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Summary

This thesis considers the development and analysis o f a hybrid spectral element 

method for the solution o f two-dimensional wave scattering problems in the time 

domain. The components, namely a quadrilateral formulation of the diagonal mass 

matrix spectral element method and a triangular formulation o f the spectral discon­

tinuous Galerkin finite element method, are introduced and tested separately before 

being coupled to form the final hybrid procedure. Subsequently, a simple circular 

scattering problem is analysed to validate the computational model and various meth­

ods of curved boundary representation are tested to assess their impact on solution ac­

curacy. Finally, a range o f two-dimensional wave scattering problems are modelled, 

showing the computational efficiency of the higher order approximation in compari­

son with low order linear models.
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Chapter 1 

Introduction

1.1 Waves: A Brief Introduction

Wave scattering and propagation occur in many different forms and, as a con­

sequence, are of interest in a diverse range of research fields. Governed by typical 

experiences, the waveforms with which we are naturally most familiar are likely 

to be those that we see in our everyday lives, such as surface waves on a lake or 

compression waves travelling along a spring. However, it could be argued that our 

lives are more profoundly affected by those waves which may be slightly harder to 

visualise.

With recent technological advances, such as mobile communications and wireless 

networks, our exposure to electromagnetic fields has become commonplace in every 

environment: from home to office, both indoors and out. Passing through such fields 

on a regular basis, their possible effects on the human body has become a keenly de­

bated and controversial topic, leading to extensive medical research and governmental 

advice.

These electromagnetic fields, which emanate from various electronic and elec­

trical devices, can also interact with each other. A well known example where this 

occurrence can be dangerous is the use o f mobile phones whilst aboard an aeroplane. 

The possibility that the signals required to make a phone call could affect the on­
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board circuitry controlling the aircraft is enough to warrant legislation to forbid such 

an act.

Although possibly unfortunate to experience at first-hand, an example that may 

be easier to feel, if  not see, are the waves caused by an earthquake. The movement 

and collision o f the tectonic plates, which comprise the outer layer of Earth’s crust, 

can cause vast amounts o f energy to be transported as elastic waves. These waves 

propagate from the site of the initial disturbance to further afield. As seen frequently 

on international news broadcasts, these events can cause devastation to nearby popu­

lated areas as the waves destroy buildings and infrastructure, potentially leading to a 

significant loss of life.

However, the intention is not to dishearten the reader at this early stage. There are, 

of course, numerous examples to consider where the outcomes are more beneficial. 

Firstly, it should be noted, that the problems associated with the electromagnetic wave 

examples cited above are the accepted relatively minor risks of a technology that 

would be unimaginably missed if taken from us. Furthermore, these waves can be 

used to our advantage in various ways, including, for example, the detection o f objects 

and features which would be practically impossible by any other means.

To control and maintain the safe passage o f millions o f commuters every year, 

civilian radar systems are used by air-traffic control service providers to guide aero­

planes through the sky. Radar systems work by measuring the electromagnetic scat­

tering profile generated by the surface of an aircraft. Therefore, due to the volume of 

traffic, they must be able to identify and distinguish between various objects that they 

encounter. While military radar systems endeavour to provide the same information, 

the nature of military activities often require that the radar profile of its aircrafts be 

minimised in the hope of gaining some strategic advantage.

A similar technique, where electromagnetic waves are used to illuminate under­

cover objects and the resulting scattering pattern is observed and recorded to facil­

itate recognition, is used in geophysical exploration. This is useful for both mil­

itary applications, where hidden land mines can be found, and for such scientific
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and leisure activities as performed in the field o f archeology. An analogous acoustic 

example, related to the propagation and scattering o f mechanical pressure waves, is 

the use of sonar. In this case, the technique identifies hidden objects from the scat­

tering o f incident pressure waves and, for example, is commonly used in the marine 

environment.

Both types of wave, electromagnetic and acoustic, are also used extensively for 

medical applications. These offer a means by which non-intrusive examinations can 

take place, thus minimising the discomfort and apprehension felt by the patient. Fur­

thermore, similar techniques are used frequently in other fields where intrusive exam­

inations would be equally impractical or undesirable, such as the detection of faults 

or defects in a completed building structure.

It is obvious, therefore, that there are numerous scientific and industrial fields 

where wave scattering and propagation are of paramount importance. The brief intro­

duction given above provides only an indication of the variety of research concerning 

this physical phenomenon.

1.2 Methods of Analysis

Having identified some of the possible fields of research in which wave scatter­

ing provides considerable interest, we will now look at the general methods used by 

scientists and engineers to analyse this behaviour.

1.2.1 Experimental and Theoretical Analysis

For fundamental wave scattering models, involving simple geometries, theoreti­

cal procedures are a viable method of analysis and provide accurate expressions for 

scattering solutions. However, this confined area of application proves overly restric­

tive, as their use for more practical models, where the geometries are typically more 

complex, is unsuitable.

Therefore, in the past, experimental methods of analysis were very popular, be­
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ing the only feasible method of replicating more complex problems. Given sufficient 

amounts of time and financial resources, any model could be set-up and analysed. 

However, in industry, as these quantities are strictly limited, this brought about other 

limitations. Considering the example of aircraft development, for every modifica­

tion in design, a new carefully crafted model would be required, providing a suitably 

scaled replica with accurate material properties. Taking both time and money to pre­

pare, this would inhibit and delay the initial stages o f the design and development 

process: a crucial phase required to ensure that the expenses of later development and 

manufacturing work are not wasted on an inferior or faulty design.

1.2.2 Computational Analysis

Necessity being the mother of invention, faster and more economical methods 

were sought. At a time when computer technology was beginning to infiltrate the 

commercial and industrial worlds, the mid 20th century witnessed the first examples 

of practical large-scale numerical analyses. These methods brought forth the capa­

bility to examine various aspects o f a physical problem by simply changing a few 

commands or parameters in a computer program. Saving time and the preparation 

cost of a physical replica, computational analysis was seen to be ideally suited to the 

initial development phase. Furthermore, with time, as the numerical methods became 

more accurate and reliable, every aspect o f the design could conceivable be completed 

without a single physical experiment.

Due to the vast range of research fields and the diversity of computational tech­

niques used in each, it would be impossible to cover all of the numerical schemes 

devised and used since the advent o f this analysis method. However, in the section 

that follows, an attempt is made to introduce the reader to the most pertinent methods 

used in the fields of wave scattering research. This, hopefully, will set the scene for 

the research work presented in this thesis.
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1.3 Existing Computational Methods

Initially, in search of an appropriately simple form of wave scattering to permit the 

progression o f this work, the scattering and propagation considered here will primar­

ily be of acoustic waves. However, as will be seen in the remainder of this thesis, the 

simplifications applied to the governing equations, introduced in Chapter 2, enable 

direct application of the computational model to another field, namely electromag­

netic wave scattering. Therefore, the results presented in the later chapters will be 

increasingly directed towards this field. It should also be noted that similar connec­

tions could also be made to other fields, such as the analysis of elastic wave scattering 

considered in geodynamics. This serves to enlarge the scope of previous research of 

relevance to this work, a fact which will be reflected in this review.

In the infancy of computational simulation, one of the most popular numerical 

techniques was the finite difference method. The fundamental simplicity of this ap­

proach made it an obvious starting point in this emerging discipline. Therefore, until 

recently in the field of electromagnetics, the most popular numerical scheme for the 

solution of Maxwell’s governing equations was that proposed by Yee in the 1960s [1]. 

Using an efficient leapfrog finite difference technique, this scheme used the structure 

o f the governing equations to obtain a second order accurate pointwise approxima­

tion on equidistant staggered grids. However, as time progressed and the modelling 

requirements in the field of electromagnetics became more intense, the application 

o f the simple Yee scheme to these newer problems became less suitable. With in­

creasingly complex models came more intricate, possibly curved, boundaries and en­

larged electrical lengths: a measure o f the size o f a scattering object in relation to the 

length of the incident electromagnetic wave. Numerous modifications to this original 

scheme were derived in an attempt to resolve these difficulties, some of which can 

be found in [2, 3, 4, 5]. However, the additional complication of the scheme negated 

its original advantage and, in conjunction with the inherent limitation of pointwise 

approximation, the use of other numerical methods was investigated.

As such, the wealth of computational procedures employed in other areas of re­
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search provided a good foundation to begin this search. Within the field of compu­

tational fluid dynamics, volume based methods, such as the the finite element and 

finite volume schemes, have seen much success and development. In particular, the 

finite element method [6], which in general terms can actually be considered as the 

top-tier method encompassing both finite difference and finite volume techniques [7], 

has proved very flexible and robust. Initially developed for structural analysis in the 

aerospace industry, its use has spread to almost every comer of computational me­

chanics research. One o f its main strengths is that it can be used upon unstructured 

meshes, thus enabling the solution o f problems with complex geometries. Therefore, 

in light of these properties, successful initial attempts were made showing the possi­

ble transfer of this technique to the electromagnetics field, an example of which can 

be seen in [8].

Yet, to satisfy the requirements noted above, further development of the finite 

element procedure was needed. Due to the increasing electrical size of the scattering 

models, the level of refinement with standard linear (or bi-linear) elements quickly 

becomes overly restrictive. Therefore, the obvious progression was an increase in 

approximation order. Over the past 20 years, the development of higher order finite 

element schemes has been the common goal of an extensive range o f research work 

[9]. A vast number of schemes, aimed at the solution of Maxwell’s equations in 

the frequency domain, have been investigated, a selection o f which can be found in 

[10, 11, 12]

For the time domain solution o f electromagnetic wave scattering problems, the 

development o f spectral discontinuous Galerkin (DG) approximations has been most 

significant, with key contributions from Hesthaven and Warburton [13] and, for more 

general convection dominated problems, Cockbum and Shu [14]. Further details 

o f the range of methods used for the time-domain solution o f Maxwell’s equations 

are available in the comprehensive review [15]. Work o f a similar high-order nature 

encountered in the geodynamics field for elastic wave scattering [16, 17, 18] has seen 

greater emphasis on continuous Galerkin finite element procedures, following the
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foremost work of Patera on the spectral element method (SEM) for fluid flow [19]. 

Extension of this method to triangular elements, based on the use o f Fekete points, 

has also been achieved [20, 21].

Some other interesting fields of research in which these high order spectral ele­

ment methods are employed include oceanic shallow water models [22] and atmo­

spheric modelling for numerical weather prediction [23].

Work concerning various aspects o f the boundary representation within the com­

putational model has also been acknowledged to be o f equal importance. Appropriate 

truncation methods for the infinite domains encountered in external wave scattering 

problems have been given significant attention, ranging from the early first order accu­

rate differential absorbing boundary conditions [24,25] to more recent work centering 

on the perfectly matched layer (PML) as formulated by Berenger for electromagnetic 

models [26]. Numerous adaptations of this technique have since been presented, ex­

amples o f which can be seen in [27, 28, 29, 30]. Furthermore, the need for accurate 

representation of curved scattering surfaces has also been confirmed [31, 32, 33].

1.4 Requirements of the Model

The ultimate goal of this work would be the analysis of the complex scattering 

geometries encountered in industrial applications. As mentioned previously, the re­

quirements of such physical models are high and thus govern the desirable proper­

ties o f the computational method. Due to the relative size of the scattering objects 

compared with the wavelength of the incident field and the potentially intricate scat­

tering boundaries, the proposed approximation procedure must possess the following 

attributes: be able to resolve complex boundaries, maintain the accuracy of the wave­

form over many cycles and perform the computations in an efficient manner.

To achieve this, a hybrid solution procedure is proposed, which applies a higher 

order finite element method to both triangular and quadrilateral elements. It is hoped 

that this formulation will permit the high fidelity to the scattering geometry required
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for accurate approximations, while minimising unwarranted computational expense.

1.5 Thesis Composition

To ensure that the proposed hybrid solution method is developed and validated 

in a structured and transparent manner, the main components of the procedure are 

initially separated, to facilitate their discussion. Subsequently, these components are 

combined and an analysis of the complete hybrid procedure is performed.

As further clarification of the contents o f this thesis, a summary is provided here 

describing the work contained within each o f the following chapters.

Chapter 2 is divided into two main parts. In the first part, the governing equa­

tions for both acoustic and electromagnetic waves are introduced. Subsequently, the 

simplifications applied to each set are explained, leading to a discussion of the corre­

spondence o f these simplified equations. Analytical solutions for comparison with the 

approximations generated in later chapters are also obtained. The second part is de­

voted to a brief introduction of the finite element method. This includes a discussion 

of its application to convection-dominated problems and the methods of overcoming 

the possible instability.

In Chapter 3 the first component of the proposed hybrid solution procedure is 

examined, namely the spectral element method. Formulations are derived for both 

quadrilateral and triangular elements, including, in the latter case, a proposed mass it­

eration scheme intended to improve the accuracy o f the solution within the triangular 

discretisation. However, the iterative method used here is discovered to be unstable 

for higher order approximations. Therefore, it is concluded that an alternative pro­

cedure is required for the triangular discretisation, to be discussed in the following 

chapter. Meanwhile, validation of the quadrilateral implementation continues.

In Chapter 4 a spectral discontinuous Galerkin method is put forward as an al­

ternative solution procedure on triangular elements. Validation of the method is per­

formed with the same simple model as for the SEM in the previous chapter.
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Having presented and tested each component of the proposed hybrid method sep­

arately, Chapter 5 summarises the complete formulation and repeats the validation 

procedure. Further components of the model, including the PML and curved bound­

ary representation, are addressed to complete the essential elements needed to analyse 

wave scattering problems. Subsequently, an initial example o f wave scattering from 

a circular object is attempted, thus enabling comparison with an analytical solution. 

A further, more complex circular model of larger electrical length is also used to 

ensure that the hybrid procedure is performing adequately. Finally, an initial assess­

ment of the potential computational efficiency o f the higher order approximations is 

made. This is achieved by comparison with linear models using equivalent levels of 

discretisation.

With the hybrid solution procedure in place, further examples o f increasing com­

plexity are analysed in Chapter 6. These include scattering from a dihedral object, an 

open cavity, a two-dimensional cross-section o f a NACA0012 aerofoil and a simple 

multi-object scattering example. Further assessments o f computational efficiency are 

attempted for each o f these models.

To finish, in Chapter 7, we review the work that has been completed, noting the 

conclusions which can be drawn. This is accompanied by some suggestions for fur­

ther work, which could extend the capabilities of the current model.
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Chapter 2 

Governing Equations and Solution 

Procedures

2.1 Introduction

This chapter consists of two main parts. The first will begin with an introduc­

tion to the governing equations applicable to the various fields under consideration. 

Subsequently, derivation of the simplified equations, used in the production and vali­

dation of the numerical models, is conducted for several reasons: to demonstrate the 

origins of the equations, the assumptions made to facilitate generation of the model 

and, hopefully, to enable the reader to appreciate possible extensions of the method 

or applications in other areas.

In the second part, we turn our attention to the finite element solution proce­

dure. As the basis of the solution methods used in this thesis, an introduction and 

description of the general theory will be given. Subsequently, the convective na­

ture of the problems considered here and the associated instabilities which can occur 

when standard finite element procedures are applied to their solution are discussed. 

Consequently, an explanation will be given of the stabilisation method used here to 

overcome these undesirable effects.
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2.2 Acoustic Equations

2.2.1 Linearized Euler Equations

The governing equations for acoustic waves are the linearized Euler equations of 

fluid flow. The full non-linear Euler equations, shown here in strong conservation 

form for a Cartesian coordinate system

d U  OF d G  d H
~dt + +  ^  + (2A)

where
V 2

U  =  [p ,pu ,pv ,pw ,p(e + — )]T

V 2
F  = [pu , pu2 +  p  , pvu  , pwu  , p(e +  ~ ^ ) u +  PU\T

V 2
G  — [pv , puv , pv2 +  p  , pwv  , p(e +  ~ ^ ) u +  PV]T

V 2
H  — [pw , puw  , pvw  , pw2 +  p  , yo(e +  —  )it +  pu;]T

are themselves a simplification of the governing equations of general viscous fluid 

flow, namely the Navier-Stokes equations, and are obtained by neglecting viscous and

heat transfer effects. Reducing this set o f equations by considering only two spatial

dimensions and by making the assumption that we are dealing with an isentropic flow, 

the Euler equations become

d U  d F  d G  n
a T + & + ^ - °  (2'2)

where the vector variables are

U  = \p , pu , pv]T

F  =  [pu , pu2 +  p , pvu]T

G  =  [pv , puv , pv2 +  p]T

and the scalar components of these vectors are the density, p, the pressure, p, and 

the fluid velocities, u and v, in the x  and y directions respectively. In this system,
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the first equation represents continuity, while the second and third are the momentum 

equations in the x  and y coordinate directions. Linearization of these equations can 

now be performed by expressing the dependent variables in terms of small variations 

from a time-averaged value, for which the time-averaged pressure and velocity are 

taken as zero: p = p0 + p', p = p', u  = u' and v = v'. Subsequently, substitution of 

these variables into (2 .2 ), noting that the prime used to indicate the small variation in 

the variables has been removed for clarity and that all unknowns in these equations 

now represent small variations from the time-averaged quantity, leads to the linearized 

Euler equations
dp d u d v
d i  + pod i  + po^ = 0  (2'3a)

dp du n v
o i +po m  =  0  (23b)
dp dv
■£ + p° m = 0  (23c)

Furthermore, as our assumptions include that of isentropic flow, we can use the 

equality
dr)

(2.4)2 =
dpco =

s
taken along a streamline S,  where Co represents the speed of wave propagation, to re­

move the density variable from the linearized continuity equation. With the additional

assumptions o f unit time-averaged density, p0, and wave speed, c0, the equations ulti­

mately become
dp f  du  d v \
~di ~  ~  \d~x + d y )  (2'5a)

I  - -I
2.2.2 Scalar Wave Equation

Additionally, the linearised Euler equation system can also be combined into a 

single second order partial differential equation. Once again, applying the isentropic
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condition (2.4) to (2.3a) yields

1 dp du dv
4 m + p o d i  + pof y  =  0

Taking the temporal derivative of this expression and rearranging the derivatives of 

the second and third terms gives

1 d2p d (  d u \  d (  d v \
+  t H  Po-^7 +  W - [  Po-^T =  0Cq d t2 dx  \  dt  J  dy \  dt

which, upon substitution o f (2.3b,2.3c), leads ultimately to the classical scalar wave 

equation
1 d 2P = d2p  | d 2p 
Cq d t2 d x 2 d y 2

This provides an alternative equation for modelling acoustic wave propagation. Re­

search work, previously conducted in [34], concerning the numerical solution o f these 

various forms of the wave equations demonstrated that the equation system (2.3) of­

fers a good alternative to the scalar wave equation (2 .6 ) when modelling wave propa­

gation problems and, hence, will be the chosen form for this work.

2.3 Maxwell’s Equations

Maxwell’s equations in general differential form can be expressed as

V • D  =  pv (2.7a)

V - B  =  0 (2.7b)

d B
v * E  = - n r

(2.7c)

d D
V , H  = J C+ m (2.7d)

where E  and H  are the electric and magnetic field intensities respectively, D  and 

B  are the electric and magnetic flux densities respectively, J c is the electric current 

density and p„ is the electric charge density. The set is completed by the addition of 

four auxiliary vector equations;
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the continuity equation

V • J c +  ^  =  0 (2.8a)at
and three constitutive equations

D  = e E  (2.8b)

B  = f i H  (2.8c)

J c = a E  (2.8d)

where e is the permittivity, /jl is the permeability and a  is the conductivity. In this 

work, the above set of 8  vector equations are simplified by assuming the following 

conditions;

i. The electric charge density is zero pv =  0

ii. Problems will be electrically and magnetically homogeneous and isotropic 

ii. The conductivity o f the materials is negligible a = 0 1

With these assumptions, the governing system of equations for electromagnetics be­

come

V - E  = 0 (2.9a)

oII>

(2.9b)

d H
» d t

(2.9c)

d E
V x H  = £— ~ 

dt
(2.9d)

Furthermore, if  (2.9a,2.9b) hold initially, then they can be shown to hold for all time. 

Consequently, consideration can be focused solely upon (2.9c,2.9d) as the first two 

equations will, in theory, be satisfied automatically.

1The reader should note that this assumption w ill not hold in the perfectly matched layer region, 
as can be seen within the formulation in Section 5.4, in which the conductivity is used as an artificial 
absorption parameter.
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2.3.1 TM2 Polarization

A transverse magnetic polarization to the z-axis (TMZ) assumes that the magnetic 

field oscillations can occur only in the x-y  plane. Correspondingly, as electric and 

magnetic field oscillations are orthogonal, the only non-zero component of the electric 

field must lie in the z-axis. Therefore, the magnetic and electric field vectors can be

expressed as H  — [Hx H y 0] and E  =  [0 0 E z\ respectively.

Insertion of the TMZ polarized field vectors into (2.9c,2.9d) leads to the governing 

equations of this simplified model, written as

d H x d E z
— -  =  — —- (2 .1 0 a)

dt dy  K J

t - f
d E z d H v d H x

= (2-10c>dt dx  dy

2.3.2 TE2 Polarization

In a similar manner, the transverse electric polarization to the z-axis (TE2) as­

sumes that only the electric oscillations occur in the x-y  plane and that, as a result, 

the magnetic field can only appear in the z-axis. Consequently, in this case, the field 

vectors are expressed as E  =  [Ex E y 0] and H  =  [0 0 H z\ and following insertion 

into (2.9c,2.9d) we obtain the governing equations for this polarization as

(2 .1 1 a)

(2 .1 1 b)

d E x d H z
dt dy

d E y d H z
dt dx

' 9 E V ,
dt \  dx  dy

2.4 Linearity of the Equations

dHr fd E „  d E x .
(2 .1 1 c)

Note, due to the linearity of the equations, that the variables of the equations 

presented in Sections 2.2 and 2.3 can be separated into their incident and scattered
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components. For example, the total field solution can be expressed generally in terms 

o f its components as

(f> = f t  +  (f)s (2 .1 2 )

where <j), </>* and (f>s denote the total, incident and scattered fields respectively. This 

is an extremely useful property of the equations, which means that solutions can be 

sought solely in terms of the scattered field. Subsequently, where the total wave field 

is required, the incident wave component can be incorporated by simple summation 

to the scattered field.

This property will be used throughout the work and we will focus, particularly in 

the numerical approximation stage, on the evaluation of the scattered field component. 

Consequently, the analytical solutions obtained in the next section will be in terms of 

the scattered component. Furthermore, it will be seen that the component nature of 

the wave field will be relied upon within the derivation procedure to obtain the final 

analytical expressions.

2.5 Analytical Solutions

The derivation of an analytical solution for wave scattering from a two dimen­

sional circular scatterer follows that described in Balanis [35]. In [35], the solutions 

for EM wave scattering from a perfect electrical conductor (PEC), in both transverse 

electric (TEZ) and transverse magnetic (TMZ) polarizations, are given using a three di­

mensional representation of an infinite circular cylinder. Subsequently, in this thesis, 

the correspondence of these EM models to hard and soft acoustic scattering problems 

will be demonstrated.

2.5.1 Prerequisites: Bessel and Hankel Functions and Cylindrical 

Wave Transformations

Before the derivation o f analytical solutions is attempted for the various wave 

scattering models under consideration, we must first familiarize ourselves with some
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useful and necessary functions and transformations. A summary o f these concepts is 

included in [35], with a much broader discussion for the interested reader to be found 

in [36].

Bessel Functions

In general, the most important and common Bessel functions are defined as solu­

tions to Bessel’s differential equation when expressed in the form

2 d Z n dZn / 2 2 \ n nx  _ + x — b (x — n ) =  0 (2.13)
dx1 dx

where n  is an integer. As this is a second order differential equation it must be satisfied 

by two linearly independent solutions, thus giving the two main classes o f Bessel 

functions. The first independent solution, namely Bessel functions of the first kind, 

can be expressed as

(_ l)m / X \ 2m+n
■*■<*)=e  r ;  v ( I )  (2-i4a)z—' m \(m  +  n)! \ 2 /m—0 v

and

m—0

(— / r \ 2  m-n
J . n(x) = I j » M  (2-14b)i m \ (m  — n)\ \ 2 /

whereas, the second linearly independent solution, Bessel functions of the second 

kind, are given by
^  ^  Jn(x ) cos(n?r) -  J_n(x) ^  1
*n\X) • ( \ (2-15)sm(n7r)

Hankel Functions

Hankel functions of the first and second kinds, sometimes referred to as Bessel 

functions of the third kind, are a linear combination of the first and second Bessel 

functions, and are themselves linearly independent solutions o f Bessel’s differential 

equation. These functions can be expressed respectively as

H W (x )  = Jn(x) + iYn{x) (2.16a)
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and

H ^ { x )  = Jn{x) -  iYn(x) (2.16b)

where i =  y/—l  is the imaginary unit, and are commonly used to express outward 

or inward propagating cylindrical waves.

