

 Swansea University E-Theses ___

Development of the marker and cell method for use with

unstructured meshes.

Pelley, Rachel Elizabeth

 How to cite: ___
Pelley, Rachel Elizabeth (2013) Development of the marker and cell method for use with unstructured meshes..

thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42256

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42256
http://www.swansea.ac.uk/library/researchsupport/ris-support/

EPSRC
Prifysgol Abertawe r Pioneering research
Swansea University W E and skills

S w a n s e a U n i v e r s i t y

Development of the Marker and Cell
method for use with unstructured

meshes
. . Supervisor:Author: TT

r. u i r-i- * * Prof. Oubay H a s s a nRachel Elizabeth P e l l e y _ _ __
Prof. Kenneth MORGAN

S u b m i t t e d t o S w a n s e a U n i v e r s i t y i n f u l f i l m e n t
OF THE REQUIREM ENTS FOR THE D E G R E E OF D O C T O R

o f P h i l o s o p h y

SWANSEA UNIVERSIT
LIBRARY

csr r- >•

"a &s;
- s a \

Year of Submission: 2013
MOT TO BE

r e m o v e d rm m
THE LIBRARY

ProQuest Number: 10797964

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10797964

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

The marker and cell method is an efficient co-volume technique suitable for the solution
of incompressible flows using a Cartesian mesh. For flows around complex geometries
the use of an unstructured mesh is desirable. For geometric flexibility an unstructured
mesh implementation is desirable. A co-volume technique requires a dual orthogonal
mesh, in the triangular case the Delaunay-Voronoi dual provides the means for deter­
mining this dual orthogonal mesh in an unstructured mesh framework. Certain mesh
criteria must be placed on the Delaunay-Voronoi" to ensure it meets the dual orthogonal
requirements.

The two dimensional extension of the marker and cell method to an unstructured
framework is presented. The requirements of the mesh are defined and methods in their
production are discussed. Initially an explicit time stepping scheme is implemented
which allows efficient simulation of incompressible fluid flow problems. Limitations
of the explicit time stepping scheme that were discovered, mean that high Reynolds
number flows that require the use of stretched meshes cannot produce solutions in a
reasonable time period. A semi-implicit time stepping routine removes this limitation
allowing these types of flows to be successfully modelled.

To validate the solvers accuracy and demonstrate its performance, a number of test
cases are presented. These include the lid driven cavity, flow over a backward facing
step, inviscid flow around a circular cylinder, unsteady flow around a circular cylinder,
flow around an SD7003 aerofoil, flow around a NACA0012 aerofoil and flow around a
multi element aerofoil.

The investigation although revealing a high dependence on the quality of the mesh
still demonstrates that accurate results can be obtained efficiently. The efficiency is
demonstrated by comparison to the in-house 2D incompressible finite volume solver for
flow around a circular cylinder. For this case the unstructured MAC method produced
a solution four times faster than the finite volume code.

Declaration and Statements

DECLARATION

This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated. Where
correction services have been used, the extent and nature of the correction is clearly
marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibliog­
raphy is appended.

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside or­
ganisations.

Signed (candidate) Date .. .2̂ -. .|.2Q.l5.

Signed (candidate) Date . .2Mr. /OH. / 2.Q 1.2).

Signed... (candidate) D ate. lfc./&fc/2Q IS.

V

Contents

Acknowlegments xi

List of Figures xiii

List of Tables xvii

Nomenclature xix

1 Introduction 1
1.1 Background.. 1

1.1.1 Computational Fluid D y n a m ics ... 1
1.1.2 Incompressible F lo w .. 7
1.1.3 The MAC M e th o d ... 9

1.2 Objectives.. 13
1.3 Project D evelopm ent... 13
1.4 Thesis Structure.. 16

2 Governing Equations 19
2.1 The Navier-Stokes Equations for compressible f l o w s 19
2.2 The Unsteady Incompressible Navier-Stokes eq u a tio n s 20
2.3 Initial Conditions and Boundary C onditions... 21
2.4 Dimensionless F o r m ... 22
2.5 Curl-Form of the Viscous T erm ... 23
2.6 Momentum equation for the normal and tangential velocity component . 24

3 A Two Dimensional Unstructured Marker and Cell Method 25
3.1 Mesh L a y o u t ... 25
3.2 The Unstructured MAC Algorithm D erivation.. 28
3.3 The Unstructured MAC A lgorithm ... 30
3.4 Momentum Equation D iscretisation.. 31

3.4.1 Explicit D iscretisation... 32
3.4.2 Implicit D iscretisation... 41

3.5 Pressure Correction Equation... 44
3.5.1 Discretisation... 44
3.5.2 Boundary conditions... 46

vii

Contents

3.6 Correcting the Pressure and V elocity.. 47
3.7 Tangential V elocity .. 47
3.8 Alternative convective te rm .. 49
3.9 Solvers for Implicit S y s te m s ... 50

3.9.1 Direct M ethods... 51
3.9.2 Iterative M ethods.. 54

4 Unstructured Co-Volume Mesh Generation 59
4.1 Co-Volume Mesh R equirem ents.. 60
4.2 General Unstructured Mesh Generation Techniques............................... 62

4.2.1 Basic Mesh Generation Components.. 62
4.2.2 Delaunay Triangulation.. 62
4.2.3 Advancing F r o n t ... 63
4.2.4 Hybrid M esh e s .. 64

4.3 Mesh M erging... 65
4.4 Cell Centre M oving.. 66
4.5 Optimised Meshes .. 68
4.6 The Stitching M ethod... 71

5 Code Implementation 73
5.1 Predefined Input.. 73
5.2 Solver Im plem entation.. 75

5.2.1 Mesh Manipulation Data S tructures.. 75
5.2.2 MAC algorithm data structures... 80
5.2.3 Direct Solver Data Structures ... 82

5.3 O utput.. 83
5.3.1 Lift and Drag F o rc e s ... 84
5.3.2 R esiduals.. 86

6 Benchmark Results 89
6.1 The Lid Driven C a v i ty ... 90
6.2 Lid Driven Cavity Skewed Mesh Study ... 97
6.3 Flow Over a Backward Facing Step .. 105
6.4 Inviscid Flow Around a Circular C y linder...108
6.5 Unsteady Viscous Flow Around a Circular Cylinder................................. 110
6.6 S u m m ary .. 116

7 Further Results 119
7.1 Flow Around SD7003 .. 119
7.2 Flow Around NACA0012...125
7.3 Row Around a Multi Element Aerofoil ..128
7.4 Aerofoil test case sum m ary..128
7.5 Free surface Tracking... 130

7.5.1 Implementing a Free Surface into the Unstructured MAC code . 130

viii

Contents

7.5.2 The Dam Break P roblem ..131
7.5.3 Summary on Free Surface T rack in g ...132

8 Conclusion 139

Acknowledgements

I would like to thank my supervisors Professor Oubay Hassan and Professor Ken Mor­
gan for their continued advice and guidance and the EPSRC for the providing the doc­
toral training grant, without which this project would not be possible.

My friends Kevin Mason, Bruce Jones, Enayat Zangiabadi, Sean Walton and Han­
nah Buckland deserve thanks for providing valuable discussions whether related to my
work, their work or other related fields. I especially thank Sean Walton for providing
suitable meshes produced from his work on co-volume mesh optimisation. Finally I
express my gratitute to my family and my husband Carwyn Pelley for their continued
support and advise throughout the duration of the project.

List of Figures

3.1 Cartesian dual mesh with staggered variable la y o u t 26
3.2 Delaunay-Voronoi dual mesh with staggered variable l a y o u t 27
3.3 Staggered mesh variable layout for two Delaunay elements, D e and

Dw, which share a common edge e. The connected node which edge
e links are the centres of the Voronoi cells V/v and Vs-. The pressure
variables Pe and Pw are located at the circumcentres of the Delaunay
elements D e and Dw respectively. The normal velocity variable ue is
located at the midpoint of edge e... 32

3.4 An element that lies on a boundary with fictitious boundary element
outside the d o m a in ... 37

3.5 A full Vomoi cell does not exist on the boundary 38
3.6 Construction of Voronoi cells on the boundary of the d o m a in 38
3.7 Variable configuration for pressure correction values 45
3.8 Variable layout for the alternative convective te rm 49

4.1 Example of a ’’bad element” ... 61
4.2 In-circle criterion not satisfied for four p o in t s .. 63
4.3 Four points that satisfy the in-circle criterion... 63
4.4 Equilateral triangle, where case no merging needs to o ccu r 65
4.5 Triangles with one angle approaching 90°, producing a short Voronoi

edge... 65
4.6 Right angle triangles, producing a zero Voronoi edge............................... 65
4.7 Example of merged e lem ents... 66
4.8 Voronoi mesh using circumcentre ... 67
4.9 Voronoi mesh using cen tro id ... 67
4.10 Voronoi mesh using averaged c e n tr e .. 68
4.11 Cell centre located outside the triangular element using a equal radius

construction... 69
4.12 Cell centre located inside the triangular element using a weighted radius

construction... 69
4.13 Mesh with bad elements ... 70
4.14 Mesh apart optimisation ... 70
4.15 Unsuccessful mesh optimisation on stretched boundary elements 71

xiii

List of Figures

5.1 Lift and drag forces on a body in a f l u i d .. 84

6.1 Domain for the lid driven cavity flow problem ... 90
6.2 Delaunay mesh for lid driven cavity dom ain .. 92
6.3 Voronoi mesh for lid driven cavity dom ain ... 92
6.4 Lid driven cavity with Re = 100, results comparison to literature [1]. . . 93
6.5 Horizontal velocity for Re = 100. Colour scheme is red=high, blue=low. 93
6.6 Vertical velocity for Re = 100. Colour scheme is red=high, blue=low. . 93
6.7 Lid driven cavity with Re = 400, results comparison to literature [1] . . 94
6.8 Horizontal velocity for Re = 400. Colour scheme is red=high, blue=low. 94
6.9 Vertical velocity for Re = 400. Colour scheme is red=high, blue=low. . 94
6.10 Lid driven cavity with Re = 1000, results comparison to literature [1] . 95
6.11 Lid driven cavity with Re = 1000, results comparison to literature . . . 96
6.12 Horizontal velocity for Re = 1000. Colour scheme is red=high, blue=low. 96
6.13 Vertical velocity for Re = 1000. Colour scheme is red=high, blue=low. 96
6.14 Skewed lid driven cavity mesh by angle of 5° when merging is not used 98
6.15 Pressure for the skewed lid cavity case using a mesh that is skewed by

5° and mesh merging is not u s e d .. 99
6.16 Horizontal velocity for the skewed lid cavity case using a mesh that is

skewed by 5° and mesh merging is not u s e d .. 99
6.17 Vertical velocity for the skewed lid cavity case using a mesh that is

skewed by 5° and mesh merging is not u s e d .. 99
6.18 Skewed lid driven cavity mesh by angle of 5° when merging is used . . 100
6.19 Pressure for the skewed lid cavity case using a mesh that is skewed by

5° and mesh merging is u s e d ... 101
6.20 Horizontal velocity for the skewed lid cavity case using a mesh that is

skewed by 5°. The mesh is merged throughout so that two triangles that
are close to being right angled merged to quadrilaterals...............................101

6.21 Vertical velocity for the skewed lid cavity case using a mesh that is
skewed by 5°. The mesh is merged throughout so that two triangles that
are close to being right angled merged to quadrilaterals...............................101

6.22 Skewed lid driven cavity mesh by angle of 20° when merging is not used 102
6.23 Pressure for the skewed lid cavity case using a mesh that is skewed by

20° and mesh merging is not used ..103
6.24 Horizontal velocity for the skewed lid cavity case using a mesh that is

skewed by 20°. The triangular elements in the mesh are not merged to
quadrilaterals..103

6.25 Vertical velocity for the skewed lid cavity case using a mesh that is
skewed by 20°. The triangular elements in the mesh are not merged to
quadrilaterals..103

6.26 Pressure for the skewed lid cavity case using a mesh that is skewed by
20° and the Voroni vertex is moved to the average between the Delaunay
barycentre and the circumcentre.. 104

xiv

List of Figures

6.27 Horizontal velocity for the skewed lid cavity case using a mesh that is
skewed by 20° and the Voroni' vertex is moved to the average between
the Delaunay barycentre and the circumcentre.. 104

6.28 Vertical velocity for the skewed lid cavity case using a mesh that is
skewed by 20° and the Vorom vertex is moved to the average between
the Delaunay barycentre and the circumcentre.. 104

6.29 Domain for flow over a backward facing s t e p ...105
6.30 Section of mesh used to simulate flow over a backward facing step.

Displays the refined region around the step. The mesh contains 53,427
elements, 27,287 nodes and 1,145 boundary nodes...................................... 106

6.31 Comparison to literature for flow over a backward facing step with
Re = 100. x/h=0 is the at the location of the step...106

6.32 Pressure for flow over a backward facing step with Re = 100. Colour
scheme is red=high, blue=low...106

6.33 Horizontal velocity for flow over a backward facing step with Re =
100. Colour scheme is red=high, blue=low..107

6.34 Vertical velocity for flow over a backward facing step with Re = 100.
Colour scheme is red=high, blue=low.. 107

6.35 Comparison to literature for flow over a backward facing step with
Re = 389. x/h=0 indicates the location of the step....................................... 107

6.36 Pressure for flow over a backward facing step with Re — 389. Colour
scheme is red=high, blue=low...108

6.37 Horizontal velocity for flow over a backward facing step with Re =
389. Colour scheme is red=high, blue=low..108

6.38 Vertical velocity for flow over a backward facing step with Re = 389.
Colour scheme is red=high, blue=low.. 108

6.39 Angles a starting from facing edge of cylinder..109
6.40 Mesh for inviscid flow example with 100 nodes around the cylinder . . 110
6.41 Mesh for inviscid flow example with 100 nodes around the cylinder . . 110
6.42 Flow characteristics for various Reynolds numbers for flow around a

circular cylinder. ...I l l
6.43 Unstructured mesh around a circular cylinder of diameter one, with re­

fined wake region...112
6.44 Lift coefficient for flow round a circular cylinder at Re = 100, compar­

ison of MAC code, finte volume code and literature [2] 114
6.45 Vorticity plots using the unstructured MAC solver and a finite volume

so lv er.. 115
6.46 Vorticity at the end of the simulation for flow around a circular cylinder

at Re = 200. Colour scheme is res=high, blue=low......................................116

7.1 Geometry of a SD7003 aerofoil [3] .. 120
7.2 Hybrid mesh with three boundary layers for an SD7003 aerofoil 121
7.3 Unstable solution for flow around an SD7003 aerofoil at trailing edge

using the mesh in figure (7.2)..121

xv

List of Figures

7.4 Lift coefficient for flow around an SD7003 aerofoil at Re = 10000
using an unstructured mesh with three stretched boundary layers 122

7.5 Drag coefficient for flow around an SD7003 aerofoil at Re = 10000
using an unstructured mesh with three stretched boundary layers 122

7.6 Hybrid mesh for an SD7003 aerofoil with refined wake region and ten
layers of stretched boundary e le m e n ts ..123

7.7 Lift coefficient for flow around an SD7003 aerofoil at Re = 10000
using an unstructured mesh with ten stretched boundary layers.................. 124

7.8 Drag coefficient for flow around an SD7003 aerofoil at Re = 10000
using an unstructured mesh with ten stretched boundary layers.................. 124

7.9 Vorticity at the end of the simulation for the flow around an SD7003
aerofoil at Re = 10000. Blue=low, red=high..125

7.10 Coefficient of pressure comparison to literature [4] for flow around an
SD7003 aerofoil at Re = 10000 .. 125

7.11 Geometry of a NACAOO12 aerofoil [5] ... 126
7.12 Section of a NACAOO 12 mesh with refined wake region suitable for use

with an angle of attack of 20°...126
7.13 Boundary region around the NACAOO 12 aerofoil, displaying five bound­

ary layers.. 126
7.14 Lift and drag coefficients for the flow around a NACAOO 12 aerofoil at

Re = 1000 and a 20° angle of attack. Contains a comparison of the lift
coefficient to the literature [6] 127

7.15 Results for the flow around a NACAOO 12 aerofoil at Re = 1000 and a
20° angle of attack. Blue=low, red=high... 133

7.16 Segment of mesh around a multi element aero fo il.....................................134
7.17 Zoomed images of the multi element aerofoil to display the mesh re­

finement in the boundary regions ... 134
7.18 Results for the multi element test case with Re = 10000 and an angle

of attack of 4°. Blue=low, red=high...135
7.19 Mesh used for modelling the dam break p ro b le m 136
7.20 Initial position of the marker p a r tic le s ..136
7.21 Tracking of a free surface using marker particles for the breaking dam

test problem ..137

xvi

List of Tables

6.1 run-time and time step size comparison for the lid driven cavity problem
with a Reynolds number of 100 .. 92

6.2 run-time and time step size comparison for the lid driven cavity problem
with a Reynolds number of 400 .. 93

6.3 run-time and time step size comparison for the lid driven cavity problem
with a Reynolds number of 1000 ... 95

6.4 run-time and time step size comparison for the lid driven cavity problem
with a Reynolds number of 1000 ... 95

6.5 Run-time and time step size comparison for flow over a backward fac­
ing step at a Reynolds number of 389 108

6.6 CPU times, time step sizes and lift and drag coefficient comparison for
flow around a circular cylinder at Re = 100, using three time stepping
routines..112

6.7 Comparison of CPU times and lift and drag coefficients for the explicit
and two implicit time stepping routines for flow around a circular cylin­
der with Re = 100..113

6.8 Comparison of lift and drag coefficients with literature for flow around
a circular cylinder at Re = 1 0 0 ... 113

6.9 Comparison of CPU times and lift and drag coefficients for the explicit
and two implicit time stepping routines for flow around a circular cylin­
der with Re = 200..115

6.10 Comparison of lift and drag coefficients with the literature for the flow
around a circular cylinder at Re = 200 .. 116

7.1 Comparison of lift and drag coefficients to literature for the flow around
an SD7003 aerofoil at Re = 10000... 124

xvii

Nomenclature

r Unit tangent vector to an element edge

t 0 Anti-clockwise unit tangent

A t Time step size

fi Viscosity

-ip Pressure correction value

p Density

rw Wall shear stress

nQ Outward unit normal vector

u* Dimensionless velocity vector

x Space vector

x* Dimensionless space vector

u Intermediate velocity

p Initial pressure

A e ,A w Areas of neighbouring Delaunay elements

Ay Area of a Voronoi' cell

De Delaunay cell circumcentre which for a particular edge the normal points to­
wards

D w Delaunay cell circumcentre which for a particular edge the normal points away
from

E Internal energy

e General edge in the mesh

Fd Drag Force

xix

List of Tables

Fl Lift Force

hv Voronoi edge length

hd Delaunay edge length

k Thermal conductivity

L0 Reference length

p Pressure

p* Dimensionless pressure

Pe Pressure location which edge normal points towards

Pw Pressure location which edge normal points away from

Re Reynolds number

s Number of sides around an element

S e Energy source terms

Sm Momentum source terms

T Temperature

t Time

t* Dimensionless time

to Reference time

uq Reference velocity

ui Horizontal velocity component

U2 Vertical velocity component

V/v Voronoi cell centre tangent of an edge points towards

Vs Voronoi cell centre tangent of an edge points away from

x Cartesian x direction space vector component

y Cartesian y direction space vector component

n Unit normal vector to an element edge

u Velocity vector

xx

List of Tables

BLAS Basic Linear Algebra Subroutines

C CFL number

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy number

CG Conjugate Gradient

m Time step

MAC Marker and cell

PCG Preconditioned Conjugate Gradient

PDE Partial differential equation

SMAC Simplified Marker and cell

SOR Successive over relaxation

xxi

Chapter 1

Introduction

The work described in this thesis aims to develop an efficient computational fluid dy­
namics (CFD) solver for the unsteady incompressible Navier-Stokes equations. The
solver should be capable of simulating flow around arbitrary complex geometries, there­
fore making an unstructured grid approach attractive.

In the classical Cartesian mesh framework, the marker and cell (MAC) algorithm
has been shown to be one of the most efficient techniques [7]. Therefore an investigation
into applying the MAC algorithms techniques in an unstructured framework is carried
out.

This chapter provides background on CFD and the MAC method, the objectives
of this work will then be described, followed by a brief account of how the project
developed over the course of the work. Finally the outline of this thesis is discussed.

1.1 Background

This section provides a brief introduction to the field of CFD, focussing on the scope
and goals of this project. As the scope of the work is incompressible flow, this is
then followed by a discussion on incompressible flow and the modelling techniques it
requires. This section also details the history of the marker and cell method, including
any previous attempts at incorporating an unstructured framework.

1.1.1 Computational Fluid Dynamics

Mathematically, a general fluid flow is governed by the Navier-Stokes equations [8, 9,
10,11]. These equations are a set of non linear partial differential equations which con­

1

1. Introduction

sist of a momentum equation for each velocity component, the continuity equation, an
energy equation to model heat transfer and an equation of state. Depending on the flow
problem to be modelled, for example the flow may be compressible or incompressible,
only some of these equations may be required.

An analytical solution is yet to be found for the Navier-Stokes equations except
for a few specific problems. The solution to some problems can be obtained through
experiment but then the necessary equipment to simulate the problem and record results
are needed. Therefore, in order to gain a general solution potentially to all fluid flow
problems, the field of computational fluid dynamics emerged. A good quality CFD
solver can aid in cases where experiments are too costly and has the added benefit of
producing solutions to problems that cannot be simulated experimentally.

CFD has applications in many areas, these include: the aerodynamics of aircraft
and vehicles [9, 11]; environmental problems such as breaking dams or the spread of
pollutants [11, 12]; the flow of blood through the body (a particular example includes
the flow through arteries) [11]; injection moulding modelling [13, 9] and modelling of
flow around ships [11, 14, 9]. These include just a few applications, many more can be
found in [11, 9]. The role of CFD varies depending on the application, in engineering
cases such as aircraft and vehicle aerodynamics it can act as a design tool. Many concept
ideas can be modelled using the CFD software, the results of which can be analysed to
determine the best design [9]. An alternative role may be to test an existing designs
performance under varying flow conditions [9].

The basic ideas behind CFD is to convert the continuous Navier-Stokes equations
to a discrete problem. A discrete problem is produced by dividing the problem do­
main into a series of sub-divisions, each variable in the Navier-Stokes equations can
then be approximated at each of these sub-divisions. This allows the computation of
a numerical solution. Although these computations can be done by hand, the scale of
the problems in need of solving is so large, that this would be a very time consuming
task. Therefore it is necessary that the approximations can be programmed allowing
a computer to carry out all the computations. Historically computer power and mem­
ory meant that CFD simulations were restricted for use with problems that could be
sub divided into a small number of points, which would then require a long run-time.
However, this is no longer an issue due to the improvement in computer technology,
numerical solutions are now obtainable for almost any geometry of any size [9]. The
restriction on the run time still exists and the larger the size of the problem the longer
the computation time. Therefore, one avenue of continual research in the CFD commu­

2

1.1. Background

nity is the reduction of the simulation time of general CFD problems. There are many
works in the literature further describing the basic formulation of CFD, this work takes
influence from the books by Versteeg et.al. [11], Anderson [9] and Ferziger et.al. [10].
The interested reader my refer to these items for more information.

In deriving a CFD solver, a number of choices must be made. The first of these
is to decide on the form of the Navier-Stokes equations. The Navier-Stokes equations
can either be represented in a Lagrangian or Eulerian frame of reference. A Lagrangian
frame of reference can be understood as moving with the fluid whereas an Eulerian
frame of reference can be seen as watching the fluid moving from a fixed point. For the
purpose of this work we are concerned with the Eulerian frame of reference, thus it is
that form of equations that is to be taken.

The next choice to make is that of compressible or incompressible flow. Not only
do they model very different flow characteristics but they also require a very different
approach to producing a numerical solution. The main cause of this difference in nu­
merical solution is due to a change in the property of the density. In a compressible flow,
density may vary over the fluid domain. A varying density effects mass conservation
and so its effects are incorporated into the continuity equation. A desirable consequence
of compressible flow is that an ideal gas can be assumed, therefore the ideal gas law can
be used to find the pressure [9, 11]. For an incompressible flow, density is constant and
so mass conservation is only determined by the fluids velocity. Another consequence is
that pressure is no longer a thermodynamic variable and so the ideal gas law does not
apply. Aside from density being constant, a simplification occurs with the energy equa­
tions, which may be discarded, as heat transfer does not take place in an incompressible
fluid [9, 11].

After the correct form of the Navier-Stokes equations have been determined, the
first thing needed to solve the Navier-Stokes equation is a mesh of the domain for
the problem that is being simulated. A mesh gives the necessary sub-division of the
problem domain in order to construct the discrete approximation. Each variable in the
Navier-Stokes equations is approximated at locations defined by the mesh. A mesh of
the domain links a set of nodes, that lie inside the domain by a set of lines, to form
shaped elements. These elements are usually triangular or quadrilateral but this is not a
restriction. A comment should also be made that for the purpose of this work all meshes
are constructed by using straight lines to link the nodes.

A mesh can either be structured or unstructured. A structured mesh consisting
of quadrilateral elements is based in a Cartesian coordinate system and is the his­

3

1. Introduction

toric approach to take [12, 15, 16]. Most introductory CFD texts describe this ap­
proach [9, 10, 11]. Structured meshes need not use quadrilateral elements, they may be
triangular or in theory a shape with any number of sides. A structured mesh has a node
layout that allows the identification of each node from neighbouring node using some
known algorithm [17]. Elements within a structured mesh need not all be the same size,
they may vary in size in block areas [16, 15, 9]. This allows the refinement of meshes
in areas where more detail is required.

When using a structured Cartesian mesh framework, there is a difficulty in fitting
a mesh around boundaries that do not follow the axis of the mesh. For cases where a
curved boundary is required, special boundary conditions can be built into the solution
algorithm to try and represent the true boundary of the domain [13]. An alternative
approach (rectifying the problem) is to use a body-fitted mesh. Body-fitted meshes
still fall into the structured class of meshes and require a transformation of the Navier-
Stokes equations into general curvilinear coordinates. This approach requires extra
computations to account for the transformations [18, 19, 20, 21].

The other more general option to fit meshes around any shaped boundary is to use
an unstructured mesh. In an unstructured mesh, nodes are scattered over the problem
domain and are linked as triangles and in some cases as quadrilaterals [17, 22, 23, 24].
An unstructured mesh offers a versatile approach and mesh elements can be constructed
around any shape of domain or object within a domain. The density of the nodes can
vary throughout the domain, allowing a finer resolution in any areas it may be required.

All unknown variables in the Navier-Stokes equations will be approximated at var­
ious points in the domain as defined by the domain mesh. There are various choices of
variable location for a given mesh. The obvious location choice is to collocate all vari­
ables and locate them at either the nodes or the mesh element centres. Another possible
choice is to store the variables at the mid points of the edges of an element [25, 11].
An alternative approach to collocating the variables is to stagger them over a mesh el­
ement, this avoids what is known as the chequer boarding pressure effect [15]. When
using a collated method, compensating measures must be introduced into the equations
approximations, this is not needed when using a staggered mesh. An example of a stag­
gered mesh is described as follows, for an element in the mesh, the pressure may be
located at the centre of the element, whereas the velocity can be located at the edge mid
points [15, 12, 26]. When using a staggered mesh, the variable location must be taken
into account within the equation approximations. This can sometimes result in a need
for the interpolation for some variables.

4

1.1. Background

The next stage in the production of a numerical solution for fluid flow is to define
a set of discretisations which approximates the Navier-Stokes equations. These will be
based on the type of mesh used, whether it be structured or unstructured, collocated
or staggered. For an Eulerian formulation there are three main methods of discreti­
sation: finite difference; finite volume and finite element. The finite difference case
approximates derivatives by using the difference of neighbouring unknowns. It is usu­
ally used on structured Cartesian meshes, due to a dependence on knowing the locations
of neighbouring nodes [9, 12, 10]. The finite volume case takes the integral form of the
Navier-Stokes equation and integrates over control volumes (usually a cell in the mesh),
to find the solution. The finite volume method can be used with Cartesian and triangular
meshes [11,10,15]. The finite volume method is very closely related to finite difference
methods and shares some of the same techniques, however it is very easily applied to
meshes with any shaped elements including those of an unstructured nature. The finite
element case uses the weak form of the Navier-Stokes equations coupled with basis
functions to approximate a solution [27]. It may be used with both quadrilateral and
triangular elements. Both the finite volume and finite element methods are most com­
mon for engineering problem types, as they offer more flexibility than finite difference
methods due to their ability to use unstructured meshes.

The next required component is a solution algorithm. The solution algorithm is de­
fined as the steps that need to be taken in order to find the solution to the Navier-Stokes
equations. A discretisation of the Navier-Stokes equations is formed for a particular
node, element centre or edge midpoint, depending on the choice of mesh layout. The
goal is then to solve for the desired unknowns at all variable locations as defined in the
domain mesh, a solution algorithm describes a method of achieving this. The choice of
algorithm will vary depending on the type of discretisation and the type of flow to be
modelled. For example, an incompressible flow may require the calculation of pressure
to be decoupled from the velocity [12, 15, 28]. For all solvers the solution of some dis­
crete equation defined for all unknown variable locations is required. This means there
is a system of simultaneous equations to be solved in order to recover a full solution for
the entire domain. These equations of course can be written as a matrix system, thus
requiring the inversion of a matrix to solve. The discretisations may be solved explicitly
or implicitly the choice of which will govern the form of the system matrix. When an
explicit approach is used the matrix will be diagonal. However, if implicit time step­
ping is used off diagonal elements will appear in the matrix and so part of the solver
will require the efficient inversion of this matrix. Both approaches have advantages and

5

1. Introduction

disadvantages and the choice greatly depends on the type of problem being modelled.

Regardless of the type of mesh and solver being used, it is advantageous that they
are independent. This is beneficial in several ways: one being that it allows the re-use of
a mesh, meaning CPU time is saved as meshes are not continually regenerated; another
being the solver is not restricted to solving one particular problem, provided the mesh
can be produced in a framework the solver can interpret.

As the work in this thesis is concerned with developing an efficient solver, some­
thing should be said about the CPU time required in a CFD simulation. The first con­
straint on the run time to mention is the mesh. As a mesh is refined, more nodes are
introduced to the domain, this increases the number of unknowns to be found. Thus,
increasing the size of the matrix system previously mentioned and requiring more CPU
time. A number of techniques can be applied to reduce this increase in the degrees of
freedom whilst retaining the fine resolution where it is needed. These include a mesh
of varying element sizes, as the resolution may only need to be fine in certain areas.
Further to this, high resolution may only be required in a certain direction, for example
when modelling viscous flows, high resolution is only needed in the normal direction to
a boundary. Here stretched elements can be used [29]. One other technique to mention,
is that of using higher order methods. Higher order methods may use a coarser mesh
resolution yet simulate a fine mesh by using higher order approximations in the dis­
cretisations [30]. Substantial run time savings can be made by employing any of these
techniques.

The next constraint on the CPU time to mention is of the obvious one, the hardware.
Of course, run a solver on a machine with a faster clock speed and a solution will be
produced in a shorter amount of time. Further to this, recently there has been work into
changing the type of hardware, utilising parallel implementations on GPUs instead of
CPUs, offering substantial run time savings [31].

A particular solver will still have a run speed that will be slower than another and so
regardless of the type of hardware being used different run times will still be observed
when different solution algorithms are used. This leads on to the solution algorithm
itself being a constraint on the CPU time. There are many choices for the solution
algorithm and some do outperform others. In particular there is a class of old Carte­
sian algorithms for the solution of unsteady incompressible flow that have proved very
efficient [12, 28]. Perhaps these methods can be converted for use with unstructured
meshes to give a more efficient solver than those currently in use.

