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Summary

Photo-degradation reactions o f donor acceptor azo dyes in methanol solution have been

investigated. Irradiation o f the second absorption band was confirmed to be the predominant

cause o f permanent photo-fading under anaerobic and oxygenated conditions. Under anaerobic

conditions, 2 -nitro substituted azobenzenes and azothiophene dyes were the least lightfast, with

half-lives o f under one hour, whilst 4'-nitro substituted dyes had half-lives o f between 1 and 1.5

hours. Photo-degradation was retarded in the presence o f oxygen by between 4 and 16 times

relative to fading under anaerobic conditions. The photo-fading o f dyes deposited on various

substrates exhibited similar behaviour to dyes in methanol solution. UV/visible spectra showed

that 2 -nitro substituted dyes underwent complete loss o f intensity o f the visible absorption peak

and a corresponding increase in the absorption in the UV region o f the spectrum when irradiated

under anaerobic conditions, indicating cleavage at the azo bridge and subsequent formation of

mono-phenyl derivatives. In contrast, under oxygenated conditions, a gradual loss o f intensity at
I'txW.tX

the visible absorption maximum was observed, with no notable newly formed peaks jure detected 

in the UV region suggesting that cleavage at the azo bridge is less significant. The photo­

products o f the reaction are suggested to include the reduced form o f azo dyes containing nitro 

groups.

Theoretical semi-empirical AMI and ab initio calculations using the 3-21G basis set, 

predicted reasonable structures for the ground states o f dyes. Spectroscopic calculations using a 

version o f the CNDO/S method gave good correlations between calculated transition energies 

and experimental data obtained in cyclohexane. The results o f a multi electron configuration 

interaction treatment of AMI structures in the gas phase were inconsistent with experimental 

spectral data obtained in cyclohexane but improved correlations were obtained between 

calculated transition energies and experimental data in methanol. The structures and energies o f 

excited singlet and triplet states have also been calculated by the AMI method but no apparent 

correlation o f these energies with the lightfastness o f azo dyes could be identified. A tentative 

relationship between calculated distributions o f the unpaired electrons in the second excited 

triplet state and the site o f reactivity in the dyes was proposed.
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Chapter 1
Section 1.1 

Introduction

Among the properties desired in a dye, lightfastness is o f significant importance. Lightfastness is 

the stability of the dye to light. In other words, if a dye is subjected to irradiation resulting in 

permanent loss of colour or fading, then the rate and degree of this fading determines the 

lightfastness o f the dye. Lightfastness is very important in the dyestuff industry, as manufacturers 

require fade resistant dyes for materials, textiles, inks etc. and it is desirable to produce dyes with 

high lightfastness. It is common experience that dyed fabrics fade or change colour to 

commercially unacceptable shades on exposure to sunlight. Dyes in polymer and paper substrates 

may also experience photofading. Much research has therefore, been devoted towards producing 

dyes with higher lightfastness than dyes which are currently used in industry.1’2,3’4’5,6 

The lightfastness of a dye is influenced by a number o f factors including the physical structure o f 

the substrate and its chemical nature, the relative humidity and the presence o f moisture in the 

substrate, the chemical constitution of the dye, the wavelength and intensity o f the light used for 

fading, the presence or absence of oxygen and its concentration, the physical state o f the adsorbed 

dye and the dying method.

Dye lightfastness can differ depending on the application for the dye. For example, in textile 

dyeing, the photofading mechanism of a dye may be different on non-protein materials like 

cellulose, to protein substrates such as wool.7 This means that the same dye could have different 

lightfastness ratings on different materials. Another example o f this is that dyes which exhibit 

good lightfastness in textiles frequently display poor lightfastness in printing applications. This is 

attributed to the different distribution o f the dye in printing, where the dye layer is at the surface 

and only a few microns thick, while in the textile fibre, the dye is distributed homogeneously 

through a much thicker fibre. Thus, whilst fading o f the top few microns o f dye in a print can be 

catastrophic, the same degree of fading within a textile fibre may not be noticeable.8
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Ink-jet technology9

Ink jet dyes with improved lightfastness properties are o f considerable interest to industry, 

including the sponsors of this project, Avecia (formally Zeneca Specialities). Ink jet printing 

combines low cost, full colour and high quality and is becoming the dominant technology for low 

to medium speed printing. It is therefore highly suitable for use in the home in combination with 

personal computers.

The first successful ink-jet technology products were developed by Enquist in 195110.Many large 

companies such as Hewlet Packard and Dataproducts (formally Exxon), Cannon, Seiko Epson, 

BASF and Avecia are involved in this technology. The majority o f new developments in this 

technology are centred around dyes, dye synthesis, dye mixtures and dye purification.11 

The system used to apply the ink to the substrate, usually paper, is called drop-on-demand 

technology. Here the ink droplets are ejected onto the substrate (paper) at the desired position to 

form the image. The drop on demand system can be divided into 2 further classes; piezo and 

thermal (bubble jet). In the bubble jet system, thousands o f temperature rises per second in a 

heater at the tip o f the printer nozzle produce tiny bubbles. The bubbles cause a pressure increase 

which results in the ejection of a fine ink droplet onto the paper. In piezo systems, a piezo electric 

crystal is deformed by an electric signal. This deformation produces a pressure wave in the ink 

causing a droplet to be ejected onto the paper. Piezo systems may be classified further according 

to the type o f ink used in the system.

Piezo systems can use three types o f ink:

1. Aqueous based inks.

2 . Solvent based inks.

3. Hot melts (solid inks which form a fluid ink on heating which cools and solidifies on the 

substrate).

Good ink-jet dyes must have good solubility either in water for aqueous inks, or in solvents such 

as ethanol, for solvent based inks. This prevents crystallisation o f the dye which blocks the 

nozzles of the inkjet printer.12

In addition to this, ink-jet dyes must have good wet fastness, smear fastness and lightfastness. 

This can be a particular problem for aqueous dyes, as these dyes must be sufficiently soluble for 

compatibility with the printer, but should also be reasonably resistant to smearing or smudging. 

Solvent based dyes do not suffer from this problem as they are insoluble in water.
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Dyes

Black, yellow, cyan and magenta dyes are used in ink-jet printing, with the three secondary 

colours required to create full colour printing. Dyes which have narrow absorption bands and no 

secondary visible absorptions are preferred, as these have a brighter colour. Unfortunately bright 

dyes often have poor lightfastnesss.9 Ink-jet dyes should have good colour or tinctoral strength, in 

other words, the dye should have an intense visible absorption giving it a strong colour. Dyes also 

need to have the same shade o f colour on different substrates, for example on papers with 

different pH, different additives and different adsorption and texture properties. They should also 

be stable to temperatures of up to about 300 °C, which might be encountered in printing.

Black dyes used in inkjet printing are usually polyazo dyes such as the trisazo dye Cl Direct 

Black 154 (1-1) and the tetrakisazo dye Cl Direct Black 19 (1-2).

,CH3

nh2

HN-

HjC

SOsH

(1-1)

NH; N ■NH2■N,
•NH

N'

SOjH

(1-2)
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The dyes used for cyan are copper pthalocyanines such as Cl Direct Blue 199. This has the 

molecular formula CuPc(S03H)2S02NH2 , where CuPc = Copper pthalocyanine (1-3).

Cu,

(1-3)

The yellow dye used as standard in industry is Direct Yellow 86 (1-4).

N = <

HN'

(1-4)

An example o f a magenta dye used in ink-jet printing is Cl Acid Red (1-5). These acid type dyes 

exist predominantly in the hydrazone tautomeric form rather than the azo form.
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Other dyes such as the aminoazo dye (1-6) exist in the azo tautomeric form but these tend to be 

duller in shade than the acid dyes.

h2n ,

HO'

SOjH

(1-6)

The above mentioned dyes have been used in aqueous based inks and contain sulphonic acid 

(SO3H) groups to increase their solubility in water.

Solvent soluble inks are currently new to the market and the products are less well established, 

but it is likely that the dyes will be o f the solvent or disperse type and will probably include azo 

and anthraquinone dyes.

Black dyes often suffer from problems with toxicology, lightfastness, wet fastness and smear 

fastness. In contrast cyan dyes have a very strong bright colour and have good wet fastness and 

lightfastness properties making them excellent for use in inj-jet printing. The yellow dye, Direct 

Yellow 86 (1-4) has quite good wet and smear fastness properties and also has reasonable 

lightfastness. Finding a magenta dye with good lightfastness has proved much more difficult and 

the magenta dye, Cl Acid Red (1-5) suffers from poor lightfastness. This may be due to the 

hydrazone tautomeric form, in which (1-5) predominantly exists, being unstable towards light.9 

Other dyes such as the aminoazo dye (1-6) exist in the azo tautomeric form and have better 

lightfastness but are duller in shade than the acid dyes. A fully satisfactory magenta dye which is 

both bright in colour and has good lightfastness properties has not been produced yet. The yellow 

dyes and particularly the magenta dyes fade much more quickly than the highly stable cyan dyes, 

causing an unequal and undesirable fading.

Objectives of the research

Because of the problems with the lightfastness o f magenta dyes outlined above, Avecia, are 

interested in understanding the mechanism of photofading o f azo dyes, which would help in the 

design of better dyes than those currently in use.
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The aim o f this work is to look initially at a series o f substituted donor-acceptor azobenzenes like 

the one shown in Figure 1.1, and examine their stability towards light by both experimental and 

theoretical methods.

\
W /  r  \  /

56 \  // \

Figure 1.1 A donor-acceptor azobenzene containing an 4-dialkylamino group as the donor group 

and electron acceptor groups X or Y, for example NO2, at the 2 or 4 position.

Several papers have proposed mechanisms for the photofading reactions o f azo dyes on 

polyamide substrates 19,13,14 but the reaction on non protein substrates is less well understood and 

the fading products are not well established.15

By studying the dyes fading behaviour and identifying some o f the fading products o f their photo­

reactions it was hoped to suggest possible mechanisms for these photo-reactions.

Since the principle interest o f this research is in dyes for application in ink-jet printing, it would be 

preferable to study the fading behaviour o f azo dyes on paper. However, following the photo­

reaction involving the dye on paper and identifying the fading products is a complicated process. 

It was therefore decided to use a simpler model solvent system to mimic the fading on paper. The 

solvent chosen when modelling the system is very important, and the solvent should imitate the 

chemical nature of the paper substrate as far as possible.

Paper is a form of cellulose which is a plant material consisting o f macromolecules varying in 

molecular weight from several hundred to several thousand glucose units, 16e.g. Figure 1.2

OH

OH
OH

OH

Figure 1.2 The structure o f cellulose
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Cellulose contains multiple OH groups and a CH2OH group. Methanol also contains an OH 

group joined to an alkyl group, and should therefore have a some correlation with the properties 

o f cellulose. A better choice for a model solvent might have been ethylene glycol as it contains 

two hydroxy groups, but unfortunately the dyes to be studied have poor solubility in ethylene 

glygol. The solubility o f these dyes in methanol is comparatively good. It is also much easier to 

follow any fading behaviour in the solvent phase than on substrates. Thus methanol was chosen as 

a first approximation for the cellulose model system.

The irradiation source chosen to fade the dyes was a 1000 W xenon arc lamp. It has a similar 

irradiation profile to the sun in the 200 to 900 nm range, unlike the spiked output of an alternative 

mercury lamp, and should therefore imitate conditions under which natural solar fading would 

occur (see Figure 1.3 and Figure 1.4/ 17

8
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Figure 1.3 Spectrum of the solar radiation outside the earth’s atmosphere compared to the 

spectrum of a 5800 K blackbody. The surface temperature o f the sun is 5800 K, so the spectrum 

o f the radiation from the blackbody is similar.
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Figure 1.4 Spectral irradiance curves from 200 to 900 nm for 1000 W Xenon and Mercury arc

lamps.
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There are a vast number of publications on the relationship o f colour and constitution o f organic 

dyes,18’19’20,21 some of which have described theoretical methods for spectroscopic predictions of 

the visible absorption band.22,23 Relatively few o f these papers have focused on the relationship 

between lightfastness and structure24 and unlike spectroscopic properties there is no theoretical or 

semi empirical method for the prediction of lightfastness.

The objective o f this work therefore, was to explore the computational modelling techniques to 

| examine possible excited state species which might be involved in the photo-reactions of the dyes

| and to try and establish if there is a correlation between physical properties o f the excited states of
i
■ azo dyes, such as their relative energies, geometries, charge distribution etc., and lightfastness.

Section 1.2 

Azo dyes25

Azo dyes are by far the most important class of colouring matters. They are used in the coloration 

o f all types o f fibres, they provide many useful pigments and analytical colorimetric reagents. The 

versatility o f these dyes stems from the ease with which they can be manufactured; almost any 

diazotized aromatic amine can be coupled with a wide variety of stable nucleophilic unsaturated 

systems to give a coloured azo product.25

The synthesis is outlined in Scheme 1.1. The initial step shown in Scheme 1.1 is the formation o f a 

diazonium compound from an aromatic amine, using hydrochloric and nitric acids at a 

temperature below 5°C. Above this temperature the diazonium compound formed can break 

down losing nitrogen. The diazonium salt is an electrophile which can attack a nucleophilic 

aromatic substrate known as the coupling component. The coupling component is usually a 

phenol, in the presence o f sodium hydroxide or an amine in the presence o f sodium acetate.

If the azo dye itself contains a primary amino group it too can form a diazonium salt which is then 

able to couple with another coupling component to give a bis azo dye.

10



The Synthesis of Azo Dyes

Q -NH,'S o r  0 _®=nc?

0 _^ nv_ X ^ £Sri
I

O — tO ^
H

■IT

O — \  / NR,

\  / N = N V / NH2

HC1
H N 02

O n=n \  /
®_ ©
n = ncT f> N R 2

N = NN = N

Scheme 1.1 Synthesis o f mono and bis azo dyes. 26

The diazotisation reaction involves the nitrosation o f a primary amine, followed by its 

deprotonation and dehydration as in Scheme 1.2.
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The rate determining step in this reaction is either the generation o f the the nitrosating species, or 

the nitrosation o f the primary amine R-NH2.27

H

r — n h 2
NOX

R — N = 0

H

R N N = 0  ' -  R------ N ^ = N ------ OH

HA

-§ = N /?

Scheme 1.2 The nitrosation and deprotonation o f a primary amine to give a diazonium salt.

This was concluded from experiments with the secondary amine N-methyl-aniline (1-7), which 

had a similar rate of nitrosation to aniline (1-8), but could not undergo the later steps o f the 

reaction.

(1-7) (1-8)

n h 2 H.. ^ C H 3 
N

A
l ^ lk A k A

There are several nitrosating agents commonly encountered, including N2O3, NOX, ON-OH2+, 

and NO+.

The rate o f reaction is strongly dependent on pH .27 At low acidities the rate is given by Equation 

(1-1), which reduces to Equation (1-2) in less acidic conditions.

Rate = k[HN02]2[ArNH2] Equation (1-1)

Rate = k[HN02] Equation (1-2)
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Here the rate determining step is a function o f the nitrosating species, which reacts with the amine 

as soon as it is formed. With non basic amines such as para-nitroaniline, Equation (1-2) is never 

adopted, even at low acidities, because o f the poor nucleophilicity o f the amine nitrogen. At 

higher acidities, the acidity o f the medium and the bascisity o f the amine have an effect on the rate 

o f reaction. Diazotisations are preferably carried out in dilute mineral acids (approximatly 2.5 

molar) at 0-5°C with concentrated sodium nitrite (NaNCb) solution. Concentrated acid, usually 

sulphuric acid, is used for non basic amines like poly-nitroanilines and heteroaromatic amines like 

aminodinitrothiophenes

Diazotisations in organic solvents with organic nitrites such as pentyl nitrite are usually only used 

for the preparation of solid diazonium salts in the laboratory. These are explosive, and hence the 

diazonium salt is usually used without isolation in industry. The diazonium salt is thus reacted in 

situ with the coupling component. Depending on the pH of the medium, the diazonium exists in 

equilibrium with the possible species (1-9), (1-10) and (1-11).27

©  O H  A t O H  A t  r
ArN2 ^   OH —   &

h 3o + h 3o  +

(1-9) (1-10) (1-11)

The common coupling components, amines (1-12) and phenols (1-14) also exist in equilibrium 

with the amonium salt (1-13) and the phenolate (1-15) respectively.

©
A t NR2 Ar-------NR2

H

(1-12) (1-13)

Ar OH -  ~  Ar (P
(1-14) (1-15)
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It is actually the species (1-12) and (1-15) that react with the diazonium salt. The pH o f the 

reaction is obviously very important. A pH of 4-10 is chosen for reaction o f the diazonium salt 

with phenols. The pH must not be too high, or the diazonium salt will decompose. For amines a 

pH range of between 4 and 7 is chosen as again the stability of the diazonium salt is poor above 

pH 7 and there is enough free amine to act in this range.

The rate o f reaction then satisfies Equation (1-3):

Rate = k[ArN2+][ArNR2] Equation (1-3)

The position on the coupling component at which electrophilic attack by the diazonium ion takes 

place may be related to the position of highest electron density. This is at the para position for 

amines and phenols but steric factors may influence the position o f attack. The reaction is also 

dependent on the reactivity o f the diazonium salt and the coupling component. The best 

diazonium salts are those that contain electron withdrawing groups, as these groups make the 

diazonium ion more electrophilic. For example the diazonium salt (1-16) reacts 105 times faster 

than (17).27

© ©
02N-ArN2 MeO-ArN2

(1-16) (1-17)

The best coupling components contain one or more donor substituent such as an amino group. 

These donor substituents increase the rate of reaction by increasing the electron density of the 

aromatic ring, making it more vulnerable to electrophilic attack.
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Donor-acceptor Azo dyes

Donor-acceptor dyes such as (1-18) are made up o f a donor group, often an amino or dialkyl 

amino group, that readily releases electrons, linked by an unsaturated bridge to an acceptor group.

_ /
/  \  • = •

\  /  N̂ _ / 2  3\ . _  /  5—6 N \
6 5

Et

Et

(1-18)

The lone pair o f the amino nitrogen, is aligned with the adjacent conjugated n system. The 

acceptor group is the phenyl ring (labelled C^C6) which may contain a substituent X and/or Y, 

where X and Y are electron withdrawing groups, for example a nitro or cyano groups. The -  

N=N- bridge serves to extend the conjugation o f the system moving the principle absorption band 

further into the visible region o f the spectrum.

The n electron system of donor acceptor azo dyes can be described by the three models illustrated 

in Figure 1.5.

NrrrTNrrrrR,

|Ar ^ N — N- Model A

Model B

Model C

Figure 1.5 The representation o f the % electron system o f donor acceptor azo dyes by 3

models. 49

The system of the substituted acceptor phenyl ring and the azo bridge can be regarded as a 

complex acceptor group, as there is a significant amount o f electron density going to the azo

15



group from the donor. This situation is described by Model A in Figure 1.5. This type of 

delocalisation might be seen in azo compounds such as (1-19) where the X-Ph-N=N- acts as a 

complex acceptor group.

(1-19)

If  there is no strongly electron withdrawing substituent present on the acceptor phenyl ring, then 

the n electron system may be described as Model B in Figure 1.5, where the azo moiety acts as 

the electron acceptor group. This situation might occur for compound (1-20), where there is no 

electron withdrawing group and delocalisation may be partially restricted to the movement of 

charge to the azo moiety and build up on the azo nitrogen attached to the acceptor phenyl ring.

N = N - NR-

If  however, a strong electron donor substituent is present on the donor phenyl ring and a strong 

electron acceptor substituent is present in the acceptor phenyl ring, then the azo group can be 

thought o f as losing its individuality and the azo dye n electron system may be considered as a 

whole, according to Figure 1.5 Model C. This type o f model describes the donor-acceptor dyes 

such as compound (1-21), in which X is a strong electron withdrawing substituent such as a nitro 

group. The migration o f electron density from the donor to acceptor group, that occurs during an 

electronic transition, can be represented by the canonical structures (1-21) and (1-22). This 

migration of electron density is often referred to as a charge transfer configuration, and charge 

transfer configurations contribute strongly to the lowest excited state o f donor acceptor 

azobenzenes. This charge transfer configuration results from mixing between the donor p* 

orbitals and the 7i-system of azobenzene. Donors o f low ionisation potential, such as amino and 

mercapto substituents, produce shifts o f the long wavelength absorption band to lower energies. 

Thus the energy o f the transition from the ground state to the excited state o f the dye will depend 

on the strength of both donor and acceptor groups and on the nature o f the bridging group o f the 

molecule. The colour o f the dye generally deepens with the strength o f the acceptor substituent.
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In the ground state 7t electrons in the molecule are polarized from the donor to the acceptor 

groups. The polarity of the molecule and thus its wavelength are increased by attaching electron 

withdrawing substituents to the acceptor phenyl ring (Ci-C6).

x̂ (  ) =N\ _  / '2 = \ft N M  / /  K  N = i  y = K
* r ff  V  5 8  \ _ /  V

6 5 6 ------- 5

(1-21) (1-22)

A shift to longer wavelength on substitution of electron withdrawing groups, such as X = NO2 or

X = CN into azo dyes like (1-21) can be described as a Bathochromic or Red shift, implying a

displacement o f the absorption band to longer wavelength or the red end o f the spectrum.

Generally, the stronger the electron withdrawing substituent, X, the larger the bathochromic effect

and the better the lightfastness.4’102. Some examples o f the effect o f substituents with different

electron acceptor strength on the wavelength and lightfastness o f the amino azo derivatives of

(1-23) are given in Table 1.1.

\  V VsC2H4CN
(1-23)

Table 1.1 Absorption maxima and lightfastness ratings o f para-substituted derivatives o f structure 

(1-23).4

X ?wnax (ethanol) Lightfastness Rating (polyester)

H 397 4

Cl 408 5

COOC2H5 422 4

CN 433 4-5

N 0 2 451 4-5
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From the values in Table 1.1, there is an obvious bathochromic shift with substituents o f 

increasing electron acceptor strength, while lightfastness ratings on polyester do not seem to differ 

greatly.

The nitro group is a strong acceptor group and dyes containing a para-nitro group are usually the 

most bathochromic and lightfast of their series. However, the position of the nitro group is all 

important, as shall be seen below. Correlations between Hammet a  constants and electron 

acceptor strength are reasonable,4’25,41’120’28 as a  constants are based on ground state properties, 

which may have little relevance to the excited state. Hammet a  constants are a measure o f the 

electronic effects o f substituents on a ring system. The magnitude o f the a  constant is related to 

the electron donating or withdrawing strength o f the substituents and their position on the ring i.e. 

ortho, meta or para. Some Hammet a  constants for substituents on azobenzenes are given in 

Table 1.2. Hydrogen has a o-constant o f zero and electron withdrawing substituents have 

positive and electron donating substituents negative a-constants, respectively.

Table 1.2 Hammet o-constants for meta and para substituents29

Substituent ^meta Opara

n h 2 -0.16 -0.66

OH 0.12 -0.37

c h 3 -0.07 -0.17

H 0.00 0.00

Cl 0.37 0.23

CH3CO 0.38 0.50

CN 0.56 0.66

N 0 2 0.71 0.78

Note the influence o f the position o f the substituent (meta or para) on the magnitude o f the a - 

constant. In general para substituents have a larger a-constants, particularly for electron donors. 

For compound (1-21), correlation between Xmax and Hammet a  constants for different 

substituents X show an expected red shift as electron withdrawing strength increases.19 Better 

correlations may be found with a  constants that take into account the inductive and resonance 

components, a* and a r respectively o f the substituent.19’41
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For X= F, Ph ,CF3, CN , NH2, NHAc , N 0 2, C 0 2Et, C 0 2', and S 0 3‘correlations are good, but for

other electron donors i.e. X= Me ,Et, MeO, PhO etc the correlation is worse. This implies that the 

resonance effect has a much greater influence on colour than the inductive effects. Resonance 

theory states that if an organic molecule can be represented as a hybrid o f 2 extreme canonical 

structures then the closer these are in energy, the smaller will be the gap between the ground and 

excited states, i.e. the more bathochromic the absorption will be. When several low energy 

resonance forms are available, it is assumed that the greater the number of these, the more 

bathochromic the molecule. Examination o f the spectra o f compound (1-24) and its meta and 

ortho isomers showed that the meta and ortho aminoazobenzenes were the most bathochromic, 

and the para the least. This is in direct contradiction with the predictions o f resonance theory. 

Resonance theory suggests that charge separated structures such as (l-24a) help to describe the 

first excited state, but PPP25 calculations show that in fa c t , electron density build up is greater at 

the a  azo nitrogen, and is much less significant at the (3 nitrogen atom than suggested by structure 

(l-24a). Therefore, resonance interpretations o f colour and colour change phenomena in azo dyes
25

must be treated with suspicion . PPP calculations on (1-24) also give better agreement with 

experimental spectra than resonance predictions.

(1-24) (l-24a)

Position of Substituents

The effect of placing more than one acceptor substituent into the acceptor ring and the position o f 

these substituents in the rings is exemplified by considering structure (1-25). The absorption 

maxima of the di-cyano aminoazobenzene derivatives30 o f (1-25) are listed in Table 1.3.



Table 1.3 Absorption wavelengths of cyano substituted aminoazobenzene dyes

Position of 

cyano-group (s)

A-max

(ethanol)

2 462

3 446

4 466

2,3 490

2,4 514

2,5 495

2,6 503

3,4 500

3,5 478

2,4,6 562

These values show that electron withdrawing groups are most favorable in the ortho and para 

positions and that the effects are additive, with more substituents producing larger bathochromic 

shifts. The A™* of the derivatives increases in the order 3'5' <2'3' <2'5' <3'4' <2'6' <2'4\ The above 

evidence suggests that electron withdrawing substituents in ortho and para positions on the 

acceptor ring produce the most bathochromic dyes. Indeed, electron withdrawing groups at the 2' 

and 6' positions on the acceptor ring of (1-26) may cause large bathochromic shifts - which are
19

not expected for Dewar's rules (see PMO theory).

o c h 3

Ha\  / ,=\.

/
(1-26)

Certain substituents may have an inductive or mesomeric effect depending on their position. The 

MeO for example, is an electron donor in the para position, but in the meta position it is a weak 

electron acceptor.
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Electron withdrawing groups in the ortho and para positions o f the acceptor ring enhance light 

fastness, whereas electron donors reduce it. The exception is the ortho nitro group which has 

poor lightfastness and a smaller bathochromic shift and a lower intensity, which may be due to its

steric interactions with the azo nitrogen.4 It has been suggested102 that the ortho nitro substituent 

may inhibit trans-cis isomerisation, which is a possible process for energy loss, thus increasing the

likelihood of rupture of the (3 C-N bond. The ortho nitro group also inhibits delocalisation o f
102

electrons between the azo nitrogen atoms according to Freeman and McIntosh, rendering the 

C-N bond on the coupler side more susceptible to photolytic cleavage. Alternatively, it may be 

able to cause an intramolecular oxidation.

So far, we have only mentioned the effect o f substituents on the acceptor ring. Increasing the 

number of substituents on the donor ring also affects the absorption wavelength, and possibly the 

lightfastness. Attachment o f electron withdrawing substituents to the donor residue usually results 

in a small shift to higher energies (shorter wavelengths) o f the absorption band. For example the 

azo dye (1-27), where X =H has an absorption wavelength o f 486 nm in ethanol51 whereas, when 

X is the electron withdrawing group NO2, (1-27) has a wavelength o f 470 nm in ethanol. This 

shift to shorter wavelengths is termed a Hypsochromic or Blue shift and implies the displacement 

of the absorption band to shorter wavelengths or the blue end o f the spectrum.25

x
(1-27)

The effect o f placing more than one donor group in the donor ring results in a shift o f the low 

energy absorption band to longer wavelengths. This is exemplified by considering the wavelength 

o f structure (1-27) when substituted by different X. The wavelength o f structure (1-27) when X = 

NEt2 is 542 nm in ethanol, compared with 486 nm when X = H .19

The most bathochromic dyes, i.e. dyes absorbing at ca 600 nm, should be heavily substituted with 

donor groups and preferably have at least 2 strong acceptors25, such as the blue mono azo dye 

(1-28), which absorbs at 600 nm in methanol.
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MeO ^ ,O M e

HOC2H4^  /  \  / 2 = = \
N 4\  /)--------N = N -------- a4------------------------ NOz

HOC2H4 \ y  w
\  /

NHAc EtHN02S

(1-28)

Dyes with more than one electron donating substituent such as (1-29), are predicted to absorb at 

even longer wavelengths. The A™,x o f (1-29) is predicted to be near 700 nm.19

Me2N

\ .- N = N  (v  NCI2

W  V ./
(1-29)

'6\ NMez

19
In comparison, (1-30), with only one donor amino group, has at 457 nm in cyclohexane, 

illustrating how the number o f amino and alkoxy groups and their placement at resonating 

positions affect the position o f absorption maxima.

Et\ ^  /)--------N = N -------- /)-------------------------NO,

(1-30)

With respect to lightfastness, electron acceptor substituents generally enhance dye lightfastness.

On polyamide fabrics, like nylon, however, ortho and meta electron acceptor groups appear to
108

reduce lightfastness but para acceptor groups enhance it. This behaviour may also be seen in 

certain selected solvents.

The above evidence suggests that electron withdrawing substituents in ortho and para positions 

on the acceptor ring (with the exception o f the 2-nitro group) produce the most bathochromic 

and lightfast dyes. However, too many electron withdrawing groups can reduce lightfastness by 

distortion and weakening o f the azo link.
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In summary, any factor which lowers the ionization energy of the donor unit generally causes a 

bathochromic shift.

Factors include:

1. Increasing donor strength.

2. Increasing the strength o f the acceptor.

3. Varying the position o f the donor.

4. Replacement of the benzene ring by a heterocyclic ring

Donor amino group

Aminoazobenzenes, where the donor amino substituent is at the 2 or 3 position absorb at longer 

wavelengths than 4 aminoazobenzenes (Xmax = 415nm for 2-aminoazobenzene in ethanol and A™ax 

= 450nm for 3-aminoazobenzene in methanol, compared to A^x = 386nm for 4- 

aminoazobenzenes in methanol)32, but have a high degree of bond equalization and alternation. 

The groups on the amino nitrogen also have a big effect on the photofading rate, which may be 

related to the change in electron density on azo nitrogen, as migration o f electron density to the 

azo bridge will affect the rate o f degradation.

Ashutosh et a l! reports that an electron withdrawing group on an amino nitrogen reduces basicity 

and improves lightfastness, and studies by Seu107 show a linear relationship between the inductive 

effect of substituents, attached to the amino nitrogen, and the XmaX and fading rate of a series of 

aminoazo dyes. More electron withdrawing substituents give a greater the shift to shorter 

wavelength and a higher the rate of fading.

It is also reported that increased branching on at least one o f the N-alkyl chains at the a position
33

on the amino group gives better ligthfastness compared to unbranched isomers and homologues. 

Heterocyclic Ring Systems

Further variations in wavelength o f azo dyes can be achieved replacing one of the phenyl rings of 

azobenzene by a heterocyclic ring such as thiophene. This produces a large bathochromic effect 

and examples o f the wavelengths o f some azothiophene derivatives o f (1-31) are given in Table 

1.4.
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Table 1.4 Absorption maxima of some substituted aminoazothiophenes in methanol.1

w X Y Z R1 R2 Aonax/nm

n o 2 n o 2 . NHCOCH3 c2h 5 c2h 5 613

n o 2 c o c h3 - c h3 (C2H5) C2H4COOCH3 609

n o 2 COOC2H5 - c h3 C2H4COOCH3 C2H4COOCH3 615

n o 2 N 02 None C2H40C0CH3 C2H40C0CH3 627

t Experimental results obtained in this work.

In addition to changes in wavelength, substitutions may also result in a change in the intensity of 

the absorption band. These changes are described in terms o f the Hyperchromic effect, implying 

an increase in the absorption band intensity and the Hypochromic effect, defined as a decrease in 

absorption band intensity. The intensity o f the absorption band is at a maximum when the donor 

is in the para position; ortho and meta donors give a weaker intensity band. For more examples of 

substituted azo dyes absorption maxima data, refer to M. Okawara et al. Organic Colourants.32

Bisazo/ Polykisazo

By extending conjugation by incorporating different electron donor and acceptor groups into the 

azo dye, or by including additional azo groups as in the disazo dye (1-32), a large range of 

spectral colours can be produced. The position o f the first intense absorption o f (1-32) is shifted 

to longer wavelengths with the extension o f the k system. For example when for (1-32); n = 0, 

Aroax = 490 nm compared to 585 nm when n = 1 and 610 when n = 2.



Further variations in colour can be achieved by replacing the phenyl acceptor ring in the azo dye 

with a heterocyclic ring such as thiophene.

Section 1.3 

Steric factors25
i

The twisting of a conjugated molecule can greatly affect its physical properties. When a molecule 

j  is crowded to disrupt the coplanarity o f its conjugated atoms, changes in its electronic sufficiently 

spectra may be observed when compared to the planar model. There are three types o f spectral 

effect34:

1. Slight twisting about a bond gives a hyperchromic effect only.

2. Moderate twisting giving both hyperchromic and hypsochromic effects.

3. Severe twisting giving steric inhibition o f resonance and resulting in the cumulative spectra of 

the molecules isolated chromophores.

The extent of twisting may be calculated by the Braude and Sondheimer35 equation:

COS2 6 ? =  (jLlobserved “ 1^90°) /  (M oo " M-90°)

This equation relates the interplanar angle 9 between the aryl and carbonyl chromophores of 

benzaldehyde and acetophenone derivatives to the dipole moment, jj.900 and |io° are the dipole 

moments for the completely deconjugated molecule and completely conjugated molecule 

respectively. Azobenzene and its para derivatives have a tc conjugated planar structure but as we 

shall see below, substituents in the ortho position may cause varying degrees o f steric hindrance. 

The effect of steric hindrance on the visible spectrum is best exemplified by considering the 

structure of the mono azo dye (1-33). There are three possible sources o f steric hindrance, each of 

which can cause a subsequent hypsochromic shift o f the visible absorption band. If  R 1, is large 

! then it causes the rotation out o f the plane o f the donor amino group, thus giving a hypsochromic

j shift. A large R4 will cause a similar rotation out o f conjugation o f the acceptor nitro group, again

i  leading to a hypsochromic shift. Bulky R2 and R3 groups can interact with the lone pair on the azo
i

nitrogens, giving rise to a loss o f planarity and a hypsochromic shift o f the visible absorption band.
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O f these types o f hindrance, the first 2 are well known but the third is more complex. It is only
2 3

significant when either both R or both R groups are present on the same ring, as is illustrated in 

(1-33)

\
r \  //

When only one ortho substituent is present, its steric interaction is greatest with the lone pair o f 

the more remote azo nitrogen.

This crowding can be relieved by rotation into the conformation shown in Figure 1.6b, so a single 

substituent has little effect on the spectrum. Similarly when there is one ortho substituent on each 

ring there are three possible conformations (see Figure 1.7), o f which the least strained will be 

adopted.

O
\

/

o

/
Figure 1.6 Two possible conformations for an ortho substituted azobenzene
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F ig u r e  1 .7  The three possible conformations for an ortho disubstituted azobenzene. *The 

mushroom shaped orbital is the sp2 density function where there is a 95% probability of finding a 

lone pair.34

When two substituents are present e.g. both R2 groups, both conformations are sterically strained, 

and the molecule is trapped in a non planar geometry resulting in a marked hypsochromic shift. 

This is demonstrated by structure (1 -3 4 ) , when R 1 = R2 = H (Xmax= 453 nm), compared to (1 -3 4 )  

when R1=Me and R2=H (A w ^ 454) which is virtually unaffected by replacement o f H by Me. 

Whereas when R 1 = R2 = Me, (1 -3 4 )  suffers a large hypsochromic shift, to ^max= 383 nm.

R2

(1 -3 4 )

NCC2H4
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The more bulky the group, the greater the effect; rod like cyano groups have only a small effect. 

Planar substituents, like the ortho nitro group will relinquish their planarity with the phenyl rings 

in order to avoid interaction with the azo bridge36. This is supported by the longer wavelength o f 

the para nitro isomer compared to the ortho nitro compound. If  there are four ortho substituents 

present, for example four methyl groups, the n-7t* absorption band shifts to longer wavelength 

and higher intensity due to greater conjugation o f the phenyl rings and the lone pair.

I The placement of multiple donor and acceptor groups in both ortho positions should therefore be

I avoided to produce the most bathochromic dyes.

Section 1.4

Photochemistry of azo dyes

Several papers have examined the electronic spectra and physical properties o f the azo 

dyes,19,30,37,38,39,40,41 particularly the long wavelength visible transition. However, for lightfastness 

studies, it is necessary to consider the other transitions o f the molecule as these may be involved 

in the photo-fading reaction. This section reviews the photochemical transitions and reactions o f 

mono azo dyes discussed in the literature.42

Before considering the photochemical transitions o f azo dyes the changes in electronic structure 

that can occur on the absorption of a photon o f light into a molecule will be reviewed.

The concepts of basic molecular orbital theory will be introduced by considering the types o f 

bonding that can occur between two atoms. The motion o f an electron in an atom or molecule can 

be described by a wave function, 'P. The square o f the wave function, *P2, can be used to find the 

probability o f an electron occupying a certain region in space. The regions where there is a high 

probability o f finding an electron are called orbitals. The orbitals for s electrons are symmetrical 

and spherical in shape whereas p orbitals have a dumbbell shape. The wave function also indicates 

that orbitals have phase represented as + or -  regions. In phase overlap o f atomic orbitals (+ with 

+ or -  with - )  leads to constructive overlap and a bonding molecular orbital, while out o f phase 

overlap (+ with - )  leads to cancellation o f the wave function and a high energy anti-bonding 

orbital.

Symmetrical or in phase overlap o f s orbitals gives a o  bond, and anti-symmetrical or out o f phase 

s orbital overlap, gives the high energy anti-bonding c* molecular orbital. The situation for p 

orbitals is more complicated as they are dumbbelled in shape with regions of + and -  phase. They
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can therefore overlap in two possible ways, the first o f which is end on overlap which again 

results in the formation o f a  and c* bonds. Both types o f a  bonding orbitals are shown in Figure 

1. 8 .

0-0 <3-0
C F*

<y* anti- bonding

4 f • bonding (ground state)

£xE>exE> o — o
or*

Px Px
a*  anti- bonding

S C D ©
Px Px <»

bonding (ground state)

Figure 1.8 The o  and a* molecular orbitals formed from overlap o f s orbitals and overlap o f p* 

orbitals along the inter-nuclear axis.

The second possibility is sideways overlap o f the pz orbitals, which results in n and n* molecular 

orbitals, from in phase and out o f phase overlap respectively, as shown in Figure 1.9. The n 

molecular orbital has two regions of electron density, one above and one below the plane o f the 

molecule along the inter-nuclear axis.

Pz Pz

<R f i  
< 3 »  **

C £ >

re* anti- bonding

" H "  *
bonding

Pz Pz

Figure 1.9 In phase and out o f phase overlap o f pz orbitals.
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This type o f n bonding is encountered in unsaturated hydrocarbon systems, such as, ethylene, 

butadiene and benzene. Both end on (a) and sideways ( n )  overlap contribute to the bonding 

between the two carbon atoms in ethylene. The a  bonding orbital is much lower in energy than 

either the t z  or the n *  orbitals in ethylene and the a* orbital is higher than both the t z  and t z *  

orbitals in ethylene.

The 2pz orbitals in butadiene can overlap in a similar way to the 2pz orbitals in ethylene to give a 

large t z  bonding molecular orbital. There are however several ways in which the butadiene 2pz 

orbitals of the same and opposite phase can combine to produce bonding and anti-bonding

j molecular orbitals o f different energies. These orbital combinations are shown in Figure 1.10.
I

V l *4
Figure 1.10 The lowest energy bonding orbital *Pi produced by symmetric (in phase) overlap o f 

all the p-orbitals in butadiene. The highest energy orbital %  from out o f phase overlap o f all the 

p-orbitals and two degenerate bonding molecular orbitals ¥2  and ¥3  from intermediate symmetric 

overlap of some of the butadiene p-orbitals.

The intermediate bonding orbital ¥2  is o f higher energy than orbital ¥1  but lower in energy than 

the intermediate anti-bonding orbital ¥ 3, which is in turn lower in energy than the anti-bonding 

orbital ¥ 4. Butadiene’s four tc electrons are placed in the two bonding orbitals with the anti­

bonding orbitals unfilled as in Figure 1.11..
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M

V4

^3

Energy

— M>2 

V,

anti-bonding

bonding

Figure 1.11 Energy diagram for the n molecular orbitals in butadiene

A diagram for a general system of molecular orbitals is given in Figure 1.12. The highest energy 

bonding orbital is called the HOMO (Highest Occupied Molecular Orbital) and the lowest energy 

anti-bonding orbital is called the LUMO (Lowest Unoccupied Molecular Orbital). The HOMO 

and LUMO in ethylene would correspond to the filled n bonding and unfilled tt* anti-bonding 

molecular orbitals respectively, shown in Figure 1.11. The orbital energy diagram in Figure 1.12 

shows what happens after the absorption o f a photon o f radiation, with energy hv, into a 

molecule. This photon absorption causes an electron to be excited from the HOMO to the 

LUMO. There is no change o f electron spin and this transition corresponds to the first excited 

singlet state Si. Also shown are the possible transitions for the second and third excited singlets S2 

and S3, resulting either from excitation of an electron from the HOMO to the LUMO+1 or from 

the HOMO-1 to the LUMO. Which o f these transitions is lower in energy depends on the energies 

o f the molecular orbitals involved. It may be the case that the transition energy from So—̂ 3  is 

lower than that for S0—*S2, and thus the second excited singlet would be S3 and the third would be 

S2. The singlet states should then be relabeled according to the order o f increasing energy. 

Transitions to the S2 and S3 states require photons o f different energy obviously both of higher 

energy than photons for excitation to Si.

31



So st s2  s3

LUMO+2 LUMO+2 LUMO+2 LUMO+2

LUMO+1 LUMO+1 LUMO+1 LUMO+1

LUMO LUMO LUMO LUMO

hv

HOMO

HOMO-1

HOMO-2

|  |  h o m o  ______

f  |  HOMO-1 |  |

f  , |  H O M C M i l

HOMO

HOMO-1

HOMO-2

HOMO H

Figure 1.12 The excitation o f an electron from a bonding molecular orbital to an unfilled anti­

bonding molecular orbital caused by the absorption o f a photon.

If there is a change in the spin o f the excited electron then this corresponds to a triplet state.

So Tj
LUMO+2 LUMO+2

T2 t3

LJUMO+2 LUMO+2

LUMO+1 LUMO+1 LUMO+1 LUMO+1

LUMO LUMO LUMO LUMO

HOMO |  |  HOMO _________  HOMO j | ______  HOMO j |

|  |  HOMO-1 |  |  HOMO-1 |  |  HOMO-1_j____

_j__ HOMO-2 |  |  HOMP2 |  |  HQMQ2 |  |

Figure 1.13 The electronic occupation o f molecular orbitals in the triplet state.

H0M O2
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Figure 1.13 compares the three lowest possible triplet states, T i,T2 and T3 with the ground state 

So. The triplet states have two unpaired electrons. In addition to singlet and triplet states there is 

the possibility o f doublet states. Doublets occur for systems with an odd number o f electrons, or 

in other words, one unpaired electron.

Electronic transitions43

The behaviour o f a molecule, after an electronic transition can be explained by the Franck-Condon 

Principle, which states that because the nuclei of a molecule are much more massive than its
i

[ electrons, an electronic transition takes place much faster than the movement o f the nuclei. The 

electron density o f the molecule can therefore move rapidly from one region to another, resulting 

from the electronic transition, whilst the nuclei remain stationary. After the transition from the 

ground electronic state to some excited electronic state, via the absorption o f a photon hv, the 

nuclei will adjust their position from their original geometry (with the nuclei positioned at their 

equilibrium distances, Re, from each other) to a new geometry in response to the change in 

electron density encountered in the excited state. This adjustment o f nuclear positions takes the 

form of vibrations.