Recurrence Relation

Additionally, an alternative definition of Bessel functions, which can also aid the 

computation of these functions, is that they must satisfy the recurrence relations

Note that these relations hold for all of the various types o f Bessel functions intro­

duced above.

Cylindrical Wave Transform

Finally, the cylindrical wave transformation
+ oo

will also be required to enable the plane incident wave to be expressed in a similar 

infinite series form as will be proposed for the scattered field.

2.5.2 Solution Procedure

The analytical solution will be obtained for the case of a plane wave striking a cir­

cular cylindrical scatterer of infinite length at normal incidence. Therefore, assuming 

a Cartesian coordinate system, where the infinite z  dimension can be considered to lie 

perpendicular to the plane of the page, the incident field will be defined to propagate 

in a positive direction parallel to the x  axis. Within this field, a circular cylinder of 

diameter a is placed with its centre at the origin, as shown on Fig 2.1.

(2.17a)

and

(2.17b)

e - i k x  =  e -ikrcos4> = r nJn(kr)ein<i> (2.18)
n = —oo
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Figure 2.1: Circular cylindrical scatterer geometry

2.5.3 T1VF Polarization

For a transverse magnetic (TM2) polarization, where the magnetic field oscil­

lations are defined to occur solely in the x-y  plane and to which the electric field 

oscillations must be orthogonal, we can write

E = [0 0 E z]t

For an incident plane TM 2 wave, the non-zero component of this electric field can be 

expressed as

El  = E 0e~ikxX

and, when transformed into cylindrical polar coordinates, this becomes

  j£^g—ikxrcos<t>

Using the cylindrical wave transformation of equation (2.18), this can be expressed 

as
-t-oo

El  = E 0 £  i - " J n (kxr)ein* (2.19)
7 1 =  — OO

Now considering the scattered field E sz, we require a representation which can model 

its outward propagation by utilizing cylindrical travelling wave functions. Therefore, 

as suggested in [35], using the cylindrical travelling wave form of the Hankel function
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(2.16b), we define a solution of the form

+ oo

El = E0 J2 c»H^(kxr) (2.20)
TI— — 00

where cn represents the amplitude coefficients.

Having obtained expressions for both the incident and scattered components of 

the electric wave field, the total field can now be simply expressed by the summation 

of these terms as
+ oo

E z = E l  + E l  =  £ 0 ^  \C nJn(kxr)ein4, + (fc^)] (2.21)
n= — oo

Subsequently, application of the boundary condition for a perfect electrical conductor 

(PEC) surface, E  x n \ rpEC =  0, which for a TM2 polarization reduces to E z =  0, 

can be used to compute the amplitude coefficients cn. Therefore, expressing the total 

electric field at r = a using (2 .2 1 ), gives

+ oo

E z \r=a = E 0 ^ 2  [ r nJn(kxa)ein,p + cnH lf \ k xa)} =  0
71— — OC

and following simple manipulation we obtain

=  - r " J (2 .2 2 )
H {n \ k xa)

Therefore, upon substitution o f (2.22) into the expression for the scattered field, equa­

tion (2 .2 0 ) becomes

El  =  E 0 £  - i -  (2-23)
n=-oo \kxa)

which ultimately, utilising the odd and even symmetries of sine and cosine functions 

respectively, can be reduced to

E l  = E 0 ^  ? £ f ] H i2)(kxr) cos(n*) (2.24)
^  Hn (kxa)n= 0

where
1 for n  =  0  

=  < (2.25)
2  for n  7  ̂ 0
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2.5.4 TE Z Polarization

The derivation procedure for a TE2 polarization follows a similar method to that 

contained in the previous sub-section. Beginning with the definition of the magnetic

and, once again, application o f the cylindrical wave transformation enables us to ex­

press this as the summation

Seeking, as before, a distribution that will facilitate the representation of outward 

propagating cylindrical waves, we define the scattered field to be

+oo

where dn represents the amplitude coefficients. To evaluate these coefficients, we 

will once again apply the boundary condition, E  x n \ TpEC =  0, of zero tangential 

electric field on the surface of the scatterer. However, before this is possible, we must 

first obtain expressions for the corresponding electric fields E r and E $ for both the 

incident and scattered fields. Using Maxwell’s Ampere equation (2.9d) in harmonic 

form

field,

H  = [0 0 H Z]T

we can express the non-zero component for an incident plane wave as

HI = H 0e~ikxX = H0e - ikxrcos4>

(2.26)

(2.27)

E  = — V x  H (2.28)
IUJ6

insertion of the incident magnetic field (2.26) gives

(2.29a)

(2.29b)
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whereas insertion of the scattered magnetic field (2.27) leads to

n= —oo

(2.30a)

(2.30b)

Note that the prime ' indicates a partial derivative with respect to the entire argument 

of the Hankel function. Having obtained both incident and scattered distributions, we 

can now form the total wave field for the tangential electric field, thus enabling the 

application of the PEC boundary condition, giving

noting that the odd and even symmetries o f sines and cosines have been applied and 

that en is as defined in (2.25).

2.5.5 Analogous Acoustic Models

The previous derivations of analytical solutions for wave scattering problems were 

performed following an existing methodology described in [35] for electromagnetic 

models. Therefore, it is now of importance to demonstrate how these models corre­

spond to problems defined in the field of acoustics. Not only will this be done by 

comparison of the governing equations, but also by comparison of the appropriate 

boundary conditions applicable to the scatterer in each case, which will be shown to 

require some care due to the subtle difference in variable transformation between the 

models.

Subsequent manipulation gives

(2.31)

which upon insertion into (2.27) leads ultimately to

(2.32)
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Therefore, at this stage, it would be useful if we remind ourselves of the govern­

ing equations for each o f these models. As derived in Section 2.2.1, the governing 

equations, in simultaneous equation form, for scalar acoustic waves in two space di­

mensions (2.5) are

du dp n  ^
at  =  (Z33a)

dv dp n
at = ~ a j  (233b)

dp ( du d v \
+  ( ' C)

Note again, that the isentropic flow condition (2.4) has been applied here to express 

all equations in terms of pressure, that the wave speed c0 and time-averaged density p0 

have been assumed as unit valued for simplicity and that the equations in this system 

have been reordered to facilitate comparison with the electromagnetic equations. The 

TMZ polarization (2.10) gives

dHr dE ,
dt  dy
d H y _  d E z
dt dx  

d E z _  d H y d H x
dt dx  dy  

and for the TEZ polarization (2.11), we obtain

d E x _  d H z 
dt dy

d E y d H z

(2.34a)

(2.34b)

(2.34c)

dt dx
d H x ( d E y d E x
dt  \  dx  dy

(2.35a)

(2.35b)

(2.35c)

Note also that the boundary conditions for a perfect electrical conductor (PEC) placed 

in an electromagnetic field are

E  x n \ r PEC = 0 (2.36a)

H  ■ n \ rpEC = 0 (2.36b)
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As a point of interest, these are not independent conditions, as one can be derived 

quite simply from the other.

Soft Acoustic Scatterer <=>■ PEC Scatterer in TMZ Polarization

By comparison of the acoustic equations (2.33) and the TMZ polarization (2.34) 

we can see that the transformation o f variables required to obtain one set o f equations 

from the other is given by

u  4^ —H y v H x p E z (2.37)

The PEC boundary condition (2.36a) on the tangential electric field for the TMZ

polarization

E  x n |pPEc [ E zTiy E znx 0] 0

reduces to E z \rpEC =  0 , as it must hold for any surface normal direction n x, ny.

Reference to the transformations (2.37) shows that this is simply analogous to a zero 

surface pressure p |r ao/t» which is the scattering boundary condition for an acoustic 

model of a soft scatterer.

Considering now the alternative boundary condition on the normal magnetic field 

intensity, which for a TMZ polarization is

E [  ' n |r p e c  "E H yT iy  0

insertion of the appropriate transformation (2.37) leads, for the acoustic model, to

v n x — uriy =  0

This simplifies to the condition

v x n\r . =  0
11 s o f t

which implies that the tangential component of the velocity must be zero.
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Hard Acoustic Scatterer PEC Scatterer in TEZ Polarization

In a similar manner, comparison of the acoustic equations (2.33) with the TEZ 

polarization (2.35) shows that the necessary transformation is

E y v <=$ —E x p <=$ H z (2.38)

In this case, for the TEZ polarization, the PEC boundary condition on the tangential

electric field (2.36a) is given by

E  x n \ TpEC =  [0 0 E xn y -  E yn x] =  0 (2.39)

Insertion of the transformations (2.38) in the third component of this vector leads to

—v n y — unx =  0

which can be expressed concisely as

v  ■ n \rk„ d = 0

implying that the normal component of the velocity must be zero, as required on a 

hard acoustic surface.

The alternative magnetic field boundary condition for the TEZ formulation

H  ■ n\rPEC =  [0 0 H z\ • [nx n y 0] =  0

is obviously satisfied by any H z, meaning that no condition exists on the magnetic 

field intensity on the surface of the PEC scatterer. However, if we take the temporal 

derivative of the third vector component of (2.39)

d r Z7 „ r  „  ̂ „ d E * „ d E vQj\Exn y E yn x) — ny ^  n x ^

and use the governing equations of the TEZ polarization to express this in terms o f the 

magnetic field, we obtain

d f r , . d H z d H z d H z
j t {Exny E yn x) — n y ^  +  nx ^  ^
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Now, as the PEC boundary condition on the tangential electric field must hold for all 

time, this gives the condition (dHz/d n ) \ r PEC =  0  so that the normal gradient of the 

z  component of the magnetic field must be zero. In turn, by transformation to the 

acoustic model, we find that the alternative condition on the hard scatterer is given by 

(dp/dn) \rhard =  0 , which means the gradient o f the pressure in the surface normal 

direction must be zero, as confirmed in [37].

For practical applications, particularly in the electromagnetics field, an important 

measure of scattering is the radar cross section (RCS) [38]. Balanis [35] defines this as 

the area intercepting the amount o f power that, when scattered isotropically, produces 

at the receiver a density that is equal to the density scattered by the actual target. In 

strict terms, this quantity refers solely to an output derived from a three dimensional 

wave scattering analysis. Therefore, for this work, where we concentrate on a two 

dimensional approximation, the analogous measure is termed the scattering width, 

which in effect is the radar cross section per unit length.

The method o f computation for the scattering width follows that given in [39] and 

is explained below. Subsequently, expressions for the analytical distributions for a 

circular scatterer are presented [35].

2.6.1 Derivation

Firstly, the theoretical expressions for the scattering width generated in two di­

mensional problems can be written as

2.6 Radar Cross Section

(2.40)

and

(2.41)
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for a TEZ and TMZ polarization of the EM fields respectively, where (r, <p) are cylin­

drical polar coordinates. As these expressions involve values where the radial distance 

from the scatterer approaches infinity, a near to far field transformation is required. 

This is achieved by considering an arbitrary surface S, which completely encloses the 

scatterer, and applying the surface equivalence theorem [35]. The scattered fields, Es 

and Hs, on this surface S  are then taken from the approximate solution to compute 

equivalent surface electric and magnetic currents, Js and M s, as

Js = n x H s 

M s = - n  x E*

(2.42a)

(2.42b)

where n is defined as the outward normal to the surface S. The vector potentials, 

As and Fs, at any point beyond this surface S  can now be evaluated with the vector 

expression

A’
- -  (

r(x',y')

Fs 4i Js
H^2\ k R )  dx'dy' (2.43)

The Hankel function o f the second kind present in this expression can be ap­

proximated by the asymptotic relation

(2.44)

as C —> oo. This gives the required far field values of the vector potentials, As and 

Fs. Ultimately, the corresponding scattered field variables, Es and Hs, can then be 

obtained and upon substitution into (2.40) and (2.41) enable the expressions for the 

scattering width to be written as

x W  =  ~4 /  {nyH sz sin (p + n xH sz cos (p +  n yE* — n xE s} 
Js

cos (j>+y' sin <p) ^ dy, (2.45)
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for the TEZ polarization and

2
cos 4>+y' sin 4>) ^ dy, (2.46)

for the TMZ polarization respectively. Note that the surface S, used to record the near 

field data and subsequently used in the transformation to the far field, will be taken at 

the surface of the scatterer in this work, unless otherwise noted.

Finally, in practice, the scattering width is measured in decibels. Therefore, a 

logarithm of the quantity will be used of the form

This will be the quantity displayed in the forthcoming analyses.

2.6.2 Analytical Solution

From [35], the exact expression for the scattering width for a PEC cylinder in a 

TEZ polarized electromagnetic model can be written as

Similarly, for a TMZ model of a PEC cylinder, the scattering width is expressed as

In both of these expressions, e is defined as in (2.25) and the infinite series can be 

truncated when the remaining terms become negligible.

With these exact expressions for the example of wave scattering from a circu­

lar cylinder, we now have a means by which to compare the approximate scattering 

widths generated by the proposed computational procedure. Consequently, in con­

junction with the analytical wave scattering solution derived in Section 2.5, an appro­

priate method of validation is available.

Scattering width  =  10 log10 x{4>) (2.47)

2

(2.48)

2

(2.49)
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2.7 Finite Element Method

As the work in this thesis is based mainly on the application of finite element 

solution procedures [7], a brief introduction and description of the basic method will 

be given to complete the chapter.

First encountered in the 1950s in the field of aero-elasticity, the finite element 

method was soon extended to the more general applications of continuum mechan­

ics and fluid mechanics. Today, finite elements enjoy widespread application with 

numerous commercial computer codes utilising the technique.

2.7.1 Weak Formulation of the Governing Equations

In general, once the mathematical model of the physical problem has been estab­

lished, which in the physical and engineering sciences most frequently results in a 

system of differential equations, this set of governing equations is recast in an alter­

native weak form. This is achieved by expressing a weighted residual of the strong 

form, the original differential equations, which is computed as an integral over the 

specified problem domain Q.

Limiting our attention to a linear system, which is sufficient for the requirements 

o f this work, the problem can be stated generally as [7]

A(C7) =  LU  +  p  =  0  i n Q  (2.50a)

B(C7) =  M U  +  r  =  0  o n T  (2.50b)

where L and M are linear differential operators, p  and r  are independent of the un­

known vector U,  D is the domain over which this problem definition holds and this 

is bounded by the surface T. There are two main types of boundary conditions which 

can be applied through the boundary differential equation (2.50b), namely Dirichlet 

and Neumann conditions. For Dirichlet conditions, the values of the unknown U  are 

specified on the domain boundary and can be applied as

U  = U  o n T D (2.51)
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where MC7 — U , r  = —U  and U  is known. For Neumann conditions, the flux of the 

unknown normal to the boundary TN is specified and can be expressed as

d U
k —  = - q  on TN (2.52)

o n

where MC7 =  —k d U / d n ,  r  =  —q and q  is a known flux, A; is a constant and n  is 

the outward normal to the boundary.

Subsequently, the formulation o f a weak statement o f the problem is given by the 

combined weighted residual of (2.50a) and (2.50b), which can be written as

[  W A { U )  dQ +  f  W B { U )  dT =  0 (2.53)
Jn J r

where W  and W  are vectors of arbitrary weighting functions. Here, no strict condi­

tion on the approximation, such as the requirement that the approximation must sat­

isfy some, or all, o f the problem boundary conditions, has been imposed. Therefore,

the formal definition of the appropriate mathematical space from which the solution

is sought can be stated quite generally as

$  =  { U  (2.54)

where H  represents the Hilbert space.

Various choices can be made regarding the weighting functions to be applied. For 

the commonly used Bubnov-Galerkin finite element approximation, which will be the 

form used throughout this thesis, the space of the weighting functions is taken to be 

equal to that of the unknown variable, giving

=  {W - e H ' i Q ) }  (2.55)

Alternatively, by constraining the approximation to functions which must satisfy 

the problem boundary conditions, the weighted residual (2.53) reduces to

[  W A ( U ) d Q  = 0 (2.56)
Jn

as the weighted residual on the boundary T must be identically zero. However, the 

solution and weighting function space must be reduced correspondingly to ensure that
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this constraint is enforced, giving respectively

at  r

$  =  { U  e H l (Q) : U  = U o n T D , k —  = - q o n  Tw} (2.57)
on

V  =  { W  e H \ Q )  : W  =  0 on T}  (2.58)

Returning to the full weighted residual form (2.53), this, if desired, can be ma­

nipulated into another form, which may be beneficial for two reasons. Firstly, the 

manipulation can reduce the order o f the differentiation involved, which may be use­

ful to ease the inter-element continuity requirements imposed on the interpolation 

functions. Secondly, where appropriate gradient boundary conditions are applied, 

commonly referred to as natural boundary conditions, it may result in a simplified 

formulation. Further advantage of this formulation can be achieved by specifying so­

lution and weighting function spaces which fall between those previously defined. In 

this case, the solution space can be constrained for only the Dirichlet boundary con­

ditions, thus leaving the Neumann conditions as degrees of freedom to be satisfied 

by the approximation. Therefore, the solution and weighting function spaces can be 

defined respectively as

$  =  { U  e H \ Q )  : U  = U  on TD} (2.59)

V  = { W e H 1(Q) : W  = 0 o n T D} (2.60)

The application of integration-by-parts and Green’s lemma to (2.53), leads to the 

addition of a further surface integral term to the weighted residual statement

[ C(W)D{U)dn- [ WE{U)dT+ f  WB(U)dT = 0 (2 .61)
Jn J r J rN

where C, D and E are all linear differential operators of lower order than the initial

operator A. In some cases, the differential terms o f the linear operators B and E will

be identical. Consequently, by defining a suitable relationship between the weighting

functions W  and W  on some of the boundary terms will be negated leading to a

simplified form

[  C ( W ) D ( U ) d n +  [  W r d T  = 0 (2.62)
Jn JrN
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where the remaining boundary integral can be used to apply the known boundary 

condition. Note that the component of the additional boundary integral term taken 

over the Dirichlet boundary FD will be identically zero, as the weighting function 

W  on this boundary must be zero following the definition of the weighting function 

space (2.60).

2.7.2 Approximation Procedure

The finite element procedure can now be applied to obtain an approximate so­

lution to this alternative formulation of the initial problem. This is achieved by in­

troducing a finite dimensional mathematical space for the approximate solution, and 

thus the weighting function,

$>N = { U N e H 1N(n)  : U  = U o n F D} (2.63a)

^  =  : W  = 0 o n F D} (2.63b)

Subsequently, the weighted residual can be expressed as

[  C ( W N)D (U N) d n +  [  W Nr d V  = 0  (2.64)
J q J r

To facilitate the solution of this statement, the computational domain is discretised 

into smaller non-overlapping elements. Interpolation functions iVj expressing the 

variation o f the unknown U w over individual elements are constructed, enabling the 

approximation
N

U n  = Y , N , U ! (2.65)
1 =  1

where the interpolation functions are defined to be non-zero only within those ele­

ments to which the global point I  belongs.

For steady problems, this completes the approximation process and all that re­

mains is to solve the resulting system of linear equations. However, for time de­

pendent problems, as considered in this work, this process results in a semi-discrete 

equation set, where the spatial approximation is complete but the temporal approx­

imation is yet to be applied. Due to their hyperbolic nature, these equations can be
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advanced using a time-stepping scheme, the choice o f which is vast. However, the 

dangers of instability in the resulting numerical solutions necessitates great care in 

their selection. Therefore, the following discussion will explain further aspects of

the discretisation procedure and specific difficulties which must be overcome, before

culminating in the recommendation of a particular temporal scheme.

2.8 Solution Procedures for Convective Problems

To facilitate a discussion of the possible unstable numerical solutions produced 

by finite element spatial approximations of problems with a convective component, 

we will limit our consideration, in this section, to simpler scalar equations. Beginning 

with the general scalar convection diffusion equation

d4> 4. m  -  <j ot t t  +  ^ — — *b» (2 .6 6 )ot dXi

where <j) is the unknown dependent variable, Ft is the flux and Si represents any source 

terms. The flux is given by

which shows clearly both the convective, Ui<j>9 and diffusive, —kd(j)/dxi, components 

o f the problem.

Focusing on the intended spatial discretisation method, the standard Galerkin fi­

nite element procedure is known to give optimal energy norm solutions for symmetric 

or self-adjoint equations, where a corresponding variational statement can be shown 

to exist [7]. Hence, for the symmetric problems encountered in the solid mechanics 

field, for which the initial applications of the finite element method were used, the 

resulting solutions would be optimal. The same can also be taken to hold for diffu­

sion dominated problems such as those for thermal conductivity and creeping Stokes 

flow where the convective component of the flow is less significant. In these cases, 

the numerical solution remains stable and the approximate solution will converge to 

an exact solution as the level of discretisation is increased.

(2.67)
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However, in fields where convective flow becomes more prominent, the differen­

tial operators of the governing equations lose their symmetry and hence the standard 

Galerkin finite element discretisation ceases to be optimal. The resulting solutions 

display instabilities which become more apparent as the convective component of 

the flow increases [40]. In the extreme of convection problems, where the diffusive 

flow component is, or can be assumed, negligible, the governing equation for scalar 

transport can be seen from (2 .6 6 ) and (2.67) to reduce to

dd) d(uid))
■Z +  =  Si (2 .6 8 )
o t  O X i

which is simply the scalar convection equation expressed in conservation form. This 

equation expresses the mechanism by which wave propagation occurs and thus offers 

a simplified model which can be used in this discussion. Note, for example, that it has 

already been shown that the governing equation for acoustic wave propagation can be 

written as a linear system o f equations of this type (2.3).

For a flow whose convection velocity Ui is divergence free, implying incompress­

ible flow, the identity
d{ui(j>) dui d<t>

 =  +  Ui-Z~ (2-69)OXi Oxi OXi

can be used to simpilfy (2 .6 8 ) to the non-conservation scalar convection equation

d(f> d(f> n .97m
d i  + Uif a = 0  (Z70)L/ t/ L/ Ju ̂

where a zero source term Si is also assumed.

Inevitably, the instability o f these models leads to the requirement for some form 

o f stabilisation to enable the exact solution to be approximated more appropriately. 

Consequently, in the following section, an appropriate stabilisation technique will be 

introduced.

2.9 Taylor Galerkin Schemes

As discussed above, due to the convective nature of wave propagation problems, 

the standard Galerkin spatial discretisation procedure gives rise to instabilities in the
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numerical solution. To overcome these undesirable effects, some form of stabilisation 

must be applied to the scheme.

One such discretisation method, which inherently applies stabilisation to a nu­

merical model through the temporal approximation, is the Taylor Galerkin family 

o f schemes [41]. These follow the basic theory of the well-known Lax-Wendroff 

schemes for finite difference (FD) approximations [42]. In Section 2.9.1 , the one- 

step second order Taylor Galerkin (TG2) temporal discretisation will be performed 

for the scalar convection equation. However, it should be noted that arbitrary orders 

o f accuracy can be achieved by simply increasing the number o f terms used in the 

expansion for the temporal approximation. In this way, third order Taylor Galerkin 

schemes will also be introduced.

2.9.1 Second Order Taylor Galerkin Scheme (TG2)

For the Taylor Galerkin family o f schemes, numerical approximation of time- 

dependent governing equations begins with the temporal discretisation. A Taylor 

series expansion for the dependent variable 0  at time n  +  1 can be expressed exactly 

in terms of the variables at time n  as

^n+l =  +  M
dt

+
A t 2 d2(f)

2 ! dt2
+

A t 3 d3(f)
+

A t 4 d40
4! d t4

+  0(A £5) (2.71)
3! dt 3

For the second order Taylor Galerkin (TG2) scheme, and as suggested above, we 

can now define the order of the scheme by truncating this expansion to include only 

second order derivatives or lower, giving the approximation

A(f> = A t
d(f)

dt
+

A t 2 d 2(f)
+  0 { A t 3) (2.72)

2 ! d t 2

where A 0 =  0n + 1  — 0n. Analogously to the Lax-Wendroff scheme, the governing 

equations are now used to transform the temporal derivatives to spatial derivatives. 

