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Abstract

The advancement of modem technology and scientific measurements has led to datasets 
growing in both size and complexity, exposing the need for more efficient and effective 
ways of visualizing and analysing data. Despite the amount of progress in visualization 
methods, high-dimensional data still poses a number of significant challenges in terms 
of the technical ability of realising such a mapping, and how accurate they are actu­
ally interpreted. The different data sources and characteristics which arise from a wide 
range of scientific domains as well as specific design requirements constantly create new 
special challenges for visualization research.

This thesis presents several contributions to the field of glyph-based visualization. 
Glyphs are parametrised objects which encode one or more data values to its appearance 
(also referred to as visual channels [Ber83]) such as their size, colour, shape, and posi­
tion. They have been widely used to convey information visually, and are especially well 
suited for displaying complex, multi-faceted datasets. Its major strength is the ability to 
depict patterns of data in the context of a spatial relationship, where multi-dimensional 
trends can often be perceived more easily. Our research is set in the broad scope of 
multi-dimensional visualization, addressing several aspects of glyph-based techniques, 
including visual design, perception, placement, interaction, and applications. In partic­
ular, this thesis presents a comprehensive study on one interaction technique, namely 
sorting, for supporting various analytical tasks. We have outlined the concepts of glyph- 
based sorting, identified a set of design criteria for sorting interactions, designed and 
prototyped a user interface for sorting multivariate glyphs, developed a visual analytics 
technique to support sorting, conducted an empirical study on perceptual orderability of 
visual channels used in glyph design, and applied glyph-based sorting to event visual­
ization in sports applications.

The content of this thesis is organised into two parts. Part I provides an overview of 
the basic concepts of glyph-based visualization, before describing the state-of-the-art in 
this field. We then present a collection of novel glyph-based approaches to address chal­
lenges created from real-world applications. These are detailed in Part II. Our first ap­
proach involves designing glyphs to depict the composition of multiple error-sensitivity 
fields. This work addresses the problem of single camera positioning, using both 2D and
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3D methods to support camera configuration based on various constraints in the context 
of a real-world environment. Our second approach present glyphs to visualize actions 
and events “at a glance”. We discuss the relative merits of using metaphoric glyphs in 
comparison to other types of glyph designs to the particular problem of real-time sports 
analysis. As a result of this research, we delivered a visualization software, MatchPad, 
on a tablet computer. It successfully helped coaching staff and team analysts to exam­
ine actions and events in detail whilst maintaining a clear overview of the match, and 
assisted in their decision making during the matches.

Next, we introduce a novel glyph-based sorting framework. The framework focuses 
on sorting and ordering glyphs as part of an interactive process in visualization. We 
examine several technical aspects of glyph sorting and provide design principles for 
developing effective visually sortable glyphs. Glyphs that are visually sortable provide 
two key benefits: 1) performing comparative analysis of multiple attributes between 
glyphs, and 2) to support multi-dimensional visual search. We also describe a system 
that incorporates focus+context glyphs to control high-dimensional sorting in a visually 
intuitive manner, and demonstrate its usefulness to a case study of rugby event analysis. 
We extend the usability of glyph-based sorting through the development of a visual 
analytic approach. The method incorporates a knowledge-assisted ranking framework 
to convert a user’s knowledge on ranking using regression modelling. This enables users 
to analyse and sort multi-dimensional events in a more flexible manner. We apply this 
approach in the context of sport event data for re-organising key match videos.

In order to investigate the benefits of sorting in glyph-based visual design, we present 
an empirical study that focus on the perception of orderability for different visual chan­
nels. We find that some visual channels (for example, value) are perceived to be more 
ordered than others (for example, hue) than the actual order measured in the data. As 
a result, some visual channels are more sensitive to noise than others. Two additional 
studies are presented to investigate its affect on two types of visualization tasks, namely: 
visual search, and categorical perception. We find that visual channels that tend to be 
perceived as ordered, improve the accuracy of min and max judgements. On the other 
hand, visual channels that appear more discrete i.e., those that tend to perceived as less 
ordered, improve the accuracy of identifying element pairs. Finally, we provide con­
cluding remarks in this part, and discuss possible directions for future work.
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IT is well known today that we are experiencing an overwhelming surge in the vol­
ume and complexity of data to which we have ready access. Advance simulations, 
scientific measurements, business transactions, and even social media are just a few 

activities which contribute to this growing mass, and our ability to effectively analyse 
data has become more challenging. Much of this data is multi-dimensional in nature, 
whether it be from tables, spreadsheets, video multimedia, or complex computations. 
Each record (or data entity) may contain anywhere between two attributes to several 
thousand attributes, and with the increasing size of records, the more difficult it is to 
detect, classify, and extract any meaningful relationships. For example in genetics, 
scientists are accustomed to studying millions of DNA sequences and their molecular 
structures in order to understand the behaviour of specific genotypes.

Visualization has emerged as a powerful tool for the exploration of such large and 
complex datasets. The visualization of data is the process of conveying data using graph­
ical representations. While algorithmic analysis can be used to quickly and accurately 
process data to identify trends and outliers, it is dependent on having a computational 
model of the underlying phenomena. The problem is that one may often not know what
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one is looking for, and may not have the required knowledge to define model parameters 
and threshold values to effectively guide the analysis. Visualization, on the other hand, 
uses the remarkable abilities and reasoning of a human to process visual information 
and extract meaning from the data such as structural patterns, trends, and anomalies. 
The famous expression ‘‘I  Know It When I  See I t” (IKIWISI) by Potter Stewart [Gew96] 
implies the notion that we often cannot make sense out of data by solely observing their 
raw values, but instead rely on our visual pattern recognition system to help us gain 
knowledge of the data. Overall, there are three main goals of visualization: 1) Visual 
exploration. To allow users to investigate unknown data characteristics more effectively, 
2) Visual analysis. To confirm the existence of data features and stimulate new hypothe­
ses, and finally 3) Presentation. To disseminate information or findings to others, for 
example, domain experts, colleagues, and the general audience.

A visualization can be realised in many ways. Technically, the type of visualization 
approach depends highly on the properties of data that need to be presented. These tech­
niques can be classified into two general sub-fields: information visualization, and scien­
tific visualization [PNE02]. Information visualization involves the visual representation 
of abstract data. In most cases, abstract data do not have an inherent spatial domain, 
leading to a host of common techniques such as bar charts, pie charts and line graphs, 
as well as more advanced techniques such as parallel coordinates, histograms, and tree 
maps [War08a]. Scientific visualization deals with the numerical solution resulting from 
computational simulations or modelling, and is studied in various disciplines, for exam­
ple, medicine, weather ensembles, and flow simulations. Such data consists of fields of 
values (e.g., scalars and vectors) that are coupled with a spatial domain. Examples of 
techniques used to depict scientific data include colour maps, streamlines, glyphs, and 
volume rendering [PNE02].

1.1 Glyph-based Visualization
Glyph-based visualization is a popular approach for conveying information visually, 
where a data set is depicted by a collection of small visual objects referred to as 
glyphs. Individual dimensions/attributes of a data point are encoded to various visual 
features of a glyph (i.e., a shape or symbol) such as its size, colour, and orientation. 
Since a large number of data dimensions can be incorporated into properties of a sin­
gle glyph, this makes it a highly suitable technique for communicating and supporting 
multi-dimensional analysis. Glyphs can be placed and viewed either independently from 
others, or in some cases, glyphs can be spatially connected to convey the topological re­
lationships between data points or the geometric continuity of the underlying data space.

While glyphs are a form of illustrative graphics in visualization, fundamentally 
they are dictionary-based encoding schemes. A broader interpretation by Borgo et. 
al [BKC* 13] describe glyphs as a type of visual sign that can make use of character­
istics from of other types of signs such as icons, indices, and symbols (see Figure 1.1).
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icon index sym bol m etap hor ideogram  pictogram

Figure 1.1: In philosophy, language studies and psychology, signs may take one o f  
the three form s: icon, index, and symbol. In many other contexts, terms such as 
visual metaphor, ideogram, and pictogram are also used to describe subclasses o f  
signs [BKC* 13].

Sign Code
(learned rule)

M e a n i n g

Figure 1.2: Codes provide a fram ew ork within which signs assume a meaning. A sym ­
bol, fo r  example (+), can have different interpretations depending on the coding conven­
tion such as the sym bol fo r  ‘first a id ' in medicine, or the arithmetic symbol fo r  'addition '.

We encoun ter  m any o f  these today, for exam ple, traffic signs, map symbols, and icons to 
navigate through com pu te r  system menus. Although the use o f  glyphs in the context o f  
m ulti-d im ensional visualization and graphical symbols may seem rather different, they 
share m any interesting attributes, such as being “small” , being “visual” , having “m ean ­
ing” , requiring “ learn ing” , and often being “m etaphoric” . Historically, the use o f  visual 
signs dates back to a lm ost 40 ,000  years ago, and has had a significant role in the in­
vention o f  current icons and glyphs. It is thus interesting to study briefly their related 
history and concepts.

1.1.1 A brief history of the study of signs

Sym bolism  has p layed an important part in the developm ent o f  hum an culture, e sp e ­
cially as a form o f  com m unication . Since the 16th century, its uses in English  have been 
mostly  associated  with etymology, archaeology, topography and g raphonom ics as a way 
to express thoughts, ideas, and concepts. The Paleolithic A ge  (18,000 BC) present hun ­
dreds o f  exam ples  in the form o f  cave paintings. It was not until the Neolithic Age where 
the first form s o f  p re-writing  symbols were introduced for com m unication : the Petro- 
glyphs. T hese  are im ages created with rock engravings, where petra  (m eaning “s tone”), 
and glyphein  (m eaning “to carve” ). Even in current times, tribal societies continue to 
use this form o f  sym bolic  writing.

An interesting aspect o f  petroglyphs is their similarity across different continents;
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Figure 1.3: The Pioneer plaque on board the 1972 Pioneer 10 Spacecraft [NAS]. The 
pictorial message displayed information about the origin o f the spacecraft in case the 
Pioneer 10 is intercepted by extraterrestrial life.

the commonality of styles strengthen the hypothesis that the human conceptual system is 
symbolic in nature as investigated by Jungian psychology and early works from Mircea 
Eliade [EM91], Psychophysical studies have demonstrated that re-occurring visual pat­
terns in petroglyphs and cave paintings are “hard-wired” into the human brain, which 
allows us to decipher diagrams and images more efficiently. As such, petroglyphs is a 
unit of knowledge representation. Over the years, petroglyphs have evolved into graph­
ical symbols known as ideograms that are more illustrative of the signs we see today. 
The main goal of ideograms is to represent an “idea”, and is sometimes comprehensible 
only by familiarity, or with prior knowledge. For example, the ideogram shown in Fig­
ure 1.1 represents “not allowed” in many countries, but this is highly dependant on how 
it is interpreted. Such ideograms must rely on a conventional rule (or coding) in order to 
derive meaning from its signs (see Figure 1.2). However, once a coding is established, 
this can lead to an efficient form of visual communication. Contemporary examples 
of ideograms can be found in wayfinding signage, as well as technical notations such 
as arabic numerals, mathematical notations or binary systems which maintain the same 
meaning despite the difference in language or environment. Some ideograms however, 
convey their idea through pictorial resemblance of a physical object, and are referred 
to as pictograms (see Figure 1.1). One interesting example is the Pioneer plaque on 
board the 1972 Pioneer 10 spacecraft as shown in Figure 1.3, which features a pictorial 
message designed to provide information about the origin of the spacecraft.

The use of glyphs and signs as a means of communication has traversed human gen­
erations due to their cross-cultural expressive power. A prime example can be seen in 
written languages. Ideograms and pictograms form the base of early written symbols
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such as cuneiforms and hieroglyphs, to sophisticated logographic writing system such 
as the ones developed in Chinese and Eastern cultures. For example, Chinese charac­
ters are derived directly from individual pictograms, or combinations of pictograms and 
phonetic signs that represent logograms (i.e., a word, or a morpheme) in the writing of 
Chinese, Japanese, and Korean. Glyphs for information display and writing systems are 
therefore similar to some extent in the way they are formed. Fundamentally, both consist 
of smaller individual components (or visual mappings) that can be combined to repre­
sent a piece of information, word, or a sign. It makes sense to consider glyphs as a type 
of visual language. And as with many languages, they can be learned, or even memo­
rised to which processing can become effortless, making glyphs a potentially effective 
approach for communicating data quickly.

With the advent of the computer era, icons have become one of the most popu­
lar means of conveying messages. In the early 1980s, the CHI community [BSG89, 
Bly82, Gay89] investigated the use of distinctive sounds to represent specific events or 
other information, creating a new type of multi-sensory icon known as “earcon”. Since 
then, icons now appear in most media platforms, and incorporate more sophisticated 
features such as animation and interactive shading. As highlighted by Marcus [Mar03], 
specialised communities such as health and medicine, finance, transportation, education 
and training already possess a well-established visual sign system. The expressive power 
inherent to such visual sign systems is appealing to media, technology and information 
visualization alike. The major challenge lies in the development of well-designed sign 
systems.

1.1.2 Terminology
The definition of the term glyph may have various interpretations across the visualization 
community. Telea [Tel07] describe glyphs as a ”sign" for ’’associating discrete visual 
signs with individual attributes". Ward et al. [WGK10] define a glyph as ”a visual rep­
resentation of a piece of data or information where a graphical entity and its attributes 
are controlled by one or more data attributes". More generally, we consider a glyph (or 
sometimes also an icon) to be a parameterised visualization object such that its’ appear­
ance e.g., shape, colour, size, orientation, texture, etc., encodes the data values which 
the glyph should represent. It also makes sense to consider composite glyphs as another 
form of glyph. Composite glyphs are constructed either in 3D by combining basic geo­
metric shapes such as spheres, boxes, and cylinders that map to data values (for example, 
the glyphs in [KE01 ]), or in 2D by composing regions (i.e., main body, exterior, and in­
terior [MPRSDC12]) that use different visual properties such as pictograms, colour, and 
text to display the data.

A glyph-based visualization is then created by arranging a certain number of these 
glyphs across the domain of reference (these could be just a few, or just one, or many, 
even so many that they merge into a dense visualization) such that every glyph becomes a 
visualization of the data at (or nearby) the location where the glyph is placed. Examples
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Figure 1.4: Exam ples o f  glyph-based visualizations: (left) visualization o f  M agnetic 
Resonance Spectroscopy (M RS) data using superquadrics [FLKI09], (m iddle) 2D ar­
rows showing the wind direction and m agnitude over Australia [T B 96], and (right) 3D  
arrows to depict the flow on the surface o f  a ring [LWSH04]. Glyphs vary in appearance  
from  one application to another depending on the underlying data.

o f  g lyph-based  visualizations are shown in Figure 1.4 and Figure 1.5.
A property  o f  all g lyph-based  visualization approaches is that a discrete visualization 

is created  (instead o f  a con tinuous representation  like a co lour map). Only at certain 
locations across the dom ain  are individual g lyphs d isplayed to represent the data. This 
m eans that this approach  is only  suitable, when it is possible to assum e a certain minimal 
degree o f  continuity  o f  the data such that a mental reconstruction o f  the data, in particular 
the space betw een  the glyphs, is at least principally  possible. In data visualization, 
this is often possible, making g lyph-based  visualization particularly  interesting for this 
particular held o f  application. Alternatively, a g lyph-based  visualization also makes 
sense for discrete data, if  a one- to-one  relation be tw een  every instance o f  the data and 
the g lyphs is established.

1.1.3 High-dimensional Glyph Representation

M ultip le  d im ensions are hard to think in, and som etim es im possible  to visualize due 
to  the large n um ber  o f  possib le  values associated  with each dim ension. O ur  research 
focuses  prim arily  on addressing the problem  o f  high-diniensional data using glyphs. A 
dataset is typically  called h igh-d im ensional if  the dataset contains three or  more attribute 
d im ensions. The definition: m ulti-dim ensional, is more broadly  used to describe the 
p roperty  o f  such datasets with h igh-d im ensionality  already in mind. For attributes less 
than three, the term s univariate  and bivariate  are frequently used instead to describe 
datasets  that contain only one and  two d im ensions respectively.

H igh-d im ensional data is particularly  challenging  when coupled  with the constrain ts  
o f  g lyph-based  visual design, fo r  exam ple, the relative size o f  a glyph may limit the 
am oun t o f  information they can visually  display. N ot only that, but the underlying data
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Figure 1.5: Exam ples o f  glyph-based visualizations: (left) glyph-based visualization o f  
3D data [LKH09], (m iddle) network activity glyphs [PROS], and (right) 3D fish  glyphs 
fo r  exploring biom edical multi-modal data [MgDN06].

type and their specific dom ain  context can also heavily influence the way data is encoded  
in a g lyph-based  approach. There are two types o f  m ulti-d im ensional visualization c h a l ­
lenges which we consider  in this thesis. First, there is multi-field  visualization which 
studies the visualization o f  data that are given as fields o f  num erical values. Each field o f  
data co-exist within the sam e spatial domain, and is depicted  using a set o f  sample data 
which are given at specified points along the dom ain  to reveal the underlying features. 
rFhis type o f  data is com m only  found in the domain o f  scientific visualization, and  is the 
product o f  com plex  simulation or modelling. For exam ple ,  the m odelling  o f  engines in 
Com puta tional Fluid Dynam ics (CFD) consists o f  a vector-field which describe its flow 
behaviour, in addition to other fields of  data such as pressure , tem perature  and stress 
(e.g., scalar fields) in the resulting simulation [K M L99]. Scientists  need to exam ine  the 
multiple fields s im ultaneously  in order to fully understand the physical phenom ena, and 
the close interactions that occur between fields.

The second type is multivariate visualization. Previous w orks [FLKI09, FH09] 
have often used the term “m ultivariate” interchangeably to describe the characteristics  
o f  multi-field data. In our work, we make a clear d istinction  betw een the two. F u n d a ­
mentally, data attributes within a multivariate dataset m ay o r  m ay not have any inherent 
spatial structure. T he data is typically given in the form o f  a table, where each co lum n 
represents an attribute, and each row is a single entity. T hese  attributes may be ca te ­
gorical o r  num erical in nature, presenting a different k ind o f  challenge for visualization 
research. M ixed data types are mostly found in the dom ain  o f  information visualization 
such as surveillance, stock markets, and geo-spatial visualization. Multivariate datasets 
also differ in the fact that they can include attributes from a variety o f  other data sources 
(e.g., a video). T he  integration o f  different data sources a llow s data analysts to inves­
tigate trends in greater  detail, for example in activity recognition , security officers will 
analyse how an event (e.g., a fight) affects the pattern o f  pedestr ian  m ovem ent [BBS*08].

T he problem  o f  finding an effective representation for a h igh-dim ensional entity is
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a hard problem to solve. With the underlying data being very different, the visualiza­
tion of multi-field and multivariate data using glyphs has led to a wide variety of visual 
representations. Figure 1.4 (Multi-field glyphs) and Figure 1.5 (Multivariate glyphs) 
present a few examples illustrating some of these differences. As the dimensionality 
of a high-dimensional dataset increases, so does the complexity of finding an effective 
visual representation that promotes insight into such data. In particular, finding a map­
ping that enables a large number of parameters to be encoded into a glyph, while still 
be readily perceived remains a significant challenge. Thus, this thesis aims to address 
several aspects towards the following primary research goal:

Research goal: “How many variables can we effectively encode using a glyph?”

The answer to this problem is non-trivial, and is heavily influenced by various consid­
erations in glyph-based visual design such as its size (e.g., the amount of visual space 
the glyph occupies), or the type of information the glyph is trying to represent. The next 
section will discuss some of these potential challenges.

1.1.4 Challenges
Glyph-based approaches share common problems in general when visualizing multiple 
data attributes. We outline the most important challenges in detail below:

•  Perception and Design. One of the major challenges in glyph-based visualiza­
tion is how to create a visualization mapping that can reveal multiple fields of data 
and their correlations at a time. Encoding multi-faceted data can be non-trivial, 
since each data variable may contain various types of information (e.g., categorical 
and ratio data) and additional derived quantities (e.g., statistical measurements). 
Hence, glyphs must carefully be designed in order to convey the relationships be­
tween these fields effectively. On the other hand, there is also the perceptual chal­
lenge of how easy it is to understand and correctly interpret such a visualization. 
Simply encoding data to different visual features of a glyph does not necessarily 
lead to a good design, and at worse, may confuse viewers or lead to misinterpre­
tations. The design of glyphs is also constrained by their size in comparison with 
an entire visualization (e.g., smaller glyphs versus larger glyphs), which restricts 
the number of variables that can be physically encoded and displayed on a screen 
without loss of information.

•  Glyph Placement and Interaction. The placement or layout of glyphs on a dis­
play can communicate significant information regarding the data values them­
selves, as well as the relationships between data points. Methods range from 
using data dimensions as positional attributes, to placing glyphs across a surface 
of a physical structure such as an engine. In simulation and modelling, the spa­
tial structure is usually pre-determined, and therefore a sampling method needs

10
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to be carefully chosen in order to convey the underlying features. Too dense of 
a sampling will lead to visual clutter, while a sparser placement may not capture 
the feature at all. An important part to placement strategies and glyph-based visu­
alization is the effective use of interaction. We find that interactive visualization 
techniques such as spatial relaxation, brushing, and filtering is often required to 
support visual exploration, for example, by highlighting areas of interest, which 
enables users to interrogate and extract information about the data more efficiently.

• Big Data. A major technical issue arises from the sheer volume of data that may 
be generated from complex simulations and scientific measurements. When com­
bined with high dimensional data, not only do such datasets become difficult to 
analyse and explore, but they also expose a fundamental problem in modern com­
puting and their capacity to process and render large numbers of high-dimensional 
glyphs. In particular, visualizing large datasets has a significant impact to the in­
teractivity of glyph-based visualization. Therefore, glyph-based algorithms must 
be able to handle large datasets and present results at close to interactive frame 
rates in order to increase its usability.

This thesis addresses several aspects within the first two challenges on perception, 
visual design, placement, and interaction. While the datasets we work with are large and 
high-dimensional, they may not necessarily be considered as ‘big’, since the term big 
data often concerns datasets involving millions of records (e.g., in particle simulation). 
The scalability of high-dimensional glyph-based visualization to big data is an important 
research challenge, and we consider some of these as future work (Chapter 8 ).

1.2 Contribution
The main contributions of this thesis are as follows:

•  An overview of the current state-of-the-art glyph-based literature for depicting 
multivariate or multi-field data [BKC*13]. The survey draws links between fun­
damental concepts from semiotics, perception and cognition to understand why 
glyph-based representations work, and how to design such representations for 
optimal display given a specific design criterion. Examples of effective glyphs 
used in various applications such as medical, flow, and sports visualization are 
described.

•  The development of a novel collection of glyph-based visualizations to depict 
the composition of multiple error-sensitivity fields for single camera position­
ing [CPL*12]. In many data acquisition tasks, the placement of a real camera 
can vary in complexity from one scene to another due to real-world practicalities 
that cannot be easily encoded into an algorithm. We use 2D and 3D visualiza­
tion methods to effectively support such a process based on error-sensitivity of

11
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reconstruction and other physical and financial constraints. This enables a user 
to make dynamic decisions without the need for extensive manual configuration 
through trial and error. We demonstrate our approach on two real-world applica­
tions, namely, snooker analysis and camera surveillance.

•  A design study to visualize actions and events “at a glance” using glyphs. Our 
approach addresses the current problem in real-time sports performance analy­
sis [LCP*12], where coaching staff and analysts need to examine actions and 
events in detail whilst maintaining a clear overview of a match. We discuss the 
relative merits of metaphoric glyphs in comparison with other types of glyph de­
signs in this particular application, and describe an algorithm to manage the glyph 
layout at different spatial scales in interactive visualization. As a result of this 
research, we developed a visualization software, MatchPad, on a tablet computer 
which was used by the Welsh Rugby Union during the Rugby World Cup 2011. 
The system allows coaches to convey crucial information back to the players in a 
visually-engaging manner to help improve their performance.

•  The introduction and development of high-dimensional, focus and context glyphs 
that are visually sortable to support sorting of multivariate data [CLP* 15a]. 
Glyphs that are visually sortable provide two key benefits: 1) performing com­
parative analysis of multiple attributes between glyphs, and 2 ) to support multi­
dimensional visual search. We describe a novel glyph-based, interactive system 
for controlling high-dimensional sorting and viewing sorted results. The system 
incorporates a hierarchical axis binning method to encode multiple dimensions 
onto a single axis. This effectively reduces visual clutter by relaxing the posi­
tioning of glyphs. We demonstrate the usability of glyph sorting in rugby event 
analysis for comparing and analysing trends within matches.

•  A knowledge-assisted, visual analytic application to support the ranking and anal­
ysis of multivariate events [CLP* 15b]. In the context of sport event data, coaches 
and analysts heavily rely on browsing key events for analysing team and player 
performance. We introduce a novel approach that allows domain experts to effec­
tively search and re-organise a set of events in a flexible manner by converting a 
user’s knowledge on ranking using regression analysis. We provide details of our 
system that integrates both glyph-based and information visualization techniques 
to facilitate the discovery and application of knowledge at different stages of a 
visual analytic process.

•  An empirical evaluation on the perceptual orderability of visual chan­
nels [CAB* 14]. The design of effective glyphs for visualization often involves 
a number of different visual encodings or “channels ” (e.g., size, shape, and hue). 
Since spatial positioning is usually specified in advance, we must rely on other 
visual channels to convey additional relationships for multivariate analysis. One

12
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such relationship is the apparent order present in the data. This work builds upon 
our previous research on sorting glyphs [CLP* 15a]. We found evidence that cer­
tain visual channels are perceived as more ordered (for example, value) while 
others are perceived as less ordered (for example, hue) than the measured order 
present in the data. As a result, certain visual channels are more/less sensitive to 
noise. We also find visual channels that tend to be perceived as ordered, improve 
the accuracy of min and max judgements of elements in a sequence.

1.3 Thesis Structure
The remainder of the thesis is structured as follows: In Chapter 2 we discuss the state- 
of-the-art in glyph-based visualization. A detailed overview of foundations, design 
guidelines and techniques is presented. In Chapter 3, we describe several novel ap­
proaches for visualizing multiple error-sensitivity fields for single camera positioning. 
Chapter 4 presents a design study comparing metaphoric glyphs and other glyph-based 
designs for visualizing events and actions “at a g l a n c e A conceptual framework is 
then introduced in Chapter 5 to design visually sortable glyphs for interactive sorting of 
multi-dimensional data. Chapter 6  extends this work, developing a knowledge-assisted, 
visual analytic application for ranking multivariate events. An empirical study on the 
perceptual orderability of different visual channels is detailed in Chapter 7. Finally, in 
Chapter 8  we draw our concluding remarks of the thesis, and discuss potential future 
research based on this work.
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Chapter 2

The visualization of data that are given as either fields of values or multiple data 
dimensions is a classical topic in visualization research. A substantial amount 
of relevant work has been done in the past decade, introducing a rich collection 

of well-proven techniques for depicting and revealing insight into multi-dimensional 
analysis. Glyph-based visualization is one possible approach to realise such a visual­
ization. Its major strength is the ability to present patterns of multi-dimensional data in 
the context of a spatial relationship where such patterns can be more readily perceived. 
Other visualization techniques such as direct volume rendering find it difficult to de­
pict multivariate or multi-field data, whereas techniques such as parallel co-ordinates 
do not convey the spatial relationship inherent in the data as effectively. In the era of 
data deluge, this provides strong motivation to investigate the cost-effectiveness of using 
glyph-based visualization. This chapter is the result of a piece of collaborative research 
from leading groups in the field, where I made significant contributions in creating the 
taxonomy, surveying important glyph-based literature in a range of applications, and 
classifying these work according to this taxonomy. An extension is made for this thesis 
by focusing the scope of the survey to high-dimensional glyphs, and updating the tax­
onomy to classify related work based on the glyph-based visualization challenge they 
address, and the visual encoding required to achieve this solution.

2.1.1 Contributions
In light of these challenges, the main contributions of this chapter are:

• The classification of multi-field and multivariate glyph-based techniques into three 
main challenges: perception and design, glyph placement, and the technical chal­
lenge associated with visualizing big datasets. We sub-group this further based on 
their visual encoding in order to investigate common similarities between glyph- 
based approaches, and to highlight visual encodings where current research have 
not yet fully explored.

• A review of recent theories developed in semiotics, perception and cognition; and 
identifying their relevance to glyph-based visual design.

• Surveying a large collection of applications in two contrasting visualizing com­
munities where glyph-based visualization has already made an impact.

The content of this chapter is organised as follows: In Section 2.2, we describe our 
classification method based on concepts in visual semiotics, and provide an overview 
of state-of-the-art work using this classification. Section 2.3 presents a survey of mul­
tivariate glyphs used within applications of information visualization. We then review 
examples of multi-field glyphs used within applications of scientific visualization in
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Section 2.4. Section 2.5 gives an overview of related literature in visual analytics— 
an important research field to high-dimensional glyph-based visualization. Section 2.6 
provides a discussion of the survey. We draw our concluding remarks in Section 2.7.

2.1.2 Scope and Methodology

In this chapter, we review important visualization papers in the past decade that utilise 
glyph-based techniques for depicting high-dimensional data. The visualization of multi­
ple dimensions can be classified into two general sub-fields: multivariate visualization 
and multi-field visualization. In practice, they describe the type of data we are dealing 
with, i.e., abstract data or scientific data as described in Section 1.1.3.

The broad aim of this survey is to compare the differences in the design and ap­
plication of multi-field and multivariate glyphs. We present this through real examples 
of successful glyph-based work in various application domains of information and sci­
entific visualization. Since our focus is on glyph-based solutions for high-dimensional 
data, we only consider techniques that use glyphs which encode three or more param­
eters. As a result, we do not include visualization papers in chemistry and physics as 
these glyphs only encode a small number of attributes. Similarly, literature that utilises 
popular multi-dimensional graphs such as scatter plot matrices [VMCJ10] are beyond 
the scope of this survey, as the points themselves are of low dimensionality.

2.2 Classification and Overview
The classification of glyph-based visualization for high-dimensional data is non-trivial 
given the many visualization applications, the diverse domain-specific knowledge re­
quired, and the variety of glyph-based techniques that has been developed to address 
these problems.

We follow a perceptual approach in order to classify glyph-based techniques using 
fundamental links drawn from semiology. Important to semiotics and visualization is 
that all glyphs share a common processing step, whereby data attributes are encoded 
into different visual features of a glyph. Such a mapping is referred to as visual chan­
nel [War08b]. The taxonomy by Chen and Floridi [CF13] organises a rich collection of 
visual channels into four main categories: geometric, optical, topological, and semantic 
channel. Glyphs are created by mapping data attributes to one or many of these chan­
nels. For instance, some approaches may use more visual channels from only one type 
of category, while others may use fewer number of visual channels, but from several 
different categories. Visual channels provides a framework in which glyph-based ap­
proaches can be effectively classified, and we make use of this in order to structure the 
papers surveyed in this chapter.

Our top level classification groups the literature according to the number of different 
visual channel categories explored in the resulting glyph-based design (i.e., using one,
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Table 2.1: A classification o f  glyph-based techniques fo r  multi-field and multivariate  
data. Each technique is grouped by application domain along the rows, and the type 
o f  visual channels used to construct the glyph along the columns. Entries are or­
dered in chronological order within each application group. The colours show the 
visualization challenge which each paper address: perception and design challenge,

glyph placem ent challenge, and big data challenge as outlined in Section 1.1.4.

two, three, or all four types o f  visual channels). We then sub-divide the work depending  
on w hether  they are multivariate g lyphs (e.g., an application o f  information v isualiza­
tion), o r  multi-field g lyphs (e.g., an application o f  scientific visualization). Papers are 
then co lour-coded according to the three main challenges in g lyph-based  visualization:



A Survey on Glyph-based Visualization

perception and design, glyph placement, and big data as outlined previously in Sec­
tion 1.1.4. If a paper addresses more than one challenge, we choose the main challenge 
addressed by the paper. And lastly, those papers belonging to a sub-class appear in 
chronological order (see Table 2.1).

Classifying the papers in this way facilitates the comparison of similar papers with 
one another. The classification provides three major aims: (1) to provide a quick but 
comprehensive overview of recent glyph-based solutions for high-dimensional data, and 
a summary of the main contributions of each paper, (2 ) to compare and contrast the dif­
ference between multivariate and multi-field glyph-based design from two very different 
communities, and (3) to highlight unaddressed areas for future research.

In the visualization literature, there have been several major surveys related to glyph- 
based visualization. The survey by Ward [War08a] provides a technical framework for 
glyph-based visualization, covering aspects on visual mapping and placement strate­
gies, as well as addressing important issues such as bias in mapping and interpretation. 
Ropinski et al. [RP08, ROP11] present a taxonomy of glyph-based techniques for spa­
tial medical data. Because glyphs are commonly used in vector field visualization, they 
have been discussed and compared with other forms of visualization in a collection 
of surveys on flow visualization [LWSH04, MLP*10], Separate surveys also exist for 
multivariate and multi-field research. Fuchs and Hauser [FH09] describe a general visu­
alization pipeline for depicting multi-field data, and classify techniques according to the 
point at which the multi-field nature of the data is being tackled. The surveys by Wong 
and Burgeon [WB97a], and more recently Liu [Liul 1] give a comprehensive overview 
of techniques for multivariate data. However, there is a need to build on these surveys by 
taking a holistic overview of glyph-based visualization in terms of fundamental concepts 
in visual design, techniques, and applications. We give a brief overview of a theoretical 
framework for designing glyphs before analysing examples of glyphs and their applica­
tion to real-world problems in more detail.

2.2.1 Design Aspects for Glyphs
Glyph-based visualization approaches span across a spectrum of visual designs from, 
for example, dense arrangements of relatively simple shapes (e.g., stick figures) to in­
dividual instances of complex glyphs that reveal a lot of information (but only for few, 
selected places) -  the local flow probe [dLvW93] would be an example for this type 
of glyph-based visualization. Additionally, we can differentiate visualization solutions 
according to which form aspects are varied according to the data, and how many differ­
ent values a glyph eventually represents (usually this number is not too large, often 2  

to 4, but then also examples exist where dozens of values are represented). Glyphs 
also vary with respect to whether they are constructed in a 2D or 3D visualization 
space. It would also make sense to consider glyph-based visualization approaches 
which are based on the placement of glyphs on surfaces within 3D (often referred to 
as 2.5D [LWSH04, MLP*10]). All of these design requirements are usually taken into
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consideration when designing new glyphs, and depending on the variability and com­
plexity of each aspect, different glyph-based designs may be more suitable than others.

A number of design guidelines such as Tufte’s principles [Tuf83] have been proposed 
to help describe what a good visualization should achieve. Such principles include:

•  showing the data.

•  avoid distorting what the data have to say.

•  make large datasets coherent.

•  encourage the eye to compare different pieces of data.

•  reveal the data at several levels of detail, from a broad overview to the fine struc­
ture.

• serve a reasonably clear purpose: description, exploration, tabulation, or decora­
tion.

While these visualization goals are useful to glyph-based visualization, they do not 
provide much insight towards understanding which glyph-based design is more appro­
priate for a given task. In the following sections, we provide an overview of the technical 
aspects of designing glyph-based visualization which we use to classify each paper.

2.2.1.1 Visual Channels

At the fundamental level, the perception of glyphs can be decomposed to a set of visual 
properties such as its size, shape, colour, and orientation which encode different values 
of a data variable. Such properties is often referred to as visual channels, and thus a 
glyph may make use of one or many of these channels for information display. Other 
terms have also been used within the literature, for instance, Bertin called them retinal 
variables [Ber83], while Ware referred to them as visual encoding variables as well as 
visual channels [War04, War08b]. The concept was first introduced in visual semiotics: 
a theoretical framework that encapsulates the mechanisms through which graphical rep­
resentations can signify information. Semiotics is the study of signs, and while it has 
mainly been explored in cartography for designing maps [Mac95], its usefulness and 
relevance to data visualization [MRO* 12] and glyphs [MPRSDC12] is gaining wider 
recognition.

One of the first and probably most unique attempt at developing a syntax of visual 
signs based on formal rules was proposed by Bertin [Ber83]. He identified six basic vi­
sual channels, namely: value, size, texture, hue, shape, and orientation which are the fun­
damental units of constructing any graphics sign. Since then, researchers have suggested 
adding more visual channels such as colour saturation and arrangement [Mor74], as well
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Geometric Channels Optical Channels Topological and Rela­
tional Channels

Semantic Channels

•  size / length / w idth /  
depth /  area / volume

•  orientation /  slope

•  angle

•  shape

•  curvature

•  smoothness

•  intensity /  brightness

•  colour / hue /  saturation

•  opacity /  transparency

•  texture (partly geomet­
ric)

•  line styles (partly geo­
metric)

•  focus /  blur /  fading

•  shading and lighting ef­
fects

•  shadow

•  depth (implicit /  ex­
plicit cues)

•  implicit motion /  mo­
tion blur

•  explicit motion /  ani­
mation / flicker

•  spatial location

•  connection

•  node / internal node / 
terminator

•  intersection /  overlap

•  depth ordering / partial 
occlusion

•  closure /  containment

•  distance / density

•  number

•  text

•  symbol /  ideogram

•  sign / icon / logo / 
glyph /  pictogram

•  isotype

Table 2.2: A taxonomy o f visual channels [CF13]. Each visual channel is classified into 
four categories: geometric, optical, topological and relational, and semantic channels. 
Glyphs are created by mapping data attributes to one or many visual channels.

as fuzziness, resolution, and clarity [Mac95, MRO*12] as shown in Figure 2.1. Cleve­
land and McGill made the first attempt at ranking several visual channels (e.g., position, 
length, and colour) based on how effective they encode different data types for data vi­
sualization [CM84]. This exercise was later extended to 13 visual channels [Mac8 6 ]. In 
addition, perceptual studies have been carried out to evaluate the effectiveness of some 
visual channels, relating to special visual properties in which certain visual channels 
are perceived [Wil67, QH87, ROP11], For example, the pop-out effects on some visual 
channels (e.g., colour) is stronger than others (e.g., shape), which can be taken advantage 
of to draw a viewer’s attention to important features in a visualization. A comprehen­
sive review of visual properties for glyph-based design is presented in the taxonomy by 
Maguire et al. [MPRSDC12].

Our classification is based on the recent framework by Chen and Floridi [CF13], who 
organise over 30 visual channels into a simple taxonomy consisting of four categories: 
geometric, optical, topological, and semantic channels. The categorisation is the first re­
search of its kind to facilitate the vast amount of techniques proposed in the visualization
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Figure 2.1: Exam ples o f  visual channels applied to point symbols. [M R(T 12]

l iterature. Follow ing this approach, a rich collection o f  visual channels  is sum m arised  in 
Table 2.2. M ost o f  these visual channels  can be o f  potential use in g lyph-based  design, 
though only  a small num ber o f  channels  have been utilised. This suggests  that the design 
space for g lyphs is far from being fully explored.

2.2.1.2 Perceptual Organisation

D esigning g lyphs usually involves several design considerations. Apart from encoding 
variables to a visual channel, the w ay  in which different channels  are organised can 
create various visual effects to the inform ation being  convey. T he first m ajor attempt 
to understand  pattern perception was undertaken by Gestalt psychologists  w ho outline 
a set o f  fundam enta l and universal rules o f  perceptual organisation known as “Gestalt 
L a w s”. T he  word “gesta lt” simply m eans “pattern” in G erm an. T hese  laws describe 
the way w e see patterns in visual displays, which can easily be generalised  to a set o f  
design principles for creating glyphs. E ight Gestalt laws are d iscussed here: proximity, 
similarity, continuity, closure, symmetry, background/foreground, and pragnanz.

Proximity. The spatial p roxim ity  is a powerful perceptual organising principle and one 
o f  the m ost useful in design. The proxim ity  principle states that objects that are c loser 
to one another are perceived to be m ore  related than those that are spaced father apart. 
Figure 2.2(a) shows three arrays o f  dots that illustrate this phenom ena. The existence o f  
three groups (or clusters) is perceptually  inescapable, even though there are two sets o f  
identifiable colours.
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Figure 2.2: Gestalt principles o f  perceptual organisation. A theoretical fram ew ork that 
describe the self-organising tendencies in human perception when severed visual chan­
nels are com bined or structured in some fo rm  [WarOSb].

Similarity. The visual characteristics  o f  individual e lem ents  can also de term ine  how 
they are grouped. The similarity principle states that s im ilar e lem ents  tend to be grouped 
together. In Figure 2.2(b) we dem onstra te  two different ways o f  visually  separating the 
colum n inform ation, nam ely  by colour (e.g., black circles vs. red circles), and shape 
(e.g., circles vs. squares).

Continuity. The continuity  principle states that we are m ore likely to construct visual 
entities out o f  e lem ents  that are arranged on a line or curve, ra ther than those that contain 
abrupt changes  in direction. A com m on  application o f  this principle is in node-link 
d iagrams. W hen  e lem ents  are positioned smoothly, this can be stronger than similarity 
o f  co lour as shown in Figure 2.2(c).

Closure. In som e com plex  arrangem ents , e lem ents  can often be grouped  into a single, 
recognisable  pattern. Figure 2.2(d) gives two exam ples  show ing the c losure  principle, 
w here there is a perceptual tendency  to perceive closed contours  that have gaps in them. 
C losed contours  are w idely  used to visualize set concepts  in Verm-Euler diagram s. In 
g lyph-based  design, this m ay lead to the perception o f  fairly com plex  structures.

Symmetry. The sym m etry  principle can provide a powerful o rganising effect, 
whereby  sym m etrical shapes are form ed around their centre. In Figure 2.2(e) (i), the
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Figure 2.3: Bar chart glyphs showing the monetary exchange rates o f 10 U.S. countries 
over 3 years [War08a]. Each glyph represents a month within a year (i.e., each row), 
with the exchange rate o f each U.S. country mapped to the height o f the individual 
bars. The dimensions (i.e., each bar) on the glyph can be ordered to improve the overall 
effectiveness o f the visualization. Two methods are compared: (left) bars in random 
ordering, and (right) bars that are sorted based on the first record. Gradual changes 
and anomalies are much easier to perceive when the dimensions are ordered.

perceived picture is usually three sets of opening and closing brackets while in Fig­
ure 2.2(e) (ii) the dominant picture would be two overlapping diamonds. One possible 
application of symmetry is in tasks in which data analysts are looking for similarities 
between two different sets of time-dependant data. It is often easier to compare if these 
time series are positioned symmetrically [LLCD11].

Figure and Ground. The figure/ground effect suggest that elements are perceived as 
either figure (element of focus) or ground (background or surrounding area). In this 
principle, several factors play an important role: surroundness, size (or area), symmetry, 
parallelism, and external edges. Each of these five properties can determine which parts 
of a figure are classified as foreground or as background (see Figure 2.2(f) for example).

Praganz. The praganz principle states that when a viewer is confronted with an am­
biguous or complex representation, the simplest and most stable interpretation is always 
favoured. For example in Figure 2.2(g), even without colour information, we tend to 
perceive the complex shape as a composition of basic primitives (e.g., a square, circle, 
and triangle) that are joined together.

2.2.1.3 Data Mapping Order

The order in which dimensions are displayed on the glyph can have a significant impact 
to the effectiveness of the overall visualization. By modifying the order of dimensions
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while preserving the type of mapping, as many as N! alternate views can be gener­
ated. An important issue in using glyphs is to ascertain which ordering(s) will be most 
supportive of the task at hand. Several possibilities exist beyond random ordering or 
the order in which the attributes are originally stored. One example is presented by 
Ward [War08a] as shown in Figure 2.3. Sorting the exchange rates of 10 countries in the 
U.S. by their relative values in the first year of the time series exposes a number of inter­
esting trends, anomalies, and periods of relative stability and instability. Ward [War08a] 
describes four possible strategies for ordering:

• Correlation-driven. Many researchers have proposed using correlation and 
other similarity measures to order dimensions for improved visualization [Ber83, 
ABK98, FK03, BS92]. These orderings help reveal clusters of similar variables, 
outlier records, and gradual shifts in relationships between variables.

•  Complexity and Symmetry-driven. Gestalt principles indicate we have a pref­
erence for simple shapes, and we are good at seeing and remembering symmetry. 
In [PWR04] the shapes of star glyphs resulting from using different dimension 
orders were evaluated for two attributes: monotonicity (the direction of change is 
constant) and symmetry (similar ray lengths on opposite sides of the glyph). The 
ordering that maximised the number of simple and symmetric shapes was cho­
sen as the best. User studies showed improved performance with complexity and 
symmetry optimised orderings.

• Data-driven. Another option is to base the order of the dimensions on the values 
of a single record (base), using an ascending or descending sort of the values to 
specify the global dimension order. This can allow users to see similarities and 
differences between the base record and all other records.

• User-driven. As a final strategy, we can allow users to apply knowledge of the 
data set to order and group dimensions by many aspects, including derivative re­
lations, semantic similarity, and importance. Derivative relations mean that the 
user is aware that one or more dimensions may simply be derived through combi­
nations of other dimensions. Semantic similarity indicates dimensions that have 
related meanings within the domain.

Alternatively, we can order the dimensions on a glyph based on its visual appear­
ance. Some attribute dimensions are likely to have more importance than others for a 
given task, and thus ordering or assigning such dimensions to more visually prominent 
features (e.g., colour) of the glyph will likely have a positive impact on task perfor­
mance. In order to optimally represent a data variable using a visual channel of the 
glyph, the corresponding data range should be normalised, for instance, to the unit in­
terval [War02, LKH09, ROP11]. The remapped data attributes parametrize the visual 
appearance of a glyph. Ropinski et al. [RP08], for example, use an interface similar to a
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Figure 2.4: Examples o f  different glyph placem ent strategies: Data-driven positions 
glyphs along some attribute axis or an underlying grid for data with spatial inform a­
tion such as map visualization. Structure-driven arranges glyphs to show an ordering , 
hierarchical, or other relationship o f  the data variables. Feature-driven places glyphs 
at local features such as iso-surfaces. User-driven allows users to incorporate their 
knowledge by interactively placing glyphs at specific regions in the domain.

t ransfer  function editor for m apping  a data attribute to a visual channel o f  a glyph. In ad ­
dition, the sem antics  o f  the data variable should also be considered, and is an important 
guideline  for selecting the appropriate  m app ing  [WaK)2, ROPI 1).

2.2.2 Glyph Placement

The placem ent o f  glyphs is a prom inent visual stim ulus and can be used to convey infor­
mation about the data as shown in Figure 2.4. In the context o f  information visualization. 
W ard |War()2) categorises p lacem ent strategies into data- and structure-driven  p lace­
ment. The fo rm er is directly based on individual variables or spatial d im ensions o f  the 
data, or on derived inform ation such as principal com ponen ts  analysis  (PC A ) [WG11J 
or m ulti-d im ensional scaling (M D S) [W B 97b |.  E xam ples  o f  data-driven strategies are 
p lacing the g lyphs in a 2D scatter plot, o r  aligning them with the underly ing data grid (in 
case o f  spatial data). Structure-driven p lacem ent, on the o ther  hand, is based  on the or­
dering, hierarchical or o ther re la tionship  o f  the data variables. A ccord ing  to Ropinski et 
al. [ROPI 1 ], such strategies are not directly applicable  to medical data. Therefore, they 
suggest feature-driven  p lacem ent as an additional category, where  g lyphs are placed on 
local data features such as iso-surfaces [RSM S*07, M SSD *08]. We consider  it useful 
to also consider user-driven  p lacem ent, where g lyphs are m anually  placed to investigate 
the data at a certain location [dLvW 93, TreOO].

