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A bstract

This thesis examines Af = 2 Super-Yang-Mills theory where the low-energy effective 

action of the theory is governed by a holomorphic function called the prepotential. 

The Seiberg-Witten solution of the theory determines the prepotential in terms of 

an complex curve and, once we compactify the theory on a circle, we will examine 

the identification of this complex curve with the spectral curve of the Calogero-Moser 

integrable system. Since the supersymmetry restricts the perturbative contributions 

to the prepotential, the results we gain are exact. Further, they are independent 

of the compactification radius. The generalization to the quiver models, with gauge 

group SU(N)k, is introduced along with the spin generalization of the integrable 

system. The massive vacua of these theories have been determined previously, here 

we examine the case of a specific gauge group in order to determine the complete 

phase structure, including the massless vacua.

We then move on to determining contributions coming from instantons to the 

prepotential of the theory with gauge group SU (N ) . We see how by lifting the theory 

onto 5 dimensions the functional integral on the instanton moduli space is realized 

as a quantum mechanical cr-model with the moduli space as a target. However, just 

such a model is shown to calculate a particular index of the manifold, in this case a 

particular equivariant index since the space has isometries. We account for the non­

compact nature of the moduli space by removing boundary terms and then calculate 

explicit results in the case of SU(2).
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Chapter 1 

Introduction

A beautiful aspect of some supersymmetric theories is that certain quantities can 

be calculated exactly, i.e. the perturbative expansion terminates and semi-classical 

effects coming from instantons can be calculated exactly. This allows us to determine 

the precise vacuum structure of the theory. We will examine two situations where this 

is possible, both centring on the Seiberg-Witten solution of Jsf =  2 Super-Yang-Mills 

(SYM) theory [1,2].

It is well known that the N  =  2 SYM theory can be described by a low-energy 

effective action. This is because the D- and F-flatness conditions cause the lowest 

component of the chiral supermultiplet to gain a non-zero vacuum-expectation-value 

(VEV), hence the massive degrees of freedom can be integrated out. The restrictions 

imposed by supersymmetry (holomorphicity, duality and renormalizability) allow us 

to determine the perturbative contributions exactly since the expansion terminates 

at one-loop. We are then left with determining the non-perturbative contributions 

which are captured by the leading order semi-classical1 contributions of instantons.

^ h e  term semi-classical is used since the constant g2 appears in the partition in just the same 
place as Planck’s constant h , if we were to reinstate all physical units, thus the limit g2 -» 0 is 
identical to h -> 0.

1
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The work of Seiberg-Witten was to show how the prepotential, T ,  which contained 

all this information was determined by an auxiliary complex curve, which itself could 

be viewed as a Riemann surface.

1.1 Exact Superpotentials

The first topic we will consider is the exact determination of vacua in mass-deformed 

quiver models, where the gauge group is S\J(N)k. The original example, with k set 

to 1, is the mass-deformed Af  =  4 theory where the exact SL(2,Z) S-duality2 of 

the pure theory is broken but remains as a symmetry relating different vacua in the 

softly-broken theory.3 Upon breaking the theory to Af = 2 supersymmetry we find 

the low-energy effective action is solved by the Seiberg-Witten curve. However, we 

can further break to Af = 1 supersymmetry and doing so lifts the Coulomb branch of 

the theory except at singularities, where the Seiberg-Witten curve degenerates. Thus 

we find the curve’s singularities exactly define the vacua of the Af = 1* theory. It 

was shown by Donagi and W itten [3] that, in the Af = 1* theory with gauge group 

SU(7V), there were J2d\N d massive vacua which lie on sublattices of the torus and so 

form a finite-dimensional representation of SL(2,Z).

An alternative approach is to compactify on R3 x S 1 [4]. Now the Coulomb branch 

of the Af = 2 theory has twice the dimension of the uncompactified theory due to 

Wilson lines and dual photons around the compact dimension. It turns out that we 

then have exactly the correct degrees of freedom to identify the Af = 2 theory with

2The full SL (2,Z ) symmetry of Af =  4 SYM contains two generators: S  takes the coupling 
t  —> — ̂  and interchanges electric and magnetic charges, while T  takes r  —> r  +  1 and arises since 
the 9 component of the coupling is periodic.

3 Mass-deforming, or softly-breaking, a supersymmetric theory is done by the addition of a su­
perpotential and the resulting theory is labelled by the remaining supersymmetries and a star, e.g. 
Af =  2* or Af =  1*.
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a completely integrable dynamical system. Even without the compactification the 

Seiberg-Witten curve is identical to the spectral curve of the elliptic Calogero-Moser 

system; now however we find the Coulomb branch, as a complex manifold, is itself 

simply the complexified phase space of the integrable system. The Wilson lines and 

dual photons describe the missing angle variables. The superpotential which reduces 

the theory to Af = 1 supersymmetry can then be calculated by identifying it with 

one of the Hamiltonians. What is not so apparent is that this picture captures all 

the quantum corrections. We thus obtain exact results. It also turns out that the 

Hamiltonian is independent of the radius, R, of the compact dimension and so the 

results are still valid in the R  —> oo limit.

These results were then generalized to the quiver theories, with gauge groups 

SU(N )k, in [5], where the integrable system is now a spin generalization of the 

Calogero-Moser system. Again the massive vacua in the general case were deter­

mined and again found to lie on sublattices of the torus, r. However, a classification 

of the massless vacua is not known. One reason for this is the following: since the 

vacua are identified by the critical points of the exact superpotential, which is just 

a Hamiltonian of the integrable system, they are also equilibrium points in the flow 

generated by the particular Hamiltonian. The massive vacua are special in that they 

are equilibrium points of all the Hamiltonian flows, while the massless vacua are only 

equilibrium points for a subset of the flows. Our investigation will determine all 

vacua, massive and massless, in the specific case of SU(2) x SU(2).
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1.2 Index Theory on the Instanton M oduli Space

The instanton contributions to the prepotential, T ,  can, in principle, be calculated 

either from the Seiberg-Witten curve or directly from the functional integral. Let us 

consider the latter approach. In the semi-classical limit the functional integral local­

izes around the instanton solutions and we need only integrate out the fluctuations to 

leading order. We are still left with a complicated integral on the instanton moduli 

space, 9Jlk, for each level of instanton charge, k. The second topic of this thesis is thus 

to determine if the instanton coefficients contain any topological information about 

the instanton moduli space.

The functional integral on the instanton moduli space takes the form of the parti­

tion function of a zero-dimensional supersymmetric cr-model with 9Jlk as a target [6]. 

However, we know from the work of Alvarez-Gaume [7] how the partition function 

of a quantum mechanical supersymmetric cr-model calculates a topological index of 

the target space. Thus to make the connection we must lift the original gauge theory 

onto R4 x S 1 allowing the a-model to become quantum mechanical. Once this is done 

we can realize the prepotential in terms of the number of zero-energy states in the 

cr-model. We will also be able to identify these vacuum states with the BPS states of 

instanton dyons in the parent theory.

This connection is further motivated through the recent work of Nekrasov [8]. Here 

the prepotential is calculated by considering both equivariant cohomology introduced 

by the hyper-Kahler structure of SDTfc, and the action of the Lorentz symmetries of 

the space. We will use this formula, as well as the method of Csaki et al [9], to 

explicitly determine the prepotential in five dimensions, and so determine explicit 

index numbers.
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Of course, everything is not quite so simple. The target space, fXJt/t, is not compact. 

Firstly, the moduli space has orbifold type singularities corresponding to instantons 

of zero size. These can be removed by deforming the space in a way consistent with 

its hyper-Kahler structure. Secondly, the moduli space is non-compact as instantons 

become arbitrarily separated. This can be countered by setting a cut-off on the 

separation of clumps of the instantons. Then we can calculate the partition function 

with a boundary and take the boundary to infinity. Since the identification of the 

partition function with the W itten index only holds in the compact case, we will see 

how the boundary terms change the story, and so how to access the true index.

There is an alternative method, known as geometric engineering of gauge theories, 

where the Af = 2 SXJ(N) dynamics are found embedded in Type IIA string theory 

in 10 dimensions, compactified on a Calabi-Yau threefold with gravity decoupled. 

In such a method the prepotential is determined by contributions from worldsheet 

instantons, and the formula which we calculate when taking the boundary effects 

into account is in fact identical to a formula given by geometric engineering.

As well as investigating the above for pure Af = 2 we shall also examine the 

theory with an adjoint hypermultiplet, the Af = 2* theory. This will in fact allow 

us to interpolate between the Af = 2 theory and the Af = 4 theory for which the 

prepotential is VEV independent (i.e. the beta function is zero). It is then an 

interesting point to see how the boundary terms are unchanged, yet the whole story 

is consistent with previous results. This will be done for the explicit case of SU(2), 

with predictions made for the more general result.
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1.3 Outline

The outline of the thesis is as follows: in Chapter 2 we examine the Exact Super­

potentials discussed above. We begin with a brief look at the classical results in 

the Af = 2* theory. Then we detail some basics regarding integrable systems and 

how the Seiberg-Witten solution can be identified with particular such systems. The 

compactification method is then described allowing the exact quantities to be found. 

W ith this structure in mind we move on to the quiver theories looking at the general 

results for gauge group S\J(N)k before detailing the calculations in the specific case of 

SU(2) x SU(2) where we can determine the nature of all vacua. Parts of this chapter 

have been published in [10],

Chapter 3 sets us up on the road to calculating topological indices on the instanton 

moduli space. We have a brief summary of the various elliptic complexes we shall 

meet later, and the indices they calculate. Then the ‘heat kernel’ method of Alvarez- 

Gaume for relating these to supersymmetric quantum mechanics is detailed for the 

relevant cases. Parts of this chapter have been published in [11],

Chapter 4 goes on to the physics of the Af = 2,2* moduli space, beginning with 

a review of the instanton contributions. The heat kernel method becomes relevant 

with the lift to five dimensions, we will examine the full quantum mechanical a- 

models and identify the BPS states involved. Finally, we examine the complication of 

non-compactness, and determine a formula for explicit determination of the indices.
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Chapter 5 examines the case of gauge group SU (2) and calculates the prepotential 

via three different methods, all of which agree. Once the boundary contributions 

determined in Chapter 4 are removed we find integer values for the indices. Parts of 

these two chapters are to be published in [12] and [13]. We will then summarize the 

results and briefly examine directions for future investigation.



Chapter 2 

Phase Structure of Broken Quiver 
M odels

We begin then with the study of exact superpotentials in theories with Af = 4 or 

Af = 2  supersymmetry (SUSY), broken to Af = 1, and their connection with certain 

integrable systems. Before examining the compactification method we will introduce 

the types of vacua which may appear and the Seiberg-Witten solution in Af  =  2. 

Then the model is generalized to the quiver theories, where the massive vacua have 

already been determined systematically. We will then examine the specific case of 

SU(2) x SU(2) and determine all vacua.

2.1 Phases of Softly Broken A f =  4

In this section we will briefly examine the phase structure of softly-broken Af  =  4 

SYM theory by classical reasoning. Beginning with the 4-dimensional theory, with 

gauge group SU(7V), the superspace Lagrangian has a superpotential of the form

W =  T r U 1[$2, $ 3] +  > (2 1 )

8
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where we have used the notation of Af  =  1 superfields, so that the are three chiral 

multiplets in the adjoint representation of the gauge group. To find the vacua of the 

theory we should solve the F-flatness equations coming from the superpotential above 

(2.1) as well as the D-flatness equations, coming from the kinetic terms, modulo gauge 

transformations. As usual, instead of imposing D-flatness, we can solve the F-flatness 

equations modulo complexified gauge transformations, given by SL(iV, C).

After a subtle rescaling1 we find the stationary points of W in (2.1) are

dW  ~  ~  ~

T~- =  0 =>  $*] , (2.2)
d$i

which are simply the commutation relations of the SU(2) Lie algebra. We thus have 

one solution for every JV-dimensional representation of SU(2). The nature of each 

solution depends on the decomposition of its representation, p, into irreducible pieces. 

There are broadly three possibilities:

•  Higgs: p is itself irreducible, the gauge group is completely broken; the theory

remains weakly coupled and has one vacuum,

• Confining: p is the sum of d{> 1) irreducible pieces of the same dimension; 

in the IR the theory flows to JV =  1 SYM with gauge group SU (d), since the 

allowed gauge factors interchange the irreducible pieces, and has a mass gap, 

this is known to have d supersymmetric vacua; note this includes the trivial 

case when d = N  and the gauge group is unbroken,

• Coulomb/Massless: p is a sum of irreducible representations of different di­

mensions, the gauge group contains one or more Abelian factors indicating at 

least one massless photon.

=  2%/m 2m33>i,<J>2 =  2̂ /777,37711 $2 and $3 = — 2̂ 77117712 $3 •
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We thus arrive at the results of [3], quoted in the introduction, that the total number 

of massive vacua is the sum of the divisors of N.  Massless vacua can occur for N  >  3, 

though little is known of these in general.

2.2 Integrable System s and the Seiberg-W itten so­
lution

The full quantum structure of M  = 2 SUSY theories is known to be intimately 

connected to certain integrable systems (see [14] for a full review). In many cases these 

systems are simply classical mechanical systems of TV-particles in one dimension with 

position and momenta, Xi  and pi respectively, i = 1 , . . . ,  N.  The systems in question 

are completely integrable, meaning we have N  independent conserved quantities Hi, 

each generating a flow on the 2Af-dimensional phase space of positions and momenta.

In such an integrable system there is an alternative description of the system, with 

a much simpler geometrical view of the phase space, M., as a fibre bundle described 

by action-angle variables. The action variables, a*, are functions of the Hamiltonians 

and are constant along the flows; meanwhile the angle variables, 0*, lie on the fibre at 

each point in M .  Table 2.1 shows how the Poisson brackets and derivatives compare 

with the original description.

Canonical Action-angle

{Pi 5 Xj  } =  Sij

ri — -PE-  and X  — —  P% ~  dXi ana 1 ~  dpi

{cij, =  

di — 0 and 0» =

Table 2.1: Canonical and Action-angle variable descriptions of Hamiltonian systems.
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In these systems there is a hidden Riemann surface Ejnt, of genus N,  which plays a 

central role. In particular, the angle variables (considered to be complex) take values 

in the Jacobian torus of £jnt, which itself depends on the position in the moduli space 

{a*}. The Jacobian torus is defined as follows. The period matrix, of £jnt is

given by integrating holomorphic one-forms2, a;*, around a canonical basis of cycles 

{Ai,Bi}  on £ int (see Figure 2.1)

Figure 2.1: 1-cycles on a Riemann Surface, £jnt.

f  u j = 5ij, (t Uj = Tij, i , j  = l , . . . , i V  
JAi J Bi

(2.3)

The angle variables are then identified with points in the Jacobian torus, T N(ai), of 

£int. The torus arises because although the angle variables live on the complex plane,

thus {9i\ G CN, there is a periodic identification in two directions

N

Qi = 6i + mi + ^ 2  Tij(ak)rij, mi} n , G Z ,  (2.4)
j=i

where is just the period matrix of the Riemann surface.

The spectral curve of £jnt is defined by the equation

F(v ,z)  = detNxN(L(z) + « .! )  =  0 , (2.5)

2 Alternatively called abelian differentials of the first kind.
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where z and v parameterize the surface and L(z)  is the N x N  Lax matrix whose com­

ponents, in the elliptic Calogero-Moser system which will be relevant to our physical 

theory, are given by

a(z)a(Xi -  Xj)

Here, m  will turn out to be the mass of the adjoint hypermultiplet of the Af =

conserved quantities, i.e. the action variables, of the system. Thus the characteristic 

equation (2.5) of the Lax operator generates a basis in the space of Hamiltonians.

Now we can turn to the physical theory, in particular the Seiberg-Witten solu­

tion of Af = 2* SYM. As outlined in the introduction, after solving the F-flatness 

conditions we find the low-energy effective action has the following form

where the coupling constant r  is an N  x N  matrix, and h.o.t refers to terms at higher

one gauge multiplet contained in the spinoral field W.  It is important that T  is a

2* theory. F(v,z)  is a polynomial of degree N  in v whose coefficients involve the

Seff =  J  d4x  Im |  \eeee} +  h.o.t , (2.7)

order in derivatives which can be ignored at low energy. Both the coupling and the 

field are related to the prepotential fF{§)

(2 .8)

(2.7) is written in Af  =  1 superspace notation [15] with one chiral superfield $  and

holomorphic function3, as required by supersymmetry -  this fact played a crucial role 

in Seiberg and W itten’s theory which determines T  exactly. The S-duality between 

magnetic and electric charges predicted to be exact in the original Af = 4 theory is

depends only on $  and not its conjugate
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depicted here by the ‘dual’ magnetic field <&d compared to the original electric field $. 

To ‘solve’ the theory we expand (2.7) in component fields and note that the F-flatness 

condition allows a VEV for the lowest component of the chiral fields

tr[0, f t]2 = 0 = >  (j) = diag(ai, . . . , a N) . (2.9)

At generic points {a*}, i.e. a; ^  aj, this breaks the gauge group to its maximal 

abelian subgroup, 11(1)^, and so the theory is described as being on the Coulomb 

branch. The A-dimensional moduli space of the Coulomb branch can be described 

locally either by the a ’s or the dual a p ’s. For a global parameterization we must 

determine gauge invariant operators such as the condensates {un}, n =  2 , . . . ,  Af

Un =  ( trw0n) . (2.10)

We are now ready to identify certain parts of the integrable system with the properties 

of the moduli space. Firstly, the VEVs a* are exactly the action variables of the 

integrable system. They are given by integrating the ‘Seiberg-Witten’ meromorphic 

1-form4, A, around the cycles Ai

ai= h lA  ^ = i £ A=S ’ (2-n )

where it turns out A is simply

A = v d z .  (2.12)

Secondly, the condensates are just the coefficients given in the spectral curve (2.5). 

Finally, the matrix of coupling constants is of course the period matrix of £ j n t. How­

ever, we have no degrees of freedom which correspond to the angle variables.

4 An abelian differential of the third kind.
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2.3 Compactification and Exact Results

Clearly the moduli space of the integrable system is not identical to the Coulomb 

branch of the gauge theory since we have no candidates for angle variables in the gauge 

theory. Thus we are motivated to compactify the gauge theory on a circle of radius 

R. The component of the gauge fields wrapping the compact dimension becomes a 

scalar quantity called the Wilson line, while the remaining three components are dual 

to a scalar called the dual photon. Thus, since we have an effective U(1)N gauge 

group there are N  dual photons and N  Wilson lines, which together amass into N  

complex scalar fields that live on a complex 7V-torus defined by the period matrix of 

E jnt as in (2.4). This is exactly what we want since they can now be identified with 

the missing angle variables which live on the Jacobian of Eint. The complete moduli 

spaces of both the integrable system and the Coulomb branch of the gauge theory 

in 3-dimensions thus have 27V-complex dimensions. Hence the moduli space of the 

gauge theory on R3 x S l is identified with the whole phase space of the integrable 

system.

This becomes even more productive once we consider further soft-breaking to 

Af = 1 SUSY. This is done by adding a tree-level superpotential5

-TVW($) , (2.13)
9

and can be viewed as a perturbation lifting most of the Coulomb branch to leave just 

the vacua of the Af = 1 theory, given by critical points of the superpotential. However 

W(4>) reduces to a polynomial function of the VEVs, VV(af) and in the integrable 

system such a function is a conserved quantity and hence is a particular Hamiltonian.

5for example, the mass terms in (2.1).
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Thus to determine the vacua we must simply find the stationary points of the relevant 

Hamiltonian with respect to the moduli, e.g.

9H  d H  n
dP i ~  d X i ~  ' ( )

This is clearly an equilibrium point of the system by Hamilton’s equations. Finally, 

we will find that the Hamiltonians do not depend on the compactification radius, 

R , and so the results are valid in the R  —> oo limit. Let us examine an example of 

how this works for the case determined in [4]. Here Dorey determined the exact form 

of the Af = 1* superpotential in (2.1) in terms of new chiral superfields made from 

combining the dual photons, a1, and the Wilson lines, (f)%

+  r ^ )  , (2.15)

as well as the original fermionic degrees of freedom given by p*. Arguments either by

semi-classical reasoning on the basis of three- and four-dimensional instanton contri­

butions, or by the properties of the Seiberg-Witten curve6 led to the result

W(p, X )  = ̂  y  -  m lm 2m 3 ^  p(Xi -  X j)  , (2.16)
i i>j

where p(z) is the Weierstrass function (see Appendix A for details of elliptic functions 

used throughout). (2.16) is just the first Hamiltonian of the elliptic Calogero-Moser 

system introduced above. It then becomes a simple m atter to determine the stationary 

points of this function

d W  d W  f/ * , ,
—  =Pi = 0, — - =  m i m 2m 3 y ^ p j X j -  Xj )  =  0 . (2.17)
OPi OAi

The properties of odd elliptic functions can be used to show that the massive vacua 

live on sublattice points of the fundamental parallelogram of the defining torus, r.

6That is an even, elliptic, non-constant, holomorphic function with a 2nd order pole
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An interesting point is the SL(2, Z)-duality, which would have been exact in the 

parent Af = 4 theory, now permutes the vacua; this is because it is simply the 

modular transformations of the torus and so permutes the sublattice points. The 

single massless vacua in SU(3) was also determined in [4], however the systematic 

classification of the massless vacua in the general case, N  > 3, has not been found, 

though there have been some partial results in [16].

