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Abstract

This thesis presents results for spectral functions extracted from imaginary-time cor-
relation functions obtained from Monte Carlo simulations using the Maximum En-
tropy Method (MEM). The advantages this method are (i) no a priori assumptions or
parametrisations of the spectral function are needed, (ii) a unique solution exists and

(iii) the statistical significance of the resulting image can be quantitatively analysed.

The Gross Neveu model in d = 3 spacetime dimensions (GNM3) is a particularly -
interesting model to study with the MEM because at 7' = 0 it has a broken phase
with a rich spectrum of mesonic bound states and a symmetric phase where there
are resonances. Results for the elementary fermion, the Goldstone boson (pion),
the sigma, the massive pseudoscalar meson and the symmetric phase resonances are

presented.

UKQCD Ny = 2 dynamical QCD data is also studied with MEM. Results are
compared to those found from the quenched approximation, where the effects of
quark loops in the QCD vacuum are neglected, to search for sea-quark effects in the
extracted spectral functions. Information has been extract from the difficult axial
spatial and scalar as well as the pseudoscalar, vector and axial temporal channels.
An estimate for the non-singlet scalar mass in the chiral limit is given which is in

agreement with the experimental value of M,, = 985 MeV.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is well established as the theory of the strong
interaction. This has been due to the success of perturbative methods in describing
the short distance (large momentum transfer) behaviour of quarks and gluons. How-
ever, QCD also needs to exhibit experimentally observed phenomenon, such as quark
confinement (i.e. quarks bound in colour singlet states). This necessitates calculating
at low energies, u < 1GeV, associated with the characteristic length scale of a hadron
of approximately 1fm. Since QCD exhibits the property of asymptotic freedom, at
such energies, the strong coupling becomes of O(1). Thus perturbative methods fail,

and a non-perturbative approach, such as Lattice QCD, is required.

Lattice QCD was originally formulated in 1974 by K. G. Wilson [1]. It provides a
non-perturbative mechanism for confinement in the strong coupling limit and enables
numerical studies of the low energy behaviour of QCD. The first numerical results
were reported in [2, 3]. Reproducing the experimentally observed hadron spectrum
validates both QCD and the lattice approach, and confidence in the results obtained
means that it can be used to predict other phenomenology which cannot be measured

directly from experiment. Due to the considerable computer time required to simulate
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QCD, the quenched approximation (in which the quark loops in the vacuum are
neglected) has been used, and in fact is still used to this day. The applicability of
this approximation can be measured by comparing the light hadron spectrum with
experiment. In order to make precise comparisons it is necessary to have good control
over systematic effects such as lattice artifacts. Comparisons of this type all seem to
agree that the quenched light hadron spectrum agrees with experiment at the 10%
level [4, 5].

Now with the recent theoretical developments and additional computational power,
it is possible to simulate full QCD (i.e. include quark loops in the vacuum). Al-
though the simulations have not reached the stage where precision measurements of
the spectrum can be made it is hoped that the 10% discrepancy seen in the quenched
approximation is reduced. It is also interesting to see if the effects of these dynamical
quarks can be seen, for example the decay of p — 7m. Using the Maximum Entropy
Method (MEM) the spectral function of the particles can be extracted directly from

the lattice correlation data. This method is described in detail in Chapter 2.

1.1 Lattice QCD

In this section a brief outline of the fundamental elements of lattice QCD is given. For
more detailed information see the textbooks [6, 7] or introductory lecture courses [8,

9].
1.1.1 Path integral formalism of QCD

All information about the physical observables in the theory are contained within an

infinite number of vacuum expectation values of time-ordered products of quantum
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field operators, known as Green’s functions. Using the path integral formalism [10],
these quantum probability amplitudes can be directly related to the probability dis-

tribution of the classical fields
. 1 _ _ s
(OIT{Ol, ¥, Au]}0) = / DYDYDALOW, $, AJe P04, (1)

where O, ¥, A,] corresponds to a product of quantum operators , Oy, 9, A,] to a
product of fermion, anti-fermion and gauge fields. The time ordering of the operators

is denoted by 7 and S is the classical action. The partition function, Z, is defined as

Z = / DYDYDA,eSP¥4u], (1.2)

Note that here and throughout this thesis the usual nomenclature, known as natural

units, ¢ = A = 1 has been used.

The functional integral in Eq. 1.1 is extremely hard to evaluate numerically due
to it being both complex and strongly oscillating. To deal with these problems and
make the numerical simulation much easier a Wick rotation, zo — —ix4 can be used to
analytically continue from Minkowski to Euclidean spacetime. The partition function

is altered to

Z = / DYDYDA, e~ SeP¥Aul, (1.3)

where Sg is the Euclidean action (see § 1.2 for definition). The weight, e=% in the
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partition function is now very similar to that used in Statistical Mechanics, provided

that Sg is both real and bounded from below.

1.2 The continuum QCD action

The QCD action is invariant under local SU(3) gauge transformations, G(z). The

fermion and gauge fields transform as

Y(z) = Gl)y(a), (1.4)
¥(z) - ()G (), (1.5)
Az) = G(2)Au(2)G ™ (z) - (8,G(2))G(z). (1.6)

Thus the continuum QCD action in four-dimensional Euclidean spacetime is given by

Ny

Se0) = [ dooZ T (Eu@Fu(@) + S S@P+musa), 00
295 f=1

where N is the number of fermion flavours and p, v = 1...4. The first term describes
the dynamics of the gluon gauge fields, A,. The gauge field strength tensor, Fj,,(z),
is defined in terms of the commutator of the covariant derivative, D, = 9, + A,(z),

as

Fl(z) = [Dy, D] = 0,4, (2) — 8,Au(z) + [Au(2), Au(2)] (1.8)

The eight gluon gauge fields are defined in terms of the generators of SU(3), T.
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AL(z) =—Au(z), Auz)=—igoA;(x)T*, a=1,...,8 (1.9)

The following commutation relations and normalisation conditions are satisfied by

the generators

1
[T%, T% = ifw.T¢, T[T T = 5 8ab- (1.10)

where fg;. are the anti-symmetric structure constants and the generators are repre-

sented by the eight Gell-Mann matrices, 7% = A%/2.

The second term in Eq. 1.7 is the Euclidean Dirac action describing the interaction
of the fermion fields. The Dirac spinor and colour indices have been suppressed and
my is the mass of the fermion with flavour f. Note that )= ,D,. From now on the
sum over the flavours, written in explicitly in Eq. 1.7, will be omitted. The Euclidean

Dirac matrices, v, are related to the Minkowski matrices, Y, by
T4 = ’Yéwa Yi = _'L.fYJ]'VIa .7 = 1a2’3’ (111)

and satisfy the condition of Hermiticity and commutation relations below.

n=r MW} =20 (1.12)
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This action can now be inserted into the path integral formalism. Due to the gauge
invariance of the action, this path integral is not well defined, hence the integration
is performed over an infinite number of physically equivalent gauge configurations.

This problem can be solved by discretising spacetime on a four dimensional lattice.

1.3 Lattice gauge theory formalism

The original formulation of lattice gauge theory was proposed in [1]. A detailed
description of the steps involved in discretising the continuum theory, outlined briefly

below, can be found in [6, 7).

1.3.1 Spacetime discretisation

Spacetime is discretised onto a four dimensional isotropic hypercubic lattice, Ag

Ap={z€Rz,/a€Z, p=1,...,4}, (1.13)

where a is the lattice spacing. The integration in the action is now replaced by the

sum over all lattice sites, z,
/d4x —at) . (1.14)
T

All dimensionful variables are re-scaled by the lattice spacing, a, to yield dimensionless
quantities, e.g. the fermion mass m is replaced by am, since in natural units (c = h =

1) mass has the dimensions of inverse length.
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1.3.2 Lattice representation of the fermion and gauge fields

The fermion fields are represented by anti-commuting Grassmann variables on the
lattice sites. Since the action is bi-linear in the quark fields, the integration over the

fermion variables can be performed analytically.

The representation of the gauge fields on the lattice is not so straight forward.
If field variables situated on the lattice sites are used then the gauge invariance is
spoiled due to the discretisation of the derivative by a finite difference. To retain the

gauge invariance of the theory the following procedure can be used.

In the presence of a gauge field in the continuum, a quark field transported from

Z to y gains a phase factor
Y
¥(y) = Peap {— / A,Az)dz,,} ¥(2) = Uly, 2)(2) (1.15)

where P denotes a path ordered product, which is required due to the non-abelian
nature of the gauge fields. Under a local SU(3) gauge transformation, the parallel

transporter, U(y, z), transforms as

Uly,z) = G(y)U(y, z)G™(x), (1.16)

hence

Y()U(y, z)y(z) (1.17)
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x+a¥ x+aji+a¥
Vv
y(x)
Uéx)
X x+afl
T

Figure 1.1: Lattice variables, quarks are defined on the lattice sites, gluons on the
links.

is gauge invariant. This parallel transporter is represented by a link variable, U,(z),

from lattice site z, oriented in the direction .

Uu(z) = e™An@+$) (1.18)

where [ is a unit vector in the direction u. From the path ordering condition it
follows that U,(z) = U_,(z + aft). These link variables are represented by 3 x 3
unitary matrices with unit determinant in the fundamental representation of SU(3).

They transform as

Uu(z) = G(2)U,(2)G ™ (z + ap), (1.19)

provided G(z) belongs to the same representation of the group as the gauge links.
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Two types of gauge invariant objects can now be formed on the lattice, this can be

seen from Egs. 1.4, 1.5 and 1.19. Firstly a string defined by

P(Y)Uu() - - - U (z — ad)y(z), (1.20)

where the trace over the colour indices is implicit and the gauge links are path ordered.
Secondly the trace of a product of gauge links forming a closed loop, referred to as a

Wilson loop. The simplest example of this is the plaquette, TrUg, where

Ug = Uu(2)U,(z + a@)Ul(z + a2) U} (z) (1.21)

is the product of links around an elementary square on the lattice.

1.3.3 Discretisation of the action

The QCD action could be discretised in many ways, but a vital condition to be
satisfied is that the continuum action must be reproduced in the limit where the
lattice spacing goes to zero. This means higher order terms can be added into the

lattice action so long as they disappear in the continuum limit.

The lattice action is constructed from the gauge invariant quantities defined in

§1.3.2.

S[w, %, U] = SelU] + Srl, %, U], (1.22)
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where S¢ is a pure gauge term and Sr depends on the fermionic fields and is defined

as
Srlv, %, U] = Zw M, [UI(y), (1.23)

where M is the fermion matrix.

1.3.4 The integration measure

The partition function can now be expressed in terms of the lattice variables

— /'Dl/_)D'ngUe—SG[U]_z’vV "/"(z)Ma:,y[U]'ﬁb(y), (1.24)
where
DyDy = [ [ dd(z)d(z), DU =[] dUu(a). (1.25)
T T,

After performing the integration over the Grassmann valued fermion fields ana-

lytically the partition function becomes

= / 1 dU.(z) det M{U]e~5<11, (1.26)

T,

dU, defined by the conditions below, is known as the Haar measure [6] and is gauge

invariant.
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/G dUF(U) = /G dUFUV) = /G dUF(VD), (1.27)

where V € SU(3) and f(U) is an arbitrary function over the group. Since the gauge

links are elements of a compact group the normalisation condition
/ dU =1 (1.28)
G

can be imposed, which reduces the path integral down to a large, but finite, number
of integrations and removes the need for gauge fixing. The remaining integration,

over the gauge links, is performed numerically.

1.3.5 Numerical simulation

In terms of lattice variables, the physical observables, expressed in the path integral

formalism become
O]T{O(W, ¥, Au)}0) = % / DYDYDUO (P, ¢, U)e S, (1.29)

There are only a few types of terms which do not vanish, those which contain equal
numbers of fermion and anti-fermion fields, due to the Grassmann integration rules [6].

So for a general operator

/ D§Dpe~Sew FOMealUWG) = Gt M{U] (1.30)
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and

/ DYDY ()P (y' e~ Lo PEOManlUIN) — M3, det M[U]. (1.31)

Dividing Eq. 1.31 by Eq. 1.30 gives the quark propagator in a background gauge field,

G‘a"f (z,y;U) in terms of the inverse fermion matrix

G2 (z,y;U) = ML 5, IU), (1.32)

a,a,z

where (a,b) are the colour indices and («, 8) are the Dirac spinor indices. It is from

this propagator that the correlation functions are constructed.

Once the fermionic part of the integration has been performed analytically, the

expectation value of an operator is given by a path integral over the gauge fields

OO, ,U)}0) = [ DUOW, M [UPe®a, (139

where S.g is the effective action

Se = Sg[U] — Indet M[U]. (1.34)

Provided Seg is real valued, the remaining integration over the gauge links can be
performed numerically. This is done using Monte Carlo techniques, by generating

gauge field configurations {U}; (assignment of a link variable to every link on the
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lattice) with a probability proportional to e~Se#lV],

Subsequent configurations are
then generated via an algorithm and are separated by several algorithmic updates,
known as sweeps or trajectories. This is to reduce the correlations between subse-

quent configurations. An observable is then calculated as the ensemble average of the

observable measured on each configuration.
o 1 &
(OIT{O, ¥, AH0) » < > O{U}:, M7 [{U]) (1.35)
=1

The statistical error in such an average is 1/+/N for independent configurations, for

correlated configurations this estimate is increased.

1.4 Simulating QCD

To achieve reliable results with acceptable statistical errors from QCD simulations, a
sizeable computational effort is required. In order to achieve this an approximation,
known as the quenched approximation, is often used. One of the main aims of MEM
is to be able to see unquenching effects, i.e. differences between quenched data and

dynamical data.

1.4.1 The quenched approximation

The most intensive part in a QCD simulation is calculating the determinant of the
fermion matrix, M, in the effective action (Eq. 1.34). This is due to the considerable
size of the fermion matrix ((4spins X 3colours X Mattice sites)® €lements) and the non-
local nature of the inverse of M, which is required for the algorithmic update of the

configurations. If the approximation
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det M[U] = const (usually set to 1) (1.36)

is made then the computational overhead can be significantly reduced. This is known
as the quenched approzimation and corresponds to neglecting the quark-anti-quark
loops in the vacuum (i.e. these quarks, commonly called dynamical fermions, are

made infinitely heavy and therefore decouple from the theory).