2.2.3 Interaction

Interactive visualization looks at the ability to navigate and interrogate datasets through 
in teraction to improve understanding. T he literature in this field is vast, and for a com -

[RSMS*071 [dLvW 93]
Feature-driven User-driven

26



A Survey on Glyph-based Visualization

prehensive coverage of techniques, readers may consult the state-of-the-art survey by 
Zudilova [ZSAcL08]. However, as in many multi-dimensional approaches, the interac­
tion of glyph-based visualization is an important aspect for visual exploration of com­
plex datasets. Yi et al. [YKSJ07] identify seven key areas for the use of interaction 
in visualization: select, explore, reconfigure, encode, abstract/elaborate, filter, and con­
nect. For the exploration of data, Cockbum et a l [CKB09] investigate different interface 
schemes for studying the overview and detail of datasets. Chittaro [Chi06] also inves­
tigates the use of interactive visualization, however focuses primarily on small-screen 
mobile devices. While many interactive methods can be generally applied to a host 
of visualization techniques, some are tailored to the specific case of glyph-based ap­
proaches. Such an example is described by Ebert et a l [ESZM96], who incorporate 
two-handed interaction and stereoscopic viewing for the exploration of 3D glyph-based 
visualization. Shaw et a l  [SHB*99] investigate new techniques for using an interactive 
lens to explore a 3D glyph-based visualization. And the work by Yang et a l [YHW*07] 
propose a Value and Relation display that is designed for interactive exploration of large 
datasets.

2.3 Glyph-based Multivariate Visualization
All of the papers in this section use glyph-based approaches to visualize multivariate 
data. However, some of these techniques can also be applied in the scientific domain 
as demonstrated in [SFGF72, Che73], and therefore may be classified in either group. 
The research here is divided according to the data’s characteristics which makes them 
fundamentally different. In particular, we investigate three types of data: event-based, 
geo-spatial, and high-dimensional.

2.3.1 Glyph-based Techniques for Event-based Data

Events usually describe happenings of interest that occur at a given time or location. 
A popular and classic approach that combines the visualization of space and time is 
the space-time cube concept developed by Hagerstrand in 1989 [H89], where the actual 
events are visualized by placing glyphs at those positions where events are located in 
time and space. The work by Tominski et a l  [TSWS05] presents such an example using 
helix and pencil icons to visualize spatial-temporal data on maps. The dimension of 
time is mapped by extending the length/height of the icons in 3D space. Pencil icons is 
a useful visual metaphor due to their familiarity, and it allows time-dependent attributes 
to be effectively encoded using colour intensity along the faces (or sides) of the pencil. 
The pencil icons are used to analyse linear patterns that may occur in spatial-temporal 
data. The helix icon, on the other hand, is used to emphasise the cyclic characteristics of 
temporal dependencies based on their geometric shape. In order to create a helix icon, a 
ribbon is formed for each time-dependent variable. The authors demonstrate their work
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on visualizing m onthly  health data  on a m ap m onitoring  the behaviour o f  six diseases 
(see Figure 2.5).

Forlines and W ittenburg [FW 10] introduce Wakame g lyphs to depict m ulti­
d im ensional sensor readings. They  dem onstra te  their  approach to display a bu ild ing ’s 
environm ental sensor inform ation contain ing 40 dim ensions, and over 50K  samples. 
W akam e glyphs extend 2D radar charts to 3D  using time, and connects  each instance 
with a polygonal surface to create  a visualization object. A co lour  is then assigned to 
each vertex that co rresponds to the different d im ensions. The g lyphs are positioned over 
a 2D  building plan to com pare  sensor information betw een  different regions.

Botchen et al. [BBS*()8] describe the V ideoPerpetuoG ram  (VPG), a dynam ic  tech­
nique for visualizing activity recognition  found in v ideo streams. This involves stacking 
tem porally  spaced intervals o f  key video fram es and using co lour filled glyphs to repre­
sent geom etric  information (e.g., object identifier, position, size), sem antic  information 
(e.g., action type and inter-object relation) and statistical inform ation (the certainty and 
error margins o f  the analytical results). They dem onstra te  their  technique on surveillance 
video footage for sum m aris ing  the motion o f  people and actions.

An alternative glyph-based  approach  for m app ing  tem poral data is to encode the time 
d im ension directly onto the g lyph  as shown by Pearlm an and Rheingans |P R 08].  The 
authors introduce com pound  g lyphs for v isualiz ing network security events. T he c o m ­
pound glyph representation is a pie chart in which the size and co lour o f  each segm ent 
is m apped  to the am ount o f  activity and the type o f  service. O ne o f  the motivations o f  
using a simple pie chart design, is its ability to extend to the temporal dom ain  by slic­
ing the glyph as concentric  layers for depicting in form ation at different time instances. 
Each glyph indicates a node on the network in which connectiv ity  lines in the v isualiza­
tion represent the com m unica tion  betw een  nodes. They  successfully  dem onstra te  their 
method on a sim ulated netw ork  consisting  o f  a small set o f  client users. Suntinger et 
al. [SSO G 08] also use g lyph-based  event visualization to create an Event Tunnel for 
business analysis and incident exploration. Events here are depicted  using spherical

Figure 2.5: Visualizing monthly health data consisting o f  m ultiple tim e-dependent vari­
ables using (left) 3D pencil icons, and (right) 3D helix glyphs. The glyphs are p laced  
over a map to show  the temporal characteristics o f  different diseases [TSWS05].
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Figure 2.6: Glyph-based visualization  
o f  sounds. Sym bolic icons are used  
to convey the sem antic information o f  
sound in movies such as birds chirp­
ing, chimes, and the creaking o f  doors. 
The icons are positioned along a tim e­
line o f  the movie [JBMC10].

event glyphs which are then sub-divided into colour-coded  regions or by using size to 
m ap several attributes.

The work by Jiinicke et al. [JB M C 10] describes SoundRiver , a visualization sys­
tem that conveys the semantic information o f  sound  in m ovies through visual feedback 
to enhance  the experience o f  hearing-im paired  viewers. The system autom atically  ex ­
tracts sound features (e.g., music, speech, rain, etc.) from movies, and m aps them to 
a collection o f  p rogram m able  visual metaphors. Sym bolic  icons are used to effectively 
show different sound effects such as “aircraft flying by” , and “ch im es” that are o ther­
wise difficult visualize. The size and colour o f  the icon are then m apped to vo lum e and 
a tm osphere  o f  the sound, resulting in an overall expressive glyph design. Each glyph 
is placed along a timeline, com bin ing  o ther visualization features such as an envelope 
representing the m usic  strand, and additional icons representing speech events (see F ig ­
ure 2.6).

Parry et al. [P L C * 1 1] introduce a novel event selection concept for sum m aris ing  
video storyboards. A video s toryboard  is a form o f  video visualization, used to su m ­
marise the m ajor events in a video using illustrative visualization. There are three main 
technical challenges in creating a video storyboard, (a) event classification, (b) event 
selection and (c) event illustration. This paper focuses on challenges (b) and (c) which 
they dem onstra te  using a case study on Snooker video visualization. For event illustra­
tion. the authors explore  a collection o f  iconic g lyphs which convey some m etaphors  in 
addition to data values for event labelling. These  include ball objects that vary in size, 
opacity  and colour for representing ball trajectory and semantic information (e.g., ball 
type, event importance), textured circle glyphs and num bered  icons for depicting the se­
quences o f  shots, and a pie chart icon to represent scoring and video tim ing information.

the
Lord Asufll
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Figure 2.7: Visualization o f  water-vapor mixing ratio, illustrating the progression o f  
uncertainty by the use o f  spaghetti p lots and uncertainty glyphs [SZD~ 10].

2.3.2 Glyph-based Techniques for Geo-spatial Data

G eo-spatia l analysis  is a w ell-established held  which involves analysing  data with a g e ­
ographical or geo-spatial aspect. Cartographic  research contributes to a large proportion 
o f  this work, with icons and sym bols  playing a central role to m any o f  its applications. 
However, we often find that geo-spatial visualization m ay incorporate  inter-disciplinary 
techn iques  from other dom ains, and thus can be classified under m ore  than one category. 
M acE achren  et. al [M BP98] is such an exam ple  where the authors present a novel ap ­
proach  to v isualize reliability in mortality m aps using a bi-variate m apping . Given a base 
geographical m ap (United States), the technique involves using co lou r  filled regions to 
represent the data and texture overlay to represent the reliability.

H ealey  and Enns introduce a different approach [HE99] using m ulti-co lored  percep­
tual texture e lem ents  known as pexels  for visualizing m ulti-d im ensional datasets across a 
height field. T he  pexels appearance  is de term ined  by encoding  attribute values into three 
texture  d im ensions: height, density and  regularity. Pexels incorporate  pre-attentive fea ­
tures (e.g., height) to improve the accuracy o f  visual search-based tasks. To assess its 
effectiveness, the authors apply  their technique  on a typhoon data set where  w ind  speed, 
pressure  and precipitation is m apped  to the pexel properties.

Pang  [PanOI] provides an overview  o f  various geo-spatial uncerta in ty  metrics and 
identifies two m ethods for integrating this data into a geo-spatial representation: (a) 
m app ing  uncertainty inform ation to graphic  attributes (e.g., hue, opacity) o r  by using 
(b) an im ation  to convey uncertainty. By treating uncertainty fields as an additional layer 
o f  in form ation in cartography, techniques such as uncertainty g lyphs can be visualized 
independently  and overlaid on top o f  an existing geo-spatial visualization.

F uchs and Schum ann  [FS04] describe a m ethod  for integrating h igh-dim ensional,
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complex visualizations onto maps. Rather than designing new icons, they use current 
methods such as ThemeRiver icons and Time Wheel icons. These are referred to as 
visugrams", created by taking existing visualization techniques and reducing them in 
size so they form an icon, which can then be positioned spatially over a map. The focus 
of this paper discusses a general strategy for positioning such icons on maps using an 
adaptive labelling method that incorporates focus+context techniques.

The work of Sanyal et al. [SZD* 10] introduce Noodles: an interactive tool for visu­
alizing ensemble uncertainty in numerical weather models. The software incorporates 
glyphs, ribbons and spaghetti plots that use a variety of encodings such as colour and 
size as shown in Figure 2.7. They demonstrate their work on the 1933 Superstorm sim­
ulation, where the visual mappings illustrate the statistical errors (e.g., mean, standard 
deviation, interquartile range and 95% confidence intervals) in the data.

2.3.3 Glyph-based Techniques for High-dimensional Data

Generic glyphs for high-dimensional data is a desirable tool due to their applicability to 
a diverse range of fields. One of the most popular used approach is star glyphs, which 
was first introduced by Siegel et a l [SFGF72], Star glyphs map multiple dimensions 
to axes that radiate evenly from its centre, and the length of each axis represent the 
data value. A line is then drawn joining each axis to form a shape. The glyphs are 
typically placed in a 2D arrangement defined by two attribute axes, or in a uniform grid. 
What makes star glyphs so effective is its ability to compare similarities between multi­
dimensional entities holistically based on its geometric properties. It has been used to 
depict a variety of datasets which include: myocardial infarction data [SFGF72], coal 
data [PWR04], and animal datasets [LBR03].

An extension to the this work by Fanea et a l [FCI05] combine star glyphs with an­
other multi-dimensional technique: parallel coordinates, to create a new type of glyph 
called Parallel Glyphs. Their approach overcomes the problem of overlapping polylines 
in parallel coordinates, and the difficulties of comparing two star glyphs (because they 
are spatially separated). Parallel glyphs are constructed by extending parallel coordi­
nates into the third dimension, and connecting them as star glyphs. Colour-scales are 
applied to support comparison and selection task in 3D. They demonstrate their work 
on a plant dataset consisting of 100 generations of different bushes, each having five 
attributes.

Chernoff [Che73] introduce a novel, and interesting glyph called Chernoff Faces 
which displays data using cartoon faces by mapping data to different facial features, 
such as its eyes, eye brows, mouth, and head shape. The glyph was developed using 
the idea that since they use the perceptual characteristics of real faces, they may be 
particularly easy for people to use given our heightened sensitivity to facial structure 
and expression. The author demonstrate their approach to a fossil and geological dataset 
containing over 70 different specimens, in which each face encoded 8 variables. It was 
shown that chernoff faces are able to help in cluster analysis, discrimination analysis,
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Figure 2.8: Parallel glyphs fo r  visualizing large, high-dim ensional data. Each glyph 
represents a single high-dimensional object which are arranged along a pivot axis. 
Polylines are rendered to connect each glyph in order to compare changes in attribute 
values [FCI05].

and detect substantial changes in time series.
Kraus and Ertl [KEOI | present a visualization system using cus tom ised  g lyphs for 

interactive data exploration in 3D. The prim ary goal is to provide tools that allow users 
to interactively custom ise  the definition o f  glyphs according to the dataset they are trying 
to visualize. C om posite  glyphs are created by com bin ing  basic geom etric  objects  such 
as spheres, boxes, cones, cylinders, and text that m ap each variable in the dataset. Each 
glyph can also incorporate  an extra d im ension  using colour. They describe an application 
to a car  developm ent project, visualizing the results o f  com puter  simulations.

2.4 Glyph-based Multi-field Visualization

This section describe g lyph-based  techniques that have been used in multi-field v isual­
ization. Data is usually ob tained from simulation and m odelling  or  from sophisticated 
scanning technology  in various scientific dom ains, resulting to several fields o f  data that 
have either a scalar, vector, or tensor property  [Tel07]. Multi-field data concerns with 
one or  many o f  such fields. We also consider  physical simulation data as a separate  data 
type (e.g., [GRE09]), since they often involve the m odelling  o f  m ulti-attr ibute entities 
that are not characterised  by the previous data types.

2.4.1 Glyph-based Techniques for Multiple Scalar Data

D ue to its multivariate characteristics, geom etric  shapes are often used to represent m u l­
tiple data attributes. The work by Barr [B a r8 1 ] presents such an approach by introducing
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Figure 2.9: Visualization o f  a niagnetohydrodynamics simulation dataset displaying  
vortex tubes with positive vorticity (cuboids and ellipsoid glyphs) and negative voticity 
(stars) [SEK*98].

geom etric  shapes (superquadrics) used for creating and s im ulating three-dim ensional 
scenes. The author defines a mathem atical fram ew ork  used to explicitly define a fam ­
ily o f  geom etric  primitives from which their position, size, and surface curvature  can 
be altered by m odifying a family o f  different parameters . Exam ple glyphs include: 
a torus, star-shape, ellipsoid, hyperboloid , toroid. Furtherm ore, the author describes 
angle-preserving shape transform ations that can be applied  to primitives to create g eo ­
metric effects such as bending or twisting.

Using the set o f  superquadrics defined by Barr [Bar81], Shaw et. al [SEK*98] d e ­
scribe an interactive g lyph-based  fram ew ork  for v isualiz ing m ulti-d im ensional data. As 
opposed  to the analytical focus in the previous work, the authors describe a method 
for m apping  data attributes appropriate ly  to shape properties such that visual cues  e f ­
fectively convey data d im ensionality  without deprecia ting  the cognition o f  global data 
patterns. They m ap values in decreasing order o f  data im portance to location, size, 
co lour and shape (o f  which two dim ensions are encoded  by shape). Using supere llip ­
soids, they apply their fram ew ork  to the "thematic" docum ent similarities [SEK *98] and 
m agnetohydrodynam ics  simulation o f  the solar w ind in the distant heliosphere  (see F ig ­
ure 2.9) [E*00, ESOl j.

An alternative approach for representing multi-field data is to overlay multiple v isu­
a lizations onto a single image. The report by Taylor [Tay()2] provides an overview  o f  
som e these techniques for visualizing multiple scalar fields on a 2D manifold. Taylor 
initially hypothesise  that the largest num ber o f  data  sets can be d isplayed by m apping  
each field to the following: (1) a unique surface characteristic , (2) a different v isualiza­
tion technique for each field or  (3) by using tex tures/g lyphs w hose features depend  on
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the data sets. One such technique is introduced by Weigle et al. [WEL*00], who describe 
the use of oriented slivers. The authors depict each field as texture slivers oriented at 
different degrees, and where luminance is mapped to their relative scalar values. In the 
final step, each scalar representation is fused into a single image for simultaneous view­
ing. The authors demonstrate their work on a scanning electron microscope (SEM) data 
set containing 8 different scalar fields. An alternative approach is developed by Bokin- 
sky [Bok03] using data-driven spots (DDS). Here, multiple scalar fields is mapped to 
textured spots containing a single type of sparse, distinct glyphs of a specific size, colour 
and motion to produce visually separable fields.

Layering methods can also be extended to surfaces on 3D objects. Crawfis and 
Allison [CA91] introduce such a method using texture mapping and raster operations. 
The interactive programming framework enables users to overlay different data sets by 
defining raster functions/operations. Such a function may include glyph textures for 
mapping data attributes (e.g., vector data). Using a generated synthetic dataset, they 
present a method for reducing the visual clutter by mapping colour to a height field and 
using a bump map to represent the vector and contour plots. The final texture is mapped 
onto a 3D surface.

Feng et al. [FLKI09] introduce Scaled Data-Driven Spheres (SDDS) to visual­
ize multi-dimensional volume datasets and evaluate their work against superquadric 
glyphs [E*00, Kin04], SDDS extends the work by Bokinsky [Bok03] of 2D coloured 
spots, into 3D using coloured spheres. For SDDS, the field type and magnitude is 
mapped to colour and sphere radius as oppose to superquadric glyphs, where each scalar 
parameter is encoded into four glyph properties: thickness, overall roundness, cross- 
section roundness and colour. The authors demonstrate their technique to visualize 
a combination of Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance 
Imaging (MRI) data to scan brain tumours and determine tumour boundaries.

2.4.2 Glyph-based Techniques for Flow Data

Flow visualization has been a very attractive field within visualization research for a 
long time already, leading to a number of surveys [LWSH04, PL09, MLP* 10] that cover 
various aspects such as techniques, seeding and placement strategies, and feature extrac­
tion methods. Flow data consist of a vector field (2D or 3D) that describe the behaviour 
of the flow, as well as other fields (e.g., pressure, heat, etc.) and derived attributes that 
may also impact its behaviour. Most visualization research has pre-dominantly been 
conducted on simulation data resulting from Computational Fluid Dynamics (CFD). In 
general, such simulation data and experimental data is characterised by a certain level 
of uncertainty due to inaccuracies in the mathematical models and parameters. Integrat­
ing the presentation of data with uncertainty fields increases the complexity of the task 
significantly, and has since grown to become a field of research of its own [PWL96]. 
We therefore sub-group the following work according to these two specific application 
domains.
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2.4.2.1 Computational Fluid Dynamics

Glyph-based methods in the flow visualization community typically involves smaller 
glyphs that are densely positioned along the domain to reveal features of the 
flow [LWSH04]. This approach often results to fewer number of fields being depicted. 
De Leeuw and Van Wijk [dLvW93] instead introduce a larger, interactive probe-glyph 
for visualizing multiple flow characteristics in a small region. Such probe-glyphs is 
placed interactively (and sparsely) along a streamline to show local features in more de­
tail. One focus of this paper is the visualization of six components: velocity, curvature, 
shear, acceleration, torsion and convergence. In order to facilitate such a mapping, the 
authors incorporate a larger glyph design. The core components of the glyph consist of 
the following: 1) a curved vector arrow where the length and direction represents the 
velocity and the curvedness is mapped to the curvature, 2 ) a membrane perpendicular 
to the flow where its displacement to the centre is mapped to acceleration, 3) candy 
stripes on the surface of the velocity arrow illustrates the amount of torsion, 4) a ring 
describes the plane perpendicular to the flow over time (shear-plane), and finally 5) the 
convergence and divergence of the flow is mapped to a lens or osculating paraboloid.

Crawfis and Max [CM93] describe textured splats in volume rendering for visu­
alizing 3D scalar and vector field data. The aims of this approach is to enhance the 
performance speed of rendering glyphs in large, 3D datasets. Inspired by the work of 
Westover [Wes90], they integrate vector field representation in volume rendering using 
tiny vector particles or scratch marks in the splatting texture. The authors demonstrate 
their algorithm to a several datasets, including: climate data, tornado simulation, and 
airflow through an aerogel substrate.

Umess et al. [UIL*06] introduce novel techniques for visualizing two co-located 
2D vector fields. Based on combining and overlaying two flow representations (e.g., 
glyph, line integral convolution, or streamlines), the authors describe two techniques 
for enhancing the visual clarity of each vector field. The first approach uses different 
luminance intensities to allow certain fields to visually stand-out. The second approach 
utilises an embossing effect to visually separate the fields. The authors demonstrate their 
work on three data sets: particle image velocimetry (PIV), magnetohydrodynamic light 
supersonic jets and fluid dynamics.

In the context of weather simulation, Martin et a l [MSM*08] present a study to 
validate the effectiveness of traditional 2D hurricane visualizations by observing the 
users ability to mentally integrate the magnitude and direction of flow in a vector field. 
In particular, the authors focus on evaluating 2D glyphs (or wind barb) - a technique 
commonly used for depicting wind magnitude and direction in weather visualizations. 
For both magnitude and direction, users had to estimate the value at a given point and 
estimate the average value over a rectangular region. The authors use a real hurricane 
simulation data set in their study.

The visualization of time-dependent, unsteady flow is still highly regarded as one of 
the most difficult challenges today due to the dynamic nature of the data [MLP* 10]. The
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!
Figure 2.10: The visualization o f  vector fie ld  clustering o f  flo w  around an engine. A 
com bination o f  \v\-range and 6 -range glyph is used fo r  depicting the range o f  vector 
magnitude and direction in each vector cluster [P G L * 12].

work by H lawatsch et al. |H L N W I 11 address this p roblem  using flow -radar  g lyphs to 
visualize unsteady  flow with static images. The flow-radar is constructed  by transfo rm ­
ing tim e-dependan t vector attributes into polar co-ordinates, w hereby  vector direction is 
m apped  to angle, and the t im e to radius. In addition, the velocity m agnitude  is encoded  
using colour. The radar g lyphs provides a visual sum m ary  o f  the flow over multiple 
t im e steps. A m ethod for v isualizing flow uncertainty is described using a single arc that 
represents the angular  variation at given seed point. T he authors dem onstra te  their  work 
on two C F D  sim ulation data sets.

Peng et al. [PGL* 12] describe an autom atic  vector field clustering a lgorithm  and 
techniques that incoipora te  statistical-based multi-field glyphs for c luster  visualization. 
The algorithm  incorporates several properties such as the m esh resolution, velocity m a g ­
nitude, velocity  direction, and the euclidean distance to cluster regions o f  sim ilar  flow 
in im age space. G lyphs are then sam pled  at the centre o f  each cluster. A collection  o f  
c lustering g lyph-based  visualizations are introduced, such as |v |-range glyph or “d isc” 
(see F igure 2 .10 for exam ple)  that depicts  the local m in im um  and m ax im um  vector. The 
inner and ou ter  radius o f  the disc is m apped  to the vector m agnitudes. T he  0 -range  
glyph com bines  a vector glyph that illustrates the average velocity direction and  m ag n i­
tude, and a sem i-transparent cone that shows the variance o f  vector field direction. O ther 
v isualizations include stream lets that are traced from the cluster centre, and co lour  c o d ­
ing with m ean  velocity. T he authors dem onstra te  their c lustering results on a series o f  
synthetic and  real-world C F D  meshes.
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Figure 2.11: Shearing barbell glyphs to depict the uncertainty o f  different integrators 
and step-sizes between a p a ir  o f  streamlines [LPSW96].

2.4.2.2 Uncertainty Visualization

A num ber  o f  approaches have been used to quantify  and visualize uncertainty s im ultane­
ously with the underlying data. G lyphs is especially  well suited for this particular task as 
detailed by the work o f  W ittenbrink  et al. | W P L 9 6 |.  W here traditional vector visualiza­
tion m ethods such as w ind barbs [MSM*()8] and arrow g lyphs [LW SH04] simply ignore 
uncertainty inform ation, the authors develop g lyphs that depict several uncertainty m e t­
rics derived from sim ulation  o f  winds and ocean currents (e.g.. direction, magnitude, as 
well as m ean direction and length) using a variety o f  com m only  m apped  glyph attributes 
(e.g.. length, area, co lour and/or angles). This  m ethod shows the uncerta inty in the ex ­
act m anner which the dec is ion-m aker wants to see it, com bined  with the data. Other 
m ethods described by Pang et al. [PW L96] and W ittenbrink et al. [W PL95] are to add 
geom etry  or  to anim ate  the geometry. In order  to em phasise  areas o f  high uncertainty, 
they use g lyphs that are scaled to magnitude. However, this will result in unnecessary 
attention to areas with low certainty.

O ne similar approach introduced by M acEachren  [M ac92] is to encode uncertainty 
into the g lyphs by blurring them. In visualization the areas with high certainty will have 
g lyphs that are clear, while areas with high uncertainty will have glyphs that are more 
unclear. This technique involves the use o f  predefined glyphs o f  two clarity levels and is 
unable to display a variable degree o f  uncertainty.

Lodha  et al. [LPSW 96] present a system (U F L O W ) for visualizing uncertainties in 
fluid flow resulting from different integrators and step-sizes for com puting  streamlines. 
A pair o f  stream lines are interactively seeded by the user using different integration or 
step-size. T heir  differences are then visualized using several approaches that encode the
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uncertainty through their shape, size and colour. Examples approaches include uncer­
tainty ribbons and rakes, in addition to uncertainty glyphs such as line segment glyphs, 
shearing barbell glyphs, and twirling batons (see Figure 2.11 for example).

Further approaches for uncertainty visualization utilise 2D layering techniques, for 
example, Cedilnik and Rheingans [CROO] introduce procedural annotations which are 
deformed to show uncertainty information. The aim is to present the data and uncertainty 
with minimal visual distraction. Since meshes and grids are already present within a vec­
tor field representation, they exploit this area to prevent unwanted distraction from the 
data. A procedural grid-like texture is blended with the image and deformed accordingly 
to indicate regions of uncertainty. In addition, they also apply their technique as a way 
to deform glyphs to show their uncertainty values.

Ribicic et a l [RWG*12] describe an interactive sketch-based visualization system 
for investigating simulation models, and to assess the uncertainty associated with chang­
ing different model parameters. The authors demonstrate their approach on flood man­
agement simulation as a means of risk assessment. Such an approach provides an in­
tuitive mechanism for transforming sketches into boundary conditions of a simulation 
and to deliver visual feedback to end-users. A set of glyphs and icons are used to depict 
various simulation attributes. These include vector glyphs for illustrating the force field 
on a water flow and ensemble handle glyphs for representing uncertainty values.

The idea of uncertainty is also widely used in the field of Geographic Information 
Systems (GIS), and provides relevant work to the design of uncertainty glyphs. Such an 
example is presented by MacEachren et a l  [MRO*12], who evaluate the performance 
of visualizing three types of uncertainty (e.g., accuracy, precision, and trustworthiness) 
using point symbols. More specifically, they investigate how different visual channels 
and iconicity of point symbols affect intuitiveness for representing different categories 
of uncertainty, and th^effectiveness for a typical map use task: assessing and compar­
ing the aggregate uncertainty in two map regions. The results show that some visual 
channels (for example, fuzziness and location) are more effective at encoding different 
uncertainties than others (for example, orientation and saturation).

2.4.3 Glyph-based Techniques for Tensor Data

Tensor attributes are high-dimensional generalisations of scalars, vectors and matri­
ces [Tel07]. Just as a scalar is described by a single number, and a vector is described 
by an array of one dimension, any tensor with respect to a basis is described by a multi­
dimensional array. Tensor fields are commonly found in applications such as medicine 
and material science. In this subsection, we mainly discuss examples of glyph-based 
work in these two areas.
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2.4.3.1 Medical Visualization

In medical visualization, glyphs are often used to portray the characteristics of dif­
fusion tensor magnetic imaging (DT-MRI or DTI) [HJ05]. The work of Laidlaw et 
al. [LAK*98] presents two novel methods for such an approach. The first method uses 
normalised ellipsoids, where the principal axes and radii are mapped to the tensor eigen 
vectors and eigen values respectively. Glyph normalisation reduces the visual clutter and 
enables full depiction of the data set. The second method incorporates concepts from 
oil painting to represent seven tensor data attributes as multiple layers of varying brush 
strokes which is composited into a single visualization. The authors demonstrate their 
technique on DTIs of healthy and diseased mouse spinal cords.

Tuch et al. [TWBW99] discuss the use of higher angular resolution sampling to 
help reveal diffusion phenomena that are not present in standard tensor imaging. These 
include anisotropic and non-Gaussian diffusion regions in human brain white matter 
containing heterogeneous fibre orientations. The authors make use of orbital glyphs to 
depict the diffusion value defined by a function of angle and minimum diffusion value 
for each voxel.

Westin et a l [WMM*02] introduce a novel analytical solution to the Stejskal-Tanner 
diffusion equation system to produce a set of parameters that describe the shape of a 
tensor. This approach effectively reduces the number of tensor attributes that need to 
be encoded for DTI visualization compared to previous solutions using eigenvalue and 
eigenvector decomposition. The analytical solution derives three shape metrics: ci,cp, 
and cs to indicate the linear, planar and spherical properties of a tensor. Each shape 
metric is then mapped to a composite tensor glyph built from a sphere, disc and rod. In 
addition, the composite tensor glyphs is colour-coded according to shape such that blue 
is mapped to linear case, yellow to planarity and red for spherical case. The aim of this 
approach is to reduce the ambiguity caused by traditional ellipsoid representations.

Building upon previous research by Barr [Bar81] and Westin et al. [WMM*02], 
Kindlmann [Kin04] describe a novel approach of visualizing tensor fields using su­
perquadric glyphs. The motivation of superquadric tensor glyphs addresses the problem 
of asymmetry and ambiguity prone in previous techniques (e.g. cuboids and ellipsoids). 
An explicit and implicit parameterisation of superquadric primitives is presented, along 
with geometric anisotropy metrics ci,cp,cs [WMM*02] and user-controlled edge sharp­
ness parameter y, to create a barycentric triangular domain of shapes that change in 
shape, flatness and orientation under different parameter values. A subset of the family 
of superquadrics is chosen and applied towards visualizing a DT-MRI tensor field which 
is then compared against an equivalent ellipsoid visualization.

Kindlmann extends this work further using glyph-packing [KW06]: a novel glyph 
placement strategy. The goal of this work is to improve upon the discrete nature of 
glyph-based visualization using regular grid sampling, to a more continuous character 
such as texture-based methods by packing the glyphs into the field. A tensor-based po­
tential energy is defined to derive the placement of a system of particles whose finals
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Figure 2.12: G lyph-based visu­
alization fo r  the diagnosis o f  
coronary artery disease using 
a supertorus glyph [M SSD  'OS], 
Data attributes are encoded into 
its colour, opacity, size, and  
roundness.

positions is used to place the glyphs. However, this p lacem ent strategy can be c o m ­
putationally expensive. T he work by Hlawitschka et al. | H S H 0 7 1 presents an a lte rna­
tive glyph pack ing  m ethod using D elaunay triangulation  which successfully reduces the 
com putation  cost.

Oeltze et al. [OHG*08] incorporate 3D  glyphs for  v isualiz ing perfusion param eters  
in conjunction with their ventricular anatom ical context. They  propose two glyph d e ­
signs: (a) 3D  B u ll’s Eye Plot (BEP) Segm ent and (b) 3D T im e-Intensity  C urve (TIC) 
M iniatures for depicting  four perfusion parameters: Peak Enhancement (PE), Time To 
Peak (T IP ), Integral and Up-slope which describe the myocardial contractility and v i­
ability. The 3D B E P  segm ents  are r ing-shaped g lyphs which extend the previous work 
[CWD*()2] from 2D to 3D space. An im proved glyph (TIC miniatures) enables intuitive 
m apping  o f  all im portant param eters  in cardiac d iagnosis  as a result o f  encoding  TIC  
sem antic  m etaphors  (glyph shape) that is familiar to dom ain  experts. They  apply their 
technique on three datasets from a clinical study.

The work by M eyer-Spradow  et al. [MSSD*()8] present an interactive 3D glyph- 
based approach for the visualization o f  SPECT-based myocardial perfusion data. They 
utilise a supertorus prototype glyph which characterises S P E C T  data based on its colour, 
opacity, size and roundness. In addition, the visualization com bines the g lyphs with a 
colour-m ap o f  the m yocard ium  in o rder to depict the state o f  the underlying tissue. A 
novel p lacem ent strategy is used to position the g lyphs along the 3D surface (i.e., the 
m yocard ium ) according to random  distributions with relaxation. One motivation o f  such 
a p lacem ent strategy is to provide a m ore  even-distribution o f  glyphs. This addresses the 
problem  o f  unbalanced  p lacem ent that can occur  from regular grid  sam pling in com plex  
and non-uniform  meshes.

Peeters et al. [PPvA*09] present a novel technique for fast, detailed and accurate  
rendering o f  high angular  resolution diffusion im aging  (H A R D I) data. H A R D I g lyphs
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are built by deforming a large number of points along a spherical surface according to 
the orientation distribution function (ODF). Previous work on geometry-based HARDI 
glyphs often compromise the detail (reduce the number of polygons) in order to achieve 
feasible interaction. The authors make use of GPU-accelerated glyph rendering to pre­
serve glyph detail, whilst maintaining an interactive performance for HARDI data ex­
ploration.

2.4.3.2 Material Science

Many physical quantities of interest are described by tensor fields. Examples of such 
phenomena include deformation, stress, and electric field, and is commonly visual­
ized using tensor glyphs. The work by Kriz et al. [KYHR05] provide a review of 
such techniques on second-order tensors which include: Lame’s stress ellipsoids, Haber 
glyphs [Hab90], Reynolds tensor glyph [HYW03], and hyper streamtubes [DH93], Fur­
thermore, the authors introduce a Principal, Normal and Shear (PNS) glyph for visu­
alizing stress tensors and their gradients. The method extends the stress ellipsoids by 
mapping the shearing and stress component to the surface colour of the ellipsoid.

Schultz and Kindlmann [SK10] describe an approach to visualize general symmetric 
second order tensors that could be non-positive-definite by augmenting superquadric 
glyphs with concave shapes. The work extends previous methods (e.g., [Kin04], 
[WMM*02]) which concentrate only on tensors with strictly positive eigenvalues such 
as diffusion tensors to the general case by mapping the glyph shape to show eigenvalue 
sign differences. The shape between two eigenvectors is convex if the corresponding 
eigenvalues have the same sign, and concave if they are different. They then use colour 
to indicate the tensor’s quadratic form as shown in Figure 2.13.

Kelly et a l [JKLS10] evaluate the perceptual effectiveness of four existing ten­
sor glyph-based techniques: box glyphs [SKH95], cylinder glyphs [AWB01], ellip­
soids [FWZ01] and super-quadrics [JKM06] for encoding three tensor variables: the 
director (orientation), uniaxiality and biaxiality in nematic liquid crystal visualization. 
More precisely, the work focuses on how accurate a single glyph represents the tensor 
data characteristics. The experiment consist of showing several test glyph cases with 
various parameter values to users. Data recorded include four error metrics that corre­
spond with each tensor parameter and total error along with the response time for users 
to select their answer from a multiple choice option. The results of the study show that 
super-quadric glyphs performed better over the other glyph-based techniques tested.

More recently, Chen et a l [CPL* 11 ] describe a visualization method to convey 
asymmetric eigenvalue and eigenvector topology within fluid flows and solid deforma­
tions. They describe a hybrid visualization technique in which hyperstreamlines and 
elliptical glyphs are applied to a real-world dataset. This enables a more faithful rep­
resentation of flow behaviours inside complex domains. In addition, tensor magnitude, 
which is an important quantity in tensor field analysis is mapped to the density of hy­
perstreamlines and sizes of glyphs, allowing colour to be used to encode other tensor
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Figure 2.13: Visualization o f  geom etry tensors by augmenting superquadric glyphs 
with concave shapes to show eigenvalue sign differences and colouring to show  their 
quadratic fo rm s [S K 10].

quantities. To facilitate quick visual exploration o f  the data from  different v iew points 
and at different resolutions, the authors propose an im age-space  approach in which  h y ­
perstream lines and glyphs are generated  quickly  in the image plane. The com bination  
o f  these techniques leads to an efficient tensor held  visualization system for dom ain  
scientists. They dem onstra te  the effectiveness o f  their  visualization technique through 
applications o f  com plex  s im ulated  engine  fluid flow and earthquake deform ation  data.

2.4.4 Glyph-based Techniques for High-dimensional, Physical Sim­
ulation Data

T he study o f  h igh-d im ensional,  physical s im ulation data is often o f  special interest due 
to its multiple facets. The inter-relationship o f  different types o f  he ld  is particularly  
interesting for visualization researchers and dom ain  experts [Tay02], especially  when 
com bined  in the context o f  their spatial relationship. O ne o f  the most successful 2D 
m ulti-he ld  visualization technique is developed by Kirby and Laid law  [K M L99] w ho 
stochastically  arrange multip le  visualization layers to m in im ise  perceptual overlap  (see 
F igure 2.14). This  paper extends the w ork by Laid law  et. al [LAK*98 ] by apply ing  v isu ­
alization concepts  from oil painting, art and design, to the prob lem s in fluid m echanics. 
Given a perm utation  o f  layers, a user-specihed  im portance value is attached to each v i­
sualization o f  increasing weights in o rder to provide greater  em phasis  to h igher layers. 
Visual cues such as co lour and opacity  indicate regions and layers o f  im portance  (e.g.,
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rate o f  strain tensor exam ple  em phasise  the velocity  more by using black arrows). This 
method enables the s im ultaneous depiction o f  6-9 data attributes, in which the authors 
apply to a s im ulated  2D flow field past a cy linder at different reynolds number. The ex­
am ple  shows the visualization o f  velocity, vorticity, rate o f  strain tensor, turbulent charge 
and turbulent current using a series o f  visualization techniques such as tensor ellipses, 
vector arrows and co lour mapping.

Konyha et al. [K M H 03] introduce an interactive 3D glyph-based  visualization for 
rigid body s im ulation  data and propose a set o f  g lyphs for depicting  vector and angular  
quantities. T hese  include coloured disks which are co lour-coded to force m agnitude, 
glyph arrows for visualizing vector quantities, sector and spiral g lyphs for m apping  
multiple angular  properties. The authors dem onstra te  their technique for visualiz ing a 
chain and belt driven tim ing drives in engines.

Other types o f  simulation data involve m odelling  h igh-d im ensional, physical entities 
such as particles, and com plex molecules. These sim ulations typically  result in very 
large datasets, and can be simply challenging due to the sheer num ber o f  g lyphs that 
need to be rendered. With the increasing pow er o f  modern graphics hardware, many 
approaches have therefore exploited G PU -accelera ted  techniques in com bination  with 
glyphs in o rder to improve perform ance  and rendering capacity. For exam ple, the work 
by Reina and Ertl 1RE05] introduce glyphs for visualiz ing m olecular  simulation data in 
therm odynam ics.  The dipole glyphs consist o f  several parts: two spherical com ponen ts  
that represent the m olecular radii, a cylindrical m agnet that connects the spheres and a

Figure 2.14: Close up visualization o f  turbulent flo w  past a cylinder. Kirby and Laid­
law [K M L99] com posite m ultiple visualization layers using a variety o f  techniques such 
as glyph-based, colour-mapping, and texture-based encodings. The example shown here 
depicts two scalar fields, two vector fields, and a tensor fie ld  in the same image.
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colour mapping index for visual identification. The authors parameterise each molecular 
type as a series of geometric variables which are sent to the GPU for efficient rendering.

Grottel et a l  [GRE09] introduce a benchmarking tool for evaluating the performance 
of different CPU/GPU combinations to address the challenge of fast rendering for time- 
dependant point-based molecular visualization. A comprehensive review of different 
uploading strategies in OpenGL is given. In particular, the work looks at the use of 
compound glyphs which integrate colour-coded cylinders and spheres for representing 
molecular data, and optimising the process of transferring large number of data to the 
graphics card for rendering GPU glyphs.

2.5 Visual Analysis of Multi-dimensional data
The previous sections discuss examples of high-dimensional glyph-based techniques 
across a range of application domains. In these approaches, the goal is to use glyphs 
to directly encode each attribute of the data. However, in the visualization and analysis 
of big data such as social networking data and other multi-modal streams, the sheer 
volume of attributes and data points means it is often not feasible to use such a direct 
approach due to the amount of visual clutter when visualizing a large number of glyphs. 
This problem significantly limits the effectiveness of glyph-based visualization and our 
ability to interrogate complex datasets. Hence, the analysis of high-dimensional data 
requires more sophisticated methods [DEK* 12].

An important research field that addresses this topic is visual analytics. The 
goal of visual analytics is to facilitate analytical reasoning through interactive vi­
sual interfaces [DEK* 12]. Analytic reasoning techniques such as machine learning, 
dimension reduction, and predictive analytics [Fod02] help overcome the problem 
of high-dimensionality by reducing the number of dimensions that need to be anal­
ysed [DEK* 12]. There are two general approaches to the reduction of variables. The 
first approach involves combining two or more similar dimensions together using, for ex­
ample, principal components analysis or multi-dimensional scaling [Fod02]. The other 
approach uses mathematical models to extract and derive new statistical features from 
the data which captures the underlying relationship. Such features usually consists of a 
smaller number of variables, allowing for more effective and expressive visualizations to 
be produced. Since automated analysis only work reliably with well-defined problems, 
the idea is to support such approaches using interactive visualization. Visualization can 
then, for example, support the user in adjusting parameters at different stages of a data 
mining algorithm [HNH* 12], as well as presenting these results [TC05].

One common characteristic of visual analytic applications is their use of multiple 
linked views that make use of both information and scientific visualization techniques 
to support the visual analysis of large datasets. Coordinated views are useful because 
they combine the strengths of various techniques that may be better suited for differ­
ent parts of the analysis process. Concepts and techniques of glyph-based visualiza­
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tion is particularly well-suited for such a task as shown in a variety of domains which 
include: sports analytics [PSBS12, PVF13], text collections [DYW*13], and climate 
research [KMDH11]. For example, Kehrer et al. [KMDH11] adopt glyphs to visual­
ize heterogenous datasets in climate research to help analysts work with different con­
stituents simultaneously from multiple simulations. They propose glyphs to depict the 
median temperature, interquartile range and distance metrics using colour, size and the 
upper/lower shape of the glyph respectively. Other approaches may use glyph-based 
methods to aggregate between levels of data. The work by Mistelbauer et a l [MKB* 12] 
for instance, introduces Smart Super Views for the analysis of different datasets in med­
ical visualization. The system maps the relevance of different views to a super-elliptical 
shape, allowing scientists to analyse multiple regions of interest of different modalities 
simultaneously. Glyphs have also been used as part of a focus+context view for em­
phasising interesting features in the domain as shown by Straka et al. [SCC*04], The 
vast amount of literature in visual analytics has resulted in several major surveys such 
as in [Kj\F*08, MSS 12, DEK* 12], and is fast becoming a research area for the utility of 
novel glyph-based visualization.

2.6 Discussion
In order to understand the foundations of glyph-based design and to classify different 
glyph-based approaches, we made a connection between the perceptual studies of visual 
channels and glyphs with a focus on high-dimensional representation. We also examined 
several methods for glyph placement and supporting glyph-based interactions. Notice­
ably, we found that several factors may influence the design of glyphs, for example, data 
dimensionality (both spatial and temporal), as well as the number of attributes and their 
data types.

While this survey has confirmed that glyph-based visualization is an important tech­
nique in the field of visualization, we have also observed some doubts in the community 
about the encoding capability of glyphs primarily due to their size, limited capacity of 
individual visual channels and cognitive demand for learning and memorisation. Al­
though such reservations are very reasonable and cannot be overlooked in any practical 
applications, they do not undermine the relative merits of glyph-based visualization, 
which have already been demonstrated in everyday life as well as many applications. 
These merits include:

•  rapid semantic interpretation (e.g., visual metaphors for sound [JBMC10]),

•  more scalability in dimensions for multi-field and multivariate data visualization 
(e.g., [Kin04, SK10]),

•  suitable for both dense and sparse layout (e.g., [KW06, LKH09, LWSH04]),

•  adaptable for interactive visual analysis (e.g., [SCC*04, MKB* 12]).
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The overall goal of the visualization and the size of the data are also factors which 
need to be considered. For instance, is the visualization intended to show specific regions 
in more detail? Does the visualization need to convey semantic information rapidly? 
Or does the visualization need to facilitate the rendering of many glyphs interactively? 
We find that these questions or design requirements are usually tailored to a specific 
task [LKH09] or domain [RP08, MPRSDC12], and that some may be more general- 
isable than others. These design requirements were beyond the scope of this survey. 
However, it is important to note that such design requirements should ideally be com­
bined along with other perceptual concepts (e.g., visual semiotics) in order to achieve a 
more comprehensive design space of high-dimensional glyph-based visualization. One 
problem here is that establishing a common framework which is both meaningful for 
information theory and visualization technology is non-trivial.

2.7 Summary
In this chapter, we have presented a comprehensive survey of high-dimensional glyph- 
based visualizations, showcasing a variety of glyph designs, placement strategies, and 
rendering methods that each have their own merits and shortcomings depending on the 
application domain. The very wide application of glyphs across the literature is testi­
mony to their importance and utility, and that glyphs and icons can bring cost-effective 
benefits for high-dimensional visualization.

During the composition of this survey, it has helped identify some major gaps in 
the current research of glyph-based visualization which inspired the work within this 
thesis. In particular, we noticed the utility of high-dimensional glyphs has received 
more research in some application domains than others in both scientific and informa­
tion visualization (see Table 2.1). For multi-field glyphs, there has been a substantial 
development in areas such as tensor and flow visualization. However, one major prob­
lem as highlighted by Taylor [Tay02] is that these approaches are directly applicable 
only to glyph representations with a small number of fields (typically three or fewer), 
for example, one or two vector fields [UIL*06]. With the introduction of more complex 
simulations and the demand of engineers to analyse a greater number of fields (e.g., 
uncertainty and sensitivity fields [WPL96]) simultaneously, we find that existing tech­
niques do not scale particularly well for such a task. This problem motivated the work in 
Chapter 3 to investigate glyph-based techniques for visualizing multiple error-sensitivity 
fields.

In contrast to glyph-based multi-field visualization, research in multivariate visu­
alization has mostly under investigated the use of high-dimensional glyphs, and fo­
cused more on other approaches, for example, parallel co-ordinates [Ins85, GPL* 11]. 
As mentioned in Section 2.3.1 and Section 2.3.2, previous studies primarily address 
the challenge of visualizing time-dependent data within a spatial context using glyphs 
such as in [TSWS05], One common solution is to map the temporal dimension to the

46



A Survey on Glyph-based Visualization

z-axis (in 3D space) resulting in 3D glyphs. A drawback with such glyphs is that sev­
eral attributes become occluded from view, and therefore limits the number of different 
dimensions displayable on the glyph. Other glyph-based approaches focus on encod­
ing high-dimensional data (see Section 2.3.3). The major problem with such glyphs 
(e.g., [Che73, FCI05]) is that these encodings are often difficult to interpret (since they 
do not easily relate to the data), which makes identifying individual attributes on the 
glyph non-intuitive. In Chapter 4 and Chapter 5, we introduce glyphs that encode mul­
tiple dimensions with the fundamental difference that each attribute can be more readily 
perceived. We find our visual mapping can enhance the usability of glyph-based vi­
sualization and improve the performance of specific tasks, for example, information 
retrieval.

This chapter also provides an overview of important work in the field of visual ana­
lytics which influenced the research described in Chapter 6 . We discussed in Section 2.5 
some limitations of glyph-based visualization with high-dimensional data, and how mul­
tiple linked views, interaction, and analytical reasoning can be used to overcome such 
problems. In particular, we make use of these concepts to address the challenge of sort­
ing multivariate events.
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Designing High dimensional Glyphs for 
Visualizing Multiple Error-Sensitivity Fields
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IN the previous chapter, we surveyed a collection of important glyph-based literature 
that addresses the challenge of high-dimensional data. A long standing problem in 
the field of visualization that we identified through this research, is the ability to dis­

play multiple overlaid datasets. Multiple fields (e.g., scalar, vector and tensor fields) are 
usually obtained from different sampling sources or computational processes. The report
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Figure 3.1: Constraint maps o f  a sample snooker room wall (Left) and a construc­
tion scene (Center) with dynam ic constraints (Right). The green region highlights valid 
cam era m ounting positions with invalid positions m apped to red. The construction scene 
images correspond to the right wall o f  the camera surveillance scene in Figure 3.7. The 
fo cu s region m ust he fu lly  in view o f  the camera fo r  a position to be considered as valid.

by Taylor |Tay()2] showed that existing multi-field techniques (e.g., (WFF*()(), Bok()3]) 
are v isually  intuitive only up to few num ber o f  fields. Since g lyph-based visualization is 
an effective approach for encoding  multiple attributes, this motivated us to explore  the 
use o f  g lyphs in this particular domain.