2.4 Quiver Theories and Massive Vacua

The quiver theories are in some sense a generalization of the Af = 4 theory, with 

gauge group SU(N)k. They are also finite theories but have Af = 2 SUSY rather 

than Af = 4. In fact these theories are intimately related to stacked D3-branes in 

Type IIB string theory, however I will not discuss this aspect. The mass-deformed 

Af = 4 case described above is simply the k = 1 case. We can again make a semi- 

classical analysis similar to the Af = 4 case. The details are in [5]. Here we will 

concentrate on the compactification method described in the previous section.

The field content consists of (i) for each SU(N)  factor an Af = 1 vector multiplet 

and adjoint-valued chiral multiplet 4>i, i = 1, . . . ,  k and (ii) chiral multiplets Qi,Qi 

in the (N, N) and (N,N) representations of SU(N)i  x SU(./V)j+i, respectively. The 

tree-level superpotential has the form

W  =  ^ T r  {fyQiQi  -  Qi$i+iQi +  rriiQiQi +  } , (2.18)

where we assume that the labels are defined modulo N.  Here, ra* are the Af = 2 

supersymmetry preserving masses of the hypermultiplets and fii are the Af = 2 —» 

Af = 1 breaking masses of the adjoint chiral multiplets.
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The integrable system related to this theory is now a spin generalization of the 

elliptic Calogero-Moser system. It describes the motion of N  particles in one dimen­

sion with positions X a, momenta pa and a k x k ‘spin’ matrix J a. The Hamiltonian 

of the system is7

*0 =  E r f + + * * )  -  c m
a â b ij (2.19)

a ( X ab) a ( z j i )

~  2 ~ N m im 3 ( fp(Zij) -  C(Zij)2)

Here, p(z ), a(z)  and £(2) are the (quasi-)elliptic functions defined on torus of half­

periods u)\ =  iir and U2 = inr  (so of complex structure r) . In the above, the 

separation between the particles is given by X ab = X a — X b while Zij =  Zi — Zj are 

“inhomogeneities” , k — 1 external parameters (since only the differences matter). In 

our application, the k independent complex coupling constants 7* of each of the SU(Af) 

factors of the gauge group are associated to the k independent parameters {r, Zi} in 

the following way. Firstly we order the Zi so that 0 <  R e ^  < R e 2j+i < 27rlmr. 

Then

r . =  i Zl+~ ^  Z\  i =  1 , . . . ,  k — 1 , rk =  i Zl + r  . (2.20)

To define the dynamical system the dynamical variables have the non-vanishing 

Poisson brackets [17]

{ x a, pb} =  Sab , {J$, J bkl} =  Sab -  S i ,J $  . (2.21)

In fact, in the application to gauge theory, the spins are not arbitrary k x k matrices, 

rather they have rank one and so we can define them in terms of new variables Qai 

and Qia

3* j  =  Q ia Q a j  ■ (2 .2 2 )

7 We have written the following in terms of spins J a rather than S l in [5]. The relation between 
the two representation can be determined from (2.22).
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If we take all the inhomogeneities Z{ equal, then (2.19) simplifies to

Ho =  A  -  E  M H aJ b) p{Xai) , (2.23)
a a^b

the dynamical system analyzed in [17]. The system is completely integrable, even 

when the Z{ are arbitrary, so there exists a basis of action-angle variables for which 

the Hamiltonian (2.19) is but one of a set of Hamiltonians.

For the application to gauge theory, we have to impose additional conditions on 

the spins. The reduction can be defined as a symplectic quotient by the abelian 

symmetries

Qai -> e^Qaie^  , Qia -y  e-^ ‘Qiae-*- . (2.24)

In all there are N  + k -  1 independent symmetries. Taking the symplectic quotient 

involves imposing the momentum map constraints

^   ̂QaiQia Nvfli , ^   ̂QaiQia ~  ^   ̂^ i > (2.25)
a i i

along with an ordinary quotient by the symmetries (2.24). Notice that hypermultiplet 

masses ra* enter via (2.25). In (2.19) we note that the centre-of-mass motion is 

completely decoupled and so we set ^2apa =  ^  =  0- Once this has been done the

phase space (after the symplectic quotient on the spins) has the dimension 2k(N — 1): 

precisely the complex dimension of the Coulomb branch of the compactified SU(N)k 

theory.

The remaining conserved quantities can be extracted from the Lax operator de­

scribed in [5]. Of particular importance for us is the basic Hamiltonian (2.19) along
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with the following k others 

Ht =
a?b j& i)

+2 ^2 -  NmiTTij £(zij) . (2.26)
J(&) °

of which only k — 1 are independent since Yli=i Hi =  0.

The Hamiltonians parameterize the Coulomb branch of the four-dimensional the­

ory prior to compactification. In particular, the k independent Hamiltonians Ho along 

with Hi are identified with the subspace of quadratic condensates Tr3>?, In [5], the 

unique combination of Hamiltonians corresponding to the diagonal combination was 

identified
k

^ T r  (2.27)
i= l

where

H '  =  (2-28)

The fact that there is a non-trivial function multiplying the Hi is necessary in order 

that H* has the appropriate modular properties. The superpotential in the three-

dimensional compactification corresponding to an arbitrary JV = 1 deformation of

the theory is then simply a combination

k
= + . (2.29)

9  i= i

In [5] the stationary points of the diagonal contribution were determined. This re­

stricts us to the case of all the fii being equal, or in (2.29) Ao =  k/i and A* =  0 for 

i > 0. The massive vacua then have a similar structure to those found in Section 

2.3, remembering that that case represents the k = 1 situation here. The important
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point in their determination is that the massive vacua correspond in the dynamical 

system to equilibrium configurations of all the Hamiltonians, whereas the massless 

vacua correspond to equilibrium configurations of just the particular Hamiltonian 

corresponding to W. Thus the massive vacua are given by

2 t 2 s
Pa = 0 , X a = — Ui H - u 2 , 0 < r a < q  , 0 < sa < p , pq = N  , (2.30)q p

where the pair (ra, sa) picks out a sublattice point, and modular transformations 

thereof. This means that the derivative of the second term in each Hamiltonian, 

(2.19) and (2.26), is zero by the properties of odd elliptic functions8. It just remains 

to determine the spin matrices. The ansatz for this was given, and proved, in [5]

= S j ( ^ )  ( ^ )  e2̂ [ !? c(“l)+^ <("2)] . (2.31)

where pi and A * are arbitrary qth and pth roots of unity, respectively. It suffices to 

note that this results in the identity

JiajJ j i  = m imo Va > (2.32)

thus the final term in each Hamiltonian will be zero.

Note in particular that, by the modular properties of the torus and since the TVfc_1 

massive vacua lie on sublattices of the torus, the massive vacua are permuted by the 

SL(2, Z)-duality symmetry.

8Either terms cancel in pairs or give no contribution since the difference X ai =  X a -  Xf, is a 
half-period.
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2.5 The Vacua of the SU(2) x SU(2) Broken Quiver 
Theory

In order to get a concrete picture of the massless vacua it is useful to consider a 

particular example. Here we shall examine the case with gauge group SU(2) x SU(2). 

Not only will we find all the vacua but we will also determine the condensates U2 

exactly.

2.5.1 The Phase Structure via Semi-classical Reasoning

We begin by investigating the vacuum structure by solving the F-flatness conditions 

modulo complex gauge transformations in the conventional way. The analysis has 

been done in the more general setting of the SU(N)k theory, in [5], where the F-  

flatness conditions derived from (2.18) are

Q i —l Q i —1 Q iQ i  — 4" Aj.l ,

* î+\Qi Qi^i — TTl'iQi •>

Qi$i+1 -  3>iQi = rriiQi , (2.33)

where the A* are Lagrange multipliers coming from requirement that the <!>* are trace- 

less. We can then use complex gauge transformations to diagonalize <!>*. For the 

moment we assume that the masses are all generic.

First of all there are confining vacua for which ®i = Qi = Qi = 0 and the 

gauge symmetry is completely unbroken. We expect that the theory at low energy is 

precisely pure Ff = 1 Yang-Mills with gauge group SU(2) x SU(2). Since each SU(2) 

factor is independent and each on its own yields two independent vacua, in all we 

expect four confining vacua.
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There are two Higgs vacua in which the gauge group is completely broken. For 

the first

$1  =  +  m2)diag(l, - l )  , $ 2 =  \ { m i -  m2)diag(l, - l )  . (2.34)

and

Q _ / 0  (A  Q -  ( °  m i ( ^ 1 +  ^ 2) +  m2(/il _ ^ 2)
1 ”  u  0 /  1 Vo o

Q  _ [ 1 °] Q  _  f n i f a i - r i  + m t i i i i + K )  0

2 ~  \ o  o /  ’ 2 ”  V o 0,

The other Higgs vacuum is obtained by sending 3>i 4>2 along with

q _ / ^ 0 0 > \ Q -  ( °  m i ^ 1 ~  V2 ) + + Vi)
1 \ i  0/  1 \0 0

(0 o\ ~ (o 0
Q2 = I I , Q2 = [

VO 1/  VO +  n2) +  m2(/ii +  /z2)

(2.35)

(2.36)

All-in-all there are 6 vacua with a mass gap: 4 confining and 2 Higgs.

There are two massless, or Coulomb, vacua each with an unbroken U (l) factor. 

For the first

" I )  . ** =  - 1 . 1 ) .

Q i  =  Q \  =  0) Q 2 =  f 1 ° )  , 4  =  ^ f ^ f 1 ° )  , ( 2 3 ? )
\0  0 /  M1 +M2 \o  0)

whilst for the second

=  i ^ dias ( l .  “ I) - *3 =  ^ d i a g ( l ,  - 1 )  ,

/0 o\ ^  4m^ / 0  l \  g  3  Q. (238)
\ 1  0 J  Mi + Af c  \ o  0J

The analysis above holds for generic values of the masses. However, for particular 

values of the masses flat directions emerge and different vacua can be related. Of
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course at this stage we emphasize that we are not taking into account any of the 

quantum effects. To start with, if mi or m2 vanish then the two Higgs vacua are 

related by a flat direction. For instance with m2 =  0 we have

Here, x  parameterizes the flat direction. In an analogous way, one of the massless 

vacua is related to the confining vacuum by a flat direction.

2.5.2 The Exact Superpotential

We can now use (2.19) to determine the full quantum structure of the theory. In 

the case of an SU(2) x SU(2) quiver, we can be more explicit about the symplectic 

reduction on the spins. Solving the moment map conditions (2.25) and fixing the 

symmetries (2.24) can be achieved, for instance, by parameterizing them with two 

variables {x, y} such that

Once this has been done, the dynamical system in this case has a four-dimensional

(2.39)

(2.40)

The Poisson bracket that one derives from (2.21) is then simply {x, y} = 1 .

phase space parameterized by X  =  X i  — X 2, p = \{pi — P2 ), % and y with Poisson 

brackets

{X ,p}  = 1 {x ,y}  =  1 (2.41)

(2.42){X, x}  =  {X, y} =  {p, x} = {p, y} = 0 .
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The two Hamiltonians (2.19) and (2.26) are

H0 = 2 p2 +  2(2 y2 - m \ -  m%)p{X) -  2 ex{y2 -  ~  z) -  C(X))

+  2e~x(y2 -  m i ) ^ ^ y  (f(X  + z ) -  CPO) +  2 V2 (p(z ) -  CM 2) , (2.43a)

Hi = 4py -  4y2({z) +  2ex{y2 -  m 22) ^ j +  2e_X(^2 “  m i) ’ (2.43b)

where z = Z1 2 . It is straightforward to check that Ho and Hi  Poisson-commute.

Now we turn to the role of the dynamical system in our gauge theory. First of all, 

we have to complexify the coordinates so that {x ,p, x, y} are all treated as complex 

quantities and the phase space now becomes a hyper-Kahler space with a distinguished 

complex structure. This is clear in the formulation of the integrable system as a 

Hitchin system [5,18,19] which has the form of a hyper-Kahler quotient [20]. The 

symplectic form of the dynamical system is identified with the closed (2,0) form with 

respect to the distinguished complex structure. From a field theory point-of-view, 

the action variables form a basis of coordinates on the Coulomb branch of the theory 

before compactification on the circle. The question of how to relate H0 and Hi to 

the gauge invariants operators Tr i = 1,2, was addressed in [5]. There is a unique 

combination which has the required properties9 to be identified with the average 

combination

|TV ($? +  $1) = H* = H 0 -  • (2.44)

whilst the quantity Hi is identified with the difference

Tr ($* -  $?) =  Hi , (2.45)

9 These are having dimension 2, modular weight 2 as well as being invariant under both gauge 
group permutations and the S-duality.
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since this must hold under the interchange of subscripts 1 and 2

Tr ($? -  $*) = H 2 = - H i  . (2.46)

It follows that

T r $ l  = H* — , TA$ 2 = H* + \ H X . (2.47)

We can now identify the general Af = 1* deformation of the superpotential with the 

following linear combination of the action variables

W =  - i ( / i i T r $ ?  +  ^ 2IV2$ ^  =  - 1 ( ^ 1 + ^ ) ^  , (2.48)
9  9 l

where

H  = H* + \(3HX = 2p2 +  4apy  +  2ex(y2 -  m\)<j)(X) +  2e~x(y2 -  ml)(f)(X)

+  2(2y 2 - m \ -  m l)p (X )  +  2y2 {p(z) -  ( ( z ) 2 -  2aC(z)) , 

where we have defined the constants

(2.49)

a  =  -C(z) + \ P ,  <0 =  -  (2.50)
A*i +

along with the functions

W O  =  h y v t \  +  *) -  +  “ ) •a(A)cr(2:)

= m  7 (c(*  ■ 2) - c(x) - a )  ■c r ( X ) c r ( - z )

(2.51)
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2.5.3 The Quantum Phase Structure

Supersymmetric vacua are obtained by extremizing the superpotential. In the SU(2) x 

SU(2) theory this implies H  in (2.49). The relevant equations are thus 

d H—— = 4 p + 4ay  =  0 , (2.52a)
op
f)H
—  = 4y{2p(X)  + p(z) -  \P 2 + ex]>(X) +  e~x<j>{X)} =  0 , (2.52b) 

SH
—  = 2ex{y2 -  ml)4>(X) -  2e~x(y2 -  ml)</>(X) =  0 , (2.52c) 

f)H
—  = 2 (2y2 -  mf -  rr%)p'(X) + 2ex(y2 -  m 22 )<i>'{X) + 2e~x(y2 -  m\)<t>'(X) =  0 .

(2.52d)

In simplifying (2.52b) with have already solved (2.52a) for p

p = —ay  . (2.53)

One branch of solutions is then obtained by solving (2.52b) with y = 0. It then

follows that there are two solutions of (2.52c), which we label by ni = 1,2, for which

ex =  (-1)"> —  . (2.54)
Y 4>{x) ’

Using standard elliptic function identities, along with (2.53) and (2.54), the final

equation (2.52d) can be recast in the form

p'{X) (m \  +  ( - l ) nim i m 2 j((f>4>) 1/2 +  = 0 , (2.55)

where we have defined the quantity

7  =  2p(X)  + p(z) -  L  . (2.56)

For later use, one can show, again using standard elliptic function identities, that

* (* )* (* )  =  p2 (X) + y 2 p(z )+ p 2 ( z ) + p ( X ) p ( z ) - y 2 p(X)  + ̂ p ' ( z ) - \ g 2 , (2.57)
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Det

from which one deduces

7 2 -  4 #  = g2 -  3p 2 (z) -  2/3p,{z) -  §/32 p(z) +  ±(3* . (2.58)

As a consequence the left-hand side is independent of X .

For generic masses the solution to (2.55) is p'{X) = 0, i.e. X  is a half-period

X  G {wi, uJ2 i + ^ 2} > (2.59)

which we label X c = in, inr, in{r  +  1), c — 1,2,3.

In order to assess whether these six vacua are massive or massless, we compute 

the determinant of the Hessian matrix of H

= ^ ( ( - 1)ni™ ^ T ' + K  +  m2 ) ( # ) 1/2)

x ( 2<j>4>p"(X) ( - l ) nimim2j  + (ml + -  ( - l ) " 1m 1m2(7 2 -  i<p4>)p'(X]^ .

(2.60)

It can be shown that the above is generically non-zero, and hence there are no zero 

eigenvalues, thus all six vacua are massive. The values of the condensates in these six 

massive vacua are

Tr = -1(m\+ml)p(X)- i( - \)ni (ll>4>+^W-(~^)i)(l3(p(z)-p(X))+p'(z)))

(2.61)

These six vacua are precisely the vacua found in [5] for general k and N.  It is 

tempting to identify them with the six massive vacua, two Higgs and four confining, 

that we found in Section 2.5.1 and this turns out to be correct. In order to pin down 

the relation, consider the semi-classical expansion of the condensates in each of the 

vacua as described in [21]. The expansions we need can be deduced from the following
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expansions of the (quasi-)elliptic functions

1 e~x  ( e~x qn ex qn 2q1

12 (1 — e~ x ) 2 1 (1 — e~x qn ) 2 (1 — ex qn ) 2 (1 — qn ) 2 J ’

1 -  qn(ex  -  e~x ) + q2n

n = l
(X)

f ( X \  = + -  cothfA72l -  V  gn(ex + e  x )
^  ’  l i t  2  ( /  ' Z >  l  _  g n ( e x  +  e - X )  +  q 2n

n = l  v '

(2.62)

The condensates can be written in terms of the complex couplings of each gauge 

group factor

9l =  e2™ 1 =  e~z , q2 = e2wiTZ =  qez , (2.63)

where q =  e2”" .  It is easy to see that the condensates have an expansion in terms of 

the quantities

e~x qn , ex qn + 1  , qn , e- zqn , ezqn+l , (2.64)

with n  =  0 , 1, 2 , . . . .  Given the values for X  in (2.59), it is clear that the vacua with 

X  = in have an expansion in integer powers of q\ and #2- Hence, the two vacua 

with X  — i'K are identified with the Higgs vacua in which the condensates have a 

conventional semi-classical instanton expansion in integer powers of qi and q<i. The 

vacua with X  — inrr or i7r(r +  1) have an expansion which includes powers of the 

fractional instanton factor q1/2. This is characteristic of a confining vacuum. Hence, 

we identify the four vacua with these values of X , and ni = 1 , 2 , with the four 

confining vacua identified in Section 2.5.1.

Now we return to the equations for the vacua (2.52a)-(2.52d) and choose a different 

branch of solutions obtained by solving (2.52b) with
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rather than y — 0. There are two solutions of this type labelled by =  1,2. Then 

(2.52c) is solved for y giving

y (2 .66)
ex<fr — e~x<f>

Choosing the opposite sign for y can be shown to lead to an equivalent solution due to 

the presence of discrete symmetries which we have hitherto ignored10. In particular 

the values of the condensates will not depend on it.

The final equation (2.52d) becomes

2 ^ 7 2 - 4 #
(mx -  m2) d x  =  0 , (2.67)

which is identically zero for all values of X  since the combination (2.58) is independent 

of X.

The two solutions are obviously massless vacua since each corresponds to a line 

of critical points parameterized by X .  This is further confirmed by the determinant 

of the Hessian, which has the form

( \
Det

d2H
dxidxj

=16 (ml — ml)  

(
i

V

4

V

<92(72 — 4 (f>4>) 
~dX2

- 2

7 -F \ j l 2 ~  4<t>(f>

d y j  72 — 4 (j>4> 
d X

7 T y V  -  4 #

(2 .68)

which is clearly zero for all values of the parameters. The values of the condensates

10This comes from a physically irrelevant freedom in the definition (2.40) which takes y —> —y.
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in these two massless vacua are 

IV $ 2 =(m? +  ml)  (p(z) -  +  \ f i )
,2 ™2

+  (_ i r  ">i ™ 2  ( 7 2 _  4 # +  i/?(/3 -  ( - l ) ’)(3p(z) +  2p'(z) -  i/32) )  .
y  72 ~ 4tj><j>

(2.69)

The discussion of the vacuum structure above has been established in the case 

where the masses {ra*} and {/z*} are generic. For special values the vacua can merge. 

First of all, if X  equals a half period and y in (2.66) equals 0, which requires

m\ex(j) — m\e~x(f) = 0 , (2.70)

where x  is given by (2.65), then a massless vacuum meets what was once one of 

the massive vacua. Solving these equations leads to a condition on the ratio of the 

hypermultiplet masses m i/m 2. In this way either of the massless vacua can meet any 

of the 6 massive vacua at 12 special values for m i / m 2

mi =  ( - T  +  M r y A 2 - 4#

™2 2 y / ^

Finally the two massless vacua merge together when

(2.71)

x=x„

72 -  4 #  =  *  -  3p2(z) -  2/3p'(z) -  3/32p(z)/2  +  /34/16 =  0 . (2.72)

A final point concerns the SL(2, Z) S-duality. Since the only effect of this is to 

take t —> r  +  1 we see that it simply permutes the confining vacua, while leaving the 

Higgs vacua untouched. The massless vacua are obviously unaffected since they can 

take any value for X.
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2.5.4 Discussion

We have calculated the exact phase structure, i.e. the number and nature of the 

vacua at generic and specific values of the parameters, and the condensates of the two 

adjoint-valued scalar fields in the mass deformed SU(2) x SU(2) finite quiver theory. 