The Franck-Condon Principle is illustrated in Figure 1.14, which represents the constant nuclear 

geometry during the electronic excitation as a vertical line.

i
i
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Excited
State

Ground
State

Re

Figure 1.1444 The representation of an electronic transition, from the lowest vibrational level in 

the ground state to a vibrational level lying vertically above it in the excited state, according to the 

Franck-Condon principle. Re and Re' are the equilibrium bon d separations of nuclei in the ground 

and excited states respectively.

This instantaneous electronic transition from the equilibrium ground state geometry to an identical 

geometry in the excited state has the highest probability o f taking place and is therefore intense. 

There is, of course, a smaller probability o f transitions to other vibrational levels in the excited 

state, which are close to the equilibrium separation o f the nuclei, Re, and therefore in the same 

region as the most probable transition. There is a lower probability o f these transitions occurring 

and they are therefore less intense.

As shown in Figure 1.14, the upper potential energy curve o f the excited state is usually displaced 

to the right o f the lower potential energy ground state curve, signifying the greater equilibrium 

bond length, R'e, in the excited state. This is because electronically excited states usually contain 

electrons in anti-bonding orbitals and therefore have a greater degree o f anti-bonding character 

than ground electronic states.
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t The vibrational structure o f the absorption spectrum is dependent on the displacement o f the two
i

potential energy curves. If the ground and excited state potential energy curves have a 

considerable displacement from each other, this results in a lot o f vibrational structure. Vibrational 

structure can be observed for molecules in the gas phase, but in solution, this structure merges 

together resulting in a broad, almost featureless band.

Section 1.5

Electronic transitions in azobenzenes

Before considering the electronic transitions o f the donor-acceptor azo dyes, the transitions 

involved in the absorption spectra for the more simple case o f azobenzene (1-35), will be 

examined.

(1 -3 5 )

In trans-azobenzene there are two types o f electronic transitions, namely n-n* and n-7t*. The n 

and 7t* orbitals are formed from overlap of some o f the p orbitals on the benzene rings and on the 

two azo nitrogen atoms, which are perpendicular to the plane o f the molecule. The n orbital is a 

doubly occupied molecular orbital whilst the n* orbital is an unoccupied anti-bonding molecular 

orbital. The transition o f an electron, resulting from the absorption o f a photon, between these n 

and n* molecular orbitals is known as a n-n* transition and corresponds to the UV absorption 

band at wavelength 314 nm42 in the spectrum o f azobenzene. This transition is allowed by 

symmetry selection rules and is therefore quite intense.

However, this is not the lowest energy electronic transition in trans azobenzene. The lowest 

energy transition is attributed to an n-n* transition42. To understand the origin o f this n-7i* 

transition we must consider the interaction between the non-bonding lone pair orbitals o f the azo 

nitrogen atoms. This interaction is illustrated in Figure 1.16 for trans-azobenzene. Here, the 

nitrogen lone pairs are approximately sp2 hybrid orbitals and are considered to interact to  give 

two filled orbitals.25,42 The lone pair orbitals can interact symmetrically (out o f phase overlap) to 

give a high energy doubly occupied orbital designated rv They can also interact anti-
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symmetrically (in phase overlap) to give a lower energy doubly occupied orbital designated n,. 

Both orbitals are shown in Figure 1.16.

Energy

trans

ns (sym m etric)

4

+ i I +

^  n a (antisym m etric)

"  ^

n*

Figure 1.15 Figure 1.16 Overlap of the nitrogen lone pair orbitals in the -N = N - bond in trans- 

azobenzene.45

The orbital sequence in order o f increasing energy shown in Figure 1.16 is n, n, n, n*, which has 

been confirmed experimentally by Houk et al.46

It is the electronic transition between the higher energy ns orbital and the empty n* orbital, 

previously discussed, that is responsible for the lowest energy n-7i* transition in azobenzene38,42 

and corresponds to the n-n* absorption band at 444 nm (s = 450) in the UV/Visible absorption 

spectrum of trans-azobenzene. Both the n-7t* and n-n* absorption bands in the UV/Visible 

absorption spectrum of azobenzene are shown in Figure 1.17 and the molecular orbitals involved 

in these transitions are shown in Figure 1.7 . Because o f the symmetry o f ii*, orbital, the n-7t* 

transition is symmetry forbidden. The intensity o f this absorption is unusually high for a forbidden 

transition and this intensity can be explained in terms o f coupling between the n-7t* and n-n* 

singlet states, which results in an effective borrowing o f intensity by the n-7i* state from the
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allowed n-n* band. Intensity borrowing is particularly significant when the molecule is non-planar 

as in cis-azobenzene. In the cis isomer, the n-7t* state is symmetry allowed and has an extinction 

coefficient of 1260.25 This transition is consequently much more intense than the n-7t* transition in 

trans azobenzene which has an extinction coefficient value o f about 450.

Azobenzene 
UVA/IS SPECTRUM

c_o
v>
CLa>

vso>o

absolution3.5

2.5

absolution

250. 350.300. 400. 450.
Wavelength (nm)

Figure 1.17 The uv/visible spectrum of azobenzene. 47

7t*

Energy

Us

-1-1— 7U

-H-
Figure 1.18 Energy levels of molecular orbitals involved in n-7t* and n-n* transitions o f 

azobenzene.
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The geometry of the azobenzene can have an important effect on the transition energies and 

intensities of its absorption bands. Trans-azobenzene has been reported by (270,271) to be planar 

in the solid state but twisted in the gas phase (272). Crystallographic structures on the Cambridge 

database have rings twisted out o f the plane by between 5° and 21°.48 By comparison cis- 

azobenzene is much more twisted, by 36° and 57° in crystal structures.48 The deviation from 

planarity in the cis-isomer results in the 7t-7t* absorption band shifting to shorter wavelengths and 

lower intensities than the corresponding band for the trans isomer. The loss o f planarity has a 

smaller effect on the n-7i* band.42 The degree o f twisting o f the phenyl rings therefore has an 

effect on the energy an intensity o f the k-k* band and to a lesser extent, the n-7t* band.

Transitions have thus far been described as either n-7t* or k - k * .  In fact molecular orbitals may not 

be exclusively n or n in character and there may be some mixing contribution o f n and n orbitals 

involved in the composition o f molecular orbitals.

Only for a few azobenzenes is there a well resolved n-7t* band.49 In most azo dyes, the n-7i* band 

is buried beneath the k - k *  band and in these cases, nothing is known about its exact location. The 

n-7i* band undergoes a blue shift from non-polar to polar solvents and mostly disappears in acids. 

HMO and PPP calculations o f the n-7c* band also predict another n-rc* band.49 A more detailed 

discussion of the electronic transitions o f azobenzene and some other azobenzenes is given in 

Chapter 5.

The spectra of donor acceptor dyes are quite different to the spectra o f simple azobenzenes. This 

is due to the introduction o f an electron donor group into the azobenzene system. Considering the 

simplest example o f a donor acceptor azobenzene (1-36), which contains a donor amino group, 

which is predicted by PMO theory to introduce a new k  orbital into the electronic system.

O — 0 ~ * (
(1-36)

This new n orbital results from mixing between the lone pair o f the donor amino group and the 

HOMO of azobenzene to form the new k  orbital, which is delocalised over the whole molecule. 

The amino nitrogen atom is most likely to be sp2 hybridised, with the amino group in the plane of 

the azobenzene moiety allowing greater orbital overlap. This assumption is made from 

consideration of the HOMO o f (1-36) predicted by CNDOVS and AMI calculations. The results
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of these calculations are discussed fully in Chapter 5. Because the electrons o f the amino nitrogen 

orbital originate from the non-bonding lone pair of the amino group nitrogen atom, this new n 

orbital is often referred to as a non-bonding molecular orbital (NBMO)42, but here it will be 

designated as the rcN orbital, where the suffix N refers to the N-amino nitrogen atom.

This 71n orbital is higher in energy relative to the ns and n* orbitals in (1-36) and thus the lowest 

energy electronic transition in (1-36) is due to the transition between the ten orbital and the empty 

| 7i* anti-bonding orbital formed from the overlap o f the azo nitrogen p electrons. The relative

| energies of these molecular orbitals are displayed in Figure 1.19 This 7Cn -tt* transition is
|

responsible for the long wavelength absorption band in the UV/visible spectrum of (1-36) shown 

in Figure 1.20 together with the relative energies o f the molecular orbitals.

Energy

4 * 4 -

- J - *

%

-  na

Figure 1.19 Relative energies of molecular orbitals in 4-aminoazobenzene.
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4-Phenylazoaniline 
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Figure 1.20 The UV/Visible spectrum o f 4-phenylazoaniline (1-36) together with its molecular 

orbital levels.

The 7tn-7c* band is at 386 nm in methanol and the extension o f this broad band into the visible 

region of the spectrum is responsible for the yellow colour o f (1-36).The 7Cn-tc* transition is 

allowed by symmetry selection rules and is much more intense than the shorter wavelength n-n* 

band, often completely obscuring it.
i
| The electronic excitation process causes a general migration o f electron density from the donor 

group into the rest of the chromophore and such a transition is often described as a charge 

transfer transition. As such, the 7Un-tc* transition is greatly affected by the substituents on the 

donor and acceptor phenyl rings o f the amino azobenzene, as these substituents will affect the 

degree of electron density migration from the donor to the acceptor regions o f the molecule. 

Obviously the transition energy o f such a process depends critically on the relative strengths o f the 

donor and acceptor groups. The effect o f different substituents on the wavelengths o f azo 

compounds was discussed on pages 18-24.

This is not the case for the n-7i* transition however, which is relatively insensitive to substituent
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effects42 as it involves the excitation of electrons from the ns orbital formed by interaction o f the 

azo nitrogen lone pairs.

Excitation to the first excited singlet state Si from the ground state, is responsible for the colour 

o f the molecule and this state and higher singlet states may be involved in the photochemical 

reactions of these donor-acceptor azobenzenes. The associated triplet states may be even more 

important in photoreactions and these states are discussed in Section 1.7.

Section 1.6

Fluorescence and Phosphorescence43

When a molecule is electronically excited by a photon, it then contains a large amount of stored 

energy. This electronic energy must then be released from the molecule to its surroundings or else 

it may be converted into excess vibrational energy resulting in the break up o f the molecule. There 

are several ways in which the electronic energy can be dissipated. Internal conversion (IC) 

involves the loss of vibrational energy via collisions o f the excited state molecule with the 

surrounding solvent molecules. Rapid transfer of vibrational energy to the solvent results in 

energy being lost as heat.

The molecule thus decays to the lowest vibrational level o f the first excited singlet state Si in 

approximately 10*12 seconds. From here internal conversion to the ground state occurs in about 

1CT8 seconds. There is also a small probability of vibrational energy loss between excited singlet 

and triplet states. Though this inter-conversion process between singlet and triplet states, 

involving a change o f electron spin is quantum mechanically forbidden, it may occur under 

favourable conditions and is called intersystem crossing (ISC). There is also the possibility o f loss 

o f the electronic excitation energy as radiation. This energy loss via the emission o f radiation 

occurs as fluorescence. Fluorescence is the emission o f  light from the lowest vibrational level o f 

the first excited singlet state Si, leaving the molecule in the ground state So. The steps involved in 

the fluorescence process are shown in Figure 1.21.
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A b so r p t io n

R a d i a t i o n
(fluorescence)

Figure 1.2150 The sequence o f steps leading to fluorescence. Absorption is followed by 

radiationless decay to the lowest vibrational level o f the first excited singlet state. There then 

follows a radiative transition from the lowest vibrational level o f the excited state to a vibrational 

level in the ground state.

After the initial Franck-Condon type absorption, the resulting excited state o f the molecule is 

subjected to collisions with the surrounding solvent molecules, with each collision giving up 

energy, as the molecule steps down the vibrational states to the lowest vibrational energy level o f 

the excited state. If the energy difference between the excited state and the ground state is too 

great for the solvent molecules to accept, the non-radiative decay to the lowest vibrational level of 

the excited state may be followed by spontaneous emission o f radiation and leave the molecule in 

some vibrational level o f the ground state. The fluorescence spectrum thus has vibrational 

structure characteristic o f the ground electronic state. The fluorescence spectrum also occurs at 

longer wavelengths than the absorption spectrum, as some vibrational energy has already been 

lost from the excited state to the surrounding solvent. The ability o f the solvent to accept the 

vibrational and electronic energy is thought to affect the intensity o f fluorescence, as solvent 

molecules which have widely spaced vibrational levels, such as water, can accept large quantities 

o f electronic energy and effectively quench the fluorescence.
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Fluorescence is an allowed process taking around 10‘8 seconds, which is much slower than 

internal conversion from the higher singlet states e.g. from S2 to Si, and thus fluorescence 

normally occurs only from Si.

The other possibility for the emission of radiation is phosphorescence. The sequence of events 

leading to the phosphorescence of molecules is shown in Figure 1.22.

Singlet

Triplet
Intersystem
crossing

Singlet

Figure 1.2251 The sequence of steps leading to phosphorescence. Absorption is followed by 

vibrational relaxation in the excited singlet state until a vibrational state is reached where the 

singlet and triplet excited states share a common geometry. A singlet to triplet switch may be 

brought about by spin-orbit coupling and the triplet state may then undergo vibrational relaxation 

to the lowest level of the excited triplet. The radiative transition to a vibrational level in the 

ground state which follows, constitutes phosphorescence.

The first steps of the process are similar to those in the fluorescence process; absorption followed 

by loss of vibrational energy by stepping down the vibrational ladder. However, phosphorescence 

involves the excited triplet state of the molecule, which shares a common geometry with the 

molecule’s excited singlet state at the point where their potential energy curves intersect.
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If there is an accompanying change of spin o f one o f the molecules spin paired electrons iT , to 

give two unpaired spins TT, then the molecule may undergo intersystem crossing to the triplet 

state.

This change o f spin is forbidden by spectroscopic selection rules, but the selection rule may be 

broken in the presence o f spin-orbit coupling. If  a moderately heavy atom, such as sulphur, is 

present in the molecule, there is increased spin-orbit coupling and hence a greater probability of 

intersystem crossing.

Spin-orbit coupling arises from the generation of magnetic fields from the movement the charged 

electron. The electron has a magnetic moment associated with the spin o f the electron, known as 

its spin angular momentum. The electron also has a magnetic moment arising from the charged 

electrons orbital angular momentum. Spin-orbit coupling is the result o f the interaction o f these 

two magnetic moments.

After intersystem crossing to the excited triplet state, the molecule may continue to step down the 

vibrational levels o f the triplet state, until it reaches the lowest vibrational level o f the triplet 

excited state. It remains effectively trapped here, as it is of lower energy than the excited singlet 

state, and cannot return to the singlet ground state, as this involves another forbidden change of 

spin. However, spin-orbit coupling allows some contravention o f the spin selection rule and 

emission of radiation from the lowest vibrational level o f the excited state to a vibrational level in 

the ground state may occur. Because the triplet to ground state transition is forbidden and the 

probability o f the transition occurring is low, the emission of radiation from the lowest vibrational 

level o f the triplet state is akin to a slow leaking o f radiation and phosphorescence may continue 

long after the initial absorption o f light. The rate o f phosphorescence is therefore much lower than 

for fluorescence, anywhere between 10‘3 to 10 seconds, and phosphorescence emission is weak.

| The above processes are summarised in the Jablonski diagram in Figure 1.23.

Like the fluorescence spectrum, the phosphorescence emission spectra are mirror images o f the 

absorption spectrum of the molecule but they occur at longer wavelength than the absorption 

spectrum, as some vibrational energy has already been lost from the excited state to the 

surrounding solvent.
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Fluorescence Phosphorescence

Ground State Singlet S0

Figure 1.2352 A Jablonski diagram showing the possible modes o f energy dissipation from 

electronically excited states following the absorption of a photon of energy hv; (IC) internal 

conversion, (ISC) intersystem crossing, fluorescence and phosphorescence.

Most azo dyes show no phosphorescence. Indeed the first evidence o f phosphorescence for azo 

dyes was not detected until 1989 by Nepras et a f 3. Given that phosphorescence is rarely detected, 

the quantum yield of intersystem crossing must therefore be very low and population of Ti by 

direct optical excitation from the first singlet Si has a low probability. Alternatively, the lowest 

triplet state could have very favorable ways for the internal conversion to the ground state.

In addition to phosphorescence, fluorescence is also rare in azobenzenes, although some 

fluorescence has been reported for azobenzene derivatives, which comply with certain conditions. 

For example, the ability o f an azobenzene molecule to fluoresce depends on the position of the n- 

7i* and 7T-7C* absorption bands. If the n-7t* singlet transition is lower in energy than the 7t-7i* 

singlet transition then fluorescence may be observed. The above condition holds for some 

sterically hindered substituted mono azobenzenes, where very weak luminescence of these mono 

azo dyes observed at 77k was interpreted as fluorescence from the Si n-7t* state.54,55FIowever, if 

the n-7t* transition is higher in energy than the 7t-7i* transition then no fluorescence is seen. 

Fluorescence may also occur if there is coupling of the n-7T* and 7t-7r* states as in the case of the
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azo dye 4-dimethylamino-4'nitroazobenzene (1-37).42 Here, the luminescence o f dye (1-37), 

observed at 77K was interpreted as fluorescence.

(1-37)

Whether or not fluorescence occurs, may also depend on the character o f the triplet states o f the 

molecule and their energies.

I For example, the disubstituted dye, 4-N,N-diethylamino-4’-methoxyazobenzene, has a lowest
i

} triplet with n-rc* character but the lowest triplet o f 4-N,N-diethylamino-4' nitroazobenzene has tt- 

n* character.53 As there is an additional n-7t* state localised on the nitro group o f 4-N,N- 

diethylamino-4' nitro azobenzene, there are two n-7t* triplet states below the lowest excited 

singlet Ti-Ti* state Si and the Si state may therefore be deactivated by intersystem crossing to 

these n-rc* triplets. All of the dyes mentioned above exhibit only weak fluorescence. The only 

azobenzenes that show strong fluorescence are those which are di-4,41-substituted with N-dialkyl 

amino groups such as bis-4,4'diethylaminoazobenzene (1-38)

(1-38)

These types of molecules fluoresce strongly in glassy MTHF solution.53 The reasons for the 

exceptional fluorescence properties o f di-4, 4' amino substituted dyes are thought to be due to the 

rigidity and planarity of these types of molecules. For most mono and di-substituted azobenzenes,

; neither cis-trans isomerisation or intersystem crossing (except for 4-N,N-diethylamino-4' 

nitroazobenzene), is thought to be important in the deactivation o f the Si state in glassy solution. 

The main deactivation o f Si is believed to be by internal conversion caused by changes in the 

geometry of the Si state, bringing the Si and ground state So potential energy surfaces closer 

together.

In contrast di-4,4' amino substituted dyes such as (1-38) have an Si state which is rigid and planar 

in glassy MTHF solution at low temperatures. This planarity is caused by the two electron donor 

groups and the high viscosity o f the MTHF solvent preventing the rotation o f the phenyl rings o f
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(1-38) out o f the plane o f the molecule.

Evidence for this planar rigid geometry was produced by Nepras et. ah 53 who considered the 

absorption spectra of (1-38) in MTHF at different temperatures. At low temperatures there are 

remarkable changes in the vibronic structure o f the spectrum. The long wavelength absorption 

band of (1-38) at 477 nm is assigned to an Si -  So 7t-7c* transition on the basis o f this low 

temperature vibronic structure o f the long wavelength absorption band, and the fact that an 

increase in the !(n-7c*) -  1(7c-7c*) vibronic interaction with decreasing temperature is not expected. 

The presence o f the vibronic fine structure indicates that there is no twisting o f the phenyl rings 

via rotation about the C-N bonds in (1-38), resulting in a planar conformation for the molecule. 

This was concluded from the analogy with stilbene (1-39), for which it has been shown that 

twisting around the C-Ph bond in trans stilbene causes “blurring” o f the vibronic structure in fluid 

solution while at low temperatures in glassy solution the vibronic structure becomes clear, as 

twisting is prohibited by the high solvent viscosity and the stilbene approaches a nearly planar 

conformation.

/

\  /  \  /  \  
5 \  \  /

R /
a4

e- /

(1-39) R 1 = R2  = R3  = R4  = H 

(1-40) R 1 = R2  = R3  = R4  = Alkyl

However, stilbenes which have bulky alkyl groups at positions ortho to the carbon bridge e.g. 

(1-40) are sterically hindered, and show no vibronic structure, which is explained by a non planar 

equilibrium geometry, with torsional vibrations giving strong blurring o f vibronic structure. In 

contrast to trans stilbenes, azobenzenes have the possibility o f electronic interactions between the 

lone pair electrons of the azo group and 7r-electrons o f the phenyl rings56 and repulsion between 

these n-electrons and any substituents ortho to the azo group. The degree o f these interactions 

may influence the distortion o f the phenyl rings around the N-Ph bonds.

In mono-substituted trans azobenzenes the tc-tt* conjugation band is strongly blurred due to 

rotation about the N-Ph bonds even at low temperature. This explanation agrees with theoretical 

results where a distorted geometry is favoured,57 in accordance with the crystal structure.52
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In contrast to all para-monosubstituted and many disubstituted azobenzenes, the 7t-7t* conjugation 

band of (1-38) shows a hint of fine structure even at room temperature and the vibronic structure 

becomes clear at low temperature. It was concluded by Nepras53 that two strong electron 

donating groups, such as amino or alkylamino groups, give a molecule which is nearly planar in 

glassy solution and exhibits only stretching vibrations. The bathochromic shift o f vibronic bands 

on cooling also implies a planar structure in glassy solution and a distorted structure in fluid 

solution. The twisting or torsional vibrations o f the phenyl groups are a means o f dissipating 

electronic excitation energy in azobenzenes. In (1-38) the absence o f these vibrations at low 

temperatures in MTHF means that the electronic excitation energy is emitted as fluorescence as 

an alternative way of releasing the energy. The strong fluorescence o f (1-38) at 77K is therefore 

attributed to emission from the Si ( t z - t z * )  excited state of the molecule. The fluorescence 

spectrum is mirror symmetrical to the absorption spectrum but is shifted 400 cm'1 to longer 

wavelength.

In flash spectroscopic experiments undertaken by Gomer55 et al. on trans-azobenzene, 

fluorescence lifetimes of 25 and < 5 ps have been detected for the first and second excited singlets 

Si and S2 respectively in cyclohexane. Also examined were the fluorescence emission spectra o f 

for several substituted azobenzenes including some 4-dialkylamino-4'-nitroazobenzenes with 

bulky ortho substituents (l-41)-(l-43).54,59,60,61

Unlike trans-azobenzene, no fluorescence was observed at room temperature for the substituted 

4-dialkylamino-4'-nitroazobenzenes (1-41), (1-42), (1-43), implying a time o f picoseconds rather 

than nanoseconds for Si.

 /  R4

/ — \

\  / — /  V  ' /  N------- 1. v ,.4 --------N

\  R5 fi------- 5,
w  / /

(1-41) R 1=CH2 CH2 OH, R2= CH2 CH2 CN, R3  =  OCH3, R4  = NHCOCH3 , R5  =  Br, R6  = N 0 2  

(1-42) R 1=CH2 CH2 OH, R2= CH2 CH2 CN, R3  = OCH3, R4  =  NHCOCH3 , R5  = Br, R6  =CN  

(1-43) R 1=CH2 CH2 OH, R2= CH2 CH2 CN, R3  =  OCH3, R4  = NHCOCH3 , R5  = Cl, R6  = N 0 2

Some fluorescence was however detected at low temperatures and had a lifetime o f 10 ns.

As it has been mentioned for (1-38), strong fluorescence indicates the absence o f fast energy
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dissipation processes competing effectively with emission. Consequently, dyes which fluoresce 

remain in the excited state longer and thus have an increased probability o f undergoing a 

photochemical reaction. Fluorescent dyes often have poor lightfastness.62 Vibration or fast trans- 

cis isomerisation (another means of dissipating energy from the excited states) bring about fast 

deactivation of the excited state of the azo dyes42 such as (1-37). These dyes often have high 

lightfastness.62

Section 1.7

Triplets and transient species63

The excited singlet states o f azobenzene have been studied extensively by steady state 

spectroscopic and photochemical methods including UV/Visible64’65’66,67, and Raman68,69,70 

spectroscopy and also theoretical modeling.86,71,72,73,74 Several studies have looked at the excited 

state species o f azobenzene and some o f its derivatives. Much interest has centered on species 

that may be involved in the mechanism for the trans-cis photoisomerisation reaction (see Section 

1.9). This has been o f interest recently because o f its use in optical switching and image storage 

devices.75,76,77

The excited states o f azobenzene have been considered Nepras et al.53. As it was mentioned 

previously, in azobenzene the first excited singlet is o f n-7t* type and found at 22500 cm'1 (444 

nm) . Its high intensity is explained by the vibronic interaction or coupling with the second excited 

singlet rc-rc* state.

Para substituents on azobenzene shift the rc-rc* band to longer wavelength but the n-rc* band 

remains unchanged. This implies both bands may be similar in energy with the more intense rc-rc* 

band overlapping the n-rc* band.

Little is known about the properties of the lowest triplet state o f azobenzenes as experimental 

techniques commonly used for triplet detection are unsuccessful. For example, direct observation 

o f the first or lowest triplet state Ti o f azobenzene by Monti,78,79 was not successful as no 

phosphorescence was detected at 77K80, and short lived transients were not detected for 

azobenzene and some substituted azobenzenes. The energy o f Ti was therefore estimated from 

flash kinetic spectroscopy. This technique involves energy transfer from the triplet states o f 

aromatic hydrocarbons to the triplet state o f the dye.78,79. Such energy transfer experiments have 

assigned an upper limit o f 45 kcal/mol for the first triplet state o f azobenzene.78,81,8283 Other
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estimates for the triplet energy of trans azobenzene have been hypothesized at 48 kcal/mol from a 

magneto optical rotary dispersion experiment,84 and 44.5 kcal/mol from PPP calculations.85 

However ab initio SCF Cl calculations indicate that both the cis and trans isomers o f Ti have n-rc* 

character and have energies o f 28kcal/mol and 31.5 kcal/mol respectively.86 

It was suggested by Monti86 that further information from energy transfer from aromatic 

hydrocarbons to azobenzenes needs to be performed by flash kinetic spectrophotometry for a 

further understanding o f these states.

The lowest triplet state Ti o f some donor acceptor azobenzenes, including ( l - 4 I ) - ( l - 4 3 )  was 

identified by Gomer et al Using laser flash spectroscopy and absorption and emission 

spectroscopy they detected a transient species at 700 nm, which had a lifetime o f 10 -30  ns at 

room temperature. They assigned this transient species to a triplet -  triplet absorption specifically, 

the lowest triplet Ti o f the trans isomer. This assignment was supported by experiments with 

sensitizers and quenchers and heavy atom effects (which increased the 700 nm transient yield 

when H was substituted by Cl or Br). Also, the lifetime o f Ti was quenched by both oxygen and 

ferrocene at a diffusion controlled rate. The triplet yield increased with viscosity, which was 

suggested to be related to the elevated barrier to radiationless decay by geometry changes in 

excited states resulting from increased viscosity. This barrier increases the lifetime o f the lowest 

excited singlet and thus increases the chance o f intersystem crossing to the triplet. The presence o f 

fluorescence even at low temperatures supports this observation. There is also the possibility of 

higher excited triplets from the excited singlet.
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Section 1.8

Photochemical reactions

Azo compounds undergo several photochemical reactions e.g. photolysis, photocyclysation, 

photoreduction, photo-oxidation and photo-isomerisation. The most important o f these processes 

relating to the lightfastness o f dyes are the photoreduction and photo-oxidation reactions. 

However trans-cis photo-isomerisation is indirectly involved in the stability o f the dye and will be 

considered in detail here.

Section 1.9

Trans-Cis Photo-isomerisation

Trans azobenzene can be converted to cis azobenzene on absorption o f light, as shown in Figure 

1.24. However, the cis isomer is thermally unstable and therefore the trans form predominates.42

Figure 1.24 Trans-cis photo-isomerisation

The inter-conversion (photo-isomerisation) can occur by 2 possible routes, inversion64’87 and 

rotation64,87,88,89 with inversion thought to be the principle process. Rotation involves a simple 

rotation about the azo bond whereas, inversion consists o f a bending o f one o f the N=N-C bond 

angles from approximately 120° in the trans isomer to around 240° in the cis isomer. The 

arguments as to which mechanism takes place are discussed in the following section.

Mechanism of trans-cis photo-isomerisation

There has been much controversy surrounding the mechanism by which trans-cis isomerisation 

occurs in azobenzenes and substituted azobenzene derivatives. Numerous papers have examined 

photo-isomerisation experimentally (see Section-4^Tand more recently theoretical studies have 

provided further insight into the subject^Since photo-isomerisation may be important when 

considering lightfastness -  dyes which are more photochromic tend to be more lightfast102 -  a
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review o f the literature would be helpful in understanding this relationship. Before looking at the 

substituted donor acceptor azobenzene derivatives the photo-isomerisation o f azobenzenes will be 

considered.

There are thought to be two possible mechanisms by which photo-isomerisation o f azobenzenes 

can occur; rotation about the -N = N - bond, or inversion, where one o f the C-N bond angles is 

inverted to give the cis isomer.

Rau provided evidence o f such an inversion process by considering azobenzeneophanes 64,90 such 

as (1-44).

(1-44)

In these compounds, an inversion should be possible, but rotation about the -N = N - bond would 

be inhibited by the physically restricted phane structure. Rau observed that these compounds 

generally have typical trans azobenzene spectra, with the two azobenzene units absorbing 

independently. There are also distinct features o f the cyclophane structure in the spectra; the 

oscillator strength of the structureless n-7i* transitions decrease relative to the 71-71* bands the 

more the azobenzene units are force into planarity. Compound (1-44) can be isomerised to the cis 

conformer reversibly, by successive isomerisation of the two azobenzene units in photoreactions 

and dark reactions. On direct excitation to the n-71* state, quantum yields for trans -  cis 

isomerisation of the trans, trans molecule to the trans, cis conformation have the same value as the 

n-7i* state isomerisation of azobenzene. However, in (1-44) the n-7t* and n-n* state isomerisation 

quantum yields are equal, which differs significantly from the azobezene case whose quantum 

yield of isomerisation is greater for n-rc* than for 7t-7t* isomerisation. The quantum yield o f a 

photochemical process, such as isomerisation, is defined as the probability o f a molecule 

undergoing that process on the absorption o f a photon. The quantum yield o f photo isomerisation 

is therefore equal to the number o f molecules that undergo isomerisation divided by the total 

number o f photons absorbed.
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The trans, cis conformation o f molecule (1-44) is thermally unstable i.e. its activation energy for 

cis-trans isomerisation is lower than that for azobenzene presumably because o f steric strain. The 

cis,cis isomer on the other hand is kinetically much more stable than cis-azobenzene.

The reversible photo-isomerisation o f (1-44) provides proof that trans-cis isomerisation o f azo 

compounds can proceed via inversion, but does not rule out the possibility o f rotation occurring in 

other azo compounds. In azobenzene itself, excitation to either the first excited singlet Si n-n* 

state at 447 nm63 in hexane reached by visible irradiation, or the high energy second excited 

singlet S2 (7t-7t* state) at 316 nm in hexane, reached by UV irradiation, is said to give photo- 

j  isomerisation, though excitation to S2 results in a lower quantum yield o f isomerisation,

I suggesting that trans-cis isomerisation may proceed by a different mechanism for S2 state to the Si

| state and a rotation mechanism via the S2 state. By comparison, in the cyclophane (1-44) the n-7t*

and 7C-7T* quantum yields o f isomerisation are equal indicating that n-n* excited molecules end up 

in the same n-rc* state that is populated by direct n-n* excitation. This behaviour stems from the 

reluctance o f (1-44) to undergo rotation. Also the n-7t* state photo-isomerisation quantum yield is 

equal for (1-44) and for azobenzene suggesting that isomerisation proceeds by the same 

mechanism in both molecules. In addition the absorption spectra for (1-44) and azobenzene are 

similar for the n-7t* absorption band but different in the n-n* band, suggesting that normal 

azobenzenes isomerise by inversion, but on n-n* excitation a rotational mechanism may become 

important.91

Photo-isomerisation from the second excited singlet was investigated by Lednev63 et al., who 

observed several excited transient species. The results o f Lednev’s63 study showed that on 

photolysis of azobenzene, transient absorptions are seen at 370-450 nm and transient bleaching 

occurs at 303nm. The transient species which absorbed in the 370-450 nm range, with a lifetime 

o f 1 ps was assigned to the first formed S2 n-n* state, which decays via the processes shown in 

Figure 1.25. The probable decay o f the S2 species is by isomerisation via a conformational change 

| on the S2 surface and internal conversion to the trans Si and So (ground state) states. The trans S2

| to trans Si transition was indicated by trans Si to trans So fluorescence after excitation to the S2

state. The longer lived transient species, which absorbed at 303 nm and had a lifetime o f 13 ps in 

; alkaline solution, was attributed to the decay o f a bottleneck S# transition state to So, where S#

| was assigned as a twisted conformer found on the Si or S2 potential energy surface (see Figure
I
i  1.25). This scheme includes the possibility o f isomerisation by inversion via the trans-Si state,
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either from direct excitation to Si or indirectly from initial excitation to S2 and then internal 

conversion to Si, as well as isomerisation by a rotation mechanism via the S# species following 

excitation to the S2 state.

trans-S2

k21

k? .. trans-S

hv kt

‘*kr / k l c I t klr

JL

CIS

JL
trans trans

Figure 1.25 Excited states involved in trans-cis photo-isomerisation. Vibrational levels are

omitted from this diagram for clarity.

Calculated potential energy curves,70 have suggested that the bottleneck state may be assigned to 

a twisted form of trans-azobenzene with the Si or S2 surface on either side.

For trans-azobenzene, rapid decay o f the 1st n-n* state and existence o f a bottleneck state S# 

indicate that changes in electronic structure produced by the nitrogen heteroatoms exert a strong 

influence on excited state structures and ultra-fast dynamics.

Rau and Luddecke64 inferred that both rotation and inversion occur in azobenzenes; inversion for 

the n-7r* state and rotation for the n-n* state.

Evidence for the inversion path includes the rapid isomerisation o f imines, for which an inversion 

path is possible, in comparison with olefins, which cannot follow this path but have reasonable 

activation energies for a rotational path. The inversion mechanism for azobenzenes is also 

supported by the lack of solvent effect on the rate o f isomerisation, cited as evidence against 

rotation.92 Also, azobenzenes with bulky groups, which would be expected to hinder rotation, 

have a similar rate o f isomerisation to unsubstituted azobenzenes.93 It has been suggested that
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inversion may proceed through a semi linear (sp hybridized) transition state, in which the azo 

double bond is retained.94’95 Although azobenzenes are essentially planar,96,97’98 calculations by 

Bunce" indicate that they can twist around the C-N bond when they have substituents ortho to 

the azo group. Bunce showed that a combination o f phenyl rotation and opening o f the C-N=N 

bond angles is required to rationalize spectral n-n* and n-n* band shifts. In addition to this, 

despite molecules having bulky substituents, trans-cis isomerisation still occurs, inferring that 

some twisting of the phenyl rings may take place.

Ri

Ri = R2= R3 = isopropyl

(1-45)

Bunce et a t9. isolated the cis isomer o f one such substituted azobenzene (1-45). They determined 

its structure by X-ray analysis and investigated the cis-trans thermal reaction, proving that the
!1

photoreaction is really a geometric isomerisation. The assumption made in a calculation for the cis 

isomer, a parallel structure formed by the 90° rotation o f the phenyl groups about the C-N bond 

leaving the azo group planar, explains the phenomenon o f equal oscillator strengths o f the n-7t* 

bands in both cis and trans forms. These structures are also the least strained configurations in 

cis,cis azobenzeneophanes.64

Rau concludes that the quantum yields o f trans-cis isomerisation for both n-rc* and n-n* 

excitation become equal in azobenzenes with increasingly large substituents in the ortho positions. 

Very big groups -  such as phenyl groups -  however, lock the azobenzene in the trans form, and 

there is a clear trend to smaller trans-cis isomerisation yields for very bulky groups. A singlet 

mechanism is suggested for the isomerisation, as yields for triplet sensitized experiments in 

unsubstituted azobenzenes are only a few percent.83,100

In contrast to simple azobenzenes, donor acceptor azobenzenes such as the (1-46) have only been 

isolated as trans isomers92,79

(1-46)
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Here it is assumed that the equilibrium in favour o f the trans isomer is greater than 99%, or 

alternatively, there is a very low barrier to isomerisation and it occurs very rapidly. When (1-46) is 

irradiated in benzene with visible light (A, > 400 nm), short term temporary bleaching, or loss o f 

intensity of the long wavelength absorption band is observed.92 The photo-bleached solution then 

returns to the original intensity. In more polar solvents, the bleaching effect is much shorter lived. 

Low temperature spectra following flash excitation indicate that the product short lived product 

formed on photo-bleaching is the cis isomer, which has a much lower absorption than the trans 

isomer. Rapid thermal isomerisation of the cis isomer back to the original trans isomer then 

occurs.

The rate of photo-isomerisation in azobenzenes depends strongly on the substituents on the 

azobenzene. The cis isomers of donor-acceptor type azo dyes have very short lifetimes, 4-5 

seconds in poly methyl methacrylate (PMMA), and therefore revert very quickly back to the trans 

form. This contrasts with cis isomer o f azobenzenes, which have much longer lifetimes o f hours in 

polymeric films.

In donor acceptor aminoazobenzenes, such as derivatives o f (1-47), the less electron withdrawing 

the substituent group X is, the greater the amount of photo-isomerisation occurs from both n-7t* 

and 71-7C* excitation.1̂87.

~ o — o <
(1-47)

For example, when X = NO2 there is very fast thermal reversion to the ground state, giving almost 

none of the cis isomer, but with X = Cl and X = OMe, there is slower thermal reversion and so an 

increase in the percentage o f the cis isomer is present.

Experimentally it is seen by spectroscopic investigations92 that cis-trans thermal isomerisation is 

generally faster in more polar solvents and has first order kinetics, for example in hexane the cis to 

trans rate constant is 0.007 sec'1, while in propan-2-ol the rate constant is 17 sec'1. The rate 

increases sharply for polar solvents such as DMSO, where the rate constant is 440 sec'1. By 

comparison, the rate constant for cis-trans isomerisation o f 4-amino-4'-diethylaminoazobenzene 

is 0.003 sec' 1 in benzene and does not increase in polar solvents. Addition o f water to solutions of 

acetone or DMSO also increases relaxation rates. The activation energy for isomerisation is 14 

kcal mol*1 in benzene and 10 kcal mol' 1 in acetone. These activation energies are considerably
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lower that those reported for monosubstituted azobenzenes. The observed solvent effect implies a 

polar or dipolar transition state.

To understand the mechanism of cis -  trans isomerisation o f donor acceptor azobenzenes better, 

kikuchi 101 carried out an ab initio study of the solvent effect on the cis-trans isomerisation o f a 

donor-acceptor (push-pull) azobenzene (1-46), using the Generalised Bom (GB) method. This is 

a continuum model with the solvent property reflected by its dielectric constant. This paper 

examines the energies of the possible transition states involved cis-trans isomerisation in relation 

to various changes in the angles o f orientation of the phenyl rings with respect to the azo bond for 

both inversion and rotation mechanisms.

While it is generally accepted that azobenzenes undergo inversion101 -  where sp2-sp  hybridization 

o f the azo nitrogen gives a semi linear transition state, push pull or donor-acceptor azobenzenes, 

in which the N=N bond is weakened by the para substituents, favour isomerisation via a rotation 

around the double bond. The reaction rate depends largely on solvent -  it is faster in polar 

solvents.101 This implies a change in mechanism from inversion in non polar to rotation in polar 

solvents. Azobenzenes have been found to favor an inversion route via a transition state with a 

perpendicular orientation o f the phenyl ring to the azo bond.101 The relation between two reaction 

paths on the basis o f two dimensional energy surfaces defined by rotation and linear inversion 

motions and secondly, the effect o f solvent polarity on the transition state structures and reaction 

mechanism are considered.

Kikuchi calculated that a pull-group inversion was more favourable than push-group inversion in 

the gas phase and in solvent and calculated activation energies compared well with experimental 

values. Analysis o f the electronic configurations revealed that the rotation transition state clearly 

resembles the inversion transition state and the two states were found to be comparable in energy 

; for the pull-group inversion. Calculations were performed using ab initio RHF methods on closed 

shell electronic structures and for the diradical state expected for the rotational mechanism 

transition state and ROHF calculations with the general SCF formulation applied to the excited 

singlet state were used. The polar solvent was represented by e = 79 (dielectric constant o f 

water). The STO-3G basis set was used for geometry optimization and the 6-31G basis set used 

for energetic calculations with optimized structures. Transition states structures were determined 

by minimizing the norm o f the energy gradients.

The trans-cis photoisomerisation process may be involved in the dissipation o f electronic
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excitation energy from excited states o f the molecule, and according to Rau,64,65 the mechanism of 

energy dissipation from the excited state is dependent on whether n-7c* or n-n* excited singlet 

state is lowest. At an intermediate geometry between the trans and cis isomers, corresponding to 

135° inversion angle, the energy gap between the ground state and the n-7t* singlet excited state 

becomes smaller and the rate o f radiationless decay increases64 resulting in loss o f energy from the 

excited state o f the molecule. However, if the n-n* state is the lowest singlet excited state, then 

trans-cis isomerisation proceeds by rotation and the lifetime of the excited state is longer, even 

giving the possibility o f fluorescence.62 It has been found that the more photo stable dyes are 

those having a higher rate o f cis trans reversion, which are less likely to rupture at the beta 

nitrogen-carbon link.102 Absence o f isomerisation, which is one possible mechanism for the 

dissipation of energy, may reduce light stability.62

The photoisomerisation reaction, may result in the dye undergoing a colour change if the cis form 

is reasonably stable, as the cis isomer absorbs longer wavelength than the trans. As a consequence 

there will be a bathochromic shift in the wavelength attributable to the absorption o f the cis 

isomer, giving a deeper hue to the dye42. The shift may be attributed to the cis isomer having a 

broad n-rc* band extending to slightly longer wavelengths than the intense n-n* band o f the trans 

compound. The cis isomer of 2',5-dichloro aminoazobenzene, (1-48), exists as the cis form long 

enough for such a colour change to be observed.1

This colour change may be undesirable in fabrics etc. Dyes with fast interconversion are therefore 

usually chosen. The reaction is o f course totally reversible. Reversion to the original colour will 

eventually result after storing in the dark. This reversible colour change on photoisomerisation 

may be useful in other applications e.g. light filters and photoimaging.19

Section 1.10 

Irreversible fading

As explained earlier, photoisomerisation is a totally reversible process. The most important fading
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processes are however irreversible and involve the destruction o f the azo group in most cases. 

The azo dyes can also undergo photoreduction and photo-oxidation reactions103’104, whilst the 

amino group may also be oxidised. If  a nitro group is present in the dye then it is possible that this 

may undergo a reduction.42 These reactions are discussed below.