Therefore, substituting (2.70) into the truncated Taylor series expansion (2.72) we
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As can be seen, a temporal derivative is still present in the second order term. How­

ever, simple rearrangement of the derivatives enables us to rewrite this expression 

as
A 0  dcf) n A t  d (d<t>\ n 2n
A t ~  Ui dxi  2 \ UidX i { d t )  + 0 ( A t )  (2'74)

Thus, repeating the substitution of the governing equation (2.70) leads ultimately to

A (ft d<j)
A t  U% dxj

A t  2d2(p 
2 \ Uid x 2

+  O (A r) (2.75)

which is the semi-discrete equation for the TG2 scheme.

Comparison o f (2.75) with the initial governing equation (2.70) whose approxi­

mation is sought, shows clearly the mechanism by which the Taylor Galerkin schemes 

stabilise the numerical solution. The second order term, which was not apparent in 

(2.70), applies an artificial numerical diffusion to the scheme, thus helping to remove 

any spurious oscillations which may occur.

2.9.2 Third Order Taylor Galerkin Scheme (TG3)

Higher order temporal accuracy can be achieved by inclusion of a greater number 

of terms in the initial Taylor series expansion. Therefore, by using the first three 

derivative terms in equation (2.71)

0 " +1  =  </,* +  A t ^  
dt

+
A t 2 d24)

+
A t 3 d34>
3! d t3

+  0 ( A t A) (2.76)
2 ! d t2

we can obtain the semi discrete form for the third order Taylor Galerkin scheme, 

once again, by substituting the governing equation (2.70) to remove the remaining 

temporal derivatives. This gives the expression

1 A t 2 f 2 9 \ A i A ^A(p - - A t U i  —
dxi

+
A t 2 2 d2(f)

■Ui +  0 ( A t 3) (2.77)
2 ! d x 2

for a standard third order Taylor Galerkin approximation [41]. Examination of this 

expression reveals that, contrary to the TG2 scheme, the TG3 scheme would lead to an 

implicit solution procedure, regardless of the spatial discretisation method employed, 

due to the second order term apparent on the LHS  o f the equation.
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2.9.3 Two-step Third Order Taylor Galerkin Scheme (TG3-2S)

The semi-discrete equation for the TG3 scheme (2.77) leads to the requirement 

for an implicit solution procedure. As expressed in Chapter 1, we require an explicit 

scheme to limit the computational expense of the method. Fortunately, an alternative 

form of the TG3 scheme exists which overcomes this problem [41]. The two-step 

third order Taylor Galerkin (TG3-2S) scheme is based on a formulation whereby a 

TG2-type approximation is repeated in two consecutive steps. Therefore, the tempo­

ral expansions for each step o f this scheme are written as

« - A ‘ s

A  2+  a  A t 2 Y

+

d t 2 

A t 2 d24>

(2.78a)

(2.78b)
2 ! dt2

where (j) represents the approximate solution after the first partial step. Following the 

procedure explained above for the standard TG2 scheme, the temporal derivatives in 

these expressions can be removed to obtain the semi-discrete equations

A 0 _  _  1 dcj) 
A t  U% 3 dx;

A(f> _  dcj)_ 
A t U% dxi

+  a  A  tu 2

A t

d2(f)
d x 2

2 &<l>
+  2 ! Ui d x 2

(2.79a)

(2.79b)

where the parameter a  can be optimised to reproduce exactly the phase-speed char­

acteristics of the single-step TG3 scheme, using a  = 1/9 [41].

2.10 Conclusion

The first part o f this chapter was dedicated to the presentation of the governing 

equations for wave propagation and scattering in the fields of acoustics and elec­

tromagnetics. Following the simplification of these equations, the correspondence 

between the equations for both fields was demonstrated. Subsequently, analytical 

equations for a simple wave scattering problem were derived. Further work in this
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thesis will involve the discretisation o f the governing equations and the validation of 

the resulting numerical method by comparison with the analytical solutions.

In the second part of this chapter, the finite element discretisation procedure was 

introduced, including a discussion of the instabilities inherent in the solution of con­

vective problems. Subsequently, the Taylor Galerkin family o f stabilisation schemes 

was presented. However, the reader should be aware that there are many other vi­

able stabilisation techniques which could also be used instead of the Taylor Galerkin 

schemes to remove instabilities from the finite element numerical solution, including 

the Petrov-Galerkin, Streamwise Upwind Petrov-Galerkin (SUPG) and Characteris­

tic Galerkin schemes. However, as this work involves the approximation o f smooth 

sinusoidal wave functions and is concerned mainly with the possible advantages of 

applying higher order elements, an indepth discussion of these various schemes is not 

included here. For further details, [40, 41] provide a good introduction and detail the 

advantages and disadvantages of these schemes. Various other schemes o f temporal 

discretisation when applied with the finite element approximations can be found in 

[43].
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Chapter 3 

Spectral Element Method

3.1 Introduction

Generally, to improve the accuracy o f a particular computational solution proce­

dure, there are two main options: increase the refinement of the mesh by reducing 

the characteristic nodal spacing or element size, or increase the approximation order 

of the method, which in finite element terms, relates to the order o f the interpolation 

functions. In this thesis, we intend to investigate the latter and hope to demonstrate 

that the theoretical computational advantages of such a strategy can be shown to ex­

tend to practical wave scattering problems.

In this section, we will discuss the application o f a spectral element method (SEM) 

to the solution of wave propagation and scattering problems. Due to the higher level 

of computational expense usually inherent in such models, we focus our attention on 

a diagonal mass matrix solution method, the advantage of such a formulation being 

made clear in the following discussion.

Looking ahead at the complexity of scattering geometries intended for analysis 

with this method, the necessity for accurate geometrical representation is also con­

sidered. Combined with the previous desire for computational efficiency and the vast 

areas of open space usually encountered in scattering models, this leads naturally to 

a hybrid mesh formulation.
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Consequently, the ensuing initial development o f a computational method for 

wave scattering will be governed by the factors introduced here, thus offering jus­

tification and transparency in the formulation of the scheme.

3.1.1 Hybrid Mesh

As mentioned above, we aim to develop an efficient computational procedure with 

the capabilities to model complex scattering problems, which usually involve intricate 

scattering geometries. These are two conflicting requirements. However, considering 

the two aspects separately will hopefully provide a solution.

To enable accurate geometrical representation in a two-dimensional model, an 

unstructured mesh of triangular elements is generally accepted to be the most pru­

dent method of discretisation. Due to the ease with which they tesselate, complex 

geometries can be approximated far more efficiently than with a structured mesh of 

quadrilateral elements, thus facilitating improved solution accuracy.

On the other hand, wave scattering models normally comprise of vast regions of 

open space, through which, having struck the scattering object, the waves propagate. 

Structured grids of quadrilateral elements discretise extensive areas, such as this, in a 

much more efficient manner than their unstructured counterparts.

This leads naturally to the use of a hybrid mesh. In the vicinity of the scatterer, an 

unstructured triangular mesh will be used, while beyond this, in more open areas, the 

domain will consist o f a structured quadrilateral mesh.

3.1.2 Diagonalising the Mass Matrix

As will be seen in the derivation of the discretised form o f our governing equa­

tions, the finite element numerical solution of a temporally varying problem normally 

introduces a mass matrix M  in the formulation o f the time-dependent term. This 

effectively creates a coupled system o f equations

M A C / =  A t R (3.1)
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where U  is the unknown vector and R  is a typical right hand side vector representing 

the operators applied to the solution at the previous time-step. Therefore, the solution 

o f an implicit system is required, irrespective of the choice o f an explicit or implicit 

temporal scheme, which involves increased computational work to obtain the solution 

at each time-step. Here, the increased workload is inherent in the inversion of a global 

consistent mass matrix.

To decouple the equation system, thus enabling an explicit solution procedure, the 

mass matrix M  must be diagonalised, or lumped, thus requiring only simple division 

to complete the matrix inversion. For linear elements, this is a trivial procedure, 

where the summation of each component on the same row o f the matrix is placed on 

the diagonal entry and all other off-diagonal entries are taken as zero. Unfortunately, 

this lumping method is not directly applicable to higher order elements as negative or 

zero diagonal entries can result.

However, an alternative procedure exists for the construction of diagonal mass 

matrices. This method is dependent on the appropriate selection o f interpolation func­

tions and integration techniques, further details o f which are given in the following 

section.

3.2 Interpolation Functions and Numerical Integration

The interpolation functions proposed for this method will be higher order polyno­

mial functions defined using Lagrange interpolation through particular sets of points.

3.2.1 Interpolation Functions for Quadrilateral Elements

For quadrilateral elements, the interpolation functions N  will be defined as a ten­

sor product of two one-dimensional cardinal basis functions

N ( x , y )  = P{x) ®Q{y)  (3.2)

each constructed using Lagrange interpolation through Gauss-Legendre-Lobatto 

(GLL) points, a representation o f which can be seen in Figure 3.1. This lays the
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foundation for an efficient time-domain solution method, as suggested in the previous

Figure 3.1: Representation of an interpolation function P(x)  for an interior node of a 
one dimenional element defined through GLL points

As will be seen, the standard form of the mass matrix M  introduced in (3.1) can 

be expressed as

where integration of the interpolation functions can be carried out analytically, if 

possible, or by a suitable numerical quadrature. There are numerous numerical inte­

gration methods available, the most common o f which is Gaussian quadrature. This 

method is optimised by evaluating all degrees of freedom, namely the quadrature 

points and weights, by enforcing the requirement that the approximation be exact 

for integration of polynomials of order 2n — 1, where n  is the number o f quadrature 

points.

An alternative numerical integration method is GLL quadrature. In this case, opti­

misation is performed by evaluating all degrees o f freedom except for two quadrature 

points, which are fixed at either end of the integration interval. This leads to a method 

which is slightly less accurate than Gaussian quadrature, being able to integrate ex­

actly polynomials of order 2n — 3. However, the positioning of the bounding quadra­

ture points at the ends of the interval offers advantages in finite element formulations, 

as they can be positioned at the extents of the individual elements. Furthermore, the 

use of GLL points to define the interpolation functions means that the nodal points of 

each element coincide with the quadrature points of the numerical integration method. 

Consequently, due to the cardinal form of the interpolation functions, the use of GLL 

quadrature to evaluate the mass matrix M  will always result in a diagonal matrix.

section.

P(x)

X

(3.3)
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Therefore, inversion of the matrix to obtain the unknown increment A U  in (3.1), can 

be achieved by trivial division of the equations in the system by the appropriate diag­

onal entry. Combined with an explicit temporal scheme, to take full advantage o f this 

formulation, significant savings can be made in the computational expense needed to 

obtain the solution at the next time-step.

At this point, it should be noted from above, that the GLL points are defined for 

optimisation of the numerical quadrature, thus giving the closest approximation to 

polynomial integrals for the chosen initial constraint on the location of the bound­

ary points. This will be referred to in the following subsection, when interpolation 

functions for triangular elements are considered.

3.2.2 Interpolation Functions for Triangular Elements

Unfortunately, standard two-dimensional tensor product formulations, as used for 

the quadrilateral elements, cannot be applied directly to triangular elements. Further­

more, a precise set o f GLL points for a triangle is not known, meaning that an alter­

native set o f points must be used. However, a similar procedure for the formulation of 

diagonal mass matrices can be applied to triangular elements. For these elements, the 

interpolation functions N  will be defined directly by performing Lagrange interpola­

tion through a two-dimensional set of Fekete points [20]. These points are defined in 

an attempt to optimise the approximation o f a function, over the triangular element, 

in a similar manner to the points obtained using the lemma o f Lebesgue, which can 

be expressed as

11/- M / ) l l  < ( 1  +  11^11)11/-^! (3.4)

In this expression, /  is an arbitrary function, h is the best polynomial approximation 

to /  o f degree N  or less and

IM I =  |™|i“ ll-M /)ll (3.5)

is the Lebesgue constant of degree N,  which bounds the interpolation error in the 

max norm and, hence, is a measure of the accuracy of the interpolation. Sets of points
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with minimal Lebesgue constants are named Lebesgue points. However, there is very 

little known about these points in two or three spatial dimensions.

Fortunately, Fekete points provide a possible extension beyond one spatial dimen­

sion which have been shown numerically to be close to optimal [44]. The definition 

o f these sets o f points for a domain Q, begins with the selection o f a polynomial basis 

{gi, i =  1, N } .  Subsequently, denoting a set of points within Q as {z{ e i = 1, N } ,  

the generalized Vandermonde matrix V ,  o f dimension N  x N ,  can be expressed in 

terms o f its elements as =  gj(zi). Finally, the Fekete points are defined as the set 

{zi eClji = 1 , N }  which maximise, for a fixed basis, the determinant of V

m a x \ V ( z 1 , z 2, ...,zw)| (3.6)

The application o f a corresponding Fekete quadrature to the numerical approxi­

mation of the mass matrix integral M  leads, once again, to a diagonal matrix. How­

ever, the integration properties o f this quadrature method are inferior to those of Gauss 

or GLL quadrature, being able to integrate exactly only polynomials up to order p, 

where p  is the order o f the interpolation function. Hence, the resulting approxima­

tion to the consistent mass matrix is degraded. An appreciation of this can be gained 

by noting now the differing optimisation criteria used in the definition of GLL and 

Fekete points, in particular the fact that Fekete points are optimised without regard to 

integration accuracy.

3.2.3 Subparametric Mapping

A common feature of the finite element method, is the introduction of a master 

element over which integration is performed. In this manner, by ensuring that integra­

tion is always executed over the same element o f a standard form, then the efficiency 

of the computational procedure can be increased. The local element matrices, which 

will be derived in the remainder o f this chapter, may then be computed in preprocess­

ing and reused for each physical element in the mesh.

However, to permit this simplification, each physical mesh element must be mapped
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J  = (3.7)

to the master element in computational space. This mapping introduces into the for­

mulation a transformation known as the Jacobian matrix

'dx dy'
d i  d i
dx  dy  

_dr] dr\_

where x,y  and £,77 are the physical and computational independent space variables 

respectively. The components of this matrix are termed the metrics of the Jaco­

bian transformation. Therefore, the transformation of interpolation function gradients 

from physical to computational space can be written as

r d N i rdAH
d t

=  J
dx

d N dN
. d y . - d y .

(3.8)

However, as will be seen in the discretised equations, it is more common to require the 

physical gradients to be expressed in terms o f the computational gradients. Therefore, 

we simply invert the expression to

rdAH r d N i
dx

= J l
dN d N

- d y  _ . d y .

(3.9)

J l =
1

(3.10)

where the inverse Jacobian is expressed as

dy _ d y -  
dy d£ 

dx dx  
dy d£ J

For a linear triangular element, the determinant of the Jacobian | J |  is constant over 

the element and is simply a scaling factor from the computational to the physical 

domain. Therefore, in addition to the standard method of evaluating the determinant 

of a 2  x 2 matrix, the determinant of the Jacobian for a linear triangular element can 

be written as
yle
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where A exy^Aê  are the element areas measured in the physical and computational 

spaces respectively.

Computation o f the Jacobian matrix can be performed by reference to the inter­

polation functions for the element. At this stage, the mesh will comprise solely of 

straight-sided elements. Therefore, we can limit consideration, in this case, to linear 

interpolation functions for the triangular elements and bi-linear interpolation func­

tions for the quadrilateral elements. These will be introduced in the remainder o f this 

subsection, followed by the resulting form o f the Jacobian matrix.

Quadrilateral Element Mapping

The general form of bi-linear mapping for a quadrilateral element can be ex­

pressed as

x  =  Â iCCi +  N 2 x 2  +  N 3 x 3  +  N 4 X 4  (3.12)

where

N i ( t , v ) =  ( 1 ~ g)4(1 -1 ? )  (3.13a)

N ^ , v )  = { 1  + ^ 1 ~ V) (3.13b)

N ^ , n ) = { 1 + ^ 1 + V )  (3.13c)

N ^ , v ) =  ( 1 ~ ^ ( 1  +  7?) (3.13d)

Appropriate partial differentiation of this expression with respect to the computational 

independent variables gives the required metrics of the Jacobian matrix

dx  1 

=  4

dx  1 

dr/ 4 

dy = l 
d £ ~  4 

dy = 1 

dr] 4

[(1 -  7] ) ( X2 -  Z i )  +  (1 +  7j ) ( x 3 ~  X4)] (3.14a)

[ ( 1  -  £ ) ( z 4  -  Xi )  +  ( 1  +  0 ( ^ 3  “  x 2)\ (3.14b)

[ ( I  -  0 ( 2/2 ~  2 /1 )  +  (1  +  0 ( 2 / 3  -  y4)\ (3.14c)

[(1 -  0 ( 2/4 -  y i )  +  (1 +  0 ( 2 / 3  -  2 /2 )] (3.14d)
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However, due to the use o f a structured quadrilateral mesh where each element is 

rectangular, as represented in Figure 3.2, these metrics can be simplified. Taking 

the first of these equations (3.14a) as an example, it can be seen that both lengths 

given by the subtraction o f x  coordinates are equal to the x  dimension of the element 

hx. Subsequently, further terms can be cancelled, resulting in an expression which is 

independent o f 77, and is merely equal to hxj 2. Similar simplifications can be applied 

to the remaining equations o f this set, giving the Jacobian matrix

J =
hx 
—  0 
2 ,

0 t j

(3.15)

where hx , hy are the physical element lengths in the x  and y  directions respectively.

< ^ = >

1 1

Figure 3.2: Mapping for quadrilateral elements

Triangular Element Mapping

Similarly, the general form of linear mapping for a triangular element, as shown 

in Figure 3.3, can be expressed as

x =  N1 X1 + N2x2 +  N3x3 (3.16)

where

N 2 &ri)  =

N 3 & ti) =

£ +  7 
2

1± 1
2

I  +  77

(3.17a)

(3.17b)

(3.17c)
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< = = >

l

Figure 3.3: Mapping for triangular elements

In this case, application o f partial differentiation to this expression with respect to 

the computational independent variables £ and 77 ultimately gives

x 2 -  x i  2/2 — y  1

x 3 -  Xi  2/3 -  2/1
(3.18)

3.3 Temporal Discretisation

The governing equations under consideration here will be the linearized Euler 

equations o f acoustics. Thus, we express (2.33) in vector form

d U  d F  d G  n
~dt + + ~d^ ~ 0  (3' 19)

where the vector variables are

U  =

and the scalar components of these vectors are the pressure, p, and the fluid velocities, 

u  and v, in the x  and y directions respectively.

We proceed with the temporal discretisation from the recommendation made at 

the end of Chapter 2: to limit the effects of instability, a Taylor Galerkin scheme will 

be used. Derivation of the semi-discrete equations for second and third order schemes 

are included below.

u V 0

V F  = 0 G  = P

V u V
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3.3.1 Second Order Taylor Galerkin Scheme (TG2)

As seen previously for the scalar convection equation, the Taylor Galerkin dis­

cretisation procedure begins with the temporal discretisation. Therefore, we express 

a Taylor series expansion for the vector variable

A U  = A t d- ^
dt

A t 2  d2U
2 d t 2

+
A t 3  d3U

+
A t 4 d4U
4! dt*

+ . . . (3.20)
3! d t3

and for the second order Taylor Galerkin (TG2) scheme, we truncate this expansion 

to include only second and lower order derivatives, giving the approximation

A U  «  A t
d U
dt

+
A t 2  d2U

d t2
(3.21)

Using the governing equations (3.19) to transform the temporal derivatives to spatial 

derivatives, we obtain

A  U  =  - A
dx +

d G
dy

A t 2  d 
~ Y d t

d F
dx

+
d G
dy

(3.22)

As a temporal derivative is still present in the second order term, we must rearrange 

these derivatives to facilitate repetition o f the substitution

d_ { dF_ 
dt  \  dx

d_ f d G  
dt  V dy

d f d F d U
dx \  d U  dt

d ( d G d U
dy \ d U  dt

d_
dx

d_
dy

A  -
d £
dx

d G
dy

d G
dy

(3.23a)

(3.23b)

where A  = d F / d U  and B  =  d G / d U  are the Jacobian matrices. Noting also 

that the spatial derivatives of the fluxes can be expressed as d F / d x  =  A ( d U / d x )  

and d G / d y  = B ( d U / d y ) ,  insertion of (3.23) into (3.22) leads to the semi-discrete 

equation

d U d U
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3.3.2 Two-step Third Order Taylor Galerkin Scheme (TG3-2S)

Due to the similarity o f the equation forms in both steps of the TG3-2S scheme 

(2.79) to that of the TG2 scheme (2.75), application of the above procedure, in this 

case, will result in a scheme with repeated application o f very similar semi-discrete 

equations. As can be seen, the only difference will be in the coefficients of each term 

and the use o f the intermediate solution U  in equation (3.25b) for the second step

A U  = - - A t  
3

' d U " t, 9 U n-

dy

+(xAtt JL ( a *®L
dx  V dx

+  A B —
dy + dy  (  ~dx

2 d U  + B 2— - 
dy

(3.25a)

A U  = - A t  

A t 2

\ d u n
71"

+  ~ & y

I A'z^  + A B ^  1 +^ - 1  B A ^  + B 2^ -d ,dU d U d d U
(3.25b)

dx  \ dx dy  J dy \ dx  dy

The definition of the constant a  =  1/9 ensures that this two-step procedure repro­

duces the same phase-speed characteristics as the single-step TG3 scheme [41].

3.4 SEM Formulation on Quadrilateral Elements

The initial development o f a spectral element solution procedure for wave scatter­

ing problems on quadrilateral meshes can be seen in the results o f previous research 

work [34]. This work included the analysis of simple straight-sided wave scattering 

models.

The fully discretised equation system, using a continuous Galerkin approxima­

tion, is derived here from the weighted residual over the domain o f the semi-discrete 

equation (3.24) f2, for the TG2 scheme
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Following the discussion o f natural boundary conditions in Chapter 2, the terms 

of the full weighted residual statement, over both the domain f  I and domain boundary 

T, will simplify when integration by parts and Green’s lemma are applied, giving

N i A U  dn = A t  [  ( A U ^
n J n \  ox

A t 2

+ B U
dy

dfl

[2d N j d U

+ B A

dx dx  

d t y d U

+ A B
dN i  d U
dx dy

dy dx
+ B

2 d N i  d U
dfl

dy  dy  

A t J  ( iV j /n+5 ■ n j  d r

Expressing the finite element approximation of the unknown distribution as

U  =  N j U j

noting that, for quadrilateral elements the interpolation functions are defined as 

N (x ,  y) = P(x)  <E> Q(x),  the fully discretised form of the equation becomes

MjjAUj =  AtCu Unj -  +  Atf, (3.27)

where

Mu

C i j

K u

/  PiQiPjQj dQ.
'Q

A dp - Q , P J Q j  + B P ^ P j Q j )  d.0, 
rQ y dx dy J

A2dj LQ,dj l Q j  +  A B i r Q ’P j i rdx dx dx dy

+ B A P j
dQr dPj
dy dx

dQj dQj
Qj +  B  PI —y—Pj

dy dy
dQ

f i  — - A t  / iV //n+2 - n d T  -  A t  . n  dT
J r p r o p  a b c

Note here that the terms within the boundary integrals are represented by the fluxes /  

for clarity. The actual boundary condition will be applied by an appropriate means, as
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will be discussed. It should also be noted that these fluxes /  must be computed at the 

half-step n +  1/2. Additionally, T P R o p  and T A b c  denote the sections of the bound­

aries where the test propagation condition and the absorbing boundary condition, to 

be discussed in Section 3.7, will be applied.

3.5 SEM Formulation on Triangular Elements

Beginning with the same semi-discrete equation (3.24) for the TG2 scheme, a sim­

ilar set of equations is produced for the formulation of the spectral element method 

on the triangular part of the mesh. However, the use of fully two-dimensional inter­

polation functions results in slightly different forms for the system matrices.

M r j A U j  =  A t C , j U nj  -  ^ K j j ITj +  A t f j  (3.28)

where

M i j  = J  N , N j  dCl

C , j  = ^ ( A ^ - N j  + B — j - N ^ j  dtt 

f  f  t 2 d N , d N j  , ATyd N , d N j
K , J  = L [ A ^ ^ r + A B ^ ^ i

oy ox  Oy Oy J

/ j  =  - A t  j  N r f n+* - n d T  -  A t  j  ■ n  dT
7r p r o p  J ^ a b c

and Tprop  and VABc  denote the partitioning o f the boundary as stated above.