The strategy involved compactifying the theory on a circle of finite radius so that the 

low-energy degrees-of-freedom are all scalar. However, the values calculated remain 

valid in the decompactification limit. In this way, we have been able to show how the 

exact structure of vacua matches the one deduced from an analysis of the tree-level 

superpotential in the four-dimensional theory. Our analysis acts as an enumerative 

example of the work of [5] where the massive vacua were found for the general gauge 

group SU(N)k. We have seen in this case that the massive vacua are identifiable 

and conform to the simple lattice structure shown in [5]. However, it has also been 

possible to determine the massless vacua which could not be found in the general 

case; the exact solutions for these vacua do not have any obvious generalization given 

their complicated form, (2.65) and (2.66).



Chapter 3 

Index Theory

We now move on to the second topic of the thesis: the determination of the prepo­

tential in Af = 2 ,2* SYM theory in terms of a SUSY quantum mechanical <r-model 

with the instanton moduli space as a target. Alvarez-Gaume [7,22] has shown how 

SUSY quantum mechanical systems with a particular target space calculate topolog­

ical indices on that space. In this chapter we will cover some preliminaries of index 

theory and then detail the heat kernel method used in [7,22] for the cases we shall 

need.

A key property in the study of SUSY theories is the W itten index, Tr(—1)F, 

where F  is the fermion number of each state. This calculates the difference between 

the number of bosonic and fermionic zero-energy states

Tr(—1)F =  n B(E = 0) -  n F(E = 0) . (3.1)

The fact that only zero energy states contribute can be seen be examining the super­

symmetry algebra

{Q,Q} = H, [Q,H} = 0 .  (3.2)

Then any fermionic state |/ )  with positive energy E  has a related bosonic state 

|b) = aQ  |/ ) ,  where a = y /E /2  as 2Q2 = H. Since H  and Q commute we find

32
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that |/ )  and |6) are degenerate and so do not contribute to the index. Thus only the 

zero-energy states, which are singlets and invariant under supersymmetry contribute 

to the index. The aim of this chapter is to introduce some mathematical aspects of 

Index theory, and the heat kernel method for calculating the W itten index of quantum 

mechanical systems, such that we can tackle the physical theory with confidence in 

the following chapter.

3.1 The Atiyah-Singer Index Theorem and Elliptic 
Complexes

The subject of index theory was opened up by the beautiful theory of Atiyah-Singer 

[23-26] where the index of an elliptic complex (a fibre bundle E  and a differential 

operator D), was given in terms of characteristic classes integrated over the base 

space. Thus the index is viewed as a topological quantity of the base space1 A4. 

However, the characteristic classes are themselves defined in terms of local quantities: 

differential forms. Thus it appears we can calculate topological indices from local 

properties of Ai.  The Atiyah-Singer theorem is explicitly stated by

Ind(E,D)  =  ( - l ) " ( n+1>/2 /  ch ( 0 ( - l ) r .E,
Td(T„Mc)

(3.3)
vole(TpM )

Here n is the dimension of the base manifold, A4, the vol indicates we take the top form 

while the functions ch(E), Td{M )  and e(AA) are characteristic classes. Full details 

of how this works for specific cases, as well as the details of elliptic complexes, index 

theory and underlying differential geometry can of course be found in e.g. [27,28]. 

We will instead just examine a few of the relevant cases.

1An assumption which we will have to relax later on is that M  is compact.
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3.1.1 de Rham com plex

The typical example is that of the de Rham complex which describes the space of 

p-forms, A^p\  on a manifold M ,  of dimension n. There is an exterior derivative taking 

p-forms to (p +  1)-forms

dv : A(p) -> A(p+1> , (3.4)

and its conjugate

d\ =  -  * dp* : A{p) -> A(p~1} . (3.5)

From these we can construct an elliptic operator, which is in fact the Laplacian

operating on p-forms

X u p — dp—\d}pU}p T  dp_̂ d̂piUp . (3.6)

The index of this elliptic complex is in this case the Euler character
n n

Ind(A, d) =  £ ( - 1 ) "  dim H ”(M ,  R) =  =  x ( M )  , (3.7)
p=0 p= 0

where H P( M ,G )  is the p ’th cohomology class of the gauge group, G, on M. and bp 

are the betti numbers. We can represent the Euler character in terms of eigenvalues, 

X{, of the 2-form curvature of the tangent bundle2 of A4,

r r n/2
X(M ) = /  e(TpM )  = (3'8)

J M  J M  i=1

3.1.2 D olbeault com plex

Let us briefly examine another example, the Dolbeault complex. Here we examine 

complex manifolds which admit holomorphic co-ordinates, z % — x % +  i y \  and anti-

holomorphic ones, z 1 =  x l — i y \  The algebra of forms can now be split in the

2The tangent bundle of M  is denoted T M ,  and TPM  refers to the tangent bundle of M  at the
point p E M .
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following way

A =  e MA<™> , (3.9)

where the first index refers to holomorphic co-ordinates and the second to anti- 

holomorphic ones. Thus an element of is of the form

fh-ipji-jqdz11 A • • • A dzlp A d z A • • • A dz*q . (3.10)

We now have exterior derivatives, d w.r.t. zl , and d w.r.t. zl . The Dolbeault complex3

is then given by

A A A(°'?+1> A , (3.11)

with the Laplacian operator again given by the combination

a  =  +  §*8 , (3 .12)

and the index in analogy with (3.7) is called the arithmetic or Todd genus
ft A

Ind(A<°-<'>,a) =  y ' ( —l) f>A(„,p )=  /  Td(TpM )  , (3.13)
p=0

where h(p,q) are the hodge numbers and the Todd class, Td(TpXi)  is

Td(TpM )  =  n  ■ (3-14)

3.1.3 Spin com plex

Finally, let us examine the spin complex, which can be defined if A4 is a 2n-dim 

spin manifold. Our fibre, S,  is a 2n-dim space defining spinors, ip G <5, and may be 

separated into positive and negative chirality parts

72n+1^±  =  ± ^ ±  ,

S  = S + ® S ~ .  (3.15)

3The complex can alternatively be composed of holomorphic forms and operators, (A(p,°),d).
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Now our operator is the Dirac operator

D = 7Q(dQ +  ljq) = i J7V+ ,

L)t =  i J7V~ , (3.16)

where uja is the spin connection, T>± are projection operators onto S ± and T>+T>~ =  0. 

The spin complex is then
tp

S + ^  S~  . (3.17)

The index is thus the number of +ve chirality zero-energy spinors minus the number 

of -ve chirality zero-energy spinors. This splitting can in fact be produced in any 

complex of forms by considering even and odd forms.

Ind(5± , V)  =  dim ker D — dim ker = v+ — , (3.18)

The index calculates the A genus

lnd(S±, V ) =  [  A(TPM )  =  [  J ]  • l / 2 io\ ’ (3-19)J m  Jm  sm h(^ /2 )

where we note that this appears similar to the arithmetic genus. In fact the two 

classes are equal when the base space is Ricci flat4.

3.1.4 Hirzebruch com plex

An interesting possibility is to find a complex which calculates an index which inter­

polates between the Euler character and the arithmetic class. Such a complex was 

determined by [29,30] and achieves this by taking a deformation of the de Rham 

complex. Remembering that on a complex manifold we can split the p-forms into

4This implies ^  Xi =  0 . A relevant is example is when M  is hyper-Kahler.
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(anti)-holomorphic forms, with d = d +  d, we see that the Euler character can simi­

larly be split
n n

X ( M )  =  £ ( - 1) ^  =  • (3-2°)
P—0

If we deform this by a parameter y we obtain the Xy-genus

Xv(M ) = B - w , , ) = [  n  ^ 5 ?  • (3-2i)J M. • -» * ^p,q »=i

which clearly interpolates between the Euler character at y = — l and the Todd genus 

at y =  0. Although the integral form for the Xy genus has the correct asymptotic 

properties it does not follow from the Atiyah-Singer formula; we will prove the identity 

below.

3.2 Heat Kernel M ethod

As stated in the introduction, the work of Alvarez-Gaume [7, 22] (see also [31]) 

developed a method of calculating the Witten index of supersymmetric quantum- 

mechanical (j-models that meshes precisely with the mathematical results above. Here 

we will detail the method for the case when the Hilbert space of states can be realized 

in terms of forms, and so is related to the de Rham complex5, before outlining how 

other cases differ.

We remember that the W itten index gains contributions only from the zero-energy 

states and so we can instead calculate the regularized trace

Tr(—l) Fe - ^  , (3.22)

since only the relevant states have zero eigenvalues of the Hamiltonian, H.  Note

further that we can take the limit j3 —> 0 and the calculation will still hold. This

5The details of this realization are detailed in Chapter 4 .
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density can also be interpreted as the partition function of an ensemble at temperature 

/3~1, hence the name adopted by the calculation. However, the factor of (—1)F implies 

periodic boundary conditions on the fermions

T i ( - l ) Fe~m = [  [crx{t)] M X *)] e-5®1* 1*1 , (3.23)
J  PBC

where S e is the Euclidean action. The most general Minkowski space Lagrangian6, 

as in [7] though with slight alterations in notation, is given entirely by requiring 

supersymmetry

Cm =  +  J i W V - i V , (3.24)

where

Dtpa = r a + r ^ r * , (3.25)

and R^ap  is the 4-form curvature. The Lagrangian (3.24) admits 2 supersymmetry 

transformations (as in [7] we shall call this the J\f = 1 theory)

5X» = - t e a^ ,

5r« = X ^  + i T ^ r p V a -  (3.26)

3.2.1 Calculating the Euler Character

The first step towards calculating (3.23) is to expand small fluctuations around con­

stant configurations

X» x* +  S X ^ t )  , -> r£ +  6 i%(t) . (3.27)

We can then integrate out the fluctuations separately, hence at each point x** we can

use normal co-ordinates such that

gpV(x) =  8 pV , (3.28)

6We will of course have to Wick rotate with t —> —it.
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along with the identity

C X ^ R ^ ^ t f J X "  + . . .  . (3.29)

The action in (3.23) then splits in two

Se  — J  dt C = (3£,(o) H- J  dt £(2) +  • • • , (3.30)

since the fluctuations are orthogonal to the constant co-ordinates, and we will be

taking the /? —>■ 0 limit, the quadratic terms will give us the lowest order terms. The 

constant part is simply

£(o) =  - \ R lu,opitrftr&r& , (3.31)

while the quadratic part itself splits into bosonic and fermionic contributions

C(2) = I S X ^ S X '  +  \ 5 r ^ M u ■ (3.32)

The bosonic operator is, up to a total derivative and to lowest order in /?,

+  kRuvaprfarfadt +  • • • • (3.33)

The fermionic operator is, of course, matrix-valued

— 2^'fJ'l'<TP172rl2 ~ 2 ^ ' ^ <rprK'1l 2 i (3 34)

^  \ R ^ a Pr]lV2 -  iR^ap l iT ]f

At this point we can perform the functional integral over the fluctuations before 

calculating the resulting determinants over all momentum modes around the compact 

dimension (parameterized by t). However, as an explanatory case, we will reverse the 

order of these integrals and explicitly expand the fluctuations7 into Fourier modes

7Remember we will be taking the limit 0  —> 0 and so need only determine the lowest order terms.
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periodic in J3
oo 2

axv* ^   %
P  '  ™  V P

TvtL in ,27rnt. . /I'Knt
s x  -> 2 j# J c o s (—£ - )  +  ¥>£ s m (-T -)  ,

n = 1 
oo

-> ^ C “ cos( ^ ^ )  +  Xn“ sin( ^ p )  > (3-35)
n = l P  P

where we note that the time derivatives will give factors of ± (^ p ) .

The integral dt then picks out terms of the same mode along with a factor of P / 2 . 

At this point we should rescale both the fermionic and bosonic degrees of freedom to 

ensure that the lowest order contributions in both sectors are independent of /?, and 

thus do not go to zero or infinity in the (3 —>■ 0 limit. From (3.31) we note that to pick 

up the constant contributions we must scale some of the fermions with p. We choose 

to scale the rji ’s like while the rj2 ’s do not scale with p. Thus terms containing 

772 will come in at higher orders of p  and so can be discarded. We also need to scale 

the SX  by y/P/2.

To reformulate the functional integral over the constant bosonic and fermionic 

modes in terms of an index we note that the bosonic degrees of freedom parametrise 

the target space of the <7-model, i.e. they are the coordinates of A4. Meanwhile the 

fermionic degrees of freedom (771 in particular) behave just like one-forms on A4 since 

they are Grassmann valued. Thus integrating a p-form over a p dimensional manifold 

gives

u  = /  LJtiv..tlpdxtil A • • • A d x ^  ,
J m  J

= p\ J  ui...p dx 1 "  - dxp = p\ J  dpxui...p . (3.36)

However, from (3.23), we will at some point reach

J dpx d pr)i •••77fp) =  p! J dpx u 1...p . (3.37)
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The 772 integrals, meanwhile, will be done explicitly.

Thus, scaling the 771 ’s by /3-1/2, we can define the 2-form curvature function, with 

the usual forms dxa replaced by the fermions 77̂

R p u  — 2 ^ p w p V  1 Vl  •

We can then rewrite (3.30) as

J  dr/2 exp [—772 R ^ / 2  77J]

1 °° P
d<t>dtp exp —- ^ ( < / >/

!

n_

d£ dx  exp
1 00

*' f  * ■ ) >
n =  1

f e )
v-

x 1
e
x 2 J n-

Here the bosonic matrix is

while the fermionic matrix is

I  0

pv

T  —J pis —
—nnS

0

0

pv

7rn8 i

0

0

0

pv 0

0

2

— TTTlS

0

0

7r nS

pv

pv
R̂ u

2 7

(3.38)

(3.39)

(3.40)

(3.41)

We can now do these Gaussian integrals explicitly resulting in determinant factors 

(det-1 /2 for bosons and det1/ 2 for fermions). After cancelling factors of 7rn we reach

detl/2 (* +  ( ^ F ^ - / 2)2)
det ̂ ( / v )  n

n=i det ^1 +  jj (Rftt//2)2)
(3.42)
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and so clearly the bosonic and fermionic determinants cancel exactly8. Now remem­

bering that we are identifying the 771’s with forms on the manifold, while the x ’s 

parameterize the manifold, we see that the remaining integrals imply that we inte­

grate the remaining top-form over the manifold

J  dxdrji det1/2(RpLU) = J  det 1/2(RMt,)  ̂ =  J  , (3.43)

where n  is the dimension of M  and Xi are the eigenvalues of R^/Air.  Thus we see 

the heat kernel method gives the correct index, i.e. the Euler character for the de 

Rham complex.

3.2.2 A genus

To calculate the Dirac genus as in [22] we must modify the quantum theory, removing 

half of the fermions. This can be achieved by setting 'ipi = = ip/y/2, which means

the curvature term in (3.24) disappears9. As we shall see in Section 4.1.1 the Hilbert 

space can now be realized in terms of spinors and so the system will be identified 

with the spin complex. There are now no terms from the constant configurations but 

the fluctuation determinants do not cancel. The bosonic determinant is unchanged, 

however the fermionic part has no curvature term, (neither is it matrix-valued since 

there is only one variety of fermion, i/>). Thus we are left with

f t det- ' ( 1 + ( ^ ( ^ / 2 ) 2)  ' <3'44)

However this is simply the standard product expansion of the sinh function
00 /  2 \

s i n h ( x ) = x . m i  +  - f - r j )  , (3.45)
k=1 '  '

8Note the determinants in (3.42) do not include constant zero (n =  0) modes, since these axe 
included in the final integration over the manifold.

This also implies we have only 1 supersymmetry charge and this situation is sometimes known
as M  =  J SUSY.
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We have finally then

(3.46)

We thus get the ^4-genus as expected in the spin complex.

3.2.3 X y  genus

In general there is no closed a-model which allows us to determine the arithmetic 

genus. However we should be able to deform the Af = 1 model in just the same way

as the Xy genus deformed the Euler character. In [32] the Xy genus was related to 

SUSY quantum mechanics via a twisting of the boundary conditions on the fermions.

where m  is the mass parameter, is the fundamental 2-form and c is a constant

by ensuring the Hamiltonian operator annihilates the vacuum. Here we will leave it 

undefined for now.

We should also note that the mass term breaks half the supersymmetry (those 

related to the e2), hence we have one unbroken supersymmetry and we should find 

the limit m  —> oo calculates the arithmetic genus, whereas we return to two unbroken 

supersymmetries as m —> 0. The heat kernel method works as above with the constant

10Meaning this term will break part of the supersymmetry of the theory.

Instead, we would like to calculate it by deforming the Lagrangian (3.24) by a soft- 

breaking10 term

C-m =  - | t o V ,2w««'V’2 +  c (3.47)

arising via a normal ordering prescription. In [11] it was shown how it can be fixed
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part of the Lagrangian now

£ (o) =  — \RuuapVi r]i r\2 r]2 +  +  c , (3.48)

while the fermionic determinant becomes

, 0 1 + . . . ,  (3.49)
0 dtS^v 2 Hiu/apTlx TJ\ TnUĴ u/

where we have already discarded terms containing r}2. This time we have contributions 

from the constant configurations as well as non-cancelling fluctuation determinants

“  det1/2 ( l  +  ^  ( iV /2  -
det 1 (Ryu,/2 -  PmU'u,/2) TT------ — --------------- r---- - , (3.50)

t \  d e t a i l + ^ ( 11^ / 2 )*)

then using the identity (3.45) we find

n j  2

e -* f  det1/2 ( r ^ R^ - ^ /2)\  =  [  , (3.51)
J m  \  s i n h ( i i (11r/2) )  J M f=\  1 — e ~ x >

where y = —e_/3m. In the process the constant c is set to m n / 2. Thus we see the 

deformation (3.47) calculates the \ y  genus with suitable limits at asymptotic values 

of the parameter.

3.3 Killing Vectors and Equivariant Indices

We will now consider the case when our quantum-mechanical system contains coupling 

to a Killing vector field, <f>{X). A Killing vector field generates an isometry of the 

manifold preserving the metric

£*g = 0 ,  (3.52)

where £# is the Lie derivative, and so represents the direction of symmetries of the 

manifold. Systems with such fields were considered in [33-39] in the context of the
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semi-classical quantization of monopoles. For now we will need only the Euclidean 

Lagrangian related to the A  genus

Ce =  \ g ^  ( x ^ X *  + ^4 ,"  +  i j f D t f  -  ■ (3.53)

The key point in deriving the integral expression now is that the functional integral

(3.23) may depend on ft via the combination So we can take a limit in which 

P —> 0 keeping pcf) fixed. In this limit, only constant paths X^(t)  which are fixed 

by the isometry (j) contribute. The functional integral consequently only receives 

contributions from the neighbourhood of the fixed-point set Ad* C Ad under 4>. 

Using the Riemannian metric on Ad, we can decompose the tangent bundle along the 

M ?  as

T M

where Af  is the normal bundle along Ad^. The curvature tensor splits as follows

~  T M 4* ® Af  , (3.54)
M*

R = R* © R "  , (3.55)
M*

where R * is the Riemann curvature of Ad^ and RM is a connection in the normal 

bundle.

Evaluating the functional integral according to the heat kernel method described 

above, we find that we are now calculating the equivariant index of the particular 

complex. Remembering that 77̂  are identified with 1-forms in T*Ad^, so

= 0 , (3.56)

where the skew-symmetric matrix the Riemannian moment, gives the action of 

the Lie derivative, £^, in the normal bundle Af

Pipy = iVnfo  . (3.57)
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So the fluctuations 5 X p(t) include the constant modes and fluctuations orthogonal 

to as well as the fluctuations along A4^, while to match this, Sipp(t) includes 

all the fluctuations in the dual normal bundle as well as non-constant fluctuations in 

T*A4^. We now expand the Euclidean action to quadratic order in the fluctuations, 

using the identity

I (V„&, -  V ^ „ )  =  J V  +  ±n*Rpx „ J X ‘r6 X x + ■■■ . (3.58)

As before, when calculating the Dirac index we find there are no constant contribu­

tions while the fluctuations are now given by

+  \R\uap'n<T,np) +  ’ *' 5 

Aju/ =  +  • • • . (3.59)

Performing the functional integral over the fluctuations allows partial cancellation 

of the brackets in (3.59). In contrast to the case with no Killing vector, where the 

constant modes were included in the final integration over the manifold rather than 

in the fluctuations, we will only be integrating over the fixed point set M?.  Thus, 

as stated above, we should include the zero mode fluctuations in the normal bundle. 

Splitting the integral according to TM .* ® Af  the fluctuations gives

det1/,2( -----^ 7 ---- ) det1/2 (  . , /o r . ^ \  ) , (3.60)
's i n h i i ^ /2 ' \2sinh(/?DM„ +  R pl/) /  2 /

where R*v = \ R ^ apr f7 f  and R*u = \R * vaprfr)p and we have again scaled r)p by 

^ - i /2 j^ow repiacing Grassmann coordinates r)p with 1-forms in T*M^,  and being 

careful with the overall normalization11, we have shown that the functional integral

(3.23) of the Lagrangian (3.53) is equal to

5  (&r/2L («> detV2(^ & )  detl/2( 2 s i n h ( ^ :  +  w )  • (3-61)

11 see [40].
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where we have allowed for the possibility that the fixed-point set has more than 

one component labelled by a. In the above na is the dimension of the particular 

component Ai^(cn). The combination f3QMl/ +  R*u is the equivariant curvature of the 

normal bundle.