O ne m ajor  topic in multi-field research is the v isualization o f  uncerta inty information 
and pa ram ete r  sensitivity [W P L 96 |.  M any practical applications, ranging  from  physi­
cal sim ulation  [K M L99] to com puter  vision algorithm s |Z K 9 8 |  rely on analysing such 
fields s im ultaneously  in order to gain insight on the data. This  chapter  addresses  the 
needs for  visualizing error sensitivity associated in 3D scene reconstruction, which  is 
a com m on  m odelling  m ethod in com puter  graphics (e.g., |R H H L()2 |) .  Error-sensitivity  
analysis is one approach for selecting an optimal cam era  position within a given scene. 
There are tw o main types o f  cam era  positioning problem s. On one hand, we have the 
selection o f  virtual cam eras  for conveying the most inform ation to the user, for ex am ­
ple. for scene understanding |V F S H 01],  volum e visualization [BS05] and im age-based 
m odelling  [ K B G K 07, FSG09]. On the other, there is the task o f  positioning a real c a m ­
era for op tim is ing  vision-based applications [CK88], This work focuses on the latter. In 
3D reconstruction, errors in estim ating cam era  extrinsic param eters are the m ost funda­
mental errors, which m ay be caused by a variety o f  reasons, including errors in image 
processing  (e.g., edge detection), feature analysis  (e.g., corner recognition) and geo m e t­
ric correlation. This leads to multiple error sensitivity fields which need to be visualized 
together.

Statistical analyses on one or more error sensitivity fields is often used to analyse 
com plex  param eter  spaces, for  exam ple, by com puting  an average error field, o r  identi­
fying the cam era  with least e rror sensitivity based  on magnitude. However, it is difficult 
fo r  such statistics to convey detailed inform ation such as error distribution and o rien ta­
tion in different fields and in different parts o f  a field. In m any real-world applications, 
error analysis  must also be com bined  with o ther observations and practical constraints. 
For exam ple ,  in 3D reconstruction, the best cam era  position is not a lways determ ined
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by the lowest error sensitivity. Additional knowledge such as feasibility of the camera 
position (i.e., windows, picture frames, scaffolding), mounting equipment cost, and im­
pact on the environment (e.g., spectators, pedestrian and players) will heavily influence 
a user’s decision as shown in Figure 3.1. Such factors are fundamental to the plan­
ning process especially when constraints are dynamic, and when a system needs to meet 
the specific demands of a practical framework (e.g., portable camera systems versus a 
permanent setup). This is often desirable since many venues, coaching rooms, and out­
door environments are multi-purpose and require a flexible solution. Therefore, we need 
to investigate camera placement and their associated sensitivity in a three-dimensional 
search space.

Given a set of camera positions and error sensitivity fields, a typical approach for 
finding an optimal solution would be to use Machine Learning [AT04, OLF09]. The 
process of machine learning involves modelling the problem (e.g., the requirements for 
camera placement) as formal parameters which are optimised. Due to the range of pos­
sible camera configurations in addition to the practical requirements of a user, encoding 
such semantic knowledge with attached weighting parameters into an algorithm is highly 
impractical due to costs in labor. This problem motivates us to explore a novel solution 
by introducing visualization as an effective planning tool for optimal placement of a 
camera. A visualization solution is desirable for informing the user of the error sensi­
tivity in both a comparative and summative manner, while empowering the user to bring 
additional information and knowledge into the analysis.

We present a study using 2D and 3D visualization methods to assist in single camera 
positioning based on the error sensitivity of reconstruction. The goal of our visualization 
is to visually compare candidate camera positions through their associated error sensi­
tivity, and to provide visual suggestions for estimating an optimal camera position. We 
find that visualization provides a faster, and cost-effective alternative over other view­
point selection methods for real cameras and enables the user to make dynamic decisions 
that integrate trade-offs between reconstruction quality and feasibility. In particular, the 
main contributions of this chapter are:

•  We develop a novel collection of glyph-based visualizations which depict multiple 
error sensitivity fields. These visual mappings can be used to evaluate prospective 
camera positions.

•  We provide a visual summary of camera positions in a given 3D context visual­
ization. This effectively aids the estimation of the best single camera position by 
enabling the user to incorporate physical, financial and other types of constraints 
into the decision process.

•  We demonstrate the usefulness of our visualization method on two real-world ap­
plications with feedback from end-users. We note that for the application we 
present, financial constraints limit the user to positioning a single camera and pre­
vent the user from incorporating sophisticated 3D scanning or sensor technology.
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Figure 3.2: An overview o f  the com ­
bined visualization pipeline fo r depict­
ing error sensitivity in single cam ­
era positioning. There are three main 
stages: Extracting the error sensitiv­
ity data from sample camera positions, 
generating the 2D error map and gen­
erating the 3D environment visualiza­
tion.

T he rem ainder  o f  the chap te r  is organised as follows: Section 3.2 outlines the sys­
tem p ipeline o f  our  visualization system. Section 3.3 briefly describes the reconstruction 
techn ique  we follow, and detail ou r  m ethod  for  extracting  error  sensitivity from single 
cam era . Section 3.4 gives the design process for visualizing multiple error  sensitivity 
and the steps for generating  both 2D and 3D error visualization. Section 3.5 and 3.6 
gives an evaluation o f  our proposed visualization schem e and how this m eets our  re ­
quirem ents . Feedback from end-users  and dom ain  experts is used to evaluate our visual 
m app ings  o f  multiple error  sensitivity and to discuss the usability o f  the system. Sec ­
tion 3.7 gives discussion on the proposed  visualization and how this could  be extended 
for  future use. Finally, Section 3.8 provides  a sum m ary  o f  this work.

3.2 System Overview

The system  com prises  o f  three key aspects: extracting  the error sensitivity data, genera t­
ing the 2D  error m ap and generating  the 3D environm ent visualization. An overview  o f  
the system  is shown in Figure 3.2. The first s tage involves taking a set o f  sam ple im ages 
from given cam era  positions around the scene as shown in Figure 3.3. We extract the 
associa ted  error-sensitivity fields which  is detailed in Section 3.3. Following this, we 
estim ate  the cam era  pose from each im age which is necessary for m apping  the cam era  
position to the 3D environment.

T he  second stage m aps the corresponding  error sensitivity fields using visual designs 
we propose  in Section 3.4. This aids the user in analysing the uncerta inty at given p o ­
sitions and  allows a visual com parison  o f  multip le  cameras. In the final stage, a 3D 
visualization is generated  to sum m arise  multip le  error  sensitivity associated with each

Im ages

Error Cam era Pose
Derivation Estim ate

Error Sensitivity
Data

1

3D Visual Error Visual
M apping M apping

H V isualization
o
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Figure 3.3: A 3D reconstruction  
o f  the camera environment in the 
snooker scene. A set o f  sam pled  
camera positions are shown using  
grey spherical markers around the 
region o f  interest.

cam era  and to incorporate  contextual inform ation about the scene. Each visualization 
is displayed s im ultaneously  or on a dual-screen, allowing the user to interact with the 
3D visualization whilst analysing the error sensitivity in detail. Sam ple cam era  pos i­
tions can be selected within the environm ent which update the error map visualization 
accordingly. In addition, users can filter cam eras  based  on error-sensitivity to highlight 
potential cam era  suggestions.

3.3 Camera Sensitivity and Error Derivation

Three-d im ensional reconstruction and object tracking are highly sensitive to cam era  
p lacement. M any system s (e.g., Hawk-eye | O H S 0 3 ]) adopt multiple cam eras  to over­
com e p roblem s such as object occlusion and sam pling errors. The H awk-eye ball t rack­
ing system is com m erc ia l ly  used in sports such as Tennis, Snooker and Cricket to accu ­
rately reconstruct shots for television broadcasting. It is vital that the im ages captured  
from each cam era  contain  sufficient information about the scene. There are m any factors 
in cam era  sensitivity that will affect the image quality  used for reconstruction:

•  Resolution  —  the physical size o f  the im age captured by the cam era  de term ines 
the am ount o f  sam pling  error o f  the image data.

•  Viewing Angle  —  the m axim um  angle in which a display  can be v iewed. This 
highly  affects the availability and selection o f  cam era  poses (see below ) that fully 
capture  the entire scene.
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Figure 3.4: (Top) Reconstruction pipeline fo r extracting hall positions in a snooker 
scene using a single camera. The 3D reconstruction is based on a 2D homography. 
(B ottom ) Camera sensitivity analysis o f  the projective transform. Error sensitivity fields  
(or vector fie lds) are derived to quantify the impact o f  image distortion from  inaccurate 
fea ture  correspondence.

•  Camera Pose —  is a com bination  o f  position and orientation o f  the cam era  with 
respect to a  static object in the scene.

•  Lighting Condition  —  lighting variance can affect p rocessing steps such as colour 
classification.

•  Camera Vibration —  the stability o f  the cam era  should  be m in im ized  to reduce 
errors in feature detection.

In our case study, we focus on using 3D reconstruction as part o f  a coaching 
tool [LPC* 1 I], where only an approxim ate  estim ation o f  the balls is required. W hilst 
there are key advantages to a m ulti-cam era  system, it also presents several practical 
draw backs. For instance, such a system needs to be m anually  calibrated  before  use. This 
step can often be overw helm ing  and tim e consum ing  to a novice user such as snooker 
coaches and players. M ore  significantly, snooker clubs and academ ies have yet to benefit 
from such technology  due to the cost o f  installation (e.g., a round £200 ,000  for Hawk- 
eye). To facilitate our target users, we propose  error analysis on a m ore  flexible system 
using a single  cam era  [LPC* II] .  O ne desirable  ability is to review a sequence  o f  training 
shots [PLC* 1 1] to support perform ance  analysis. In order  to perform  ball tracking, we 
use a h igh-speed  e thernet cam era  capturing at 200 fram es per second. Since the cam era  
has a fixed resolution, v iewing angle, and focal length, our focus is to assess the quality  
o f  an im age at various cam era  positions that give the m ost reliable reconstruction.

56



Designing High dimensional Glyphs fo r Visualizing Multiple Error-Sensitivity Fields

Figure 3.5: Exam ple camera positions around the (First row) snooker table scene and  
(Third row) security scene. Below each image is the associated inverse transformation o f  
the camera position to obtain a projected top-down view. It can be seen that the quality  
o f  the inverse transformation is greatly in fluenced by the camera position.

3.3.1 Snooker Reconstruction

The goal o f  snooker reconstruction is to estim ate  the spatial positions o f  the snooker 
balls. As the balls lie a long a p lanar surface, this simplifies the problem  to extracting  the 
2D position (x ,y)  o f  the ball object, which can then be m apped onto  its 3D model. G uo 
and N am ee  [G N 07 | were the first to introduce ball reconstruction based  on a single, top- 
down view o f  the table. We follow the method presented by Legg et al. [LPC* 1 1J, which 
extends the previous technique [GN07] to an arbitrary cam era  position. Figure 3.4 (top) 
outlines this process. The first step involves transform ing the im age into a top-down 
view using 2D homography. The next step involves applying a threshold  filter to extract 
the specular highlight on the ball, and approxim ate  the location o f  each ball. We then 
identify a full or partial set o f  balls (e.g., for training shots) using connected  com ponen t 
analysis and co lour  classification in the resulting image. In the final step, the extracted  
balls are m apped  to their corresponding  position in the 3D model.

Fundam entally , the reconstruction accuracy o f  the balls is de term ined  by the cam era  
position that gives the least am ount o f  projective error. In an ideal scenario, a cam era  
would be placed directly top-dow n above the table. However, in snooker  and m any other

57



Chapter 3

sporting facilities (e.g., table tennis and pool), constraints such as lighting fixtures, the 
cost of mounting the camera and the practicalities of the camera position (see Figure 3.1 
for an example) means this is not possible. Therefore, we need to find alternative solu­
tions. We determine the quality of an image by evaluating the error sensitivity of the 2D 
homography associated with each camera pose.

3.3.2 Homography Sensitivity Analysis
Homography in vision-based applications [HZ04] is used to describe the projective map­
ping of a set of coplanar feature points a; € M2 in the observed scene onto another set 
of coplanar points b; G K3 in the model. Algebraically, corresponding tuples of points 
are related to each other by b; =  Ha; where the 2D homography H is a 3x3 matrix. Er­
rors in the transformation are typically introduced in the detection of feature points a;, 
as well as in the correspondence procedure. The impact of noise in the image, visual 
artifacts and even camera vibration can lead to false detection. In addition, we find that 
the stability of homography parameters is greatly affected depending on the camera pose 
(see Figure 3.5 for examples). Therefore, to investigate the quality of different camera 
positions, we assess the sensitivity of feature points for homography estimation. This is 
illustrated graphically in Figure 3.4 (bottom).

Suppose for an image /, we have a set of known ground truth positions of feature 
points a, that are mapped onto a set of coplanar points b; in the model for / =  1, . . . ,  N. 
The solution to H will give an accurate projective mapping from one plane to the other. 
Now let 5a; e  M2 be a noisy feature point imposed by some fixed deviation within a 
sensitivity region 5/s? (a;, 5a;) < r, for r G M. Analytically, errors under the new homog­
raphy mapping H' can be shown using the displacement vector 5b =  Ha — H'a, where 
5b =  {5b;} represents the projective error when a set of points a =  {a,-} is mapped onto 
the new plane. In image space, we describe the error in 2D homography as a set of 2D 
vector fields : M2 i— M2:

D<O(*,y) =  H (jt,)0- ! # ( * , y) (3.1)
where H ^ denotes the set of erroneous homographies corresponding to the sensitivity of 
each feature point 5a;,. . . ,  5a#. Any inaccuracies in feature point correspondence will 
greatly affect the visual quality of the projective transformation. The 2D vector fields 
are used to effectively depict the amount of distortion as shown in Figure 3.4 (bottom). 
Typically, one may combine multiple error sensitivity fields to illustrate the uncertainty 
associated with one or several feature points. Hence, we can generalise planar error 
sensitivity using m 2D error fields, where m > N .  The resultant error field y : R2 R2 

caused by each field is one example used to provide a statistical overview. This can be 
computed explicitly by Eq 3.1, or implicitly using the summation:

rix,y) = E DW(*,;y) (3.2)
i
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Due to the non-uniform distribution of errors, we find that the compositional ef­
fects of multiple error fields can lead to the negation of uncertainty. We refer to this 
as vector cancellation. This can be shown using the subadditivity property inherent in 
our function. Let d/ =  (dXj , dyj ) T G be the displacement vectors for each field and 
X = (Xxj, Ay)t)r  G /  denote the resultant vector at a fixed point, it holds that:

ll l̂l =  ||di +  • • • -fdw|| < | Jdi || + . . .  + 11dj?v11 (3.3)

Hence, the worst case of cancellation occurs when 11X \ \ =  0 whilst 3dj G such 
that | |d,-11 > 0 for i = 1 ,2, . . . ,  N.  It is possible to take this error into account using abso­
lute vectors or sum of vector magnitudes. However, as a result we lose other information 
(e.g., direction) that is critical in the analysis of planar error sensitivity. This includes 
identifying sensitive parameters and using the distribution of errors to guide optimisa­
tion algorithms. Hence, we find it becomes advantageous to visualize multiple error 
fields.

In our applications, we rely on detecting four feature points. For snooker, these 
points are defined by the table boundaries, where the focus is to obtain absolute ball 
positions for 3D scene reconstruction. In video surveillance, we use the comers of 
a marked rectangular region in which the position of pedestrians is of importance for 
vision-based applications. We develop visual methods for depicting the four error sensi­
tivity fields as a means for assessing camera sensitivity. Adjusting the sensitivity region 
r > 0  influences the error distribution, and therefore the size of glyphs in the result­
ing visualization. We set this parameter to r = 20 in order to produce glyphs that are 
perceivable.

3.4 Error Sensitivity Visualization

We propose an interactive visualization system for planning the optimal positioning of a 
single camera based on error sensitivity and various physical and semantic constraints by 
allowing the user to incorporate their knowledge into the decision process. The visual­
ization consists of two components: 1) a 2D visual map for depicting the compositional 
effects of multiple error sensitivity fields for each camera, and 2) a 3D visualization 
scene to illustrate the environment in which the camera configuration is to be arranged, 
adding context to the user. The 3D visualization allows the user to investigate the feasi­
bility of camera positions based on environmental constraints and gives an overview of 
the error sensitivity associated with each camera. We support user exploration through 
an interactively linked 2D error mapping, and provide user options for filtering and dis­
playing specific camera samples (e.g., with lowest error sensitivity) in a focus+context 
manner. In this Section, we outline some design considerations largely based on [Tuf83] 
(see Section 2.2.1) in order to deliver effective visualization. We then detail our design 
process for the visualization of multiple error sensitivity fields extracted from camera
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sensitivity analysis (see Section 3.3), and describe a method for estimating the cam­
era pose for mapping sample camera points to a 3D environment. Finally, we present 
our method for integrating error sensitivity into the 3D environment using a spherical 
visualization.

3.4.1 General Design Principles

We shall concentrate primarily on multi-field data visualization, however these design 
principles are applicable to other areas of visualization also. To ensure suitability of 
the sensitivity visualization, we outline the essential requirements that the visualization 
must conform to:

• R l. Detail — the visualization needs to clearly depict multiple error fields, each 
of which is a 2D vector field obtained from a single camera or from multiple 
cameras.

• R2. Overview — the visualization needs to show a summary overview that illus­
trates the combination of error sensitivity fields in a given contextual geometry.

•  R3. Cancellation — the visualization needs to represent uncertainty cancellation 
that may be present as a result of error field composition.

In addition to this, we want to ensure that the visualizations proposed are simple 
and intuitive in their formation. We consider a number of design principles that aim to 
enhance the quality of the visualization for conveying useful information to the user.

3.4.1.0.1 Visual Simplicity The focus of the visualization should be to convey the 
contents of data and to allow for user exploration, as opposed to the visualization tech­
nique itself. For higher-dimensional scenarios this can often be conceptually difficult 
and hence a more complex representation is required. We present a range of visual 
designs with varying degrees of complexity ranging from simple colour-maps to multi­
attribute glyphs. Additionally, we combine and make use of existing techniques (e.g., 
heat maps, vector glyphs and streamlines) that are familiar in the domain to support 
leamability of our visualization.

3.4.1.0.2 Visual Comparison In order to promote effective decision making, it is 
essential that visualizations can be perceptually evaluated and that comparisons can be 
made between two representations. By making visualization more comparative, a user 
should be able to visually rank two given data sets based on their visual representations. 
We have designed visualizations that allow the observer to compare camera positions 
and their associated error (e.g., Figure 3.9).
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3.4.1.0.3 Relationships Between Data A ttributes One of the main advantages of 
visualization is that it provides greater insight into the underlying phenomena. In the 
case of multivariate data, we are particularly interested in how different attributes af­
fect one another and these relationships should be conveyed to the viewer. Our multi­
attribute glyphs enable the user to examine the relationships between multiple error- 
fields. For example, our Bezier glyph integrates multiple vector attributes into a single 
shape that allows the user to perceive the distribution of error more easily.

3.4.1.0.4 Integrity Misleading visualizations are common [GR94]. Principles 
tuned towards statistical graphics can provide suggestions that help limit unintentional 
visualization lies. For instance, clear labelling should be used to help users overcome 
graphical ambiguity (e.g., Figure 3.8).

The aim of multi-field visualization is the depiction of multiple fields that are co­
located in the same domain for revealing complex interactions that occur between fields. 
Simulation data is one example where several fields (e.g., pressure and temperature) 
and associated uncertainties are studied together to make accurate predictions. Thus, 
the challenge is to make a coherent visualization that is meaningful given the high- 
dimensionality of the data. It is possible using statistical functions such as vector mag­
nitude to simplify the input data and encapsulate the phenomena into a single field. 
However, as a result we lose information (i.e., vector direction) which may be neces­
sary in the analysis. Therefore, we strive towards visualizing multiple fields to provide 
greater insight.

3.4.2 Visual Mapping of Multiple Error Sensitivity

The visualization of multiple error sensitivity fields is important for making compara­
tive assessment between different camera positions. Understanding the distribution of 
error is an important task to support various user-specific needs. For example, the action 
from a snooker training shot may typically cover a small region of the table. Therefore, 
camera positions that minimise the error in this area should be considered in addition to 
camera positions that have least, overall error sensitivity. The knowledge gained from 
each field can be used to minimise the reconstruction error further (e.g., as a optional 
post-calibration step) by optimising sensitive feature points that impact this region. It 
would be a huge challenge, if not an impossible one, to provide a visual design for an 
arbitrarily large number of fields. Here we consider a collection of visual designs for 
four error sensitivity fields which is minimal for solving planar homography matrix, ad­
dressing the requirements of our case studies. Figure 3.6 shows five example approaches 
that have been considered for the design of the visualization: Vector Glyphs, Co-Planar 
Star Glyphs, Stacked Ribbon and Streamlines, and Bezier Glyphs.
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(a) Vector G lyphs (b) Co-Planar Star G lyphs
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Figure 3.6: Development o f  the 2D error visualization using different approaches is 
shown, (a) presents a stacked vector glyph design, where magnitude is m apped to the 
length o f  the vector. This is extended in (b) to a C o-Planar Star glyph which norm alises 
the vectors and uses a heat map to depict the resultant error, (c) incorporates stacked  
ribbons (center) and streamlines (right) into the error visualization. Streamline thick­
ness is m apped to vector magnitude, (d) generates a closed Bezier curve based on the 
vector field. The glyph size is m apped to the resultant error.

Vector Glyphs: A rrow primitives are the m ost com m on  m ethod  for depicting  vector
quantities. A s a naive approach, we use four colour-coded  arrow s for representing each 
o f  the vector fields at a given point (Figure 3.6(a)). The length o f  the arrow is m apped  
accord ing  to the error m agnitude  with respect to each field. For  visualization, the vector 
g lyphs can be rendered  either on the sam e plane (i.e., for d  =  0), o r  separated  so that 
each  individual vector field is rendered on an independent plane, resulting in four  layers 
in 3D space. This a im s to overcom e overlapping issues that m ay arise.

Co-Planar S tar Glyphs: D ue to inevitable overlapping p rob lem s with vector glyph
representations in dense sampling, the directional inform ation can often be lost. To 
reduce  glyph  occlusion and preserve vector direction, the star g lyph  uses four norm alised  
co lour-coded  arrows. However, rather than using arrow length to indicate vector strength 
w e now use co loured  transparent ellipses (Figure 3.6(b)). T he four points on the ellipse 
e \ , e 2 .e ^ ,e 4  are used to m ap a gradient to the circle based on error  m agn itude  for  each
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vector. This creates a heat map which is effective for highlighting regions of large error.

Stacked Ribbons / Streamlines: Streamlines are an effective and well-known tech­
nique for visualizing vector fields [MLP*10], Urness et al. [UIL*06] present several 
strategies for visualising two vector fields. We adopt their streamline approach for our 
error visualization by mapping curve thickness to error magnitude (Figure 3.6(c)). Just 
as was found using vector glyphs, there are instances where occlusion can occur meaning 
that the vector fields can not be displayed clearly. For a more continuous representation, 
we extend streamlines to 3D space by rendering each vector field on a seperate plane. A 
surface is used to connect streamlines on adjacent planes, resulting in a stacked ribbon.

Bezier Glyphs: Our approach considers the vectors as a series of points that form
a closed Bezier curve (Figure 3.6(d)). This preserves the directional information that 
the vector glyphs offer, whilst giving greater visual clarity to the extreme directions of 
the four vector fields. The parametrized Bezier curves are divided into regions using 
distribution points crt centered at the midpoint of each spline, which adaptively move 
along the curve based on the difference in vector strength:

where v,- and vt+] are two adjacent vectors. This allows the user to identify which error 
source (i.e., vector field) is of dominant influence to the resulting geometrical shape of 
the Bezier glyph.

3.4.3 Sample points in 3D visualization

To introduce camera positions into the 3D scene visualization, we determine the geome­
try of the table to obtain a camera pose estimate. Given that we have four feature points 
and their corresponding positions in a 3D model, it is possible to estimate the viewing 
angles from a single image. Here we use the four comer points of the snooker table. 
The basic scheme is detailed by Putz and Zagar [PZ08], where a planar homographic 
transformation matrix is computed and an SVD-based approach is applied to extract the 
rotation and incline angles. A mapping function is applied to render the cameras in 3D 
space using the camera pose and the measured camera distance. In addition, filtering 
can be applied to highlight the £-least error camera positions. We use a similarity metric 
d  based on euclidean distance to provide k spatially different solutions to the user.

3.4.4 Spherical Mapping

Now that we can map our camera points to the scene, we use a spherical model to give an 
overview of the error sensitivity of such positions (see Figure 3.7). We visualize camera

m ax(||v /||,||v /+1||)
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Figure 3.7: Visualization o f  the 3D camera positioning around the snooker scene (Top 
row) and security scene (Bottom row). The cameras are m odelled using spheres, and  
colour m apped to its error magnitude. The sample points are then projected onto a 
spherical su iface centred at the fo cu s region, giving users an overview o f  the statistical 
error. (Left) shows a glyph-based approach fo r  depicting the average vector error and  
(Right) uses a colour-m apped sphere fo r  illustrating the overall error magnitude.

positions using spherical markers and a connecting  cylinder with length being m apped  
to the d istance betw een the camera, and the sphere that encloses the focus region. A 
spherical geom etry  was chosen due to its uniform characteristics  and its potential to be 
genera lizab le  to o ther dom ains. Here, we use a partial spherical mesh to em phasise  the 
boundary  o f  cam era  positions. To quantify  each cam era, we propose two visual options:
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multi-field glyphs and colour-coded sphere. For our glyph-based method, an average 
Bezier glyph representing the multiple error sensitivity fields are placed tangental to 
the sphere. For a colour-coded sphere, we depict the summation of the resultant error 
sensitivity field normalised by using a red-to-blue colour mapping. The vectors (or 
error magnitude) are splatted onto the sphere using a gaussian weighted Radial Basis 
Function (RBF) [Che05] forming an interpolated surface that gives visual estimates of 
local regions. We uniformly position the glyphs along the surface of the spherical mesh. 
Each point on the sphere is modelled as:

n

v($) = LMq>Pn'')v(P/) (3-5)
i

where v(q) is the camera error at position q, and w (q,p;,r) is the RBF weight function 
given by:

w(q,P i,r) = e~PlZ (3.6)

where w; =  | |q — p,-|\/r  is the relative distance from q to p, normalized by the radius 
of influence r, for some ft > 0 .
Naturally, the RBF tends towards zero as the distance tends to infinity and hence a 
restriction is placed on the kernel based on the radius of influence. The user option is 
a coefficient that can be altered in order to adjust the slope of the blending function.

3.5 User Consultation - 2D
We have proposed 2D and 3D visualization methods to depict the error sensitivity in 3D
scene reconstruction for estimating optimal camera placement. It is essential that the
visualizations can effectively convey to the user the presence of error and to allow visual 
and comparative analysis of different camera positions. To evaluate the effectiveness 
of our designs, we performed a qualitative user-evaluation involving six computer sci­
entists, three of whom are experts in computer vision. Figure 3.8 shows the collection 
of error-sensitivity mappings of the same camera position using the five visual designs 
in Section 3.4.2. Each study was carried out independently from one another, whereby 
participants were presented with a set of questions (see Appendix A) which we classify 
into three groups: Detail, Overview and Cancellation derived from Section 3.4.1. The 
remaining questions provide more general observations in order to evaluate whether our 
visualization approach is useful for the given task.

R l. Detail: It is important that multiple error-sensitivity fields can be visualized 
within a single image. To start with, we asked the users whether they can identify the 
independent vector magnitude and directions at a given point for each of the visual 
designs. Whilst four of the five designs succeed to perform the basic functionality of 
conveying detail, some designs have limitations. It is clear from the evaluation study
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Design criteria (a)
Visual Designs (see Figure 3.8) 

(b) (c) (d) (e)
Independent vector direction * * * *
Independent vector magnitude * *
Overall error * *
Error distribution *
Visual separation o f fields * *
Vector cancellation *

Table 3.1: Comparison o f visual mappings shown in Figure 3.8. Each design is assessed 
against a number o f set criteria which ideally should be achieved. An asterisk in the 
table indicates the design satisfies that particular criteria.

that the use of stream ribbons (Figure 3.8(d)) for depicting multiple error fields over 
several planes created too much visual clutter and occlusion. As a result, the users 
found the information to be lost. Viewpoint adjustment may overcome this, however 
it cannot be guaranteed. Whilst not quite so severe, we found that Figures 3.8(a) and 
3.8(b) may also suffer from occlusion issues should two vectors have the same direction 
and magnitude. Although both magnitude and direction are visible in our streamline 
approach as shown in Figure 3.8(c), there were questions raised over the accuracy of 
comparing thicknesses between two streamlines in a quantitative manner. All the users 
found the Bezier glyphs (Figure 3.8(e)) to be most effective in conveying both attributes 
but revealed that independent vector direction became difficult to perceive for elongated 
glyphs (i.e., when vectors are in the same direction).

R2. Overview: In many focus and context visualizations, it is necessary to show 
the overall sensitivity for multiple fields, whether this be introduced by one or multiple 
cameras. The overall sensitivity can be assessed based on two uncertainty components, 
the overall error (resultant magnitude) and the distribution of error from each error sen­
sitivity field. In Figure 3.8(a), although the overall error is not explicitly mapped, users 
were able to estimate the error given by the four vectors. However, the presence of 
visual clutter likewise in Figure 3.8(c) and 3.8(d) made this difficult to deduce easily. 
Figure 3.8(b) performed significantly better by mapping the overall error from multiple 
fields using intensity. The heat map behind the glyph is effective for estimating local 
regions of uncertainty. One limitation with the design is that visual interference was 
found to occur between the vector fields and the heat map. Figure 3.8(e) also shows the 
overall error from multiple fields, this time by size. The larger the Bezier glyph appears 
determines the amount of error at the location. Most of the users acknowledged this de­
sign to be the most intuitive and descriptive when displaying error, stating that the glyph 
shape provides a visual cue that is clearer for error analysis.

One of the goals of multi-field visualization is to be able to observe each field inde­
pendently, whilst providing additional insight on how multiple fields interact. We found 
that vector-glyph based designs performed weakly at this task due to visual clutter, with
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users stating it was difficult to visually integrate between fields. On the otherhand, the 
streamline visualization performed particularly well due to its continuous representation. 
The colour segments in the Bezier glyphs were also effective for visually separating error 
fields, but these became lost for highly elongated glyphs.
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Figure 3.9: Comparison o f  error sensitivity between camera positions B (left) and p o si­
tion C (right) from  Figure 3 .1 1 using colour-coded Bezier glyphs.

R3. C ancellation: Figure 3.8(e) is the only visualization to truly incorporate  this 
requirement. This is determ ined based on the shape o f  the Bezier glyph. A circular 
glyph w ould  indicate a high level o f  vector cancellation from multiple fields. However, 
any skew or e longation would  represent dom inant vector direction that is influencing the 
error for that position. It is possible to estim ate  cancellation from F igures 3.8(a) and 
3.8(b) if two vectors are recognised to be in opposing direction, how ever only the Bezier 
design actually incorporates this. Table 3.1 provides an overview o f  the perform ance  for 
each visual design.

In the study, we asked the participants w hether the visualization approach w ould  
assist in visually quantify ing a cam era  position based on uncertainty. The feedback 
w as positive and the users expressed the distribution o f  error shown by the visualization 
w ould  help attach a w eighting to a particular position. O ne com puter-vision expert in the 
study revealed that the depicted  error distribution could  be used for optim ising  vision- 
based tasks such as correcting m ore sensitive feature points. A nother participant noted 
the visualization is useful for revealing cam era  positions with sym m etric  reprojection 
error.

F igure 3.9 gives the error m apping  for two different cam era  positions. This provides 
visual com parison  o f  the error sensitivity that is present from each cam era  viewpoint.
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Figure 3.10: Graph showing the 
result o f  users ranking the visual 
designs from  worst-to-hest as a 
m easure from  1-5.
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By analysing  the changes  betw een  the Bezier glyph representation  based  on size, shape 
and colour, the user can determ ine the viewpoint that reduces the impact o f  error. Fo l­
lowing the study, all users found the visualization approach significantly helped evaluate 
v iew points  based  on error-sensitivity in a com para tive  manner. From  this exam ple , c a m ­
era position C experiences large error that is significantly reduced in cam era  position B. 
Lastly, F igure 3.10 shows the results o f  the users preference by ranking  the visual d e ­
s igns from worst-to-best. Results from the study show that users felt the B ezier  design 
to be the most intuitive and effective in conveying error  sensitivity. In the rem ainder  o f  
this chapter, we use the B ezier  design during the user evaluation o f  the software which 
com bines  both 2D and 3D visualizations for finding an optim al cam era  position.

3.6 User Consultation - 3D

To evaluate ou r  com bined  visualization system for selecting an optim al cam era  position, 
w e conducted  a study using tw o sets o f  users: three sport scientists, and three com puter  
v ision experts (one o f  which  w ho also participated in the previous study in Section 3.5). 
We use this study to com pare  and contrast the decision process betw een  end-users  with 
m in im al reconstruction know ledge using our  visualization approach, and dom ain  experts 
in the field o f  com pu te r  vision without e rro r  analysis support. Each study w as conducted  
in isolation from  other partic ipants  so to not influence their given opinions.

O u r  first s tudy involved three sport dom ain  experts: A snooker coach and form er 
w orld  cham pion , a snooker hardw are  eng ineer and a sports scientist. We started by ex ­
p lain ing the motivation behind  the work to each participant. It was m ade c lear that given 
a single cam era  to configure, we w anted  the position that w ould  achieve accurate  recon­
struction and is most feasible for installation (i.e., taking into account physical, financial 
and other types o f  constraints). We note that the users have som e prior  know ledge o f  the 
scene such as structural inform ation o f  the room  and cost o f  m ounting  equ ipm ent which 
they can incorporate into the decision. F igure 3.7 was presented  w here they were asked 
to give their feedback on the usability o f  such a visualization. The initial reaction was 
very positive by all three participants. In particular, they were able to qu ick ly  identify
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Figure 3.11: 3D visualization showing the 3 candidate camera positions labelled A, B 
and  C, after filtering. These camera positions are highlighted using opacity.

potential cam era  positions, nam ely  above the left and right hand side o f  the snooker 
table. We explained to each partic ipant how a user can filter the num ber  o f  cam eras  
based on error sensitivity to highlight candidate  positioning. Figure 3.1 1 shows the re­
sult o f  the user filtering down the data to ju s t  three prospective cam era positions. This 
helped validate the users’ understanding o f  the visualization as two o f  the three positions 
m atched their  initial observations.

The next objective was to assess how well the visualization integrates contextual g e ­
om etry  to influence the decision process. By navigating in the virtual environm ent, the 
feedback received suggested that the cam era  should be positioned to the right o f  the ta ­
ble. Participants recognised that both this and the position left o f  table were the two best 
choices. Through inspection o f  their error sensitivity maps, the users identified the left 
cam era  position (Cam era  A) to be marginally  m ore  accurate. However, due to m o u n t­
ing impracticalities on the left wall such as picture fram es and scoreboards, the users 
realised that cam era  p lacem ent here was not a viable option. T he participants found the 
error visualization to be c lear when com paring  cam eras  with significant error variance 
(see Figure 3.9). As a result, the visualization approach proved  useful for clarify ing the 
error associated  with each cam era  position. Prior to using the visualization, the ha rd ­
ware eng ineer assum ed  that the best cam era  position w ould  be near the bottom  end o f  
the table giving a typical TV broadcasting  view. The partic ipant was surprised by the 
visual results to find that the cam eras  either side o f  the snooker table were the least er­
ror prone positions, and appreciated  that the visualization showed greater insight to the 
setup procedure for 3D scene reconstruction.
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Figure 3.12: 3D visualization showing the 3 candidate camera positions in the surveil­
lance scene labelled D, E  and F after filtering. These camera positions are highlighted  
using opacity.

T he second study involved the com pu te r  vision experts q .r  and m. Initially, each 
participant w as asked to nom inate  the 5 best positions for single cam era  reconstruction 
given there were no constraints . A uniform decision was observed, where the cam era  
position directly top-dow n was identified as optimal. This is to be expected, how ever 
the selection is not viable since the cam era  position is unable to provide full coverage  o f  
the scene due to a low-ceiling. Following this, we investigate how additional know ledge 
on sem antic  constrain ts  (e.g., low ceiling, picture fram es) and financial constrain ts  (e.g., 
cost o f  m ounting) w ould  im pact their decision on cam era  positioning. We note that the 
cost o f  a ceiling m ounted  cam era  is more expensive due to structural issues in this case 
study. We asked the partic ipants to repeat the initial task with such semantic conside ra ­
tions in mind. The results are shown in Figure 3.11 where cam era  positions m arked  as 
q* ,r£  and m* are ranked from best (k — 1) to worst (k =  5). It can be observed that the 
nom inated  cam era  positions am ongst  the partic ipants  significantly diverges in the new 
task. This shows that cam era  positioning is not as intuitive once multiple real-world 
constrain ts  are im posed. We presented  the vision experts with the system, w here  they 
all recognised  the mutual benefits o f  the visualization as it constrains the search space 
for optimal cam era  p lacem ent to support consistent positioning.

F igure 3 .12 dem onstra tes  our  m ethod  for our second use-case scenario  on cam era  
surveillance, where  three candidate  positions have been highlighted  after filtering. Here, 
we use multi field g lyphs to provide a grea ter  level o f  detail for cam era  error sensitivity 
in the 3D scene. This a llows users to exam ine  crucial inform ation such as independent 
and com bined  error distribution and sensitivity o f  feature points in a global perspective, 
with the option to see further detail by exam in ing  the associated  error sensitivity v isual­
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izations. Due to temporary construction works along the featured structure to the right 
of the region of interest, camera placement here would not be optimal. Therefore, the 
most suitable position would be along the wall near camera F as this provides a more 
temporally stable solution.

We presented a qualitative evaluation based on the feedback of two sets of users. All 
participants felt that the visualization helped to identify the most suitable camera posi­
tioning in a clear and simple manner. It was shown that for end-users, the visualization 
facilitates dynamic decisions for optimal camera placement which includes substantial 
trade-offs between reconstruction quality and camera feasibility without the need for 
extensive knowledge in reconstruction. The sporting professionals all stated that they 
would use this approach if they were to configure a camera set up. For computer vision 
experts, the visualization proved to be an excellent aid for single camera placement as a 
result of restricting the search space.

3.7 Discussion

For this application, we have designed high-dimensional glyphs to visualize multiple 
error-sensitivity fields for optimal camera placement. We demonstrate this in two real- 
world applications, namely: snooker reconstruction and camera surveillance, which 
uses 2D planar homography to perform 3D reconstruction. In the context of sports, 
our method can be generalised to other domains that involve playing on a rectangular 
surface such as table tennis, badminton, and squash, where obtaining a top-down camera 
is often impractical. Alternate camera placements is therefore necessary, especially in 
applications involving projected transformations such as ball and player tracking. While 
sports played on larger areas such as football may be possible, the limitations of standard 
camera equipment means that capturing the entire scene is unlikely while also having 
a camera resolution that is high enough to produce accurate results. Likewise, our ap­
plication can also be applied to other camera-based surveillance tasks that have a set of 
planar feature points which can be mapped using 2D homography.

Evaluating systems such as the one proposed in this work can be challenging be­
cause they are not designed for general public use. In addition, gathering enough domain 
experts to obtain meaningful evaluation data is not only expensive, but also time con­
suming due to their limited availability. Nevertheless, the valuable feedback from such 
users should not be underestimated. We acknowledge that although the feedback from 
the two sets of users was very positive, our system is not without its limitations. While 
our approach is effective for depicting the error-sensitivity of 2D homography based on 
four feature points, the visual mappings will become more cluttered for a larger num­
ber of fields. In addition, since there are many other possible 3D reconstruction algo­
rithms [HZ04] that utilise a different error parameter space, our visualization approach 
may not necessarily be suitable for such methods.
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3.8 Summary
We have described 2D and 3D visualization methods to display error sensitivity fields 
for feasible, single camera positioning. The collection of visual mappings depict the 
composition of multiple error sensitivity fields. These map to a 3D visualization where 
the goal is to visually estimate several optimal positions for the camera. We find that the 
visualization can effectively aid the estimation of the best camera positioning without 
the need for a manual configuration through trial and error, while providing the users 
with sufficient flexibility to make dynamic decisions based on other facts that cannot be 
encoded easily in an algorithm.

The glyphs developed for this work focuses primarily on encoding multiple fields 
of quantitative values. As mentioned in Section 2.6, high-dimensional glyphs can take 
various forms, and some designs are more/less effective depending on the number of 
attributes and data type they encode. In the next chapter, we will discuss glyph-based 
designs that facilitate the mapping of data containing both quantitative and qualitative 
attributes.
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SO far, we have introduced a collection of glyph-based visual mappings that en­
code multiple quantitative values. This resulted in glyphs that are pre-dominantly 
geometric-based (i.e., they make use of two types of visual channels: geometric
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channels such as size and shape, and optical channels such as colour and opacity) to dis­
play the data. When a multi-dimensional dataset contains mixed data types, we noticed 
that such glyphs do not convey information very intuitively. In fact, we observed ear­
lier from previous works (see Chapter 2) where examples of visual designs do support 
multiple dimensions to be encoded, but are cognitively challenging for a user to extract 
certain information (i.e., identifying individual attributes) from the glyph. This work ad­
dresses the challenge of visualizing events and actions “at a glance” for real-time sports 
performance analysis. The analysis of sport event data poses an interesting problem to 
data visualization due to the large amount of categorical events, and the different levels 
of association (i.e., the match, team, or player) and outcomes (e.g., won/lost, score/miss, 
and occurrence). We note that previous work do not address this task.

Today real-time sports performance analysis is a crucial aspect of matches in many 
major sports. For example, in soccer and rugby, team analysts may annotate videos dur­
ing the matches by tagging specific actions and events, which typically result in some 
summary statistics and a large spreadsheet of recorded actions and events. To a coach, 
the summary statistics (e.g., the percentage of ball possession) lacks sufficient details, 
while reading the spreadsheet is time-consuming and making decisions based on the 
spreadsheet in real-time is thereby impossible. One critical shortcoming in the current 
practice is the disconnection between the overview (i.e., the summary statistics) and the 
details (i.e., actual events in the match) [Shn96], To seek details on demand, the coach­
ing staff and match analysts have to trawl through the large collection of event records. 
For post-match analysis, the interaction for “visual information-seeking” is highly inef­
ficient, while for in-match analysis, this is practically impossible. One important func­
tional role of visualization is to facilitate efficient and effective “visual information- 
seeking” [Shn96]. Considering the requirements of the users and application environ­
ments, the visualization must be delivered in a comprehensible manner that is simple 
and intuitive to understand whilst also being informative.

In this chapter, we introduce glyph-based visualization into the process of notational 
analysis in sports. We considered a number of design options for the visualization, and 
developed a collection of glyphs that feature metaphoric visual cues for rapid recog­
nition as well as intuitive visual channels for depicting attributes. In comparison with 
the tabular form of events, the visualization gives an effective overview of a match that 
users can interact with to obtain details on demand (Section 4.4). Since the visualization 
corresponds directly to the match video, key events can also be replayed to show fur­
ther details. We implemented our visualization system, MatchPad, on a portable tablet 
device, which enables touch-based interaction with the visualization. We developed a 
scale-adaptive glyph layout algorithm to facilitate effective transition between different 
levels of details (Section 6.3.4). The work was carried out in close collaboration with 
the Wales national rugby team, and was used during the Rugby World Cup 2011. It 
successfully highlighted the effectiveness of visualization in sports analysis, by help­
ing coaching staff to examine actions and events in detail whilst maintaining a clear 
overview of the match, and assisting in-match decision making (Section 6.4).
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4.2 Requirements Analysis
The work described in this chapter was carried out by an interdisciplinary group com­
posed of a sports scientist, a former international-level sportsperson, and computer sci­
entists. I was the principal researcher concerning the different aspects of glyph-based 
design, and the scale-adaptive glyph layout algorithm used in the MatchPad. Prior to this 
research, we were motivated by the huge potential of using visualization in sports perfor­
mance analysis during matches and in training [HB02]. For example in rugby, Duthie et 
al. [DPH03] and Nicholas et al. [JMJ04] confirmed the usefulness of match analysis and 
team performance indicators respectively. We worked closely with the Welsh Rugby 
Union (WRU) for over 12 months, frequently visiting their training grounds as well as 
inviting the chief analyst to give talks in workshops. From these close contacts, we 
learned the strengths and limitations of their current workflow. To fully consider the 
challenges involved with rugby performance analysis, we first provide a background to 
the game.

4.2.1 Rugby Union
Rugby Union is a popular team sport which consists of two teams (of 15 players) who 
advance an oval ball across a rectangular field (up to 144m long by 70m wide) with two 
H-shaped goal posts at either end. The game is played primarily by carrying the oval 
ball from one end of the pitch to the other. Points can be scored in several ways: A try, 
which involves grounding the ball in the opposition goal area, or through kicking the 
ball between the H-Shaped post from a conversion, penalty kick or drop goal. The ball 
can move from one team to another from tackles and set pieces. Each match is played 
in two 40-minute halves, where the objective is to score more points than the opponent.

4.2.2 Rugby Performance Analysis
The Welsh Rugby Union relies heavily on notational analysis [HF97], whereby a match 
analyst “tags” various events in the video footage of a match with semantic notations, 
from which a set of key performance indicators about individual teams or players are 
calculated. Currently there are no automated techniques on the market or in the research 
literature that are capable of performing such annotation reliably, and this was not the 
focus of this research. Personal position-tagging devices are normally disallowed in real 
matches for safety reasons. In practice, trained match analysts are highly skilful in video 
annotation. With the aid of appropriate software such as SportsCode, they are able to 
rapidly annotate major events as they occur within a match. Detailed annotation, which 
includes player identification, is normally done off the pitch. The team have three typical 
scenarios for analysing performance data:

•  Pitch-side — a team of analysts will code major events during a live match or 
training ground, allowing them to provide constant feedback to the coaches and
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players on the pitch. This is often limited to summary statistics such as ball pos­
session, territory percentages (i.e., where on the pitch is the ball being played), 
and counts of event occurrences (e.g, the number of line-outs won/loss).

•  Half-time interval — since summary statistics is generally difficult for players to 
interpret and make changes to their game (as they do not capture the semantics of 
a match easily), the interval break is a crucial time where such information can 
be conveyed to the team in a more effective manner. One important job is the re­
view of key events recorded from the match that describe, for example, opposition 
formations and patterns of play which the coach and analysts have identified.

•  Post-match analysis — once a match has ended, the analysts will code specific 
events with more detailed descriptors. This enables a more in-depth analyses of 
various aspects (e.g., set-pieces, attacking and defensive strategies) that is not pos­
sible during a live match. They may also combine event data with additional data 
sources such as player and ball tracking information.

This chapter focuses on the challenge of analysing performance data in the first two 
use scenarios (pitch-side and half-time interval). Given the short amount of time avail­
able, it is critical that the analysts are able to retrieve and seek information close to 
real-time. As the chief match and performance analyst of the team pointed out, the 
primary issue is in fact “information overload” as reviewing the annotated data is a labo­
rious task. Current software makes use of conventional plots and spreadsheets that are 
ineffective for conveying the overview and details of events in a match. It is necessary 
for visualization to address a number of requirements as follows.

•  The visualization must be able to depict most, if not all, annotated events that are 
stored in a tabular form.

•  It is necessary for the visualization to connect each event to the corresponding 
video footage for further analysis.

• The visualization should facilitate rapid information seeking and in-match deci­
sion making for coaching staff and analysts at different temporal granularities of 
a match.

•  The visualization should provide coaching staff with a visual aid for post-match 
team and player briefings.