It should always be noted that CFD techniques are an approximation of a mathemat­

6

1.1. Background

ical model, their solution is not exact. Steps can be taken to improve accuracy, such as
using finer mesh resolutions or using a more accurate equation discretisation. Coupled
with this, the Navier-Stokes equations are a model of the physical processes, therefore,
solutions will differ from experimental. When chaotic random elements are included,
like turbulence, accurate approximations are even harder to obtain. This means that
any results of a CFD solver must be justified. To do this, solutions are compared to
benchmark solutions which may be analytical solutions, experimental data or a his­
torical numerical result. Only then can simulations to new problems be considered as
having an accurate solution.

1.1.2 Incompressible Flow

In an incompressible flow, density is constant over the entire domain. In terms of the
Navier-Stokes equations a constant density can be seen as a simplification. The con­
tinuity equation no longer changes over time with density. Instead, mass conservation
is enforced through the velocity, its divergence must equal zero, i.e. over the domain
the amount of fluid leaving will equal that entering. This applies to each element in a
discretised domain and holds at all points in time. An exception to this are stratified
flows, they may have a varying density through the fluid, however, the density remains
the same at each point and so the incompressible Navier-Stokes equations are still ap­
plicable. This work is not concerned with the modelling of stratified flows and so a
constant density throughout the domain is applied.

For a compressible flow, in most engineering problems an ideal gas can be assumed
and so the ideal gas law can be used to link the pressure and density. This density
evolves through time by the continuity equation and so a new pressure can be deter­
mined at each point in time [11]. As the ideal gas law does not apply to an incom­
pressible flow, an equation for determining the pressure does not exist. This means
there are now less independent equations than unknown variables to be found. The
solution to this problem is to define a method to calculate the pressure, thus remov­
ing it as an unknown variable. In determining a numerical solution there a two com­
monly used methods to accomplish this task, these being the artificial compressibility
method [32, 33, 34, 6] and the class of fractional step methods [12, 15, 11,9, 28, 35].

Fractional step methods, also known as projection methods or pressure correction
methods have many different forms. The general idea behind them is to split the velocity
and pressure calculation. A common approach taken by many of the various methods is
to solve the discrete momentum equations using a guessed value for the pressure. The

7

1. Introduction

velocities obtained in this calculation will be slightly incorrect, therefore a correction
needs to be found. An equation for this correction can be formulated from the Navier-
Stokes equations, where it is usually in the form of a Poisson equation. The velocity and
pressure are then corrected via equations that are found as a consequence of the pressure
correction equation. The process is then repeated with the corrected values being the
new guess values. There are many types of these methods, examples of which include
the SIMPLE method [15, 11, 9], the Marker and Cell method (MAC) [12, 36, 37] and
the projection method [28, 35]. These methods were all originally developed for use
with Cartesian meshes using finite difference techniques. The SIMPLE method how­
ever, was originally a finite volume solver for steady state flows [15]. This is achieved
by solving the discrete equations using the solution algorithm over the entire domain.
This is then done multiple times and at each time the obtained solution is fedback as the
initial requirements for the next step. This time loop is repeated until the solution has
suitably converged to the steady state. The time loop in this case is known as a pseudo
time loop, it is not real time, just an iterative loop to progress the solution. The method
can be adapted to solve for unsteady flows, via the means of introducing another itera­
tive loop to advance in time. The marker and cell method however, allows for the direct
solution of unsteady flows and so presents a very efficient scheme [12, 36].

The artificial compressibility method is a steady state incompressible flow solver
originally devised by Chorin [32]. It introduces a time derivative for artificial density
in the continuity equation. Coupled with this, an artificial equation of state linking the
artificial density to pressure is defined. In this equation the artificial compressibility
parameter is introduced. This parameter can be viewed as a relaxation parameter. The
actual solution does not depend on its value but it has the ability to effect the rate of
convergence and stability. The time derivative introduced is not real time and is often
referred to pseudo time. It can be seen as being equivalent to the time used in com­
pressible flow solvers, hence allowing solution by schemes developed for compressible
flows to be used [33]. The artificial compressibility method has been extended to time
accurate flow simulations using dual time stepping [6]. Dual time stepping was intro­
duced by Jameson in 1991 [34], It allows time accurate solutions by the use of an outer
real time iterative loop and an inner pseudo time iterative loop. Within the pseudo time
loop the fluid flow problem is solved to a steady state. This steady state solution is then
used in the real time loop to add the residual fluxes to the previous time step solution.
For the case of an actual steady state solution, these residuals would be zero. The ar­
tificial compressibility method is highly developed and can model flows using hybrid

8

1.1. Background

unstructured meshes [33].
The artificial compressibility method was originally developed as an efficient alter­

native to the fractional step methods for steady state flows. The fractional step method
can be slow as it requires the solution of a Poisson equation. The discrete approxima­
tion to a Poisson equation is an implicit problem, which has the most costly overheads
in a fractional step solution algorithm. However, in the artificial compressibility method
when time accurate solutions are required, a solution to steady state is needed at every
time step. It is therefore of interest to see if a time accurate fractional step method, like
the marker and cell method, can produce a more efficient alternative in the unstructured
mesh framework.

1.1.3 The MAC Method

The marker and cell method is a fractional step solver for the unsteady incompressible
Navier-Stokes equations. It is of interest since in its Cartesian form, it has been shown
to be one of the most efficient methods of its type [25, 7]. This makes it of interest
for use as an efficient unstructured mesh solver. This section looks at the history of the
method, its advancements, free surface capabilities and past attempts at using its ideas
with an unstructured mesh.

The classical MAC algorithm is a computationally efficient co-volume solution
technique for incompressible flow problems with a free surface, using a staggered Carte­
sian mesh [12, 16]. A co-volume solution technique requires a dual mesh with the cen­
tres of the primary mesh being the vertices of the dual mesh. These vertices are used
to define the location of the pressure variable. The locations of the velocity variables
are defined at the intersect of the primary and dual mesh cell edges, in the Cartesian
framework a further staggering takes place and the velocity components are split. This
means that only the normal component is located at a particular edge. In order for the
MAC scheme to remain stable the primary mesh and its dual are required to be dual
orthogonal, meaning that element edges are perpendicular bisectors of each other. Of
course in a Cartesian framework this presents no issue when square elements are de­
fined and it is in this framework that the method first appeared using a pair of staggered
square meshes.

The method was developed primarily by Harlow and Welch in the 1960s and as an
improvement of the particle in cell method (PIC) method as discussed in [38]. The ma­
jor further developments in the method using a Cartesian grid framework were carried
out by the same research group as the original 1960s work [12, 37]. The main objective

9

1. Introduction

of the MAC was the simulation of free surface flows, although it is easily possible to
omit this capability leaving just an unsteady incompressible flow solver.

The original marker and cell method overcame the problem with finding the pressure
by manipulating the Navier-Stokes equations. The momentum equations are differen­
tiated with respect to the direction they represent. In two dimensions the horizontal
velocity is differentiated with respect to the x direction and the vertical with respect
the y direction. The resulting equations are then added together obtaining a Poisson
equation for the pressure, the right hand side of which is known and only depends on
the velocities [39, 16]. The solution algorithm begins by solving the discrete version of
the pressure equation using either initial velocities or those from the previous time step.
The discrete versions of the momentum equations are then solved to obtain the velocity
vector. The process is repeated for each time step.

The method has been improved greatly since its first creation. Calculation of the
pressure is a little on the complex side and so the first improvement came very soon
after its first publication. This altered the MAC method to the simplified marker and
cell method (SMAC) [37]. Not only did this improve the efficiency of the scheme but it
also altered the way in which the pressure is calculated. Instead of finding an equation
for the actual pressure, a Poisson equation for a pressure correction is used and the
pressure and velocity are corrected using this value. The formulation of the pressure
correction equation presents itself in a much simpler form than the original pressure
equation, the right hand side of the Poisson equation is now just equal to the divergence
of the velocity. The sequence of the solution algorithm was then altered slightly to
incorporate this technique. The initial stage for SMAC solves the momentum equations
using a guess pressure, the pressure correction values are then found, following this step
the velocity and pressure values are then corrected. The SMAC algorithm will be the
basis of this thesis and so a more in-depth account of the stages it involves will be given
later.

The original MAC and SMAC algorithms are explicit techniques and further alter­
ations to the methods implemented implicit time stepping schemes. Using an implicit
time stepping scheme removed the time step dependence on the viscous term, therefore
allowing the modelling of very slow flows [40, 39]. A semi-implicit scheme SIM AC
has also been developed for the purpose of modelling high Reynolds number flows on
stretched meshes [41], in which only the viscous term in the Navier-Stokes equation is
solved implicitly. A notable recent set of developments are those by the group develop­
ing the GENSMAC algorithm [13]. GENSMAC is a SMAC based algorithm tailored for

10

1.1. Background

modelling injection moulding problems, therefore incorporating free surface simulation
into the method [13]. The algorithm still uses a Cartesian mesh but achieves success­
ful modelling of the complex geometries required in injection moulding through the
use of specially defined boundary conditions. GENSMAC was originally devised as a
2D Newtonian flow solver [13], with later developments to Non-Newtonian fluids [36].
Later the solver was extended to three dimensions in GENSMAC3D [42, 43]. Reviews
on the use of the MAC method in the GENSMAC context can be found in works by Mc-
kee et.al. [44, 38]. Most recently, development of a semi-implicit GENSMAC scheme
was implemented, with a comparison of the various time stepping schemes to assess
the stability [45, 46, 47]. The semi-implicit schemes only treat the viscous term im­
plicitly as with SIMAC. This is due to the viscous term producing the most restrictions
on the time step size. Therefore, for successful modelling of slow flows, or flows that
require stretched meshes, the semi-implicit approach allows a necessary increase in the
minimum time step.

Injection moulding fully utilises the marker and cell methods free surface capabil­
ities. This is accomplished by defining massless particles which move with the fluid.
Mesh elements which contain these marker particles are classed as an area containing
fluid or a surface area. The free surface modelling aspect of the marker and cell al­
gorithm is another area which has been developed. Initially, the pressure on the free
surface was not calculated and pressure was set to zero on cells outside of the fluid.
This approximation was improved in 1971 to incorporate the calculation of normal and
tangential stress on the free surface [48]. For certain types of problem, for example
that of breaking waves, this free surface stress condition was not adequate and so dif­
ferent stress conditions were applied in both two and three dimensions to simulate this
phenomena [14, 49].

The development having the most impact on the free surface modelling community
is the Volume of Fluid method (VOF). This was first shown in the SOLA-VOF code
as an advancement of the MAC approach [50]. VOF no longer required the storage of
many marker particles per mesh element, instead a value of one or zero is stored for each
element depending if an fluid is contained in that element. Although the VOF method
reduced storage costs, it increased difficultly of locating the exact position of the free
surface. This aspect of the method has been highly developed as well as coupled with
other free surface techniques, such as the level set method, in an attempt to use the VOF
methods capability of conserving mass and still retain accurate interface capturing [51,
52, 53, 54]. As mentioned, the VOF method has been well developed and has been

11

1. Introduction

extended to use with unstructured meshes in two and three dimensions [55, 56]. The
MAC approach, however, has not been abandoned and it could be argued that for certain
applications it still provides the best approach, hence its use by the GENSMAC group
for injection moulding.

The discretisations of the Navier-Stokes equations on a domain represented using
the MAC staggered mesh framework, has been extended by several authors. The ini­
tial extension appeared at around the same time in work by Nicoliades and Hall, a
collaborated review of their work can be found in [57]. The work by Nicoliadies has
been mainly on the discretisation of div-curl problems on triangular meshes, which
has been easily extended to three dimensional tetrahedral meshes [58, 59]. Later work
developed a fourth order accurate scheme, with the order being proved on structured
meshes [60]. Further work in the same group uses the discretisations for vorticity-
velocity functions [61]. The work by Nicoliadies, focus’ more on the mathematical
side rather than application of the method. The mathematical analysis of the discreti­
sations for the Navier-Stokes equations is carried out and the order of accuracy for the
velocity is proved to be second order, also stated is the belief that the pressure is first
order accurate [62, 63]. No results for numerical solutions using the Navier-Stokes
equations are reported in their works. Further to the work by Nicoliades is the work by
Hall et.al. the same discretisations are also presented for the Navier-Stokes equation,
however, in the case of Hall et.al. they are solved using the Dual Variable Method [64].
Successful results for CFD problems such as the lid driven cavity and flow around a
circular cylinder are presented. Further to this work are three dimensional implementa­
tions and an alternative discretisation for the convective term which uses a directional
derivative [65, 66]. The alternative convective term allows for an upwind difference
scheme to be used, although, this has lower accuracy.

Further attempts to extend the marker and cell methods ideas have been carried
out by several authors, the most notable being by Perot [67], Vidovic [68] and Wen-
neker [69]. Perot again made use of the marker and cell staggered grid system and
similar discretisations appear, however, both the divergence and curl form of the Navier-
Stokes equations are considered. Once again the MAC approach is not used to solve
for the pressure. This scheme has been extended to three dimensions and for use with
moving meshes [67, 70, 71]. Other uses of the marker and cell methods ideas have
been the coupling of the staggered mesh with an artificial compressibility method with
some using the staggered mesh for compressible flow simulations [68, 69]. As of yet,
the attempt to couple an unstructured staggered mesh with the marker and cell solution

12

1.2. Objectives

algorithm has not been found in the literature.

1.2 Objectives

The main objective of this work is the development of an efficient Eulerian solver for
the unsteady incompressible Navier-Stokes equations. The solver needs to be capable of
modelling flows around complex geometries. For reasons demonstrated in the previous
section an old Cartesian mesh solver named the MAC method has been chosen as the
basis for this efficient solver. The initial objective of this work is to convert the two di­
mensional Cartesian MAC method for use with an unstructured triangular method. The
staggered mesh layout is desirable to keep as it eliminates problems with the checker
boarding pressure effect [15]. Therefore, within the solver a staggered mesh layout for
use with triangular meshes needs to be selected and suitable discretisations obtained.
In fact, the MAC staggered mesh system naturally allows using the Delaunay-Voronoi
diagram, a Delaunay triangulation is commonly used as a mesh generation tool [17].

The next objective is to test the two dimensional scheme against a variety of steady
and unsteady state benchmark problems using a variety of meshes, addressing short
comings in the method at each stage. Since the MAC method is a co-volume scheme
it depends on the use of dual orthogonal meshes, under testing the limitations of this
constraint should become apparent.

Originally it was conceived that the two dimensional case could be extended to
three dimensions, however, after testing and the extra time needed to overcome the
discovered problems with the high dependence on suitable meshes, this objective was
dropped. Instead, enabling the solver to model viscous flows using hybrid stretched
meshes replaced this objective.

The next section details the development of the project over the time period, giving
information of the problems encountered and the particular avenues of research that
were taken. Some works were dropped and so are not presented in this thesis, however,
the following section presents the opportunity to mention all that was attempted.

1.3 Project Development

The initial stage of this project began with the reading of literature detailing the basics
of CFD and the MAC algorithm. As a learning exercise the structured mesh algorithms
for the MAC and SIMPLE algorithms were implemented for the simple test case of the

13

1. Introduction

lid driven cavity [1] and were compared.

After this initial stage, research began on the possible implementation of an unstruc­
tured MAC algorithm. This led to the discovery of the discretisations of Hall et.al [64],
which used an unstructured MAC mesh. The unstructured formulation of the MAC
algorithm was devised shortly after this.

Work could then begin on implementing the unstructured MAC solver into a For­
tran 90 code. The initial basis of this work was the in-house source code for the Yee
algorithm [24], a co-volume technique used in electro-magnetics. Provided in the Yee
algorithm were the basic algorithms for manipulating an unstructured mesh. The deci­
sion has been made to implement the MAC code in Fortran 90 to take advantage of the
dynamic data structures, this meant the re-used elements of the Yee algorithm needed
to be converted from Fortran 77.

The first successful results using the unstructured MAC algorithm were validated
using the lid driven cavity test case. That was shortly followed by modelling flow
around a circular cylinder, which allowed the implementation of suitable inflow and
outflow boundary conditions. The flow around a circular cylinder presented a diverse set
of problems, as well as being the first unsteady simulation it also has an exact solution
when inviscid flow is being simulated. These boundary conditions were later backed-up
using the flow over a backward facing step test case.

Further testing of the MAC solver using aerofoil geometries flagged up a variety
of problems. These included discovering the algorithms high dependence on dual or­
thogonal meshes. Solutions became difficult to obtain when the mesh deviated from the
dual orthogonal properties. A problem that was later solved by the mesh optimisation
algorithm developed by Walton et.al. [72]. The aerofoil test cases saw a drop in perfor­
mance of the algorithm which was later attributed to the conjugate gradient algorithm,
the convergence of which slowed when solving using large meshes with huge variants in
the mesh element sizes. The decision was therefore taken to implement a direct solver
for the solution of the pressure correction equation.

Using aerofoils with high Reynolds number flows led to the use of hybrid meshes
(meshes which combine both triangular and quadrilateral elements), which again caused
a range of problems with the MAC algorithm. The first stage was to convert the code so
a hybrid mesh file could be interpreted. Following this, stable solutions were difficult
to obtain with the hybrid meshes, this was attributed to a loss in orthogonality, particu­
larly around tail regions of the aerofoil. Further demonstrating the need for these dual
orthogonal meshes.

14

1.3. Project Development

A brief investigation into pre-conditioners for the iterative solver was implemented
and testing with skewed meshes for the lid driven cavity problem. This work was
dropped due to the use of a diagonal preconditioner and ILU(O) preconditioners show­
ing no improvement in speed for the test cases implemented.

During this time an investigation into the use of the unstructured MAC algorithm
as a free surface problem solver was carried out. Initial results were promising when
marker particles were used to track the surface. Further research was carried out in an
attempt to make this process up to date, which led to a crude version of the VOF method
being implemented. The surface capturing element of the VOF method on unstructured
mesh posing a real problem.

During the development of the free surface work, a direct solver had been imple­
mented into the algorithm and a huge decrease in the CPU time was observed. It was
decided that concentrating on the codes capabilities at modelling viscous flows would
make the most of the efficiency of the algorithm. Therefore, the free surface implemen­
tation was stopped and the investigation into using hybrid meshes with highly stretched
boundary elements recommenced. It was noticed that the time step size would become
incredibly small when using these stretched meshes and so a semi implicit scheme was
implemented to overcome the problem.

During the project two papers were presented at conferences, the first in March
2010 at the ACME2010 conference held at Southampton University [73], the second in
March 2011 at the FEF2011 conference held in Munich [74]. A journal paper detailing
the explicit scheme is also in development, with the potential for a second on the implicit
scheme.

The following list gives a summary of the main stages taken within the project:

1. Initial research into the history of the MAC algorithm.

2. Discovery of a discretisation for the unstructured MAC staggered mesh.

3. Adaptation of the MAC algorithm for use with unstructured meshes.

4. Formulation of discretisations for the pressure correction equation.

5. Development of the unstructured MAC code using the conjugate gradient method
to solve the pressure correction equation.

6. Testing of the algorithm with benchmark problems. This allowed refinement of
the boundary condition implementation.

15

1. Introduction

7. Testing of the algorithm for flow around aerofoils. This identified problems with
meshes that contain elements with cell circumcentres outside the triangles. When
meshes were used which did not have this property stable solution were obtained.

8. A direct solver was then implemented to solve the pressure correction equation.
This allowed a dramatic speed decrease demonstrating that most computational
effort is in the solution of the pressure correction equation.

9. Meshes with stretched boundary elements were then tested. In doing so difficul­
ties occurred in obtaining vortex shedding in any reasonable amount of mn-time.
This was attributed to the reduction in time step size caused by the stretched ele­
ments.

10. An semi-implicit method was then implemented to over come the time step size
problem.

1.4 Thesis Structure

This thesis details all the necessary information to reconstruct the MAC solver, there­
fore all its theory and code implementation are detailed. Background information di­
rectly relating the work has been supplied but is not intended to provide an exhaustive
overview of the entire field of CFD. The field of CFD is incredibly large, a lot of which,
is not needed for the production of this work. Issues with the development of the method
are also detailed, providing justifications for features that have been added to the solver.
Of course, the use of the unstructured MAC method needs to be justified and a chapter
is dedicated to displaying results for various fluid flow problems. Conclusions are then
drawn on the results and presented in the final chapter. A brief overview of the contents
of each chapter will now be given.

Chapter 2: In chapter 2 the governing equations will be introduced. A solver has been
developed for a two dimensional flow and so it is the two dimensional Navier-
Stokes equations that are given.

Chapter 3: Chapter 3 describes the unstructured MAC algorithm. In order to fully
define the method this will include the mesh layout, the discretisations and the
unstructured MAC algorithm. There are a number of other techniques required to
fully implement the algorithm, all of which will be described in this chapter.

16

1.4. Thesis Structure

Chapter 4: In chapter 4, a discussion on mesh generation is given. The algorithm
requires high quality dual orthogonal unstructured mesh and so the main algo­
rithms in producing unstructured meshes will be discussed along with processes
required for ensuring dual orthogonality.

Chapter 5: Chapter 5 provides a description on how a modular code has been im­
plemented. Detailed are the input and output process and all data structures that
were required.

Chapter 6: Chapter 6 gives numerical results. These include various benchmark
problems to validate the code as well as problems which push the algorithm ca­
pabilities.

Chapter 7: Chapter 7 draws conclusions and discusses any future work that could be
implemented.

17

Chapter 2

Governing Equations

The governing equations for fluid flow problems are the Navier-Stokes equations. For
completeness the equations will be given for both compressible flow and incompress­
ible flows. For the purpose of modelling using an unstructured MAC method, several
manipulations are required, one being the conversion to dimensionless form. Other
manipulations look at a form for the tangential and normal velocities and the curl and
divergence form. All of theses along with the required boundary conditions will be
detailed in this chapter.

2.1 The Navier-Stokes Equations for compressible flows

For compressible flows the Navier-Stokes equations include equations that fulfil New­
tons second law, the first law of thermodynamics and mass conservation. To fully define
all independent variables, an equation of state linking pressure to density and tempera­
ture is also required. Newton’s second law is fulfilled by the momentum equation. The
first law of thermodynamics is satisfied by the energy equation and to conserve mass,
the continuity equation is defined. These governing equations are defined as,

Momentum: + V • (puu) = —Vp + V • (pVii) + Sm
CJL

Continuity: ^ + V(pw) = 0

Energy: + V • (pE)u = -p V u + V • (fcVT) + SE

Equations of State: p = p(p, T) and E = E (p , T)

19

2. Governing Equations

where u = (ui, u2)T is the velocity vector in a Cartesian coordinate system and so
V = (£:, ^) T. The pressure is denoted by p, t is time, p is the viscosity, p is the
density, E is the internal energy, T the temperature, k is the thermal conductivity of the
fluid, Sm represents any momentum source terms and S e are any energy source terms.

For clarity it is useful to refer to each term in the momentum equation by name,

^ + v • {puu) = ^-vg + v • (iiV u)+sm.
Convective Terra Pressure Term Viscous Term

Temporal Term

The temporal term allows for the evolution of a velocity component through time. The
convective term adds the effects of a velocity component moving through the fluid. The
pressure term allows for any pressure gradients to have influence on the fluids velocity.
The final term, the viscous term, adds any resistance effects due to viscosity. In the
convective term, uu represents the dyadic product.

2.2 The Unsteady Incompressible Navier-Stokes equa­
tions

The scope of this thesis is unsteady incompressible flow problems. Incompressible
flow greatly simplifies the compressible Navier-Stokes equations due to the density be­
ing constant. The unsteady incompressible Navier-Stokes equations are composed of
two parts, the momentum equations which describe the evolution of the velocity and the
continuity equation. Pressure is no longer a thermodynamic variable and so it cannot
be linked to density and temperature. Therefore, the equation of state and the energy
equation can be neglected. Another property of incompressible flow is that viscosity is
constant over the domain thus simplifying the viscous term. As long as the flow is not
stratified, density is also constant over the entire domain.

The Navier-Stokes equations for unsteady incompressible flow are,

du
Momentum: p— + pV • (uu) = —Vp + p V 2(u) (2.1)

ot
Continuity: V • u = 0 (2.2)

20

2.3. Initial Conditions and Boundary Conditions

For an incompressible fluid, density is constant in space and time therefore the only
variable affecting mass conservation is velocity. The amount of fluid entering a domain
must equal that leaving.

2.3 Initial Conditions and Boundary Conditions

The concept of initial and boundary conditions is applicable for both compressible and
incompressible flow, however, since the scope of this work is only incompressible flow,
initial and boundary conditions relating to compressible flows are not detailed.

The Navier-Stokes equations are defined over a domain for the particular fluid flow
problem. To fully define a fluid flow problem, initial and boundary conditions are re­
quired. For an unsteady incompressible flow, u and p must be defined at time t = 0
everywhere in the problem domain [9, 11]. The boundary conditions for an incom­
pressible flow vary depending on the type of problem being modelled. There are several
types of boundary conditions that can be applied, these are:

Wall: Fluid cannot flow through a wall and friction effects mean a fluids velocity is
reduced to zero along it. Therefore, both velocity components are defined as zero
on a wall boundary.

Ui = U2 = 0

Moving wall: For a moving wall the velocities on the boundary are set to simulate the
velocity of the moving wall. This can be determined using many combinations
depending on the problem to be specified. To illustrate the application of the
moving wall boundary condition consider a problem where a wall is aligned with
the x axis, this wall moves in the direction on the axis. To simulate this set up the
normal velocity to the boundary is set to zero, whereas, the tangential component
is set to the speed of the wall.

Inviscid wall: An inviscid wall has no friction effects and so the velocity component
tangential to the boundary is not defined. Fluid still cannot flow through the
boundary and so the velocity component normal to it is set to zero.

Inflow: The standard procedure on an inflow boundary is to set both velocity compo­
nents to the required speed of the fluid entering the domain.

Outflow: Anywhere that fluid leaves the domain a Neumann boundary condition can
be applied to all variables, i.e the gradient of the variable in the outward normal

21

2. Governing Equations

direction is zero. This has the effect of defining the fluid just outside the domain
to have the same properties as that inside. A technique commonly applied in
incompressible flow is to calculate the unknown velocities by manipulating the
Navier-Stokes equations. The pressure is also unknown but its gradient in the
outward normal direction can be defined as zero. Provided the outflow boundary
is located far enough away from major fluid activity, this approach provides an
adequate approximation.

This list is not exhaustive, in particular for an incompressible flow, other boundary
conditions such as constant pressure, the symmetry condition and a periodic boundary
condition can be implemented. These are not required in the scope of this work and
so there representation has not been discussed. More information can be found on
boundary conditions in the literature, in particular the works by Anderson [9], Versteeg
et.al. [11], S0rensen [75] and Zhang [76] have been used to influence the descriptions
detailed here.

2.4 Dimensionless Form

For the purpose of fluid simulation it is useful to have the equations in dimensionless
form. This allows easy comparison of fluid flow problems on different scales. To
obtain the dimensionless form each variable is normalised by a reference value. These
are denoted as follows, reference velocity magnitude as uq, the spatial coordinates have
a reference length of L0, a reference time t0 and the pressure is normalised by pu^. The
dimensionless variables are denoted by the superscript * and are defined as,

“ x ,* t pu = — ; x = — ; t = p = —
Uq L q t0 pU%

where x = (x , y)T is the space dimensions vector. Using the dimensionless variables
the Navier-Stokes equations can be rearranged to,

Dimensionless Momentum: + V • (u*u*) = —Vp* + (2*3)

Dimensionless Continuity: V • u* = 0 (2.4)

22

2.5. Curl-Form of the Viscous Term

A by-product of conversion to dimensionless form is the creation of a dimensionless
number Re, known as the Reynolds number.

Re = ^ S E .

The Reynolds number is a measure of the ratio between inertial forces and viscous
forces. A fluid flow problem in a particular geometry will display the same characteris­
tics for a given Reynolds number. Two fluids could have a very different viscosity yet
the traits of the flow will be the same, provided the reference velocity and length are
altered so that the Reynolds number is equal. This meant large scale experiments could
be made smaller and realistic results still be obtained. It is also useful in numerical flow
simulations as the scaling properties allow the re-use of meshes for comparison with
experimental results of different scales.

It should be noted that for convenience, the * superscript will now be dropped and
the dimensionless variables will just be denoted by their letter.

2.5 Curl-Form of the Viscous Term

There are several forms of the Navier-Stokes equations that can be used. In equa­
tion (2.3), all terms are given in divergence form. This is easily identified by the use of
the div operator in the viscous and convective terms. It is possible to write the equations
in what is known as the curl form which is identified by the use of the curl operator in
the viscous and convective terms.

For the purpose of this research it is beneficial to use the curl form of the viscous
term and the divergence form of the convective term. The reasons for this are due to
the ease in obtaining suitable discretisations which will become clear later on. Here
however, the transformation of the viscous term from the divergence form to the curl
form is explained. The transformation makes use of the vector identity, [64]

V 2u = V(V • «) - V x (V x u). (2.5)

The identity equation (2.5) can be simplified by applying continuity, equation (2.4), the
first term on the right hand side thus becoming zero. This means that the viscous term

23

2. Governing Equations

can be directly replaced by

giving the full momentum equations as,

(2.6)

2.6 Momentum equation for the normal and tangential
velocity component

The above form of the Navier-Stokes equations form multiple equations for all compo­
nents of velocity in a Cartesian coordinated system. It is also useful to have them in

cause in an unstructured mesh system the coordinate system for the velocities becomes
local to particular edges of elements. To obtain the equations in the normal and tan­
gential form, a right-handed coordinate system (w, r) is defined, where n is the unit
normal vector and r the unit tangent. The direction derivatives can be reinterpreted as
derivatives in the normal and tangential directions and so, V = (d/dn, d /d r)T. The
inner product of equation (2.6) with unit normal vector r, gives a scalar equation for the
normal velocity component in the new right-handed coordinate system,

Since V x can be written as {d /d r , — d /d n)T. The convective term has also been re­
arranged into an equivalent more convenient form. This is possible since the dyadic
product is equivalent to (V • u)u ■ n, the dot product is commutable and so the given
form is obtainable.

Similarly the inner product can be taken with the unit tangent vector, obtaining the
scalar equation for the tangential velocity,

The usefulness of the equations in this form will become apparent when the mesh layout
and discretisations are introduced. The normal and tangential velocity components can
then be defined as u and v respectively, where u = u n and v = u ■ r

a form which only solves for a normal or tangential velocity component. This is be-

(2.7)

(2.8)

24

Chapter 3

A Two Dimensional Unstructured
Marker and Cell Method

The theoretical components in producing a MAC method suitable for use with unstruc­
tured two dimensional hybrid meshes will now be detailed. This will include: the MAC
staggered mesh layout in a triangular framework; the unstructured MAC algorithm;
the equation discretisation in both explicit and semi-implicit frameworks; the boundary
conditions; and discrestiation of the pressure correction equation. At the end of the
chapter solution techniques for implicit systems are discussed.

3.1 Mesh Layout

To successfully implement the MAC method, a dual orthogonal mesh is required. Cre­
ating a dual mesh in a Cartesian framework is straight forward and consists of a quadri­
lateral primary mesh with its dual mesh constructed by connecting the centres of the
quadrilaterals. This effectively forms a quadrilateral staggered mesh. In the Cartesian
case only the normal velocity component to a particular element edge will be solved for.
This means that either the horizontal or vertical component of velocity will be solved
for, depending on the orientation of the edge. The velocity component is stored at an
edge midpoint, which can also be interpreted as the intersection of the staggered and
dual mesh edges. The pressure is stored at the cell centres which coincides with the dual
mesh vertices, figure (3.1) gives an example of a Cartesian dual mesh and its variable
layout. The staggering of variables allows for the momentum equations to be solved
easily and with no adverse effects for the pressure. The particular staggered mesh lay­
out defined in the marker and cell case is beneficial, as the velocities are located on

25

3. A Two Dimensional Unstructured Marker and Cell Method

I
-

I

4
t±

1

I
i

4

4
i

• 4

4
i

I
i
1
i
4

4
i
f-
♦

pressure
^ horizonatal velocity

I vertical velocity

Figure 3.1: Cartesian dual mesh with staggered variable layout

the boundaries whenever the value is known, depending on the boundary condition, the
velocity value can be set to the required amount without the need for any interpolation
to a point within the domain.