Photoreduction

There are two types o f photoreduction reaction possible for the azo group in azo dyes.2,14 The 

first is indirect reduction which either involves energy transfer from a sensitizer, for example, a 

carbonyl compound105, or the sensitizers may abstract hydrogen from the solvent and form a 

radical (Scheme 1.3).14

r o

.Et
OoN- \  / - N = N - hv iso-propanol

(1-49)

OsN

(1-50)

Et

Et

OoN

\  /
-n h 2 +  h2n

.Et

(1-51) (1-52)

Scheme 1.3 Reaction mechanism for the indirect photoreduction o f an azo dye
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i  In Scheme 1.3 the excited ketone sensitiser abstracts hydrogen form the solvent and forms a ketyl
j
I radical, which then attacks the azo bond. Intramolecular hydrogen transfer gives a hydrazo radical
I
| which may itself abstract hydrogen from the solvent and reduce the azo dye to a hydrazine
|
i compound (1-50).
I
| The second way is by direct photoreduction, which was investigated first by Irick and Pacifici,106 

j  who faded solutions o f compound (1-49) at 254 nm in several solvents, including iso-propanol at 

310 nm and 366 nm. They found that compound (1-49) was completely and rapidly regenerated 

i  on readmission of air into the sample. They therefore assumed that the photoproduct was the 

j hydrazo derivative (1-50). The results o f Irick and Pacifici and a separate study by Albini, showed
iI

that (1-49) was regenerated in air in iso-propanol solution implying compound (1-50) as the 

photoproduct. However, in methanol or cyclohexane, the main products, found by TLC and GC- 

MS analysis, were the anilines as in the reaction Scheme 1.4. Here hydrogen is abstracted from 

the solvent by a photo-excited state o f the dye itself, which breaks down further to give anilines 

as shown in the reaction scheme below.14,87’90,109,107’108

(1-55) 

(1-56)

1

x- h G h -  * " ' - " O ' - ' C

(1-57) (1-58)

Scheme 1.4 Direct photoreduction o f an azo dye
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In propan-2-ol, which is more viscous and has an easily abstractable hydrogen, photo reduction 

leads to (1-50) whereas in methanol, a stepwise pathway gives anilines. However, a subsequent 

paper by Albini87 states that although (1-49) is suspected to form the hydrazo derivative, the 

methoxy and hydrogen analogues (1-59) and (1-60) are reduced to the amines (1-61), and (1-62), 

these products arising from the further reaction o f the hydrazyl radical formed in the primary 

hydrogen abstraction. The same products are assumed from the acetone sensitized
. 106,109experiments. ’

“ “ O - ” \ j ~"'C
(1-59)

o — o - <
(1-60)

x“^ C / — o <
(1-61) X ==H (1-62) X =OMe

It was presumed that the hydrazo derivatives for these dyes are unstable and undergo quick 

disproportionation to the starting material and the amines. An alternative possibility is that the 

amines arise from direct cleavage o f the hydrazyl radical. The efficient oxygen quenching is 

thought to be due to the reaction o f oxygen with the hydrazo radicals rather than with some 

excited state of the azo dyes which would be too short lived to be intercepted by oxygen58 The 

products of the indirect photoreduction, with chemically sensitized photobleaching in acetone 

methanol solutions, gives partly compound (1-49) and partly anilines.

Besides chemical sensitization through radical initiation,58 energy transfer is also effective in 

promoting the reaction. The energy o f the sensitizer is very important, for example, anthracene is 

ineffective in promoting the reaction, although its triplet is higher in energy than that o f (1-49) 

(40kcal/mol).58Sensitizers with triplet energy greater than 67 kcal/mol are more effective.
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Effect of the wavelength of light

Datyner et al126 have shown using a glass plate which absorbs all energy below 300 nm that most
13

of the fading occurs due to light below this wavelength while Accoria et al say that dyed films 

exposed to 254 nm fade much faster than those exposed to 350 nm.

Albini et a l showed 109the rate o f reaction was much greater when using quartz filtered rather 

than pyrex filtered light. Therefore the reaction is strongly wavelength dependent and irradiation 

o f the first absorption band had no effect on fading, while photoreduction began to occur at 

313nm, and thus some higher lying state is involved. They found that compound (1-49) was not 

completely regenerated in air and suggested that the reduction o f compound (1-50) proceeds via 

reaction with radicals in solution. Albini suggests that photoreduction o f the cis isomer of (1-49), 

which has accumulated in cyclohexane and is more efficiently reduced than the trans form, may 

occur. The rate of cis—s►trans thermal reversion is 7x10‘3 s’1 in cyclohexane and 17 s*1 in iso­

propanol.109 The build up o f the cis isomer is therefore higher in cyclohexane than in the better 

hydrogen donors iso-propanol and methanol.106 However, the lifetime of the cis isomer is 

immeasurably short in alcohols and therefore, photoreduction is proposed to occur from the trans
109isomer.

Albini reiterates that to understand the photochemistry o f these dyes, not only the lowest singlet 

and triplet states, but also high lying states must be considered. The lowest excited singlet 

undergoes highly efficient geometric isomerisation and thus only minimal intersystem crossing and 

no trace of hydrogen abstraction is detected. As opposed to the low lying charge transfer state, 

the n-n* singlet states corresponding to weak benzenoid absorptions at shorter wavelengths 

undergo efficient intersystem crossing to high lying triplets. Analogously to the lowest singlet, the 

lowest triplet state undergoes only geometric isomerisation (see Section 1.9). The high lying 

triplets have some, although low probability o f abstracting hydrogen from the solvent109, but the 

overwhelming process is conversion to TiThe photoreduction occurs only for the n-n* excitation 

and only in low quantum yield.14’109 In view o f the predicted weak hydrogen abstracting ability110 

o f n-n* triplet state o f azobenzenes, and the high reactivity o f the high lying triplet state o f (1-49) 

and very short lifetime o f its singlets (Si has a lifetime o f picoseconds), high lying triplets are 

assumed to be involved in the photoreduction. These triplets can be reached by energy transfer or 

by intersystem crossing from high lying singlet states. The low quantum yield for the 

photoreduction reaction is not surprising in view o f the short lifetime o f the states involved (im ^
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i n  < 10'9 s).58 The involvement o f high lying triplets is again confirmed by the fact that high 

energy sensitizers promote both reduction and isomerisation, while the low energy ones promote 

isomerisation only. For azobenzene, only high lying triplets o f the cis form have been reported to 

undergo hydrogen abstraction.111

The experiments are extremely sensitive to O2 and it is hard to get reproducible results.109 The 

presence of oxygen is an important factor in this reaction. A small amount o f O2 may increase the 

rate o f the process14,110- implying that this induces the excited singlet- triplet ( S0*-Tn) transition,
3

whereas large amounts o f O2 quench the reduction. This implies the involvement o f (n-K*) in the 

reaction. The reaction is quenched by quenchers acting as radical traps. The same effect is seen 

with di-tertiary butyl phenol, but at high concentrations.
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Section 1.11 

Photo-oxidation

The photo-oxidation of azonapthols, which exhibit azo-hydrazone tautomerism (Scheme 1.5) is 

well established. 4 2 1 1 2  Here, oxidation is of the hydrazone tautomer, and may involve an "ene" 

reaction with singlet oxygen, and it has also been shown that arylazonapthols photosensitize

oxygen.

O Me

Scheme 1.5 Mechanism of the photo-oxidation of azonapthols
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The only evidence for oxidation o f a non tautomerising dye is for compound (1-63)42, which gives 

the azoxy compound ((1-64)

.NO,

0 2N------------------------ / ) --------N = N\  /

NO,

^CH 3

o c h 3 

(1-64)

Singlet oxygen

Singlet oxygen has been suggested to be involved in the photodegradation but research by Albini14 

et al., states that azo dyes show only a slight activity with singlet oxygen and only slow fading 

takes place in the presence o f singlet oxygen sensitizers such as methylene blue.14This is discussed 

further in the following section.

Self sensitized singlet oxygen oxidation has been considered by Albini et al.113, who examined 

fading of simple mono azo dyes (1-65), (1-66) and (1-67) in aerated solutions.

(1-65) X = H 

(1-66) X = OMe 

(1-67) X = N 0 2

These azo dyes show only slight reactivity with singlet oxygen. Practically no reaction is observed 

when singlet oxygen is generated by thermal decomposition o f 9,10-dimethyl-anthracene 

endoperoxide and only slow fading takes place by irradiation in the presence o f oxygen sensitizers 

such as Methylene Blue (MB) or Rose Bengal (RB).
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In the presence o f singlet oxygen acceptors, the azo dyes showed no oxygen sensitization within

the limits of the Albini experiment.

A very small quantum yield o f oxygen sensitization has however, been found for some derivatives 

of (1-67) in viscous solvent.

Fading rates o f dyes (l-65)-(l-67) were found to be much slower when compared to azo napthol 

dyes under a standard set o f conditions, but both sets o f dyes showed increased fading rates in 

going from methanol to methanol -  water mixtures, and also in deuteriated solvents, while the 

reaction was quenched by the known singlet oxygen quencher, diaza bicyclo-[222]octane

(DABCO) and by nickel salts.

The photo-oxidation products o f (1-66) and (1-67) were found to be anisole and nitrobenzene

respectively, with benzene formed from (1-65).

The involvement o f singlet oxygen is deduced from the increase in fading rate o f about an order of 

magnitude in going from methanol to methanol-water mixtures reflected by the increased singlet 

oxygen lifetime in methanol-water solutions. From this evidence Albini proposed the following 

possible mechanism for singlet oxygen oxidation (see Scheme 16).

This scheme involves electrophillic attack by singlet oxygen on the aromatic ring at the position

para to the dimethylamino group.
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Scheme 1.6 Possible singlet oxygen mechanism for the oxidation o f azo dyes

| Cleavage of the C-N bond on the donor side yields the diazonium ion which loses N 2 to give a 

| benzene derivative as the final product.

; There is another possibility for an oxidative fading reaction, this time involving a dealkylation 

proposed by Griffiths42 (Scheme 1.7) by analogy with similar processes that have been found for 

aliphatic amines.
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Ph N

Ph N

OOH

Scheme 1.7 Oxidation o f the N-alkylamino group by singlet oxygen

Here the photo-oxidation product is the dealkylated monomethyl derivative. Only a small amount 

of the dealkylated monomethyl derivative c.a. 2% of dyes (1-65) and (1-66) were found by Albini,

stable to photo-oxidation than the dimethyl derivative. He concludes therefore that the main 

photofading reaction does not involve chemical attack on the amino group.

For dyes (l-65)-(l-67) the main process in the fading of degassed solutions is reductive cleavage

until about 10-20% conversion after which fading accelerates rapidly. The fading is not linearly 

dependent on the photon flux. Albini concludes that fading under aerated conditions is very slow 

and not a significant component o f the observed photofading - not unexpected considering the 

well known quenching o f singlet oxygen by tertiary anilines.114

Dyes (1-65) and (1-66) fade at a faster rate than expected for a singlet oxygen, process giving 

anilines as products in addition to anisole and nitrobenzene from dyes (1-66) and (1-67) and 

benzene from (1-65).

who states that this low yield is not due to the decomposition o f this derivative, as it is more

of the azo bond to give anilines87This process is quenched by oxygen. Analysis o f the fading 

products, for fading under aerated conditions, showed that in addition to anilines, benzene and 

anisole were also produced. This process only occurs with UV light. The fading is initially slow
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Possible mechanism involving oxygen

A possible mechanism, suggested by Albini14, for the photofading o f azo dyes involving oxygen is 

shown in reaction Scheme 1.8. He proposed that the initial step o f the reaction is a reduction, 

giving the hydrazyl radical (1-70). It is thought that high lying triplets reached by short 

wavelength irradiation and intersystem crossing abstract hydrogen from the solvent in the initial 

reduction process. In the absence o f O2, the hydrazyl radicals formed, disproportionate to the 

starting material and a hydrazobenzene (1-68), which is further cleaved to the aniline. If  O2 is 

present, it may react with the hydrazyl radical at the nitrogen, yielding a peroxy radical (1-71)
1

which either reverts to the starting material or undergoes further decomposition to the end 

products.

H H

1 Ar N N Ar-------------------------- Ar--------N = N -------Ar12
(1-68)

hv
Ar N = N  Ar

M eO H

(1-69) (1-70)

o2

Ar N---------N-------Ar  ►  Ar--------H

H O-----O*

(1-71)

Scheme 1.8 Probable photo-oxidation mechanism for azo dyes
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The substrate

The chemical structure o f the substrate may be important in determining the mechanism by which 

the dye fades and the rate of photofading. On non proteins, it is believed that photo-oxidation

occurs. U5It is thought that fibers like cellulose don't take part in the reaction and are in fact 

protected by the dye from degradation.116 NS Allen’s experiments108 showed that rate o f fading on 

cellulose was greater in aerated conditions than under deoxygenated conditions, providing further 

evidence o f an oxidative process.
108,116

On proteins e.g. wool, silk and polyamide, fading occurs via a reductive pathway implied by 

the formation of amines from reduction of the azo group. The presence o f oxygen makes little 

difference here, as the oxygen interacts preferentially with the polyamide film13 There is a slight 

difference in the rates in air due to competition between the dye and oxygen for the initial 

reducing species. Fading may be first or zero order depending on which ring o f the dye is 

substituted.

Y Z

(1-72)
13

For example, Arcoria et al reports that this aminoazobenzene fades with first order kinetics 

when Z is an NH2 , NHCOCH3 or NHCOCH2CN substituent but has zero order kinetics when Z 

is H, in (1-72), on nylon film.

For first order dyes, light is preferentially absorbed by the film13. Dyes may fade with zero order 

kinetics in solution117 and in dyed materials, with large particles o f dye e.g. disperse dyes or 

pigments, the fading may also be zero order.118 Fading may also occur only on the surface o f the 

dye particle; the layers underneath being protected from exposure to light.

Photoreduction may be direct or indirect, as in solution, and may be sensitized by the carbonyl
13,119 14,90,120

group in the polyamide film. This has been suggested by studies using sensitizers such 

as biacetal, methylene blue and ketones. It is suggested that the sensitizer may undergo energy 

transfer with the dye to give a reactive triplet state o f the dye. Alternatively, a ketyl radical

(formed by abstraction o f hydrogen from the solvent by a ketone triplet) may transfer a hydrogen

105atom to the azo linkage.
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Involvement of the substrate in photo-oxidation

Since the substrate, or radicals from it, may be a primary cause of photofading for certain systems, 

investigations by Albini1 21 showed that self sensitized photo-oxidation was not significant in the 

photofading of azo dyes, which quench rather than react with singlet oxygen,11, when a solution 

model system was used.

The model system for this was photofading in the presence of carbonyl compounds. Carbonyls 

sensitize fading in degassed solution through radical initiation (acetone enhances fading rates by 1 

to 2 orders of magnitude.87Also COOH radicals from the decomposition of mandelic acid cause 

fading of certain azo hydrazone structures even in aerated solution . 1 2 2

Albini used Acetone, benzophenone, anthraquinone, benzil and 2,2-dimethoxy-2- 

phenylacetophenone (DMPA) - which undergoes efficient Norrish I cleavage to radicals12' - in 

high enough concentration to ensure they absorbed a large part o f the light used and produced 

radical species. The dye used was (1-73), which was quite fade resistant and has been reported to 

give the azoxy derivative on irradiation in aerated iso-propanol. 1 2 4

M > " -  < ,h3c  V  y  n -------- />------------------------ n o 2

0 ,N

(1-73)

HjC

\
-NO?

o 2n 

(1-74)

However, irradiation of (1-73) in benzene in the presence of carbonyl sensitizers, resulted in the 

isolation of the monomethyl derivative of the dye (1-75) in 30 to 40 % yield.

V / -n o 2

o 2n 

(1-75)
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Other processes giving more decomposition were also present but di-nitroaniline and di­

nitrobenzene were not formed. It was assumed that peroxy radicals formed from carbonyls in the 

presence of oxygen (Scheme 1.9) are involved in the demethylation (1-73).

R— <jj— <jj— R + 2 0 2   2RCOOO

o  o

Scheme 1.9 Reaction of a diketone with oxygen to yield a peroxy radical.

Reaction of the diketone triplet precedes cleavage of the C -0 bond. The peroxy radicals produced 

are strong electrophiles and can abstract an electron from the aminoalkyl group of (1-73) to give a 

peroxy anion and the radical cation of (1-73). The peroxy anion and radical cation of (1-73) 

formed, can then undergo a proton transfer. The radical species formed loses CH, ultimately 

giving the monomethyl derivative (1-76) (see Scheme 1.10).

h 3 c ^  _ h 3 c . #+
PhCOOO* + N----- Az ---------► PhCOOO + N----- Az

h 3c  h 3 c / /

(1-73)

H transfer

PhCOOOH +
h 2 c .  h .

N Az -----► N----- Az

H3C ^ h3c^
Az = 2,4-dintroazobenzene (1-76)

Scheme 1.10 Reaction o f peroxy radical species with an aminoazo dye.

DMB (dimethyl benzene) is found to quench the reaction as it is oxidised by the peroxy radical. 

The reaction of the amino azo dye (1-73) with benzophenone also produces the monomethyl 

derivative (1-76), but may involve a different mechanism to that for the peroxy radicals. Unlike 

benzil and DMPA, benzophenone does not decompose itself and its triplet state may interact 

directly with the dye as in Scheme 1.11.
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Ph2CO*3 + Az-NMe2 PhsCO + Az~NMe2

/ CH2

PhzCOH + Az-N n Az-N.

Me

H

Me

PhfcCOH + 0 2  ► Pl^CO

Scheme 1.11 Reaction of benzophenone with the azo dye

The radical cation of the azo dye (1-73) is formed along with the radical anion of benzophenone, 

and proton is transferred to the anion from the cation. The final product is again the monomethyl 

derivative whilst benzophenone regenerated.

In the polar solvent methanol, the photo-decomposition was dependent on the presence or 

absence and the nature of carbonyl sensitizers.

Direct radiation with no sensitizer yielded no coloured product and fading was very slow. 

Irradiation in the presence of benzil, DMPA or benzophenone gives a much faster photoreaction 

and yielded an orange product (1-77), identified from its chemical behaviour and too labile to be 

isolated. This in turn gives the monomethyl derivative (1-76).

H3COH2C

N Az

h 3c

(1-77)

The initial hydrogen abstraction step is the same as in benzene solvent and the benzoylperoxyl 

radical is the reactive species.

For acetone and anthraquinone however, a completely different reaction is observed, with the only 

coloured product observed being (1-78) and dealkyllation being a minor process.
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As it has been seen in Scheme 1.11, the inert triplet state o f benzophenone reacts with the amino 

group of compound (1-73) in benzene, but in methanol, hydrogen donating solvents give ketyl 

radicals which attack the azo dye (1-78) as shown in Scheme 1.12.

NO2

0 ,N ------- </ V--------N,

v _ /  %
,CH3

/nT +
CH3

(1-73)

r 2c o h

NO,

O2N- /  \
\ <

CH3

- c r 2 

(1-79)

CH3

,n o 2

02N- /  \
V

CH3

(1-80)

r 2c o

,N02

0 2 N- /  \
Oo

\
• 0 0  

(1-81)

CH3

NO,

-O H

\ = /  \ h,
(1-78)

Scheme 1.12 Mechanism of indirect photo-oxidation in methanol.124
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Here the ketyl radical adds to the double bond, an intramolecular hydrogen shift accompanied by 

loss of the ketone, gives a hydrazo radical (1-80) which reacts with oxygen to give (1-78). 

However, direct irradiation in propan-2-ol,124 gives (1-78) in a 9:1 ratio with the monomethyl 

derivative of (1-73), implying that propan-2-ol, being a better hydrogen donor competes for the 

dilute dye with the ketone triplet, forming ketone radicals which attack the dye.

The conclusion drawn is that (1-73) is an efficient and selective radical trap. Strongly electrophilic 

radicals such as peroxy radicals are reduced by the amino group giving the demethylated 

derivative (1-75), whereas ketyl radicals attack the azo chromophore and in the presence of 

oxygen, give an azoxy compound (1-78). This work suggests that radicals at the oxygen atom of 

carbonyls attack the amino group whilst radicals at the carbon o f carbonyls attack the azo bridge.

Effect of wet substrate systems

The importance o f humidity in dye photofading is closely related to the influence o f oxygen and 

the role of singlet oxygen.

In general, moisture content o f dyed fibers reduces lightfastness108 . Moisture apparently swells 

the fibres thus enabling air to penetrate into the substrate more efficiently. By this reasoning, dyes 

which undergo photo-oxidation reactions will have an increased rate o f photofading with 

increasing humidity, while dyes that degrade by photoreductive processes should fade more 

slowly, as oxygen diffuses into the substrate and quenches the excited triplet states o f the dye. 

Nichols and co-workers125 found that a reactive azo dye faded by a mechanism involving the 

photoejection of an electron

RH <=> R 'H + + e~ Equation (1-4)

The presence of moisture was found to greatly enhance the rate o f a photoejection o f an electron 

by solvating it as in equation Equation (1-4).126 The radical species produced by the photoejection 

may then undergo subsequent reactions involving H20  and oxygen. 13,105
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N-oxidation127

The amino nitrogen is far more electron rich than the azo linkage and therefore N-oxide 

derivatives are expected to be formed during oxidation. No such product has yet been isolated, 

but this could be due to its fast secondary composition.

hv
Ar N = N  (\ / ) ------- NR2  ---------------------- ►  Ar-------N = N ------- ( \  /)------- NR2

V A  '°i \ _ j  i
(1-82) (1-83)

[ O ]

r 2

O   o
Scheme 1.13 N-oxidation of the amino nitrogen. Ar = Ph or CH 3 0-Ph, R = CH3 or C2 H 5 .

The photochemical decomposition of azo N-oxides is known. Compound (1-83) can be produced 

by oxidation with perbenzoic acid. Photofading of (1-83) gives (1-82), (1-84), (1-85), and (1-86) 

as products.

A r N = N  (v /)--------NR2

O\  /  T
(1-83)

hv

NHRA r N = N

(1-82) (1-84)

/ R
Ar N = N  ^  j)------- NH2  + A r-------N = N ------- /)-----------------------

CHO

(1-85) (1-86)

Scheme 1.14 Photo-products of N-amino oxidised azo dye
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In the dimethyl derivative of (1-83), the photochemistry apparently involves oxygen transfer to 

the solvent and intramolecular hydrogen abstraction as shown in Scheme 1.15.
^ ch3

, r  'CH3 hv tl" / CH3 -OH* „  n/ CH3-NL  w ---- -------l\L ----------------- ----------------- |\L

B H

i ' c h 2 c h 2 a  CH2
OH .  / C H 3

H -N
c  CHO

Scheme 1.15 Mechanism of N-amino group photo-oxidation

The major and minor end products, B and C, correspond to those observed when the radical 

species A is formed by the photosensitised reaction of an azo dye, as in Scheme 1.15.

For the diethyl derivative , there is easy abstraction from the (3 position giving the elimination of 

ethylene (Scheme 1.16). The mechanism of formation of the dealkylated amino group is similar to 

that in Scheme 1.15.

.^H g
-fC

AHs . ^C 2H5 ^  H
hv

CH2 -C 2 H 4  j )  OH

H" ' 6H2   ►  A
OH H

Scheme 1.16 Mechanism of N-amino photo-oxidation of a diethyl aminoazo dye

The hydroxylamine D found, undergoes further photochemical fragmentation to the observed 

products in Scheme 1.9.

Oxidation of the N amino nitrogen makes its lone pair unavailable for conjugation and negates its 

bathochromic effect on the spectra of the dye (by 70 to 100 nm). The electronic spectra of the N- 

oxides are almost identical with those of azobenzenes. These type of oxidations are reversible. On 

excitation to the k - k *  state of the N-oxide, charge is transferred from the phenyl ring to the azo 

bridge, making the N-oxygen atom electrophilic and radical in character and thus giving the 

oxygen transfer and hydrogen atom abstraction seen in Scheme 1.16.

Further oxidation yields a azoxy N-oxide. These can be prepared by oxidation by peracetic acid of 

the corresponding azo derivatives. Recent evidence127 confirms that the second oxygen atom is at
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the azo nitrogen atom attached to the acceptor phenyl ring. Both N-oxides and azoxy N-oxides 

were found to be stable in alcoholic solvents, but reactive in benzene when irradiated. 

Photodecomposition o f these N-oxides in aprotic solvents is more efficient than for azo dyes with 

similar structure.

In summary there are four types of oxidation reactions for the azo dyes:127 Oxidative cleavage of

the Ar-N=N bond,128’129’130’131

1. Oxidation of the azo bridge (Scheme 1.5 and Scheme 1.6).

2. Oxidation of the amino group following interaction with a sensitizer.

3. Oxidation of the azo bridge to give azoxy derivatives (Scheme 1.17) which, are known to

undergo further photoreduction to o-hydroxy azo derivatives.127 Note that this reaction has

only actually been demonstrated for dye (1-64).

hv
A r N = N  Ar1 ----------------------- ►  A r-------N

[O]

Scheme 1.17 Oxidation o f the azo bridge.

4. N-oxidation of the amino nitrogen (Scheme 1.13).
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Section 1.12 

Theoretical calculations

There are several theories for the colour/structure relationships including empirical rules based on 

experiment or quantitative relationships based more or less on theoretical reasoning. These

methods o f various levels of sophistication are available for computing light absorption 

characteristics of a molecule starting with a knowledge of the main structural features o f the 

molecule and a small number o f parameters. The following text gives an brief description o f the 

theory of some of molecular orbital methods used in this work.

Q uantum  mechanical models

There are a number of quantum mechanical theories for modelling molecular systems. The one we 

shall consider is molecular orbital theory, which is the theory behind the computational 

calculations carried out for this thesis. It is very useful to have some idea o f the theoretical 

background behind these calculations and a description o f some o f the relevant details o f quantum 

theory will be attempted. Much o f this chapter is based on chapters o f Andrew R. Leach’s 

excellent book “Molecular Modelling : Principles and applications” 132 

The starting point of the discussion must be the Schrodinger Wave Equation.

Equation (1-5) is the full time dependent form of the Schrodinger Equation, referring to a single 

particle of mass m (e.g. an electron), moving through space with a position r  = xi + yj + zk 

(where i,j and k are vectors) at time t, under the influence of an external field V (for example, due

by h, i is the complex number equal to the square root o f -1  and 'F  is the wave function, which 

characterises the particle’s motion. When V is time independent, the wave function can be written 

as the product of a time part and a spatial part:

19,25
include resonance theory (see p82), Dewar’s rules and PPP theory. Molecular orbital (MO)

Equation (1-5)

to the electrostatic potential of the nuclei in an atom). Plank’s constant divided by 2% is denoted

'F(r,t) = 'F(r) Y(t) Equation (1-6)

In the remainder of this discussion, only the simplified time independent form shown in Equation 

(1-7) will be considered.
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f i 2y 2 1 Equation (1-7)
\ -  —  + v W {r )  = E ¥(r)

Here E  is the energy o f the particle and:

2 d2 d2 d2 Equation (1-8)
V — 4" r  4“ 7T

dx dy dz

The left hand side o f Equation (1-7) can be written as IP¥ where H  is called the Hamiltonian 

operator:

/*2V2 Equation (1-9)
H =--- ---- + V

2m

and Equation (1-9) can be rewritten in the abbreviated form of Equation (1-10)

H*F = EY Equation (1-10)

To solve the Schrodinger equation values of E  and functions must be found, such that when the 

wave function is operated on by the Hamiltonian, it returns the wave function multiplied by the 

energy. The Schrodinger equation is a partial differential eigenvalue equation, in which an 

operator acts on a function (called the eigenfunction) and gives the function multiplied by a scalar 

(called the eigenvalue).

dy dy
An example of this is: —  = ry • Here the operator —  acts on an eigenfunction e.g. y = e"

a x  d x

giving the result re "  where r  is a scalar. The Schrodinger equation is a second order differential

d 2y
equation like— = ry , which has solutions of the form: y = AcosAx 4- BsinAx

Operators

The most commonly used operator is the Hamiltonian, which is used to obtain the energy o f the 

system by evaluating the integral in Equation (1-11):

E = f xF * iH xF d z  Equation

f 'F * 'F d T  (1-11)

Equation (1-11) is obtained by multiplying Equation (1-10) by 'P* (the complex conjugate o f the 

wave function) and then integrating both sides over all space (i.e. from 4-oo to -o o )  , giving 

S'¥*HK¥dr = jT ^ E W r. As E  is a scalar it can be taken out side the integral leading to Equation
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(1-11). The Hamiltonian operator is made up of two parts; the kinetic energy operator -  —— ,
2m

and the potential energy operator V =  for an electron and a nucleus with Z protons.
4tc80a*

Exact solutions

The Schrodinger equation can only be solved exactly for a few systems. For example, the particle 

in a box or on a ring , the harmonic oscillator , the particle on a sphere and the hydrogen atom. In 

addition, certain boundary conditions may be necessary for exact solutions to the Schrodinger 

equation e.g. the box must have infinitely high walls in the particle in the box case, which is 

equivalent to the wavefunction being zero at the boundaries.

The square o f the electronic wavefunction gives the probability o f finding an electron at a point in 

space. The probability of finding the electron over all space is 1 and hence j'F*vF J r  =1. 

Wavefimctions that satisfy this condition are said to be normalised. Solutions o f the Schrodinger 

equation are usually required to be orthogonal, which means that the product o f any pair of 

orbitals integrated over all space, is zero, unless the two orbitals are the same. This condition can 

be expressed as: J'Fm*xFndz' = 0 (m * n). Orthogonality and normalisation can be defined in one 

neat expression as: J'Fm* 'IW r = 8nm using the Kronecker delta ; 5™ =1 if m = n and 0 if m *  n. 

Wave functions that are both orthogonal and normalised are said to be orthonormal. Solutions of 

Schrodinger equation are either real or occur in degenerate complex conjugate pairs, that can be 

combined to give real energetically equivalent solutions . For example solutions o f the 2p orbitals 

comprise o f one real and two complex functions and linear combinations o f solutions are used to 

obtain real 2p solutions.

One electron atoms

The potential energy o f a system consisting of an electron orbiting a nucleus, depends on the 

distance between the electron and the nucleus; as given by the Coulomb equation. The 

Hamiltonian then takes the form of Equation (1-12) as expressed in atomic units*.

* Atom ic units avoid the use o f large constant in  the equation by replacing constants such as the m ass o f an 

electron by me or nuclear charge by Z.
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!

= _ h V 2 Ze2 _ 1 y2 Z Equation (1-12)
2 m  47C8 0r  2  r

Here, Z is the nuclear charge and r is the distance of the electron from the nucleus. The Hydrogen 

atom is a one electron atom where Z = 1. The He+ cation is also a one electron atom, but with 

nuclear charge Z = 2.

I Poly electronic systems.|
j  The wave function for many atom systems may adopt more than one functional form and is

j  complicated by electron spin133, characterised by the quantum number s (s = Vi). Electron spin is
[

! incorporated into the wavefunction by writing it as a product o f spin and spatial parts. The spin 

orbitals are denoted by % and the spatial orbitals by § for atomic orbitals, and 'P  for molecular 

orbitals. The spatial orbitals describe the distribution or density o f the electrons in space, while the 

spin orbitals define electron spin and are labelled a  or P (which can be thought visualised as spin 

up and spin down states respectively). The spin functions have a value o f 1 or 0 depending on the 

value o f the magnetic quantum number ms. i.e. a(Vi) = 1 , a(-V^) = 0, P (Vi) = 0 and P(-!/2) = 1.

Each spatial orbital can have two electrons with paired spins. The electronic structure o f a system 

is dictated by the Aufbau principle whereby two electrons are assigned per orbital. When there are 

degenerate states, Hund’s rule states that electrons occupy these states with a maximum number 

o f unpaired electrons. As electrons are indistinguishable, it follows that if any pair o f electrons are 

exchanged, the electron density o f the system remains the same. The electron density is given by 

the square o f the wave function and from the above statement, the wavefunction must either 

remain unchanged or change sign. The latter condition, being required for electrons, is called the 

antisymmetry principle.

The Born-Oppenheimer approximation.

As the mass o f the nuclei is far greater than the mass of an electron, the nuclei can be regarded as
i
| being stationary and the Bom Oppenheimer approximation treats the nuclei as being fixed in

| space. The total wavefunction can then be split into nuclear and electronic parts, e.g.

'EiotaiCnuclei, electrons) = vF(nuclei)xF(electrons)

| The total energy, is then equal to the sum of nuclear energy (the repulsion between the nuclei) and

| the electronic energy (comprising o f the kinetic and potential energy o f the electrons moving in
iii
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the electrostatic field o f the nuclei and the electron-electron interaction), i.e. Etoui = E(nuclei) + 

E(electrons).

The helium atom

The helium atom system is approached by finding a simpler related problem, and considering the 

differences between this and the more complicated problem. This approach is called perturbation 

theory.

A simplified model of the helium atom is a pseudo atom with no electron-electron interaction, 

which can be solved using the separation o f variables method. This method can be applied 

whenever the Hamiltonian can be divided into parts dependent solely on subsets o f the co­

ordinates. The equation to be solved (Equation (1-13)) is given in atomic units and can be written 

in the abbreviated form o f Equation (1-14):

1^2 Z 1 „ 2 Z\„„ x x Equation (1-13)
-  2 ^ ~  2 ^  “ 7  W 'i . ' i )=  ^ > '2)

{Hx + H2 }^P(/j , r2) = E¥(rx, r2) Equation (1-14)

where H] and H2 are the individual Hamiltonians for electrons 1 and 2.

If we assume that the wavefunction can be written as a product o f individual one electron 

wavefunctions, ^  (/;) and (j)2(^2) with ^(^ i, ) = <t>i ('i )<l>2(r2), then equation Equation (1-14) 

becomes:

[Hx + / / 2](|)1(r1)(j)2(r2) = Equation (1-15)

Premultiplying by §x(rx )(|)2(r2) and integrating over all space then gives:

J d x ^ h  )J d r M ^ ) < k ( r 1 )  +  f

= E \  (/•, f t  )J rft2<t>2 f t  M>2 (r2) Equation (1-16)

The separation o f variables method can then be used to give a hydrogen atom solution for each 

electron, but with nuclear charge, Z = 2.

This wavefunction satisfies the indistinguishability criterion -1 s( 1) 1 s(2) = ls(2 )ls (l)  but must also 

obey the antisymmetry principle. Therefore the spin and space functions must be combined to give 

an overall wavefunction which is antisymmetric; a symmetric space function therefore must be 

combined with an antisymmetric spin function or vice versa, giving wavefuctions o f the form of 

Equation (1-17)
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(1/V2)[ls(l)2s(2) + ls(2)2s(l)][a(l)(S(2) - a(2)P(l)] Equation (1-17)

Polyelectronic systems and Slater determinants.

¥(1 ,2 ,3 , N) = Xi(l) X2(2) X3(3) X n (N ) is not an appropriate form for the wavefunction of a

many electron atom as the product of the spin orbitals is unacceptable because of the 

antisymmetry principle - exchanging pairs of electrons does not give the negative o f the 

wavefunction. The energy of this expression, known as the Hartree product is equal to the sum of 

the energy of the one electron spin orbitals.

An acceptable form for the wavefunction is like that in equation (14) for a 2 electron atom.

e.g. ls(l)ls(2)a(l)p(2)- ls(l)ls(2)a(2)p(l)

This can be written as a 2 x 2 determinant:

ls(l)a(l) ls(l)P(l) 
ls(2)a(2) ls(2)p(2)

The spin and space functions, for each electron can be written as a combined function called a 

spin orbital denoted by X i ( l )  = 1 s( 1 )cx( 1) and X2O) = ls(l)P (l) for the electron labelled 1, and 

Xi(2) = ls(2)a(2) and y j l )  = ls(2)P(2) for the electron labelled 2 etc.

Similarly the wavefunction for polyelectronic system of N electrons, can be represented concisely 

as a Slater determinant (Equation (1-18)).

¥  =
■IW\

*,(!) Z20)
Z (  2) * ( 2 )

X,AA
zA2)

Equation (1-18)

Z W )  X2(N) -  XA.N)

Exchange of 2 electrons corresponds to the exchange of 2 rows in the determinant and results in a 

change of sign o f the determinant, thus obeying the antisymmetry principle. Also, if any 2 rows of 

the determinant are equal - equivalent to 2 electrons occupying the same spin orbital, then the 

determinant vanishes. The normalisation constant 1/a/N! is needed as expansion o f the determinant 

gives N! terms because of the N! different permutations o f N  electrons.

Molecular Orbital (MO) calculations

In the most popular type of quantum mechanical calculations, each molecular spin orbital is 

expressed as a linear combination o f atomic orbitals (LCAO)
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eg . 'J'i = S ^
ft= 1

Each molecular (spatial) orbital Y. can be written as the sum o f k atomic orbitals 0 multiplied 

by various constants c^ .

Hydrogen gas H2 is considered as an example o f the LCAO method. The Hamiltonian for H2 is 

made up of the kinetic energy operator for each electron plus the potential energy operator arising 

from the Coulomb attraction between the electrons and the nuclei, plus an inter-electronic 

repulsion term. i.e.

n  _ l l V 2 _ z a _ z b _ z a _ z b + 1 Equation (1-19)
2 2 rlA r]B r2A r2B rl2

The energy of the H2 molecule is found using Equation (1-20)

f Equation (1-20)

E ~  I'T V dr

with = Xi(1)X2<2) - Xi(2 )X2 0 ) where:

X i(l)  = l a g(l)o t(l)

X2 ( l) = la g(l)P(l) 

Xi(2) = l a e(2)a(2)

X2(2) = l a g(2)P(2)

and the spatial orbital l a g = A ( 1 sa + I s b )  is a linear combination o f two hydrogen atom Is 

orbitals.

This gives:

E = -^jjdr]dT1{[z, 0)2-2 (2) -  Zi Q)Zi (2)] x [H, + H 2 + ( l / f l2] x  [Zl (1 ) z 2 (2) -  Zi 0)2Ti (2)]} 

Equation (1-21)

Here the Hamiltonian in Equation (1-21) has been split into two H2+ Hamiltonians plus the inter- 

electronic repulsion term. i.e. H  = Hi + H2 + Hr 12

Once these integrals have been expanded out and separated into spin and space parts, many o f the 

terms can be simplified or cancelled using the Kronecker delta relation. The remaining terms from 

integrals containing the l/r]2 repulsion term correspond to the Coulombic repulsion between the 

two orbitals. Many o f these terms again cancel due to the orthogonality o f the a  and p spin states. 

Note that, this is not always the case in excited states o f atoms. For example in the triplet state,
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both spin states are the same (both a )  , so these terms do not disappear and they contribute a 

negative term to the repulsion term thus stabilising the total energy o f the triplet state. This 

contribution is called the exchange interaction.

„  (  1 1  1 1H =  + — + — +•••

The energy of a general polyatomic system

The general Hamiltonian for an N-electron system is:

Equation (1-22)
. . . +  —  +  —  + . . .

'IA  ' I B  r \2  r n  '

To find the energy for each molecular orbital Xi it is more convenient to write the energy as a sum 

of the three types of interaction making up the electronic energy of the system.

C - ~ N Equation (1-23)

j=i

r I 1 M Z
n r = R x ,d )  Xi(i)

V L  A=1 r iA '

N f  1 M 7  ̂ N
3 S  = Zj*.x,-0) x,0) = 2 > “

» = 1  V  ^  A = 1 r iA J  i = 1

Equation (1-23) is the kinetic and potential energy term for each electron moving in the field of 

the M nuclei, which for N  electrons in N molecular orbitals gives the total core energy as: 

r ’ m 7  \  n Equation (1-24)
v f - J —  * . m  = Y t f ? "v 2 A=l r 'u J

The second term (Equation (1-25)), is due to the electrostatic repulsion between electrons, and is 

dependent on the inter-electronic distance. The energy o f this Coulomb interaction between an 

electron in an orbital Xi and the other (N -l) electrons, is a sum of the Coulombic integrals:

Equation (1-25)
E ' M  = S J < M t 2x , ( 1 ) x / 2 ) - 5 c / 2 ) x , ( 1 )

j* \  r \2

X ,(2)x,(2)
' 12

Equation (1-26)

the total Coulomb energy being:

= z  s j ^ 2x ,(i)x (a ) f  x / (2)x/ ( 2 ) = i :
7=] j= i+ 1 M 2  i= l  > = i+ l

Here Jy represents the Coulomb integral.

The third contribution is the exchange interaction, which is only non zero if the spins o f the 

electrons in spin orbitals Xi and Xj are the same. The exchange energy between the electron in spin 

orbital Xi and the other (N -l) electrons is given by:

86



 ̂ 1  ̂ Equation (1-27)
J J dzldT2x i (1 )Zj (2) —  Xi (2)Xj 0 )

i* i v 12 y
= Z  J J (l)*, (2) —  L  (2)^  (i)

with the total energy :

= I  Z  (2)[ —  k (2)^(1) = Z  E *
m n . .  f  1 ^ ^  ^  Equation (1-28)

ij
\ r n  Ji=l /=z'+l

where ^  represents the exchange integral.

The three terms above constitute the electronic energy o f the system. To complete the total
M  W ^  2

energy for the whole system the inter-nuclear repulsion term ^  ^  ~p '"~ must added.
,4 = 1  B=A+ 1 * \ 4 5

Hartree-Fock (H-F) equations

In electronic structure calculations, calculation o f the molecular orbitals is attempted. This can be 

done using the variation theorem, which states that the energy of the approximate wave function 

proposed is always greater than the true wave function. This implies that the better the 

wavefunction, the lower the energy. The best wavefunction occurs when the energy is a minimum 

e.g. at 5E = 0.

The H-F equations are obtained by imposing this condition on the energy expression. The 

molecular orbitals must remain orthonormal, this condition being written in terms o f the overlap 

integral Sy between orbitals i and j:

Si} = J  XixXjdz = 5y (S,j is the Kronecker delta)

The main difference between single and polyelectronic systems is the presence o f electron- 

electron interactions, expressed as Coulomb and exchange integrals.

For a polyelectronic system, a solution simulating all the electronic motions must be found. To do 

this, a single electron in spin orbital Xi in the field o f the nuclei and the other electrons in fixed spin 

orbitals Xj is considered. The Hamiltonian for the single electron contains the three terms 

identified above; Core , Coulomb and Exchange.

Their contribution to the energy can be written as

Core + Coulomb -  Exchange = Energy Equation (1-29)

#  “”(i)x,(D+Zyo)x,n) -  I X c u x .o )= Z«*,x,(i)
7 * 1  7 * 1  7

and using [•/,.(!) -  AT.(l)]x, (l) = 0 , equation Equation (1-29) becomes:
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7 7 ^ (1 )+  £  (.7 ,(1 )-* ,(1 )}
7=1

at Equation (1-30)
i l ( i )  = I w (  i )

7=1

or

E q u a t io n  (1 -3 1 )
T̂ Xi = z X x , ( l )

7

where F, is called the Fock operator.

For a closed shell system with N  electrons in N/2 orbitals, the Fock operator is:

^  E q u a t io n  (1 -3 2 )
7<(1) =  7 / “ " (1 )  + £ [ 2 7 , ( 1 ) - * , ( 1 ) ]  q  1 '

7=1

Equation (1-32) is written as such to avoid counting each inter-electronic repulsion twice.133

Recall that in these equations, each electron moves in field comprising o f the nuclei and the other 

electrons. Any solution we find affects the other solutions for the other electrons in the system. 

This is called the self consistent field (SCF) approach. To solve this a set o f trial solutions Xi to 

the H-F eigenvalue equations must be obtained. These are used to calculate the Coulomb and 

Exchange operators. The H-F equations are solved giving a second set o f solutions Xi which are 

then used in a second iteration. The SCF method gradually refines individual electronic solutions 

corresponding to lower energies for each iteration, until a point is reached where the results for all 

electrons are unchanged, which is the self consistent point.

L in ea r  c o m b in a t io n  o f  a to m ic  o r b ita ls  (L C A O ) in  H a r tr e e -F o c k  c a lc u la t io n s

Each spin orbital is written as a LCAO of single electron orbitals:

r , = 2 > A  E q u a tio n  (1 -3 3 )

v=l

The single electron orbitals (Jh, are commonly called basis functions and correspond to atomic 

orbitals. The minimum number o f basis functions are the number required to just accommodate all 

the electrons in the molecule.

More sophisticated calculations use more basis functions until a H-F limit is reached, where the 

energy is not reduced by further addition o f basis functions.

cE
The best wavefUnction and coefficients are found w h en  = 0 for all the coefficients Cvi, giving

the minimum energy.
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Roothaan-H all equations

Unlike the H-F equations, the R-H equations are written in matrix format. The H-F equation 

/ ( l ) X z ( l ) -  E/X, may be rewritten as the matrix Equation (1-34), by substituting for the spin

orbitals with the corresponding atomic orbital expansions (Equation (1-33)) followed by 

multiplication o f an additional basis function <lv(l) and subsequent integration.