We are now going to examine an equivariant generalization of the Xy genus, com­

bining all the various complications we have encoutered above12. The heat kernel 

has not been determined before for this system. We begin with the Euclideanized 

Lagrangian

cE = \g ^ ( x ^ x " + r r + r aDtr a + ( - i)arara^ cr]

~ \ R n u a p ^ l>5>2^2 +  +  C • (3-62)

we have additional constant pieces

4o) =  - \ RpvoP̂ W\r)lrf2 +  rf2 +  c , (3.63)

and while the bosonic fluctuations are as in (3.59), the fermionic matrix is

AF =  (  +  fi'“' 0 ) + ■ ■ ■,  (3.64)
y 0 dt&pv H- Opi/ T  2 ̂ 'pi/Gp'ni 7̂i rmo^i/ J

to leading order, where, since we will be scaling rji by (3~1/2, terms with any ^2’s will 

be at next order and so will again be suppressed in the ft —> 0 limit. Combining all 

the contributions we obtain

-^m//2 \  , , 1 /2 ( 1
detl/2( <  -  *"<) detl/2( ^ f e )

nh(-Rt  ~
{Rfu, -  /3moj|f„)/2•det1 / 2 ^ T w o 72) detl/2( 2sinh^ n "‘/ +  R % ~  &m“^ ) / 2) . (3-65)

12Note that in comparison to [33-39] we have taken 0 4 to be the only non-zero Killing vector, in 
accordance with our needs in the next chapter.
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which means our functional integral is

p m n /2

3.4 Hyper-Kahler Manifolds

In the next chapter we shall see how the quantum mechanical cr-models arise in the 

calculation of instanton coefficients in AT = 2 SYM theories. An important property 

of these theories is that the manifold concerned, the instanton moduli space, is hyper- 

Kahler. Here we shall briefly examine some of the consequences of this for the indices 

we have calculated.

Complex manifolds are even dimensional manifolds which admit a complex struc­

ture I : TM.  —» T M ,  satisfying I2 =  — 1 as well as an integrability condition given 

by the vanishing of the Neijenhuis tensor for any two vectors X  and Y

for any two vectors X  and Y.  A Kahler manifold is one for which now called 

the Kahler form , is closed, du = 0. A hyper-Kahler manifold then has 3 independent

[IX, IY] -  [X, Y] -  I[X, IY] -  I[IX, Y} = 0 . (3.67)

The complex structure defines the fundamental 2-form

u ( X , Y )  = g ( IX ,Y ) (3.68)

complex structures (and so 3 Kahler forms) which satisfy the algebra

(3.69)

These three complex structures quadruple the number of supersymmetries compared 

with a generic manifold and we shall see this explicitly in the next chapter. In terms
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of notation the Af = 1 theory, which had 2 supersymmetries, now has 8, while the 

Af = \  theory now has 4. Further a Killing vector, </>, is “tri-holomorphic” if it 

preserves each of the 3 complex structures

£ * I (c) =  0, c =  1,2,3 . (3.70)

An important property of hyper-Kahler manifolds is that they are Ricci flat, i.e. 

their curvature vanishes

y > i  =  0 .  (3.71)
i

As noted previously, this allows us to identify the arithmetic and the A  indices, since 

then

J ] ( l  -  e~Xi) = J j2 s in h ( i i/2) . (3.72)
i i



Chapter 4 

A f  = 2,2* Prepotentials

In the previous chapter we saw how the W itten index of a supersymmetric quantum 

mechanical system could be determined through the functional integral (3.23). We 

will now move on to see how such a structure arises in a quantum field theory. To 

this end, we return to the low-energy effective action of a pure Af =  2 SYM gauge 

theory (2.7). Remember that the coupling and the dual fields were given in terms 

of a holomorphic prepotential, T .  By the work of Seiberg-Witten [1, 2] it was shown 

how the prepotential had a simple classical piece, while the perturbative contributions 

were exact at one-loop. W hat remains is to determine the instanton contributions

pert. inst.
cl& SS. -a.

/■-  ^  i / \2 -1 w

?  = i T« E 1“? -  ^ (° ' 0 1)2 log(~ l ^ _ )  +  Y  ^ A2kN’ (4'1)
i a  k = l

where a  is a positive root of the gauge group S\J(N). The instanton co-efficients 

are determined implicitly by the Seiberg-Witten curve (2.11), we will use this as a 

method of direct calculation in Section 5.2. However, the can in fact be calculated 

directly from the functional integral by localization around the instanton solution and 

integrating out fluctuations to leading order (as was done in the heat kernel method). 

In classifying the instanton solutions we are led to the concept of a moduli space

50
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of inequivalent1 solutions. Since the instanton solutions are finite action classical 

solutions of gauge theories in a four-dimensional Euclidean space, they can initially 

be classified by a topological charge, k. Thus the moduli space splits into distinct 

manifolds SPTfc, although it should be noted they are not strictly speaking manifolds 

since they have conical-type singularities. Each individual moduli space itself contains 

a lot of structure, they are all in fact hyper-Kahler manifolds, of dimension 4kN. We 

will also remove a factor giving the overall position of the instanton configuration, 

leaving us with the centred moduli space, 971*;: 971* «  97^ x R4.

The coordinates on the moduli space, describe the collective properties of the

gauge field, and so are called collective coordinates. Thus the functional integral at 

the instanton solution can be converted into a collective coordinate integral where 

the metric of the moduli space is restricted by the ADHM constraints, developed by 

Atiyah, Drinfeld, Hitchin and Manin for the construction of instantons.

4.1 Instantons in Four and Five dimensions

We begin with the instanton contributions to the prepotential in four dimensions. The 

coefficient of the fc-instanton contribution can be determined from the instanton-

induced long-distance behaviour of certain correlators or from the instanton contri­

butions to the condensate [6,41,42]. The first explicit calculations done were at 

the one instanton level in [43] for gauge group SU(2). This was extended to the two 

instanton level using the ADHM construction of the instanton moduli space in [41,42], 

thereby providing the first non-trivial checks of Seiberg-Witten theory for SU(2). Ex­

plicit calculations for SV(N)  at the one instanton level were then performed in [44]. At

1 where ‘equivalence’ is thought of as up to local gauge transformations. See [6] for more infor­
mation regarding all aspects of instantons.
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this time it was discovered how the multi-instanton contribution could be formulated 

even though the ADHM constraints could not be solved [44].

It was then found that the A;-instanton contribution could be formulated as the 

matrix partition function for a supersymmetric cr-model, see Section VIII of [6]. The 

ADHM construction is then naturally interpreted as a gauged linear cr-model version 

of this matrix integral. The argument is as follows: the four-point anti-chiral fermion 

correlator (AATpip) contains the fourth derivative (with respect to the VEVs) of the 

prepotential as well as an integral over the location of the instanton. However, by 

inserting the long-distance behaviour of the fermions into the collective coordinate 

integral we obtain the same integral over the location of the instanton as well as the 

fourth derivative of the integral of a cr-model over OH*.

Before proceeding, we need to address the issue of singularities. As it stands, the 

instanton moduli space has orbifold type singularities which correspond physically 

to situations where an instanton shrinks to zero size2. It is important to stress that 

there is nothing inherently pathological about these singularities, however, they do 

add certain complications. There are two ways to deal with them:

• Work in the covering space of the hyper-Kahler quotient construction, which 

means working with a gauged linear cr-model.

• Deform the space in order to remove the singularities. It turns out that there 

is a natural way to do this, consistent with the hyper-Kahler structure of the 

moduli space. This deformed instanton moduli space naturally arises when the 

parent field theory is formulated in a non-commutative spacetime (see [6] and

2It would appear from the instanton solutions, explicit at one instanton, that the field strength 
goes to zero as the instanton shrinks, yet there must still be a topological charge, hence the integra­
tion measure has a singularity.
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references therein). It has been argued that the deformation does not alter the 

prepotential itself, except by physically unimportant VEV-independent terms.

It is more convenient to use the deformation approach since then tfflk is a smooth 

space and we can use the index theory on smooth manifolds as developed in the 

previous chapter. We can then write the instanton coefficient as an integral over the 

smooth manifold Wtk as

T k = j  ( ^ X O 1̂  e~SE , (4.2)

where the “instanton action” is

S E =  { ^ ( X W ( X )  -  0 )  • (4.3)

Here, gfll/(X)  is the metric on Wlk, in some local coordinate system X **, (i = 1 , . . . ,  n, 

where n = 4(kN  — 1), V is the Levi-Civita connection and are the Grassmann 

collective coordinates of the instanton. Notice that the measure is simple because the 

factors of yfg cancel between the fermions and bosons. The fields 4P(X) come from 

the non-zero VEVs in the parent theory. They in fact form components of a Killing 

vector in the complexified tangent space to the hyper-Kahler space ffllk which arises 

in the following way. The space 9Jlk admits a group of SU(AT) isometries which cor­

respond to the action of global gauge transformations on the instanton solution. The 

Killing vector (f> corresponds to the particular element of the associated (complexi­

fied) Lie algebra of S\J(N) picked out by the VEV v of the scalar field.3 As noted at 

the end of the previous chapter the Killing vector (f) is tri-holomorphic Killing mean­

ing it preserves both the metric—therefore Killing—and the 3 independent complex

structures—therefore tri-holomorphic—of the hyper-Kahler space 974.

3The VEV picks out an element of the Lie algebra of SU(iV) which we can choose in the Cartan 
subalgebra to be v • H , where H  denotes the Cartan generators.
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At this stage, we should caution that in practice we do not actually have the 

explicit form of the metric g ^ ( X ) ,  beyond k =  1 , due to the infamous ADHM 

constraints which must be resolved in order to get an explicit parameterization of the 

moduli space of instantons 971*. No solutions of the ADHM constraints are known 

beyond k = 2 , but in these cases, as we have already mentioned, we can formulate 

the integral (4.2) as a zero-dimensional gauged linear cr-model. In this formulation 

the ADHM constraints are imposed via Lagrange multipliers and there is an auxiliary 

U (k) gauge field. These details are not required in what follows but can be found in 

the review [6].

W hat is not apparent about the integral in (4.2) is whether it computes any­

thing topological associated to the instanton moduli space. In fact, for general gauge 

groups, the coefficients Tk are complicated functions of the VEVs involving rational 

coefficients. For instance, in the simplest case of gauge group SU(2) the first few 

coefficients extracted from Seiberg-Witten theory are [1]

= =  6 4 ^  ’ T i =  6 4 >  ' (4'4)

Having said this, the integral (4.2) looks superficially like the integral formula for 

a topological index (3.23), with the key difference being (4.3) describes a zero­

dimensional cr-model, whereas in Chapter 3 we examined quantum mechanical, or 

1-d, cr-models.

As explained in the introduction, the connection to index theory is achieved by 

lifting the Af = 2 theory to five dimensions where the extra dimension is compact 

a with period tha t we take to be /?. To start with let us suppose ft =  oo. In 

five dimensional Minkowski spacetime there is only a simple one-loop perturbative 

contribution to the prepotential [45]; in particular, there are no non-perturbative
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contributions. The reason is that there are no genuine instantons having finite action 

in five dimensions. All this changes when the (Euclidean) time becomes compact. In 

R4 x S'1, there are instantons because conventional four-dimensional instantons can 

be embedded in the four non-compact dimensions and have finite five-dimensional 

action; namely 8ir2 k{3/gl. Next one can evaluate the semi-classical contributions 

from these finite action configurations to the five-dimensional prepotential, which we 

denote . It is perhaps not surprising these contributions generalize (4.1) in a fairly 

obvious way. The instanton contributions to the prepotential in five dimensions are

^  =  ^  + 4 ^  £  T i e r * ™ 1*1 , (4.5)

where the partition function of the zero-dimensional supersymmetric cr-model is re­

placed by the partition function of the supersymmetric quantum mechanical cr-model 

on the same target space realized by a Euclidean functional integral in periodic time 

with periodic boundary conditions

f j ! = [  [(TX (<)][<*>(*)] e-5*1* ’*1 . (4.6)
J  PBC

The instanton action S[X, 0] is now a functional of the instanton collective coordi­

nates which are now functions of t. The structure of the Euclidean action S e [X,  0] is 

almost completely determined by supersymmetry. The point is that the parent field 

theory has 8 real supersymmetries—A f  = 2 in four dimensions—and since instanton 

solutions break half the supersymmetries the quantum mechanical cr-model must ad­

mit 4 real supersymmetries. Notice that the number of bosonic and fermionic fields 

are equal and there is a unique quantum mechanical system of this type: the Af = \  

quantum mechanical cr-model coupled to a Killing vector described in Section 3.3,
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with a (Minkowski space) Lagrangian (to compare with (3.53))

C =  §</„„ (x^X* -  w  +  -  i r V V ' P )  ■ (4.7)

In the generic situation this system has one real supersymmetry

5X» = - ie i / f  , = {X» -  <^)e . (4.8)

However, since the target space 971* is hyper-Kahler there are 3 additional supersym­

metries

i x "  =  i£c(i<c> • 4>y  , W  = ( i(c) • (x -  <t>)Ytc -  iec(i (c) • ipyip” , (4 .9)

which involve the three independent complex structures 1 ^ , c =  1,2,3. These super- 

symmetries are also preserved by the coupling to 4> since the latter is tri-holomorphic 

(3.70).

Now we describe how dimensional reduction gives the four-dimensional contri­

butions to the prepotential in (4.2). The first point to make is that in the five­

dimensional theory there is only a real scalar field and its real VEV determines the 

Killing vector 0 on the instanton moduli space. Note in five dimensions this Killing 

vector lives in the tangent space of VJlk and not its complexification. Now we dimen- 

sionally reduce. In the parent theory the component of the gauge field around the 

circle becomes a scalar field and can have a VEV, i.e. a Wilson line, and along with 

the real scalar field, </>M, gives the complex scalar field in the four-dimensional parent 

theory. At the collective coordinate level the extra VEV arises from the possibility 

of performing a non-trivial Scherk-Schwarz dimensional reduction. This kind of di­

mensional reduction allows the real Killing vector to become complex. For the most 

part, and without loss of generality, we shall take the Wilson line to be zero, and so
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<t> will always be a real Killing vector, with the understanding that it may easily be 

re-instated by complexifying the VEV as well as the associated Killing vector.

The fact that the instanton action of the compactified theory reduces to the four­

dimensional one in the /3 —» 0 limit, means that the instanton corrections to the 

prepotential also reduce

jrP £^0 02(1 -kN)j:k . (4.10)

The factor of (3 here goes along with the five-dimensional instanton action term to 

give the appropriate power of the A-parameter of the four-dimensional theory

A 2N =  p - ™ e - * « 2V /9 l  . ( 4 .1 1 )

4.1.1 Quantum M echanics on the Instanton M oduli Space

We have seen that the instanton contribution to the prepotential in five dimensions 

involves the partition function of a supersymmetric quantum mechanical cr-model 

with as the target space. In this section, we consider this quantum mechanical 

system in more detail in order to explicitly determine the vacuum states and identify

the differential operators we saw in Chapter 3. Again we refer the reader to [33-37]

for more details.

Let us describe the canonical quantization of the system and the Hilbert space of 

states. The canonical (anti-)commutators are

[ X \ f ]  = ig>u' , { r , r }  = g“'/ - (4.12)

The Hilbert space can be realized as the space of sections of the spin bundle over ffllk 

with ^  =  7 *V \ /2  where the 7  ̂ are the usual 7 -matrices

{-f,-f} = 2g r ,  (4-13)
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C(-.5?5We choose an off-diagonal basis of 7 -matrices, with the analogue of “y

° l ’ (414)
M= 1 V0 ^

Equivalently, since Wlk is hyper-Kahler, one can realize the Hilbert space in terms of 

holomorphic forms but we prefer to use spinors such that we can compare with the 

cr-model associated to the Spin complex in Section 3.1.3. The Hilbert space has the 

usual split into bosonic and fermionic states

K  = K + e K ~ ,  ( -1  (4.15)

realized as chiral spinors and anti-chiral spinors, respectively, so the fermion parity is

( - 1)F =  7 2n+1 . (4.16)

The supercovariant momentum operator, defined by

= , (4 .17)

is then represented by the covariant derivative = — iV^  on spinors derived from 

the Riemannian spin connection. The supersymmetry charge which generates the 

supersymmetry (4.8) is

Q =  r K  = Y ty .) • (4.18)

There are corresponding generators Q ^  for the additional supersymmetries (4.9). 

The quantity on the right-hand side of (4.18) is proportional to the equivariant Dirac 

operator

= *-* ,> )■  (4-19)
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In the off-diagonal basis of 7  matrices

(4.20)

the supersymmetry algebra is

{Q,Q} = 2(H-Z)  , {Q^,Q^} = 26ci( n - Z )  , {Q,Q(c)} = 0 . (4.21)

Here, % is the Hamiltonian and Z  is a central charge which commutes with all the 

supersymmetry charges and the Hamiltonian. Explicitly we have

and one can easily show that iZ  = £^, the Lie derivative acting on spinors. The 

central charge is related to the electric charge of the correspond state in the parent

the Lie algebra of the SU(7V) gauge group on the instanton moduli space. In fact it

States in the quantum mechanical system describe states of instanton dyons in the 

parent field theory in five dimensions. In particular, single particle states correspond 

to normalizable states. There is an important class of states in the field theory known 

as BPS states and these come in small representations of supersymmetry. In a theory

4Eigenvalues in the weight lattice do not occur since all fields are adjoint valued.

^  =  2 (9  1/27r*ff1/V ''*V  +  <t>pV +

2  =  <6% -  n v M r r ,
(4.22)

theory in a simple way. Recall that the Killing vector <j) is associated to an element of

is the element 0 • iL, where <j> is the vector of VEVs and H  are the Cartan generators. 

Hence

(4.23)

where q is the vector of electric charges associated to the Cartan subgroup \J(1)N 1 C 

SU(iV). In particular, q must be quantized to lie in the root lattice of SU(AT) .4
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with 8 supercharges these small multiplets consist of 4 states since they are annihilated 

by |  the supersymmetry charges of the parent theory. In the quantum mechanical 

system single particle BPS states of instanton dyons5 correspond to normalizable 

states which are annihilated by the four supersymmetry charges Q and Q ^  since 

these are the four charges which preserve the original bosonic instanton configuration

Q |« ) =  Q(c) |tf) =  0 , (’jt'I’P) <  oo . (4.24)

Thus at the BPS states the supersymmetry generators will commute, thus (4.21) 

defines the BPS equation as

H = Z  . (4.25)

4.1.2 The M  =  2*  Theory

We now turn our attention to the story with an adjoint hypermultiplet, the Af = 2* 

theory in four dimensions. We will describe this theory as softly-broken pure Af =  4, 

which, at m = 0, has a zero beta function and so the prepotential is exact at the 

classical level. There are non-physical terms (VEV-independent) which have the form

^ =4 =  ^ E i -  (4-26)
n\k

and we shall see later how these are relevant to our story. In physical terms however, 

we no longer have a renormalization scale, A. Instead we have just the dimensionless 

coupling constant
/ \ 0 47xi

r ( a )  =  2^  +  t  ’ ( }

and we will use q =  e2mr. Once we give half of the fermions a mass the theory acquires 

a richer structure. Firstly, we get non-trivial corrections to the effective action, and

5The states are called dyons since they carry two charges, the topological instanton charge and 
the VEV-induced ‘electric’ charge.
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secondly the theory should ‘interpolate’ between the pure theories at M  =  4 and

Af =  2. Meanwhile the non-trivial corrections are contained within the prepotential 

in the usual way

as determined in [46], Here also the first few instanton contributions in SU(2) were 

calculated. In [47] the first 8 instanton coefficients were calculated from Seiberg- 

W itten theory with the gauge group SU(2). The first three are

Again, the instanton contributions can alternatively be calculated from first prin­

ciples. The prepotential can be reformulated as the matrix partition function of a 

cr-model through the four-point correlator.

Now however we must be careful with the contribution from the centre-of-mass 

piece, R4, that we removed from the moduli space. The prepotential now has a factor 

from the partition function on K4 with the mass term. In four dimensions this simply 

pulls down a factor of im  for each pair of fermions. Thus we can rewrite the instanton 

coefficient as an integral of a zero-dimensional cr-model over the smooth manifold !%  

with an additional factor

F™ =  ^To X X  ~ S  ((a ' a )2 log(a ' ~  2 (a * a  +  m)2 l0S(a • a  +  m)2
i aa

i w
— |  (a • a — m ) 2 log(a • a — m)2) -I  (4.28)

(4.29)
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where the “instanton action” , including the mass deformation, is

s E =

+̂ rml>%u!lu/ip% -  c. (4-31)

Just as in the Af = 2 case the ^ ( X )  is a tri-holomorphic complex Killing vector6.

Clearly the mass term allows us to interpolate between the two pure theories, 

firstly with the Af  =  4 theory being accessible in the simple m  —> 0 limit. Alterna­

tively the second set of fermions, now acts as a massive adjoint hypermultiplet for 

the Af = 2 theory, and the supersymmetries related to ^2  are broken. To reduce to 

the pure Af = 2 theory care must be taken with the limits. In the four dimensional 

case we can take m —>> 00 so long as we also take r  —> zoo such that qm2N = A2N is 

kept fixed7. At the classical superfield level, the superpotential is such that two of the 

three chiral multiplets are required to be zero by the critical point equations. This 

leaves the vector multiplet and one chiral multiplet forming the Af = 2  supermultiplet.