The quenched theory of QCD retains most of the important features seen in full
QCD such as confinement and chiral symmetry breaking, but there are consequences.
For example, a resonance such as the p meson become stable, in full QCD the p
receives a contribution from an intermediate state, consisting of 2 7’s. This is one of

the signals MEM will seek, a peak corresponding to two pions in the spectral function.

One of the main effects of quenching is to shift the coupling, this means that
quenched and dynamical simulations should not be compared at the same value of
the coupling, rather at the same lattice spacing. Such data sets are known as a

“matched” ensemble [11].

Although the quenched approximation has yielded good results for observables
such as the light hadron spectrum (i.e. to an accuracy of 10% with experimental re-
sults), with the advancement in computer power, along with algorithmic development,

it is now feasible to simulate two light flavours (N = 2) of dynamical quarks.
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1.4.2 N; =2 dynamical quarks

The effective action in Eq. 1.34 needs to be real so that importance sampling can be
easily implemented. Hence det M[U] needs to be real and positive. To check that
the determinant of the fermion matrix is real is relatively simple, it follows from the

lattice Hermiticity relation

MIU] = ysM'[Ulns. (1.37)

This does not guarantee the positivity of the determinant though. For example con-
sider an action with two fermion terms (u and d). When the integration over the

fermion fields is performed the following determinant is obtained

det M[U] — det M, [U] det My[U] = (det M,[U])? > 0 (1.38)

Where the last statement of positivity only holds if M, = M;. Hence in the case of

pairs of degenerate quarks, positivity is guaranteed.

Whether simulating using the quenched approximation or full QCD, the inversion
of the fermion matrix is necessary. This can be very computationally intensive, espe-
cially when using the physical masses of the light quarks. It is for this reason that the
quark propagators are generated at heavy quark masses, and then the lattice masses

calculated are extrapolated to the physical light quark masses.
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1.5 O(a) improvement

The discrete nature of the lattice is one of the major sources of error in lattice sim-
ulations. Due to the computational cost of simulating at an arbitrarily small value
of the lattice spacing, simulations must be run at small, yet finite lattice spacings.
For Ny = 2 dynamical fermion simulations, which already have high computational
costs the lattice used must be even coarser than for the quenched approximation,
a =~ 0.1fm. As a consequence of this, the discretisation errors become larger, hence

the need to use an O(a) improved action.

1.6 The Gauge action

Although the gauge action can be improved, the data analysed in Chapter 5 of this
thesis is generated using the standard Wilson gauge action [1] defined in Eq. 1.39
5

SalU] =Y (1 - %mwg)  B=—
o 0

p (1.39)

where [ parameterises the dependence on the strong coupling constant. The sum is
over all positively orientated plaquettes Ug defined in Eq. 1.21. Substituting Eq. 1.18
into Sg[U], the Yang-Mills term in the continuum action is obtained up to discreti-
sation errors of O(a?). Improved gauge actions can be used, however. The CP-PACS
collaboration use an improved gauge action given in Eq. 1.40 for their “full” QCD

simulations [12]

Sév[U] == ,3 (Z Wlxl - 009072W1x2) y Wlxl = %TI'UD (140)

1x1 1x2
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where Wiy, denotes the real part of a trace over a 1 x 2 rectangular Wilson loop.
The sums are always over positively orientated loops. The motivation and method
used in obtaining this action can be found in [13] and will not be discussed further in

this thesis.

1.7 The fermion action

The fermion action used for the QCD work in Chapter 5 is the O(a) improved Wilson

fermion action
Sr[Y, ¥, U] = SPen ), o, U] + Sg¥ (9, %, U). (1.41)

The first term is the standard Wilson fermion action [14] and the second term is a
counterterm, known as the Scheikoleslami-Wohlert or Clover term [15] which can be
tuned in order to cancel to @(a) discretisation errors arising from the Wilson fermion

action. The discretised form is

SEY 1, U] = ~cu'a 3 F(@)o Fu(2)h(a) (1.42)

.Y,k

where 0,, = £[v,, 7] and F,, the lattice field strength tensor, is defined by
1
Fu(z) = 5(Qu(2) - QL. (x)) (1.43)

where (), is the sum of the four plaquettes around lattice site x in the u, v plane
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Quv Uu(2)U(z + @)U} (z + 2)U}(z)

+ U (2)Ul(z — a+2)Ul(z — )Uu(z — B)
+ Ulle = Uiz — 4= 2)Uu(z = = D)V, (z — 2)

+ Uz — 2)U,(z — 2)U,(z + o — D)Ul (). (1.44)
The O(a) improved action is then

Srlw, %, U] Zw M, [Uly(y), (1.45)

with the fermion matrix, M, ,[U], defined by

K
Mz.y[U] = Oz, (1 o c‘“"? Z G#VF#V(‘T)>
uv

- "Z[‘Szﬂi,y(l — ) Up (%) + 0p—py (1 + 'Yu)U;I(y)] (1.46)

Csw 1s known as the clover coefficient and is a function of the bare coupling go. It can

be tuned in order to remove O(a) discretisation errors.

1.8 Hadronic correlation functions

The interpolating operator, J(z), for a meson is given by

J(z) = P(x)yuys9 (). (1.47)
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The (zero-momentum) hadronic correlation function for mesons is defined as

Ga(t) = D> (01J(x,t)J%(0,0)]0) (1.48)

v}y x

Introducing a full set of states this becomes

= 3% [ TR0 ARMNREITO00  (149)

{U}x 1

and performing the sum over x

ZZ QT OIRO) (RO (@)|0)e™ (1.50)
{U} i

Eq. 1.50 is a sum of exponentials, one for each state in the channel each with a
different mass M;. The largest mass will decay fastest and the lightest (ground) state
will decay the slowest. In the standard x2-fitting method, only large times, when the

excited states have all decayed away and only the ground state remains are fitted to.

1.9 Why MEM?

The hadronic spectral functions in QCD play a vital role in understanding all the

properties of hadrons and the QCD vacuum structure. For example, consider ete”
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annihilation into hadrons, this can be expressed in terms of the spectral function

corresponding to the correlation function of the QCD electromagnetic current.

Numerical simulations of QCD have so far been very successful at extracting
“static” properties such as hadron masses and decay constants. It is desirable to ex-
tend its powers to the extraction of the hadronic spectral functions. However, there
is much difficulty in accessing the “dynamical” quantities, such as spectral functions,
from the finite set of discrete points in imaginary time generated by the Monte Carlo
simulations. The analytic continuation from imaginary to real time using the limited
and noisy lattice data available is a typical ill-posed problem, where the number of
data points is much smaller than the degrees of freedom to be reconstructed. The
standard method (x2-fitting) is clearly inapplicable here, since many degenerate solu-
tions would be found. This is why the first attempts at extracting spectral functions
relied on fitting to a specific ansitze [16, 17, 18, 19, 20, 21]. There are two major

drawbacks to these previous approaches

e a priori assumptions for the spectral shape prevent the study of the fine struc-

tures contained in it, and

e the result does not remain stable under a change in the number of parameters

used in the specific spectral function ansitze used.

Both of these problems become even more severe at finite temperature where very

little is known about the spectral shape.

The maximum entropy method provides a way to extract the spectral functions

from the lattice correlation data in which Shannon’s information entropy [22| plays
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a vital role. The first application of information entropy to statistical mechanics was
made by Jaynes [23] and to optical image reconstruction by Frieden [24]. Since then
MEM has been applied to many different scientific fields including analysis of quantum
Monte Carlo simulations in condensed matter physics [25, 26, 27, 28, 29, 30, 31] and
image reconstruction for crystallography [32] and astrophysics [33]. In the context
of QCD, MEM uses Bayesian probability theory [34] to make a statistical inference
on the most probable spectral function from a given Monte Carlo data set. A priori
assumptions about the functional form are not made, nevertheless, for any given
lattice data, a unique solution exists. Furthermore, error analysis can be carried out
on the resultant image so the statistical relevance of any feature can be evaluated.
This method opens up a whole host of possibilities for further study beyond the

conventional methods of fitting lattice data.

1.10 Overview of thesis

In chapter 2 the MEM algorithm used throughout this thesis to obtain the images
will be discussed in detail. Chapter 3 presents some results from runs on test data,
showing that the method works for a variety of cases. Also the image quality and
variation will be tested by varying a number of factors including the data quality (i. e.
number of time slices, noise levels and number of configurations). In chapter 4 the
results from a model of QCD are presented, preceded by some basic theory for the
model and the expected forms for the spectral functions. This is the first attempts at
applying MEM to data with dynamical fermions. Chapter 5 presents results obtained
from UKQCD Ny = 2 dynamical data as well as a quenched data set for reference.

This is the first application of MEM beyond the quenched approximation. Finally in
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Chapter 6 a summary of the conclusions from this results presented in this thesis is

given.



Chapter 2

Maximum Entropy Method

In the chapter a detailed discussion on the maximum entropy method (MEM) will be
given. Beginning with the foundation of Bayes’ theorem and going onto a detailed
proof of Bryan’s algorithm [35], the method used for all the results presented in this

thesis.

2.1 Bayes’ Theorem

The theoretical basis for MEM is Bayes’ theorem in probability theory [34]. This

states that

PY|X]P[X]

PLX|Y] = =,

(2.1)

where P[X|Y] is known as the conditional probability of X given Y, i.e. the prob-
ability that event X occurs given that event Y has already happened. P[X] is just

the probability that event X occurs independent of event Y.

Now re-write this in terms of the Monte Carlo lattice data, D, and the spectral

function, f. Included also in the following expression is a hypothesis term, H, which

23
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represents all the a priori knowledge (e.g. f(w > 0) > 0), i.e. the spectral function
for a particle is positive semi-definite and only defined for positive energies). Bayes’

theorem now reads

PIDIfH|[PIf|H]

The terms on the right hand side of Eq. 2.2 are known as:
P[D|fH] - likelihood function
P[f|H] - prior probability
P[D|H] - normalisation (independent of f)
The most probable image will be the f(w) which satisfies
SP[f|DH]
———==0. 2.
L (2.9

2.2 The likelihood function

For a large number of Monte Carlo measurements of a correlation function, the input
data, D is expected to obey the Gaussian distribution law according to the central

limit theorem.

PD|fH] = Zie‘L, (2.4)
L = 3°(Dm) - FR)C3H (D) - Fm), (2.5)



CHAPTER 2. MAXIMUM ENTROPY METHOD 25

where the indices ¢ and j run over the actual time window used in the analysis,
Tmin < 4, j, < T2 (g is the lattice spacing). Define the number of data points used

(for later use)

N, = Imez  Tmin | 4 (2.6)
a 4

D(7;) is the averaged lattice data at time 7

Negg
D(r) = 57— > D"(r), (2.7

where Nz, is the total number of gauge configurations available and D™(7;) is the

data for the m®* configuration. F(7;) is the correlation function data calculated from

fs

F(r) = /0 " K (r,w) f(w)duw, (2.8)

K(7,w) is the lattice kernel,

K(r,w) =e™“". (2.9)

Ci; is the standard N, x N, covariance matrix defined as

Negg

LN (D™(r) - D(R)(D™(r; - D). (2.10)

Cij =
? NCfg(chg - 1)
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For real lattice data it is essential to take account of the off-diagonal elements of

Ci; as correlations between different 7 are generally strong.

2.2.1 Normalisation

Zy is a normalisation factor calculated from the integration of P[D|fH] over D using

the measure [dD] given below.

@n] = ] (2.11)
Z, = (2w;%‘vdetc (2.12)

2.2.2 Comparison to standard x2-fitting

If the prior probability, P[f|H], is constant then maximising P[f|DH] is identical to
maximising P[D|fH]. This corresponds to minimising the likelihood, L, defined in
Eq. 2.4. This is just standard y2-fitting. Generally the number of data points on a
lattice, N;, is O(10) and too get good resolution on sharp features in f the number
of points required is O(10%). Hence x2-fitting alone will not work as there are many
different f’s which will minismise x2. The role of the non-constant prior probability

is essential for MEM to overcome this ill-posed problem.

2.3 The prior probability

The prior probability used is defined as

P[f|Ham] = ElgeaS, (2.13)
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where o and m are auxiliary parameters which will be discussed in more detail later.

S is the Shannon Jaynes entropy.

S = /0 ” [ Flw) = m(w) — f(w)log (Mﬂ du. (2.14)

m(w)

On the lattice the discretised form of this is required

3% [ mi e (£)] o9

=1

« is a real positive parameter and m(w) is a real positive function known as the default
model (sometimes called the prior estimate). a and m are part of the hypothesis,
H, but are now written in explicitly to all terms involving H including the likelihood
even though it is independent of both a and m. At the end of the calculation o will
be integrated out and therefore eliminated from the final result. The default model,
m, remains in the final result, but the sensitivity of the results against a change in m

will be studied 3.2.3.

2.3.1 Discretisation of frequency, w

As seen in Eq. 2.15, then the frequency w is discretised as follows. There are N,

points with equal spacing Aw so f; = f(w;), my = m(w;) and w; = lAw.
2.3.2 Normalisation

Once again there is a normalisation factor, Zg, involved in the definition of the prior

probability (Eq. 2.13). The integration of P[f|Ham] over f using the measure [df]
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(defined below) is normalised to unity.

4f] = Hd—’;i, (2.16)
=1 l
Zs %”) : (2.17)

In Appendix A two derivations for the Shannon-Jaynes entropy are given. Firstly
by using the so-called “monkey argument” (36, 37, 38] and secondly a derivation based

on an axiomatic argument [39)].

2.4 MEM algorithm

There are three steps involved in calculating the image, f(w).