As previously mentioned, the use o f Fekete quadrature for the computation of 

the mass matrix M  results in a diagonal matrix, thus providing significant computa­

tional savings. However, although this approximation is legitimate and provides good 

solution accuracy when used with quadrilateral elements, the inferiority of Fekete 

quadrature suggests that the results for the corresponding triangular formulation will 

be inaccurate by comparison. Therefore, to alleviate this problem, the procedure dis­

cussed in the next section is proposed.
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3.6 Mass Iteration

For clarity, we return to a general system o f equations, which in this instance we 

write as

M U n + 1  = R n (3.29)

where U  is the unknown vector at time n  +  1, M  is the consistent mass matrix and 

R  is a typical right hand side vector representing the operators applied to the solution 

at the previous time-step, n. To obtain the updated solution U n+1, inversion of the 

consistent mass matrix is required which, for a continuous Galerkin approximation 

method, involves a large global system matrix. This is a significantly computationally 

demanding procedure which increases in relation to the size and refinement of the 

computational domain. Approximation of the consistent mass matrix, following the 

diagonalisation technique described above, results in a lumped mass matrix, which 

reduces this computational expense. However, for triangular elements, this is likely 

to significantly degrade the accuracy of the solution due to the inaccuracy of the 

numerical quadrature.

To improve the approximation to the consistent mass form and, thus, regain so­

lution accuracy, an iteration procedure has been used [45]. Choosing to express the 

consistent mass matrix M  as

M  =  M l +  (M  -  M l ) (3.30)

where M L represents the lumped mass matrix, and inserting this equation (3.30) into 

(3.29), leads to the iterative equation

jjn+Hr+l) = M ~lR n _  j ^ ( M  -  (3.31)

with r  representing the number of iterations. In this way, the approximation to the 

consistent mass matrix can be improved over successive iterations, while maintaining 

the requirement for inversion of the lumped form o f the mass matrix only.

Closer examination of this iterative equation reveals that, with initial values of
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j jn+1(0) __ q £ rst iteratjon is simply the former lumped mass approximation

j j n + m  = M -L1 R n (3.32)

Therefore, it is clear that as the iterations proceed, the approximation should improve. 

An in-depth explanation of the motivation for this procedure and an analysis of the 

potential improvements in accuracy available for linear elements can be found in [46].

However, it should be noted, that the improvement in solution accuracy is achieved 

at the expense o f the efficiency of the method. Naturally, as the number of iterations is 

increased the computational work will increase. Therefore, a compromise is required 

which facilitates an appropriate solution at an acceptable computational cost.

3.7 Absorbing Boundary Condition

Physical wave propagation and scattering problems are typically modelled within 

open regions where the incident wave field is assumed to originate in the far field. 

Consequently, true representation o f these models would necessitate a physical do­

main of infinite extent. Due to the constraints of computational capability, the gen­

eration of a corresponding infinite computational domain is obviously impossible. 

Therefore, the preparation of an appropriate numerical model will require some form 

of approximation to this property o f the domain.

For wave scattering models, the wave field can be assumed to propagate outwards 

from the scattering object. Therefore, as most interest in this type of analysis is fo­

cused on the solution around the surface, an artificial boundary can be formed to 

truncate the open region and form a closed space. Now, the only condition that must 

be satisfied on this boundary is that the outgoing component of the wave field is com­

pletely transmitted. If this condition is not satisfied, then spurious reflected waves will 

result, which subsequently propagate back towards the scattering object and pollute 

the solution.

For the initial development o f the model and to facilitate a preliminary validation 

of the method, a first order upwind Roe flux is deemed sufficient as a simple absorbing
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boundary condition (ABC). This approximates a transparent interface by dictating 

that the information that defines the solution at the boundary comes solely from within 

the domain.

A general expression for a Roe flux, resolved normally to the boundary, can be 

expressed as
1fZ°e = 7;{fn + fZ-\An\(UR-UL)} (3.33)

where f R and f R represent the normal flux vectors and U L and U R represent the 

unknown solution vectors to the left and right of the boundary respectively. A n is the 

normal Jacobian matrix of the governing equation system

(3.34)

where A  and B  are the x  and y components of the Jacobian matrix, as defined in 

(3.23). Following the evaluation of the eigenvalues and corresponding eigenvectors 

o f A n, the eigen decomposition theorem, written as

0 0 n x

A n = n xA  +  nyB  = 0 0 n y

nx n y 0

|An| = P | A | P - l (3.35)

where A is the diagonal matrix of eigenvalues and P  is the matrix of eigenvectors, 

can be used to obtain its magnitude

IA J  =

n l n̂ TT-y

'TLx'Tly n 2 ny
0 0

(3.36)

Noting that the unknown and flux fields are assumed to be zero outside the domain, 

thus expressing U R =  0 and f R = 0, insertion of (3.36) into the expression for the 

Roe flux (3.33) gives

/
/  \

PL
/  \

0 nx 0 uL \

n x < 0 > +  n y < PL > + Tlx'H'y uy 0 < vL >

V UL v L
K J

0 0 1 vL\ J /

(3.37)
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where the normal flux is computed from its x and y components as

f n = n xF  +  n yG  (3.38)

and the vector components are those from (3.19).

3.8 Validation

At this stage o f the development, validation is required to assess the method’s sta­

bility and accuracy, thus enabling a conclusion to be drawn on the suitability o f the 

method before proceeding further. This will be performed using a simple propagation 

test, in which a sinusoidal wave is propagated through a domain. The results of this 

test will facilitate the comparison o f the accuracy of the method on both the quadrilat­

eral and triangular elements, with and without the application o f the proposed mass 

iteration procedure.

3.8.1 Computational Model

Tests are performed on two-dimensional meshes of structured quadrilateral and 

triangular elements. To replicate the requirements o f practical wave scattering prob­

lems, an extended propagation time will be used. Consequently, the wave will be 

propagated for 100 cycles and we will focus on the fidelity of the waveform in the 

vicinity o f the 95th wavelength. To reduce the computational workload, propagation 

is defined to occur solely in the x-direction o f a long, narrow domain (500 x 2 unit 

dimension), the main extent of which lying along the x-axis. This is accomplished 

by imposing a propagation boundary condition on the left boundary of the domain, 

at x =  0. Representations o f the quadrilateral and triangular meshes can be seen in 

Figure 3.4.

The waveform will be a simple sinusoidal function, which can be expressed as

p  — Po sin(kxx — cut) (3.39)
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-► Direction o f  propagation

Figure 3.4: Representations of (a) the quadrilateral mesh and (b) the triangular mesh 
for the wave propagation test

where a unit value will be taken for the reference pressure p 0  and the ^-component o f 

the wavenumber kx is 27t/5, which means that the wavelength is A =  5.

At the downstream boundary, the first order upstream ABC will be imposed to 

limit reflection of the wave back into the domain.

3.8.2 Results

To establish the accuracy of the higher order method, we focus on third order ele­

ments, thus enabling a comparison o f the effect of mass iteration on both quadrilateral 

and triangular elements. Note that an analysis with second order triangular elements 

is not possible, as the lumping technique using the corresponding set o f Fekete points 

generates zero entries on the mass matrix diagonal, thus precluding matrix inversion.

Results are presented for a location near to the downstream boundary of the do­

main, between the 93rd and 97f/l wavelengths, on the longitudinal centre-line. For the 

cubic quadrilateral elements, the results shown in Figures 3.5(a) and 3.5(b) display 

little improvement in the solution when iteration is applied. The reason for this is 

the initial quality o f the lumped mass matrix approximation, due to the accuracy of 

the GLL quadrature method. However, when considering the triangular elements, the 

inaccuracy of the initial lumped approximation can be seen in Figure 3.5(c). This re­

sults from the use of an inferior Fekete quadrature for the matrix integral evaluation. 

Consequently, the use of the proposed mass iteration procedure offers a significant 

improvement in accuracy evident in both the amplitude and phase of the computa-

A \ i X A A A
\, V V \i \l l \ 1 V

(a)

tvtvx XX X IVX XX X X
X XX X X X X X X XX X

(b)
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1

(c) (d)

Figure 3.5: Propagation test results: (a) Quadrilateral elements with no iterations 
(b) Quadrilateral elements with 5 iterations (c) Triangular elements with no iterations 
(d) Triangular elements with 5 iterations

tional results presented in Figure 3.5(d).

These initial results were very promising, suggesting that an iteration procedure, 

applied to the triangular part o f the domain, could offer an alternative to simply in­

creasing the order of the elements. A compromise could have been sought which 

optimised the number of iterations and order of the elements to give the most efficient 

solution method. However, when attempting to apply the same procedure to elements 

o f fourth order or higher, unforeseen difficulties were encountered [47].

When the iteration procedure is applied to fourth order triangular elements, the 

method fails to converge, giving unstable solutions. A similar outcome is found with 

higher order triangular elements. The cause of this divergence was determined by
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close inspection of the iterative equation (3.31) and, in particular, the iterative matrix

B  = M l \ M  - M l ) (3.40)

Convergence o f an iterative scheme is dependent on its spectral radius, which when 

expressed in matrix form, is equal to the maximum absolute value of the eigenvalues 

[48]. If  this value is less than unity, then convergence will occur; if  the value is greater 

than this threshold, the solution will diverge. When the matrix B ,  for these higher 

order elements, is examined, some of its eigenvalues are seen to be greater than unity. 

Therefore, divergence of the iterative procedure is fundamentally inevitable. A more 

detailed explanation of this concept and analysis of the iterative matrices for different 

element order can be found in Appendix A.

As a final remark, it should be noted that there are more complex methods, such 

as the conjugate gradient method, with which convergence o f the solution can be 

obtained. However, due to the increased computational work required with these 

methods, their consideration is not included here.

Consequently, as it is desired that an efficient computational procedure be avail­

able for a larger range of element order, thus facilitating a broader analysis, the ap­

plication o f this simple iterative procedure is deemed inappropriate during further 

development o f the method. This means that an alternative method of improving the 

solution accuracy on the higher order triangular elements is needed. Further discus­

sion o f this aspect of the method will be conducted in the next chapter.

3.9 Convergence Analysis

To conclude the investigation of the spectral element method applied to quadri­

lateral elements, a convergence analysis is conducted. This is performed to provide 

further validation and to assess the potential improvement in solution accuracy as 

element order is increased.
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3.9.1 Computational Model

For this analysis, the computational model will involve the propagation of a single 

Gaussian pulse

across a domain, where v 0 is the propagation speed and x 0 the initial position of the 

centre of the pulse. The domain, a representation of which can be seen in Figure 3.6, 

will be 50 x 50 units in dimension and the pulse will propagate in the ^-direction, with 

a unit propagation speed, for 10 time units from xq =  20 to x  = 30. This arrangement 

is used in an attempt to limit boundary effects.

Figure 3.6: Representation of the computational domain for the convergence analysis

Various mesh refinements (/z-refinement) will be used, upon which ^-refinement 

will be performed by increasing the order of the elements. Solution accuracy is mea­

sured along the centre-line of the domain using an L 2  -error norm of the pressure p.

To strengthen the reliability of the results, the analysis was repeated on meshes of 

various refinement, the coarsest of which is shown in Figure 3.7. As can be seen in 

Figure 3.8, where the TG2 time-stepping scheme was used, p-convergence is evident 

on each mesh used in the analysis.

P =  Poe — ( x —x o —vo t )2 (3.41)

L 2 n o r m Pa p pr ox ) ^ dr

3.9.2 Results
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Figure 3.7: Coarse mesh (25x25) for convergence analysis

The reduction in convergence rate for the most refined mesh can be attributed to 

the limit o f temporal accuracy associated with the TG2 scheme. A higher order tem­

poral scheme, such as the TG3-2S scheme, permits convergence to continue beyond 

this point. Therefore, the analysis was repeated with this scheme to demonstrate this 

continuation in convergence, seen in Figure 3.9.

Furthermore, an alternative family o f schemes known as the Runge-Kutta time- 

stepping schemes were tested as further validation. A derivation o f the governing dis- 

cretised equations for the fourth order Runge-Kutta (RK4) scheme is included in Ap­

pendix B. The results for the convergence analysis are presented in Figure 3.10. Once 

again, it is evident that the higher temporal accuracy achieved by this scheme permits 

exponential convergence to continue beyond that possible with the TG2 scheme.

Comparison of the convergence analysis results using these various temporal schemes 

demonstrates little difference in the accuracy of the models for all but the most re­

fined meshes. For these extremes, higher order temporal schemes, such as TG3-2S 

and RK4, are needed to facilitate convergence for the higher element orders. There­

fore, while reasonable levels of mesh refinement are used, the TG2 scheme offers a 

sufficient level of accuracy to assess the advantages of higher order spatial discreti­

sation. Consequently, it is this scheme that will be used mainly in the remainder
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Figure 3.8: p-Convergence results for the SEM with varying mesh refinement using a 
TG2 scheme
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Figure 3.9: p-Convergence results for the SEM with varying mesh refinement using a 
TG3-2S scheme
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Figure 3.10: p-Convergence results for the SEM with varying mesh refinement using 
a RK4 scheme

of this work. However, it will be prudent if  recourse is made to the higher order 

time-stepping methods when performing the convergence analyses for the alternative 

solution procedures, as will be subsequently introduced.

We can now be satisfied that the spectral element component of the method, ap­

plied to the quadrilateral part of the computational domain, is working and has the 

potential to achieve p-convergence for wave propagation problems.

3.10 Conclusion

Development and analysis of the spectral element formulation on both quadri­

lateral and triangular elements has been presented. The inaccuracies inherent in the 

diagonal formulation of the SEM on triangular elements were discussed and a mass 

iteration procedure was proposed to improve the solution accuracy. This was shown 

to offer significant improvements to the solution using third order elements. However, 

extension of the method to higher order elements was proven to be flawed due to an
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ill-conditioned iterative matrix. Consequently, further development of the method is 

not recommended and an alternative solution method is required. This discussion 

continues in the following chapter.

On the other hand, application of the standard diagonal formulation of the SEM 

on quadrilateral elements demonstrated the potential to generate accurate solutions 

efficiently when compared to lower order schemes. Therefore, the intended use of the 

method on the open regions o f wave scattering models, is deemed appropriate.
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Chapter 4 

Spectral Discontinuous Galerkin 

Method

4.1 Introduction

Following the recommendations o f the previous chapter, an alternative solution 

method is required for the triangular part of the mesh. Due to the intended location 

o f this unstructured triangular mesh, adjacent to the scattering object, the solution 

method must be capable of providing high solution accuracy, although once again, in 

an efficient manner.

A promising option is the spectral discontinuous Galerkin (DG) method. Not only 

does the higher order capabilities o f this method suggest the potential for exponential 

convergence, but also, it is expected that the discontinuous nature of this procedure 

provides a mechanism through which any singularities in the solution can be appro­

priately handled.

As will be seen, the formulation o f the variational statement for the discontinuous 

Galerkin method, permits the use of a consistent mass matrix without the necessity 

for computationally expensive matrix inversion of a global matrix. Consequently, a 

certain level of efficiency is also ensured.

Therefore, in this chapter, a higher order discontinuous Galerkin method will be
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presented, followed by validation and analysis of convergence rates.

4.1.1 Background

The main difference between continuous and discontinuous finite element meth­

ods is the presence o f additional degrees of freedom at the element boundaries. These 

effectively take the form o f additional boundary nodes, as the neighbouring elements 

do not share any nodes. Representations of the meshes used in continuous and dis­

continuous finite element methods are displayed in Figure 4.1. It is this feature of the 

DG method that enables discontinuous solutions to be approximated accurately over 

the domain, as steps in the solution can occur at element interfaces [49].

2

3

(a) (b)

Figure 4.1: Example mesh elements and numbering (a) Continuous finite element (b) 
Discontinuous finite element

Due to the discontinuous nature of the discretisation, the solution within each 

element is independent from that contained within each of its neighbours. Therefore, 

coupling of the solution is achieved by approximate numerical fluxes evaluated over 

each element boundary. An obvious advantage of this fact is that local conservation 

is ensured as the flux outflow from one element must equal the flux inflow into its 

neighbour over the shared boundary.
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Another advantage o f the DG method, again due to the schemes discontinuous 

formulation, is that it offers an efficient solution method for time dependent or hy­

perbolic problems. As the mass matrices are formed locally over each element, the 

inversion of a global mass matrix, as discussed in the previous chapter for the con­

tinuous spectral element method, is avoided. Therefore, this explicit, block-diagonal 

form reduces the computational cost needed to temporally update the solution.

4.2 Interpolation Functions and Numerical Integration

As for the previous spectral element formulation on triangular elements, the in­

terpolation functions will be defined using Lagrange interpolation directly through a 

two-dimensional set of Fekete points. These points offer high interpolation properties, 

which accounts for their use in this finite element method. They are also coincident 

with Gauss-Legendre-Lobatto (GLL) points along the boundaries of the quadrilat­

eral elements, thus providing a simplified coupling procedure for a hybrid solution 

method.

However, contrary to the previous diagonal SEM formulation, the spectral DG 

method will utilise a Gaussian quadrature for integration o f all matrix integrals. Con­

sequently, full consistent element mass matrices will be formed, thus improving the 

accuracy o f the solution on triangular elements. Note also, whereas the previous di­

agonal SEM formulation prohibited the use of second order triangular elements due 

to the presence of zero values on the diagonal of the mass matrix, this condition does 

not occur here. The alternative numerical integration method removes this restriction, 

enabling a broader range of element orders to be used.

4.3 Temporal Discretisation

The temporal discretisation will be performed using the same Taylor Galerkin 

methods as introduced for the spectral element method in Section 3.3. Therefore,
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for the linearized Euler equations (3.19), the semi-discrete equation using the second 

order Taylor Galerkin scheme (TG2) can be written as equation (3.24)

A U  =  - A t  

A t 2

\ d U n r>dU
71“

~di +  dy

9_ ( A 2 d U
dx \  dx

+  A B
d U
dy

d ( * n d U
+  dy  V dx

2 d U
+ B  V "dy

(4.1)

Due to the similarity of the equations in each step of the TG3-2S scheme to the 

TG2 form, as noted in the previous chapter, unnecessary repetition is avoided and 

the TG3-2S form of the discretised equations is not derived here.

4.4 Spectral DG Formulation on Triangular Elements

4.4.1 Discretised Equations

Contrary to the continuous Gakerkin procedure encountered in standard finite el­

ement formulations, and also in the spectral element method introduced in Chapter 3, 

where the variational statement is taken over the entire domain, the DG method for­

mulates an expression over individual elements. The resulting discretised equations 

are similar to those presented in Section 3.5, the difference being that the integrals 

are computed locally, over single elements. Therefore, we can express the weighted 

residual of (4.1) for an arbitrary element e as

f  N , A U  dQ =  - A t  ( N,  ( A —
'ne \ dx

d U
+  dy

d£l

A t 2 f  AT ( A2d2U
2 L 1 [ d x 2

+ A B
d 2U
dxdy

+ B A
d2U
dxdy

+ B
,d2U
dy2

dtt  (4.2)

As before, the terms of the full weighted residual statement, over both the domain Q, 

and domain boundary T, will simplify when integration by parts and Green’s lemma
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are applied, giving
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Subsequently, inserting the finite element approximation of the unknown distribution

U  = N j U j

we obtain the fully discretised form o f the equations

A t 2

where

M u

C u

K jj

M j j A U j  =  AtCuUj
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Si = - A t  /  N , f  n  dT -  A t  /
Jr* Jri
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- A t  / Ni f ' i n  dr
dTeA

Note, as before, the boundary integrals have been simplified and expressed as 

fluxes /  computed at the half-step n  +  1/2, and that T P R o p  and Ta b c  denote the 

sections of the boundaries where the test propagation condition and the absorbing 

boundary condition will be applied.
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4.4.2 Numerical Flux

Due to the local element nature of the discontinuous Galerkin schemes, com­

munication between neighbouring elements occurs by means of consistent numerical 

fluxes. Various types of numerical fluxes exist. In this work, the Roe flux is used [50], 

As introduced in Chapter 3 with regard to the formulation of a first order upwind ab­

sorbing boundary condition (ABC), a Roe flux resolved normally to the boundary can 

be written as

f R o e = \ { f Ln + f n - \ A „ \ { U R ~ U L)} (4.4)

In this expression, f R and f R represent the normal flux vectors, U L and U R repre­

sent the unknown solution vectors, with superscripts L  and R  indicating values from 

the left and right of the boundary respectively, and A n is the normal Jacobian matrix 

of the governing equation system as introduced in Section 3.7. Evaluation of the mag­

nitude of the normal Jacobian matrix | A n \ proceeds as shown in this previous section. 

Subsequently, the complete form of the Roe flux required for the DG discretisation of 

the governing acoustic equations is expressed as

f  Roe  2

This numerical flux can now be substituted into the discretised equations (4.3), giving

/ pL +  pR 1
f > 

0 n2x nxny 0 f  uR — uL \

nx < 0 > 4- ny <pL + p R > ~ nxny tv* 0 \  vR — VL >
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Note that the numerical fluxes must be computed at the midpoint of the time-step 

to ensure the correct application of the TG2 scheme. This is due to the application

(4.2). In practice, these half-step values are computed from the current known values 

o f the variables at time-step n  using the truncated Taylor series expansion

which, upon substitution o f the governing equation (3.19), becomes

4.5 Convergence Analysis

A convergence analysis will be performed with the DG method, similar to the pre­

vious chapter for the quadrilateral implementation of the SEM, using corresponding 

meshes of structured triangular elements, generated by dividing each quadrilateral 

element into two triangular elements.

4.5.1 Computational Model

Details of the computational model used for this convergence analysis can be 

found in Section 3.9. The meshes were obtained by simply dividing each element of 

the previously used quadrilateral meshes diagonally into two triangular elements. The 

corresponding structured triangular mesh to that presented in Figure 3.7 can be seen 

in Figure 4.2 Note the single column of quadrilateral elements on the downstream 

boundary of the domain to which the first order ABC is applied.

A L2-error norm (3.42), taken along the horizontal centre-line of the mesh, will 

be used to assess the accuracy o f the approximation.

of intergration-by-parts to both the first and second order spatial derivative terms of

(4.7)
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Figure 4.2: Coarse mesh (25x25) for convergence analysis

4.5.2 Results

As seen previously for the SEM applied to quadrilateral elements, p-convergence 

is evident in the results obtained using the TG2 time-stepping scheme displayed in 

Figure 4.3. However, the convergence limit due to the lower temporal accuracy o f the 

TG2 scheme is even more defined in this case.

Application of the TG3-2S scheme reduces the effect o f this lim it, as can be seen 

in Figure 4.4. However, contrary to the SEM method of the previous chapter, although 

now sufficiently accurate to permit convergence for the 100 x 100 mesh, continuation 

of p-convergence for the most refined mesh is still disabled.

Ultimately, turning to the fourth order accurate RK4 scheme, we see from Fig­

ure 4.5 that by application of this method the limit is completely removed and p- 

convergence is clear for every mesh.

4.6 Conclusion

An alternative solution method for application to triangular elements has been im­

plemented and tested. This DG formulation demonstrated the potential for exponen­

tial p-convergence when applied to the simple example o f Gaussian pulse propagation
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25x25 
50x50 100x 100 200x200

Figure 4.3: p-Convergence results for the DG method with varying mesh refinement 
using a TG2 scheme

25 x 25 -----
50x 50 .......100x100 200x200 --

Figure 4.4: p-Convergence results for the DG method with varying mesh refinement 
using a TG3-2S scheme
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Figure 4.5: p-Convergence results for the DG method with varying mesh refinement 
using a RK4 scheme

through an open domain.

Therefore, suitable solution methods have now been obtained for both the quadri­

lateral and triangular parts of the proposed hybrid mesh. We may now proceed to 

amalgamate these procedures in an attempt to obtain a suitable method to model prac­

tical wave scattering problems.
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Chapter 5 

Hybrid SEM/DG Method

5.1 Introduction

The requirements of practical wave scattering problems can be separated into 

two sets of conflicting statements. On one hand, the models require the ability to 

resolve intricate scattering geometries and to permit the accurate approximation of 

wave forms over several cycles. However, due to the complexity of the problems and 

finite computational resources, these models must be sufficiently efficient to obtain 

the required results within a reasonable timescale.

Consequently, following the reasoning o f Section 3.1.1, the use o f a hybrid mesh 

of both quadrilateral and triangular elements was proposed. The motivation for this 

was the inherent nature of the wave scattering problems considered in this work. 

In these problems the main area of complexity within the computational domain is 

located in the vicinity of the scattering object. Beyond this is a vast area of open 

space.

