM P  can also be calculated in one step to 

give both f f M P i  and P ^M P X

P t M P  =  ( J  j (AO ( p , P„ )

P I
pI

j  ( MPi MPa )

PfA fPi P i  MPa 
P i  MPi PlMPo

2.5.8 Diagonalising Eq. 2.62

This follows a very similar procedure to that used in Sec. 2.5.5. 

Firstly, diagonalise the matrix T  as in Eq. 2.51 and define B  as

(2.65)

B = diag{\t}l2 \}PTMPdiag{\?l’2\}. (2.66)

Diagonalise B  only in the non-null space
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B\R\  — R\ A\. (2.67)

Now define Y  as

Yi =  diag{C1/2}xRu (2.68)

this differs from Eq. 2.54 by a factor of P  since £u has already been multiplied by 

this. Once again note the relationships

Hi =  YXTYX~X (2.69)

Aj =  Y{~1 Px M  Pi Y f T (2.70)

Hence the diagonal form of Eq. 2.62 is

((a +  /x)/ +  A )Y f 'to  =  -a Y T 'p i -  Y f ' P f g .  (2.71)

Once again the same trick is used to get from Yx *5pi to <Spi

(a +  ix)5Pl =  —a Pl -  P?g  -  Px M P xYx T\Yx lSpi}. (2.72)

The answer for £po is obtained by substituting Spi into Eq. 2.63 and <$u is then 

constructed by left multiplying by P.
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2.6 Uniqueness of the solution in MEM

In order to prove the uniqueness of the MEM solution, the following proposition must

be proved

Proposition:

Consider a real smooth function F  with n real variables, F(x i , . . .  , x n) G R with 

(xi , . . . ,  xn) G Rn. Suppose that for any yi e  R

is unique if it exists.

Proof:

Assume that there are at least two solutions for Eq. 2.74. Use any two solutions,

(2.73)

then the function F  only has one maximum if it exists, i.e. the solution of

(2.74)

and to define an interpolation

x(t) = i t  i +  t(l£ 2 — = + t~$ (2.75)

and G(t) =  F ( i t (t)). Using the assumption that dG(t)/dt is continuous, differentiable 

in [0, 1] and satisfies
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dG_
dt

=  0 =
dG_
dt

=  0 , (2.76)
t=i

Rolle’s theorem states that there exists at least one t G [0,1] such that

d2G{t) ^  d2F  
=dt2 i,j=1 dxidxj Vi = 0. (2.77)

Comparing Eqs. 2.73 and 2.77 there is a contradiction, hence there cannot be two or 

more solutions to Eq. 2.74. So if there is a solution then it is the global maximum of 

F

Now apply this to the search for the global maximum of Q — a S  — L to prove its 

uniqueness. For an arbitrary AC-dimensional non-zero real vector =  (zi , . . . ,  z ^ ) ,  

aS  satisfies (see Eq. 2.15)

N t
4,1v-—\ d2 (otS) v 4,1

i < 0 '
(2.78)

where we have used 0 < fi < oo and 0 < a < oo. Importantly, notice that the left 

hand side of Eq. 2.78 never becomes zero. From the definition of the likelihood L in 

Eq. 2.4

^  pp. (_ T \ -2 Nu
^2 zv = ~Y2~=~ - 0} with Zi = ^2Kuzi^  df id fv <ii ^i,i'=i

(2.79)
i= l 1 = 1
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The left hand side of Eq. 2.79 is zero in the direction Z{ =  0(z =  l , . . . , iVT), of 

which there are many since the rank of K  is at most NT, much smaller than the Nu-  

dimension of zi. Thus — L has many flat directions and there is no unique maximum 

for — L as a function of //. However, considering both Eqs. 2.78 and 2.79 together, 

the maximum for Q is unique, if it exists, due to the proposition just proved.



Chapter 3 

Testing the M axim um  Entropy  
M ethod

In this chapter the ability of the MEM algorithm to reproduce the correct image, and 

the dependence it has on the quality of the input data, will be analysed. This will 

involve two sets of input spectral functions:

1. Delta function

2. QCD-like spectral function

The covariance matrix, Cy, will, for simplicity, be assumed to be diagonal. It is 

important to remember that the off-diagonal elements of Cij play an important role 

when analysing real lattice QCD data.

The assumptions made in the derivation of the MEM algorithm, i.e. the depen­

dence on the default model (§ 3.2.3) and prior probability for a (§ 3.2.4) will be 

tested. The output image will be analysed and quantities such as the mass and width 

of the peaks will be extracted.

45
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3.1 Test data generation
3.1.1 D elta  function

Outlined below is the manner in which the test data, based on a delta-function-like 

spectral function, was generated. The aim of this data is to model correlators, D ( t ) ,  

consisting of a discrete set of states, which can be expressed as

iV g ta tes ry

“w  - £  s d f <»•»
3 =1  3

where r< =  { 0 ,1 ,..., NT}. Two cases will be considered (i) a single pole at Mi =  0.5 

and (ii) double poles at Mi = 0.5 and M2 =  1.0.

1. In each case random noise is generated on all input Zi and Mi giving 7Vcfg copies 

of Zi  and M{.

2. These are then used to calculate Tfn(r) from Eq. 3.1 for k = 1 , . . . ,  NCfg.

3. The central value is then calculated as

wcfg
A n fr) =  (3.2)

k = l

Note: Standard x2_fitting should work almost perfectly for this style of data, 

so the results obtained for Z  and M  will be compared against those obtained from 

standard exponential fits. Analysis will also be performed on the width of the peak 

to test whether the width in this case is purely statistical as expected.
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3.1.2 QCD-like data

The second set of data was generated using the procedure outlined below.

1. Starting with an input image /in(^) =  w2p-m(u)). (The factor of up is expected 

from the dimension of mesonic operators). Test data is then calculated from 

this spectral function via

fix
D-m{n) = /  K{ri ,u) f in(uj)duj, (3.3)

Jo

where the lattice kernel is defined as

K(ritu) =  (3.4)

and o;max is taken to be large enough so that pin(w) does not show appreciable 

variation. The detailed form for pm{u)  will be given in Eq. 3.7.

2. Gaussian noise with variance cr(rj) (defined below) is then added to each D-m(Ti) 

to create the test data.

a{n) = b x  Din(Ti) x (3.5)

where the dependence on 7* is introduced in order to incorporate the fact that 

the error in lattice correlation functions increases with r.
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3. Since this data is generated with an input image /jn, we can compare directly 

the output image, f o u t  with this. To give a numerical accuracy on f o u i  we define 

a V ” between input and output images

r =
p id  m ax

/  b o u t M  -  P m { u ) ] 2d u .  (3.6)
Jo

As in [42] the input spectral function used, p*n(u), is from the vector channel of 

the e+e_ annihilation and is defined as follows:

pinif-d) —
7T

r
p (uj2 — m2)2 +  r 2m2

1 / a j \  1
~*~87r\  " ^ 7 r / l  +  e ( u° ~ u- u ) / 5 (3.7)

where Fp is the residue of the p meson resonance defined by

(0\drypu\p) = V2Fpmpep = V2fpm2pep (3.8)

with the polarisation vector e .̂ includes a 9 function which represents the threshold 

of p —v 7T7T decay

(3.9)

The empirical values of the parameters are
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mp = 0.77 GeV, mn =  0.14 GeV,

#p7T7r =  5.45, as = 0.3, (3.10)

u 0 = 1.3 GeV, 5 =  0.2 GeV,

where for simplicity a s has been assumed to be independent of u.

The default model, m, used throughout these tests is taken to be of the form 

m(uj) = mou2 which is motivated by the asymptotic behaviour of /in(^). mo is taken 

to be the value obtained from the large u  limit

lim pin{u) = ( l  +  — ) =  0.277. (3.11)
w->oo 7T o7T \  7r /

The frequency space is discretised with cjmax =  6.0, Nu =  600 and therefore Acj = 

0 .01 .

3.2 The tests

3.2.1 Simple pole analysis

#  configs Mass (1-exp) Mass (MEM)
100 0.504(2) 0.501(4)
150 0.507(2) 0.503(3)
200 0.508(2) 0.506(3)
250 0.509(2) 0.506(3)
300 0.508(2) 0.505(2)

Table 3.1: Comparison of MEM with single-exponential fit to data generated with a 
simple pole at Mi =0 .5  for increasing number of configurations
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In this section the delta function data will be used to assess MEM’s ability to 

find simple poles in noisy correlation function data. It will be compared directly with 

single- and multi-exponential fits, which work extremely well on data of this kind. 

Table 3.1 compares the results obtained from single-exponential and MEM fits to 

data generated with a simple pole at M=0.5. The double pole comparison with a 

two-exponential fit is tabulated in Table 3.2. The value obtained for the masses from 

the two methods agrees within errors

#  configs Mass 1 (2-exp) Mass 1 (MEM) Mass 2 (2-exp) Mass 2 (MEM)
100 0.491(1) 0.510(4) 1.003(12) 1.003(6)
150 0.491(1) 0.504(6) 0.998(10) 1.003(5)
200 0.492(1) 0.497(4) 1.001(9) 1.002(5)
250 0.491(1) 0.496(2) 1.000(8) 1.001(4)
300 0.491(1) 0.495(3) 1.003(8) 1.001(3)

Table 3.2: Comparison of MEM with two-exponential fit to data generated with 
simple poles at Mi = 0.5 and M2 =  1.0 for increasing number of configurations

3.2.2 Input data quality

The quality of the input data will be altered in two ways. Firstly the number of 

time slices generated which increases the number of input data used to reconstruct 

the spectral function. And secondly the noise level will be altered. This is the same 

as a change in the number of configurations, smaller noise levels equates to more 

configurations.

Fig. 3.1 shows the dependence of the output spectral function on the quality of 

the input data for the QCD-like data. As expected increasing NT and decreasing the 

noise both result in an improved image, but the most drastic improvements occur 

when the noise is decreased.



CHAPTER 3. TESTING THE MAXIMUM EN T RO P Y  METHOD 51

t | i | i | i | i | r

N = 16

N =32

r = 0.000731 r = 0.000695 — r = 0.000532

r = 0.000961 — r = 0.000803 - r = 0.000274 -

b = 0. b =  0 .01 b = 0.001

Figure 3.1: Input (black) and output (red) spectral function (/?(<*;)) compared for 
different NT and noise level (b). r (defined in Eq. 3.6) is a measure of how close the 
two are.