2.4.1 Step 1 - Find the most probable f(w) for a given «

This involves maximising

P[f|IDHam| e?, (2.18)

ZsZy,
Q = aS-L (2.19)

Eq. 2.18 is obtained by combining Egs. 2.2, 2.4 and 2.13 and noting that P(D|H)
is independent of f and is therefore an independent constant. It is easy to see from

Eq. 2.19 that a just plays the role of the relative weight between S (which fits to
m(w)) and L (which fits to D).

The most probable image for a given « is f,, which satisfies the condition
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71091 PP 0 (2.20)

For a detailed description on the algorithm used for solving Eq. 2.20 see Sec. 2.5.

2.4.2 Step 2 - Calculate final image

Once f, has been found the choice for the final result depends on the MEM procedure

being used. The three options are

1. Classical - choose a such that x? = N, [36]
2. Historic - choose the f, which maximises P{a|DHm)] [36]
3. Bryan’s - Perform an average over f and o weighted by P(a|DHm) [35]

If Pla|DHm)] is fairly strongly dependent on « then Bryan’s algorithm is required,

and is used throughout this work.

Using Bryan’s algorithm the final image, fou:, is defined as

Fout = / ] / det ()P f|DHam|Plo|DHm), (2.21)

1

/ dorfa(w) Plo| DHm). (2.22)

The last expression here is obtained by using the assumption that P[f|DHam)] is
sharply peaked around f,(w), which should be satisfied for good data with small

errors. Pla|DHm| can be calculated using Bayes’ theorem
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Pla|DHm] = / a2 [D'fH“mI]f[DI[)flfn‘z]m]P lo|Hm] (2.23)
o 7 (2.24)

o« Pla|Hm]exp [ Zlog + aS(fa) — L(fa)|, (2.25)

where the )\;’s are eigenvalues of a real symmetric matrix defined by

g2

f, (2.26)

aﬁaﬂ'

Choosing prior probability for «

PlajHm] is known as the prior probability for c. There are two rules for choosing
this, either the Laplace rule (P[o|Hm] = const) or Jeffrey’s rule (Pla|Hm] = ) [34].

This choice is arbitrary as long as P[a|DHm)] is concentrated around its maximum &

2.4.3 Step 3 - Error analysis

An advantage of using MEM to construct the image f(w) is that it allows one to
analyse the statistical significance of the peaks found. Since neighbouring points are
heavily correlated, the error needs to be calculated over some interval in w [25]. First

define the unweighted average of f(w) over a region [ in w.

Jldf] [;dwf(w)P[f|[DHam] [ dwfa(w)
Jpdw T

(fa)1 = (2.27)
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where to get the last expression it has been assumed that P[f|DHam)] is strongly

peaked around f,(w).

The variance of (f,); is similarly estimated by

Jldf] [, ; dwéw'é f(w)é f(w') P[f|DHam]

2y —
((0fa)*)r = fledwéw’ (229
e \7!
5 _f[x[dwéw,(Jf(w)df(W’))fzfa (2.29)
- fIxIJwéw’ ’ '

where 6 f(w) = f(w) — fa(w). To get the last expression, the Gaussian approximation
has been made for P[f|DHam)]. As the final output image f,,; is an average over q,

the same is done to find the final value of the variance
(6Fi)')s = [ dol(65o))1Plal DHm) (2.30)

These errors are shown on the plot of the spectral function as an ordinary error
bar cross, but the meaning is slightly different. The horizontal position shows the
central position of the peak, and the extent shows the region I which was averaged
over (chosen to be the full width at half maximum). The vertical position indicates
the average height of the peak (see Eq. 2.27) and the extent shows the variance (see
Eq. 2.30). The way in which these errors are interpreted is as follows. If the variance
of the peak is much smaller than the average height then the peak is a physical feature,

but if it is larger then the peak is considered to be statistically insignificant.

2.4.4 Condition for integrating over o

The range of a over which the averaging is performed is determined using the criterion
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Ple|DHm] > 1% x Pla|DHm). (2.31)

This probability is then renormalised so that

/ daPla|DHm| =1, (2.32)
[o

then the integration in Eq. 2.22 is carried out.

2.5 Maximising ()

This is the most computationally intensive part of the algorithm since the functional
space of f(w), in which the global maximum of @ is found, has typically O(10%)
degrees of freedom. Fortunately Bryan [35] found that, by using a singular value
decomposition (SVD) on the kernel, K, the search space can be restricted to, at
most, the number of data points ~ O(10). In this subsection, the algorithm originally

proposed by Bryan [35] is followed.

2.5.1 Extremum condition

The extremum condition again is

0Q _

57 = 0 (2.33)
: oS oL _
1.e. aa-f:—a—ﬁ = 0. (234)

Using
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F(r,k) = /0 K w) f(w, K)dw (2.35)

where k is the momentum of the channel being studied. Eq. 2.34 can be re-written

as
f[ fiC oL
1 — - s =0. .
aog( z ._ET' KIGF,- 0 (2.36)

2.5.2 SVD of lattice kernel

The explicit form of the SVD is shown below.

KT = uwvT
(un co. UIN, \/wlo 0 \
0 V11 ... UNTl
= : - Do Do ,(2.37)
0 VIN, .-- UN,N,
\uNwl---uNri)\O ... 0 wN,)

where V and U are N, x N; and N, x N, orthogonal matrices respectively (N, is
the number of time slices defined in Eq. 2.6 and N, is the number of points in the
spectral function, f(w)). W is an N, x N, diagonal matrix with diagonal elements
Wii = w;,t =1,..., N;. The w; are conventionally ordered w, > wy > ... > wy,. For
a matrix close to singularity only s < N, diagonal elements will be non-zero. These

are known as the singular values of K [40] and s = rank(K) and this s-dimensional
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space spanned by the first s columns of U will be referred to as the “singular space”

for convenience.

2.5.3 Bryan’s algorithm

The solution to Eq. 2.36 can be represented in terms of a new variable u where

log (£) = KTu. From

_ OFAL(F,D) _  rIL(F,D)

V=5 oF

(2.38)

it is obvious that VL lies in the singular space of K and thus the problem can be

reduced into s-dimensions. So

fi=miexp ) Vigus. (2.39)

t=1

Now writing VS in terms of Vu and then using the fact that the columns of V

are orthonormal Eq. 2.36 becomes

OL(F,D)
— — T————’
aVu VWU 5F (2.40)
F
~
—aqu = WUT?—L—(F—’Qz =WUTC;' (Kf -D) =g. (2.41)
OF 7 ——
dL(F, D)

OF
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2.5.4 Newton search for solution

35

To solve Eq. 2.41 by fixed-point iteration (i.e. starting with a trial u, calculating g

and then calculating an improved u via u = &) will not work since the convergence

criterion 1s Iau lla.rgest singular value <a.

However a Newton search method can be used to solve Eq. 2.41. The increment

at each iteration is given by

Jou=—-au-g,

where J is the Jacobian of the system and is given by

_ og

J = al+ o
dg _ T —15_Fﬁ
ou WU Gy of ou’

and by the chain rule

of :
P diag{f}V.

So

g _ )
= = WUTC;' UWVTdiag{f}V = MT,

Ju
OF

o K

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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where the s x s matrices M and T are defined as

M = WUTC;'UW (2.47)

T = VTdiag{f}V. (2.48)

The equation to solve is now in the form

(ol + MT)bu = —ou — g. (2.49)

To get Eq. 2.49 a second order approximation has been used in the Newton search.
To ensure that this approximation remains true, the size of the increment du needs
to be restricted. This is achieved by augmenting J with multiples of the identity

matrix [41]

(a4 p)I + MT)éu = —ou — g, (2.50)

where p, known as a Marquardt-Levenburg parameter, is chosen such that juZTéu <
O(>_f) (i.e. the increment size du is small enough to guarantee that the lowest order

approximation in the Newton search method is valid).

2.5.5 Diagonalising Eq. 2.50

The search for du can be optimised by diagonalising Eq. 2.50 so that only O(s)
operations are required for each « - u pair tried rather than O(s®). This is done by

first diagonalising T' by solving the eigenvalue problem
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TP = P=E,

where Z = diag{¢} and PTP = I. Next define B

B = diag{€"/*}PT M Pdiag{£'/?},

and solve the further eigenproblem

BR = RA,

where A = diag{)\} and RTR = I. Next define the following quantity

Y = Pdiag{¢"'/?}R,

and note that the following relationships hold

T = YTy~

A = Y'MY T

The diagonalised form of Eq. 2.50 is

((a+p)+AY u=—a¥Y 'u-Y g

37

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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This gives s independent equations for the components of Y ~!'du and the step

length is now given by

§uTTéu = §u”Y-TY 'gu = |Y "'éu’ (2.58)

2.5.6 Getting du from Y15u

Often, in practice, f has a high dynamic range. In our case f is a mesonic spectral
function, and is therefore likely to have a high peak for the ground state. In such a
situation, T (defined in Eq. 2.48) may be close to singular, which means that some
of the £ calculated in Eq. 2.51 are effectively zero. In such cases merely multiplying
the answer for Y~'du by Y would lead to a numerical instability as Y contains a
¢=1/2 term. The solution to this problem is to notice that a simple rearrangement of

Eq. 2.50 gives

(a+p)bu = —au—g— MTéu

= —au-—g— MY T[Y~'6u] (2.59)

2.5.7 How to deal with small/negative £’s

When there are very small (or even negative) values for £ they should be considered
to be zero. In such a situation the matrix of eigenvectors from 7', P should be

partitioned into 2 parts. One part for those associated with the zero £&’s (the null
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space, designated with a subscript 0) and another part for those associated with the

non-zero &’s (the non-null space, designated with a subscript 1). i.e.

T = PEPT
5 0 PT
_(pl p0)<0 0)(}3{ . (2.60)

P is partitioned in this way (opposite to that given in Bryan [35]) since the

eigenvalues are organised largest to smallest by the eigenvalue subroutine used [41].

Now multiplying Eq. 2.50 on the left by PT, writing p = PTu and using Eq. 2.60

to partition gives.

This gives two equations, Eq. 2.62 for ép; which is of the same form as Eq. 2.50

and Eq. 2.63 into which the answer for dp; is substituted to obtain the answer for

6p0.
(a+ p)ép, + PPMP,Z,6p; = —ap, — Plg (2.62)

(a+ p)épo + Py MP,E16p1 = —apo — P g (2.63)

Calculating the right hand side of these two equations can be done in one step

since there is no mixing between the null and non-null space.



CHAPTER 2. MAXIMUM ENTROPY METHOD 40

—ap — PTg = P(~au~g) = ( b ) (—ou-—g)

Py

_ [ Pf(-ou-g)
Py (-ou—g)
—apo — P'g

For similar reasons the product of P'MP can also be calculated in one step to

give both PTMP; and PTMP,

PTMP = (i?)(M)(PI Po)

= (?:)(MPI MPO)

0

PFMP, PTMP,
= : (2.65)
PfMP, PIMP,
2.5.8 Diagonalising Eq. 2.62
This follows a very similar procedure to that used in Sec. 2.5.5.
Firstly, diagonalise the matrix 7" as in Eq. 2.51 and define B as
B = diag{|€*/?|} PT M Pdiag{|€*/?|}. (2.66)

Diagonalise B only in the non-null space
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BlRl - R1A1. (267)

Now define Y as

Y: = diag{¢7/*1 Ry, (2.68)

this differs from Eq. 2.54 by a factor of P since éu has already been multiplied by

this. Once again note the relationships

g = Tyt (2.69)

A = YO'PTMPYT (2.70)

Hence the diagonal form of Eq. 2.62 is

(o + w)I + A)Y;p; = —aY; 'p; — Y 1 PTg. (2.71)

Once again the same trick is used to get from Y;"'ép; to ép;

(e + p)dp1 = —ap1 — Pl'g — PTMP, Y, T[Y] 'dp1). (2.72)

The answer for dpy is obtained by substituting dp; into Eq. 2.63 and du is then

constructed by left multiplying by P.
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2.6 Uniqueness of the solution in MEM

In order to prove the uniqueness of the MEM solution, the following proposition must
be proved
Proposition:
Consider a real smooth function F' with n real variables, F(z1,...,z,) € R with
(21,...,2,) € R*. Suppose that for any y; € R
n
> yi%yj <0, (2.73)

i,j=1
then the function F' only has one maximum if it exists, i.e. the solution of

OF _

g =0 (=1...n) (2.74)

is unique if it exists.
Proof:
Assume that there are at least two solutions for Eq. 2.74. Use any two solutions,

71 and T, to define an interpolation

2(t) =21+ U(Z2— 1) =71+, (2.75)

and G(t) = F(Z(t)). Using the assumption that dG(t)/dt is continuous, differentiable

in [0,1] and satisfies
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dG

Gl _,_ %
dt |,

dt

=0, (2.76)
t=1

Rolle’s theorem states that there exists at least one ¢ € [0, 1] such that

2 n 2
d*G(t Zy o°F

dt2 > ¥ uzr; y; = 0. (2.77)

=7 (1)

Comparing Eqs. 2.73 and 2.77 there is a contradiction, hence there cannot be two or
more solutions to Eq. 2.74. So if there is a solution then it is the global maximum of

F

Now apply this to the search for the global maximum of = &S — L to prove its
uniqueness. For an arbitrary N, ,—dimensional non-zero real vector 7 = (z15---,2N,),

aS satisfies (see Eq. 2.15)

N, N,
« (aS) o 22

oS A <o, 2.78

,,,,Z 3fdf a; i (2.78)

where we have used 0 < f; < 0o and 0 < a < oo. Importantly, notice that the left
hand side of Eq. 2.78 never becomes zero. From the definition of the likelihood L in

Eq. 2.4

w N-r =2 Nw
Ze _
Z - <+ <0, with z = Kz 2.79
2 BT =5 < 2 Kuz (279)

L=
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The left hand side of Eq. 2.79 is zero in the direction z; = 0(i = 1,...,N;), of
which there are many since the rank of K is at most V,, much smaller than the N, -
dimension of z;. Thus —L has many flat directions and there is no unique maximum
for —L as a function of f;. However, considering both Eqs. 2.78 and 2.79 together,

the maximum for @) is unique, if it exists, due to the proposition just proved.