Within the last two chapters, alternative computational procedures for the respec­

tive parts of the mesh have been introduced and analysed. Separately, these pro­

cedures were shown to permit exponential p-convergence for a simple propagation 

problem. To achieve our objective of a hybrid solution procedure, we must now at­

tempt to couple these solution techniques.
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As a matter of consistency, the description of the formulation for this hybrid 

method will be followed by the Gaussian pulse convergence analysis employed in 

Chapters 3 and 4. This is the first step in the development of the procedure: ensuring 

that exponential convergence is still attainable on a simple hybrid mesh. Only when 

this has been verified can we turn our attention to matters more pertinent to wave 

scattering problems.

Verification of the hybrid solution procedure for wave scattering problems will be 

performed by comparison of the computational approximation to an exact analytical 

solution. However, before we can perform this test, some limitations o f the current 

computational model must be addressed. These include the approximation o f an in­

finite domain at the outer artificial boundary and the ability of the model to resolve 

curved scattering geometries.

Once complete, we will be well placed to begin analysing various other scatter­

ing models for which exact analytical solutions are unavailable. Obviously, it is the 

scattered wave fields and associated quantities that can be extracted from the data for 

these scatterers which is of most interest to practising scientists and engineers.

5.2 Hybrid SEM/DG Formulation

The use of the procedures discussed in the previous chapters has been explained 

and justified by reasoning and preliminary analysis. As separate methods, they have 

been shown to work effectively and demonstrate the potential for exponential conver­

gence.

Application o f these procedures to the appropriate parts o f a hybrid mesh is now 

required to further the development of the proposed solution method.

5.2.1 Hybrid Mesh

The nature of typical wave scattering model domains lend themselves towards 

refinement by means of a hybrid mesh. Usually, the scattering object of interest is
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located within the centre of the domain, surrounded by vast open space. Therefore, 

assuming that the scattering geometry is sufficiently complex to warrant discretisation 

by an unstructured triangular mesh, it would be considered highly inefficient to em­

ploy such a technique to discretise the entire domain. The outer open regions would 

be discretised much more efficiently with a structured Cartesian grid of quadrilateral 

elements.

Consequently, at some distance from the scattering surface, an interface could 

be placed between the inner unstructured triangular mesh and the outer structured 

quadrilateral mesh. In practice, to ease the computational burden, this interface would 

also preferably be placed as close as possible to the scattering surface. An illustration 

o f a general hybrid mesh for wave scattering problems is shown in Figure 5.1.

Unstructured 
Triangular Grid

Structured 
Quadrilateral Grid

SCAT

Figure 5.1: General hybrid mesh for wave scattering models 

5.2.2 Mesh Generation

The mesh is generated in two phases. Firstly, a simple structured quadrilateral 

grid is generated, the size of which must be sufficient to accommodate the proposed 

scattering object. Once complete, this mesh is compared with the points constituting 

the surface of the scatterer. The area of the structured mesh to which these points 

extend is then enlarged, the degree o f which can be controlled by the user, and it is 

the outer boundary of this area that will become the quadrilateral-triangular interface 

TInt of the hybrid mesh shown in Figure 5.1. Beyond this interface, the remainder of 

the structured quadrilateral grid is saved to file.
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Secondly, within the interface, between it and the surface o f the scattering ob­

ject, an unstructured triangular mesh is generated between the two boundaries. A 

Delaunay advancing front unstructured mesh generator is used [51]. Subsequently, 

following some renumbering o f points, elements, sides and boundaries to ensure cor­

respondence, both parts of the hybrid mesh can be coupled within the same file.

5.2.3 Discretised Equations

Different numerical schemes will be applied to the separate parts of the mesh: a 

spectral element method (SEM) on the quadrilateral part and a spectral discontinuous 

Galerkin method (DGM) on the triangular part of the mesh. The discretised equations 

for these schemes will be identical to those introduced in the previous chapters but for 

ease of reference are rewritten below. Subsequently, the choice o f a simple coupling 

method, used to enable communication between these respective parts of the domain, 

will be presented and explained.

SEM Component of the Hybrid Method

For the SEM, the fully discretised equations (3.27), written here for the second 

order Taylor Galerkin (TG2) temporal scheme, can be expressed as

Mu A U j  =  AtC u U nj  -  -p j - K u U j  +  A tf j (5.1)

where

PiQiPjQj dPl
&SEM

(A—^QIPJQj + BPi -j J-PjQj ) dO.
&-SEM

&SEM

At [  N,fn̂ ndT -  A t [
I Pe /  r e

^  1 T VT ”  1 P

N i f n+^ n d r
I  N T P M L
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and T/tvt and TP M l  denote the boundaries of the structured quadrilateral part of the 

domain, namely the mesh interface and outer boundary beyond the PML respectively.

It is worth noting at this stage, once again, that the global mass matrix M  formed 

on the quadrilateral part of the mesh will be diagonal, thus simplifying the inversion 

process and facilitating significant computational savings.

Spectral DGM Component of the Hybrid Method

The discretised equations for the spectral DGM, again written for the TG2 scheme, 

are expressed as (4.3)

and Ts c a t  and TINT denote the boundaries of the unstructured triangular part o f the 

domain, namely the scattering surface and mesh interface respectively.

In this case, the mass matrix M  will not be diagonal. However, due to the na­

ture of the DGM, its formation will be local, over each discrete element e, meaning 

inversion of a large global mass matrix is again avoided.

M j j A U j =  A t C u U nj  -  K u U nj  + A t f , (5.2)

where

I N T



5.2. Hybrid SEM/DG Formulation 80

5.2.4 Interface Coupling Method

A method to enable communication between the separate parts of the mesh is 

now required. To maintain as simplified a formulation as possible, the Roe flux (4.4) 

introduced for the numerical flux calculation in the DGM will be used.

= \ { f i  + f » ~ \ A n\ (UR -  U L)}  (5.3)

This will impose a Neumann flux type boundary condition to the quadrilateral part of 

the mesh.

5.2.5 Scattering Boundary Condition

Hard Acoustic Scatterer

The scattering boundary condition for a hard acoustic scatterer is that the normal 

gradient o f the pressure at the scattering surface be zero

dp1 
dn

=  0 (5.4)
r  h a r d

and that the normal velocity be zero

v ‘ ■ n lr^ rJ =  0 (5.5)

where the superscript t emphasises the fact that here we consider total values.

As discussed in Section 2.4, the linearity of the equations enable the solution to

be separated into its incident and scattered component. Consequently, as we solve the

discretised equations for the scattered component only, the boundary conditions must 

also be defined in terms of the scattered field. Therefore, using expression (2.12), we 

can express condition (5.5) for the total field in terms of the scattered and incident 

wave components as

Vs ■ n \r ^ rd = - v l ■ n \ r k„ d (5.6)

where the superscripts i and 5  denote the incident and scattered components respec­

tively. For a two dimensional problem where the incident wave field is assumed to be
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a plane sinusoidal pressure wave of the form

pl (:r, y, t) = p0 cos(kxx  +  kyy -  ut)  (5.7)

then the incident velocity v % can be evaluated from the governing acoustic equations 

(3.19) to be

u 1 =  sin (kxx  +  kyy — cut) (5.8a)
UJ

v% — sin(kxx  +  kyy — cut) (5.8b)
UJ

where k  =  (kx, ky) is the wavenumber and uj is the angular frequency of the wave.

Note that for electromagnetic applications, the boundary condition for the anal­

ogous transverse electric (TEZ) polarization, as discussed in Section 2.5.5, can be 

obtained in a similar manner.

Soft Acoustic Scatterer

The scattering boundary condition for a soft acoustic scatterer is that the pressure 

be zero at the scattering surface

P 'lrw , =  0 (5.9)

and that the tangential component of the velocity be zero

v * X n lr,„/i =  o (5.10)

where the superscript t emphasises the fact that here we consider total values.

Again, the linearity of the equations can be used to express condition (5.10) using

the scattered and incident components as

Vs x  n lr„ /, =  - V 1 X  n |r . 0/l (5.11)

Equations (5.8a) and (5.8b) can now be used to apply the required form of the bound­

ary condition for the specified incident wave field.

Once more, note that the boundary conditions for the analogous electromagnetic 

model of a transverse magnetic (TMZ) polarized problem would be applied similarly.



5.3. Convergence Analysis 82

5.3 Convergence Analysis

As a final assessment before attempting to apply the method to the solution of 

wave scattering problems, p-convergence of this hybrid method will be validated in 

the same manner as seen previously in Chapters 3 and 4.

5.3.1 Computational Model

The reader is referred to Section 3.9 for details o f the simple Gaussian pulse model 

used in this analysis. The hybrid meshes are formed simply by combining the meshes 

o f corresponding levels of refinement used in the previous tests. The quadrilateral- 

triangular interface is located halfway along the ^-dimension of the domain. A typical 

example can be seen in Figure 5.2.

Figure 5.2: Coarse mesh (25x25) for convergence analysis

With this arrangement, the Gaussian pulse is set to propagate through the interface 

from the triangular to the quadrilateral part o f the mesh. Therefore, this provides an 

adequate means by which to assess the efficacy of the chosen coupling technique.

As before, a L2-error norm (3.42), taken along the horizontal centre-line of the 

mesh, will be used to assess the accuracy of the approximation.
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5.3.2 Results

A similar trend is evident as witnessed in the previous convergence analyses. With 

the TG2 scheme, the results shown in Figure 5.3 demonstrate p-convergence for the 

coarser meshes. However, with further /i-refinement of the mesh, a limit o f conver­

gence is seen and the accuracy of the approximate solutions fails to improve at the 

desired rate beyond this point.

25 x25 
50x50 

100 x 100 200x200

Figure 5.3: p-Convergence results for the hybrid method with varying mesh refine­
ment using a TG2 scheme

We see that the application of the higher order TG3-2S scheme extends the con­

vergence trend, shown in Figure 5.4. However, as seen in Chapter 4, the results 

presented in Figure 5.5 confirm that the fourth order RK4 scheme is needed to permit 

convergence of the solution on all of the meshes of various refinement used for this 

particular model.

With these results, the hybrid method has demonstrated the potential forp-convergence. 

Therefore, the method’s development for the solution of wave scattering problems can 

commence.
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2 5x25 
5 0x50 

lOOx 100 200x200

Figure 5.4: p-Convergence results for the hybrid method with varying mesh refine­
ment using a TG3-2S scheme
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Figure 5.5: p-Convergence results for the hybrid method with varying mesh refine­
ment using a RK4 scheme
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5.4 Perfectly Matched Layers

5.4.1 Introduction

An important feature that may limit the accuracy of any open space scattering 

simulation is the method used to truncate the physical domain. Previous work in­

volving the initial development of a scattering solution procedure necessitated only 

a simple first order absorbing boundary condition. However, at this stage, as we at­

tempt to refine our hybrid method, we must ensure that any possible sources of error 

are minimised.

Therefore, we turn our attention to a popular domain truncation method, first de­

vised by Berenger [26], which incorporates sections of the domain referred to as 

perfectly matched layers (PML).

5.4.2 Governing Equations

The governing equations for the PML region of the domain are an augmented form 

of the standard acoustic equations (3.19) with an additional source term vector [27]

d U  d F
dt ^  dx

where

u V

V 0u  = F  =
p u

q 0

Here q is an auxiliary variable and ax and 

x  and y directions respectively.

0 axu

V
S  =

(TyV

V °xP +  (cry -  ax)q

V ayq

-y are the PML damping parameters in the
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5.4.3 Temporal Discretisation

Beginning with a truncated Taylor series expansion to second order

A t 2 d2U
A U  = A t ^

dt
+

2 dt2
(5.13)

we can now substitute the governing equation for the PML (5.12) for the temporal 

derivatives, giving

A t / . - A J g n d G 1 A t 2 d ( d F n d G
+  dy

+  S n >
2 dt \  dx + dy

+  S T (5.14)

As a temporal derivative is still present in the second order term, we must rearrange 

these derivatives to facilitate repetition of the substitution

d f d F \  _  d f d F d U
dt \ d x  )  dx  \  d U  dt

A  -  A  ( d G  d U
d t \ d y )  dy \ d U  dt

d S  _  d S  d U  
~dt ~  dU~dt

d_
dx

d_
dy

_ -A \
d F

\  dx
n d G  

+  dy

S {
' d F
v dx

n d G  
+  dy

+  5 ^

=  < T
_  (dF_  

\  dx
d G
dy

+ S 1

(5.15a)

(5.15b)

(5.15c)

where A  =  d F / d U ,  B  = d G / d U  and cr =  d S / d U  are the Jacobian matrices. 

Note also that the spatial derivatives of the fluxes can be expressed as 

d F / d x  =  A  (d U / d x )  and d G / d y  = B  (d U / d y )  and the source term expressed 

as S  = crU. Following substitution of these expressions into (5.14), the resulting 

semi-discrete equations can be rearranged to clarify the standard acoustic part and 

the additional source terms responsible for the damping effect, written as
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5.4.4 SEM Formulation on Quadrilateral Elements

As the PML region will be situated at the outer boundary of the domain, we need 

only to obtain the SEM formulation of the equations for the quadrilateral elements. 

We can express the weighted residual of the governing equations for the PML region 

as

dUf  N jA U  =  - A t  [  A /  ( A ^ -  
Jn J n V dx

dU
+ 77—— dy

I N,  I A
L

,d2u
dx2

+ A B d2U

JJa
. , sr rV> At2 /• /  AdU- A t  I NfcrU + —

dxdy

jJQ

dQ,

+  B A d2U
dxdy

+ B 2d2U
dy

dQ,

+ B
dU
dy

+ (TUn \dQ. (5 .1 7 )

As conducted in the standard SEM formulation performed in Chapter 3, integration- 

by-parts is applied to the standard acoustic terms. However the additional source 

terms are not modified, giving

f  N jA U  =  At [  [ A U
Jo. Jn \

dNj
dx

+ B U
dN7

A t2 l2 d N ^ i i
dx dx

dy

A B

dfl 

dN! dU

+ B A

dx dy 

dNr dU
dy dx

+ B 2 dNi dU
dy dy

-At f  N !a U nd Q + —  f  Ni<r ( A ^ -  
Jq 2 Jn \ dx

- A t  j  [ N i f n+ 2 ■ n)  dT

dU  
+  dy

dfl

+  crUn Ĵ dQ

(5 .1 8 )

Using a FE approximation of the unknowns, we express U  with a set of interpolation 

functions

U  =  N j U j

and the fully discrete form of the equations can be written as

M u A U j  = A t C u U j  -  K l j U nj  + A t D u U nj  +  A t f i (5.19)
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where

Mu =  / PiQiPjQj d£l
J q

Cu — J ( A ^ Q , P jQj + B P ^ P jQj) dQ,

K u  =  [  ( a ^ Q j^ - Q j +  A B ^ Q jPj ^ -
J q \ dx dx  dx dy

+BAP^^p-Q j + B tp ^ P j^ A d Q
dy  dx  dy  dy  J

D j j  =  [  c r P i Q i P j Q j  dVl
J q

[  ( a A P IQI<P!-Qj + <TBPIQIP j ^ + < j 2PIQIPjQj\dQ.
^  Jq V  dy

i _ . i 1 1
/ 7 =  - A t  f n+* n d T  - A t  f n+i n d r

JreTr.jrr JT'%*4T

Note, again, that the boundary integral terms have been simplified and are represented 

by the boundary flux / .

The PML formulation was tested to assess the effect on its performance of varying 

some of the PML parameters, e.g. thickness, maximum damping coefficient. The 

results of this analysis can be seen in Appendix C.

5.5 Simple Circular Wave Scattering Model

Having reached a stage in the development where an initial scattering model can 

be attempted, an appropriately simple scattering object is required. The most obvious 

choice is a circular scatterer, which is both geometrically simple and, as discussed 

in Section 2.5, permits comparison with an analytical solution. Therefore, in this 

section, an initial scattering model will be introduced followed by the results obtained 

by our present higher order hybrid method applied to a straight-sided mesh.
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5.5.1 Initial Scattering Model

This will be an acoustic wave model with linearised Euler governing equations as 

expressed in (3.19). In this example, a circular scatterer of 3 unit diameter will be 

placed at the centre of a square 1 0 x 1 0  unit domain. The mesh used to discretise this 

space comprises 76 triangular elements surrounding the scatterer and 68 quadrilateral 

elements beyond, as presented in Figure 5.6. The scatterer is illuminated by a plane

Figure 5.6: Simple circular scatterer mesh

incident sinusoidal pressure wave travelling along the x-axis, which can be expressed

as

p ( x , t) = po cos(kxx  — ujt) (5.20)

where k  — (kx, ky) is the wavenumber and uj is the angular frequency of the wave. 

The wavenumber k  relates to the wavelength A as

A =  —  
1*1

(5.21)

noting that, due to the null value given to ky in this case, the denominator o f this 

expression simplifies to merely kx.

Returning briefly to the discussion of Section 2.5.5, concerning the analogy be­

tween the acoustic and electromagnetic (EM) equations in two dimensions, we note
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that this model, looking at both hard and soft acoustic scatterers, can be used to ap­

proximate transverse electric (TE2) and transverse magnetic (TM2) EM models of 

perfect electrically conducting (PEC) scatterers respectively, where interest is limited 

to the real parts of the wavefields. Therefore, in search of a simple initial problem, 

the wavelength is defined as A =  1.5 units, thus giving an electrical length of 2A for 

the scatterer when considering the problem in this context.

The model will be run for 6 cycles of the wave to ensure that the scattered wave- 

field has reached a fully developed steady harmonic state.

5.5.2 Results

The scattered wavefields produced for this model for the example of a hard acous­

tic scatterer using various element order are presented in Figure 5.7. Note that these 

figures also represent the scattered magnetic H z field from a PEC in a TE2 polarizaed 

EM model. This provides an initial qualitative estimation of the improvement in so­

lution accuracy as the order is increased, and suggests that the method is converging 

as desired.

However, the results displayed in Table 5.1 suggest otherwise. This table gives 

the L2-error norm (3.42) of the pressure taken about the surface of the scatterer for 

this hard acoustic model, which provides a more quantitative measurement to assess 

the accuracy of the solution.

Order TG2 RK4
1 0.65614525 0.53429377
2 0.34523503 0.36215839
3 0.12863426 0.12943203
4 0.14869759 0.14864206
5 0.15228255 0.15270437
6 0.14683943 0.14956536

Table 5.1: L2-error norm of pressure taken around the scattering surface

We see here, that for both the TG2 and RK4 temporal schemes, that the convergence
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(a) (b)

(d)

(e) (f)

Figure 5.7: Scattered field for various elem ent order: (a) 1st order (b) 2nd order (c) 
3rd order (d) 4 th order (e) 5th order (f) 6th order
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of the approximate solution is limited. In fact the accuracy fails to improve beyond 

that achieved with third order elements. As the limit is observed with even the higher 

order RK4 scheme, this indicates that there is some other source of error dominating 

the solution.

The most likely cause o f this overriding error is the representation o f the scat­

tering geometry. With this initial example, it was attempted to model the boundary 

curve o f the circular scatterer with a piecewise linear approximation. DG methods are 

known to be very sensitive to errors arising at curved boundaries [52]. Furthermore, 

it has been shown by Bassi and Rebay [32], that to maintain the order of accuracy of 

DG methods accurate representation of the boundary is needed. In [32], it is shown 

that even the accuracy of a DG scheme using linear interpolation functions for the ap­

proximation of the unknown can be improved significantly by the use of a quadratic 

representation o f a boundary curve, which means that this is not only an important 

consideration for higher order solution schemes.

Examination of the scattering width distributions produced by this model, again 

for various element order as shown in Figure 5.8, provides further evidence support­

ing this fact. This is also evident for the case o f a soft acoustic scatterer (or PEC 

scatterer in a T M Z polarized EM field) as shown in Figure 5.9. It is obvious that 

the approximations generated with increasing order fail to converge towards the exact 

analytical solution. In effect, they are converging towards the exact solution for a 

dodecagon or 12-sided polygon. Obviously, this example highlights this problem due 

to the use of a very coarse mesh. However, methods are available which can improve 

the approximation of curved boundaries, and hence the resulting solution, without 

resorting to an increase in /z-refinement.

One method of improving the fidelity of boundary representation is to use higher 

order geometrical approximation. However, this is achieved by means of non-linear 

mapping which is inherently computationally expensive. Therefore, before turning 

to this method, we will attempt to implement a recent formulation developed by 

Krivodonova and Berger [33].
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Figure 5.8: Computed scattering width distributions for a 2A hard acoustic circular 
scatterer with various element order and straight mesh sides
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Figure 5.9: Computed scattering width distributions for a 2A soft acoustic circular 
scatterer with various element order and straight mesh sides
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5.6 Curvature Boundary Condition

This approach avoids the complexity of defining elements with curved geomet­

rical boundaries, but succeeds in improving the resulting solution accuracy. Physi­

cally curved boundaries are discretised with standard straight-sided elements. How­

ever, calculations performed during the solution procedure involving these boundaries 

utilise the physical boundary normals and not only those associated with the straight­

sided discretisation. This constitutes the improvement in geometrical boundary rep­

resentation necessary for DG schemes.

5.6.1 Formulation

The technique presented in [33] describes a method by which the solid wall 

boundary conditions, used in the steady two-dimensional Eulerian model of fluid 

flow, can be improved when applied to a curved physical boundary. The standard 

reflecting boundary condition (RBC)

v  • n  =  0 (5.22)

where the normal component of the flow velocity is set to zero, states that no flow 

can penetrate a solid wall. In this statement, the normal n  — (nx , ny) is taken from 

the computational boundary, which in a standard mesh comprises piecewise linear 

segments. Therefore, for a straight-sided physical geometry, where these piecewise 

linear segments permit a suitably accurate representation of the boundary, this condi­

tion works well.

However, when applied directly to more complex curved boundaries, the accuracy 

of the solution is significantly inferior. Furthermore, contrary to providing an im­

provement in accuracy, the application of p-refinement to these straight-sided meshes 

can cause the solution to deteriorate [32]. In this case, application of (5.22) no longer 

provides an accurate physical interpretation of the flow at this boundary. In fact, due 

to the disparity between the computational and physical boundaries, we require this 

condition to be broken, as some of the flow must be able to leave and re-enter the
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computational domain to enable a better approximation to the condition of no flow 

through the physical boundary. The benefits of such a technique are believed to out­

weigh the obvious loss of conservation, a loss which is shown to be negligible in

The algorithm used to obtain this curvature boundary condition (CBC) makes use 

o f the physical geometry to obtain so called ghost values at each integration point 

located on the curved surface. Subsequently, these values are used in the Roe flux 

calculation to obtain a boundary flux. Therefore, in this case, the true solid wall 

boundary condition of no flow through the physical boundary is used

where N  = (Nx , N y) is the physical boundary normal.

The procedure to impose this condition numerically proceeds as follows [33]. A 

ghost state U 9 is generated at each integration point cc* on the boundary. The velocity 

at the boundary is reflected to the ghost state with respect to the physical boundary 

tangent vector T , as shown in Figure 5.10 [33]. Therefore, the normal and tangential

[33]-

(5.23)

N

Figure 5.10: Velocity vector reflection

velocity components relative to the physical boundary at the ghost state are given by

v 9(xi) ■ N ( x i )  = - v ( x i )  • N ( x i )  (5.24a)

v 9{Xi) • T ( Xi) = v(x i )  ■ T ( x i )  (5.24b)
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and effectively result in a zero normal velocity to the surface. The pressure p  is taken 

equal to the interior solution value at that point. Subsequently rotating the velocity 

vectors back into x  and y  components, the ghost state vector can be expressed as

u[(Ny)2 -  (A y 2] -  2N xN yv 

v[(Nx)2 -  (A y 2] -  2N xN yu

P

Finally, these values, along with the interior solution values at the corresponding 

points, are used in the Roe flux calculation to compute the appropriate boundary flux.

5.6.2 Results

We now repeat the scattering model described in Section 5.5.1 with application 

o f the CBC to the straight sides of the mesh used to represent the circular scatterer. 

The scattering width distributions displayed in Figure 5.11 demonstrate a marked 

improvement in the convergence of the solution. It is evident in this case that the 

approximate solutions obtained with application of the CBC are significantly more 

accurate than the straight sided results of the previous section, where only the standard 

reflecting boundary condition (RBC) was used.

Unfortunately, although repeating the measurement of the L2-error norm o f the 

pressure around the surface o f the scatterer also shows an improvement in the results, 

as can be seen in Table 5.2, there is still a limit to the convergence.