3.2 .3  C hanging  th e  default m odel

For these tests the QCD-like data will be used as it demonstrates most clearly the 

consequences of choosing the default model form badly. The functional form of the 

default model used in this analysis is m(cj) = rn0u2 motivated by the asymptotic 

form for pin(to).

Fig. 3.2 shows the output image obtained for 5 different values of the default model 

parameter, mo- It is clear that the choosing the correct default model is important 

for the high energy regime, whereas the ground state peak is relatively stable under 

a change of default model. MEM attempts to set lim^e.o p(u) =  ra0 while keeping 

the total area under the spectral function constant. The result of this is that the 

continuum exhibits a ringing behaviour.
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0.15 0.15

0.12 0.12

0.09 0.09m„ = 0.02 in., = 0.03
0.150.06 0.06

0.120.03 0.03

-J—i—I 0.09 
5 6
1 i 0.06

m„ = 0.0277

0.15 0.15

0.12 0.120.03

0.09 0.09mn = 0.024 m = 0.033

0.06 0.06

0.03 0.03

I i
5 6

Figure 3.2: Input (black) and output (red) spectral function (p(u)) compared for 
different values of the default model parameter m0. The blue horizontal line drawn
is p(cj) = mo-

3.2.4 C hanging  the  prior probability  for a

Next the effects on the spectral function obtained when the prior probability for a is 

altered is studied. Two different forms for this probability can be used, Jeffrey’s and 

Laplace (see § 2.4.2). Fig. 3.3 shows the comparison using these 2 definitions for the 

QCD-like test data. Even though the probability density is quite different (see inset 

graph) the resultant spectral function barely changes, in fact the 2 lie on top of each 

other and are indistinguishable by eye, using Eq. 3.6 to get a numerical value on the 

difference, r =  2 x 10- '. Thus the two images are almost identical making the choice 

of prior probability unimportant.

3.2.5 Spectra l w id th

In this test the width of the peak obtained from the delta function data will be 

analysed for an increasing number of configurations. Since a delta function has zero
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0.15

P [a |H m ]= l/a  (Jeffrey’s) 
—  P[a|Hm ]=const (Laplace)

0.12 X  0.6 O
o, 0.4

CL

0.2
0.09

CM 120 1603

0.06

0.03

co

Figure 3.3: Input (black) and output using Jeffrey’s (red) and the Laplace (blue) 
prior for P[a\Hm\. Inset is the probability density used in the weighted average in 
each case

width an extrapolation to an infinite number of configurations will be performed to 

test whether the width is purely statistical. Fig. 3.4 is a plot of this extrapolation, 

the result of which is consistent with zero although the errors are large.

3.3 Summary

The following conclusions have been drawn from the tests performed on the MEM 

algorithm:

• MEM can find simple poles and the mass agrees within errors with standard 

single-exponential fits.

• Improving the quality of the data, both Ncfg and NT, results in better a quality 

image.
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0.0084
O  Width of peak 
□  Intercept 
—  Linear fit

0.0063

-ya.<♦-o-5 0.0042

0.0021

0.01 0.0150 0.005

Figure 3.4: Extrapolation of the width in delta function data to an infinite number 
of configurations.

• Selecting the correct default model is important, any a priori knowledge about 

the model can and should be input here.

• Either form given here for the P[a\Dm] can be used with very little effect on 

the output image.

• When fitting to a simple pole, an extrapolation to infinite 7VCfg agrees with zero, 

so the width seen is presumably due to the noisy data.



Chapter 4 

M odelling QCD: The Four-Fermion 
Interaction

Due to the incredible complexity of QCD 1, studies of the finite temperature transition 

have been unable to yield quantitative claims for the universality class of the two 

light quark flavour transition. This is unfortunate since it is believed that the high 

temperature QCD phase transition has a number of interesting features [45, 46]. In 

addition to this, only very slow progress has been made in lattice simulations at 

finite chemical potential [47]. It is therefore advantageous to approach the problem 

of chiral symmetry restoration at finite temperature and density by using a “toy” 

model. Such studies should give a better understanding of the factors which might 

play a crucial role in the more complex gauge theory systems. In order to produce high 

quality data and study a large range of parameters this model has been simplified 

as much as possible. This model is interesting on its own, since it is non-trivial, 

non-asymptotically free and strongly interacting.

The four-fermion model appears frequently in physics. It was introduced as a 

model of /3-decay [48] by Fermi. Bardeen et al. used it in condensed matter physics 

xNote that there has been some very recent progress in this area [43, 44]

55
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to model superconductivity [49]. Nambu and Jona-Lasinio applied many of the ideas 

in the BCS model of superconductivity to particle physics [50]. In particular, they 

proposed the four-fermion interaction could be used to explain the smallness of the 

pion mass, why the nucleon is so heavy and also to construct the meson as a particle- 

anti-particle bound state of some “originally massless fermions”. In spite of the fact 

that it lacks confinement, the Nambu-Jona-Lasinio (NJL) model is believed to be an 

effective theory of quarks and gluons at intermediate energies [51, 52], i.e. between 

the asymptotic freedom and confinement regions, and it successfully describes cer­

tain aspects of hadron structure [53]. Four-fermion theories have appeared in recent 

discussions of dynamical mass generation in the Standard model, in such scenarios 

as walking technicolor [54, 55] and the top mode standard model, in which the Higgs 

scalar is a tt bound state [56, 57].

The NJL model is a trivial theory in four-dimensions [58], i.e. the renormalised 

coupling goes to zero in the continuum limit, hence it becomes an effective field theory 

only for scales <C A «  1 GeV, the UV scale. The low temperature regime is dominated 

by the lightest particles. If the restoration temperature is of the order of lOOMeV, 

then the contribution of heavier particles like p mesons is exponentially suppressed. 

In that sense, the universal properties of chiral symmetry restoration in QCD could 

well be described by an effective theory like the NJL model [59, 60].

So why not simplify the model down to two-dimensions? In this case there are 

conceptual difficulties, e.g. in the Z2 case the symmetry restoration is now dominated 

by the materialisation of kink-anti-kink states [61], which are composites of the fun­

damental fermion fields. At any non-zero temperature and for any finite number of 

fermion species Nf  the chiral symmetry is restored due to the condensation of the
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kinks [62, 63].

In three-dimensions, the four-fermion model is non-renormalisable in a “weak cou­

pling expansion”, but becomes renormalisable in the 1 / N f  expansion [64]. Therefore, 

many quantities such as the fermion mass, composite particle masses and propaga­

tors, etc. can be calculated analytically. The basis of the 1 / N f  expansion is the fact 

that the partition function of models like the four-fermion model can be expressed in 

the generic form [64],

by integrating out the fermions. The factor N f  in the exponential allows a saddle 

point approximation for the large N f  limit. The factor 1/h also permits the same

“loop approximation”. The counting of the order is different in these two expansions

while a factor N f  can arise from a sum over flavours, the propagator contributes no 

factors of Nf .  In fact, Feynman diagrams of the same order in 1 / N f  can include 

diagrams of higher (up to infinite) order in h. In this regard, the 1 / N f  approximation 

is deemed to be a non-perturbative expansion in h.

4.1 Essential properties

In this section, the essential properties of the three-dimensional four-fermion model 

(sometimes referred to as the Gross Neveu model (GNM3)) will be reviewed. The 

Lagrangian of the model is

(4.1)

type of approximation since h is small. The expansion based on h is known as the

since the factor N f  can arise from different sources than the factor 1/h. For example,
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£  = ipi{$ +  rnq)^i -  [('ipiipi)2 -  ('ipab'ipi)2] , (4.2)

where the index i runs over N f  fermion species. The problems in defining the 7 

matrices and Dirac spinors in 2 +  1 dimensions are overcome by using the method 

given in [64], ip and ip are taken to be four component spinors. The usual properties 

of the 7 matrices still hold. mq is the bare fermion mass.

To simplify both numerical and analytical work in this model scalar, cr, and pseu­

doscalar, 7r, auxiliary fields are introduced, so Eq. 4.2 becomes

£  = + m q + a)ipi -  ^ ( < j2 +  tt2)- (4-3)

An identical generating function to that derived from the original Lagrangian can 

be recovered by a Gaussian integration over the auxiliary fields. At tree level the field 

cr is truly auxiliary, i.e. it has no dynamics. However, it acquires dynamical content 

from quantum effects arising from integrating out the fermions. Chiral symmetry 

breaking (g > g%), in the chiral limit mq —> 0, is now signalled by a non-vanishing 

expectation value, E =  (cr), for the scalar field. E serves as a convenient order 

parameter for the theory’s critical point. From Eq. 4.3 it follows that the fermion 

gets a dynamically generated mass of M  ~  E.

This Lagrangian has a U(l) chiral symmetry, although by setting the 7T fields to zero 

it becomes Z2.
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1/(1) : fa exp ; ipi -» ^  exp (zcrys), (4.4)

Z2 : ->• 7 5 ; 'ipi -* - ^ 75- (4.5)

This symmetry is spontaneously broken whenever a non-vanishing condensate 

(t/^ )  is generated.

In three spacetime dimensions the following properties hold:

• For sufficiently strong coupling g2 the model exhibits dynamical chiral symmetry 

breaking at zero temperature and density [64, 65].

• The spectrum of excitations contains both baryons and mesons, i.e. the elemen­

tary fermions and composite fermion-anti-fermion states.

• For 2 < d < 4 the model has an interacting continuum limit [64, 65].

• When formulated on the lattice, the model has real Euclidean action even for 

chemical potential /i ^  0 [66], and hence can be simulated by standard Monte 

Carlo techniques.

This model is a useful toy model for understanding the behaviour of strongly 

interacting matter at high temperature and density since it displays much of the 

essential physics except for colour confinement.



CHAPTER 4. MODELLING QCD: THE FOUR-FERMION INTERACTION  60

o

(a) (b)

Figure 4.1: Leading order diagrams in Gross-Neveu model.