Just as in Section 4.1 we can make the connection with index theory by lifting 

to five dimensions on a circle. The four-dimensional instantons can continue to be 

embedded in the four non-compact dimensions, with unchanged action 87t2 kj3/gl.

The instanton contributions to the prepotential in five dimensions are thus

00
j t f s n )  =  J & j f )  +  , (4 .3 2 )

k—\

where the partition function of the zero-dimensional supersymmetric linear cr-model

is replaced by the partition function of the supersymmetric quantum mechanical

6The pure Af =  4 theory contains three complex Killing vectors, but the addition of the mass 
deformation requires a superpotential in the parent theory which allows only one non-zero VEV. The 
particular vector which we allow to be non-zero can be determined by requiring the SUSY algebra 
to reduce to the Af = 2  algebra.

7We can see that this combination picks out the highest powers of m  in each line of (4.29) and 
thus agrees with (4.4).
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linear cr-model on the same target space realized by a Euclidean functional integral 

in periodic time with periodic boundary conditions

= _4sinh2(/3m/2) f [cTX(i)] [d.2nit>(t)]e~SB̂x'̂  . (4.33)
J PBC

Note we have now taken into account the integration over R4 in the parent theory of 

the hypermultiplet fermions with mass and kinetic terms (around momentum modes 

around the compact dimension, including the zero modes) and the kinetic terms 

(without the zero modes) of the original fermions and bosons.8

Just as in the 4 dimensional case we should find our cr-model as a deformation 

of pure Af = 4 SYM. Here there are 16 supersymmetries in the parent field theory, 

broken to 8 supersymmetries on the instanton solutions. Allowing a non-zero mass 

will break a further 4 supersymmetries. Since we have twice as many fermions as in 

the pure Af = 2  case we are led to the deformed Af =  1 Lagrangian coupled to a 

Killing vector, examined in Section 3.3. The (Minkowski space) Lagrangian is, c.f.

(3.62)9

C =  ( M '  -  )

p \ R txucrp'iPi'iPi'ip2 ^ 2  -  . (4.34)

When m  — 0 this system has two real supersymmetries

SX* =-itaW, , 8̂  = X^a + (-l)area + ir^r^Pa- (4.35)
8W ithout the hypermultiplets, the contributions from fermions and bosons would cancel, hence 

we did not have to allow for a multiplicative factor in the pure N  =  2 theory.
9In [33-37] there were five real Killing vectors. By the argument given in the footnote after (4.31) 

we have set all but 04 to 0. Breaking a different linear combination of the supersymmetry, via a 
different mass deformation, would result in a different central charge appearing in the correct place 
in the SUSY algebra, and so we would allow a different Killing vector to be non-zero. Also, we have 
no need to include the constant, c in (3.47), on the understanding that we are calculating the \ y  
index multiplied by some power of e~/3m.
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As explained in Section 3.4, the hyper-Kahler nature of the moduli space allows 6 

additional supersymmetries giving us the 8 required by the instanton solution

sx* = ieca(iU-Tpya , 5ra = (i(c)-(^+(-i)“</>))''f|-j(i(c>-r)^(i<c,-V’)?(i(c)-V’)S.
(4.36)

which involve the three independent complex structures c = 1,2,3.

The reduction to four dimensions is just the same as in the pure Af  =  2 case with 

the real Killing field </> combining with the Wilson line around the compact dimension 

to form a complex scalar field. Again the instanton corrections themselves reduce

_^,m) ^2(1 -kNi-pm (4.37)

The factor of here goes along with the five-dimensional instanton action term to 

give the appropriate power of the ^-parameter of the four-dimensional theory

q =  . (4.38)

This process does not commute with the reduction to the pure Af = 2 theory (m —» 

oo). In the compactified five dimensions such a limit is no longer smooth. This is 

because the mass term becomes a periodic variable due to the Kaluza-Klein modes 

and so the limit m  —> oo is nonsensical. Further, since we have Kaluza-Klein modes 

around the compact dimension as well as mass modes it would be non-trivial to 

separate these out. We will see later further examples of this discontinuity in the 

five dimensional theory. However, we will see that we can pick out the correct modes 

by hand once we calculate explicit results. To summarize we have a ‘flow’ between 

theories as shown in Figure 4.1.

Let us describe the canonical quantization of the Af = 4 system [37,39] before
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4d A f=  2
A2N = (3~2Ne~8n2&!9$ fixed

5d Af =  2 

i

m  —> oo

A2iV =  m 2Nq fixed

4d Af =  2* ^  ^ 0 _________

q = /3~2Ne~87r2P/9* fixed
5d Af =  2*

m  —> 0

4d Af =  4
0 -* O

5d Af = 4

Figure 4.1: Flows between theories of different dimension and mass content.

adding the mass deformation. The canonical (anti-)commutators are

[ X » , I f \  =  i g r ,  0 /’£ ,V $} =  < r< W (4.39)

The supercovariant momentum operator is the obvious generalization of (4.17)

7T,< =  P„ -  , (4.40)

while the supersymmetry charge which generates the supersymmetry of the theory is

(4.41)
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with corresponding generators, Q ^  for the additional supersymmetries. The super­

symmetry algebra is

{ Q a , Q f i }  = {Q L c), Q ? }  =  2Safi( H  +  ( - l ) a Z ) ,
(4.42) 

{Qici, < )} = { Q „ ,Q ? }  =  0 .

Now

Z = ^  ■

(4.43)

Again the Killing vector is associated to an element in the Lie algebra of the gauge 

group

Z  = $ - q .  (4.44)

Whereas in the pure Af  =  2 case we realized the Hilbert space in terms of spinors it 

is easier in Af — 4 to describe the system in terms of (anti-)holomorphic coordinates,

this should allow us to identify the Hilbert space of the cr-model with the de Rham

and Dolbeault complexes. To begin with we can combine 'tpi and fa  to form creation 

and annihilation operators, respectively

; V1 =  -  iif% . (4.45)

These obey the standard operator algebra

{&'•,&*} = <r,
{IP,IT} =  { ^ t ,6‘/,} =  0 .  (4.46)

Since the 6’s are Grassmann values we can identify the Hilbert space of states with 

the de Rham complex

jm t. . .  fcM |0) dxw A • • • A d x ^  . (4.47)



CHAPTER 4. A f = 2 , 2* PREPOTENTIALS 67

Further, we can combine the supercharges10

(4.48)

Thus without the mass term the Hilbert space is realized in terms of forms, and so

the system is identified with the de Rham complex.

Since the instanton moduli space is a Kahler manifold we can also find a basis

standard algebra. The states of the Hilbert space can be identified with the elements 

of the Dolbeault complex via

The important point here is that the holomorphic and anti-holomorphic differentials 

are split in just the right way so that when we break half the supersymmetries (by

beault complex with massive holomorphic degrees of freedom.

10 We will ignore terms dependent on the Killing vectors since these will turn the differential 
operator into an equivariant operator and for now we just want to determine which differential 
operator the supercharges correspond to.

11 Meaning non-zero components for terms mixing holomorphic components with anti-holomorphic 
components.

12Note the adjoints of d and 8  are defined as in [27].

of (anti-)holomorphic co-ordinates z l , P ,  where the metric is then off-diagonal11 and 

j  = l , . . . ,n /2 . The Hilbert space is then given by fp[ and ipJ2 as creation operators 

while %p{ and fp\ as annihilation operators, with each set separately satisfying the

■ ■ ■ $ 1  |0> <—* dzil A • • • A dzj> A dzkl A • • • dzk" . (4.49)

The supercharges are now12

Q i  =  ------ =  ip{ d zj +  'ipidzj H  =  * d  ★ + d  H   —d*  +  d  -I--------- ,

Q2 = 1P2 H =  il4dzj +  ifidzj 4----- =  d + * 8  *-\----- =  < 9 -^ -1 -------- .(4.50)

adding the mass term) the Hilbert space of the cr-model is identified with the Dol-
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Now we deform the algebra by including the mass term in the Lagrangian, equiv­

alently the Hamiltonian changes by TL —> H' = Pi 4- Tim• This breaks the supersym­

metries generated by Q2 and and so the algebra becomes simply

{ Q u Q i }  =  {Q(,c),Q lc)} =  2 (« ' (4.51)

Note that in the language of the Dolbeault complex the new term is just the number 

operator counting the holomorphic degree of a state.

We saw above how the normalizable, or BPS, states of the Af =  2 quantum 

mechanical system came in multiplets of 4. These are called ^-BPS states since they 

are annihilated by half of the original SUSY charges. In the pure Af = 4 theory there 

are now two possibilities since there are generically two independent central charges:

• |-B PS states from TL = Z\ or Z 2, these are annihilated by 4 SUSY charges,

• |-B PS states from TL = Z\ = Z 2, which annihilate all the 8 remaining charges.

However, it was noted in [39] among others, that with only one non-zero Killing vector 

we can have only |-B PS states whose solutions are annihilated, in this case, by the 4 

remaining SUSY charges

Qi l-P) =  Q<c) I f)  =  0 , ( f l * )  <  oo . (4.52)

Thus at the BPS states, set by the right-hand side of (4.51) being zero,

Ti! =  $  • q +  m j  . (4.53)
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4.2 Boundary Effects

We have seen that if the target space of cr-model, SOtfc, were compact, the partition 

functions (4.6) and (4.33) would compute the W itten index

[ {<rx(t))[<p̂ (t))e-s^x’̂  T r ( - l )Fe - ^ ,  (4.54)
J PBC

as shown in Chapter 3.

However, in our case the target space is not compact. This fact has already been 

mentioned in Section 4.1. The non-compactness due to the unchecked growth of an 

instanton turns out not to be a problem in the presence of the scalar VEVs which 

acts as a cut-off on an instanton’s size. The problematic non-compactness involves 

instantons becoming arbitrarily separated in R4. This is correlated with the fact that 

single particle BPS states have to be normalizable. In the non-compact case a natural 

definition of the W itten index involves imposing a normalizability, or L 2, condition.

The W itten index with L 2 condition, which we now denote as Ind*, to make the

instanton number explicit, receives contributions only from the single particle BPS 

states (4.24)

'IVi 2 ( - l ) Fe -OT =  Indfc . (4.55)

Since the SUSY charges are identified with differential operators we can see that, in 

terms of the geometry of %Jlk, the W itten index is the equivariant index of the Dirac 

and Dolbeault operators with L 2 condition

Ind* = ,I W * +(eW£*) — -

Ind™ = IVi2,k„ s (ei^ +iM™)-TV12 ,k„ 5, ( e!̂ +,w- )  . (4.56)

for the Af = 2,2* theories respectively.
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The problem is that the L 2 index is no longer equal to the partition function 

of the theory because the latter receives contributions from the non-normalizable 

states of the continuum. The reason is that although supersymmetry pairs bosonic 

and fermionic states it does not guarantee that the spectral density of bosonic and 

fermionic states is equal. Just this kind of situation was described by Sethi and 

Stern in [48]. In order to make progress we have to consider in more detail the 

“dangerous” non-compact asymptotic regions of the moduli space. These regions 

consist of configurations of well-separated clumps of instantons of lower charge

p

k —y {k\)ni +  {ko) n2 T ' • • (kp)np , ^   ̂rijkj = k , (4.57)
j=1

where rij gives the number of clumps with instanton number kj. The moduli space 

in this regime is approximately a direct product

^  cluster Sym’“ ('Xflkl x K4) x • • • x Symn'’(9Jtfcp x „  , eo,
* > R4 > (4-58)

where the quotient is by the overall position. Note that the factors of the moduli 

space for clumps of the same instanton number involve the symmetric product

r. Wl X - • ■ X f f l  , .
Sym = -------------    , (4.59)

where Sn is the symmetric group on n objects which acts by permutation.

The way to define the L 2 index is to introduce an explicit cut-off on the moduli 

space by restricting the separations of the clumps of instantons to be some scale R. 

This defines a manifold with a boundary, Wlk{R)- This has the effect of lifting the 

continuum modes. The L 2 index can then be defined as the partition function of the 

quantum mechanical system on IXflk(R) evaluated in the limit p —y oo followed by13

13The order of limits here is important.
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R  —> 0 0

Indfc =  lim lim Tr (—l ) Fe .
R - + 0 0  /3—>00

(4.60)

Sethi and Stern then showed that the L 2 index can be written as a sum of a principal, 

or bulk, and a defect, or boundary, term

Indfc =  Pk +  D k . (4.61)

The principal or bulk term, as its name suggests, is the partition function of the

the defect contribution Dk.

In order to evaluate the defect term we generalize and expand upon a heuristic 

argument originally due to Yi [49], developed by Green and Gutperle [50] and used 

in [51] in the context of monopole bound states. The basic argument is tantamount 

to the usual assumption in quantum mechanics and quantum field theory that we 

can define asymptotic scattering states. Essentially, this means that we can split 

the Hamiltonian of the system as: % =  W 0) +  'Hint- Here W 0) is an appropriate free 

Hamiltonian. The asymptotic particle states are eigenstates of W 0) and %jnt accounts 

for the interactions between these states which are assumed to have finite range.

quantum mechanical system on evaluated in the limit /? -> 0 followed by

R  —y 00

(4.62)

The defect term Dk can be expressed as an integral over the boundary of 9Hfc(.R), 

however, we will not need the explicit form which may be found in [48]. Notice that 

the principal term is precisely the functional integral in periodic time

in the present context. So in order to relate to the L2 index Ind^ we have to find
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The idea is that the defect contribution to the index comes from the asymptotic 

region where the interactions between the asymptotic states can be neglected. It can 

therefore be calculated with respect to the free Hamiltonian, %(0), giving

Dk =  D f  . (4.64)

As the free Hamiltonian certainly has no bound-states we have,

Ind<°> =  P<0) +  D f  =  0 =► Dk = D f  = - P « \  (4.65)

where

P i0)=  lim lim TV(—l) Fe_^w<0) . (4.66)
R —>00 /?—>0

In the above %(0) describes the quantum mechanical system with a target space given 

by the right-hand side of (4.58) with a cut-off R  imposed on the separations of the 

clumps. In other words there are no interactions between the clumps of instantons. 

We can now calculate P^0) as the partition function (4.66). The asymptotic space 

(4.58) describes n = ^ 2 n i free particles moving in R4, where for each i, there are rii 

particles carrying an internal space 971 .̂ The Hamiltonian will reflect the decompo­

sition of the “position” and “internal” spaces

H (0) = n pos +  ftin • (4.67)

Here, PLpos is the free Hamiltonian for n supersymmetric particles on R4 modulo the 

centre-of-mass motion (with a restriction that particles cannot be separated by more 

than a distance R ).

At this point, we must take account of the symmetric products in (4.58). This can 

be done by working in the covering space and then by explicitly inserting projectors
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onto the states invariant under the various products of the symmetric groups. The 

projectors can be written as

(4.68)
ri\ \ • • • nv\

^  71

where the sum is over the elements of the product of symmetric groups Sni x • • • x Snp 

and M^n,pos is the operator which represents 7r on the position and internal Hilbert 

spaces. The partition function we want can then be written as

TV((—l) Fe- ^w<0)P) =  — i    y ^ 1 V ( ( - l ) Fe_^Wp“ M„) T r((—l) Fe_Wl"MT) ,
71/ X • * * * •y 7T

(4.69)

evaluated in the limit ft —> 0 (with fixed p<j> and /3m) and then R  —> oo.

In (4.69), let us consider the piece coming from the motion in R4 with a particular 

element 7r G 5ni x • • • x Snp. To evaluate this partition function

lim l im T r ( ( - l ) Fe - ^ posMT) , (4.70)
f t - K 5 O 0 - > O  V '

essentially one can follow the steps in [50,51]. Remember R  is a cut-off giving the 

maximum separation of any two particles. Concentrating briefly on the N  = 2 theory, 

the system is a set of n  free particles with positions X 1̂, fi = 1 , . . . ,  4, and fermionic 

partners ^* , with the centre-of-mass motion frozen out. In (4.70), gives the action 

of an element of the symmetric group Sn

tt: X I  , %  -»• (Mw) W  . (4.71)

In the limit p  —>■ 0, we can use the standard heat kernel representation of the propa­

gator to write (4.70) as

r  - { X - M t' - X ? / 20

* , « - ■ > '« . )  L * ' - " *  w = r  ■ <«*>



CHAPTER 4. Af =  2,2* PREPOTENTIALS 74

We now evaluate (4.72). It is not difficult to show that the fermionic trace yields 

(de t^ l — Mt,-))2, where the prime means excluding the zero eigenvalue which arises

from the centre-of-mass degrees-of-freedom However, 1 — Mn has additional

zero eigenvectors and vanishes identically unless 7r is a cyclic permutation of the n

that a non-cyclic permutation would lead to a divergence. However, as argued in [50], 

we should take account of the cut-off R. A zero eigenvector in the bosonic determinant 

should actually be interpreted as ~  R~l . However, the fermion determinant vanishes 

identically and so only cyclic permutations can lead to a non-zero result and for these 

we can then safely take R  —> oo.

When we consider the theory with m atter we might expect to obtain another 

fermionic factor in (4.72). However, it turns out this is not so. Remember that we 

must take p —>■ 0 as our first limit but keep Pm  fixed which implies we are sending 

m  —► oo. Thus the mass scale has already been ‘integrated ou t’ relative to R  and so 

does not affect the calculation in the R  —>■ oo limit.

It is not difficult to show that for a cyclic permutation de t'(l — Mn) =  n. Finally, 

with and without matter, we have the result

From this result, we see immediately that, since the result is only non-vanishing for a 

cyclic permutation of the n particles, non-zero contributions to the partition function 

can only come from asymptotic regions (4.58) where all the instanton clumps have 

the same instanton number

particles. The bosonic integrals give a factor (det'(l — Mv)) 4 and it might be thought

7r is a cyclic permutation

0 otherwise .

cluster (4.74)
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Clearly n  must be an integer divisor of k.

With this result in mind we now turn to the contribution from the internal part 

in (4.69). We need to evaluate

T r ( ( - l ) Fe- Wi"MT) , (4.75)

where n is a cyclic permutation of the n particles. The n internal spaces are completely 

decoupled, 'Hm =  so the trace is easily expressed in terms of a sum over the

eigenstates of each separate Hamiltonian Remember that each particle has the 

same instanton number k /n  and so each Hamiltonian Tii is identical. Let us denote 

the orthonormal eigenvectors as |t/£), where i is the particle label. Let f a be the 

fermion number and AQ be a vector of the quantum numbers of the eigenstates14, so, 

with constants c, we have

Ui |V-i) =  <?• Aa \i>i) , F |C> = /„ |C )  • (4.76)

The symmetric group Mn acts as a simple permutation of the particle label i -¥ 7r(i). 

Hence, (4.75) is

^ ( - l ) E i/“< (V>i, • • •C„IV’Sl1) • • • d “)> ■ (4-77)

Now we use the fact that 7r is a cyclic permutation. The inner product in the above 

is zero unless all the particles are in the same state ol\ =  (*2 = • • • =  Oin. Hence, for a 

cyclic permutation, (4.77) is

(_1)<W/. e-n/»®X. _ (4 78)

14In the Af =  2 theory Aa =  qa , the ‘electric’ charge, while the states in the Af =  2* theory carry 
Aa =  (<fa> ja b  including the holomorphic degree.
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where £(?r) is the length of the element 7r G Sn. For a cyclic permutation £(-k) is 

even/odd according to whether n is odd/even. Therefore (4.78) can be written in 

terms of the index, refined in terms of the quantum numbers, on ff llk /n

£ ( _ ! ) / „  e-*»X . =  £ In d * /^  e -* * *  =  Ind*/n . (4.79)
Q A

Putting together the internal part (4.79) with the position part (4.73) in (4.69) 

and using the fact that there are (n — 1)! cyclic permutations gives the contribution 

to P^0) from the clustering region (4.74)

I n d fc/n,A e _ n ^ ' A • ( 4 -8 ° )71! 77"
A

Summing over n, the integer divisors of k excluding 1, we have

P™ = ^ 2 ^ 2  Ind*3/n,'l‘ e~nfieX . (4.81)
n\k^l x U

Then using the fact tha t D [0) =  — P^0) and (4.64), the defect contribution with inter­

actions is

D k =  -  ^ 2  E ,  e-n/,sX . (4.82)
n\k^l A U

Finally, from (4.61) and (4.63), we have our goal, the relation between the instanton 

coefficients of the prepotential and index theory. We note from (4.25) that the BPS 

states in the Af = 2 theory have quantum numbers of electric charge, thus

H  = lnd*3/"’f  e~n^  . (4.83)
n\k q

Notice that in contrast to (4.81), the sum now includes n — 1.

By summing over instanton number k with the factor exp(—87r2A;/?/^|), we can 

write an expression for the prepotential in terms of the L 2 index as
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Notice that the perturbative piece can be included as above, through the k =  0 terms 

with the definition
I 1 q is a positive root 

lnd0 ,<r=i (4.85)
[ 0 otherwise .

The BPS states of the Af — 2 * theory also carry quantum numbers, j ,  of the num­

ber operator on ^ 2- Thus, extracting a factor of (—1)J from the index for convenience, 

we have

EE Indfc/n,if,j e -nP$-q-nPm j ^ gĝ
q,j 71

Note that if we take the m  -> 0 limit of this there is no obvious n~l dependence as 

required by (4.26). We will have to see in the explicit index results how this can be 

consistent.