_  r _  r Equation (1-34)
2  c vi j7Mv(l)/(l)<l>v(l) = E ,Z cvJ T'VtvOMyi)

The integral on the right hand side o f equation Equation (1-34) is the overlap integral,

S,„ = J  £fy<j) (̂l)(|)v( l ) , between two basis functions ju and v. Unlike molecular orbitals, which are

required to be orthonormal, ju and v may not be zero if, for example, two basis functions are 

located on different atoms. The integral on the left-hand side of equation Equation (1-34),

Fw ~ | g i v e s  the elements o f the Fock matrix, which may be expanded by

substitution o f the Fock operator (Equation (1-30) and replacement of spin orbitals by the 

corresponding atomic orbital expansions. This equation can be tidied up by introducing the

density matrix P, P̂ v = 2 ^  and PXa = 2 ^ c ^ c OT giving the standard expression for the

Fock matrix in the Roothaan-Hall equations (Equation (1-36)).

k=\  <7= 1

I f  k basis functions are used to represent the molecular orbitals, then a set o f k similtaneous 

equations in terms o f the unknown coefficients cv, are obtained. For non trivial solutions to these 

equations, the determinant o f equation Equation (1-35) must equal zero i.e.

Fp ~ 5 ^ 1  = 0

This is called the secular equation and its roots are the orbital energies Si. The Hartree-Fock - 

Roothaan equations are solved by an iterative process as the Fock integral or elements depend on 

the orbitals Xi which in turn are dependent on the unknown coefficients Cvi. A guess for the 

molecular orbitals (from a linear combination o f basis functions) is used to calculate the Fock
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operator and the elements of the Fock matrix initially. The secular equation is then solved giving 

an initial set of orbital energies Si. These Si values are then used in equation Equation (1-35) to 

solve for an improved set of coefficients. These improved coefficients in turn give better 

molecular orbitals which are used to compute a new Fock operator and so on until there is no 

further improvement in the energies for the next cycle. This is the point of convergence. 

Convergence may be monitored by comparing the energy and basis coefficients after each 

iteration. Roothaan equations are best solved using matrix algebra.

Ab initio calculations

Ab initio means “from first principles” and implies the input o f physical constants only e.g. Plank’s 

constant h, the speed of light c, mass o f electron nu etc. In fact, Ab initio calculations refer to 

calculations using the full Hartree-Fock Roothaan-Hall equations , not ignoring or approximating 

any integrals of the Hamiltonian. They do not rely on any calibration methods.

The difference between ab initio and semi empirical calculations is the simplification o f the semi- 

empirical calculations by using parameters in place o f some integrals, and ignoring some terms in 

the Hamiltonian.

Basis sets

Basis sets are commonly composed of atomic functions often approximated by Slater type orbitals 

(STO). However, STOs are complex expressions which are difficult to evaluate and are therefore

replaced with Gaussian functions o f the form /  = e ^  , multiplied by powers o f x, y and z to give

a basis function /  = x ay bz ce_ar2 to be used in ab-initio calculations. In this function, the term a  

determines the radial spread o f the Gaussian function. Replacing the STO by one Gaussian 

function however, leads to unacceptable errors such as the underestimation o f long range overlap 

and charge and spin density at the nucleus when using Gaussian functions. An advantage o f using 

Gaussian-type functions is that the product o f 2 Gaussians can be expressed as a single Gaussian. 

Much better approximations can be obtained by using linear combinations o f Gaussians.

Pople notation for basis sets

Pople and his co-workers developed a shorthand notation to describe the basis sets used in ab- 

initio calculations. A minimal basis set contains just enough functions required to accommodate all
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the filled orbitals in each atom. Thus a minimal basis set normally includes all the atomic orbitals 

in the shell. For hydrogen and helium, a single Is type function is required, and for the lithium to 

neon elements Is, 2s and 2p functions are needed. The STO-3G, STO-4G. ...STO-nG are all 

minimal basis sets with n Gaussian functions used to represent the Slater type orbital. In practice, 

it is found there is little difference between results using the STO-3G and larger minimal basis 

sets, though some do perform better for certain calculations. Increasing the size of the basis set 

increases the computational effort.

Minimal basis sets have several drawbacks. These include problems with atoms at the end of a 

series e.g. oxygen or fluorine. Such atoms are described by the same number of basis functions as 

those earlier in the series, even though they have more electrons. A minimal basis set cannot 

describe non spherical election distribution either, and is thus insufficient for the 2p orbitals.

These problems can be overcome by using more than one function for each orbital. For example, 

doubling the number o f functions in the minimal basis set -  called a double zeta basis. Using a 

linear combination of a ‘contracted’ function and a ‘diffuse’ function gives an intermediate effect. 

The SCF procedure then determines whether a more contracted or diffuse function is required. 

Alternatively , the number o f functions for the valence electrons can be doubled whilst keeping a 

single function for the inner electrons; as the core electrons don’t affect the chemical properties 

very much. The notation for one such split valence double zeta basis sets is 3-21G i.e. the core 

electrons are represented by 3 Gaussians as are the valence electrons o f which the contracted part 

is represented by 2 and the diffuse part by 1 Gaussian function. Other common split valence basis 

sets are 4-31G and 6-31G.

Polarisation functions

Electron distribution of an atom in a molecule is distorted when compared with the isolated atom 

e.g. the electrons o f a hydrogen atom in a hydrogen molecule are attracted towards the other 

nuclei. This distortion can be considered as mixing p-type character into the Is orbital creating a 

sort of sp hybrid. Also, unoccupied d-orbitals introduce asymmetry into p-orbitals. The solution to 

both these problems is to introduce polarisation functions which have a higher angular quantum 

number corresponding to p-orbitals for hydrogen and d orbitals for 1st and 2nd row elements. 

These polarisation functions are denoted by a * as in 6-31G* which refers to the 6-31G basis set 

with polarisation functions on the heavy atoms, and 6-31G**, which indicates additional 

polarisation functions on hydrogen and helium atoms also. Partial polarisation basis sets can also
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be used e.g. 3-21Gr) has the same basis set as 3-21G, but is supplemented by 6 d-type Gaussians 

for 2nd row atoms. A deficiency o f the basis sets mentioned is their inability in dealing with species 

which have large degrees of electron density away from the nuclear centres , as found in anions 

and lone pairs , for example. This arises due to the low amplitude o f the Gaussian basis functions 

far from the nuclei. To compensate for this, highly diffuse functions can be added to the basis set, 

and are denoted by a + e.g. 3-21+G has an additional set o f diffuse s and p-type Gaussian 

functions.

Open Shell systems

The Roothaan-Hall equations are not applicable to open-shell systems, which contain one or more 

unpaired electrons e.g. radicals or some ground states like O2.

For these type of systems we can use spin restricted Hartree-Fock (RHF) theory, which uses 

combinations o f singly and doubly occupied orbitals. Or we can use Unrestricted Hartree-Fock 

(UHF) theory, which uses one set o f orbitals for a  spin and one set for p spin. These approaches 

are illustrated in Figure 1.26

------------------ 'f'oot---------------------   ‘F o p

 f -  ‘Fna ---------  y np

f  f -   y mp

^3  |  | ------y 3a ------^3P

¥ 2a f-  xF2p

 f  ----- 'Fip

RHF UHF

Figure 1.26 Representation of the treatment o f unpaired electrons in RHF and UHF theory.

Electron Correlation.

In SCF methods, electrons are assumed to move in an average potential field o f the other 

electrons, so the instantaneous position of one electron is not affected by its neighbouring 

electrons. Actual motion is correlated; electrons tend to avoid each other in their motions.
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Hartree-Fock theory fails to represent electron correlation adequately but the error in the H-F 

calculated energy can be reduced by accounting for the electronic repulsion interaction. This 

correlation energy is equal to the difference between the exact energy and the H-F energy. 

Ignoring electron correlation can sometimes lead to anomalous results, especially at dissociation 

limits.

Configuration interaction

There are several possible ways to incorporate electron correlation effects into ab-initio 

calculations. One way of introducing electron correlation into the wave function is to include the 

inter-electronic distances rjj, but this is only practical for systems with a few electrons. An 

alternative approach is configuration interaction (Cl).

Cl involves mixing in contributions from excited state configurations with that o f the ground 

state to produce an improved wave function. For example, the wave function o f lithium, which 

has a l s ^ s 1 configuration in the ground state and ls23s1 on excitation, would be produced from a 

combination o f these states. A better description of the wave function is a linear combination of 

ground and excited state wave functions. The atomic or molecular orbitals are first written as 

linear combination of basis functions. For example, if a H-F calculation is performed with k basis 

functions then 2k spin orbitals are obtained. If  the 2k spin orbitals are then filled with N electrons 

, where N< 2k, this will give 2k-N unoccupied virtual orbitals. Excited states are generated by 

replacing one or more of the occupied spin orbitals with a virtual spin orbital. The C.I. 

wavefunction is represented as: 

y  =  < W o  +  C il j / i  +  c2\|/2 + ...........

where \|/o is the single determinant obtained by solving the H-F equations and i|/i,\|/2 etc. are 

wavefiinctions that represent configurations derived by replacing one or more o f the occupied 

spin orbitals by a virtual spin orbital. The variational method is then used to minimise the energy 

for the system and determine the coefficients Co, Ci etc. A huge number o f configurations are 

needed for an accurate wave function and thus for systems of more than a few electrons CI 

calculations are difficult. To scale down the size of the calculation, only the configurations with 

the same symmetry properties as the state being calculated are used. The number o f excited states 

considered in the calculation can be limited by using only wavefunctions that differ from the H-F 

wavefunction by a single spin orbital -  called configuration interaction singles (CIS) -  or by
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double substitutions (CID), or both singles and doubles (CISD). The number o f configurations 

can be reduced further by using only excitations involving the valence shell electrons. Including all 

the configuration functions is called full CI. However, if full CI is not used, this can lead to 

substantial errors. The more excited state configurations involved, the bigger the calculation.

In a MCSCF -  multi configuration SCF approach the basis functions as well as the coefficients o f 

the determinants are allowed to vary unlike in H-F theory, where only the determinant coefficients 

vary. Thus MCSCF theory is much more complicated than the R-H equations.

Practical Calculations

Ab initio calculations can take a long time to complete. To save time, there are some ‘shortcuts’ 

which can be used. Lower levels o f theory, such as semi empirical theory, can be used to provide

I the initial estimate for the density matrix used in the first SCF iteration, or for a geometry
|
| optimisation, before using a high level to consider the electron correlation.

I In an SCF calculation the wavefunction is gradually refined until self consistency is achieved. In

| some cases, the energy may oscillate from one iteration to the next. To correct this, an average set

o f orbital coefficients can be used to weed out coefficients giving higher energies.

Approximate M O methods.

Ab initio calculations are slow and require much computational power. Approximate quantum 

mechanical or semi-empirical methods have been developed to treat medium and large molecules 

and can be much quicker computationally. Indeed Huckel theory was developed in the 1930s, 

before computers. Some approximate methods can be better for calculating certain properties than 

the highest level ab initio calculations. Earlier theories such as the Huckel and Pariser-Parr-Pople 

(PPP),134,135 take in to account only n electron orbitals.

Semi empirical methods are again based on the R-H equations Equation (1-37) to Equation 

(1-40):

FC = SCE Equation (1-37)
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+ i x / U w ^ - K m h ]
Equation (1-38)

^ 7 . a  ~  C 7JC a i

Equation (1-39)

Equation (1-40)

The elements for the Fock matrix for ab initio calculations are calculated using Equation (1-38). 

For semi empirical methods, it is useful to consider the Fock matrix in three groups; F ^  (the 

diagonal elements), F^v (where (Jv and (j)v are on the same atom) and F^v (where <tv and <|)v are on 

different atoms). Semi empirical methods neglect or approximate some o f these integrals, 

considering only the valence electrons explicitly and treat the core electrons as part of the nuclear 

core. The justification for separate treatment o f a  and n electrons was the different symmetry and 

the greater polarisability o f n electrons, which makes them more susceptible to perturbations such 

as in a chemical reaction. Semi empirical calculations use basis sets comprising o f Slater type s,p 

and sometimes d-orbitals. The orthogonality of such orbitals enables further simplifications to be 

made to the equations. Commonly the overlap matrix S is set equal to the identity matrix I, thus 

giving all diagonal elements equal to one and all off diagonals are zero. Some would naturally be 

zero due to the orthogonality of basis sets on each atom. But in addition, elements corresponding 

to overlap between two atomic orbitals on different atoms are also set to zero. The Roothaan-Hall 

equations can thus be simplified so that the matrix equation FC = SCE becomes FC = CE.

It must be noted that setting S = I does not mean that all overlap integrals in the calculation o f the 

Fock matrix are set to zero. Indeed it is important to include some overlap integrals even in simple 

semi empirical models.

Zero differential overlap (ZDO)

Many semi empirical theories are based on the ZDO approximation, where overlap between pairs 

o f different orbitals is set to zero for all volume elements dv; (|v(|>vdv = 0, leading to S^v = 6^v for

1 The [|i|i/w ] is shorthand for the electron repulsion integral [<|)fi<|)v(l/ri2)<|)̂ <t>G] = 

J<t>(j-(l)v( 1 /ri2)(|) A,(()CJ dvjdv 2
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the overlap integrals. If  ^ a n d  <\h are atomic orbitals located on different atoms then differential 

overlap is referred to as diatomic differential overlap but if and ([v are on the same atom then it 

is called monatomic differential overlap. If  ZDO is applied to two electron repulsion integrals 

(|xv|tay) then the integral is zero if jn 4 v and/or X±<5 written in terms o f the Kroneker delta

as: (pv| Axj) = (jj.p.| and therefore all three and four centre integrals are set to zero. If

ZDO is applied to all orbital pairs, the R-H Equation (1-38) for a closed shell molecule with \x = v 

becomes:

=HZ‘ + Z  [p«  (fV11/U ) ~lp(w  | w)\ for H  = V Equation (1 41)
2=1

Summation over all X includes X = p  and terms in { ju ju \ju ju ) can be separated to give:

Fm = HZ‘ +  + I X ( H ' U ) Equation (1 42)
2=1

For v 4 p equation Equation (1-38) reduces to:

/•;„ = -  i ^ vW |w )  Equation (1-43)

Huckel Theory

This method is limited to conjugated 7t-systems and was devised to explain the aromatic nature of 

compounds such as benzene. It separates the n electrons and constructs molecular orbitals into 

which these electrons are put according to the Aufbau principle. The n electrons are considered in 

a field o f the fixed nuclei and core electrons. Molecular orbitals are constructed from the LCAO 

method. Huckel theory ignores overlap integrals, using the approximation in Equation (1-44), 

where 5^v is the Kronecker delta. If 8 ^ =  0 , for \i *  v , then this amounts to the Zero Differential 

Overlap (ZDO) approximation discussed above.

Spv = l<|>n(l)<|>v(l)dv = 8^  Equation (1-44)

Huckel theory is a ZDO method and can be considered in terms o f a CNDO approximation. In a 

neutral species the net charge is approximately zero, and if penetration effects are eliminated, the 

Fock matrix elements are:

FW =UW + (paa ~ ± pm ) y ^  Equation(1-45)

If  each nucleus in the 7t-system is the same then this expression is approximately constant for all 

the nuclei being considered. The F ^  matrix elements are assigned the symbol a  called the
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Coulomb integral. All off diagonal elements are assumed to be zero except , where p and v are 

7i orbitals on two bonded atoms- assigned the symbol p and known as resonance integrals.

The Huckel Fock matrix has n x n elements where n is the number o f atoms. All diagonal elements 

are a  and all off diagonals are 0 unless atoms i and j are bonded, in which case the element is p. 

The Fock matrix for benzene is given in Equation (1-46).

Equation (1-46)p 0 0 0 PN
P a p 0 0 0
0 P a p 0 0
0 0 P a p 0
0 0 0 P a p

,p 0 0 0 P aJ

If  the overlap matrix = the identity matrix, the matrix equation FC = CE can then be solved to 

give the basis set coefficients and molecular orbital energies E.

Orbital energies for benzene are Ei = a  + 2P; E2, E3 = a  + P: E4; E5 = a  - P ; E6 = a  - 2p, so the 

ground state has two electrons in ¥1  and two each in the degenerate ¥ 2  and ¥ 3  respectively. 

Unlike Hukel theory, the PPP method includes electron repulsion effects. Huckel theory can be 

used to predict the longest wavelength bands for aromatic hydrocarbons for example and PPP can 

predict n electron transitions. These methods are not used to determine equilibrium geometries. 

As in Huckel theory the PPP method neglects orbital overlap and makes the approximation of 

zero differential overlap ZDO:

CNDO Complete Neglect of Differential Overlap

The Huckel and PPP methods apply only to planar molecules. For non-planar molecules the 

simplifying approximation of treating the o  and tc electrons separately is not available, and all the 

valence electrons must be considered together.133

In the CNDO methodthe two electron integrals (pp | A.A,), where p and X are on different atoms A

and B, are set equal to the parameter yAB; dependent only on the nature o f A and B and the inter- 

nuclear distance and not on the type o f orbital. Yab can be considered to be the average 

electrostatic repulsion between an electron on atom A and an electron on atom B. When both 

atomic orbitals are on the same atom, Ya a  represents the average electron-electron repulsion 

between two electrons on atom A. The elements o f the CNDO Fock matrix can be split into the
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diagonal elements F ^ , F^v for basis functions (i and v on different atoms, and F^v with |i and v on 

the same atom. Substituting the two electron integrals (fin | XX) for yab andyAA for the cases 

outlined above, gives the following equations for the Fock matrix:

Fm =H'Z‘ + T, Pr jA A - lP myAA+ HPxJaB
\=],XonA X=];not-onA

E q u a t io n  (1 -4 7 )

F ya , ~ a a  i L1 anc*v both on atom A E q u a t io n  (1-48)

F^v = H™re -iPyvJju  i M and v on different atoms A and B. E q u a t io n  (1-49)

In the CNDO method, the core components o f the above Fock equations are considered for the 

following 3 cases:

1. H ^ e involving integrals with the atom on which is situated (atom A) and all the other 

atoms (labelled B).Here, H ĉ e is given by Equation (1-50).

f f 7 = U m i - ' Z V AB E q u a t io n  (1 -5 0 )
A±B

where Um is the energy o f the orbital <|v in the field o f its own nucleus(A) and Fab is the energy of 

the electron in the field o f the other nuclei(B).

2. In the case where orbitals <Jv and <|)v are both on the same atom (A), due to the orthogonality of 

atomic orbitals and using the ZDO approximation, H™e = 0 in CNDO.

3 .  When (Jv and <|>v are on different atoms A  and B then:

H » 7  =  P ^ v E q u a t io n  (1 -5 1 )

where, is the resonance integral (written P^v) and is the main cause o f bonding and therefore 

not subject to the ZDO approximation. In CNDO the resonance integral is made proportional to 

the overlap integral e.g. H™re -  P^-S^ where P°5 is a parameter depending on A and B. The 

CNDO elements for the Fock matrix then become:

= U w  +  1 1 V AB + i P A A - ^ J / aa  +  ' L P b b Y ab  E q u a t io n  (1 -5 2 )
A t B  A tB

= -jP^Tab H and v on the same atom E q u a t io n  (1 -5 3 )

=  P ab  ~ \ P ^ 7 ab  M  011 atom  A  v  011 a tom  ® E q u a t io n  (1 -5 4 )
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To perform CNDO calculations the integrals required are; the overlap integral, H c™e the core

The Core Hamiltonians are not calculated, but are obtained from experimental data from

Limitations to CNDO

For the CNDO method, two neutral atoms have an incorrect significant attraction even when 

separated by several Angstroms. Also, the predicted equilibrium distances for diatomics are too 

short and dissociation energies too large, due to electrons on one atom penetrating the volume 

shell of another, implying nuclear attraction. An improved version o f the method ,CNDO/2 

eliminated the penetration integral and defined the core Hamiltonian differently, using 

ionisation energies and electron affinities.

Other Semi Empirical methods

Huckel theory is a basic approximation o f the CNDO method. Improvements to the CNDO 

method are the INDO and NDDO methods. The CNDO, INDO and NDDO methods developed 

further by Pople and Dewar into the popular MINDO/3, MNDO and AMI methods. A brief 

description of these methods, with comments on some o f their limitations is given below.

integral, the electron-core interactions VAB, Ya b  and Yaa the electron repulsion integrals and P °AB the 

bonding parameter. The CNDO basis set uses STOs for the valence shell. The electron repulsion 

integral / a b  is given in equation Equation (1-55):

f i  ̂ Equation (1-55)

ionisation energies. The electron-core interaction (equation ) is the interaction between valence s 

orbital on A with the nuclear core o f B.

Equation (1-56)

The resonance integral P°g is written in terms o f empirical single atom values, as in Equation 

(1-57), with P° values chosen to fit the results o f a minimal basis set ab initio calculation on

diatomic molecules.

P 5 , = * 4 ( P J , + P S » ) Equation (1-57)
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INDO

CNDO ignores electrons relative spin interaction, which can be severe for electrons on the same 

atom. The intermediate neglect o f differential overlap (INDO) includes monatomic differential 

overlap for one centre integrals i.e. integrals involving basis functions on the same atom. This 

enables interaction between two electrons on the same atom with parallel spins to have lower 

energy than two electrons with paired spins. Some one centre two electron integrals in INDO are 

obtained by fitting to atomic spectra data. INDO requires little additional computational effort and 

includes different multiplicities i.e. singlets and triplets.

NDDO

Neglect o f diatomic differential overlap, neglects only differential overlap between atomic orbitals 

on different atoms. This means that all two-electron, two centre integrals (pv 1 Xo) with p. and v 

and also X and c  on the same atom are included. The number o f two electron two centre integrals 

is increased by approximately 100 times for every pair o f heavy atoms in the system and thus 

NDDO requires greater computational effort.

MINDO/3

The problem with CNDO,INDO and NDDO is the fact that they are parameterised on low levels 

o f ab initio theory -  which itself has poor correlation with experiment and is limited to small 

classes o f molecules and requires good input geometries as the optimisation algorithms are not 

very sophisticated. Modified INDO is parameterised using experimental data and also 

incorporates a geometry routine so crude input geometries can be accepted and minimum energy 

structures derived.

MNDO Modified neglect of diatomic overlap

Problems with MINDO/3 included errors in heats o f formation o f unsaturated molecules, bond 

angles which were too large and the inability to deal with molecules with lone pairs due to the 

limitations of the ENDO approximation. The MNDO method, which is based on NDDO, was then 

introduced. It uses different core-core repulsion terms to MINDO/3 and OH and NH bonds are 

treated separately. MNDO can be applied to a much wider range o f elements. However, the sp 

basis set is not applicable to transition elements, which require d-orbitals, and sulphur and
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phosphorous are also not well modelled. More recent MNDO includes d orbitals for heavy 

elements. Another serious limitation is the inability of MNDO to accurately model intermolecular 

hydrogen bonding. For example, the heat of formation for the water dimer predicted by MNDO, 

is far too low, because o f the tendency to overestimate the repulsion between atoms separated by 

distances approximately equal to the sum of their Van der Waals radii. Conjugated systems can 

also present problems, as in the case o f nitrobenzene, where the nitro group is predicted to be 

orthogonal to the aromatic ring rather than conjugated with it. In addition, MNDO energies are 

too positive for sterically crowded molecules and too negative for molecules containing four 

membered rings.

AM I

The Austin Model 1 method was developed by Dewar and was designed to eliminate the MNDO 

problems of over repulsion between atoms separated by the sum o f their Van Der Waals radii. 

This correction was achieved by modifying the core-core term using Gaussian functions. Both

I attractive and repulsive Gaussians were used and centred in the region where repulsions were too
j

large. AMI is significantly better than MNDO.

PM3 Param etric method 3

This method is also based on MNDO theory. PM3 uses essentially the same elements as AMI by 

is parameterised by a different method. Problems specific to PM3 are an underestimation of the 

rotational barrier o f the amide bond. There is still some debate over the relative merits o f AMI 

and PM3.

SAMI

The most recent development is Semi ab initio Model 1 (Dewar 1993). This uses a standard STO- 

3G Gaussians basis set to evaluate the electronic repulsion integrals. AMI overestimates steric 

effects because of the way it calculates its electronic repulsion integrals.

MNDO, PM3 and AMI are included in the programs MOP AC and AMP AC. Other programs like 

Zemer’s ZINDO program have been used for transition metal and lanthanide compounds as well 

as for predicting electronic spectra.



Calculating molecular properties with quantum mechanics

Quantum mechanics can be used to predict thermodynamic and structural values, electronic 

distribution properties, the location o f transition state structures and for deriving force field 

parameters.

Thermodynamic and structural properties

The total energy of a system is equal to the sum of its electronic energy plus the Coulombic

m M 2, Z
nuclear repulsion energy. ETM = + Z  Z  ~1rJL

A = 1 B=A+ 1 K AB

A more useful comparison with experimental results is with the heat o f formation AH/, defined as 

the enthalpy change when one mole o f compound is formed from its constituent elements in their 

standard states. AH/ can be calculated by subtracting, heats of atomisation o f the elements and the 

atomic ionisation energies, from the total energy. Ab initio calculations not including any electron 

correlation give poor AH/estimates. Including electron correlation gives much better results, but 

I is computationally expensive. When combined with an energy minimisation algorithm, quantum 

mechanics can be used to calculate equilibrium geometries o f molecules. The results o f such 

geometry optimisations can be compared with X ray structures and with spectroscopic results. 

The agreement between theory and experiment improves with the size o f the basis set. Some 

errors are systematic e.g. STO-3G calculations give bond lengths which are too long and 6-31G* 

gives bond lengths which are too short. One can then calculate the relative energy o f conformers 

and predict the most stable geometry. Semi empirical methods can also be used to calculate these 

properties.
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Chapter 2

Experimental

The azo dyes investigated in this study are shown as [I] -[XIX] in Scheme 2.1 Dyes [I]-[VTI] 

and [XIV]-[XIX] were supplied by Zeneca Fine Chemicals Service. 1 Dyes [VIII], [IX], [XII] 

and [XIII] were supplied by Aldrich2 and dyes [XI] and [X] were synthesised by S. Whittaker3 

and K. Mort4  respectively. All the dyes were purified by recrystallisation from ethanol and air 

dried. Each dye was found to have only one spot on silica thin layer chromatography plates 

which absorbed in the visible region, and under 254 nm and 366 nm ultraviolet light, no 

fluorescence was observed

Melting points were determined for all 19 dyes using standard melting point apparatus. The 

melting point range for each dye is listed in Table 2.1 along with literature values, where 

available.

Table 2.1 Melting point data for azobenzene and azothiophene dyes

Dye Melting Point/°C Dye Melting Point/°C

Experimental Literature Experimental Literature

[■i 160-162 [XI] 158-160

m i 168-170 [xnj 129-135 122-129

[m i 120-125 [XIII] 170-175 170

[IV] 99-100 [XIV]

[VI 134-137 [XV] 138-141

[VI] [XVI] 205-209

[VII] 152-153 [XVII] 237-241

[VIII1 2 0 0 - 2 0 1 2 0 0 [XVIII] 150-155

[IX] 162-165 160-162 [XIX] 130-132

[X]
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Scheme 2.1 The azobenzene and azothiophene dyes examined

Both proton and carbon-13 nmr spectra were consistent with the structures for the dyes shown in 

Scheme 2.1. Mass spectra show molecular ion peaks consistent with the relative molecular 

masses of the dye structures in Scheme 2.1 and accurate mass spectra confirmed the molecular 

formulas of the dyes
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Absorption spectra

The UV/visible spectra o f dyes [I] -[XIX] were recorded in cyclohexane and methanol on a 

Perkin Elmer Lambda 19 spectrophotometer in quartz cuvettes with a 1 cm path-length at room 

temperature. UV/visible diffuse reflectance spectra were recorded using the Perkin Elmer 

Lambda 19 spectrophotometer, with a diffuse reflectance integrator attachment (B 130-9941).

The spectra o f dyes [I]-[XIX] were recorded in cyclohexane and methanol. The absorption 

spectrum of [IX] in methanol shows (Figure 2.1) a strongly absorbing coloured band at 482 nm 

and a second lower intensity band at 286 nm. The spectra o f dyes [I]-[VI1I] are similar to that of 

[IX].

2.20

482.2.0

285.

0.8

0.6

0.4

0.2

0.0
350 450 550200.0 250 300 400 500 600 650 7 0

Wavelength/nm

Figure 2.1 The UV/visible absorption spectrum o f [IX] in methanol. *A is the absorbance.
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The spectra o f dyes [I]-[IX] were also recorded in a number o f other solvents chosen to span a 

large range of dielectric constants, to examine the effects o f dielectric constant on the spectra. 

The solvents used together with their dielectric constants are given in Table 2.2.

Table 2.2 Dielectric constants of some solvents5

Solvent Dielectric constant s

Cyclohexane 2.02

1,4-Dioxane 2.21

Chloroform 4.8

Tetrahydrofiiran (THF) 7.6

Acetone 20.7

Ethanol 24.6

Methanol 32.7

Dimethyl Sulfoxide (DMSO) 46.7

Ethylene Carbonate 89.6

Formamide 111.0

The solvents used were of spectroscopic grade or the highest purity grade available and methanol 

was dried by refluxing with magnesium and iodine. Due to the low solubility o f the dyes in some 

solvents, some dyes gave very weak absorption spectra and only the long wavelength absorption 

band could be determined. For some dyes, the solubility in cyclohexane was so low that mixed 

solvent solutions o f hexane and dioxane were used to extrapolate for the wavelength o f the dye 

in pure cyclohexane. For example, [V] was almost insoluble in pure cyclohexane, so dyes 

solutions o f 5%, 10%, 20%, 33% and 50% dioxane in hexane, were made up. The wavelength of 

the dye in each solution was plotted against the percentage of cyclohexane in the solution, as in 

Figure 2.2. A curve can be fitted to the experimental data points and the wavelength for 100% 

cyclohexane solution can then be extrapolated from this curve. The wavelength given at the point 

where the curve intersects the y-axis, which corresponds to the wavelength in 100% cyclohexane 

solution, is 463.6 nm.
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Figure 2.2 The visible absorption maxima (A™ax) of |VJ in cyclohexane solutions containing 

varying amounts of dioxane.

The equation for the curve fitted polynomial is given in Figure 2.2. R2 is the correlation 

coefficient.

Kinetic Experiments

Kinetic experiments were carried out at room temperature (25°) in a spectrophotometer quartz 

cuvette (50 mm by 5 mm) with a 10 mm path length and an internal cell volume of 2 ml. The 

cuvette was made air tight with a teflon stopper.

Methanol solutions of dyes o f concentration 1 x 1 O' 4  mol dm ' 4 in the stoppered quartz cuvette 

were photo-faded using a 1000W Xenon arc lamp, as in the arrangement shown in Figure 2.3.

The Xenon Arc lamp consisted of a 1000W bulb obtained from Oriel, 6  housed in a steel casing 

with the lamp fan cooled. To maximize the output of the lamp, a concave rear reflector mirror 

was used to focus the light through an opening, which was 30 mm, by 20 mm in size. The bulb 

was aligned to allow a maximum output of light through the opening. A shutter, which is either 

open or shut, controlled the light allowed out of the lamp housing. This shutter was linked to 

timer so the exposure time of the sample to irradiation was controlled. The minimum exposure 

time allowed by the timer is 1 second.
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A water filter was placed in front o f the opening so that infrared emission from the Xe lamp was 

absorbed to avoid excessive heating of the sample. The sample, contained in the quartz cell was 

then placed directly in line with the opening to allow maximum exposure to irradiation.

Shutter

Water

Filter

Xenon Bulb

Quartz

Cell Concave Mirror

Power Supply
Stop

Start

Figure 2.3 Diagrammatic representation of the 1000W Xenon Arc Lamp apparatus for the 

photofading of dye solutions in a quartz spectrophotometric cuvette.

The reasons for the choice of the Xenon arc lamp have been outlined in Chapter 1 page 9. The 

lamp produces an intense output o f both UV and visible light capable o f simulating hours of 

sunlight in a few minutes. The output power of the lamp at a single wavelength was estimated 

according to Oriel’s data , 6  from the spectral irradiance curve of the 1000 W Xenon arc lamp,. 

The total power output at 280 nm is used as an example. The value from the irradiance curve at
• 2 1 1 • •280 nm is 100 mWm" nm' . This is multiplied by a conversion factor of 0.12 originating from 

the lamp housing and condenser type. The value obtained must be further multiplied by a factor 

of 1.5 to take into account the use o f the rear reflector. Therefore the total power output at 

280 nm = 100 x 0.12 x 1.5 

= 18 mW nm' 1
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The total power output over a range of wavelengths is given by the area under the irradiance 

curve for the wavelength range and substituting this value for the single wavelength value. 

Experiments were carried out under degassed conditions, by bubbling argon through a solution 

of the dye in the cuvette, with the top of the cuvette partially sealed from the atmosphere by the 

stopper, to prevent any atmospheric oxygen diffusing into the solution. Prevention o f the 

infusion of oxygen into the solution is critical, as oxygen has an enormous effect on the rate of 

photofading.

Photo-fading experiments carried out under oxygenated conditions, were prepared by bubbling 

oxygen through solutions of the dye in methanol for five minutes.

Filters

A glass microscope slide, Pyrex glass filter or an Oriel heat and UV reflecting mirror, was 

placed between the lamp opening and the sample to limit the ultraviolet wavelength range that 

irradiates sample. Unless otherwise stated, experimental data refers to samples irradiated without 

filters present.

Laser irradiation

Laser irradiation of samples were performed using a Coherent air-cooled continuous wave argon 

ion laser with a photon bag attachment port for simple light refueling from BS Industries, 

Columbus, Ohio at 514.5nm with an operating power o f 15mW and 1mm beam width.
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Results

Absorption maxima in protic and non-protic solvents

If the variation in wavelength with respect to the dielectric constant of the solvent for each of the 

dyes [I]-[IX] is plotted, it can be seen from Figure 2.4, that the relationship between the visible 

absorption maximum, A™ax, and the dielectric constant, 8 , is not readily identifiable. There seems 

to be a very general shift to longer wavelength in solvents of higher dielectric constant, but the 

relationship is somewhat erratic. It is well known that there are two effects of the solvent: a 

dielectric effect and a hydrogen bonding effect.' If the solvents are separated into those that have 

the capacity to hydrogen bond, and those that do not, a clearer pattern emerges. Figure 2.5 shows 

that there is a general increase in the wavelength of the dye with increasing dielectric constant of 

the solvent in so called non-protic solvents, which have little capacity for hydrogen bonding.
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Figure 2.4 The variation of visible absorption maxima of dyes [I]-[IX] in solvents of different 

dielectric constant.

The non-protic solvents used in this work were cyclohexane, dioxane, THF, acetone, DMSO and 

ethylene carbonate. The wavelengths of the dyes are shortest in cyclohexane, ranging from 390
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nm for [VIII], to 467 nm for m  When considering the wavelengths of these dyes in non-protic 

solvents, the largest bathochromic shift occurs in DMSO, with values ranging from 471 nm for 

[III] to 532 nm for [I] Even though ethylene carbonate has a higher dielectric constant than 

DMSO, the wavelengths of most of the dyes in ethylene carbonate and DMSO are similar. The 

anomalous appearance of results for DMSO, particularly noticeable for [VIII], which has a far 

shorter wavelength in ethylene carbonate (433 nm) than in DMSO (476 nm), possibly arises 

because of the presence of small amounts of water, which are difficult to remove completely. If 

water is present, it may hydrogen bond with dyes causing a bathochromic shift. This 

bathochromic shift may be more pronounced for (VIII] due to the possibility of strong hydrogen 

bonding interactions between the amino group hydrogen atoms in [VIII] and water molecules.
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Figure 2.5 The variation of visible absorption maxima with dielectric constant of dyes [I]-[IX] 

in the non-protic solvents, cyclohexane, dioxan, THF, acetone, DMSO and ethylene carbonate.

Hydrogen bonding solvents

Figure 2.6 shows the behaviour of the dyes in protic solvents, which do have a capacity for 

hydrogen bonding. The protic solvents considered are chloroform, ethanol, methanol and 

formamide. Again there is a general shift to longer wavelength with increasing dielectric 

constant of the solvent. The wavelengths of the dyes in methanol range from 436 nm for ]VIII] 

to 513 nm for [I], Morley and Fitton7 have separated shifts in protic solvents into a distinct 

dielectric component, and a hydrogen bonding component in their study of indoaniline dyes.
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They suggest that the dielectric effect saturates fairly quickly, as there is no further shift 

observed in moving from ethylene carbonate (s = 89.6) to N-methylacetamide (s = 179). It seems 

this saturation effect also applies to these azo dyes, as the shift from acetone (s = 20.7) to 

ethylene carbonate is relatively small compared to the difference in dielectric constant. They also 

estimate the size of the hydrogen bonding and dielectric component to the total shift of 

indoanilines. Ethanol for example, has a larger hydrogen bonding component but smaller 

dielectric component than formamide. The total shift o f the absorption maxima in azo dyes 

seems to have a similar dependence on dielectric and hydrogen bonding components.

Hydrogen bonding is therefore very significant when considering the effect of solvent polarity on 

the wavelength of these donor-acceptor azo dyes. The effect o f hydrogen bonding solvents is 

particularly noticeable for [VIII]. This is due to the capacity of its amino group's hydrogen 

atoms to form strong hydrogen bonds with protic solvents. In addition, the amino groups 

involvement in hydrogen bonding interactions may affect its electron density and thus the 

electronic interaction of the amino nitrogen atom with the rest of the dye chromophore.
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Figure 2.6 The variation o f visible absorption maxima with dielectric constant, o f dyes [I]-[IXj 

in the protic solvents, chloroform, ethanol, methanol and formamide.

This situation is different from [IX] for example, which has a hydroxy group, which would be 

involved in hydrogen bonding. However, the hydroxy group of [IX] is attached to the ethyl

120



group on the amino nitrogen and its effect on the electron density o f the amino nitrogen atom is 

likely to be small. Therefore hydrogen bonding in [IX] is less likely to have such a profound 

effect on the chromophoric system, compared to [YJLLI].

The range of data was extended by examining all 19 dyes in methanol solution. The 

wavelengths of the long wavelength absorption bands for the 19 dyes in methanol are reported in 

Table 2.3. The long wavelength absorption band o f each dye has an emax in the region o f 40000 

mol'1 dm3 cm'1 and undergoes bathochromic shifts o f up to 60 nm when moving from non-polar 

to polar solvents. The donor acceptor azo dyes [I]-[IX] range in colour from yellow to red 

(absorption maxima from 436 nm to 513 nm in methanol) while dye [XVII] is violet (A™ax = 

580nm). The acceptor substituent strongly influences the position o f this band, as is exemplified 

by the much shorter wavelength o f [XIV] in methanol (409 nm), which has no acceptor 

substituent. The long wavelength absorption band o f the azothiophene dyes in methanol occurs at 

longer wavelengths than in the azobenzene dyes, at around 600-630 nm compared to 450 -  580 

for the azobenzene dyes. This bathochromic shift may be attributed to the increased capacity of 

the sulphur atom in the thiophene ring to accept electron density because o f the vacant d-orbitals. 

Also given in Table 2.3, are the wavelengths o f the second absorption band and any additional 

absorption bands seen in the spectra o f some o f the dyes in methanol. For example, the spectrum 

of [IX] in methanol, (Figure 2.1) shows a second absorption band in the vicinity o f 286 nm. This 

band is present in the spectra o f most o f the azo dyes in the region o f 270 to 310 nm. There are a 

few exceptions, and these are discussed below.
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Table 2.3 The wavelengths o f the main absorption bands present in the absorption spectra of 

dyes [I] -[XIX] in methanol.

Wavelength /nm

Dye Ad A-2 A-3 A4

m 513.4 307.0 245.8

[n] 455.9 291.4

[ID] 444.7 276.8

[IV] 447.8 274.4 240.8

M 495.2 288.6

[VI] 464.7 278.8

[VH] 438.1 286.9

[VIII] 435.9 275.0

[IX] 481.9 285.9

[X] 487.8 285.3

[XI] 445.2 412.3 317.7 253.0

[xn] 455.8 281.2

[xm\ 500.3 285.8

[XIV] 408.6 258.7

[XV] 618.8 286.8

[XVI] 613.12 459.0 275.6

[XVII] 580.2 306.7

[XVIII] 612.1 280.3

[XIX] 615.2 286.7

The position o f the second absorption band is influenced less by substituents than the long 

wavelength absorption band and occurs in the region o f 275 nm to 307 nm for all o f the dyes in 

methanolic solution.
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Table 2.4 The wavelengths of the second absorption band o f dyes [I]-[IX] in cyclohexane, 

methanol, THF and some values in formamide.

Dye Wavelength in solvent/nm

Cvclohexane THF Ethanol Methanol DMSO Formamide

m 301.8 309.7 307.9 307.0 313 308

[H] Not Soluble 293.3 290.5 291.4 300 -

[ID] 270.9 277.5 275.5 276.8 276 -

[IV] 270.7 276.8 286 274.4 - 283

[V] 278.0 289.7 287 288.6 275 288.2

[vq 274.2 280.8 275.9 278.8 281 284

[VII] Not Soluble 289.7 286.8 286.9 293 287.1

[vnq 264.0 276.7 274.4 275.0 277 281.0

[IX) 280.0 285.9 279.9 285.9 275 275.1

Data for this second absorption band in the spectra o f dyes JT|-|XX] in methanol, cyclohexane, 

THF, and formamide, are reported in Table 2.4. From these values it can be seen that the effect 

o f solvent on the wavelength o f this second band is less pronounced than for the long wavelength 

band. There is a relatively small bathochromic shift o f between 5 and 10 nm for most o f the dye 

on going from cyclohexane to methanol, and the largest shift for the dyes and solvents examined 

is 12 nm, which corresponds to the difference in the wavelength o f the second absorption band of 

[V] in cyclohexane and THF respectively. There does seem to be some wavelength dependence 

in solvents of different dielectric constant, with wavelengths in cyclohexane consistently shorter 

than those in THF and methanol, though the difference between wavelengths in THF and 

methanol is minimal, echoing the results for the long wavelength absorption band.

O th e r  a b so r p tio n  b a n d s

Griffiths reports8 that higher energy k-k* bands are readily discemable in the near UV 

absorption spectra o f diarylazo compounds, and these are generally associated with local 

excitations in the aromatic residues.

Some o f the dyes examined in this work have additional absorption bands also at around 245 nm. 

An example o f these bands is given in Figure 2.7 for [I] which has the additional band at 246 nm
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in methanol. It should be noted that not all the azobenzene dyes have these additional absorption 

bands.
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Figure 2.7 The UV/visible spectrum o f [I] in methanol, illustrating the additional absorption 

bands present.

Dyes [XV], [XVUlj and [XIX] show an absorption band in the region o f 280 nm, which is of 

much lower intensity than the long wavelength band. [XVI] also has a low intensity absorption 

band at 276 nm but unlike the other azothiophene dyes, it has an additional absorption band at 

459 nm. The wavelengths o f all the other absorption bands, recorded for the dyes in methanol 

solution, are reported in Table 2.3.

Aggregation Effects

According to Beer’s law, Equation (2-1), the absorbance o f the dye varies linearly with the 

concentration of the dye [C],

A= £ fCJ l Equation (2-1)
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where A is the absorbance, s is the molar extinction coefficient of the dye and / is the path length 

of the cell, which is 1 cm for all the experiments in this study.

However, at high concentrations, the dye molecules may aggregate together and the aggregated 

molecules may absorb light less efficiently. This leads to a deviation from Beer’s law, where the 

absorption is no longer related linearly to the concentration o f the dye. The effect of aggregation 

is exhibited in the spectra of [IX] (Figure 2.8). Considering these spectra we can see that as the 

concentration rises above 5 x 10' 7 mol dm' 3 the absorbance begins to plateau and no longer varies 

linearly with concentration. If Beer’s law was obeyed, the absorbance of the solution of 

concentration 1 x 1 O' 4  mol dm ' 3 should be twice that of the solution of concentration 5 x 1 O' 5 mol 

dm'3.
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Figure 2.8 The effect of increasing the concentration of [IX] on the absorbance of solutions in 

methanol. The concentrations vary from 0.1C to 1C, where C = 1 x 10‘ 4  mol dm'3.