A similar procedure to that of constructing a Cartesian dual mesh can be followed
when obtaining an unstructured dual mesh. Unstructured meshes are constructed using
many techniques, some of which will be discussed later. For the case of constructing
an unstructured dual mesh, it is convenient to use a Delauany triangulation as the un­
structured primary mesh. The circumcentres of the Delaunay triangles can be joined to
form the dual mesh, this happens to be a Voronoi tessellation. An ideal mesh, that ful­
fils the dual orthogonality requirement a Delaunay triangulation of equilateral triangles.
Using the ideal mesh, will allow second order accuracy for the velocity in the proposed
scheme [60].

Although highest accuracy of the scheme requires an ideal mesh, the theory detailed
is not dependent on that being the case and in theory it can be applied to any mesh. This
is necessary, as when modelling flows around complex geometries, the use of the ideal
mesh over the entire domain would not fit well to boundaries. In reality there are dif­
ficulties in using the unstructured MAC method when the mesh deviates significantly
from the ideal case. This is not within the scope of this chapter, but the subject of gen­
erating suitable meshes for use in the unstructured MAC method and the requirements
placed on that mesh will be discussed in detail in the next chapter.

The staggered arrangement of the variables in the unstructured case has a further
difference from the Cartesian case. The velocity vector is no longer staggered and the
full velocity vector is stored at cell edges. Pressure remains stored at element centres,

26

3.1. Mesh Layout

which in the unstructured case are the Delaunay triangle circumcentres. Figure (3.2)
gives an example of an unstructured dual mesh and its staggered variable layout. The

Figure 3.2: Delaunay-Voronoi dual mesh with staggered variable layout

velocity is now collocated due to the edges of cells no longer running parallel to the x
or y axis, instead they have an arbitrary direction. A consequence of having edges of
arbitrary direction makes it convenient to use a velocity vector that consists of normal
and tangential velocity components that are local to a specific edge. Using normal and
tangential velocity components means the standard form of the Navier-Stokes equations
cannot be used. It is here that the need to have the momentum equation in terms of the
normal and tangential velocity components, equations (2.7) and (2.8), becomes appar­
ent. The solution is now required for the normal and tangential velocity components
not the horizontal and vertical velocity components. For the devised unstructured MAC
algorithm, the discretisations detailed by Hall.et.al [64] are used and only the normal
velocity component to an edge is solved for. The normal velocity is the simplest form to
discretisatise when using the MAC staggered mesh layout as given in figure (3.2). This
staggered mesh layout makes solving for the tangential velocity component difficult,
this difficulty can be seen in the pressure term in equation (2.8). The derivative of the
pressure in the tangential direction would need a value for the pressure at the primary
mesh vertices. Using the current mesh layout that would require some interpolation.
After finding the normal velocity component the tangential velocity component still
needs to be calculated and this is achieved by reconstructing it from the normal velocity
component, another technique described by Hall et.al. [64].

It is possible to use a different staggered mesh layout and be able to use equa­
tion (2.8), the pressure could be moved to the primary mesh vertices, producing a stag­

■fc—yc-----1*—* ----i**
9 pressure

normal velocity
tangential velocity

27

3. A Two Dimensional Unstructured Marker and Cell Method

gered mesh layout similar to that of the SIMPLE algorithm [15]. In discretising the
equation for the normal velocity, the pressure is required at the dual mesh vertices and
a similar problem would occur in its calculation, to that of calculating the tangential
velocity using the previous mesh layout. Therefore, the normal velocity would have
to be recovered from the tangential velocity, making no benefit to using an alternative
layout.

3.2 The Unstructured MAC Algorithm Derivation

To produce a time accurate solution to the incompressible Navier-Stokes equations, a
valid time stepping algorithm is required. For unstructured hybrid meshes an implemen­
tation of the MAC algorithm is adapted from the cartesian GENSMAC algorithm [13].

The algorithm as given by Tome et.al. [13], begins by taking an initial pressure p and
an initial velocity u. These values can then be used to solve the momentum equation
for the normal velocity, equation (2.7). The specified initial pressure may not be correct
and so the velocity obtained when solving equation (2.7) will be approximate. This
approximate velocity is known as the intermediate velocity and is denoted by u. Using
the initial and intermediate values, the momentum equation for the normal velocity can
be rewritten as, ■

du . dp 1 d N _- . » + V(n .«)« = - - - - - (V x „) . (3.1)

Equation (3.1) is known as the approximate equation. The intermediate velocity pro­
duced from the approximate equation and the specified initial pressure must then be
corrected. The correction is done by finding a correction value from the solution of a
Poisson equation. The Poisson equation, known as the pressure correction equation, is
obtained by manipulating the momentum equation for the actual velocity and the equa­
tion for the approximate velocity. The first step in formulating the pressure correction
is to subtract the approximate equation (3.1) from the exact momentum equations equa­
tion (2.7). Giving the following,

| = _ £ (p _p) . (3.2)

The curl of equation (3.2) can be taken to obtain,

3.2. The Unstructured MAC Algorithm Derivation

The pressure term on the right hand side of equation (3.3) can be written as,

V x (V (p — p) • n) (3.4)

Equation (3.4) is the form before the simplication from taking the dot product with the
unit normal has been made. Then using the fact that the curl of a gradient is equal to
zero, (V x Vp = 0), equation (3.3) becomes,

r\
v x (- (« - «) - I f) = 0 (3.5)

The time derivative can then be moved outside of the curl operation and equation (3.5)
can be integrated with respect to time,

V x (u - u) n = f{x), (3.6)

where / (x) is some function of the space vector x and is effectively an integration
constant. A value for f (x) in equation (3.6) is found by applying the initial conditions
to the problem. At t = t0 it is known that u = u, therefore, a tt = t0 it must also be the
case that V x b = V x h and so / (x) = 0 at t0. Since / (x) is a function of space only
it is zero for all time t,

V x (u — u) ■ n = 0. (3.7)

The next stage in obtaining the pressure correction equation uses the definition of a
vector potential. This states that the curl of an irrotational vector can be defined as the
grad of a scalar function, giving [36],

(w — u) • n = —V'lp • n (3.8)

The scalar value that has now been introduced, \jj, is defined as the pressure correction
value. The penultimate stage in obtaining the pressure correction equation is to take the
divergence of equation (3.8),

- v 2V> = V • u - V • u. (3.9)

Finally the continuity equation can be applied to give the pressure correction equation,

V2V> = V.fi (3.10)

29

3. A Two Dimensional Unstructured Marker and Cell Method

It is through the pressure correction equation that continuity is enforced at each time
step in the MAC algorithm.

After the pressure correction value ip has been found by solving the above Poisson
equation (equation (3.10)), the velocity and pressure must then be corrected. To correct
the velocity and pressure, two further equations are required. Equation (3.8) can be
rearranged to give the normal velocity correction equation,

When the pressure and normal velocity have been corrected, the tangential velocity
can be reconstructed from the normal velocity. The basic ideal behind reconstructing
the tangential velocity is to assume that the Cartesian velocity vector is constant over a
Delaunay element. The Cartesian velocity for the element is then defined as the average
of the Cartesian velocities for each edge, these velocities at each edge are calculated
from knowing the normal and tangential velocities. Since the tangential velocities are
not known, a linear system can be constructed and inverted to find them. This brief
overview will be expanded upon later, with the full formulation being given.

The unstructured MAC algorithm decouples the calculation of velocity and pressure.
As stated in the previous section the first step is to use a guess pressure to give an
intermediate velocity. Then using the pressure correction equation as derived in the
previous section a correction value for both the guess pressure and initial velocity can
be found. To summarise the steps required for solution of the Navier-Stokes equations,
the unstructured MAC algorithm as adapted from the cartesian mesh algorithm [13] is:

1. Let pm be an initial pressure, where m denotes the time step;

2. Calculate an intermediate normal velocity, um+1.

u = u —
d'lp
drt (3.11)

Where u is the normal velocity component of u. To obtain a similar equation for the
pressure correction, equation (3.8) is substituted into equation (3.2),

(3.12)

3.3 The Unstructured MAC Algorithm

30

3.4. Momentum Equation Discretisation

the initial values for um are the initial velocity conditions for the problem being
modelled.

3. Find the correction values by solving the Poisson problem,

v V m+1 = v.wm+1

subject to = 0 on rigid boundaries or = 0 on free boundaries.

4. Compute the corrected normal velocity,

u m + l = ~ m + 1 _ Q ^ r n + l

dn

5. Compute the corrected pressure,

m + 1 _ p m + l _|_
d t '

6. Calculate the tangential velocity.

7. Update the initial values. The guess pressure becomes the corrected pressure
pm+l and initial velocities um are set equal to um+1

8. Iterate to the next time step m + 1 and repeat from step 2.

By following the steps outlined in the unstructured MAC algorithm a solution to the
unsteady Navier-Stokes equations can be obtained by applying suitable discretisation
to all the equations derived in the algorithm. The discretisation of each of the equations
will now be described.

3.4 Momentum Equation Discretisation

To obtain a numerical solution for fluid flow problems the equations detailed in the
unstructured MAC algorithm need to be approximated and evaluated at every discrete
point, as given by a mesh of the domain. Therefore, a discrete form of each equation is
required. The momentum equation shall be considered first, followed by the correction
equations.

31

3. A Two Dimensional Unstructured Marker and Cell Method

3.4.1 Explicit Discretisation

To describe the discretisation of the momentum equation, consider a general edge e,
figure (3.3) details the variable layout around the edge e. The variables defined in

Figure 3.3: Staggered mesh variable layout for two Delaunay elements, De and Dw ,
which share a common edge e. The connected node which edge e links are the centres
of the Voronoi cells Vjq and Vs. The pressure variables PE and Pw are located at the
circumcentres of the Delaunay elements D e and Dw respectively. The normal velocity
variable ue is located at the midpoint of edge e.

figure (3.3) are those required in forming a discretisation of the Navier-Stokes equations
for the intermediate velocity, equation 3.1.

To begin with, the temporal term is discretised using an explicit forward difference
scheme,

? • ne « e A e ■ (3.13)dt A t
In equation (3.13), the velocity vector u is combined with the normal inner product to
give ue = u ■ ne, the normal velocity component to edge e. As before, the letter m is
used to denote the time step and so m + 1 refers to the next time step, A t is the time
increment.

For the pressure term, a central difference about edge e is taken. If the pressure
values at the Voronoi' vertices either side of e are named Pe and Pw and the length of
the Voronoi edge bisecting e is hve, the discretisation is as follows,

dp _ P g - P $
dnP hv0

(3.14)

Attention should be made to the direction of the derivative. In the formulation de­
scribed, the derivative is always taken in the normal direction and so ne will always
point towards Pw for any edge.

32

3.4. Momentum Equation Discretisation

The temporal and pressure terms are straight forward to discretise, they apply simply
finite difference techniques. However, the viscous and convective terms, require more
complex techniques. The discretisations for both these terms will require an integration
over either a Voronoi cell or Delaunay element.

Formulating a discretisation for the viscous term can be split into two tasks; the
approximation of the derivative of the curl of the velocity in the tangential direction
of edge e; and the approximation of the curl of the velocity around the two Voronoi
cells, connected by edge e. The transformation to the curl form as given in equation
equation (2.6) has allowed this approach to be taken. The centre of the Voronoi cells,
labelled Vn and Vs in figure (3.3), are the nodes linked by edge e. The distance between
them is the length of edge e and is denoted by /if, this is also the Delaunay cell edge
length. The derivative of the curl in the tangential direction can be approximated using
a central difference technique about the midpoint of edge e,

To evaluate equation (3.15) fully, an approximation of the curl is required. The approx­
imation can be obtained by an integration around the Voronoi cells. The transformation
of the Viscous term to curl form is an essential part of the discretisation, without this a
discretisation would not be so convenient to obtain on the given mesh framework. The
curl term is considered as a volume integral, it can be converted back to the standard
form by dividing by the volume of the cell. Stokes theorem can then be applied to con­
vert the volume integral to a surface integral. First consider a general Voronoi cell V,
Stokes theorem converts the volume integral over the Voronoi cell to the surface integral
around the Voronoi cell,

Stokes theorem states that the volume integral of the curl of a variable is equal to the
surface integral of the dot product of the same variable with the anti-clockwise surface
tangent.

Surface integrals are represented in discrete form as a sum of the variables stored
at each edge of the cell. Each variable must be multiplied by its corresponding side
length. This alone will not produce a correct solution as Stokes theorem assumes the
tangent r Q is in the anti-clockwise direction. This is the equivalent to an outward normal
from the intersecting Delaunay cell edge when a right-handed coordinate system is

(3.16)

33

3. A Two Dimensional Unstructured Marker and Cell Method

used. In the unstructured marker and cell staggered mesh layout, the predefined normals
and tangents which the velocities lie in the direction of are not necessarily in the anti­
clockwise direction. To compensate for this the velocity must be assigned a sign of
one, if it is in the anti-clockwise direction or minus one otherwise. The integral is then
discretised as,

r s
u • r 0ds « Y ^ uT hVi(To • ni)• (3-17)

1 = 1
/
JdV

Note s is the number of sides of the Voronoi cell V and the h\ is the length of the ith
Voronoi' side. Voronoi edges lie perpendicular to Delaunay edges on an ideal mesh and
so r 0 is also the outward normal of the Delaunay edge. The product r D • n% is equal
to 1 or —1, where n is the normal to the Delaunay edge, hence, defining a method of
determining the direction of the velocity vector. The discretisation of the viscous term
is not yet complete as the above sum needs to be divided by the area of the cell, Ay,
giving the final discretisation of the curl as,

s
V X B » ■ m) / Av , (3.18)

i=l

It is assumed that the value of the curl is constant over the Voronoi element. This
assumption allows the value obtained in this discretisation to be assigned to the Voronoi
cell centre. The techniques described for a general Voronoi cell V can be applied to the
Voronoi cells VN and Vs. The discretisation for the viscous term is then,

9 (V X «m) « ■ ”»)AV - Eifl (To • n j)/A Vs (3 19)
d r e h*

where sjv is the number of sides around the Voronoi cell Vn and ss is the number of
sides around the Voronoi cell Vs, for a primary mesh formed of all trianglular elements
these are both six.

The convective term follows a similar process but instead involves integration around
two neighbouring Delaunay elements to approximate the divergence operator. An inte­
gral is taken around elements De and Dw shown in figure (3.3), since the value of the
convective term is required at the midpoint of edge e, the weighted average of the two
integrals is needed. To begin with, the average can be represented as,

V • (ne • u)u\e « V • («e • u) u \ d e + T ~ ^ T ~ V ' (W e ' “) “ l (3 -2 °)A e ~r A w A e + A w

34

3.4. Momentum Equation Discretisation

where A E and A w are the areas for the Delaunay cells with centres DE and Dw re­
spectively. Again the value of a variable is constant over an element and so the integral
result can be assumed to be located at the element centre. If a general Delaunay ele­
ment D is considered, the divergence can be approximated by applying stokes theorem.
For the divergence stokes theorem states that the volume integral of the divergence of
a is equal to the surface integral of the dot product of a with the outward normal to the

Substituting (ne u)u for a in equation 3.21 and dividing by the volume to convert back

Similarly to the viscous term the direction of the velocity needs to be determined.
Stokes theorem for the convective term is applied to a div operator rather than a curl and
so the outward normal n0 is assumed to be the direction of the velocity, rather than an

a sign is determined using the product (nQ •w*). Again, s represents the number of sides
around the element in question, in this case, the element is a Delaunay triangle and so in
the ideal case s is three. To complete the convective term, discretisation equation (3.22)
can be applied to both DE and Dw giving,

where sE is the number of sides around element DE and sw is the number of sides
around Dw ■

There is another challenge in the approximation of the convective term, the term
(ne - u)i its not straight forward to approximate. The velocity vector at an edge i is
required in the same local coordinate system as the edge e. Therefore, the velocity
and edge i must first be converted to a Cartesian coordinate system before conversion
to the normal direction of edge e. Thus, the term can be expanded to (ne • u)i =
ne • (u™rii + v™Ti). Here, v™ is the tangential velocity for an edge i which is not

surface,
(3.21)

to a derivative the discretisation for the divergence of (we • u)u on the Delaunay cell D
becomes,

anti-clockwise tangent. The velocity may not be in the outward normal direction and so

35

3. A Two Dimensional Unstructured Marker and Cell Method

calculated by the solution of the discrete momentum equation. This does not present a
problem and the tangential velocity can successfully be reconstructed from the normal
velocity, a technique that will be described later.

Full Explicit Momentum Equation Discretisation

For clarity, it is useful to view the momentum discretisation in its full form rather than
term by term. Therefore the full discretisation for the momentum equation at the mid­
point of an edge e is,

where the curl and div operators are evaluated as given in the expressions (3.18,3.22).
This discretisation is solved at every internal edge of the domain at every time step.

Boundary Conditions

The derived discretisations only apply to the interior points in the domain. To fully
define the problem, the variables need to be defined on the boundaries of the domain. As
previously discussed, the momentum equations are subject to the following boundary
conditions: wall; moving wall; inflow and outflow. For a wall, moving wall or inflow
condition values for the velocity can be specified. However, the velocity at an outflow
boundary condition must be calculated.

The choice of boundary condition to apply will depend on the type of problem be­
ing modelled. Like the governing equations, the boundary conditions as discussed in
section (2.3) will also require a suitable discrete representation. The numerical repre­
sentation of the boundary conditions will now be discussed.

For a wall boundary, both velocity components are set to zero on any boundary
edges that have this condition. This enforces the conditions that fluid cannot flow
through or along the wall.

For a moving wall, the velocity components are specified to reflect the required
velocity of the wall. Pressure is unknown on wall boundaries but since pressure is not
stored at the boundaries, it does not need to be found or specified.

(3.24)

36

3.4. Momentum Equation Discretisation

An inflow boundary condition is straight forward to implement, like the moving
wall both velocity components are set. For an inflow both velocity components are set
depending on the required direction of the flow. Pressure is not known at this boundary,
although it is often necessary to specify a reference pressure for one boundary element
on. When a reference pressure is specified instabilities in the unstructured MAC method
are avoided.

The inflow partner boundary condition, the outflow, is more difficult to implement
as it requires the velocity to be calculated on the boundary. The chosen method for
the outflow is to calculate the normal velocity on the boundary using the momentum
equation discretisations. Viscous effects are neglected, however, special consideration
needs to be taken for the pressure and convective terms, as they require knowledge of
values that lie outside the domain, as illustrated in figure (3.4). For the pressure term,

Figure 3.4: An element that lies on a boundary with fictitious boundary element outside
the domain

the momentum equation requires knowledge of the pressure just outside the domain and
so a Neumann condition,

dp
i n = °

is assumed. The Neumann condition allows the pressure exterior of the domain to be
assigned the value of the interior pressure, i.e. Pi = Pe . A similar problem arises with
the convective term. The discretisations require the divergence around an element that
does not exist i.e. the divergence is required around the element that has Pe and its
centre, in figure (3.4). In this case the convective term is not calculated as an average
of the divergence over two elements. Instead it is only calculated over the element
that exists, the element labelled D/ in figure (3.4). The convective term for an outflow

37

3. A Two Dimensional Unstructured Marker and Cell Method

boundary edge then becomes,

V ■ (zie • u) u \ e « V • (ne • u) u \d j

The boundary conditions for the velocity need to be applied during the calculation of
the intermediate velocity.

A consequence of the marker and cell pressure correction procedure is that the pres­
sures calculated at a time step, are pressure variations from a set reference pressure.
Therefore it is necessary to set a value for the reference pressure at one of the bound­
aries. An outflow is a good boundary to specify the reference pressure, in doing so it
was observed that convergence of the routine was often improved. An alternative is to
specify a reference pressure at one of the boundary elements.

Voronoi Cells Adjacent to a Boundary

To fully complete the description of the discrete problem for the unstructured MAC
method, details on how to construct Voronoi cells at the domain boundaries need to be
given. Delaunay elements are fully aligned with the boundary because the Voronoi cells
are constructed by joining Delaunay circumcentres, the definition of Voronoi cells that
involve a boundary Delaunay element is ambiguous. Therefore, a method of defining a
Voronoi cell on the boundary is required. There are potentially two options for defining
these elements. The first of which, would be to try and construct a full Voronoi cell. This
is not a desirable approach as it involves edges that do not exist in the mesh, therefore,
requiring some method of defining variables at these locations, see figure (3.5). The
alternative approach is to define the boundary Voronoi cells so that they follow the
boundary edge, see figure (3.6). It is this approach that is applied in the unstructured
MAC algorithm. The anticlockwise tangents around the boundary Voronoi cells, that

✓ A s'*

Figure 3.5: A full Vomoi cell does not Figure 3.6: Construction of Voronoi
exist on the boundary cells on the boundary of the domain

38

3.4. Momentum Equation Discretisation

occur in the viscous term discretisation, now include tangents along Delaunay edges not
just Voronoi edges. A consequence of this is that the curl discretisation now includes
a tangential velocity as well as the normal. In equation (3.17) it is assumed that the
tangent around the Voronoi cell r 0 is the normal to a Delaunay element. However, for
Voronoi cells that lie on the boundary, the tangent r G is now the tangent to a Delaunay
element, meaning that u - t q = v instead of u. For these boundary edges there is still a
contribution form the normal velocity as the short edge that connects the circumcentre
to the domain boundary lies in the normal direction.

Time Step Constraints

The time stepping scheme chosen for the algorithm is an explicit Euler method. This
method is only stable under certain time step size conditions. If a time step A t is too
large then the unstructured MAC scheme will not produce a stable result.

The time step constraint for the unstructured MAC algorithm was originally adapted
from the time step of the cartesian mesh version of the algorithm, [13]

A , , • (R e iht i n f (K , i n) 2 hL n hm i A , ,At < mm I — j I , (3.25)
\ ̂ \ min) ^ \nmin) umtn “min /

where h ^ in is the minimum Delaunay edge length for the domain, hvmin the minimum
Voronoi edge length, umin the minimum normal velocity and vmiri the minimum tan­
gential velocity. The first condition is the restriction due to the Viscous term. The
remaining two conditions do not allow fluid to flow through more than one element
each time step, i.e. they are the convective time step constraints. The time step here
will be defined as the minimum values time step.

The condition in equation (3.25) was later found to produce much smaller time
steps than necessary, especially when using more irregular meshes. This led to a new
selection method being devised. The new method requires a time step to be calculated
for each edge. The lengths and velocities for that edge are used to calculated the time
step rather than using global minimum lengths and velocities, as in equation (3.25). The
conditions themselves are the same and are reformed as,

. / Re (hde)2(hvef hde hve\
A te < mm — ;Td\2 T (uv \ 2 ’ ~ — • (3'26)V 2 (K r + i K r ue ve j

The minimum of the three conditions is found to give the time step A te, which refers to
the time step size for the particular edge e, hi, hve, ue and ve are the respective Delaunay

39

3. A Two Dimensional Unstructured Marker and Cell Method

and Voronoi' edge lengths and normal and velocity components at edge e. The minimum
of all the A te is then the single time step size for the domain,

A t < min (A te) .

The time step in this case is named the minimum edge time step.
Using either the minimum values time step or the minimum edge time step will

produce a valid time step size. The minimum edge time step has the potential to use a
larger time step. The use of a larger time step is desirable as an efficient algorithm is
being derived. Less time steps will be required to reach a specific time if larger time
steps are used.

Both methods are adaptive and can be recalculated each iteration to allow the largest
possible A t to be used. The minimum values of the velocity component may change
each iteration. By allowing the time step calculation to be adaptive, means the largest
time step possible for each iteration will be used. If adaptive time stepping is not ap­
plied, a smaller time step than necessary may be used for some iterations.

The time step size calculated by either method should be multiplied by a safety
factor, the Courant-Friedrichs-Lewy (CFL) number. The CFL condition is a restraint
on the time step size when using explicit time stepping schemes. For an incompressible
flow,

A x
is usually applicable [10], where C is the CFL number and A x is the change in the x
position. Rearranging gives,

a „ Ax
A t < C —

u
which is equivalent to the convective time step conditions. It is therefore viable to
multiply the obtained A t by C. Formally for hyperbolic partial differential equations
(PDEs) 0 < C < 1 [77]. However, the incompressible Navier-Stokes equations are not
fully hyperbolic and using the time step conditions applied here there is the potential
for C > 1. Since this is the case, C can be viewed as a scaling factor for the time step,
its value will depend on the problem being modelled.

Equation (3.26) gives the means to determine a time step if a local time stepping
procedure were used. Local time stepping can give faster solutions for steady state
flows. The momentum equations are advanced to the next iteration using the time step
size for each individual edge. In a steady state solution, time accuracy is not required
and so each edge can be advanced in time independently until convergence has been

40

3.4. Momentum Equation Discretisation

reached.

3.4.2 Implicit Discretisation

The alternative to using an explicit discretisation is to use an implicit one. An Implicit
discretisation of the momentum equations differs from the explicit discretisations in that
all terms involving the dependent variable are calculated at the same time level. This
means that equation (3.1) becomes,

du . . . dp 1 d
- . „ + V(« . u)u = - - - - - (V X U) . (3.27)

All terms except the pressure term involve the unknown intermediate velocity. Over the
domain this produces a set of simultaneous equations which can be solved by a matrix
inversion.

An implicit method is desirable since it allows a larger value for the time step. A
larger time step is advantageous, provided the time step is large enough that any ex­
tra computation cost in performing the matrix inversion is negated by fewer time steps
being required. Using an implicit method becomes a necessity when using stretched
boundary layer meshes. In the case of meshes with stretched boundary layers the ex­
plicit time step size is very small and so an unsteady solution is not obtainable in a
suitable amount of time.

In an implicit discretisation, the temporal term is discretised in the same manner as
the explicit time stepping scheme, the difference is that, in an implicit time stepping
scheme the remaining terms are evaluated at the new time step m -1-1 rather than ra.
The discretisations for the other terms are formed in the same way, however, they would
now involve the intermediate velocity, the unknown value.

There are many types of implicit time stepping schemes, two of which will be con­
sidered here, as described in [78]. The first to consider is the forward Euler method. As
the governing equations of this work are the incompressible Navier-Stokes equations,
let u represent the unknown velocity value, vis(£, u) represents the viscous term that
depends on time and u, con(f, u) represents the convective term which depends on time
and u. pre(£) represents the pressure which only depends on time. An implicit Euler
method for the Navier-Stokes equations can then be written as,

um+1 _ um _|_ ^ [vis(£, um+1) + con(£, um+1) + pre(£)] . (3.28)

41

3. A Two Dimensional Unstructured Marker and Cell Method

An alternative scheme that could be implemented is the Crank-Nicolson method. The
Crank-Nicolson method is unconditionally stable for linear systems and so for non­
linear systems it should still allow the use of a larger time step than the forward Euler
method [47]. In the Crank-Nicolson method, u, is required at both the new time step
and the previous time step. The Crank-Nicolson method is given as,

um+1 = um + A£[0.5 (vis(£, um+l) + con(£, um+1)) +

0.5 (vis(£, um) + con(£, um)) + pre(f)] (3.29)

The Crank Nicolson method is a generalisation, the general case allows a weight of 0
for the terms evaluated at time step m + 1 and a weight of (1 — 0) for the terms evaluated
at the time step m. The case where 0 = 0.5 is named the Crank-Nicolson method and
is the only choice that is unconditionally stable for linear problems [78].

A Semi-Implicit Discretisation

In the unstructured MAC framework, implementation of the implicit time stepping rou­
tine as described in the previous section, is considered by the author of this thesis to
be a computationally inefficient procedure. Prior identification of all edges involved
in every discrete calculation of the viscous and convective terms is required for every
edge. To elaborate on this, an implicit viscous term formulation would require every
edge that forms each Voronoi cell to be stored, coupled with the signs that determine
the correct direction of the edge i.e. whether a Voronoi edge has an anti-clockwise or
clockwise tangent. Similarly, implicit formulation of the convective term would require
knowledge of all sides that form each Delaunay cell and the corresponding signs. A
further challenge in using a full implicit scheme is in determining which are the com­
mon edges required in both convective and viscous term calculations. It is feasible that
efficient techniques can be devised to construct a fully implicit time stepping scheme
within the unstructured MAC framework. However, due to time constraints this author
has chosen to investigate another avenue.

An alternative to the fully implicit time stepping routine is to use a semi-implicit
time stepping routine. In a semi-implicit time stepping routine, either the viscous or
convective term is treated implicitly, the other is treated explicitly. The time step re­
strictions given in equations (3.25) and (3.26), show that it is the viscous time step that
has the potential to be most restrictive. This restriction is especially prominent when
small Voronoi' edges due to the use of stretched boundary elements occur in the mesh.

42

3.4. Momentum Equation Discretisation

The use of stretched meshes is of interest as a high resolution mesh is required around an
immersed body to fully capture viscous effects in flows with large Reynolds numbers.
This high resolution is only required in the normal direction out from the immersed
body and not in the tangential direction. Stretched meshes allow a computational sav­
ing as the resolution is only higher in the normal direction.

The viscous term is most restrictive on the time step so a semi-implicit formulation
introduced in this work will treat the viscous term implicitly and the convective term
explicitly. Many successful attempts at using a semi-implicit discretisation have been
reported in the literature [47, 46, 45, 41]. All these works implement an implicit treat­
ment of the viscous term, therefore, it is adopted as a suitable alternative to the fully
implicit time stepping scheme in the unstructured MAC solver.

The formulation of the discrete Navier-Stokes equations for the intermediate veloc­
ity can be modified for the semi-implicit case too,

velocity. The same discretisation as for the explicit case are still applied. The viscous
term now includes velocities that are now the unknown intermediate velocities. The full
discrete momentum equation for an edge e, using a semi-implicit time discretisation is,

All unknowns are located on the left hand side of equation (3.32) and all the known
values on the right. The assembled set of discrete equations form a matrix system.
This matrix system has a symmetric structure but the values are not symmetric, thus the
matrix is unsymmetric.

Symmetry can be retained in the values by using a uniform triangular mesh, a prob­
lem that is easier to solve as techniques for solving systems with symmetric matrices
are more widely available. However, limiting to meshes that produce this symmetric
matrix would severely limit the capabilities of the implicit solver and so an efficient
non-symmetric system solver is required.

(3.30)

The velocity in the convective term is the initial velocity and no longer the intermediate

(3.31)

43

3. A Two Dimensional Unstructured Marker and Cell Method

The forward Euler method, equation (3.28) and Crank-Nicolson method, equa­
tion (3.29), can be modified, to apply in the semi-implicit framework. The semi-implicit
forward Euler method is,

um+l = u m + A t „m+l) + CQn̂ ̂ + pre(t)>»] _ (3.32)

and the semi-implicit scheme using the Crank-Nicolson method becomes,

um+1 = um + A t [0.5vis(£, um+1) + 0.5vis(£, um) 4- con(t, um) + prem] . (3.33)

The implementation of the boundary conditions remains the same as for the explicit
case. This is due to viscous effects being neglected at outflow boundaries and so viscous
term calculation is not needed at any of the boundaries. Therefore, no implicit boundary
implementation is necessary. The boundaries do have some effect on the viscous term
calculation, when a Voronoi' cell lies adjacent to a boundary as in figure (3.6). These
boundary Voronoi" cells introduce an explicit and implicit part to the viscous term, the
explicit part coming from the known tangential velocity.

The semi-implicit discretisation is easily incorporated into the unstructured marker
and cell algorithm. The only change is in the calculation of the intermediate velocity,
instead of using the explicit scheme, the intermediate velocity is found using the implicit
scheme.

3.5 Pressure Correction Equation

3.5.1 Discretisation

There is no equation for pressure in an incompressible flow and so the pressure correc­
tion equation (3.10) must be solved. Therefore, a suitable discretisation is required for
the Poisson equation

v 2i> = v • u
on unstructured meshes. To obtain the discretisation, a similar process to that of the
momentum equation discretisations is adopted.