•  The visualization must be intuitive for the target users, requiring a minimal amount 
of learning and memorisation. While an analyst may be willing to make effort to 
learn some complicated techniques, it is not reasonable to demand the same from 
the coaches and players.

•  The visualization must be suitable for portable devices to be used during matches 
and training.
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Extract Events
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:riotors

Event Visual M apping

Graphical C om position

T
MatchPad

Figure 4.1: The pipeline used to compute the M atchPad visualization. There are fo u r  
key stages: XM L processing, event visual mapping, graphical composition, and the com ­
bined video, visualization and information pane o f  the MatchPad.

4.3 M a tc h P a d  Pipeline

Following the requirem ent analysis, the developm ent o f  the M atchPad  started in Febru­
ary 201 1. Figure 4.1 shows the com putational pipeline o f  the MatchPad. T he pipeline 
consists o f  four key stages: X M L  processing, event visual mapping, graphical co m p o s i­
tion and integrated user interface that m akes up the MatchPad.

T he first stage is to process the input data. Using a w ireless connection, the M atch­
Pad retrieves X M L  data  stream ed from the ana lys t’s workstation. This can be scheduled 
to perform  at set time intervals during a match (e.g., every 15 seconds). It is therefore 
vital that the pipeline can be executed quickly  to handle  short update intervals. In the 
X M L  data, each event is recorded as an instance, o f  which a typical match w ould  have 
in the o rder o f  hundreds. Each instance will consist o f  an ID number, a start time, an 
end time and a nam e (e.g., scrum). This is then followed by a series o f  text tags that 
contain descrip tions such as w hether  the event was won or lost, the formation and strat­
egy adopted, the position on the pitch and w hether  ground  was gained in the play. The 
pipeline is designed to recognise  the semantic textual codes specified in a d ictionary  for
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a particular sport or application.
The second stage maps the series of recorded events and their attributes to a collec­

tion of glyphs. We chose to use metaphoric glyphs to provide intuitive visualization of 
events. Each glyph may be augmented with additional visual components and channels 
for different attributes. We detail our design decisions in Section 4.4.

The third stage constructs a temporally continuous visualization that arranges all 
event glyphs along a timeline. A scale-adaptive layout algorithm is used to accommodate 
different levels of detail, which is detailed in Section 6.3.4.

The final stage integrates the visualization with the accompanying video and sta­
tistical performance indicators to produce the MatchPad interface. While the interface 
allows the user to control all three previous stages, the majority of interaction is zooming 
and panning for rapid information seeking, forming an active feedback loop with stage 
3.

4.4 Glyph-based Visual Mapping

In glyph-based visualization, a glyph is composed of a number of visual channels which 
encode specific attributes of a data entity (see Chapter 2 for details). Before creating 
a glyph-based visualization, it is necessary to first establish the full extent of the data 
space. With sufficient knowledge of the data space, one can then explore different de­
sign options and make appropriate use of different visual channels in the context of the 
application concerned.

4.4.1 Data Space

During the analysis of existing data sets, I identified the set of event types and the asso­
ciated attributes. These include:

•  Levels o f Association — An event is usually recorded in association with different 
levels of interest, that is, the match, a specific team, and a specific player or play­
ers. In some cases an event may be associated with more than one level. During 
a match, analysts usually aim to record the events at the match and team level in 
real time, whilst much of the player-specific data is recorded post-match since this 
often requires repeated playback of the video footage to identify all details of the 
events. Because of the importance of scoring events, (e.g., try, goal kick) they are 
all considered as match-level events.

•  Team Identifier —  A team-specific event is accompanied by an attribute of the 
team identity. In our application, there are always two teams in a match, referred 
to as the home team and away (opposition) team respectively.
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Table 4.1: A range o f  events are to he m apped in the visualization. Each event is aug­
mented with levels o f  association (i.e., the match, team or player), and additional a t­
tributes (i.e., outcome and num erical and enum erative values). We also illustrate fo u r  
possible glyph designs: m etaphoric pictogram, abstract icon, shape, and colour. We 
choose to use m etaphoric pictogram  to represent events in MatchPad.



Chapter 4

• Player Identifier — A player-specific event is accompanied by the identifier(s) of 
the player(s) concerned. Here, a player’s number is a unique identifier in each 
team.

• Outcome Attribute — Some events require the recording of an explicit outcome. 
For instance, the outcome attribute for a “scrum” event will state whether the 
team won or lost. Some event types do not have an explicit outcome defined. For 
example, a “try” event implies the outcome that the team have successfully scored. 
We refer those events without an outcome attribute as occurrence.

• Value Attribute — Some events are associated with a numerical or enumerative 
value. For instance, a “goal kick” event can be classed as either C, P and D to 
define “conversion”, “penalty” and “drop goal” respectively.

• Duration Attribute — Most events are accompanied by an attribute indicating the 
duration of the event.

The first column of Table 4.1 lists most common event types, columns 2, 3, 4 indi­
cates the levels of association, column 5 indicates the outcome attribute, and column 6  

indicates the numerical and enumerative values.

4.4.2 Design Options
Ward presented a number of design options in [War02], all of which were considered 
in this work. Columns 9 and 10 show two typical design options, namely shape and 
colour, for representing event types. Whilst these may be suitable for a data attribute 
with a smaller number of enumerative values, here we find that the number of event 
types would require many different shapes or colours, which would be very difficult for 
users to learn, remember, or guess. Considering the captured requirements mentioned 
in Section 6.2, we found that it was necessary to explore the design options that were 
more commonly used in domain-specific visualization (e.g., electronic circuit diagrams) 
and visualization for the masses (e.g., road signs). Such design options normally feature 
metaphoric pictograms that are easy to learn, remember, and guess. This led to a decision 
to base the visual design primarily on metaphoric glyphs.

Metaphoric glyphs can come in different forms, ranging from abstract representa­
tions to photographic icons. I ruled out the abstract representations shown in Column 
8  of Table 4.1 because it would still suffer from the difficulties to learn, remember and 
guess. I ruled out the use of photographic icons because they would prevent the effective 
use of the colour channel for other attributes. Furthermore, the player or team featured 
in the glyph would at its best attract unnecessary attention, and at its worst would cause 
some confusion with the actual player and team being annotated. Once excluded both 
ends of the design spectrum, we considered several styles of illustration as shown in Fig­
ure 4.2. After consulting with the end users, we selected black silhouette as the graphical 
style of our metaphoric glyphs.
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Figure 4.2: Some designs o f  m etaphoric pictograms. In (a), initial stickmen designs 
were produced to prom pt an artist. The artist produced several different designs: (h) a 
refined stickman design, (c) a contem porary design, (d) a posterized colour design and  
(e) a silhouette design. In (f) the scrum is depicted using the silhouette design (c f  (a) 
and (h )).

4.4.3 Resultant Design for MatchPad

Figure 4.3 illustrates the spatial com position  o f  glyphs designed for the MatchPad. The 
large square region is the main glyph, which contains a pictogram  that represents an 
event type metaphorically . The set o f  p ictogram s frequently  used in the M atchPad  are 
shown in C olum n 7 o f  Table 4.1.

The background  co lour  o f  the main glyph is used to indicate the team. The most 
com m only -used  co lour  convention is red for the hom e team and blue for the away team. 
H ence all g lyphs that depict events at the team level and p layer level are co loured-coded  
in e ither red or  blue background, while all g lyphs associated solely with the match-level 
have a grey background. To further enhance the clarity o f  the visualization, we also 
use spatial positioning to distinguish the two teams. Separating by a horizontal time 
line across the centre  o f  the visualization, all hom e team events appear above and away 
team events appear  below. This arrangem ent is designed particularly  for this application. 
In com parison  with m ingling  all g lyphs together, the separation m akes it easier for the 
users to identify the form ation and tactics o f  either team, and to focus on the interaction 
betw een  the tw o team s (rather than individual players).

As m entioned  earlier, p layer identifiers are norm ally annotated  by the m atch ana ­
lysts only in post-m atch  analysis. Hence it is optional to visualize p layer identifiers in 
conjunction with an event. If the p layer identifiers are available, a p lay e r’s num ber  is 
d isplayed in a small square a long  the right edge  o f  the main glyph. In addition, this 
n um ber  is also used to distribute g lyphs vertically within the team region.

As shown in F igure 4.3, the duration  attribute is depicted by the length o f  the bar  that 
appears below the p ic togram  box (in the case o f  the opposition team this bar appears
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enumerative or 
numerical attribute 
(location may vary)

duration bar

main event glyph

metaphoric
pictogram

background colour 
as team identifier

outcome
attribute

player numbers 
(optional)

Figure 4.3: Components and visual channels o f  the glyphs.

above the p ic togram  box). W hen  a glyph is placed in the v isualization along a timeline, 
the bar length corresponds to the start, duration and end  times in relation to the time line. 
An alternative approach for depic ting  the duration w ould  be using a c lock  face [Ber83]. 
However, this notation would not be as easy  to quantify  as the duration  bar.

O utcom e is depicted  by a co loured  circle placed at the interaction betw een  the main 
glyph and the duration bar (F igure 4.3). T he  circle is coloured  in e i ther  green or am ber 
to represent success or  failure respectively. S ince red is already used to represent the 
hom e team, there w as a question about the multiple uses o f  the shade o f  reddish colours. 
However, because o f  the strong association betw een  green being  successful and red 
being  unsuccessful, we decided to maintain  the use o f  a reddish co lou r  for unsuccessful 
outcom e, but to alleviate the conflict by using an orange shade instead o f  red. This  green- 
am ber  schem e allows us to m ake use the m etaphor  o f  traffic lights. O ne psychological 
advantage o f  using am ber  instead o f  red is to m ake an unsuccessful event as a warning 
rather than a failure. In addition, by overlaying a circle at the intersection betw een  two 
rectangular shapes, the design offers further geom etric  cues  for differentiation.

Som e events have a visually sim ilar form. For instance, conversion, penalty, and 
drop goal all involve kicking the ball at the goal. It w ould  be difficult to design p ic ­
togram s to differentiate these events through  different illustrations. It is m ore effective 
to m ake use o f  textual labels, e.g., C, P  and D, in conjunction with a generic  pictogram  
for all three events that defines “goal k ick” . In som e other cases, there is a need for 
indicating additional inform ation in num erical,  textual o r  sym bolic  form , such as show ­
ing which part o f  the pitch an event takes place (territory A-D), different decisions by 
a referee (no card, yellow card, or red card), and so on. We refer to such additional 
information as enum erative  and num erical attributes. T he  depiction  o f  these attributes 
is placed within the boundary  o f  the m ain  glyph, and  their locations vary accord ing  to 
the generic p ictogram  shared by each sub-group  o f  glyphs. T he attributes are usually 
shown in 1 or 2 num erical,  textual o r  sym bolic  characters . Four co lours  m ay be used, 
three generic colours, black, white, and green, and one  team colour, e ither  red or  blue.
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The use of different colours, location and occupation styles, ensures that each sub-group 
that shares a common pictogram does not share the same visual representation of enu­
merative and numerical attributes as any other sub-groups. This extra differentiation 
in visual coding serves as an error detection and correction mechanism as described in 
[CJ10]. Note that other attributes, such as team and player identifiers and outcome, are 
also of an enumerative and numerical nature. Because of their frequent occurrence and 
semantic importance in this application, we created separate visual channels for these 
attributes.

Although glyph-based visualization is the main focus of this work, we are careful 
not to overload the glyph-based visual design. In particular, we make use of other vi­
sual designs for depicting information considered to be coarser or finer than the above- 
mentioned events. Since rugby can have many stoppages, we use a pale green back­
ground to indicate “Ball in Play” events (shown in Figure 4.7). This avoids the excessive 
use of the “Ball in Play” glyph, while providing a clearer overview of the global game 
pattern “at a glance”.

Rugby is a game that involves much strategic planning and tactical play. Coaching 
staff and match analysts have a huge interest in the progress of the game play. Ana­
lysts normally record a match in phases, each of which typically lasts for 10-15 seconds. 
A phase corresponds to the time intervals between tackles or similar events during an 
attack. For example, when a ruck or maul occurs, the previous phase ends and a new 
phase begins. Initially we considered using a numerical attribute to indicate phase 1, 
phase 2, and so forth. However, this approach would require the use of many glyphs and 
rely on the users’ cognitive reasoning to connect different glyphs together to establish a 
mental picture of phase progression. Because the relatively fine details about the phase 
are particularly important to the users, we make use of a step-like notation, as shown in 
Figure 4.7, to depict the number and progression of consecutive phases in an attack. The 
steps not only provide a scalable depiction of the number of phases, but also metaphori­
cally conveys the sense of intensity of an attack. As with the event glyphs, either a green 
or amber circle will appear in the corner to indicate successful or unsuccessful play (e.g., 
whether the team have managed to push forward and gain territory on the pitch).

4.5 Visualization Interaction
One of the requirements of the MatchPad is to support rapid information seeking, which 
involves an extensive amount of interaction for browsing and zooming, and requires a 
very fast layout algorithm to respond to the user’s interactions.

4.5.1 Interactive Visualization

Since the MatchPad is designed primarily for tablet devices, we incorporate intuitive 
controls for touchscreen interactions. The user navigates forward and backward along
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Figure 4.4: Scale-adaptive layout fo r  key events. In (a), the key events are shown at a 
scale where no overlap occurs. As the user condenses the visualization timeline fo r an 
overview, the algorithm determines the most suited layout fo r  each glyph. In (b), the 
glyph are stacked horizontally. In (c), the glyph are scaled based on their duration. In 
(d), the glyph are stacked vertical. Finally, (e) combines two (or more) events to generate 
a new macro glyph that is used in place.

the timeline by sliding one finger across the screen, and can make a two finger pinch to 
zoom in and out of the timeline. To facilitate rapid information seeking, the user can 
skip by a set time period (e.g., 5 minutes) by tapping two fingers to the left or right of 
the display. A three finger tap will skip to the most recent event. In addition to this, the 
user can also expand (or condense) the timeline horizontally using a slider.

There may be occasions where many events occur within a short period of time. 
When the timeline is condensed, this could result in cluttering and occlusion. Therefore 
a glyph placement algorithm is required that can adapt the layout quickly to accommo­
date the new scaling factor. This is particularly important for in-match analysis, when 
the analyst often needs to glance back at a period of time and then to focus back on the 
present action.

4.5.2 Scale-Adaptive Layout

Each glyph is positioned primarily according to the time when the corresponding event 
took place. Hence in principle, its horizontal position defined by the left boundary of 
the main glyph box is fixed along the timeline. If player numbers are available in the 
annotation, we make use of a hashing function based on these numbers to distribute 
glyphs vertically. However, as mentioned previously, for real time annotation during a 
match, such information is normally not entered. The glyphs are thus, by default, placed 
on one of the three lines, namely home team above, match level in the middle and away 
team below. When a time-line condensing action is performed, the space allocated to 
each glyph becomes smaller, resulting in cluttering and occlusion. One naive solution 
is to reduce the size of glyph based purely on the zoom-factor. However, the glyphs 
could quickly become too small to be understandable. Hence the goal of the placement 
algorithm is to determine the appropriate size and position of each glyph in order to 
maintain clarity while preventing serious cluttering and occlusion.

Figure 4.4 illustrates a typical scenario, where the timeline is condensed to 50%
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of the original length. So to preserve visual association of events, the visualization is 
continuously scaled between four transitional layouts (Figures 4(b-e)). Once the given 
threshold is reached for one layout, the algorithm will query the next layout for addi­
tional size and positioning. The four layouts are:

•  Horizontal Stacking, which maintains the default glyph size and positioning for 
the current zooming factor, but can introduce occlusion of the events.

•  Size Reduction, which resizes the glyph based on the event duration and the current 
scaling factor.

•  Vertical Stacking, which adjusts the vertical position of the glyph based on the 
current scaling factor.

•  Macro Glyph, which combines a set of glyphs into a macro that visually replaces 
the glyphs within the macro.

Figure 4.5 shows the algorithm in pseudo-code. We adopted a deterministic process 
as it is generally much faster than a global optimisation approach. We consider four op­
tions in the order of preference and evaluate each option based on the level of occlusion. 
The algorithm requires several parameters adjustable by the users. They are the mini­
mal amount of visibility for horizontal stacking (MINH_VISIBILITY), scale reduction 
(MINS_VISIBILITY) and vertical stacking (MINV_VISIBILITY). The visibility values 
are in percentage of glyph area (by default, 0.5, 0.25 and 0.5 respectively).

4.6 Case Study: Welsh Rugby Union
We spent a year working with the performance analysts of the Welsh Rugby Union to 
develop the MatchPad. They contributed to all stages of the design and evaluated the 
MatchPad throughout its development. The primary focus was to deliver an application 
that would integrate with their current workflow and allow them to visually explore the 
huge amounts of event records. It also played an integral part during their Rugby World 
Cup 2011 campaign (Figure 4.6). Two annotated screen shots are given in Figure 4.7. 
After the tournament, the team provided us with their feedback.

“The main thing fo r  us is visualizing the data and visualizing it in a very 
easy to interpret manner. The major benefit o f the MatchPad is that it gives 
us a good overview o f how the game is going, because when you are looking 
at the game in such detail you lose sight o f the big picture. In particular, it 
is a great tool fo r  oversight when matches are very intense, and fo r  looking 
at the key instances o f the game and how they interact with each other. With 
the iPad, it is portability. We have it with us all the time so when the coach 
wants to know something we can see it immediately on the MatchPad.”
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Algorithm setScaleAdaptiveLayout(zoom_factor)

1 d isplay_gly phs_inview()
2 change = fa lse
3 for (each glyph, g[i], in view) do
4 compute_visibility(g[i] )
5 if (g[i\.visibility < M IN H _VISIB1U TY ) then
6 reducejsize (g [i], zoom_factor)
7 change — true
8 end if
9 end for

10 if (change == true) then
11 display_glyphs_inview()
12 change = fa lse
13 for (each glyph, g[i], in view) do
14 compute _visibility{g[i\ )
15 if (g[i\.visibility < M IN S_VISIB IU TY) then
16 assign_yoffset (g [z], zoom_factor)
17 change — true
18 end if
19 end for
20 if (change == true) then
21 display_glyphs_inview()
22 change — fa lse
23 for (each glyph, g[i], in view) do
24 com pute_visibil ity(g [z])
25 if (g[i\.visibility < M IN V^V ISIB ILITY) then
26 generate_macro_glyph(g[i\ , zoom_factor)
27 end if
28 end for
29 end if
30 end if

Figure 4.5: Pseudo-code fo r  the scale-adaptive layout.

Further feedback confirms that the MatchPad successfully fulfils all the requirements 
of Section 6.2 -  providing use scenarios such as in-match focus and context, half-time 
discussions with players (including access to video) and post match detailed analysis. 
Most of all, players and coaches are able to use the app with little or no training due 
to the metaphoric approach taken in the design and the intuitiveness of the software 
combined with the iPad.

4.7 Discussion
In this chapter, we have presented a design study on visualizing events and actions “at a 
glance” for real-time sports performance analysis. In particular, we investigated the use
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Figure 4.6: M atchPad being used by the Welsh Rugby Union.

o f  m etaphoric  p ictogram s to represent events over o ther possib le  g lyph  designs such as 
abstract icons, shape, and colour. From this, we delivered M atchPad , a system that was 
effectively used by the Welsh Rugby Union for match analysis. Further evaluation o f  the 
system was conducted  by m eans o f  a consultation m eeting with a g roup  o f  sports science 
students (5 m ale and 3 fem ale) with various levels o f  notational analysis  understanding.

We focused  on three aspects: whether  the M atchPad  im proves upon existing sys­
tems, the glyph design used for notational analysis, and potential areas o f  improvement. 
All participants felt that the sum m ary  overview gave greater visual clarity than other 
notational analysis  system s (e.g., SportsCode) and was more suitable fo r  rapid in-match 
decis ion-m aking. M ost participants rated it as a significant im provem ent over existing 
systems. To evaluate our  glyph design for encoding events, we p resen ted  the participants 
with the op tions shown in Table 4.1. All participants agreed that m etaphoric  g lyphs were 
by far the best approach for representing the events. The m etaphoric  g lyphs w ere intu­
itive to interpret, w hereas o ther  designs (e.g., abstract icons, shape, and colour) would 
require significant learning, causing potential m isunderstanding. For im provem ent, the 
group suggested  that further statistical analysis such as live possession  would  be ben e ­
ficial. It w as also suggested  that spatial information and “off-ball” position ing  should 
be d isplayed (although this data is not currently collected by notational analysis). We
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will look at exploring this challenge in Chapter 5. Another good suggestion was to show 
how many events a player has been active in, so to highlight the possibility of fatigue and 
need for substitution. Finally, the group felt that the MatchPad could easily be used in 
other team sports such as football, netball and hockey. The interchangeable framework 
of the MatchPad (Figure 4.1) means simply requiring a new event dictionary and icon 
set for adaptation. At the glyph design level, it would first involve establishing a set of 
events and actions, levels of association, and outcomes for the sport. We then need to 
create a set of intuitive metaphoric pictograms that can be mapped. This process could 
potentially be expensive depending on the number of different events. In addition, the 
glyph-based visualization may also need to be further modified such as the mapping of 
phase balls (see Figure 4.7) in sports that do not have an equivalent event type. We are 
now working with a Championship football club to adapt the MatchPad.

4.8 Summary
From the process of developing the MatchPad we found that glyph-based visualization 
offers an efficient and effective means for conveying a large amount of event records, 
especially in situations where users need to gain an overview of the data in order to 
make mission-critical decisions with very limited time. The metaphoric glyph design 
was the most appropriate for this particular application. This visual design minimises 
the needs to leam and memorise the coding scheme associated with the glyphs. We 
also introduced an effective layout algorithm that “combined with tablet interaction” 
provides fast intuitive navigation of the visualization.

As mentioned in Section 4.2.2, we have studied glyph-based visualization for a spe­
cific application in rugby, namely live matches and half-time briefings. After consulting 
with the Welsh Rugby Union, we found that in practice, our current glyphs had limited 
usability for detailed post-match analysis. There were two main issues: (1) the glyphs 
did not support data outside notational analysis such as spatial information, and (2 ) the 
ability to make different comparisons between events and their associated attributes di­
rectly on the glyph. This motivated the idea that glyphs need to be designed so that the 
they can be sorted better, which we will discuss in the following chapter.
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Figure 4.7: Screenshots o f  the MatchPad. Top: Overview o f  a 17 minutes period from  
a match using the MatchPad. M atch and Team events are depicted using m etaphoric  
pictogram s that are instantly recognizable. Home team events are shown in red, above 
the centre line, and away team events are shown in blue below the centre line. The user 
can also choose whether to show critical match events such as scoring events and referee 
decisions on the centre line due to their high importance. Bottom: Zoomed-in view on 
a region o f  the visualization. Phase ball actions are shown using coloured regions sized  
dependent on duration and phase count. Outcome indicators fo r  positive or negative 
results are shown using green and am ber circles respectively when the information is 
available. Ball in Play events are shown by the pale green background on the timeline. 
The information pane at the bottom o f  the screen provides more in-depth detail fo r  a 
particular event when selected by the user.
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CHAPTER 5

Glyph Sorting: Interactive Visualization for 
Multi-dimensional Data
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The design of metaphoric glyphs in the previous chapter showed how glyph-based 
visualization can be effectively used to convey a large amount of event records. 
Semantic visual channels (e.g., pictograms) minimise the need of memorising 

and learning encodings in glyphs, and can lead to instant recognition of semantic data 
such as events and actions. One problem highlighted with the use of these glyphs is the 
ability to compare multiple values across different data records, and how the glyphs may
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Figure 5.1: Visual representation o f  two example m ulti-dim ensional glyphs, namely (a) 
Star glyphs and (b) Bar chart glyphs when glyphs on the left are unordered, in com par­
ison to glyphs on the right which are ordered to two sorting parameters.

be ordered  according to these attributes. Since the g lyphs are arranged  along a timeline, 
it is easy  to see how they are ordered in term s o f  their tem poral occurrence  (e.g., the 
spatial position), but this is not so obvious if  we w ere  to focus directly on observing 
the visual param eters  on the glyph. As sorting is one o f  the m ost com m on  analytical 
tasks perform ed on individual attributes o f  a m ulti-d im ensional dataset, this motivates 
the hypothesis  that introducing glyph sorting w ould  significantly enhance  the usability 
o f  g lyph-based  visualization.

Sorting large, m ulti-dim ensional data is a g row ing  consensus  in m odern  data acqu i­
sition and processes where the ordering o f  data is an integral part  o f  m any applications 
and disciplines, ranging from the analysis o f  scientific in form ation (e.g., using graphs 
and charts), to enhancing the efficiency o f  algorithm s. T he w ork  in this chap te r  inves­
tigates how we can use glyphs to support such a sorting process. Records o f  data  are 
traditionally  sorted analytically in a data-driven m anner  (e.g., v ia spreadsheets),  where 
users perform  sorting on individual attributes o f  a m ulti-d im ensional data set. This is a

94



Glyph Sorting: Interactive Visualization fo r Multi-dimensional Data

non-trivial task due to the large number of possible permutations of sorting which can 
greatly impact the expressiveness of high dimensional visualizations [YPWR03]. When 
data must be ordered using a high level of sorting, it reveals two important challenges: 
1) how the data is organised, and 2 ) the ordering of sort keys, which can not be easily 
observed by viewing large tables of data.

Glyphs can be used to improve the perception of data characteristics [War02]. Cher- 
noff Faces [Che73] and Star Glyphs [SFGF72] are some examples of multivariate glyphs 
where identifying glyphs with similar features is effective, but cognitively challenging 
when determining the ordering of glyphs. Thus, such glyphs are not visually sortable 
in an obvious way. This becomes a greater challenge when glyphs are unorganised. 
Figure 5.1 demonstrates how ordering such glyphs in a given spatial configuration is 
more informative in revealing multivariate trends. Glyph sorting is one approach for 
performing interactive sorting of multivariate data as part of a visualization process. As 
a data exploration mechanism, interactive sorting in visualization provides the follow­
ing additional objectives: 1) making observations about data patterns (e.g., clusters and 
distributions) in relation to a sorted variable and stimulating hypotheses about other vari­
ables. 2 ) performing analytical tasks and visual evaluation of hypotheses, such as what 
variables may affect the ordering of a specific variable.

In this chapter, we present a novel glyph-based sorting framework to drive and fa­
cilitate interactive sorting of data in a visual and intuitive manner. We examine several 
technical aspects of glyph sorting and provide a set of design principles (Section 5.3) 
for developing effective, visually sortable glyphs. Glyphs that are visually sortable 
enhances the usability of glyph-based visualization for both comparative analysis of 
multivariate data and for supporting visual search. In Section 5.4, we present an inter­
active glyph-based sorting system. Novel features of the system include a focus and 
context glyph-based user interface (Section 5.4.1) to control high-dimensional sorting 
and viewing sorted results in a linked Interactive, Multi-dimensional Glyph (IMG) plot 
(Section 5.4.2). We extend traditional axis mapping using hierarchical axis binning (Sec­
tion 5.4.3). This enables visual depiction of multiple sort key parameters in space, which 
is effective for reducing visual clutter in the IMG plot view. Following the success of our 
MatchPad system, we continued working in close collaboration with the Welsh Rugby 
Union throughout the development of this work. We present a real-world case study in 
rugby event analysis for analysing and comparing trends between matches. From using 
glyph sorting, the analysts report the discovery of new insight and knowledge beyond 
traditional match analysis. The main contributions of this work include:

•  The introduction and development of high-dimensional, focus and context glyphs 
that are visually sortable to support sorting of multivariate data.

•  A novel glyph-based, interactive system for controlling high-dimensional sorting 
and viewing sorted results.

•  A hierarchical axis binning method for encoding multiple dimensions onto a single
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F igure 5.2: Variations o f  glyph design in accordance with the design principles o f  
sortable glyphs (a)-(h). For each principle, the top row depicts a glyph with greater 
em phasis and the bottom row depicts a glyph with less emphasis.

axis. T h is  effectively reduces visual clutter by relaxing the positioning o f  glyphs.

•  An evaluation o f  the effectiveness o f  glyph sorting in a real-world case study o f  
sports  event analysis.

5.2 Sorting: Entities and Sort Keys

Soiling  is the m ost co m m o n  analytical task which is used for re-organising entities co n ­
sisting o f  single or multiple fields [Knu98J. The objectives o f  sorting can be classified 
into the following:

•  Ordering  - a rranging  entities o f  the same type, o r  c lass into som e ordered se­
quence.

•  Categorizing  - grouping  or labelling entities with sim ilar  p roperties through sort­
ing.

M any  sorting  algorithm s have been proposed, including bubble sort by  De- 
m uth  [D em 85], m erge sort by von N eum ann  [Knu98], and qu ick  sort by Hoare [Hoa62]. 
Since best and worst case perform ance  runtim e can vary drastically  with such a lgo­
rithms, fu rther  research continues to propose  new sorting techniques [B FC M 06] and 
adaptive app roaches  that utilise o rdered data [ECW921. O u r  w ork is not focused  on a 
faster sorting algorithm  per se, but com bin ing  the benefits o f  sorting with g lyph-based  
visualization.

A  sort opera tion  can be perform ed based on one or  m ore  attributes. We describe 
such attributes as sort keys. In m ore general form, let us consider  the set o f  objects or 
entities E  =  (e \ ,e 2 , . . .  ,es), each contain ing a set o f  attribute keys K  — {k \.k 2 ,
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This defines a n-dimensional attribute space which governs the sorting process. Thus, ei 
is a ft-tuple or contains a n-tuple (as e, may have additional information such as a video 
clip). For example, a group of entities E  may be classified as a pack of cards (52 entities) 
which is sortable by keys K, such as card type (e.g., spades, clubs, diamond, and hearts), 
colour (e.g., red or black) or by value (1-13).

In order theory, we can specify two types of ordering relations: a weak (non-strict) 
order denoted by or a strict ordering These two properties characterise the 
mathematical concept of linear ordering [Knu98]. Given a subset of keys k G K, the 
goal of sorting is to arrange the entities e,• into an ordered set (a list) such that e f  -< e£ -< 
...-<: e f. At the level of abstraction, sort keys as attributes can not be directly compared 
(i.e., by arithmetic =, and < , >), as they are essentially concepts. Hence, we introduce 
the notion f K : E  R, that maps the object space with context keys k to a real value 
such that for any entity pair, the ordering relation e f  -< e j  implies:

f K(e{) < f K(ej) V i J  = l ,2 , . . . , / i .  i ^ j

With additional semantics, one can define such a function f K to sort data (e.g., 
events) into more practical, or memorable orderings beyond common sorts (e.g., al­
phabetical), since f K could be an importance function consisting of several sort keys. 
However, this may cause data to lose its perceived ordering at the analytical level. We 
introduce glyph sorting as one solution for performing interactive sorting in visualiza­
tion, where one goal is to use glyphs to sort the data.

5.3 Design Principles of Sortable Glyphs
The design of glyphs is the process of encoding attributes of a data entity to a number 
of visual channels such as size, colour, and texture that forms a small visual object. 
Building on previous works [Ber83, War08a, MPRSDC12], we propose the following 
design principles for the creation of sortable glyphs to be used in interactive sorting as 
part of a visualization process.

Typedness: Each dimension in a multivariate dataset may be of a different data type.
Typically, these are classified using the theory of scales [Ste46] by: nominal, ordinal, 
interval, and ratio. In addition, direction - a ’sign* that denotes the directionality of a 
component (e.g., a vector arrow) should be considered as an important data type in vi­
sualization [War08b]. Although hypothetically, we can map all data types to one or a 
few visual channels, such as length and size, it is more appropriate to use visual map­
pings that intuitively convey the underlying data type. For example, in Figure 5.2(a) it 
is clearer to determine the underlying data types for each dimension in the glyph from 
the top row (that illustrates greater emphasis) than the bottom row (that illustrates less 
emphasis). We can visually guess the first and fourth dimension (or attribute) to be of 
either ordinal or nominal type more easily in the top glyph, since shape is perceived as a
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discrete mapping. Similarly, the third and seventh attribute is of interval type due to its 
length and position. This cannot be distinguished from the bottom glyph.

Visual Orderability: Some visual channels (e.g., size, greyscale intensity) naturally
correspond to quantitative measures that enable a viewer to order different glyphs per­
ceptually, while some others (e.g., an arbitrary set of shapes, or textures) are much more 
difficult for viewers to establish a consistent rule of ordering [War08b, War04]. Fig­
ure 5.2(b) shows two example glyphs depicting 8  variables of the same data type. It 
is easier to visually order the 8 variables in the top glyph, than the bottom glyph. Ad­
ditional semantics can be attached to a visual channel such that it becomes visually 
orderable. For instance, scientists often make use of the colour spectrum to determine 
the order of colours, which may not be natural to a child who is unfamiliar with this con­
cept. In some cases, one may have to use a visual channel with very poor orderability 
such as metaphoric pictograms. The problem can be alleviated by accompanying such 
visual channels with an additional channel that is more visually orderable. For exam­
ple, different pictograms can be associated with a background of different greyscales, or 
a regular polygonal boundary with different number of edges. Alternatively, one may 
carefully design the pictogram set to make some components of pictograms orderable. 
For example, Maguire et al. designs a set of 7 pictograms with incremental number of 
components to encode levels of material granularity in biology [MPRSDC12].

Channel Capacity: We adopt this term from information theory to indicate the num­
ber of values that may be encoded by a visual channel. It is necessary to note that 
such a capability value is not an absolute quality, as the number depends on the size of a 
glyph as well as many other perceptual factors such as just noticeable difference [BF93], 
interference from nearby visual objects, or from a co-channel in an integrated chan­
nel [She64, HI72]. From the glyph designs in Figure 5.2(c), we can clearly observe 
that the top glyph has a higher channel capacity since each bar can encode more val­
ues visually (e.g., length, size and colour) than the radial lines below in which size is 
not possible. It will always be desirable to use a visual channel with a higher capacity, 
though this is often in conflict with other requirements.

Separability: There have been many psychology studies on the relative merits of sep­
arable and integrated visual channels (e.g., [She64, HI72]). Maguire et al. discuss this 
requirement in the context of glyph design in [MPRSDC12]. We find that this require­
ment is particularly important to glyph sorting. For example, in Figure 5.2(d), the glyph 
below encodes 8  variables using 2 integrated channels. Each of the 4 circles encodes two 
variables using size and greyscale intensity. The constructive composition of integral vi­
sual channels makes it more difficult to visually separate in comparison for example, the 
top glyph, where each variable is mapped to radius length and position. Not only is the 
perception of one individual channel affected by another in an integrated encoding, but
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also their ordering may demand more cognitive load in order for a viewer to detach one 
channel from another (e.g., intensity and size).

Searchability: For glyphs encoding high-dimensional multivariate data, it is neces­
sary to help viewers to search rapidly for a specific variable among many other vari­
ables [War08b]. In Figure 5.2(e), for example, it will be much easier to search for a 
green variable than the 5th variable. Searchability is affected by many factors [HE 12]. 
One dominant factor is the visual dissimilarity of individual channels. Hence searchabil­
ity is closely related to typedness and separability as mentioned above. It is also related 
to the spatial organisation of different visual channels such as grouping and ordering, as 
well as design appearance of each visual channel. In many cases, one has to introduce 
an additional visual channel, such as colour in the top glyph in Figure 5.2(e) to help 
differentiate different variables. Another factor is leamability, which is to be discussed 
below.

Learnability: While legends are usually essential to glyph-based visualization sys­
tems, they cannot replace the need for careful glyph designs to help viewers learn 
and memorise the association between dimensions and visual channels without con­
stantly consulting legends. It is desirable for the appearance of a visual channel to 
be metaphorically associated with the semantic meaning of the corresponding dimen­
sion [War08b, SJAS05]. One of the most effective metaphoric designs is to use pic­
tograms. This design principle was demonstrated by Legg etal. [LCP*12] through the 
deployment of glyph-based visualization in sports. Figure 5.2(f) shows two different 
levels of leamability, when for example one needs to encode the number of greeting 
cards in different categories. The glyph on the top row is semantically rich and is much 
easier to leam than that on the bottom row. However, not all glyph-based visualization 
can afford pictograms. These constraints can often be alleviated by making abstract 
metaphoric association, such as green for nature, renewable, safe, and so on.

Attention Balance: In multivariate visualization, one common task is to make ob­
servation of the “behaviour” of different attributes in relation to the attribute(s) in a 
sorted order. While it is helpful to make each individual attribute searchable [TCW*95, 
War08b], it is also necessary to avoid unbalanced attentiveness among different chan­
nels. For example, the bottom glyph in Figure 5.2(g) features bright red indicators for 
some variables. When browsing different glyphs in visualization, these red triangles are 
dominant which may cause undesirable pop-out effects.

Focus + Context: In multivariate visualization, it is usually difficult, often undesir­
able, to pre-determine what is the focus attribute and what is the context attribute. For 
example, Straka et a l  [SCC*04] display glyphs as the foci simultaneously with the un­
derlying bone stmcture (i.e., the context) in CT-angiography by varying levels of opac­
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ity. We propose this can be applied to individual attributes of a multi-dimensional glyph. 
Naturally, in glyph sorting, a attribute that is associated with a sort key is considered as 
one of the foci. In some cases, the viewer may wish to consider another attribute as 
a focus. Hence, it is desirable for a glyph sorting system to support focus+context vi­
sualization by highlighting individual channels that are in focus. Figure 5.2(h) shows 
two different methods of highlighting the third and fifth bar using colour and greyscale 
intensity. Since colour is more visually dissimilar, it is easier to identify the attribute 
foci in the top glyph than the bottom glyph. This can be expensive, because in the worst 
case, each visual channel is accompanied with another channel as a highlighter.

Labelling and Legends: Axis-labelling is an essential requirement for any sorting
configuration for indicating sort keys [WGK10]. It enables the viewer to understand the 
context (e.g., frequency vs. amplitude in sound analysis) without referring to the visual­
ization itself. Bertin [Ber83] refers to this as external identification. Legends convey the 
relationships between dimensions and visual channels and its representation for a given 
discrete or continuous value. This is often known as internal identification [Ber83].

These design principles are general guidelines that we consider when designing 
glyphs to be sorted interactively in visualization. However, they should not be treated 
as the absolute laws. Some cases may lead to conflicting requirements when following 
some of these principles, or compete for limited capacity of visual channels for smaller 
designs.

5.4 Interactive Glyph-based Visual System
In this section, we propose a interactive glyph-based visualization system for performing 
high-dimensional sorting as outlined in Figure 5.3. The system integrates two fundamen­
tal components: 1) a glyph control panel for selecting and driving the sorting process in 
a visual manner, and 2) an Interactive, Multi-dimensional Glyph plot for viewing sorted 
results.

5.4.1 Focus and Context Glyph-based Interface
Figure 5.4 shows a focus and context glyph-based user-interface which the system incor­
porates for selecting sort keys. The interface provides two main benefits. It allows users 
to interactively control the sorting process by populating sort keys within the linked IMG 
plot in a visually intuitive manner. Secondly, the focus and context glyph gives a visual 
reference which allows users to rapidly identify and understand the attributes that drive 
the sorting.

Sort keys are selected in the system by interactively clicking on a visual component 
o f  the glyph. The selected visual attribute is then rendered into focus using opacity
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F igure 5.3: A graphical pipeline illustrating the glyph sorting fram ew ork. It consists 
o f  fo u r  key steps: I) visual mapping o f  data to glyphs. We propose general design 
guidelines fo r  creating visually sortable glyphs to support interactive sorting and m ulti­
variate analysis. Alternatively, a default glyph (e.g., Star glyph) is used. 2) integrating  
a fo cu s  and context glyph control panel fo r  selecting multiple sort keys, 3) constructing  
the glyph sorting tool which enables users to perform  high-dim ensional sorting and in­
teractively adjust various display options and 4) visual representation o f  sorted results 
on an Interactive, M ulti-dim ensional glyph plot.
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such that the data attribute is visually  distinct from other attributes. This is an effective 
m ethod  for em phasis ing  specific parts to the users attention in h igh-dim ensional glyphs. 
Similarly, users can rem ove a sort key by clicking on a glyph com ponen t in focus  and 
d ragg ing  it o ff  the glyph to bring the attribute back into context. By linking the interface 
w ith  the IM G  plot, users are able to populate different sort keys in a visually intuitive 
m anner. Furtherm ore, we incorporate tooltips into the interface to aid users with infor­
m ation  on what attributes is visually encoded in each glyph com ponent.
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(a) Gain

Figure 5.4: A fo cu s  and context glyph-based user interface fo r  selecting sort keys. Click­
ing on a visual com ponent o f  the glyph highlights that particular sort key in focus.

5.4.2 Interactive, Multi-dimensional Glyph Plot

Since ordering in a soiling  plane is one o f  the m ost effective and w idely  recognised 
representations for data analysis (e.g., scatter plot), we position the g lyphs along the two 
p rim ary  sorting axes. This forms the basis o f  our  Interactive, M ult id im ensional Glyph 
(IM G ) plot. Follow ing the design principles in Section 5.3, populated  sort keys are 
depicted  as focus and context glyphs along each sorting axis respectively (see Figure 5.9 
for exam ple) coupled  with a visual legend to illustrate how the data is ordered. The 
sort key priority can be changed  interactively by the user via double  c licking on the 
soil key glyph, to e ither prom ote (using the left m ouse  button) or dem ote  (using the 
right m ouse button) the ordering. We integrate a series o f  interactive tools to aid user 
exploration: sliders for adjusting axis length, b rushing tools fo r  selecting glyphs, pan- 
and-zoom  navigation for details on dem and  and viewing o f  additional in form ation (e.g., 
a video, or image) that m ay be associated with a glyph.

Visualizing g lyphs on a 2D plane im poses additional challenges. O ne perceptual 
p roblem  is the o rder  in which glyphs are rendered on the IM G  plot. By default, g lyphs 
are rendered sequentially  as they occur in the dataset. D epend ing  on the sorting pa ram ­
eters, these will cause  different levels o f  overlap. To alleviate this, w e incorporate  the 
ability to sort the rendering order o f  selected glyphs. This enables  the user to em phasise  
g lyphs o f  greater interest for data exploration. In addition, we provide two display  p ref­
erences as a user-option. Connectivity, for rendering lines that connect g lyphs in order 
o f  a sorting attribute, and M ean Bars which displays the statistical average value o f  a 
sorting axis (if applicable) as a coloured band  in each hierarchical axis bin.

5.4.3 Hierarchical Axis Binning

In data-driven placem ent, sorting data by discrete variables is a typical opera tion  one can 
perform. This often leads to an increase in level o f  overlap due to discrete positioning 
in the constra ined sorting space. W ard [Wart)2] describes a survey on distortion tech-

(b) Gain vs Start Event (c) Gain vs Start Event vs Tortuosity
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Figure 5.5: Diagram illustrating h i­
erarchical axis binning alon£ one 
sorting axis. Intervals (or sub- 
regions) at each level o f  sorting can 
be sub-divided by different attributes 
where additional sort functions can be 
mapped. We note that the axis m ap­
ping can be applied along nultiple  
axes.

niques (e.g., random  jit te r  |C le 9 3 ]), a post-processing step which can be used to leduce 
visual c lu tter by incorporating noise into the g lyphs position. A m ajor concern wi h this 
approach is the level o f  distortion introduced can significantly change the interpreta­
tion and integrity o f  the visualization. A nother approach includes projecting data using 
dim ension  stacking |W ar94). However, this does not scale well with sparse datasets.

Hierarchical axis binning is a m apping function to alleviate such a problem  by rep ­
resenting multiple discrete variables as regions as opposed  to points. Encoding nu ltip le  
d im ensions onto  a single axis enables additional sorting functions (e.g., a continuous 
variable) to be m apped for relaxing the positioning o f  g lyphs along a bounded sub- 
region. Figure 5.5 illustrates our  generalised  axis binning algorithm at different levels 
o f  sorting which we dem onstrate  a long one axis. However, our  technique can be applied 
over multiple sorting axes. Let L be the interval [L m jn , L m ax] and K — (k\.l<2 , . . .  ,k„) be 
a set o f  sort keys we want to o rder the data by. We define our  axis mapping function for 
a single key k as the following:

h ( e , L A )  = ^ r i f \ \ L \ \  +  Lmm (5.1)
max f K

T he linear function first norm alises the attribute key and maps this to the region 
L, such that if k is discrete and non-num erical (e.g., name), then max f k is equ valent 
to the cardinality  ||&|| o f  the sort key. For h igher order soiling, we expand the region 
given by each discrete value hierarchically  to m ap additional sort functions. Let as first 
denote  the type o f  a key as k 1, where T  = {D iscrete, C ontinuous}. Now  su p p o se d  e  K  
is a ordered  sequence o f  discrete and continuous sort keys. We apply the resf ic t ion  
A f  =  { a [ \ . . .  . a j f ]  such that 7} =<: 7/+i for / =  1, where the condition ^  is
used to obtain a list where no continuous key directly precedes a discrete key fcr each 
sort key pair. W ith such an ordered list, we can define a hierarchical sorting funct on for

7/£////////s////////////////////z//y/////////////v

V / / / / / X / / / / /
*4- —  —  L 2  -  —

y / / / / / / / / a/ / / / / y / / \  
—  —  L ? —  —

i n i
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F igure 5.6: A snapshot o f  the glyph-based sorting system. The software consists o f  three 
main interfaces: I ) a glyph control panel fo r  controlling sort keys in a visual manner, 
2) an IM G-plot fo r  displaying the sorted results, and 3) an option panel to support 
interactive exploration. Additional statistical information and a glyph-based legend is 
displayed through tabbed viewing panels.

m apping  and relaxing points along discrete sub-regions recursively by Eq. 5.1. This  is 
generalised  to the fo llow ing form:

H ( e . L . A ) = ' f h ( e . L i. a i)(5.2)
(=1

where  L, is the interval at each level. At the sort level i =  1, ou r  interval is already 
initialised (i.e., the axis length, w here L\  =  L). Thus, it is only necessary  to determ ine 
each sub-region division at successive levels o f  sorting. The sub-regions are defined as
Lj .|-i e  [—<5,-+i , +<5/+ i] such that:

8m =  < U € [0 .1 )  (5.3)
2 max f K

in which the coefficient p  is used to adjust the m ax im um  length o f  each sub region. For 
jU =  1, adjacent sub regions touch (connected), while for p  >  1, our intervals begin to 
overlap. Setting p  within the interval [0.0.8] allows axis binning to interactively expand 
in visualization, while leaving significant gaps such that each sub-region is visually  d is ­
tinct at all levels o f  sorting (see Figure 5 .9 for example). Since our  function is bijective.
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it follows that each data point is unique. Hence, the complexity of ordering glyphs with 
multiple sort keys both analytically and visually is reduced to sorting by a dominance 
relation (e.g., x and y coordinate).

Given an ordered list of discrete and continuous keys, we can hierarchically build 
multiple axis bins to facilitate sorting of multiple functions. The user is able to inter­
actively control the amount of spatial relaxation by adjusting two properties: the axis 
length and the width of axis binning. Each hierarchical axis bin size is altered by vary­
ing the sorting parameter p  which corresponds to each level of sorting.

5.5 Case Study: Sports Event Analysis
We demonstrate glyph sorting on a real-world application in sports event analysis. We 
have worked in close collaboration with the Welsh Rugby Union (WRU) to develop a 
software that allows for in-depth analysis of matches (see Figure 5.6). First, we detail the 
process of mapping attributes to a sortable glyph. We then present a visual comparison 
of two matches which was conducted by analysts at the WRU. We discuss the knowledge 
and insight that has been derived as a result of glyph sorting and conclude the study with 
domain expert feedback.

5.5.1 Visual Mapping of Sort Keys

As described in Chapter 4, coaches and analysts heavily rely on notational analy­
sis [HF97] to record major events in a match from which key performance statistics 
about teams and players can be derived. Spatial tracking data is another source of infor­
mation which analysts collect (usually for post-match analysis) and study as a separate 
entity. However, without the semantic context of the game, such data is difficult to in­
terpret and is often disregarded due to the deluge of data. We design new glyphs that 
combine both notation and spatial data, with a focus that the glyphs are visually sortable 
for interactive sorting and visualization. Table 5.1 gives an overview of the set of at­
tributes in rugby event analysis which are ranked in order of data importance based on 
end-user feedback. The visual channel we use to map each data corresponds to the glyph 
design as shown in Figure 5.7. Following the design principles presented in Section 5.3, 
we describe the methodology of mapping rugby event data to visually sortable glyphs. 
A summary of our parameter space and their sortable features is illustrated in the glyph 
swatch chart (see Figure 5.8).