Chapter 3

Testing the Maximum Entropy
Method

In this chapter the ability of the MEM algorithm to reproduce the correct image, and
the dependence it has on the quality of the input data, will be analysed. This will

involve two sets of input spectral functions:

1. Delta function

2. QCD-like spectral function

The covariance matrix, C;;, will, for simplicity, be assumed to be diagonal. It is
important to remember that the off-diagonal elements of C;; play an important role

when analysing real lattice QCD data.

The assumptions made in the derivation of the MEM algorithm, i.e. the depen-
dence on the default model (§ 3.2.3) and prior probability for a (§ 3.2.4) will be
tested. The output image will be analysed and quantities such as the mass and width

of the peaks will be extracted.

45
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3.1 Test data generation

3.1.1 Delta function

Outlined below is the manner in which the test data, based on a delta-function-like
spectral function, was generated. The aim of this data is to model correlators, D(7),

consisting of a discrete set of states, which can be expressed as

Nstates 7.
D(r) = ﬁjl—,e—Mfﬂ‘ (3.1)
g=1 "~

where 7; = {0,1,..., N;}. Two cases will be considered (i) a single pole at M; = 0.5

and (ii) double poles at M; = 0.5 and M, = 1.0.

1. In each case random noise is generated on all input Z; and M; giving N, copies

of Zi and Mi.
2. These are then used to calculate D (1) from Eq. 3.1 for k = 1,..., Neg.

3. The central value is then calculated as

chg

Din(r) =) Dh(n) (3.2)
k=1

Note: Standard x2-fitting should work almost perfectly for this style of data,
so the results obtained for Z and M will be compared against those obtained from
standard exponential fits. Analysis will also be performed on the width of the peak

to test whether the width in this case is purely statistical as expected.
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3.1.2 QCD-like data

The second set of data was generated using the procedure outlined below.

1. Starting with an input image fi,(w) = w?pin(w). (The factor of w? is expected
from the dimension of mesonic operators). Test data is then calculated from

this spectral function via

Wmax

Di(1) = i K(7i,w) fin(w)dw, (3.3)

where the lattice kernel is defined as

K(r,w) =e™¥m (3.4)

and wpax is taken to be large enough so that pi,(w) does not show appreciable

variation. The detailed form for p;,(w) will be given in Eq. 3.7.

2. Gaussian noise with variance o(7;) (defined below) is then added to each Dj,(7;)
to create the test data.
Ti

0'(7'1') =bx Din(Ti) X A_T, (35)

where the dependence on 7; is introduced in order to incorporate the fact that

the error in lattice correlation functions increases with 7.
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3. Since this data is generated with an input image f;,, we can compare directly
the output image, fo, with this. To give a numerical accuracy on f,,; we define

@, ,2»

a “x*” between input and output images

r= / O ot () — ()P (3.6)

As in [42] the input spectral function used, p;,(w), is from the vector channel of

the ete~ annihilation and is defined as follows:

2 r'ym, 1 Qg 1
pin(w) = T F, (w? —m2)? + I'2m2 + 8T (1 + ?) 1+ e(w°‘”)/5] ’ (37)

where F), is the residue of the p meson resonance defined by

(0ldvuulp) = V2F,mye, = \/-Q_mef,e# (3.8)

with the polarisation vector €,. I'; includes a ¢ function which represents the threshold

of p — 7w decay

The empirical values of the parameters are
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m, = 0.77 GeV, m, =0.14 GeV,
Gorn = 545, Qg = 03, (310)

wo = 1.3GeV, 6=02GeV,

where for simplicity o, has been assumed to be independent of w.
The default model, m, used throughout these tests is taken to be of the form
m(w) = mow? which is motivated by the asymptotic behaviour of fi,(w). my is taken

to be the value obtained from the large w limit

) 21 as\
lim pin(w) = o= (1+ ?) = 0.277. (3.11)

w—00

The frequency space is discretised with wmax = 6.0, N, = 600 and therefore Aw =
0.01.

3.2 The tests

3.2.1 Simple pole analysis

# configs Mass (1-exp) Mass (MEM)

100 0.504(2) 0.501(4)
150 0.507(2) 0.503(3)
200 0.508(2) 0.506(3)
250 0.509(2) 0.506(3)
300 0.508(2) 0.505(2)

Table 3.1: Comparison of MEM with single-exponential fit to data generated with a
simple pole at M; = 0.5 for increasing number of configurations
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In this section the delta function data will be used to assess MEM’s ability to
find simple poles in noisy correlation function data. It will be compared directly with
single- and multi-exponential fits, which work extremely well on data of this kind.
Table 3.1 compares the results obtained from single-exponential and MEM fits to
data generated with a simple pole at M=0.5. The double pole comparison with a
two-exponential fit is tabulated in Table 3.2. The value obtained for the masses from

the two methods agrees within errors

# configs Mass 1 (2-exp) Mass 1 (MEM) Mass 2 (2-exp) Mass 2 (MEM)

100 0.491(1) 0.510(4) 1.003(12) 1.003(6)
150 0.491(1) 0.504(6) 0.998(10) 1.003(5)
200 0.492(1) 0.497(4) 1.001(9) 1.002(5)
250 0.491(1) 0.496(2) 1.000(8) 1.001(4)
300 0.491(1) 0.495(3) 1.003(8) 1.001(3)

Table 3.2: Comparison of MEM with two-exponential fit to data generated with
simple poles at M; = 0.5 and M, = 1.0 for increasing number of configurations

3.2.2 Input data quality

The quality of the input data will be altered in two ways. Firstly the number of
time slices generated which increases the number of input data used to reconstruct
the spectral function. And secondly the noise level will be altered. This is the same
as a change in the number of configurations, smaller noise levels equates to more

configurations.

Fig. 3.1 shows the dependence of the output spectral function on the quality of
the input data for the QCD-like data. As expected increasing N, and decreasing the
noise both result in an improved image, but the most drastic improvements occur

when the noise is decreased.
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Tli|ili]ilr

r=0.000731 r=0.000695 — r=0.000532

r=0.000961 — r=0.000803 - r=0.000274

b=0. b=0.01 b=0.001

Figure 3.1: Input (black) and output (red) spectral function (A<%)) compared for
different N7 and noise level (b). r (defined in Eq. 3.6) is a measure of how close the
two are,

3.2.3 Changing the default model

For these tests the QCDHike data will be used as it demonstrates most clearly the
consequences of choosing the default model form badly. The functional form of the
default model used in this analysis is m(cj) = m0u2 motivated by the asymptotic
form for pin(to).

Fig. 3.2 shows the output image obtained for 5 different values of the default model
parameter, no- It is clear that the choosing the correct default model is important
for the high energy regime, whereas the ground state peak is relatively stable under
a change of default model. MEM attempts to set lim”"e.o p(u) = ra() while keeping
the total area under the spectral function constant. The result of this is that the
continuum exhibits a ringing behaviour.
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0.12 0.12

0.09 m,, = 0.02 0.09 in., = 0.03
0.06 0.15 0.06
0.03 0.12 0.03
J—i—10.09 m, =0.0277
5 6
0.15 1 i 0.06 0.15
0.12 0.03 0.12
0.09 mn= 0.024 0.09 m =0.033
0.06 0.06

[i
5 6

Figure 3.2: Input (black) and output (red) spectral function (p(u)) compared for
different values of the default model parameter m0. The blue horizontal line drawn
is p(cj) = mo-

3.2.4 Changing the prior probability for a

Next the effects on the spectral function obtained when the prior probability for « is
altered is studied. Two different forms for this probability can be used, Jeffrey’s and
Laplace (see § 2.4.2). Fig. 3.3 shows the comparison using these 2 definitions for the
QCDHike test data. Even though the probability density is quite different (see inset
graph) the resultant spectral function barely changes, in fact the 2 lie on top of each
other and are indistinguishable by eye, using Eq. 3.6 to get a numerical value on the
difference, r = 2 x 10-'. Thus the two images are almost identical making the choice
of prior probability unimportant.

3.2.5 Spectral width

In this test the width of the peak obtained from the delta function data will be
analysed for an increasing number of configurations. Since a delta function has zero
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0.15

PlalHm]=1/a (Jeffrey’s)
—  P[a|]Hm]=const (Laplace)

60.6

o, 0.4

0.2
0.09

3 120 160

0.06

0.03

®

Figure 33: Input (black) and output using Jeffrey’s (red) and the Laplace (blue)
prior for P/a\Hm\. Inset is the probability density used in the weighted average in
each case

width an extrapolation to an infinite number of configurations will be performed to
test whether the width is purely statistical. Fig. 3.4 is a plot of this extrapolation,
the result of which is consistent with zero although the errors are large.

3.3 Summary

The following conclusions have been drawn from the tests performed on the MEM
algorithm:

* MEM can find simple poles and the mass agrees within errors with standard
single-exponential fits.

* Improving the quality of the data, both Ngg and NT; results in better a quality
image.
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0.0084
O  Width of peak

o Intercept
— Linear fit

0.0063
3 00042

0.0021

0 0.005 0.01 0.015

Figure 34: Extrapolation of the width in delta function data to an infinite number
of configurations.

* Selecting the correct default model is important, any a priori knowledge about
the model can and should be input here.

* FEither form given here for the P/a\Dm] can be used with very little effect on
the output image.

* When fitting to a simple pole, an extrapolation to infinite M agrees with zero,
so the width seen is presumably due to the noisy data.



Chapter 4

Modelling QCD: The Four-Fermion
Interaction

Due to the incredible complexity of QCD !, studies of the finite temperature transition
have been unable to yield quantitative claims for the universality class of the two
light quark flavour transition. This is unfortunate since it is believed that the high
temperature QCD phase transition has a number of interesting features [45, 46]. In
addition to this, only very slow progress has been made in lattice simulations at
finite chemical potential [47]. It is therefore advantageous to approach the problem
of chiral symmetry restoration at finite temperature and density by using a “toy”
model. Such studies should give a better understanding of the factors which might
play a crucial role in the more complex gauge theory systems. In order to produce high
quality data and study a large range of parameters this model has been simplified
as much as possible. This model is interesting on its own, since it is non-trivial,

non-asymptotically free and strongly interacting.

The four-fermion model appears frequently in physics. It was introduced as a

model of B-decay [48] by Fermi. Bardeen et al. used it in condensed matter physics

INote that there has been some very recent progress in this area [43, 44]
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to model superconductivity [49]. Nambu and Jona-Lasinio applied many of the ideas
in the BCS model of superconductivity to particle physics [50]. In particular, they
proposed the four-fermion interaction could be used to explain the smallness of the
pion mass, why the nucleon is so heavy and also to construct the meson as a particle-
anti-particle bound state of some “originally massless fermions”. In spite of the fact
that it lacks confinement, the Nambu-Jona-Lasinio (NJL) model is believed to be an
effective theory of quarks and gluons at intermediate energies [51, 52|, i.e. between
the asymptotic freedom and confinement regions, and it successfully describes cer-
tain aspects of hadron structure [53]. Four-fermion theories have appeared in recent
discussions of dynamical mass generation in the Standard model, in such scenarios
as walking technicolor [54, 55] and the top mode standard model, in which the Higgs

scalar is a t¢ bound state [56, 57].

The NJL model is a trivial theory in four-dimensions [58], i.e. the renormalised
coupling goes to zero in the continuum limit, hence it becomes an effective field theory
only for scales < A =~ 1GeV, the UV scale. The low temperature regime is dominated
by the lightest particles. If the restoration temperature is of the order of 100MeV,
then the contribution of heavier particles like p mesons is exponentially suppressed.
In that sense, the universal properties of chiral symmetry restoration in QCD could

well be described by an effective theory like the NJL model [59, 60].

So why not simplify the model down to two-dimensions? In this case there are
conceptual difficulties, e.g. in the Z, case the symmetry restoration is now dominated
by the materialisation of kink-anti-kink states [61], which are composites of the fun-
damental fermion fields. At any non-zero temperature and for any finite number of

fermion species Ny the chiral symmetry is restored due to the condensation of the
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kinks [62, 63].

In three-dimensions, the four-fermion model is non-renormalisable in a “weak cou-
pling expansion”, but becomes renormalisable in the 1/Ny expansion [64]. Therefore,
many quantities such as the fermion mass, composite particle masses and propaga-
tors, etc. can be calculated analytically. The basis of the 1/N; expansion is the fact
that the partition function of models like the four-fermion model can be expressed in

the generic form [64],
-1
7 = /[da] exp [TNfSeff[U]:I , (4.1)

by integrating out the fermions. The factor N in the exponential allows a saddle
point approximation for the large Ny limit. The factor 1/A also permits the same
type of approximation since % is small. The expansion based on # is known as the
“loop approximation”. The counting of the order is different in these two expansions
since the factor Ny can arise from different sources than the factor 1/#. For example,
while a factor Ny can arise from a sum over flavours, the propagator contributes no
factors of Ny. In fact, Feynman diagrams of the same order in 1/Ny can include
diagrams of higher (up to infinite) order in 7. In this regard, the 1/Ny approximation

is deemed to be a non-perturbative expansion in #.

4.1 Essential properties

In this section, the essential properties of the three-dimensional four-fermion model
(sometimes referred to as the Gross Neveu model (GNM3)) will be reviewed. The

Lagrangian of the model is
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L= Pi(@+mg)h; — %\% [(@ai)® — (Pivshi)?] (4.2)

where the index 7 runs over Ny fermion species. The problems in defining the vy
matrices and Dirac spinors in 2 + 1 dimensions are overcome by using the method
given in [64]. 1 and v are taken to be four component spinors. The usual properties

of the v matrices still hold. m, is the bare fermion mass.