First consider the left hand side of equation (3.10). The term

V 2V> (3.34)

44

3.5. Pressure Correction Equation

Figure 3.7: Variable configuration for pressure correction values

is integrated over the Delaunay cell D with area Ap. V 2 is the divergence of the gradient
and can be split so that

V 2ip = V • Vip.

Stokes theorem is then applied to convert the volume integral to a surface integral,

f V • VV>dx = f Vip • /ids (3.35)
J D JdD

where n is the outward normal of the Delaunay cell D. A simplification can then be
made so that,

[Vip ■ nds = f ^ d s (3.36)
JdD JdD on

Equation (3.36) indicates that to form a discrete approximation of the term (3.34) the
gradient of ip in the outward normal direction for all edge of the Delaunay element is
required. The derivative is approximated at a Delaunay edge using a central difference
approximation,

fop | _ A~*Pj n
d n U hv C ' }

where i identifies the neighbouring ip value in the normal direction out of the element.
h\ is the length of the Voronoi edge which joins the two ip values. Equation 3.37 can
be coupled with equation 3.36 to give,

I
J d D i = 1

Using the variable layout in figure (3.7) ipj refers to the current element and A where
i — 1,2,3, for an element with three edges, refers to the surrounding elements. The

45

3. A Two Dimensional Unstructured Marker and Cell Method

same technique of applying Stokes theorem to the divergence operator in the convective
term discretisation is applied to the right hand side,

When equation (3.38) and equation (3.39) are combined the area cancels out giving the
discrete equations as,

Terms on the right hand side of equation (3.40) are known and so a symmetric implicit
system with a vector of unknown values containing all ipi is produced. An implicit
system has various solution techniques some of which will be discussed later.

Again the number of edges that constructs and element can be increased and the
discretisations will still apply. The sums in equation (3.40) will be up to the number of
edges an element has rather than to three.

3.5.2 Boundary conditions

Boundary conditions for the velocity and pressure are not the only ones that need to be
considered. There is also the need for boundary conditions for ip, the pressure correction
value. Not only does this allow the solution of the Poisson equation to be possible but
it also applies boundary effects to the pressure through the correction stage. There
are two types of boundary condition for ip depending whether the pressure is known
or unknown. If the pressure is known, then there is no need to correct it, therefore,
the coiTection value is zero. So for an outflow boundary, as pressure is known to be
equal to the exterior value, ip = 0. If the pressure is unknown on the boundary then
ip is also unknown on a boundary and can be found by solving the Poisson equation
discretisation for the boundary edge. A value for ip is required outside the domain and
so a Neumann boundary condition, = 0 is applied. This condition is applicable to
any wall condition and an inflow condition. The boundary conditions relating to ip are
applied during the implicit solution process of the pressure correction equation.

Coupling the required boundary conditions for a particular problem with the dis­
cretisations for the internal domain ensures a well defined problem from which accurate
numerical results can be obtained.

(3.39)

46

3.6. Correcting the Pressure and Velocity

3.6 Correcting the Pressure and Velocity

After the correction value 0 has been calculated, the intermediate velocity and the initial
pressure can be corrected. Correcting the pressure and velocity is achieved by discretis-
ing and solving equations (3.12) and (3.11) for every element or edge respectively. For
the velocity, the discretisation for the edge e as shown in figure (3.3) is,

m+1 _ ~m+l _ ^ W ~ ^ E
tIp — Ujp <e e hve

where ipw is at the same location as Pw and 0# as Pe -
The pressure correction is corrected by dividing 0 in equation (3.12) by the time

step A t to give pn+1 for an element J as,

nm _ fim _i j/̂ _
Pj ~ P j + A f

It is also important to ensure that the boundary conditions are satisfied correctly after
the correction stage. If the velocity is known at the boundary then there is no need to
correct its value, however, in certain outflow cases, usually when the viscous term is
neglected or when the boundary is not located far enough away from fluid effects, the
velocity at the outflow may also need correcting. The velocity is corrected in the same
manner as for the interior edges, by applying equation (3.11). The gradient requires
a value of 0 outside the computational domain, like the pressure gradient a Neumann
boundary condition is applied so that 0 / = 0# , where I denotes the variable on the
interior of the domain and E on the exterior.

3.7 Tangential Velocity

The discretisations given above only solve for the normal velocity component to an
edge. However, the tangential velocity component is not only required to fully approx­
imate the normal velocity component in the convective term but also whenever the full
velocity solution is required e.g. for solution output. From equation (2.8) it can be seen
that given the co-volume mesh layout previously described, that a discretisation for
the tangential component would be difficult. To overcome this difficulty the tangential
velocity can be reconstructed from the normal velocity.

Two methods are given in [64]. The chosen method detailed here is considered
the most accurate. The method first assumes that the Cartesian velocity vector w =

47

3. A Two Dimensional Unstructured Marker and Cell Method

(u/i, w 2) t , is constant over a cell. Recalling that u* and v { are the normal and tangential
velocity components for a particular edge i. The value of w for a Delaunay element
with three sides can be calculated as,

1 3
w = ^ 'Y ^ { u in i + v iT i).

i = 1

This is calculating the cell Cartesian velocity as being an average of all Cartesian ve­
locities on its surrounding sides. In the above sum, it is assumed all cell sides are of
equal length. However, it is possible to change this sum to a weighted average, perhaps
producing more accurate results on much more irregular meshes particular for cases
where stretched elements are used.

To obtain the tangential velocity component for a particular edge, the dot product
of the cell Cartesian velocity must be taken with the edge tangent. The calculation of
the tangential velocity must be treated on an element by element basis. This is due to
the Cartesian velocity requiring the unknown tangential velocities for every edge that
constructs each element. By taking the dot product of w with tangent r for each edge
that constructs the same element, a system of three equations is produced so that,

V i= w -T i , i = 1,2,3. (3.41)

These are three simultaneous equations which can be solved to find each Vi. In the
unstructured MAC algorithm these equations are solved by rearranging the above equa­
tions to form the following linear system,

2
3

1X12.
3

T1T3

T2‘Tl
3

2
3

T2T3
3

~3‘~1
< 3*~2

[u i« i • t i + u2n2 ■ t i + u2n3 ■ t i] '

| [mni • t 2 + u2n2 • r 2 + u3n3 • r 2]

J K « i • r 3 + u2n2 • t 3 + U3JI3 • r 3]>

The system is solved for every element and so two values for the tangential velocity at
every non boundary edge will be calculated. Therefore, the tangential velocity at each
edge is the average of the two values.

The process has been described for elements constructed of three edges. The method
is applicable to any element with any number of edges, s. The system to be solved to
find the tangential velocities will then be an s x s system.

48

3.8. Alternative convective term

3.8 Alternative convective term

In the literature, there is another possible option for the discretisation of the connec­
tive term [66]. The scheme proposed in the previous sections is a central differencing
scheme. The alternative discretisation can either be a central differencing or an upwind
differencing scheme.

Using the diagram in figure (3.8) the variable layout is described, P is the midpoint
of the current edge, Q' and R! are the points of intersection of the line in the direction
of u with the element edges. R! lies on the element edge that is in the normal direction,
whereas, Q' lies on the element edge in the opposite direction. The velocity vectors

Figure 3.8: Variable layout for the alternative convective term

Uq > and U r > are located at these points respectively. In this case, u is referring to the
Cartesian velocity vector and so the necessary transformation from the local normal and
tangential components are required.

One challenge with this method, is that velocity values are not known at Q' and R'
but are known at the intersection point with the Voronoi edges, Q and R. It is therefore
necessary to make the assumption that velocities along an edge are constant along that
edge. This allows the velocities at the midpoints to be used in place of uq> and ur>,
defining these as uq and Ur .

The first step towards formulating the alternative convective term discretisation is to
apply the continuity equation to make the transformation,

[V • (mm)] • n = [V (m • n)] • m.

49

3. A Two Dimensional Unstructured Marker and Cell Method

If u 7 ̂ 0 then the above expression can be transformed to,

[V • (uu)\ • n = (3.42)

by making use of the directional derivative, where |w| is the Euclidean length of the vec­
tor. The expression (3.42) can be discretised using either a central or upwind difference
scheme. The central difference discretisation is given as,

m \ i / r>\i \ Ur' nP — uq> -tip
g ^ H P) ■ M | l“ (^)l ~ ± ----------------- l«P|

The upwind scheme can be given as,

2 - [« (P). nP) [• |m(P)| rs

\R' - Q’|

“F' l ^ r " P |»p| if up - np > 0,

~ I“ p 1 if up - np < 0 .

(3.43)

(3.44)

All other terms in the Navier-Stokes equation are discretised in the manner previously
detailed. This alternative convective term discretisation is stated as only first order
accurate [66] and so it is still preferable to use the original discretisation.

3.9 Solvers for Implicit Systems

The use of an implicit time stepping routine means that a suitable solver for the matrix
system is required. An implicit system solver is also required in the explicit case for the
solution of the pressure correction equation (3.12). The discretisations for both cases
produce a set of simultaneous equations which can be arranged into a matrix system,
A, to be solved for all unknowns, x,

Ax = b (3.45)

where A is the n x n matrix,

I a l,l al,2
2̂,1 «2,2

\^n,l 2

®2,n

7̂1,71 /

50

3.9. Solvers for Implicit Systems

The unknown values construct the vector x = (xi, x2, . . . , xn)T and the known val­
ues construct the vector b = (61, &2, . . . , bn)T. Equation (3.45) can then be solved by
inverting matrix A and multiplying by the inverted matrix so that,

The standard technique to solve equation (3.45) is Gaussian elimination. However, the

is an adequate technique for small matrices but when applied to large matrices it is very
inefficient. Therefore, alternative faster solution methods for the system are required.

There are various methods available to solve an implicit system. There are two dis­
tinctive classes of solution methods, direct and iterative, both of which have advantages
and disadvantages. It is important that the chosen method be an efficient option and so
several are now described.

3.9.1 Direct Methods

Direct methods invert the matrix A directly and so the solution they produce to the
system in equation (3.45) is exact, a distinct advantage of using a direct method. A
disadvantage of using such methods is that they tend to be computationally slow (Gaus­
sian elimination being a direct method). However, faster direct methods such as the
frontal method [79] and multi frontal method [80] have been developed and allow the
fast solution of the systems. Many of the Gaussian elimination processes apply to other
direct solution methods and so the concepts it applies will now be detailed.

The general summation for each new entry to A and b in Gaussian elimination can
be given as,

A-1b = x (3.46)

techniques applied in CFD result in A being a very large matrix. Gaussian elimination

= 0 i > k , j < k

Q>i,j — Q’i j i i j ^ k

bi i f l i ,k lQkyk^bki i > k

(3.47)

(3.48)

(3.49)

The process is carried until the nth row forms the

(3.50)

The remaining xn can then be found by back substitution. Although Gaussian elimina-

3. A Two Dimensional Unstructured Marker and Cell Method

tion is a well known technique, it has been introduced here as the faster direct methods
require knowledge of the equations that describe the method.

Further to Gaussian elimination, the next direct method to be introduced is LU de­
composition. LU decomposition is still a computationally slow technique but for small
matrix inversion it is a viable method to implement. Again, LU decomposition has been
deemed an unsuitable option for the inversion of large scale systems such as those that
form the pressure correction equation. However, some of its principles are useful in
other techniques and so the method is now described. The principle of LU decomposi­
tion are that its that matrices L and U are constructed such that,

LU = A. (3.51)

L is a lower triangular matrix and U an upper triangular matrix. The decomposition of
A into the lower and upper triangular matrices, equation (3.51), can be substituted into
the matrix system equation (3.45),

(LU)x = L(Ux) = b

A solution is obtained by first solving for a vector y, where Ux = y, so that,

Ly = b

Once y has been found then x can be found,

Ux = y

Since L and U are triangular matrices, the systems above can be solved by forward and
back substitution. Finding the matrices L and U, which can be accomplished via Crouts
algorithm, it is the most costly part of LU decomposition. A desirable consequence of
LU decomposition is that the vector b can change and as long as A remains the same, L
and U do not need to be found again. To then solve for a new right hand side, only the
forward and back substitution stages need to be implemented. For a detailed description
of LU decomposition, see [77] and for a Fortran implementation, see [81].

The matrices involved with the implementation of the marker and cell method are sparse
matrices and for efficiency, a direct solver that takes advantage of this property is de­
sirable. Options for solving sparse matrix systems include the frontal and multi-frontal

52

3.9. Solvers for Implicit Systems

methods. The frontal method was originally devised for the solution of finite element
problems by Irons as mentioned in [80]. The basic idea of which, is to split the matrix
into a sum of smaller sub matrices, in the finite element case there exists a sub-matrix
for each element. The technique can be applied to a general case with a subdivision
of the matrix being defined, using each row as a subdivision. To explain the frontal
method A can be defined as a sum of sub matrices [80],

a = £ a *i
I

The sum can be assembled for each element as,

a i, j • a i, j “I" a i, j

and is fully summed when all elements that need to have contributed to the sum. The
method then applies the basic operation of Gaussian elimination, equation (3.48), before
all the assemblies are complete. The eliminations can then be applied to the sub matrix
corresponding to variables that have not yet been fully summed but the variable must be
involved in at least one of the elements currently being assembled. The assemblies can
begin on one sub matrix, using further sub matrices when the first has been processed.
A solution can then be obtained by back substitution.

The multi-frontal method uses the same technique as the frontal method, but instead
solves for several fronts at once. To explain the concept of a front, in the frontal method,
the sum can be expanded to,

(. . . (((A1 + A2) + A3) -f A4) H h A 1)

Here the front can be interpreted as (A1 + A2). The multi-frontal method, however,
rearranges this sum so that several fronts become active at once,

((A1 + A2) + (A3 + A4) H b (A*-1 + A*))

For more information of the multi-frontal method and its implementation the interested
reader may refer to [80, 82, 83, 84, 85].

An advantage of the direct solvers described is that they can be applied to non-symmetric
matrices, although the frontal method was originally devised for symmetric matri-

53

3. A Two Dimensional Unstructured Marker and Cell Method

ces [79]. Symmetric assumptions are also made in the multi-frontal method, although
further advancements allow fast inversion of non-symmetric matrices [80].

Gaussian elimination and LU decomposition are not suitable for the scale of prob­
lems involved with the unstructured MAC method. Therefore, an algorithm based on the
multi-frontal method has been chosen to solve the pressure correction equation and the
implicit time stepping formulation. There exists a number of highly developed routines
that apply the multi-frontal method and so to take advantage of the efficiency of these
methods, the decision to use one of these as a black box has been taken. The routines
used are the MA57 [83] and MA41 solvers for symmetric and non-symmetric systems
provided by the Harwell Subroutine Library [86]. The efficiency of these solver rely on
the quality of the basic linear algebra subroutines (BLAS) also being used. Again this is
an area in which highly developed routines are available for use and so the BLAS rou­
tines from the LAPACK are used [87]. There are other implementations of this type of
direct solver available, however those from the Harwell Subrotuine Library were chosen
due to their availability and of their serial implemtation of the code that could easily be
incorporated into the unstructured MAC method. The incorporation of the MA57 and
MA41 routines into the unstructured MAC code will be discussed later.

3.9.2 Iterative Methods

The class of iterative methods is very large, where only a few will be discussed here. For
a review on many method see [88, 89]. The first to be introduced, are the set of methods
that include Jacobi iteration, the Gauss-Seidel method and Successive over relaxation
(SOR) method, all three are very similar yet in turn produce faster convergence [77].
A commonly used alternative is the conjugate gradient method, although being slightly
harder to implement it produces solutions in very few iterations, provided the problem
is well conditioned (i.e. the matrix in question does not have a high condition number).
In certain cases the iterations can be reduced by the use of a preconditioner.

Jacobi iteration begins by splitting the matrix A into its diagonal, strictly lower
triangular and strictly upper triangular parts [77], so that A = D — L — U. The Jacobi
iteration can then be expressed as,

xn+i = D -i(L + u)xn + b.

The Gauss-Seidel method gives an improvement over the Jacobi method in that the
previous solution is never needed to be stored, it continually updates the solution with

54

3.9. Solvers for Implicit Systems

each position potentially using an updated value. Thus Gauss-Seidel iteration can be
written as

X » + l = D - 1 [L x n+ 1 + U x n + b j _

The SOR method adds a relaxation factor to the updating values added to the values
from the previous time step in an attempt to speed up convergence giving,

x’*+1 = o)D_1 [Lx"+1 + Uxn + b] + (1 - u>)xn.

Successful implementation of both Gauss-Seidel and SOR was carried out but the con­
vergence rate of both algorithms was deemed too slow therefore an alternative iterative
method was needed.

The conjugate gradient (CG) method is one such alternative, it belongs to the class
of Krylov subspace methods [89], the basic technique of which is to approximate A ~lb
by p(A)b, where p is a polynomial. The general idea behind the CG method is to define
search directions through the space of approximated solutions, at each step converging
towards the problem solution. In the CG case these search directions are a conjugation
of the residuals, due to the added condition that each residual is orthogonal to the last.
It is the search directions that span the Krylov subspace, hence the CG method falling
into the class of Krylov Subspace methods. The derivation of the method is long and
complex but leads an easy to follow algorithm that can be used without knowing how
it was derived, for further information on the derivation of the CG method see [89, 90].
The resulting algorithm is then as follows,

1. Initially r0 = b — A xo and po = r 0

2. Start the iteration loop, i = 1,2,3....until convergence

3. Calculate the coefficient a

4. Update the solution

5. Update the residual

n+ i = n - oiiApi

6. Check convergence based on the residuals, if converged end loop

Oii =
p jA p t

X{-i - i — X{ Ot-iPi

55

3. A Two Dimensional Unstructured Marker and Cell Method

7. Calculate the coefficient j3

8. Update the search direction

- rf+lri+l
P i + l t

U r i

Pi+i = ri+1 + Pi+iPi

9. Return to top of iterative loop

The algorithm defines as the residual, pi as the search direction, X{ as the solution for
an iteration i, where all these values are vectors. The coefficients a and (3 arise when
the method is being derived [90, 89]. The conjugate gradient method requires A to be a
symmetric positive definite matrix.

The conjugate gradient method converges fastest when the matrix is well condi­
tioned. An ill-conditioned system, such as those produced with highly unstructured
meshes, can lead to slow convergence. Faster convergence can be achieved for the con­
jugate gradient method by preconditioning the system. Ill conditioning can occur as an
artefact of the mesh. The pressure correction equation discretisations, equation (3.14)
involved the ratio between the Voronoi' and Delaunay edge lengths. If these ratios vary
greatly, ill conditioning can occur. An example of a mesh where greatly varying ratios
could occur is when strectched mesh elements are used in part of the mesh.

A system is preconditioned by multiplying by the inverse of the preconditioning
matrix M so that,

M -1Ax = M _1b.

A requirement for M is that the system Mx = b is inexpensive to solve. The pre­
conditioned system is then solved, with the slight problem with this approach being
that matrix M -1A may not be symmetric or positive definite, therefore steps should be
taken in the choice of M to ensure that symmetry still holds.

The preconditioned conjugate gradient (PCG) method can be defined as:

1. Initially ro = b — A x o, zq = M _1r 0 and po = zq

2. Start the iteration loop, i — 1,2,3....until convergence

3. Calculate the coefficient a
Tri Zii 1

OLi —

pfApi

56

3.9. Solvers for Implicit Systems

4. Update the solution

1 — Xi Q-iPi

5. Update the residual
n+1 = n - otiApi

6. Check convergence based on the residuals, if converged end loop

7. Calculate the z array
z i + 1 = M -1r fc+i

8. Calculate the coefficient (3
zi+lri+lPi+1 t

Zi r i

9. Update the search direction

P i + l — z k+ 1 “1“ /^ i+ lP i

10. Return to top of iterative loop

The vector z is not needed, although the algorithm is clearer with its introduction.
Preconditioning is problem specific, a suitable pre-conditioner for a particular dis­

cretisation can be hard to find. A number of basic techniques in producing the matrix
M are now briefly described. The simplest preconditioning technique is diagonal pre­
conditioning, where M is taken to be a diagonal matrix. Its diagonal elements are the
diagonal elements of A. A diagonal pre-conditioner is fast to produce and to invert and
so its a desirable preconditioner to begin with.

Another common option is an incomplete LU (ILU) decomposition pre-conditioner [91,
89]. ILU decomposition has many levels. The technique behind ILU is to construct the
matrix M from the lower and upper triangular matrices, such that LU = M, as in LU
decomposition. These upper and lower triangular matrices are found from A. The tech­
nique to finding them varies slightly depending on the sparsity pattern chosen for M.
Essentially the residual R = LU - A should follow the specified sparsity pattern. Once
these lower and upper triangular matrices have been found M ~ l Vi may be solved by
using forward and back substitution as in LU decomposition. The entire system does
not need to be inverted due to the structure of the matrix M.

The easiest form of ILU to implement is ILU(O). ELU(O) retains the same sparsity
pattern as A and so extra computational effort and storage is not required in storing a

57

3. A Two Dimensional Unstructured Marker and Cell Method

more dense matrix. L and U are found so that the elements of A-LU which are in the
locations where A is zero are also zero. The standard ILU(O) algorithm as given is as
follows [89],

1. for i = 2,..,n: (where n is the number of rows or columns in an nxn matrix)

2. fo r k= l,...i-l:

3. if cine not equal to zero:

4. compute m ik = aikIakk

5. for j = k+l,...,n:

6. if a,ij not equal to zero:

7. compute rriij = a -̂ - dikdkj

8. end

9. end

10. end

where dik indicates the ik element in the the orginal matrix A and m ik indicates the ik
element of the preconditioner matrix.

Preconditioning is a wide subject area, more advanced forms include the linelet
preconditioner [92]. In the case of the unstructured MAC algorithm the use of a diago­
nal and ILU(O) preconditioner was experimentally implemented. The results of which
showed little success in improving run times and the use of preconditioners after the di­
rect solver was implemented. The use of iterative methods and preonditioners was not
investigated on stretched meshes as the direct solver gave good results. Although there
is the potential that the use of a preconditioner on the stretched meshes could improve
the convergence and hence run time of the conjugate gradient solver. Preconditioners
have only been briefly introduced, their construction and implementation is not the fo­
cus of this work. The interested reader may refer to the literature [93, 89, 94, 95, 96]
for further information on preconditioning techniques.

58

Chapter 4

Unstructured Co-Volume Mesh
Generation

To produce stable solutions from the unstructured MAC solver, a valid unstructured
mesh of the domain for the fluid flow problem in question is needed. However, there is
a constraint on the type of meshes that can be used with the unstructured MAC code:
they are required to be dual orthogonal i.e. the edges of the primary and dual mesh are
perpendicular bisectors of each other. Using a dual orthogonal mesh allows the scheme
to retain its second order accuracy. These dual orthogonal meshes shall be known as
co-volume meshes.

This chapter introduces the requirements for a co-volume mesh and discusses how
suitable meshes can be produced. There are many methods for generating unstructured
meshes, two of which are the Delaunay triangulation and the advancing front method.
There exist highly developed, efficient mesh generators that use these methods and so
it is desirable to be able to generate meshes using these procedures that are suitable for
use with the unstructured MAC method. With this in mind, a number of techniques
that modify a general unstructured meshes, to produced a suitable co-volume technique
have been tested. This ranges from merging elements to quadrilaterals, moving the
element centres or optimising the whole mesh to find suitable node and element centre
locations [72]. Another approach is to use a method that generate a suitable mesh
without the need for modification, such as the stitching method [24]. The stitching
method still makes use of the advancing front technique. Due to the necessity to use
the Delaunay triangulation mesh generation technique and the advancing front mesh
generation technique, a brief description of both is given.

The structure of this chapter is as follows, initially the requirements for a co-volume

59

4. Unstructured Co-Volume Mesh Generation

mesh are detailed. Following this a brief description of general unstructured mesh gen­
eration techniques, including Delaunay triangulation and the advancing front method
will be given. Then four methods for creating the required co-volume meshes are de­
tailed. These include: mesh merging; element centre moving; optimised meshes and
the stitching method.

4.1 Co-Volume Mesh Requirements

To produce second order accuracy in the unstructured marker and cell scheme, a dual
orthogonal mesh must be used. In the unstructured framework, the Delaunay-Voronoi
diagram provides the means to fulfil this criteria. To fully satisfy the dual orthogonal
condition, each Voronoi' and Delaunay edge must be perpendicular bisectors of each
other. The mesh that completely meets this criteria is known as the ideal mesh.

Using the Delaunay-Voronoi' framework, the ideal mesh is a triangulation formed of
equilateral triangles. In this case, the number of nodes connected to each node is six,
hence producing Voronoi' cells with six sides. Each Voronoi' edge length h 0.5 6hd,
where hd is the Delaunay triangle edge length and all triangle angles are 60°, as defined
in [24].

An ideal mesh is not suitable for complex geometries and so the dual orthogonal
criteria must be relaxed. It is therefore, necessary to define the requirements to be
enforced on the Delaunay-Voronoi' dual mesh as follows [24],

1. Each Voronoi vertex must lie inside the corresponding Delaunay triangle.

2. Any deviation of the angle between the Delaunay edge and its intersection Voronoi
edge from 90° should be kept to a minimum.

3. The deviation in location of this vertex from the Delaunay triangle circumcentre
should be minimised.

4. Any deviation in the location of the midpoint of a Voronoi edge from the point of
intersection with the Delaunay edge should be minimised.

5. Any deviation in the location of the midpoint of a Delaunay edge from the point
of intersection with the Voronoi edge should be minimised.

Producing meshes that conform to these requirements will ensure that the mesh is suit­
able for successful simulation using a co-volume method. The first criteria can be con­
sidered to be the most important. When meshes do not comply and a Voronoi vertex

60

4.1. Co-Volume Mesh Requirements

is located outside the corresponding Delaunay triangle, instabilities can occur in the

unstructured MAC method. In producing meshes that conform this first criteria, it is

often necessary to relax the other four criteria, but as m entioned any deviations should

be kept to a minimum.

As the first criteria is most problematic an element that does not conform to it shall

be known as a bad element. The type of triangular elem ent that causes this problem

are obtuse triangles. An obtuse triangle means its circumcentre, the Voronoi' vertex, lies

outside the triangle. An example of a bad element is shown in figure (4.1).

circumcircle

Circumcentre located outside element

bad element

Figure 4.1: Example of a ’’bad elem ent”

The traditional automatic mesh generation methods o f advancing front and Delau­

nay triangulation are not designed to create meshes meeting the requirements. Although

in some cases meshes that conform well enough to these criteria can be produced, it

is not the general case. The difficulty in producing suitable meshes using advancing

front or Delaunay triangulation increases as the required geometry becomes more com ­

plex. Therefore, methods which can be used to improve the quality of these general

meshes have been devised. The first deals with the problem of short Voronoi edges,

through a technique known as mesh merging. Mesh merging is a technique applied to

the mesh within the unstructured MAC code, it is therefore, a technique that may be

applied to any mesh used with the unstructured MAC algorithm. The second technique

is again implemented within the MAC code and helps to deal with bad elements. This

is achieved my moving the location of the element centre of the bad elements, by using

the primitive method of averaging a Delaunay triangles circumcentre with its barycen-

tre. The third technique expands the approach of moving the location of the element

centre, using a mesh optimisation method. It is a technique applied to a general mesh

prior to use with the unstructured MAC algorithm. The fourth technique, known as

the stitching method, is a mesh generation procedure. The stitching method generates

61

4. Unstructured Co-Volume Mesh Generation

meshes that are primarily formed of an ideal mesh and so the mesh should not contain
any bad elements.

4.2 General Unstructured Mesh Generation Techniques

The majority of meshes used with the unstructured MAC method began from mesh gen­
erators that use either Delaunay triangulation or the advancing front method, although
they may have been modified afterwards. This section briefly describes some common
processes of mesh generation and the basic premise behind the two mentioned methods.

4.2.1 Basic Mesh Generation Components

There are some features that are common in the construction of all unstructured meshes [29,
23, 17, 22]. All mesh generation methods should include an automatic node generation
procedure, an important part of which is to ensure the boundary node distribution is
sufficiently smooth.

The density of the automatically generated nodes can be controlled in two ways,
using a point density or a grid source. The point density describes the density of the
nodes over the domain with higher densities producing more nodes in that region. It is
usually controlled by a background mesh. This is a coarse mesh that specifies a density
at each of its nodes, any actual mesh nodes automatically created will apply the density
specified by the background mesh in the region they are created in. For more complex
meshes, grid sources may be required. A grid source works with the grid point density
but it defines a different density around a specified point or line. The purpose of using
grid point and source densities is to allow a mesh to be easily refined in any region that
refinement might be required, for example in a wake region.

4.2.2 Delaunay Triangulation

The Delaunay triangulation procedure that follows, summarises the work of Weath-
erill [17]. The basic idea of which is to apply the Delaunay triangle criterion. The
Delaunay triangulation criterion can be defined from the definition of Voronoi regions.
For a set of points {p*}, which can be interpreted as the nodes in a mesh, the Voronoi
region {V*} can be defined as,

{ V i } = { p ■ \ \ p - P i \ \ < l b - P i l l , V j

62

4.2. General Unstructured Mesh Generation Techniques

the Voronoi region {Vi} is the set of all points p that are closer to pi than any other
point. Therefore, in two dimensions the boundary which will form a side of a Voronoi
polygon is midway between the two points it separates. This boundary is a segment of
the perpendicular bisector of the straight line that joins the two points. Perpendicular
bisectors are used to connect the nodes allowing a Delaunay triangulation to be formed.
By definition, these lines are orthogonal to each other.

A property of the Delaunay triangulation that allows its successful use for mesh
generation is the in-circle criterion. The in-circle states that for a triangulation T(pi),
no point of the set pi is interior to the circumcentre of any triangle of T(pi), see fig­
ures (4.2,4.3). An arbitrary triangulation can be transformed into a Delaunay triangula­
tion by repeated application of the in-circle criterion.

Figure 4.2: In-circle criterion not satis- Figure 4.3: Four points that satisfy the
fied for four points in-circle criterion

Delaunay mesh generation begins with the nodes being defined on the boundaries.
A Delauany triangulation is then produced using the criteria defined above. Nodes are
then added at the centroids are each element and the elements are sub divided following
the triangulation definitions [17, 72].

Delaunay triangulation is a good option for producing a co-volume mesh, as all
meshes produced by the Delaunay method have each Voronoi edge perpendicular to
the Delaunay. However, this property may be lost in two ways one being due to the
boundary discretisation, the other because the vertices of the Voronoi cells are forced to
be located at the triangle circumcentres, hence, producing bad elements.

4.2.3 Advancing Front

The advancing front method for unstructured grid generation as described in [29, 23]
starts by taking the boundary discretisation and creates new nodes inside the domain to
create elements. The process advances until the whole domain is filled. Regions can
be predefined to have a certain mesh spacing, the generator will then work with these
values. This is achieved via the grid point density background mesh.

63

4. Unstructured Co-Volume Mesh Generation

In order to construct the mesh, the sequence of straight line segments that connect
the boundary nodes are stored in an array called the generation front. At any time
in the mesh generation process, the generation front contains all possible sides that
could be used to make a new triangular element. Sides that have already been used to
create a triangle are removed from the front, hence, all that is stored is the boundary
between existing elements and empty space. The algorithm for two-dimensional mesh
generation as given in [23] is described as follows:

1. Select a side from the generation front, using a selection criteria.

2. Calculate the centre of the selected side.

3. Determine the ideal position of the new node. This lies on the perpendicular
bisector of the selected edge.

4. Make a list of all possible node locations. These include all generated nodes that
could provide the ideal triangle.

5. The new node is selected as the one that produces the best triangle.

6. The new triangle is stored and the generation front updated.

Applying this algorithm provides an efficient way of producing meshes for any domain.

4.2.4 Hybrid Meshes

For certain types of flow, solver performance can be improved by the use of a hybrid
mesh. Hybrid meshes usually incorporate stretched rectangular elements into a bound­
ary layer along boundaries of the mesh. The purpose of doing so is in the simulation of
highly viscous flows. On the boundaries of objects in such flows, detail will need to be
captured in the normal direction out from the object. The use of stretched rectangular
elements allows mesh refinement in the normal direction but not the tangential. Hence,
reducing the number of overall elements and thus reducing the required computation
time.