4.3 D iscussion

We have seen how by lifting Af — 2  and Af = 2 * SYM theories onto a fifth compact 

dimension the prepotential governing the low-energy effective action can be viewed as 

the partition function of a particular supersymmetric quantum mechanical cr-model. 

Thus, as shown in Chapter 3, such a function should be calculating an index on the 

target space of the a-model, here the instanton moduli space, Wlk- It is possible to 

identify the BPS states of the quantum mechanical system with instanton dyons in 

the physical theory. The complicating factor is that the instanton moduli space is 

non-compact, however, once this is taken into account, (4.83) and (4.86) give new 

formulae for realizing the prepotentials in terms of the index. The next chapter is 

devoted to doing just this for the case of gauge group SU(2).



Chapter 5 

Explicit Index R esults

In this chapter we shall derive explicit integers for the equivariant index and so 

confirm the index structure determined in the previous chapter. We will in fact use 

three different methods to calculate the prepotential in the case of SU(2), both with 

and without adjoint matter. The first uses the functional integral calculation resulting 

from the heat kernel method described in Chapter 3. This requires knowledge of the 

metric on the moduli space of instantons which, due to the ADHM constraints, is 

unknown above k = 1. Thus to gather results at higher instanton levels we will use 

the method of Csaki et al [9] where the five dimensional coupling, t ,5, is lifted from the 

four dimensional coupling, r4, by using Nekrasov’s generalization of Seiberg-Witten 

theory to 5 dimensions [52]. We then integrate twice to find the prepotential. This 

method is very efficient even up to seven or eight instantons as we will see. However, 

it does not pick up any VEV-independent contributions which, although they are 

physically irrelevant, will enable us to confirm our results are consistent. Furthermore 

this method is very difficult to generalize to other gauge groups. Hence we move on 

to the third and most powerful method based on the equivariant cohomology of the 

instanton moduli space and localization. This uses a powerful formula derived by

78
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Nekrasov [8] in terms of sums over partitions. We will use this formula to explicitly 

determine the prepotential for general gauge groups up to three instantons, as well 

as confirming the results for gauge group SU(2) up to four instantons.

5.1 Explicit One Instanton Integral

First, then, let us discuss the one instanton case in full detail leading to an evaluation 

of the formulas (3.61) and (3.66). The moduli space SQli for gauge group SU(2) is the 

Eguchi-Hanson space. The metric may be written

ds2 = .  ̂  (dr2 +  W 2(dip +  cos 9 dcp)2) +  \ r 2 y / l  + 4£2/ r 4 (d92 +  sin2 6 dip2) .
V l  +  4C2A 4

(5.1)

Here, £ is the parameter that regulates the singularity of the instanton moduli space, 

as £ —> 0 the space becomes the orbifold R4/Z 2. The range of the coordinates is

0 < r < oo , O < 0 < 7 r ,  0 < (p < 27t , 0 < ip < 27r . (5.2)

The size of the instanton p is related to the radial coordinate via

P4 =  i^ 4 +  C2 . (5-3)

A global gauge transformation in the unbroken U (l) C SU(2) acts on the moduli 

space as a shift in the angle ip and so the Killing vector $ is
r \

0 =  v —  , (5.4)

where v is the magnitude of the VEV. It is clear that fixed-point set of <j) consists of

two discrete points at r = 0 and 6 = 0, n. In the vicinity of the fixed-point at 9 = 0,

the metric is

ds2 =  (du2 -I- u2da2) -I- ^  (d92 +  92dip2) +  • • • , (5.5)
IQ 1
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where u =  r 2/ 2 and cr = iJj +p.  Hence, there are 2 copies of R2 with polar coordinates 

(it, a) and (0, p). The Killing vector generates a simple rotation in a and p. In this 

case the Riemannian moment is an imaginary 4 x 4-dimensional skew-symmetric 

matrix with eigenvalues (v, —v,v, —v). We can see this by converting to cartesian 

coordinates

X \=  u cos a  ,

?/i =  it  sin <7 ,

under which the Killing vector becomes

X2 = 9  cos p  , 

y2 = 9 sin<£ , (5.6)

d , d d d d  x
<t> = v —  = u ( - y i—  +  x i -  y2^ — +  x 2 — ) .dp dx i dyi ox  2 dy2

(5.7)

Since in the neighbourhood of the fixed point the space is Euclidean the connections, 

and so the curvature R Ml/, are zero, thus

l  0 1 0 0 ^

- 1 0  0 0
Llfj, i/ —  ̂ i/ — iv

\

0 0 0 1 

0 0 - 1 0

(5.8)

The second fixed-point yields an identical contribution to the index. Applying the 

formula (3.61) gives the first instanton contribution as

1 1
(5.9)

(2 sinh($v/2 ))2 2 sinh2(/?u/2)

The theory with an adjoint hypermultiplet inhabits the same space 97ti, we simply 

have to determine the Kahler form, and use (3.66), noting that since the fixed- 

point set consists simply of points the contributions come entirely from the normal
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bundle. The three Kahler forms are given in equation (32) in [53]. The form we need 

is

1 1  r 2 _________
u  = -  . rdr A (d'tp +  cos Odip) +  — v /l +  4( 2/ r A(— sin Odd A dip) . (5.10)

2 y 'T T ^C V r4 4 v ' v \ )

Again we reduce to the fixed point set of (f> and convert to cartesian coordinates to 

obtain

A dyi -  ^ dx2 A dy2 . (5.11)

Thus the two-form uĵ  turns out to be an anti-symmetric matrix with eigenvalues 

( 1 , - 1 ,—1,1). Thus from (3.66), and remembering the extra factor in (4.33) coming 

from integrating the mass terms over R4, we find

=  —4 sinh2(/3m /2) x 2 x +  P)/2) rin h ffln , -  v)/2)
(sinh(/o u /2 ))2

-  <512)
5.2 Seiberg-W itten Solution

Since the metric on the moduli space is unknown above k = 1 we must find an 

alternative method of calculating the prepotential. A particularly useful prescription 

is given in [9] since it allows computation up to high instanton charges (k = 7,8 

limited only by computation time). We begin with the Seiberg-Witten curve for 

4-dimensional SU(2) pure gauge theory1

u — \p 2 +  A2 cosh(X) . (5.13)

Here (p, X )  are the ‘momentum’ and ‘position’ parameters respectively, while A is 

the dynamically generated scale. Of course u is the first gauge invariant parameter

1Here we begin with the reparameterization of Nekrasov [54], rather than the original Seiberg- 
W itten curves, where the relation to the periodic Toda chain is explicit.
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k 1 2 3 4 5 6 7 8

G(k) 1 5 9 1469 4471 121191 441325 866589165
2 ^ 26 27 2 14 2 15 2 19 2 20 2 30

Table 5.1: Values of Gk-

and clearly has the form of a Hamiltonian. However, just as described in Section 2.2, 

the adjoint scalar field (/> has gained a VEV, a. The gauge invariant modulus in the 

weak coupling regime can then be given by
00 \ 4 k

u = (Tty.2) =  \ a 2 + Y i  Gk- ^  , (5.14)
fc= 1

where the coefficients Gk (obtained from [55]) are given in Table 5.1. The coupling 

constant r  also has a weak coupling expansion

. Am 6(a) i a2 v A4h
r(a) =  -jT -r +  -7— =  “ l°g To +  Z ^ Tk~Tk ’ gz(a) 2ir 7r A2 a4fc

where the coefficients 7* are related to the Gk via the Matone relation [56,57]

(5.15)

T* =  T ----------21--------------' (5-16)

The meromorphic differential (see (2.12)) is just A =  p d X ,  with the A  and B  cycles 

chosen to ensure the correct asymptotic behaviour of a as u —> 00 . Thus
1 p in

a(u) =  -—: /  d X  p —¥ V2u . (5-17)
27XI J  _ j7r

Introducing two new parameters

A2
u  =  \P lu  , v4 =  —  , (5.18)

u

we can rewrite (5.17) as

O f 1 ‘ r  , "  (5.19)
duj 2m J_in y^T^^4COsh(X)
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The crux of the method of [9] is to determine a similar equation in the 5-dimensional 

theory. Since this theory is on the compactified manifold R4 x 5 1 the scalar field 

(j> combines with the component of the gauge field in the compact dimension; the 

resulting complex scalar field, x> then develops the VEV, now denoted A. The gauge 

invariant modulus is now

/m C0SM2/?y)v cosh(/3A) . /-U = (T r —----- ) = ------—----- 1-instantons. (5.20)
p z p l

The spectral curve describing the low-energy dynamics is related to the relativistic 

Toda chain, only, as in [9], we have an additional a priori unknown function f ( p A)

U = cosh(/?p) v /l +  2/?2A2/(/?A) cosh(X) , (5.21)
P

where
oo

/(/}A) =  l +  £ / * / ? 4*A4* , (5.22)
Jb=l

and the coefficients /* are to be determined in the following calculation. The VEV 

A(U) can again be shown to have the correct asymptotic behaviour

1 pi'K
A(U)  =  I d X  p  /3_1 cosh-1 (f)2U) , (5.23)

27T% J _ j 7r

and so we again define two new parameters

cosh (a) =  P2U , 1/5 =  2 / ^ y , A2 • (5.24)
sinh (a)

Thus in analogy to (5.19) we find

dA{U) p - 1 r  d X
- f  , . (5.25)
i J - i7r J 1 — ^co sh (X )da  27ri J_i7r ^ / l  — cosh(X)

The same equations determine the dual VEVs A d and do except with the integration 

running from 0 to cosh-1(u/A2). Now it is clear that equations (5.19) and (5.25) are
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identified when the parameters satisfy ^4 =  v5

, ■  ( 5 - 2 6 )-V 5 1/4 = 1/5

Also, by definition, ^4 =  z/5 implies

dA _  da 
da duo

rRj * _  1

( 5 '2 7 )

Now we note from the dependence of the coupling on the scalars in (2.8) that

d ( d ? P \  _  dA D 
dA \ d A  )  ~  dA  ’
» (« £ )  ,  “ j> , (5.28)

and

r" ' “ > -  *  U J - « r  ■ ( 5 a )

but by (5.26) the two differentials on the right-hand side can be identified. Thus to 

calculate the five dimensional coupling we simply need to determine r4d at the specific 

value of u — U.

At this point we divert from the method of [9] and directly determine a(A). A 

simple rearrangement of (5.26) gives

(5.30)
dA _  xda 

~ d ^~  dui u -uV 4= 1/5

while the rhs can be determined from (5.27). Finally we arrive at

A =  f  V f i W  da (5 .31.)
J  v/1 +  2Pf(PA)u(a)

The rest of the calculation must be done on Mathematica along the following lines. 

First insert (5.14) and (5.22) into (5.31) and determine the integral order by order in 

A. At this point the coefficients of the function /(/?A) are determined by requiring 

integrability of the coupling, r , to give the prepotential. They are satisfyingly simple

h  =  (-1)*  • (5.32)
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Inverting the result of the integration gives an explicit function a(A), whose leading 

order term is simply

a = sinh(/3A) +  0 ( A4) . (5.33)

Inserting the full expansion into the 4-d coupling (5.15) and re-expanding in instanton 

charge gives the 5-d coupling r5. All that is left is to integrate twice to determine the 

prepotential T^{A).

We will now determine a similar method for the Af = 2* theory. The Seiberg- 

W itten curve was generalized in [54] and is in fact the Hamiltonian of the Calogero- 

Moser system, where the position coordinate has become elliptic

Um = \ v 2 +  y p ( ^ )  • (5.34)

We now determine the weak-coupling expansion of the invariant modulus. This can 

be calculated from the prepotential of the 4-d theory, as derived in [47], by using the 

Matone relation. We must allow for VEV-independent contributions, as in [58], here 

depicted by the constant c. The resulting expansion has the form

um = +  vn)2 +  \ (a  -  m)2 +  cm2 +  ^  Gm,k(a, m)qk . (5.35)
k=1

This shows that the asymptotic behaviour of the VEV, a , is again

riir
a(u ) =  n—7 /  d X  p —► \Z2um , (5.36)27TZ J _ i7r

and the new parameters are

/-—  m2 . 0_N
û m — v , /̂ 4 =  ~ , (5.37)

2 um

allowing us to rewrite (5.36) as

daf lm) =  r  d x  . (5.38)
diUm 27li J —in — ̂ 4p(AT)
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The spectral curve of the 5-d Af = 2* theory was given in [54] and describes the 

relativistic Calogero-Moser system. However, just as in the pure gauge theory, we 

should allow for an unknown function to account for ambiguities in the curve of the 

massive theory, these get determined later in the calculation, just as above. Thus

Um = COSh m , l l  +  -̂ ^ f{q) , (5.39)

where from the first few terms of the calculation it is suggested that the function /

is the first Eisenstein series

f(q) = - l  +  E 2(q) . (5.40)

Then
-t pin

A{Um) = —  /  d X p —> cosh-1(t/m) , (5.41)
J —in

and the new parameters are

cosh(c*m) = Um , n s = — j - — ■■ ■ - -  , (5.42)
sinh (am) (p{pm) + f(q))

allowing us to rewrite (5.41) as

dA(um) r 1 r  d xf  dX  -  /  . . (5.43)
1 J - i n  \ / l  — UzfpiX)doLm 27xi J_ilT y j  1 — p,5p(X)

The identification of the couplings follows just as in the massless case. We now find 

the integral analogous to (5.31) to be

f)A =  [  1 =  da . (5.44)
J  y / 2 u (a ) +  m 2( p ( / 3 m )  +  f ( q ) )

The calculation of the prepotential follows as above.
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5.3 Equivariant Cohomology

We will now use the method of calculating the prepotential given by Nekrasov [8]. 

Later we will examine the significance of Nekrasov’s result for our calculations. How­

ever here we will just use the formula to confirm our results for SU(2). In fact we will 

use the similar formula of Bruzzo et al [59], since it will enable us to switch between 

pure and massive theories, and between four and five dimensions.

The contributions to the prepotential are derived in terms of a ’partition function’ 

Z ,  which is itself just a sum over coloured partitions

2 (a ;e i ,e 2,A) =  Z pert(a; eu  c2, A) ^ ^ |fe|% (a ; eu  c2) , (5.45)
k

where

^=e  n n ■ (s-46)
{Va} a,a=i seYx

At each instanton level, h, we have k boxes to distribute between N  Young’s tableaux. 

Each configuration of boxes counts once. We then pick one of the Young’s tableaux 

and label it Y\ and cycle over all other tableaux with the index Yx. Now we can define 

Vix to be the length of the u ’th row in Y \ , while is the height of the jV th  column

in Yx, where is the position in Y\ of the box s which again we cycle over. This

is all numerated by the functions

E(s) = axx -  cih{s) +  e2(v(s) + 1) ,

h{s) = vix -  j x , v(s) = v'jx -  ix . (5.47)

The combinatorics of how all this works is fully spelt out in Appendix B. The function 

f ( x )  allows us to calculate each Z * without specifying the nature of the theory we are 

examining. In general /  depends on e =  ei +  C2, however to obtain the prepotential we
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will set ex =  — e2 =  h , then f ( x )  is as given in Table 5.2. Note in particular that /  is

/(* ) 4 — dim 5 — dim

M  = 2 _1_
X 2

1
sinh2(/?x)

N  = 2* (x—m)(x+m)
X 2

sinh(/?(aH-m)) sinh(/?(x—m))  
sinh2 (/3x)

Table 5.2: The function f ( x )  in theories of various dimensions and matter.

now an even function in all cases. Also, in the limit of m  —> 0 we see that f ( x )  - 

in both 4 and 5 dimensions. Thus using the identity proved by Nekrasov [8]

^■(a, A) =  lim (h2 log(^)) .
h—vO

we can show, as in [59]

/c=l n|/c

Hence, any results derived from this calculation will give the correct m  = 0 

With the notation

Ti(x ) = I I  f ( aij +  x ) » Ti = Ti W  >

we find the one instanton term is

&  =  E  ■
i

For two instantons there is a little more work, from which we get 

22 =  ^ / ( 2 f i ) / ( f t ) T j [Tj(fi) +  Ti(-fi)]
i

l7F3

- 1, Vx

(5.48)

(5.49) 

limit.

(5.50)

(5.51)

(5.52)
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On to the k = 3 contribution

^3 =  X ]/(3 f i) /(2 f t) /( f t) r j [rj (R)ri(2fi) +  r j (-R)Tj(-2R)]
i

i
T  T-Lt J-J

+  f ( l  \  f (ni^j f \ ai j ) j \ ajt

/ (a y  -  2h)f(a}, -  ft) ^  +  / ( a y  -  ft)/(aJt -  2ft) T' ^/(ay-ft)''^ '/(«« +»)J
+ 5T H  / 3(fi)/(a tJ -  K)f(atk -  h)f(a,ji -  f t) /(a #  -  ft) /(a«  -  f t) /(a y  -  ft)3!

Ti________ S ________ Tk ( 5  5 3 )
' f {a ij) f{aik) f  {aji)f (ajk) f { a ki) f ( a kj) '

We can then use the identity (5.48) along with some identities given in Appendix B 

to calculate the prepotential in either 4 or 5 dimensions and with or without adjoint 

matter. The 4 dimensional results are given in [8], here we will give the results for 5 

dimensions. With the notation

Ti =  25(0) , l } n) = j L t y x ) (5.54)
x—>0

and considering the pure Af = 2 theory first we have

Ti(x) = P [  . .2  * .. , (5.55)
-LJ-sinh \p\Oij + x))
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the first three terms in the prepotential are"

=  - E T-

'jrP _
*̂ 2 ~

'zr/3 _
S  3 ~

I W  -  —  V t#  V -o 2-^ 1 At-fi Z-/ * *
T T-*-13

2 i 4/32 ^  sinh2(/?ay) ’

 \  1 ^ 3  I 4  \  r p  r p i l ) r p ( l )  , ^  \  '  r p 2 r p ( 2 )    ^  \  '  rTi r p ( 2 ) r p ( 2 j

2 7 ^  * T  9 ^ 2  Z  1 * » 9 /?2 Z - /  * * 1 2 /5 4 Z - f  * * *

 L _  v t t . (1)t . (3 )  L _  t 2t . (4)
18/94 Qfi/94 Z ^ *  “** % ci

T 2T-1*
18^4 z ^  . . 3 6 /}4 z ^  . . Z - ,  s i n h ^ a ^ )NI II II4 -

(2)/

- w ^ S h - w * . )  • (»■»)

Meanwhile the Af = 2* case, where

rr f \ _  TT sinh (£(av +  x -  m )) sinh W ac/ +  x +  m )) /C C>7\
. , (Qt ; r̂ 2 ’ (0.0f)

j / i  sinh ( p ( a i j  +  x ) )

and

IIij = coth2(/3aij) -  i  coth2(/?(ay +  m)) -  ^  coth2(/?(ay -  m)) ,

Hy =  coth4((3aij) -  i  cot h4 (ay +  m)) -  ^ coth4(/3(ay -  m)) ,

1 „  1
E^  = sinh(2/?ay) — -  sinh(2/?(ay +  m)) — -  sinh(2/3(ay — m)) , (5.58)

2We have removed a factor of /? 2 which appears explicitly in (4.5). The remaining factors of (3
cancel factors coming from the derivatives of Ti.
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and (Sju

TriP,™.)
2

= sinh(/3m), gives

=  ^ E T- -
i

= ±S2m(3  +  5 ^ ) E ^ 2 - § E Tri2) - 5 m E W 1 #  >

i i i ^ j

=  ^ 2 . ( 9  +  65^, +  4 ^ ,)  E ^ 3 -  E >
i i

5<̂ m(3 +  $m) X^rr2rr(2) , ^  ™(2)™(2) .E r p 2 r p ( 2 )  . & r n  \  '  r p  r p { 2 ) r p ( 2 )  . r p  r p ( l ) r p ( S )

. f 1 12/?4 i 18/34 “  * *

E ^ (4) - + 5 ™) E ^ n « + §  E T^ (2)̂ n v

+<̂ m (2 +  3^ '  “  4 coth2(£(ay +  m)) coth2((3(a,ij -  m)))

S!L771
fi

- $ E + 2s£ E . (5.59)
i^j i^j^k
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5.4 Full Results

5.4.1 SU(2) Prepotential and Indices

For the pure Af  =  2 theory the methods of Csaki et al and Nekrasov give identical 

results, after removing the explicit factor of (inifi2)-1 in (4.5), we find

1
2 sinh2 (PA) ’

&  =  1 i 5
2 64 sinh4 (/3A) 64 sinh6 (/3A) ’

J *  -  1 17 3
3 846 sinh6 (f3A) 576 sinh8 (PA) 64sinh10(/?yl) ’
a 1 39 1521

T a — . q , ~ + ______  . +
8192 sinh*(ftA) ' 4096 sinh10 (0A) 32768 sinh12 (0A)

1469
+  32768 sinh14 (PA) '

» 1 37 6263
T* — . m, „ +   ' +

64000 sinh10 (0A) 12800 sinh12 (13 A) 204800 sinh14 (j3A)
6413 4471

+
81920 sinh16 (PA) 81920 sinh18 (0A) ’

» 1 125 6515
T i  =     +6 442368 sinh12 (0 A) 147456 sinh14(/M) 393216 sinh l*(0A)

290293 221839 40397
_______   . , 1 Q ✓ . , on / .
3538944 sinh18 (04) 1572864 sinh20 (04) 524288 sinh22 (04) ’

^  1 195 51075
7 “  2809856 sinh14 (/3A) +  802816 sinh16 (04) +  6422528 sinh18 (0 A) 

850485 11887 982043
+ _______   . . .  OO ,  „  . V +

12845056 sinh20(/L4) 57344 sinh22 (0A) 3670016 sinh24(/?/l)
441325

3670016 sinh26 (fiA) ’
* 1 287 117691*FP — ___________________ I___________________ I-j  ft __      . - 1 £  / ~  .V I       . .  1 O ✓ ~  .V I

16777216 sinh16(/34) 4194304 sinh18 (@A) 33554432 sinh20 (fiA)
1517109 242756049 274866637

+    . +
33554432 sinh22 (j3A) 1073741824 sinh24(/3A) 536870912 sinh26 (0A)

2268722897 866589165 , .
+ 4294967296 sinh28 (f)A) + 4294967296 sinh30 (/?A) '
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The explicit calculation given in Section 5.1 then agrees with the one instanton 

results here once we identify v = 2 A. We are finally ready to determine the equivariant

It is then a simple m atter to remove the lower index contributions at each level of

chapter.