4.2 Mean field analysis at zero temperature and 
density

By taking the N f  —> oo limit, fluctuations around the saddle point solution are 

suppressed, this is equivalent to a mean field theory (MFT) treatment. E can be 

calculated using an expansion in inverse powers of N f  which associates a factor of N f  

with each closed fermion loop and, in effect, 1 /  y/N~f with each fermion scalar inter­

action vertex. To leading order, in the chiral limit m q —> 0, only the tadpole diagram 

(see Fig. 4.1(a)) contributes to E, leading to the self-consistent Gap Equation [64]:

or, with a simple UV momentum-cutoff A we find a non-trivial solution E /  0, which 

breaks chiral symmetry if

(4.6)

1 1 2A
-z < (4.7)

Note that £  —» 0 as g2 —> g%.



CHAPTER 4. MODELLING QCD: THE FOUR-FERMION INTERACTION  61

To the same leading order there is a correction to the scalar propagator (equal 

to g2/ N f  at tree level) from the bubble diagram (see Fig. 4.1(b)). Remarkably, the 

linear divergence in this diagram is cancelled by the divergence in the definition of 

g2, leading to a closed-form expression which is finite when expressed in terms of E:

n  , n  1 27xyfi? .

D„{k) =  -n----------------------, —v (4.8)
N! (k2 + 4£2) tan ' 1 f

For the n  field in the U(  1) model a similar expression is obtained, but with (A;2 +  4E2) 

in the denominator replaced by k2. In the IR limit,

; ( 4 9 )

and hence o resembles a fundamental boson with mass m  =  2E. Therefore the scalar 

is a weakly bound fermion-anti-fermion composite, whereas the 7r is a Goldstone 

mode. In the UV limit, we have

ki%oDa'*W  a  4̂'10^

Thus the UV asymptotic behaviour is harder than that of a fundamental scalar (1/k2), 

but still softer than the l /k°  corresponding to a non-propagating auxiliary field. This 

is down to the strong interaction between the fermion and the anti-fermion, since it 

causes diagrams corresponding to higher order corrections to be less divergent than 

expected by naive power counting.
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The transition between chirally symmetric and broken phases at g2 = g2 defines 

a UV fixed point of the renormalisation group. It is characterised by non-Gaussian 

values for the critical exponents [65]:

/3 = i/ =  7 =  t7 = 1 ; 8 — 2 (4.11)

The exponents obey certain consistency checks known as scaling and hyperscaling 

relations:

7 =  — ij) ; $ = ^!/(d -  2 +  if) (4.12)

To derive these values in statistical physics [67], it is assumed that there is a single 

length scale, the correlation length, f , characterising all the important physics. With 

f  ~  A/E, this is precisely the statement of renormalisability [65]. Corrections to 

these values are 0 ( 1 / N f )  and calculable [65]. Indeed they are currently known to 

0 ( 1 / N 2) [68, 69, 70, 71], and when extrapolated to small values of N f  are supported 

by Monte Carlo estimates [72], The continuum limit g2 —> g2 may be taken in either 

phase.

The deviation of the critical indices from the Gaussian model is related to the 

anomalous dimensions of the various composite fields in the model [65]. The univer­

sality class of the four-fermion model is not the standard, short range Ising model, 

but a Landau theory with long range forces [73, 74] and a specific value of the range 

parameter R  = d — 2. These long ranges forces appear due to the existence of mass- 

less fermions that accompany the transition. However, they are not the only reason
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for the differences seen in the four-fermion and Ising model critical exponents. The 

relationship between fermionic and scalar cr-models is more intricate and goes beyond 

naive universality arguments. Unlike scalar models with long range forces, where R  is 

an external parameter, in the Gross-Neveu model R  is generated dynamically by the 

fermions [73, 74]. Thus, the N f  —> oo limit of the Gross-Neveu model corresponds to a 

generalised Landau theory and the exponents of Eq. 4.11 replace the standard MFT 

ones. Another feature of these long range forces is that different Nf  also produce 

different universality classes which are not related to the symmetry group.

4.3 Simulations

The semi-bosonized GNM3 with U( 1) chiral symmetry used for the fermionic part of 

the lattice action is given by [75, 76]

where Xi and Xi are Grassmann-valued staggered fermion fields defined on the lattice

Sfer ~  Xi(x )MijXyXj{y)

(4.13)

sites, the auxiliary fields a and ir are defined on the dual lattice sites, and the symbol 

(re, x ) denotes the set of 8 dual lattice sites x  surrounding the direct lattice site x. 

The fermion kinetic operator M  is given by

(4.14)
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where r]u(x) are the Kawamoto-Smit phases (—i)xo+-+®*-i} ancj the symbol e(x) de­

notes the alternating phase (—i)xo+®i+s2# auxiliary fields a and 7r are weighted 

in the path integral by an additional factor corresponding to

The simulations were performed using a standard hybrid Monte Carlo algorithm 

without even/odd partioning, implying that simulation of N  staggered fermions de­

scribes Nf = 4N  continuum species [75, 76]; the full symmetry of the lattice model in 

the continuum limit, however, is U ( N ) / 2 ) y ® U ( N / / 2)y<g>C/(l) rather than U(Nf)v<8> 

U( 1). At non-zero lattice spacing the symmetry group is smaller: U{Nf/4)y  <g> 

U(Nf/4)y ® U( 1). In the ^-symmetric model the n fields are switched off and 

M  becomes real. In this case N  staggered fermions describe Nf = 2N  continuum 

species. Further details of the algorithm and the optimisation of its performance can 

be found in [65, 75, 76].

Using point sources we calculated the zero momentum fermion (/) correlator at 

different values of the coupling ft = l /g 2. In order to compare MEM to conventional 

spectroscopy we also estimated the fermion mass using a simple pole fit using the 

function

aux
x

(4.15)

Cf (t) = Af[e~Mft - (4.16)
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Similarly, the zero momentum auxiliary ir correlator was measured and its mass 

estimated using a cosh fit. The mesonic correlators are given by:

CM(t) =  ^ 2  ^>(xi)^(x2)lTM (x)G (x,t;xi,0)Gt (x ,t;x 2, 0), (4.17)
X ,X l ,X 2

where Wm{x ) is a staggered fermion phase factor which picks out a channel with 

particular symmetry properties i.e. JTm(x) =  e(x) for the S channel and VFm(x) =  1 

for the PS channel. The function 4>(x) is either a point source £x,(o,o) or a staggered 

fermion wall source J2mn=o ^x,(2m,2n) [77]. In all the simulations we used point sinks. 

These correlators were fitted to a function Cm(£) given by

CM(t) = A[e~MMt +  e~MM{Lt-t)j +  (4.18)

Note that composite operators made from staggered fermion fields project onto 

more than one set of continuum quantum numbers. The first square bracket represents 

the “direct” signal with mass Mm and the second an “alternating” signal with mass 

M m - Continuum quantum numbers for various mesonic channels are given in [78] -  

in this study we focus on the PS direct channel, with J p =  0_ . Although expected 

to be the tightest bound meson since it is the only one for which s-wave binding is 

available, as stressed in [75, 76, 78] this state does not project onto the Goldstone 

mode in the broken phase.
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Symmetry Nf  Volume P mp Configs
U(l) 4 32x32x48 0.55 0.005 22,600
U(l) 4 32x32x48 0.55 0.01 38,000
U(l) 4 32x32x48 0.55 0.02 43,000
U(l) 4 32x32x48 0.55 0.03 20,000
U(l) 4 32x32x48 0.55 0.045 19,300
U(l) 4 32x32x48 0.55 0.06 5,200
U(l) 4 32x32x48 0.65 0.01 60,000
U(l) 4 32x32x48 0.65 0.02 75,000
U(l) 36 24x24x32 0.55 0.01 6,500
U(l) 36 24x24x32 0.55 0.02 25,300
U(l) 36 24x24x32 0.55 0.03 10,900

Table 4.1: Broken phase data sets

4.3.1 D ata sets

Tables 4.1-4.3 give the parameters for each of the data sets generated. They are split 

into three groups, firstly the broken phase pion, fermion and pseudoscalar (Table 4.1). 

Secondly the symmetric phase (Table 4.2), and finally the sigma in the broken phase 

(Table 4.3).

4.4 Theoretical spectral function form
4.4.1 Broken phase 7r, /  and PS channels

In the broken phase, the 7r, /  and PS are all expected to be simple poles. If J  couples 

to a stable (i.e. zero width) bound state of mass M  and strength A (i.e. (0| J\ls,  M) = 

A), then p(cu) = (\A\2/2M)5(u  — M) (i.e. a delta function at M). Where p(cj) is now 

used as the spectral function previously defined as f(uj) in Chapter 2.

It is readily checked that the combination p{uj)/uod~2 is dimensionless for mesons 

in d-dimensions. This motivates the use of the default model mo(u) oc co for GNM3. 

This corresponds to the propagation of free massless fermions. For an asymptotically
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Symmetry Nf  Volume /? Configs
^2 4 16x16x48 1.0 215,100
^2 4 24x24x24 1.0 121,500
^2 4 24x24x48 1.0 74,300
^2 4 32x32x48 0.92 41,200
^2 4 32x32x48 1.0 50,000
^2 4 32x32x48 1.25 39,000
^2 4 48x48x48 1.0 28,100

U(l) 4 32x32x32 1.0 31,000
U(l) 4 32x32x32 1.25 56,000

^2 36 24x24x32 1.125 22,200
^2 36 24x24x32 1.25 26,800

Table 4.2: Symmetric phase data sets

Symmetry Nf  Volume
U(l) 4 32x32x24
U(l) 4 32x32x24
U(l) 4 24x24x24
U(l) 4 24x24x24

^2 4 24x24x24
^2 4 24x24x24

P m0 Configs
0.65 0.01 1,741,600
0.65 0.04 437,900
0.70 0.01 1,000,000
0.70 0.04 480,300
0.65 0.00 1,100,000
0.70 0.00 1,062,100

Table 4.3: Sigma data sets
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free theory such as QCD, lim^oo p(u) = mo(u) is expected (e.g. see Fig. 3.1). In 

GNM3, however, this is not a constraint due to the UV behaviour being described by 

a renormalisation group fixed point with non-vanishing interaction strength [64, 65].