To simplify both numerical and analytical work in this model scalar, o, and pseu-

doscalar, 7, auxiliary fields are introduced, so Eq. 4.2 becomes

L= Gi(@+my + o) — %@(02 +72), (4.3)

An identical generating function to that derived from the original Lagrangian can
be recovered by a Gaussian integration over the auxiliary fields. At tree level the field
o is truly auxiliary, i.e. it has no dynamics. However, it acquires dynamical content
from quantum effects arising from integrating out the fermions. Chiral symmetry
breaking (g > g¢2), in the chiral limit m, — 0, is now signalled by a non-vanishing
expectation value, ¥ = (o), for the scalar field. ¥ serves as a convenient order
parameter for the theory’s critical point. From Eq. 4.3 it follows that the fermion

gets a dynamically generated mass of M ~ X.

This Lagrangian has a U(1) chiral symmetry, although by setting the 7 fields to zero

it becomes Z,.
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U1) : b — exp GGays)ys 5 ¥ — s exp (ioys), (4.4)

Zy © i =i 5 i o =i (4.5)

This symmetry is spontaneously broken whenever a non-vanishing condensate

(7)) is generated.
In three spacetime dimensions the following properties hold:

e For sufficiently strong coupling g2 the model exhibits dynamical chiral symmetry

breaking at zero temperature and density [64, 65].

e The spectrum of excitations contains both baryons and mesons, i.e. the elemen-

tary fermions and composite fermion—anti-fermion states.
e For 2 < d < 4 the model has an interacting continuum limit [64, 65].

e When formulated on the lattice, the model has real Euclidean action even for
chemical potential u # 0 [66], and hence can be simulated by standard Monte

Carlo techniques.

This model is a useful toy model for understanding the behaviour of strongly
interacting matter at high temperature and density since it displays much of the

essential physics except for colour confinement.
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(a) (b)

Figure 4.1: Leading order diagrams in Gross-Neveu model.

4.2 Mean field analysis at zero temperature and
density

By taking the Ny — oo limit, fluctuations around the saddle point solution are
suppressed, this is equivalent to a mean field theory (MFT) treatment. ¥ can be
calculated using an expansion in inverse powers of Ny which associates a factor of Ny
with each closed fermion loop and, in effect, 1/ \/Ff with each fermion scalar inter-
action vertex. To leading order, in the chiral limit m, — 0, only the tadpole diagram

(see Fig. 4.1(a)) contributes to ¥, leading to the self-consistent Gap Equation [64]:

Yy 1
= /ptr———w_‘_ =, (46)

or, with a simple UV momentum-cutoff A we find a non-trivial solution ¥ # 0, which

breaks chiral symmetry if

1 1 2A
g g m

Note that ¥ — 0 as g2 — g2.
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To the same leading order there is a correction to the scalar propagator (equal
to g2/N; at tree level) from the bubble diagram (see Fig. 4.1(b)). Remarkably, the
linear divergence in this diagram is cancelled by the divergence in the definition of
g%, leading to a closed-form expression which is finite when expressed in terms of :

Dy(k) = — 2V (48)

Nf (k2 + 452) tan™! (%)

For the 7 field in the U(1) model a similar expression is obtained, but with (k2 +4%2)

in the denominator replaced by k2. In the IR limit,

. 1 ) 1
lim D, (k) o Pz lim Dy (k) o =k (4.9)

and hence o resembles a fundamental boson with mass m = 23. Therefore the scalar
is a weakly bound fermion-anti-fermion composite, whereas the 7 is a Goldstone

mode. In the UV limit, we have

k:l-l-)r{olo Da’ﬂ-(k) (0.8 \/_k_2 (410)

Thus the UV asymptotic behaviour is harder than that of a fundamental scalar (1/k2),
but still softer than the 1/k° corresponding to a non-propagating auxiliary field. This
is down to the strong interaction between the fermion and the anti-fermion, since it
causes diagrams corresponding to higher order corrections to be less divergent than

expected by naive power counting.
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The transition between chirally symmetric and broken phases at g> = g2 defines
a UV fixed point of the renormalisation group. It is characterised by non-Gaussian

values for the critical exponents [65]:

The exponents obey certain consistency checks known as scaling and hyperscaling

relations:
1
y=v2-mn) ; B=zv(d-2+n) (4.12)

To derive these values in statistical physics [67], it is assumed that there is a single
length scale, the correlation length, £, characterising all the important physics. With
¢ ~ A/%, this is precisely the statement of renormalisability [65]. Corrections to
these values are O(1/Ny) and calculable [65]. Indeed they are currently known to
o1 /Nf) (68, 69, 70, 71], and when extrapolated to small values of Ny are supported
by Monte Carlo estimates [72]. The continuum limit g> — g2 may be taken in either

phase.

The deviation of the critical indices from the Gaussian model is related to the
anomalous dimensions of the various composite fields in the model [65]. The univer-
sality class of the four-fermion model is not the standard, short range Ising model,
but a Landau theory with long range forces [73, 74] and a specific value of the range
parameter R = d — 2. These long ranges forces appear due to the existence of mass-

less fermions that accompany the transition. However, they are not the only reason
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for the differences seen in the four-fermion and Ising model critical exponents. The
relationship between fermionic and scalar o-models is more intricate and goes beyond
naive universality arguments. Unlike scalar models with long range forces, where R is
an external parameter, in the Gross-Neveu model R is generated dynamically by the
fermions [73, 74]. Thus, the Ny — oo limit of the Gross-Neveu model corresponds to a
generalised Landau theory and the exponents of Eq. 4.11 replace the standard MFT
ones. Another feature of these long range forces is that different N; also produce

different universality classes which are not related to the symmetry group.

4.3 Simulations

The semi-bosonized GNMj; with U(1) chiral symmetry used for the fermionic part of

the lattice action is given by [75, 76|

Ster = Xi(2)Mijzyx;(y)

Ny
= Z Xi () Mayxi(y)

where x; and ¥; are Grassmann-valued staggered fermion fields defined on the lattice
sites, the auxiliary fields ¢ and 7 are defined on the dual lattice sites, and the symbol
(Z,z) denotes the set of 8 dual lattice sites Z surrounding the direct lattice site z.

The fermion kinetic operator M is given by

1
Mgy = 5 Z v (z) [5y.z+a“/ - ‘sy,m—ﬁ] + Mgy, (4.14)
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where 7, (z) are the Kawamoto-Smit phases (—1)%*+%-1 and the symbol €¢(z) de-
notes the alternating phase (—1)%*+#1+22, The auxiliary fields o and 7 are weighted

in the path integral by an additional factor corresponding to
Sue = 2L S [0%(&) + 72(3). (4.15)
22 p

The simulations were performed using a standard hybrid Monte Carlo algorithm
without even/odd partioning, implying that simulation of N staggered fermions de-
scribes Ny = 4N continuum species [75, 76]; the full symmetry of the lattice model in
the continuum limit, however, is U(N¢/2)y ® U(N¢/2)y ®U(1) rather than U(Ny)v ®
U(1). At non-zero lattice spacing the symmetry group is smaller: U(N;/4)y ®
U(Ns/4)y ® U(1). In the Zy-symmetric model the 7 fields are switched off and
M becomes real. In this case N staggered fermions describe Ny = 2N continuum
species. Further details of the algorithm and the optimisation of its performance can

be found in [65, 75, 76].

Using point sources we calculated the zero momentum fermion (f) correlator at
different values of the coupling 8 = 1/¢%. In order to compare MEM to conventional
spectroscopy we also estimated the fermion mass using a simple pole fit using the

function

Cy(t) = Af[e™Mrt — (—1)te"Mr(Let)], (4.16)
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Similarly, the zero momentum auxiliary 7 correlator was measured and its mass

estimated using a cosh fit. The mesonic correlators are given by:

Cu(t) = Z ®(x1)® (x2) Wt (%) G(x, 5 x1,0)GT(x, 1; X3, 0), (4.17)

X,X1,X2

where Wy(x) is a staggered fermion phase factor which picks out a channel with
particular symmetry properties i.e. Wjs(x) = €(z) for the S channel and Wy (x) =1
for the PS channel. The function ®(x) is either a point source dy (o,9) or a staggered
fermion wall source E o/2-1 Ox,(2m,2n) [77]. In all the simulations we used point sinks.

m,n=0

These correlators were fitted to a function Cy(t) given by

Ch(t) = Ale™ Mt 4 e=Mu(Le=0] 4 J(—1)te=Mmt 4. e=Mu(Le=t)], (4.18)

Note that composite operators made from staggered fermion fields project onto
more than one set of continuum quantum numbers. The first square bracket represents
the “direct” signal with mass M), and the second an “alternating” signal with mass
M);. Continuum quantum numbers for various mesonic channels are given in [78] -
in this study we focus on the PSgi e channel, with J® = 0~. Although expected
to be the tightest bound meson since it is the only one for which s-wave binding is
available, as stressed in [75, 76, 78] this state does not project onto the Goldstone

mode in the broken phase.
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Symmetry Ny Volume B mg  Configs
U(1) 4 32x32x48 0.55 0.005 22,600

U(1) 4 32x32x48 0.55 0.01 38,000
U(1) 4 32x32x48 0.55 0.02 43,000
U(1) 4 32x32x48 0.55 0.03 20,000
U(1) 4 32x32x48 0.55 0.045 19,300
U(1) 4 32x32x48 0.55 0.06 5,200
U(1) 4 32x32x48 0.65 0.01 60,000
U(1) 4 32x32x48 0.65 0.02 75,000
U(l) 36 24x24x32 055 0.01 6,500
U(1) 36 24x24x32 0.55 0.02 25,300
U(1) 36 24x24x32 0.55 0.03 10,900

Table 4.1: Broken phase data sets
4.3.1 Data sets

Tables 4.1-4.3 give the parameters for each of the data sets generated. They are split
into three groups, firstly the broken phase pion, fermion and pseudoscalar (Table 4.1).
Secondly the symmetric phase (Table 4.2), and finally the sigma in the broken phase
(Table 4.3).

4.4 Theoretical spectral function form

4.4.1 Broken phase 7, f and PS channels

In the broken phase, the 7, f and PS are all expected to be simple poles. If J couples
to a stable (i.e. zero width) bound state of mass M and strength A (i.e. (0|J |?, M) =
A), then p(w) = (JA|*/2M)é(w — M) (i.e. a delta function at M). Where p(w) is now

used as the spectral function previously defined as f(w) in Chapter 2.

It is readily checked that the combination p(w)/w?? is dimensionless for mesons
in d-dimensions. This motivates the use of the default model mgy(w) x w for GNM3.

This corresponds to the propagation of free massless fermions. For an asymptotically
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Symmetry Ny Volume B Configs

Zs 4 16x16x48 1.0 215,100
Z 4 24x24x24 1.0 121,500
Zs 4 24x24x48 1.0 74,300
Z 4 32x32x48 0.92 41,200
Z 4 32x32x48 1.0 50,000
Z 4 32x32x48 1.25 39,000
Z, 4 48x48x48 1.0 28,100
U(1) 4 32x32x32 1.0 31,000
U(1) 4 32x32x32 1.25 56,000
Zs 36 24x24x32 1.125 22,200
Zs 36 24x24x32 1.25 26,800

Table 4.2: Symmetric phase data sets

Symmetry Ny Volume B  mpy  Configs
Q) 4 32x32x24 0.65 001 1,741,600

U(1) 4 32x32x24 0.65 0.04 437,900
U(1) 4 24x24x24 0.70 0.01 1,000,000
U(1) 4 24x24x24 0.70 0.04 480,300
Zs 4 24x24x24 0.65 0.00 1,100,000
7y 4 24x24x24 0.70 0.00 1,062,100

Table 4.3: Sigma data sets
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free theory such as QCD, lim, o p(w) = mp(w) is expected (e.g. see Fig. 3.1). In
GNM3;, however, this is not a constraint due to the UV behaviour being described by

a renormalisation group fixed point with non-vanishing interaction strength [64, 65].

4.4.2 Symmetric phase

In the symmetric phase the momentum space propagator for the scalar channel in
the large- Ny limit is
d—2

Dy (k?) ( \/1}3)5-2 =3 (4.19)

where 2 < d < 4 and p is a dimensionful scale which increases as (g2 — g"’)ch—2 (i.e. as

an inverse correlation length). In three dimensions this implies

®  coskt *© w
Dy (t dk = dw———e™", 4.20
a()ow/0 P M/O WoE e (4.20)

hence the large-Ny prediction for the symmetric phase spectral function is

pw
w2+ p?

po(w) o (4.21)

So in the asymptotic regime lim,_,00p (w) ox w™! rather than the form of the default

model mg(w) x w.

At smaller scales we interpret p as describing a resonance whose central position
and width are both O(u) and therefore increase as the coupling is reduced. In the IR

limit lim,_, po (w)/w o constant.
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Figure 4.2: Contribution of 27 intermediate state to o correlator.

4.4.3 Broken phase sigma

One of the major points of interest in using MEM on this model is the possibility of
o decay in the chirally broken phase. The ¢ is expected to be a weakly bound state

of mass M, <

~J

2M; (where Mj is the physical fermion mass), whereas, for the case of
a continuous chiral symmetry, the pion mass m, may be much smaller. If 2m, < M,
then the decay o — 27 is allowed, and hence a feature should appear in the o spectral
function around the two pion threshold (defined below)

Fig. 4.2 shows diagrammatically the effects of the two pion intermediate state to

the o correlator. To leading order in 1/Ny the o propagator taken from [65] is

1_(4m)t My
922 - 5) (R +4MPF(1,2- 5 —54p)

Da(k2) =

(4.22)

where for momenta k < My the hypergeometric function, F, in the denominator may
be approximated by F' =~ 1. When the bare fermion mass m > 0, a similar expression
for the pion propagator Dy is assumed, with (k* + 4M7) replaced by (k* 4+ m,). The
vertex ['y.r is assumed to arise from a single fermion loop, as shown in Fig. 4.2 If

chiral symmetry is unbroken it is identically zero. It can be shown, using the bare

vertex —g/+/ Ny, that
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(4.23)

where G, is a dimensionless d-dependent constant.

Now calculate D, in three dimensions including the effects of the two pion inter-

mediate state.