5.4.2 Again with M atter

The results for the Af  =  2* theory are again in full agreement with each other (al­

though the results from Nekrasov’s formula need a rescaling m  —» m/2).  With the 

notation S a =  sinh(/?yl) and S m =  sinh(/3m/2) we have

index in the pure SU(2) theory. Using (4.83), where since the vector of VEVs (j) is 

simply proportional to v we get

•*/".! -2 nWA (5.61)
n\k 1=1

instanton charge k and thus extract the indices as in Table 5.3 at the end of this

^ ( 9 S * m +  6S*m +  4 5 ^ )  +  g ( $ J ,  -  4 5 ^ ,) +  ^ r ( - 2 S l  +  3SU.)

+  2 y ^ 6  -  78<Sm +  <Sm ) +  ^ | ( - 8 4 < S ^ '  +  1 7 5 “ ) +  <

2(7S i  +  75^ +  85^, +  45^) +  -^ ( -1 5 5 4 5 “  +  20315“  -  2525“  +  5 “ ) 

+ J r ( 7S ' ,  -  465JJ, +  165^) +  ^ ( 2 1 5 1 5 “  -  14265“  +  785“ ) 

+ 4 ( - 1 8 0 5 ^  +  795S*m -  2805“  -  8 5 “ ) +  | | ( - 4 4 0 5 “  +  1175“ )
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'T:(P,m) 
*̂ 5 ^ ( 7 5 5 ^  +  100<S4 +  2805^ +  3205^ +  1285“ )

+  ̂ 2"(3^m “  56<Sm +  485JJJ

+ ^ r ( _ 6«5  ̂+  53<S  ̂ -  565™ +  4<S™)

956
+  ^ ( 6 7 5 ^ ,  -  3 7 0 5 “  +  2 9 9 5 “  -  2 4 5 “ )

128
+ - ^ ( - 7 5 6 5 “  +  2 6 3 7 5 “  -  1 4 3 2 5 “  +  9 6 5 “ )

128
+  1 2 5 5 “  (29 2 2 7 5 < S “  "  6 33 30 0< S ™ +  2 1 7 4 2 0 5 “  -  9 9 2 0 5 “  +  1 6 5 “ ) 

256
+  2 5 5 “ '1- 5 1 1 5 0 5 ™ +  6 6 6 9 5 'Sm  -  1 3 1 2 0 5 “  +  2 9 6 5 “ )

128
+  2 5 5 “ 1C1 0 1 0 1 0 5 ™ -  7 2 6 6 0 5 “  +  6 2 6 3 5 “ )

+ ^ i 6  ( _ 2 1 0 0 0 5 “  + 6 4 1 3 5 “ ) +  g ^ i 8 5 “  ,



CHAPTER 5. EXPLICIT INDEX RESULTS 95

-p(27«S^, +  455^ +  1205?„ +  2165^, +  1925“  +  645“ )
32

+ - g ( 3 5 ^ - 5 0 5 ^  +  9 2 5 ^ - 8 5 “ )

1 A
+ ^ ( - 1 8 0 5 ^ ,  +  25655^, -  5 4 8 0 5 “  +  1 6 4 8 5 “ )

1 fi
+ — - r ( 8 3 8 355 ^  -  8 2 0 7285“  +  14392325“  -  4 6 7 4 2 4 5 “  +  9 2 1 6 5 “  

27Sa
-2 5 6 5 “ )

256
+ ^ - ( - 1 6 3 1 7 5 “  +  1091225“  -  1432535“  +  3 8 6 1 9 5 “  -  1 1445“ )

256
+ ^ ( 9 8 1 3 5 “  -  4 4 9 4 4 5 “  +  4 2 0 2 4 5 “  -  8 5 0 0 5 “  +  2 4 0 5 “ )

64
+ — ^ ( - 3 4 8 6 7 8 0 5 “  +  108430655“  -  6 9 5 3 3 7 6 5 “  +  9745205“

27 o  A
—206405“  +  1 6 5 “ )

f?A
+ — ^ (2 3 7 9 1 9 5 5 “  -  49219805“  +  20536745“  -  1771805“

+20005“ )
64

+ T - jg  ( -1 0 1 1 7 8 0 5 “  +  13316195“  -  3257 8 2 5 “  +  130305“ )
3 S A

+  2S “ (70301975™ "  5326962<Sm +  5805865“ )

+ J s ( - 6 6 7 5 8 4 S £  +  2218395“ ) +  ^ § ^ 5 “  ,
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• '7
64

~343(495“  +  98^ * +  5885“  +  168°5 ™ +  2464<S”  +  1792lS“  +  512,S- ^
64

+ g ( 5 ^  -  4454 +  12854 -  3254°)

256
+ ^ - ( - 1 8 5 4  +  39954 -  14085^° +  944542 -  64S “ )

256
(46554 -  708254° +  21631542 -  15608544 +  196854°)

i ySl
f  ■- ^ - ( -1 2 9 4 8 5 4 °  +  1 4 1 1 4 1 5 4  “  341400544 +  21608054° -  2892854°

+25654°)
128

<~5Io (1079915m -  8 5 0 7 4 4 5 4  +  156998454® -  79750454® +  9468854°
S A

-1280542)
1024

f  — T 2-(-71170544 +  40607154° -  55740854® +  21572654° -  20576542
S A

+ 2 8 8 5 4 )

512
)- 14 (16820749454° “  97143253254® +  68915604154° -  194051732542

3436^

+ 1 3 6 0 3 4 0 8 5 4  -  15321654° +  6454®)

256
f — - s (-1 1 0 1 2 6 5 2 0 5 4 8 +  32173110954“ -  225408260542 +  4 3 3 9 5 7 4 4 5 4

-1 9 6 6 7 2 0 5 4 °  +  1248054®)

256
(-— 58(16842510354° -  3 4 0 4 5 9 7 5 6 5 4  +  1 5 8 7 5126454  -  1867275254®

49 S A

+ 40860054°)

l' ^ r ^ ( _ 4 2 3 7 6 9 9 2 5 m +  5 6 2 9 8 2 7 7 5 4  -  1568407454° +  85048554°)
49<>4

1 - ^ ( 3 8 4 4 4 9 1 5 4  -  301919854® +  38038454®)

^ ( - 2794" 6 5 4 °  +  98204354®) +  . (5.62)
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The index formula (4.86) is now

H  = T T  —" ^ In3Ak!n'‘J e- 2 n m e~n^ m . (5.63)
n\k l, j

Then we can extract the indices as in Tables 5.4-5.10, to be found at the end of this 

chapter, noting that they are symmetric in j  —> —j  we only quote the results for 

positive j .

5.4.3 Consistent Limits

There are a number of consistency checks to be made on the results, in effect to ensure 

that the ‘flows’ in Figure 4.1 are correct. Firstly, we should take the ft —> 0 limit 

and regain previous results. This limit can be taken smoothly, and allowing for the 

scaling in (4.10), we find both the Af = 2 and Af  =  2* results produce the correct 

4d expansions with which we started in Section 5.2.

Secondly, as noted many times previously, our Af  =  2* results should interpolate 

between the Af = 4 theory, where there are only VEV independent contributions, and 

the Af = 2  results we found above. As previously noted, the simple limit m  —> oo does 

not give the correct results since the mass parameter is a periodic variable. Explicitly, 

however, we can hand pick the terms of the highest power of S m in each instanton 

co-efficient of (5.62). Then the limit ra —» oo on these terms gives the results in 

(5.60).

There is one question which remains to be answered. Do the results in (5.62) give 

the correct terms in the m  —> 0 limit? This limit in fact only takes contributions 

from the lowest power of S m in each instanton coefficient, although the limit m —» 0 

is smooth. Importantly, such a term is always in the VEV independent part (i.e. 

C?(c> )̂) which could only be obtained from Nekrasov’s formula and which we have



CHAPTER 5. EXPLICIT INDEX RESULTS 98

determined up to 4 instantons for gauge group SU(2). Indeed, the coefficients are 

correct

j&,m) =  _ g (S2i ^ 0  _ 2 =  _ 2(^  ^

^ ,m )  =  _ U S 2m _ i S 4m _ 3 =  _ 2( l  +  l ) i

'jr(P ,m ) _ ____32 <?2 _  64 o4 144 c6  m~>P _ 8  _  _ o / l  , 1\  ' ' '
** 3 3 m  9 27 m 3 \  l ' 3 / >

=  - 1 4 5 ^  -  1 4 5 £  -  165^, -  85^, ^  - \ =  - 2 ( \  +  |  +  J) ,

however, this was built in to the Nekrasov formula, as we saw in (5.49). So this is 

no surprise. Instead, we need to understand how the n~l dependence comes out of 

(4.86). Rather than taking m  —> 0 we should initially pick out the VEV independent 

terms, i.e. states with zero ‘electric’ charge

£ £ ^  ( _ l)Je-nj0m (5.65)
n|/c j

But from our results up to 4 instantons we find

y > d M)J- ( - l ) V ^  — — 8sinh2(/3ra/2) , VA; , (5.66)
j

which means our expression for the Af = 4 limit is

=  -  £  47Vsinh2f r f m / 2) , (5.67)
n\k

where the n~l dependence in the m —> 0 limit is explicit. Further the first two

coefficients for SU(3) can be calculated and follow exactly the same pattern. Thus

it has been possible to predict the VEV independent contributions to above 4

instantons as given in (5.62).
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5.5 Discussion

In this chapter three methods of calculation have been used to determine the pre­

potential of the theories with gauge group SU(2). An important result is that these 

agree, in particular the Seiberg-Witten calculation, lifted to 5-d via the method of 

Csaki et al, agrees with geometric method of Nekrasov. The prepotentials have then 

been expanded according to (4.83) and (4.86) to show the underlying index structure. 

Thus it is shown that the Seiberg-Witten solution of Af = 2,2* SYM theories carries 

topological information about the instanton moduli space. Also the method of using 

equivariant cohomology in the derivation of Nekrasov’s formula is shown to be valid.
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Table 5.3: The values of the index Indfc>m.
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1 IndU o Indi)Z)i Indi,Z)2
1 12 8 2
2 24 16 4
3 36 24 6
4 48 32 8
5 60 40 10
6 72 48 12
7 84 56 14
8 96 64 16
9 108 72 18
10 120 80 20

T able  5.4: The values of the index In d i^ j .

I In d 2)i)0
1 56
2 368
3 1548
4 4896
5 12780
6 28944
7 58912
8 110272
9 193104
10 320240

Ind2,/,i Ind2,/,3
39 12

272 104
1173 492
3776 1680
9955 4580

22704 10680
46417 22148
87168 42016
152991 74268
254160 124040

Ind2,/,3 Ind2,M
1 0

16 0
99 6

384 32
1125 110
2736 288
5831 644

11264 1280
20169 2340
34000 4000

Table 5.5: The values of the index Ind2 )/j.
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Chapter 6

Sum mary

In this thesis we have examined two situations where we are able to calculate exact 

results in supersymmetric gauge theories supersymmetry. These centre around the 

low-energy effective action of Af = 2 gauge theory in 4 dimensions (2.7) and the 

superpotential of Af =  1 theories.

In the first case we were able to identify the Seiberg-Witten curve of the theory 

compactified on a circle with the spectral curve of a particular integrable system. We 

saw initially how such an identification occurs in the simple case of mass deformed 

Af = 4 theory with gauge group SU(iV), studied in [4]. In this case the superpotential 

of the field theory, broken to Af = 1, is naturally identified with the governing Hamil­

tonian of the Calogero-Moser integrable system. We were thus able to determine, 

in principle, the vacuum states of the theory simply by determining the stationary 

points of the Hamiltonian, which is independent of the compactification radius. The 

results are thus valid in the 4-dimensional limit. The superpotential is expressed in 

terms of the Weierstrass elliptic function, p, and the massive vacua are given by con­

figurations of ‘particles’ in the integrable system where they have zero ‘momentum’ 

and are positioned at sublattice points of the fundamental parallelogram of p(X ).

107
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We then examined the more general setup involved in the quiver models in [5]. 

Here the gauge group in SU (N)k and the integrable system is a spin generalization 

of the Calogero-Moser system. The phase structure for any N  and k had been deter­

mined, but only for the massive vacua of the theory. This is partly because such vacua 

are given by equilibrium values for all the hamiltonians of the integrable system. With 

the k =  1 results generalizing naturally, it was just left to find a parametrization of 

the spin matrices which solved the critical point equations for all the hamiltonians of 

the theory.

The story for the massless vacua is not so easy to pin down. The point is that they 

are given by equilibrium values of just a subset of the hamiltonians and their generic 

parameterization in unknown. We thus examined the specific case with gauge group 

SU(2) x SU(2) in the hope of determining the massless vacua in this case. It turns out 

that the equations are solved entirely by the spin matrices and the ‘position’ variable 

X  is a free parameter, i.e. there are flat directions in the parameter space. This is 

confirmed by the fact that the determinant of the Hessian matrix is non-zero for the 

massive vacua and zero for the massless vacua. In this specific case we are also able 

to exactly determine the values of the condensates, T r^ f . It is hoped that examining 

the massless vacua in this simple case will lead us to determine such vacua for the 

general gauge group.

Recent work by Dijkgraaf and Vafa [60-62] has developed a new method for cal­

culating the superpotential in terms of the planar diagrams of a matrix model. The 

results of [5] have been confirmed with this method, and it may be possible that new 

light may be shed on the massless vacua of the gauge theory.

Our second topic was to go back to the low-energy effective action and determine
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the prepotential T  for theories with M  — 2 supersymmetry, with and without a 

massive adjoint hypermultiplet, in terms of a topological index. The fact that, due 

to supersymmetry, the perturbative expansion terminates means we are left needing 

only to determine the instanton contributions. For the general case this involves 

integrating over the centred instanton moduli space, When we lifted the theory 

to 5 dimensions we saw how the functional integral calculated exactly the W itten 

index of a quantum mechanical cr-model, as we had met in Chapter 3, with as a 

target. Thus the instanton expansion is given as a topological quantity on the moduli 

space and is realized as counting the ground states of the cr-model. Further, the 

supersymmetry charges of the cr-model are indentified with the Dirac and Dolbeault 

operators in A f = 2,2* theories respectively. Thus the Hilbert space is realized as the 

space of spinors/forms. The |-BPS states of the model, found in Chapter 4, describe 

the instanton dyon states of the parent field theory in 5 dimensions and carry a U (l) 

electric charge.

An important qualification for the definition of the index theory is that the man­

ifold in question is compact and does not include any singularities. However, the 

instanton moduli space breaks both these properties. Fortunately we can deform the 

space to remove the singularities, related to instantons of zero size, without changing 

the general properties of the space. The non-compact nature of the space, related 

to instantons becoming arbitrarily separated, requires careful consideration. First we 

must identify the normalizable states of the theory by imposing the L2 condition on 

the W itten index. This can then be split into principal and defect terms, where the 

principal contribution is exactly the prepotential we would like to calculate. Thus to 

explicitly determine the index contributions we must remove the defect terms from
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the prepotential at each instanton level. We thus arrived at the identity (4.84).

As noted in the introduction, there is a motivation for finding such a formula 

directly in the field theory from geometric engineering techniques. Here Type IIA 

string theory in 10 dimensions is examined on a ‘non-compact’ Calabi-Yau threefold. 

Topologically, for the SU(2) theory, the CY space involves an S 2 fibration over an 

S 2 base. Then, once gravity has been decoupled, the remaining dynamics describes 

the Af = 2 gauge theory whose prepotential can be found from a tree-level string 

computation. In equation (1.2) of [63] the prepotential is expressed as a sum of 

worldsheet instantons
oo oo ,

77   \  A \  ^ nfc m/c f a  -\\
insta. — 2 _ ^  ^  Q f ’

n=0 m ,k = l

where b and /  refer to the base and the fibre respectively. We note in particular the 

power of k~3 in analogy to (4.84). The dm>n are the number of primitive worldsheet 

instantons wrapping n  times round the base and m  times round the fibre.

Clearly we should obtain integer values for the index since in the parent theory 

we are calculating the number of vacuum/BPS states. In Chapter 5 we determined 

these integers for gauge group SU(2), by three different methods. The first used the 

explicit parametrization of the metric on the one-instanton space, given by the ADHM 

constaints, realized in terms of the Eguchi-Hanson space. Second, we lifted the five­

dimensional prepotential from the four-dimensional Seiberg-Witten curve according 

to the method of Csaki et al. Finally we used the explicit formula determined by 

Nekrasov. This last method demands a little more explanation. First however we can 

note that the pure Af = 2 results in Table 5.3 are in fact just those invariants, dm>n, 

found in the F 0 geometric engineering scenario in [63]. In [64] it has been shown how 

the gauge theory with adjoint m atter may be engineered.
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As well as considering the gauge symmetries of the field theory, Nekrasov’s for­

mula also considers the action of the Lorentz group on the manifold and this solves 

the non-compactness problem. In particular, the fixed point set under both sym­

metries becomes discrete and so the system is in essence a counting problem. The 

result is a sum over (N )-coloured partitions of k. The method uses non-commutative 

geometry and involves a parameter, h , the scale of the background deformation. The 

prepotential is then identified by taking the deformation parameter to zero. However, 

the partition function Z  contains a lot more information. In fact it can be viewed as

Z  — exp

where the T g should not be confused with the instanton coefficients Tk but are instead 

‘higher genus’ contributions. We see that (6.2) implies the formula (5.48) where fF$, 

i.e. g = 0, is identified as the prepotential. However, in [52] it was shown how the 

theory with a non-zero deformation parameter (h ^  0) is actually seen as the partition 

function of topological string theory compactified on a Calabi-Yau threefold. As such 

it is also the partition function of the geometrically engineered theory, where the 

parameter h is identified with the string coupling gs. Thus the fact that the results 

from all three methods agree in the Af = 2* theory effectively means we have checked 

the Seiberg-Witten curve calculation with the results from geometric engineering. It 

would be an interesting point to investigate if the gauge theory can be deformed in 

such a way as to pick up the h expansion.

Finally, we had to ensure the A f = 2* prepotential had the correct asymptotic 

behaviour as the mass scaled to 0, i.e. to agree with the A f = 4 result contributions 

(4.26) it must have an n~l dependence. We noted that the terms surviving in this 

limit would come from VEV-independent contributions to the prepotential in A f =  2*

£ ^ 23- 2
o=0

(6 .2)
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and so we could only determine this limit from the results of Nekrasov’s formula 

which we had already seen would give the correct limit. However, it was still possible 

to determine how (4.86) could give the correct limit since it was found that the 

contributions from instantons of zero ‘electric’ charge (thus VEV-independent) are in 

fact equal at each instanton order. This property should hold for all gauge groups.



A ppendix A  

Elliptic Functions

In this appendix we briefly review some of the properties of elliptic functions which 

are relevant to this thesis. An elliptic function is a doubly-periodic function which 

is analytic except at poles and has no other singularities in the finite part of the 

plane. There are no such functions of order 1 and for order 2 we have two classes: 

i) Weierstrassian - with a single irreducible double pole, and ii) Jacobian - with 2 

simple poles; we will concentrate only on the first. The Weierstrassian function can 

be written as

z d m,n^ 0

1 1
(A.l)(z — 2mw\ — 2 nw 2 )2 (2mw\ +  2 nw 2 )‘‘

where the sum is done without m  =  n = 0. 2wi and 2 w2 are the two periods of the

function which is even

p(z  +  2 w i )  = p(z  +  2 w 2 ) = p(z  +  2 w i  +  2 w 2 ) = p(z),

P(z ) = P(~z)> 

p '(z)2 = 4p3(z) -  g2p(z) -  

p'(z) = - p ’( - z ) ,  (A.2)
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where g2 and g$ are the invariants of the Weierstrassian. Clearly the first differential 

of p  is odd and elliptic. In fact any even elliptic function can be expressed as a 

rational function of p  and any odd elliptic function can be expressed as p '  times a

rational function of p .  Note that any odd elliptic function has roots (F (z ) = 0) at

half-lattice points, e.g.

p ’ ( w  i)  =  - p \ - w i )  =  - p ' ( - w i  +  2 w i )  =  - p ' ( w i ) ,

p f ( w i )  =  p ' { w 2 )  =  p \ w i  +  w 2 )  =  0, (A .3)

and similarly for any other odd elliptic function.