4.4.2 Sym m etric phase

In the symmetric phase the momentum space propagator for the scalar channel in 

the large-N f  limit is

D ^ k  '  “  ( V k * ) d ~ 2 +  n d ~ 2 ’

where 2 < d < 4 and p, is a dimensionful scale which increases as (g* — g2)dh  (i.e. as 

an inverse correlation length). In three dimensions this implies

. . r  „ cos kt f°° . uj t , A
dkJTi^slil  ’ (420)

hence the large-Nf  prediction for the symmetric phase spectral function is

So in the asymptotic regime lim^oop^uj)  oc u  1 rather than the form of the default 

model mo(u) oc lj.

At smaller scales we interpret p as describing a resonance whose central position 

and width are both 0{p)  and therefore increase as the coupling is reduced. In the IR 

limit l im ^ o pa(w)/LJ oc constant.
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Figure 4.2: Contribution of 2n intermediate state to a correlator.

4.4.3 Broken phase sigma

One of the major points of interest in using MEM on this model is the possibility of 

o decay in the chirally broken phase. The a is expected to be a weakly bound state 

of mass Ma < 2Mj  (where Mf  is the physical fermion mass), whereas, for the case of 

a continuous chiral symmetry, the pion mass mn may be much smaller. If 2mn < Ma 

then the decay a —> 2n is allowed, and hence a feature should appear in the a spectral 

function around the two pion threshold (defined below)

Fig. 4.2 shows diagrammatically the effects of the two pion intermediate state to 

the a correlator. To leading order in l /N f  the a propagator taken from [65] is

D  (fe2) =     (4 22)4  '  S2 2 r ( 2 _ ^ )(fc2 +  4M /2)F(12_ | ; | ; _ ^ ) - )

where for momenta k Mf  the hypergeometric function, F, in the denominator may 

be approximated by F  «  1. When the bare fermion mass m > 0, a similar expression 

for the pion propagator D^ is assumed, with (k2 +  4Mj)  replaced by (k2 +  m j .  The 

vertex is assumed to arise from a single fermion loop, as shown in Fig. 4.2 If 

chiral symmetry is unbroken it is identically zero. It can be shown, using the bare 

vertex —g / y / N f , that
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r ~  g-L rTTTTT  ------(T7C7T —  ^  <J7T7T

g3Mf~3

~ 7 W '
(4.23)

where Ga7r7r is a dimensionless d-dependent constant.

Now calculate Da in three dimensions including the effects of the two pion inter­

mediate state.

D - l {k2 «  Mj)  = 9
AirM*

k2 +  m )  -  tan" 1 ( ^
1 Nf  v 'F  \ 2m,

(4.24)

So in addition to the pole at k2 =  —4Mj,  there is now a contribution at G(l/Nf)  to 

the timeslice correlation function given by

c£\t) G l ^ M )  f d k
OC / Akt

tan - l
Nf J 2tt k{k2 + 4M2)2 \ 2 m ^ J '

(4.25)

The two pion threshold manifests itself via a branch cut in the inverse tangent from 

k2 = —4m2 to ±ioo. Taking the earlier approximate of k2 <C M 2 and integrating 

around the cut in the upper half plane, the following expression is obtained

<#>(*) «  5 ^ = 7 -  I "  — e~Ut
J 2 r32N /M f  J2m„ u

(4.26)

from where it can be seen that
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So the decay a —► 27r would produce a spectral feature at u = 2mn whose strength 

scales as In principle this is testable by varying the simulation param­

eters Nf, g2 and m, but on finite volumes, it will prove difficult to study the detailed 

form.

4.5 Results

The results will be split into the same three groups mentioned above. First the 

broken phase ((3 < /3C «  1.0) ir, fermion and PS channels, all of which are expected 

to be simple poles/stable particles. Secondly the symmetric phase (/3 > fic) where 

resonances with non-vanishing widths are expected. And finally the a in the broken 

phase, where the two main issues to address are whether the a is a bound state, and 

if it is possible to detect a signal for a —v tttt decay.

4.5.1 Broken phase 7r, /  and PS channels

A sample set of correlator data for the 7r, /  and PS channels in the broken phase, i.e. 

P  <  Pc 1.0, is shown on a log scale in Fig. 4.3. As expected all three appear to be 

a straight line, hence these channels are all dominated by a single particle pole.

Fig. 4.4 shows an example of the spectral functions obtained for the 7r, /  and 

PS in the broken phase rescaled so they all fit the plot. All three particles appear 

as well-localised peaks, strongly suggesting, as expected, simple poles and hence are 

stable particle states. Table 4.4 gives a full comparison of the results obtained for 

the 7r, /  and PS using standard one exponential fits and MEM which always agree 

within the errors stated.
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Figure 4.3: Propagators in three different channels from simulations of the U(l) model 
on a 322 x 48 lattice at /3 =  0.55, m = 0.01.
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Figure 4.4: Three different channels from simulations of the U(l) model on a 322 x 48 
lattice at /3 = 0.55 m = 0.01.
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Nf Volume P m Mass
(l-exp)

Mass
(MEM)

Area

7r 4 322 x 48 0.55 0.005 0.114(4) 0.112(6) 0.501(129)
4 322 x 48 0.55 0.01 0.168(5) 0.154(9) 0.176(15)
4 322 x 48 0.55 0.02 0.232(5) 0.231(7) 0.0617(98)
4 322 x 48 0.55 0.03 0.280(10) 0.263(15) 0.0351(37)
4 322 x 48 0.55 0.045 0.345(17) 0.324(14) 0.0188(11)
4 322 x 48 0.55 0.06 0.447(24) 0.424(8) 0.0101(20)
4 322 x 48 0.65 0.01 0.193(4) 0.187(8) 0.0810(78)
4 322 x 48 0.65 0.02 0.277(4) 0.267(6) 0.0289(19)
36 242 x 32 0.55 0.01 0.150(5) 0.144(18) 0.053(19)
36 242 x 32 0.55 0.02 0.238(6) 0.229(8) 0.0140(14)
36 242 x 32 0.55 0.03 0.287(10) 0.271(17) 0.0081(10)

/ 4 322 x 48 0.55 0.005 0.555(7) 0.556(4) 2.15(49)
4 322 x 48 0.55 0.01 0.564(1) 0.564(1) 2.37(3)
4 322 x 48 0.55 0.02 0.5853(7) 0.5858(13) 2.14(27)
4 322 x 48 0.55 0.03 0.599(1) 0.599(1) 2.06(5)
4 322 x 48 0.55 0.045 0.623(1) 0.623(1) 1.90(4)
4 322 x 48 0.55 0.06 0.644(2) 0.643(2) 1.63(8)
4 322 x 48 0.65 0.01 0.3978(8) 0.3965(13) 5.11(9)
4 322 x 48 0.65 0.02 0.4285(6) 0.4384(44) 4.10(33)
36 242 x 32 0.55 0.01 0.6796(3) 0.6796(3) 1.77(8)
36 242 x 32 0.55 0.02 0.6911(3) 0.6908(3) 1.72(7)
36 242 x 32 0.55 0.03 0.7025(4) 0.7023(5) 1.59(2)

PS 4 322 x 48 0.55 0.005 1.0807(8) 1.0807(8) 164.3(6)
4 322 x 48 0.55 0.01 1.0973(8) 1.0979(7) 160(3)
4 322 x 48 0.55 0.02 1.1395(6) 1.1396(5) 147.2(5)
4 322 x 48 0.55 0.03 1.1715(H) 1.1716(11) 130(2)
4 322 x 48 0.55 0.045 1.2253(6) 1.2231(6) 119.1(9)
4 322 x 48 0.55 0.06 1.2693(13) 1.2691(2) 103(2)
4 322 x 48 0.65 0.01 0.7722(6) 0.7711(4) 426(32)
4 322 x 48 0.65 0.02 0.8362(5) 0.8381(45) 343(462)
36 242 x 32 0.55 0.01 1.3568(2) 1.3569(2) 50.1(3)
36 242 x 32 0.55 0.02 1.3806(2) 1.3808(2) 48.4(2)
36 242 x 32 0.55 0.03 1.4030(3) 1.4030(3) 45.5(3)

Table 4.4: Broken phase spectroscopy
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Figure 4.5: Pion mass mj vs. bare mass m for (3 = 0.55 showing evidence for the 
Goldstone nature of the 7r.

PC A C relation

Fig. 4.5 shows the scaling of the pion mass squared with the bare fermion mass. The 

line is a standard linear fit and the intercept is consistent with zero, hence the pion 

is consistent with the expected behaviour for broken chiral symmetry mn oc i/m

PS binding energy

The PS is thought to be a weakly bound state consisting of two fermions. All the 

results tabulated in Table 4.4 are consistent with this (i.e. Mps < 2Mf), and in fact 

due to the precision obtained on these numbers, it is possible to estimate the binding 

energy defined as = 2Mf — Mps. The results for this calculation are tabulated 

in Table 4.5. For N f  =  4 Am ~ 2.8% of the bound state mass and for N f  =  36 

Am « 0.15%. This is consistent with the analytical expectation that Am oc 1 / N f .  

Similar results in [78] observed that the PS wavefunction had considerably greater 

spatial extent for larger Nf , implying it is more weakly bound.
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Nf Volume P m Am
(1-exp)

Am
(m e m ;

4 322 x 48 0.55 0.005 0.0293 0.0313
4 322 x 48 0.55 0.01 0.0307 0.0301
4 322 x 48 0.55 0.02 0.0311 0.0320
4 322 x 48 0.55 0.03 0.0265 0.0264
4 322 x 48 0.55 0.045 0.0207 0.0229
4 322 x 48 0.55 0.06 0.0187 0.0169
4 322 x 48 0.65 0.01 0.0234 0.0219
4 322 x 48 0.65 0.02 0.0208 0.0387
36 242 x 32 0.55 0.01 0.0024 0.0023
36 242 x 32 0.55 0.02 0.0016 0.0008
36 242 x 32 0.55 0.03 0.0020 0.0016

Table 4.5: Binding Energy in the PS channel

Changing the source/sink

In Fig. 4.6 the effect of using different meson sources following Eq. 4.17 using data 

from timeslices 1 -  8 is explored. The spectral functions have been rescaled so all fit 

on the same plot. When a wall is used at either sink or source, the signal is completely 

dominated by the bound state; however, for the point-to-point correlator there is a 

significant contribution out to ua «  2.5. Since we have discarded data from small 

timeslices we should not expect much quantitative information from the asymptotic 

form of p(u) in this case; indeed, as u  —> oo it decays much faster than either of the 

idealised forms po{uj) or puv{w) discussed in § 4.4.1. Fig. 4.6 does however, provide a 

graphic illustration of the importance of choice of source in maximising the projection 

onto the ground state.