The goal of rugby is to carry a ball to the opposition try line. Gain is the term used for 
the distance gained towards the opposition try line as a result of free play. Although gain 
is naturally of interval type, conventions in rugby adopt an ordinal measurement (e.g., 
negative gain, minor variation, major gain). Thus, a discrete representation is needed. 
Since end-users make use of an existing ordered colour scheme, it is natural to map gain 
to this visual channel to support visual orderability, leamability as well as being search-
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Sort Key Typedness Visual Channel
Gain Ordinal Colour
Event Nominal Pictogram

Territory Start Position Interval Size
Tortuosity Ratio Shape

Number of Phases Ratio Enumerate
Direction Direction Orientation

Net Lateral Movement Ratio Length
Time Ratio Location

Phase Duration Ratio Length
Team Identifier Nominal Colour

Table 5.1: Table illustrating the set o f sort keys in rugby event analysis. Each attribute 
is classified based on typedness, and the visual channel mapped to the glyph. Data 
attributes are ranked in order o f importance from top to bottom.

able given the high visual priority of colour. The context in which gain is achieved is 
particularly important. These start events (e.g., from lineout, scrum, etc.) are nomi­
nal categories that classifies periods of play into more semantically meaningful groups. 
Here, the events are sorted by importance. We previously described in Section 5.3 the 
use of metaphoric pictograms for mapping such data. Pictograms can often be arbitrary, 
in that their shape, size, colour will vary, thus having a low visual orderability. Using 
different intensities to draw each pictogram is one solution to establish a visual ordering, 
however, this may be misleading since event is discrete and not continuous. Instead, we 
design and order the pictograms according to their relative greyscale pixel count which 
is more appropriate for our study. Typically associated with a start event, is whether that 
event resulted in points scored (i.e., the end event). These glyphs should be differentiable 
to the viewer. Therefore, we use a coloured halo effect to enhance the attention-balance 
of such glyphs.

In rugby, the pitch is divided into key areas known as territory, which describes the 
spatial property of an event. The territory start position gives an indication at how far an 
event occurs from the opposition try line. Given that visual separability of variables is a 
key requirement in glyph sorting, we avoid overloading a single channel (e.g., colour) by 
encoding this attribute using size. Using the glyph template described in [MPRSDC12], 
we map this to the radius of a transparent, external grey silhouette. Size is a suitable 
mapping for ordering quantitative variables (i.e., interval and ratio) and also yields a high 
searchability due to visual pop-out, making this ideal for attributes of greater importance. 
The additional channel capacity introduced by the silhouette enables us to encode a 
varying line curvature along the contour for displaying the tortuosity of the ball path. 
Semantically, the line curvature resembles the tortuosity or shape of the ball path, which 
makes this easier for users to infer or remember.

106



Glyph Sorting: Interactive Visualization fo r Multi-dimensional Data

G a i n  m a p p e d  _ _ _ _
t o  i n n e r  c o l o u r

S t a r t  e v e n t  a s  
m e t a p h o r i c  p i c t o g r a m

D i r e c t i o n  u s i n g  
a r r o w  o r i e n t a t i o n

N u m b e r  o f  p h a s e s  —

Figure 5.7: Components and visual channels o f  the glyph.

A single path (or ball-in-phase), consists o f  a series o f  w aypoin ts  and path segments. 
In rugby, these w aypoints  and segm ents co rrespond to the num ber o f  phases. A simple 
and effective m apping  for such discrete data is to use a enum erative  representation due 
to its natural ordering. We depict the enum erate  inside an arrow head w hich is oriented 
according to the resulting ball direction. Since orientation has weak learnability, we in­
corporate  m etaphoric  cues i.e., a com pass, by positioning the arrow head along c circle 
to m ake this m ore m em orable  to the end-user. We m ap arrow width to net lateral move­
m ent which indicates the relative lateral distance travelled. Since net lateral movement 
and direction is co-related, it is sensible to couple  both variables together.

A nother  data coupling  is time  and phase duration  which describes the temporal p e ­
riod in which the event occurs. Because both attributes are o f  ratio type and continuous, 
it is possible to com bine  such data using an integrated encoding , for m ax im is ing  channel 
capacity. We represent tim e using a clock visual metaphor, w here time and duration is 
m apped  to location (or orientation) and length o f  the t im e handle. The semantics o f  a 
clock is used to enhance  the visual orderability  property o f  time. In o rder  to facilitate 
aspects  o f  ou r  sort key visual mappings, we adopt a c ircu lar-based  glyph design (F ig ­
ure 5.7). The final attribute we m ap is team identifier (i.e., hom e or opposition), which 
w e depict by co lour-coding the inner contour. We follow the general convention jsed  in 
sport for d istinguishing two team s by m apping  red and blue to the team s respectively. 
This enables sporting dom ain  experts to be m ore familiar with the glyph concept which 
im proved learnability  and visual search.

5.5.2 Visual Comparison of Two Matches

A nalysts  are norm ally  tasked with watching multiple m atch  v ideos to identify he o c ­
currences o f  key perform ances. This is laborious and tim e-consum ing , and  even current 
techniques such as notational analysis do not allow the analysts  to d iscover new insight 
but merely  review what has been previously recorded. A s part o f  ou r  evaluatiDn, we

T i m e  a n d  e v e n t  d u r a t i o n

T o r t u o s i t y  m a p p e d  t o  
b o u n d a r y  c u r v a t u r e

T e r r i t o r y  s t a r t  p o s i t i o n  
m a p p e d  t o  r a d i u s

C o n t o u r  c o l o u r  a s  
t e a m  i d e n t i f i e r

N e t  L a t e r a l  m o v e m e n t  
a s  a r r o w  w i d t h
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compare glyph-based visual analytics for analysing the performance of a single team in 
two different rugby matches as shown in Figure 5.9. Match 1 (M l), involves two evenly 
matched teams, resulting in a closer point score differential. This is compared to Match 
2 (M2) where one team proved to be more dominant. Both matches are taken from the 
World Cup 2011. By using visual analytics, the domain experts are interested to see how 
the two matches compare and for investigating why the outcome of the two matches are 
so different.

We presented the software to the analysts and explained the usability prior to letting 
the analysts explore the two datasets. One topic of interest is the relationship between 
gain and tortuosity, i.e., whether the strategy of working the opposition (high tortuos­
ity) resulted in greater gain. Sorting the glyphs by the two attributes reveals a uniform 
gaussian distribution of glyphs in both matches. A clear observation, is the significantly 
lower average tortuosity in M2, indicated by the greater spread of glyphs and overall 
shift along the tortuosity sorting axis. This shows that it requires less effort to make 
sizeable gains in each phase and thus, attacking the opposition more directly can yield 
larger benefits. From a glance, the analyst identifies many different event types (i.e., 
pictograms) appearing within the cluster in the visualization. This directed the user to 
inspect how start event would affect the ordering of the glyphs via an alternative sorting 
strategy.
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Figure 5.9 illustrates the comparison of the two matches where the user sorts the 
glyphs based on three attributes: gain versus start event and tortuosity. One new feature 
not previously observable, is the variation of start events that resulted in points scored 
which is depicted by glyphs highlighted in purple. It is clear in Ml, that most points 
are scored from lineouts. In comparison, the other match exhibits a more uniform dis­
tribution of point scoring events. From this, we can hypothesise specific strengths and 
weakness of different teams. The statistical information displayed by mean bars is use­
ful for analysing and deriving new key performance indicators. For instance, phases 
from turnover provide the most average gain across both matches as shown by the high­
est blue bands in each hierarchical axis bin. Thus, the number of turnovers is one key 
indicator that influences the team performance. Subsequently, scrums is the next most 
effective in Ml, whereas lineouts proved more successful in M2.

Under the new sort operation, the analysts discover a new data trend that is present 
in Ml and not the other (see Figure 5.9), where the glyphs appear within each axis bin 
along a linear line from top left to bottom right. This indicates that the team achieved 
more gain whilst attacking the opposition directly, which decreases respectively with 
higher tortuosity. At first, this was not what the analysts expected. By visually analysing 
the glyphs in the upper left cluster, we found the events to occur largely within the 
defensive third as shown by the shorter grey silhouette on each glyph. For a greater level 
of detail, the analyst studies the sorted video clips that is associated with each glyph, 
to find the cause of higher gain is a result to the team kicking the ball forward out of 
defense. Although kicking the ball results in greater gain, this comes at a cost of losing 
ball possession which is crucial.

The analysts found the trends to be insightful for explaining strategies against dif­
ferent oppositions. Tactically, the visual patterns observed in M2 describes a more of­
fensive game plan which is carried out each time the team regained ball possession. In 
comparison, Ml shows a clear distinction between offense and defense, where the team 
selectively chose key moments (e.g., pitch position) to attack the opposition. The infor­
mation correlates well with the analysts understanding since mistakes against stronger 
oppositions (i.e., Ml) comes with higher risk which can impact the outcome of a match. 
One further observation visible in M2 is shown by the ordering of glyphs in the turnover 
event category, in which the variable gain increases with tortuosity. Such a pattern 
indicates the opposition defence tiring as the home team attacked the ball, creating a 
prospective scoring opportunity.

5.5.3 Domain Expert Review

The development of the work has been an iterative process in close collaboration with 
the Welsh Rugby Union (WRU), spanning over 12 months. From inception of the idea, 
it was clear that the analysts want to be able to interrogate their data in a more complex 
nature than previously available in order to gain new insight. The introduction of spatial 
data into visual analytics has meant that this is now achievable and has been used to
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derive novel information intuitively. Rhodri Bown of the WRU performance analysis 
team provide valuable feedback on the usage of glyph sorting within rugby performance 
analysis.

“The strongest element o f the system is the ability to interactively sort vast 
quantities o f data according to multiple attributes fo r  revealing trends or 
groups o f data. Your eyes are instantly drawn to those patterns. In our cur­
rent practice, getting the data and generating charts (through spreadsheets) 
is very time consuming. Once a chart is plotted, we often get "What if  we 
take this variable into account?", which then requires us to go back to the 
raw data and process it all again. Where as with this, we can navigate 
the data much more effectively. The visualization is insightful fo r  giving an 
overview o f a match. Sorting the data gives good visual cues fo r  pointing 
us in the right direction and being able to look in detail at the associated 
videos helps to clarify and explain what those trends are ”

The feedback received from the WRU analysis team proved to be very encouraging. 
It confirms that the use of glyph sorting can significantly enhance the effectiveness of 
glyph-based visualization. By integrating glyphs into the sorting process and linking 
this with multiple video footage, the analyst is able to derive new underlying phenom­
ena from a match. In particular, the domain experts feel that such a system is highly 
beneficial in their workflow for post-match analysis, where the insight obtained from 
sorting is useful for formulating strategies against different oppositions.

5.6 Discussion

For this application, we developed an interactive glyph-based visualization system to 
support post-match analysis of sorting rugby data. The system incorporates a fo- 
cus+context glyph-based interface for selecting and driving the sorting process, and a 
linked IMG plot for displaying sorted results. Although the visually sortable glyphs used 
here (Section 5.5.1) are specific to rugby, the underlying system functionality could be 
adopted to other glyph-based designs. Thus, this research can be generalised to other 
domains that require interactive analysis of multi-dimensional data. One limitation of 
the results is the scalability of the IMG plot to big datasets. Since we make use of a 
larger glyph design, we find that this can result in a significant amount of visual clutter. 
To alleviate this problem, we integrate interactive tools such as axis expansion, as well as 
pan-and-zoom navigation. However, more sophisticated interactions could be explored 
to reduce the amount of occlusion.
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5.7 Summary
In this chapter, we have proposed a glyph sorting framework for interrogating and in­
terpreting large multivariate data. Glyph sorting combines the principles of designing 
visually sortable glyphs in conjunction with an interactive visual system to enhance the 
usability of glyph-based visualization. We found glyphs that are visually sortable is 
an effective means for performing comparative analysis of multiple attributes between 
glyphs, and to support multi-dimensional visual search. The system incorporated a 
novel method for encoding multiple dimensions onto a single axis to facilitate high­
dimensional sorting, and also effectively reduce visual clutter in the visualization by 
relaxing the spatial positioning of glyphs. We have demonstrated this approach to an 
application of sport performance analysis. During this study, the analysts were able to 
derive new insight and observe trends as a result of high-dimensional sorting. It was ap­
parent from the way the analysts interacted with the system that they would often “know” 
what key events they were looking for and how events should be organised (i.e., by ex­
amining the associated videos), but do not have the precise knowledge about individual 
sort keys. Chapter 6  extends this work by investigating the use of a knowledge-assisted 
visual analytic process to support such a task.

From this research, we were able to successfully encode up to nine different pa­
rameters within a glyph, where each attribute can be readily perceived and sorted in an 
obvious way (Figure 5.8). However, we observed that some visual encodings, for exam­
ple territory start position using radius size, is perceptually more orderable than others, 
for example time using orientation. This led us to believe that different visual chan­
nels have a different perceived orderedness. As far as we know, no formal experiments 
evaluate such a task, and is the main motivation that inspired the study in Chapter 7.
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CHAPTER 6

Glyph Sorting: A Visual Analytic Approach
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IN the previous chapter, we examined several technical aspects of glyph sorting and 
design principles for developing effective, visually sortable glyphs. Two further 
problems raised as a result of this work is the limitation of glyph sorting interac­

tions to an ad hoc sorting requirement; and the perception of orderability under different 
visual channels. This chapter focuses on the former. One interaction of glyph sorting 
we introduced is the ability to encode multiple sort keys within a single axis using hier­
archical axis-binning. This method allowed users to perform high-dimensional sorting 
interactively. However, a limitation of this approach is that a user is required to have 
some knowledge about the combination of sort keys to organise events in a useful man­
ner. When such knowledge is not obvious it decreases the usability of such a tool. To
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overcome this challenge, we extend previous work using a knowledge-assisted ranking 
framework to support the analysis and sorting of multivariate events in a flexible manner.

Event ranking (e.g., for determining relevance or prioritising actions) is an important 
task in visual analytics [GLG*13, CLP* 15a]. This task becomes challenging when sort­
ing involves several data dimensions, and the way in which each dimension influences 
the sorting is not well defined. Such a ranking task is commonplace in practical visual 
analytics, where one often encounters a request for organising data into some kind of 
order without a precise specification of the relevant sort keys and a sorting function. 
Although some analytical methods such as multidimensional scaling (MDS) [CC01] 
or principle component analysis (PCA) [Jol02] may help in some applications (e.g., 
[JZF*09]), they focus on the discovery of the most influential attributes in the data, 
rather than the discovery of a sorting function for an ad hoc sorting task.

In this work, we propose a novel knowledge-assisted approach to such a visual an­
alytics task for sorting sport event data. Our concept is inspired by the method of card 
sorting [RM97], a user-centred design that allows a user to decide how to categorise 
a set of items into groups or structures they are familiar with. Card sorting has been 
previously used to effectively classify symbols in cartography [RFB*11], organise on­
line course sites [Doul3], and cluster multivariate glyphs [BS92]. We apply a similar 
approach to rankings instead. In a knowledge framework [CZP* 10], we can summarise 
the situations as follows:

•  Users have tacit knowledge about ranking events, but do not have the formal 
knowledge as to a sorting function. They may have partial knowledge about sort 
keys as they typically speculate a set of influential attributes.

• Although users can rank a given set of events using their tacit knowledge (because 
they define the ordering), this does not scale up to a large number of events. It is 
generally easy for users to place a few most representative events (e.g., success, 
neutral, failure) into order. The task becomes inefficient when the number of 
events increases significantly, and ineffective (i.e., less ‘accurate’) for events with 
a similar principle criterion (e.g., how successful), but a diverse set of conditions 
(left or right, earlier or later, different players involved, etc.).

•  On the other hand, the system does not have any a priori knowledge about the 
expected ranking outcome, since the ranking requirement is not predefined. Of 
course, it does not have the formal knowledge about a sorting function either. If 
the system has a sorting function, it can perform event sorting in a scalable and 
consistent manner.

We thereby developed a visual analytics system that enables users to provide the system 
with some of their tacit knowledge by selecting a small set of events (typically 3-7), 
and ranking them in order as an example for the system. The users may also provide 
their partial knowledge about possible attributes (e.g., data dimensions) that should be
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considered. This partial knowledge is not essential, but can reduce the amount of com­
putation significantly. We use regression models to convert the input to some formal 
knowledge in the form of a sorting function and a measure of influence of different sort 
keys. The system then provide users with a visualization of the sorted results. The for­
mer is shown in a glyph-based sorting canvas, and the latter in a parallel coordinates 
plot. Users can interactively refine the sorting results through model parameters, or re­
activate the knowledge discovery process by refining their initial specification of the 
example set or the speculated data dimensions. Satisfactory results can normally be ob­
tained within a few iterations, and users can produce a sorted set of events (i.e., video 
clips) for supporting further analytical tasks such as compiling various statistical indi­
cators, and analysing video clips in a coaching session. Our contributions of this work 
are:

• We introduce a novel visual analytic approach to sorting multi-dimensional events 
by converting users’ tacit and partial knowledge to formal knowledge.

•  We develop a system that supports such a process iteratively through a close inte­
gration of interaction, analysis and visualization.

• We demonstrate the efficiency and effectiveness of visual analytics for multivariate 
sorting through a real-world application ranking rugby events, and we evaluate our 
work objectively with a expert user consultations.

The remainder of the chapter is organised as follows: In Section 6.2, we outline 
our problem specification. Section 6.3 presents the visual analytic system, and details 
the variety of components (knowledge-assisted ranking framework, model visualization, 
glyph-based visualization, and sorted event replay) that the system incorporates. We 
then evaluate our work in Section 6.4 with a case study performed by analysts at the 
Welsh Rugby Union, and discuss the limitations of our system in Section 6.5. Finally, 
we summarise our work in Section 6 .6 .

6.2 Problem Specification
In modern sports, especially in high-level teams, coaches and analysts experience a del­
uge of data due to the introduction of various digital technologies for supporting match 
analysis and training. This work is motivated through the collaborative relationship with 
the Welsh Rugby Union (WRU). As mentioned in the previous chapter, the WRU use 
videos extensively for analysing performance indicators. Although quantitative analyses 
is helpful for getting an overview of a match, the rugby analysts consider that this alone 
is not enough to paint a right picture of a game.

A rugby game is coded into a series of facets known as phase hall event, which 
describes the period of play a team has possession of the ball. The rugby analysts are 
then tasked with the crucial role of finding key instances of such events. These events

117



Chapter 6

(i.e video clips) often have to meet a specific criteria, for example, how successful a 
strategy is in some conditions, and can also frequently change depending on the user’s 
task, for example, analysing offensive or defensive play. Currently, this search process 
is performed manually using systems such as SportsCode to browse and select events 
based on a pre-defined attribute, which include:

•  start event — the type of event in which play is started (e.g., scrum, kick recep­
tion, lineout).

•  gain —  the distance gained towards the goal area.

•  territory s ta rt position — the spatial position on the pitch where the team re­
ceived possession relative to the goals.

•  time —  the starting time of the event.

•  tortuosity — the tortuosity of the ball path.

•  num ber of phases — a count of the phases.

Given the range of requirements for different types of tasks, searching clips by some 
fixed criteria is time consuming, and more than often the analysts spend a considerable 
amount of time trawling through numerous video clips that are not relevant because 
the sort is not well defined. Our approach aims to alleviate this problem by enabling 
analysts to sort events in a flexible manner. We introduce a knowledge-assisted ranking 
framework that allows a user to specify their sorting requirements without depending on 
specific knowledge about individual sort keys to support this task.

6.3 Visual Analytics for Multivariate Sorting
We developed a visual analytic system that closely integrates a knowledge-assisted pro­
cess to enhance the exploration and sorting of sport event data. By training an analytical 
model with a user’s knowledge on ranking, the system constructs a multivariate sort 
query that can be used on various matches for retrieving the desired events or associated 
video clips in flexible manner.

6.3.1 System Overview
The system (Figure 6.1) contains four main views:

•  Glyph-based Visualization —  this view shows the sorted events of a match using 
glyphs, and is the main interface which users can select and import events into the 
ranking input view.
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Figure 6.1: The user interface contains fo u r  main views. The glyph-lm sed visualization 
shows the sorted events o f  a m atch , and allows a user to select and import events to the 
system. Once events are im ported , the ranking input view is used to specify a sorting 
requirement. The m odel visualization view allows the user to analyse how the current 
model parameters and accuracy correspond to their ranking input. The ranking model 
can then be exported to one o f  the prim ary axes in the glyph-based visualization fo r  
viewing the sorted results. The axes can also be modified by clicking on a component in 
the glyph control p a n e l

•  Ranking  Input —  this view allows the user to specify and configure their sorting 
requirem ent to the system.

•  M odel Visualization —  this view uses parallel co-ordinates to convey how the 
events correspond  to the individual attribute contributions and accuracy o f  the 
resulting model as defined by the ranking input.

•  Glyph Control Panel —  this graphical interface allows the user to interactively 
control the prim ary  axes within the g lyph-based  canvas by c licking on the corre­
sponding glyph attribute.
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Figure 6.2: A knowledge-assisted ranking fram ew ork. It consists o f  five  steps: the 
u ser’s ranking input as an example to the system, a knowledge discovery process to 
predict a set o f  sortable attributes com bined into a function, knowledge externalization 
to convey the analytical model through visualization, model validation based on ranking 
analysis, and finally, using the m odel to interactively analyse, rank and replay match 
videos (knowledge application).

Each o f  the views in the system  are linked to support interactive exploration  o f  the 
data. For exam ple , b rush ing  glyphs in the g lyph-based  view will update the co rrespond­
ing polylines in the model visualization. We use a g lyph-based  canvas as our main 
interface for selecting and importing  events to the system. M etaphorically , the glyphs 
represent the ‘c a rd s ’ as in our  card sorting m ethodology. In the ranking input view, users 
can specify an even t’s rank by dragging the event to the appropriate  position in the table. 
The selected event is then highlighted in black, both in the table and model visualiza­
tion. The correspond ing  glyph is also highlighted  by m agnifying its size to help users 
visually navigate betw een  each o f  the different views. We also provide tooltips and a 
statistics dashboard  that displays additional information about an event. To sort events 
using the learned ranking function, users can export the analytical model to one o f  the 
axes in the g lyph-based  view using a drop-dow n menu. T he user can then playback the 
video associated with each event data for detailed analyses.

6.3.2 Knowledge-Assisted Ranking Framework

The core fram ew ork  o f  our visual analytics system involves converting  a u se r’s ranking 
(sort query) into a function that can be explicitly  applied to sort the data. This process 
involves defining a rela tionship betw een  the ranking input and the set o f  sort keys (i.e., 
data d im ensions)  as illustrated in the first two steps in Figure 6.2. Let e \ , e 2 , •••,€„ be a 
subset events, and q j  be its j - th attribute value for m  attributes. By placing them  into 
som e order es, < eS2 < . . .  < eSn, we can model the ranking as y =  E/3, w here  E  is an 
n x  m matrix, and (3j £  M, j  < m  are the w eights o r  contribution o f  each sort key. The 
goal then is to estim ate the w eights /3 such that an even t’s ranky ,  is preserved. Typically,
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a user may guess these weights during the ranking process. However, this is impractical 
since the criteria for sorting may frequently change depending on the user’s task.

One effective approach for predicting such weights and a potential ranking function 
is through regression modelling, which is a common method within statistical forecast­
ing [Act6 6 ]. In this work, we employ three different analytical models: multiple linear 
regression, polynomial regression, and logistic regression. We then solve the ranking 
system by approximating the sort key weights using a least squares fitting [Act6 6 ] which 
generalises to:

To ensure a solution to /3 exists, (i.e., the matrix ETE is invertible), we remove any 
constant column vector from the model. This problem may occur since our data contains 
both ordinal and categorical values, for example, if the ranking input contains only a set 
of scrum events. The least square solution is applicable when the system of equations E 
is over-determined (i.e., for n > m). Conversely, E is under-determined if there may be 
a lack of suitable training data. Generally, such a system may have infinitely many or 
no solutions. We can pick one of these solutions such that /3 is minimised subject to the 
constraint y =  E/3. This is solved using the method of Lagrange multipliers:

Once the ranking model has been trained, we validate and visualize the model param­
eters to the user as part of an analytical loop. Rather than simply presenting the model 
as a ‘black-box’, this allows the user to assess whether the sort query is reliable, and 
empowers the user to infer some of their own knowledge into the knowledge discovery 
process.

6.3.2.1 Regression Evaluation

Given a ranking input, the system needs to compare this against the ranks predicted by 
the regression model. A common approach used in statistical modelling would be to 
compute its Mean Squared Error (MSE) [Act6 6 ]:

where n is the number of events, d o f  is the degrees of freedom, y is the predicted value, 
and y is the actual value. At this level, the computed values y and y  represent ranking 
scores which is used later to determine the events rank. By choosing a set of scores 
(e.g., yi e  [0 , 1]) it is easy to observe that the predicted ranks will be preserved when 
MSE = 0. However, this does not hold for MSE >  0. We address this by incorporating 
two comparison metrics to help validate different models: a ranking confidence T, and a 
Mean Ranking Error (MRE).

/3 =  (ETE )- 1ETy (6 .1)

/3 =  ET(EET) - ]y (6 .2)

MSE = (6.3)
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The ranking confidence T measures the accuracy of the model based on a percentage 
of events in which its predicted rank matches the order defined by the ranking input. 
Let /  : E M. be the trained ranking model, and (j): M2 {0,1} be a binary mapping 
that returns 1 if the order between two subsequent events f { e Si) < f ( e Si+]) for all i = 
1, . . . ,  n — 1 is correct. We derive the ranking confidence as:

* =  E  0 ( / t o ) >/(*/+!)) (6-4)
n  1 1=1

When ranking events, for example, a set of key moments within a match, we often 
find that more significant events (e.g., the winning goal) can be ranked more easily 
and ‘accurately’ in comparison to events that are less significant (e.g., a player making a 
foul). This concept has been well-established within event-based detection such as video 
storyboarding [PLC* 11]. Since such events are more accurate in terms of their ranking, 
the accuracy of model should therefore take this weighting into account when being 
compared. We incorporate this by modulating the ranking confidence using a Gaussian 
function G(x) where x =  (n — \ ) — i. The parameter c  in G(x) is pre-defined, and we set 
<7 =  2 as default.

Our third comparison metric we compute for each model is the Mean Ranking Error 
(MRE). The MRE measures the average difference between an event’s actual rank S i  and 
its’ predicted rank t i  as given by:

M R E ^ - j^ W s t- t iW  (6.5)
n  i =  1

Each of the three comparison metrics allow us to examine how the predicted ranking 
from different analytical models compares to the actual ranking of the training data. The 
next section will describe how we use these metrics to choose the optimal regression for 
different types of sorting requirement.

6.3.2.2 Model Selection

The discovery of performance indicators (sort keys) that influences the user’s ranking is 
particularly sensitive to the regression technique used as shown in Figure 6.3. Notice 
how the weight of each attribute (e.g., the blue gauges) in the model can change, and 
may have a significant impact to the overall accuracy. We incorporate each of the three 
comparison metrics into our system to validate the model using a weighted contribution. 
For each model, we compute its performance P = X\MSE  +  A,2 (l — t)  +  X^MRE,  and 
choose the model with the smallest value. By default, we set each weighting term to be 
equal (e.g., A; =  ^). However, this can be customised according to the user’s preference. 
The resulting model will give a predicted ranking that is most similar to the sort require­
ment as defined by the ranking input. We also provide the ability for a user to manually 
choose between different regressions. This allows the user to analyse the different sets
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(a) Linear Regression
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(b) Polynom ial Regression
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(c) L ogistic Regression

Figure 6.3: Visual comparison o f  the ranking models using (a) Linear, (b) Polynomial 
and (c) Logistic regression in parallel co-ordinates. The contribution o f  each attribute is 
depicted using gauges that correspond along each axis. In order to convey the m odel's  
overall accuracy, the ranking m odel is p lo tted  as an additional axis gauge which encodes 
the ranking confidence T. Note that each regression m odel m ay discover a different set 
o f  key perform ance indicators.

o f  perform ance indicators that may correlate better to their sort query  (even though the 
predicted ranking may be less similar).

6.3.2.3 Model Interaction

W hen a user ranks a set o f  events based on som e ad hoc requirem ent, they can often 
m ake intuitive or  educated  guesses on specific sort keys that m ay or m ay not affect their 
ranking criteria. We liken this to partial knowledge. Thus, we allow the user to refine the 
model param eters by apply ing  additional weightings wj E [0.1] to the sort key w eights (5 
such that the model is defined asy,- =  / ( w . /},£,). We incorporate  this into our system as 
a series o f  interactive sliders. M oving  the sliders will scale the axis w idths in the model
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Start Event Cain T im e  N um ber of P h a se s  T errito ry  Position  T o rtu o sity  R anking

Penalty 1 0 0 .0 0  9 9 .6 0  10 1 1 5 2 .0 0  LOO High
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Figure 6.4: Refining the m odel parameters. Users can adjust the contribution o f  each 
attribute Wj in the ranking m odel by scaling the axis widths using sliders in the ranking 
preferences. This example show s how modifying the weights (highlighted  in the red 
circle) can result to an improved m odel as shown by the larger ranking gauge (see right 
most axis).

visualization (see Figure 6.4). This enables a user to explore  new sorting strategies and 
understand its im pact to the predicted  ranking. Optionally, users can  choose to rem ove 
a sort key param eter  from the m odel com plete ly  (w j =  0). R em ov ing  a sort key can 
significantly reduce  the com puta tional cost and param eter  space, as well as potentially  
resulting to an im proved  m odel.

6.3.3 Model Visualization

Figure 6.1 shows the model visualization. In o rde r  to visualize the analytical m odel, we 
adopt the use o f  parallel co-ord inates  w hich is a w ell-established technique in m ultivari­
ate analysis [Ins85]. This  provides a visual representation  o f  the attribute w eights  and 
the overall accuracy o f  the trained model. Each attribute d im ension  is plotted as vertical 
gauges which are then filled accord ing  to the am ount o f  contribu tion  within the model. 
A similar approach is used by A ndrienko and A ndrienko  [AA03] to visualize  and weight 
multiple criteria in a decision m ak ing  application context. They  visualize  the com bined
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(a) (b)

Figure 6.5: Brushing glyphs in the glyph-based canvas (a) renders the glyph in focus, 
while non-selected glyphs are drawn as red markers to indicate their position. N on­
selected glyphs can also be interactively scaled by the user (b) in order to reduce the 
am ount o f  visual occlusion.

result on a separate axis. We also follow this method to convey the accuracy  o f  the 
model, by plotting this as an additional axis gauge and filling the gauge accord ing  to its 
ranking confidence r .  This enables the user to inspect the quality o f  the model and to 
identify which attributes contribute well for a given ranking. The user can also choose 
to adjust the w eights  m anually  through interaction with the visualization using sliders 
that adjusts the axis w idths for that particular attribute. For each event in the match, we 
render a polyline to help provide context to the model. By allowing the user to brush 
the polylines in the parallel co-ordinates or  within a linked view (e.g., g lyph-based  c a n ­
vas), it provides a facility to verify the model is perform ing as expected  by observing 
the ranking outcom e.

6.3.4 Glyph-based Visualization

The visual interface incorporates g lyph-based visualization to depict the sorted results 
based on our IM G -plo t in C hap ter  5. A lthough interactive multivariate sorting is the 
focus o f  this work, w e are careful not to confuse the end-user with an unfam iliar visual 
design. We therefore adopt the glyphs we proposed in Section 5.5.1 which we designed  
together with the analysts. O ther visual design choices such as the num ber  o f  design 
options presented in [Wart)2] m ay be used instead depending  on the application context. 
The glyph-based  canvas is the prim ary interface for importing  and selecting events (i.e., 
the g lyphs) into the ranking input table, where the user can specify their  ranking to 
the system. We found  glyphs to be an intuitive m echanism  for selecting and ranking
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sp inaigh t

Figure 6.6: Video playback o f  sorted events. We integrate fo u r  different broadcasting  
feed s  that recorded the event.

events. This is due to similarity with our card sorting metaphor, which  is proven to be 
an effective approach for a sorting task |B S92],

Interaction and Occlusion. Due to the inherent occlusion o f  using  g lyphs [War02], 
we support interaction that enables the user to adjust the length o f  the sorting axes to 
help de-c lu tter  the visualization. We also find that during the event selection process, 
non-se lec ted  g lyphs (e.g., transparent glyphs) can som etim es interfere with this view 
due to the ir  large size. In order  to address this problem , users can interactively reduce 
the size o f  such g lyphs so they appear as small red markers (see F igure 6.5).

6.3.5 Sorted Event Replay

Sporting  analysts  often  rely on m aking  sem antic  observations that can on ly  be gained 
through  the context o f  w atch ing  videos in order to determ ine the re levance o f  an event. 
This  tool is especia lly  im portant for specifying a ranking to the system. Since the data 
is assoc ia ted  with a single o r  multiple v ideo clips, we incorpora te  a v ideo  p layback 
user-option for v iew ing  the sorted events (see F igure  6 .6 ). B rush ing  events in the glyph- 
based  view or parallel co-ordinates  allows for sm aller  subsets to be  replayed, which 
enable  users to choose, view, and rank the events in a m uch  m ore  effective m anner  than 
the results o f  a typical search query.
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Figure 6.7: Visual com parison o f  two matches. The events are sorted according to suc­
cessful traits that resulted in points scored as defined by the model shown in Figure 6.4, 
and tortuosity. The analyst observed a group o f  events highlighted in the green circle (a) 
where a high percentage o f  points are scored, which is significantly less in the second  
match (b).
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6.4 Case Study: “What is a successful strategy to 
score?”

Finding (and often formulating) a successful strategy against opposition teams is a crit­
ical task in professional sport. We have worked in close collaboration with the Welsh 
Rugby Union, where coaches and analysts perform such a task primarily by browsing 
video clips obtained from notational data. The limitations in current software means 
this is performed manually. Such a process is time consuming and does not scale well 
to multiple matches. This system presents a novel approach for organising match videos 
and event analysis. After spending time with the analysts using the system, we present 
a case study comparing two matches taken from the recent World Cup as part of our 
evaluation. Both matches present an interesting case to the user due to the huge point 
differential (81-7 and 16-17 respectively). The analysts would like to investigate what 
strategy led to such high points scored, and why this was so different to the other game. 
We detail the process below.

To begin with, the analysts chose a set of representative events as a training example 
to the system by selecting the glyphs in the glyph-based canvas. Their initial action is 
to layout the glyphs according to gain (a typical performance indicator) by changing the 
primary axes using the glyph control panel to help with this search process. While the 
amount of gain is important according to our analysts, a combination of other factors 
such as where they received the ball (territory start position) and how much they worked 
the opposition (tortuosity) is influential. Potential events is identified quickly based on 
the glyphs features. After importing these events into the ranking input, the analysts 
then watch each video to help determine their rank based on how successful the out­
come is. Our domain experts are used to performing such a routine task in their usual 
workflow. Once the system is trained, the analysts can visually assess the quality of the 
resulting model in the parallel coordinate view (see Figure 6.4). During this process, 
they observed that phases was not a significant attribute to their ranking, and refined the 
attribute weights further to discover an improved model indicated by the amount of blue 
in the ranking axis as shown in Figure 6.4.

Figure 6.7 illustrates the sorted results according to the ranking function derived by 
the analysts for both matches. From ranking the events, they were able to discover a 
cluster of glyphs in one match (see Figure 6.7(a)) where a high percentage of points is 
scored depicted by the highlighted purple glyphs. What the analysts found interesting 
is the ability to compare and visualize the difference between entire matches in a single 
overview. The system reveals the second match to have fewer occurrences of events 
with similar features, which visually suggests why there were not as many scoring op­
portunities in this game. Two events can be observed within this region, however they 
did not result in points scored. Investigating this further through video reveals two poor 
kicks during play caused the possession to be turned over. Our visual analytic system 
helps analysts identify such events quickly and effectively. More importantly, it allows

128



Glyph Sorting: A Visual Analytic Approach

analysts to use this to convey to players and coaches what needs to be improved, and 
may lead to new strategies.

Domain Expert Feedback. We report qualitative feedback from three domain expert 
users: a rugby analyst, the head coach of a university rugby team, and an international 
rugby player. After testing and a hands-on demonstration of our software, we held a 
consultation with each user.

Analyst “Using the software has enabled us to discover new key performance indica­
tors that we wouldn ’t have recognised before, which ultimately helps save time as we do 
not need to watch as many irrelevant videos. I t’s a totally different way o f looking at our 
data. Previously, we would only look at match heuristics such as the territory that we ’re 
in, or the gain in isolation, but being able to combine the two attributes (or more) now 
makes this a lot more meaningful. This is great fo r comparing matches. The visualiza­
tion clearly identifies any differences in events, and we can then investigate those clips 
further and see why they’re different.”

Head Coach “Analysts have reams and reams o f stats which all have to be computed 
and interpreted manually. The system here is a good way at grouping clips. For instance, 
i f  we’re defensively bad fo r a couple o f games, you could press a few  buttons and i t’s all 
there fo r  you, rather than going through manually, create a database from the first game, 
then add to it from the second game. Every coach will be looking at different things. For 
example, I  might be looking at *Do we move forward when we catch the ball?’. Where 
this is useful is that it can show the best-case and worst-case, and also be able to look 
at examples in the middle. The flexibility o f the whole model is its strength.”

Rugby Player “The software is useful as it allows you to break up the game by what 
you want to see. For instance, it would be irrelevant to show the Heineken cup team 
(which is the elite competition) all the clips with the squad involved in the LV league 
competition as they would be with a completely different team. Its main feature is the 
scalability to sort events from an archive o f matches.”

The feedback received shows the importance of organising relevant events in sports, 
and that our visual analysis system is a useful approach to support such a task.

6.5 Discussion
Among several possibilities of modelling techniques, we used three different regression 
analyses to train our ranking model. Since the predicted contributions of each attribute 
in the model is sensitive to the type of regression (see Figure 6.3), the role of visual 
analytics becomes more important as it allows the user to verify whether the discovered
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performance indicators correspond with their knowledge interpretation. The system may 
also benefit with a wider range of different models for identifying parameters with a 
better fit to the ranking input.

For this application, we typically train the model using a relatively small sample size 
(5-10 events) to generate a good ranking accuracy. However, this is not the case for all 
training data. A larger ranking input could result in a more robust model, but we do not 
know ‘how much ’ is enough to improve the accuracy without further testing. Ranking 
more events can also restrict the practicality of the system as they become more difficult 
to rank which is reported from our initial pilot study (see Appendix B).

The scalability of our approach in terms of the algorithm for training the model is 
highly generalisable, and can be easily applied to other domains and larger datasets. Ex­
tending our system to other team sports such as football, basketball, and hockey would 
simply require adapting the event mapping in the glyph-based design as discussed in 
Chapter 4. A potential issue is with the scalability of our visualization such as the 
glyph-based canvas. The system currently supports loading a single match, though this 
could be extended to multiple matches. Due to the use of large glyphs, visualizing 
several matches at once in this view will create more visual clutter. Likewise, higher 
dimensionality could also affect the visibility of the model parameters in the parallel 
co-ordinates view as a result of over plotting gauges.

6.6 Summary
We have proposed a knowledge-assisted, visual analytic process for interactive sorting 
of sport event data. Users provide tacit knowledge by selecting and ranking a subset 
of events as an example to the system. We use regression analysis to discover a set of 
influential sort keys, and a formal sorting function to organise events based on the user’s 
ordering requirement. This allows users to rank events by a criteria such as importance. 
We find our visual analytic approach can significantly enhance the usability of multivari­
ate sorting, and demonstrate its usefulness in rugby along with feedback from a range of 
domain experts.

The following chapter will now study our second research problem that we identi­
fied back in Chapter 5, relating to one important aspect of designing effective, visually 
sortable glyphs. This aspect is the perception of orderability. The design of effective 
glyphs for visualization often involves a number of different visual encodings. Since 
spatial position is usually already specified in advance, we must rely on other visual 
channels to convey additional relationships for multivariate analysis. One such rela­
tionship is the apparent order present in the data. In particular, we noticed that some 
visual channels (for example, size) are perceived as more ordered while for others are 
perceived as less ordered (for example, orientation) than the measured order present in 
the data. To evaluate this perceptual effect, we conduct a series of empirical studies.
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NDERSTANDING visualization concepts and the way in w hich they interact with
the human visual system remains a crucial aspect in developing effective data
visualization; some of which are presented in Chapter 5. Semiotics provides one 

framework for understanding both why graphic representations work, and how to design 
such representations for optimal display. Important to semiotic theory and information 
visualization is the identification of basic visual channels (Section 2.2.1.1) such as size, 
hue, and shape that can be used to encode information. Such visual channels are known 
to possess a set of visual properties that determine their suitability of representing certain 
types of information or a task [Ber83],

This chapter investigates ordered perception, a fundamental concept to our frame­
work described in Chapter 5 for designing visually sortable glyphs. When a visual chan­
nel is ordered, we can easily establish an order in which signs or objects are perceived, 
for example, from light —► dark, or small —> b ig  (see Figure 7.1). This perceptual 
effect heavily reduces the reliance of legends and can result in a significant gain in per­
formance [LFK*13]. Given that the positioning of glyphs is often used to effectively 
encode spatial information [War08a], glyph designers must rely on other channels in 
order to convey additional orderings for multivariate analysis. It is therefore highly de­
sirable for visualization scientists to understand how different visual channels affect the 
perception of order in a sequence of elements that encode different data values. As far 
as we know, no formal experiments exist to evaluate such a task, and this is the main 
motivation behind this work.

In this chapter, we present a formal study to investigate the perceptual orderability of 
visual channels. In order to work towards a comprehensive answer to such a big ques­
tion, we focus this work on a set of commonly used visual channels and three specific 
research questions:

1. “How does noise affect the perception o f orderedness under different visual chan-

2. “How do visual channels affect the judgment ofm in and max values fo r  ordered 
and unordered sequences?”

3. “How does visual channel affect the perception o f equality fo r  ordered and un­
ordered sequences?”

The first research question focuses on detecting structural patterns in a visualization. 
Orderedness is one of such patterns, and we investigate this in a sequence of elements 
encoded using different visual channels. In our second research question, we explore 
how such sequences impact the judgement of min and max values. Such a task is typical 
in many visualization goals, for example, in detecting outliers. Finally, our third research 
question investigates how such sequences affect the perception of elements that have

nels?”
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equal values, which is representative o f  com m on  graph-reading  tasks. O ur results show 
that the perfo rm ance  o f  each task is significantly affected depending  on the choice o f  
visual channel used.

The contributions o f  this chapter are: (1) we present empirical results to investigate 
ordered perception, and (2 ) we evaluate how visual orderability  may impact the perfor­
m ance o f  two different types o f  perceptual tasks (visual search and categorical search).

We present results from  three experim ents  that address our research questions. In 
the first experim ent, we m easure  the partic ipan ts’ perceptual ordering o f  a sequence o f  
e lem ents  under the effects o f  visual channel. Participants see ordered and unordered 
sequences with data values that are m apped to each visual channel: size, value, texture, 
hue, orientation, shape, and numeric. We discover a significant difference indicating 
that som e visual channe ls  are perceived as more ordered than others, which is consis­
tent with previous literature [Ber83]. We also find that som e visual channels  are more 
sensitive to noise, and that noise significantly affects their perceived orderedness. The 
result p rovides insight and new considerations that a designer m ay wish to consider for 
effective visualization design.

The second experim ent evaluates the effects o f  visual channel when searching for 
min and m ax values for ordered and unordered sequences. O ur results show visual 
orderability  can significantly enhance  the accuracy o f  such a task.

Finally, in our third experim ent, we investigate how visual orderability  affects the 
perception o f  pairs with equal values. For such a task, we find evidence that visual 
channels  that are perceived less ordered (i.e., they appear more discrete), improves the 
accuracy o f  categorical search.

The rem ainder o f  the chapter is organised as follows: In Section 7.2, we describe 
the techniques used for creating the visual stimuli in our studies. O ur experim ental 
overview  for analysing  visual orderability  is then outlined in Section 7.3. We present 
our three studies in Section 7.4, Section 7.5 and Section 7.6. Finally, we discuss our 
results in Section 7.8.

7.2 Orderability of Visual Channels

T he exam ple  shown in Figure 7.1 illustrates an unordered sequence o f  e lem ents  using 
visual channels  that are perceptually  orderable according to Bertin [Ber83].

OOOfOO®OM«ft##

Figure 7.1: Visualizing an unordered sequence using value and size.

It is easy  to see that both value (or lum inance) and size im pose an o rder that is
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universal. In other words, given an element along a sequence, we can perceptually 
estimate it’s magnitude along the spectrum. We can generally observe that the sequence 
of grayscale elements are mostly ordered from left to right based on the changes of 
intensity. However, it is not immediately clear that both representations are actually 
encoding identical values. This leads us to believe that different visual channels have 
different perceptible levels of orderability. We now describe the process and techniques 
which we follow to create the visual stimuli used in our studies.

7.2.1 Data generation
In the data generation stage, we create synthetic datasets to model ordered and unordered 
sequences within a visualization. We chose the Body Mass Index (BMI) as an ideal 
example for its known linear model. The index is a popular measure used to assess how 
healthy a person’s weight is for his or her height. To generate our datasets, we used a 
healthy or desirable index (e.g., BMI = 25) to derive a set of corresponding height and 
weight values. We then visualize the sequence of values by selecting a set of uniformly 
sampled data points, and mapping the weight values to each visual channel as shown 
in Figure 7.2. It is non-trivial to determine how unordered a sequence is, since the 
perception of orderability is not well-defined. For example, a collection of items can be 
arranged with varying degrees of orderedness. In signal processing theory [JJS93], we 
can describe such a sequence as analogue signal distortions from the result of noise. We 
adopt this approach to create a series of data conditions that models levels of orderedness 
using a noise function.

7.2.2 Noise Function
We introduce noise into our dataset using a swap function to create unordered sequences. 
Let Xi,xj be two randomly selected data points. The swap function is defined as:

where d  E M is the distance between a pair of data points. We control the strength of the 
noise function using two parameters: (1) the number of swaps, and (2 ) the swap distance 
between two points. To create sequences with varying degrees of orderedness, we apply 
a set of noise level conditions derived by fixing the number of swaps, and increasing 
the swapping distance. We then measure the magnitude of orderedness by computing 
correlation coefficients [RN8 8 ] of the resulting dataset.

Initially, we sampled the noise levels uniformly with correlation between [0, 1]. 
Through observation and pilot experiments, we noticed that the perceived orderedness of 
such sequences was sometimes visually indistinct. As such, to avoid collecting data with 
no variation, we refined the noise levels manually to obtain orderings with a perceptible 
difference. We test a total of eight levels of orderedness: 771 =  1.0,772 =  0.97,773 =  0.95,
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(a) Value

© O O ©

(b) S ize

•#00000
(c) Hue

(d) Texture

(e) Orientation

37 .2-  38.9 - 40 .3 - 41.9 43.5 45.1 46.7 48.4 50.1 - 51.8 53.6 55.4 57.2 59.0 60 .6— ►

Figure 7.2: The visual stimuli used in our experiments. Each ID plo t is m apped using 
the visual channels taken from  semiology o f  graphics [Ber83J.

rj4 =  0 .90, 775 =  0.78, 77̂  =  0 . 7 1. 777 =  0.54. and r\% — 0 . 12, ranging  from very ordered, 
to very unordered.

7.2.3 Visual Mapping of Elements

Figure 7.2 show s the visual stimuli used in our  experiments. Given that position is the 
m ost effective representation  for conveying an ordering |C M 8 4 , War02], ou r  goal is to 
investigate the visual channel which is next most orderable. We analyse this using ID 
plot visualizations. Points  (or e lem ents) along the ID  plot are m apped  using the visual 
channels  described by Bertin [Ber83]. In addition to this, we com pare  their  perform ance 
to raw numerical values, which is com m on  practice when reading data within a table or 
spreadsheet view.