DI < M) = 5
o f/ =

47!'Mf Nf \/EE 2m1l’

2 A3 2
k? +4M7 — Corr 2/ tan™! (‘/k_)] : (4.24)

So in addition to the pole at k% = —4M?, there is now a contribution at O(1/Ny) to
f f

the timeslice correlation function given by

G2 M3 dk eikt k
(1) —em E_— __tan! 4.2
Co(t) o N; / om k(K2 + 4DM2)E (2m,,> ’ (4.25)

The two pion threshold manifests itself via a branch cut in the inverse tangent from
k?* = —4m?2 to Zico. Taking the earlier approximate of £ < M7 and integrating

around the cut in the upper half plane, the following expression is obtained

G? ® dw
CH(t) ox ——2mr / —e vt 4.26
( ) 32Nfo ome W ( )

from where it can be seen that

G? 1
(1) o —Z2m™_ ~0(yy — 2m,,). 4.27
o x 32Nfow (w m ) ( )
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So the decay o — 27 would produce a spectral feature at w = 2m, whose strength
scales as (NyMym,)~'. In principle this is testable by varying the simulation param-
eters N¢, g°> and m, but on finite volumes, it will prove difficult to study the detailed

form.

4.5 Results

The results will be split into the same three groups mentioned above. First the
broken phase (8 < 8, =~ 1.0) w, fermion and PS channels, all of which are expected
to be simple poles/stable particles. Secondly the symmetric phase (8 > ) where
resonances with non-vanishing widths are expected. And finally the o in the broken
phase, where the two main issues to address are whether the o is a bound state, and

if it is possible to detect a signal for ¢ — 77 decay.

4.5.1 Broken phase 7, f and PS channels

A sample set of correlator data for the 7, f and PS channels in the broken phase, i.e.
B < B, =~ 1.0, is shown on a log scale in Fig. 4.3. As expected all three appear to be

a straight line, hence these channels are all dominated by a single particle pole.

Fig. 4.4 shows an example of the spectral functions obtained for the 7, f and
PS in the broken phase rescaled so they all fit the plot. All three particles appear
as well-localised peaks, strongly suggesting, as expected, simple poles and hence are
stable particle states. Table 4.4 gives a full comparison of the results obtained for
the 7, f and PS using standard one exponential fits and MEM which always agree

within the errors stated.
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Figure 4.3: Propagators in three different channels from simulations of the U(I) model
on a 322 x 48 lattice at 3= 0.55, m = 0.01.
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Figure 4.4: Three different channels from simulations of the U(I) model on a 322x 48
lattice at 3= 0.55 m = 0.01.
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Ny Volume B m Mass Mass Area
(1-exp) (MEM)

m 4 32°x48 055 0.005 0.114(4) 0.112(6) 0.501(129)
4 322x48 0.55 0.01 0.168(5) 0.154(9) 0.176(15)
4 322x48 0.55 0.02 0.232(5) 0.231(7) 0.0617(98)
4 322x48 055 0.03 0.280(10) 0.263(15) 0.0351(37)
4 322x48 055 0.045 0.345(17) 0.324(14) 0.0188(11)
4 322x48 055 0.06 0.447(24) 0.424(8) 0.0101(20)
4 322x48 0.65 0.01 0.193(4)  0.187(8) 0.0810(78)
4 322x48 0.65 0.02 0.277(4) 0.267(6) 0.0289(19)
36 242x32 0.55 0.01 0.150(5)  0.144(18)  0.053(19)
36 24°x32 055 002 0.238(6)  0.229(8) 0.0140(14)
36 242x32 0.55 0.03 0.287(10) 0.271(17)  0.0081(10)

f 4 32°x48 055 0.005 0.555(7)  0.556(4) 2.15(49)

4 322x48 0.55 0.01 0.564(1) 0.564(1) 2.37(3)
4 322x48 0.55 0.02 0.5853(7) 0.5858(13) 2.14(27)
4 322x48 0.55 0.03 0.599(1) 0.599(1) 2.06(5)
4 322x48 055 0.045 0.623(1) 0.623(1) 1.90(4)
4 322x48 055 0.06 0.644(2) 0.643(2) 1.63(8)
4 322x48 065 0.01 0.3978(8) 0.3965(13) 5.11(9)
4 322x48 0.65 0.02 0.4285(6) 0.4384(44) 4.10(33)
36 242x32 0.55 0.01 0.6796(3) 0.6796(3) 1.77(8)
36 24°x32 0.55 0.02 0.6911(3) 0.6908(3) 1.72(7)
36 24?x32 0.55 0.03 0.7025(4) 0.7023(5) 1.59(2)
PS 4 322x48 0.55 0.005 1.0807(8) 1.0807(8) 164.3(6)
4 322x48 0.55 0.01 1.0973(8) 1.0979(7) 160(3)
4 322x48 055 0.02 1.1395(6) 1.1396(5) 147.2(5)
4 32?2x48 055 0.03 1.1715(11) 1.1716(11) 130(2)
4 322x48 055 0.045 1.2253(6) 1.2231(6) 119.1(9)
4 322x48 055 0.06 1.2693(13) 1.2691(2) 103(2)
4 322x48 065 0.01 0.7722(6) 0.7711(4) 426(32)
4 322x48 0.65 0.02 0.8362(5) 0.8381(45) 343(462)
36 242x32 055 0.01 1.3568(2) 1.3569(2) 50.1(3)
36 242x32 0.55 0.02 1.3806(2) 1.3808(2) 48.4(2)
36 24?x32 0.55 0.03 1.4030(3) 1.4030(3) 45.5(3)

Table 4.4: Broken phase spectroscopy
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Figure 4.5: Pion mass mj vs. bare mass m for 3 = 0.55 showing evidence for the
Goldstone nature of the %

PCAC relation

HKg. 4.5 shows the scaling of the pion mass squared with the bare fermion mass. The
line is a standard linear fit and the intercept is consistent with zero, hence the pion
is consistent with the expected behaviour for broken chiral symmetry mn oc i/m

PS binding energy

The PS is thought to be a weakly bound state consisting of two fermions. All the
results tabulated in Table 4.4 are consistent with this (i.e. Mps < 2Mf), and in fact
due to the precision obtained on these numbers, it is possible to estimate the binding
energy defined as = 2Mf —Mps. The results for this calculation are tabulated
in Table 4.5. For ny = 4 Am ~ 28% of the bound state mass and for vy = 36
Am « 0.15% This is consistent with the analytical expectation that Am oc 1/vy.

Similar results in [78] observed that the PS wavefunction had considerably greater
spatial extent for larger N, implying it is more weakly bound.
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=

Volume ,8 m AM AM
(1-exp) (MEM)
322 x 48 0.55 0.005 0.0293 0.0313
322 x 48 0.55 0.01 0.0307 0.0301
322 x 48 0.55 0.02 0.0311 0.0320
322 x 48 055 0.03 0.0265 0.0264
322 x 48 0.55 0.045 0.0207 0.0229
322 x 48 0.55 0.06 0.0187 0.0169
322 x 48 0.65 0.01 0.0234 0.0219
322 x 48 0.65 0.02 0.0208 0.0387
242 x 32 0.55 0.01 0.0024 0.0023
24?2 x 32 0.55 0.02 0.0016 0.0008
242 x 32 0.55 0.03 0.0020 0.0016

W W W
oo I o et ol

Table 4.5: Binding Energy in the PS channel

Changing the source/sink

In Fig. 4.6 the effect of using different meson sources following Eq. 4.17 using data
from timeslices 1 — 8 is explored. The spectral functions have been rescaled so all fit
on the same plot. When a wall is used at either sink or source, the signal is completely
dominated by the bound state; however, for the point-to-point correlator there is a
significant contribution out to wa =~ 2.5. Since we have discarded data from small
timeslices we should not expect much quantitative information from the asymptotic
form of p(w) in this case; indeed, as w — oo it decays much faster than either of the
idealised forms pg(w) or pyy(w) discussed in § 4.4.1. Fig. 4.6 does however, provide a
graphic illustration of the importance of choice of source in maximising the projection

onto the ground state.

4.5.2 Symmetric phase

In the symmetric phase, 8 > ., both the Z, (o channel only) and U(1) (¢ and =

channels) models have been considered. It proved considerably easier to simulate
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Figure 4.6: PS channel on 322 x 48 lattice at 3 = 0.55 m = 0.01 using correlators
with different combinations of wall and point source and sinks

this phase for the 72 model, the U(1) requiring a much smaller molecular dynamics
timestep. The 720 correlator data in Fig. 4.7 shows clearly that a single-exponential
fit will not work in this channel. The correlators become almost flat at large ¢

The expected form for the symmetric phase resonance is given in Eq 4.21. In order
to identify spectral features which are not simple poles, it is important to understand
the systematic effects. Fig. 4.8 shows the effects of altering the timeslices used in
the fit. Data for + > 12 has been discarded to avoid finite volume effects (actually
non-zero temperature). In all cases there is a broad spectral feature at cca « 0.5
whose width increases as smaller timeslices are included. If the divergence as u -» 0
is taken to be an artifact and therefore ignored (similar features at o = 0 have
been seen in other MEM studies [7]), then the shape appears qualitatively similar
to the large Ny prediction in §4.4.2. The fact that the shape of this resonance in the
massless phase is sensitive to the data at small times is slightly counter-intuitive, but
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Figure 4.7: o correlator for 3 different couplings in the chirally symmetric phase on
a 322 x 48 lattice.

is consistent with the observation in [78] that the extraction of the physical scale, i.e.
the resonance width fi, from timeslice correlator data actually depends on corrections
to the expected power-law falloff (fiz)~2 at small values of fir Notice also that as
predicted lin*-xx, p(cj)/u; =0 in contrast to an asymptotically free theory such as
QCD.

The next systematic test was to change the number of configurations used in the
fit to show up whether this width is purely due to insufficient statistics. Fg. 4.9 shows
the effect on the peak of changing the number of configurations from 0(10000) up to
0(40000). The width of this feature remmins fairly stable, although both the central
position and area under the peak vary slightly, but this only supports the view that
this is not a simple pole (see Table 4.6).

Fig. 4.10 shows the spectral functions obtained from three different couplings. The
normalisation of the results is distorted by the artifact at « —(, the curves have been
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Figure 4.8: Bryan image of p(u)/ui vs. u in the a channel at 3= 1.25 on a 322x 48
lattice, showing 3 different time windows.

Ndgg Central Position Area Width

19500 0.325(734) 0.03232)  0.308(691)
20250 0.375(62) 0.062(40)  0.311(17)
30000 0.415(69) 0.091(51)  0.226(663)

Table 4.6: Analysis of resonance with changing Ngg in the « channel at 5= 1.25.
The smallest Ngg seen in Fig. 4.9 does not appear in this table because there is no
peak to analyse in this case.
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Figure 49: The same as Fig. 4.8 using fits from timeslices 0-11, showing the effects
of varying the amount of data.

rescaled so that the height of each peak is the same. As (3 increases (i.e. coupling
decreases) both the central position and width of the peak becomes larger. This is
consistent with the predictions in § 4.4.2, which stated that both are proportional to
a single scale, /r, which increases with /3.

Finally the symmetric phase U (1) model is considered, where there are both ¢ and
T channels. The two should be physically indistinguishable for /3 > 3Cand indeed for
large « at least this is the case in Fig. 4.11. However, for small « there is a large
disparity between the two /? values, p(u) appears to diverge for 3 = 1.0, but tend
smoothly to 0 for 3 = 1.25. As can be seen from Fig. 4.12 the large  behaviour
of these correlators is not under proper control with the statistical sample obtained.
Another point to note is that in both cases there is more power in the a channel at
small . The only real conclusions which can be drawn from this analysis is that
a full understanding of the systematics in this regime is still lacking. However, in
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Figure 4.10: Rescaled Bryan image of p(u})/uj in the symmetric phase from timeslices
0- 11, for three different couplings.
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Figure 4.11: Bryan image of p(L)/u in both « and 7 channels from simulations of
the U(I) model on a 323 lattice. The dashed-dotted line is of the form u~14 close to
the large-Vf prediction of cj-1.
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Figure 4.12: a and r timeslice correlators from simulations of the U(I) model on a
323 lattice.

the large-o; regime, the behaviour of the spectrum is close to that of the large Nf
prediction of pu$ oc u~I. The dash-dotted line included in Fig. 4.11 is of the form

p(u) Cu~IA
To summarise:

* There is encouraging evidence that MEM is capable of identifying a resonance

with a non-zero width.
» The properties are semi-qualitatively consistent with the theoretical expecta-
tions

 Uncertainties remain about the » —m0 regime which would probably require
significantly larger lattices in the time direction.
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Figure 4.13: Rescaled Bryan image of P(1)/u in the a channel from timeslices 0-11
at p = 0.65, for two different masses in the U(I) model on a 322 x 24 lattice, and for
m = 0 in the 72 model on a 243 lattice.

4.5.3 Broken phase sigma

Disconnected fermion lines are automatically included in the o correlator since it is
modelled by an auxiliary held. The main physical issues to address here are whether
the a is a bound state, and if there is a signal for « —> mrdecay. Fig. 4.13 shows the
spectral functions from 3 simulations, the U(¢/) model with 2 different values of the
bare fermion mass, rng and the 72 model (mq = 0). Very large statistical samples
were used for this study, see Table 4.3.

Vacuum subtraction

Since o shares the same quantum numbers as the vacuum, before analysing the cor-
relator data it is necessary to subtract the vacuum term,

(4.28)
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Figure 4.14: Variation of artifact with vacuum subtraction constant Cva

Due to the statistical fluctuations this is a hard procedure to implement. In this
section, the variation of the sharp spike centered at around e« = 0.1, which we
believe is due to our uncertainty in the vacuum subtraction, is tested as we alter the
value of the vacuum by one standard deviation (e”)) above and below. Fig 4.14
and Table 4.5.3 show the analysis of this sharp spike graphically and numerically
respectively. As the value of the vacuum subtracted is varied the artifact varies
significantly while the « peak remmins consistent within the errors.