The actual absorbance values are 2.197 and 3.063 respectively for the two solutions. The 

absorbance at >.max of various strength methanolic solutions of [IX] is plotted against the 

concentration o f the solutions in Figure 2 .9 .
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Figure 2.9 Absorbance versus concentration plot for [IX] in methanol.

c *  ̂ # i • i •At concentrations below 5 x 10' mof dm' Beer’s law is seen to be obeyed, as the relationship 

between absorbance and concentration is linear. Above this concentration though, the absorbance 

begins to deviate from the straight line in , and Beer’s law is no longer valid. In fact the
A t 3 *1absorbance hardly increases at all when the concentration rises above 1 x 1 0 ' mol dm' , with 

changes in the spectrum limited to broadening of the peak. This could be attributed to 

aggregation effects. However, it is much more probable that this effect is due to the limited light 

being transmitted at these concentrations. For example, when the solution has an absorbance of 

3, the transmitted light is 0.1% of the incident light and it is doubtful whether the instrument 

used will give reliable results with absorbancies this high. These limitations could be overcome 

by reducing the path length / by using a thinner spectrophotometer cell.

Since we know the concentrations of the dye solutions used, the molar extinction coefficient, 8 , 

can be calculated by rearranging Beer’s Law as follows: 

e = A/ [C]/ = 2.3/ 0.5x1 O' 4  = 46000 m of1 dm3  cm' 1
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Identification of the absorption responsible for perm anent fading

Degassed solutions of the dyes in a quartz cell faded quickly, with complete loss o f colour in less 

than two hours for [IV]. However, according to the Albini, 9  irradiation o f the long wavelength 

absorption band of donor acceptor azo dyes has no permanent effect and photofading begins to 

occur only with ultraviolet light at 312 nm and shorter wavelengths. To confirm this, a glass 

filter was placed in front of the cell containing the dye solution. The transmittance of light 

through the glass filters can be seen in Figure 2.10 along with transmittances of some UV filters.

97.7

Pyrex filter 
Glass fillter 

UV filter

%T

0.0
250 300 350

Wavelength/nm

400 450 500.

Figure 2.10 The transmittance o f ultraviolet light through UV filters.

The glass microscope slide filter had 0 % transmittance of light below 250 nm. The second 

absorption band of the azobenzene dyes have wavelengths, which range from 276 nm for dyes

[III], [IV], [VI] and [VIII] to 307 for [I], The light transmitted through the glass filter at 276 nm 

is 3.3% and rises to 70% at 307 nm. Since this filter allows limited irradiation of the second 

absorption band, a Pyrex filter was used to decrease the radiation allowed through to the sample
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solution. The Pyrex filter has 0.01% transmittance at 276 nm, but still 33% transmittance at 307 

nm However the Oriel UV filter, cuts out all light between 200 nm and 335 nm and 

transmittance does not rise above 1% until 350 nm. As a result, only the long wavelength 

absorption band was irradiated when a UV filter was employed. As would be expected from 

Albini’s work,; there is little if any permanent photofading under these conditions.
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Figure 2.11 Comparison of photofading behaviour of [VII] in degassed methanol when 

irradiated through glass and UV filters using a Xe lamp.

Figure 2 . 1 1  shows the changes in the absorption spectra of | VII] when irradiated through glass 

and UV filters. Using a UV filter, the absorbance of [VII] after an irradiation time of 12 hours, is 

exactly the same as before start o f irradiation. Irradiation through a glass filter produces 

permanent loss of colour for [VII] but at a much slower rate than when no filter is present. The 

rate of photofading of (IX], through a glass filter is too low to measure. The half-lives for the 

dyes in methanol for photofading with various filters are given in Table 2.5.
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Table 2.5 The half-lives of azobenzene dyes in de-oxygenated methanol at room temperature 

irradiated through UV filters.

Filter None Glass Pyrex UV

Dye Half-life X1/2 / h

[ 1 1 1 1 1 14.7 No fading

[IV] 0.87 7.7 18.2 42.4

|V II| 0 . 8 6 5.8 No fading

[IX] 1 . 1 2 No fading No fading

For [I] though, some permanent loss of colour does occur. This is probably due to some 

transmittance of light at around 300 nm, which is therefore able to irradiate both the long 

wavelength and second absorption bands. An experiment where a quartz cuvette containing a 

methanol solution of (I] was irradiated with an argon laser at 514 nm for 8  hours produced no 

change in the absorbance value of the dye at ^max, as can be seen from Figure 2.12.
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Figure 2 . 1 2  Absorption spectra of |1] before and after 8  hours laser irradiation at 512 nm
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The advantage of using the laser for irradiation is that a very narrow spectral range, the long 

wavelength band at its Â ax, is selectively irradiated. Since irradiation o f the 1st absorption band 

at 512 nm gave no permanent fading, it can be concluded that it is irradiation o f the second 

absorption band which is responsible for causing permanent fading in the case o f [I], A methanol 

solution of [VII] does exhibit a permanent loss of colour despite the presence o f the glass slide 

filter, though the half-life is an order of magnitude longer than when no filter is present. 

Irradiating through a UV filter however, causes a cessation o f photofading which suggests that 

some light penetrates the glass filter to irradiate the second absorption band and cause fading, but 

this is not possible when the UV filter is used. Photofading of [TV] still occurs with both glass 

and UV filtration o f the light, with the half-life of the dye similar when filtered by the Pyrex and 

UV filters. This suggests that irradiation o f the second absorption band is important in the 

photofading mechanism, but that permanent photofading is also caused by irradiation o f light at 

above 350 nm in the case of [TV].

A methanol solution o f [I] fades very slowly when the glass filter is used and there is no 

detectable fading o f dye 9 in the 12 hour duration o f the experiment with a glass filter.

Therefore dyes [I] and [IX] and [VH] undergo permanent photofading only with UV irradiation, 

and the rate o f photofading is much greater when the irradiation wavelength is shorter than 315 

nm. Photofading of [IV] is also predominantly caused by irradiation at wavelengths shorter than 

315, but some photofading does occur at longer wavelengths, albeit at a reduced rate.

Kinetic experiments

Results using nitrogen as a degassing agent proved inconsistent and nitrogen was replaced by 

argon gas. Argon has the advantage of being heavier than air and should therefore form a layer o f 

argon gas between the dye solution and the atmosphere, preventing oxygen from the air infusing 

into the solution. Initial experiments with most dyes produced linear fading curves, for example
I

for [TV] in Figure 2.13.
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Figure 2.13 The variation of the absorbance with irradiation time o f a partially degassed solution

of [I VJ in methanol at 25".

A straight line is fitted to the experimental data points using a curve fitting package1 0 and the 

equation for this line and its correlation coefficient R“ are displayed in Figure 2.13.

This linear relationship between the absorbance of the dye solution at its Xmax and the time of 

irradiation indicates zero order kinetics for the photoreaction, where the absorbance varies 

linearly with time. This implies the following expression for the rate law.

Rate = d[A]/dt = -k Equation (2-2)

Where [AJ is the absorbance at Z w  of the dye and k is the rate constant for the reaction. This 

expression can be then be integrated according to Equation (2-3),

j d[A4 ] = -I k dt Equation (2-3)

to give the solution in Equation (2-4)

[A] -kt + C Equation (2-4)

where C is also a constant.

Equation (2-4) has the same form as the general straight line equation y = mx + C, where m is the 

gradient of the line and C is the y-axis intercept. Hence a plot of [A] against time, as in Figure 

2.13, yields the constants k and C. The rate constant k, is generated by calculating the gradient of
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the straight line in Figure 2.13, and the constant C, is equal to the absorbance where the line 

intercepts the y axis, that is, at time t = 0. At this time, C is equal to the absorbance of the dye 

before irradiation, or the initial absorbance Ao. Thus for the above case of [IVJ, the straight line 

has an equation of the same format as Equation (2-4), with k = 0.7362 and C = 2.0417.

It is notoriously difficult to obtain consistent results for degassed solutions, as even a tiny 

amount of oxygen significantly affects rates o f photofading9. The degassing conditions therefore 

had to be optimised to exclude oxygen. These conditions included the flow rate of argon through 

the solution, (too little results in some oxygen remaining in solution), and the degassing time. 

The fading curve in Figure 2.13 were found to be invalid for fully degassed solutions and must 

have contained some dissolved oxygen. These assertions were made after further experiments 

with [IV] gave photofading profiles such as that shown in Figure 2.14.
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Figure 2.14 The changes in the absorption spectrum with irradiation time of a degassed 

methanolic solution of [IV],
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A plot of the Absorbance at against irradiation time for this experiment gave the 

photofading curve shown in Figure 2.15. Here, in contrast to the linear plot previously obtained, 

the variation in absorbance with irradiation time produces a photofading curve. The rate of 

photofading increases as the irradiation time increases, resulting in far quicker rates of fading 

than had been observed in previous experiments. A curve fitting program 1 0  was used to generate 

a curve to fit the data points of the photofading curve of [IV] in Figure 2.15. This curve is given 

by the polynomial equation displayed in Figure 2.15.
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Figure 2.15 The variation in absorbance with irradiation time of a methanol solution of [IV] 

under anaerobic conditions.

Since it is not possible to directly compare the rates of reaction for linear and polynomial 

photofading curves, it is necessary to define some measure of the relative photo-stability of the 

dyes. The parameter used will therefore be the half-lives and lifetimes of the dyes defined as

follows.

The l i f e t im e  of the dye (given the symbol x), is the time at which the absorbance of the dye 

solution becomes zero.

The h a lf- life  of the dye (given the symbol 1 1 /2 ), is the time taken for the a b s o r b a n c e  A o f the dye 

to reduce to half its initial value.
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For a linear fading curve, the lifetime can be determined by calculating from the graph the 

irradiation time at which the absorbance (A) is equal to zero. Substituting A = 0 and C = Ao into 

Equation (2-4) we obtain,

0 =  kt + Ao Equation (2-5)

which rearranges to

t = -Ao/k = x Equation (2-6)

Considering the absorption/irradiation time plot in Figure 2.13, as an example, the values k = - 

0.7362 and Ao = 2.0417 can be substituted into Equation (2-6) for the lifetime o f [IV] in this 

experiment.

x = -2.0417/-0.7362 = 2.77 hours. Equation (2. 7)

The half-life is the time t, where the absorbance A is half the experimentally measured initial 

absorbance Ao. The half-life can be determined therefore, by calculating from the graph the 

irradiation time at which the absorbance (A) is equal to (Ao/2).

The half-life can be calculated by substituting Ao/2 for A and Ao for C in Equation (2-4), and 

rearranging to give the general solution in Equation (2-8)

t = X1/2 = (Ao/2 -  Ao)/k Equation (2-8)

Again considering the absorbance versus irradiation time in Figure 2.13, the experimental value 

o f A at time t = 0 is A0 = 2.04 and therefore Ao/2 = 1.02, which can then be substituted for A into 

Equation (2-8)to find t = Zm.

t = xi/2 = (1.02 -  2.0417)/-0.7362 = 1.387 hours Equation ( 2-9)

As can be seen from Figure 2.15, the photofading curve o f dye 4 with more rigorous degassing 

can be approximated by a polynomial. The general form o f a polynomial is given in Equation 

(2-10)

y = ax2 + bx + c Equation (2-10)

Which can be rewritten in terms o f absorbance, A and time, t as, 

A = at2 + bt + c Equation (2-11)

The lifetime of the dye is again found by substituting A -  0 in Equation (2-11). The resulting 

quadratic equation can then be solved for t using Equation (2-12)
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t -  [-b ± V(b2 -  4ac)]/2a Equation (2-12)

The half-life is calculated in a similar way, except here A is substituted by Ao/2 in Equation 

(2-11) before rearranging to give Equation (2-13),

0 = at2 + bt + (c-Ao/2) Equation (2-13)

which can then be solved for t using Equation (2-12).

To exemplify these calculations consider the quadratic equation for the photofading curve o f dye 

[TV], in Figure 2.15.

y = -0.6371x2 - 0.5544x + 2.1682 „  ..J Equation (2-14)

which in terms of A and t can be rewritten as

A = -0.637U2 - 0.5544t + 2.1682 „  ..Equation (2-15)

To find the lifetime of the dye, A = 0 is substituted in Equation (2-15) and then this quadratic can 

be solved for t using Equation (2-16) e.g.

t = -(-0.5544) ± [V(0.55442 -  4(-0.6371)(2.1682))]/ 2(-0.6371) Equation (2-16)

which gives solutions o f t to be,

/ = -2.33 or t = 1.46

Since the irradiation time must be a positive quantity, then the only real solution for the half-life 

o f the dye is t = x = 1.46 hours.

The half-life is calculated by substituting Ao for A in Equation (2-15) and rearranging to give 

Equation (2-17).

0 = -0.637U2 - 0.5544t + (2.1682 - Ao/2) Equation ^

The value of Ao is 2.2 and therefore, Ao!2 = 1 .1  and the constant term c becomes 1.0682. The 

quadratic Equation (2-17) can thus be solved for t using Equation (2-18). 

t = -(-0.5544) + [V(0.55442 -  4(-0.6371)(1.0682))]/ 2(-0.6371) Equation (2-18)

This yields the solutions t = -1.80 and t = 0.93 of which only the later can be a real solution, and 

therefore xm = 0.93 hours.

The pattern o f fading seen for dyes [VT| and [VH| is very similar to the photofading behaviour 

observed for [IV], and this similarity is illustrated in Figure 2.16. Both dyes produce a 

photofading curve where the initial rate o f fading is relatively slow, compared to the rate of 

fading as the irradiation proceeds.
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The non-linear relationship between the absorbance of the long wavelength absorption peak at its 

A/max and the time of irradiation of the sample dye solution implies that the kinetics is not zero 

order for these dyes. The similarities in the photofading curves of these dye are perhaps not 

surprising, as all three of these dyes contain the 2 '-nitro substituent and as such, might be 

expected to undergo similar fading patterns and have similar kinetic behaviour.
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Figure 2.16 The variation in absorbance with irradiation time for dyes [VI] and [VII] in 

methanol under anaerobic conditions.

Structure in i also contains the 2 '-nitro group and has a similar photofading curve to the three 

other 2 '-nitro substituted dyes.

The quadratic equations generated to fit the data points of the photofading curves of dye [II],

[IV], [VI] and [VII] are given in Table 2.6. These quadratic equations are then used to calculate 

the lifetimes and half-lives of the dyes as in the above example for [IV],
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Dye Expression Equation x / h  Xi/2 / h

[HI A = -3.426t" + 1.09651 + 1.8689 Equation (2-19) 0.92 0.69

[IV] A = -0.637U2 - 0.6189t + 2.0163 Equation (2-20) 1.27 0.80

[VI] A = -2.3657t2 - 0.041 It + 2.0929 Equation ( 2-21) 0.93 0.65

[VII] A = -1.2514t2 + 0 .1386t + 1.9925 Equation (2-22) 1.31 0.95

a x is  the lifetime and t 1/2 is the half-life

In reality, the absorbance of the irradiated solution at Xmax will rarely degrade to zero, as 

photofading products may have a small absorbance at this wavelength. Thus the lifetimes 

reported for the dyes above, which are extrapolated from the photofading curves, are somewhat 

artificial. However, they do give a more accurate assessment of the rapid fading towards the end 

of the photoreaction. Thus for dyes with non-linear photofading curves, it is beneficial to 

consider both the half-life and lifetime.

Considering the changes in the uv/visible spectrum that occur as fading proceeds, it was seen that 

for some dyes, there was a decrease in the intensity of the long wavelength absorption band, but 

the wavelength of this band remained essentially the same. But for other dyes, a hypsochromic 

shift o f the band accompanied its decrease in intensity. After sufficient fading time the 

appearance o f new absorption peaks, which absorbed in different regions to the original dye, 

were detected. These peaks indicate the presence of breakdown products of the original dye. The 

three dyes that contain the 2-nitro substituent undergo very similar changes in their absorption 

spectra, with an initial decrease in the intensity o f the long wavelength absorption peak, followed 

by a relatively rapid loss in colour to give a product absorption peak in the uv region o f the 

spectrum at around 360-400 nm. These changes can be seen in Figure 2.14, for [IV] and in 

Figure 2.17 for [VI].
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Figure 2.17 The changes in the absorption spectrum of a methanol solution [VI] on irradiation of 

the solution under degassed conditions.

In view of the similarities in the photofading behaviour o f the dyes containing the 2'-nitro

substituent, it might be reasonable to expect some of the other azo dyes that have the same

substituent groups, for example dyes that contain the 4'-nitro substituent, to have some

similarities in their photofading behaviour. The variation in absorbance with irradiation time for 

dyes containing 4'-nitro substituents is shown in Figure 2.18.

138



2 5  1

[XII]
[XIII] 
[IX]

2

1.5

[VIII]1

0.5

0
2 2.5 30 0.5

Time/h

Figure 2.18 The variation in absorbance with irradiation time o f 4'-nitro substituted dyes ]VIII], 

[IX], [XII], [XIII], and [X], photo-faded under anaerobic conditions in methanol

The dyes, [VIII], [IX], [XII], [XIII], and [X], which contain the 4'-nitro substituent on the 

acceptor phenyl ring, display similar fading behaviour to one another. In each case, an initial 

slow start to fading is followed by a period of relatively quick fading, before the photofading rate 

becomes very slow. The photo-fading curve for [I], which also contains the 4'-nitro substituent 

has a slightly different shape when compared to the other dyes. Solutions of [I] fade considerably 

quicker than the other dyes containing the 4'-nitro group. This is perhaps not entirely surprising, 

as [I] also has an SMe substituent on the donor phenyl ring. This donor ring substituent may 

affect the order of the reaction11, and the heavy atom sulphur may increase the rate of 

photochemical transitions such as intersystem crossing, because of the large spin orbit 

coupling,lz which may be involved in the fading o f the dye. The changes in the spectra, on photo 

fading of the 4'-nitro dyes, are also quite different to those for dyes [II], [IV], [VI] and [VIII. 

The 4'-nitro dyes undergo a hypsochromic shift initially, before a double absorption peak is 

formed, which then undergoes a slow decrease in its intensity but remains at the same 

wa\elength. This is illustrated for [IX[ in Figure 2.19.
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Figure 2.19 The variation in the uv/visible absorption spectrum with irradiation time of a 

methanolic solution o f [1X| under degassed conditions.

The equations fitted to the photofading curves of the 4'-nitro containing dyes are given below, 

along with the half-lives and lifetimes for each dye calculated from these equations.

The first dye in the series is [VIIIJ, which has a linear photofading curve,

A = -0.8814t + 1.5882 Equation ( 2-23)

From which the lifetime and half-life are calculated to be: 

t  = 1.80 hours and xm = 0.88 hours

For dyes [VIII], [IX], [XII], [XIII], and [X], there are no solutions for the curve fitted quadratic

equations for A = 0. Therefore, the linear portion at the end of the recorded photofading curve,

(see Figure 2.18), is used to obtain a straight linear equation, from which the lifetime x can be
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found from the point at which this line intercepts the x axis. As an example of this method, 

consider the plot shown in Figure 2.20.
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Figure 2.20 The variation in absorbance o f a methanolic solution of [IX] at its ^max with 

irradiation time under anaerobic conditions.

Taking the linear portion of the curve as the last six data points, the liner fading plot in Figure

2.21 is produced, and the equation of this straight line can then be used to calculate the lifetime

of the dye. The equation shown in Figure 2.21 can then be written in terms of A and t as:

A = -0 .2 5 3 6 t+ 1.1246 rEquation ( 2-24)

Which gives the lifetime of |IX] as: 

i  = 4 .46 hours
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Figure 2.21 The linear portion of the photofading curve of [IX] in methanol under anaerobic 

conditions, taken from the last six data points of the full fading curve of [IX] (see Figure 2.20).

The half-life of the dye is calculated in the same way as for the previous dyes, using the 

quadratic equation fitted to the data points in Figure 2.20, and given in Equation ( 2-25).

A = 0.33 It2 -  1 593t + 2.4178 Equation ( 2-25)

From which, the half-life is calculated to be: 

x 1 /2  = 1.03 hours

The other dyes in the series can be treated in a similar way. For dyes [XII], [XIII], and [X] the 

quadratic equations and half-lives calculated from them are given in Table 2.7. Algebraic 

expressions for the linear end part o f the fading curve, and lifetimes calculated from them are 

also given in Table 2.7.

y = -0.2536x + 1.1246 
R2 = 0.9993

0.5 1.5

Time/h

2.5
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T a b le  2.7 Polynomial and linear equations used to calculate half-lives and lifetime o f dyes [X], 

[XH| and [Xm ], under anaerobic conditions in methanol.

Dye Expression Equation x / h Ti/2/h

[X] A = -0.9949t + 2.4519 Equation (2-26) 6.6 -

[X] A = 0.1397t2 -  1.0478t + 2.34 Equation (2-27) - 1.48

[XII] A = -0.2518t+ 1.099 Equation (2-28) 4.36 -

[x n ] A = 0.2692t2 -  1.2195t + 1.9418 Equation (2-29) - 1.08

[x n i] A = -0.4131t + 1.2184 Equation (2-30) 2.95 -

[XIII] A = 0.2617t2 -  1.443U + 2.1992 Equation (2-31) - 1.08

a x is the lifetime and X1 /2  is the half-life

There are two other dyes that contain the 4'-nitro group; [I] and [XVn]. As these dyes contain 

another substituent on the donor ring, in addition to the donor 4-amino group present in all the 

dyes, [I] and [X] are considered separately from the other 4-nitro dyes. [XVII] also contains 

substituents at the 2' and 4 positions o f the acceptor ring which may influence its kinetic 

behaviour.

The curve fitted quadratics, Equation (2-32) and E q u a tio n  (2 -3 3 ) , derived from kinetic plots for 

[I] (Figure 2.22) and [XVH] (Figure 2.23) were used to calculate the lifetime and half-life of [I] 

and of [XVII] (see Table 2.8).

T a b le  2 .8  Polynomial and linear equations used to calculate half-lives and lifetime o f dyes [I] 

and of [XVII] under anaerobic conditions in methanol.

Dye Expression Equation x / h  xi/2/ h

[I] A = -0.7278tz - 0.2155t + 2.252 E q u a t io n  (2 -3 2 ) 1.61 1.11

[xvn] A = -3.0857t + 2.6457 E q u a t io n  (2 -3 3 )  0.86 0.44
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Figure 2.22 The variation in the absorbance at 7.max of a methanol solution of dye [I] with 

irradiation time under anaerobic conditions.
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Figure 2.23 The variation in the absorbance at of a methanol solution of dye [XVII] with 

irradiation time under anaerobic conditions.

It might be expected that [III] and [V] will exhibit a different pattern o f photofading and kinetics 

than for the dyes with 4'-nitro or 2'-nitro substituents, and this is certainly the case. These dyes 

both contain the 4'-ester substituent, though the absorbance/ irradiation time plot of [III] (Figure
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2.24) is virtually linear suggesting that the photofading o f |IIIJ obeys zero order kinetics, while 

the absorbance/ irradiation time plot of [V] (Figure 2.25) is non-linear.
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Figure 2.24 The variation in absorbance with irradiation time in hours of a methanolic solution 

of [III] under anaerobic conditions.
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Figure 2.25 The variation in absorbance with irradiation time of a methanolic solution of [V] 

under anaerobic conditions.
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A  possible explanation for this is that, although [HI] and [V] contain the same 4'-ester and 4- 

diethylamino groups, the presence of the 2-methyl and more importantly the 2-nitro substituent 

may have a major influence on the photofading behaviour of these dyes.

Equation ( 2-34) and Equation ( 2-35) from the absorbance/ irradiation time plots o f [ill] and [V] 

were used to calculate their lifetimes and half-lives

Table 2.9 Polynomial and linear equations used to calculate half-lives and lifetime o f [HI] and 

[V] under anaerobic conditions in methanol.

Dye Expression Equation t / h  xi/2/ h

[ID] A = -0.5514t+ 1.992 Equation (2-34) 3.61 1.8

M A =  -0.2789t2 - 0.4157t + 2.3713 Equation ( 2-35) 2.26 1.44

The changes in these spectra on photofading will be discussed further in Chapter 3, when 

considering the photo fading products o f the dyes.

The remaining azobenzene type dyes are [XI] and [XIV]. The aminoazobenzene [XIV] differs 

from the dyes previously considered, as it contains only the 4-alkylamino substituent and no 

substituents on the acceptor ring. [XI] is unusual as in place o f the electron acceptor substituent 

at the 4 position o f the acceptor ring, encountered in many o f the other dyes, it has an electron 

donating amino group. This gives [XI] the unusual distinction o f having 2 donor groups. [XIV] 

fades slowly and there is no major shift observed in the wavelength o f the long wavelength 

absorption band - only 6 nm (408.9 nm to 402.9 nm) after a fading time o f 2 hours 40 minutes.
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Figure 2.26 The variation in the uv/visible absorption spectrum with irradiation time of a 

methanol solution of (XIV] under anaerobic conditions.

A similar pattern of fading is seen for [XI] (Figure 2.27) with an almost negligible hypsochromic 

shift in wavelength from the spectrum of the original dye to the spectrum after 2 hours irradiation 

time. Note the presence of the two absorption peaks in the visible region of the spectrum 

occurring at 445 nm and 415 nm. This unusual phenomenon is probably due to the presence of 

the two donor amino groups. The electronic effects o f the two donor groups will be discussed 

further in Chapter 3.
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Figure 2.27 The variation in the uv/visible absorption spectrum with irradiation time of a 

solution of a methanol solution of [XI], under degassed conditions.

From Figure 2.26 and Figure 2.27 it appears that the change in the absorbance at >™,x for [XIV] 

and [XI] is directly proportional to the irradiation time of the sample solution. A plot of the 

absorption at Xn*x of [XIV[ against irradiation time (Figure 2.28) shows [XIV] to have a linear 

relationship between its absorption at >.max and the time of irradiation. This linear relationship 

implies zero order kinetics, with a rate law expression defined by Equation (2-36). The 

relationship between irradiation time and the absorbance o f [XI] at its 2imax is also linear (see 

Figure 2.29), again implying zero order kinetics according to Equation (2-37).
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Figure 2.28 The variation in absorbance at ^max with irradiation time of a methanolic solution of 

|XIVJ under anaerobic conditions.
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Figure 2.29 The variation in absorbance at A™a.x= 445 nm with irradiation time of a methanolic 

solution of [XI] under degassed conditions.
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Table 2.10 Linear equations used to calculate half-lives and lifetime of dyes |XIV] and [XI] 

under anaerobic conditions in methanol

Dye Expression Equation x /h  Ti/2 / h
|XIV| A = -0.5813t + 1.9319 Equation (2-36) 3.32 1.67

[XII A = -0.4675t + 1.8721 Equation (2-37) 4.00 1.96

As well as donor-acceptor type azobenzene dyes and the aminoazobenzenes, the kinetics of some 

donor-acceptor azothiophenes have been studied The azothiophenes tend to fade quite quickly 

compared to their azobenzene counterparts. Here there is a decrease in the size of the coloured 

absorption band and the appearance of some smaller absorption bands at shorter wavelengths An 

example of the spectral changes on irradiation of an azothiophene due are shown in Figure 2.30 

for [XV], There is extensive loss of intensity of the long wavelength absorption peak after an 

hour of fading, with a slight hypsochromic shift of the absorption peak.
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Figure 2.30 The changes in the absorption spectrum of [XV] in methanol under anaerobic 

conditions with increasing irradiation time.
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The rates of fading, measured as a function of the change in absorbance of the dye at its ^max 

with respect to the fading time. The absorbance/ irradiation time plots o f |XV|, (XVI) and 

|XVI1I] (Figure 2.31, Figure 2.33, and Figure 2.33 respectively) show a linear relationship 

between the absorbance and the irradiation time. The equations for these straight lines were used 

to calculate the lifetimes and half-lives of these dyes (see Table 2.11).
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Figure 2.31 The variation in the absorbance at A,max of a methanol solution of [XV] with 

irradiation time.
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Figure 2.32 The variation in absorbance at >i,mx of a methanol solution of [XVI] with irradiation 

time under anaerobic conditions.
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Figure 2.33 The variation in absorbance at ?Wx of a methanol solution of (XVIII] with 

irradiation time under anaerobic conditions.

Table 2.11 Polynomial and linear equations used to calculate half-lives and lifetime of (XV] 

dyes (XVI] and (XVIII] under anaerobic conditions in methanol.

Dye Expression Equation t / h Ti/2 / h

|XV( A = -1.9888t + 2.7109 Equation (2-38) 1.36 0.70

(XVI| A = -1.543 t + 2.6224 Equation ( 2-39) 1.69 0.87

(XVIII1 A = -1.4631 t + 2.5044 Equation (2-40)

For the azothiophene dyes there seems to be is a similar pattern to their photofading curves, with 

all three dyes obeying zero order kinetics and having similar lifetimes and half-lives.
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Discussion

The lifetimes and half-lives o f all the dyes are summarized in Table 2.12 and are displayed 

graphically in Figure 2.34. The different series of dyes are colour coded for easy comparison of 

the data.

Table 2.12 The lifetimes and half-lives of all the azo dyes in methanol solution, under anaerobic 

conditions*

Dye x / h Xl/2 / h Dye t / h Xl/2 / h

[n] 0.92 0.69 [X] 6.6 1.48

[IV] 1.37 0.87 [I] 1.61 1.11

[VI] 0.93 0.65 [XVIi] 0.89 0.44

[v n ] 1.18 0.86 [ m \ 3.61 1.8

[XIV] 2.76 1.38 [V] 2.26 1.44

[XI] 4 1.96 [XV] 1.36 0.7

[VIII] 2.07 1.06 [XVI] 1.42 0.72

[IX] 4.46 1.12 [x v m ] 1.71 0.84

[XU] 4.36 1.08 [XIX] 1.15 0.34

[x m ] 2.95 1.08

a x is the lifetime and x\/2 is the half-life. * Averaged data from several experiments.
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Figure 2.34 The lifetimes in methanol of all the dyes examined under anaerobic conditions.

As can be seen from the bar chart representation of the lifetimes of the dyes, the 2-nitro dyes 

have similar lifetimes, which are relatively short compared to the 4'-nitro dyes. The anomalous 

dye in this series is [VIII], which has a much shorter lifetime than the other 4'-nitro dyes. This is 

probably due to the absence of any alkyl groups on the amino nitrogen.

The most stable dye is [X], [I] and [XVII], which contain additional substituents on the donor 

phenyl ring have comparatively short lifetimes.

The azothiophene dyes all have similar lifetimes, which are in general slightly longer than for the 

2'-nitro dyes.
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Dye

Figure 2.35 The half-lives of the dyes examined under anaerobic conditions in methanol.

With respect to the half-life of the dyes, the azothiophenes are the series with the shortest half- 

lives, followed by the 2'-nitro substituted dyes. The 4'-nitro substituted dyes have similar half- 

lives all of just over an hour. [Ill] and IV] both have relatively long half-lives. The most 

surprising results are for |XI] and [XIV], which have, quite long half-lives.

The 4'-nitro substituted dyes are also quite stable, and more stable than the 2'-nitro substituted 

counterparts, though not as much as is expected from light fastness values reported in the 

literature. There is a much more significant difference in the lifetimes of the dyes than the half- 

lives, as dyes which have the 2'-nitro substituent tend to fade faster near the end of the fading 

reaction, while the 4'-nitro substituted dyes fade much more slowly toward the end of the 

reaction.

The azothiophenes are relatively unstable compared to the azobenzene type dyes. Possible 

reasons for these differences in rates may be affected by the strength of the azo bond. The
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weaker the bond, the more easily it may be broken down and degradation products formed. One 

factor that may affect the strength o f this bond is the electron density in this region of the 

molecule. Any factor which causes a decrease or disruption o f electron density may cause the 

bond to be weakened and consequently cleaved. Thus strong electron withdrawing groups may 

weaken the azo bond compared to [XI] and [XIV], and the 2-nitro substituent may also disrupt 

the electron density between the azo nitrogens causing additional weakening.

The azothiophenes contain a sulphur atom, which can act as a strong electron acceptor by 

accepting electrons into its vacant d-orbitals. This also may cause a major decrease in the 

electron density around the azo bond making it more liable to cleave.
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Section 2

The effect of Oxygen on the rate of photofading

Oxygen greatly retards the rate of photofading of all o f the dyes studied. Solutions of dye [IX] 

were oxygenated by bubbling pure oxygen gas through the solution for a time period of between 

1 and 10 minutes. The amount of oxygen dissolved in solution is critical when considering the 

lifetime of the dye in oxygenated methanol solution. This is illustrated in Figure 2.36, which 

gives the plots of absorbance against fading time for solutions [IX] in methanol, which have 

been oxygenated for 0, 5 and 10 minutes respectively. Note that the solution oxygenated for 0 

minutes is in fact degassed with argon as for the experiments where no oxygen is present.
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Figure 2.36 The changes in the absorption at ^max with irradiation time, o f three methanol 

solutions of [IX] subjected to 0, 5 and 10 minutes oxygenation respectively.

The longer oxygenation time results in an increase in the half-life and the lifetime of the dye. For 

all the different oxygenation times, there is an initial period where the rate of fading is very slow. 

This period is followed by an increase in the rate of fading for the solution that had been 

oxygenated for 5 minutes. The rate of fading of the oxygenated solutions is much slower than the 

rate of fading for the solution where no oxygen is present. The initial rates for the two 

oxygenated solutions are quite similar, but whereas, after approximately 9 hours, there is an 

increase in the fading rate of the solution oxygenated for 5 minutes, there is a corresponding
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retardation of the fading rate of the solution that had been oxygenated for 10 minutes. The rate of 

fading of the dye solutions therefore seems to be determined by the amount of oxygen present in 

the solution. For example, the solution that had been oxygenated for 10 minutes obviously has 

more oxygen present in solution than the solution oxygenated for 5 minutes and consequently

fades more slowly.

Although the rate of photofading is greatly retarded in the presence of oxygen, a decrease in the 

intensity of the long wavelength absorption band is still observed. If the dye solution is faded for 

long enough, a total loss of colour is seen This result is shown in Figure 2.37.
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Figure 2.37 The variation in the absorbance at the A,max of a methanol solution of [IX] that had 

been oxygenated for 10 seconds, with irradiation.

Here a methanol solution of dye [IX], which had been oxygenated for 10 seconds only, was 

irradiated. Initially, the rate of fading is very slow. After around 3.5 hours, there is an increase in 

the rate of fading which remains constant until an irradiation time of 9 hours. From this point in 

time there is a dramatic increase in the rate of fading, and the intensity of the absorption peak at 

Ânax-i degrades to zero. The rate of each stage of the fading reaction can be calculated from the 

gradient of the three straight line sections of the fading plot. The time intervals for each stage and 

the corresponding rate are given in Table 2.13.
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Table 2.13 The rates o f reaction o f the three fading stages observed for the irradiation of a 

methanol solution o f [IX] oxygenated for 10 minutes.

Stage Time interval Rate

1 0 to 3 hours 0.031

2 3 to 9 hours 0.1297

3 9 to 10 hours 30 mins 0.63

From Table 2.13, it can be seen that the rate of fading for stage 2 is 4.18 times faster than the rate 

in stage 1 and that stage 3 has a fading rate 4.8 times faster than for stage 2 and thus 20.3 time 

faster than for stage 1.

A possible explanation for the initial very slow rate o f fading, is that oxygen quenches the 

photoreaction. The oxygen may be acting as a quencher o f some excited state species o f the dye, 

possibly a triplet, which would otherwise undergo further processes leading to degradation o f the 

dye. Oxygen is a triplet in its ground state and thus has the ability to interact with other triplet 

species, according to Equation (2-41).

Dye3* + 0 23 -> Dye + O21 Equation (2-41)

In this instance, the excited triplet state o f the dye interacts with ground state triplet oxygen and 

yields the dye in its ground state, plus singlet oxygen. It is quite likely that in the initial stages of 

the reaction oxygen quenches most o f the excited state species and therefore little if any 

photofading occurs.

The change in the rate o f photofading suggests that the oxygen may be used up in some way or 

converted to some inactive species so that its quenching action is reduced, and photofading may 

proceed.

There is the possibility that fading may then occur in the same way as if no oxygen were present. 

There is also the possibility of some excited state o f the dye reacting with oxygen, according to 

Equation (2-42), until all the oxygen is consumed, after which reductive fading may occur.

D ye*+ 0 2^  Dye-02 Equation (2-42)

The oxygen could also be deactivated in some way. This could result perhaps, from the 

interaction with the triplet state o f the dye converting ground state triplet oxygen into singlet 

oxygen. This process would prevent further quenching o f a reactive triplet state o f the dye by 

triplet oxygen. The singlet oxygen may also interact with the dye in some way, causing fading.
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The changes in the absorption spectra of the dyes faded under oxygenated conditions are also 

markedly different to changes observed under degassed conditions. These differences are 

discussed in the discussion of the photo-products in Chapter 3. Not all of the dyes have the same 

pattern of fading under oxygenated conditions. The rates of fading under oxygenated conditions 

affect some dyes much more than others. For example Figure 2.38, shows [IV] to have a linear 

relationship between the irradiation time and the absorbance of the dye at its ^ a.x In contrast to 

[IX], [IV] has a constant rate of fading, and obeys zero order kinetics. There is no initial 

induction period, where fading is slow and no sudden changes in the rate of fading. These factors 

suggest that even though oxygen slows down the photofading reaction in some way, some 

photoreaction still occurs at a constant rate resulting in the constant loss of intensity of the long 

wavelength absorption peak. [IV] thus has a definite lifetime in the presence of oxygen. This 

lifetime is calculated from the straight line equation in Figure 2.38 to be x = 7.11 hours with the 

half-life calculated to be i j / 2  = 3.52 hours. Even though, the half-life is approximately 4 times 

longer and the lifetime 5 times longer than in the presence of oxygen than under deoxygenated 

conditions, the half-life and lifetime of [IV] are much shorter than for [IX] under the same 

conditions.
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Figure 2.38 The change in the absorbance of a methanol solution of [IV] with irradiation time 

under oxygenated conditions.
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Figure 2.39 The changes in the absorbance at the of a methanol solutions of dyes [II], [IV], 

[VI] and |VII] with irradiation time under oxygenated conditions.

Similar results are seen for the other dyes containing the 2'-nitro substituent (Figure 2.39) 

suggesting that dyes that contain the 2'-nitro substituent, may have similar photofading behaviour 

in the presence of oxygen.

In view of the similar results obtained for the photofading o f the series of 2'-nitro substituted 

dyes, it might be expected that other series of dyes with similar structure may have similar 

kinetic behavior to one another. From Figure 2.40, it can be seen that this assumption seems to 

hold for [IX], [XII] and [XIII] of the series o f dyes containing the 4'-nitro substituent. (Figure

2.40).
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Figure 2.40 The changes in the absorbance at the ^max of a methanol solutions o f dyes [VIIIJ, 

[IX], [XII] and [XIII1 with irradiation time under oxygenated conditions.

However, the other dyes in the series do not seem to conform to this general pattern of 

photofading behaviour. [VIII], for example has a linear relationship between its absorbance at 

Aonax and the irradiation time, and thus has zero order kinetics. II] has similar fading times in 

oxygenated solution as [IX], [XII] and [XIII1, but the fading curve is linear. Both the fading 

times and the appearance of the fading curve are very different for [XVII]. The photofading 

curves for [I] and [XVII] are compared to that for [IX] in Figure 2.41. The Microsoft excel 

package does not provide an adequate curve fitted trendline to correlate with the data points of 

[XVII] but it can be seen that the lifetime and half-life of this dye are far shorter than those for 

the other dyes in the 4-nitro series.
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Figure 2.41 The changes in the absorbance at the ^max of a methanol solutions of [I], [IX], and 

[XVII] with irradiation time under oxygenated conditions

Both dye [XI] and {XIV] produce straight line fading curves under oxygenated conditions (see 

Figure 2.42).
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Figure 2.42 The changes in the absorbance at the ^max o f methanol solutions of [XIV] and [XI] 

with irradiation time under oxygenated conditions.
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Both dyes are quite photo-stable in oxygenated solution. [XI], which contains two donor amino 

groups perhaps surprisingly, has one of the longest lifetimes of all the dyes examined.

Dyes curves for [III] and [V[ showed a linear relationship between the irradiation time and the 

variation in absorbance (Figure 2.42) and |III| in particular was very photo-stable in oxygenated 

solution, with respect to the other dyes.
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Figure 2.43 The changes in the absorbance at the ^ ax of methanol solutions o f m  and [V] 

with irradiation time under oxygenated conditions

Finally, the photofading curves for the series of azothiophene dyes (Figure 2.44) show 

considerable variation in the half-lives and lifetimes of the azothiophene dyes, with [XV[ having 

a very short lifetime in oxygenated solution, whilst [XVIJ and [XVIII] have much longer 

lifetimes under the same conditions. The lifetimes and half-lives of 18 of the dyes examined 

under oxygenated conditions are calculated from graphical plots of the irradiation time versus the 

absorbance of the dye at its ^max These results are given in Table 2.14.
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Figure 2.44 The changes in the absorbance at the A,m a.x of methanol solutions of [XV], |XVI|, 

[XVII1| with irradiation time under oxygenated conditions.

Table 2.14 The lifetimes and half-lives of all the dyes examined in methanol under oxygenated 

conditions.

Dye Lifetime/h Half-life/h Dye Lifetime/h Half-life/h

[III 7.91 3.83 [XIII] 2L18 13.57

[IV] 7.11 3.52 [II 23.13 11.57

[VI] 9.55 4.77 [XVIII 14.65 2.72

[VIII 7.97 3.84 [IIII 25.30 12.42

[XIV] 16.27 8.33 [VI 9.55 4.77

[XII 31.16 15.46 [XV] 4.37 1.82

[Vlllj 20.77 10.52 [XVII 6.00 3.47

[IX] 18.83 12.71

[Xll] 23.50 16.54
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The results in Table 2.14 can be displayed as the bar charts in Figure 2.45 and Figure 2.46.

35 -

Figure 2.45 The lifetimes of the dyes examined in oxygenated methanol solution

From the bar chart, the series of dyes containing the 2'-nitro substituent all have relatively short 

lifetimes compared to the other azobenzene dyes. The shortest lifetimes however, belong to the 

two azothiophene dyes examined.
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The dyes containing the 4-nitro substituent, including [VlllJ and [I], also have similar lifetimes 

to one another, o f around 20 hours. The odd one out in this series is [XVTI], which has a shorter 

lifetime of 14.65 hours. This difference is not that surprising though, as the structure o f [XVII] 

is quite different to the other dyes in the series. [HI] has a long lifetime, with [V] having quite a 

short lifetime, perhaps being indicative o f its greater similarity to the 2-nitro dyes than to 

[HI] . The data for the half-lives dyes under oxygenated conditions is displayed in the bar chart in 

Figure 2.46.

Again the half-lives of the 2-nitro dyes are relatively short compared to the other azobenzene 

based dyes, as are the half-lives o f the two azothiophene dyes. Dye [XVH] has a surprisingly 

short half-life, which is disproportionate to its lifetime.

The 4'-nitro dyes are again amongst the most stable along with [HI] and [XI]. Dyes [VHI], 

[XIV] and [XI] have half-lives that are shorter than would be expected due to the linear nature of 

their photofading curves. [VJ again has a half-life more akin to that o f the 2-nitro series o f dyes 

than to [HI]. The relative photo-stability o f the dyes can be measured in terms o f the lifetime or 

the half-life. Both o f these give similar orders for the relative stability o f the dye in oxygenated 

and deoxygenated conditions. The half-life is perhaps the more reliable measure o f light fastness, 

as it measures half the time taken for the intensity o f the long wavelength coloured absorption 

band to halve. The lifetime is the time taken for the total loss o f intensity o f this peak, and since 

photo-degradation products may also absorb to some extent at the ^max o f the original peak, the 

lifetime may be misleading. In addition, the lifetime is calculated in most cases, from the 

extrapolation of curves from actual data points, and therefore, there exists the possibility that the 

error margin for the lifetime is far greater than that for the half-life o f the dye.
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Figure 2.46 The half-lives of the dyes examined in oxygenated methanol solution.