Since perceptual d ifferences along a visual spectrum can be non-uniform  | Wart)8 bJ, 
we carefully  divide each  visual m apping  into bins equal to the num ber  o f  sam ple  points

(f) Shape

(g) Numeric

135



Chapter 7

(e.g., n = 15) shown in the plot. We choose the maximum number of samples to be 
displayed such that the just noticeable difference (JND) [Ber83] in each visual channel 
is respected. In the following section, we present our visual mapping methods and JND 
considerations to ensure each element within a sequence is visually discriminable.

7.2.4 Just Noticeable Difference

The literature on perceptible differences [Hei24] has been well studied over the 
past decade, resulting in mathematical concepts for producing uniform visual map­
pings [War8 8 ]. For each of our encodings, we describe the fundamental techniques 
we follow.

Value is mapped to greyscale intensity of each element (see Figure 7.2(a)). In order to 
realise increments of value with a perceptible difference, we follow previous work on 
visual discrimination of intensity [Hei24, War08b]. They show that human perception 
can distinguish a 0.5% change in luminance. The difference in luminance measured in 
our mapping is 7%, which is significantly larger than the JND.

Size is mapped to the radius of each element (see Figure 7.2(b)). Previous work in 
psychophysics demonstrates that the perception of size (e.g., area) can be effectively 
modelled using Weber-Fechner’s Law [AR08]. In particular, the Weber fraction shows 
that the relationship between perception and size is logarithmic, which we adopt to con­
trol the difference in size. We can measure the perceived difference as:

p  =  k\n — (7.2)
n

where p  is the perception between two radii r/ and rj. We estimate the scaling param­
eter k = 0.23 by incrementing the radius until a significantly large difference in size 
is perceptible. This gives a perception value of p = 0.048. Vision research show that 
a Weber fraction for circle radius discrimination is p = 0.025 [WWH98]. As our en­
coding is greater than this JND, we use this to compute a set of radii that are visually 
discriminable.

Hue is mapped to the colour (from red to blue) of each element (see Figure 7.2(c)). To 
control for hue, we measure the colour difference between two steps of hue values in 
CIE-L*uv colour space. The distance between two colours (L\ ,u \,v \)  and (L2 , wj, vj) is 
measured by:

A E luv =  ^/(L2-Li)2 + ( ^ - « ; ) 2 +  (v |-v ; )2 (7.3)
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where AE[uv = 1 is an approximation to a JND [War08b]. We set a distance of AE[uv = 
10 in our encoding which is conservatively larger than a JND, and therefore ensures the 
colour of each element is significantly discriminable as shown in Figure 7.2(c).

Texture is mapped to grain (or frequency) of the texture (see Figure 7.2(d)). At a given 
value, the texture is the number of separable marks contained in a unitary area. Ware 
and Knight [WK92] refer to this as contrast, and is one of the dimensions of texture 
along with size, and orientation. While there has been previous work on generating 
visually discriminable textures (e.g., [BHW05, CR6 8 , HBW06]), they do not explicitly 
measure a perceptible difference. We therefore use a perceptually motivated approach to 
estimate the difference between two texture elements. Since texture is perceived as the 
ratio of white (e.g., the gap separating two marks) and black, we can use these features 
to determine a texture difference. First, we use connected component analysis [HZ04] 
to detect the amount of black b e  [0 , - 1], and the amount of white w e  [0 , + 1] between 
each pattern cycle. We then calculate the difference between two textures /,■ =  (£>,-, w,-) 
and tj — (b j , wj) as:

\U~tj\ = \(bj + Wj )~(bi  + Wi)\ (7.4)

To investigate the texture difference which corresponds to a JND, we performed a 
pilot test with five participants. We showed each participant two randomly selected 
texture elements side-by-side on a fifteen inch laptop display, and asked whether they 
were equal, or not equal. Participants could only respond using the keyboard to eliminate 
movement delays, and we recorded their error rate and response time. During pilot 
testing, we found a distance | ti tj | >  0  .01 is an approximate value of a perceptible 
difference.

Orientation is mapped to line orientation (see Figure 7.2(e)). We mapped orienta­
tion to a unique range of angles [5°, 175°] to avoid any ambiguity. A number of 
psychology experiments indicate that line orientation discrimination ranges between 
1.06° — 6.44° as a factor of line length [VV086]. Our vision is particularly sensitive 
to changes from a vertical and horizontal orientation where a JND is reported as lit­
tle as 0.71° [OVV84, V085]. Since the orientation difference here in our visualization 
(e.g., 11.3°) is significantly greater than this JND, we find that the difference between 
elements can be accurately perceived.

Shape is mapped to the number of spikes of a star-shaped glyph (see Figure 7.2(f)). 
For our studies, it is important that viewers are able to extract an underlying relationship 
between the set of shape values. The discrete nature of shape makes such an encoding 
challenging [Ber83, Mac8 6 ]. From a restricted set of shapes, we considered two visual 
designs: (1) elementary shapes, and (2) star shape glyphs as shown in Figure 7.3. The 
elementary shape maps the value to the number of edges.
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Figure 7.3: Comparing shape similarity' between a given shape, and its predecessor, to 
measure the distinctiveness as the num ber o f  spikes (star-shape) and edges (elementary - 
shape) increases.

C om puter  vision offers many techniques to m easure the distance betw een  two 
shapes [HZ04], and we use one o f  these to choose  the visual design that is most d is ­
criminable. To m easure a shape difference, we utilise image m om ent statistics [Hu62]. 
F igure 7.3 com pares  the similarity o f  the two set o f  shapes as the num ber  o f  d im ensions 
increases. T he e lem entary  shape (blue line) converges to a difference w here sequential 
shapes are no longer d iss im ilar  qu icker than the star-shape glyph (red line). Since we 
canno t be sure w hether  this distance correla tes with their perceived difference, we per­
form another pilot study sim ilar to the one we analysed  for texture. We did not find any 
clear differences in perform ance, however, participants were slightly m ore  accurate  with 
star-shaped g lyphs (Error  =  11.11%) com pared  to e lem entary  shapes (Error =  12.04%). 
Based on these findings, we chose star-shaped g lyphs as our  encoding.

7.3 Experimental Overview

In order to com pare  the perceptual orderability  o f  visual channels , w e perfo rm ed  a 
within subject experim ent design to analyse orderability  based  on three criteria:

• How ordered is it? —  we m easure  the perceived o rderedness  in a sequence  o f  
e lem ents  from 1 (unordered) to 5 (ordered).

• Which is smallest? Which is largest? —  we assess the ability to identify w hether 
a target e lem ent has the sm allest value, largest value, or neither. T heir  accuracy 
and response tim e is measured.

• How many pairs? —  w e assess the ability o f  counting  pairs o f  e lem ents  which 
have the sam e value. Similarly, their accuracy and response  time is m easured.
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This led us to develop three experiments which we conducted using Amazon’s Me­
chanical Turk, an online crowdsourcing platform [KZ10], Online crowdsourcing exper­
iments present an attractive option for evaluating the perceptual challenges in visualiza­
tion design due to its low cost and increased scalability [HB10, KZ10]. A number of 
successful studies include semantic colouring [HS12, LFK* 13, Mor03], designing effec­
tive treemaps [LHH* 12] and visual tasks for human computation algorithms [GSCOl 2]. 
Heer and Bostock [HB10] demonstrate the validity of using such a platform for graphical 
perception experiments by replicating previous controlled laboratory studies on Ama­
zon’s Mechanical Turk. With an expected larger variance, their crowdsourced results 
are consistent with previous findings. The cause of this variance is reported to be a 
range of factors such as display size, colour calibration, viewing distance and lighting, 
which may reflect more accurately the working environment of real users.

We follow previous crowdsourcing studies to help design our experiments. In Ex­
periment 1 , the aim is to understand how different visual channels affect the perception 
of orderedness within a sequence, where one goal is to analyse the relationship between 
perceived orderedness versus measured orderedness. We considered several experimen­
tal designs for this task such as Two-Alternative Forced Choice (2AFC) [Fec60]. While 
this approach would enable us to analyse a user’s perception on whether a sequence 
is more or less ordered than another, it does not allow us quantify perceived ordered­
ness and fulfil the requirement of our analyses. We also considered a ranking approach 
whereby users would rank a set of sequences based on their perceived order. The amount 
of user interaction required for this approach made this unsuitable for our crowdsourc­
ing environment, where it is expected that tasks should be very quick to answer (less 
than one minute). We therefore find a rating approach as described in Section 7.4 to 
be the most appropriate design for this particular task. For Experiment 2 and Experi­
ment 3, we opted for a multiple choice question approach with three possible answers 
(see Section 7.5 and Section 7.6 for details). This design was chosen in order to reduce 
the possibility of bias in the results from unfaithful workers. We also apply additional 
consistency checks to detect such contributors from our data (Section 7.3.3).

Each study followed a similar experimental procedure. Before users participated in 
the study, we first demonstrate the interface to the participants through a video tuto­
rial which was embedded on the web page. These demonstrations allowed participants 
to gain familiarity with the interface prior the experiment, and to understand the re­
quired task. For each experiment, we recorded the following details: gender, age group, 
whether they were colour blind, and the device they were using. After the study, each 
participant completed a qualitative survey regarding the experiment (see Table 7.1). We 
also provide an optional feedback form for participants to give additional comments.

7.3.1 Interface

We developed the web-based interface using HTML, Javascript and PHP. The experi­
ment interface consists of a single view of the visual stimuli, and the question at the
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Question Answer
When the sequence of elements are ordered, how difficult did (Easy) 1 - 5 (Hard)
you find the task?

When the sequence of elements are unordered, how difficult did (Easy) 1 - 5 (Hard)
you find the task?

R ank the visual channels in order of their perceived difficulty. (Least) 1 - 7 (Most)

Table 7.1: Qualitative survey participants filled after each experiment

top of the screen as shown in Figure 7.4. A series of radio buttons appears at the bot­
tom of the interface indicating the possible answers. Based on the feedback from our 
experimental pilot (see Section 7.3.2), we improved the size of the button by drawing a 
clickable box around each radio button. Once a radio button is selected, participants then 
confirm their response by clicking on the large button at the bottom of the screen, and 
the next stimuli is presented in the view. Another feature which participants requested 
from our pilot results is a progress bar observed in the top right comer of the screen. 
Due to the repetitive nature of the task, they found such a visual cue would help monitor 
their progress, and reduce the risk of a participant rushing to complete the study.

7.3.2 Pilot Studies
Before deploying our experiments on Amazon’s Mechanical Turk, we conducted both 
lab-based and crowdsource-based pilot studies.

Experimental Pilot. We first conducted an initial pilot study using 5 participants for 
each experiment. Our focus here is to investigate the following: (1) the usability of the 
interface, (2) estimate the time for completion, and (3) evaluate the experimental design. 
For Experiment 1 and 2, there were 168 trials of each condition: 7 visual channels x 
8  noise levels x 3 repetitions. The repetitions in Experiment 2 correspond to the three 
question types asked. In the third experiment (see Section 7.6 for details), we reduced 
the number of noise levels to 3 and repeated the condition for each answer, making 
a total of 189 trials. This reduction was so that the number of stimuli for the three 
experiments is of similar length. Each of these trials is randomised per participant. To 
help overcome any learning effects, the block of trials is preceded by a practice block of 
sample questions, selected randomly from a training dataset, with each condition being 
asked at least twice. After each experiment, we held a consultation with each participant 
individually and report their feedback.

Most participants found the interface intuitive to use. However, some mentioned 
that the radio buttons were too small which we address by enlarging the hit box in the 
final interface (see Figure 7.4 for example). Since we cannot control the environment of
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online contributors (e.g., preventing workers from taking long breaks), we designed our 
experiments with a strong emphasis to objective (2 ) to minimise fatigue, and encourage 
workers to complete the study. During pilot testing, participants felt Experiment 1 (~45 
minutes) and Experiment 3 (~50 minutes) was too long . On the other hand, participants 
felt comfortable in Experiment 2 (~15 minutes). Based on this experience, we find an 
approximate guideline to an experimental length should not exceed 15-20 minutes in 
order for participants to complete our study without breaks. We therefore modified the 
conditions in Experiment 1 by reducing the levels of noise from 8 (771, . . . ,  77s) —» 5 
( N \ , . . . , N 5 ) and by removing only those where the variation is not significant as found 
in our pilot results. In addition, we decreased the number of repetitions to two for 
Experiment 3. This reduces the total number of tasks a participant sees such that the 
experimental completion time is consistent with our second study.

Mechanical T\irk Pilot. In order to verify the experimental updates derived from our 
previous pilot, as well as gauge the behaviour of online contributors, we ran a second 
pilot of 20 participants using Mechanical Turk. This data is not included in our overall 
analyses.

Many online platforms such as Mechanical Turk provide an option to target your job 
to skilled contributors only as an approach to improve the quality of the crowdsourced 
data. We apply this feature in our studies. Each participant can only perform the study 
once. The maximum time allowed for each session is one hour. We found that all 
participants finished within time and no further issues are reported.

7.3.3 Crowdsource Consistency
Apart from restricting the job to a set of skilled contributors, we have no way of ensuring 
whether a worker does a good job, and we therefore have to be careful filtering bad data. 
In fact, even with this option, we observed some cases in our pilot where contributors 
were not invested in the experiment, for example, selecting the same answer for all 
stimuli. Previous crowd-sourced user studies by Cole et al. [CSD*09] and McCrae et 
a l [MMS13] propose the use of consistency checks to address this. Using the same 
principles, we devised a set of consistency checks based on the results we found in our 
Mechanical Turk pilot:

•  C l. Close to chance - users for whom the error is close to chance (e.g., ft > 0.66) 
we reject from the analysis.

•  C2. Standard deviation of answers - we reject contributors whose distribution 
of answers in an experimental task is close to zero (<7 < 0.2). This identifies 
participants who are mostly choosing just one answer throughout their experiment.

•  C3. Variance of answers for ordered sequences - since we are asking informa­
tion about interpretation in Experiment 1, there are no definitively wrong answers,
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especially when a sequence of elements is unordered. We therefore perform a 
check based on how reliable a user’s answer is for a known data condition (e.g., 
an ordered sequence for each visual channel), by looking at their variance. For 
Experiment 1, we reject contributors whose variance is significantly large (e.g., 
<72 >  2). This is one approach to identify potential users who are answering ran­
domly.

Cl cannot be used in How ordered is it?, as we have no ground truth to compare. 
We therefore use checks C2 and C3. For Which is smallest? Which is largest? and How 
many pairs?, we use C l and C2 since we can measure for correctness by calculating 
an error. With our consistency checks we are able to remove severely negligent workers 
without removing many trustworthy workers. In all, approximately 95% of the data 
gathered passes our criteria and is included in our dataset.

7.4 Experiment 1: How ordered is it?
The goal of our first experiment is to investigate whether different visual channels affect 
the perceptual order of a sequence of elements. In addition, we hypothesise that the 
perceived order of different visual channels are more/less sensitive to noise than oth­
ers. Such a property can be desirable to improve the performance of various analytical 
tasks [Mac8 6 ]. For example, users may often seek an encoding that is sensitive to noise 
for detecting outliers (e.g., temperature maps). Whereas a less sensitive mapping is also 
desirable, for example, in extracting trends in multi-dimensional analysis. Choosing 
the most appropriate visual encoding for the task is an important step in effective data 
visualization. We test this hypothesis through an experiment conducted on Amazon Me­
chanical Turk. Participants were asked to rate how ordered a sequence of elements is 
using ID plot graphs. Each ID plot showed 15 data samples which we mapped using 
each visual channel as described in Section 7.2.3.

Participants. 115 contributors on Mechanical Turk participated in the experiment. 
Two participants reported they were colour-blind, and their data was discarded. Another 
three participants failed our consistency checks, and were also removed. Therefore, 110 
participants (62 male and 48 female) were included in our final analysis. The devices 
used were: 49 desktop, 54 laptop, 6  tablet, and 1 phone. Participants were paid $1.00.

Experimental Design. The experiment followed a within subject design and consisted 
of seven visual channels, five different noise levels, and three repetitions (105 trials). 
At the start of the experiment, participants completed a training block of 14 sample 
questions showing an ordered and unordered sequence for each visual channel (see Ap­
pendix C. 1), making a total of 119 trials. To limit any confounding effects of fatigue and
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How ordered is it?
An Image is shown containing a sequence of elements to be reed from left to right. 
For each image, rate how ordered the sequence of elements is.

Unordered □ CM 3 4 5 Ordered

Submit

Figure 7.4: A screenshot o f  the visual interface fo r  Experim ent I: How ordered is it? 
Shape is tested in this example.

learning, the two blocks o f  trials were random ised per participant. To counteract m e m ­
ory, the dataset used for each repetition o f  a noise level was generated independently  
with equal correlation coefficients to two significant figures. The correlation m easured  
at each noise level is: N\ =  1.0, M  =  0.97. — 0 .90, N 4  =  0 . 7 1, and N$ =  0.12.

For a single trial, we show ed participants a ID  plot and asked them to rate how or­
dered  the e lem ents  are using a 5-point Likert scale that corresponds to 1 (unordered) 
through to 5 (ordered) respectively (see Figure 7.4). A fter observing the sequence o f  e l ­
em ents, partic ipants  provided their rating by clicking on one o f  the radio buttons below 
the image followed by the submit button. We m easured both answ er  and response time 
after each trial, before  the next stim ulus was au tom atically  displayed. In order to over­
com e change blindness, we used an Inter-Stimulus-Interval (ISI) |B B K 09] in betw een  
each stimuli. A sim ple loading screen is d isplayed for two seconds betw een trials which 
w as chosen through pilot experim ents  and determ ined as a com fortable  length. This 
served for tw o purposes: 1) to indicate that the stim ulus has actually changed, and 2 ) to 
‘re se t’ the visual system and rem ove any possibilities o f  a previous stimuli influencing 
the fo llowing one.

7.4.1 Results

We perform  our  analysis  in tw o stages. First, we consider  the effect o f  perceptual o r­
derability  based on visual channel overall, as this is our p rim ary research question. We
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Figure 7.5: Comparing the e f­
fe c ts  o f  visual channel against 
perceived orderedness (top) and  
response time (bottom) in Ex­
perim ent 1. Significant differ­
ences are listed above each bar, 
with (mean, m edian) values in­
dicated below. Error bars show  
95% confidence intervals. Bars 
are colour-coded using Color- 
Brewer [HB11 ].
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find that the data is not a lw ays norm ally  distributed, and therefore use a non-param etric  
F r ie d m a n ’s test with standard  statistical level a  — 0 .05  to determ ine the statistical s ig­
nificance betw een conditions.

We then analyse how visual channel affects the perceptual orderability  under the c o n ­
dition o f  noise level. W hen  dividing the data by noise level, we apply a Bonferroni co r­
rection, reducing  the significance level to a  — 0 . 0 1 for this second second-level analysis. 
Post-hoc analysis was conducted  using the N em enyi-D am ico-W olfe-D unn  test [H W 99] 
for testing multip le  pair-w ise  com parison . We report our  results below.

7.4.1.1 Orderability of Visual Channel Overall

Figure 7.5 shows the m ean orderability  and response time results. We find a significant 
difference in both perceived o rderedness  ( X2{6)  =  149.05, p  <C 0.05) and response time 
(%2 (6 ) =  289.61, p  0.05) depending  on the visual channel participants see.

• Mean orderability:

-  Value (3.15) and texture (3.07) is perceived significantly m ore ordered  than 
size (2,97), orientation (2.85), hue (2.82), and num eric  (2.65) ( p  <C 0.05).

-  Shape (3.04) is perceived m ore ordered  than hue (2.82) and num eric  (2.65) 
(p  0.05).

-  Size (2.97) is perceived m ore ordered  than orientation (2.85) and num eric  
(2.65), but less ordered than value (3.15) and texture (3.07) ( p  C  0.05).
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-  Orientation (2.85) is perceived more ordered than numeric (2.65), but less 
ordered than value (3.15), texture (3.07) and shape (3.04) (p <C 0.05).

-  Hue (2.82) is perceived less ordered than value (3.15), texture (3.07), and 
shape (3.04) (p <C 0.05).

-  Numeric (2.65) is perceived less ordered than size (2.97), value (3.15), tex­
ture (3.07), shape (3.04), and orientation (2.85) (p  <C 0.05).

• Response time:

-  Size (5.14s) is significantly faster than texture (6.34s), hue (7.54s), shape 
(7.69s), and numeric (8.75s) (p <C 0.05).

-  Orientation (5.24s) and value (5.47s) are faster than texture (6.34s), shape 
(7.69s), and numeric (8.75s) (p <C 0.05).

-  Texture (6.34s) is faster than shape (7.69s) and numeric (8.75s), but slower 
than size (5.14s), orientation (5.24s), and value (5.47s) (p <C 0.05).

-  Hue (7.54s) is faster than shape (7.69s) and numeric (8.75s), but slower than 
size (5.14s) (p 0.05).

-  Shape (7.69s) is faster than numeric (8.75s), but slower than all other visual 
channels (p 0.05).

-  Numeric (8.75s) is significantly the slowest compared to all other visual 
channels (p  <C 0.05).

7.4.1.2 Noise Sensitivity of Visual Channels

Figure 7.6 compares the effects of noise level (i.e., measured orderedness) to the per­
ceived orderedness under different visual channels. Our results show that noise level has 
a significant effect on the perceived order (p <C 0.01). The significant differences are 
shown in Table 7.2.

7.4.2 Discussion
Overall. Our results show significant evidence that different visual channels affect 
the perception of orderedness in sequences. For example, participants tend to rate a 
sequence as being more ordered using value, while other visual channels (e.g., hue) are 
often judged as being less ordered. This suggests that if a visualization task involves 
detecting ordered or unordered patterns, mappings to different visual channels will lead 
to different judgements.

Overall, value and texture lead to higher degree of perceived orderedness. Given the 
encoding for texture we used, this makes sense as both channels can be viewed as a form 
of grayscale. Surprisingly, we also find shape to be orderable. However, using shape led 
to increased response time overall by 1.23s compared to value and texture. Looking at
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5.0 ■  Size
■  Value
■  Texture
■  Hue
■ Orientation 

Shape
■  Numeric

4.5

4.0

3.5

3.0

2.5

2.0

0.0  0.6  0.7 0.8 0.9 1.0
Measured Orderedness (pow scale)

Figure 7.6: Comparison o f  m easured orderedness (or correlation coefficient) versus 
perceived orderedness. Points depict the perceived orderedness fo r each visual channel. 
organised by pow er scale o f  m easured orderedness. The average is p lo tted  (dashed line) 
against visual channels (coloured lines) using a line o f  best fit.

our  results based  on m edians, we also observe size has a perceived o rderedness  o f  3.0 
on average, w hich  indicates that size m ay produce  sim ilar ju d g em en ts  o f  o rderedness  as 
to value, texture, and shape.

If  the goal is to detect an ordered  pattern, participants reacted faster with visual 
channels  that have a h igher degree o f  perceived orderedness  (e.g., value, texture, and 
size). This a llow ed time savings o f  up to three seconds o r  more (e.g., versus hue and 
num eric) per  task. However, if the task is to detect an unordered pattern, partic ipants  
respond faster using orientation. Since visualization viewers often engage in m any trend 
extracting  tasks both within and across charts, this m ay improve both perform ance  (e.g., 
detecting an ordering), and reduce cognitive load depend ing  on the choice o f  visual 
channel used.
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Pair-wise test
Noise level

N5 N4 N3 N2 N1
Value - Shape 0 .86 0.97 0.53 0.99 0 .00
Value - Texture 0 .76 0.83 0.96 0.49 0.77
Value - Size 0.98 0.00 0 .00 0 .84 0.98
Value - Orientation 0.40 0.00 0 .00 0 .05 0 .00
Value - Hue 0.07 0.00 0.00 0 .0 0 0 .00
Value - Numeric 0 .00 0.00 0.00 0 .0 0 0 .00
Shape - Texture 1.00 0.99 0.97 0 .89 0.00
Shape - Size 0.99 0.00 0.30 0 .99 0 .00
Shape - Orientation 0.98 0.00 0.03 0 .2 6 0 .35
Shape - Hue 0.73 0.00 0.00 0.02 0 .40
Shape - Numeric 0.25 0 .00 0 .00 0 .00 1.00
Texture - Size 0.99 0.00 0.03 0.99 0 .99
Texture - Orientation 0.99 0.00 0.00 0 .94 0 .30
Texture - Hue 0.84 0.00 0.00 0.45 0 .26
Texture - Numeric 0 .36 0.00 0.00 0 .00 0 .00
Size - Orientation 0.90 0.98 0.97 0.67 0 .06
Size - Hue 0.45 0.99 0 .00 0 .1 6 0.05
Size - Numeric 0.09 0.35 0.00 0 .0 0 0 .00
Orientation - Hue 0.98 0.99 0.06 0.97 1.00
Orientation - Numeric 0.72 0.84 0.08 0 .0 0 0 .38
Hue - Numeric 0.98 0.59 1.00 0 .0 0 0 .43

Table 7.2: Experim ent / results. Reporting p-values o f  post-hoc results analysing the ef­
fects o f  noise level on perceived orderedness under different visual channels. Significant 
differences are highlighted in red using a Bonferroni corrected a  =  0 .0 1 .

S en sitiv ity  to noise. Looking at the effect sizes o f  noise level (see Figure 7.6), we 
observe that the perceived orderedness  o f  different visual channels  decreases at different 
rates. This behav iour is consistent across all visual channe ls  tested, and that the rela­
tionship betw een  m easured orderedness  (i.e., noise level), and perceived orderedness  is 
non-linear. There  is a com m on trend in the middle where the perceived orderedness  dips 
betw een  the m easured  orderedness  =  0.97 and N 4  =  0.71 illustrated by the slope 
o f  the curves. For example, shape decreased in perceived o rderedness  by 1.55 in this 
range. C om paring  this to a visual channel such as hue, we see a greater difference o f  
1.74. This difference indicates that some visual channels  (e.g., shape) are less sensitive 
to noise such that viewers may perceive an ordered pattern that does not exist in the data. 
Similarly, o ther visual channels (e.g., hue) are more sensitive to noise such that viewers 
are less likely to see an ordered pattern.

We present further com parative analyses by plotting visual channels  against an aver­
age curve (dashed line) as shown in Figure 7.6. There  are tw o observable  c lusters above 
and below  the curve. O ur results show that value, texture, and shape seem to lead to 
partic ipants  to estim ate  a h igher degree o f  o rderedness than orientation, size, hue, and 
numeric. We also find that this gap is significant as shown in Table 7.2. Notice that
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for A/4 , the visual channels that lie above the average (e.g., value, shape and texture) are 
significantly different to those below (e.g., size, orientation, hue and numeric) indicated 
by the p -values highlighted in red. The same differences can mostly be seen in A/3 . At 
this condition, size and orientation perform closer to the average, and thus we find this 
gap becomes less distinct. One interesting observation is that size starts and finishes 
above and below the average as measured orderedness increases. This means that the 
orderability of size is less sensitive to low frequency noise, but more sensitive to high 
frequency noise, which makes size a good visual channel for detecting both ordered and 
unordered patterns.

For very ordered and very unordered sequences (e.g., N5  and N ]), different visual 
channels lead to almost the same judgement. Participants mostly rate the order of such 
sequences to be 1 (unordered) and 5 (ordered) respectively, independent of the visual 
channel used. We therefore found fewer significant differences. At such levels of mea­
sured orderedness, the decision becomes a binary process (e.g., ordered, or not ordered). 
Hence, we expected such results to appear in our data. Based on our findings, we con­
clude that human’s judgement of orderedness is sensitive to the choice of visual channel. 
The amount of difference depends on the level of orderedness. We look at how this may 
affect the performance of visual search in Experiment 2.

7.5 Experiment 2: Which is smallest? Which is largest?
The goal of our second experiment investigates how the perceptual orderability of differ­
ent visual channels affects the performance of a visual search task. For such a task, we 
adopt the test proposed by Bertin [Ber83] to analyse a viewer’s ability to perceptually 
determine whether an element is less than or greater than a target element. We test this 
using a set of ID plots as described in Section 7.2.3. The experiment follows a similar 
design to Experiment 1. We describe the differences below.

Participants. 8 8  contributors on Mechanical Turk participated in the experiment. No 
participants reported they were colour-blind. One participant failed our consistency 
checks and was removed. Therefore, 87 participants (42 male and 45 female) were 
included in our final analysis. The devices used were: 40 desktop, 42 laptop and 5 
tablet. Participants were paid $1.00.

Experimental Design. The experiment followed a within subject design. The visual 
stimuli consisted of seven visual channels and eight different noise levels (see Ap­
pendix C.2). We tested the eight noise levels rji, . . . ,  as described in Section 7.2.2. 
Participants saw a series of ID plots containing a sequence of elements with one tar­
get element highlighted in a red bounding box as shown in Figure 7.7. For each trial, 
we asked participants to identify whether the highlighted element has: (1) the small­
est value, (2) the largest value, or (3) neither. The experimental procedure required
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Which is smallest? Which is largest?
An image is shown containing a sequence of elements to be read from left to right. One of these elements will be highlighted in a red square 
Choose one of the following answers where the highlighted element has (a) the smallest value, (b) the largest value, or (c) neither

T h e  e l e m e n t  h i g h l i g h t e d  I n  t h e  r e d  s q u a r e  h a s :

the smallest value

I hr largest value

neither

• •# 0 0 0 0

Submit

Figure  7.7: A screenshot o f  the visual inteiface fo r  Experiment 2: Which is smallest?  
Which is largest?

participants to answ er  all question types under each condition (168 trials). S im ilar  to 
Experim ent 1, we first show ed a training block o f  16 sample questions unrelated to later 
trials. Each participant therefore com ple ted  a total o f  184 trials which were random ised  
in both blocks. We used the sam e interface as in Experim ent I, with a list o f  answ ers 
p resented  below the stimuli. Participants respond by selecting one o f  these answers. The 
keyw ords o f  each question type is highlighted in bold text to enable easy identification. 
We m easured  both error rate and response time.

7.5.1 Results

Figure 7.8 shows the m ean error and response time results in this experiment. Since 
the data we collected  is not norm ally  distributed, we once again apply non-param etric  
statistics. A F r ied m an ’s test shows significant d ifferences in error rate ( ^ 2 (6 ) =  276.15, 
p  <C 0 .05) and response time ( ^ 2 (6 ) =  121.46, p  0 .05) under the effects o f  visual 
channel. We report results following the same approach used in Experim ent 1.

• E rro r rate:

-  Num eric  (3 .0% ) and size (5.0% ) produced  significantly fewer errors than 
texture (17.3% ), shape (17.4% ), value (22.0%), orientation (42.0%), and hue 
(44.0% ) (p  <  0.05).
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Figure 7.8: Comparing the e f­
fects o f  visual channel against er­
ror rate (top) and response time 
(bottom ) in Experim ent 2. Signif­
icant differences are listed above 
each bar, with (mean,m edian) 
values indicated below. Error 
bars show  95% confidence inter­
vals.
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-  Texture (17.3%), shape (17.4%), and value (22.0% ) produced few er errors 
than orientation (42.0% ) and hue (44.0% ), but more errors than size (5 .0% ) 
and numeric (3.0% ) (p  <C 0.05).

-  Orientation (42.0% ) and hue (44.0% ) produced more errors than numeric 
(3.0%), size (5.0%), texture (17.3% ), shape (17.4% ), and value (22.0% ) 
(p  0.05).

• Response time:

-  There  were no significant differences in response time betw een value (4.51 s), 
orientation (4.73s), texture (4.84s), hue (5.07s), and size (5.21s).

-  Shape (5.45s) is significantly faster than num eric  (6.63s), but s lower than all 
o ther  visual channels  (p  0 .05).

-  Num eric  (6.63s) is significantly the slowest com pared  to all o ther  visual 
channels  (p  0.05).

7.5.2 Discussion

Overall. Given a sequence o f  elem ents, we find that different visual channels  have a 
significant effect on the error rate o f  m in-m ax  judgem en ts .  Participants p roduced  fewest 
errors with numeric. This is what we expected, since the value is explicitly given and 
the num ber  o f  sam ples shown is relatively small. Despite  the numerical values observed  
be ing  not very com plex (e.g., 3 digits) which m eant that the cognitive load on short
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term memory is relatively low, we find participants spent a significant amount of time 
scanning the numbers as shown in their response data (see Figure 7.8(bottom)). Thus 
visual encodings seem to help in this task.

Judgements using size also produced fewer errors which cannot be explained in our 
data. To investigate potential reasons, we refer back to Bertin’s classification of vi­
sual properties and find that size is the only channel which is quantitative [Ber83]. A 
quantitative variable means we can perceive the numerical ratio between two sizes, for 
example, this circle is twice the size of that circle. This may explain why size performed 
so well in our tests. However, further experimentation is needed to fully understand the 
exact causes.

Conversely, error rate significantly increased when using hue and orientation. It is 
easy to see that such encodings can be misleading (e.g., they do not impose a universal 
perceived order) and would therefore produce more errors in such a task. This is consis­
tent with previous claims, for example, the error-prone use of rainbow colour-mapping 
within the visualization community [BT07].

We find few significant effects in our response time data. However, shape and nu­
meric were once again the slowest as found in Experiment 1, which supports that both 
encodings are cognitively demanding, and thus, increases response times.

7.6 Experiment 3: How many pairs?
In our third experiment, we investigate how different visual channels affect categorical 
perception for ordered and unordered sequences. This study focuses on the perception of 
equality, by identifying the number of pairs of elements which have the same value. Such 
a question is representative of common graph-reading tasks (e.g., “how many countries 
have an average life expectancy of 75 or above”). The experiment follows a design 
similar to Experiment 2. We outline the differences below.

Participants. 136 contributors on Mechanical Turk participated in the experiment. 
Three participants reported they were colour-blind, and their data was discarded. An­
other five participants failed our consistency checks, and were also removed. Therefore, 
128 participants (61 male and 67 female) were included in our final analysis. The de­
vices used were: 51 computer, 70 laptop, 5 tablet, and 2 phone. We raised the reward 
to $1.50 to accommodate the increased average task completion time over our previous 
experiments.

Experimental Design. The experiment followed a within subject design and con­
sisted of seven visual channels, three different noise levels, and two repetitions (see 
Appendix C.3). Each participant a series of ID plots and we asked them how many 
pairs of elements have the same value? Participants responded with either: (1)0 pairs 
(each element has a different value to others), (2 ) 1 pair (only one pair of elements have
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How many pairs? W or«er ID 485872
Job Progress:

An Image containing a set of elements to be read from left to right is shown
Among these elements, identify the number ol pairs of elements which have the same value

o o o

H o w  m a n y  p a i r s  o f  e l e m e n t s  h a v e  t h e  s a m e  v a l u e ?

(each element has a different value to the others)0 pairs

C 1 pair (only one pair ol elem ents have the sam e value)

f  2 or more pairs J  (there are two or more pairs of e lem ents with the sam e  value)

Figure 7.9: A screenshot o f  the visual interface fo r  Experim ent 3: How m any pairs?

the same value), or (3) 2 or more pairs (there are tw o or more pairs o f  e lem ents  with 
the same value). Each participant was required to answ er all question  types under each 
condition twice (126 trials). Like our  previous studies, partic ipants first com ple ted  a 
training block o f  15 sam ple questions before  they were able to answ er  later trials. Each 
participant would  therefore com plete  a total o f  141 trials.

We used the same interface as before. In each trial, partic ipants observed a 1D plot 
as shown in Figure 7.9. From piloting (see Section 7.3.2), we modified our ex p er im en ­
tal design according to feedback  from participants finding the task difficult. We also 
decreased  the num ber o f  trials a participant sees through a reduction o f  noise levels 
(5 - a  2) and repetitions (3 —» 2). The correlation o f  each dataset used were: N\ — 1.0, 
Ab =  0.90. N t, =  0.12. P rior to encoding, datasets are d iscretised  to integer values.

7.6.1 Results

The m ean error and response time results for this experim en t is shown in Figure 7.10. 
O ur data was not norm ally  distributed, hence, w e applied  the same analysis approach 
as in E xperim ent 2. T here  was a statistical significant difference in both error rate 
(Of2 (6 ) =  488.44, p  0 .05) and response t im e  ( ^ 2 (6 ) =  393.87, p  <C 0 .05) under the 
effects o f  visual channel. We report our  post-hoc analysis below.
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Figure 7.10: Comparing the e f­
fec ts  o f  visual channel against er­
ror rate (top) and response time 
(bottom) in Experim ent 3. S ign if­
icant differences are listed above  
each bar, with (mean,m edian) 
values indicated below. Error 
bars show 95% confidence inter­
vals.

• E rror rate:

-  Num eric  (4 .3%) produced significantly fewer errors com pared  to all o ther 
visual channels  (/; <C 0.05).

-  Hue (22.5% ), size (23.9%), and shape (25.4% ) produced fewer errors than 
value (58%), texture (36.2%), and orientation (38.1%), but more errors than 
num eric  (4.3% ) (p 0.05).

-  Texture (36.2% ) and orientation (38.1% ) produced fewer errors than value 
(58% ), but more errors than hue (22.5%), size (23.9%), and shape (25 .4% ) 
(p  <C 0.05).

-  Value (58% ) produced m ore errors com pared  to all other visual channe ls  
(p <  0.05).

• Response time:

-  N um eric  (10.6s) is significantly faster than texture (15.1s), orientation 
(16.7s), and shape (19.7s) (p  0 .05).

-  Size (10.8s) is significantly faster than hue (10.9s), texture (15.1s), o r ien ta ­
tion (16.7s), and shape (19.7s) (p  0 .05)

-  Hue (10.9s) is significantly faster than texture (15.1s), orientation (16.7s), 
and shape (19.7s), but slower than size (10.8s) (p  <C 0.05)
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-  Value (13.8s) is significantly faster than texture (15.1s), orientation (16.7s), 
and shape (19.7s) (p  <C 0.05), but slower than hue (10.9s) (p 0.05).

-  Texture (15.1s) and orientation (16.7s) is significantly faster than shape 
(19.7s), but slower than numeric (10.6s), size (10.8s), hue (10.9s), and value 
(13.8s) 0.05).

-  Shape (19.7s) is significantly the slowest compared to all other visual chan­
nels (p 0.05).

7.6.2 Discussion
Overall. In general, we found that categorical perception significantly improved when 
using discrete encodings such as hue and shape. On the other hand, participants per­
formed worse using grayscale (value), making on average 20% or more errors. It is 
possible that the continuous mapping of value made discriminating pairings, in particu­
lar within the middle range of the spectrum, more challenging. With that respect, size 
performed particularly well in our experiments but with no explanation. Moreover, we 
find no significance favouring size over other top performers such as hue in terms of 
accuracy.

Our current experiment shows a significant increase in speed when using hue and 
numeric for ordered and unordered sequences. This is shown by the median response 
times in Figure 7.10. Similarly to Experiment 2, it is unsurprising that participants 
performed significantly better using numeric. These results may be particular to the 
small number of sampled points displayed in each plot, and hence the performance might 
degrade for longer sequences.

7.7 Limitations
All three experiments are limited by their parameters, and the empirical results are gen- 
eralisable only within the scope of those parameters. We used synthetic datasets to 
generate ordered and unordered sequences that is appropriate for our task, and hence, 
the application to a real dataset may give different results. Our definition of orderedness 
for a sequence of data items is also restricted to the definition used in signal processing 
theory [JJS93]. From this concept, we created sequences with eight varying levels of 
noise (i.e., measured orderedness). These noise levels was chosen through pilot testing 
such that each sequence is visually distinct. Although this study is the first of its kind to 
look at perceptual orderability of visual channels, we acknowledge that different results 
may be produced depending on other definitions of orderedness, and how orderedness is 
measured.

In Experiment 1, we studied the perceptual orderability of six basic visual channels, 
namely Bertin’s retinal variables [Ber83] as well as no visual encoding (i.e., numeric). 
Each visual mapping was reflective of the work presented by Bertin so that our results
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could be directly compared. One fundamental difference is the use of shapes. We en­
forced a restricted set of shapes in order for a viewer to be able to extract an underlying 
relationship between the set of shape values. While this was necessary for our task, this 
may not be equivalent to the shapes originally tested; and thus leading to different con­
clusions. It is important to note that Bertin presented only three different shapes (square, 
triangle, and circle) and hence this would not have been enough to encode the number 
of different values in our sequence.

For Experiment 2 and Experiment 3, we chose two specific tasks appropriate for 
reading ordered and unordered sequences, and analysed our data separately according 
to these tasks. Our results therefore cannot be easily generalised to tasks of a different 
nature. Overall, while the basic visual channels studied in this research is important 
to glyph-based visual design, they do not fully extend to the richer set of visual chan­
nels identified in Chapter 2, indicating that further research is still needed for a more 
comprehensive study on ordered perception.

7.8 General Discussion and Summary
We now provide a summary of the work in this chapter which contains our most recent 
research on glyph-based visualization. The analysis described here focuses primarily on 
the results from Experiment 1 and 2 which we have studied in greater detail. However, 
we also include some of our initial findings gained from Experiment 3.

Perceptual orderability and visual search. Overall, we noticed that visual channels 
that are perceived as ordered in Experiment 1, perform well in Experiment 2. A sum­
mary of this combined performance is shown by the two middle axes in Figure 7.11 (top). 
With the exception of numeric, the ranking is fairly consistent across both experiments. 
Scaling our tests to a larger number of samples may provide a more accurate ranking 
that reflects our results, since we predict that numeric will be greatly affected due to its 
high cognitive demand (see response time). We find value performs worse in our visual 
search task comparatively, which is surprising considering that participants perceived it 
as most orderable. However, it is still significantly better than less orderable channels 
such as hue and orientation. Our results suggest that in practice, visual orderability can 
improve the accuracy of visual tasks such as the one presented in our study.

Measured vs. Perceived difficulty. The following remarks describe the observations 
we made between Experiment 1 and Experiment 2. At the end of each experiment, we 
collected survey data as outlined in Table 7.1 to understand what participants felt was 
least and most difficult about the task. Most participants found both experiments to be 
easier when the sequence of elements are ordered, compared to unordered. In addition, 
we asked participants to rank the visual channels in terms of their perceived difficulty. 
Figure 7.11 compares this feedback against their measured rankings based on average
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Figure 7.11: Visual channel ranking fo r  Experim ent I and Experim ent 2 based on p er­
form ance (top) and response time (bottom). We also compare this to participants' per­
ce ived ranking collected from our qualitative survey data. The ranking is from worst 
(7th) to best (1st).

perfo rm ance  and  response time. There were no clear overall trends be tw een  perceived 
and actual perfo rm ance  (see Figure 7.11 (top)). However, one observation is there is a 
negative correlation  between h u e ’s perform ance, and its perceived difficulty. This tells 
us that partic ipants tend to perceive hue to be less difficult than their  actual results. 
Similarly, shape  perform ed better than w hat they expected, but not in response time.

A cross  bo th  studies, we find that the perceived ranking  is generally  well correlated 
to par t ic ipan ts’ response times. For exam ple, the ranking  o f  shape, texture, and value 
rem ain  relatively constant (straight line) as shown in F igure 7.11 (bottom). It suggests 
that the h igher the preference o f  a visual channel, the faster their response for that task.

Perceptual orderability and categorical search. Figure 7.12 sum m arises  the perfor­
m ance  o f  each visual channel under the three experim ents. At the m acroscopic  level.
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Glyph Sorting: Perceptual Orderability

1st
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3rd.
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5th

6th

7th

Size
Value
Texture
Hue
Orientation

Shape
Numeric

How ordered is it? Which is smallest? 
Which is largest?

How many pairs?

Figure 7.12: A perform ance sum m ary o f  each visual channel in all three experiments. 
The ranking in How ordered is it? is based on mean orderedness, while the ranking 
in the other two experim ents (Which is smallest? Which is largest? and How many 
pairs?) is based on mean error.

w e noticed an inverse re la tionship  betw een  Experim ent 1 (left axis) and Experim ent 3 
(right axis). O ur results suggest that visual channels  which appear more discrete (e.g., 
num eric  and hue) can improve the accuracy o f  categorical perception. The opposite  can 
also be said in that a more ordered visual channel (e.g., value) will produce m ore errors.

Bertin’s categorisation on ordered perception. In this work, we investigated the per­
ceptual orderability  o f  different visual channels  for o rdered and unordered sequences. 
The original concept described by Bertin show that shape, hue, and orientation are 
not ordered. However, our  c row d-sourced  results indicate that shape can be order- 
able. O f  course, any arbitrary encoding  o f  shapes will not be orderable as argued by 
Bertin [Ber83 |.  The reason behind  our  results is that our  shapes can be considered as us­
ing two types o f  channels. W hile  shape itself  is not ordered, we find that counting (e.g., 
the num ber  o f  spikes or edges) is. This raises another interesting research question: 
“How does the com bination o f  visual channels affect the perceived order?”. For ex a m ­
ple, in Experim ent 2, by com bin ing  value (fastest response time) with numeric (m ost ac ­
curate), do we gain the perform ance advantage from both in the resulting com position?  
Further experim ents  m ight therefore  explore the trade-offs betw een such com binations.
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CHAPTER 8

Conclusion

Contents_________________________________________________
8.1 Future W o r k ................................................................................................................. 163

Mu l t i - d i m e n s i o n a l  data is fast becoming the norm in many areas of practi­
cal data analysis including sports and engineering. In particular, data collected 
today commonly possess spatial and temporal properties, as well as contain­

ing a large number of attribute dimensions that is difficult to visualize using classical 
methods such as bar charts, pie charts, and line graphs. For the past several years, multi­
dimensional techniques such as parallel coordinates and scatter plot matrices has been 
at the forefront of multivariate analysis [HJ05, Tel07]. However, with the former be­
ing less suited at conveying the spatial relationship inherent in the data; and the latter 
only showing bivariate relationships (when it is known there are interactions between 
three or more attributes), the need for alternative methods is necessary. Glyph-based 
visualization is one approach for realising this. We have since seen an increase in re­
search activity towards glyph-based approaches primarily due to the fact that previous 
techniques are less effective with current datasets [War08a]. The goal of this thesis is to 
explore the potential of glyph-based visualization for high-dimensional data.

The work in Chapter 2 provides us some insight towards this goal through review­
ing the most recent developments in high-dimensional glyph-based visualization. This 
state-of-the-art survey gave a foundation for our glyph-based visualization research. In 
particular, we were able to identify major gaps and limitations of current glyph-based 
techniques. Such an area is the visualization of multiple fields [Tay02], which led to 
the research described in Chapter 3. Given the constraints of glyphs such as their size 
and their very limited capacity of encoding individual channels, this challenge is non­
trivial. Our contribution towards this specific aspect is through the development of 2D 
and 3D visual mappings to visualize multiple error-sensitivity fields for single camera
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positioning. A focus of the work is to visualize the compositional effects from differ­
ent fields. For this, we used glyph-based visualization to evaluate prospective camera 
positions based on 2D homography sensitivity. These map to a 3D context visualiza­
tion where the goal is to visually estimate several optimal positions for the camera. The 
combined visualization enabled users to make dynamic decisions on best camera posi­
tioning which incorporates financial, physical, and other types of constraints that cannot 
be easily encoded into an algorithm.