Hybrid meshes are created using the advancing layer technique by introducing a
stretching parameter. The stretching parameter can be gradually increased to one at a
suitable distance from the boundary, depending on the number of boundary layers that
are required [29]. The stretched boundary layer elements are often produced as nearly
right angle triangles and so they can be merged to a quadrilateral, hence a hybrid mesh
is formed.

64

4.3. Mesh Merging

4.3 Mesh Merging

Mesh merging aims to improve the quality of a mesh by forming a quadrilateral from

two triangular elements. Triangles should be merged when a short Voronoi edge is

found in the mesh. Short Voronoi edges do not necessarily mean the co-volum e mesh

criteria is not met but they restrict the size of the time step and so removing them is

beneficial, the reason for which will now be discussed.

Small Voronoi edges occur when triangles have an angle that is much greater than

60° yet smaller than 90°. Two neighbouring right angled triangles pose another problem

of a zero Voronoi edge. These short or zero edges occur because the Voronoi vertices are

located at the Delaunay triangle circumcentres. As the angle opposite to the shared side

of two neighbouring triangles becomes closer to 90°, the circumcentre moves closer

towards the shared edge. The main problem with these short edges is they reduce the

size of the time steps as can be seen in the equations (3.25,3.26). A small time step

greatly reduces the efficiency of the algorithm. The solution to the short Voronoi edge

problem, is to merge the two triangular elements that form the short Voronoi edge to a

quadrilateral, see figures (4.4,4.5,4.6). The merging process removes a Delaunay edge

/
/

i '
\

x " /
" / \ "

1
V \ / ✓

x \ /

s
\

\
^ t

/
/

/

• — — «" — — —

Figure 4.4: Equilateral triangle, where case no merging needs to occur.

^ N ^ / N N
' ✓ - -> ' ' / N N

' > N ' ' / s \
>" \ " / / \ \nr.— \— 4,1 ^ ^ — *i
. " s • z

Figure 4.5: Triangles with one an- Figure 4.6: Right angle triangles, pro-
gle approaching 90°, producing a short ducing a zero Voronoi edge.
Voronoi edge.

65

4. Unstructured Co-Volume Mesh Generation

and the problematic Voronoi edge from the domain. To determine whether a Voronoi
edge should be removed, a merging factor is specified. If the Voronoi edge is shorter
than the Delaunay edge multiplied by this factor then the edge should be removed [24].
This approach makes no physical changes to the mesh, therefore, there is no need to
produce new meshes which employ this technique in the generation stage. An example
of where merged elements may occur is displayed in figure (4.7).

Figure 4.7: Example of merged elements

Mesh merging by the criteria laid out above, is beneficial to the stability of the
algorithm as it helps to retain orthogonality. To further explain this property, if two
neighbouring triangles are right angled, a quadrilateral with all interior angles equal
to 90° is produced. If all surrounding elements to the quadrilateral are equilateral or
right angled triangles then orthogonality will be retained. The merging factor will allow
triangles with angles close to right angles to be merged. Only some loss in orthogonality
will occur, not enough to be detrimental to the accuracy of the solution.

Merging to a quadrilateral presents no problem to the discretisations. Although they
have been given in the terms of a triangular mesh, they also apply to quadrilateral mesh
elements. Therefore, merging elements does not require a change to the discretisa­
tions. In fact the momentum equation discretisations can apply to mesh elements with
any number of sides. The only challenge restricting the limit is the reconstruction of
the tangential velocity, a process that is currently limited to triangular or quadrilateral
elements, more on this subject will be mention later.

4.4 Cell Centre Moving

A simple yet effective solution to the bad element issue is to relax the condition that the
Voronoi vertex must be located at the corresponding Delaunay triangle circumcentre. Of
course when a bad element occurs, the requirement that the Voronoi vertex is located

66

4.4. Cell Centre Moving

inside the Delaunay triangle is violated. This is the more important condition as a vertex

outside the triangle completely removes any orthogonality of the meshes, as the edge

connecting the Voronoi verticies no longer intersects the Delaunay edge.

The simple fix is to move the vertex, no longer locating it at the circumcentre but at

some other point. Initial experiments moved the Voronoi vertex to the centroid of the

Delaunay triangular, this however removes orthogonality to an extent that reduces ac­

curacy too much. An approach that does work is to take an average of the circumcentre

and the barycentre, a crude fix that produces satisfactory results. This is possibly due

to the vertex then being located close to one of the Delaunay edges, a situation that can

produce short Voronoi edges and hence cells are merged. The new quadrilateral locates

the new Voronoi vertex at the midpoint location of the previous two Voronoi' vertices

that would have existed. This approach helps retain orthogonality on all the quadrilat­

eral edges. This is visualised by looking at the Voronoi' mesh when the various vertex

locations are used. Figure (4.8) shows the Voronoi mesh when the circumcentre is used,

it can be seen that in some cases the direction of some Voronoi edges are inverted. Fig­

ure (4.9) shows the Voronoi mesh when its vertices are located at the Delaunay triangle

centroid, where it can be seen that there is a loss in the dual orthogonality requirement

for several elements. Figure (4.10) shows the case when the average of the two is used.

Figure 4.8: Voronoi mesh using cir- Figure 4.9: Voronoi mesh using cen-
cumcentre troid

It can be seen that similar effects to using the circumcentre occur, but their severity is

greatly reduced and thus there are short Voronoi edges. This allows mesh merging to

take place.

67

4. Unstructured Co-Volume Mesh Generation

Figure 4.10: Voronoi mesh using averaged centre

4.5 Optimised Meshes

Mesh optimisation deals with the problem of removing bad elements from the mesh

and keeping deviations of the Voronoi' vertex from the Delaunay element centres and

the deviation of the point of intersection of the both edge midpoints to a minimum.

The problem with moving the cell circumcentre is that it fixes the bad element prob­

lem but does not ensure that the mesh globally conforms to the other criteria. The bad

element can be removed but the afore mentioned deviations are not kept to a minimum.

The orthogonality requirement may also be lost as edges are no longer perpendicular to

each other. A solution to this problem is to optimise the position of the Voronoi vertex

globally. The method attempts to ensure that all edges remain perpendicular. In order to

make this possible, the requirement that the intersection be at the Delaunay and Voronoi

edge midpoints is relaxed.

To explain this process it is convenient to look at the position of the circumcentre

from the intersect of all the perpendicular bisectors. Circles of the equal radius centre

on each triangle verticies cannot be used to find a interest of all perpendicular bisec­

tors that lies inside the triangle. This intersect is the location of the Voronoi vertex,

see figure (4.11). An idea that has been experimented with is that of changing the

Voronoi vertex positions by employing a weighted Voronoi power diagram [97, 98].

The weighted Voronoi diagram essentially assigns a weight to each of the Delaunay

vertices, to construct the circumcentre these weights are all equal. However, to move

the Voronoi vertex away from the circumcentre, these weights vary. This has the effect

of changing the radii of the associated circles and thus moving the intersect of the con­

structed bisectors, see figure (4.12). The value of these weights can then be optimised

to find the optimal combination and thus the best possible mesh. A desirable trait of

68

4.5. Optimised Meshes

/

Figure 4.11: Cell centre located outside the triangular element using a equal radius
construction

Figure 4.12: Cell centre located inside the triangular element using a weighted radius
construction

the weighted Voronoi method is that it retains orthogonality. The Voronoi edges remain
perpendicular to the corresponding Delaunay edges. However, the orthogonality is not
dual. The Voronoi edges no longer bisect the Delaunay edge and so the intersection
point is no longer located at the midpoint of the edges. This means that any central
differencing techniques used in the discretisation are first order accurate rather than
second. Due to the variable locations, there are not enough point information to use a
higher order central difference method to retain the second order accuracy [10]. The
sacrifice is a necessary one and suitably accurate results are still obtained using these
methods.

A recent application of the weighted Voronoi' approach combines its usage with that

69

4. Unstructured Co-Volume Mesh Generation

of an optimisation process of the Delaunay vertex locations in an attempt to produce

the best mesh possible. The Delaunay vertices are first optimised using the modified

cuckoo search algorithm, a gradient free optimisation technique [99, 72, 100]. As this

process on its own does not remove all bad elements, it is then combined with the

Voronoi power diagram. A further optimisation of the position of the Voronoi vertices

is performed using a combination of the modified cuckoo method and proper orthogonal

decomposition. Proper orthogonal decomposition is a dimension reduction technique,

the meshing optimisation problem has a very high number of degrees of freedom which

needs reducing to a few hundred to allow optimisation to be applied. Once optimisa­

tion is applied to a mesh, the position of Delaunay and Voronoi vertices are moved,

producing a mesh that no longer contains bad elements, see figures (4.13,4.14). It is

Figure 4.13: Mesh with bad elements Figure 4.14: Mesh apart optimisation

this optimisation process that is applied to the general meshes when they fail to produce

stable or accurate solutions.

It should be noted that the mesh optimisation technique have only been developed

for meshes with triangular elements and therefore is not applicable to hybrid meshes.

It is also not applicable to stretched triangular meshes, the optimisation process caus­

ing problems with the stretched triangular boundary elements, see figure (4.15). Like

all the meshing codes, the mesh optimisation routine has been developed by another

author and meshes have been produced for the author of this thesis for use with the

unstructured MAC method. Therefore, no improvements to overcome this issue within

the mesh optimisation algorithm have been implemented by this author. However, a

simple fix has been implemented, by manipulating the meshes before their input to the

optimiser. The manipulation is simple in that the quadrilateral elements are split from

the triangular elements, the triangular element information can then be sent to the mesh

optimiser. After the triangular elements are optimised they must be rejoined with the

70

4.6. The Stitching Method

Figure 4.15: Unsuccessful mesh optimisation on stretched boundary elements

quadrilateral element data. An algorithm was coded to carry out these tasks. A slight

problem with this approach, is that it can produce a slight loss in orthogonality. This is

because a triangle circumcentre may not align with the quadrilateral one after they have

been moved during optimisation. The effects of this have been observed to be minor,

the cost of which outweighs the benefits. In some cases, a stable solution is not possible

without this optimisation process. Examples demonstrating these cases are presented in

the results chapter.

4.6 The Stitching Method

The ideal mesh as previously defined will not fit general boundaries. This is the same

problem as with a square Cartesian mesh, thus if the unstructured MAC method were

restricted to using the ideal mesh, it would offer no benefit over using the original

Cartesian method. The ideal mesh is therefore not fit for purpose of modelling flow

around complex geometries, the purpose of the unstructured MAC method.

The stitching algorithm presents an alternative approach to those already mentioned.

It defines a mesh generation technique, producing suitable meshes that do not need

modification. The technique was originally developed for use with the Yee algorithm, a

co-volume scheme for electromagnetics [24J. The stitching algorithm uses a modified

advancing front method to produce a local high quality mesh that fit the boundary. This

is then stitched to the ideal mesh to fill the remainder of the domain. This method

ensures a good overall mesh quality, however, in the stitched region some elements

with short Voronoi edges can occur. A problem that is simply fixed by the merging

technique.

The stitching method should allow the creation of meshes that do not have any

bad elements. Although the likely place they would occur is in the advancing front

mesh generation stage and the region in which this is stitched to the ideal mesh. For

71

4. Unstructured Co-Volume Mesh Generation

meshes fitted to aerofoils where the high quality mesh is required in boundary region,
the problem of bad elements could still yield unstable solutions. A limitation of the
stitching method is that the mesh resolution must remain constant, there is no option to
refined the mesh in certain regions. Therefore, if a refined region is required in a mesh,
such as wake region, then the entire mesh must be of that resolution. Finer meshes
require more computational effort and a refined mesh in regions that it is not required,
creates unnecessary over heads.

72

Chapter 5

Code Implementation

Implementation of the unstructured MAC algorithm, into a modular Fortran 90 code,
can be split into three parts. The initial part requires knowledge of the domain mesh,
which will vary for each given flow problem. This mesh needs to be processed and
manipulated to form data structures suitable for use with the unstructured MAC dis­
cretisations.

Following the processing of the mesh information, the discrete Navier-Stokes equa­
tions can be solved using the unstructured MAC algorithm, as given in Chapter 3. This
solution step will include the implementation of a Poisson equation solver. The last part
in the code implementation requires the results to be processed into a suitable format
that can then be output for visualisation.

This chapter aims to describe the implementation of each of the three parts. The first
section discusses the predefined information required by the unstructured MAC code.
The following section details the unstructured MAC code format and all the data struc­
tures that are required. This section gives further detail on the more complex processes
contained within the unstructured MAC algorithm. Finally the type of information out­
put form the method and how they are calculated is discussed.

5.1 Predefined Input

In defining a fluid flow problem, there are several pieces of information the unstruc­
tured MAC algorithm requires. The most significant piece of information is the discrete
representation of the domain, i.e. the mesh of the domain. In the case of this project
the mesh is produced using in-house mesh generation software and so the unstructured
MAC code has been tailored to process this format. There is no reason why any other

73

5. Code Implementation

mesh generation software cannot be used provided the following pieces of information
are defined:

• The element connectivities, i.e. The three nodes that form each Delaunay ele­
ment. In the case of quadrilateral elements, each element will have four nodes.
The unstructured MAC code is capable of processing both triangular and quadri­
lateral elements, or a combination of both.

• The Cartesian coordinates of all the nodes.

• The boundary edge definitions and the boundary condition.

• An optional item of the Cartesian coordinates of the element centres may also be
given in the case where an optimised mesh is being used.

In the next section the processing of the given mesh information into a suitable format
for the unstructured MAC algorithm is described.

As well as the definition of a mesh, there are two other pieces of predefined in­
formation, the first specifies all the information required to model a particular fluid
flow problem. Included in this information must be the mesh file name, the output file
names, any boundary velocities given in Cartesian components and finally the Reynolds
number. The initial conditions for the domain as taken to be the inflow velocity.

The final set of information required for successful simulation are all the variable
information that configures the MAC solver. This includes information on whether an
optimised mesh is being used, in this case extra information is provided in the mesh file
and element centres do not need to be calculated. The mesh merging factor must also be
defined, the mesh merging factor governs whether a Vomoi edge is too short and should
be removed from the domain. The choice of merging factor is determined by a trail and
error approach. When more complex geometries are implemented, the quality of the
solution can be very dependent on this factor and so the best possible factor that does
not try and merge elements to shapes with more than four sides has to be determined.

Another notable piece of predefined information is the stopping criteria. For steady
state problems this is some convergence criteria and as convergence to five orders of
magnitude has been deemed a suitable level, this has been built into the code.

The MAC algorithm is also capable of solving unsteady problems. Unlike steady
problems which will stop after the convergence criteria is met, unsteady problems need
some other form of stopping criteria to be defined. For the MAC algorithm this is a
specified number of time iterations.

74

5.2. Solver Implementation

5.2 Solver Implementation

In producing source code for the MAC algorithm, initially there needs to be a prepro­
cessing stage to interpret all the mesh information. As the format being used for the
mesh file is the result of an in-house mesh generator there exist some in-house source
code for manipulating the data. The in-house source code contains algorithms for con­
structing the mesh information, calculating the element centres and volumes and for
merging mesh elements. After the preprocessing stage, the discretisations and MAC
algorithm given in chapter 3 can be implemented into the MAC algorithm source code.

The final version of the source code can be split into three sections: mesh manipu­
lation, the MAC solver and direct solvers for implicit systems. The direct solver may
not be required in all cases. As the source code is implemented in Fortran 90, each
section can be placed in a module. The purpose of each of these modules and the data
structures they require will now be described.

5.2.1 Mesh Manipulation Data Structures

A major stage in the code implementation is how the mesh information is interpreted.
During mesh interpretation, all data structures can be defined. Values can be assigned
to many of these data structurs directly from the mesh information. Others however,
need some manipulation in order to assign their values.

The mesh manipulation module defines a type containing all the information that de­
fines the mesh or can be derived from it. The data structures contained in this type are
as follows:

Mesh size variables: A set of integer values storing the number of elements, nodes,
boundary edges and internal edges.

Connectivities: Integer array of dimension number of elements by three, storing the
nodes that form each triangular element. A visual representation of the array is
now displayed,

nli n l n l r

n2i n2 n2:-

n3i n 32 n33

nl,

n2.

n3,

75

5. Code Implementation

where n l, n2, n3 refer to the three nodes and the number in the subscript refers to
the element number, which ranges from one to ne, the total number of elements.

Forced merging array: Integer array of length corresponding to the number of ele­
ments. These values are only non zero if quadrilateral elements appear in the
mesh data file. A quadrilateral element is interpreted as two triangular which
are later merging. When this situation occurs, the element that a current element
should be merged to, to form the quadrilateral is stored.

Coordinates of nodes: A two dimensional real array, the length of which is equal to
the number of elements. The x and y coordinates of all mesh nodes are read from
the mesh data file and stored. In the visual representation,

I X \ II %2 ll 003 II • • II • • II • • II X n v I
I Vl II V2 11 3/3 II • • ll - II • • 11 Vnv I

the subscript number refers to the node number, which ranges from one to np, the
number of nodes.

Coordinates of element centres: A two dimensional real array, the length of which
is the number of nodes and width two. The x and y coordinates of triangular
element centres are stored. If mesh optimisation has been used, these will be
predefined, if not, they can be calculated from the connectivities. Again the array
can be visualised in a similar fashion to the connectivities,

X l II X2 || II •■ ll Xne 1

1 y i 3/2 2/3 ■• II •• II •• II Vne -I

Edge information: This is an integer array of dimension that corresponds to the num­
ber of sides. All information needed to define an edge in the mesh is stored.
Initially the boundary edges are read from the mesh data file. Other sides are then
constructed from the mesh information.

It is not enough to define an edge by just its too connecting nodes, both elements
that lie on either side of edge should also be included in the definition. Therefore,
the required data structure stores both the connecting nodes n l and n 2 and the
neighbouring elements e l and e2, that is every edge in the mesh. In the array

76

5.2. Solver Implementation

visualisation,

nli n l nl;

n2i n22 n23

eli e h e h

e2i e2 e23

nl,

n 2,

el,

e2r

the subscript refers to an edge in the domain. This value ranges from one up to
the number of sides, ns.

Length of the Delaunay triangle edges: Real array which has a length equal to the
number of edges that stores the Delaunay triangle edge lengths. Lengths are
calculated from the node coordinates and so require the edge information.

Length of the Voronoi" element edges: Each Voronoi edge is identified by the Delau­
nay edge it intersects. Therefore, a real array which has a length equal to the
number of edges is required to store the Voronoi element edge lengths. Lengths
are calculated from the element centre coordinates and so the edge information
is required. A Voronoi side is given the same numbering as the Delaunay side it
intersects.

Area of the Delaunay elements: Real array that stores the area of each Delaunay ele­
ment. This can be calculated from the connectivities and node coordinates.

Area of the Voronoi elements: Real array that stores all the areas of the Voronoi el­
ements. The centre of each Voronoi element are the mesh nodes and so each
Voronoi element can be identified by each node number. The area can be con­
structed as the sum of the areas of smaller triangles that make up the Voronoi
element, these can be found by using the edge lengths.

Edge Tangents: Real array, storing both vector components t \ and t 2 for the tangent
to each edge. The tangents are calculated from the side information. If an edge
is connected by the two nodes n l and n2, the convention taken in calculating the
tangents is ri = n lx — n2x and r2 = n ly — n2y, where the subscripts x and y refer
to the x or y coordinate. The visual representation, where the subscript refers to

77

5. Code Implementation

the edge number is as follows,

(ti1x yi‘2x')i (nix n2x)2 (nlx ti2 x)ns

{lTi\y Tl2y)\ (n lv - n2y)2 (nly n2y)ns

Edge Normals: Real array, storing both vector components for the normal to each
edge. The normal to an edge is perpendicular to the tangent and so it is cal­
culated as the right hand skew of the tangential vector components. This can be
visualised as follows,

(n ly Ti2ŷ \ (ri\y n2v)2 (n l y Tl2y')ns

(n2x - n l x)i (n2x n l x)2 (n2x n l x)ns

Both the tangent and normal values do not represent the unit tangent and normal
and so will need to be divided by the magnitude.

Edges that form an Delaunay element: Integer array, that stores all the edges that
create Delaunay elements. Elements may be triangular or quadrilateral and so
the array allows up to four edges to be stored for each element.

Normal directions for each element: Real array of the same dimensions as the previ­
ous array. The discretisation of the convective term requires the edge normal to
be an outward normal. If it is not, then the velocity component used in the calcu­
lation will have the opposite sign to what it should. As these signs do not change
throughout the computations, they are stored for efficiency. The value stored is
the dot product between the edge normal and the element outward normal, which
is either a one or a minus one.

Edges that form a Voronoi* element: Integer array that stores all edges used to create
a Voronoi' element. Depending on the structure of the mesh, the number of sides
around a Voronoi element can vary, unlike a Delaunay element the number of
edges is not restricted. All edges around a particular element are grouped together
and stored in a long array. For example,

41 69 99 32 551 5 10 12 14> 12 6 21 10 9
j

Sides around 1st Voronoi' element Sides around 2nd Voronoi element Sides around nth Voronoi element

Using this format requires two look up arrays to identify the position of the edges

78

5.2. Solver Implementation

for a particular Voronoi element. The first of these arrays stores the number of
edges each Voronoi edge has. The second stores the initial location of the first
edge for each Voronoi element. Knowledge of all the edges around each Voronoi
element is only required when using an implicit time stepping routine.

Tangent directions for the Voronoi element: Real array that stores the direction of
the tangents around each Voronoi element. The format of the array is the same as
that above and requires the use of the location and number of sides arrays. The
viscous term discretisation relies on an anti-clockwise tangent around the Voronoi
elements. Similarly to the convective term this direction is predefined as a clock­
wise tangent an opposite sign will be present in the discretisation. Therefore,
the dot product between the Voronoi edge tangent and the anti-clockwise tangent
needs to be calculated to give the correct sign. This value only need be calculated
if using an implicit time stepping routine, when using an explicit scheme it is
acceptable to calculate the sign when it is required.

The subroutines contained in the mesh manipulation module are sufficient to manipulate
all the data supplied in the mesh data file into a form suitable for use with the unstruc­
tured MAC discretisations. Mesh merging and mesh quality checking algorithms are
also contained within this module, a brief discussion on their purpose and implementa­
tion will now be presented.

Mesh merging is required when short Voronoi' edges exists, as discussed in the previous
chapter. These short edges are identified using the merging factor and then flagged for
removal. Once an edge has been removed the two elements are reconstructed as one,
therefore, a new element centre and volume needs to be assigned. For the new element
centre, the average of the two original triangular cell centres is taken. Whereas, the
volume is the sum of the original element volumes.

Quadrilateral elements that have been interpreted as two triangles are also flagged
for merging, they are not directly read into the code. This is due to the algorithm
that allocates edge information, being an in house algorithm which has been designed
for interpreting triangular elements. Since merging may occur anyway, there are no
excessive overheads in first interpreting them as two triangles and later merging to the
original quadrilateral. The splitting then merging approach is therefore necessary to
avoid modification to the already designed algorithm. The two triangular elements to
be merged form the original quadrilateral are identified at the mesh read stage. The
merging criteria is extended to include these elements, therefore, flagging the joining

79

5. Code Implementation

edge for removal. When these two triangles are merged back together, the centre of the
element is recalculated as the centre of mass of the quadrilateral.

After merging has taken place, the edge information array, element volume arrays
and element centre arrays are reordered. Edge lengths for the new ordering can then be
calculated. Several of the defined data structures are assigned by manipulating the edge
information. The calculation these values should be reserved after the mesh merging
stage, so not to unnecessarily recalculate information.

The quality of a mesh can be analysed by finding the number of bad elements con­
tained in the mesh. Prior to mesh merging, a bad triangular element can be identified as
an obtuse triangle, therefore any triangle that has an interior angle greater than 90° can
be flagged as an bad element. The number of identified bad element is used as a diag­
nostic tool, it serves as an indicator for a potential cause of any instability. In practice,
it is not only the number of bad elements but also the position of them that effects the
stability of a solution, this will be demonstrated in the results chapter.

Identifying the bad elements by definition, identifies that the circumcentre lies out­
side the triangle. Therefore, it is at this stage that the change of the element centre from
the circumcentre to an average of the circumcentre and barycentre can be implemented.

5.2.2 MAC algorithm data structures

The mesh information has been manipulated, to the correct format allow the discrete
form of the Navier-Stokes equations to be solved efficiently. The next module in the
MAC algorithm source code defines a data type to store all information relating the
the solution of the Navier-Stokes equations. The routines defined in this module allow
initialisation and solution of a given fluid flow problem. The data structures required in
the MAC data type are defines as:

The time step: Real array, storing the time step for each edge. If a global time step is
required, the minimum is found and assigned to every position in the array. In the
explicit scheme the time step is recalculated at each iteration.

Normal velocity variables: Real arrays that store the initial and new normal velocity
components for every edge in the domain.

Tangential velocity component: Real array, stores the tangential velocity for each edge,
as constructed form the normal velocities stored.

Pressure: Real array, stores the pressure at each Delaunay element centre.

80

5.2. Solver Implementation

Right hand side of the pressure correction equation: Real array, stores the correc­
tion value 'ip for each Delaunay element.

Curl: Real array, stores the curl of the velocity around Voronoi elements, the centres
of which coincide with each node.

Using this data structure, the MAC algorithm can be followed to give a solution to
the Navier-Stokes equations. The various stages of the implemented MAC source code
include: the initialisation, time step determination, solution of the intermediate velocity,
solution of the pressure correction equation, correction of variables, reconstruction of
the tangential velocity and output of the results.

Several of these processes are implemented by following the discretisations de­
scribed in chapter 3. However, some extra information can be given on a few of the
processes.

The solution of the pressure correction equation requires an implicit solver. This
can either be the conjugate gradient method or a direct solver, the implementation of
which is detailed in the next section. Regardless of the solver being used, the sparse
matrix produced in the implicit system formulation needs to be initialised and allocated.
Similarly when using an implicit time stepping routine a sparse matrix needs to be
initialised and allocated. For a sparse matrix only the non zero values are stored and so
the location of these non zero values must also be stored.

At the initialisation stage, the pressure is initially set to zero over the entire domain.
Whereas, the velocity is set to the inflow or moving wall value to prevent a shock wave
developing in the domain.

When determining the time step size, an adaptive time stepping routine can is imple­
mented within the explicit scheme. The time step size is be calculated at the beginning
of each time iteration loop before the Navier-Stokes equations are solved. When using
semi-implicit time stepping it is more beneficial to use a fixed time step. The viscous
term requires knowledge of the time step and so the implicit matrix would need formu­
lating every iteration if it were to change. This is a costly process and so the benefits in
using the smallest time step possible each iteration are negated by having to recalculated
these values.

Implementation of the viscous effects on boundaries also requires some thought
when implementing the semi-implicit time scheme. Voronoi' elements that contain a
boundary edge require knowledge of the tangential velocity, which may change every
time step. The tangential velocity from the previous time step can be taken and so this
can be deemed as a known quantity, thus placing it on the right hand side of the implicit

81

5. Code Implementation

system. In most cases the tangential velocity along a boundary can be taken to be zero
and so the extra computations in assigning these values are not required. However, one
case where it is needed, is when a moving wall boundary has a defined value for only the
tangential velocity. The normal velocity is zero in this case and subsequent tangential
velocities will not be recovered if all the normal velocities are zero. The approximation
of a zero tangential velocity is adequate in all other cases tested, which can be explained
by the correction nature of the unstructured MAC scheme.

When the tangential velocity is found from the normal velocity, the solution of an
s x s matrix system, for every element, where s is the number of sides per element, is
required. The techniques discussed in section (3.9) can be applied to solve this system.
The over head they require is quite large considering such a small system is being solved
and this is for every element every time step. The decision has therefore been taken to
work out the inverse formula for each tangential velocity on all sides of each element.
As the usual case is a 3 x 3 system, the formulas are very manageable. When merging
occurs, there is the potential for s to become greater than three. For each possible
number of sides per element, the inverse formulae would need to be worked out and a
method of identifying which to use would be required. These formulae become very
large with increasing s. Therefore, the decision has been made to limit the possible
number of sides of an element to four. The inverse formulae for a 4 x 4 system are still
manageable. The decision means that the merging routine cannot merge a quadrilateral
element with another element. The merging routine does allow this, although it must be
prevented through the use of a suitable merging factor.

5.2.3 Direct Solver Data Structures

The preferred choice for the solution of implicit systems is the use of a direct solver.
As previously discussed the algorithms provided by the HSL group have been used to
provide a well developed direct solver [86].

The choice of solver depends on the form of the implicit system matrix A. The
pressure correction equation produces a symmetric matrix and so the HSL MA57 [86]
solver can be used. The MA57 solver requires the matrix being symmetric and so it is
unsuitable for solving the system when implicit time stepping is used. When implicit
time stepping is implemented an unsymmetric matrix occurs and so the MA41 solver is
used instead.

Both MA57 and MA41 solvers require knowledge of the values in the matrix and of
the right hand side of the implicit system. The matrix is sparse and should be stored as

82

5.3. Output

such. Three one dimensional arrays can be used to fully define a sparse matrix, one to
store the non zero values of the sparse matrix, another to store the column locations of
these values and the third to store the row locations. In the case of a symmetric matrix,
only the upper triangular matrix needs to be stored, the lower off diagonal elements are
duplicate values.

The direct solvers MA57 and MA41 are used as a black box, however, an outline of
the general processes involved can be given [86]:

Initialise: The default values for components of the arrays that hold control parameters
are set.

Analysis: The pattern of the matrix is analysed and the pivots for Gaussian Elimination
are chosen. Only the pattern is required at this stage, not the matrix values.

Factorise: The matrix is factorised and so the actual values of the matrix are now
required.

Solve: The factorisation is used to solve the system of equations. The right hand side
of the linear system is required at this step.

Once the pattern of the non zero elements is known, the initialisation and analysis pro­
cesses can take place. The factorise process can only take place after the matrix values
have been assigned. In the case of the solution to the pressure correction equation and
if a fixed time step is used with implicit time stepping, this is only required once. How­
ever, if adaptive time stepping is implemented in the implicit routine, the factorise step
would need to occur every time iteration. The solve process is used whenever an update
to the right hand side of the equation occurs thus every time iteration. The advantage of
using the direct solvers is that the solve processes is the only stage that needs to occur
every iteration.

To allow simple implementation of the direct solvers with the MAC solver, subrou­
tines to perform the necessary operations are contained within a module. This module
defines the data types for a spare matrix and each of the direct solvers.

5.3 Output

The main output of the code is the velocity and pressure variables and the vorticity at the
end of the simulation, to be used in suitable visualisation software. All the software used

83

5. Code Implementation

by the author of this thesis requires is the output variables to be located at mesh nodes.
The vorticity is already calculated at the nodes so does not pose a problem. However, the
velocity and pressure must be interpolated back to the nodes. The velocity also needs
extra consideration, the MAC solver only calculates the normal and tangential velocity
components local to an edge. On output, they are required in a Cartesian coordinate
system and so must be converted before the interpolation back to nodes can be made.

There are two forms of continual output calculated by the MAC solver. One to con­
sider are the lift and drag coefficients calculated from the forces exerted on a submerged
body. These coefficients evolve over time for an unsteady flow and serve as good val­
idation mechanisms for various test problems. Also calculated at every iteration are
the solution residuals. Residuals are required to provide a stop criteria for steady state
flows. They are also a useful variable in unsteady flows, as they can be used to stop the
solver if a solution has become unstable.

The theory of lift and drag forces and thus the formulation of the lift and drag coef­
ficients will now be detailed. This is followed by the theory behind solution residuals.