The order of lightfastness for the 19 dyes in oxygenated methanol is similar to the order under 

degassed conditions, with dyes that contain the 2'-nitro substituent on the acceptor ring having 

half-lives and lifetimes, of approximately three to four times shorter than the more stable dyes 

[III] and |XI] and the 4'-nitro substituted dyes. The aminoazobenzene [XIV] has a half-life 

approximately twice as long as the 2'-nitro dyes, while dye [V] has a half-life similar to the most 

stable 2'-nitro dyes. The azothiophenes [XV] and [XVI] along with the heavily substituted 2- 

acetylamino-4-diethylamino-2'-cyano-4'-nitro-6'-bromoazobenzene [XVII] have the shortest 

half-lives of all the dyes, though the lifetime of ]XVII] is deceptively long.
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Oxygen greatly retards the rate of photofading of all the dyes examined in this work, though 

some dyes are stabilised to a greater extent than others. The stabilization factor o f oxygen on 

fading rates, can be defined as the lifetime of a dye in oxygenated methanol divided by the 

lifetime o f that dye when no oxygen is present i.e. S  = x°/x. This stabilisation factor along with a 

similar expression in terms of the half-lives of the dyes Sm  = Xi/2°/x, gives an indication o f the 

degree to which oxygen retards the rate of fading for each dye. The lifetimes and half-lives of the 

dyes under oxygenated and deoxygenated conditions, together with the stabilization factors S 

and S1/2 are reported in Table 2.15. The stabilization factor o f the half-lives throws up the 

expected anomalous results for [XVTI], and significantly different stabilization factors between 

the lifetimes and the half-lives of the 4'-nitro dyes.

Table 2.15 The lifetimes and half-lives in deoxygenateda and oxygenated6 methanol solution, 

and the stabilization factors o f oxygen on the lifetime0 and half-lifed o f [I]-[XIX].

Dye x /h X]/2 /  h x ° / h Xi/2° /h S Sl/2

[II] 0.92 0.69 7.91 3.83 8.6 5.6

[IV] 1.37 0.87 7.11 3.52 5.2 4.0

[VI] 0.93 0.65 9.55 4.77 10.3 7.3

[VH] 1.18 0.86 7.97 3.84 6.8 4.5

[XIV] 2.76 1.38 16.27 8.33 5.9 6.0
[XI] 4 1.96 31.16 15.46 7.8 7.9

[vm] 2.07 1.06 20.77 10.52 10.0 9.9

[IX] 4.46 1.12 18.83 12.71 4.2 11.3

[xn] 4.36 1.08 23.50 16.54 5.4 15.3

[XVIII] 2.95 1.08 21.18 13.57 7.2 12.56

IX] 6.6 1.48 NA NA NA N A

[I] 1.61 1.11 23.13 11.57 14.4 10.42

[XVII] 0.89 0.44 14.65 2.72 16.5 6.2

m 3.61 1.8 25.30 12.42 7 6.9

[V] 2.26 1.44 9.55 4.77 4.2 3.3

[XV] 1.36 0.7 4.37 1.82 3.2 2.5

[XVI] 1.42 0.72 6.00 3.47 4.2 4.8

[XVIII] 1.71 0.84 NA NA NA N A

[XIX] 1.15 0.34 NA NA NA N A

a x and X] / 2  are the lifetimes and half-lives o f dyes in methanol under anaerobic conditions. b x° and xi/2 0  are the 

lifetimes and half-lives o f  dyes in oxygenated methanol. °The stabilisation factors in terms o f  the lifetim es o f  each 

dye is S =  x°/x. ^ h e  stabilisation factors in terms o f the half-lives o f  each dye o f  the dyes S]/2= x1/2°/x.
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The half-life and lifetime of [I] are greatly stabilized by the presence of oxygen, as are the half- 

life and lifetime of [VlflJ. The 2-nitro series of dyes are stabilized to varying degrees, with [VI] 

particularly well stabilized by oxygen, but [IV] much less so. Dye [II] and [VII] are intermediate 

between [VI] and [IV]. The stabilization of the lifetimes of the 4-nitro dyes is average, but their 

half-lives are the most stabilized by oxygen of all the dyes. [Ill] is average with respect to both 

the lifetime and the half-life. The least stabilized dyes are the azothiophenes and [V],

The effect of water on rates of fading under anaerobic conditions

Factors that may affect the lightfastness of azo dyes on paper include the relative humidity. The 

effect of humidity on the rate of photofading was examined for [IX] and [IV] by conducting 

photo-fading experiments in methanol/water solutions. Figure 2.47, shows the fading curves for 

100 % methanol solutions to 60/40-methanol/water ratio.
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Figure 2.47 The changes in the absorbance at the ’kmdK o f methanol/water solutions of [IX], The 

percentage content of the solutions varies from 0% water and 100% methanol to 40% water and 

60% methanol.

Increasing the amount of water in the solution further than 40 % leads to problems with the

solubility of the dye. Even at 40% water content, the solubility o f the dye is significantly less

than in the other solutions, resulting in the lower absorbance values for the same concentration of

dye in the 40% water solution. The rate o f fading of degassed solutions of [IX] does not seem to
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be greatly affected by the amount of water, with the rates o f fading similar in all the solutions 

(see Table 2.16). If anything there is a slight decrease in the rate o f fading with increasing water 

content. The effect of water on oxygenated solutions of [IX] is negligible, and the difference in 

the rate of fading is attributable to experimental error. [IV| also shows a decrease in the rate of 

fading with increasing water content (Figure 2.48), and this decrease is slightly more noticeable 

than for [IX]. The rates of fading for the [IV] methanol/water solutions are also given in Table 

2.16.
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Figure 2.48 The changes in the absorbance at the Xmax of methanol/water solutions of [IV]. The 

percentage content of the solutions varies from 0% water and 100% methanol to 50% water and 

50% methanol

Rates of fading in methanol/water solutions were inconsistent with the results of experiments by 

Albini, who attributed increases in rates of fading to increased protonation by water o f an
• • • 13initially formed intermediate in the photodegradation process.
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Table 2.16 The results of the effect of different amounts o f water in water/methanol solutions for 

[TV], [IX]. The rate constant k is given in mol dm'3 s'1.

Dye [IV] [IV] [IX] PX]

Solution %water %methanol k/mol dm'3 s' 1 Half-life/h k/mol dm"3 s' 1 Half-life/h

Dry methanol* 0 100 0.87 1.14 0.90 1.21

HPLC methanol 0.01 99.99 0.61 1.67

5% water 5 95 0.57 1.70 0.74 1.41

10% water 10 90 0.51 1.73 0.79 1.39

20% water 20 80 0.44 2.14 0.50 2.11

40% water 40 60 0.43 1.68

50% water 50 50 0.31 2.88

Methanol dried by refluxing and distilling over magnesium and iodine.

The amount of water that is present in HPLC methanol can be determined by a Karl Fisher 

titration experiment.14 This uses a reagent, which undergoes a colour change from dark brown to 

clear when it reacts with water in the methanol. The amount o f the reagent added to consume all 

o f the water is proportional to the amount of water present.

The amount of water present in HPLC grade methanol was determined by experiment to be 

approximately 0 .01% in a freshly opened bottle.

Since a small amount o f water has a negligible effect on the rates o f fading o f both [IV] and 

[IX], HPLC methanol is suitable for use in place o f dry methanol.

The presence of water seems to have a minor effect on the fading rate o f [IX] under anaerobic 

conditions, and a slightly more pronounced effect on the fading rate o f [IV]. Increasing the 

percentage of water in the methanol/water solutions has a retarding effect on the rate of 

photofading for both dyes.
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The effect of singlet oxygen quenchers on photofading rates of [IV] under oxygenated 

conditions

Evidence for the involvement o f singlet oxygen in the fading reaction could be provided by 

experiments involving singlet oxygen quenchers. If  singlet oxygen were involved in the 

photofading reaction, then a singlet oxygen quencher, such as diaza-bicyclo-2 ,2 ,2-octane 

(DABCO), would be expected to reduce the rate o f photofading. Since [IV] has a relatively fast 

rate of fading in the presence of oxygen compared with some o f the other dyes, this was chosen 

for experiments involving the singlet oxygen quencher DABCO.

Solutions of [TV] in methanol with various concentrations o f DABCO were oxygenated for five 

minutes and then irradiated. The rates o f fading and half-lives for these solutions are given in 

Table 2.17.

Table 2.17 The rate constants and lifetimes half-lives methanol solutions o f [IV], oxygenated for 

five minutes and containing specified quantities of DABCO.

Mass of DABCO in 

10 ml o f dye solution/g

Concentration of 

DABCO / mol dm'3

k/

mol dm'3 s' 1

Xl/2 / h

0 0 0.271 3.52

0.25 0.222 0.1973 4.85

0.275 0.244 0.2743 3.64

0.58 0.515 0.2701 3.71

The results in Table 2.17, show that the presence o f DABCO does not affect the rate o f fading of 

oxygenated solutions o f [TV], as the rate o f photofading and the half-life and lifetime o f [IVJ is 

almost the same in the presence or absence o f DABCO. Increasing the concentration o f DABCO 

has no effect on the rate o f fading o f the solution either. These results are in agreement with 

Albini’s results, which showed that azo dyes are efficient quenchers o f singlet oxygen, but show 

very little chemical reactivity with oxygen.13
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The effect of the solvent medium on the rate of fading

Referring back to Chapter 1, the expected mechanism for the photoreduction o f dyes is thought 

to involve the photo excited state of the dye abstracting hydrogen from the solvent to give a 

hydrazobenzene. The hydrazobenzene formed may then revert back to the original dye, or 

undergo further degradation The experiments of Hashimoto and Kano1̂ were carried out in 

propan-2-ol. An initial decrease in the intensity of the long wavelength absorption peak was 

followed by complete recovery of the absorption peak on letting oxygen into the solution. The 

results of their study are confirmed by inspection of Figure 2.49.
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Figure 2.49 The changes in the absorption spectrum of (IX] in deoxygenated propan-2-ol with 

irradiation of 10 minutes. 10a is the spectrum taken after storing the solution that had been 

irradiated for 10 minutes in the dark for 24 hours. 10b is the spectrum taken after exposing the 

solution 10a to oxygen.
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Figure 2.49 shows that after irradiation, in contrast to Hashimoto and Kano’s results, a full 

recovery of the original intensity o f the long wavelength absorption peak did not occur. The 

absorbance intensities at X âx for the spectra in Figure 2.49 are given in Table 2.18.

Table 2.18 The absorption intensities at Â ax o f a degassed propan-2-ol solution o f [IX], before 

irradiation, after 10 minutes irradiation, after storing the irradiated solution in the dark for 24 

hours and after admitting oxygen into the stored solution.

Spectrum Irradiation time/ mins Absorbance

0 0 2.06

10 10 1.24

10a 10 1.64

10b 10 1.68

10a is  the spectrum taken after storing the solution that had been irradiated for 10 minutes in the dark for 24 hours. 

10b is  the spectrum taken after exposing the solution 10a to oxygen.

It is also apparent from Figure 2.49 and Table 2.18, that recovery o f peak intensity occurs with or 

without the introduction o f oxygen into solution, as storing for a time period in the dark, 

produced a recovery of intensity from an absorbance o f 1.24 to 1.64. The addition o f oxygen into 

the solution had a minor effect on recovery o f intensity. The introduction o f oxygen into the 

solution immediately after irradiation did not produce the immediate recovery o f intensity either. 

The recovery time is reached essentially within 30 minutes o f the end o f the irradiation. After 

this time, any further recovery o f intensity is small. This recovery time is found to be 

independent of the presence o f oxygen.

The rate of fading of [IX] in propan-2-ol solution is much quicker than in a methanol solution of 

the dye. The recovery o f intensity exhibited by the dye in propan-2-ol is not seen in methanol. 

Experiments with [IV] in propan-2-ol solutions, showed similar recovery behaviour and again, 

much faster rates of fading than for methanol solutions o f [TV].

Photofading of [IX] in other alcohols

Experiments in different alcohols were carried out to examine the effect o f the length o f the alkyl 

chain and also the effect o f branching on rates o f fading o f solutions o f [IX] in order to
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investigate the process of hydrogen abstraction from the solvent in the photoreduction 

mechanism proposed by Hashimoto and Kano.1'

A methanol solution of concentration 5 x 10° mol dn r was placed into the quartz cell and the 

methanol evaporated off, leaving a known quantity o f the dye in the cell. The required dry 

solvent was then added to the dye in the cell and this solution was then degassed under argon for 

10 minutes. All these experiments were carried out under the same conditions. The lifetimes of 

| IX] in different alcohol solutions are displayed as the bar chart in Figure 2.50.
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Figure 2.50 A comparison of Lifetimes and half-lives of [IX] in alcohols of increasing Carbon 

chain length.

The alcohols used were methanol, ethanol, propan- l-ol, butan-l-ol and heptan-l-ol, for carbon 

chain lengths 1, 2, 3, 4 and 7 respectively. These are all straight chain primary alcohols which 

shows a dramatic increase in the rate of fading of [IX] with increasing alkyl chain length of the 

solvent (Figure 2.50). The rate of fading of [IX] is slow in methanol, but is over two times faster 

in ethanol and propanol and five times faster in butanol, while in heptanol the rate of fading is 

over ten times faster than in methanol.
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The rate of photofading in branched alcohol solutions

The effect of branching is pronounced by the difference in rates between n-propanol and propan- 

2-ol and between n-butanol and t-butyl alcohol. These results are illustrated in Figure 2.51.
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Figure 2.51 A comparison of the lifetimes and half-lives of [IX] in linear and branched alcohol 

solutions under anaerobic conditions.

The difference between the lifetimes of the dye in primary and secondary alcohols can be seen

by comparing propan-l-ol and propan-2-ol. The lifetime of [IX] in the secondary alcohol,

propan-2-ol is approximately seven times shorter than in the primary alcohol, propan-l-ol. This

suggests that branching in alcohols has a dramatic effect on the rate of fading of the dye.

The effects of further branching can be seen by considering the differences in the lifetimes and

half-lives of the primary alcohols, butan-l-ol and iso-butanol and t-butanol, which is a tertiary
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alcohol. The lifetimes and half-lives o f the two primary butanols are very similar, but t-butanol 

has a lifetime and half-life which is eight to ten times longer than the two primary butanols. In 

fact [IX] has a longer lifetime and half-life in t-butanol than in methanol.

The lifetimes and half-lives o f the alcohols are summarized in Table 2.19, the structure of each 

alcohol is also shown and is designated as primary, secondary or tertiary. From Table 2.19, it can 

be seen that dye [IX] is very photo-stable in methanol. [IX] is less photo-stable in the other 

primary alcohols, with a decrease in photo-stability accompanying an increase in chain length. 

Branching o f the alkyl chain seems to have little effect at positions other than a  to the hydroxy 

group, as the rate of fading o f iso-butanol and the unbranched butan-l-ol are similar. In contrast, 

branching at the carbon a  to the hydroxy group has a dramatic effect on the rate o f photofading 

of the dye. The photo-stability [IX] in the secondary alcohol, propan-2-ol is much less than in 

propan-l-ol, its unbranched isomer. Another example o f a secondary alcohol is cyclohexanol, in 

which [IX] also has a short lifetime and half-life.

Since branching at the a-hydroxy carbon atom causes such a large increase in the rate o f fading, 

it might be surprising that further branching at this carbon has the opposite effect.

In fact in tertiary-butyl-alcohol, [IX] has an even longer lifetime and half-life than in methanol.
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Table 2.19 The lifetimes and half-lives of [IX] in solutions of some different alcohols under

anaerobic conditions.

Solvent Solvent Structure Alcohol type Lifetime/h Half-life/h

Methanol

Ethanol

Propan-l-ol

Propan-2-ol

Butan-l-ol

Iso-butanol

H
I

H— C— OH
I
H

H

Primary 4.46 1.12

Primary 0.98 0.49

Primary 0.80 0.40

Secondary 0.11 0.06

Primary 0.44 0.22

T-butyl-alcohol

Cyclohexanol

H3C— C— OH
I
H

H H
I I

H3C— C— C— OH
I I
H H

CH3
I

H— C— OH
I

ch3

H H H
I I I

H3C— C— C— C— OH
I I I
H H H

CH3 H Primary

H— C— C— OH
I l
H H

CH3 Tertiary

H3C— C— OH
I

ch3

OH Secondary 0.22

0.58 0.29

4.73 2.36

0.11
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bable rea so n s  for these differences in the photostability of [IX] in the different alcohols 

p a in ed  b y  considering the hydrogen abstraction process shown in Scheme 2.2. This 

abstraction is the initial step in the photoreduction reaction o f  azo dyes proposed by

The pr° 

can
h y d r o g e n

• • 16 Albim.

OH

h3c

H

OH

- c — c h 3 nsP ?  CH3

R1— N = N  R2 R ' - S - f t - R 2

Scheme 2.2 The abstraction o f hydrogen from propan 2 ol by an

^  -j ol by the azo dye giving a hydrazo intermediate and
Here, hydrogen is abstracted from prpoan-2-ol by

a propan-2-ol radical species. vanous alcohols may be expla.ned by

The reason for these differences in rates o solvent by the dye. The ease of

considering the ease o f abstraction o f hydrogen and also the stability of the radical

abstraction will be affected by the strength of t number of alkyl groups
a is stabilized by a greater numuc

formed after abstraction o f  hydrogen. A raa ^  -̂ves jncreased stabilisation

attached to the radical centre. A greater the number w ^  radical at its central

due to hyperconjugation. Propan-2-ol has two alky gT tabiUze the C H / radical. Thus,

carbon atom, whereas, methanol has no alkyl groups bke p r o p a n - 2 - o l  than a

hydrogen should be more easily abstracted from a stability of the radical formed from

Primary alcohol, such as methanol because o f the gr ônned from methanol This would

propan-2-ol compared to  the C H / radical that would be ^  dye would abstract
than in m etnanui.

explain the much faster rate o f fading in propan -  ^  Longer alkyl chains wou

hydrogen more easily and therefore undergo fas nrrease the rate of fading. Fading
<; r+h<*r and thus increase u«*

Presumably increase radical stability slight y ^

® accordingly slightly faster in butan-2-ol than in propan 2 ^  ^  ^  t.butyl alcohol was very j

*" Wntrast to the other alcohols studied, the rate o f readlly abstractable hydrogens

slo'v TWs may be attributed to  the fact that t-butyl al c o n s e q u e n t l y  the rate of fading
. ,Lp dve ia io*̂ * 

an<i the probability o f hydrogen a b stra ctio n  >

also be low. 180



Rates of photofading in other solvents

The results of fading o f some other solvent solutions o f [IX] that were photofaded are 

summarized in Table 2.20.

Table 2.20 The lifetimes and half-lives of [IX] in cyclohexane.

Dye Solvent t/ hours Ti/2 / hours

[IX] Cyclohexane 0.66 0.42

[IX] Cyclo-induction time 0.46 0.22

These solvents (cyclohexane) do not have easily abstractable hydrogen atoms and the rate of 

photofading of [IX] in cyclohexane is thus slower than for propan-2-ol and cyclohexanol, which 

have relatively fast rates o f photofading. The faster rate o f fading o f  the dye in cyclohexane than 

in methanol might be due to the existence o f an alternative reactive pathway. It has been 

suggested that photo-reduction of the cis isomers o f azo dyes occurs in cyclohexane. The 

lifetimes of cis isomers is longer in cyclohexane than in methanol and this could explain the 

faster rate o f fading in cyclohexane relative to the rate in methanol, as the cis isomer persists 

longer and therefore has a greater probability o f undergoing some reaction.

Experiments with sensitizers

The rate of photo reaction o f [IX] in methanol solution is increased dramatically by up to 100 

times in the presence o f sensitizers such as acetone (see Chapter 1 pages 65-70).
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Table 2.21 The lifetimes (x) and half-lives (X1/2) of [IX] in the presence of some sensitizers.

Solvent Sensitizer [Sensitizer]a x /  h Xi/2/h

Methanol None 0 4.46 1.12

Methanol Acetone 3.4 x 10'3 0.0041 0.0020

Methanol Acetone 6.8 x 10-4 0.0067 0.0032

Methanol Acetone 1.7 x ICC4 0.0106 0.0053

Methanol Benzophenone 1.0 x 10-4 0.0018 0.0009

Acetone - - 0.0293 0.0146

Cyclohexanone
arn i • ,i

- - 0.0118 
1 j -3

0.0059
I I I ■      —  J-

a[Sensitizer] is the concentration of sensitizer in mol dm’ .

The results of these experiments reveal that the rate o f fading is up to 550 times faster when 

acetone is present in a methanol solution o f the dye than when no acetone is present. There is a 

similar rapid increase in the rate o f fading when benzophenone is present as the sensitizer. The 

amount o f acetone present also has an effect on the rate o f fading. For example, when 10 pi o f 

acetone is present, the rate is approximately 1.6 times faster than when only 2 pi o f acetone is 

present and around seven times faster than when only 0.25 pi o f acetone is used. Even so, only a 

small volume of sensitizer is needed and in pure acetone, there is no increase in the rate of 

reaction.

To examine how the other azo dyes are affected by the presence o f sensitizers, one representative 

dye was taken from each of the series o f dyes and irradiated in the presence o f acetone. Table 

2.22 shows the lifetimes o f some o f these other azo dyes in methanol solution and in the presence 

o f acetone.
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Table 2.22 The half-lives (11/2) of some azo dyes in methanol solution and the presence o f 

acetone.

Dye Acetone concentration/ 

mol dm

T1/2 / mins X1/2 /  h

[IV] 0.9 x 10^ 1.323 0.0118

[IV] 1.7 x \0A 0.707 0.022

[IX] 1.7 x 10-4 0.437 0.00730

[XI] 1.7 x 10-4 0.59 0.0099

[XIV] 1.7 x 10-4 0.71 0.012

[XV] 1.7 x lO'4 0.86 0.0144

As can be seen from the above results, the rate o f photofading is increased dramatically for all o f 

the azo dyes and the lifetimes and half-lives o f the dyes are reduced to the same order o f 

magnitude. It would be unwise to draw any conclusions from the relative rates o f the dyes in the 

presence of acetone, as these experiments have quite a high margin o f error associated with 

them. This error margin results from the difficulty in reproducing the exact same conditions for 

each experiment, such as complete deoxygenation and using the same volume of sensitiser. 

Because of the rapid nature o f the sensitised experiments, these slight differences in experimental 

conditions, may cause a relatively large variation in lifetimes and half-lives o f dyes.

As can be seen from the above results, the rate o f photofading is increased dramatically for all o f 

the azo dyes and the lifetimes and half-lives o f the dyes are reduced to the same order o f 

magnitude. It would be unwise to draw any conclusions from the relative rates o f the dyes in the 

presence of acetone, as these experiments have quite a high margin o f error associated with 

them. This error margin results from the difficulty in reproducing the exact same conditions for 

each experiment, such as complete deoxygenation and using the same volume o f sensitiser. 

Because o f the rapid nature o f the sensitised experiments, these slight differences in experimental 

conditions, may cause a relatively large variation in lifetimes and half-lives o f dyes.

The reason for the rapid increases in the rate o f photofading may be attributed to the two 

different mechanisms possible for photoreduction. When no sensitizer is present, direct 

photoreduction takes place, where an excited state of the dye itself abstracts hydrogen from the 

solvent, as shown in Scheme 2.2. However, when sensitizer such as acetone is present in the dye 

solution, indirect photoreduction (Scheme 2.3) can occur.17 A possible curly arrow mechanism
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for the initial stages of this indirect photoreduction are given in Scheme 2.3. Here, the sensitizer 

is acetone and the solvent is methanol. The first step is the excitation of the acetone by 

irradiation to yield a diradical type species. This diradical species then abstracts hydrogen from 

the solvent yielding a free radical species. The free radical may then interact with the azo dye 

and an intramolecular hydrogen abstraction in the resulting intermediate gives a hydrazo radical 

species. The hydrazo radical may then itself abstract another hydrogen from the solvent to form a 

hydrazo compound (see Chapter 1, Section 1.10).

Scheme 2.3 Possible curly arrow mechanism for the indirect photoreduction o f azo dyes.

Since the sensitizer has a high probability of being converted to a radical species, the probability 

of hydrogen abstraction from the solvent and subsequent transfer to the azo dye is also high, 

resulting in a very fast rate of reaction. Conversely, the probability o f the azo dye itself being 

excited to a triplet diradical state and abstracting hydrogen from the solvent is very low, and the 

rate o f photoreaction is therefore much slower.

It is also interesting to note the changes in the absorption spectra o f the dye solution that occur 

when acetone is present and compare these changes to the fading profile when no acetone is 

present. These differences are considered in the discussion of the photofading products in 

Chapter 3.
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T he effect of quenchers on anaerobic fading

The sensitized photoreaction probably involves a radical type mechanism. To investigate this, 

some well known radical traps were added to methanol solutions o f the dyes, which also 

contained 10 pi o f acetone acting as a sensitizer. Table 2.23 contains the structures o f the 

reagents and the lifetimes of the dye in sensitized dye solutions containing the reagent.i
|

Table 2.23 The effect o f various quenchers on the half-life (X1/2) o f [IX] in acetone sensitized
I

photoreactions in methanol and on the unsensitized photoreaction.

Vol. o f Reagent Structure o f Reagent xi/2 /m in  xi/2 / h

Acetone/ pla

0 none

| 10 none

10 DABCOb 98 %
I

10 Di-tertiary-butyl phenol

10 TEMPOb

0 TEMPO

a Acetone was added to increase the rate o f  the radical reaction. ^TEMPO free radical is 2,2,6,6-tetram ethyl-l- 

piperidinyloxy free radical.b DABCO is 1,4,-Diazabicyclo [2,2,2] octane.

Modes of action

These reagents have different and sometimes multiple modes o f action. DABCO is principally 

known as a singlet oxygen quencher, but can act in other ways as a radical quencher. 2-6-di-tert-

612  1.12

0.437 0.0073

2.5 0.0417

OH 13 0.217
(H3C)3Cs J ^ C ( C H 3)3

H3c 7 ^ m^ V CH:
h 3c  n  c h 3

213 3.55

As above 247 4.12
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butyl phenol is a radical trap or radical quencher and TEMPO free radical exists as a stable free 

radical, and can thus act as a very efficient radical trap or quencher.

There was little effect on rates o f photo fading with the addition o f DABCO to degassed 

methanol solutions o f [XX] This is perhaps unsurprising, as DABCO is principally a singlet 

oxygen quencher and would therefore not be expected to have much effect on fading rates in the 

absence o f oxygen.

There is a slight reduction in the rate o f fading, indicating that DABCO may also act in some 

quenching capacity.

The structure o f 2-6-di-tert-butyl phenol has a delocalised system substituted by electron 

withdrawing substituents, which enables it to exist as a relatively stable free radical in 

comparison to other radical species. Thus 2-6-di-tert-butyl phenol may interact with an unstable 

radical species and the free radical may transfer from this species onto the 2-6-di-tert-butyl 

phenol. In this 2-6-di-tert-butyl phenol therefore acts as a radical trap or quencher. Di-tertiary 

butyl phenol has a retarding effect on the rate of photofading o f a methanol solution o f [IX] in 

the presence o f acetone. This could be due to its behaviour as a radical trap whereby, it may 

interact with a radical formed from the acetone sensitizer and thus prevent the acetone radical 

species from interacting with the dye, or alternatively, it may trap a radical species o f the dye and 

inhibit degradation o f the dye. The photoreaction is slowed substantially by the presence o f 2-6- 

di-tert-butyl phenol. Hexachlorobenzene also had a minor effect on the rate o f fading o f the 

sensitized dye solution. The half-life o f the dye was only marginally longer (x mins) in the 

presence of hexachlorobenzene than when no hexachlorobenzene is present (y mins).

Different concentrations o f TEMPO were used in degassed solutions o f [TV] and [IX]. After 

degassing the solutions, 10 pi of acetone was added to the solution to act as a sensitizer for the 

reaction. The effect on the rate o f fading is dramatic, with the rate o f the sensitised photoreaction 

being retarded by almost five hundred times. The rate o f fading o f the sensitized photoreaction in 

the presence o f TEMPO is only slightly faster than the unsensitized reaction in the presence o f 

TEMPO. Both photoreactions involving TEMPO have a slightly longer half-life than the 

unsensitized reaction with no TEMPO present. TEMPO has a similar retarding effect on the 

sensitized photoreactions o f some o f the other dyes and the results are summarized in Table 2.24. 

The structure o f TEMPO free radical is shown in Table 2.23. TEMPO is a stable free radical at 

room temperature and might therefore be expected to trap any radicals formed in the 

photoreaction.
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Table 2.24 The half-lives for the TEMPO quenched acetone sensitized photoreaction of [IV], 

[IX] and ]XV]

Dye Concentration of 

acetone / mol dm'3

Concentration of 

TEMPO / mol dm'3

Half-life / h

[IV] 0.0034 0.1 0.83

[IX] 0 0.1 3.55

[IX] 0.0034 0.1 0.65

[XV] 0.0034 0.1 0.40

The half-lives of all the dyes tested were greatly increased by the presence of TEMPO in the 

sensitized photoreaction and stabilized to the same order o f magnitude. The concentration of 

TEMPO in solution is critical, the greater the concentration, the longer the lifetime of the dye in 

solution. The fading profile of [IX] in a methanol solution containing TEMPO and acetone are 

shown in Figure 2.52.
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Figure 2.52 The changes in the spectrum of [IX], in the presence of acetone sensitizer and 

TEMPO quencher in methanol solution under anaerobic conditions, on irradiation.
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It is interesting to note the changes in the spectra of the dye system in these reactions. The 

changes in the absorbance at A^axof [1X| in methanol and in the presence o f acetone and 0.1 mol 

dm"3 TEMPO (Figure 2.53), show the initial rate of fading o f the solution is very slow, but at an 

irradiation time of between 30 minutes and 50 minutes, there is a rapid increase in the rate of 

fading. Also shown in Figure 2.53, are the changes in the absorbance at ^max of a methanol 

solution of 0.1 g of TEMPO only. From Figure 2.52 and Figure 2.53 there appears to be a 

relationship between the length of the slow induction period and the quantity of TEMPO present 

in solution. The rate of fading of the dye seems to be similar to the rate of fading of TEMPO 

itself. This suggests that fading proceeds slowly while TEMPO is present, but increases, as 

TEMPO is used up

■♦— 11X1 +  TEMPO  

♦ — TEMPO

0.5

0 0.5 2.5 3 3.51.5 2 4 4.5

T ime/h

Figure 2.53 The changes in the absorbance of [IXJ in a methanol solution in the presence of 10 

ul acetone and 0.1 mol dm'3 TEMPO, and the changes in the absorbance o f TEMPO in methanol 

solution at their respective Xmax values.

This rapid increase in the fading rate corresponds to the complete degradation of the TEMPO 

free radical. After the TEMPO is consumed or destroyed, the fading reaction proceeds at a 

relatively fast rate. Thus the rapid increase in the rate of photofading is almost certainly due to 

the degradation of TEMPO itself under the photo fading conditions.

The 2'-nitro substituted dye [IV] also exhibits an inhibition of fading when TEMPO is present, 

though rather than an initial slow period of fading, there is a gradual and constant retardation of
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the fading rate. This rate of fading is much slower (ca. 70 times) than when no TEMPO is 

present. The photofading profile of the TEMPO quenched and acetone-sensitized photoreaction 

of [IV] is shown in Figure 2.54.
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Figure 2.54 The changes in the spectrum of [IV], in the presence of acetone sensitizer and 

TEMPO quencher in methanol solution, on irradiation
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Photofading of dyes on substrates

All o f the experiments discussed so far have centered on the photoreactions o f dyes in solution. 

Many of these experiments were conducted in methanol, which was chosen as a mimic system 

for the photofading behaviour o f dyes on paper. The following experiments involve dyes on 

substrates, including paper and some other substrates intended to mimic paper.

The first o f these experiments involved [IX], with the substrates standard printing paper and 

filter paper. Samples were prepared by dipping the substrate in to a methanolic solution o f the 

dye. This method produced a poor take up o f the dye from the solution, and the paper was only 

weakly coloured. To enhance the color o f the paper, these samples were dried and a strong 

methanolic solution o f the dye was dripped onto them. The samples were spun simultaneously, to 

try and provide a more even distribution of the dye and also to speed up the evaporation o f the 

solvent. The uptake of the dye however was still limited. The dyes have poor solubility in water, 

and since cellulose is a polymer with multiple hydroxy groups, it is not surprising that the 

adhesion of the dye to the cellulose substrate (paper) is poor. Indeed the dye does not interact at 

all with microcrystalline cellulose. This is presumably the reason for the poor uptake of the dye 

by the paper substrate.

Two types o f paper were used, a standard white printing paper, and filter paper. These two 

different types o f paper were used to examine how the substrate might affect the fading 

behaviour of the dye. For example, the dye may penetrate the different papers to different 

degrees, or may chemically or physically bond with some papers. Other important factors, when 

considering the photofading behaviour on substrates, include the ability o f oxygen to diffuse into 

the substrate and hence interact with the dye, and also any additives in the paper, which may 

interact with the dye.

It is not possible to record the UV/visible absorption spectra o f dyes on an opaque substrate such 

as paper. Therefore, these spectra were recorded using the diffuse reflectance technique. This 

technique has the advantage o f being able to record the spectra o f dyes on opaque substrates. The 

spectrum is produced as light of various wavelengths is directed at the sample. Some of this light 

is then reflected, but at certain wavelengths, some light will have been absorbed by the dye. 

There are 2 parallel sample slots in the difluse reflectance apparatus, one for the sample and one 

for the reference, which in this case is un-dyed paper. The fading profile o f [IX] on paper is 

shown in Figure 2.55.
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Figure 2.55 The changes in the diffuse reflectance spectrum of dye [IX] on paper with 

irradiation time.

Figure 2.55 shows that the uptake of the dye on the paper is poor, resulting in the paper being 

faintly coloured with a weak absorption spectrum. The dye can still be seen to degrade quite 

slowly on the paper up to a time of 4 hours, after which most of the colour has disappeared and 

further fading is slow. The fading profile of [IX] on filter paper, displayed in Figure 2.56, shows 

similar photofading behaviour, with fading becoming slower with increasing irradiation time.
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Figure 2.56 The changes in the diffuse reflectance spectrum of [IX] on filter paper, with 

irradiation time.

These spectra are not as clear or informative as UV/visible spectra, as the spectrum is low 

resolution and it is difficult to detect any possible fading products that are produced. It was thus 

decided to try to find a substrate, which was similar to cellulose, but was also transparent. 

Experiments on ink-jet transparencies films, could be followed using UV/Visible absorption 

spectroscopy as they transmit light above 300 nm . A 10mm by 20mm piece of the film was 

coated with a concentrated solution of [IX]. This gave a reasonably good absorption spectrum 

and the photo-degradation of the dye on the film, with time can be easily followed. Below 

300nm the film absorbs strongly, therefore this part o f the spectrum is not shown. One of the 

reasons that the ink-jet transparent film was used, was that the photofading profile of a 

commercial magenta dye used in ink-jet printing, could be compared with that of [IX] (Figure
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2.57). The magenta ink-jet dye was from the coloured ink used in the Hewlet-Packard Desk-jet 

840 ink cartridge, and was printed directly onto the ink-jet transparency film.
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Figure 2.57 Photo-degradation of Hewlet Packard magenta ink jet dye and [IX] on ink-jet 

transparency film.

The initial loss of colour is quite fast resulting in a change in absorbance from 1.95 to 1.02 at 

^max = 567 nm after 20 minutes irradiation for the HP-magenta dye. This equates to a 48% loss in 

absorbance. After 20 minutes, fading is much slower. For the same time period, [IX] undergoes a 

change in absorbance from 0.83 to 0.38 at Xmax = 513 nm on irradiation, which is a 55% loss of 

absorbance. The rates of fading of the magenta ink jet dye and [IX] on ink-jet transparencies are 

similar with the HP-magenta dye slightly more lightfast than [IX] under these conditions. Note 

that while the magenta dye does not undergo any shifts in its absorption spectrum to shorter 

wavelength on irradiation, the absorption band of [IX] undergoes a bathochromic shift. This 

means that though [IX] loses intensity of colour at its Xmax, some colour is still present, but at 

shorter wavelengths.

One side of the ink-jet film is coated with a hydrophilic surface treatment, to which the magenta

ink-jet dye preferentially adheres to, as the dye does not adhere well to the film itself. However

dye [IX] does not adhere preferentially to the surface treatment, but forms an evenly distributed
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coloured covering o f  the film. This difference in the adhesion to the substrate o f  the two dyes is 

elucidated further on irradiation o f  the films. Photofading o f  the HP-magenta dye leaves tiny dots 

o f  magenta colour surrounded by much less intensely coloured regions ((2a) Figure 2.58). In 

contrast, the region o f  [IX]-coated film that has been exposed to irradiation is evenly distributed 

with a yellow/brown colour ((la) Figure 2.58), which is less intense than the original red colour 

o f  the unfaded dye ((lb ) Figure 2.58). N o densely coloured regions or dots are seen for the faded 

|IX | film. This suggests that the two dyes interact quite differently with the film with the HP- 

magenta dye probably aggregating at the sites where the surface treatment is concentrated. The 

initial relatively fast fading o f  the HP-magenta dyed film is probably due to the fading o f  the dye 

at sites o f  lower aggregation. The dye remaining at sites o f  higher aggregation fades more 

slowly. [IX] does not tend to aggregate, and thus fading is more even.

(la ) ' ( lb ) (2a) (2b) (2c)

Figure 2.58 Examples o f  dyed ink-jet transparency film. Samples ( la )  and ( lb )  a show the film 

coated with dye [IX[ which have been faded and unfaded respectively. Samples (2a) and (2b) 

show the film printed with the HP-magenta ink-jet dye which have also been faded and unfaded 

respectively. Sample (2c) shows the unfaded HP-magenta ink-jet dye printed onto paper.

When the samples are irradiated through a glass filter, there is a noticeable difference in the 

photofading rates. The fading profiles o f  the magenta ink-jet dye and [IX], irradiated through a 

glass filter are shown in Figure 2.59 and Figure 2.60 respectively. The rates o f  fading o f  both 

dyes through a glass filters and with no filter present are given in Table 2.25.
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Figure 2.59 Photofading profile of magenta ink-jet dye printed onto an ink-jet transparency and 

irradiated through a glass filter.
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Figure 2.60 Photofading profile of [IX] on an ink-jet transparency and irradiated through a glass 

filter.
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Table 2.25 Rates of fading of HP-magenta and [IX] on ink jet film with and without a glass 

filter.

Dye Filter Rate constant k % Absorbance loss after 20 mins

HP-magenta None -1.58 48

[IX] None -1.36 55

HP-magenta Glass slide -0.65 4

[IX] Glass slide -0.23 17

When the dyed films are irradiated through a glass slide filter, the rate o f fading o f the magenta 

ink jet dye is approximately 3 times faster than for [IX] is present. These ink-jet transparency 

films are quite good models for paper substrates, and the photofading reaction can be clearly 

monitored. The nature of the film is not known but it may be manufactured from cellulose 

acetate and consequently it may be chemically different to paper, especially if it contains 

carbonyl groups which may act as sensitizers.

Ethyl cellulose was therefore used as another model substrate substitute system for paper. Ethyl 

cellulose is a crystalline white powder, which is soluble in a toluene/methanol mixed solvent 

system. When 0.5g of ethyl cellulose is dissolved in 5ml o f 80:20 ratio o f toluene: methanol 

solution, a clear viscous solution is formed. O.lg o f [IX} can then be dissolved in this solution 

and the resulting coloured viscous solution can then be used to coat one side o f a quartz 

spectrophotometer cell. A quartz cell was used so that the whole UV/visible spectrum could be 

observed. When the solvent has evaporated, a thin transparent film coloured with the azo dye is 

left attached to the quartz cell. The changes in the spectrum o f the dyed film on irradiation can be 

seen for [TV] in Figure 2.61.
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Figure 2.61 Fading profile of [IV] in an ethyl cellulose film.

The photo-fading rate constants of [IV] and [IX[ ethyl cellulose films are -0.61 and —0.31 

respectively corresponding to half-lives of 0.86 hours and 1.77 hours, which are comparable to 

the half-lives of [IV[ and [IX] in methanol.
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Experimental 

Photofading reactions

Large scale photofading reactions were carried out using a 250 W Hanovia high pressure quartz 

mercury vapour immersion lamp. The arrangement o f this apparatus is given in Figure 3 .1.

Nitrogen i n - )  

Water n r ) ' - )  Water out

Stirrer

Figure 3.1 Hanovia high pressure mercury lamp and reactor vessel set up.

The lamp is inserted into an inner quartz jacket around which is placed an outer quartz jacket. 

This unit is then surrounded by a pyrex glass tube with a ground glass joint to form a sealed air 

tight unit. A methanolic solution of the dyes is placed in this air tight pocket so it surrounds the 

lamp. The brightest part o f the lamp then irradiates the dye solution. The lamp produces a lot of 

heat energy and the apparatus must be cooled by a constant supply o f tap water to prevent the 

methanol dye solution from boiling. The tube containing the dye solution is thus surrounded by 

another glass tube through which the water can flow constantly. The dye solution can be 

degassed with nitrogen first, or may alternatively be continuously degassed. Similarly, if 

oxygenated conditions are required, the solution can be initially or continuously oxygenated by 

bubbling through with oxygen.

The power of the mercury lamp was 250 W and the photon flux was reported by Hanovia to be 

4.18 x 101X photon s '1 cm '1 at 0.5 cm distance from the lamp. The distribution output of radiation 

per 100 W for the mercury lamp at different wavelengths is shown in Figure 3 .2.
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1 . 6

Wavelength (nm)

Figure 3.2 Absolute output of a high pressure mercury lamp at different wavelengths, for each 

100 W of power.

_ • 3 j  3
Dye solutions of concentration 2.5 x 10' mol dm' contained in the reactor vessel were irradiated 

until the colour of the solution had essentially disappeared.

Concentration of photo-fading products

The colourless solution formed after irradiation was then concentrated by evacuating off most of 

the excess solvent, leaving a concentrated brown mixture of photo-fading products. This 

concentrated mixture was then analysed using high performance liquid chromatography (see 

below).

Xenon arc lamp (1000W)
• S T *Methanolic dye solutions of concentration 5 x 10' mol dm' were irradiated in a quartz 

spectrophotometer cuvette by a xenon arc lamp, under degassed conditions, as in the kinetic 

experiments previously discussed (See chapter 2). Photo-faded solutions were analysed using 

HPLC and mass spectrometry

High performance liquid chrom atography (HPLC)

Initial HPLC separations were carried out on a Milton Roy LDC Constametric model III pump 

with a a spectromonitor variable wavelength detector set at 450nm or 254nm for single
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wavelength monitoring. Separations were carried out on a reverse phase APEXII ODS 5 pm 150 

x 4.6mm column. The mobile phase was 40% water / 60% acetonitrile at a flow rate of 1ml min'1 

HPLC grade solvents from Fisher scientific were used.

Separations were also carried out at Zeneca Specialities on a Hewlet Packard, (Bracknell, 

Berks.,UK) 1100 autosampler and pumping system, connected to an Applied biosystems 757 

Absorbance detector and a HP3396 Series II Integrator. The same ODS column was used. The 

solvent composition was acetonitrile/water run on a gradient from 10/90 to 90/10 at a flow rate 

o f lml min'1 and injection volume of 2pl. The absorbance detector was set to detect at 254 and 

450nm.

Further HPLC analysis was carried out by Louise Perry1 on a Hewlet Packard 1100 autosampler 

and pumping system with an ODS2-Ik.5-23956, 150 x 4.6mm column from Capital HPLC Ltd. 

A gradient elution method was developed using acetonitrile and a lOmM solution of ammonium 

acetate in water at a flow rate o f lml/min. The ammonium acetate buffer was added to aid 

ionization in the mass spectrometer. Injection volumes o f 20pl were used. The detection 

wavelength was at 254nm.

HPLC separations and analysis o f peaks in the chromatogram were also performed by Massood 

Yousef 2on a Hewlet Packard 1100 autosampler and pumping system with a LUNA C l8 (2) 3|nm 

100 x 4.6mm column. A gradient elution method was again developed, using acetonitrile and a 

lOmM solution o f ammonium acetate in water at a flow rate o f lml/min. Sample injections of 

20pl were performed. The detector used was a diode array detector (DAD) and detection 

wavelengths were set at 254, 350 and 450nm.