Whilst there are several other glyph-based techniques which support the mapping 
of high-dimensional data such as star glyphs [SFGF72] and parallel glyphs [FCI05], 
they may not be suitable to every application. In theory, such techniques allow up to 
n-dimensions to be visualized. However, in practice, this number is a lot less, since 
beyond a certain number of dimensions, additional values can no longer be accurately 
perceived due to the limited display resolution of glyphs and the way each dimension 
is mapped. Although such glyphs is effective at providing an overview of the data, a 
‘good’ glyph design should also be able to convey the information which the user wants 
to see in detail. For instance, some tasks may require rapid recognition of certain in­
formation. In order to convey such aspects of data faster and effectively, more ‘ink’ 
or pixel space within the visualization is needed to emphasise certain visual features 
of the glyph, which generally goes against Tufte’s principles on efficient visualization 
design [Tuf90]. For instance, Chapter 4 described the use of metaphoric glyphs for vi­
sualizing actions and events “at a g l a n c e We demonstrated this successfully to an 
application of real-time sports performance analysis. A design study was conducted to 
compare metaphoric glyphs to other types of visual designs such as colour, shape, and 
abstract shape for visualizing a large number of categorical events. Our results showed 
that by mapping data to more expensive visual channels (e.g., pictograms - because they 
require more physical display space), the effectiveness of glyph-based visualization can 
be significantly enhanced, especially in situations where users need to gain an overview 
of the data in order to make critical decisions with very limited time. It was very re­
warding to see how positively our MatchPad system was effectively used by the Welsh 
Rugby Union at the 2012 rugby world cup.

One problem we noticed during the design of glyphs in previous works, is the percep­
tual difficulty at comparing multiple values directly between different glyphs. The abil­
ity to compare glyphs in an accurate manner and determine their ordering is an important 
task in multivariate analysis, for example to identify trends and patterns in data. Since 
sorting is one of the most common analytical tasks performed on individual attributes of 
a multi-dimensional data set, this motivated the concept behind our glyph-based sorting 
framework, introduced in Chapter 5 to enhance the usability of glyph-based visualiza­
tion. In this framework, we examined several technical aspects of glyph sorting and 
describe design principles for developing effective, visually sortable glyphs. Glyphs 
that are visually sortable provides two key benefits: 1) performing comparative anal­
ysis of multiple attributes between glyphs, and 2 ) to support multi-dimensional visual 
search. We demonstrate this using a system that incorporates high-dimensional focus
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and context glyphs to control, view, and perform high-dimensional sorting for interac­
tive analysis. A real-world case-study is presented on analysing rugby events for team 
and player performance. Our framework enabled analysts to derive new insight from 
high-dimensional sorting that was previously not observable with existing techniques.

In Chapter 6 , we proposed a novel visual analytic extension for sorting multivariate 
events. The visual analytic system closely integrated a variety of components, including 
a knowledge-assisted ranking framework for converting a user’s tacit and partial knowl­
edge on rankings, a model visualization for displaying the discovered sorting function, 
a glyph-based visualization for viewing sorted results, and a tool for reviewing sorted 
video clips that may be associated with each event. This approach allowed users to or­
ganise events under some ad hoc sorting requirement (e.g., by importance) without de­
pending on precise specification of multiple sort keys and a sorting function. To evaluate 
the system, we demonstrated its usefulness in an application of sorting rugby events.

As described in Section 2.2.1, the design of effective glyphs for visualization usu­
ally involves a number of different visual channels such as size, colour, and shape. In 
order to evaluate our glyph-based sorting framework, we conducted three crowdsourcing 
empirical studies that focus on the perceptual evaluation of orderability for such visual 
channels. The discovery of ordered perception for visual channels was first studied by 
Bertin [Ber83], but it was never evaluated on how the perception of order is affected us­
ing different visual channels. Through this work, we found that certain visual channels 
(for example, value) is perceived more ordered than other visual channels (for example, 
hue) than the actual order measured in the data. As a result, different visual channels are 
more/less sensitive to noise. We found evidence that this has a significant impact to two 
specific visualization tasks, namely: visual search and categorical perception. In par­
ticular, we find that visual channels that have a higher degree of orderedness, improves 
the accuracy of making min and max judgements within a visualization. On the other 
hand, visual channels that are perceived to be less ordered, improves the accuracy of 
identifying the number of element pairs.

To conclude this thesis, we provide a set of generalisable recommendations for de­
signing high-dimensional glyphs in the context of different use scenarios explored in 
this research:

•  DR1. Composition effect of multiple fields — when a data set consists of mul­
tiple co-located fields (e.g., a vector field) that need to be examined together, then 
one should consider using a geometric-based approach such as the glyphs pre­
sented in Chapter 3. Geometric glyphs primarily use visual channels such as size, 
colour, and shape to encode the data which are effective for displaying quantita­
tive values. A user may also be interested in observing the compositional effect of 
several fields, such as the distribution or orientation in different fields. For such 
tasks, we encourage the use of shape as it highlights the relationship of multiple 
data attributes in an overall glyph (e.g., the Bezier glyphs in Chapter 3).

•  DR2. Categorical events at a glance — the visual mapping of categorical events
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and actions is challenging to depict due to the semantic information that is often 
associated with such data. Conventional glyph-based encoding strategies such as 
using colour or a set of shapes can often be non-intuitive to the user as a result 
of the poor coupling between data and visualization. One effective approach is to 
use semantic visual channels (e.g., pictograms, icons, and text) to map this type 
of data within a glyph. While some semantic visual channels (e.g., pictograms) 
can be visually expensive as they require more physical display space, they also 
provide cost-effective benefits such as minimising the need for memorising and 
learning the coding scheme within a glyph. This leads to rapid recognition of 
event types, and is scalable to a large number of event records.

•  DR3. Perceptual orderability — when spatial positioning is already pre-defined, 
one must rely on other visual encodings to display additional relationships in 
glyphs for multivariate analysis. One such pattern is the order present in the data. 
For such tasks, we recommend using visual channels that have a high perceptual 
orderability such as value (i.e., grayscale), size (e.g., radius length), and texture 
(e.g., frequency). Such visual channels are less sensitive to noise, meaning lin­
ear relationships are more likely to be perceived if present in the data. On the 
other hand, visual channels such as hue and orientation are perceived to be less 
ordered, and therefore may be considered instead if the focus is to visually detect 
data anomalies and outliers.

• DR4. Min/Max judgements — a common visual search task is the ability to find 
min and max values in visualization. Glyphs can support this process by taking 
advantage of previous design recommendation DR3. on perceptually orderable 
channels to reduce the reliance on legends. These visual encodings (for example, 
size) impose a universally perceived order which can significantly improve the 
accuracy of min and max judgements.

•  DR5. Categorical search — another common task performed in visualization is 
categorical search. In the context of design recommendation DR3. and unordered 
sequences, glyphs that incorporate hue or shape (i.e., visual channels that tend to 
be perceived less ordered) enhance categorical perception, making this ideal in 
tasks that involves, for example, finding one or more relevant data points that have 
equal values.

•  DR6 . Visually sortable glyphs —  when a glyph needs to be designed so that they 
can be sorted in visualization, several glyph-based aspects need to be considered 
as described in Chapter 5. Firstly, each data attribute should be prioritised in or­
der of data importance. This prioritisation determines what visual channel is most 
suitable to represent the data. It is desirable to map more important attributes to 
visual channels that have a higher level of pop-out (pre-attentive search) and vi­
sual orderability. Grayscale intensity or size are good candidates to use. Colour
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can also be very effective due to its high pop-out effect. However, it also has a low 
perceptual orderability, and hence colour should only be used if, for example, the 
domain has an existing colour mapping which is orderable. Furthermore, glyphs 
need to be carefully constructed to prevent overuse of a single visual channel and 
violating the separability design principle. One can improve the perception of cer­
tain features on a glyph by incorporating focus+context interactions to highlight 
specific attributes.

This thesis has investigated and addressed the challenges of designing high­
dimensional glyphs to two specific applications; namely, for visualizing multiple error- 
sensitivity fields in single camera positioning and encoding large event records for real­
time sports analysis, and also provides a flexible sorting framework for interactive anal­
ysis and sorting of multivariate data, which is fully extensible into other applications and 
domains. In pursuit of our research goal: “How many variables can we effectively en­
code using a glyph ”, we have shown excellent examples of glyph-based visual mappings 
that encode up to nine different parameters simultaneously using a variety of different 
methods such that each attribute on the glyph can be readily perceived, and effectively 
sorted in a visual manner.

8.1 Future Work
Although the use of glyphs and icons is historically well-established as a form of visual 
communication, the development of high-dimensional glyphs as a visualization tool is 
still relatively new. It is clear from the recent work in this thesis and within the literature 
that the potential of glyph-based visualization is still far from being fully explored. We 
outline some potential directions below:

•  Advances in multi-field visualization. With the advent of simulations becoming 
more complex (and so to as their data sets), the need for visualization techniques 
to cope with the increasing number of fields is necessary. In this thesis, we have 
presented results of depicting multiple error-sensitivity fields simultaneously us­
ing glyph-based visualization for single camera positioning. One possible exten­
sion to this work would be to visualize the error sensitivity for multiple cameras. 
Many computer vision algorithm often use a multi-camera setup such as 3D pose 
estimation [HZ04], and therefore understanding the interactions between multiple 
camera error sensitivity fields is extremely relevant to this research topic. How­
ever, the combined number of error sensitivity fields associated at each camera 
will be a challenging task to visualize.

• Collaboration with domain experts. The inception of many of our ideas have 
come through close collaboration with domain experts. We have mainly demon­
strated the application of glyphs in the area of sports visualization which has led
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to the development of several successful systems that have made an impact to the 
work flow of real users. An aspect of future work would be to collaborate with 
other domain scientists in which glyph-based visualization can be of benefit. For 
example, it would be interesting to see how the systems we developed could be of 
help to other sports such as football, tennis, and golf.

•  Scalability to big data. The growing mass of concurrent data presents several 
unaddressed challenges to data visualization research. In particular, when datasets 
involve several thousands or sometimes millions of high-dimensional data entities, 
many visualization techniques do not scale very well. Glyph-based visualization is 
especially challenging due to the large number of glyphs that need to be rendered, 
and the perceptual problems this approach will cause such as visual occlusion. 
Some examples of work (e.g., [RE05, PPvA*09]) have shown it is possible to 
adopt glyphs to big physical simulation data. Visual occlusion in such a case is 
less of a problem as the scientists are focused only on looking at global structural 
patterns. The focus of our work differs in that users need to be able observe 
details of the glyph clearly. We have demonstrated some glyph-based techniques 
that is effective for visualizing a relatively small number of entities. Future work 
would therefore be to develop and evaluate the scalability of such glyphs to larger 
datasets.

•  Semantic zooming. To facilitate the rapidly growing dimensionality of data that 
need to be visualized in modern applications, larger and more complex glyph de­
signs are often required. This is visually expensive in terms of screen space and 
limits the number of records displayable to the user. One method to overcome this 
is through zooming out, which provides an overview to the user. However, this 
often leads to deficiencies in glyph representation, since certain visual features is 
lost due to sampling size. For example, a ‘square’ would eventually look like a 
‘circle’ once the visualization is zoomed out beyond a threshold distance. Thus, 
the semantic information of glyph-based visualization is inconsistent at different 
zoom levels. Semantic zooming is the ability to maintain the visual information 
of glyphs during interactive zooming.

There are several major steps that need to be addressed. Of course, since it is al­
most impossible to retain all the information within a complex glyph when view­
ing at a great distances, one may simply choose to remove attributes from the 
glyph to make other visual features more clear. However, selecting the appropri­
ate attribute to be removed, in addition to at which point (i.e., zoom level) they 
are removed is non-trivial. Alternatively, one may come up with different glyph- 
based visual designs depending on the level of zoom. This creates a different type 
of challenge such as how to smoothly transition between different designs in or­
der to maintain visual coherency. No previous work currently address these issues, 
making this an interesting research direction for glyph-based visualization.
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•  Perceptual experiments on high-dimensional glyphs. While existing percep­
tion studies on visual channels and icons have provided a concrete foundation for 
glyph-based visualization, most findings are directly applicable only to glyph rep­
resentations in three or fewer dimensions. An area of future work would therefore 
be to perform more empirical studies on high-dimensional glyph representations. 
For example, in Chapter 7, we evaluate the perceptual orderability of visual chan­
nels and their impact to two different visualization tasks. One extension to this 
work would be to investigate how combinations of different visual channels affect 
will this performance.

165



166



Bibliography

[AA03]

[ABK98]

[Act6 6 ]

[AR08]

[AT04]

[AWB01]

[Bar81]

[BBK09]

[BBS*08]

[Ber83]

A n d r ie n k o  N ., A n d r ie n k o  G.: Coordinated views for informed spatial de­
cision making. In In tern a tion a l C on ference on C o ord in a ted  a n d  M u ltip le  Views 
in E xp lo ra to ry  V isualization  (July 2003), pp. 44—54.

A n k e r s t  M., B e r c h t o ld  S., Keim D.: Similarity clustering of dimensions 
for an enhanced visualization of multidimensional data. In P roc. IE E E  V isual­
iza tion  Conf. (Vis ’98) (oct 1998), pp. 52 -60, 153.

A c to n  F. S.: A n a lysis  o f  S tra igh t-lin e da ta . Wiley, 1966.

A u g u s t in  T., R o sc h e r  T.: Empirical evaluation of the near-miss-to-weber’s 
law: a visual discrimination experiment. P sych o lo g y  S cien ce Q u arterly  5 0 , 4  
(2008), 469-488.

A g a r w a l A ., T r ig g s  B.: 3d human pose from silhouettes by relevance vector 
regression. In IE E E  C onference on C om pu ter Vision a n d  P a ttern  R ecogn ition  
(C V P R  2 0 0 4 ) (2004), pp. 882-888.

A n d e r s o n  J. E., W a tso n  P., Bos P. J.: Comparisons of the vector method 
and tensor method for simulating liquid crystal devices. L iqu id  C rysta ls  2 8  
(2001), 109-115.

B a r r  A. H.: Superquadrics and angle-preserving transformations. IEEE C om ­
p u te r  G raph ics  a n d  A p p lica tio n s 1 , 1 (1981), 11-23.

B uo no m ano  D. V., B ram en  J., Kh o dadadifar  M.: Influence o f the
interstimulus interval on temporal processing and learning: testing the state- 
dependent network model. P h ilo so p h ica l T ransactions o f  The R o ya l S ocie ty  B  
3 6 5  (2009), 1865-1873.

B o tc h e n  R. P., B a c h t h a le r  S., S c h ic k  F., C hen  M ., M ori G., 
W eisk o p f D., E r t l  T.: Action-based multifield video visualization. IEEE  
T ransactions on V isualization  a n d  C om pu ter G raph ics 14, 4  (2008), 885-899.

B e r t in  J.: S em io logy o f  g raph ics. University of Wisconsin Press, 1983.

167



Bibliography

[BF93]

[BFCM06]

[BHW05]

[BKC*13]

[Bly82]

[Bok03]

[BS92]

[BS05]

[BSG89]

[BT07] 

[CA91] 

[CAB* 14]

[CC01]

[CF13]

[Che73]

B o o th  D. A ., F reem a n  R. P. J.: Discrimnative measurement of feature inte­
gration in object recognition. A cta  P sych o log ica  8 4  (1993), 1-16.

B e n d e r  M. A ., F a r a c h -C o lto n  M., M o s te ir o  M.: Insertion sort is 0(n 
log n). T heory o f  C om pu ting  System s 3 9 , 3 (2006), 391-397.

B a ir  A., H o u se  D., W are C.: Perceptually optimizing textures for layered 
surfaces. In P ro ceed in g s o f  the 2n d  Sym posium  on  A p p lie d  P ercep tion  in G raph ­
ics an d  V isualization (2005), APGV ’05, ACM, pp. 67-74.

B o r g o  R., K e h r e r  J., C h u n g  D. H., M a g u ir e  E., L a ra m ee  R. S., 
H a u se r  H., W ard M., C h en  M.: Glyph-based visualization: Foundations, 
design guidelines, techniques and applications. In E u rograph ics S ta te  o f  the A r t 
R ep o rts (2013), Eurographics Association.

B ly  S.: Presenting information in sound. In P roceed in gs o f  the 1982  conference  
on H um an fa c to r s  in com pu ting  sys tem s (1982), CHI ’82, ACM, pp. 371-375.

BOKINSKY A. A.: M u ltiva ria te  D a ta  V isualization  w ith  D a ta -D riven  Spots. 
PhD thesis, 2003.

B o r g  I., S t a u f e n b ie l  T.: Performance of snow flakes, suns, and factorial 
suns in the graphical representation of multivariate data. M u ltiva ria te  B eh avio ra l 
R esearch  27, 1 (1992), 43-55.

B o r d o lo i  U ., S h en  H.-W.: View selection for volume rendering. In Proc. 
IE E E  V isualization  C o n f (Vis 2 0 05 ) (2005), pp. 487-494.

B l a t t n e r  M. M., Sum ikaw a D. A., G r e e n b e r g  R. M.: Earcons and icons: 
Their structure and common design principles. H u m an -C om pu ter In teraction  4, 
1 (1989), 11^14.

B o r la n d  D ., T a y lo r  R. M.: Rainbow color map (still) considered harmful. 
IE E E  C om pu ter G raph ics an d  A p p lica tio n s 27, 2 (2007), 14-17.

C r a w fis  R., A l l i s o n  M. J.: A scientific visualization synthesizer. In P ro ­
ceed in g s IE E E  V isualization  ’91 (1991), pp. 262-267.

C h u n g  D. H. S., A r c h a m b a u lt  D., B o r g o  R., E d w a rd s D. J., L a ra m ee  
R. S., CHEN M.: How O rd ered  is it?  On P ercep tua l O rd era b ility  o f  Visual 
C hannels. Tech. rep., The Visual and Interactive Computing Group, Computer 
Science Department, Swansea University, Wales, UK, 2014.

Cox T., Cox M.: M u ltid im en sion a l Scaling. Chapman and Hall, 2001.

C hen  M., F lo r id i  L.: An analysis of information visualisation. Synthese 190 , 
16(2013), 3421-3438.

C h e r n o f f  H.: Using faces to represent points in ^-dimensional space graphi­
cally. Jou rn al o f  the A m erican  S ta tis tica l A sso c ia tio n  6 8  (1973), 361-368.

168



Bibliography

[Che05]

[Chi06]

[CJ10]

[CK88]

[CKB09]

[Cle93] 

[CLP* 15a]

[CLP* 15b]

[CM 84]

[CM92]

[CM93]

[CPL*11]

[CPL*12]

[CR68]

C hen  M.: Combining point clouds and volume objects in volume scene graphs. 
In Fourth In tern a tion a l W orkshop on Volume G raph ics (2005), pp. 127-235.

C h it ta r o  L.: Visualizing information on mobile devices. C om pu ter 39 , 3 
(2006), 40-45.

C h en  M., J a n ick e  H.: An information-theoretic framework for visualization. 
IE E E  T ransactions on V isualization  a n d  C om pu ter G raph ics 16, 6 (2010), 1206- 
1215.

C ow an  C. K., K o v esi P. D.: Automatic sensor placement from vision task 
requirements. IE E E  Transactions on P a ttern  A n a lysis  a n d  M achine In te lligen ce  
10, 3 (may 1988), 407^116.

C o c k b u r n  A., K a r ls o n  A., B e d e r s o n  B. B.: A review of overview+detail, 
zooming, and focus+context interfaces. A C M  C om putin g  S u rveys 41 (2009), 1-
31.

C le v e la n d  W. S.: V isualizing D a ta . Hobart Press: Summit, 1993.

C h u n g  D. H. S., L eg g  P. A., P a rry  M. L., B ow n  R., G r if f i th s  I. W., 
L a ra m ee  R. S., C hen  M.: Glyph sorting: Interactive visualization for multi­
dimensional data. Inform ation  V isualization  1, 1 (2015), 76-90.

C h u n g  D. H. S., L eg g  P. A., P a r r y  M. L., B o w n  R., G r if f i th s  I. w., 
L a r a m e e  R. S., C hen  M.: Knowledge-assisted ranking: A visual analytic 
application for sport event data. IE E E  C om pu ter G raph ics a n d  A p p lica tio n s  
fo r th co m in g  (2015).

C le v e la n d  W. S., M c G il l  R.: Graphical perception: theory, experimenta­
tion and application to the development of graphical methods. Jou rn a l o f  the 
A m erican  S ta tis tica l A ssoc ia tion  79, 387 (1984), 531-554.

C r a w fis  R., M a x  N.: Direct volume visualization of three-dimensional vector 
fields. In P roceed in gs o f  the W orkshop on Volume V isualization  (1992), ACM 
Press, pp. 55-60.

C r a w fis  R., M a x  N.: Texture splats for 3d scalar and vector field visualization. 
In IE E E  V isualization  (oct 1993), pp. 261-266.

Chen  G., Palke  D ., L in  Z., Y eh H., V incent  P., L aram ee  R. S., Z hang

E.: Asymmetric tensor field visualization for surfaces. IE E E  T ransactions on  
V isualization  a n d  C om pu ter G raph ics 1 7 ,6  (2011).

C h u n g  D. H. S., P a rry  M. L., L e g g  P. A ., G r if f i th s  I. W., L a ra m ee  
R. S., C h en  M.: Visualizing multiple error-sensitivity fields for single camera 
positioning. C om putin g  a n d  V isualization  in S cien ce  15, 6 (2012), 303-317.

C a m p b e ll F. W., R o b so n  J. G.: Application of fourier analysis to the visibil­
ity of gratings. Journal o f  P h ysio l 197 , 3 (1968), 551-566.

169



Bibliography

[CROO]

[CSD*09]

[CWD*02]

[CZP*10]

[DEK* 12]

[Dem85]

[DH93]

[dLvW93] 

[Doul3] 

[DPH03] 

[DYW* 13]

[E*00]

[ECW92]

[EM91]

170

C e d iln ik  A., R h e in g a n s  P.: Procedural annotation of uncertain information. 
In P roc. IE E E  V isualization  Conf. (Vis 2 0 0 0 ) (2000), pp. 77-83.

C o le  F., S a n ik  K., D e C a r lo  D ., F in k e ls t e in  A ., F u n k h o u s e r  T., 
R u sin k ie w ic z  S., S in g h  M.: How well do line drawings depict shape? A C M  
T ransactions on G raph ics 28 , 3 (2009), 28:1-28:9.

C erqueira  M. D ., W eissm a n  N. J., D ilsizian  V., et a l .: Standard­
ized myocardial segmentation and nomenclature for tomographic imaging of the 
heart. C ircu la tion  105 , 4  (2002), 539-542.

C h a n g  R., Z iem k iew icz  C., P y zh  R., K ie lm a n  J., R ib a r sk y  W.: 
Learning-based evaluation of visual analytic systems. In P ro ceed in g s o f  the 3 rd  
B E L IV ’IO W orkshop: B E yon d  tim e an d  errors: n o ve l eva lu a tion  m eth ods f o r  
Inform ation  V isualization  (2010), BELIV ’10, pp. 29-34.

D i l l  J., E a r n sh a w  R., K asik  D ., V in c e  J., W on g P. C.: E xpan ding  the 
F rontiers o f  V isual A n a ly tic s  an d  V isualization. Springer (2012 Edition), 2012.

D em u th  H. B.: Electronic data sorting. IE E E  T ransactions on C om puting  34 , 
4 (1985), 296-310.

D e l m a r c e l l e  T., H e s s e l in k  L.: Visualization of second order tensor fields 
with hyperstreamlines. IE E E  C om pu ter G raph ics a n d  A p p lica tio n s  1 3 ,4  (1993), 
25-33.

d e  L eeu w  W. C., van  Wijk J. J.: A probe for local flow field visualization. 
In P roceed in gs IE E E  V isualization  ’93  (1993), pp. 39-45.

D o u b le d a y  A.: Use of card sorting for online course site organization within 
an integrated science curriculum. Journal o f  U sab ility  S tudies 8 , 2 (2013), 41-54.

D u th ie  G., P y n e  D., H o o p er  S.: Applied physiology and game analysis of 
rugby union. S ports  M ed ic in e  33 , 13 (2003), 973-991.

Dou W., Yu L., W ang X., M a Z., R ib a r sk y  W.: Hierarchicaltopics: Visu­
ally exploring large text collections using topic hierarchies. IE E E  T ransactions 
on  V isualization  a n d  C om pu ter G raph ics 19, 12 (Dec 2013), 2002-2011.

E b e r t  D. S., e t  a l .:  Procedural shape generation for multi-dimensional data 
visualization. C om pu ters & G raph ics 24 , 3 (2000), 375-384.

E s t i v i l l - C a s t r o  V., W o o d  D.: A survey of adaptive sorting algorithms. 
A C M  C om putin g  Su rveys 24 , 4  (1992), 441-476.

ELIADE M ., M a ir e t  P.: Im ages a n d  sym bols: stu d ies in re lig iou s sym bolism . 
Mythos: The Princepto/Bollingen Series in World Mythology. Princeton Univer­
sity Press, 1991.



Bibliography

[ES01]

[ESZM96]

[FCI05]

[Fec60]

[FH09]

[FK03]

[FLKI09]

[Fod02]

[FS04]

[FSG09]

[FWIO]

[FWZOl]

[Gay89]

E b e r t  D. S., Shaw  C. D.: Minimally immersive flow visualization. IE E E  
T ransactions on V isualization an d  C om pu ter G raph ics 7, 4 (2001), 343-350.

E b e r t  D. S ., Shaw  C., Zwa A ., M i l l e r  E. L.: Minimally-immersive in­
teractive volumetric information visualization. In P roc. IE E E  Sym p. In form ation  
V isualization  (InfoVis ’96 ) (1996), pp. 66-67.

F a n ea  E., C a r p e n d a le  S., I s e n b e r g  T.: An interactive 3d integration of 
parallel coordinates and star glyphs. In P roc. IE E E  Sym p. In form ation  Visu­
a liza tion  (InfoVis 2 0 0 5 ) (Washington, DC, USA, 2005), INFOVIS ’05, IEEE 
Computer Society, pp. 20-.

F e c h n e r  T. G.: E lem en te d e r  P sych oph ysik , 2 ed. No. Volume 2 in Elemente 
der Psychophysik. Breitkopf & Hartel, Leipzig, 1860.

F u ch s R., H a u se r  H.: Visualization of multi-variate scientific data. C om pu ter  
G raph ics Forum 28 , 6  (2009), 1670-1690.

F r ie n d ly  M., K w an E.: Effect ordering for data displays. C om put. Stat. D a ta  
A nal. 4 3 , 4  (Aug. 2003), 509-539.

F en g  D., L ee Y., K w o ck  L., II R. M. T.: Evaluation of glyph-based multi­
variate scalar volume visualization techniques. In P roceed in gs o f  the 6 th  S ym po­
sium  on A p p lie d  P ercep tion  in G raph ics  a n d  V isualization, A P G V  2 0 0 9  (2009), 
Mania K., Riecke B. E., Spencer S. N., Bodenheimer B., O’Sullivan C., (Eds.), 
ACM, pp. 61-68.

FODOR I. K.: A  Survey o f  D im en sion  R edu ction  Techniques. Tech. rep., Cen­
ter for Applied Scientific Computing, Livermore National Laborary, Livermore, 
2002.

F u ch s G., S ch u m an n  H.: Visualizing abstract data on maps. In P roc. IE E E  
Sym p. In form ation  V isualization  (InfoVis 2 0 0 4 ) (July 2004), pp. 139-144.

F e ix a s  M., S b e r t  M., G o n z A le z  F.: A unified information-theoretic frame­
work for viewpoint selection and mesh saliency. A C M  T ransactions on A p p lic a ­
tion  P ercep tion  6, 1 (2009), 1-23.

F o r l in e s  C., W it te n b u r g  K.: Wakame: Sense making of multi-dimensional 
spatial-temporal data. In P roceed in gs o f  the In tern a tion a l C onference on A d ­
va n ced  V isual In terfaces (2010), AVI ’ 10, pp. 33-40.

F o r e s t  M. G., W ang Q., Z h ou  H.: Methods for the exact construction 
of mesoscale spatial structures in liquid crystal polymers. P h ysica  D  152 -153  
(2001), 288-309.

G a y er  W. W.: The sonicfinder: An interface that uses auditory icons (abstract 
only). SIG C H I Bull. 21 (August 1989).

171



Bibliography

[Gew96] 

[GLG* 13]

[GN07]

[GPL* 11 ]

[GR94]

[GRE09]

[GSC012]

[H89]

[Hab90]

[HB02]

[HB10]

[HB11]

[HBW06]

172

G e w ir tz  P.: On“i know it when i see it”. Yale L aw  Journal 105 (1996), 1023- 
1047.

G r a t z l  S., L ex  A., G e h le n b o r g  N., P f is t e r  H., S t r e i t  M.: Lineup: 
Visual analysis of multi-attribute rankings. IE E E  T ransactions on V isualiza tion  
a n d  C om pu ter G raph ics 19, 12 (2013), 2277-2286.

Guo H., N am ee B. M.: Using computer vision to create a 3D representation 
of a snooker table for televised competition broadcasting. In P ro ceed in g s o f  
the 18th  Irish  C onference on A rtifica l In te lligen ce  a n d  C ogn itive  S cience (2007), 
pp. 220-229.

G en g  Z., P en g  Z., L a ra m ee  R., R o b e r ts  J., W a lk e r  R.: Angular his­
tograms: Frequency-based visualizations for large, high dimensional data. IE E E  
Transaction s on V isualization  a n d  C om pu ter G raph ics 77, 12 (Dec 2011), 2572-  
2580.

G lo b u s  A., R a ib le  E.: Fourteen ways to say nothing with scientific visual­
ization. IE E E  C om pu ter 27 , 7 (1994), 86-88.

G r o t t e l  S ., R ein a  G., E r t l  T.: Optimized data transfer for time-dependent, 
gpu-based glyphs. In P roceed in gs o f  IE E E  P acific V isualization  Sym posium  2 0 0 9  
(april 2009), pp. 65-72.

G in g o ld  Y., S ham ir A ., C o h en -O r  D.: Micro perceptual human computa­
tion for visual tasks. A C M  T ransactions on G raph ics  3 1 ,5 (2012), 119:1-119:12.

H a g e r s t r a n d  T.: "what about people in regional science?". P apers in R e ­
g io n a l S cience 6 6 , 1 (1989), 1-6.

H a b er  R. B.: Visualization techniques for engineering mechanics. C om pu ting  
System s in E ngineering  1, 1 (1990), 37-50.

H u g h e s  M. D., B a r t l e t t  R. M.: The use of performance indicators in per­
formance analysis. Journal o f  S ports S cien ce  20 , 10 (2002), 739-754.

H eer  J., B o s to c k M .:  Crowdsourcing graphical perception: using mechanical 
turk to assess visualization design. In P ro ceed in g s  o f  the SIG C H I C onference on  
H um an F actors in C om puting S ystem s (2010), pp. 203-212.

HARROWER M., B r e w e r  C. A.: C olorB rew er.org : A n  O nline Tool f o r  S e ­
lec tin g  C o lo u r  Schem es f o r  M aps, in The M a p  R ea d er: T h eories o f  M a pp in g  
P ra c tic e  a n d  C artograph ic  R epresen ta tion . Wiley-Blackwell, 2011.

H o u se  D. H., B a ir  A. S., W are C.: An approach to the perceptual op­
timization of complex visualizations. IE E E  T ransactions on V isualiza tion  a n d  
C om pu ter G raph ics 1 2 , 4  (2006), 509-521.



Bibliography

[HE99]

[HE 12]

[Hei24]

[HF97]

[HI72]

[HJ05]

[HLNW11]

[HNH* 12]

[Hoa62]

[HS12]

[HSH07]

[Hu62]

[HW99]

[HYW03]

H e a le y  C. G., E nns J. T.: Large datasets at a glance: Combining textures 
and colors in scientific visualization. IE E E  T ransactions on V isualization  and  
C om pu ter G raph ics 5 , 2 (1999), 145-167.

H e a le y  C., E n n s J.: Attention and visual memory in visualization and com­
puter graphics. IE E E  T ransactions on V isualization  a n d  C om pu ter G raph ics 18, 
7(2012), 1170-1188.

H e ic h t  S.: The visual discrimination of intensity and the weber-fechner law. 
The Journ al o f  G en era l P h ysio lo g y 7, 2 (1924), 235-267.

HUGHES M . D ., F r a n k s  I. M .: N o ta tio n a l a n a lys is  o f  sp o rt. London: E. &
F.N. Spon., 1997.

H a n d e l  S., Imai S.: The free classification of analyzable and unanalyzable 
stimuli. P ercep tion  a n d  P sych oph ysics 12 (1972), 108-116.

H a n se n  C. D., J o h n so n  C. R.: The V isualiza tion  H andbook. Academic
Press, 2005.

H la w a ts c h  M., L eu b e P., N ow ak  W., W e isk o p f D.: Flow radar glyphs 
- static visualization of unsteady flow with uncertainty. IE E E  Transactions on  
V isualization  an d  C om pu ter G raph ics 17, 12 (2011), 1949-1958.

H o f e r l in  B., N e t z e l  R., H o f e r l in  M., W e isk o p f D., H eid em an n  G.: 
Inter-active learning of ad-hoc classifiers for video visual analytics. In IE E E  
C onference on V isual A n a ly tics  S cien ce a n d  T echnology (VAST) (2012), pp. 23-
32.

H o a r e  C. A. R.: Quicksort. The C om pu ter Jou rn a l 5 , 1 (1962), 10-16.

H eer  J., S to n e  M.: Color naming models for color selection, image editing 
and palette design. In P roceed in gs o f  the S IG C H I C on ference on  H um an F actors  
in C om putin g  System s (2012), pp. 1007-1016.

H law itschka  M ., Sch euerm ann  G ., H a m a n n  B.: Interactive glyph
placement for tensor fields. In A d va n ces in Visual C om pu ting (2007), pp. 331- 
340.

Hu M.-K.: Visual pattern recognition by moment invariants. IR E  T ransactions  
on Inform ation  T heory 8, 2 (1962), 179-187.

H o l la n d e r  M., W o lf e  D. A.: N on param etric  S ta tis tica l M eth ods, 2nd ed. 
Wiley-Interscience, 1999.

H a sh a sh  Y. M. A., Y ao J. I.-C., W o tr in g  D. C.: Glyph and hyperstream­
line representation of stress and strain tensors and material constitutive response. 
In tern a tion a l Journal f o r  N u m erica l an d  A n a ly tica l M eth ods in G eom ech an ics  
27, 7 (2003), 603-626.

173



Bibliography

[HZ04]

[Ins85]

[JBMC10]

[JJS93]

[JKLSIO]

[JKM06]

[JMJ04]

[Jol02]

[JZF*09]

[KAF*08]

[KBGK07]

[KEOl]

[Kin04]

HARTLEY R. I., Z isserm a n  A.: M u ltip le  View G eom etry  in C om pu ter Vision, 
second ed. Cambridge University Press, 2004.

I n s e lb e r g  A.: The plane with parallel coordinates. The V isual C om pu ter 1 
(1985), 69-91.

Janick e  H., Borgo  R., M aso n  J. S. D., Chen M.: Soundriver:
Semantically-rich sound illustration. C om pu ter G raph ics Forum 29 , 2 (2010), 
357-366.

J a y a n t N ., J o h n s to n  J., S a fr a n e k  R.: Signal compression based on mod­
els o f human perception. P ro ceed in g s o f  the IE E E  8 1 , 10 (1993), 1385-1422.

J a n k u n -K e lly  T., L a n k a  Y., Sw an  J.: An evaluation of glyph perception 
for real symmetric traceless tensor properties. C om pu ter G raph ics Forum 29 , 3 
(2010), 1133-1142.

J a n k u n -K e lly  T. J., M eh ta  K.: Superellipsoid-based, real symmetric trace- 
less tensor glyphs motivated by nematic liquid crystal alignment visualization. 
IE E E  Transactions on  V isualization  a n d  C om pu ter G raph ics 12, 5 (September 
2006), 1197-1204.

J o n es  N. M. P., M e l l a l i e u  S. D., Jam es N.: Team performance indicators 
as a function of winning and losing in rugby union. In tern a tion a l Journal o f  
P erform ance A n a lysis in S p o rt 4 , 1 (2004), 61-71.

J o l l i f f e  I. T.: P rin c ip a l C om pon en t A n a lysis , second ed. Springer, 2002.

J e o n g  D. H., Z iem k iew icz  C., F ish e r  B ., R ib a r sk y  W., C h a n g  R.: ipca: 
an interactive system for pea-based visual analytics. In IE E E  V G T C  conference  
on V isualiza tion  (2009), pp. 767-774.

Keim D., A n d r ie n k o  G., F e k e te  J.-D., G o r g  C., K o h lh a m m er  J., 
M e la n c o n  G.: Visual analytics: Definition, process, and challenges. In In­
fo rm a tio n  V isualization, Kerren A., Stasko J., Fekete J.-D., North C., (Eds.), 
vol. 4950 of L ecture N o te s  in C om pu ter Scien ce . Springer Berlin Heidelberg, 
2008, pp. 154-175.

K o h lm a n n  P., B r u c k n e r  S., G r o l l e r  E. M ., K a n it s a r  A.: Livesync: 
Deformed viewing spheres for knowledge-based navigation. IE E E  T ransactions 
on  V isualization  an d  C o m p u ter G ra p h ics 13 , 6  (2007), 1544—1551.

K ra u s M., E r t l  T.: Interactive data exploration with customized glyphs. In 
W SC G  (P osters) (2001), pp. 20-23.

K in d lm a n n  G.: Superquadric tensor glyphs. In P roc. E urographics/IE E E - 
T C V G  Sym p. on V isualization  (V isSym  2 0 0 4 ) (2004), Eurographics Association, 
pp. 147-154.

174



Bibliography

[KMDH11]

[KMH03]

[KML99]

[Knu98]

[KW06]

[KYHR05]

[KZ10]

[LAK*98]

[LBR03]

[LCP*12]

[LFK* 13] 

[LHH*12]

K e h r e r  J., M u ig g  P., D o l e i s c h  H., H a u s e r  H.: Interactive visual anal­
ysis of heterogeneous scientific data across an interface. IEEE Transactions on 
Visualization and Computer Graphics 17,1 (2011), 934-946.

K o n y h a  Z., M a t k o v ic  K., H a u s e r  H.: Interactive 3d visualization of rigid 
body systems. In Proc. IEEE Visualization Conf. (Vis 2003) (2003), IEEE Com­
puter Society, pp. 71-

K ir b y  R. M., M a r m a n is  H., L a id la w  D. H.: Visualizing multivalued data 
from 2D incompressible flows using concepts from painting. In Proceedings 
IEEE Visualization ’99 (1999), pp. 333-340.

K n u th  D . E.: The Art of Computer Programming, Vol. 3: Sorting and Search­
ing, Second Edition. Addison-Wesley, Reading, Mass., 1998.

K in d lm a n n  G., W e s t in  C.-F.: Diffusion tensor visualization with glyph
packing. IEEE Transactions on Visualization and Computer Graphics 12, 5
(2006), 1329-1336.

K r iz  R. D., Y am an  M., H a r t in g  M., R a y  A. A.: Visualization of Ze­
roth, Second, Fourth, Higher Order Tensors, and Invariance of Tensor Equations. 
Computers & Graphics 21, 6  (2005), 1-13.

K o s a r a  R., Z ie m k ie w ic z  C.: D o mechanical turks dream o f square pie
charts? In Proceedings of the 3rd BELTV’10 Workshop: BEyond time and errors: 
novel evaLuation methods for Information Visualization (2010), ACM, pp. 63- 
70.

L a id la w  D. H., A h r e n s  E. T., K r e m e r s  D., A v a lo s  M. J., J a c o b s  R. E., 
R e a d h e a d  C.: Visualizing diffusion tensor images of the mouse spinal cord. 
In Proc. IEEE Visualization Conf. (Vis ’98) (1998), pp. 127-134.

L e e  M. D., B u t a v ic iu s  M. A., R e i l l y  R. E.: Visualizations of binary data: 
A comparative evaluation. International Journal of Human-Computer Studies 
59, 5 (2003), 569-602.

L e g g  P. A., C h u n g  D. H. S., P a r r y  M. L., J o n e s  M. W., L o n g  R., 
G r if f i t h s  I. W., C h e n  M.: Matchpad: Interactive glyph-based visualization 
for real-time sports performance analysis. Computer Graphics Forum 31, 3pt4 
(2012), 1255-1264.

L in  S., F o r t u n a  J., K u lk a r n i  C., S t o n e  M., H e e r  J.: Selecting
semantically-resonant colors for data visualization. Computer Graphics Forum 
(Proc EuroVis) (2013).

L ia n g  J., H u a  J., H u a n g  M. L., N g u y e n  Q. V., S im o f f  S.: Rectangle 
orientation in area judgment task for treemap design. In Proceedings of the 24th 
Australian Computer-Human Interaction Conference (2012), OzCHI ’12, ACM, 
pp. 349-352.

175



Bibliography

[Liul 1]

[LKH09] 

[LLCD11] 

[LPC* 11 ]

[LPSW96]

[LWSH04]

[Mac8 6]

[Mac92]

[Mac95]

[Mar03]

[MBP98]

[MgDN06]

[MKB*12]

176

Liu Y.: Multivariate data visualization: A review from the perception aspect. 
In Human Interface and the Management of Information. Interacting with Infor­
mation, Smith M., Salvendy G., (Eds.), vol. 6771 of Lecture Notes in Computer 
Science. Springer Berlin Heidelberg, 2011, pp. 221-230.

L ie  A. E ., K e h r e r  J., H a u s e r  H.: Critical design and realization aspects of 
glyph-based 3d data visualization. In Proceedings of the 2009 Spring Conference 
on Computer Graphics (2009), SCCG ’09, ACM, pp. 19-26.

L ip sa  D ., L a r a m e e  R. S ., C o x  S ., D a v ie s  T.: Foamvis: Visualization of 
2d foam simulation data. IEEE Transactions on Visualization and Computer 
Graphics 17, 12 (2011), 2096-2105.

L e g g  P. A., P a r r y  M. L., C h u n g  D. H. S., J ia n g  M. R., M o r r is  A., 
G r i f f i t h s  I. W., M a r s h a l l  D., C h e n  M.: Intelligent filtering by seman­
tic importance for single-view 3d reconstruction from snooker video. In IEEE 
International Conference on Image Processing (2011), pp. 2433-2436.

L o d h a  S. K ., P a n g  A ., S h e e h a n  R. E ., W it t e n b r in k  C. M.: UFLOW: 
Visualizing uncertainty in fluid flow. In Proceedings IEEE Visualization '96 
(1996), pp. 249-254.

L a r a m e e  R., W e is k o p f  D., S c h n e id e r  J., H a u s e r  H.: Investigating Swirl 
and Tumble Flow with a Comparison of Visualization Techniques. In Proceed­
ings IEEE Visualization 2004 (2004), pp. 51-58.

M a c k in la y  J.: Automating the design of graphical presentations of relational 
information. ACM Transactions on Graphics 5, 2 (1986), 110-141.

M a c E a c h r e n  A . M.: Visualizing uncertain information. Cartographic Per­
spective, 13 (1992), 10-19.

M a c E a c h r e n  A . M.: How maps work: representation, visualization, and
design. New York: Guildford Press, 1995.

M a r c u s  A.: Icons, symbols, and signs: visible languages to facilitate com m u­
nication. Interactions 10 (M ay 2003), 37^43.

M a c E a c h r e n  A. M., B r e w e r  C. A., P i c k l e  L. W.: Visualizing georefer­
enced data: Representing reliability of health statistics. Evironment and Planning 
A (1998), 1547-1561.

M a r t in  C., g r o s s e  D e t e r s  H ., N a t tk e m p e r  T. W.: Fusing biomedical 
multi-modal data for exploratory data analysis. In Proceedings of the 16th In­
ternational Conference on Artificial Neural Networks - Volume Part II (2006), 
ICANN’06, Springer-Verlag, pp. 798-807.

M i s t e l b a u e r  G ., K o c h l  A ., B o u z a r i  H ., B r u c k n e r  S ., S c h e r n -  
t h a n e r  R., S r a m e k  M., B a c l i j a  I., G r o l l e r  M. E.: Smart super views:



Bibliography

[MLP* 10]

[MMS13]

[Mor74]

[Mor03]

[MPRSDC12]

[MRO*12]

[MSM*08] 

[MSS 12] 

[MSSD*08]

[NAS]

[OHG*08]

A knowledge-assisted interface for medical visualization. In IEEE Conference 
on Visual Analytics Science and Technology (VAST) (2012), pp. 163-172.

M c L o u g h l in  T., L a r a m e e  R., P e ik e r t  R., P o s t  F. H ., C h e n  M.: Over 
Two Decades of Integration-Based, Geometric Flow Visualization. Computer 
Graphics Forum 29, 6 (2010), 1807-1829.

M c c r a e  J., M it r a  N. J., S in g h  K.: Surface perception of planar abstractions. 
ACM Transactions on Applied Perception 10, 3 (2013), 14:1-14:20.

M o r r i s o n  J. L.: A theoretical framework for cartographic generalization with 
the emphasis on the process o f  symbolization. International Yearbook of Car­
tography 14 (1974), 115-127.

M o r o n e y  N.: Unconstrained web-based color naming experiment. Proceed­
ings ofSPIE 5008 (2003), 36-46.

M a g u ir e  E., P. R o c c a - S e r r a  S.-A. S., D a v ie s  J., C h e n  M.: Taxonomy- 
based glyph design: with a case study on visualizing workflows of biological 
experiments. IEEE Transactions on Visualization and Computer Graphics 18, 
12(2012), 2603-2612.

M a c E a c h r e n  A. M., R o th  R. E., O ’B r ie n  J., Li B., S w i n g le y  D., G a- 
h e g a n  M.: Visual semiotics & uncertainty visualization: An empirical study. 
IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 
2496-2505.

M a r t in  J. P., S w a n  E. J., M o o r h e a d  R. J., Liu Z., C a i S.: Results of 
a user study on 2D hurricane visualization. Computer Graphics Forum 27, 3 
(2008), 991-998.

M o h a m m a d  S H ., S h ir k h o d a ie  A.: A survey o f visual analytics for knowl­
edge discovery and content analysis. In Proceedings ofSPIE (2012), vol. 8392, 
pp. 83920T-83920T-11.

M e y e r -S p r a d o w  J., S t e g g e r  L ., D o r in g  C ., R o p in sk i T., H in r ic h s  K.: 
Glyph-based SPECT visualization for the diagnosis o f  coronary artery disease. 
IEEE Transactions on Visualization and Computer Graphics 14, 6  (2008), 1499- 
1506.

NASA: Pioneer f plaque symbology. http://grin.hq.nasa.gov/
ABSTRACTS/GPN-2000-001623 .html. Accessed: 2014-06-01.

O e l t z e  S., H e n n e m u th  A ., G l a s s e r  S., K u h n e l  C., P re im  B.: Glyph- 
based visualization of myocardial perfusion data and enhancement with contrac­
tility and viability information. In Proceedings of the First Eurographics confer­
ence on Visual Computing for Biomedicine (2008), EG VCBM’08, pp. 11-20.

177



Bibliography

[OHS03]

[OLF09]

[OW84]

[PanOl]

[PGL*12]

[PL09] 

[PLC* 11 ]

[PNE02]

[PPvA*09]

[PR08]

[PRdJ07]

[PSBS12]

178

O w e n s  N ., H a r r is  C., S t e n n e t t  C.: Hawk-eye tennis system. In Interna­
tional Conference on Visual Information Engineering (2003), pp. 182-185.

O z u y s a l  M ., L e p e t i t  V., F u a  P.: Pose estimation for category specific mul­
tiview object localization. In IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR 2009) (June 2009), pp. 778-785.

O r b a n  G. A ., V a n d e n b u s s c h e  E ., V o g e l s  R.: Human orientation discrim­
ination tested with long stimuli. Vision Research 24, 2 (1984), 121-128.

Pang A.: Visualizing uncertainty in geo-spatial data. In In Proceedings of the 
Workshop on the Intersections between Geospatial Information and Information 
Technology (2001).

P e n g  Z ., G r u n d y  E ., L a r a m e e  R., C h e n  G ., C r o f t  N .: Mesh-driven vec­
tor field clustering and visualization: An image-based approach. IEEE Transac­
tions on Visualization and Computer Graphics 18, 5 (2012), 283-298.

P e n g  Z., L a r a m e e  R. S.: Higher dimensional vector field visualization: A 
survey. In Theory and Practice of Computer Graphics (2009), pp. 149-163.

P a r r y  M. L ., L e g g  P. A ., C h u n g  D . H. S ., G r i f f i t h s  I. W ., C h e n  M.: 
Hierarchical event selection for video storyboards with a case study on snooker 
video visualization. IEEE Transactions on Visualization and Computer Graphics 
17, 12 (dec 2011), 1747-1756.