Width analysis

Similar to the procedure used for the symmetric phase resonances, the width of the
o resonance has been analysed at varying numbers of configurations. This is to
eliminate the possibility that the large width seen on the spectrum is statistical. The
results shown graphically in Fig, 4.15 and numerically in Table 4.8 shows the width
remains stable within errors even when the statistical sample is dramatically increased
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Clac Artifact Sigma
Mass Area, Width Mass Area Width

—1.0ery 0.056(113) 0.003(16) 0.020(49) | 0.657(9) 0.0014(1) 0.051(27)
—0.8e;y  0.069(64) 0.0021(47) 0.018(17) | 0.658(7) 0.00142(7) 0.049(19)
—0.6e,y 0.079(54) 0.0017(27) 0.018(15) | 0.658(6) 0.00142(5) 0.048(16)
—0.4e,y  0.083(51) 0.0015(22) 0.018(14) | 0.659(6) 0.00142(5) 0.047(16)
—0.2e;y  0.090(46) 0.0013(17) 0.017(12) | 0.659(6) 0.00141(5) 0.046(15)

0 0.098(42) 0.0011(12) 0.016(10) | 0.660(6) 0.00141(6) 0.045(13)
+0.2e;y  0.101(41) 0.0010(11) 0.016(10) | 0.660(6) 0.00140(4) 0.045(13)
+0.4e,y  0.105(39) 0.0010(9) 0.016(9) | 0.660(5) 0.00140(4) 0.045(12)
+0.6e;y  0.109(37)  0.0009(8) 0.016(8) | 0.661(5) 0.00140(4) 0.044(12)
+0.8¢,y 0.112(36)  0.0009(8) 0.015(8) | 0.661(5) 0.00140(4) 0.044(12)
+1.0ery 0.115(35) 0.0008(7) 0.015(7) | 0.661(5) 0.00139(4) 0.043(12)

Table 4.7: Detailed analysis of the artifact and physical sigma peak as the Cy, is

varied up to one standard deviation either side. See Figs. 4.13 and 4.14.

N¢sg  Central Position Area Width
435,400 0.642(12) 0.00169(24) 0.058(26)
870,800 0.659(6) 0.00155(4)  0.039(9)

1,306,200 0.635(2) 0.00173(3)  0.048(16)
1,741,600 0.660(6) 0.00141(4)  0.045(13)

Table 4.8: Analysis of o resonance for U(1) 8 = 0.65 m, = 0.01 on 322 x 24 lattice
with changing Ns,.
suggesting that the width of the o is not purely statistical, i.e. the o is a resonance
and not a simple pole.

In contrast to the large-N; predictions in § 4.4.3 that p(w) should be sharply cut
off on the low-w side, but fall away more slowly on the high-w side due to an ff-
continuum, the shape of the resonance is roughly symmetric, unlike those for the PS

in Fig. 4.6.

The central value for the peak in the U(1) m, = 0.01 data set is lower than the
corresponding PS state (see Table 4.4), which is at 0.77. The f f threshold in the case

is at 0.793(3), which is well above the point where p(w)/w appears to fall to zero. It
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Fgure 415: U(l) 322x 24 3 = 0.65 m = 0.01 a spectral functions for different
numbers of configurations. The peak which sometimes appears around cox = 0.1 is
an artifact due to difficulties with vacuum subtraction (see § 4.5.3)

is therefore deduced that for finite Ny, that the a is a more tightly bound state than

the PS meson for which there are no disconnected fermion line contributions.
Sigma decay

Unfortunately, there is no sign of any spectral feature around the two pion threshold,
which would be expected at wu ~ 0.38 for mq = 0.01 and wa ~ 0.75 for mq = 0.04
(see § 4.4.3 for derivation of the two pion threshold). Recall that the condition for
a — TITis Ma < 2mn so in the former case it is certainly possible. A recent study
of the 0(4) sigma model by Ishizuka and Yamazaki has claimed to see evidence of
o —Tlldecay [80].
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4.6 Conclusions

Studies of theories beyond quenched QCD at zero temperature will require greater
sophistication than the current single- and multi-exponential fits, which assume a
spectral density function consisting of a series of isolated poles. It is clear from the
study of the symmetric phase and ¢ in the broken phase that these techniques will
provide poor results. This is the first attempt at using the Maximum Entropy Method

to a lattice model with dynamical fermions.

In the chirally broken phase of the model, the elementary fermion f, the simplest
ff bound state and the Goldstone boson 7 have all been shown to be sharp spectral
features (i.e. simple poles). This confirms the findings of earlier studies [75, 76, 78].

Estimates for the meson binding energy have also been made for the first time.

In the chirally symmetric phase, a broad resonance, whose features agree qualita-

tively with the large-N; predictions, has been identified.

The first quantitative study of the o channel in the chirally broken phase has
also been made and found that it is more tightly bound than the conventional PS
meson due to the additional contribution from disconnected fermion line diagrams.
Unfortunately there was no evidence of any feature at the two pion threshold, and

therefore no evidence for o — w7 decay.

The philosophy of MEM is to make maximum possible use of the data available,
unlike single-exponential fitting where the time window is chosen to coincide with a
plateau in the effective mass plot. The main problem faced in the studies above has

been associated with the upper end of the time window. In an attempt to avoid any
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finite volume effects associated with including the large timeslices in the fit, control
over the w — 0 limit has been sacrificed. This can easily be seen in many of the plots
presented where the spectral density function appears to diverge at w = 0. There
were also artifacts in some cases of the broken phase o which arose due to difficulties

with the vacuum subtraction.



Chapter 5
Dynamical QCD

The results for the spectral functions obtained from the UkQcp Collaboration’s dy-
namical fermion simulations are presented in this chapter. The quenched simulation
has been included here to provide a direct comparison with the dynamical results.

We begin by detailing the simulation parameters.

5.1 Simulation parameters

In addition to the three dynamical data sets and the corresponding quenched simu-
lation (where the sea quark mass is infinite) forming a matched ensemble, a further
dynamical data set at lighter sea quark masses was simulated. The greatest effects
due to the inclusion of the dynamical fermions are seen when the sea quark mass is
made as light as possible, ideally in the vicinity of the up and down quark masses.
However, since the computational time required for simulations increases as the sea
quark mass decreases it is currently not feasible with current computer resources.
The lightest sea quark mass chosen here represents the smallest quark mass at which

meaningful statistics could be achieved within an acceptable period of time.
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B8 Csw Ksea Kval No. config.
5.29 1.9192 0.1340 0.1335, 0.1340, 0.1345, 0.1350 101
5.26 1.9497  0.1345  0.1335, 0.1340, 0.1345, 0.1350 102
5.2 2.0171 0.1350  0.1335, 0.1340, 0.1345, 0.1350 151
593 1.82 Quenched 0.1327, 0.1332, 0.1334, 623

0.1337, 0.1339
5.2 2.0171 0.1358  0.1340, 0.1345, 0.1350, 0.1355 101

Table 5.1: Simulation parameters for all the data sets, the last simulation is un-
matched

Gauge configurations were generated with two degenerate flavours of O(a) im-
proved dynamical Wilson fermions using the Hybrid Monte Carlo algorithm [81] on
the Cray T3E supercomputer in Edinburgh. The implementation and verification of
the code was described in [82, 83] and a summary of the algorithm details was re-
ported in [84]. The dynamical gauge configurations were separated by 40 trajectories
(a figure decided on after a study of the autocorrelation times measured for the pla-
quette on every trajectory [84, 82, 85]). The matched quenched gauge configurations
were generated by the hybrid over-relaxed algorithm with the compound sweep ratio
of 7:1, over-relaxed to Cabbibo-Marinari sweeps [86]. The separation for the gauge

configurations used for measurements was 700 compound sweeps.

Quark propagators were generated using O(a) improved Wilson fermions. Corre-
lators were constructed from fuzzed propagators for degenerate combinations of &y;.
For the quenched simulation, degenerate and non-degenerate meson correlator combi-
nations were generated for three values of the hopping parameter. A further two Kyq
values were added to the simulation to achieve a lower mpg/my mass ratio, which

was more comparable to the lighter dynamical simulations.

The simulation parameters for all the data sets is given in Table 5.1, all of which
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were carried out on a 162 x 32 lattice. A lattice of this size was deemed necessary,
following the finite volume investigation in [84], to keep the finite size effects to a
minimum as the sea quark mass (and hence lattice spacing, a) was reduced. In order
to ensure a large enough spatial volume to accommodate baryons (2 1.5fm) at this
lattice size, a coarse lattice spacing of a 2 0.09fm is required. Therefore simulations
must be performed at low § values. The dynamical S value was determined to be
as low as possible while remaining within the parameter range where a valid non-

perturbative estimate of the clover coefficient had been determined.

The fully non-perturbatively @(a) improved values for ¢y, were used for all the
dynamical simulations. This was determined by ALPHA Collaboration in [87] and is

given by

1 — 0.454g2 — 0.175g¢ + 0.012g§ + 0.045¢8
swoo 1 —0.72092 '

cdynanx__

(5.1)

This is valid for S8 values as low as 5.2, the minimum value included in the simulations.
Hence residual lattice artifacts are expected to be of O(a), which on the coarse lattices
used in these simulations could still be significant. For the quenched simulation, the

clover coefficient was determined by the ScrI Collaboration [88]

quen __

1 —0.6084g2 — 0.2015g3 + 0.03075g8
swo 1 —0.8743g3 ’

B>517. (5.2)

This result extends the analysis of the ALPHA Collaboration to lower values of 3.

The values of ry have been obtained by the UKQCD collaboration [11] and are
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(5’ ’isea) TO/a a'[fm]
(5.20, .1350) 4.754(40)(73,) 0.1031(09)(*)
(5.26, .1345) 4.708(52)(*5) 0.1041(12)(*1}
(5.29, .1340) 4.813(45)(F33) 0.1018(10)(*%)
(5.93,0)  4.714(13)(F%) 0.1040(03)(*5

Table 5.2: Summary of ry and a for the matched data set, the errors quoted are
statistical and systematic respectively.

summarised, along with the lattice spacing derived from 7y to illustrate the level of

matching achieved in Table 5.2

5.2 MEM technicalities

We now turn to the details on the application of the MEM technique to this data.
The channels to be analysed are the axial temporal and spatial, scalar, pseudoscalar

and vector. The default model used is of the form

m(w) = mow? (5.3)

motivated by the asymptotic behaviour of the spectral function at large w. The
frequency space was discretised into n, = 600 parts with a separation of wa = 0.01.

The integration over o was done for all probabilities > 1% of the maximum

5.3 Results

The analysis of the data sets will be split into four sections. Firstly the quenched
data will be analysed, followed by the matched ensemble including the quenched
simulation for comparison. Then the lightest sea quark mass data is studied. An

additional discussion on the non-singlet scalar meson will then be given.
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ioa

Figure 5.1: Ukqcd 3= 593 (Quenched) Axial Temporal channel t=0-14
5.3.1 Quenched data set

The first data analysed and presented here is the quenched data set for all five valence
quark masses in degenerate pairs. This will give a base for comparison when the dy-
namical data is analysed. The effects of changing the quark mass can be seen in these
graphs and should give us some insight into whether any changes seen in the matched
dynamical data set (see § 5.3.2) are from the change of sea quark mmss, or simply
equivalent to a change in the valence quark mass in the quenched approximation.

The spectral functions for the axial temporal, pseudoscalar and vector channels
all display a common structure: a sharp peak at low energy and a broad bump at
higher energy (two bumps in the vector case). In the quenched approximation the
ground state peaks in these channels should have zero width, but due to the finite
number of configurations (see the tests performed on the delta function test data in
§3.2.5) and possibly the discrete nature of the lattice in the temporal direction these
unphysical widths are produced. The integrated strength of the peak, however, can
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Figure 52: Ukqcd 3= 593 (Quenched) Pseudoscalar channel t=0-
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Figure 53: Ukqcd fi = 5.93 (Quenched) Vector channel t=0-14
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Fgure 54: Ukqcd —5.93 (Quenched) Axial spatial channel t=0-14

be related to the physical decay constant of the mesons. From the error bar analysis
on the broad peaks, very little statistical significance should be made of their shape
since the error bars are a similar size to the height of the peak

The effects of changing the quark mmass are as expected, the mass of the meson
(central position of the peak) increases with the valence quark mass (i.e. as /ova

decreases)

The remaining two channels, the axial spatial and scalar, are difficult to fit using
traditional exponential fits. In the spectral functions of these channels (Figs. 54
and 5.5) there is perhaps some evidence to suggest why. The two peaks found are
both broad, even the ground state (compare with the sharp ground state peak found
in the other channels), which makes the assumption of a delta function form for these
inappropriate. The error bars are large though, especially in the axial spatial channel.
The scalar channel is discussed in more detail in § 5.4
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Figure 55: Ukqcd /2= 593 (Quenched) Scalar channel t=0-14
P sea ~Nd  amPS (2-exp) am4 (MEM)

520 0.13500 0.13500 0.405 0.414 g
526 013450 0.13450 0.509 0.498 4
529 0.13400 0.13400 0.577 0.590 If
593 00 01339 0.356 0.378 g

Table 53: Comparison with Ukqcd axial temporal masses

5.3.2 Matched Unitary Set

Next the results from the matched (fixed lattice spacing o) unitary (/csea= «vai) data
set are reviewed. This data was chosen because it isolates the effects of changing the
quark mass, so any change in the spectral functions is presumably due to the quark
mass rather than any 0(a2) lattice artefact. These dynamical quark effects should
become more prominent as smaller, more physical quark masses are approached, i.e.
as Iea increase. One matched quenched spectrum has been included on each of these
graphs for comparison.

Fig. 5.6 presents the spectral functions for the axial temporal channel. Since the
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(Da

Figure 5.6: Ukqcd Axial Temporal t=0-14 matched unitary data sets

axial temporal ground state shares the same quantum numbers as the pseudoscalar
the comparison in Table 5.3 is between the two-exponential PS fits and MEM’s axial
temporal analysis. Details of the Ukqcd two-exponential fits are discussed in [11].
MEM results from local source and sink is in agreement within the 2« level with the
two-exponential results which have used combinations of local and fuzzed source and
sink to improve the signal. Note that the errors quoted in Table 5.3 and subsequent
comparisons are statistical only, the systematic errors are assumed to be of the same
order of magnitude again As lighter quark masses are approached the ground state
peak shifts to lower energies. The muass is therefore decreasing just as can be seen in
Fig. 5.1 for the quenched data as the value of k is increased. The resonance centered
around uo « 2.0 varies only slightly and it is very difficult to make any conclusions
given the errors on this feature.