Related to the Weierstrassian are two quasi-elliptic functions which obey the fol­

lowing relations

a(z) = -er(-z),

u(z +  2 w i )  =  -cr(z)e*z+wMwi\

i \ i \ a (z -  x)a (z  + x)p(z) -  p{x) = -------- — , (A.4)

and

c w  =  - c ( - z ) ,

C ( z  +  2 w i )  =  C ( z )  +  2C (W i ) ,

« * + * ) - « * ) - « - >  -  ( A -5 )

(C( z  -  Z i )  -  ( { z  -  z 2 )  +  C(Z \  -  Z 2 ) ) 2  =  p ( z  -  Z i )  +  p ( z  -  z 2 )  +  p ( z x  -  z 2 ) .

We will be using a particular function of these, for some parameter p

<t>(x) =  l { x M z ) (c(*  +  z) ~  a x )  ~  c(z) +  ’

k x ) = ^ x ) c ( - z )  ~ z ) ~  c W  ~  a ~ z) ~  ’ (A-6)
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which leads to the following identity

< K X ) & x )  =  Z) ( c (*  +  z)  ~  c ( x )  ~  c (z )  +

. (C(X - z ) ~  C w  -  C (-* ) -  1/9)

=  W )  ~  ( ’W )  -5  +  a )  I  (  p(JC ) -  p ( . )

p '(X ) +  p'(z) _

1 / p ' 2( X )  p ' 2( z )  +  _  _

4 V p p o  -  p{z)
_  1 4p3(X) -  g2p (X ) -  gz -  4p3(z) +  g2p{z) +

4 p( X)  -  p(z)

+ \p p '(z )  ~  \ p 2(p (x ) ~  p(*)),

=  -  7  +  W w  -  -  * » •  <A 7 >

=  p 2(x ) +  p W p M  +  p2M  -  j  +  -  j £ 2(p P O  -  p(*)).

We also need the combination j 2 — 4(fxj) where

7  =  2p{X)  +  p(z) -  p 2/4, (A.8)

thus

7 2 -  4 #  =  g2 -  3p2{z) -  2/3p,(z) -  5/32p{z) +  ^ / ? 4, (A.9)

which importantly is independent of X .



A ppendix B 

Com binatorics of Young’s tableaux

In this appendix we enumerate the contributions to the partition function Zk for 

Nekrasov’s (Bruzzo’s) formula (5.46). All possible Young’s tableaux, and their con­

tributions are given in Tables B.1-B.4. In order to calculate the prepotential for 

general gauge groups we have used the following identities

f e T*) =  E ^ + E 7 *3 *  (B 1 )
\  i J  i i^ j

( e t>) = E +3 E TiTi + E w*.
\  i /  i i^j

(e t>)(e ^2) = E ^ + E 7̂ -
\  i I  \  j  J  i

(E (E ̂ ) = 2 E T?Ti + E w i • (b-2)
V i /  \ j ^ k  /  i^ j  i^j^k
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{Yx} A X s "ix h{s) v(s) axx f ( E ( s ) )

a a (1,1) 1 1 0 0 0 /(« 2 )
a P (1,1) 1 0 0 -1 da /3 Ta { 0)

T able  B .l :  Young’s tab leau  a t the  one instan ton  level.

A A s V-7A h{s) v ( s ) a xx

Em
a

a a (1,1) 2 1 1 0 0 /(«2 - «l)
a a (1,2) 2 1 0 0 0 / f e )
a 0 (1,1) 2 0 1 -1 d ap r a ( - e i )
a 0 (1,2) 2 0 0 -1 d a/3 ra(o)

E^
a

a a (1,1) 1 2 0 1 0 / (  262)
a a (2,1) 1 2 0 0 0 / f e )
a 0 (1,1) 1 0 0 -1 ra(o)
a 0 (2,1) 1 0 0 -2 ®a/3 r0(-£2)

§ED®D
a^/3

a a (1,1) 1 1 0 0 0 / ( « 2)
0 0 (1,1) 1 1 0 0 0 / f e )
a 0 (1,1) 1 1 0 0 d ap /  (<*a/S +  £2)
0 a (1,1) 1 1 0 0 dpa /(d/9a +  £2)
a 7 (1,1) 1 0 0 -1 da'y T a (0 ) / f { a ap)

0 7 (1,1) 1 0 0 -1 CLfiry T p ( O ) / f ( a 0a)

Table B.2: Young’s tableau at the two instanton level.
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{ * } A A s ”ix h(s) u(s) axx
2 j ±± j

a
a a (1,1) 3 1 2 0 0 / ( e 2 -  2«i)
a a (1,2) 3 1 1 0 0 / f e  -  «l)
a a (1,3) 3 1 0 0 0 / f e )
a p (1,1) 3 0 2 -1 fla/3 ^a( — 2tl)
a p (1,2) 3 0 1 -1 fla/3 T a ( - t l )
a p (1,3) 3 0 0 -1 fla/9 T«(P)

E
-

a
a a (1,1) 1 3 0 2 0 /(& *)
a a (2,1) 1 3 0 1 0 / ( 2e2)
a a (3,1) 1 3 0 0 0 / f e )
a p (1,1) 1 0 0 -1 fla/3 r a (o)
a p (2,1) 1 0 0 -2 fla/3 r „ ( - e 2)
a p (3,1) 1 0 0 -3 Aa/3 ^ o(—2e2)

E t b
a

a a (1,1) 2 2 1 1 0 /  (2e2 — £i)
a a (1,2) 2 1 0 0 0 / f e )
a a (2,1) 1 2 0 0 0 / f e )
a p (1,1) 2 0 1 -1 fla/9 r a ( -e i)
a p (1,2) 2 0 0 -1 fla/9 7U0)
a p (2,1) 1 0 0 -2 fla/9 Ta( - e 2)

contd..
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{ Y x } A A s h ( s ) v ( s )
a x x f ( E ( s ) )

> " m e p

a ^ P

a a ( 1 , 1 ) 2 1 1 0 0 f { * 2  ~  Cl)

a a ( 1 ,2 ) 2 1 0 0 0 / f e )

0 { 3 ( 1 , 1 ) 1 1 0 0 0 / f e )

a ( 3 ( 1 , 1 ) 2 1 1 0 ( L a/ 3 f ( d a p  +  62 — 6i )

a ( 3 ( 1 ,2 ) 2 0 0 -1 d a f } f ( a a P )

0 a ( 1 , 1 ) 1 1 0 0 d p a f ( a p a  +  C2)

a 7 ( 1 , 1 ) 2 0 1 -1 d a ry T a ( - e i ) / f { d a p  -  c i )

a 7 ( 1 ,2 ) 2 0 0 -1 d a y T a ( Q ) / f ( a a f i )

0 7 ( 1 , 1 ) 1 0 0 -1 d f i r y T p ( 0 ) / f ( d p a )

a ^ P

a a ( 1 , 1 ) 1 2 0 1 0 / ( 2 c2 )

a a ( 2 , 1 ) 1 2 0 0 0 / ( c  2)

0 1 3 ( 1 , 1 ) 1 1 0 0 0 / ( c  2)

a ( 3 ( 1 , 1 ) 1 1 0 0 d a p /  ( ( L a p  +  C2)

a 1 3 ( 2 , 1 ) 1 1 0 -1 d a f i f ( a a P )

0 a ( 1 , 1 ) 1 2 0 1 d f i a f ( a p a  +  262)

a 7 ( 1 , 1 ) 1 0 0 -1 d & ' y T a ( Q ) / f ( d a p )

a 7 ( 2 , 1 ) 1 0 0 -2 d a y T a ( - e 2 ) / f ( d a p  -  e 2 )

0 7 ( 1 , 1 ) 1 0 0 -1 d p * y T p ( 0 ) / f ( d f l a )

|  □ © □ © □

a a ( 1 , 1 ) 1 1 0 0 0 / ( c  2)

P P ( 1 , 1 ) 1 1 0 0 0 / ( c  2)

7 7 ( 1 , 1 ) 1 1 0 0 0 / ( c  2)

a P ( 1 , 1 ) 1 1 0 0 d a p / ( ^ a / 3  +  C2)

a 7 ( 1 , 1 ) 1 1 0 0 d ( x y / ( a Q7 +  62)

( 3 a ( 1 , 1 ) 1 1 0 0 d f i d f ( d p a  +  62)

( 3 7 ( 1 , 1 ) 1 1 0 0 d f i y /  (<l/37 +  62)

7 7 ( 1 , 1 ) 1 1 0 0 d y a / ( a 7Q +  62)

7 0 ( 1 , 1 ) 1 1 0 0 d y  f t /  ( a 7/g +  62)

a <* ( 1 , 1 ) 1 0 0 -1 & a d T a ( 0 ) /  f  ( d a p ) f  ( d a y )

( 3 6 ( 1 , 1 ) 1 0 0 -1 & P 6 T p ( 0 ) / f ( d p a ) f ( a p y )

7 8 ( 1 , 1 ) 1 0 0 -1 d y f i T y ( t y / f ( a y o )  f ( a y p )

Table B.3: Young’s tableau at the three instanton level.
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A A s h(s) v(s) axx f (E (s ) )

a
a a (1,1) 4 1 3 0 0 / ( e 2 -  3«i)
a a (1,2) 4 1 2 0 0 f ( e  2 — 2 ti)
a a (1,3) 4 1 1 0 0 / ( e 2 -  «i)
a a (1,4) 4 1 0 0 0 / f e )
a 0 (1,1) 4 0 3 -1 Ta( - 3 d )
a 0 (1,2) 4 0 2 -1 (J>o.p Ta(—2fi)
a 0 (1,3) 4 0 1 -1 &a/3 Ta(~e  i)
a 0 (1,4) 4 0 0 -1 &a/3 Ta(0)

a
a a (1,1) 3 2 2 1 0 / ( 2e2 -  2£l)
a a (1,2) 3 1 1 0 0 /(«2 -  £l)
a a (1,3) 3 1 0 0 0 / ( «  2 )
a a (2,1) 1 2 0 0 0 / ( e 2)
a 0 (1,1) 3 0 2 -1 f^aP r a ( - 2 £l)
a 0 (1,2) 3 0 1 -1 Qafi Ta ( - £l)
a 0 (1,3) 3 0 0 -1 Ta (0)
a 0 (2,1) 1 0 0 -2 Qaf} T a ( - £ 2 )

E □
a

a a (1,1) 2 3 1 2 0 / (3 e 2 -  ei)
a a (1,2) 2 1 0 0 0 /(«2>
a a (2,1) 1 3 0 1 0 / ( 2 e 2)
a a (3,1) 1 3 0 0 0 / f e )
a 0 (1,1) 2 0 1 -1 Ta ( - d )
a 0 (1,2) 2 0 0 -1 âP r a (o)
a 0 (2,1) 1 0 0 -2 Q>a.p r a ( - £ 2)
a 0 (3,1) 1 0 0 -3 0>aP Ta ( - 2 f 2)

contd..
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{ft} A A h(s) v(s) axx

a  a
a  a
a  a
a  a
a  (3
a  (3
a  (3
a  f3

1 ,1)
1,2)
2 ,1)
2 ,2)
1,1)
1,2)
2 ,1)
2 ,2 )

1
1
0
0
-1
-1
-2
-2

0
0
0
0
®a/3 
tta/3 
®at3 
^ap

/ ( 2(2 — ei)
f ( 2e2)
/(«2 -  «i)
/ ( «  2) 
Ta(-ei)
Ta( 0)
T a { —t  2 — f i )

r « ( - e 2)

e s
Q! a:
a  a
a  a
a a
a  f3
a  j3
a  f3
a  (3

1 ,1)
2 ,1)
3.1)
4.1)
1.1) 
2 ,1)
3.1)
4.1)

3
2
1
0
-1
-2
-3
-4

0
0
0
0
&a/J
Q>aP
(Xap
^aP

/ ( 4e2) 
/(3 e2)
/ ( 2e2)
/ f e )ra(o)
Ta(-e 2)
^a(—2e2)
TQ(—3«2)

Ec
a /̂3

:©□

a  a:
a: a
a  a
P P
a (3
a (3
a (3
(3 a
a  7
a  7
a  7
!3 7

,1)
,2)
,3)
,1)
,1)
,2)
,3)
,1)
,1)
,2)
,3)
,1)

0
0
0
0
0
-1
-1
0
-1
-1
-1
-1

0
0
0
0
(xap
o>ap
ĈaP
Qpa.
aotj
CLaj
CLaj

Pi

/ ( c 2 -  2ci)
/(«2 -  Cl)
fU  2) 
fUz)
f(aap +  d  ~  2ei)
f (^ap Ci)
f(aaP) 
f{apQ +  e2)
Ta( -2 e i ) / f (a a0 -  2d) 
Ta ( - c i ) / / ( a a/3 -  ei) 
Ta (0 ) //(a a/?)
Tp (0) /  /  (a£<*)_________

contd..
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{ n } A A s Vix h{s) w(s) axx

£ ^ © □
<*?P

a a (1,1) 2 2 1 1 0 / ( 2e2 -  ex)
a a (1,2) 2 1 0 0 0 / f e )
a a (2,1) 1 2 0 0 0 / f e )

P (3 (1,1) 1 1 0 0 0 / f e )
a (3 (1 ,1 ) 2 1 1 0 d a$ f{o>ap +  e2 — ^ l)
a (3 (1,2) 2 0 0 -1 dafi f { a aP)
a (3 (2,1) 1 1 0 -1 Q>aP f { a aP)

P a (1,1) 1 2 0 1 Q>Pa. f ( dp a +  2e2)
a 7 (1,1) 2 0 1 -1 Q'Ol') Ta ( - e i ) / f ( d ap -  Cl)
a 7 (1,2) 2 0 0 -1 d ay T a ( 0 ) / f ( d ap)
a 7 (2,1) 1 0 0 -2 d Qy T a ( - e 2) / f ( d ap -  C2)

P 7 (1,1) 1 0 0 -1 CLp ry T p ( Q ) / f ( d p a )

£

—
© □

<**P
a a (1,1) 1 3 0 2 0 / ( 3 c2)
a a (2,1) 1 3 0 1 0 / ( 2 c2)
a a (3 ,1 ) 1 3 0 0 0 / f e )
P (3 (1,1) 1 1 0 0 0 f f a )
a 13 (1,1) 1 1 0 0 d a/3 fi^aP +  ^2)
a {3 (2,1) 1 1 0 -1 Q ’'aP f { a aP)
a (3 (3 ,1 ) 1 1 0 -2 d a/3 / ( a Q£ — C2)

P a (1,1) 1 3 0 2 dfia f (apa  +  3e2)
a 7 (1,1) 1 0 0 -1 ^ a ( 0 ) / / ( a a/3)
a 7 (2,1) 1 0 0 -2 d ay T a ( - c 2) / f ( a ap -  e2)
a 7 (3 ,1 ) 1 0 0 -3 d ay T a ( - 2 e 2) / f ( d ap — 2e2)
(3 7 (1,1) 1 0 0 -1 dp'y T p ( 0 ) / f ( d / 3 a )

\ y  " m e m
a^P

a a (1,1) 2 1 1 0 0 / ( e 2 -  ei )
a a (1,2) 2 1 0 0 0 / f e )
(3 (3 (1,1) 2 1 1 0 0 / ( € 2 - C  l )

P (3 (1,2) 2 1 0 0 0 / f e )
a P (1,1) 2 1 1 0 ®aP / ( a Q/3 +  c2 — e i )
a (3 (1,2) 2 1 0 0 dap f  iflcxP +  C2)

(3 a (1,1) 2 1 1 0 Qpa / ( a /3 o  +  c2 — c i)

(3 a (1,2) 2 1 0 0 Q>Pa / ( a ^ a  +  e2)

a 7 (1,1) 2 0 1 -1 d ay Ta (—e i ) / f ( d ap — Ci)
a 7 (1,2) 2 0 0 -1 d ay Ta (0) / f ( d ap)
(3 7 (1,1) 2 0 1 -1 dp'y T p ( —e i ) / f ( d p a  ~  ^ i )
13 7 (1,2) 2 0 0 -1 d/jy Tp(0) / f ( d p a)

contd.
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A A s vix h(s) v (s ) axx f ( E ( s ) )

a^P
a a (1,1) 1 2 0 1 0 / ( 2 c2)
a a (2,1) 1 2 0 0 0 / f e )
(3 (3 (1,1) 2 1 1 0 0 /(C2 -  Cl)
{3 (3 (1,2) 2 1 0 0 0 f f e )
a (3 (1,1) 1 1 0 0 d'Q.P f ( d Qp +  C2 )
a 13 (2,1) 1 1 0 -1 ®a/3 f { aaP)
(3 a (1,1) 2 2 1 1 f (apa +  2e2 — ei)

(3 a (1,2) 2 0 0 -1 0>Pa f { aPa)
a 7 (1,1) 1 0 0 -1 Qa>y Ta(0 ) / f (a ap)
a 7 (2,1) 1 0 0 -2 daj Ta ( - e 2) / f ( a ap - c 2)

(3 7 (1,1) 2 0 1 -1 dpy T p { - e l ) / f (d p a -  ci)
(3 7 (1,2) 2 0 0 -1 dfiy Tp(0)/f (apa)

a a (1 ,1 ) 1 2 0 1 0 / ( 2 c2)
a a (2,1) 1 2 0 0 0 ffa)
(3 P (1 ,1 ) 1 2 0 1 0 / ( 2 c2)
13 (3 (2,1) 1 2 0 0 0 / ( c  2)
a 13 (1 ,1 ) 1 2 0 1 dap f(o>ap +  2 6 2 )
a (3 (2,1) 1 2 0 0 dap fiflap +  C2 )
P a (1 ,1 ) 1 2 0 1 Q>f}a f{dpa  +  2 6 2 )
(3 a (2,1) 1 2 0 0 dpa f{dpa  +  62)
a 7 (1 ,1 ) 1 0 0 -1 da>y Ta(p)/f(aap)
a 7 (2,1) 1 0 0 -2 &ary Ta( - e 2) l  f { d ap -  €2)
(3 7 (1,1) 1 0 0 -1 GyJ/y Tp(0)/ f{apa)
P 7 (2,1) 1 0 0 -2 T p ( -e 2) / f (a p a -  €2)

contd..
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CO

^ ^ «"—V
vu
1

VO
11

CM
1
CMvo VO

+ _  +

0e

vu
I
'Cla<3 ’

LU

^  'C l 
a  'C l f -

C3 C3 C3

<Cla<3
a'*X<3

1 ' CL ' CLf - f - e  ^ e ' C L . ...................
<J o « « ^  J- ,T ' 8  ® o

<«<•<<3 o o o o
'C L 'C L f-f^ a  f~- a 'c. i-o "-oa a a a a x  <c l  ^ a a <c l  ? -e e a e a e c a a a a e

CO

o o o o o o o o o

T—l O O O l —f O  i—l O O O O O i —l O O O

i-H  i“ H i-H  i-H  o  t“H r —H t-H  i-H  t-H  L j  O

CM CM t—I i—I CM CM CM CM H  i~H i- 1 t-H CM CM i-H i—I

CO
T—H CM r—i r-H t—H CM CM r-H i—H t- H t- H t-H CM t—H t- H

Q S CCL^~CCLCCLC^C^'d £5 <30. 'O <-0 '-O

Q S ^  S S $

□
©□
©
B
w

co
nt

d.
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CO

a-8

vu <N vu
ccx C3 e

(N \u (N w
a

cq.<s
+ ^ + ^ + + + +^ cq. dx a- a- a a- a ccl-— ' ^mj ^  ^  ̂  a a a a cq. ccl a- a - o  I

3 ^ ^ ^ 3 3 3 3 3 3 3 3 ^ ^  
^  *+-■» ^  *«-» ^ ^ ^  E-i E*h

3 - 3

^3
eo
C J

<3 O O O O
13. cq. a  a  a 0 qq. <« *© »« <•©a a a a <cl <tx a- a- a a ccl a-
3 <3 <3 <3 <3 <3 <3 <3 <3 <3 C3 C3

CO

r—i O O O O r7 l O r7 l r - H O i —i O r7 l C ^, r 7 l

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CM CM 1—( 1—I i—I i—l 1—I i—l CM 1—( £NJ r—i CD O  O  O

CM CM CM CM

>?

S c~~ $  <3Ct K5 <<8 <<D <*3

a a a a ^ ^ c ^ e - ' a  a ^ ^ ~

□
©□
0

t n

w
h|CS
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CO

'-o M© <•© re so. 1=-
<3 <3 C3

CO.?r <*5. a co. a

^  ^  ^  ^  
a

v u > w v u ' £ , 'fj, v£, ' U' £ , vu'w<£) , vu
+ + + + + + + + + + + +co. mo a a- >-0 a (q. t o  a oo ?-a a a isx(ticcif'j~f-î i0 i0

CO.ae

o O O o
E? e-Te?

!•<
<3

'S- tr 2̂ 2̂ ir S aco .a a a cq. cq. oo. ?- ?- {^momomo a o. o ^o o o o e s e e e e e e e e e e e e e e

CO

-e

o o o o o o o o o o o o o o o o

o o o o o o o o o o o o o o o o o o o o

o o o o

>?

d cCLc^(<acCLc^'-o $ c^-'o S^CL'-o S ^  ^

^CCl c ^'O 8  S  S cCLc;CL^ CL C^C ^ ^00 ' O tO QCL ^  ^

□
©□
©□
©□

W
h|^

Table B.4: Young’s tableau at the four instanton level.
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