4.5.2 Sym m etric phase

In the symmetric phase, P > fic, both the Z2 (cr channel only) and U( 1) (cr and 7r 

channels) models have been considered. It proved considerably easier to simulate
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Figure 4.6: PS channel on 322 x 48 lattice at (3 =  0.55 m = 0.01 using correlators 
with different combinations of wall and point source and sinks

this phase for the Z2 model, the U( 1) requiring a much smaller molecular dynamics 

timestep. The Z2 o correlator data in Fig. 4.7 shows clearly that a single-exponential 

fit will not work in this channel. The correlators become almost flat at large t

The expected form for the symmetric phase resonance is given in Eq. 4.21. In order 

to identify spectral features which are not simple poles, it is important to understand 

the systematic effects. Fig. 4.8 shows the effects of altering the timeslices used in 

the fit. Data for t > 12 has been discarded to avoid finite volume effects (actually 

non-zero temperature). In all cases there is a broad spectral feature at cca «  0.5 

whose width increases as smaller timeslices are included. If the divergence as u -» 0 

is taken to be an artifact and therefore ignored (similar features at cj -> 0 have 

been seen in other MEM studies [79]), then the shape appears qualitatively similar 

to the large Nf prediction in § 4.4.2. The fact that the shape of this resonance in the 

massless phase is sensitive to the data at small times is slightly counter-intuitive, but

PP
WW (x 10~5) 
WP (x 2 x 10 ') 
PW (x 10'4)
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Figure 4.7: o correlator for 3 different couplings in the chirally symmetric phase on 
a 322 x 48 lattice.

is consistent with the observation in [78] that the extraction of the physical scale, i.e. 

the resonance width fi, from timeslice correlator data actually depends on corrections 

to the expected power-law falloff (fit)~2 at small values of fit. Notice also that as 

predicted lim̂ -xx, p(cj)/u; —>• 0 in contrast to an asymptotically free theory such as 

QCD.

The next systematic test was to change the number of configurations used in the 

fit to show up whether this width is purely due to insufficient statistics. Fig. 4.9 shows 

the effect on the peak of changing the number of configurations from 0(10000) up to 

0(40000). The width of this feature remains fairly stable, although both the central 

position and area under the peak vary slightly, but this only supports the view that 

this is not a simple pole (see Table 4.6).

Fig. 4.10 shows the spectral functions obtained from three different couplings. The 

normalisation of the results is distorted by the artifact at u —> 0, the curves have been
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Figure 4.8: Bryan image of p(u)/ui vs. u in the a channel at /3 =  1.25 on a 322 x 48 
lattice, showing 3 different time windows.

Ncfg Central Position Area Width
19500 0.325(734) 0.032(32) 0.308(691)
29250 0.375(62) 0.062(40) 0.311(17)
39000 0.415(69) 0.091(51) 0.226(663)

Table 4.6: Analysis of resonance with changing Ncj g in the a channel at (5 = 1.25. 
The smallest Ncjg seen in Fig. 4.9 does not appear in this table because there is no 
peak to analyse in this case.
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Figure 4.9: The same as Fig. 4.8 using fits from timeslices 0-11, showing the effects 
of varying the amount of data.

rescaled so that the height of each peak is the same. As (3 increases (i.e. coupling 

decreases) both the central position and width of the peak becomes larger. This is 

consistent with the predictions in § 4.4.2, which stated that both are proportional to 

a single scale, /r, which increases with /3.

Finally the symmetric phase U (l) model is considered, where there are both a and 

7r channels. The two should be physically indistinguishable for /3 > (3C and indeed for 

large u at least this is the case in Fig. 4.11. However, for small u there is a large 

disparity between the two /? values, p(u) appears to diverge for (3 =  1.0, but tend 

smoothly to 0 for (3 = 1.25. As can be seen from Fig. 4.12 the large t behaviour 

of these correlators is not under proper control with the statistical sample obtained. 

Another point to note is that in both cases there is more power in the a channel at 

small (jj. The only real conclusions which can be drawn from this analysis is that 

a full understanding of the systematics in this regime is still lacking. However, in
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Figure 4.10: Rescaled Bryan image of p(u})/uj in the symmetric phase from timeslices 
0 - 11, for three different couplings.
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Figure 4.11: Bryan image of p(lj) /uj in both a and 7r channels from simulations of 
the U(l) model on a 323 lattice. The dashed-dotted line is of the form u~lA close to 
the large-Nf prediction of cj-1.
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Figure 4.12: a and n timeslice correlators from simulations of the U(l) model on a 
323 lattice.

the large-o; regime, the behaviour of the spectrum is close to that of the large Nf 

prediction of p(uS) oc u~l. The dash-dotted line included in Fig. 4.11 is of the form 

p(u) oc u~1A.

To summarise:

• There is encouraging evidence that MEM is capable of identifying a resonance 

with a non-zero width.

• The properties are semi-qualitatively consistent with the theoretical expecta­

tions

• Uncertainties remain about the co —»■ 0 regime which would probably require 

significantly larger lattices in the time direction.

-

- • - - • 7 1 3= 1.00
- ► -7 i 3=1.25

ooo 3=i.oo
■ a--a a  3=1.25

10 15



CHAPTER 4. MODELLING QCD: THE FOUR-FERMION INTERACTION  82

o.i
03
3
"o?£
Q.

0.05

coa

Figure 4.13: Rescaled Bryan image of p(uj) /uj in the a channel from timeslices 0-11 
at p =  0.65, for two different masses in the U(l) model on a 322 x 24 lattice, and for 
m = 0 in the Z2 model on a 243 lattice.

4.5.3 B roken  phase sigm a

Disconnected fermion lines are automatically included in the o correlator since it is 

modelled by an auxiliary held. The main physical issues to address here are whether 

the cr is a bound state, and if there is a signal for a —» tttt decay. Fig. 4.13 shows the 

spectral functions from 3 simulations, the U(l) model with 2 different values of the 

bare fermion mass, rnq and the Z2 model (mq = 0). Very large statistical samples 

were used for this study, see Table 4.3.

Vacuum  sub traction

Since o shares the same quantum numbers as the vacuum, before analysing the cor­

relator data it is necessary to subtract the vacuum term,

U(l) m = 0.01
— U(l) m = 0.04
— Z-, m = 0.00

(4.28)
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Figure 4.14: Variation of artifact with vacuum subtraction constant Cvac

Due to the statistical fluctuations this is a hard procedure to implement. In this 

section, the variation of the sharp spike centered at around cua = 0.1, which we 

believe is due to our uncertainty in the vacuum subtraction, is tested as we alter the 

value of the vacuum by one standard deviation (e )̂) above and below. Fig. 4.14 

and Table 4.5.3 show the analysis of this sharp spike graphically and numerically 

respectively. As the value of the vacuum subtracted is varied the artifact varies 

significantly while the a peak remains consistent within the errors.

W idth  analysis

Similar to the procedure used for the symmetric phase resonances, the width of the 

o resonance has been analysed at varying numbers of configurations. This is to 

eliminate the possibility that the large width seen on the spectrum is statistical. The 

results shown graphically in Fig. 4.15 and numerically in Table 4.8 shows the width 

remains stable within errors even when the statistical sample is dramatically increased
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Oyac Artifact Sigma
Mass Area Width Mass Area Width

1.0e<ff) 0.056(113) 0.003(16) 0.020(49) 0.657(9) 0.0014(1) 0.051(27)
—0.8e(„) 0.069(64) 0.0021(47) 0.018(17) 0.658(7) 0.00142(7) 0.049(19)
- 0.6e((7) 0.079(54) 0.0017(27) 0.018(15) 0.658(6) 0.00142(5) 0.048(16)
-OAeia) 0.083(51) 0.0015(22) 0.018(14) 0.659(6) 0.00142(5) 0.047(16)
- 0.2e((J) 0.090(46) 0.0013(17) 0.017(12) 0.659(6) 0.00141(5) 0.046(15)

0 0.098(42) 0.0011(12) 0.016(10) 0.660(6) 0.00141(6) 0.045(13)
+ 0.2e(„) 0.101(41) 0.0010(11) 0.016(10) 0.660(6) 0.00140(4) 0.045(13)
+0.4e(„) 0.105(39) 0.0010(9) 0.016(9) 0.660(5) 0.00140(4) 0.045(12)
+ 0.6e(„) 0.109(37) 0.0009(8) 0.016(8) 0.661(5) 0.00140(4) 0.044(12)
+ 0.8e(tr, 0.112(36) 0.0009(8) 0.015(8) 0.661(5) 0.00140(4) 0.044(12)
+ 1.0e(„) 0.115(35) 0.0008(7) 0.015(7) 0.661(5) 0.00139(4) 0.043(12)

Table 4.7: Detailed analysis of the artifact and physical sigma peak as the Cvac i
varied up to one standard deviation either side. See Figs. 4.13 and 4.14.

Ncfg Central Position Area Width
435,400 0.642(12) 0.00169(24) 0.058(26)
870,800 0.659(6) 0.00155(4) 0.039(9)

1,306,200 0.635(2) 0.00173(3) 0.048(16)
1,741,600 0.660(6) 0.00141(4) 0.045(13)

Table 4.8: Analysis of a resonance for U(l) P =  0.65 mg =  0.01 on 322 x 24 lattice 
with changing Ncfg.

suggesting that the width of the o is not purely statistical, i.e. the a  is a resonance 

and not a simple pole.

In contrast to the large-Nf predictions in § 4.4.3 that p{u) should be sharply cut 

off on the low-u; side, but fall away more slowly on the high-o; side due to an / / -  

continuum, the shape of the resonance is roughly symmetric, unlike those for the PS 

in Fig. 4.6.