Mass Spectrometry

To identify some of the separated component peaks in the HPLC chromatogram, a mass 

spectrometer was interfaced with the HPLC instrument to analyse the masses o f components of 

the mixture separated by HPLC.

LC-MS work was carried out at Zeneca using a Hewlett Packard 1050 HPLC system with 

autosampler and online degasser connected to a SCIEX API-3 triple quadrupole mass 

spectrometer. The quadrupole mass spectrometer is capable o f multiple fragmentation o f ions i.e. 

a component o f the mixture may be ionised and this M+H+ ion may then itself be fragmented to 

give a fragment ion pattern.

Data analysis o f mass spectrometry data was carried out on an Apple Macintosh Quadra 900

computer for data acquisition using “Tune” software for single runs and “RAD” software for an
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automated series o f runs. Data processing was carried out on an Apple Macintosh Quadra 700 

computer using the software package MacSpec 3.1

Mass spectrometry analysis o f photo-degradation products was performed by Louise Perry1 was 

performed on a Brucker Esquire LC ion trap. Infusion was performed using a Cole Palmer 74900 

series syringe pump and a Hamilton-Microfilter (Nevada USA) 250jli1 syringe with a 2.3mm 

diameter.

Mass spectrometry was also performed by Masood Yousef2 using a LCQ Ion Trap instrument 

with an electrospray source in positive ionisation mode.

Samples for accurate mass measurements were submitted to the EPSRC mass spectrometry 

centre in Swansea. Accurate mass spectra were performed on a Finnigan MAT 900XLT double 

focusing magnetic sector trap.

Introduction to mass spectrometry

HPLC is capable o f detecting these dyes at concentrations o f 5 x 1CT6 mol dm'3. Concentrations 

o f  5 x 10"6 mol dm'3 were used for mass spectrometry, thus concentrations o f products detected 

by HPLC are within the detection range o f the mass spectrometer. A mass spectrometer consists 

o f three main components; a sample inlet, a mass analyser and a detector.

Ions generated by an electrospray interface enter through a slit, and are separated according to 

their mass to charge ratio in the mass analyser, which in this case was an ion trap. The ions are 

then released into an ion detector which generates the mass spectrum. An electrospray interface 

was used to generate the ions, as it is a relatively gentle technique for fragmentation. This is 

important, to avoid confusion of mass peaks produced by fragmentation with mass peaks for 

actual fading products.

The sample is introduced into the electrospray chamber as fine droplets. The electrostatic field in 

the chamber causes ions o f opposite polarity to the electric field to move to the surface o f the 

droplet, creating a fine mist o f charged droplets. The solvent in the droplet evaporates as heated 

drying gas passes through the chamber. This causes a reduction in the size o f the droplet and the 

charges at the surface of the droplet are forced closer together. Strong repulsive Coulombic 

forces cause the droplet to explode, producing more smaller charged droplets. Further 

evaporation of solvent from these droplets takes place until bare ions are emitted from the 

droplet.3

Acid solution (HA) is added to the samples in order to create positive ions by protonating the 

sample as shown in Equation 3-1.
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M + H A o  [M+H]+ + A Equation 3-1

The sample molecule is represented by M. Basic molecules have a greater affinity for protons 

and are therefore suited to positive ion analysis. The positive ions then pass into the ion trap, 

where they may be fragmented.

H igh perform ance liquid chrom atography (HPLC)

It is possible that some o f the products of the fading reaction are non volatile and may therefore 

go undetected by GC analysis. On this basis, HPLC was chosen as a method for the separation 

and detection o f photo-products. Both visible and ultraviolet absorbance detectors were used, as 

the original dye absorbs in the visible region, but some o f the photo-products were thought to 

contain aromatic residues which, may be detected by an ultraviolet detector.

Separations using HPLC are dependent on the degree o f interaction between molecules o f 

differing size or polarity and the column packing or stationary phase. In reverse phases HPLC, 

the mobile phase is usually more polar than the column packing, thus in general more polar 

compounds will elute faster than non-polar compounds since the non-polar compounds will have 

a greater affinity for the relatively non-polar column packing. The time taken for a component to 

pass through the column is called its retention time, tR. The other factor affecting the retention 

time of a component is its size. Generally, larger molecules have longer retention times. A 

mixture o f components can therefore be separated on the column so that its constituent 

components elute at different times. The separated components then pass through a detector -  

usually a UV or visible detector. The degree o f separation o f the components o f course will 

depend on the solvent system and the similarity o f the components in terms o f size and polarity 

as well as hydrogen bonding strength.

Initial HPLC analysis was performed on a Milton Roy (see HPLC experimental details) 

instrument with a reverse phase ODS column. The solvent system used for this work was a 

mixture o f acetonitrile and water. It was found after trying several solvent ratios that better 

separations were obtained with a 60% acetonitrile / 40% water system. As the fading reaction 

proceeded, a 10pl sample o f the solution was removed at time intervals and injected into the 

HPLC machine. Figure 3.3 shows the chromatograms o f [H] at the various time intervals during 

photofading. At time zero (t = 0 hours), the dye solution had not yet been irradiated, and the only 

species detected at 450 nm was dye [H] itself. This corresponds to the single large peak with
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retention time of 11.44 minutes on the HPLC chromatogram. There are no other species detected 

at this wavelength or at 254 nm, indicating that the dye was present in high purity.

As the fading reaction proceeds, the intensity o f the peak representing the dye begins to decrease 

and is accompanied by the appearance o f several new peaks. These are assumed to be product 

peaks of the photo reaction, formed from the breakdown o f the original dye under irradiation. As 

fading proceeds further, the intensity o f these product peaks increase and the original peak 

continues to decreases in size presumably as the dye degrades to form more o f the breakdown 

products.

As the photo reaction progresses the product peaks increase in size until they reach a maximum 

intensity at time tA after which these peaks also begin to decrease in size. The reason for this is 

thought to be due to the photodegradation o f the products initially produced and this is supported 

by the diminishing size o f these peaks and their eventual disappearance.

Identification of the fading products

As it is likely that the products initially formed from the breakdown o f the azo dyes also degrade 

upon further irradiation of the solution, it was necessary to abort fading after a time tA, where tA 

was the time at which enough of the original dye had photo-degraded to give sufficient amount 

of products, but before there is any substantial degradation of these initially formed products. 

Once the dye solutions had been faded for this optimum time, the photo-degraded solution was 

placed in a round bottomed flask to evacuate most o f the excess methanol solvent. The small 

amount of solution that remained contained concentrated fading products and the original dye.
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Analysis o f the concentrated fading products by HPLC

A 2.5 x 10'3 mol dm'3 solution of 4-[N,N di(P-hydroxyethyl)amino]-2-chloro-2'-nitro-4'- 

chloroazobenzene, [H], in methanol was degassed with nitrogen and irradiated for 18 hours until 

decolourised. A 2pi volume o f the concentrated photo-product solution was injected onto the 

column using a 60/40 ratio o f acetonitrile/water as the mobile phase. The chromatogram o f the 

concentrated solution of [H] faded under degassed conditions showed a large number o f peaks 

detected at 254 nm, in addition to the peak originating from the pure dye itself. The retention 

time o f [H] was found from its chromatogram, performed under the same HPLC conditions. 

Most o f the other components detected in the mixture had retention times which are shorter than 

the original dye. This implies that the species are either more polar, or more probably, smaller in 

size than the original dye molecule, as both these situations would result in shorter retention 

times.

Oxygenated conditions

A 2.5 x 10'3 mol dm'3 solution [H] in methanol was irradiated for 36 hours under oxygenated 

conditions until decolourised, by continuously bubbling oxygen through the solution. (It took 

twice as long for the colour o f this solution to fade than the corresponding degassed solution). 

The chromatogram for a 2pl injection of the concentrated mixture formed in this photoreaction 

also showed a number of photo-product peaks, though fewer than under anaerobic photo-fading 

conditions and with different retention times. This suggested that different products were formed 

under degassed and oxygenated conditions and that there may be different mechanisms 

associated with these two fading reactions.

Possible photo-products

Irick and Pacifici reported that some o f the products o f the anaerobic photo reaction o f azo dyes 

are anilines, formed from cleavage of the azo bridge of the parent azo dye.4,5’6,7,8 

Photo-products for the photo-oxidation reaction are said to include benzene derivatives from 

cleavage o f the donor C-N bond5 and possibly dealkylated derivatives o f the azo dyes9 (see 

Chapter 1 p65-69) for a detailed explanation and proposed mechanisms for these reactions). One 

of the two possible anilines that would be formed from photo-cleavage o f the N=N bond was 4- 

chloro-2-nitroaniline and irradiation o f dye 2 under anaerobic conditions might therefore, be 

expected to give this compound as one o f the fading products. This hypothesis was investigated
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by HPLC analysis o f 4-chloro-2-nitroaniline and also a photo-faded solution o f 4-chloro-2- 

nitroaniline, under the same conditions. The chromatogram o f  the solution o f [II] irradiated 

under oxygenated conditions contained a peak with the same retention time to that of 4-chloro-2- 

nitro aniline and two other peaks which had similar retention times to photo-products o f 4- 

chloro-2-nitroaniline. Peaks with these retention times were not clearly apparent in the solution 

o f [II] faded under anaerobic conditions. It is o f course possible that the other aniline component 

o f the azo dye may be present, but this was not available to test.

These results were inconclusive as the HPLC method used was inadequate for a meaningful 

comparison of retention times o f photo-products and further examination o f these products was 

necessary.

In order to identify these fading products, it would be helpful to separate them in order to 

examine them by NMR spectroscopy or mass spectrometry. Separations were attempted on a 

silica preparatory cartridge, but provided poor separation and many o f them failed to elute. A 

HPLC prep column enables a slightly improved separation, with 14 fractions collected. 

However, these fractions still contained a number of components. As the amount of each 

component was small and fractions were impure, it was not possible to study them by NMR or 

mass spectrometry. The next course o f action was thus to try to separate the products by HPLC 

and then analyse each component by mass spectrometry.

HPLC work was carried out at Zeneca laboratories on the same ODS column, but with a Hewlett 

Packard 1100 system. This instrument has the advantage of being able to perform gradient 

elution chromatography. The solvent gradient started at 10/90 acetonitrile/water and ended at 

90/10 acetonitrile/water after 30 minutes. The hp 1100 also has the capacity to detect 

components at several different wavelengths using a diode array detector, and can even produce 

a full UV/visible absorption spectrum of an isolated peak in the chromatogram.

Concentrated solutions o f photo-products that had been previously prepared at Swansea 

University were injected onto the column and detected at 254 and 480 nm detection wavelengths. 

The chromatograms o f solutions of [II] which had been irradiated under anaerobic conditions 

(Figure 3.4) and oxygenated conditions (Figure 3.5) show a peak from the dye itself at around 

18.3 minutes and another common peak at 14.8 minutes. There are however several peaks which 

are not common to both chromatograms.
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Figure 3.4 HPLC chromatogram o f a photo-degraded methanol solution o f [II] irradiated under 

anaerobic conditions for 18 hours.
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Figure 3.5 HPLC chromatogram of a photo-degraded methanol solution o f \H\ irradiated under 

oxygenated conditions for 18 hours.



Thie DAD detector allows the determination of a UV/V1S absorption spectrum ror peaxs m tne 

chiromatogram. Some of these spectra, at similar retention times to [II] were identical to that of 

the pure dye. However there were numerous other peaks that could not be identified from their 

spectra. Better separations were not obtainable at this point in time, but it was again clear that 

many of the species obtained under anaerobic and aerobic conditions are different, and that more 

photo-products are produced than are described in the literature.4"9

M ass Spectrometry

Mass spectrometry analysis was performed on photo-degradation products at the retention times 

o f  separated component peaks in the HPLC chromatogram. There was a short delay time 

between detection by the UV/visible detector and detection o f ions in the mass spectrometer and 

therefore, the retention times of the mass peaks in the total ion chromatogram were slightly 

longer than the retention times of the peaks in the HPLC chromatogram. Of the several peaks 

detected by HPLC of the solution o f photo-products from anaerobic irradiation o f [II] only those 

at 18.3 and 19.8 and 22.1 minutes, correspond to mass peaks in the total ion chromatogram (TIC) 

with similar retention times. Several o f the peaks in the LC chromatogram of the solution o f [II] 

faded under oxygenated conditions, have similar retention times to mass peaks in the TIC (see 

Table 3-1).

Table 3-1 Retention times of LC peaks and corresponding masses o f an irradiated oxygenated 

solution of [II].

Peak No. Retention Time/mins Masses (M+H)+

1 2.905 106, 178, 180

2 4.510 150, 170, 180

3 14.220 NA

4 15.865 NA

5 19.724 NA

6 22.424 399

7 23.750 355, 358

8 27.619 326, 328

An ion peak at a mass o f 399 (the mass of the protonated dye), was clearly detected in the TIC of 

the solution o f products from irradiation in the presence o f oxygen, together with some other
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relatively intense peaks, though the intensity o f these peaks was not necessarily related to the 

intensity o f the peaks in the LC chromatogram, the intensity of ion peaks o f course being 

dependent also on the degree of ionisation o f the molecule. Some o f the peaks in the LC 

chromatogram do not have any significant mass peaks associated with them. Mass peaks 

corresponding to the masses o f the nitro aniline products expected were not detected above 

background noise in the TIC. This raises the possibility that the anilines may not have ionised 

sufficiently to be detected by the mass spectrometer. Further studies are required to try and 

resolve these problems and uncertainties.

Detection of photo-products by UV/visible spectrophotometry

Conditions for the large scale photofading experiments conducted in the immersion lamp 

apparatus, could not be controlled precisely and there was also the possibility that some oxygen 

remained in solution despite attempts to degas solutions. It was also difficult to monitor the 

extent o f the photoreaction, without introducing oxygen into the system. Because o f these 

difficulties, further fading reactions were carried out in a 1cm path length quartz cuvette, 

irradiated by a xenon arc lamp, as in the kinetic experiments. The photo-fading was then 

monitored over time by UV/visible absorption spectrophotometry.

Changes in the absorption spectrum of 4-(N-P-hydroxyethyl, N-ethyl)amino]-4’-nitroazobenzene, 

[IX], with irradiation time under anaerobic conditions (Figure 3.6), show a relatively fast 

degradation of the main absorption peak at 482 nm, and a new “double absorption peak” at 412 

nm and 441 nm. Also shown in Figure 3.6 are the absorption spectra of 4-nitroaniline and 

nitrobenzene. These compounds are possible products o f the photo-reaction. Comparison o f 

spectrum of irradiated dye 9 with the spectra o f 4-nitroaniline and nitrobenzene, indicates that 

neither o f these compounds were present in the irradiated solution in significant quantities.
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Figure 3.6 Comparison o f the spectra of |IX] at time zero and after IV2  hours irradiation time 

with the spectra o f 4-nitroaniline and nitrobenzene.

Under oxygenated conditions there are no clearly visible absorption peaks from possible fading 

products. However, there is a slow decrease in the size of the long wavelength absorption band. 

This is in contrast to absorption spectra of [IX] under degassed conditions, and suggests the 

formation of different photo-products in each reaction.
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Figure 3.7 Changes in the spectrum o f  [IX] in oxygenated methanol solution with irradiation 

time.

Despite irradiation the oxygenated solution o f  [IX] remains coloured. In contrast, 2'-nitro 

substituted dyes, [IV|, [VI| and [VIII undergo complete loss o f  colour. This colour loss 

results from the complete degradation o f  species absorbing in the visible region o f  the spectrum, 

as can be seen in Figure 3.8, which also shows the absorption spectra o f  suspected photo­

products, 4-chloro-2-nitroaniline, 2-nitroaniline and nitrobenzene. The irradiated dye solution 

showed no absorptions at the absorption maxima wavelengths o f  these suspected photo-products.
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Figure 3.8 Comparison of (IV|, |V I| and |VII] fading products with 2-nitroaniline, 4-chloro-2- 

nitroaniline and nitrobenzene.

Following these interesting results, work was undertaken with Louise Perry' to try and identify 

some of the products of the photo-reduction and photo-oxidation reactions of the azo dyes using 

HPLC and mass spectrometry.
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Mass Spectrometry*

Initial experiments involved infusion of samples o f photo-faded solutions into the mass 

spectrometer where positive ion electrospray was performed.

The mass spectra of all dyes [I]-[IX] in solution in methanol were recorded. The mass spectrum 

of 2-methyl-4-[N~P-hydroxyethyl, N-ethyl)amino]-2'-nitro-4'-acetylazobenzene, [V], is shown in 

Figure 3.9. The peak with the highest intensity has mass 387.2. This corresponds to the 

protonated molecular ion o f [V], [M+H]+. The mass peaks at 218.9 and 159.0 are probably due to 

fragment ions of the original dye produced by breakdown o f the dye in the mass spectrometer. 

The peak at 413.3 was found to be characteristic of a well known phthalate. This peak was found 

in the mass spectra o f all o f the dyes and its intensity remains constant. Thus it has nothing to do 

with the azo dyes or their fading products and can be ignored.

MS/MS fragmentation o f the dyes was then performed in order to determine the fragmentation 

patterns for the dyes. Fragments are produced by collision o f the protonated dyes with helium 

gas present in the ion trap. The fragmentation pattern o f dye [V] is shown in Figure 3.10.

A b u n d .
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Figure 3.9 Full scan spectrum for [V] (1 ppm).10 

1’ Mass Spectrometry performed by Louise Perry. 1
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Figure 3.10 MS/MS Spectra for [V]. Isolation o f [M+H] = 387, and fragmentation amplitude o f

0.70. 1 0

MS/MS produced several fragment ion mass peaks which are listed in Table 3-2. The fragment 

ion peak with the highest intensity has a mass o f 310. This peak was isolated and fragmented. 

This technique is referred to as MS/MS/MS and the fragment ions o f peak 310 are also listed in 

Table 3-2.

Table 3-2 Fragments masses from fragmentation o f isolated ions 387 and 310.

Isolated ion M/z o f ions present

(Relative intensity)

387 339, 310, 282, 193, 177, 159, 148

310 310, 281,222, 147

MS/MS was performed on the [M+H]+ peak followed by MS/MS/MS on the most intense 

fragment for dyes [IJ-flX]. The fragment masses for these experiments are reported in Table 

3-3. The mass spectrometer is such a sensitive instrument that many low intensity peaks are 

observed just above the baseline. Note that only masses with intensities above a certain threshold 

are reported to avoid recording a vast number o f low intensity peaks.
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Table 3-3 MS/MS and MS/MS/MS fragment ion masses for dyes[I]-[IX].10

Dye Fragm ent ions 
isolated

Fragm entation
amplitude

m/z of ions present 
(relative abundance)

1 345 0.75 345. 208. 195. 193. 180. 151

208 0.55 208(4), 193(5)

195 0.52 195(100),193(49), 180(82), 166(12), 151(17).

180 0.53 180(78), 152(50), 151(100).

2 399 0.75 399. 381. 351. 322. 304. 278. 229. 184. 166

322 0.65 322(55), 278(100).

3 328 0.90 328. 299. 283. 268. 153. 135. 119. 103

283 0.57 283(84), 148(100), 120(94).

153 0.45 153(27), 121(48), 109(100).

4 315 0.75 315. 284. 267. 238. 194. 179. 134. 106

238 0.80 238(50), 210(93), 133(100), 105(19), 77(29).

267 0.70 267(49), 236(57), 222(90), 208(34).

179 0.57 179(80), 148(100), 135(28).

134 0.66 134(100), 106(53)

5 387 0.70 387. 339. 310. 282. 193. 177. 148

310 0.80 310(64), 281(100), 222(23), 147(22).

6 349 0.85 349. 318. 301. 272. 179. 134. 106

301 0.70 301(62), 207(78), 256(100), 242(31).

272 0.85 272(53), 244(100), 133(65), 111(31).

7 365 0.90 365. 347. 317. 288. 244. 229. 166

288 0.80 288(10), 244(100)

8 243 0.70 243. 226. 212. 197. 150. 122. 94

226 0.60 226(11), 120(100), 92(43).

9 315 0.80 315. 284. 270. 255. 165. 134. 106. 94

284 0.55 284(100), 255(87).

165 0.35 165(70), 134(100).

All of the dyes fragmented well under the electrospray conditions. Possible structures for the 

main fragment ion masses for each dye are suggested in Scheme 3-2. Structures corresponding 

to masses of fragment ions are likely to arise from cleavage of the C-N bond between the
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acceptor phenyl ring and the azo group, yielding a benzene derivative ana a uuucumum 

compound, which loses nitrogen to give an aniline derivative. Cleavage of the C-N bond between 

the donor phenyl ring and the azo group is also likely to occur. Many o f the dyes have fragment 

ion masses corresponding to loss of the nitro group and to cleavage at the alkyl amino groups.
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iviass spectrometry ana ivis/ivLa was next penormea on pnoto-iaaea aye solutions, ine  mass 

spectra o f the infused [V] solutions that had been photo-faded for 1 hour (Figure 3.11) and V/2  ( 

Figure 3.12) can be compared with the spectrum of the unfaded solution in Figure 3.9.

A b o u n d .

387100

80

40 '

14920

31,112.1 ,17,7

50 100 150 200 250 300 350 400 m /z

Figure 3.11: Infusion o f [V] faded for 1 hour.
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Figure 3.12: Infusion of [V] faded for 1 hour 30 minutes.
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A number o f ions are seen in the spectrum of the photo-faded solution that were not present in 

the spectrum of the original dye. These peaks also have different masses to the MS/MS fragment 

ions of [V] and it is therefore suggested, that these new peaks originate from fading products of 

the dye. It is o f course possible that some of these peaks are due to fragments o f the fading 

products themselves. In order to elucidate the structure o f some o f these ions, MS/MS was 

performed on each major peak of the infusion mass spectrum. It is also interesting to note the 

changes in the relative intensity o f the 387 and 355 peaks with irradiation time. As irradiation 

time proceeds, the intensity o f the [M+H]+ peak at 387 decreases while the intensity of the peak 

at 355 increases.

Other interesting examples are 4-(N-(3-hydroxyethyl, N-ethyl)amino]-2'-nitroazobenzene [IV] 

and 4-(N-p-hydroxyethyl, N-ethyl)amino]-4'-nitroazobenzene [IX], which have the same 

molecular formula, but differ with respect to the position o f the nitro substituent on the acceptor 

phenyl ring. The MS/MS spectrum of the unfaded [TV] solution in Figure 3.13 can be compared

A b u n d

100

4 0 0  m /zw--------------with the mass spectrum o f the photo-faded solution, shown in Figure 3.14.

Figure 3.13 MS/MS spectra for [IV]. Isolation of [M+H]+=315, and fragmentation amplitude o f

0.75.
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Figure 3.14 Infusion of [IV] faded for 1 hour.10

Even though [IV] and [IX] have the same molecular formula, the mass spectra o f both the 

unfaded and photo-faded solutions for each dye are quite different. The mass spectra for dye [IX] 

can be seen in Figure 3.15 and Figure 3.16. It is clear that the mass peaks observed in the 

spectrum of the infused photo-faded solution do not correspond to fragments o f the original dye. 

It is also interesting to note that the ions produced by fragmentation o f dyes [IV] and [IX] are not 

all the same, and ions that are present in the spectra of both dyes have different intensities. The 

photo-faded solutions of [IV] and [IX] also produce mass spectra containing different mass 

peaks.

A number of ions that appeared in the mass spectra o f all the dyes. These ions have 

masses 149, 244, 272, and 413 and their intensities remain constant with varying irradiation 

times. These ions are assigned as being contaminants present in the mass spectrometer and as 

such they will be overlooked in the consideration o f the dye photofading products. The masses o f 

ions suspected to be photo-products of the dyes are listed in Table 3-4.
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Figure 3.15 MS/MS spectra for [IX]. Isolation o f [M+H]+=315, and fragmentation amplitude o f 

0.80.10
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Figure 3.16 Infusion of [IX] faded for 2 hours 15 minutes.10
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Table 3-4 The masses of possible photo-products in the infusion mass spectra of dyes [1]-[IX].

Faded Dye [M+H]+ M/z value of possible fading products

1 345 329,315, 299,207, 178, 163

2 399 365, 333, 304, 289, 200, 119

3 328 288

4 315 283, 267, 238, 223, 179, 134

5 387 355,311,282, 177

6 349 317, 288, 257, 228, 165, 134, 119

7 365 351,336,317, 299

8 243 —

9 315 300, 285

Suggested structures

This infusion data gives us the masses o f possible photo-products present in the faded dye 

solutions. MS/MS spectra of these ions may also give us a clue as to the identity o f their 

structures. From the MS/MS fragment ion data, it is possible to suggest some likely structures for 

the photo-products. The main product mass peak initially observed for the thiol substituted dye, 

[I], was at 315, with 329 also prominent. Possible structures for these masses are:

(CjHaJaN-

(CaHskN-

Scheme 3-3 Possible structures for product mass peaks 329 and 315.

Possible structures for product mass peaks of pi]-[IX ], (Scheme 3-4)-(Scheme 3-6) are 

discussed below.
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Scheme 3-4 Possible structures o f photo-products of [H|.

The main product of [D] initially formed had a mass to charge ratio m/z of 333 corresponding to loss 

o f Cl and reduction o f the nitro group to NH2. These structures were consistent with MS-MS 

fragmentation patterns. The structures shown refer to photo-products in which the 2-chloro substituent 

has been removed. It is o f course possible that the 4'-chloro, and not the 2-chloro substituent, is 

removed and structures amended to include the 2-chloro group may be equally viable.

A reduction in mass o f 44, suggests the loss o f the C2H4OH group in [I1IJ, while a mass reduction of 

30 for [IX] is likely to correspond to a reduction of the nitro group to an amino group. This reduction
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Scheme 3-5 Possible structure o f photo-products of [ID].

h o c 2h4
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Scheme 3-6 Possible structure of photo-products of [IX],

Note that though fragmentation patterns had certain similarities for several dyes, such as loss of 

44 or 28, it was not possible to assign sensible structures, that were consistent with fragmentation 

patterns, for photo-products of all the dyes examined.

The information from infusion o f photo-products into the mass spectrometer, is insufficient to 

determine the relative quantity of photo-products produces, as the intensity o f the ion peaks is 

strongly dependent on the ease o f ionisation o f the species. Thus for example, a molecule that 

ionises well may have a peak of much higher intensity than a molecule that does not ionize as 

readily, even though the concentration o f the easily ionised species may actually be lower. It is 

also possible that peaks assigned as being photo-products may in fact be fragment ions o f the 

original dye, or indeed, fragments o f the photo-products themselves.

To assist in the determination o f the photo-products LC-MS was performed. The LC 

chromatograms o f photo-faded samples o f dyes [I]-[IX] (Figure 3.17 to Figure 3.24) showed 

numerous product peaks in addition to the peak for the original azo dye. Dyes [IX] and [I], 

which are substituted with a 4-nitro group, had one major product peak and a few much smaller 

peaks in the chromatograph at 254 nm detection wavelength. At these irradiation times, there 

was still a large amount o f the original dyes present, as the peaks at retention times 22.360 

minutes and 29.015 minutes, which correspond to [IX] and [I] respectively were still the largest 

peaks detected. Note that these peaks are detected at 254 nm where the original dyes absorb only 

weakly compared to their absorption in the visible region between 450 and 510 nm.
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22.360

4.454
16.591

2.292

4.840
12.889

19.60012.6288.840

Figure 3.17 LC chromatogram o f [IX] at detection wavelength 254 nm after 2 hours irradiation 

tim e.10

29.015

24.316

4.467
32.007

31.329*L-aA,
20.0902.432

Figure 3.18 LC chromatograph o f [I] at detection wavelength 254 nm after 20 minutes 

irradiation tim e.10
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The chromatographs of dyes [ID] and [V] show a significant degradation o f the original dye, as 

the peaks at 17.488 and 18.902 minutes, which correspond to the retention times o f dyes 3 and 5 

respectively, are greatly reduced in intensity. Figure 3.19 shows one large peak and a few smaller 

peaks, at shorter retention times than for dye [HI], which may be attributed to photo-products. 

[V] has two major product peaks a few of intermediate size, and a number o f smaller peaks 

present in its chromatograph (Figure 3.20).

.494

17.4884.489

7.587 12.813

Figure 3,19 LC chromatograph o f [IH| at detection wavelength 254 nm after 3 hours irradiation 

tim e.10
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16.967

1 3 .4 9 7

9 2 5 6 1 8 .9 0 2

4 .5 0 2
18.0952 .2 2 9

Figure 3.20 LC chromatograph of [V] at detection wavelength 254 nm after 1 hour 30 minutes 

irradiation tim e.10

The four dyes that contain a 2-nitro substituted acceptor phenyl ring show some similarities in 

their chromatographs. The original dye peaks were significantly degraded and there were 

between three and six major product peaks at slightly shorter retention times (between 0 and 6 

minutes shorter than the retention time of the original dye). In addition to these peaks, there were 

several much smaller peaks with retention times in the region o f 4 to 20 minutes.
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20.717
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2.190 22220
12.704

V 92 12.218 14-747 19.615
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Figure 3.21 LC chromatograph of [IV] at detection wavelength 254 nm after 2 hours irradiation 

time. 10

19.189

18.683

21.150

17.733

19.957
2.258 4.480

21.605oil
Figure 3.22 LC chromatograph o f [VI] at detection wavelength 254 nm after 1 hour 30 minutes 

irradiation time. 10
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Figure 3.23 LC chromatograph o f [VII] at detection wavelength 254 nm after 1 hour 15 minutes 

irradiation time. 10

21.200

19.097
2 0 3 4 1

18.420
2.176

14.8065.092
7.752 22.7344.379

8.803 12.691 14371

Figure 3.24 LC chromatograph o f [H| at detection wavelength 254 nm after 1 hour 30 minutes 

irradiation time. 10

Due to the low concentration o f the fading products, few o f the peaks in the LC chromatogram 

could be directly detected. Therefore, single ion monitoring (SIM) ions thought to be present in 

the solution was performed. This technique gives elution time o f the ion being monitored. An
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example of the SIM trace ions 315 and 285 for [IX] is shown in Figure 3.25.

Intens.-
x105

m /z 3 1 5

3-

2-

1-

0-
(3 5 10 15 20 25 Time [min]

Intens.
x10®

m/z 285

Time [min]20

Figure 3.25 Mass chromatograms o f m/z 315 and 285 for faded solution o f [IX] . 10

The elution time of the 315 ion was 22.5 minutes which was very close to the LC elution time. 

This peak is o f course the [M+H]+ molecular ion. The 285 ion had an elution time o f 16.6 

minutes which had the same elution time as the largest product peak in the LC chromatogram. It
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can therefore be concluded with some confidence that the main photoproduct ion had a mass of 

285. Unfortunately it was not possible to obtain SIM traces for all o f the dyes, or for all o f the 

ions of the dyes examined. Similar SIM analysis identified the masses for the main products of 

dyes [I], [II], [V] and [VI], Table 3-5 gives the masses o f the isolated fading products and the 

fragment ions o f these mass peaks obtained by MS/MS.

Table 3-5 MS/MS spectra o f suspected photo-products o f azo dyes [I], [II], [V] and [VI] and 

[IX] . 10

Dye Isolated fading 

product

Fragmentation

amplitude

M/z o f fragment ions (relative abundance)

m 315 0.70 315(100), 296(6), 

207(24), 195(81), 

120(19), 92(23)

271(20),

180(24),

268(21),

150(14),

[H] 333 0.73 333(77), 315(100), 

270(80), 257(16)

297(45), 287(40),

m 355 0.70 355(100), 337(67), 

295(65), 178(27), 

132(13), 117(5)

326(61),

160(38),

310(96),

145(11),

[VI] 317 0.70 317(82), 299(74), 288(71), 272(100), 

257(38), 221(12), 147(11), 132(7)

[IX] 285 0.75 285(89), 256(74), 240(34), 

133(62), 120(154), 92(100)

164(41),

Although LC-MS and MS/MS on selected ions give some idea o f possible structures for the 

photoproduct, this information is not sufficient to designate these structures as definite photo­

products. Confirmation o f molecular formulas is given by accurate mass spectra o f the main 

photoproduct peaks in the LC chromatogram. Accurate mass measurements produce a mass 

number which is accurate to four decimal places. Only a certain number o f molecular formulas 

correspond to the accurate mass and only a few of these can possibly be fading products. For 

example, accurate mass measurements on the main product peak o f [IX] yield an accurate mass 

of 285.1717. There are 10 possible molecular formulae that correspond to this mass o f which all 

hut one can be effectively ruled out.
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The molecular formula of the photo-product with mass 285.1717 is therefore formula 1, 

C16H21N4O which almost certainly corresponds to structure (3-4).

The accurate masses, and the most probable molecular formulae o f the main photo-product for 

each dye examined are given in Table 3-6. Probable structures corresponding to these formulas 

are also referred to in the table.

Table 3-6 Formulae from accurate mass data for the main photo-products o f dyes.

Dye Mass of Accurate Mass Molecular formula Molecular formula Probable

original dye of [P+H]+ of original dye of product structure

m 344.431 315.1629 C17H20N4O2S C17H23N4S (3-1)

[in 399.233 333.1105 C16H 16N3O4CI2 Ci3H2iCl2N50

C 13H20CIN3O5

C i 6H 18C 1 N 4 0 2

(3-2) or (3-3)

m 386.407 355.1769 C19H22N4O5 C19H23N403

[VI] 348.788 317.1165 C16H 17N4O3CI C15H 161N404

[IX] 314.343 285.1717 C16H 18N4O3 C16H21N402 (3-4)

Reduction in mass of 29 for m  Loss o f 2 oxygen atoms and gain o f three hydrogen atoms

SCB,

C2H5

C2H. _____

(3-1)

The mass o f the product o f [H| indicates a similar reduction o f the nitro group to an amino 

group, with an additional loss o f one o f the chlorine atoms, giving two structures possible for this 

mass, (3-2) or (3-3).

hoc2h4

hoc2h4 Y _ /  \ -Cl

H?N

(3-2)
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.Cl

/ \hoc2h4
 (' ')----- N

h2n 

(3-3)

The mass reduction for [V] is 31 -  loss o f 2 oxygen atoms. There are several possible sites for 

the loss o f these oxygen atoms including loss from the nitro group, from the ester group and from 

the alcohol group. Combinations o f loss o f oxygen from these sites are also possible. The 2 - 

nitro-4-chloro substituted dye, [VI], has its m/z reduced by 31, corresponding to a loss o f Cl and 

CH and addition o f oxygen.

Finally, [IX] loses 29 corresponding to the reduction o f the nitro group to an amino group.

HOC2H4 n

(3-4)

The structures o f many o f the photo-products o f azo dyes, detected by HPLC remain unresolved. 

This is either because no clear ion peak could be detected in the total ion chromatogram at 

retention times corresponding to peaks in the HPLC chromatogram or because not enough data 

was generated to suggest reasonable structures for ion mass peaks. Further LC-MS analysis on 

photo-products was carried out in collaboration with M. Yousef2 and is still in progress. This 

work focused on improved separation o f photo-products by HPLC and MS-MS analysis on ion 

peaks in the total ion chromatogram corresponding to peaks detected by HPLC. HPLC was 

performed at three detection wavelengths, 254nm, 350nm and 450nm.
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Figure 3.26 HPLC chromatograms of photo-products of [IV] under oxygenated conditions at 

detection wavelengths 254, 350 and 450nm.
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Figure 3.26 shows that several products are detected at 350nm and also at 450nm. The 

chromatogram at 254nm contains several broad peaks and it was difficult to distinguish photo­

degradation products from impurities present in the dye solution before irradiation. Mass 

spectrometry analysis was therefore restricted to peaks detected at 350nm and 450nm. Total ion 

chromatograms corresponding to retention times of some of these peaks are shown in Figure 

3.27.
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Figure 3.27 Total ion chromatograms of photo-products o f 4 faded under oxygenated conditions.
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MS-MS analysis was then performed on the ion peaks detected at retention times corresponding 

to HPLC peaks. From these results Table 3-7, it the structures in Scheme 3-7 were proposed for 

photo-products labeled A-H, in order o f their elution. Compounds B and C could not be detected 

in the mass spectrometer and MS/MS analysis was achieved only for compounds A, D, E and F 

o f which compound D is the original dye. From MS/MS fragment patterns, compounds D, E and 

F were assigned to the structures in Scheme 3-7.

Table 3-7 Retention times, masses and fragment masses o f photoproducts.

Compounds LC RT MS RT Parent ion %CE MS/MS Major 
(min) (min) Fragments

A 3.42 3.71 195 16.00 164, 147, 84

B 6.52 - - - -

C 7.75 - - - -

D 10.66 10.97 315 20.50 284, 269, 238, 
194, 179, 134

E 11.44 11.75 287 16.80 287, 179, 149
F 12.46 12.77 271 18.00 225, 209, 197, 

148, 135, 120
G 13.45 13.71 282 - -
H 13.76 14.04 356 - -

+H

h o c 2 h .

++H +HH
>H

0 2 N

Scheme 3-7 Probable structures for photo-products A-H.

Further investigations are required to confirm the structures of photo-degradation products and to 

assess product peaks observed in HPLC chromatography, which were not detected by mass 

spectrometry.

238



References

1 Louise Perry, Chemistry Dept., University of Wales, Swansea, U.K.

2 Masood Yousef, Chemistry dept. University of Wales Swansea, U.K.

3 J. V. Iribaine, B. A. Thompson, J. Chem. Phys., 64 (1976) 2237

4 G. Irick and J. C. Pacifici; Tetrahedron Lett., (1969) 1303

5 A. Albini, E. Fasani, S. Pietra, A. Sulpizio, J.Chem. Soc., Perkin Trans. 2., (1984) 1689.

6 A. Albini, E. Fasani and S. Pietra, J.Chem.Soc. Perkin Trans. 2., (1983) 1021.

7 S.Hashimoto, K. Kano, Bulletin o f the Chem. Soc. o f Japan, 45 (1972) 852.

8 N.S. Allen, Rev. Prog. Coloration., 17 (1987) 61-71.

9 J. Griffiths in uDevelopments in Polymer photochemistry ” ed. N. S. Allen, Applied Science, 

London, 1980, vol. 1 Chapter 6 .

10 Reproduced from Louise Perry, Mass spectral and separation techniques for the 

characterisation o f natural products and degradation products o f dyes, M. Phil. Thesis, (2000), 

University of Wales Swansea.

239



Chapter 4

Theoretical Studies 
on Azo Dyes

>1 ■>lerigtlLi'im



Chapter 4 Theoretical results

Theoretical work was performed on Silicon Graphics1 workstations, primarily using the molecular 

modeling package SYBYL2. Crystal Structures for the construction o f starting structures and for 

comparative purposes, were obtained from the Cambridge Structural Database (CSD) of 

crystallographic compounds,3 which contains details o f key bond lengths, angles and torsions of 

organic compounds.

M ethods of calculation

To calculate the spectroscopic properties o f the azo dyes described here reasonable theoretical 

geometric structures for each dye molecule were required initially. Geometry optimisation 

calculations were performed starting structures constructed by modifying existing crystal structures 

obtained from the CSD or from empirical structures. These involve iterative calculations with the 

variation of bond lengths and angles, to achieve a minimum energy structure. Each iterative cycle 

produces a point on a potential energy curve, and the minimum energy structure is reached when the 

gradient of this curve approaches zero. There is however a possibility that the energy minimum 

calculated is a local minimum, and not the lowest energy minimum corresponding to the most 

energetically stable structure. The energy and geometry o f the optimised structures depends on the 

starting structures, with dramatic deviations from the starting geometry unlikely. It is therefore 

important, when interpreting the results o f these calculations, to make sure that the energy minimum 

calculated is the lowest energy possible.

Geometry optimisations were carried out on all 19 dyes in the gas phase using both the AM I4 

(Austin Model 1) and PM35 (Parametric Method 3) semi empirical methods6 o f the MOP AC 937 

program, which is a semi-empirical molecular orbital package (see Introduction). Starting structures 

for geometry optimisations were constructed from crystal structures o f azo dyes obtained from the 

Cambridge Structural Database. These crystal structures were imported into SYBYL, and their 

structures modified to obtain structures for [I]-[IX]. For example the crystal structure BEDSEI3 4- 

N,N-diethylamino-2l,4'cyano-6,-bromoazobenzene (4.1), was adapted by deleting the Br and CN 

substituents and adding a 4-nitro substituent to obtain structure [X],
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NC

(4.1)

The other azobenzene dyes were constructed in a similar way. Unfortunately, there are no 

azothiophene crystallographic structures available on the Cambridge Structural Database, so the 

azothiophene dyes were created by replacing one o f the phenyl rings o f an azo dye with a thiophene 

ring. Full optimisations were performed using the keywords AMI or PM3 with the additional 

keywords PREC, NOLOG, NOINTER, EF, GEO-OK and XYZ. NOLOG and NOINTER prevent the 

printing o f the inter-atomic distances in the output file, the XYZ keyword forces the calculation to 

run in Cartesian co-ordinates, GEO-OK is a keyword overriding the inter-atomic distance checks and 

EF is an optimisation method. 88 Geometry optimizations were also performed on structures in which, 

the co-ordinates o f the heavy atoms (atoms other than hydrogen) were adjusted so that the 

azobenzene or azothiophene section o f the molecule was constrained to be planar. Both gas phase 

calculations and calculations incorporating solvent effects were performed. The latter used the 

dielectric continuum method COSMO9,10,11 (conductor-like screening model) incorporated in 

MOP AC 93. COSMO is a method which uses a dielectric field to imitate the effect o f the solvent on 

the molecule. The COSMO calculation is invoked by the keyword EPS = e, where e is the dielectric 

constant of the solvent being modeled. Thus each particular solvent is specified by inputting the value 

o f its dielectric constant into the calculation. For example if the solvent is methanol, then the 

keyword EPS = 32.7 is added to the input file for the calculation (32.7 being the dielectric constant o f 

methanol).

In addition to semi-empirical calculations, ab initio optimizations on dyes [I] -[IX] were 

carried out using the 3-21G basis set. Further ab initio calculations on selected dyes were performed 

using 4-31G, 4-31G* and 6-31G* basis sets to evaluate the differences in the geometry resulting from 

the use of different basis sets. Optimized AMI structures were used as the input geometries.

Calculations involving a 360° rotation of either the donor phenyl ring, the acceptor phenyl 

ring or the nitro group in the molecule were performed on ground state structures using the additional 

keywords: 1SCF STEP = 2 and POINT = 180. This specifies a single point calculation at every 2° 

step o f a 360° rotation.
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Spectroscopic calculations were carried out on ground state structures using multi-electron 

configuration interaction12 (MECI) and various levels o f configuration interaction specified by the 

keyword C.I. = n (see Chapter 5). The C.I. = n keyword, where n is an integer between 2 and 8, 

controls the number of orbitals treated in the calculation. For example, C.I. = 2 involves only two 

orbitals; the HOMO and the LUMO while C.I. = 4 involves four orbitals; the HOMO, HOMO-1, 

LUMO and the LUMO+1. The maximum C.I. that was possible was C.I. = 8 . Additional keywords 

used are 1SCF, VECTORS, SINGLET, ROOT = n and OPEN(2,2). The 1SCF keyword signifies a 

single point calculation, SINGLET specifies the multiplicity o f the state to be calculated, ROOT = n 

indicates the excited state i.e. ROOT =1 is the ground state and ROOT= 2 is the first excited state and 

OPEN(2,2) specifies two unpaired electrons in two unoccupied orbitals.

Analysis o f configuration interaction calculations was performed on the ground state o f the molecule 

using the supplementary keywords LET and LARGE. These keywords produce an output file which 

contains singlet and triplet states, the number o f which is specified by the level o f the C.I. calculation. 

For example, C.I. = 4 produces the 36 excited states from all possible from excitations involving the 

2 HOMO and 2 LUMO orbitals, whereas C.I. = 6 generates the first 400 possible excited states from 

transitions involving the 3 HOMO and 3 LUMO orbitals. These excited states are ordered in terms o f 

their energy relative to the ground state So.

An alternative CNDOVS method13 was also used to evaluate the spectroscopic properties. 

This method uses single excitation of electrons and a large number o f occupied and unoccupied 

orbitals, and has been specifically developed for dyes and pigments. The spectroscopic constant K  

was set at 0.65 or 0.58.