The axial spatial results are presented in Fig. 5.7. This is an extremely difficult
channel to extract any information from, so there are no two-exponential values to
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0.6

0.2

Figure 5.7: Ukqcd Axial spatial t=0-14 matched unitary data sets
fi ea ~Ned amps(2-exp) amps (MEM)

520 013500 013500 0405 0415

526 013450 013450  0.509 0.505 1}
529 013400 013400 0577 0.572 1
593 00 013300 0356 1! 0.375 Lij|

Table S5.4: Comparison with Ukqcd pseudoscalar masses

compare to. The error bars on the peaks are extremely large in this channel so very
little statistical significance should be made of their shape.

Fig. 5.8 shows the results obtained for the pseudoscalar channel. Once again the
only real trend seen is the ground state peak shifting towards lower energies as the
mass of the quarks is decreased. The feature at around uia « 1.5 remains fairly steady.
There is no sign of any dynamical quark effects in this channel. Table 5.4 is included
to demonstrate that MEM is finding the same ground state as two-exponential fits.

Fig. 5.9 shows the results obtained for the Scalar channel. As with the axial spatial
channel this is an extremely difficult channel to extract any information from using
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Fgure 58: Ukqcd Pseudoscalar t=0-14 matched unitary data sets

standard techniques, so there are no two-exponential values to compare to. The error
bars on the peaks are large in this channel so very little statistical significance should
be made of their shape. Again the differences between quenched and dynamical are
slight. For a more detailed discussion on the scalar meson see § 5.4.

The Vector channel in Fig. 5.10 is where there may be signs of p — 2 decay.
Note that the pLs resulting from such a decay could not be at rest due to conservation
of momentum, at rest the rho has angular momentum. The minimum momentum
allowed for the 2 pi (one would have p and the other p) would be

Pmin (5.4)

Therefore the 2n feature is expected at 7= 2En where Ev = yjmn+ Pom Table 5.5
lists the value for 2En for each data set analysed.
Unfortunately there is no signal for p-decay in the current data set. Table 5.6 is a
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Figure 5.9: Ukqcp Scalar t—6-14 matched unitary data sets

p  ’sea Mval SR
5.20 0.1358 0.89
5.20 0.1350 1.13
5.26 0.1345 1.29
5.29 0.1340 1.40

Table 5.5: Value of 2En, the expected position for 2ir feature indicating p-decay.
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Figure 5.10: Ukqcd Vector =0-14 matched unitary data sets

3 /esea A¥i  amy (2exp) airiy (MEM)
520 013500 0.13500 0579 tj 0.610

526 0.13450 0.13450  0.650 ¢i 0.637
529 013400 0.13400  0.691 7 0.719
593 00 013390  0.563 &/ 0.568

Table 5.6: Comparison with Ukqcd vector masses

comparison of the Vector meson mass calculated from MEM and that from Ukqcd
two-exponential fits. The agreement between the two methods in much worse in this
channel than for the pseudoscalar and axial temporal.

5.3.3 Lightest Ksea data

Since no dynamical effects were seen within the matched unitary set, lets take a look
at the results obtained from data at an even lighter Asea value. Almost certainly the
lack of any observed dynamical effects in the spectral functions will be due to the still
relatively heavy quarks simulated in the matched ensemble. While this data is not
matched (the lattice spacing « is different) with all the results in § 5.3.2, due to the
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Ky =0.13580
05 Kyal = 0.13565
Kva)=0.13550
Kva)=0.13500
0.4 K =0.13420

Fgure 5.11: Ukqcd Axial Temporal 3= 5.20 /csea= 0.1358 t=0-14
restrictions in Eq 5.1 for calculating csw; it is still interesting to analyse.

The graphs presented in this section display the spectral function calculated from
each channel with varying valence quark mass. When the valence and sea quark mass
values differ, it is known as a partially quenched approximation.

In the figures presented (5.11-5.15) here there are still no real signs of any differ-
ences due to the finite sea quark mass when making a comparison with those from
the quenched data in § 5.3.1. The ground state peak tends to become lighter with
the valence quark mass while the first excitation remains fairly steady, changing very
little.

5.4 Non-singlet scalar meson

The study of the scalar meson (both singlet and non-singlet) is of great interest to
particle physics. It is notoriously difficult to extract anything from this channel using
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Figure 5.12: Ukqcd Axial Spatial = 5.20 Ksex = 0.1358 t=0-14
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Figure 5.13: Ukqcd Pseudoscalar (7 = 5.20 Ksex = 0.1358 =0-14
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Figure 5.14: Ukqcd Scalar 3 = 520 Ksa = 0.1358 t=0-
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Figure 5.15: Ukqcd Vector 3= 5.20 Ksed= 0.1358 t=0-
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conventional fitting procedures. Recently two “"non” conventional approaches have
been applied and have shed some light on both the singlet and non-singlet masses.
The first approach [89] uses domain wall fermions and the second [90] (which analysed
a similar data set to this work) used the Z, noise method. Both methods result in
a mass of approximately M,, = 1.0 GeV in the chiral limit for the non-singlet scalar

meson, though with relatively large errors.

In this thesis only the non-singlet scalar (ag) will be studied and is the first time
that results from conventional correlation functions have yielded the spectrum of the

scalar meson in QCD.

Compared to the other channels studied the scalar channel’s spectral function

(Figs. 5.5, 5.9 and 5.14) has
(a) a very broad ground ”state” and

(b) a second resonance of significant weight relative to the “ground state”, which is

not well separated from the ground ”state”.

This is presumably the reason why doing fits using sums of exponentials proves diffi-

cult.

In the quenched case the mass of the ground state M,, remains the same despite
the change in quark mass (see Fig. 5.5). This is as Bardeen predicted in [91]. The
matched unitary set doesn’t display this pathology (i.e. M,, in the matched unitary

set decreases sensibly as mq — 0).

The chiral extrapolation (m; — 0 or equivalently aM? — 0 performed on the

mass of the non-singlet scalar for the matched dynamical data sets only is displayed
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Figure 5.16: Ukqcd Scalar mass chiral extrapolation

graphically in Fig. 5.16. This gives the non-singlet scalar mass calculated from MEM
as aMw = 0.58(12) and multiplying by a~I = 1.92 GeV (the errors on a~/ have been
neglected since the 20% error on Mw will swanp it) gives Mw = 1.1(2) GeV This
agrees with the particle data books value of 985 MeV within the errors which are
around 20%

5.5 Conclusions
* MEM has found ground state peaks in agreement with previous studies

e MEM has managed to extract information from local source and sink correlators
in difficult channels such as the axial spatial and scalar.

 Unfortunately there have been no signs of dynamical effects in the channels
analysed, even at the lightest quark nmss.
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e Non-singlet scalar channel was analysed and the prediction obtained for the

mass of the ag is in agreement with experiment.



Chapter 6

Conclusions

Spectrum analysis techniques beyond the standard single- and multi-exponential fits,
which assume a spectral density consisting of a series of isolated simple poles, will
be required for lattice simulations beyond zero temperature and quenched QCD. In
this thesis, the first attempt at applying the Maximum Entropy Method (MEM) to
lattice data beyond the quenched approximation, but still at zero temperature, has

been made.

In Chapter 3 MEM was successfully tested using known spectral function form.
In Chapters 4 and 5 two field theories (a four fermion theory, the Gross-Neveu model
in d = 3, referred to as GNM; and dynamical QCD) were studied, a summary of the

results is now given.

6.1 Summary of the GNM;3; analysis (Chapter 4)

In the chirally broken phase:

e The elementary fermion f, the simplest ff bound state and the Goldstone

boson 7 have all been shown to be sharp spectral features (i.e. simple poles).

107
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e Estimates for the meson binding energy have been made for the first time.

e The additional contribution from disconnected fermion line diagrams cause the
o in the chirally broken phase to be more tightly bound than the conventional

PS meson.
In the chirally symmetric phase:

e In the chirally symmetric phase, a broad resonance, whose features agree qual-

itatively with the large-N; predictions, has been identified.

e Unfortunately there was no evidence of any feature at the two pion threshold in
the ¢ channel, and therefore no evidence for ¢ — 7w decay has been observed

in this data.

6.2 Summary of QCD analysis (Chapter 5)

¢ MEM has found ground state peaks in agreement with previous studies.

e MEM has managed to extract information from difficult channels such as the

axial spatial and scalar.

e Unfortunately there have been no signs of dynamical effects in the channels

analysed, even at the lightest quark mass.

e Non-singlet scalar channel was analysed and a prediction obtained for the mass

of the ag is in agreement with experiment.
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6.3 Future work
6.3.1 GNM;

It will be interesting to use MEM to study this model at non-zero temperature and/or

density and perhaps looking at d = 4.

6.3.2 Dynamical QCD

No signs of the effects of introducing dynamical quarks have been seen in the five
channels analysed from the UKQCD data set, even at the lightest quark mass. It
will be interesting to apply the same analysis to any future data at lighter sea quark
masses where the dynamical effects should be more prominent. Finite temperature
QCD would be another area of particular interest for study with MEM, but this
would require very large computer resources since finite temperature is acheived by
decreasing the number of timeslices on the lattice. MEM requires a reasonable amount
of data points so the only way to generate data for this would be to use and anisotropic

lattice, i.e. a smaller spacing in the time direction than the three space directions.



Appendix A

Entropy definition

A.1 Monkey argument for entropy and prior prob-
ability

The prior probability can be written in the general form

P(feV)= Z—l(a—) / (dF)@ (S (1)), (A1)

where f is the image, V some domain, « an arbitrary constant and Zgs(e) is a nor-
malisation constant. ® is assumed to be a monotonic function of the entropy S(f),

therefore the most probable image f is obtained at the stationary point of S(f).

The so-called “monkey argument”, which is based on law of large numbers, can

be used to determine the explicit forms for both ¢ and S(f).

First discretise the basis space z into N cells. Thus f(z) also needs to be discre-
tised as fi. Now suppose a monkey throws M (assumed to be a large number) balls.
The number of balls which land in the ** cell is n; and the probability that a ball

lands in the same cells is p;. The expectation value for the number of balls received
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by the " cell ); is therefore given by

N
Ai=Mp; with Y X\=M (A.2)

i=1

The Poisson distribution (approximation for the Binomial distribution at large N

and fixed ;) can be used to calculate the probability that the i** cell receives n; balls

/\f}ie—)\;
Py.(n;) = = A3
() = =5 (A.3)
Hence the probability that an entire distribution o= (ny,...,ny) is realised is given
by the product
N N \lig—Ai

) =[]Pu(n) =]] zn_, : (A.4)

i=1 i=1 v

with the normalisation given by 3 °_ Py,(n;) =1 (i =1,...,N).

M is large, therefore n; can also be large, so a small “quantum” ¢ is introduced

and a finite image f; and default model (i.e. the expectation values) are defined as

fi=qni, m;=ql. (A.5)

The probability P(f € V) can now be written as

v d, )\": Ai df;, e5)/a
P(feV)=3 Py(® /IL f T N/H\/f_% i (A6)

Rev nit



APPENDIX A. ENTROPY DEFINITION 112

where the fact that ¢ is small has been used in the conversion of the sum to an integral

and Stirling’s formula n! = v/27ne™'°8"~" has been used to obtain the last expression.

Comparing Eqgs. A.1 and A.6

N 0 \ N2
i=a W=T[% 2= (2)" (A7)

A.2 Axiomatic construction of entropy

If a positive semi-definite distribution f(z) is more likely than the distribution g(z),

then the Shannon-Jaynes entropy S(f) needs to obey

o S(f) > S(g). (A.8)

If there is an external constraint on f(z), e.g. C(f(z)) = 0, then the most plausible

image is given by

5[S(f) = AC(Hl =0 (A.9)

with A a Lagrange multiplier. The explicit form of S can be fixed by considering the

following axioms
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Axiom 1 : Locality

S(f) is a local functional of f(z) without derivatives, i.e. there is no correlation

between the images at different z.

This leads to a form
S(f) = / dz m(z) 8(f (z), 2), (A.10)

where m(z) is a positive definite function which defines the integration measure. 6 is

an arbitrary local function of f(z) and z without derivatives acting on f.
Axiom 2 : Coordinate Invariance

f(z) and m(z) transform as scalar densities under the coordinate transformation

z' = 2'(z), i.e. f(z)dz = f'(z')dz’ and m(z)dx = m/(z')dz’. S is a scalar.

These constraints allow only two invariants for constructing S from Eq. A.10:

m(z)dz = m'(z')dz’ and f(z)/m(z) = f'(z')/m'(z"). Hence

S(f) = / dz m(z) ¢( f (‘”)) . (A.11)

m(z)

Axiom 3 : System Independence

If z and y are two independent variables, the image F'(z,y) and integration measure

m(z,y) are written in product form

F(z,y) = f(z)g(y), m(z,y) = my(z)my(y). (A.12)
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Furthermore, the first variation of S(F") with respect to F'(z,y) leads to an additive

form with some functions a(z) and S(y);

§S(F)
0F(z,y)

= a(z) + B(y) (A.13)

Using this axiom, the images f(z) and g(y) can be independently determined

S(F) = / dz / dy m(z, ) ¢<F (=, y)) (A.14)

m(z,y)

Acting the derivative 8?/8zdy on Eq. A.14

d*c(2) N do(2)

z dz? dz

=0 (A.15)

where Z = F(z,y)/m(z,y) = (f(z)/ms(2))(9(y)/my(y)) and o(Z) = dé(Z)/dZ.

The solution to this differential equation is

0(Z) = c1log Z — cy, (A.16)

which leads to

$(Z) = c1Zlog Z — (co + ¢1)Z. (A.17)
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