5.3.1 Lift and Drag Forces

For flows around a submerged body a force is exerted onto the bodies surface due to
pressure and viscous effects. This total force on a body can be calculated from the
normal and tangential forces acting on each small section of the body. The normal
forces are due to the fluid pressure and the tangential forces are due to the wall shear
stress, tw . The wall shear stress takes into account the viscous effects on the body. The
total force can be split into two components, the lift force, FL and the drag force, FD.
Lift and drag forces act in different directions on the body, see figure (5.1). Lift acts in

dA

Figure 5.1: Lift and drag forces on a body in a fluid

the normal direction to the free stream velocity which can be considered as an up force

84

5.3. Output

moving the body up through the fluid. It its mainly driven by the pressure distribution
rather than viscous effects. Drag acts in the direction of the free stream velocity, viscous
effects will play an important part in the drag. Both lift and drag forces are calculated
by resolving the pressure force and shear stress on the boundary of the submerged body.

If uja is the submerged body,<9u; its surface, dA segment of the boundary, the lift and
drag forces, Fl and Fd , can be written as,

Where the wall normal and tangent to the body are nw and tw respectively. The free
stream normal is n°°, with t°° being the free stream tangent, p is the pressure acting on
the object, t w is the wall shear stress. See [101, 76, 75] for further information on lift
and drag forces. In an incompressible fluid Perot [67] states that,

is a suitable approximation for the wall shear stress. Where v is the velocity component
tangential to the boundary. The derivative is therefore in the normal direction from the
boundary. The full force F acting on the body is the sum of the lift and drag forces,

Finding the lift and drag forces allows the evaluation of two new dimensionless
variables, allowing ease of comparison with flow problems in the literature. To obtain
the dimensionless values, known as the lift and drag coefficients, the lift and drag forces
Fl and Fd are divided by,

where as before u0 is a reference velocity and A is a reference area for the body. These
give the lift and drag coefficients Cl and Co as,

The calculation of these values is implemented into the code by using each edge length

-p (n w • n°°)dA + f rw(tw ■ n°°)dA

-p (n w ■ t°°)dA + (Tw{tw -t°°)dA

(5.1)

(5.2)

dv

F = Fq + Fl

(5.3)

and
(5.4)

85

5. Code Implementation

as dA, the force integrals are then the sum of the pressure and viscous stress terms
for each edge around the boundary. Using the boundary edges as each dA, allows the
wall normals and tangents to be the predefined normal and tangents in the algorithm,
although some checking of the direction is required. The pressure is the pressure value
located at the boundary element centre neighbouring each side. The viscous stress term
can be implemented by interpolating the velocity to the centre of the element and then
converting its direction to the same as the current edge.

5.3.2 Residuals

A residual measures the difference in the solutions from one time step to the next. The
initial step towards calculating it is to subtract the previous solution from the new one,
producing a vector of differences. A residual gives an overall measure of this difference
in solution. A vector of differences does not allow this and so it is necessary to calculate
a norm for the vector. The norm assigns the vector with a positive value representative
of its size, in the case of a residual, it gives an overall difference between the solutions.

There are many types of vector norms [78], to define these, let v be a real vector of
length n. The first norm to consider is the 1-norm,

which is the sum of the absolute value of all vector entries. Next is the 2-norm also
known as the L 2 norm or the Euclidean norm,

A more general version of the 2-norm is the p-norm, where the 2 in the above is replaced
by p, which can be any positive integer. This is defined as,

n

•’li = h
2= 1

The last norm to define is the oo-norm,

5.3. Output

which is simply the maximum value in the vector.
The chosen norm to calculate residuals is the 2-norm, giving an indicator of the

amount the solution is changing each iteration. For a converging solution, this amount
should decrease each iteration, although there is no guarantee that the solution to which
the solver is converging to is the correct solution. In the cases above the vector v is
the difference between the new solution and the old solution. The residuals can be
calculated for any three of the solution variables, in the unstructured MAC case this is
chosen to be the normal velocity component. The velocity has higher order of accuracy
than the pressure and so lower residuals are reached. Since the tangential velocity is
recovered from the normal velocity, their residuals are very similar.

To give a clearer indicator of the amount a solution is converging, the base ten
logarithmic difference is taken with the initial residual. This compares the residual
with the initial, in a manner that shows how many orders of magnitude a solution has
converged.

87

Chapter 6

Benchmark Results

In order to validate the unstructured MAC scheme, a set of standard CFD benchmark
problems are chosen. Initially the lid driven cavity problem was simulated. The lid
driven cavity is a steady state problem which is historically used to validate CFD results,
where there are extensive results given in the literature for many different Reynolds
numbers [1]. A short study on using a skewed mesh with the lid driven cavity problem
has also been carried out. This test case demonstrated the affects of non-orthogonality
in the meshes. The second benchmark problem is the flow over a backward facing step,
again a steady state problem. This requires the need for suitable inflow and outflow
boundary conditions. The third benchmark is flow around a circular cylinder, where
there are several comparisons that can be made using this example. For the case of
inviscid flow around a circular cylinder, there exists an analytical solution for the pres­
sure coefficient on the cylinder surface. Unsteady flows can also be validated using
this example, where unsteady effects occur when the Reynolds number is greater than
50. Results are compared to literature for several Reynolds numbers that demonstrate
unsteady flow.

The validation of the algorithm against past results and experiments is just the initial
stage. The purpose of the proposed algorithm is to produce results with a shorter CPU
time than an alternative CFD code used at Swansea University. Therefore, a comparison
is made with the in-house incompressible finite volume code, not only are the CPU
times compared but also the results show an interesting outcome.

This chapter will present results for the various test cases and compare them with
results from the literature. The order of these results is as follows: The lid driven cavity;
flow over a backward facing step; inviscid flow around a circular cylinder; and unsteady
viscous flow around a circular cylinder.

89

6. Benchmark Results

6.1 The Lid Driven Cavity

The lid driven cavity has long been a standard test problem for steady state flows. The
domain consists of a 1 x 1 cavity, with a moving lid of unit velocity. To specify this
problem in a numerical framework, the moving lid is achieved by setting the tangential
velocity on the top boundary equal to one. The wall boundary condition is set to all other
boundaries and so both velocities are zero. Figure (6.1) displays the domain set up, note
that here u and v are the velocities in Cartesian coordinates hence u being the tangential
component to the top edge. Presented are results for flows with three different Reynolds

u=l,v=0
(0 , 1) y (1, 1)

oII
>o'II3

(0,0) u=0,v=0 (1,0)

Figure 6 .1: Domain for the lid driven cavity flow problem

numbers, 100,400 and 1000 and compared to the benchmark solution of Ghia et.al. [1].
The standard procedure to compare results in the lid driven cavity is to compare velocity
profiles up and across the centre of the domain. The horizontal velocity profile is plotted
up the centre of the domain, i.e x = 0.5 and y coordinate varies. The vertical velocity
profile is plotted across the centre of the domain, i.e y = 0.5 and coordinate x varies.

Described in previous sections are various time stepping methods and implicit solver
routines that could be used in the implementation of the unstructured MAC algorithm.
To determine the best possible combination, the MAC algorithm is compiled into four
configurations. The four configurations that will be used to demonstrate the algorithm
are:

1. An explicit time stepping routine with a conjugate gradient solver of the pressure

cIIc<IIc

90

6.1. The Lid Driven Cavity

correction equation.

2. An explicit time stepping routine with a direct solver for the pressure correction
equation.

3. A implicit Euler time stepping routine solver via a direct method with a direct
solver for the pressure correction equation. Using the semi-implicit form of the
discretisations.

4. The crank Nicholson time stepping routine solved via a direct method with a
direct solver for the pressure correction equation. Using the semi-implicit form
of the discretisations.

In the explicit time stepping routines the time step is calculated each iteration using
equation 3.26. In the case of semi-implicit time stepping to increase computational
efficiency, the time step is provided at the start of the simulation and is fixed through all
iterations.

The lid driven cavity is a simple steady state problem to simulate, there are many
well documented results to compare to, the standard of which are those by Ghia. et.
al [1]. For this reason, the simulations are run with the four afore mentioned MAC
configurations, the results from which will help determine which configurations are
potentially better.

Initially an unstructured triangular mesh created using the stitching algorithm is
used, it can be seen that an ideal Delaunay mesh in the centre of the domain is linked
to a mesh that is fitted to the boundary, see figure (6.2). The mesh consists of 3670
elements with 40 nodes along each boundary. The Voronoi dual mesh created from
connecting the triangle circumcentres is shown in figure (6.3).

Results will now be presented for the three Reynolds numbers using the four config­
urations. run-times and time step sizes will be compared as well as each final solution
to the benchmark. All test cases are run on an AMD opteron processor. For each case
the residuals are allowed to converge five orders of magnitude.

The simulation with Re = 100 is the simplest to obtain results for, there are less
re-circulation areas produced due to less viscous effects in the boundary region, making
accurate solutions obtainable on very coarse meshes. Run-times for each configuration
are shown in table (6.1). It is also of interest to calculate the run-time per iteration, this
gives an indicator of where the extra computation time in each method is required. In
this case, using the CG method greatly increases the the run-time per iteration, since

91

6. Benchmark Results

Figure 6.2: Delaunay mesh for lid Figure 6.3: Voronoi mesh for lid driven
driven cavity domain cavity domain

Run Time Time Step Iterations Time per iteration
Explicit CG 13.983s 0.05 834 0.0168s
Explicit Direct 3.96s 0.05 834 0.00475s
Implicit Euler 0.77s 0.5 60 0.0128s
Implict CN 1.238s 0.1 128 0.00967s

Table 6 .1: run-time and time step size comparison for the lid driven cavity problem with
a Reynolds number of 100

the time stepping routine is explicit it still requires a similar number of iterations to
the explicit direct case. All results compare well to those found in the literature, see
figure (6.4). The MA57 direct solver outperforms the CG method for solution of the
pressure correction equation. Which is too be expected as this is a highly developed
code. The implicit scheme under performs the explicit scheme for this test case, the
results from other test cases will help to determine a reason. To demonstrate the re­
circulation region, the results for each velocity component for the full domain can be
viewed in figures (6.5) and (6 .6).

As results for each case are very similar, only those from the explicit direct case are
presented. The next simulation tests the MAC solvers capabilities at a higher Reynolds
number, thus, Re = 400 is simulated. The various run-times are given in table (6.2),
again demonstrating that the use of the CG method with the explicit scheme and semi-
implicit schemes are less efficient for this problem.

For this case the viscous regions on the boundaries are larger and so it is reasonable
to expect that a finer mesh in the boundary regions will be required. However, the

92

6.1. The Lid Driven Cavity

0.8

08

02

0 --
-0 29 -0 19 -0 09 009 0.19-0 1 0 0 1

1

0.4

0.2

0 0 0 4 08

(a) Horizontal ve loc ity (b) Vertical velocity

Figure 6.4: Lid driven cavity with Re = 100, results comparison to literature [1].

Figure 6.5: Horizontal velocity for Figure 6.6: Vertical velocity for Re =
Re = 100. Colour scheme is red=high, 100. Colour scheme is red=high,
blue=low. blue=low.

Run Time Time Step Iterations Time per iteration
Explicit CG 26.072s 0.023 1087 0.0240
Explicit Direct 4.905s 0.023 1911 0.00257
Implicit Euler 5.795s 0.045 621 0.00933
Implict CN 5.667s 0.04 685 0.00873

Table 6.2: run-time and time step size comparison for the lid driven cavity problem with
a Reynolds number of 400

case is still run using the mesh given in figure (6.2). Figure (6.7) shows the velocity

profiles compared to that of Ghia, the results still compare well even on this relatively

coarse mesh, where only a slight discrepancy occurs. It is expected that increasing the

93

6. Benchmark Results

Reynold number further will produce results that fail to be accurate enough. All the

08

0.8

02

0
0 4 06 08 I0

08

0.8

0.4

0.2

0
-0.4 0 0 1 0.4

(a) Horizontal ve locity (b) Vertical velocity

Figure 6.7: Lid driven cavity with Re = 400, results comparison to literature [1]

configurations produced a similar result. For a view on the flow for the entire domain

and the different re-circulation pattern produced at this Reynolds number, figures (6.8)

and (6.9) show the horizontal and vertical velocity components.

Figure 6.8: Horizontal velocity for Figure 6.9: Vertical velocity for Re =
Re = 400. Colour scheme is red=high, 400. Colour scheme is red=high,
blue=low. blue=low.

To further test the scheme and the conjecture that for higher Reynolds number the

mesh is not fine enough, a simulation is run with Re = 1000. The results fail to

compare well to the Ghia solution in the extreme regions of the flow, flow speeds do

not achieve the higher and lower limits, as observed in figure (6.10). To further asses

the efficiency of each algorithm configuration, a comparison of the run-times is still

94

6.1. The Lid Driven Cavity

i

08

08

0.4

0.2

0
■04 0 0 4 06 06 1

1

08

08

02

0
-0 0 1 04•0.4

(a) Horizontal velocity (b) Vertical velocity

Figure 6.10: Lid driven cavity with Re = 1000, results comparison to literature [1]

Run Time Time Step Iterations Time per iteration
Explicit CG lm 7.325s 0.0096 2939 0.0229
Explicit Direct 13.653s 0.0096 2994 0.00456
Implicit Euler 15.116 0.021 1608 0.0094
Implict CN 14.757 0.023 1493 0.0099

Table 6.3: run-time and time step size comparison for the lid driven cavity problem with
a Reynolds number of 1000

made, see table (6.3). To confirm the cause of the lack of accuracy as being the use of

a coarse mesh, the simulation is re-run using a finer mesh, consisting of right angled

triangle elements. Although this is a structured mesh which does not require the devised

unstructured algorithm, it has a finer resolution than the previous mesh and can still

be used to demonstrate why accuracy was not achieved. The use of the right angled

triangles also allowed a test for the codes merging capabilities. The mesh consists of

160 boundary nodes per side resulting in 51200 triangular elements, which the code

successfully merges to half the amount of quadrilateral elements. It is still of interest

to compare the run-times for this case, the number of elements in the mesh is much

greater having an amplifying effect on the differences in run-time, see table (6.4). From

Run Time Time Step Iterations Time per iteration
Explicit CG 32m 31.212s 0.00674 3719 0.525s
Explicit Direct 3m 38.414s 0.00620 4122 0.0530s
Implicit Euler 4m 0.241s 0.01 2797 0.0859s
Implict CN 4m 19.316s 0.009 3146 0.0824s

Table 6.4: run-time and time step size comparison for the lid driven cavity problem with
a Reynolds number of 1000

95

6. Benchmark Results

these results it is clear that the conjugate gradient as coded within the MAC method is

significantly slower when compared to the MA57 direct solver. A run-time of nearly 30

minutes longer is recorded for the Re = 1000 case.

The extra cost in time required for the larger mesh is proved necessary when the

results are compared to the literature. The velocity profiles provide a near perfect match,

figure (6.11). For completeness, the velocity components for the entire domain on the

t

o.t

05

04

0.2

0
0.4 010

1

08

0.8

0.4

0.2

0
•04 •0.1 0 10 03 04

(a) Horizontal velocity (b) Vertical velocity

Figure 6.11: Lid driven cavity with Re = 1000, results comparison to literature

finer mesh are again shown, see figures (6.12,6.13). Once again a more complex re-

1

Figure 6.12: Horizontal velocity for
Re = 1000. Colour scheme is
red=high, blue=low.

Figure 6.13: Vertical velocity for Re =
1000. Colour scheme is red=high,
blue=low.

circulation region can be seen.

96

6.2. Lid Driven Cavity Skewed Mesh Study

From analysing the run-time results for all three Reynolds numbers some conclu­
sions can be drawn. The definition of the time step size states that as the Reynolds num­
ber increases, the size of the viscous time step also increases. So for higher Reynolds
numbers the time step size is governed by the convective term. This is observed in the
results, where the higher Reynolds number test cases showed that the time step size is
similar for both the explicit and implicit schemes. The time steps given for the explicit
schemes are the final one observed in the simulations. In this case the time stepping
is adaptive and has the potential to change each iteration, however, once the solution
tends to convergence, variations in the time step have usually ceased. The implicit time
step is specified at the start of the solution, based on the explicit time step formula but
allowing higher CFL numbers. Both time stepping routines required testing of suitable
CFL numbers to ensure the time step being used was the smallest possible to produce a
stable solution. The quoted time steps include the scaling with the CFL number. They
therefore represents the maximum time step sizes that were used.

To fully capture the effects of the moving wall, there needs to be some explicit
treatment of the viscous effects on the boundary. Thus, an explicit viscous calculation
is still contained in the solver formulation, which not only has influence on the time
step size but also requires extra computational effect to compute the values.

In general, the semi-implicit case requires extra computational effort to invert the
matrix system and so much fewer time steps are required to reach convergence. The
restrictions on the time step size required for a stable solution mean that even though the
number of iterations may be halved, it is still not enough to outweigh the computational
effort required to solve the system.

The present results suggest that in test cases similar to the lid driven cavity, i.e
problems that contain a moving wall, a small domain mesh and are steady state, may
produce solutions faster using the explicit time stepping scheme.

6.2 Lid Driven Cavity Skewed Mesh Study

To access the effects of using an non orthogonal mesh, a skewed cavity is used. The
skewed cavity changes the angle of the horizontal edges. Two cases are tested, one
changing the angle to 5° and the other changing the angle to 20°. Changing the angle
has two affects on the mesh quality; it removes orthogonality by changing the angle
between intersecting Voronoi' and Delaunay edges; and creates bad elements so that
Delaunay triangles circumcentres lie outside the triangles.

97

6. Benchmark Results

The first case to look at is skewing the mesh by an angle of 5°. See figure 6.14 for the

mesh when merging is not used. Figure 6 .14(b) shows that the circumcentres are outside

(a) Skew ed m esh by an angle o f 5 ° for lid driven cav­
ity

(b) C lose up o f skew ed m esh,skew ed by an angles o f
5 °, for lid driven cavity

Figure 6.14: Skewed lid driven cavity mesh by angle of 5° when merging is not used

of the triangles. Using the test case of a lid velocity of one and a Reynolds number of

100, if these centres are used in the unstructured MAC algorithm, a solution to the lid

driven cavity problem is unstable. Figures 6.15, 6.16 and 6.17 show the solution for the

pressure, horizontal velocity and vertical velocity respectively just before the solution

values become exponential. For the mesh in figure 6.14(a) the Voronoi edges are

short enough that mesh merging takes place giving the mesh shown in figure 6.18. In

98

6.2. Lid Driven Cavity Skewed Mesh Study

press uie

r67.64
1000

Figure 6.15: Pressure for the skewed lid cavity case using a mesh that is skewed by 5°
and mesh merging is not used

velocity
798607

velocity
000169

Figure 6.16: Horizontal velocity for the
skewed lid cavity case using a mesh
that is skewed by 5° and mesh merging
is not used

Figure 6.17: Vertical velocity for the
skewed lid cavity case using a mesh
that is skewed by 5° and mesh merging
is not used

figure 6.18 the Delaunay elements are shown as the un-merged to attempt to show the

position of the new cell centre in relation to the old. The elements are merged within the

code and the diagonal edges removed. This means that the element centre, the Voronoi'

vertex, lies within the merged cell. If mesh merging is used then a stable solution can be

found. Figures 6.19, 6.20 and 6.21 show the solution of the pressure, horizontal velocity

and vertical velocity respectively after it has converged five orders of magnitude. This

case demonstrates the importance of the location of the Voronoi vertex. After merging,

the vertex is now inside the Delaunay cell and the and a stable solution can be found.

99

6. Benchmark Results

^ M 81S

gHHH

(a) Skew ed m esh by an angle o f 5° for lid driven cav­
ity

(b) C lose up o f skew ed m esh by an angle o f 5° for lid
driven cavity. The D elaunay cells are show n are not
m erged but are m erged in the code. The Voronoi' cells
in blue are m erged to quadrilaterals.

Figure 6.18: Skewed lid driven cavity mesh by angle of 5° when merging is used

The solution shown in figures 6.19, 6.20 and 6.21 visually looks close to those using

the non skewed mesh at Re=100 even when the intersection between the Voronoi and

Delaunay edges are not at right angles.

A section skewed mesh is also tested. In this case the mesh is skewed by an angle of

20°, see figure 6.22(a) and figure 6.22(b). Figure 6.22 shows meshes with non merged

cells. In this case the Voronoi' edges are not short enough so that the elements can be

merged. A stable solution is not possible on this mesh if the circumcentres are used

100

6.2. Lid Driven Cavity Skewed Mesh Study

pressu
195602

0.55792

Figure 6.19: Pressure for the skewed lid cavity case using a mesh that is skewed by 5°
and mesh merging is used

vtloor • 11274 v d o u p
?59191

0.2

0 .26687

Figure 6.20: Horizontal velocity for the
skewed lid cavity case using a mesh
that is skewed by 5°. The mesh is
merged throughout so that two trian­
gles that are close to being right angled
merged to quadrilaterals.

Figure 6.21: Vertical velocity for the
skewed lid cavity case using a mesh
that is skewed by 5°. The mesh is
merged throughout so that two trian­
gles that are close to being right angled
merged to quadrilaterals.

as the location of the Voronoi vertex. Figures 6.23, 6.24 and 6.25 show the unstable

solution before the values become exponential. If the Voronoi vertex is moved from

the circumcentre to the average between the barycentre and circumcentre then a stable

solution is possible. Figures 6.26, 6.27 and 6.28 shows this stable solution. From the

figures it is apparent that the solution accuracy is not as good as that with the skewed

mesh of 5°, this is possibly an artifact of the skewed mesh.

6. Benchmark Results

Figure 6.22:

(a) Skew ed m esh by an angle o f 20° for lid driven
cavity

(b) C lose up o f skew ed m esh by an angle o f 20° for
lid driven cavity

Skewed lid driven cavity mesh by angle of 20° when merging is not used

102

6.2. Lid Driven Cavity Skewed Mesh Study

pressure
228.491
|; 2 0 0

Figure 6.23: Pressure for the skewed lid cavity case using a mesh that is skewed by 20°
and mesh merging is not used

velocity- v
,01063622

velocity u
.05767583

: - 1.6
1.6000475

Figure 6.24: Horizontal velocity for the
skewed lid cavity case using a mesh
that is skewed by 20°. The triangular
elements in the mesh are not merged to
quadrilaterals.

Figure 6.25: Vertical velocity for the
skewed lid cavity case using a mesh
that is skewed by 20°. The triangular
elements in the mesh are not merged to
quadrilaterals.

103

6. Benchmark Results

pressur

Figure 6.26: Pressure for the skewed lid cavity case using a mesh that is skewed by 20°
and the Voroni vertex is moved to the average between the Delaunay barycentre and the
circumcentre.

velocity
3655002

velocity
.4547811
10.4

K -0.4
-0.460042' 1.021925

Figure 6.27: Horizontal velocity for the
skewed lid cavity case using a mesh
that is skewed by 20° and the Voroni
vertex is moved to the average between
the Delaunay barycentre and the cir­
cumcentre.

Figure 6.28: Vertical velocity for the
skewed lid cavity case using a mesh
that is skewed by 20° and the Voroni'
vertex is moved to the average between
the Delaunay barycentre and the cir­
cumcentre.

104

6.3. Flow Over a Backward Facing Step

6.3 Flow Over a Backward Facing Step

The second test case is the flow over a backward facing step. This test problem is again
steady state but is more difficult to simulate than the lid driven cavity problem. The
increase in difficulty is due to the presence of an inflow and outflow boundary condition,
the first test problem to include such boundaries. The geometry, shown in figure (6.29),
uses a step height of h, and an inflow channel of height h and length 6h. The outflow

u«0,v«0

Figure 6.29: Domain for flow over a backward facing step

is located a distance of 30h from the position of the step. This is a fairly short distance
from the step, thus creating a good test for any outflow boundary condition formulation.

For this benchmark problem, the standard case to compare to in the literature is that
of Armaly et.al [102]. Reported in the literature are both experimental and numerical
results, the experimental results providing a desirable comparison for the unstructured
MAC algorithm. The inflow velocity is required to be parabolic with a maximum ve­
locity comparable to the results given in the literature, the value of which is different
for each Reynolds number [102].

There are two Reynolds numbers compared for the backward step case, the first
being Re = 100 and the second Re = 389. No results are given for higher Reynolds
numbers as when higher Reynolds numbers where used the solution became unstable.
This could be due to the the flow to becoming three dimensional [102].

To determine the inflow parabola, a maximum inflow velocity is obtained from the
literature, this is converted to fit the dimensionless scales in the back facing step mesh
used in the simulation. The mesh used for all simulations of this test example, contains
a refined region around the step, see figure (6.30). A re-circulation region should occur
in the back of the step region, therefore, the refinement of the mesh is needed in this
area to ensure accurate capturing of all fluid flow features.

The numerical results are then compared to the literature. The scale used in the
unstructured MAC code is h = 1, whereas, in the literature h = 0.011. The distance
from the step is scaled by the height of the step h and the horizontal velocity is given

105

6. Benchmark Results

Figure 6.30: Section of mesh used to simulate flow over a backward facing step. Dis­
plays the refined region around the step. The mesh contains 53,427 elements, 27,287
nodes and 1,145 boundary nodes.

in metres per second. In the results the height remains in dimensionless form allowing

comparison in the two scales that have been used.

The test case of Re = 100 is simulated using the explicit time stepping scheme,

where results are displayed in figure (6.31), with the literature results given by the green

points and the numerical results by the red line. Results compare well to the literature,

Re=100 u (m/s)
0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2

0.8

0.6

0.4

0.2

x/h= 0 2.55 3.06 3.57 4.18 4.80 5.14 6.12 7.76 12.04 16.33 20.92 30.31 44.90

Figure 6.31: Comparison to literature for flow over a backward facing step with Re =
100. x/h=0 is the at the location of the step.

considering that the comparison is based on digitised graph data from the literature.

The results for all variables are given in figures (6.32,6.33,6.34), to give a view of the

variables distribution for the entire domain. A Reynolds number of 100 is the easier

 ~...............................

Figure 6.32: Pressure for flow over a backward facing step with Re = 100. Colour
scheme is red=high, blue=low.

example, where there are less viscous effects in the solution so only the explicit time

stepping routine has been used to simulate the results.

106

6.3. Flow Over a Backward Facing Step

Figure 6.33: Horizontal velocity for flow over a backward facing step with Re = 100.
Colour scheme is red=high, blue=low.

Figure 6.34: Vertical velocity for flow over a backward facing step with Re = 100.
Colour scheme is red=high, blue=low.

To further demonstrate the unstructured MAC codes capabilities, a higher Reynolds

number of Re — 389 is used. This case has more viscous effects and the re-circulation

region is larger, providing a good test case for the outflow boundary condition, as fluid

features are closer to the boundary. As this is a more complex case, it is also used to test

the various time stepping configurations. Horizontal velocity profiles are plotted against

the results reported in the literature in the same format as Re = 100, results compare

well. All the required more complex flow characteristics are displayed, see figure (6.35).

Figures (6.36,6.37,6.38), give a view of the variables distribution for the entire domain.

Re=389 u (m/s)
0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8

0.8

0.6

0.4

0.2

x/h = 0 2.55 3.06 3.57 4.18 4.80 5.14 6.12 7.14 7.76 8.52 9.18 9.74 11.07 11.84 13.57

Figure 6.35: Comparison to literature for flow over a backward facing step with Re =
389. x/h=0 indicates the location of the step.

The run-times for the four configurations for the unstructured MAC scheme can also

be compared. The mesh used for both cases is the same and the Reynolds number does

not differ by a huge amount and so the comparison is just given for the case where

Re = 389, see table (6.5). For the steady state case the explicit scheme outperforms

the implicit case due to the time step size increase not being enough to counteract the

107

6. Benchmark Results

Figure 6.36: Pressure for flow over a backward facing step with Re = 389. Colour
scheme is red=high, blue=low.

Figure 6.37: Horizontal velocity for flow over a backward facing step with Re = 389.
Colour scheme is red=high, blue=low.

Figure 6.38: Vertical velocity for flow over a backward facing step with Re = 389.
Colour scheme is red=high, blue=low.

Run Time Time Step
Explicit CG lh 4m 48s 0.0362
Explicit Direct 268.341s 0.0362
Implicit Euler 328.709 0.07
Implict CN 288.799 0.08

Table 6.5: Run-time and time step size comparison for flow over a backward facing step
at a Reynolds number of 389

increase in the time required per iteration. It is interesting to see that the conjugate

gradient method to solve the Poisson equation is exceedingly slow, with a run time of

over an hour compared to ones of around five minutes. Therefore, all future comparison

will not include the conjugate gradient method.

6.4 Inviscid Flow Around a Circular Cylinder

Inviscid flow around a circular cylinder is a steady state problem that has an analytic

solution for the pressure exerted on the cylinders surface [101]. For an inviscid flow

simulation, the viscous term is dropped from the discrete equations. Comparing the

inviscid simulation result to the analytic will not confirm accuracy of the full viscous

equations but will confirm that all other processes in the algorithm are being evaluated

correctly.

Before the numerical results are presented, the analytical solution for the surface

108

6.4. Inviscid Flow Around a Circular Cylinder

pressure ps is detailed. This can be expressed as [101],

Ps = Po + ^ o (l - 4s m 2a) (6 . 1)

where p0 is the initial or reference pressure value for the domain, u0 a reference velocity

and a the angle from zero around the cylinder as shown in figure (6.39). The value for

the surface pressure can be rearranged to give the pressure coefficient in dimensionless

form as,

The presence of an analytic solution, not only confirms the accuracy of the inviscid

part of the MAC scheme but it can be used to determine the solution accuracy depen­

dence on the mesh resolution. This allows a mesh convergence study to take place. A

mesh convergence study should demonstrate that a solution gets closer to the analytical

solution with finer mesh resolutions.

To carry out this study, suitable meshes are required. These meshes were con­

structed b y ‘growing’ equilateral triangles out from the cylinder of diam eter one. Three

meshes with a varying the number of nodes on the cylinder were produced, the first with

100 nodes, the second with 200 and the third with 400 nodes. Figure (6.40) displays an

example o f one of these meshes. The largest of the three meshes, 400 nodes around the

cylinder has 162,400 elements and 81600 nodes, requiring approximately two minutes

to converge the pressure seven orders of magnitude. As expected figure (6.41) shows

that the accuracy increases as the mesh resolution increases. The CPU times presented

are when using an explicit time stepping procedure. No implicit treatment of the con­

vective term has been implemented, therefore no implicit results are possible for this

case.

a

Figure 6.39: Angles a starting from facing edge of cylinder

(6 .2)

109

6. Benchmark Results

Figure 6.40: Mesh for inviscid flow example with 100 nodes around the cylinder

1

0.5

0

-0.5

•1

■1.5

-2

analytical
100 points
200 points
400 points

-2 5

-3
300 350 40050 100 150 200 2500

a(deg)

Figure 6.41: Mesh for inviscid flow example with 100 nodes around the cylinder

6.5 Unsteady Viscous Flow Around a Circular Cylinder

For viscous flow around a circular cylinder, steady and unsteady state solutions are pos­

sible. The type of flow that will be exhibited will depend on the Reynolds number.

Figure (6.42) shows the flow characteristics for the various Reynolds numbers [103].

The previous examples all demonstrate that the unstructured MAC algorithm is capable

110

6.5. Unsteady Viscous Flow Around a Circular Cylinder

(a) Re < 5, un-seperated flow

(c) 40 < Re < 150, laminar vortex shed­
ding.

(e) 3 x 105 < Re < 3.5 x 106, fully turbu­
lent flow with no apparent vortex street.

(b) 5 < Re < 40, fixed pair of vortices in
the wake.

(d) 150 < Re < 300, transition range to
turbulence in vortex. 300 < Re < 3 x 105,
vortex street is fully turbulent.

(f) 3.5 x 106 < Re < oo, re-establishment
of a turbulent vortex street. Has a turbulent
boundary layer and thinner wake.