Order TG2 RK4
1 0.65067961 0.54578564
2 0.32505825 0.33937012
3 0.06723746 0.07710083
4 0.08616869 0.08463972
5 0.08855492 0.08838131
6 0.08863865 0.08616391

Table 5.2: L 2 -error norm o f pressure taken around the scattering surface with appli­
cation of the CBC
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Figure 5.11: Computed scattering width distributions for a 2A circular scatterer with 
various element order and a CBC applied to the straight scattering sides

Furthermore, due to the nature of the CBC, direct application of the procedure 

to the examples of a soft acoustic scatterer or a PEC scatterer in a TMZ field is not 

possible. Therefore, further improvement of solution accuracy will now be pursued 

by incorporation of a true higher order geometrical representation. With this, it is 

hoped that convergence of both the scattering width distributions and surface pressure 

distribution will be improved.

5.7 Actual Curved Boundary

One of the most obvious methods of improving the fidelity of the boundary repre­

sentation is to use a higher order geometrical representation. However, due to the 

resulting non-linear nature of the transformation needed to map an element from 

physical to computational space, this is achieved as a compromise with increased 

computational expense.

Fortunately, in this case, we can limit this additional work by noting two things:
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firstly, only those elements with boundaries forming part o f the curved surface require 

a higher order representation, and secondly, for each of these elements, only the side 

that forms the boundary need be curved. Therefore, only a small fraction of the 

elements and sides which constitute the mesh will be affected by this modification, 

thus minimising the work per time step associated with this aspect of the model.

5.7.1 Formulation

For the straight-sided physical elements considered previously, the metrics of the 

Jacobian matrix

required for the transformation of any variational integral statements, were constant 

throughout the element. However, for elements with curved sides, these gradients can 

vary over the element, which means that any integral must be performed with these 

metrics forming part o f the integrand. This necessitates the formation of bespoke 

element matrices for each curved element and, thus, is the reason for the increased 

computational work.

A typical example of the required transformation is shown diagrammatically in 

Figure 5.12. It can be seen that only one of the sides o f the curved physical element 

need be represented with a higher order approximation.

d x  d y

J =  * * (5.25)
d x  d y  
dr) dr)

3

3

2 2

x

Figure 5.12: Mapping for triangular elements with one curved side
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In this case, the mapping can be expressed as

n+ 2

J 2 N >x i (5-26)x
i = 1

where n is the order o f the element and the n  +  2 nodes used in the transformation are 

the points at each vertex of the element and the remaining GLL points which consti­

tute the curved side. These points are displayed in Figure 5.12 for the example of a 

fourth order element. Selection of these points enables a higher order representation 

to be used along the computational £ direction, which maps the curved side, and a 

simple linear representation in the rj direction. Therefore, the interpolation function 

for this mapping would then be a product of two polynomials

1  —  71
Ni = [ai +  a2£o +  a 3̂ o +  ••• +  an+i£o]— 2 — (5-27)

where

€o =  (5-28)1 - 7 }

The metrics of the Jacobian can now be computed as

d X  9 N < «  ,Q \

(5-29)i=\

Note that in this case, contrary to the straight-sided elements, the metrics vary over 

the element. Therefore, the Jacobian component values, including the determinant, 

must be computed at each quadrature point.

5.7.2 Results

Again, we can now repeat the simple scattering model introduced in Section 5.5.1 

with a higher order geometrical approximation of the curved boundary. A further 

improvement in convergence is evident from the scattering width distributions for the 

hard acoustic model, displayed in Figure 5.13, as compared with the previous results 

for the straight sided mesh with and without application o f the CBC. From visual 

inspection, it is seen that the sixth order computational solution is almost identical to 

the analytical solution.
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Furthermore, the measurement of the L 2 -error norm o f the pressure around the 

surface o f the scatterer, presented in Table 5.3, demonstrates continued convergence, 

in the case of the higher order RK4 scheme, over the range of element orders used in 

this analysis.

Order TG2 RK4
1 0.65614525 0.53429377
2 0.22891995 0.25457812
3 0.04420730 0.06172161
4 0.01532267 0.01487880
5 0.00389915 0.00486275
6 0.00402383 0.00190026

Table 5.3: L2-error norm of pressure taken around the scattering surface with higher 
order geometrical representation

A similar improvement in convergence is evident also for the soft acoustic model, 

the scattering width distributions for which can be seen in Figure 5.14. Although the 

lower order solutions can be seen to be less accurate in this case compared to the hard 

acoustic model, the sixth order approximation is, once again, almost identical to the 

exact solution.

5.8 Complex Circular Wave Scattering Model

As further validation o f the hybrid solution method, a more complex circular scat­

tering model, again enabling comparison with an analytical solution, will be approx­

imated. Quite simply, this increase in complexity will be achieved by use of a shorter 

incident wavelength, thus giving, in an EM context, an increased electrical length. 

The resulting scattering distribution surrounding the object will then be more intri­

cate, raising the difficulty of accurate approximation.
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Figure 5.13: Computed scattering width distributions for an acoustically hard 
2A circular scatterer with various element order with higher order geometrical 
representation
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Figure 5.14: Computed scattering width distributions for an acoustically soft
2A circular scatterer with various element order with higher order geometrical 
representation
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5.8.1 Computational Model

The scatterer in this model will once again have a 3 unit diameter. As a much 

more refined mesh will be required in this case, it will be placed at the centre of a 

smaller 6 x 6  unit domain to minimise computational time. The mesh, as shown in 

Figure 5.15, comprises of 1062 triangular elements and 2296 quadrilateral elements.

Figure 5.15: Complex circular scatterer mesh

The scatterer will be illuminated by the same form of plane incident sinusoidal 

wave as described in (5.20). However, to increase the complexity o f the model, a 

wavelength A =  0.2 units is chosen, giving an electrical length o f 15A. The model is 

progressed for 40 wave cycles.

5.8.2 Results

Convergence can be seen in the scattering width distributions displayed in Figure 

5.16 and 5.17 for acoustically hard (or PEC scatterer in a TEZ field) and soft (or PEC 

scatterer in a TM2 field) scatterers respectively. By visual inspection, the distributions 

obtained with the highest element orders employed in this analysis, are identical to 

the analytical solution.

For clarity, the scattering width distributions generated by the use of sixth order 

elements are presented in Figure 5.18 and 5.19. As noted above these computational
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Figure 5.16: Computed scattering width distributions for a 15A hard acoustic circular 
scatterer with various element order
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Figure 5.17: Computed scattering width distributions for a 15A soft acoustic circular 
scatterer with various element order
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Figure 5.18: Computed scattering width distributions for a 15A hard acoustic circular 
scatterer with sixth order elements

solution plots overlie the exact analytical distributions.

The L2-error norm of the pressure taken around the scattering surface and the 

computational time are presented in Table 5.4. These will be of greater interest in the 

discussion of computational efficiency found in the following section.

Order TG2 RK4
L2-error norm CPU time (s) L2-error norm CPU time (s)

1 0.47568926 3.93 0.40053259 5.22
2 0.17494481 25.26 0.18506910 34.30
3 0.02512157 59.51 0.03300454 89.29
4 0.01039352 389.88 0.00595719 232.39
5 0.00199468 572.95 0.00113594 617.34
6 0.00038926 12554.50 0.00023372 1507.13

Table 5.4: L2-error norm of pressure taken around the scattering surface and compu­
tational time taken with various element order
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Figure 5.19: Computed scattering width distributions for a 15A soft acoustic circular 
scatterer with sixth order elements

5.9 Computational Efficiency

We have now seen that the proposed higher order hybrid solution procedure con­

verges towards the exact solution as desired. However, at this stage, we are yet to 

discuss any of the potential computational advantages of the use of such higher order 

spatial approximation. Therefore, in this section, we will attempt to give an indication 

of the computational savings that may be achieved.

5.9.1 Computational Model

This analysis will utilise the hard acoustic or PEC TE* polarized EM scattering 

model, as introduced in Section 5.8 for the complex circular wave scattering example. 

Therefore, the incident wavelength will be A =  0.2 and the diameter of the scatterer 

will be 15A.

Having previously applied increasing element order to the mesh shown in Figure 

5.15, we will now perform low order linear models on meshes of equivalent increas­
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ing refinement. This will be achieved in two ways: firstly, using directly the meshes 

formed by addition o f the spectral Gauss-Legendre-Lobatto (GLL) and Fekete points 

to the original mesh noted above, and secondly by generating new meshes with ap­

proximately the same number of points and elements. The benefits o f the first method 

are that the meshes exist and that the number and positions of the nodes are precisely 

those employed in each higher order analysis. However, due to the specific grouping 

o f the GLL and Fekete points, the resulting non-uniformity of the mesh may impair 

the accuracy o f the linear model. Therefore, in the second method, the uniformity is 

restored by generating entirely new meshes to ensure that the accuracy o f the linear 

model is measured fairly. For clarity, an index for the various meshes, including the 

number of points in each mesh, is given in Table 5.5. For the example of linear

Non-uniform mesh Uniform mesh
Mesh Number of points Mesh Number o f points

la 2994 lb 2994
2a 11642 2b 11684
3a 25944 3b 25722
4a 45900 4b 46011
5a 71510 5b 71611
6a 102774 6b 101684

Table 5.5: Index of linear meshes for circular scatterer

meshes with the equivalent number o f points as used in the previous fourth order 

model, Figures 5.20(a) and 5.20(b) display the upper left sections o f meshes 4a and 

4b respectively.

The computational time required to obtain the hybrid solution will be recorded as 

an indication o f the resources required. A single Pentium IV 2.1GHz processor will 

be used to run the program.

Both TG2 and RK4 temporal discretisation were applied. As the results produced 

in each case were similar, only the scattering width output generated by the TG2 

model need and will be discussed to avoid repetition. However, computational time 

data will be provided for both schemes.
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(a) (b)

Figure 5.20: Upper left sections o f  the equivalent linear meshes to the 4 th order mesh: 
(a) Direct insertion o f  GLL/Fckete points to original mesh, mesh 4a (b) Creation o f  
new uniformly spaced mesh, mesh 4b

5.9.2 Results

Firstly, we will consider the results o f  the linear models performed on the non- 

uniform linear meshes produced directly by addition o f  the GLL/Fekcte points to the 

original mesh. Table 5.6 presents the L 2-error norm o f  the pressure taken around 

the scattering surface and the time taken to obtain the computational solution. The 

scattering width distributions can be seen in Figure 5.21.

Mesh TG2 RK4
L 2-e rro rno rm  CPU time (s) L 2-error norm CPU  time (s)

la 0.47568926 3.93 0.40053259 5.22
2a 0.13607195 42.00 0.16632739 50.76
3a 0.06525156 178.09 0.11102243 199.86
4a 0.02976370 449.85 0.04206943 642.04
5a 0.02655390 1080.04 0.04036957 1734.69
6a 0.01957246 2113.57 0.01828267 2721.32

Table 5.6: L 2-error norm o f  pressure taken around the scattering surface and com pu­
tational time taken with various non-uniform linear meshes
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Figure 5.21: Computed scattering width distributions for a 15A hard acoustic circular 
scatterer with various non-uniform linear meshes

It is clear that convergence towards the exact solution is occurring at a slower 

rate with ^-refinement than witnessed in the previous section with p-refinement. Fo­

cussing on the highest level of refinement (Mesh 6a), where 102774 points were used 

to generate the mesh which is an equivalent number to the previous sixth order model, 

Figure 5.22 shows clearly the difference between the approximate and exact scatter­

ing width distributions.

Turning now to the results for the linear models performed on the group of more 

uniform meshes lb-6b, a significant improvement is evident. Once again, the sur­

face pressure L2-error norm and computational time are shown in Table 5.7, while 

Figure 5.23 presents the scattering width distributions in this case. A greater level of 

convergence for the highest refinement is clear to see in Figure 5.24.

Note also, that in this hybrid solution procedure, time-steps are global and are 

governed by the minimum element characteristic dimension. Therefore, in general, 

the models run on the non-uniform meshes la-6a have a smaller minimum element 

dimension and thus take more computational time.
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Figure 5.22: Computed scattering width distribution for a 15A hard acoustic circular 
scatterer with a non-uniform linear mesh of 102774 points (Mesh 6a)
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Figure 5.23: Computed scattering width distributions for a 15A hard acoustic circular 
scatterer with various uniform linear meshes
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Figure 5.24: Computed scattering width distribution for a 15A hard acoustic circular 
scatterer with a uniform linear mesh of 102774 points (Mesh 6b)

Mesh TG2 RK4
L 2-error norm CPU time (s) L 2-error norm CPU time (s)

lb 0.47568926 3.93 0.40053259 5.22
2b 0.12642516 46.25 0.15339789 55.42
3b 0.05603743 149.15 0.06954133 200.66
4b 0.03041981 384.96 0.03603510 516.36
5b 0.01876451 969.68 0.02200313 1387.62
6b 0.01334953 1613.38 0.01571360 1833.23

Table 5.7: L2-error norm of pressure taken around the scattering surface and compu­
tational time taken with various uniform linear meshes
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Now by comparison with the results of the higher order method, presented in 

Table 5.4, we can begin to assess the computational advantages of the higher order 

spatial approximation. For example, considering the results from the most refined 

uniform mesh (Mesh 6b), which with application o f the TG2 temporal scheme gave 

an error norm o f L f scat — 0.01334953, this is o f the same order as the error given 

by the previous fourth order model. Subsequent comparison of the computational 

time taken in each case shows that the duration o f the linear model was a factor of 4 

greater than that o f the fourth order approximation. This is only one example, giving 

an indication o f the general trend. However, it is quite clear that the remaining data 

would permit further favourable comparisons to be made highlighting the reduced 

computational work needed by the higher order methods for this problem.

To conclude the analysis, we generated one further uniform linear mesh of in­

creased refinement in an attempt to reach the accuracy of the higher order solutions. 

This final mesh comprised 182075 points and 215566 elements and resulted in solu­

tions with error norms and computational times o f L ^scat =  0.00740602 in 4163.69s 

and Tpscat =  0.00858994 in 5406.27s for the TG2 and RK4 schemes respectively. For 

the output with the RK4 scheme, this also approaches the error norm obtained with the 

previous fourth order model obtained with the RK4 scheme (1% = 0.00595719).

However, here the computational time taken by the linear model was over a factor o f 

20 greater.

Therefore, the potential for /^-convergence observed in each of the initial stages of 

development, as discussed in Chapters 3 and 4, has thus been successfully translated 

to these initial hybrid wave scattering models. As a result, significant computational 

savings have been achieved. It now remains to see whether similar results can be 

attained for more complex scattering problems.
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5.10 Extended Time Integration Stability

One final aspect of higher order approximation methods which must be considered 

is their stability after prolonged time integration periods. In terms of wave propaga­

tion analysis this of concern for problems which require the propagation of a signifi­

cant number o f wave cycles.

5.10.1 Model

We will employ the simple 2A circular wave scattering model o f Section 5.5 to 

analyse the stability of the procedure as the number o f wave cycles is increased. All 

we require is that the approximation be shown to be stable within a reasonable range 

of long term integration times. Therefore, we will obtain numerical solutions to this 

model following 12, 100, 1000, 10000 and 100000 cycles o f the incident plane sinu­

soidal wave, as defined in expression 5.20, repeating the analysis with first, third and 

fifth order approximations.

5.10.2 Results

The output o f this long term stability analysis is presented in Tables 5.8, 5.9 and

5.10 for the first, third and fifth order approximation respectively. The L2 error norm 

is taken around the surface o f the scatterer.

Solution time Number o f wave cycles L2 error norm CPU time (s)
18.0 12 0.65614525 0.11

150.0 100 0.65703590 0.36
1500.0 1000 0.65706626 2.92

15000.0 10000 0.65665306 28.94
150000.0 100000 0.65223623 292.56

Table 5.8: Long term stability analysis performed with a first order approximation, 
displaying the L2 error norm taken around the surface of the scatterer after various 
solution times
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Solution time Number o f wave cycles L2 error norm CPU time (s)
18.0 12 0.04420725 1.08

150.0 100 0.04418392 6.22
1500.0 1000 0.04421799 58.45

15000.0 10000 0.04461829 582.19
150000.0 100000 0.04908678 5735.06

Table 5.9: Long term stability analysis performed with a third order approximation, 
displaying the L2 error norm taken around the surface of the scatterer after various 
solution times

Solution time Number o f wave cycles L2 error norm CPU time (s)
18.0 12 0.00389925 18.41

150.0 100 0.00389431 61.52
1500.0 1000 0.00383522 497.08

15000.0 10000 0.00328885 4858.56
150000.0 100000 0.00621470 50537.69

Table 5.10: Long term stability analysis performed with a fifth order approximation, 
displaying the L2 error norm taken around the surface o f the scatterer after various 
solution times

As can be seen, the numerical procedure remains stable as the solution time is 

increased in all cases, with only a small increase in error for the third and fifth order 

approximations after 100000 wave cycles. Therefore, we can be satisfied that this 

higher order hybrid approximation method for wave scattering problems will be stable 

for long term problems.

5.11 Conclusion

Firstly, the hybrid solution procedure was validated with the simple Gaussian 

pulse propagation test. As with the separate SEM and spectral DGM, this demon­

strated that /^-convergence was still possible with the hybrid formulation.

Having established this, further ground work was conducted prior to the initiation 

of wave scattering modelling. The requirement for an accurate truncation method to
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approximate the infinite physical domains encountered in such models was discussed 

and the concept of perfectly matched layers was introduced. Subsequently, the chosen 

formulation used to incorporate such a layer within the solution method was presented 

and the resulting governing equations were derived.

In due course, a simple model of scattering from a 2A circular object was at­

tempted. This highlighted the importance of accurate geometrical representation 

o f curved boundaries, leading to the incorporation o f a recently proposed curvature 

boundary condition [33] and, ultimately, to a higher order boundary approximation. 

Results with both of these methods exhibited improvements in the solution accuracy, 

although the higher order geometrical approximation was the most successful. A 

further, more complicated model of a 15A circular scatterer was also approximated, 

which showed clearly the computational solution converging towards the exact solu­

tion.

This lead to an investigation o f the possible computational savings attainable with 

higher order spatial approximation. Comparison with low order linear models per­

formed on meshes of increasing refinement demonstrated the efficiency of the pro­

posed hybrid high order method.

Therefore, it is believed that the efficacy of this hybrid solution procedure has 

been suitably confirmed. Analyses of various other scattering geometries can now 

commence, the discussion of which can be found in the following chapter.
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Chapter 6 

Further Scattering Models

6.1 Introduction

There is an unbounded number o f possible configurations for practical scatterers. 

In cutting edge technological fields such as the aerospace industry, advances in design 

can bring forth increasingly complicated and intricate geometries. This rise in com­

plexity, in turn, promotes the need for more accurate and efficient solution methods 

which enable an in-depth numerical analysis to be conducted.

Having completed the validation of the proposed higher order hybrid finite 

element method, work can proceed to the analysis of more complicated scattering 

geometries. We will not, at this stage, approach the complexity suggested above, but 

the properties of the chosen models should hopefully provide an adequate indication 

of the potential o f the method, in addition to any possible limitations.

Due to the form of these geometries, analytical solutions for comparison with the 

computed approximations will be unavailable. Therefore, validation of the gener­

ated scattered fields and associated quantities will be performed, where possible, by 

reference to previously computed numerical solutions obtained by various research 

groups. Ultimately, we will endeavour to show that the accuracy and efficiency of 

this method can surpass that offered by lower order spatial approximation.
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6.2 Dihedral Scatterer

The first model that will be considered is a dihedral scatterer. Formed only by 

two legs lying perpendicular to each other, the simplicity of this geometry may belie 

its usefulness. However, it should be noted, that the thickness o f the legs in relation 

to their length and the sharp geometrical features will provide an interesting insight 

into the resolution properties o f the method. The singularities present in the physical 

solution will serve as an adequate initial test for the convergence o f the solution.

6.2.1 Scattering Model

The problem considered is a PEC scatterer placed in a TEZ polarized electro­

magnetic field, which is analogous to acoustic scattering from a hard surface. The 

geometry of the dihedral scatterer used in this example can be seen in Figure 6.1. A 

unit wavelength will be used, giving the scatterer an approximate electrical length of 

10A, and the model will be progressed for 50 cycles.

10.2

----------------H
10.2

Figure 6.1: Dihedral scatterer geometry

Contrary to the previous example of wave scattering from a circular object, the 

orientation of the geometry within the incident wave field will affect the resulting 

scattered wave distribution. Therefore, various incident wave directions will be mod­

elled to obtain the scattered field and scattering width distribution associated with
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each. The selected range o f  directions will be 9 =  120°, 135°, 150°, 180°, where, for 

example, an angle o f  9 =  180° defines an incident wave travelling horizontally along 

the positive x-axis. The initial mesh used in this analysis is displayed in Figure 6.2. 

Note that, due to their relatively small dimension, the thickness o f  each dihedral leg 

is discretised by only one element.

Figure 6.2: Initial dihedral mesh

6.2.2 Results

As an example o f  the output for this dihedral scattering model, the I P  wave fields 

generated for an incident direction o f  9 =  180°, using a third order spatial approxim a­

tion, are shown in Figure 6.3. An expected plane wave reflection is seen from the ver­

tical internal face, while a shadow region lies behind it when viewing the total field.

However, looking now at the convergence o f  the scattering width distributions, 

Figure 6.4 highlights the limitations of/^-refinement in high field variation regions. It 

is evident that the convergence o f  the solution is unstable as the fourth order model 

differs significantly from the third and fifth order approximations, which almost over­

lie each other.

W hen approximating smooth functions, such as a sinusoidal wave, /^-refinement 

works very well and has been shown to be more computationally efficient than using 

//-refinement with linear elements. However, if high gradients or singularities exist
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Figure 6.3: H z wave fields generated by a third order model o f  PEC dihedral scatterer 
in a T E 2 polarized EM field (a) Scattered field (b) Total field
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Figure 6.4: Scattering width distributions for a PEC dihedral scatterer in a T E Z polar­
ized EM field using element orders 3 to 5
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in the solution, then ̂ -refinement alone may not be sufficient. In these cases, some 

/^-refinement, localised to the region of high-gradient, may be needed to permit p- 

convergence to occur [53].

For this dihedral model, as there are sharp comers in the geometry, the exact 

solution will contain singularities. Consequently, the approximation must be able to 

resolve these and other high gradient regions appropriately. In this initial attempt, the 

mesh employed to discretise the domain used only one element to approximate the 

thickness o f the dihedral legs. Therefore, with this example, it has been demonstrated 

that this is insufficient and we will increase the refinement of the mesh which directly 

surrounds the scatterer. The leg thickness will now be approximated by two elements. 

The resulting scattering width distributions are presented in Figure 6.5. Here, it can 

be seen that the approximations approach the converged solution without oscillation.
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Figure 6.5: Scattering width distributions for a PEC dihedral scatterer in a TEZ polar­
ized EM field using various element order on a mesh o f increased refinement

Having removed the instability in the convergence by increasing the mesh refine­

ment, various other incident directions can be modelled. Figures 6.6 to 6.8 display 

the scattered wave fields and scattering width distributions for incident directions 

0 =  150°, 135°, 120° respectively. Mesh convergence can be seen in each case.
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(a) (b)

Figure 6.6: Dihedral scatterer. Incident wave direction 6 =  150° (a) H z scattered 
field with third order elements (b) Scattering width with various element order

(a) (b)

Figure 6.7: Dihedral scatterer. Incident wave direction 6 — 135° (a) H z scattered 
field with third order elements (b) Scattering width with various element order

(a) (b)

Figure 6.8: Dihedral scatterer. Incident wave direction 6 =  120° (a) H z scattered 
field with third order elements (b) Scattering width with various element order
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6.2.3 Computational Efficiency

From examination of the scattering widths in Figure 6.5, we see that convergence 

has occurred to a reasonable degree by third order. This spatial approximation com­

prised 151860 points and 19163 elements and the computational time taken to reach 

the numerical solution was 2119 seconds. We will now attempt to reach convergence 

by employing a reduction in element size only (/z-refinement) with a linear approxi­

mation and subsequently compare the computational work required in each case. An 

index displaying the number o f points and elements contained within each mesh can 

be seen in Table 6.1. It should be noted that the number of points in each mesh, num­

bered 1 to 6, is approximately equivalent to the number of points contained in a n th 

order approximation applied to the original mesh 1. For example, the third order ap­

proximation presented in Section 6.2.2 contained 151860 points, which is comparable 

to the number contained in linear mesh 3.