P o s t  F. H., N i e l s o n  G., (E d s .)  G.-P. B.: Data Visualization: The State of 
the Art. Springer, 2002.

P e e t e r s  T. H. J. M., P r c k o v s k a  V., v a n  A lm s ic k  M. A., B a r t r o l i  
A. V., TER H a a r  R o m e n y  B. M.: Fast and sleek glyph rendering for inter­
active hardi data exploration. In IEEE Pacific Visualization Symposium (2009), 
pp. 153-160.

P e a r lm a n  J., R h e in g a n s  P.: Visualizing network security events using com­
pound glyphs from a service-oriented perspective. In VizSEC 2007, Goodall 
J. R., Conti G., Ma K.-L., Farin G., Hege H.-C., Hoffman D., Johnson C. R., 
Polthier K., (Eds.), Mathematics and Visualization. Springer Berlin Heidelberg, 
2008, pp. 131-146.

P e a r lm a n  J., R h e in g a n s  P., d e s  J a r d in s  M.: Visualizing diversity and 
depth over a set of objects. IEEE Computer Graphics and Applications 27
(2007), 35^15.

PILEGGI H., S t o l p e r  C. D., B o y l e  J. M., S t a s k o  J. T.: Snapshot: Visual­
ization to propel ice hockey analytics. IEEE Transactions on Visualization and 
Computer Graphics 18, 12 (2012), 2819-2828.



Bibliography

[PVF13]

[PWL96]

[PWR04]

[PZ08]

[QH87]

[RE05]

[RFB*11]

[RHHL02]

[RM97]

[RN88]

[R0P11]

[RP08]

[RSMS*07]

P e r in  C., V u i l l e m o t  R., F e k e t e  J. D.: Soccerstories: A kick-off for visual 
soccer analysis. IEEE Transactions on Visualization and Computer Graphics 19, 
12 (Dec 2013), 2506-2515.

P a n g  A. T., W it t e n b r in k  C. M., L o d h  S. K.: Approaches to uncertainty 
visualization. The Visual Computer 13 (1996), 370-390.

P e n g  W ., W a r d  M . O ., R u n d e n s t e in e r  E. A .: Clutter reduction in multi­
dimensional data visualization using dimension reordering. In Proc. IEEE Symp. 
Information Visualization (InfoVis 2004) (2004), pp. 89-96.

P u t z  V., Z a g a r  B. G.: Single-Shot estimation of Camera Position and Ori­
entation using SVD. In Proc. IEEE Conf. Instrumentation and Measurement 
Technology (2008), pp. 1914-1919.

Q u in la n  P., H u m p h r e y s  G.: Visual search for targets defined by com bina­
tions o f color, shape, and size: an examination o f  the task constraints on feature 
and conjunction searches. Perception & psychophysics 41, 5 (1987), 455-527.

R e in a  G ., E r t l  T.: Hardware-accelerated glyphs for mono- and dipoles in 
molecular dynamics visualization. In EuroVis (2005), Eurographics Association, 
pp. 177-182.

R o th  R. E ., F in c h  B. G., B l a n f o r d  J. I., K lip p e l  A., R o b in s o n  A. C., 
M a c E a c h r e n  A. M.: Card sorting for cartographic research and practice. 
Cartography and Geographic Information ScienceCartography and Geographic 
Information Science 38, 2 (2011), 89-99.

R u s in k ie w ic z  S., H a l l - H o l t  O., L e v o y  M.: Real-time 3D model acquisi­
tion. In SIGGRAPH 2002 Conference Proceedings (2002), Annual Conference 
Series, ACM Press/ACM SIGGRAPH, pp. 438^46.

R u g g  G ., M c G e o r g e  P.: The sorting techniques: a tutorial paper on card 
sorts, picture sorts and item sorts. Expert Systems 14, 2 (1997), 80-93.

R o d g e r s  J. L ., N ic e w a n d e r  A . W.: Thirteen ways to look at the correlation 
coefficient. The American Statistician 42, 1 (1988), 59-66.

R o p in sk i T., O e l t z e  S., P re im  B.: Survey of glyph-based visualization tech­
niques for spatial multivariate medical data. Computers & Graphics 35 (2011), 
392^101.

R o p in sk i T., P re im  B.: Taxonomy and usage guidelines for glyph-based med­
ical visualization. In Proc. Simulation and Visualization (SimVis 2008) (2008), 
pp. 121-138.

R o p in sk i T., S p e c h t  M ., M e y e r -S p r a d o w  J., H in r ic h s  K ., P re im  B.: 
Surface glyphs for visualizing multimodal volume data. In Proc. Vision, Model­
ing, and Visualization (VMV 2007) (2007), pp. 3-12.

179



Bibliography

[RWG*12]

[SCC*04]

[SEK*98]

[SFGF72]

[SHB*99]

[She64]

[Shn96]

[SJAS05]

[SK10]

[SKH95]

[SSOG08]

[Ste46]

180

R ib ic ic  H., W a s e r  J., G u r b a t  R., S a d r a n s k y  B., G r o l l e r  M. E.: 
Sketching uncertainty into simulations. IEEE Transactions on Visualization and 
Computer Graphics 18, 12 (2012), 2255-2264.

S t r a k a  M., C e r v e n a n s k y  M., C r u z  A. L., K o c h l  A., S r a m e k  M., 
G r o l l e r  E ., F le i s c h m a n n  D.: The vesselglyph: Focus & context visual­
ization in ct-angiography. In Proc. IEEE Visualization Conf. (Vis 2004) (2004), 
pp. 385-392.

S h a w  C., E b e r t  D., K u k la  J., Z w a A., S o b o r o f f  I., R o b e r t s  D.: Data 
visualization using automatic, perceptually-motivated shapes. In Visual Data 
Exploration and Analysis (1998), SPIE.

S i e g e l  J., F a r r e l l  E ., G o ld w y n  R., F r ie d m a n  H.: The surgical implica­
tion of physiologic patterns in myocardial infarction shock. Surgery 72 (1972), 
27-35.

S h a w  C. D., H a l l  J. A., B l a h u t  C., E b e r t  D. S., R o b e r t s  D. A.: Using 
shape to visualize multivariate data. In In Proceedings of the Workshop on New 
Paradigms in Information Visualization and Manipulation (NPIVM ’99) (1999), 
ACM Press, pp. 17-20.

S h e p a r d  R.: Attention and the metric structure of the stimulus space. Journal 
of Mathematical Psychology 1 (1964), 54-87.

S h n e id e r m a n  B.: The eyes have it: a task by data type taxonomy for informa­
tion visualizations. In IEEE Symposium on Visual Languages (1996), pp. 336-  
343.

S ay im  B., J a m e so n  K. A., A lv a r a d o  N., S z e s z e l  M. K.: Semantic and 
perceptual representations of color: Evidence of a shared color-naming function. 
The Journal of Cognition and Culture 5, 3-4 (2005), 427-486.

S c h u l t z  T., K in d lm a n n  G. L.: Superquadric glyphs for symmetric second- 
order tensors. IEEE Transactions on Visualization and Computer Graphics 16, 6 
(2010), 1595-1604.

S o n n e t  A., K il ia n  A., H e s s  S.: Alignment tensor versus director: Descrip­
tion of defects in nematic liquid crystals. Physical Review E 52 (July 1995), 
718-722.

S u n t in g e r  M., S c h ie f e r  J., O b w e g e r  H., G r o l l e r  M. E.: The event 
tunnel: Interactive visualization of complex event streams for business process 
pattern analysis. In Proc. IEEE Pacific Visualization Symp. (PacificVis 2008) 
(March 2008), pp. 111-118.

Stev en s S. S.: On the theory of scales of measurement. Science 103, 2684 
(1946), 677-680.



Bibliography

[SZD*10]

[Tay02]

[TB96]

[TC05]

[TCW*95]

[Tel07]

[TreOO]

[TSWS05]

[Tuf83]

[Tuf90]

[TWBW99]

[UIL*06]

[VFSHOl]

S a n y a l  J., Z h a n g  S., D y e r  J., M e r c e r  A., A m b u rn  P., M o o r h e a d  R.: 
Noodles: A tool for visualization of numerical weather model ensemble uncer­
tainty. IEEE Transactions on Visualization and Computer Graphics 16, 6  (2010), 
1421-1430.

T a y l o r  R.: Visualizing multiple fields on the same surface. IEEE Computer 
Graphics and Applications 22, 3 (2002), 6-10.

T u r k  G., B a n k s  D.: Image-guided streamline placement. In Proceedings of 
the 23rd Annual Conference on Computer Graphics and Interactive Techniques 
(New York, NY, USA, 1996), SIGGRAPH ’96, ACM, pp. 453-460.

T h o m a s  J. J., C o o k  K. A.: Illuminating the Path: The Research and Develop­
ment Agenda for Visual Analytics. IEEE Computer Society, Los Alametos, CA, 
2005.

T s o t s o s  J. K., C u lh a n e  S. M., W in k y  W. Y. K., L ai Y., D a v is  N ., N u -  
f l o  F.: Modeling visual attention via selective tuning. Artificial Intelligence 78, 
1-2(1995), 507-545.

T e le a  A.: Data Visualization: Principles and practice. A. K. Peters, Ltd.,
2007.

T r e in is h  L.: Visual data fusion for applications of high-resolution numeri­
cal weather prediction. In Proc. IEEE Visualization Conf. (Vis 2000) (2000), 
p p . 477^180.

T o m in sk i C ., S c h u l z e - W o l l g a s t  P., S c h u m a n n  H.: 3D information
visualization for time-dependent data on maps. In Proc. Int’l. Conf. Information 
Visualization (IV ’05) (2005), pp. 175-181.

TUFTE E. R.: The visual display of quantitative information. Graphics Press, 
1983.

T u f t e  E. R.: Envisioning Information. Graphics Press, 1990.

T u c h  D. S., W e is s k o f f  R. M., B e l l i v e a u  J. W., W e d e e n  V. J.: High 
angular resolution diffusion imaging of the human brain. In Proceedings of the 
7th Annual Meeting oflSMRM (1999), Springer, p. 321.

U r n e s s  T., I n t e r r a n t e  V., L o n g m ir e  E ., M a r u s ic  I., O ’N e i l l  S., 
J o n e s  T. W.: Strategies for the visualization of multiple 2d vector fields. IEEE 
Computer Graphics and Applications 26,4 (2006), 74—82.

V a z q u e z  P.-P., F e ix a s  M., S b e r t  M., H e id r ic h  W.: Viewpoint selection 
using viewpoint entropy. In Proc. Vision, Modeling, and Visualization (VMV 
2001) (2001), pp. 273-280.

181



Bibliography

[VMCJ10]

[V085]

[VVO86]

[War8 8 ]

[War94]

[War02]

[War04]

[War08a]

[War08b]

[WB97a]

[WB97b]

[WEL*00]

[Wes90]

[WG11]

182

V ia u  C., M c G u ff in  M. J., C h ir ic o t a  Y., J u r is i c a  I.: The flowvizmenu 
and parallel scatterplot matrix: Hybrid multidimensional visualizations for net­
work exploration. IEEE Transactions on Visualization and Computer Graphics 
16, 6  (Nov 2010), 1100-1108.

V o g e l s  R., O r b a n  G. A.: The effect of practice on the oblique effect in line 
orientation judegements. Vision Research 25, 11 (1985), 1679-1687.

V a n d e n b u s s c h e  E., V o g e l s  R., O r b a n  G. A.: Human orientation discrim­
ination: Change with eccentricity in normal and amblyopic vision. Investigative 
Opthalmology & Visual Science 27, 2 (1986), 237-245.

W a r e  C.: Color sequences for univariate maps: theory, experiments and princi­
ples. IEEE Computer Graphics and Applications 8, 5 (Sept 1988), 41-49.

W a r d  M. O.: Xmdvtool: Integrating multiple methods for visualizing multi­
variate data. In Proceedings IEEE Visualization ’94 (1994), pp. 326-333.

W a r d  M . O.: A  taxonomy o f glyph placement strategies for multidimensional 
data visualization. Information Visualization I, 3-4 (2002), 194—210.

WARE C.: Information Visualization, Second Edition: Perception for Design 
(Interactive Technologies). Morgan Kaufmann Publishers Inc., 2004.

W a r d  M. O.: Multivariate data glyphs: Principles and practice. In Handbook 
of Data Visualization (2008), Springer Handbooks Comp. Statistics. Springer, 
pp. 179-198.

W a r e  C.: Visual Thinking: for Design. Morgan Kaufmann Publishers Inc.,
2008.

W o n g  P. C., B e r g e r o n  R. D.: 30 years of multidimensional multivariate 
visualization. In Scientific Visualization, Overviews, Methodologies, and Tech­
niques (1997), IEEE Computer Society, pp. 3-33.

W o n g  P. C., B e r g e r o n  R. D.: Multivariate visualization using metric scaling. 
In Proc. IEEE Visualization Conf. (Vis ’97) (1997), pp. 111-118.

W e i g le  C., E m ig h  W. G., L iu  G., T a y l o r  R. M., E n n s  J. T., H e a l e y  
C. G.: Oriented sliver textures: A technique for local value estimation of mul­
tiple scalar fields. In Graphics Interface (2000), Canadian Human-Computer 
Communications Society, pp. 163-170.

W e s t o v e r  L.: Footprint evaluation for volume rendering. SIGGRAPH Com­
puter Graphics 24 (1990), 367-376.

Wa rd  M ., Guo Z.: Visual exploration of time-series data with shape space 
projections. Computer Graphics Forum 30, 3 (2011), 701-710.



Bibliography

[WGK10]

[Wil67]

[WK92]

[WMM*02]

[WPL95]

[WPL96]

[WWH98]

[YHW*07]

[YKSJ07]

[YPWR03]

[ZK98]

[ZSAcL08]

W a r d  M. O., G r in s t e in  G., K eim  D.: Interactive Data Visualization: Foun­
dations, Techniques and Applications. A K Peters/CRC Press, 2010.

W ill ia m s  L.: The effects o f  target specification on objects fixated during visual 
search. Acta psychologica 27 (1967), 355—415.

W a r e  C ., K n ig h t  W.: Orderable dimensions of visual texture for data display: 
Orientation, size and contrast. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems (1992), CHI ’92, ACM, pp. 203-209.

W e s t in  C. F., M a ie r  S. E ., M a m a ta  H ., N a b a v i A ., J o l e s z  F. A ., K ik i- 
NIS R.: Processing and visualization for diffusion tensor MRI. Medical Image 
Analysis 6, 2 (2002), 93-108.

WlTTENBRINK C., P a n g  A., L o d h a  S.: Verity Visualization: Visual Map­
pings. Tech. rep., University of California at Santa Cruz, Santa Cruz, CA, USA, 
1995.

W it t e n b r in k  C. M., P a n g  A. T., L o d h a  S. K.: Glyphs for visualizing 
uncertainty in vector fields. IEEE Transactions on Visualization and Computer 
Graphics 2, 3 (1996), 266-279.

W ilk in s o n  F., W ils o n  H. R ., H a b a k  C.: Detection and recognition o f  radial 
frequency patterns. Vision Research 38, 22 (1998), 3555-3568.

Y a n g  J., H u b b a l l  D ., W a r d  M . O ., R u n d e n s t e in e r  E. A ., R ib a r s k y  
W.: Value and relation display: Interactive visual exploration o f  large data sets 
with hundreds o f  dimension. IEEE Transactions on Visualization and Computer 
Graphics 13, 3 (2007), 1077-2626.

Yi J. S ., K a n g  Y. A., S t a s k o  J. T., J a c k o  J. A.: Toward a deeper understand­
ing of the role of interaction in information visualization. IEEE Transactions on 
Visualization and Computer Graphics 13, 6  (2007), 1224-1231.

Y a n g  J., P e n g  W ., W a r d  M . O ., R u n d e n s t e in e r  E. A.: Interactive hier­
archical dimension ordering, spacing and filtering for exploration of high dimen­
sional datasets. In Proc. IEEE Symp. Information Visualization (InfoVis 2003) 
(2003), IEEE Computer Society.

Z h a n g  Z., K a n a d e  T.: Determining the epipolar geometry and its uncertainty: 
A review. International Journal of Computer Vision 27 (1998), 161-195.

Z u d i lo v a - S e in s t r a  E ., A d r ia a n s e n  T., c a n  L ie r e  R.: Trends in Interac­
tive Visualization: State-of-the-Art Survey, 1 ed. Springer Publishing Company, 
Incorporated, 2008.

183



I

I
I

I
1
t

184

.jli



APPENDIX A

Designing High-dimensional Glyphs for 
Visualizing Multiple Error-Sensitivity Fields

This appendix provides supplementary material for the user consultation described in Chapter 3.

A.l User Consultation: Questionnaire
1. Given each visual design, can you identify the independent direction error?

2. Given each visual design, can you identify the independent error magnitude?

3. Does the visualization methods help illustrate the overall error from a given camera posi­
tion?

4. Does the visualization help illustrate the overall distribution from a given camera position?

5. Given each visualization technique, can you identify regions where potential vector can­
cellation may occur? Which visual design shows this best and briefly explain why?

6. Would the visualization be of help towards selecting an optimal camera position? If yes,
give a brief description on why?

7. Does the visualization method help identify which feature point is more sensitive?

8. Given two camera positions and their associated error-sensitivity fields, is the visualization 
technique useful for deciding which camera is better?

9. Is each error-field observable in the visualization methods?

10. Can you rank the glyph visualizations, worst-to-best, with respect to how well they convey 
error?

185



!
I
![
i
\it
|

i
I
|
i
i
[
I
;
t
I

i

[iif

186



APPENDIX B

Glyph Sorting: A Visual Analytic Approach

This appendix provides supplementary material for evaluating the work in Chapter 6.

B.l Empirical Study on Formal Rankings
To supplement the motivation of this chapter, we performed an empirical study using 5 partici­
pants (3 computer scientists and 2 sport scientists) to investigate the difficultly of formalising a 
ranking for an ad hoc task in the context of rugby. Each participant had knowledge in both rugby 
and visualization.

Experiment design. We tasked the participants with identifying, and ranking a set of events 
that highlight the most important positive outcomes of a match. We consider positive outcomes 
in rugby when a team gains an advantage either through scoring, or winning a set piece such as 
penalties and free kicks. The study is designed such that importance is the tacit knowledge we 
are trying to formalise. During each session, we presented the same match containing 12 of such 
events using a basic system with two views as in Figure 6.1(b) and (c). This system represents 
a similar environment, albeit more advanced, to current notational software for selecting events, 
and playing back video clips. To help us analyse the confidence of a participant’s result, the 
users provide an additional meta-answer: (a) I am reasonably confident about my answer, (b) I 
am unsure about my answer and (c) I do not know how to do this, with each task outlined in 
Figure B.l.

Results. For task 1 and 2, we compare the difficulty of ranking a small set of events (e.g., 
five), to a relatively larger sample (e.g., ten). Figure B.l illustrates our results, where the events 
are ranked from worst-to-best with 1-5, and 1-10 respectively. We notice that the majority of 
participants were fairly confident with their results in task 1. In contrast, they became unsure 
of their ranking for task 2. We observed during the process that users were able to establish the 
rank of important events more easily based on some clear objective feature (e.g., the most gain),
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Task

1. Identify  and  rank  5 events from  
best-to-w orst

2. Identify and  rank 10 events 
from  best-to-w orst

3. Identify  a set o f a ttribu tes that 
m ay affect the  ranking

(b)

(a)

(a)

R esult

G ain (h igh), Tortuosity  (low), N um ber o f  Phases (low) 

(Tortuosity  + N u m b er o f  Phases), (Gain + Territory 
Position)

Tortuosity, N um ber of Phases, Start Event

G ain, Start Event, N u m b er o f  Phases

G ain, N um ber o f Phases

4. Form ulate a ranking  based  on  
the set o f  a ttributes

(c)

( c )

(c)
(a)

N/A

N/A

N/A

C om bination  of high  gain, low to rtuosity  and a w eight­
ed start event (e.g., tu rnover is m ore im portan t than 
scrum )

(b) Sequences co n ta in ing  high gain or high num ber of 
phases from  various start events__________________

Figure B .l: Table showing the em pirical study results fo r  sorting rugby events. Each 
sub-row within a task corresponds to jive  participants along with their optional m eta­
answ er (see A ppendix fo r  details). For task I and 2, their ranking is shown from  the 12 
possible even ts e„ and are ranked from  worst-to-best with 1-5 and 1-10 respectively. A 
colour-m ap is applied to em phasise the worst and best events.

than events o f less importance. This would suggest, and support the use of a moderated ranking 
confidence r  which we incorporate in our system.

In task 3, we asked the users to identify a set of influential attributes that affected their rank­
ing. Since they define the sorting outcome, the participants could speculate a set o f performance 
indicators confidently which determined their ranking. However, it was clear from task 4 that 
combining each attribute and formally specifying their ranking proved to be challenging. Whilst 
a typical participant could perhaps describe such a formalisation in an abstract manner, they ac­
knowledged that this would be too difficult to define into an analytical form which can then be 
used for event organisation. Finally, we demonstrated our visual analytic system to the users by 
importing their rankings into the model. We found the discovered sort keys to be consistent with 
the participant’s ranking. All the participants were impressed with the system, and believed that 
such a tool would be useful for sorting event data in a more effective and efficient manner.



APPENDIX C

Glyph Sorting: Perceptual Orderability

This appendix provides supplementary material for the three empirical studies described in Chap­
ter 7.

C .l Experimental Stimuli: How ordered is it?

Noise Level Experim ent 1: Value Stimulus

/V, =  1.0 O O O O 0 ®
N2 = 0 .97 o o o o o t
N3 =  0 .9 0 OOOQ@©
Â 4 =  0.71 o o o e o o
W5 =  0 .12 • • C  O f  # § • # • •  •

Table C .l: The visual stimuli fo r  value (visual channel) under five  different noise levels 
(m easured orderedness) used in Experim ent I: How ordered is it?
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Noise Level Experim ent 1: Size Stimulus

A/, =  1.0 . — « ® o o o — o  © - o  o O  (DC
N2  = 0.97 ---------------------- .  o o  O Q  O  o o O  O O

A/3 =  0.90 o o o o o o O O O 0 o C3 C3 ^
/V4 =  0.71 o » -  o o  o Q 1 o  “ O O O
N5  =  0.12 o  o  -  -*— -  -  ----------

Table C.2: The visual stim uli for size (visual channel) under five different noise levels 
(m easured orderedness) used in Experim ent 1: How ordered is it?

Noise Level Experim ent 1: Hue Stimulus

/V| =  1.0 • ® © 0 o o o « t t i © © « r
N2  -  0.97 « t © o o o o t ® @ i © 0 ® r
N3  =  0.90 • O ® O O O O ® i ® O O G ® 0 "
W4 =  0.71 G 0 ® O O i i ® t O © O O ® f -
A/5 =  0.12 ®©0 O O O O t O f # © O t t '

Table C.3: The visual stimuli for hue (visual channel) under five different noise levels
(measured orderedness) used in Experiment 1: How ordered is it?
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Noise Level Experim ent 1: Texture Stimulus

iV] =  1.0 000011## # • • • •
II o -j 00001i## • •#

N3  =  0 .90 00001i • ' V V  ; C*.

7V4 =  0.71 0000110# •  ## 0 •  “
A/5 = 0.12 ##001i#0

Table C.4: The visual stimuli fo r  texture (visual channel) under five different noise levels 
(measured orderedness) used in Experim ent 1: How ordered is it?

Noise Level Experim ent 1: O rientation Stimulus

N, =  1.0 _______ \  \  \  \  \  I / /  /  /  s ' ^  -___
----- ^  \  \  \  \  \  | /  /  /  /  /  ^  ■

yv2 =  0.97 __  — _ \  \  \  \  \  I ^  /  /  /  s ' ^  ___ -
- ^  \  \  \  \  \ ^  /  /  /  '  ^

A/-, n Qf> v  \  \  \  \  \  I I /  \  /  /  ^\  \  \  \  \  \  | | /  \  /  /  ^  /

0 71 \  \  ---  \  \  /  I / /  \  S ' „

A/5 =  0.12 /  /  \  \  \  /  \  ___ \ / ___ ^  \ ^  ______
/  /  \  \  \  /  \  \  / ^  \  — ^

Table C.5: The visual stimuli fo r orientation (visual channel) under five different noise
levels (measured orderedness) used in Experiment I : How ordered is it?
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Noise Level Experim ent 1: Shape Stim ulus

N] =  1.0 0

N2  -  0.97 o a <o> A 0 0 0 0 0 0 0 0 0 0 0 -

/V3 =  0.90 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -

A74 =  0.71

n 5  =  0.12 0  A

Table C.6 : The visual stim uli fo r  shape ( visual channel) under five different noise levels 
(m easured orderedness) used in Experim ent I: How ordered is it?

Noise Level Experim ent 1: Numeric Stim ulus

N i -  1.0 3 7 .2  3 8  6  4 0 .2  4 1 .7  4 3 .3  4 4 . 9  4 6 .S 4 8 .2 4 9 .9 5 1 .5 5 3 . 3 - 5 5 .1 S 6 .9 5 8 .7 6 0 . 6  ►

N2  =  0.97 3 7 .2  3 8 .6  4 0 .2  4 1 .7  4 3 .1  4 4 . 9  4 6 .5 4 8 .2 5 8 .2 5 4 .4 5 3 .3 5 5 .0 5 6 .9 5 8 .7 6 0 . 6  - ►

35 II vO 0 3 7 .2  4 1 . 6  4 0 .2  4 4 .6  4 6 .1  4 6 . 0  4 6 .5 4 8 .2 4 8 . 9 5 2 .7 4 3 .8 5 5 .1 5 6 .9 5 8 .7 5 6 .2 —  ►

N4  =  0.71 4 0 . 2 — - 4 0 .4  —  3 9 .2 -----4 6 . 0  - 4 3 . 3 -----3 9 . 5 -----5 2 .1 4 8 . 2 - 4 9 . 9 5 6 .7 - 5 3 . 3 — 4 5 . 5  - S 6 .9 5 8 .7 6 0 . 6 — ►

A/5 =  0.12 5 3 .5 -  — 5 3 .3  —  4 1 .0  4 1 . 7  —  4 3 . 3  5 6 .2 —  3 9 .9 6 0 .2 4 6 .9 5 1 .2 5 9 .8 5 8 .2 4 7 . 2 - 3 8 .0 6 0 . 6  ►

Table C.7: The visual stimuli fo r  num eric (visual channel) under five  different noise
levels (m easured orderedness) used in Experim ent 1: How ordered is it?
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C.2 Experimental Stimuli: W hich is smallest? W hich is 
largest?

Noise Level Target Experim ent 2: Value Stimulus

N] =  1.0
Min

Max

Neither o o o o o o e ©

N2 = 0.97
Min a o O O M f f
Max

Neither

yv3 = 0.95
Min

Max

Neither

N4 = 0.90
Min 0 0 0 0 0 0
Max o o o o o o © # « # o « # # # ~

Neither

Table C.8 : The visual stim uli fo r  value (visual channel) under noise levels N\ .AO Ms,
and N 4  (measured orderedness) used in Experim ent 2: Which is smallest? Which is
largest?
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Noise Level Target Experim ent 2: Value Stim ulus (cont.)

N5 =  0 .78
Min

Max

Neither OOOOff O O M  • ••••
/V6 =  0.71

Min

Max

Neither

N-, -  0 .5 4
Min •oo«o©@f©#tiOi«-
Max •oo»oo®»0«f#o!#r

Neither tOO»OG©tO«tiOt«'
N8 =  0 .12

Min • •OOOtOfOittCo# -
Max

Neither •  •  0  ©  •  •  0  •  • ! • •  •  •  0

Table C.9: The visual stim uli fo r  value (visual channel) under noise levels N 5 .N b .N 7 ,
and N% (m easured orderedness) used in Experim ent 2: Which is smallest? Which is
largest?
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Noise Level Target Experim ent 2: Size Stim ulus

N] = 1.0
Min • - — • 0-  0 © 0 0  c  0  0  0  0 O O

Max . . . 0 0 0 0 0  O O  O  O  C) O O
Neither •  0 0 0 0 0 0 0  0  0  0  0 oo~

N2 = 0 .97
Min E • • • 0 0 0 0  0  0  0  0  O O O ^

Max . . . .  0 0 0 0  0  0  0  0  0 0(_>
Neither • • 0 0 0 0 0 0  O 0 0 0 o O O

=  0 .95
Min • 0 0 0 0  0  0  0  0  0 C X "
Max • • • - ° 0 - 0 0 O  O O O O O

Neither 0 0 0 O 0 0 0 0  0 0 OOCE

£ II Min 0 .  0 0 0 0 0  0  0  ° 0  O’ 0  o
Max 0 0 0 o o o O °0 O {0 O

Neither m
0  0  0  » 0 0 O O '1 1

Table C.10: The visual stimuli fo r  size (visual channel) under noise levels N \ ,N 2 ,N i,
and N 4  (m easured orderedness) used in Experim ent 2: Which is smallest? Which is
largest?

195



Bibliography

Noise Level Target Experim ent 2: Size S tim ulus (cont.)

N5 =  0.78
Min •

i

ooooooo
o0o

Max 1

DOooOOo
o0

Neither • • . . . C . Q O O O O  OO-

7V6 = 0.71
Min • • •  - O o  o o  o o  (  ) O  O  ( )  ° ^

Max • ♦ . . o o  o  o  o  o  jQ i  OOO ° -

Neither • . . o o O O O O O (  ̂ )  O  O  O  ° ~

JV7 = 0.54
Min o • j * o o o  o o o  O O O o ( ; 0 " "

Max o • O o 0 O O 0 O o Cf) ° Q  O

Neither O  •  O  O o  O O  o  O O  O  ° ( 2 )  O'*"

N% =  0 . 1 2

Min o o •  •  •  o •  O ° ° OO ° • O-
Max o o •  •  • o • O ° °OO ° •O

Neither o o • ° • o • O ° ® OO ° * O-
Table C .ll:  The visual stimuli for size (visual channel) under noise levels
and N% (measured orderedness) used in Experiment 2: Which is smallest? Which is
largest?
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Noise Level Target Experim ent 2: Hue Stimulus

7V| =  1.0
Min • • © O O O O f « « ® • • • •
Max • i © o o o o i # # t • • • •

Neither

N~> =  0 .97
Min O Q f #
Max

Neither • § ® © o o o t « # «

W3 =  0 .95
Min •  • • •
Max

Neither

N4 = 0 .9 0
Min

Max • 0 « o o o o i f t o @ # i i -
Neither • o t o o o o # « t o © @ # « -

Table C .l2: The visual stim uli fo r  hue (visual channel) under noise levels yV1.iV2 .jV3 , 
and N4  (measured orderedness) used in Experim ent 2: Which is smallest? Which is 
largest?
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Noise Level Target Experim ent 2: Hue Stim ulus (cont.)

N5 =  0 .78
Min • • • • • • • • • • • • • •
Max

Neither

W6 =  0.71
Min

Max

Neither

N-, =  0 .54
Min

Max

Neither • t t t o o o f o t ® ® # # # *

Â g =  0 .12
Min • t § 0 o © i t o t « t o t r
Max « # © o o © © # o t # # o i i ^

Neither ^© ©0 0 0 © « 0[1 #€>0 ®#-
Table C.13: The visual stimuli fo r  hue (visual channel) under noise levels
and N% (measured orderedness) used in Experim ent 2: Which is sm allest? Which is
largest?
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Noise Level Target Experim ent 2: Texture Stimulus

Ni = 1.0
Min 0©00©#®®®0 GCtit*
Max

Neither 0©00®#@• 0# ® ® ® ® ® -

N2 = 0 .97
Min 0©0®®#«®®@0©i!##-
Max 0©0®®#®#f1©©®##•

Neither 0000®##® ®®®® ® ® ®~

N3 = 0 .95
Min 1000©®#©###®###®-
Max 0000®#®##®#©•••-

Neither 0000®#®## # « • • • • '

N4 = 0 .90
Min 000® # # # # # © ® ® ® @ ~
Max 000®##•••###•# ® ~

Neither 0®0®##«® # ® © ® ® ® ® ~
Table C .l 4: The visual stimuli fo r  texture (visual channel) under noise levels N \ ,
and N 4  (measured orderedness) used in Experim ent 2: Which is sm allest? Which is
largest?

199

26



Bibliography

Noise Level Target Experim ent 2: Texture Stimulus (cont.)

yv5 =  0 .78
Min 0®0©®#00##0®©##-
Max

Neither Cl-

yv6 =  0.71
Min 0© © © •#••••••••#-
Max 0©0©##®®®®•#©#•-

Neither

N-J = 0 .5 4
Min •i©!©#©®#®##®©®#©-
Max •  ©©#<§>#®##«#*0*®~

Neither #©©•© ###®0®0#©-

/V8 =  0 .12
Min ©00®©#©•##•# ® © « -

Max ©@0©©®0-###« #•©[•-
Neither 0 ® 0 © © @ 0 # ® !# ###©#-

Table C.15: The visual stimuli fo r  texture (visual channel) under noise levels
and N% (measured orderedness) used in Experim ent 2: Which is sm a llest? Which is
largest?
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Noise Level Target Experim ent 2: O rientation Stimulus

/V, =  1.0
Min

|"....
\ \ \ \ / / / / /  - - ----

Max — - \ \ \ \ h / / / / /  ... ,  -

Neither — - \ \ \ \ / / / / ............. -------

N2  =  0.97
Min — - \ \ \ \ - / / / .... ......... .———

Max ---- - \ \ \ \ - / / / ............. — - i»»

Neither -— - \ \  \  \ 1 / / / /  - -—

yv3 =  0.95
Min — \ \ \ \ \  / / / / / / —  -

Max — \ \ \ \ \  / / / / / /  - -

Neither -— \ \ \  \ \  / / / / / —

N4  =  0.90
Min -—

// \ \ \ 1 / \ / /
Max

// \ \ \ H , / \ /*
Neither \ V \  \ \ \ H 1 / \ /X

Table C.16: The visual stimuli fo r  orientation (visual channel) under noise levels 
/Vi, A/2 , A/3 , and N 4  (measured orderedness) used in Experim ent 2: Which is sm allest?  
Which is largest?
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Noise Level Target Experim ent 2: O rientation Stim ulus (cont.)

N5 = 0 .78
Min

Max \  \  \ /  / ¥

Neither \ \ \ \  \  \ ^ ^  /  /  /  /

Nb — 0.71
Min /  / \ -

Max

Neither w \  \ I I I/ - / \ -

N-, =  0 .5 4
Min \  \  \ I \  /  /  /

Max

Neither \ \ \  I \  /  /  /  \

Afg =  0.12
Min \

Max

Neither

\

Table C.17: The visual stimuli for orientation (visual channel) under noise levels
and N% (measured orderedness) used in Experiment 2: Which is smallest?

Which is largest?
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Noise Level Target Experim ent 2: Shape Stimulus

N\ = 1.0
Min 0  A 0 0 0 0 0 0 0 0 0 0 0 0 0 -

Max 0 0

Neither 0  A  0  ☆  0  0  0  0  0  0  0  0  0  0  0 -

N2 =  0 .97
Min 0  A 0 0 0 0 0 0 0 0 0 0 0 0  0 -

Max

Neither

/V3 =  0 .95
Min

Max 0

Neither 0  ☆  < > ☆ 0 0 0 0 0 0 0 0 0 0 0 -

N4 = 0 .90
Min 0

Max 0  ☆  - O 0 0 0 0 0 0 0 0 0  0  0  0 -

Neither 0  ☆ 0  0  0  0 0 0 0 0  0  0  0 0 0 -

Table C.18: The visual stimuli for shape (visual channel) under noise levels N\ .N 2 .N3 ,
and N4  (measured orderedness) used in Experiment 2: Which is smallest? Which is
largest?
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Noise Level Target Experim ent 2: Shape Stim ulus (cont.)

yv5 = 0.78
Min

Max

Neither

yv6 =  o.7i
Min

Max

Neither 0  A

N j  =  0.54
Min #  A  A

Max <0>

Neither

Afe =  0.12
Min

Max

Neither

Table C.19: The visual stim uli fo r  shape (visual channel) under noise levels A^A^A^,
and (m easured orderedness) used in Experim ent 2: Which is sm allest? Which is
largest?
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Noise Level Target Experim ent 2: Numeric Stimulus

N\ = 1.0
Min 37.2 3 8 .6 4 0 .2 4 1 .7 4 3 .3 4 4 .9 4 6 .5 4 8 .2 4 9 .9 5 1 .5 5 3 .5 5 5 .1 5 6  9 5 8 .7 6 0 .6

Max 37.2 3 8 .6 4 0 .2 4 1 .7 4 3 .3 4 4 .9 4 6 .5 4 8 .2 4 9 .9 51 .5 5 3 .3 5 5 .1 56  9 5 8 .7 6 0 .6

h

Neither 37.2 3 8 .6 4 0 .2 4 1 .7 4 3 .3 4 4 .9 4 6 .5 4 8 .2 4 9 .9 5 1 .5 5 3 .3 5 5 .1 5 6 .9 5 8 .7 6 0 .6 ►

n2 =  0.97
Min 37.2 3 8 .6 4 0 .2 4 1 .7 4 3 .1 4 4 .9 4 6 .5 4 8 .2 5 8 .2 54 .4 53 .3 5 5 .0 56  9 5 8 .7 6 0 .6 -

Max 37.2 3 8 .6 4 0 .2 4 1 .7 4 3 .1 4 4 .9 4 6 .5 4 8 .2 5 8 .2 54 .4 5 3 .3 5 5 .0 5 6 .9 5 8 .7 6 0 .6

j

Neither 37.2 3 8 .6 4 0 .2 4 1 .7 4 3 .1 4 4 .9 4 6 .5 5 8  2 5 4 .4 5 3 .3 5 5 .0 56  9 5 8 .7 6 0 .6 -

yv3 =  0.95
Min 4 2 .3 4 0 .2 4 1 .7 4 3 .3 4 4 .9 4 4 .3 5 0 .0 4 9 .9 5 1 .5 5 3 .3 5 5 .1 5 6 .9 5 8 .7 6 0 .5 -

Max 37.2 4 2 .3 4 0 .2 4 1 .7 4 3 .3 4 4 .9 4 4 .3 5 0 .0 4 9 .9 51 .5 5 3 .3 5 5 .1 5 6  9 5 8 .7 -

Neither 37.2 4 2 .3 40 .2 4 1 .7 4 3 .3 4 4 .9 4 4 .3 5 0 .0 4 9 .9 5 1 .5 5 3 .3 5 5 .1 5 6  9 5 8 .7 6 0 .5 -

n4 =  0 .90
Min 3 7 .2 4 1 .6 4 0 .2 44  6 4 6 .1 4 6 .0 4 6 .5 4 8 .2 4 8  9 5 2 .7 4 3 .8 5 5 .1 56  9 5 8 .7 56 .2 -

Max 37.2 4 1 .6 4 0 .2 4 4 .6 4 6 .1 4 6 .0 4 6 .5 4 8 .2 4 8  9 5 2 .7 4 3 .8 5 5 .1 5 6 .9 5 8 .7 5 6 .2 -

Neither 37.2 4 1 .6 4 0 .2 44  6 4 6 .1 4 6 .0 4 6 .5 4 8 .2 4 8 .9 5 2 .7 4 3 .8 5 5 .1 5 6  9 5 8 .7 56 .2 -

Table C.20: The visual stimuli fo r  numeric (visual channel) under noise levels
N\ ./V2 ./V3 , and  /V4  (measured orderedness) used in Experim ent 2: Which is smallest?
Which is largest?

205



Bibliography

Noise Level Target Experim ent 2: Num eric Stim ulus (cont.)

N5 =  0.78
Min 3 7 .2 4 0 .2 4 0 .2 4 1 .7 < 3 .3 4 4 .9  4 1 .4 4 0 .1 5 8 .2 5 1 .5 5 3 .3 5 0 .5 5 3 .6 5 8 .7 6 0 .6

-

Max 3 7 .2 4 0 .2 4 0 .2 4 1 .7 4 3 .3 4 4 .9  4 1 .4 4 0 .1 5 8 .2 5 1 .5 5 3 .3 5 0 .5 5 3 .6 5 8 .7 6 0 .6 -

Neither 3 7 .2 4 0 .2 4 0 .2 4 1 .7 4 3 .3 4 4 .9  4 1 .4 4 0 .1 5 8 .2 5 1 .5 5 3 .3 5 0 .5 5 3 .6 5 8 .7 6 0 .6 ■*-

/V6 =  0.71
Min 3 7 .2 3 8 .6 4 0 .2 4 1 .7 4 7 .4 4 5 .1  4 9 .8 5 1 .4 4 9 .9 5 1 .5 5 9 .9 5 5 .1 5 5 .7 5 8 .7 4 7 .6 ►

Max 3 7 .2 3 8 .6 4 0 .2 4 1 .7 4 7 .4 4 5 .1  4 9  8 5 1 .4 4 9 .9 5 1 .5 5 9 .9

___
5 5 .1 5 5 .7 5 8 .7 4 7 .6

-

Neither 3 7 .2 3 8 .6 4 0 .2 4 1 .7 4 7 .4 4 5 .1  4 9 .8 5 1 .4 4 9 .9 5 1 .5 5 9  9 5 5 .1 5 5 .7 5 8 .7 4 7 .6 ►

Nn -  0 .54
Min 4 9 .1 3 8 .6 3 9 .3 4 9 .2 4 3 .3 4 4 .9  4 6  5 4 8 .4 4 5 .2 5 1 .5 5 3 .3 5 5 .1 4 0 .3 5 8 .7 5 4 .8 ►

Max 4 9 .1 3 8 .6 3 9 .3 4 9 .2 4 3 .3 4 4 .9  4 6 .5 4 8 .4 4 5 .2 5 1 .5 5 3 .3 5 5 .1 4 0 .3 5 8 .7 5 4 .8 -

Neither 4 9 .1 3 8 .6 3 9 .3 4 9 .2 4 3 .3 4 4 .9  4 6 .5 4 8 .4 4 5 .2 5 1 .5 5 3 .3 5 5 .1 4 0 .3 5 8 .7 5 4 .8

N 8 =  0 .1 2
Min 5 3 .5 5 3 .3 4 1 .0 4 1 .7 4 3 .3 5 6 .2  3 9  9 6 0 .2 4 6 .9 5 1 .2 5 9 .8 5 8 .2 4 7 .2 3 8 .0 6 0 .6 -

Max 5 3 .5 5 3 .3 4 1 .0 4 1 .7 4 3 .3 5 6 .2  3 9 .9 6 0 .2 4 6 .9 5 1 .2 5 9 .8 5 8  2 4 7 .2 3 8 .0 6 0 .6 %<■

Neither 5 3 .5 5 3 .3 4 1 .0 4 1 .7 4 3 .3 5 6 .2  3 9  9 6 0 .2 4 6 .9 S 1 .2 5 9 .8 5 8  2 4 7 .2 3 8 .0 6 0 .6 -

Table C.21: The visual stimuli fo r  numeric (visual channel) under noise levels
and (measured orderedness) used in Experim ent 2: Which is smallest?

Which is largest?
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C.3 Experimental Stimuli: How many pairs?

Noise Level No. Pairs Experim ent 3: Value Stimulus

N] = 1.0
None O o o o (  ;

One O o o o •
Two or more o o o o ©

/V? = 0.90
None o o o o •
One o o o o ©

Two or more o o o o m
= 0.12

None • o o 0 • • • • o •
One • • o © m • • © o •-

Two or more • • o © m • • • o •-
Table C.22: The visual stimuli fo r  value (visual channel) under three different noise 
levels (m easured orderedness) used in Experim ent 3: How many pairs ?
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Noise Level Experim ent 3: Size Stim ulusNo. Pairs

o ONone

OOne

OTwo or more

None
N2 = 0.90

One

Two or more

None O

One

Two or more

Table C.23: The visual stimuli fo r  size (visual channel) under three different noise levels 
(m easured orderedness) used in Experim ent 3: How many pairs?
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N oise L evel N o. Pairs E xperim ent 3: H ue S tim ulu s

N\ =  1.0
None •  © o O o • • © • v

One ® >  m o o o • • e • -

Two or more •  • © o o • • © ►

N2 =  0 .9 0
None •  © Q o o • • © • * ■

One o © © • o © • • • ►

Two or more •  m © • G 0 • © • -

N3 = 0 .12
None m • © o • • © o © -

One #  © © o o • © o • -

Two or more © © o G • m o -

Table C.24: The visual stimuli for hue (visual channel) under three different noise levels 
(measured orderedness) used in Experim ent 3: H ow many pairs ?
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N oise L evel N o. P airs E xperim ent 3: T exture S tim u lu s

N\ = 1.0
None 0 0 0 #  #  ® # ® • ® -

One 0 0 0 0 •  • © # ® -

Two or more 0 0 0 m •  m ® #  @

N2 = 0 .90
None 0 0 0 #  •  •  • © •
One # 0 0 0 # ® # © • ®-

Two or more 0 0 0 0 - ®  •  • © ® ®-

yV3 — 0.12
None • 0 0 #- ® •  • •  0 ®-
One © • 0 ® ® ® •  0 ®-

Two or more © • 0 ® # #  ® « 0 •  -
Table C.25: The visual stimuli fo r  texture (visual channel) under three different noise 
levels (measured orderedness) used in Experim ent 3: How m any pairs?
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Noise Level No. Pairs Experim ent 3: O rientation Stimulus

None
N\ = 1.0

\  \

One X  \

Two or more x  \

/  /  /

/  /

/  /  /

None \  \

One \ X

Two or more \

/

/  I /

/  I /

/  -

/  -

/  -

None
/V3 =  0 . 12

\

One

Two or more

/  /  \ \

/  \

/  \ \

Table C.26: The visual stimuli fo r  orientation (visual channel) under three different 
noise levels (m easured orderedness) used in Experim ent 3: How many pairs ?
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Noise Level No. Pairs Experim ent 3: Shape Stimulus

N] = \.0
None 0 A ☆ ❖ if if $

One A A ☆ ❖ if Pr if &

Two or more 0 0 <> ☆ ❖ if & if & # -

N2 = 0.90
None 0 A A if # if # $

One ☆ A a 0 ❖ i f if ❖ # # -

Two or more 0 A ■<o> 0 if i f if if i f -

= 0 . 1 2
None Pr 0 A ☆ if $ i f if

One & $ ☆ ❖ if i f ❖ a -

Two or more P r $ <C> ☆ i? if i f ❖ -

Table C.27: The visual stim uli fo r  shape (visual channel) under three different noise  
levels (measured orderedness) used in Experim ent 3: How m any pairs?
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Noise Level No. Pairs Experim ent 3: Numeric Stimulus

None 1 .00 2 .00 3 .00 4 .0 0 5 .00 6 .0 0 7 .00 8 .00 9 .00 10.00 ►-

II b

One 2.00 2 .00 3 .00 4 .0 0 5 .00 6 00 7 .00 8 .00 9 .00 10 0 0  ►

Two or more 1.00 1 .00 3 .0 0 4 .0 0 —5.00 6 .0 0 7 .00 8 .00 8 0 0 10 0 0  ►

None 1 .0 0 ------ 2 0 0 3 .0 0 4 .0 0 — 5.0 0 9 .00 6 .0 0 8 .00 10 .00 7 .00  ►

N2 =  0.90

One 4 .0 0 2 00 3 .00 1 .00 5 .00 8 .00 6 .0 0 7 00 10 .00 8 .00  ►

Two or more 1.00 2 .0 0------- 3 .00 1.00 5 .00 8 .00 6 .0 0 8 .0 0 10 .00 8 .0 0  ►

None 7 .00 1 .00 2 .00 4 .0 0 6 .0 0 9  00 8 .00 5 .00 3 .00 1 0 .00  ►
/V, = 0.12

One 7 .00 9 .0 0 3 .00 4 .0 0 5 .00 6 .0 0 8 .00 5 .0 0 1 .00 10.00 ►

Table C.28: The visual stimuli fo r  value (visual channel) under three different noise 
levels (measured orderedness) used in Experim ent 3: How many pairs ?
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