Figure 6.42: Flow characteristics for various Reynolds numbers for flow around a cir­
cular cylinder.

of modelling steady state flows and so it is unsteady flows that are now of interest. At
present there is no turbulence model incorporated into the solver and so it is the range
of Reynolds numbers that demonstrate a laminar vortex street that are considered. It
will also be shown that successful solutions can be obtained in the transition to turbu­
lence range. Therefore, for the viscous case, flow at two Reynolds numbers will be
modelled, Re = 100 and Re = 200. For a Reynolds number of 100, a structured mesh
like those used for the inviscid case will be used. To later demonstrate the MAC solver
capabilities, a fully unstructured mesh with refined wake region will then be used. For
the case of a Reynolds number of 200, only the fully unstructured mesh will be used for
the simulation. Again, results will be compared for the various time stepping routines,
however, the conjugate gradient method as the pressure correction solver will now be
dropped due to its slow performance. The direct solver to produce a solution to the
pressure correction equation will be the only option under consideration.

I l l

6. Benchmark Results

The initial set of results are presented for the case where Re = 100, on the structured

mesh produced in the same way as for the inviscid case. The mesh contains 14200 el­

ements and 7200 nodes, with a total for 200 boundary nodes, 100 of these are located

around the cylinder. The run-times for this case and the lift and drag coefficients are

given in table (6.6). In table (6.6) the A t for the explicit case is just an indicator as the

A t CPU time CL cD
Explicit 0.0126 385s ± 0.36 1.405 ± 0 .0 1 1
Implicit FE 0.02 369s ± 0.46 1.605 ± 0 .0 1 6
Implicit CN 0.025 370s ±0.42 1.539 ± 0 .0 1 3

Table 6.6: CPU times, time step sizes and lift and drag coefficient comparison for flow
around a circular cylinder at Re = 100, using three time stepping routines.

time step is adaptive for this type of time stepping routine. To keep consistency, the

final time step size of the simulation is taken, as vortex shedding has fully developed at

this stage and A t is likely to remain constant.

A quick analysis of the results in table (6.6) show that the implicit case once again

struggles to outperform the explicit case. The implicit time step, not being large enough

to counteract extra computation time. The lift and drag coefficients vary depending on

the time stepping being used, this could possibly be due to the varying time accuracy of

the various time stepping schemes.

A finer fully unstructured mesh is also considered. This mesh consists of 101240

elements and 50776 nodes is used. The mesh has a refined wake region to allow bet­

ter capturing of the vortex shedding, the section of the mesh is given in figure (6.43).

Similarly to the coarse mesh case run-times, the lift coefficients and the drag coefficients

mmmmM

Figure 6.43: Unstructured mesh around a circular cylinder of diameter one, with refined
wake region.

are compared for each of the three time stepping routines, see table (6.7).

112

6.5. Unsteady Viscous Flow Around a Circular Cylinder

A t CPU time cL cD
Explicit 0.0061 lh 33m ±0.33 1.386 ±0.0094
Implicit FE 0.015 lh 5m ±0.4 1.537 ±0.0133
Implicit CN 0.015 lh 16m ±0.37 1.464 ±0.0116

Table 6.7: Comparison of CPU times and lift and drag coefficients for the explicit and
two implicit time stepping routines for flow around a circular cylinder with Re = 100.

For the flow around a circular cylinder there exist many results in the literature.
To validate the algorithm, the lift and drag coefficients obtained here can be compared
to the results from the literature, see table (6 .8). The effect of varying lift and drag

cL cD
Morgan et.al. [2] ±0.32
Zhang et.al. [104] ±0.34 1.36 ±0.01
De Palma et.al. [105] ±0.331 1.32 ±0.01
Codina et.al. OSS [106] ±0.38 1.53 ±0.0095
Codina et.al. ASGS [106] ±0.36 1.53 ±0.01
Codina et.al. CBS [106] ±0.30 1.485 ± 0.007
Linnick and Fasel [107] ±0.337 1.38 ±0.01
Liu et. al. [108] ±0.339 1.35 ±0.012
Present coarse mesh explicit ±0.36 1.405 ±0.011
Present coarse mesh implicit FE ±0.46 1.605 ±0.016
Present coarse mesh inplicit CN ±0.42 1.539 ±0.013
Present fine mesh explicit ±0.33 1.386 ±0.0094
Present fine mesh implicit FE ±0.4 1.537 ±0.0133
Present fine mesh inplicit CN ±0.37 1.464 ±0.0116

Table 6 .8 : Comparison of lift and drag coefficients with literature for flow around a
circular cylinder at Re = 100

coefficients for the various time stepping routines is once again observed, a similar
effect is observed by Codina et.al. [106]. To re-iterate a possible cause of this could be
the varying time accuracy.

The semi-implicit time stepping routine was developed to allow the use of stretched
meshes. The testing of the algorithm using this test case is provided for completeness
and so the varying lift and drag coefficients is an issue that requires further investigation.

As expected it is demonstrated that the larger fully unstructured mesh, when used
with the explicit case displays a closer result to most of the literature than the smaller
more coarse mesh.

The first unsteady test case presents a good opportunity to compare the unstructured

113

6. Benchmark Results

MAC algorithm to other incompressible flow solvers. The solver considered is the

in-house incompressible finite volume solver. The initial run of the in-house solver

using the small coarse mesh is compared to the the unstructured MAC solver and the

literature [2], see figure (6.44). Only the lift calculated from the pressure force is shown

in figure (6.44), the coarse mesh therefore shows an exact comparison to the literature.

0.3

0 2

0.1

cJ* 0

-0.1

-0.2

-0.3

Figure 6.44: Lift coefficient for flow round a circular cylinder at Re = 100, comparison
of MAC code, finte volume code and literature [2]

Later comparisons using the fine mesh show an under-estimate, therefore the inclu­

sion of the wall shear stress is needed to compare more accurately to the literature. An

adverse effect was noticed when the wall shear stress was included using the approxi­

mation given in chapter 5. After vortex shedding has fully developed the lift oscillations

begin to grow, a similar oscillation is observed in the drag, although the solution still

remained stable. The results in table (6.8) are obtained at the uniform point in the lift

forces before the adverse affect occurred. W hen the wall shear stress is not included

these oscillations do not occur and uniform oscillatory behaviour is observed. It can

also be noted that the finite volume and unstructured MAC algorithm both produce a

drag coefficient of around one when only the pressure effects are used to calculate the

drag i.e. the shear stresses are not included in the calculation of the drag.

This finite volume simulation of the small coarse mesh required around 6 hours, a

substantial amount longer than the MAC code. The finite volume solver produced a

successful solution, which was four times slower than the unstructured MAC solver on

the same mesh. All comparison were made using the explicit scheme, the semi-implicit

solver had not been devised at this time.

MAC
Finite Volume

Morgan 98

142132 134 136 138 140
MAC non-dimensional time

114

6.5. Unsteady Viscous Flow Around a Circular Cylinder

It is also of interest to compare the vorticity results for both solvers, when using the

fine mesh, see figure (6.45). The MAC solver retains the solution throughout the wake

(a) Vorticity at end o f sim ulation using the unstructured M AC solver.

(b) Vorticity at end o f sim ulation using a finite volum e solver.

Figure 6.45: Vorticity plots using the unstructured MAC solver and a finite volume
solver.

region, whereas the finite volume solver has a diffusing effect on the vorticity as the

vortices approach the far field.

Simulations using the fully unstructured mesh are of more interest, they demonstrate

that the devised MAC solver runs efficiently and accurately (the solutions are more

accurate than the coarse mesh). The wake region is also captured in detail using this

mesh and so for the case where Re — 200, simulations will only be carried out using the

fully unstructured mesh. As before, results and run-times are compared for the various

time stepping routines, see table (6.9). To validate the simulation, the lift and drag

A t CPU time CL cD
Explicit 0.007 2h 10m ± 0.70 1.394 ± 0 .0 4 6 7
Implicit FE 0.015 2h 45m ± 0.75 1.463 ± 0 .0 5 1 2
Implicit CN 0.015 3h 14m ±0.73 1.430 ± 0 .0 4 9 0

Table 6.9: Comparison of CPU times and lift and drag coefficients for the explicit and
two implicit time stepping routines for flow around a circular cylinder with Re = 200.

coefficients are compared to the literature, see table (6.10).

Results in the literature are more variable than those for Re = 100, the results

produced by the unstructured MAC scheme using all the time stepping variants are a

reasonable comparison to these results. The explicit time stepping routine appears to

produce the best match, particularly to the result of Linnick and Fasel [107]. To demon­

strate the development of vortex shedding the vorticity at the end of the simulation using

the explicit time stepping scheme is shown in figure (6.46).

115

6. Benchmark Results

c L c D
Zhang et.al. [104] ±0.66 1.34 ± 0 .0 3
De Palma et.al. [105] ±0.68 1.34 ± 0 .0 4 5
Pan and Damodaran [109] ±0.63 1.37 ± 0 .0 4
Kiris and Kwak [110] ±0 .67 1.27 ± 0 .0 4
Linnick and Fasel [107] ±0.70 1.37 ± 0 .0 4 6
Liu et. al. [108] ±0.69 1.31 ± 0 .0 4 9
Belov et.al. [6] ± 0 .64 1.10 ± 0 .0 4 2
Present fine mesh explicit ± 0 .70 1.394 ± 0.0467
Present fine mesh implicit FE ± 0.75 1.463 ± 0 .0512
Present fine mesh inplicit CN ± 0.73 1.430 ± 0.0490

Table 6.10: Comparison of lift and drag coefficients with the literature for the flow
around a circular cylinder at Re — 200

Figure 6.46: Vorticity at the end of the simulation for flow around a circular cylinder at
Re = 200. Colour scheme is res=high, blue=low.

Oscillations are observed in both the lift and drag coefficient, as for the previous

case the values in table (6.10) where taken before these occur.

6.6 Summary

The benchmark tests all confirm that that unstructured MAC algorithm produces stable

and accurate solutions when compared to the literature and when good quality meshes

are used. The shoit study on skewed meshes demonstrates that if the Delaunay triangles

are obtuse and the circumcentre lies outside then a stable solution is not possible. Using

mesh merging, to create a cell centre inside a quadrilateral or moving the circumcentre

just inside the triangles (a technique that can create short enough Voronoi'edges to allow

merging) will allow stable solutions.

The early results with the explicit method demonstrate that the solver speed is highly

dependent on the solution technique used for the pressure correction equation. The use

of a standard CG method which is not highly optimised is considerably slower than the

MA57 direct solver. If an iterative solver were required, alternatives are available and

further optimisation may present a faster method. It is important to recognise from this

116

6.6. Summary

observation that main computational expense of the unstructured MAC method is in the
solution of the pressure correction equation. To ensure the unstructured MAC method
is efficient an appropriate solution technique needs to be applied to solve the implicit
system created from the pressure correction equation discretisations.

The semi-implicit method offers very little benefit on for steady case or the smaller
meshes. It only begins to outperform the explicit solver in the unsteady cylinder case
on the larger mesh. The semi-implicit method is also using a highly developed direct
solver technique so run-times in this case could be considered optimal when using a
direct solver approach. Similarly to the solution of the pressure correction equation, the
speed of using the semi-implict scheme will be dependent on the efficency of the linear
system solver used. It is feasible that an alternative solution technique (perhaps an
iterative approach) could be more efficient if it had the same level of development. The
alternative technique would have to allow solution of systems with a non-symmetric
matrix, this rules out the CG method as an option.

117

Chapter 7

Further Results

The tests in the previous chapter are standard tests for a CFD solver and validate the re­
sults obtained from the unstructured MAC solver, however, they do not stretch the solver
to its limits, or even demonstrate its capabilities for more complex geometries. There­
fore, simulations around a selection of aerofoils have also been tested, these include the
NACA0012, an SD7003 and a multi element aerofoil. There are some results available
to some of these problems in the literature and where available the unstructured MAC
results have been compared, however, these results are much less well documented and
in some cases pose questionable outcomes. The aerofoil simulation really pushed the
standard MAC solvers capabilities. It is here that the need for the optimised meshes
previously mentioned is really necessary else orthogonality is not retained enough to
produce a stable solution. The need for an implicit time stepping scheme will also be
demonstrated in the use of stretched meshes to capture viscous effects. This chapter
presents the results for; flow over a SD7003 aerofoil; flow over a NACA0012 aerofoil
and finally flow over a multi element aerofoil. The last section in this chapter demon­
strates a free surface implementation of the unstructured MAC algorithm through the
dam break problem. The results for this case are basic but still demonstrates that the
free surface capabilities can be included in the algorithm.

7.1 Flow Around SD7003

The previous three examples are good benchmark test problems, to further demonstrate
the codes capabilities more complex geometries are required. These more complex
geometries take the form of aerofoils, the first of which to be considered is the SD7003
aerofoil [3], the geometry of which is given in figure (7.1). A test case with Re = 10000

119

7. Further Results

0.1

0.03

-0.1
0 0.2 0.4 0.6 0.8 1

Figure 7.1: Geometry of a SD7003 aerofoil [3]

and an angle of attack of 4° has been presented by Uranga et.al. on two occasion [111,
112] and also by Castonguay [4]. It is reported that at a Reynolds number of 10000,
the flow still exhibits a laminar regime and is still primarily a two dimensional flow.
Therefore, the devised unstructured MAC scheme should be able to produce results
for this simulation, presenting an opportunity to validate the MAC solver against other
numerical solutions for a problem at a high Reynolds number.

The high Reynolds number requires a fine mesh resolution around the aerofoil in
order to fully capture the viscous effects. The fine resolution is only required in the
normal direction from the aerofoil and so a hybrid mesh can be used. A hybrid mesh
posed some new challenges for the code, not only with the implementation to allow the
MAC solver to process hybrid meshes but also in retaining the dual orthogonality of the
mesh. Hybrid meshing techniques can produce some obtuse elements particularly off
the tail end of the aerofoil. These obtuse elements are the bad elements which have a
circumcentre outside of the the element and lead to unstable solutions.

The initial hybrid mesh to be used, contains only three stretched boundary layers,
see figure (7.2). The devised MAC algorithm using the circumcentre as Delaunay tri­
angle centres will not produce a stable solution using the mesh in figure (7.2). Instead
an unstable solution is produced which initially creates large values at the location of
the bad elements. Figure (7.3) shows the solution as it goes unstable. The figures show
the mesh region at the tail edge of the aerofoil. Initially, to deduce that the bad ele­
ments were causing the instability, the mesh elements were corrected by hand so that
the circumcentre would lie inside the triangles. After this change a stable solution was
possible. Bad elements away from the aerofoil did not need to be corrected. A justifi­
cation for the bad elements near the aerofoil only being problematic can be understood
through the discretisations, in particular through the pressure term. The pressure term
discretisation involves a central difference to approximate the gradient. The position
the pressure gradient is required at is at the same location as the velocity variable i.e.

120

7.1. Flow Around SD7003

(a) M esh around the SD 7003 aerofoil (b) N ose section o f mesh
for S D 7003 aerofoil, three
stretched boundary layers
are v isib le

Figure 7.2: Hybrid mesh with three boundary layers for an SD7003 aerofoil

(a) Horizontal ve loc ity

3.665682793

.62343764

(b) Vertical ve loc ity

Figure 7.3: Unstable solution for flow around an SD7003 aerofoil at trailing edge using
the mesh in figure (7.2).

at the midpoint of a Delaunay triangle edge. For bad elements the circumcentre lies

outside the cell, because the pressure is stored at the circumcentres the gradient will

121

7. Further Results

be approximated to second order at the midpoint between the two circumcentres when

using the central difference approximation [9]. This is not the required position (i.e. the

same position as the velocity variable). If there is little variation in the pressure field

the discrepancy in position is unlikely to have much affect, as all pressure gradients are

similar throughout the area. However, for a largely varying pressure field such as those

close to the aerofoil, the pressure gradients can vary greatly in space and so position of

the gradient is important in relating the correct pressure gradient to the velocity. The

loss in accuracy when meshes become non-orthogonal can also be explained from the

discretisations and the central difference approximation not being located at the position

the velocity is required at. Since the gradient is not approximated at the correct location

there will be an error associated with the gradient. In areas where the flow variables

change by a large magnitude these errors will be greater.

The unstable solution demonstrates the need for the techniques given in section (4.1).

The chosen technique is to optimise the mesh, after-which successful results can be ob­

tained. The lift and drag coefficients obtained when using the optimised three boundary

layer mesh are given in figures (7.4,7.5). The lift and drag coefficients given in fig-

iVwee boundary layer maJh

Figure 7.4: Lift coefficient for flow
around an SD7003 aerofoil at Re =
10000 using an unstructured mesh with
three stretched boundary layers

Figure 7.5: Drag coefficient for flow
around an SD7003 aerofoil at Re =
10000 using an unstructured mesh with
three stretched boundary layers

ures (7.4,7.5) are not desirable results, the values oscillations are not around a fixed

mean value. A coarse mesh in the boundary region was deemed as the cause of these

oscillations. The coarse mesh does not allow the viscous effects to be fully captured

around the aerofoil boundary. Therefore, a mesh with a greater number of stretched

boundary layers is required, the next set of results demonstrate the use of a mesh such

as this.

122

7.1. Flow Around SD7003

The next mesh used in an attempt to produce a suitable solution is one consisting

of ten stretched boundary layers around the aerofoil, see figure (7.6). The statistics for

(a) SD mesh including wake region

(b) C lose up o f nose region (c) C lose up o f tail region o f SD aerofoil, d isp laying ten boundary layer
o f SD aerofoil, d isp laying
ten boundary layers

Figure 7.6: Hybrid mesh for an SD7003 aerofoil with refined wake region and ten layers
of stretched boundary elements

this mesh are as follows: 4443 quadrilateral elements, 89235 triangular elements and

49363 nodes. The explicit scheme is very slow to produce a solution, a very small

time step is required to produce a stable solution when using the explicit scheme. Test

runs using the explicit scheme with the mesh in figure 7.6 showed that vortex shedding

had not developed after a lengthy CPU time. To combat this issue, the semi-implicit

time stepping scheme has been implemented, allowing a much larger time step to be

used and a solution exhibiting vortex shedding is obtained in a reasonable amount of

time. Although this semi-implicit scheme was implemented purely to allow the use

of hybrid stretched meshes, previous results with more standard benchmark problems

further validate its use and further test the unstructured MAC solvers capabilities.

The semi-implicit time stepping scheme allowed the use of larger time steps and

stable unsteady solutions were produced on the mesh with ten boundary layers after

approximately 24 hours of CPU time. There is a noticeable improvement in the lift and

drag coefficients over the three boundary layer case, see figures (7.7,7.8). The results

although still exhibit minor oscillations about a mean value, however, an average of the

123

7. Further Results

0.35

0.345

0.34

0 335

033

0.325

032

0.315

0.31

T®n boundary layer maeh

Non dimensional ti

Figure 7.7: Lift coefficient for flow
around an SD7003 aerofoil at Re =
10000 using an unstructured mesh with
ten stretched boundary layers.

Ten boundary layer mesh

Non dimensional ti

Figure 7.8: Drag coefficient for flow
around an SD7003 aerofoil at Re =
10000 using an unstructured mesh with
ten stretched boundary layers.

lift and drag coefficients is still taken and the results compared to those in the literature,

see table (7.1). Table (7.1) shows reasonable results compared to the literature, the lift

CL CD
Present 0.324 0.0572
Xfoil as in [112] 0.2711 0.04578
Uranga et.al. [112] grid 2, 2D 0.3755 0.04978
Uranga et.al. [I l l] 0.3826 0.0504
Castonguay et.al. [4] 0.372 0.0492
Galbraith and Visbal as in [4] 0.36 0.047

Table 7.1: Comparison of lift and drag coefficients to literature for the flow around an
SD7003 aerofoil at Re = 10000.

coefficient is in-between that given by the xfoil code which is used as a comparison

in [112] and the other literature results, the drag offers a slightly better comparison.

The vorticity at the end of the simulation is given in figure (7.9), the range of values is

between -40 and 40 and compares wrell to the vorticity plot given in [112].

To further validate the results, the pressure coefficient are compared to that given

in the literature [4], For the case of the MAC results the pressure coefficient is that at

the end of the solution whereas that in the literature is an average over time, however,

the results still demonstrate a reasonable comparison, see figure (7.10). Flow over an

SD7003 aerofoil is not an extensively used test problem and only few results exist in

the literature. It is therefore difficult to say which results are more accurate. The use

of a mesh with more boundary layers may shed further light on the situation but would

further decrease the time step. As the ten boundary layer case requires over a day to

124

7.2. Flow Around NACA0012

Figure 7.9: Vorticity at the end of the simulation for the flow around an SD7003 aerofoil
at Re = 10000. Blue=low, red=high.

o ’

-0.2

10 0.2 0.4 0.8 0.8

Figure 7.10: Coefficient of pressure comparison to literature [4] for flow around an
SD7003 aerofoil at Re = 10000

produce the given solution, the introduction of more boundary layers would reduce the

time step further, meaning that more computation time is required. It then becomes

questionable whether this use of the unstructured MAC algorithm for these types of

flow problems is where is it best utilised.

7.2 Flow Around NACA0012

Another aerofoil to consider is the NACA0012 aerofoil [5]. The aerofoil has a sym ­

metric geometry, which can be seen in figure (7.11). In the literature, there exists a test

case for an unsteady incompressible flow around a NACA0012 at Re = 1000 and with

an angle o f attack of 20° [6], thus a comparison is made with the unstructured MAC

solver. To capture the vortex shedding well the mesh requires a refined wake region.

As the angle of attack is 20°, the refined region should be at this angle to the aerofoil,

125

7. Further Results

-0.04

Figure 7.11: Geometry of a NACA0012 aerofoil [5]

see figure (7.12). To allow viscous effects to be fully captured, the boundary region

Figure 7.12: Section of a NACA0012 mesh with refined wake region suitable for use
with an angle of attack of 20°.

around the aerofoil has five boundary layers of stretched quadrilateral elements, see fig­

ure (7.13). The full statistics for this mesh are: 2182 quadrilateral boundary elements,

Figure 7.13: Boundary region around the NACA0012 aerofoil, displaying five boundary
layers.

126

7.2. Flow Around NACA0012

121249 triangular elements and 63133 nodes.

The unsteady solution was left to run for 70000 iterations to allow vortex shedding to

fully develop. Using an implicit time stepping scheme, a run time of approximately nine

hours was achieved on an AMD opteron 240 processor. The lift coefficient compares

well to the literature, see figure (7.14).

lift MAC
drag MAC

Belov ait al. lift

0.9

0.8

0.7

0.6

0.5

0.4
60 62 68 7064 66

non dimensional time

Figure 7.14: Lift and drag coefficients for the flow around a NACA0012 aerofoil at
Re = 1000 and a 20° angle of attack. Contains a comparison of the lift coefficient to
the literature [6]

The time period in the literature results differs from that of the MAC solver and so

one oscillation of the MAC algorithm has been matched to a section of the literature

results. The lift coefficient compare reasonably well, the range of values being the

same and only a slight discrepancy in the pattern observed in figure (7.14). The drag

coefficient does not compare well, its overall values are approximately 0.1 higher than

the literature, however, the pattern is similar. This is a complex example, as a lot of

shearing stress is produced, the results are promising and as the author of this thesis

cannot find this test case in any other article, it is reasonable to accept them. The overall

behaviour o f the flow is correct when comparing to this particular example. Further

comparison to experimental data, or other numerical data could help in determining the

issues arising in this test case.

The behaviour of the flow can be demonstrated by looking at the results for each

127

7. Further Results

variable at the end of the simulation. Results for the entire domain is shown in fig­
ure (7.15). It can be seen that vortex shedding has fully developed and the wake is in
the correct direction.

7.3 Flow Around a Multi Element Aerofoil

This is the most complicated shape to be considered. Although there are no results
for incompressible flow to compare to, it is still useful to demonstrate that successful
simulations can be performed on this type of geometry.

For this test case, a mesh of 166294 elements and 84022 nodes is used, see figures
7.16 and 7.17. To successfully produce a solution, the mesh that required optimisa­
tion. A high Reynolds number of 10000 was used along with a 4° angle of attack, the
resulting solution can be seen in figure (7.18).

The results in figure (7.18) were obtained using the explicit time stepping scheme.
A simulation of 90000 iterations required around nine hours of CPU time on an AMD
opteron processor. The domain requires a large mesh and so the computation time is
long, for the explicit time stepping case a time step of order 10-6 was required. The
test case was also simulated using the semi-implicit scheme, a time step of one order
of magnitude larger could and was used, thus a simulation to a similar accuracy took
approximately four hours.

The conjugate gradient method as the pressure correction solver was not appropriate
for this test case. The results did not look viable, it is possible that the CG method
was not converging close enough to the correct solution within the maximum specified
iteration. It is in this case that the use of a preconditioner with the CG method may have
been able to improve the condition of the solution matrix and the convergence of the
solver. These results displayed here where produced using the MA57 solver to solve the
pressure correction equation, the solution quality and CPU time were greatly improved
in doing so.

7.4 Aerofoil test case summary

Reasonable results can be produced for the aerofoil meshes. As demonstrated in the
SD7003 case it is important to remove bad elements in the mesh from areas of high flow
gradients to prevent unstable solutions. The dependence on the high quality meshes
demonstrates a limitation of the technique. There are overheads in optimising the

128

7.4. Aerofoil test case summary

meshes, so the unstructured MAC technique would be better suited to cases which
require one mesh and are run many times e.g. for testing flow patterns with varying
Reynolds numbers.

The alternative to improving the mesh quality is to modify the discretisations so that
a stable solution on non-orthogonal meshes with bad elements is possible. One method
is to transform the discretisations to a generalized curvilinear coordinate systems such
as the method applied by Zhu et.al. [113]. Other alternative methods have been devel­
oped when using the SIMPLE method with collocated variables. The use of collocated
variables also requires an interpolation scheme to handle the checkerboarding pres­
sure effect. The method of Lehnhauser and Schafer looks at the discretisation used
in the presure correction equation to allow solution on non-orthogonal meshes [114].
In the technique applied by Lebon et.al. a non-orthognality correction is applied to
the diffusion term and an interpolation scheme is applied to indvidual problematic ele­
ments. The scheme is tested using the steady state lid driven cavity problem on skewed
meshes [115]. The work of McBride looks at the storage position of the collocated
variables using a finite volume discretisation and the SIMPLE algorithm [116]. The
method is tested using the lid driven cavity problem on distorted meshes. A posibility
in the unstructured MAC algorithm might be to modify the discretisations so that the
central difference approximations can be interpolated back to location of the velocity.
This may present a method of improving solutions on distorted meshes without the need
for improving the mesh quality.

The aerofoil cases demonstrate the need for the use of the semi-implicit discretisa­
tion. Stretched meshes, large variation in mesh element size and high Reynolds numbers
mean that the viscous time step becomes small. The semi-implicit method removes this
constraint and the extra computational effort required in solving the semi-implicit sys­
tem is outweighed by the reduction in time steps. As mentioned in the previous chapter
the semi implicit system is solved using the MA41 direct solver provided by HSL [86].
This solver is efficient, an alternative solver could be used but to continue to exhibit fast
run times the alternative solver code would need to be written efficiently.

The CPU times are all on a single processor, based on a cluster super computer.
The unstructured MAC code is not a parellel implementation and only requires the
one processor, therefore it can easily run on any home pc, with the clock speed of the
processor governing the speed of the simulation. For example, test cases were also run
on a home pc containing an intel i5 2400 3.1GHz processor, where run-times on this
machine were 2-3 times faster than the opteron. The intel i5 machine has 8GB of ram

129

7. Further Results

which was sufficient for the meshes used in the presented test cases.

7.5 Free surface Tracking

This section makes a brief summary of the work done on introducing a free surface
to the unstructured MAC method and looks at basic example of the dam break prob­
lem. The basic description of the method implemented for free surface tracking and an
example are included for completeness.

7.5.1 Implementing a Free Surface into the Unstructured MAC code

In the original Marker and Cell algorithm a free surface can be tracked using marker
particles. Marker particles have no mass and no size, they are defined as a point location,
in two dimensions this is an x and y coordinate. The location of the marker particles
indicates which of the mesh elements contain fluid.

The unstructured MAC algorithm can be adapted for free surface tracking by only
solving the discrete equations for elements which contain fluid. Once the steps in the
MAC algorithm have been followed and the new velocities have been found, the coor­
dinates of the marker particles can be updated.

To summarise, the following steps must be taken to track a free surface using the
unstructured MAC algorithm and marker particles.

1. Solve momentum equation for the normal velocity for edges which form mesh
elements that contain fluid.

2. Solve the pressure correction equation for mesh elements that contain fluid.

3. Correct the pressure and velocity for mesh elements that contain fluid.

4. Find the tangential velocities

5. Update the marker particle positions.

6 . Identify which mesh elements now contain fluid.

7. Identify which edges need to be solved for.

8 . Advance to the next time step.

130

7.5. Free surface Tracking

The marker particle coordinates are update using the following equations,

x m + 1 = x m + A t W i (7 1)

y m + 1 = y m + A t w 2 { 1 2)

where x is the horizontal coordinate of the marker particle, y is the vertical coordinate
of the marker particle, w = (io1} W2 Y is the Cartesian velocity vector and A t is the
time step. This Cartesian velocity is assumed to be the element velocity for which the
marker particle lies within. The element velocity is calculated by using averaging the
velocities at all edges of an element converted to Cartesian coordinates.

The positions of the marker particles are used to flag cells as containing fluid if
a marker particle lies within them. Only these cells will be solved for in the MAC
solver. Elements are flagged as either empty, containing fluid, or being on the free
surface. A free surface is indicated as an element which contains marker particles but a
neighbouring element is empty. The edges are then flagged to determine if the velocities
on those edges need to be solved. For the edges, special consideration is needed if an
edge forms a free surface element. Flags are required to identify if an edge lies between;
two full cells; two empty cells; a free surface cell and an empty cell; and two free surface
cells. These are required to correctly determine whether a pressure variable exists and
to correctly find the Voronoi cell area.

7.5.2 The Dam Break Problem

The dam break problem simulates the movement of a body of water after the surface
that holds it breaks. To simulate this problem, a gravity forcing is added to the mo­
mentum equations to force the body to move downwards. To demonstrate the use of
triangular meshes, a mesh of equilateral triangles is used, however this mesh does not
line up exactly with the boundaries, see figure (7.19). The mesh consists of a total of
4000 elements. All boundaries have been set to the wall boundary condition. Initially
fluid lies within a lx l region on the mesh and so this is where the marker particles
are placed, see figure (7.20). A total of 6800 marker particles have been used in this
example. The mesh extends far enough to the right so that the particles do not interact
with the far boundary. The free surface implementation of the unstructured MAC code
is then run using a Reynolds number of 10 and a CFL number of 0.5 for 2000 iterations.
The marker particles are output every 100 iterations, figure (7.21) show the advancing
position of the free surface for various number of iterations. Most of the movement in

131

7. Further Results

the free surface is during the earlier iterations.

7.5.3 Summary on Free Surface Tracking

The free surface tracking method implemented uses marker particles. There have been
many advances in the field of free surface modelling since the original marker and cell
method which use techniques such as level set methods or the volume of fluid method.
The results presented here show an initial attempt at modelling the dam break problem.

The results show some success in that the marker particles are advanced through
time. The location of the free surface seems reasonable, the particles fall to the bottom
and move across, the result that is expected. Further work could be done to validate the
results by comparing them to the literature. There are a couple of noticeable issues with
the results in figure (7.21), the first being the collection of marker particles which are
left at the top of the domain. It is possible that this is either because of the algorithm that
places the initial particles, which may have placed them outside the mesh, or because
the boundary at the top is a wall boundary and the particles are given a zero velocity.
There is also the collection of particles which remain down the side of the domain after
2000 iterations. This is most likely because of the mesh as it does not line up with the
boundary. It could also be a result of the wall boundary condition. Future work would
determine if this is the correct boundary condition to apply. The model does not move
the particle along the bottom of the domain very quickly either, a theory for this is the
incorrect representation of the marker particle velocity.

To summarise, a first attempt at modelling a free surface was made during the de­
velopment of the marker and cell algorithm. Limited success was shown in the im­
plementation of a free surface tracking system. The difficulty in implementing more
advanced techniques such as the volume of fluid method, coupled with the need to add
the capability for modelling highly viscous flow meant free surface capabilities were
not developed further during this project.