Mesh Number of points Number of elements
1 17176 19163
2 67796 76652
3 147730 163467
4 269368 306608
5 408217 452405
6 585363 647034

Table 6.1: Index of linear meshes for dihedral scatterer

Figure 6.9 presents the scattering width distributions obtained with meshes 1 to 

6 with a linear approximation. As was seen in Section 5.9, convergence is occurring 

at a slower rate than with the equivalent higher order approximations. To clarify the 

accuracy of the solution on the more refined linear meshes, Figure 6.10 facilitates 

a comparison of the scattering width distributions produced on meshes 4-6 with the 

fully converged fifth order approximation of the previous section. Even with the most 

refined mesh (mesh 6), the distribution is far from convergence for certain viewing 

angles. Nonetheless, on mesh 6, the computational time taken to obtain the solution
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Figure 6.9: Scattering width distributions for a PEC dihedral scatterer in a TEZ 
polarized EM field using various mesh refinements (meshes 1-6) with a linear 
approximation
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Figure 6.10: Scattering width distributions for a PEC dihedral scatterer in a TEZ po­
larized EM field using various mesh refinements (meshes 4-6) with a linear approxi­
mation, compared with a fifth order approximation on the original mesh (mesh 1)
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was 46415 seconds, almost 22 times greater than for the third order approximation 

quoted above.

In an attempt to achieve convergence, a further mesh was generated with 1073840 

points and 1226432 elements (mesh 7). The scattering width distribution for this 

discretisation is shown in Figure 6.11. It is evident that the accuracy o f this linear 

approximation is still inferior to the previous third order model.
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Figure 6.11: Scattering width distribution for PEC dihedral scatterer in a TEZ polar­
ized EM field using a linear mesh of 1073840 points (mesh 7)

6.3 Open Cavity Scatterer

As an extension to the previous scattering problem, we will now consider the ex­

ample of a straight-walled open cavity. At the outset of this thesis, in the discussion 

of model requirements found in Chapter 1, the intricate geometries o f practical scat- 

terers was discussed and the resulting requirement for extended integration times was 

stated. Therefore, the purpose of this model will be to assess how the method will 

cope with the increased scattering field interaction within the cavity of this relatively 

simple example.

Mesh 7 (1073846 p o in ts)-------
5th order (Mesh 1) -------

_L
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6.3.1 Scattering Model

As previously, the problem  considered is a PEC scatterer w ithin an incident plane 

sinusoidal T E 2 polarized electrom agnetic field o f  unit wavelength. Figure 6.12 d is­

plays the geom etry o f  the straight-w alled open cavity. The m esh used to discretise 

this geom etry can be seen in Figure 6.13 and consists o f  5594 triangular elem ents and 

1924 quadrilateral elem ents.

0.4

2 i ~n ■■
2.8

8.4

Figure 6.12: S traight-w alled open cavity scatterer geom etry

I T : ; rTTTTTTT-n r .i: r r r .4JTTTI4 44-l-l 144-1 t :4

Figure 6.13: S traight-w alled open cavity m esh

Due to the level o f  wave interaction that will occur w ithin the cavity, it is likely 

that the com putational time, required for the approxim ate solution to reach a steady 

harm onic state, will be increased. To establish at what time this occurs, we will first 

utilise a third order spatial approxim ation and obtain solutions for various com puta­

tional times.
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Once this has been completed, we will proceed with the ^-convergence analysis 

for this model and present results for two incident wave directions: 6 =  180°, —120°. 

Finally, to assess the efficiency of the higher order approximations, we will attempt to 

obtain solutions for the 9 — 180° incident direction model with linear approximation 

applied to meshes of increased /z-refinement.

6.3.2 Results

We begin with the results o f the preliminary analysis concerning the time taken 

to reach a steady harmonic state. The scattering width distributions generated by the 

third order approximation for various solution times are presented in Figure 6.14.
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Figure 6.14: Scattering width distribution for a PEC open cavity in a TE2 polarized 
EM field with incident wave direction 6 = 180° using a third order approximation 
with various solution times

As can be seen, the distributions converge towards a common solution, and hence 

approach a steady harmonic state, at approximately t =  600. Therefore, in the fol­

lowing work, this will be the chosen solution time.

An example of the output for this open cavity model can be seen in Figure 6.15.
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(a) (b)

Figure 6.15: H z wave fields for fifth order m odel o f a PEC open cavity in a T E 2 
polarized EM field (a) Scattered field (b) Total field

These are the scattered and total H z wave fields generated for an incident direction o f 

0 =  180° using a fifth order spatial approxim ation.

The scattered width distributions for incident wave directions 6 — 180°, —120°, 

generated using various elem ent order, are presented in Figures 6.16 and 6.17 respec­

tively. As can be seen, the num erical solutions are converging as the approxim a­

tion order is raised and by visual inspection show close sim ilarity with the results o f 

Ledger [54]. For com parison with the following linear analysis applied to m eshes of 

increased /z-refinement, the com putational time taken to generate the solution for the 

6 =  180° model are displayed in Table 6.2.

6.3.3 Computational Efficiency

In this section, we will recom pute the scattering width distributions for the open 

cavity model using linear approxim ation only. To im prove the accuracy o f the so­

lution we will rely solely on /z-refinement, using a series o f m eshes o f increasing 

refinem ent. The m eshes used in this analysis are listed in Table 6.3.

We consider a scattering problem  with an incident wave direction 6 — 180°. The
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Figure 6.16: Scattering width distribution for a PEC open cavity in a TEZ polarized 
EM field with incident wave direction 0 =  180°
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Figure 6.17: Scattering width distribution for a PEC open cavity in a TEZ polarized
EM field with incident wave direction 6 —  —150°
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Order Number of points CPU time (s)
1 5013 939.78
2 19468 4217.40
3 43365 12368.00
4 76704 81544.09
5 119485 95911.52

Table 6.2: Number of points and computational time taken with various approxi­
mation order to generate the solution for the open cavity model with incident wave 
direction 6 = 180°

Mesh Number of points CPU time (s)
2 18018 7644.87
3 37927 22918.07
4 63237 42216.18
5 93825 87900.48

Table 6.3: Mesh index for open cavity linear approximation comparison, with the 
number of points used in each mesh and the computational time required to generate 
the solution

scattered width distributions generated on each mesh can be seen in Figure 6.18.

By comparison with Figure 6.16, it is clear that the use of /^-refinement on the 

initial mesh, displayed in Figure 6.13, offers greater improvement in accuracy than 

offered by employing linear approximation on meshes of equivalently increased dis­

cretisation.

6.4 NACA0012 Aerofoil

As a more practical example, a model of a NACAOO 12 aerofoil is considered. 

The NACA four-digit series is a simple classification system for aerofoil geometries: 

the first digit represents the aerofoil’s maximum camber as a percentage of its chord 

length, the second specifies the position of the maximum camber in terms of tenths 

of chord length measured from the leading edge, and the third and fourth define the 

maximum thickness of the aerofoil as a percentage of the chord. Hence, for the
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Figure 6.18: Scattering width distribution for a PEC open cavity in a TEZ polarized 
EM field with incident wave direction 6 — 180°

NACA0012 aerofoil, its camber is zero and the geometry is specified by the distribu­

tion of thickness, which can be expressed as

y = ±^~  (0.2969y^ -  0.1260a: -  0.3537x2 +  0.2843a:3 -  0.1015a;4) (6.1)
U • z

where t is the percentage thickness, 12% in this case, represented by the last two 

digits of the NACA code.

6.4.1 Practical Curved Geometry Representation

Before attempting this wave scattering model, we must first consider the curved 

boundary representation for the aerofoil geometry. In the analysis o f Section 5.5, 

where various methods of boundary representation were employed, it was assumed 

that an analytical expression was available from which to obtain the additional ele­

ment boundary points needed to form the curved scattering boundary. In practical 

problems this may not always be the case. For example, a higher order model may 

be required for a scattering object using only a given mesh data file. Hence, for the
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additional boundary points to be inserted between the existing points in this file, an 

approximation must be made.

A common method of forming a curve through a given set of points is spline in­

terpolation [55]. By giving certain information concerning the positions o f the points, 

the tangent of the curve or its curvature, a function can be obtained with which any ad­

ditional points along the curve can be generated. The most popular method is known 

as a cubic spline, giving a compromise between accuracy and efficiency. Therefore, 

for the NACAOO 12 model, this approximation will be used. An expression for the 

cubic spline interpolation can be found in Appendix D.

However, to assess the effect o f this approximation on the accuracy of the solution 

we must perform a comparison with a known analytical solution. Returning to our 

standard 2A circular scattering model, we will repeat the analysis o f Section 5.7 for 

the model with curved element sides. However, in this case, the additional points 

needed for the higher order approximation will be obtained by cubic interpolation 

through the initial mesh boundary points.

The scattering width distributions for the circular scattering model obtained us­

ing higher order approximation on meshes formed with cubic spline interpolation 

can be seen in Figure 6.19 with the L2 error norm taken around the scattering sur­

face presented in Table 6.4. These L2 error norms are inferior to those generated by 

the circular model using the analytical expression for boundary point insertion, as 

shown in Table 5.3. However, the results are still an improvement over the straight 

sided approximation both with and without the curvature boundary condition (CBC) 

displayed in Tables 5.1 and 5.2 respectively. Furthermore, the scattering width distri­

butions generated with various approximation order can be seen to converge well to 

that of the exact solution in Figure 6.19.

6.4.2 Scattering Model

For the NACAOO 12 aerofoil model, we once again consider a scattering problem 

with a PEC surface within an incident plane sinusoidal TEZ polarized electromagnetic
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Figure 6.19: Scattering width distributions for a 2A PEC circular scatterer in a TE2 
polarized EM field with various element order using cubic spline interpolation

Order TG2
1 0.65614525
2 0.22305403
3 0.05436597
4 0.02798900
5 0.01715972
6 0.01974077

Table 6.4: L2-error norm taken around the scattering surface o f a 2A PEC circular 
object in a TE2 polarized EM field using cubic spline interpolation
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field, equivalent to acoustic scattering from a hard surface. The incident field is set 

to propagate horizontally towards the leading edge. Three models will be considered, 

each with different aerofoil chord lengths giving scattering models of electrical length 

2A, 10A and 100A. This will increase the complexity o f the model, testing the ability 

of the procedure to resolve both low and high wavenumber fields. Correspondingly, 

meshes o f increased refinement will be required as we increase the electrical length 

and these will be presented with the results in the next section.

6.4.3 Results

We begin with the model of the 2A aerofoil. The mesh used to discretise the space 

surrounding the aerofoil can be seen in Figure 6.20(a) and consists of 304 quadri­

lateral elements and 388 triangular elements. An example of the H z scattered wave 

field generated by a fifth order approximation upon this mesh is presented in Figure 

6.20(b). With this simple example, the approximation to the scattering width distri­

bution produced by all orders is reasonably accurate, as is shown in Figure 6.21, and 

compares well with the results for the same model presented by Ledger et al [12]. 

The computational times required to obtain the solution with various approximation 

order for this model are displayed in Table 6.5.

Order Number of points CPU time (s)
1 558 1.51
2 2112 8.18
3 4662 27.44
4 8208 1457.01
5 12750 315.74
6 18288 14437.56

Table 6.5: Number o f points used in the spatial approximation and computational time 
taken with various approximation order to generate the solution for the 2 A NACAOO 12 
aerofoil model

Proceeding to the 10A model, the mesh and typical H z scattered field are dis­

played in Figures 6.22(a) and 6.22(b). Convergence of the solution does occur as the
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approximation order is increased, Figure 6.23, but in this case, reasonable accuracy 

is only achieved with third order elements and above. Information concerning each 

mesh used in this analysis is contained in Table 6.6.

Order Number o f points CPU time (s)
2 7428 48.30
3 16533 156.70
4 29232 4613.78
5 45525 1440.75
6 65412 71561.93

Table 6.6: Computational time taken with various approximation order to generate 
the solution for the 10A NACAOO 12 aerofoil model

Finally, for the case of the highest wavenumber field, Figures 6.24(a) and 6.24(b) 

show the mesh and H z scattered field for the 100A model. The scattered width dis­

tributions with various approximation order are presented in Figure 6.25. Here, we 

see that the lower order approximations are far from convergence, with the accuracy 

improving significantly as the order is increased.

6.4.4 Computational Efficiency

To permit comparison with linear models on meshes of increased /z-refinement, we 

return firstly to the 2A NACAOO 12 aerofoil model. The meshes used in this analysis 

are indexed in Table 6.7, which states the number of points used in each mesh and 

the computational time needed to generate the solution. Note that the number of 

points contained in mesh n is equivalent to the number o f points used in the n th order 

approximation applied to the initial mesh displayed in Figure 6.20(a). For this 2A 

model, the scattering width distributions, obtained by linear approximation on the 

various meshes, can be seen in Figure 6.26.

Convergence of the scattering width distributions as the refinement of the mesh 

is increased can be seen to occur at a slower rate than that obtained by raising the 

order. However, the difference is less significant than in previous models, due to the
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Figure 6.20: 2A PEC NACAOO 12 aerofoil in a TE~ polarized EM field (a) m esh (304 
quadrilateral and 388 triangular elem ents) (b) H z scattered field generated with fifth 
order elem ents
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Figure 6.21: Scattering width distribution for a 2A PEC NACAOO 12 aerofoil in a TE~
polarized EM field
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(a) (b)

Figure 6.22: 10A PEC NACAOO 12 aerofoil in a T E Z polarized EM  field (a) mesh 
(1266 quadrilateral and 1062 triangular elem ents) (b) H z scattered field generated 
with fifth order elem ents
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Figure 6.23: Scattering width distribution for a 10A PEC NACAOO 12 aerofoil in a
TE2 polarized EM field
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(b)

Figure 6.24: 100A PEC NACAOO 12 aerofoil in a T E 2 polarized EM field (a) mesh 
(7557 quadrilateral and 7852 triangular elem ents) (b) H z scattered field generated 
with fifth order elem ents
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Figure 6.25: Scattering width distribution for a 100A PEC NACA0012 aerofoil in a
TEZ polarized EM field
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Mesh Number of points CPU time (s)
1 558 1.51
2 1928 10.85
3 4214 35.46
4 7462 99.62
5 11211 178.31
6 16241 361.66

Table 6.7: Mesh index for 2A NACAOO 12 aerofoil linear approximation comparison, 
with the number o f points used in each mesh and the computational time required to 
generate the solution

initial level of discretisation, and both refinement strategies are near convergence by 

the third refinement.

Therefore, for a second linear comparison, let us use the 10A NACAOO 12 aerofoil 

model. Again, the meshes are listed in Table 6.8 and the scattering width distributions 

generated on each mesh are displayed in Figure 6.27.

Mesh Number of points CPU time (s)
2 7349 83.48
3 16174 294.98
4 28828 746.97
5 43889 1588.22
6 63851 2891.06

Table 6.8: Mesh index for 10A NACAOO 12 aerofoil linear approximation comparison, 
with the number of points used in each mesh and the computational time required to 
generate the solution

In this case, the convergence of the approximation using mesh refinement only 

can be seen to be inferior to that achieved by increasing the order o f the elements. 

With linear approximation, Figure 6.27, the approximation only approaches conver­

gence with mesh 4. In contrast, with /7-refinement, Figure 6.23, the approximation is 

converged with a third order approximation and by comparison of the computational 

times found in Tables 6.8 and 6.6 respectively, the computational time ratio for these 

models is almost 5:1.
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Figure 6.26: Scattering width distribution for a 2A PEC NACAOO 12 aerofoil in a TEZ 
polarized EM field using linear approximation on various meshes

6

4

2

TJ

e3 0
a
oo

-2

-4

-6
-200 •150 100 -50 0 50 100 150 200

theta

Figure 6.27: Scattering width distribution for a 10A PEC NACAOO 12 aerofoil in a
TEZ polarized EM field using linear approximation on various meshes
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6.5 Multi Object Scattering Example

Another group of problems which may be of considerable interest is the wave 

fields generated by multiple scatterers. The interaction of waves propagating from 

the surfaces o f two or more adjacent objects will produce intricate patterns which 

vary depending on numerous factors, including the relative size, shape, separation 

and orientation of the scattering geometries. Once again, the scope o f such problems 

is vast. Hence, we will not begin an in-depth study of such models. However, we will 

present a simple example to introduce this set of problems and to indicate the possible 

application of this hybrid method for their approximation.

6.5.1 Scattering Model

The first wave scattering problem that was considered in this work, to permit the 

initial validation o f the hybrid procedure, was that of a simple circular scatterer in 

Section 5.5. Now, as we move on to consider problems with multiple scattering ob­

jects, it is only natural to return to this simple geometry. Therefore, for this analysis, 

we will consider the simplest extension possible and examine the wave scattering 

generated by two adjacent circular objects.

The physical configuration of these circular objects can be seen in Figure 6.28, 

with the mesh used to discretise the surrounding space presented in Figure 6.29. The 

circular objects are identical and, placed within an incident TEZ polarized EM sinu­

soidal plane wave field of wavelength A =  2ir, propagating in the negative y direction, 

each has an electrical length of (5/7r)A.

Returning to the theory o f the scattering width distribution, presented in Section 

2.6, we recall that far field scattered solution values are needed to evaluate this quan­

tity. To obtain these far field values, a surface S  is needed upon which to apply a near 

to far field transformation. This surface S  must enclose the scatterer. Hence, for the 

single object examples considered thus far, this surface was legitimately taken to co­

incide with the scattering surface. However, in the case of multi object scattering, this
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8.0 8.0

Figure 6.28: Multi object configuration (2 circles, each of electrical length (5/7t)A)

Figure 6.29: Multi object mesh (2 circles, each of electrical length (5/7t)A) with 1884 
quadrilateral elements and 1046 triangular elements

is not a valid choice, as the surface must enclose every scattering surface. Therefore, 

for this example, the formulation has been changed and the surface S  is taken to coin­

cide with the hybrid mesh interface, which separates the quadrilateral and triangular 

parts of the mesh. As can be seen in Figure 6.29, this interface encloses both objects 

and, thus, is a suitable choice.

6.5.2 Results

Figure 6.30 displays examples of the magnetic H z scattered and total wave fields 

for a TEZ polarized EM model. Similarly, the electric E z scattered and total fields for 

a TMZ polarization can be seen in Figure 6.31. Both figures display results generated 

by a fifth order approximation applied to the mesh shown in Figure 6.29.
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Figure 6.30: H z wave fields generated by two adjacent ( 5 /7r) A PEC circular scatterers 
placed in an incident T E 2 EM  field (a) Scattered field (b) Total field

(a) (b)

Figure 6.31: E z wave fields generated by two adjacent (5/7t)A PEC circular scatterers 
placed in an incident T M 2 EM  field (a) Scattered field (b) Total field

Scattered width distributions for the T E 2 and T M 2 polarizations are presented 

in Figures 6.32 and 6.33 respectively. Convergence occurs in both cases and the 

scattering width distribution for the T M 2 m odel com pares well by visual inspection 

to that presented in [56].
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Figure 6.32: Scattering width distribution for two adjacent (5/7t)A PEC circular scat­
terers, placed in a TEZ polarized EM field, using various approximation order
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Figure 6.33: Scattering width distribution for two adjacent (5/ tt)A PEC circular scat­
terers, placed in a TMZ polarized EM field, using various approximation order
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Increasing the complexity, the wave fields generated for a TE~ m odel by a shorter 

incident wavelength o f A =  2.5 units, giving each circular scatterer an electrical 

length o f 4A, can be seen in Figure 6.34. The scattering w idth distributions obtained 

with various approxim ation order are displayed in Figure 6.35 with the com putational 

times taken to generate the solution presented in Table 6.9. This inform ation will be 

used for com parison with the linear approxim ation discussed in the next section.

(a) (b)

Figure 6.34: H z wave fields generated by two adjacent 4A PEC circular scatterers 
placed in an incident TE~ EM field (a) Scattered field (b) Total field

O rder N um ber o f points CPU  time (s)

1 2548 3.03
2 9911 12.35
3 22088 38.11
4 39079 253.49
5 60884 380.69
6 87503 16758.22

Table 6.9: Com putational time taken with various approxim ation order to generate 
the solution for the multi object scattering model
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Figure 6.35: Scattering width distribution for two adjacent 4A PEC circular scatterers, 
placed in a TEZ polarized EM field, using various approximation order

6.5.3 Computational Efficiency

The scattering width distributions generated by the two 4A circular scatterers us­

ing linear approximation on meshes of various refinement can be seen in Figure 6.36. 

An index for the meshes used in this analysis, noting the number o f points in each 

mesh and the computational time taken to obtain the approximation, can be found in 

Table 6.10.

Overall, the distributions do look reasonably similar. However, for certain view­

ing angles, for example 6 = 0, the improved convergence of the increasing order ap­

proximation can be seen as the distributions tend to a single line faster in Figure 6.35 

than Figure 6.36. This may, in practical engineering terms, be viewed as only a sub­

tle difference, but the simplicity of this example should be taken into consideration. 

For more complex problems, where the electrical length of the objects are increased 

significantly, the disparity between the accuracy of using p-  and /z-refinement should 

be more obvious.
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Figure 6.36: Scattering width distribution for two adjacent 4A PEC circular scatterers, 
placed in a TE2 polarized EM field, using a linear approximation on meshes o f various 
refinement

Mesh Number of points CPU time (s)
1 2548 3.03
2 9837 18.40
3 21941 59.15
4 38821 130.14
5 60518 291.54
6 96894 624.30

Table 6.10: Mesh index for multi object scattering model linear approximation com­
parison, with the number of points used in each mesh and the computational time 
required to generate the solution
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6.6 Conclusion

In this chapter, we have analysed several examples of wave scattering problems. 

The complexity of these problems has been varied throughout to assess the compu­

tational procedure’s ability to cope with various aspects of practical wave scattering 

models. These included the singularities of comer scatterers, first seen in the dihe­

dral example of Section 6.2, and the high wavenumber fields of practical electro­

magnetics, as modelled with the NACAOO 12 aerofoil model in Section 6.4. In the 

first case, the dihedral model highlighted a limitation of the higher order approxi­

mation method in areas which contain singularities and demonstrated the need for 

increased mesh refinement to permit stable convergence as the order of the approxi­

mation was increased. On the other hand, the 100A aerofoil model revealed the higher 

order procedures ability to resolve high wavenumber fields and thus produce scatter­

ing width distributions of reasonable accuracy. The final example of wave scattering 

from multiple bodies exhibited the procedures ability to handle effectively this type 

of problem.

Subsequently, the output obtained from the higher order approximation was com­

pared with that generated by low order linear approximation on meshes of equivalent 

refinement. This facilitated the evaluation o f both the accuracy and efficiency of 

the proposed higher order hybrid method when measured against a linear procedure. 

Favourable results were seen here demonstrating the increased convergence rates of 

higher order approximation and its ability to provide accurate solutions for problems 

with high wavenumber fields. As such, the main objective of the work has been 

achieved.
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Chapter 7 

Conclusions and Further Work

7.1 Conclusions

The purpose of this work was the development and analysis o f a high-order solu­

tion procedure for temporal wave scattering problems in two spatial dimensions. Due 

to the requirements of the model, as explained in Chapter 1, it was essential that this 

method be capable of resolving high wavenumber scattered field patterns from com­

plex surfaces in a time and memory efficient manner. To satisfy these contradictory 

criteria, a hybrid mesh method was put forward. This would comprise a triangular 

mesh discretisation in the vicinity of the scatterer and a quadrilateral discretisation 

beyond, extending to the truncated far field boundary.

The initially proposed method, as presented in Chapter 3, was a continuous 

Galerkin finite element approximation, incorporating the application of a mass it­

eration procedure to the triangular discretisation of the computational domain in an 

attempt to improve the accuracy of the solution on these triangular elements. How­

ever, having performed analyses with a higher order approximation, it became clear 

that the iteration was diverging. Consideration of the underlying formulation enabled 

a theoretical explanation to be made, showing that the instability was the result of 

an ill-conditioned iterative matrix. On the other hand, the properties of the quadri­

lateral formulation of the spectral element method (SEM) were deemed satisfactory
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and, accordingly, this aspect o f the solution procedure was retained.

Therefore, an alternative method of solution for application to the triangular el­

ements was sought. As discussed in Section 1.3, a popular method of approxima­

tion for time domain electromagnetic wave scattering problems is the discontinuous 

Galerkin method (DGM). Hence, application o f this method to the triangular elements 

o f the mesh was attempted. Due to the discontinuous nature of the scheme, inversion 

o f a global mass matrix was avoided. This permitted the use o f the full consistent 

mass matrix, ensuring that the accuracy o f the approximation was maintained. Con­

sequently, in Chapter 4, the use of a simple Gaussian pulse propagation test demon­

strated the accuracy of this approximation and the potential for ̂ -convergence.