The central value for the peak in the U{ 1) mq =  0.01 data set is lower than the 

corresponding PS state (see Table 4.4), which is at 0.77. The / /  threshold in the case 

is at 0.793(3), which is well above the point where p ( uj ) / uj  appears to fall to zero. It



CHAPTER 4. MODELLING QCD: THE FOUR-FERMION INTERACTION  85

0.06

25% of configs 
—  50% of configs 

75% of configs 
100% of configs

0.05

0.04

0.03

Q.
0.02

0.01

0.2 0.4 0.6

coa

Figure 4.15: U(l) 322 x 24 /3 = 0.65 m = 0.01 a spectral functions for different 
numbers of configurations. The peak which sometimes appears around coa =  0.1 is 
an artifact due to difficulties with vacuum subtraction (see § 4.5.3)

is therefore deduced that for finite Nf , that the cr is a more tightly bound state than 

the PS meson for which there are no disconnected fermion line contributions.

Sigma decay

Unfortunately, there is no sign of any spectral feature around the two pion threshold, 

which would be expected at uoa ~ 0.38 for mq =  0.01 and uoa ~ 0.75 for mq = 0.04 

(see § 4.4.3 for derivation of the two pion threshold). Recall that the condition for 

cr —} 7T7T is Ma < 2mn so in the former case it is certainly possible. A recent study 

of the 0(4) sigma model by Ishizuka and Yamazaki has claimed to see evidence of 

o —> 7T7T decay [80].
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4.6 Conclusions

Studies of theories beyond quenched QCD at zero temperature will require greater 

sophistication than the current single- and multi-exponential fits, which assume a 

spectral density function consisting of a series of isolated poles. It is clear from the 

study of the symmetric phase and a in the broken phase that these techniques will 

provide poor results. This is the first attempt at using the Maximum Entropy Method 

to a lattice model with dynamical fermions.

In the chirally broken phase of the model, the elementary fermion / ,  the simplest 

/ /  bound state and the Goldstone boson 7r have all been shown to be sharp spectral 

features (i.e. simple poles). This confirms the findings of earlier studies [75, 76, 78]. 

Estimates for the meson binding energy have also been made for the first time.

In the chirally symmetric phase, a broad resonance, whose features agree qualita­

tively with the large-7V/ predictions, has been identified.

The first quantitative study of the a channel in the chirally broken phase has 

also been made and found that it is more tightly bound than the conventional PS 

meson due to the additional contribution from disconnected fermion line diagrams. 

Unfortunately there was no evidence of any feature at the two pion threshold, and 

therefore no evidence for o —» tttt decay.

The philosophy of MEM is to make maximum possible use of the data available, 

unlike single-exponential fitting where the time window is chosen to coincide with a 

plateau in the effective mass plot. The main problem faced in the studies above has 

been associated with the upper end of the time window. In an attempt to avoid any
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finite volume effects associated with including the large timeslices in the fit, control 

over the u  —>• 0 limit has been sacrificed. This can easily be seen in many of the plots 

presented where the spectral density function appears to diverge at u  =  0. There 

were also artifacts in some cases of the broken phase a which arose due to difficulties 

with the vacuum subtraction.



Chapter 5 

Dynam ical QCD

The results for the spectral functions obtained from the U kqcd Collaboration’s dy­

namical fermion simulations are presented in this chapter. The quenched simulation 

has been included here to provide a direct comparison with the dynamical results. 

We begin by detailing the simulation parameters.

5.1 Simulation parameters

In addition to the three dynamical data sets and the corresponding quenched simu­

lation (where the sea quark mass is infinite) forming a matched ensemble, a further 

dynamical data set at lighter sea quark masses was simulated. The greatest effects 

due to the inclusion of the dynamical fermions are seen when the sea quark mass is 

made as light as possible, ideally in the vicinity of the up and down quark masses. 

However, since the computational time required for simulations increases as the sea 

quark mass decreases it is currently not feasible with current computer resources. 

The lightest sea quark mass chosen here represents the smallest quark mass at which 

meaningful statistics could be achieved within an acceptable period of time.

88
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@ Csw K'sea Kyal No. config.
5.29 1.9192 0.1340 0.1335, 0.1340, 0.1345, 0.1350 101
5.26 1.9497 0.1345 0.1335, 0.1340, 0.1345, 0.1350 102
5.2 2.0171 0.1350 0.1335, 0.1340, 0.1345, 0.1350 151
5.93 1.82 Quenched 0.1327, 0.1332, 0.1334, 623

0.1337, 0.1339
5.2 2.0171 0.1358 0.1340, 0.1345, 0.1350, 0.1355 101

Table 5.1: Simulation parameters for all the data sets, the last simulation is un­
matched

Gauge configurations were generated with two degenerate flavours of O(a) im­

proved dynamical Wilson fermions using the Hybrid Monte Carlo algorithm [81] on 

the Cray T3E supercomputer in Edinburgh. The implementation and verification of 

the code was described in [82, 83] and a summary of the algorithm details was re­

ported in [84]. The dynamical gauge configurations were separated by 40 trajectories 

(a figure decided on after a study of the autocorrelation times measured for the pla- 

quette on every trajectory [84, 82, 85]). The matched quenched gauge configurations 

were generated by the hybrid over-relaxed algorithm with the compound sweep ratio 

of 7:1, over-relaxed to Cabbibo-Marinari sweeps [86]. The separation for the gauge 

configurations used for measurements was 700 compound sweeps.

Quark propagators were generated using 0(a)  improved Wilson fermions. Corre­

lators were constructed from fuzzed propagators for degenerate combinations of Kvai. 

For the quenched simulation, degenerate and non-degenerate meson correlator combi­

nations were generated for three values of the hopping parameter. A further two Kvai 

values were added to the simulation to achieve a lower m p s /m v  mass ratio, which 

was more comparable to the lighter dynamical simulations.

The simulation parameters for all the data sets is given in Table 5.1, all of which
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were carried out on a 163 x 32 lattice. A lattice of this size was deemed necessary, 

following the finite volume investigation in [84], to keep the finite size effects to a 

minimum as the sea quark mass (and hence lattice spacing, a) was reduced. In order 

to ensure a large enough spatial volume to accommodate baryons (> 1.5fm) at this 

lattice size, a coarse lattice spacing of a > 0.09fm is required. Therefore simulations 

must be performed at low j3 values. The dynamical ft value was determined to be 

as low as possible while remaining within the parameter range where a valid non- 

perturbative estimate of the clover coefficient had been determined.

The fully non-perturbatively 0(a) improved values for csw were used for all the 

dynamical simulations. This was determined by A lpha Collaboration in [87] and is 

given by

Hynam _  1 ~  0.454gg -  0.175gg +  0.012gg +  0.045gg (
sw ~  1 — 0 .720#o ’ K }

This is valid for f3 values as low as 5.2, the minimum value included in the simulations. 

Hence residual lattice artifacts are expected to be of G(a), which on the coarse lattices 

used in these simulations could still be significant. For the quenched simulation, the 

clover coefficient was determined by the S cri Collaboration [88]

.ouen 1 -  0.6084ffo2 -  0.2015ffo4 +  0.03075So6
"  1 -  0.8743<7q ’ 7' (5'2)

This result extends the analysis of the A lpha Collaboration to lower values of p. 

The values of r0 have been obtained by the U kqcd collaboration [11] and are
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(P, «sea)________ To/a _______ a[fm]
(5.20, .1350) 4.754(40)(lg0) 0.1031(09)(lf)
(5.26, .1345) 4.708(52)(I jq) 0.1041(12)(+}J)
(5.29, .1340) 4.813(45) (t|g) 0.1018(10)(lf)

(5.93, 0) 4.714(13)(t?8) 0.1040(03)(1<|)

Table 5.2: Summary of r0 and a for the matched data set, the errors quoted are 
statistical and systematic respectively.

summarised, along with the lattice spacing derived from tq to illustrate the level of 

matching achieved in Table 5.2

5.2 MEM technicalities

We now turn to the details on the application of the MEM technique to this data. 

The channels to be analysed are the axial temporal and spatial, scalar, pseudoscalar 

and vector. The default model used is of the form

m(uj) = m0uj2 (5.3)

motivated by the asymptotic behaviour of the spectral function at large uj. The 

frequency space was discretised into nu =  600 parts with a separation of ua = 0.01. 

The integration over a was done for all probabilities > 1% of the maximum

5.3 Results

The analysis of the data sets will be split into four sections. Firstly the quenched 

data will be analysed, followed by the matched ensemble including the quenched 

simulation for comparison. Then the lightest sea quark mass data is studied. An 

additional discussion on the non-singlet scalar meson will then be given.
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Figure 5.1: U k q c d  (3 = 5.93 (Quenched) Axial Temporal channel t=0-14

5.3.1 Q uenched  data  set

The first data analysed and presented here is the quenched data set for all five valence 

quark masses in degenerate pairs. This will give a base for comparison when the dy­

namical data is analysed. The effects of changing the quark mass can be seen in these 

graphs and should give us some insight into whether any changes seen in the matched 

dynamical data set (see § 5.3.2) are from the change of sea quark mass, or simply 

equivalent to a change in the valence quark mass in the quenched approximation.

The spectral functions for the axial temporal, pseudoscalar and vector channels 

all display a common structure: a sharp peak at low energy and a broad bump at 

higher energy (two bumps in the vector case). In the quenched approximation the 

ground state peaks in these channels should have zero width, but due to the finite 

number of configurations (see the tests performed on the delta function test data in 

§ 3.2.5) and possibly the discrete nature of the lattice in the temporal direction these 

unphysical widths are produced. The integrated strength of the peak, however, can



CHAPTER 5. DYNAMICAL QCD

= 0.13390 
= 0.13370 
= 0.13340 
= 0.13320 
= 0.13270

3

3,a

2 -

2.50.5 1.5

coa

Figure 5.2: U k q c d  (3 = 5.93 (Quenched) Pseudoscalar channel t=0-
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Figure 5.3: U k q c d  ft = 5.93 (Quenched) Vector channel t=0-14
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Figure 5.4: U k q c d  — 5.93 (Quenched) Axial spatial channel t=0-14

be related to the physical decay constant of the mesons. From the error bar analysis 

on the broad peaks, very little statistical significance should be made of their shape 

since the error bars are a similar size to the height of the peak.