132

7.5. Free surface Tracking

(a) Pressure

(b) Horizontal Velocity

(c) Vertical V elocity

(d) Vorticity

Figure 7.15: Results for the flow around a NACA0012 aerofoil at Re — 1000 and a 20°
angle of attack. Blue=low, red=high.

133

7. Further Results

Figure 7.16: Segment of mesh around a multi element aerofoil

(a) Z oom o f nose region o f the main largest e le- (b) Z oom o f tail o f the main largest elem ent o f
ment and front elem ent o f the aerofoil the multi e lem ent aerofoil

Figure 7.17: Zoomed images of the multi element aerofoil to display the mesh refine­
ment in the boundary regions

134

7.5. Free surface Tracking

(a) Pressure

(b) Horizontal velocity com ponent

(c) Vertical velocity com ponent

(d) Vorticity

Figure 7.18: Results for the multi element test case with Re = 10000 and an angle of
attack of 4°. Blue=low, red=high.

135

7. Further Results

Figure 7.19: Mesh used for modelling the dam break problem

Figure 7.20: Initial position of the marker particles

136

7.5. Free surface Tracking

(a) Initial position o f the marker particles

(b) Position o f the marker particles after 20 0 iterations

(c) Position o f the marker particles after 4 0 0 iterations

(d) Position o f the marker particles after 6 0 0 iterations

(e) Position o f the marker particles after 1000 iterations

(0 Position o f the marker particles after 20 0 0 iterations

137
Figure 7.21: Tracking of a free surface using marker particles for the breaking dam test
problem

Chapter 8

Conclusion

A novel efficient solution method for incompressible flow has been devised, tested and
validated. The marker and cell method is an old technique for Cartesian meshes [12].
Its algorithm and staggered mesh layout in both a Cartesian and triangular framework
have been previously researched in the literature. However, the coupling of the marker
and cell algorithm with with an unstructured staggered mesh is a topic that has not
been found by this author in the literature. The MAC staggered mesh layout has in the
past been used but has been combined with other solution methods [57]. This thesis
has applied the discretisation for the unstructured MAC mesh to use with the MAC
algorithm in an attempt to produce an efficient CFD solver. Comparison of the resulting
algorithm with the in-house incompressible flow solvers shows a staggering decrease
in the required CPU time. Although it is clear that this run time is goverened by the
choice of linear system solver for either the pressure correction equation or when using
the semi-implicit discretisations.

Development of the method was not without its problems, many of which were due
to the reliance on the existence of a dual orthogonal mesh. Problems were eradicated
one by one as they occurred through program testing, the initial hurdle of course was
the accurate representation of the discretisations efficiently in Fortran 90 code. When
unsteady flow cases were attempted, issues arose in the correct determination of bound­
ary conditions. It was the use of more complex geometries that really pushed the code,
many problems were discovered at this stage, including the need for hybrid meshes, the
high dependence on dual orthogonal meshes.

A summary of the various stages of the unstructured MAC solver and the purpose
of their development is now presented:

• Explicit Solver: The explicit solver is the most robust piece of code developed. A

139

8. Conclusion

high degree of testing was carried out using this code, with many errors and prob­
lems being discovered as a result. At each stage problems where identified and
solutions were found, starting from the correct representation of boundary con­
ditions to the high dependency on dual orthogonal meshes. The limitation of the
explicit scheme is its use with hybrid stretched meshes, due to the quadrilateral
elements having short edges and the huge restriction placed on the time step size.
This restriction cannot be solved by element merging and so the semi-implicit
discretisation has been developed. A further restriction on the solver which is
not limited to the explicit time stepping case, is the mesh quality. Meshes that
are close to fulfilling the dual orthogonal quality are needed, not only to keep the
solution accurate but in some cases to produce a stable solution as demonstrated
by the SD7003 test case. In this test case if bad elements are located next to the
aerofoil, i.e. in a area of high flow activity, then a stable solution was not possible.

• Inviscid Scheme: Inviscid flows can be simulated by not calculating the viscous
term and removing the viscous time step. The boundary conditions must also
be altered to allow for an inviscid wall. The inviscid scheme is only tested via
one example which shows very successful results, a solution very close to the
analytical is observed.

• Pressure Correction Equation Solvers: Solving the pressure correction equation
requires the most computational effort out of all the stages in the MAC algorithm.
The results comparing the use of a conjugate gradient solver compared to the
direct solver demonstrate this is the case.

• Hybrid Meshes: The unstructured MAC solver has the capability for processing
hybrid meshes. A desirable quality for the solver as it makes the simulation of
viscous flows possible.

• Semi-Implicit Discretisation: The semi-implicit discretisation was the final stage
of the project, where testing is not as complete as for the explicit case, but suc­
cessful results are observed. The semi-implicit time stepping scheme was devel­
oped to solve the problem with highly stretched meshes in the explicit scheme.
The approach worked, making it possible to use time steps of an order of magni­
tude larger for certain test cases. The implicit scheme does not perform as well
on the more ‘simple’ test cases. The lack of speed improvement is possibly due
to convective time step size being more dominant than the viscous time step. In

140

this case the explicit scheme will outperform the semi-implicit scheme as there
are no extra overheads in solving the system. The explicit scheme also allows
adaptive time stepping, as the minimum possible time step may change from iter­
ation to iteration. In the afore mentioned test cases, it is possible that larger time
steps maybe used than those calculated at the beginning of an implicit solution.
The purpose of introducing implicit time stepping was to allow the solution of
problems using stretched meshes. This goal was achieved and the results for the
SD7003 test case compared reasonably well to the literature. The development of
semi-implicit time stepping occurred late on in the research and so further testing
is still required. The range of results in the cylinder test case identifying an area
where further investigation is required, although these could be interpreted as the
effect of varying time accuracy of the various time stepping schemes.

• Dual orthogonal meshes: The creation of meshes is not within the scope of this
thesis, however, for completeness, meshing techniques are discussed. A comment
should be made on the need for dual orthogonal meshes, testing of the MAC al­
gorithm revealed how important this was. The main cause of instability of the
algorithm was identified by the author as being the presence of obtuse triangles,
defined here as bad elements. Crude fixes for these bad elements were imple­
mented into the MAC solver, however, it is the work of Walton [72] that allowed
the used of his modified cuckoo search [99] to optimise general meshes.

• Free surface tracking: An experimental free surface tracking approach was im­
plemented using marker particles. Initial results demonstrate the tracking of a
moving surface but these are not validated and more complex problems have not
been tested.

Testing of the MAC solver revealed the cases in which it performs best. For small
regular domains, the recorded run times are short, particularly when the MA57 direct
solver is used to solve the pressure correction equation. Even in this small test cases
the comparison with the CG solver demonstrates the need for an efficient linear solver
for the pressure correction equation. It is possible that an iterative solver with more
optimised code could be more comparable to the direct solver.

A problem arose when trying to simulate high Reynolds number flows using more
complex geometries, where providing a suitable mesh was a major difficulty. Mesh op­
timisation techniques presented a way forward and allowed the use of highly stretched
elements around submerged bodies. As demonstrated for the SD7003 case, the use

141

8. Conclusion

of stretched elements around the aerofoil allowed better capturing of the lift and drag
forces. Results in cases using the stretched meshes showed a huge slow down in the
method due to the short mesh edges, creating very small time steps. This was later
solved by the use of a semi-implicit scheme, which as a result, sped up some previous
simulations. The speed up is again governed by the choice of linear solver, although
multiple were not tested, to get the best run times an efficient solver for the semi-implcit
system needs to be implemented. It is possible that even in the slow stretched meshes
cases that if an efficent solver is not used then the semi-implicit method will still be
slower that the explicit scheme.

Using the semi-implcit scheme with the MA41 solver to solve the system did not
always improve the run times when compared to the explicit scheme. This is usually
the case for the test problems on more regular meshes. Therefore it can be concluded
that the choice of time stepping scheme is problem dependent.

Overall, the method shows promise, but its reliance on a dual orthogonal mesh
presents a major limitation. The method is also only between 1st and 2nd order ac­
curate due to the central difference discretisations, thus, the method perhaps presents its
best application when fast simulations are required many times for one chosen problem.
In this case, a working mesh can be created and a problem re-run using the same mesh.
High accuracy is not always desired especially when only an indicator on the fluids be­
haviour is required. Its use for problems that require a higher order of accuracy my not
be ideal unless methods that introduce higher order accuracy can be implemented.

Future development of the unstructured MAC method depends on the desired appli­
cation, if environmental flows are being considered perhaps free surface implementation
will be beneficial. If aerospace applications are being considered then reducing the de­
pendency on the mesh and improving the accuracy would be ideal. Of course there are
many improvements that could be applied to both. Things to consider are as follows:

• Further investigation o f the semi-implicit scheme: Highlighted in the results are
areas where the semi-implicit scheme does not perform as expected. These results
required further investigation to ensure a robust semi-implicit solver.

• Three Dimensions: The obvious extension with the work is to add the third di­
mension. The problems with the meshing in two dimensions meant that this
project did not move to three dimensions. Instead, testing and validation of the
two dimensional solver to obtain a more robust algorithm was undertaken. The
discretisations in three dimensions are not perceived to be the difficult element,

142

Cavendish et.al. [65] has devised the three dimensional discretisations on the De-
lauany tetrahedral mesh. The difficulty envisaged with the the unstructured MAC
algorithm in three dimensions is in producing a suitable dual orthogonal mesh.
The work by Xie [98] using Voronoi weighting to produce these types of meshes
and the work by Walton [72] has been extended to three dimensional meshes, so
optimisation of the mesh should be possible.

• Compressible Flow: The use of the MAC discretisations could be investigated for
use with compressible flow. Identifying whether the same computational savings
can be achieved, there would of course need to be further alteration to the MAC
algorithm.

• Turbulence Model: To simulate turbulence flows, a turbulence model could be
added to the code.

• Free surface: Free surface flows have already been experimented with. The dif­
ficulty with them is in correctly capturing the position of the free surface. The
Volume of Fluid method [50] is one of the most widely used, however, it is
mostly used with Cartesian grids and so the sophisticated interface capturing tech­
niques are designed with that in mind. However there do exist interface capturing
techniques for unstructured grids, some based on those developed for Cartesian
grids [53]. Others combine the VOF method with other techniques such as the
level set method [55]

• Parallelisation: To further improve the speed of the algorithm, the code could be
parallelised. An investigation would need to be carried out on the best possible
way of achieving this, whether the domain being split or whether there are certain
sections of the code that can be run at the same time.

• Pressure Correction Equation Solvers: An investigation could be carried out into
the best solver for the pressure correction equation. As it stands, only the conju­
gate gradient method and a very efficient direct solver have been implemented.
Since the direct solver has been highly developed [86], it likely that others will
perform to a similar degree of efficiency. There are a vast number of iterative
schemes that perform better than the conjugate gradient method, the disadvantage
however, being that the solution will not be exact. There is also the consideration
of what method will be most efficient in three dimensions, if that avenue was to
be investigated.

143

8. Conclusion

• Applications: This focus of this thesis has been the development of the method
rather than the applications it is best suited to. Future work could used the method
for simulation of real engineering problems, the results of which would further
validate any benefits of the unstructured MAC algorithm over other incompress­
ible fluid solvers.

To summarise, the unstructured MAC method demonstrates potential. Areas for further
development have been highlighted which further the capabilities of the unstructured
MAC method.

144

Bibliography

[1] U. Ghia, K. N. Ghia, and C. T. Shin. High-re solutions for incompressible flow
using the navier stokes equations and a multigrid method. Journal o f Computa­
tional Physics, 48:387—411, 1982.

[2] K. Morgan and J. Peraire. Unstructured grid finite element methods for fluid
mechanics. Reports on Progress in Physics, 61:569-638, 1998.

[3] UIUC Airfoil Data Site, http://www.ae.illinois.edu/m-selig/index.html.

[4] P. Castonguay, C. Liang, and A. Jameson. Simulation of transitional flow over
airfoils using the spectral difference method. In AIAA 2010-4626, 40th Fluids
Dynamics Conference and Exhibit, Chicago, Illinois, 2010.

[5] I. H. Abbott and A. E. Von Doenhoff. Theory o f Wing Sections. Dover, 1959.

[6] A. Belov, L. Martinelli, and A. Jameson. A new implicit algorithm with multigrid
for unsteady incompressible flow calculations. AIAA paper 95-0049, 1995.

[7] S. W. Kim and T. J. Benson. Comparison of the smac, piso and iterative time-
advancing schemes for unsteady flow. Computers and Fluids, 21:435-454,1992.

[8] G. K. Batchelor. Fluid Dynamics. Combridge University Press, 1967.

[9] J. A. Anderson. Computational Fluid Dynamics: The Basics with Applications.
McGraw-Hill International Editions, 1995.

[10] J. .H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics.
Springer, 2002.

[11] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid
Dynamics The Finite Volume Method. Pearson, Prentice Hall, 2007.

[12] F.H.Harlow and J.E.Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. The Physics o f Fluids, 8:2182-
2189, 1965.

[13] M. F. Tome and S. McKee. Gensmac: A computational maker and cell method
for free surface flows in general domains. Journal o f Computational Physics,
110:171-186, 1994.

145

Bibliography

[14] H. Miyata, S. Nishimura, and A. Masuko. Finite difference simulation of non­
liner waves generated by ships of arbitrary three-dimensional configuration.
Journal o f Computational Physics, 60:391-436, 1985.

[15] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, 1980.

[16] P. J. Roache. Computational Fluid Dynamics. N.M: Hermosa Publishers, 1972.

[17] N. P. Weatherill. Delaunay triangulation in computational fluid dynamics. Com­
puters and Mathematics with Applications, 24:129-150, 1992.

[18] M. E. Braaten and W. Shyy. Comparison of iterative and direct solution methods
for viscous flow calculations in body-fitted co-ordinates. International Journal
for Numerical Methods in Fluids, 6:325-349, 1986.

[19] B. L. Lapworth. Examination of the pressure oscillations arising in the computa­
tion of cascade flow using a boundary-fitted co-oredinate system. International
Journal for Numerical Methods in Fluids, 8:387-404, 1988.

[20] T. Ikohagi and B. R. Shin. Finite-difference schemes for steady incompressible
navier-stokes equations in general curvilinear coordinates. Computers and Flu­
ids, 19:479-488, 1991.

[21] P. P. Patil and S.Tiwari. Computation of flow past complex geometries using
mac algorithm on body-fitted coordinates. Engineering Applications o f Compu­
tational Fluid Mechanics, 3:15-27, 2009.

[22] J. F. Thompson, B. Soni, and N. Weatherill. Handbook o f Grid Generation. CRC
Press LLC, 1999.

[23] J. Peraire, J. Peiro, and K. Morgan. Advancing Front Grid Generation, chap­
ter 17, pages 17-1 - 17-22. CRC, 1999.

[24] I. Sazonov, D. Wang, O. Hassan, and K. Morgan. A stitching method for the gen­
eration of unstructured meshes for use with co-volume solution techniques. Com­
puter Methods in Applied Mechanics and Engineering, 195:1826-1845, 2006.

[25] L. Cheng and S. Armfield. A simplified marker and cell method for unsteady
flows on non-staggered grids. International Journal for Numerical Methods in
Fluids, 21:15-34, 1995.

[26] T. M. Shih, C. H. Tan, and B. C. Hwang. Effects of grid staggering on numerical
schemes. International Journal o f Numerical Methods in Fluids, 9:193-212,
1989.

[27] P. M. Gresho and R. L. Sani. Incomressible Flow and the Finite Element Method:
Volume Two, Isothermal Laminar Flow. Wiley, 2000.

146

Bibliography

[28] A. J. Chorin. Numerical solution of the navier-stokes equations. Mathematics o f
Computation, 22:745-762, 1968.

[29] J. Peraire, M. Vahati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing
for compressible flow computations. Journal o f Computational Physics, 72:449-
466, 1987.

[30] K. Mason, O. Hassan, and K. Morgan. Selective use of higher-order reconstruc­
tion within an edge-based finite volume scheme for aerodynamic computations.
In Proceedings o f the 16th International Conference on Finite Elements in Flow
Problems, March 23-25, Munich, Germany, 2011.

[31] C. E. Scheidegger, J. L. D. Comba, and R. D. de Cunha. Practical cfd simulations
on programmable graphics hardware using smac. Computer Graphics Forum,
4:715-728, 2005.

[32] A. J. Chorin. A numerical method for solving incompressible viscous flow prob­
lems. Journal o f Computational Physics, 135:118-125, 1997.

[33] Y. Kallinderis and H. T. Ahn. Incompressible navier-stokes method with general
hybrid meshes. Journal o f Computational Physics, 210:75-108, 2005.

[34] A. Jameson. Time dependent calculations using mulitgrid, with applications to
unsteady flows past airfoils and wings. AIAA paper 951-1596, 1995.

[35] P. Gresho. On the theory of semi-implicit projection methods for viscous in­
compressible flow and its implementation via a finite element method that also
introduces a nearly consistent mass matrix, part 1: Theory. International Journal
o f Numerical Methods for Numerical Methods in Fluids, 11:587-620, 1990.

[36] M. F. Tome, B. Duffy, and S. McKee. A numerical technique for solving unsteady
non-newtonian free surface flows. Journal o f Non-Newtonian Fluid Mechanics,
62:9-34, 1996.

[37] A. Amsden and F. Harlow. A simplified mac technique for incompressible fluid
flow calculations. Journal o f Computational Physics, 6:322-325, 1970.

[38] S. McKee and Et. Al. The mac method. Computers and Fluids, 37:907-930,
2008.

[39] M. O. Deville. Numerical experiments on the mac code for a slow flow. Journal
of Computational Physics, 15:362-374, 1974.

[40] W. E. Pracht. A numerical method for calculating transient creep flows. Journal
o f Computer Physics, 7:46-60, 1971.

[41] V. Armenio. An improved mac method (simac) for unsteady high-reynolds free
surface flows. International Journal for Numerical Methods in Fluids, 24:185-
214, 1997.

147

Bibliography

[42] M. F. Tome, A. C. Filho, J. A. Cuminato, N. Mangiavacchi, and S. McKee. Gens-
mac3d: a numerical method for solving unsteady three-dimensional free sur­
face flows. International Journal for Numerical Methods in Fluids, 37:747-796,
2001.

[43] M. F. Tome, N. Mangiavacchi, J. A. Cuminato, A. Castelo, and S. McKee. A fi­
nite difference technique for simulating unsteady viscoelastic free surface flows.
Journal o f Non-Newtonian Fluid Mechanics, 106:61-106, 2002.

[44] S. McKee, M .F. Tome, J. A. Cuminato, A. Castelo, and V. G. Ferreira. Recent
advances in the marker and cell method. Archives o f Computational Method in
Engineering, 11:107-142, 2004.

[45] C. M. Oishi, J. A. Cuminato, J. Y. Yuan, and S. McKee. Stability of numeri­
cal schemes on staggered grids. Numerical Linear Algebra with Applications,
15:945-967, 2008.

[46] C. M. Oishi, J. A. Cuminato, V. G. Ferreira, M. F. Tome, and A. Castelo. A
stable seni-implicit method for free surface flows. Journal o f Applied Mechanics,
73:940-948, 2006.

[47] C. M. Oishi, J. A. Cuminato, V. G. Ferreira, A. Castelo, and M. F. Tome. Imple­
menting implcit schemes in gensmac. TEMA, 5:259-268, 2004.

[48] B. D. Nichols and C. W. Hirt. Improved free surface boundary conditions for
numerical incompressible-flow calculations. Journal o f Computational Physics,
8:434-^448, 1971.

[49] H. Miyata. Finite difference simulation of breaking waves. Journal o f Computa­
tional Physics, 65:179-214, 1986.

[50] C. W. Hirt and B. D. Nichols. Volume of fluid (vof) method for the dynamics of
free boundaries. Journal o f Computational Physics, 39:201-225, 1981.

[51] O. Ubbink and R. I. Issa. A method for capturing sharp fluid interfaces on arbi­
trary meshes. Journal o f Computational Physics, 153:26-50, 1999.

[52] W. J. Rider and D. B. Kothe. Reconstructing volume tracking. Journal o f Com­
putational Physics, 141:112-152, 1998.

[53] M. Huang, B. Chen, and L. Wu. A slic-vof method based on unstructured grids.
Mircogravity Sci. Technol., 22:305-314, 2010.

[54] S. Osher and R. O. Fedkiw. Level set methods: An overview and some recent
results. Journal o f Computational Physics, 169:463-502, 2001.

[55] X. Lv, Q. Zou, Y. Zhao, and D. Reeve. A novel coupled level set and volume
of fluid method for sharp interface capturing on 3d tetrahedral grids. Journal o f
Computational Physics, 229:2573-2604, 2010.

148

Bibliography

[56] H. Y. Yoon, I. K. Park, Y. J. Lee, and J. J. Jeong. An unstructured smac algorithm
for thermal non-equilibrium two-phase flows. International Communications in
Heat and Mass Transfer, 36:16-24, 2009.

[57] R. A. Nicolaides, T. A. Porsching, and C. A. Hall. Covolume methods in compu­
tational fluid dynamics. In Computational Fluid Dynamics Review, pages 279-
299. John Wiley, New York, 1995.

[58] R. A. Nicolaides. Flow discretization by complementary volume techniques. In
Proc. 9th AIAA CFD Meeting, volume AIAA Paper 89-1978, 1989.

[59] R. A. Nicolaides. Direct discretization of planar div-curl problems. SIAM Jour­
nal o f Numerical Analysis, 1:32-56, 1992.

[60] R. Nicolaides and D. Wang. A higer order covolume method for planar div-curl
problems. International Journal for Numerical Methods in Fluids, 31:299-308,
1999.

[61] S. Choudhury and R. A. Nicolaides. Discretization of incompressible vorticity-
velocity equations on triangular meshes. International Journal for Numerical
Methods in Fluids, 11:823-833, 1990.

[62] R. A. Nicolaides. Analysis and convergence of the mac scheme 1. the linear
problem. SIAM Journal o f Numerical Analysis, 29:1579-1591, 1992.

[63] R. A. Nicolaides and X. Wu. Analysis and convergence of the mac scheme 2.
navier-stokes equations. Mathematics o f Computation, 65:29^44, 1996.

[64] C. A Hall, J. C. Cavendish, and W. H. Frey. The dual variable method for solving
fluid flow difference equations on delaunay triangles. Computers and Fluids,
20:145-164, 1991.

[65] J. C. Cavendish, C. A. Hall, and T. A. Porsching. A complementary volume ap­
proach for modelling three-dimensional navier-stokes equations using dual de-
launay/voronoi tessellations. In The Mathematics o f Finite Elements and Appli­
cations, pages 255-266. John Wiley & Sons Ltd, 1994.

[66] C. A. Hall, T. A. Porsching, and G. L. Mesina. On a network method for un­
steady incompressible fluid flow. International Journal for Numerical Methods
in Fluids, 15:1383-1406, 1992.

[67] B. Perot. Conservation properties of unstructured staggered mesh schemes. Jour­
nal o f Computational Physics, 159:58-89, 2000.

[68] D. Vidovic, A. Segal, and P. Wesseling. A superlinearly convergent finite volume
method for the incompressible navier-stokes equations on staggered unstructured
grids. Journal o f Computational Physics, 198:159-177, 2004.

149

Bibliography

[69] I. Wenneker, A. Segal, and P. Wesseling. Conservation properties of a new un­
structured staggered scheme. Computers and Fluids, 32:139-147, 2003.

[70] X. Zhang, D. Schmidt, and B. Perot. Accuracy and conservation properties of a
three-dimensional unstructured staggered mesh scheme for fluid dynamics. Jour­
nal o f Computational Physics, 175:764-791, 2002.

[71] B. Perot and R. Nallapati. A moving unstructured staggered mesh method for
the simulation of incompressible free-surface flows. Journal o f Computational
Physics, 184:192-214, 2003.

[72] S. Walton, O. Hassan, and K. Morgan. Reduced order mesh optimisation using
proper orthogonal decomposition and modified cuckoo search. Article in pro­
duction. to be submitted.

[73] R. Pritchard, O. Hassan, and K. Morgan. A computational method for the sim­
ulation of incompressible flow on triangular meshes. In proceedings o f the 18th
Annual Conference o f the Association o f Computational Mechanics in Engineer­
ing, University o f Southampton, 29-31 March, 2010.

[74] R. Pritchard, O. Hassan, and K. Morgan. An efficient marker and cell solver for
unstructured hybrid meshes. In Proceedings o f the 16th International Conference
on Finite Elements in Flow Problems, March 23-25, Munich, Germany, 2011.

[75] K. A. S0rensen. A multigrid procedure for the solution o f compressible fluid
flows on unstructured hybrid meshes. PhD thesis, University of Wales, Swansea,
2002.

[76] Z. Zhang. The Simulation o f 3D Unsteady Incompressible Viscous Flows with
Moving Boundaries on Unstructured Meshes. PhD thesis, Swansea University,
2007.

[77] G. D. Smith. Numerical Solution o f Partial Differential Equations: Finite differ­
ence methods. Oxford University Press, 1999.

[78] E. Suli and D. Mayers. An Introduction to Numerical Analysis. Cambridge
University Press, 2006.

[79] B. M. Irons. A frontal solution program for finite element analysis. International
Journal for Numerical Methods in Engineering, 2:5-32, 1970.

[80] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, 1986.

[81] 2nd. Ed., editor. Numerical Recipies in Fortran: The art o f scientific computing.
Cambridge University Press, 1992.

150

Bibliography

[82] I. S. Duff and J. K. Reid. The mulitfrontal solution of indefinite sparse symmet­
ric linear euqations. ACM Transactions on Mathematical Software, 9:302-325,
1983.

[83] I. S. Duff. Ma57 - a code for the solution of sparse symmetric definite and
indefinite systems. ACM Transactions on Mathematical Software, 30:118-144,
2004.

[84] T. A. Davis adn I. S. Duff. A combined unifrontal/mulitfrontal method for un-
symmetric sparse matrices. ACM Transactions on Mathematical Software, 25:1—
20, 1999.

[85] W. H. Liu. The multifrontal method for sparse matrix solution: Theory and
practical. SIAM Review, 34:82-109, 1992.

[86] Hsl, a collection of fortran codes for large-scale scientific computation, see
http://www.hsl.rl.ac.uk/.

[87] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-
PACK Users' Guide. Society for Industrial and Applied Mathematics, Philadel­
phia, PA, third edition, 1999.

[88] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th
century. Journal o f Computational and Applied Mathematics, 123:1-33, 2000.

[89] Y. Saad. Interative Methods for Sparse Linear Sytems. PWS Pub. Co., Boston,
1996.

[90] J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain. 1994.

[91] J. A. Meijrink and H. A. van der Vorst. An interative solution method for linear
systems of which the coefficient matrix is a symmetric m-matrix. Mathematics
o f Computation, 31:148-162, 1977.

[92] O. Soto, R. Lohner, and F. Camelli. A linelet preconditioner for incompressible
flow solvers. International Journal o f Numerical Methods for Heat & Fluid
Flow, 13:133-147, 2003.

[93] P. Chin, E. F. D’Azevedo, P. A. Forsyth, and W. P. Tang. Preconditioned conju­
gate gradient methods for the incompressible navier-stokes equations. Interna­
tional Journal for Numerical Methods in Fluids, 15:273-295, 1992.

[94] R. Aubry, F. Mut, R. Lohner, and J. R. Cebral. Deflated preconditioned conjugate
gradient solvers for the pressure-poisson equation. Journal o f Computational
Physics, 227:10196-10208, 2008.

151

Bibliography

[95] M . Benzi. Preconditioning techniques for large linear systems: A survey. Jour­
nal o f Computational Physics, 182:418^477, 2002.

[96] R. Lohner. Applied CFD Techniques: An Introduction based on Finite Element
Methods. Wiley, 2001.

[97] F. Aurenhammer and H. Edelsbrunner. An optimal algorithm for constructing
the weighted voronoi' diagram in the plane. Pattern Recognition, 17:251-257,
1984.

[98] Z. Xie, O. Hassan, and K. Morgan. Tailoring unstructured meshes for use with
a 3d time domain co-volume algorithm for computational electromagnectics. In­
ternational Journal o f Numerical Methods in Engineering, 2010.

[99] S. Walton, O. Hassan, K. Morgan, and M. R. Brown. Modified cuckoo search: A
new gradient free optimisation algorithm. Chaos, Solitons and Fractals, 44:710-
718, 2011. Awaiting publication.

[100] S. Walton, O. Hassan, and K. Morgan. Using proper orthogonal decomposition
to reduce the order of optimization problems. In W. A. Wall and V. Gravemeier,
editors, Proceedings o f the 16th International Conference on Finite Elements in
Flow Problems, March 23-25, Munich, Germany, page 90, Munich, 2011.

[101] B. Munson, D. Young, and T. Okiishi. Fundamentals o f Fluid Mechanics. Wiley,
5th edition, 2006.

[102] B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schonung. Experimental and theo-
rectical investigation of backward-facing step flow. Journal o f Fluid Mechanics,
127:473-496, 1983.

[103] J. H. Lienhard. Synopsis of lift, drag and vortex frequency data for rigid circular
cylinders. Technical report, Washington State University, 1966.

[104] X. Zhang, S. Ni, and G. He. A pressure correction method and its applications
on an instructured chimera grid. Computers and Fluids, 37:993-1010, 2008.

[105] P. De Palma, M. D. de Tullio, G. Pascazio, and M. Napolitano. An immersed-
boundary method for compressible viscous flows. Computers and Fluids,
35:693-702, 2006.

[106] R. Codina, H. Coppola-Owen, P. Nithiarasu, and C. B. Liu. Numerical com­
parison of cbs and sgs as stabilization techniques for the incompressible navier-
stokes equations. International Journal for Numerical Methods in Engineering,
66:1672-1689, 2006.

[107] M. N. Linnick and H. F. Fasel. A high-order immersed interface method for sim­
ulating unsteady incompressible flows on irregular domains. Journal o f Compu­
tational Physics, 204:157-192, 2005.

152

Bibliography

[108] C. Liu, X. Zheng, and C. H. Sung. Preconditioned multigrid methods for un­
steady incompressible flows. Journal o f Computational Physics, 139:35-57,
1998.

[109] H. Pan and M. Damodaran. Parrallel computation of viscous incompressible
flows using godunov-projection method on overlapping grids. International
Journal For Numerical Methods in Fluids, 39:441-463, 2002.

[110] C. Kiris and D. Kwak. Numerical solution of incompressible navier-stokes equa­
tions using a fractional-step approach. Computers and Fluids, 30:829-851,2001.

[111] A. Uranga, P. Persson, M. Drela, and J. Peraire. Implicit large eddy simulation
of transitional flows over airfoils and wings. In AIAA 2009-4131, 19th AIAA
Computational Fluid Dynamics, San Antonio, Texas, 2009.

[112] A. Uranga, P. O. Persson, M. Drela, and J. Peraire. Implicit large eddy simulation
of transition to turbulence at low reynolds number using a discontinuous galerkin
method. International Journal for Numerical Methods in Engineering, 87:232-
261,2011.

[113] M. Zhu, Y. Shimizu, and N. Nishimoto. Calculation of curved open channel flow
using physical curvilinear non-orthogonal co-ordinates. International Journal
fo r numerical methods in fluids, 44:55-70, 2004.

[114] T. Lehnhauser and M. Schafer. Efficient discretization of pressure-correction
equations on non-orthogonal grids. International Journal fo r Numerical Methods
in Fluids, 42:211-231, 2003.

[115] G. S. B. Lebon, M. K. Patel, and K. A. Pericleous. Investigation of instabilities
arising with non-orthogonal meshes used in cell centred elliptic finite volume
computations. Journal o f Algorithms & Computational Technology, 6:129-152,
2011.

[116] D. McBride, T. N. Cross, and M. Cross. A coupled finite volume method for
the solution of flow processes on complex geometries. International journal for
numerical methods in fluids, 53:81-104, 2007.

153