Subsequently, both methods, a continuous Galerkin SEM approximation on the 

quadrilateral discretisation and a high order discontinuous Galerkin finite element 

approximation on the triangular discretisation, were coupled to form the proposed 

hybrid solution method. Following a simple convergence test, to see if the individual 

accuracy of the components of this method were retained in this coupled implemen­

tation, some initial wave scattering solutions were generated. The accuracy o f these 

wave scattering solutions was also improved by separate studies on both the accu­

racy of the curved boundary representation and on an appropriate method to truncate 

the infinite physical domain. Convergence was clear in these models, with valida­

tion made possible due to the existence of an exact analytical solution. Furthermore, 

an initial assessment of the computational efficiency of higher order approximation 

when compared to low order linear methods demonstrated that significant time and 

memory reductions for wave scattering problems were possible.

Having performed these tests, the use of the method in a predictive context was 

assessed, analysing wave scattering problem where an exact analytical solution was 

unavailable. These problems included a dihedral object, a rectangular open cavity, a 

NACAOO 12 aerofoil geometry and a multi-scattering object example. Convergence 

with increasing element order was evident in each case and the improved efficiency of 

the higher order approximations was shown yet again. However, as was seen with the
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analysis of the first example, the dihedral object, stable convergence with increasing 

approximation order was only possible once a certain amount of /i-refinement had 

been performed. In particular, it was found that the representation of the sharp comers 

o f the geometry and small relative thickness of the dihedral legs had to be improved 

with an increase in element number. Only in this way would the high gradients in 

the solution be suitably resolved. It should be noted that this phenomenon would be 

less pronounced in the wave scattering examples involving circular objects due to the 

smoothness of the solution.

Nonetheless, it is therefore considered that this research work has succeeded in its 

intention to show the benefits of a higher order finite element approximation for the 

solution of wave scattering problems.

7.2 Further Work

With the development of this numerical procedure, we have obtained a means 

by which computational solutions to wave scattering problems can be generated. 

For the two-dimensional examples presented in this work, their high order solutions 

were shown to be achieved in a more efficient manner than using a low order linear 

approximation. As such, it was concluded above that the main objective of this work 

has been reached. However, there are numerous aspects of the model which could 

be modified and various further wave scattering problems for which to attempt an 

approximation. In this section, we will endeavour to give a brief discussion of these 

possible extensions to the work.

To begin this discussion, we will firstly consider the manner with which the order 

of approximation is defined for problem solution. At present, the approximation 

order applied to every part of the computational domain is constant. However, this 

need not be the case. In the limit, due to the incorporation o f a discontinuous Galerkin 

method, the scheme could quite possibly be modified to use different orders of ap­

proximation on each of these elements. However, before discussing this, it would be
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worthwhile returning to the spectral element method of Chapter 3. In this chapter, it 

was concluded that the iterative procedure, intended to improve the solution on the 

triangular elements, was not fit for purpose. Consequently, the application of a con­

tinuous Galerkin approximation on this part o f the mesh was abandoned, leading to 

the use o f a discontinuous Galerkin method, as seen in Chapter 4. To clarify this, the 

attempted use of both the iterative scheme and the discontinuous Galerkin method 

were driven by the initial inaccuracy of the triangular formulation of the SEM when 

compared to the same order o f approximation with a quadrilateral formulation, as 

noted in Section 3.5. Therefore, a possible alternative treatment could involve the ap­

plication of a higher order continuous Galerkin approximation to the triangular part 

o f the mesh than applied to the quadrilateral part. For example, if  the approximation 

on the quadrilateral elements was of n th order, then the approximation order on the 

triangular elements would be n  +  1. In this way, a diagonal mass matrix continuous 

SEM would be applied to every part of the mesh, with the order o f approximation as 

defined above. This would be an alternative method with which to attempt to achieve 

the objectives of accuracy and efficiency. It should be noted that a method of coupling 

the solutions, possibly similar to that discussed in Section 5.2.4 with an interpolation 

method to obtain the solution on coincident boundary points, would be required.

Returning to the chosen hybrid method, it may prove advantageous to attempt the 

opposite of that recommended above and apply a higher order SEM to the quadri­

lateral part o f the mesh than the corresponding order o f the spectral DGM applied 

to the triangular elements. This may reduce the dispersion error associated with the 

diagonal SEM as the scattered waves propagate beyond the unstructured mesh. How­

ever, the benefit o f this formulation may only be significant for low order approxima­

tions.

Leaving the field of electromagnetics and returning to the derivation of the 

acoustic wave equations from the governing equations of fluid flow, as performed 

in Section 2.2, we recall that a simplification that was made involved the assumption 

of a zero or quiescent background flow through which the waves would propagate. It
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may be of interest to attempt to incorporate an option for a certain background flow 

component within the approximation, such as would be encountered in the field of 

aeroacoustics. This would increase the generality of the method, thus encompassing 

a greater field of research.

Another obvious candidate for further work would be the reformulation o f the 

method to enable approximation o f wave scattering problems in three spatial dimen­

sions. This would permit the full analysis o f real practical scattering geometries. Al­

though requiring both increased computational time and memory, it would be hoped 

that the efficiency of the high order approximation, seen in this work, would extend 

to this enlarged solution space, thus offering a realistic means of approximation. Ad­

ditionally, it would be of considerable interest to practical modelling applications to 

permit the analysis of an increased range of problems including, for example in the 

electromagnetics field, penetrable media and dielectric scatterers.

Finally, the inevitable increase in computational work required to incorporate the 

modelling aspects suggested above could be offset by the use of parallel computing. 

The popularity o f this procedure has grown in recent times and its application to this 

work might be a worthwhile consideration. The use o f the discontinuous Galerkin 

method lends itself to such a technique as does the coupled mesh nature o f the 

method.
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Appendix A 

Analysis of Iterative Matrix

A.l Introduction

As further clarification of the divergence of the iterative procedure introduced 

in Chapter 3, this discussion presents theoretically the condition for stability of the 

iterative matrix. Subsequently, it is shown that the corresponding iterative matrix for 

third element order does meet this condition, but fourth element order does not.

A.2 Stability Condition

To begin the derivation of the stability condition, we recall that the iterative equa­

tion (3.31) can be expressed as

j j n + l { r + l )  =  M ~ l R n _  B j j n + l { r )  (A.l)

where the iterative matrix B  is

B  =  -  M l ) (A.2)

From linear algebra, we know that any vector x  can be expressed as a weighted 

average of the eigenvectors Xj o f the mathematical space under consideration [57]

n

x  =  (ijx j (A. 3)
3=1
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Therefore, equation (A .l), omitting the time-level superscript n +  1 for conve­

nience, can be rewritten in terms o f the eigenvectors o f the mathematical solution 

space as
n

j j ( r + 1) =  M l lR n -  Y  a j B U (A.4)
3 + 1

Furthermore, due to eigenvector theory, this can be further manipulated and written 

in terms o f the eigenvalues Aj o f the matrix B
n

u ( r + 1) =  M ~ L l R n  -  Y aj xj U (p  (A.5)
3 +  1

Now, we assume that the initial iteration can be written as
n

UM  =  M ~ L l R n  -  Y  a 3 X3 U 3 ( A - 6 )

3+1

Subsequently, the second iteration can be expressed in terms of this first solution by 

substituting (A.6) back into (A .l), thus giving
n

C/(2) =  M l l R n -  B M l l R n + Y  a3x2j u 3 (A J )
j+i

Extending this repetition to the m th iteration, the final term in the iterative equation 

will be
n

E/(™) =  . . .  +  Y  a 3 X T U 3 (A -8 )
3+1

Consequently, it can be seen that if any of the eigenvalues A j o f the matrix B  are 

greater than unity this term will increase exponentially, causing the solution to di­

verge.

A.3 Eigenvalue Computation for Higher Order Elements

Having derived the condition for stability, we will now compute the eigenvalues 

of the iterative matrix produced for the third and fourth order elements.

A.3.1 Third Order

For third order triangular elements, the components of the consistent M  and 

lumped M L mass matrices are:
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Consistent Mass Matrix for Third Order Triangular Element

0 .0 2 3 0 - 0 .0 0 8 4 0 .0 0 0 5 0 .0 0 1 2 - 0 .0 0 8 4 0 .0 0 0 0 0 .0 1 1 9 0 .0 0 0 5  0 .0 1 1 9 0 .0 0 1 2

- 0 .0 0 8 4 0 .1 3 8 9 - 0 .0 0 9 9 0 .0 0 0 5 0 .0 6 4 2 0 .0 5 3 6 - 0 .0 2 9 8 - 0 .0 2 9 8  - 0 .0 2 4 5 0 .0 1 1 9

0 .0 0 0 5 - 0 .0 0 9 9 0 .1 3 8 9 - 0 .0 0 8 4 - 0 .0 2 9 8 0 .0 5 3 6 0 .0 6 4 2 - 0 .0 2 4 5  - 0 .0 2 9 8 0 .0 1 1 9

0 .0 0 1 2 0 .0 0 0 5 - 0 .0 0 8 4 0 .0 2 3 0 0 .0 1 1 9 0 .0 0 0 0 - 0 .0 0 8 4 0 .0 1 1 9  0 .0 0 0 5 0 .0 0 1 2

- 0 .0 0 8 4 0 .0 6 4 2 - 0 .0 2 9 8 0 .0 1 1 9 0 .1 3 8 9 0 .0 5 3 6 - 0 .0 2 4 5 - 0 .0 0 9 9  - 0 .0 2 9 8 0 .0 0 0 5

0 .0 0 0 0 0 .0 5 3 6 0 .0 5 3 6 0 .0 0 0 0 0 .0 5 3 6 0 .5 7 8 6 0 .0 5 3 6 0 .0 5 3 6  0 .0 5 3 6 0 .0 0 0 0

0 .0 1 1 9 - 0 .0 2 9 8 0 .0 6 4 2 - 0 .0 0 8 4 - 0 .0 2 4 5 0 .0 5 3 6 0 .1 3 8 9 - 0 .0 2 9 8  - 0 .0 0 9 9 0 .0 0 0 5

0 .0 0 0 5 - 0 .0 2 9 8 - 0 .0 2 4 5 0 .0 1 1 9 - 0 .0 0 9 9 0 .0 5 3 6 - 0 .0 2 9 8 0 .1 3 8 9  0 .0 6 4 2 - 0 .0 0 8 4

0 .0 1 1 9 - 0 .0 2 4 5 - 0 .0 2 9 8 0 .0 0 0 5 - 0 .0 2 9 8 0 .0 5 3 6 - 0 .0 0 9 9 0 .0 6 4 2  0 .1 3 8 9 - 0 .0 0 8 4

0 .0 0 1 2 0 .0 1 1 9 0 .0 1 1 9 0 .0 0 1 2 0 .0 0 0 5 0 .0 0 0 0 0 .0 0 0 5 - 0 .0 0 8 4  - 0 .0 0 8 4 0 .0 2 3 0

Lumped Mass Matrix for Third Order Triangular Element

0 .0 3 3 3 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .1 6 6 7 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .1 6 6 7 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 3 3 3 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .1 6 6 7 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .9 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .1 6 6 7 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .1 6 6 7 0 .0 0 0 0 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .1 6 6 7 0 .0 0 0 0

0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 3 3 3

Inserting these expressions into (A.2), the eigenvalues of the matrix B  can be 

computed to be
I  - 0 .6 9 6 6  \  

- 0 .6 1 9 7  

0 .0 0 0 3  

- 0 .2 4 3 6  

0 .5 9 8 2  

0 .5 9 8 2  

- 0 .2 9 9 9  

- 0 .2 9 9 9  

- 0 .6 1 9 7  

V - 0 .7 0 3 1  /

As the magnitude o f each eigenvalue \  is less than unity, then the iteration is stable 

and will converge. Note that these eigenvalues can be computed by using the intrinsic 

functions of a mathematical computer program such as Matlab, as was used here, or 

Mathematica.

A.3.2 Fourth Order

For fourth order triangular elements, the components of the consistent M  and 

lumped M L mass matrices are:
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Inserting these expressions into (A.2), the eigenvalues of the matrix B  can be

computed to be
2 .3 2 5 2  \

2 .5 4 2 5

2 .5 4 2 5  

- 0 .5 5 4 7

0 .1 8 5 7

- 0 .0 0 0 2

- 0 .6 8 8 2

- 0 .6 8 8 2

- 0 .6 2 8 1

- 0 .6 2 8 1

- 0 .4 2 2 4

0 .2 1 2 3

0 .2 1 2 3  

- 0 .0 4 6 0  

- 0 .0 4 6 0  )

Here we can see that the magnitude o f some o f the eigenvalues is greater than unity. 

Therefore, noting the stability condition derived above, this will result in an unstable 

diverging iterative scheme.

A.3.3 Fifth Order and Higher

Using the same procedure, the iterative matrix for fifth element order and higher 

can also be shown not to satisfy the stability condition, thus leading to divergent 

iterative schemes. However, this analysis is not performed here.
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Appendix B 

Runge-Kutta Temporal Schemes

B.l Introduction

The Runge-Kutta family o f temporal schemes are very popular within the sci­

entific and engineering fields for the solution of ordinary differential equations. In 

summary, they involve the computation o f intermediate solutions within a time-step 

which are subsequently used to compute the solution at the next full time level.

B.2 Fourth Order Runge-Kutta Scheme (RK4)

The most commonly used scheme from this family is the fourth order Runge-

Kutta scheme (RK4), which consists of four sub-steps. Each of these calculates an

intermediate solution value which is used to evaluate the final solution at the next time 

level. Considering a general differential equation

du ^

T t = f { t 'u) (B1)

the equations of the RK4 scheme can be written as

l 5* step: ki =  A t f ( tn,un)

2nd step: & 2  =  A tf ( tn+^,un +  \k{)

3rd step: ks =  A tf ( tn+i ,un +  \ k 2 )

4th step: £ 4  =  A t f ( tn+l,un +  £ 3 )
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un+1 — un +  - k \  +  -A)2 +  - k s  +  -k±  +  0 ( A t 5) (B.2)

B.3 Spatial Discretisation

Before we can apply the RK4 scheme, we must first obtain the spatially semi­

discrete form o f the governing equations. Note that this is contrary to the derivation 

of the discretised equations for the Taylor-Galerkin schemes where spatial discreti­

sation follows the temporal approximation. Therefore, beginning with the governing 

acoustic equations in vector form

d U  d F  d G  n
~dt +  +  m  ~ 0 (B 3 )

we can express the weighted residual statement as

[  9 U  A T  J O  [  ( d F  d GL d t '  Jn {  d x  + dy
N rdQ = -  [ —  +  —  NjdQ  (B.4)

As seen in Chapter 3, we choose to write the differential terms on the RHS of the equa­

tion in terms of the unknown vector U  by using the system Jacobians 

A  = d F /d U  and B  = d G /d U

/ > - - / „

As is the norm for finite element approximations, we now apply integration-by-parts 

to the spatial derivatives

J  ^ N IdQ = j  \ A ^ - U  + dQ -  J  (n xA U  + nyB U ^j N r fT

It should be noted that although this transformation is not needed here to reduce inter­

element continuity constraints for the interpolation functions N  due to the absence 

of higher order derivative terms, there are other reasons for its inclusion: to enable 

local conservation to be proved and, due to the generation of an additional boundary 

integral, to provide a convenient means by which boundary conditions can be applied.
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Finally, insertion of the finite element approximation of the unknown vector

U  =  N j U j

enables the semi-discrete form of the governing equations to be expressed as

O T  T

M u - g f  = C u U j  + f t  (B.5)

where

M u  =  J  N ,N j d n  

C ,j = j ^ A ^ N j  + B ^ N j ) d n  

f i  =  — J  (n xA N iN j  +  U y B N / N j ) d T U j

B.4 Temporal Discretisation

To obtain the fully discrete form of the equations, the RK4 scheme can now be 

directly applied to (B.5). Therefore, the equations o f the scheme can be expressed as

1" step: fcj =  A tM j-} {Cu U nj  + f f \

2nd step: k2 = A tM fJ [ C u ( U j  + \ h )  + f " H ]

y d step: kz =  A tM f} \C u {U nj  +  |fc2) +  i f 4 ]

4th step: fc4 =  A tM f}  [Cu (U nj  +  fc3) +  f t +1]

U n+1 = U n + h t  + \ k 2 + \ k z +  (B.6)
6 3 3 6
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Appendix C 

PML Analysis

C.l Introduction

Due to the infinite nature of the physical domains for the wave scattering problems 

encountered in this work, some form of truncation is needed to enable a computational 

model to be generated. This is achieved by introducing an artificial outer boundary to 

the domain. However, to avoid spurious wave reflection from this surface, some form 

of transmitting or absorbing condition must be applied and, in Section 5.4, a perfectly 

matched layer (PML) was proposed.

Within the formulation of this layer some variable parameters exist which may 

alter its absorbing performance. These parameters include the minimum distance 

from the scattering surface to the PML, the thickness of the PML, the maximum 

value of the damping coefficient cr and its distribution across the absorbing layer. 

Therefore, in this appendix, a brief analysis is presented to demonstrate the effects 

of the variation of these four parameters and to evaluate some appropriate values. 

Note that this is by no means intended to be an in-depth study o f the effects of each 

parameter, but provides an initial test to assess the working range of the PML.
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C.l Model

To provide an appropriate method o f validation, we will employ a model of a 

simple circular scatterer for which an analytical solution exists. The scatterer will 

be an acoustically hard object with a radius of 2 units placed in a incident sinusoidal 

plane wave field, as expressed in equation (5.20), of unit wavelength A. In an electro­

magnetic context, this is equivalent to a transverse electric (TE2) polarization of the 

electromagnetic field with scattering from a perfectly electrical conducting object of 

electrical length 4A.

The basic mesh used in this analysis is presented in Figure C .l. It consists o f 1012 

triangular elements, which directly surround the scatterer, and 8164 quadrilateral el­

ements.

Figure C .l: Circular scatterer mesh used for PML analysis

In an attempt to ensure fairness, only one parameter will be varied in each test. 

The remaining three parameters will be constant to focus on the effect on the approx­

imate solution generated by the variation of the parameter in question. Therefore, it 

should be noted that, due to the nature of the first test, concerning the minimum dis­

tance from the scattering surface to the PML, the extent o f the mesh will be increased 

or reduced as required from that displayed in Figure C .l. In the remaining tests, the 

mesh will be constant.
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Due to the use o f higher order approximation, the PML parameter analysis will be 

conducted on models of both first and third order elements. This will indicate whether 

a significant difference is required in the value of the parameters for different element 

orders.

C.3 Results

C.3.1 First Order Element Approximation

The first order element models show no significant trend in the accuracy o f the 

solution over the range o f distances from the scattering surface to the PML used in 

the first test, the results of which can be seen in Table C.L From Table C.2, it can be 

seen that the error begins to increase for PML thicknesses below 0.5 A.

Domain Size Minimum Distance E t

9.5x9.5 2A 0.01849939
9x9 1.75A 0.01764371

8.5x8.5 1.5A 0.01851132
8x8 1.25A 0.01763899

7.5x7.5 1.0A 0.01850769
7x7 0.75A 0.01764742

6.5x6.5 0.5A 0.01849609

Table C .l: PML Test 1: Minimum distance from scattering surface to PML. L2-error 
norm of pressure taken around the scattering surface with first order elements

PML Thickness Ev
1.25 A 0.01764148
1.00A 0.01764022
0.75A 0.01763899
0.50A 0.01766158
0.25A 0.01793850
0.10A 0.01857756

Table C.2: PML Test 2: PML thickness. L2-error norm of pressure taken around the 
scattering surface with first order elements
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When considering the damping parameter, the results in Table C.3 show a notable 

increase in error for maximum damping parameter values below 5/A. A quadratic 

order for the distribution of this parameter is shown to offer marginally the most 

accurate approximation in Table C.4.

Maximum Damping Parameter En E r
50/A 0.07968349 0.01764312
25/A 0.07981215 0.01764002
10/A 0.07999116 0.01763899
5/A 0.08001582 0.01766350

2.5/A 0.08010914 0.01787152
1/A 0.08042448 0.01848582

Table C.3: PML Test 3: Maximum Damping Coefficient. L2-error norm of pressure 
taken over the domain (excluding PML) and around the scattering surface with first 
order elements

Damping Parameter Distribution Order En E y

Linear 0.08006912 0.01764901
Quadratic 0.07999116 0.01763899

Cubic 0.08005244 0.01764319
Quartic 0.08001807 0.01766533
Quintic 0.08002142 0.01771507

Table C.4: PML Test 4: Damping Coefficient Distribution. L2-error norm of pressure 
taken over the domain (excluding PML) and around the scattering surface with first 
order elements

C.3.2 Third Order Element Approximation

Contrary to the first order element model, there is a significant increase in the 

error of the approximation, presented in Table C.5, for the minimum PML distance 

of 0.5A when using third order elements. The results from the second test, Table C.6, 

concerning the thickness o f the PML, also demonstrates a clear increase in error for 

thicknesses of 0.5 A and under.
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Domain Size Minimum Distance E r
9.5x9.5 2A 0.00026029

9x9 1.75A 0.00032578
8.5x8.5 1.5A 0.00025876

8x8 1.25A 0.00031822
7.5x7.5 1.0A 0.00028311

7x7 0.75A 0.00026719
6.5x6.5 0.5A 0.00044479

Table C.5: PML Test 1: L2-error norm of pressure taken around the scattering surface 
with third order elements

PML Thickness E y

1.25 A 0.00029873
1.00A 0.00030485
0.75A 0.00031822
0.50A 0.00046778
0.25A 0.00118162
0.10A 0.00222518

Table C.6: PML Test 2: L2-error norm of pressure taken around the scattering surface 
with third order elements

For the third order element model, Table C.7 shows there is a significant rise in 

the approximation error for maximum damping parameter values below 10/A, whilst 

for the distribution order o f this function, there is an obvious increase with cubic and 

higher order, as shown in Table C.8.

C.4 Conclusion

From the results of this analysis, the PML parameter values used in the scatter­

ing model will be: minimum distance from scattering surface to PML = 1 .OA, PML 

thickness = 0.75A, maximum damping parameter value = 10/A, damping parameter 

distribution order will be quadratic.
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Maximum Damping Parameter E q Er
50/A 0.00047664 0.00029684
25/A 0.00047658 0.00029689
10/A 0.00053055 0.00031822
5/A 0.00157366 0.00067403

2.5/A 0.00414338 0.00211859
1/A 0.00776359 0.00490590

Table C.l: PML Test 3: L2-error norm of pressure taken over the domain (excluding 
PML) and around the scattering surface with third order elements

Damping Parameter Distribution Order E r
Linear 0.00048027 0.00029996

Quadratic 0.00053055 0.00031822
Cubic 0.00075095 0.00037322

Quartic 0.00114142 0.00049838
Quintic 0.00161333 0.00069066

Table C.8: PML Test 4: L2-error norm of pressure taken over the domain (excluding 
PML) and around the scattering surface with third order elements
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Appendix D 

Spline Interpolation

D.l Introduction

Spline interpolation generates piecewise polynomial approximations to a curve. 

The approximating polynomials are defined by a finite number of constraints. These 

constraints can be information on the positioning of certain points, the tangent or 

curvature o f the function.

D.2 Cubic Spline Interpolation

Cubic spline interpolation approximates a function through a given set of points 

by generating a third order polynomial in the intervals between two adjacent points, 

such as

fi{x)  =  CLiX3 +  b i X 2 +  Ci X  +  d i  (D .l)

For a set o f n + 1 points there will be n  expressions o f this kind, where n  is the number 

of intervals. The conditions used to evaluate the unknown constants are:

i. The value of the function must be equal at the interior points.

ii. The first and last functions pass through the end points.

iii. The gradient of the function / '  at the interior points must be equal.

iv. The curvature of the function f "  at the interior points must be equal.

v. The curvature at the end points of the set is zero.
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When these conditions are applied, the expression for the polynomial in each 

interval can be written as [55]

M x ) =  ~  x f  +  c t l 1 ^  \ ( x  ~  x h ) 36(xi  -  Xi - i )  6(Xi -  Xi - i )

f i Xi i )  f " ( X i - i ) ( X i - X i - i )+
_6 ( x i  -  X i - 1) 6

f ( Xi )  f " ( X i ) ( X i -  Xi - i )
+

_6(xi -  x ^ i)

(xi -  x)

(x -  Xi-!) (D.2)

The only unknowns in this equation are the curvature o f the function f "  at the ends 

o f the interval. However, if  similar equations are stated for all intervals, a system of 

simultaneous equations is obtained which can be solved for all unknowns. Note that 

the second derivatives at the end points of the set are taken as zero.
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