The effects of changing the quark mass are as expected, the mass of the meson 

(central position of the peak) increases with the valence quark mass (i.e. as /cvai 

decreases)

The remaining two channels, the axial spatial and scalar, are difficult to fit using 

traditional exponential fits. In the spectral functions of these channels (Figs. 5.4 

and 5.5) there is perhaps some evidence to suggest why. The two peaks found are 

both broad, even the ground state (compare with the sharp ground state peak found 

in the other channels), which makes the assumption of a delta function form for these 

inappropriate. The error bars are large though, especially in the axial spatial channel. 

The scalar channel is discussed in more detail in § 5.4



CHAPTER 5. DYNAMICAL QCD 95

= 0.13390 
= 0.13370 
= 0.13340 
= 0.13320 
= 0.13270

0.7

0.6

0.5

3

CL

0.3

0.2

0.5 2.5

coa

Figure 5.5: U k q c d  /? = 5.93 (Quenched) Scalar channel t=0-14

P ŝea v̂ai amPS (2-exp) amAo (MEM)
5.20 0.13500 0.13500 0.405 0.414 tg
5.26 0.13450 0.13450 0.509 0.498 ±{j
5.29 0.13400 0.13400 0.577 0.590 If
5.93 0.0 0.13390 0.356 0.378 tg

Table 5.3: Comparison with U k q c d  axial temporal masses

5.3.2 M atch ed  U n itary  Set

Next the results from the matched (fixed lattice spacing a) unitary (/csea = «vai) data 

set are reviewed. This data was chosen because it isolates the effects of changing the 

quark mass, so any change in the spectral functions is presumably due to the quark 

mass rather than any 0(a2) lattice artefact. These dynamical quark effects should 

become more prominent as smaller, more physical quark masses are approached, i.e. 

as Ksea increase. One matched quenched spectrum has been included on each of these 

graphs for comparison.

Fig. 5.6 presents the spectral functions for the axial temporal channel. Since the
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Figure 5.6: U k q c d  Axial Temporal t=0-14 matched unitary data sets

axial temporal ground state shares the same quantum numbers as the pseudoscalar 

the comparison in Table 5.3 is between the two-exponential PS fits and MEM’s axial 

temporal analysis. Details of the U k q c d  two-exponential fits are discussed in [11]. 

MEM results from local source and sink is in agreement within the 2a level with the 

two-exponential results which have used combinations of local and fuzzed source and 

sink to improve the signal. Note that the errors quoted in Table 5.3 and subsequent 

comparisons are statistical only, the systematic errors are assumed to be of the same 

order of magnitude again As lighter quark masses are approached the ground state 

peak shifts to lower energies. The mass is therefore decreasing just as can be seen in 

Fig. 5.1 for the quenched data as the value of k is increased. The resonance centered 

around uoa « 2.0 varies only slightly and it is very difficult to make any conclusions 

given the errors on this feature.

The axial spatial results are presented in Fig. 5.7. This is an extremely difficult 

channel to extract any information from, so there are no two-exponential values to
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Figure 5.7: U k q c d  Axial spatial t=0-14 matched unitary data sets

fi ŝea v̂al amps (2-exp) amps (MEM)
5.20 0.13500 0.13500 0.405 0.415
5.26 0.13450 0.13450 0.509 0.505 l}j
5.29 0.13400 0.13400 0.577 0.572 ±1
5.93 0.0 0.13390 0.356 1! 0.375 l}j|

Table 5.4: Comparison with U k q c d  pseudoscalar masses

compare to. The error bars on the peaks are extremely large in this channel so very 

little statistical significance should be made of their shape.

Fig. 5.8 shows the results obtained for the pseudoscalar channel. Once again the 

only real trend seen is the ground state peak shifting towards lower energies as the 

mass of the quarks is decreased. The feature at around uia « 1.5 remains fairly steady. 

There is no sign of any dynamical quark effects in this channel. Table 5.4 is included 

to demonstrate that MEM is finding the same ground state as two-exponential fits.

Fig. 5.9 shows the results obtained for the Scalar channel. As with the axial spatial 

channel this is an extremely difficult channel to extract any information from using
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Figure 5.8: U k q c d  Pseudoscalar t=0-14 matched unitary data sets

standard techniques, so there are no two-exponential values to compare to. The error 

bars on the peaks are large in this channel so very little statistical significance should 

be made of their shape. Again the differences between quenched and dynamical are 

slight. For a more detailed discussion on the scalar meson see § 5.4.

The Vector channel in Fig. 5.10 is where there may be signs of p —> 27r decay. 

Note that the pLs resulting from such a decay could not be at rest due to conservation 

of momentum, at rest the rho has angular momentum. The minimum momentum 

allowed for the 2 pi (one would have p and the other p) would be

Pmin (5.4)

Therefore the 2n feature is expected at uj = 2En where Ev = yjmn + Pmm- Table 5.5 

lists the value for 2En for each data set analysed.

Unfortunately there is no signal for p-decay in the current data set. Table 5.6 is a
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Figure 5.9: U kqcd  Scalar t—0-14 matched unitary data sets

p ^sea ^val to £

5.20 0.1358 0.89
5.20 0.1350 1.13
5.26 0.1345 1.29
5.29 0.1340 1.40

Table 5.5: Value of 2En, the expected position for 2ir feature indicating p-decay.
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Figure 5.10: U k q c d  Vector t=0-14 matched unitary data sets 

/3 /csea AvVai amy (2-exp) airiy (MEM)
5.20 0.13500 0.13500 0.579 tj 0.610
5.26 0.13450 0.13450 0.650 t i 0.637
5.29 0.13400 0.13400 0.691 ±1 0.719
5.93 0.0 0.13390 0.563 ±1 0.568

Table 5.6: Comparison with U k q c d  vector masses

comparison of the Vector meson mass calculated from MEM and that from U k q c d  

two-exponential fits. The agreement between the two methods in much worse in this 

channel than for the pseudoscalar and axial temporal.

5.3 .3  L ightest Ksea data

Since no dynamical effects were seen within the matched unitary set, lets take a look 

at the results obtained from data at an even lighter Acsea value. Almost certainly the 

lack of any observed dynamical effects in the spectral functions will be due to the still 

relatively heavy quarks simulated in the matched ensemble. While this data is not 

matched (the lattice spacing a is different) with all the results in § 5.3.2, due to the



CHAPTER 5. DYNAMICAL QCD 101

] — i— i— i— i— |— i— i— i— i— |— i— i— r

0.4

0.5

Kyn| =0.13580 
Kyal = 0.13565 
Kva) = 0.13550 
Kva)= 0.13500 
k =0.13420

3

I 03 '

1.5 2 2.5 3

Figure 5.11: U k q c d  Axial Temporal (3 = 5.20 /csea = 0.1358 t=0-14 

restrictions in Eq. 5.1 for calculating csw, it is still interesting to analyse.

The graphs presented in this section display the spectral function calculated from 

each channel with varying valence quark mass. When the valence and sea quark mass 

values differ, it is known as a partially quenched approximation.

In the figures presented (5.11-5.15) here there are still no real signs of any differ­

ences due to the finite sea quark mass when making a comparison with those from 

the quenched data in § 5.3.1. The ground state peak tends to become lighter with 

the valence quark mass while the first excitation remains fairly steady, changing very 

little.

5.4 Non-singlet scalar meson

The study of the scalar meson (both singlet and non-singlet) is of great interest to 

particle physics. It is notoriously difficult to extract anything from this channel using
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Figure 5.12: U k q c d  Axial Spatial = 5.20 Ksea =  0.1358 t=0-14
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Figure 5.13: U k q c d  Pseudoscalar (I = 5.20 Ksea =  0.1358 t=0-14
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conventional fitting procedures. Recently two ’’non” conventional approaches have 

been applied and have shed some light on both the singlet and non-singlet masses. 

The first approach [89] uses domain wall fermions and the second [90] (which analysed 

a similar data set to this work) used the Z2 noise method. Both methods result in 

a mass of approximately Mao =  1.0 GeV in the chiral limit for the non-singlet scalar 

meson, though with relatively large errors.

In this thesis only the non-singlet scalar (ao) will be studied and is the first time 

that results from conventional correlation functions have yielded the spectrum of the 

scalar meson in QCD.

Compared to the other channels studied the scalar channel’s spectral function 

(Figs. 5.5, 5.9 and 5.14) has

(a) a very broad ground ’’state” and

(b) a second resonance of significant weight relative to the “ground state”, which is 

not well separated from the ground ’’state”.

This is presumably the reason why doing fits using sums of exponentials proves diffi­

cult.

In the quenched case the mass of the ground state Mao remains the same despite 

the change in quark mass (see Fig. 5.5). This is as Bardeen predicted in [91]. The 

matched unitary set doesn’t display this pathology (i.e. Mao in the matched unitary 

set decreases sensibly as mq —> 0).

The chiral extrapolation (mq —» 0 or equivalently aM% —» 0 performed on the 

mass of the non-singlet scalar for the matched dynamical data sets only is displayed
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Figure 5.16: U k q c d  Scalar mass chiral extrapolation

graphically in Fig. 5.16. This gives the non-singlet scalar mass calculated from MEM 

as aMao = 0.58(12) and multiplying by a~l = 1.92 GeV (the errors on a~l have been 

neglected since the 20% error on Mao will swamp it) gives Mao = 1.1(2) GeV This 

agrees with the particle data books value of 985 MeV within the errors which are 

around 20%

5.5 Conclusions

• MEM has found ground state peaks in agreement with previous studies

• MEM has managed to extract information from local source and sink correlators 

in difficult channels such as the axial spatial and scalar.

• Unfortunately there have been no signs of dynamical effects in the channels 

analysed, even at the lightest quark mass.
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• Non-singlet scalar channel was analysed and the prediction obtained for the 

mass of the a,Q is in agreement with experiment.



Chapter 6 

Conclusions

Spectrum analysis techniques beyond the standard single- and multi-exponential fits, 

which assume a spectral density consisting of a series of isolated simple poles, will 

be required for lattice simulations beyond zero temperature and quenched QCD. In 

this thesis, the first attempt at applying the Maximum Entropy Method (MEM) to 

lattice data beyond the quenched approximation, but still at zero temperature, has 

been made.

In Chapter 3 MEM was successfully tested using known spectral function form. 

In Chapters 4 and 5 two field theories (a four fermion theory, the Gross-Neveu model 

in d =  3, referred to as GNM3 and dynamical QCD) were studied, a summary of the 

results is now given.

6.1 Summary of the GNM3 analysis (Chapter 4)

In the chirally broken phase:

• The elementary fermion / ,  the simplest f f  bound state and the Goldstone 

boson 7r have all been shown to be sharp spectral features (i.e. simple poles).
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• Estimates for the meson binding energy have been made for the first time.

• The additional contribution from disconnected fermion line diagrams cause the 

a in the chirally broken phase to be more tightly bound than the conventional 

PS meson.

In the chirally symmetric phase:

• In the chirally symmetric phase, a broad resonance, whose features agree qual­

itatively with the large-Nf  predictions, has been identified.

• Unfortunately there was no evidence of any feature at the two pion threshold in 

the a channel, and therefore no evidence for cr —» 7T7t decay has been observed 

in this data.

6 .2  Summary of QCD analysis (Chapter 5)

• MEM has found ground state peaks in agreement with previous studies.

• MEM has managed to extract information from difficult channels such as the 

axial spatial and scalar.

• Unfortunately there have been no signs of dynamical effects in the channels 

analysed, even at the lightest quark mass.

• Non-singlet scalar channel was analysed and a prediction obtained for the mass 

of the <20 is in agreement with experiment.
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6.3 Future work
6.3.1 G N M 3

It will be interesting to use MEM to study this model at non-zero temperature and/or 

density and perhaps looking at d = 4.

6.3.2 Dynamical QCD

No signs of the effects of introducing dynamical quarks have been seen in the five 

channels analysed from the U kqcd data set, even at the lightest quark mass. It 

will be interesting to apply the same analysis to any future data at lighter sea quark 

masses where the dynamical effects should be more prominent. Finite temperature 

QCD would be another area of particular interest for study with MEM, but this 

would require very large computer resources since finite temperature is acheived by 

decreasing the number of timeslices on the lattice. MEM requires a reasonable amount 

of data points so the only way to generate data for this would be to use and anisotropic 

lattice, i.e. a smaller spacing in the time direction than the three space directions.



A ppendix A

Entropy definition

A .l Monkey argument for entropy and prior prob­
ability

The prior probability can be written in the general form

pu  e v) = —^  f w m a s m ,  (A-1)

where /  is the image, V  some domain, a  an arbitrary constant and Z s{a )  is a nor­

malisation constant. $  is assumed to be a monotonic function of the entropy S ( f ), 

therefore the most probable image /  is obtained at the stationary point of S(f) .

The so-called “monkey argument”, which is based on law of large numbers, can 

be used to determine the explicit forms for both <I> and S(f ) .

First discretise the basis space x into N  cells. Thus f (x)  also needs to be discre- 

tised as /*. Now suppose a monkey throws M  (assumed to be a large number) balls. 

The number of balls which land in the ith cell is rii and the probability that a ball 

lands in the same cells is p*. The expectation value for the number of balls received
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by the ith cell Aj is therefore given by

N

Ai = Mpi with ^  Ai — M  (A.2)
i=1

The Poisson distribution (approximation for the Binomial distribution at large N  

and fixed Ai) can be used to calculate the probability that the ith cell receives rii balls

A îg-Aj
Pk M  =  - i - j - .  (A.3)

lli.

Hence the probability that an entire distribution i t  = (rii, . . . ,  tin) is realised is given 

by the product

N  N  n ‘ A-

i=i i=i **

with the normalisation given by 53n°=o »(ni) =  1 (* =  1> • • • > N).

M  is large, therefore n* can also be large, so a small “quantum” q is introduced 

and a finite image fa and default model (i.e. the expectation values) are defined as

fa = qrii, rrii = qXi. (A. 5)

The probability P ( f  G V) can now be written as

P ( f  e V ) = Y  P->(rt) ~ [  dfi TT X*‘eXi ~  [  TT dfi eSU)/" ■ (A 6)hv Jv iN fi «<! ~Jvl\vri(^Q)N/2’ [ ’
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where the fact that q is small has been used in the conversion of the sum to an integral 

and Stirling’s formula n! =  \/27menlogn-n has been used to obtain the last expression.

Comparing Eqs. A.l and A.6

N / cy \ N/2
g = a ~ \  [d/] =  n ^ ,  Zs ( a ) = ( ^  J  . (A.7)

A.2 Axiomatic construction of entropy

If a positive semi-definite distribution f(x) is more likely than the distribution g(x), 

then the Shannon-Jaynes entropy S( f )  needs to obey

o  S( f )  > S(g), (A.8)

If there is an external constraint on f (x),  e.g. C(f(x))  = 0, then the most plausible 

image is given by

8,[S(f) ~ AC(/)] =  0 (A.9)

with A a Lagrange multiplier. The explicit form of S  can be fixed by considering the

following axioms
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Axiom 1 : Locality

S( f )  is a local functional of f (x)  without derivatives, i.e. there is no correlation 

between the images at different x.

This leads to a form

S{f)  = j  dx m(x) 6(f(x),x),  (A.10)

where m{x) is a positive definite function which defines the integration measure. 6 is 

an arbitrary local function of f (x)  and x without derivatives acting on / .

Axiom  2 : Coordinate Invariance

f (x)  and m{x) transform as scalar densities under the coordinate transformation 

x' =  x'(x), i.e. f (x)dx = f (x ' )dx '  and m(x)dx =  m'{x')dx' . S  is a scalar.

These constraints allow only two invariants for constructing S  from Eq. A. 10: 

m(x)dx = m^x^dx '  and f (x) /m(x)  = / ' ( x^ /m' fa1). Hence

S{f) = J  dx m(x) • (A*n )

Axiom  3 : System  Independence

If x and y are two independent variables, the image F(x, y) and integration measure 

m(x , y) are written in product form

F(x, y) =  f{x)g(y), m(x , y) =  mf (x)mg{y). (A.12)
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Furthermore, the first variation of S(F)  with respect to F(x,y)  leads to an additive 

form with some functions a(x) and /3(y);

SS(F ) = a {x) + (3{y) (A.13)
5F(x,y)

Using this axiom, the images f (x)  and g(y) can be independently determined

S(F) = J  dx J  dym{x,y)  ^  (A-14)

Acting the derivative d'2 / dxdy on Eq. A. 14

„(Po(Z) da(Z) „ , ,  , r .
z - j k r + K - 0 ( A ' 1 5 )

where Z =  F(x,y) /m(x ,y)  = (f { x ) / m f {x)){g{y)/mg{y)) and a(Z) = d</>{Z)/dZ. 

The solution to this differential equation is

a(Z) =  ci log Z -  c0, (A.16)

which leads to

</>(Z) = CiZlogZ -  (c0 +  Ci)Z. (A.17)
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Thus the entropy can now be written as

S( f )  = J  dx m(x) = J  dx f ( x) ci log ( “  (̂ 0 T Ci)m(x) . (A.18)

Since (S/8f )2S ( f ) — C\j f  and /  > 0, C\ dictates the curvature of S. Thus C\ is chosen 

to be —1 to have S  bounded from above and normalised.

Axiom 4 : Scaling

If there is no external constraint on /(x ), the initial measure is recovered after the 

variation, i.e. f (x)  = m(x).

The unconstrained solution to of SS( f ) / Sf  =  0 is f (x)  = m(x)ec°/Cl so Co =  0 

in Eq. A.18. It is also convenient to add a constant on to the entropy to make 

S ( f  = m) = 0. Thus the Shannon-Jaynes entropy is defined as



A ppendix B 

Singular value decom position

In this appendix a proof of the singular value decomposition (SVD), used in § 2.5.2, of 

a general m x n matrix M  is given. The singular values of a matrix M  are defined as 

the square root of the eigenvalues of M*M, which by definition is an n x n Hermitian 

matrix with real, non-negative eigenvalues. The following definitions for the norm of 

a vector x € C 1 and the spectral norm of M  are also required.

1 /2

3  2 = E
.i=1

Xi \

|| Af H2 =  [maximum eigenvalue of

=  [max ( x ^ M x ) ] 1̂ 2 ( x G C ,  | |x||2 =  1).

(B.l)

(B.2)

(B.3)

SVD Theorem:

Let M  be an m  x n (m > n) matrix, U and V  be m  x m  and n x n  unitary matrices 

respectively. Then M  can be decomposed to

M = U W V \  (B.4)
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where W  is an m  x n diagonal matrix whose elements are the singular values of M  

ordered from largest to smallest, i.e. W  = diag(fi,£2> • • • 5fn) with £1 > £2 > • • • >

£ n > 0

Proof:

The maximum singular value of M  fi has a vector Xi associated with it which satisfies 

the relation =  (x \M^Mx i), and also a vector yi which satisfies Mx\  = 62/1- Now 

these vectors x\ and yi can be combined with non-square matrices U2 and V2 such 

that U\ and V\ defined below are m  x m  and n x n unitary matrices respectively.

u 1 = (yuU2), Vi = (xu V2 ) (B.5)

These matrices can now be used to transform M  into M\

Mi = U\MVi =  I V\  j P  ( xi V2 ) = \  6  V\MV2 j =  ( 6  I , (B.6)
' l£  }  \ 0  U\MV2 J  V o  Q2 I

where z\ € C 1 1 and Q2 is an (m — 1) x (n — 1) matrix. Now show that Z\ is, in fact, 

a null vector

g  =  || ||| =  HM1II2 =  ma x(x*M*Mx)  (B.7)

2  { T n r a i 1 £- ■> t )  ( B 8 )

=  ^2 - ^ , 2  [(?? +  11*1 I I I)2 +  WQ2Z1 1 11] (B.9)

>  € ?  +  I k i l l i  ( B . 1 0 )



APPENDIX B. SINGULAR VALUE DECOMPOSITION 118

This same procedure can now be applied to Q2, Q3, . . using £2 as the maximum 

singular value for Q2 (£1 > £2) and so on. Thus

M„ = U'MV =

(

0

Thus the SVD M  = U W V t is proved.

\

0 J
= W

The irrelevant components of U and W  may be neglected so they become m  x n 

and n x n matrices respectively. In this case U satisfies the condition Uffl = 1, while 

VV* = V'V =  1.
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