Full geometry optimisations o f the excited singlet states o f structures were performed using 

the same keywords as for ground state optimisations and the additional keywords SINGLET, ROOT 

= n  (where n is greater than 1) and OPEN(2,2). Optimisations o f triplet states were performed by 

replacing SINGLET by TRIPLET and using ROOT = n (where n is the nth triplet state). 

Configuration interaction treatment o f the excited states used the additional keywords MECI, 

VECTORS, C.I. = n and 1SCF. The distribution o f the two unpaired electrons in a molecule, in a 

triplet state calculation, can be specified using the keyword E S R

Geometry

The geometry of some similar donor-acceptor type azo dyes have been determined at various levels 

of theory in previous studies12. Crystal structural data on donor acceptor type azobenzenes (Table 

4.1) show these molecules to be essentially planar, with torsion angles between the aromatic rings
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and the -N=N- bond ranging from 1.2 to 4.8°. AMI calculations on 4-dimethylamino-4'- 

nitroazobenzene (4.2a) gave a non planar conformation, with the nitrophenyl ring twisted by 37.3° to 

the plane formed between the azo group and the donor phenyl ring. However, calculations where the 

heavy atoms of the dye were constrained to lie in the same plane, produced very similar heats o f 

formation to the twisted conformations.

The azo -N = N -, Ar-N(CH3)2 and Ar-N02  bond lengths o f (4.2a) were calculated to be 1.232, 1.396 

and 1.485 A respectively. Ab initio calculations by the same authors, using an extended basis set at 

the 3-21G level gave a planar structure, with a -N=N- bond length o f 1.244 A. In comparison, crystal 

structures of azobenzenes (4.2b-h) have -N=N-, bond lengths o f between 1.254 and 1.294 and an 

average of 1.273 A (refer to Table 4.1), which is considerably longer than in calculated structures. 

The average C-NR2 and C-NO2 bond lengths were 1.370 and 1.462 A respectively, which are shorter 

than in calculated structures.

/  r 3
\

R— (  \ — NL /  \
V -(

\  14-------- 13R. /
r 2

(4.2)

a  R = N(CH3)2; R i= N 0 2; R 2=R3=R4=R5= H

b  R = N(C2H5)2, R '=  CN; R2=Br, R3=R4=R5= H

c R = N(C2H5)2; R -  N 0 2; R2=Br; R3=CN; R4= H; R5= NHCOCH3

d  R = N(C2H;)2; R‘= S 0 2CH3; R2=C1; R4= NHCOCHj; R3= R3= H;

e R = N(C2H5)2j R‘= N 0 2; R2=Br; R3=CN; R4= H; R5= NHCOC2H5

f  R = N(C2H5)2; R‘= S 0 2CH3; R2=C1; R4= NHCOC2H5; R3= R5= H;

g R = N(CH3)2; R ‘= R2=R3=R4=H; R5= COOH

h  R = N(C2H5)2; R‘= N 0 2; R2=R3=R4=H; Rs= CH3

i R = N(C2H5)2; R‘= N 0 2; R2= CN; R3=R4=R5= H

j  R = N(C2H40H )2;R 2= N 0 2;R 1= R 3=R4=R5= H

Previous authors14 have also reported on AMI and PM3 calculations on the geometry o f the 

azothiophene, 4-[N,N-bis(2acetoxyethyl)amino]phenyl-l-azo-2'-(3',5-dinitrothiophene) [XVJ, which
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produced a twisted structure, where the thiophene ring is approximately orthogonal to the plane o f the 

phenylazo group for full optimisations. Calculations where the heavy atoms were constrained to lie in 

the same plane gave heats o f formation only slightly higher in energy than the twisted structures. The 

calculated -N=N- bond length (1.25 A) was longer than that for the azobenzene.

Ab initio calculations15 at the STO-3G level16 on the azothiophene dye 2-(2-acetamido-4- 

diethylaminophenylazo)-3’, 5-dinitrothiophene, gave a planar structure with an azo bond length o f 

1.291 A, which compares with 1.278 A in donor acceptor azobenzenes at the same level of 

calculation.12

Table 4.1 Experimental crystal structure data for donor-acceptor azobenzenes (4.2b-i)3.

Structure
CSD8

bond length/ A bond angles/ 

degrees

Torsion angles / degrees

R°n 7-n 8 c '-n r 2 c 12-n o 2 C4N N 8 N7N8Cy c 3c 4n 7n 8 n 7n 8c 9c 10 CNC C "CNC'C6

b BEDSEI 1.254 1.364 115.7 113.0 4.8 -2.6 -2.0 -6.7 5.3

c CEMSOCIO 1.281 1.353 1.472 114.2 114.0 -1.3 -1.2 3.3 3.2 6.5

d ACLMSA 1.278 1.373 117.6 112.6 0.5 -4.2 5.3 3.5 7.7

e BCNPPC10 1.294 1.354 1.464 114.6 113.3 1.3 5.7 -0.5 1.9 6.5

f MAAZCZ 1.276 1.375 118.9 111.9 0.0 8.0 11.8 12.8 4.8

g CEMSPB10 1.268 1.361 116.8 114.5 6.0 5.6 2.2 -3.9 9.3

h STRUCT01 1.260 1.415 1.446 113.0 1 1 1 .0 1.5 0.6 6.6 8.3 8.0

i STRUCT02 1.271 1.362 1.464 115.3 112.7 3.0 -1.5 -8.0 -8.5 5.4

a rm_

Averaged 1.273 1.370 1.462 115.8 112.9
. "b.

2.0 1.3 2.3 1.3

a The codenames for structures (4.2b-i) are taken from reference 3. bCarbon of the NR2 group relative to the donor phenyl 

ring.0 The R factor is a measure of the agreement between the structure as postulated relative to the diffractometer data as 

collected (as %).12 d Average data from structures (4.2b-i).

Geometry optimisations

Full geometry optimisations, and optimisations where some o f the heavy atoms were constrained to 

lie in the same plane were performed on [I] -[XIX] using the AMI method and on a selected number 

o f  dyes using the PM3 method. The atoms constrained to lie in the same plane, were the heavy atoms 

o f  both phenyl rings in the azobenzene dyes or the phenyl and thiophene rings in the azothiophene 

dyes, the amino nitrogen and in certain cases, the carbon or hydrogen atoms attached directly to the 

amino nitrogen. Constrained optimisations were performed, as full optimisations often produce 

structures in which the acceptor phenyl ring is twisted with respect to the phenyl azo plane, whereas

245



spectroscopic evidence suggests that in solution molecules are less twisted.12 This procedure was 

carried out by removing the optimisation flags for the z-coordinate o f atoms to be constrained to lie in 

the same plane, after first placing these atoms at a fixed z-coordinate 0.0. Only optimisations in the x 

and y directions are then permitted. Both rings are thus completely planar. The nature o f the 

constrained atoms will be specified in the discussion o f each dye.

Calculations were carried out in the gas phase and using the COSMO method to incorporate dielectric 

field effects. All 19 dyes were optimised with COSMO at dielectric 32.7 (the dielectric constant o f 

methanol) by specifying the keyword EPS = 32.7. In addition, [I]-[IX] have also been optimised 

using the dielectric constants o f the following solvents listed in Table 4.2.

Table 4.2 The dielectric constants (e) of solvents17 used in the calculations.

Solvent s Solvent s

Hexane 2 Acetone 20.7

Cyclohexane 2.1 Ethanol 24.6

Dioxan 2.2 Methanol 32.7

Chloroform 4.8 DMSO (dimethyl-sulphoxide) 46.7

THF (tetrahydrofiiran) 7.6 Ethylene carbonate 89.6

Pyridine 12.3 Formamide 111

These solvents were chosen to cover a large range o f dielectric constants so that the effect of 

increasing the dielectric constant o f the medium on the geometries, heats o f formation and transition 

energies of [I]-pX], could be assessed.

Structures [I]-[IX] were optimised at the ab initio level using the 3-21G basis set, and also the 4-31G 

and 6-31G basis set for [VIII]. The bond lengths, bond angles and torsion angles along with the heat 

o f formation and dipole moment for each dye, calculated by AMI, PM3 and ab initio methods, are 

reported in the following discussion and results for gas phase calculations and calculations including 

the solvent are also compared. The bond lengths, angles and torsions are reported along with the heat 

of formation and dipole moment, for each dye.

The simplest structure is [VI1IJ, which contains only an amino donor and nitro acceptor groups. The 

atom numbering system for [VlJLlJ is given in Figure 4.1, where hydrogen atoms are omitted for 

clarity. This convention has been adopted for all the azo dyes discussed in this work. The bond 

lengths, bond angles and torsions for each optimization method are reported in Table 4.3. Planar
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structures have all o f the heavy atoms, except for the N 16, O 17 and O18 atoms o f the nitro group, 

constrained to lie in the same plane. The hydrogen atoms o f the amino group, H 19 and H20 are also 

constrained to lie in the same plane in planar optimisations.

H19 03  0 4
\ /  \

N1 C2 C 5------N6 S 9 Cv °  01 7
/  \  /  \  /  \  /  

H20 c } 5 ------- c { 4  N 7-------0 8  C 1 1 - N 1 6

C 1 3 ------- C 12 0 1 8

Figure 4.1 Atom numbering convention for [V111J.

Table 4.3 Calculated structural dataa, heats of formation and dipole moments for [VlllJ optimised 

by the AMI and PM3 methods in the gas phase and solution (EPS=32.7) and by ab initio methods 

using the 3-21G and 6-31G basis sets.

AMI AMI/ AM1C AMI/ PM3b PM3/ PM3C PM3/ Ab-initio
COSMOb COSMO0 COSMOb COSMO0 3-21G 6-31G

Bond lengths
Nl-C2 1.372 1.358 1.386 1.389 1.393 1.369 1.423 1.425 1.365 1.364
c 2-c3 1.421 1.427 1.418 1.419 1.409 1.418 1.404 1.405
c 3-c4 1.383 1.379 1.384 1.383 1.383 1.378 1.386 1.386
c 4-c5 1.415 1.418 1.414 1.415 1.404 1.408 1.403 1.403
c 5-c14 1.411 1.145 1.411 1.412 1.402 1.406 1.401 1.401
C14-C15 1.384 1.380 1.385 1.384 1.384 1.378 1.386 1.386
c 2-c15 1.420 1.427 1.417 1.419 1.408 1.418 1.404 1.404
C5-N* 1.426 1.419 1.427 1.426 1.436 1.427 1.440 1.441 1.408 1.405
N^-N7 1.233 1.235 1.233 1.231 1.234 1.237 1.233 1.230 1.277 1.223
n 7-c8 1.438 1.436 1.438 1.439 1.449 1.449 1.449 1.451 1.419 1.419
C8-C9 1.410 1.410 1.409 1.401 1.399 1.399 1.399 1.398
c 9-c10 1.391 1.391 1.391 1.391 1.389 1.388 1.389 1.388
c^-c11 1.403 1.405 1.403 1.405 1.400 1.403 1.399 1.404
c n-c12 1.404 1.406 1.404 1.407 1.401 1.404 1.400 1.404
c 12-c13 1.389 1.389 1.389 1.389 1.388 1.387 1.388 1.388
c 13-c8 1.413 1.414 1.413 1.411 1.401 1.402 1.401 1.398
Cn -N16 1.486 1.475 1.486 1.475 1.496 1.469 1.497 1.469 1.446 1.456
n ,6-o 17 1.202 1.207 1.202 1.207 1.216 1.224 1.215 1.224 1.245 1.194
n 16-o 18 1.202 1.207 1.202 1.207 1.216 1.224 1.215 1.223
N'-H19 0.986 0.992 0.993 1.000 0.988 0.987 0.995 0.997
N'-H20 0.986 0.992 0.993 1.000 0.988 0.987 0.995 0.997
Bond Angle
h 19n 'c2 120.18 120.42 116.48 114.55 120.12 120.19 112.31 111.48
h2V c2 120.16 120.42 116.46 114.55 120.12 120.21 112.32 111.46
n 'c2c3 120.94 121.18 120.88 120.90 120.09 120.44 120.02 119.97
n !c2c 15 120.98 121.19 120.92 120.90 120.10 120.45 120.04 120.01
c 4c V 116.11 116.16 116.07 116.03 115.48 115.49 115.44 115.32
C ^ N 6 125.59 125.62 125.56 125.43 124.45 124.63 124.43 124.36
C ^ N 7 120.24 120.60 120.18 120.74 120.46 120.46 120.37 120.83 117.23 116.64
n 6n 7c8 119.22 119.50 119.26 118.85 119.36 119.36 119.48 118.93 115.46 114.93
n 7c8c9 125.42 125.32 125.40 122.55 124.62 124.62 124.56 119.39
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Table 4.3 (continued)

Bond angles
n 7c8c 13 115.66 115.54 115.65 117.56 115.28 115.28 115.29 119.43
C10CnN16 119.70 119.55 119.70 119.49 120.12 120.12 120.11 120.06
C12CnN16 119.65 119.49 119.64 119.46 120.09 120.09 120.07 120.08
c un 16o 17 118.99 120.08 118.98 120.08 119.50 119.50 119.46 121.11
CnN160 18 118.99 120.07 118.98 120.07 119.51 119.51 119.47 121.20
Torsional Angle
h 19n 'c2c3 0 0 20.9 26.1 0 0 29.1 30.3 0 0

0 0 -20.9 -25.5 0 0 -28.7 -29.9 0 0
C4C5n V 180 180 -180 -179.8 180 180 -179.7 -179.3 0 0
c 14c5n 6n 7 0 0 0 -0.1 0 0 0.3 0.5 0 0
n V ĉ c9 0 0 0.4 51.3 0 0 0.1 -92.5 0 0
n V cV 3 180 180 -179.7 -133.8 180 180 -180 92.9 0 0
C10ChN16O17 0 0 0 0.9 0 0 0 -15.6 0 0
C12CnN160 18 0 0 0 0.8 0 0 0 -15.4 0 0
c5n V c8 180 180 -180 -179.2 180 180 -179.9 180 0 0
AHfd 101.45 80.99 101.15 79.23 82.94 56.42 79.45 51.82 0 0

9.12 8.40 8.90 8.89 13.23 7.41 9.60 0 0
a Bond lengths in angstroms and angles in degrees. Structures with heavy atoms of the azobenzene moiety and hydrogen 

atoms 19 and 20 constrained to lie in the same plane. °Fully optimised structures. dAHf is the heat of formation in kcal 

mol'1. V  is the dipole moment in Debyes.

Consideration of the torsional angles shows that most o f the structures optimised by the different 

methods are essentially planar, with respect to the azobenzene moiety, even for those structures 

where the atoms were not constrained to lie in the z-plane. Exceptions to this generalisation are the 

AMI and PM3 structures in methanol, where the acceptor ring is twisted out of the plane by 51.3° 

and 92.5° respectively. The nitro group lies in the plane for the constrained planar structures, and in 

the twisted structures, the nitro group is coplanar with the acceptor phenyl ring in the AMI methanol 

optimised structure but twisted by ca. 15° to the acceptor phenyl ring in the case o f the PM3 

methanol structure. When the amino group is not constrained to lie in the plane, the hydrogen atoms 

o f the amino group have a torsional angle of between 20.9° and 30.3° to the plane. This implies that 

the amino nitrogen atom is sp3 in character, which is unlikely given that in crystal structures o f other 

donor acceptor systems containing an amino group, such as 4-nitroaniline (4.3), the amino group is 

essentially coplanar with the phenyl ring,3 indicating that the amino nitrogen has sp2 character. In 

contrast, where there is no strong electron acceptor group, as in 1,4-phenylenediamine3 (4.4) the 

amino hydrogen atom is twisted out of the plane o f the phenyl ring by 37.1° implying that the amino 

nitrogens are sp3 in character.
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The 3-21G ab-initio structure of [VllI] is almost planar, with all torsion angles in the azobenzene 

moiety less than 0.5°. The hydrogen’s of the amino group have a H ^ N ^ C 3 torsion angle o f 6° and 

are therefore have mainly sp2 character. This hybridization indicates greater conjugation between the 

amino nitrogen and the azobenzene 7t-system and may account for the shorter C-NH2 bond. The C5- 

N6, N7-C8 and Cn -N16 bonds are all shorter, while the N u - 0 17 bond is longer in the 3-21G structure 

than in AMI and PM3 structures. The 3-21G structure has slightly smaller C^-NVN7 and N ^N ^N 8 

bond angles than in AMI or PM3 structures. Optimisation at the 6-31G level produces a very similar 

geometry to the 3-21G structure with the exception o f a shorter N6-N7 bond length (1.223 A). From 

Table 4.3 it can be seen that many of the bond angles for the different optimization methods are 

similar. The bond lengths for the C-C bond in the benzene rings and internal angles o f the rings are 

very similar and are shown to change little for each dye and will not be reported for the other 

structures.

Effect of dielectric constant of the solvent on geometry

The effect of solvent on the geometry of the dye is quite small with only small differences between 

most of the bond lengths in the solvent and gas phase optimised structures. The most significant 

difference are for the N ^C2 bond in constrained planar structures (1.372 in the gas phase and 1.358 in 

methanol) and the Cn -N16 bond (1.486 in the gas phase and 1.472 in methanol). The AMI and PM3 

optimizations in methanol also produce structures in which the acceptor groups are twisted out o f the 

plane whereas gas phase optimizations give planar structures.

Optimisations at other dielectric constants produce bond lengths that are intermediate between the gas 

phase and methanol optimised structures. Only bond parameters for structures optimised in methanol 

are reported.

The molecular energies for each optimised structure, given at the bottom of Table 4.3 for dye [VJLQJ, 

cannot be used to compare the stability of structures produced by the different optimisation methods, 

but energies of fully optimized and constrained planar structures optimised by the same method can 

be compared. For example, AMI calculations predict that the freely optimised conformation o f dye 

[VlllJ is more stable by just 0.30 kcal mol' 1 in the gas phase than the optimised constrained structure, 

but in methanol the freely optimized structure is 1.76 kcal mol"1 more stable. PM3 calculations give
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the freely optimised structure to be 3.5 and 4.6 kcal mol'1 more stable than the constrained structure 

in the gas phase and methanol respectively. There are also differences in the calculated dipole 

moments o f the freely optimised and constrained structures.

Though the solvent has only a minor effect on the bond lengths, angles and torsions o f  the dye, it 

does however have a significant effect on the total heat o f  formation o f  the dye, and also on its dipole 

moment. For example solvent phase structures o f  dye [VIII] are stabilised by 20.45 (A M I) and 21.92  

kcal m of1 (PM3) with respect to gas phase structures. Dipole moments are 8.4 and 8.9 Debye for the 

constrained AMI gas phase and solvent phase structures respectively. The stabilisation o f  the 

molecular energies arises from the interaction o f  the solvent with the polar ground state o f  the dye. 

Polar solvents will stabilise the dye to a greater extent than non-polar solvents and thus the heat o f  

formation o f the dye will decrease with increasing solvent polarity. Figure 4.2 shows the effect o f  

increasing solvent dielectric on the heat o f  formation o f  4-(N-ethyl, N-|3-hydroxyethyl)-4'- 

nitroazobenzene, [IX]. As the dielectric constant increases, the heat o f  formation o f  [IX] decreases. 

These changes in the heat o f  formation are most pronounced at low dielectrics while dielectrics above 

32.7 produce only minor decreases the heat o f  formation. All o f  the other dyes examined exhibit 

similar behaviour to dye [IX].

50
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35 1

30

♦  Heat o f  formation

20 30 40 50 60 70

D i e i e c t i c  c o n s t a n t

80 90 100 110

Figure 4.2 Changes in theoretically predicted heats o f  formation o f  ground state o f  [IX] with 

increasing dielectric constant.
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Results of geometry optimisations

After the 4-amino-4'-nitroazobenzene [vm], the next most structurally simple dye is 4-N,N- 

diethylamino-4'nitroazobenzene [X], The structure and atom numbering system for [X] is given in 

Figure 4.4. Note that this numbering systems is used for all the 4-nitro substituted series o f dyes and 

hydrogen atoms are omitted for clarity, as before. This dye differs from [V111J only in the 

replacement the hydrogen atoms attached to the amino nitrogen in dye [VlJLIJ, by ethyl groups. 

However these ethyl groups do complicate the structure by increasing the number o f structural 

conformations for the dye. For example, the methyl groups P to the amino nitrogen can either both be 

above or below the plane of the azobenzene moiety or both below the plane, or alternatively, one 

methyl group can be above the plane and the other below the plane (see Figure 4.3)

r^ ch2

\ m2

'C H Z CH3

Figure 4.3 Possible conformations of the methyl group in diethyl amino azobenzene derivatives.

T conformations where the two methyl groups are above the plane is equivalent to that where the 

groups lie below the plane, with calculated heats o f formation o f 100.7 kcal mol'1. The heat of 

formation in the case where one methyl group is above and the other below the plane is 100.6 kcal 

mol'1. The difference between the heats o f formation is very small, and suggests that both 

conformations are viable. The conformation with the lowest heat o f formation has been used for 

subsequent calculations. The calculated bond lengths, bond angles and torsion angles for [X] along 

with the heats of formation and dipole moment o f each structure are shown in Table 4.4.

20C — C19 ^ 3  9 5

N1 C 2 C 5------ N 6  S 9  C\1°  0 1 7/  \  /  \  /  \  /
220-------021------------- C 15-------- C 14 N 7--------C11— N16

C 1 3------- C 12 0 1 8

Figure 4.4 The atom numbering system for [X], Planar structures have all o f the heavy atoms o f the 

azobenzene moiety and atoms N 1, C19 and C20, constrained to lie in the same plane.
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Table 4.4 Calculated structural dataa, heats of formation and dipole moments for [X] optimised by 

AMI method in the gas phase and solution (EPS=32.7).

AMlb AMI/
COSMOb

AMP AMI/
COSMO0

Parameter (EPS=32.7) (EPS=32.7)
Bond length
NJ-C2 1.386 1.377 1.386 1.379
c W 1.425 1.421 1.427 1.423
lSf-N7 1.233 1.234 1.232 1.232
n 7-c8 1.438 1.437 1.438 1.438
Ch-N16 1.486 1.475 1.485 1.475
n 16-o 17 1.202 1.207 1.202 1.207
Bond Angle
c 5n V 120.27 120.54 120.27 120.68
n V c8 119.16 119.49 118.83 118.87
Torsion Angle
c 19n ’c2c3 0 0 14.8 15.9
c ' V e ’c 15 0 0 15.6 4.7
C^CVTNT7 0 0 -4.9 -7.9
n 6n 7c8c9 0 0 -37.0 46.2
C^C^N^O17 0 0 -0.2 0.3
c5n 6n 7c8 0 0 179.0 -179.2

AH/ 100.62 82.60 99.97 81.48

pe
a ___ 1 i ___ ii. _ •

9.62 12.66 9.58
„ _____br

12.52

moiety and atoms N l, C19 and C21 constrained to lie in the same plane.0Fully optimised structures.d AH/is the heat of 

formation in kcal mol'1. e p is the dipole moment in Debyes.

Torsion angles in Table 4.4 show that the nitrophenyl ring o f AMI freely optimised structures is 

twisted out of the plane by 37° in the gas phase which is almost identical to the AMI structure o f 4- 

dimethylamino-4'-nitroazobenzene calculated by Charlton et al.12. In methanol, the twist o f the 

nitrophenyl ring of [X] is 46°. The nitro group also lies in the plane, as does the amino group for the 

constrained structures. In the unconstrained AMI structures however, the amino group had an 

approximate tetrahedral conformation also reported for 4-dimethylamino-4'-nitroazobenzene.12

The effect of solvent on the geometry o f the dye is quite small with only small differences 

between most of the bond lengths in the solvent and gas phase optimised structures. The most 

significant differences are for the N ^C 2, Cn -N16 and nitrogen-oxygen bonds o f the nitro group. 

Optimisations in the other solvents also show little change from the gas phase structure and only 

bond parameters for structures optimised in methanol will be reported in future.
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The final heats o f formation for each optimised structure by the same semi-empirical optimisation 

method show that the fully optimised conformation o f [X] is more stable than the optimised 

constrained structure (Table 4.4) by 0.65 kcal mol' 1 in the gas phase and by 1.12kcal mol' 1 in 

methanol.

The next dye calculated [IX] in the series of 4-nitro substituted aminoazobenzenes has an ethyl group 

and an (3-hydroxyethyl group attached to the donor amino nitrogen atom. The alkyl groups o f [IX] 

can again adopt several possible conformations. The methyl and hydroxymethyl components o f the 

alkyl groups can either both be above the plane o f the azobenzene moiety or both below the plane, or 

alternatively, the methyl component can be above the plane and the hydroxymethyl component below 

the plane. In addition, the presence of the hydroxy group, means that depending on which ethyl group 

contains the hydroxy group, there are two further possible structures for each o f the alkyl group 

conformations. As for dye 20, the differences in the heat o f  formation o f the 4-(N-P-hydroxy, N- 

ethyl)amino-4'-nitroazobenzene [IX] conformations is small, with the highest (AB) and lowest (AA) 

energy conformers separated by only 0.66 kcal mol*1 (Table 4.5).

Table 4.5 The Heats of Formation (AHf), for the possible conformations o f [IX]. Alkyl groups above 

the plane of the azobenzene moiety are denoted A, and below the plane are denoted B.

Ethyl group 

conformation

P-hydroxyethyl

group

conformation

Position of hydroxy 

group attachment

Heat of Formation AHf/ 

kcal mol'1

A A HOa -C20 55.31

A B h o 23-c20 55.%

B B ho23-c22 55.31

B A h o23-c22 55.93

The bond lengths, bond angles and torsions for each optimisation method are given in Table 4.6. As 

several conformations were calculated, the geometry with the lowest heat o f formation is reported.

Conformations

In the discussion which follows, where different conformations o f alkyl groups are possible, inter­

atomic distances, bonding angles and torsional angles, dipole moments (id, and heats o f formation 

produced by each optimisation method are reported for the lowest energy conformation calculated.
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Table 4.6 Calculated structural data, heats of formation and dipole moments [IX] optimised by AMI 

and PM3 methods in the gas phase and solution (EPS=32.7) and by ab initio methods using the 3- 

21Gbasis sets.*

Parameter AMlb AMI/
COSMOb

AMP AMI/
COSMOc

PM3 PM3/
COSMOb

PM3° PM3/ 3-21G 
COSMO0

Bond length
N1 -C2 1.386 1.382 1.396 1.393 1.417 1.409 1.433 1.438 1.376
C^N6 1.425 1.421 1.426 1.427 1.437 1.435 1.438 1.442 1.408
I^-N7 1.233 1.234 1.233 1.231 1.233 1.235 1.233 1.230 1.244
n 7-c8 1.438 1.437 1.438 1.439 1.449 1.450 1.449 1.451 1.424
Cn-N16 1.486 1.475 1.486 1.475 1.497 1.471 1.497 1.470 1.446
n ,6-o 17 1.202 1.207 1.202 1.207 1.216 1.223 1.215 1.223 1.245
n ,6-o 18 1.202 1.206 1.202 1.207 1.215 1.223 1.215 1.223 1.245
N,-C19 1.446 1.449 1.450 1.449 1.481 1.484 1.486 1.489 1.469
c,9-n 20 1.522 1.522 1.521 1.520 1.519 1.518 1.517 1.517 1.541
n !-c21 1.440 1.444 1.444 1.448 1.480 1.481 1.484 1.486 1.463
c2]-c22 1.538 1.536 1.537 1.534 1.539 1.537 1.538 1.538 1.530
c22-o23 1.417 1.416 1.418 1.416 1.400 1.405 1.409 1.406 1.441

Bond Angle
c^cV5 116.34 116.26 116.35 116.30 115.59 115.44 115.58 115.83 117.13
C14C5N* 125.80 125.80 125.76 125.45 124.58 124.67 124.56 123.90 124.58
C5! ^ 7 120.25 120.54 120.15 120.59 120.41 120.64 120.41 120.47 117.20
n 6n 7c8 119.18 119.49 119.26 118.87 119.41 119.45 119.41 118.94 115.50
n 7c8c9 125.41 125.26 125.42 122.86 124.60 124.48 124.57 120.46 124.07
N ^ C 13 115.68 115.56 115.64 117.30 115.29 115.21 115.30 118.39 115.95
C10CnN16 119.71 119.54 119.71 119.49 120.12 120.19 120.11 120.05 119.17
C12CnN16 119.65 119.49 119.64 119.45 120.08 120.16 120.08 120.05 119.15
cun I6o 17 119.00 120.08 118.99 120.08 119.48 121.12 119.47 121.15 117.57
CnN160 18 118.99 120.05 118.98 120.06 119.49 121.17 119.48 121.19 117.57

Torsional Angle
c 19n !c 2c3 0 0 13.7 -5.1 0 0 19.3 20.3 0.7
c ^ ’c 2̂ 5 0 0 -14.5 -29.5 0 0 -17.6 -18.6 -0.1
c4c5n 6n 7 180 180 180 171.1 180 180 -179.9 -179.9 179.9
ChC5N6N7 0 0 -0.2 -10.4 0 0 0.4 0.5 0.1
n 6n 7c8c9 0 0 1.3 47.1 0 0 -0.7 -0.7 -0.2
n *n 7c8c 13 180 180 -178.9 -137.7 180 180 179.4 179.3 179.8
C10CuN16O17 0 0 0 0.6 0 -19.1 0 0.1 0
C ^ 'N ^ O 18 0 0 0 0.5 0 -19.0 0.1 0 0
c5n 6n 7c8 180 180 -179.9 -179.6 180 180 -180 -179.9 180

ah/ 55.307 31.091 54.474 30.0259 28.474 -0.483 30.295 -3.109 NA

pe 8.688 8.474 8.196 9.938 7.455 9.62 7.25 8.517 NA

♦For key, see Table 4.4.
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Consideration of the torsion angles shows that all o f the structures optimised by the different methods 

are essentially planar, with respect to the azobenzene moiety, with the exception of the methanol 

optimised AMI structure. This structure has the donor and acceptor rings twisted by 10° and 47° 

respectively to the C5N6N7C8 azo bridge. The nitro group lies in the plane, as does the amino group 

for all the constrained structures and the 3-21G ab initio structure, with the exception o f the 

constrained PM3 methanol optimised structure which has the nitro group twisted out o f the plane by 

19°. In the unconstrained AMI methanol optimised structure, the nitro group is coplanar with the 

acceptor phenyl ring. In the unconstrained PM3 structures however, the amino group is twisted out o f 

the azobenzene plane by up to 20.3°. The unconstrained structures also have the N-(C2H5)(C2H50H) 

twisted out of the plane by torsion angles o f between 13.7° and 29°. It can be seen from Table 4.6 

that many of the bond angles for the different optimisation methods are similar. The most noticeable 

differences are between the C19N*C2 angle in the freely optimised PM3 structure and the other 

structures and the angles for the azo bridge and the Cn N 16017  angle o f the nitro groups where the 3- 

21G optimised structure is most different to the other structures. The major differences between the 

AMI and PM3 and the ab initio geometries is the length of the azo -N=N- bond. It is predicted to be 

longer (1.244 A) by both the 3-21G and 4-31G* methods than the AMI and PM3 bond length 

(1.230-1.235A). This is still shorter than the 1.271 A -N=N- bond in the closely related crystal 

structure of 4-diethyl-2'-cyano-4'-nitroazobenzene.3 The alkyl groups at the amino nitrogen atom in 

the semi-empirical structures o f [IX] are pushed slightly out o f the plane o f the molecule by about 

20°, indicating sp3 character. The ab initio structures are essentially planar. The planar 3-21G and 

constrained semi-empirical structures have shorter N1-C2 bond lengths indicating a greater 

interaction between the amino nitrogen lone pair electrons and the azobenzene 7c-system. There is 

also a significant difference in the Cn -N16 and N 16- 0 17 bond lengths, again suggesting a difference in 

the degree o f interaction between the nitro group and the azobenzene 7i-system for the different 

optimisation methods. The Cu -N16 bond length is much shorter (1.446A) in the 3-21G structure than 

in either the AMI (1.475-1.486) or the PM3 (1.470-1.497A) structures. The N 16- 0 17 and N 16- 0 18 

bond lengths also differ significantly with 3-21G being longer (1.243A) than the AMI (1.202- 

1.207A) or PM3 (1.215-1.223A) structures.. The most significant difference therefore, occur for the 

N !-C2, Cn -N16 and nitrogen-oxygen bonds of the nitro group.

The final heats of formation for each optimised structure by the same semi-empirical optimisation 

method can again be compared. These energies, are given in Table 4.6 for both the AMI and PM3 

methods. From Table 4.5, the fully optimised AMI conformation o f [IX] is more stable than the
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constrained structure by 0.83 kcal mol' 1 in the gas phase, and by 1.07 kcal mol' 1 in methanol. The 

PM3 method gives the freely optimised structures to be more stable than the constrained structures by 

1.82 kcal mol' 1 and 2.63 kcal mol' 1 in the gas phase and methanol respectively.

O ther dyes containing the 4’-nitro substituent

The 4-diethylamino-2-methylthio-4'-nitroazobenzene [I], 4-(N-(3-cyanoethyl, N-ethyl)amino-4- 

nitroazobenzene [XII], 4-diethylamino-2'chloro-4'-nitroazobenzene pan] and 4-diethylamino- 

2'cyano-4'-nitro-6'bromoazobenzene [XVII] dyes also contain the 4-nitro substituent, and the 

calculated values for the inter-atomic distances , bonding angles and torsion angles for all the 4-nitro 

dyes along with their dipole moments (id, and heats o f formation for each optimisation method are 

summarized in Table 4.7 to Table 4.10.

Table 4.7 Summary of calculated bond lengths, angles and torsions for fully optimised AMI 

structures o f [I], [VIII], [IX], [X], [XII], [XHI] and [XVII] in the gas phase.

bond lengths (A) bond angles (°) AH f (kcal mol'1) (D)

Dye N'-C2 C'-N6 N*-N7 N7-C* Cn-N16 Nlb-0 17 C-X C^N^N7 n 6n '7c s

[I] 1.387 1.425 1.233 1.438 1.485 1.202 1.694° 120.01 119.99 100.99 10.46

[ v m i 1.386 1.427 1.233 1.438 1.486 1.202 NA 120.18 119.26 101.42 8.40

[ IX ] 1.396 1.426 1.233 1.438 1.486 1.202 NA 120.15 119.26 54.47 8.20

IX ] 1.386 1.427 1.232 1.438 1.485 1.202 NA 120.27 118.84 99.97 9.59

p a n 1.396 1.427 1.231 1.437 1.487 1.202 1.696b 120.28 118.77 49.71 8.21

ixmi 1.400 1.429 1.231 1.438 1.486 1.202 120.15 118.91 131.45 7.55

[xvn] 1.383 1.414 1.236 1.431 1.487 1.201 1.873° 121.04 119.60 103.72 6.00

torsion angles (°)

c ' V e ^ C 3 C ^ C 'C 1* c 14cV>n7 C^N^'C* N^N'C8̂ nW c ĉ 13 C^C^N^O1' C"C^N^O18

r a 13.2 18.4 -5.0 -175.6 -178.9 -34.4 149.6 -0.3 -0.3

[ v m ] 20.9 -20.9 0 180 -179.2 51.3 -133.8 0.9 0.8

m 13.7 -14.5 -0.2 180 -179.9 1.3 -178.9 0 0

[X ] 14.9 15.6 -5.1 175.4 179.0 -37.0 147.3 -0.2 -0.2

p a n 14.1 -13.4 -2.4 177.9 178.5 -48.9 136.8 -0.1 0.2

p a n ] 7.4 -20.8 -4.5 176.0 179.1 -35.7 148.4 -0.2 -0.2

p c v n j

a n  xr

14.5 12.9
*. b T V .

6.0
r ~ 7 T r ^ : 7

-174.5
______1 C fs -\J

179.1
-T. t : ^rj

-37.6 -3.0 -0.1 0.1
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Table 4.8 Summary of calculated bond lengths, angles8 for constrained5 AMI geometry 

optimisations (heavy atoms of the azobenzene moiety and atoms 19 and 20 constrained to lie in the 

same plane) of [I], [VIII], [IX], [X], [XH|, [XDTJ and [XVII] in the gas phase.

bond lengths (A) bond angles (°) AH/(kcal mol"1) H (D)

Dye N'-C^ C -̂N6 N^N7 Nv-C8 Cn-N16 n 16-o 1? C-X C'N^N7 N V C *

m 1.386 1.423 1.234 1.437 1.485 1.202 1.694a 120.45 119.07 101.64 10.56

rvm] 1.372 1.426 1.233 1.438 1.486 1.202 - 120.24 119.22 101.44 9.12

[IX ] 1.386 1.425 1.233 1.438 1.486 1.202 - 120.25 119.49 55.31 8.69

[X ] 1.386 1.425 1.233 1.438 1.486 1.202 - 120.27 119.16 100.62 9.62

paii 1.386 1.424 1.234 1.436 1.487 1.202 1.696b 120.15 119.16 50.89 8.69

[xim 1.391 1.427 1.233 1.438 1.486 1.202 NA 120.13 119.27 132.23

pcvn] 1.382
o

1.414 1.239
b/~\ v  ■

1.427
,̂13 ^

1.487
11 t  j  c

1.201 1.421° 
r : xrr;

119.63 121.48 104.98 6.13

Table 4.9 Summary of calculated bond lengths, angles and torsions8 for fully solvent (EPS=32.7) 

optimised AMI structures o f [I], [VUIJ, [IX], [X], [XII], [XHI] and [XVHJ.

bond lengths (A) bond angles (°) AH/(kcal mol"1) ja (D)

Dye n ‘-c2 C^-N6 N*-N7 N'-C* C^-N16 N I6- 0 17 C-X c W N ^ C 8

m 1.379 1.426 1.231 1.439 1.475 1.207 1.701s 120.38 118.83 80.44 13.82
[vni] 1.389 1.426 1.231 1.439 1.475 1.207 120.74 118.85 79.23 10.84
[1X1 1.393 1.427 1.231 1.439 1.475 1.207 120.59 118.87 30.26 9.94

[X] 1.379 1.423 1.232 1.438 1.475 1.207 120.68 118.87 81.48 12.52
[xm 1.395 1.428 1.230 1.439 1.477 1.206 1.698b 120.38 118.79 25.65 9.33
pan] 1.399 1.427 1.230 1.439 1.475 1.207 NA 120.76 118.72 107.61 9.83
[xvn] 1.375 1.415 1.232 1.434 1.476 1.206

torsion angles (°)

121.45 119.20 75.76 7.74

C^'C^C3 C‘“N1C2Cli c 14cV n 7 Ĉ C’N̂ N7 CVN'C8 hrNvC8Cy N°N7C8C13 C1UC"N160 1V C“!CuN1(>0 18

m 7.1 18.3 18.5 -163.9 -179.8 -50.7 134.4 -1.0 -0.8
[vni] 26.1 -25.5 -0.1 -179.8 -179.2 51.3 -133.8 0.9 0.8
[IX] -5.1 -29.5 -10.4 171.1 -179.6 47.1 -137.7 0.6 0.5
[X] 15.9 4.7 -7.9 -179.2 46.2 - 0.3 -
[xn] 2.0 -25.8 20.4 -161.5 179.3 -55.6 130.2 -0.1 -0.1
pan] 6.2 -26.3 3.1 -177.2 179.5 -49.6 135.2 -1.0 -0.9
pan] 10.7 12.7 3.9 -176.1 178.6 -70.8 116.5 -1.3 -1.0

a C-X is the C4-S bond. bC-X is the C^-Cl bond.
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Table 4.10 Summary of calculated bond lengths and angles* for constrained15 AMI geometry 

optimisations (heavy atoms of the azobenzene moiety and atoms 19 and 20 constrained to lie in the 

same plane) of [I], [VIII], [IX], [X], [XII], [XIH] and [XVII] in solvent (EPS=32.7).

bond lengths (A) bond angles (°) AHf (kcal mol'1) H(D)

Dye N'-C2 C -̂N6 N^N7 N’-C8 C"-N16 n 16-o 17 C-X c V n 7 n *n 7c*

M 1.376 1.420 1.235 1.436 1.475 1.207 1.701 120.46 119.46 81.46 14.25

[vni] 1.358 1.419 1.235 1.436 1.475 1.207 NA 120.60 119.60 80.99 12.77

[IX] 1.382 1.422 1.234 1.437 1.475 1.207 NA 120.54 119.49 31.09 10.49

[X] 1.377 1.421 1.235 1.416 1.466 1.202 120.54 119.50 82.60 12.66

pan 1.381 1.421 1.234 1.436 1.477 1.206 1.699 120.51 119.25 27.19 10.21

pan] 1.383 1.423 1.234 1.437 1.470 1.207 NA 120.46 119.55 109.35 10.46

pcvnj
& T 7  *

1.375 1.415
b i - ,  v

1.238 1.429 1.476 1.206 1.421 119.67 121.21 79.75 7.67

Structure [XH| has essentially the same structure as [IX] the only difference being the p-cyano-ethyl 

group instead o f the p-hydroxyethyl group of [IX]. The conformations possible for [IX] are also 

possible for [XU] so results reported are for the lowest energy conformation.

It might be expected, that the bond lengths, angles and torsion angles o f [XII] would be similar to 

those of [IX]. However, the freely optimised gas phase structure o f [XII] has the acceptor ring 

twisted by 48.9° compared with the essentially planar structure o f [IX]. The free and constrained 

methanol optimised structures though are very similar with respect to their bond lengths, angles and 

torsions to the corresponding [IX] structures. The structure o f [XHI] is also very similar to that of 

[IX]. The presence of a chloro substituent on the acceptor phenyl ring dye provides an interesting 

variation to the other dyes. In addition to the conformations possible for [IX], there are two 

possibilities for the position of the chloro substituent with respect to the azo nitrogen atoms in [XIH]. 

These two situations are displayed in Figure 4.5, where the magenta and blue coloured Cl atoms 

represent the two different positions possible for the chlorine atom. The conformation containing the 

blue chlorine atom has a heat o f formation o f 50.9 kcal mol"1, compared to 52.1 kcal mol' 1 for the 

conformation containing the magenta chlorine, and is therefore the more stable structure. This could 

be due to a greater steric interaction between the magenta chlorine atom and the lone pair electrons of 

N6 (refer to Chapter 1). The bond parameters in therefore, refer to the more stable C13-C1 conformer.
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Figure 4.5 The atom numbering system for [XIH]. Planar structures have all o f the heavy atoms of 

the azobenzene moiety and atoms N 1, C19 and C20, constrained to lie in the same plane.

The optimised structures of [XIH| in the gas phase and solvent are very similar to that for [IX], 

except for the free gas phase AMI structure in which the acceptor ring is twisted by 35.7°. The 

introduction of the additional chlorine electron acceptor substituent therefore, has only a minor effect 

on the geometry of the donor acceptor azo dye.

The final dye in the series of 4-nitro substituted dyes is [I] where the methanethiol group can be 

attached at the C4 or C14 position. There are several alternative structures for [I] which include, the 

different orientations o f the N-ethyl groups (either both above or below the plane, or one ethyl group 

is above and one below the plane). The orientation o f the ethyl groups does not greatly affect the heat 

o f formation, but the orientation of the SCH3 group does produce a significant difference in the heat 

o f formation, with the conformations where the SCH3 group, is attached at the C4 position having the 

lowest energy. Many o f the bond lengths, angles and torsions are similar to those o f [IX], but in the 

structures constrained to be planar, the N J-C2 bond length is slightly shorter.

Summary of geometries of 4'-nitro substituted dyes

Full optimisations of the 4'-nitro substituted dyes, [I], [VIII], [IX], [X], [XII], [XIH] and [XVII]

using the AMI method gave non-planar geometries in the gas phase, with the exception o f [IX],

which was essentially planar. In the non-planar structures, the nitrophenyl ring was twisted by 37° in

the 4-diethyl-4'-nitroazobenzene [X] which is very similar to the 37.3° obtained in gas phase AMI

calculations on 4-dimethyl-4'-nitroazobenzene by Charlton et al.12 The other 4'-nitro substituted dyes

were twisted by between 34° and 47°. Using the COSMO method (EPS=32.7), the nitrophenyl ring

was twisted by between 47° and 55° to the phenyl azo plane. Structures optimisations with the heavy

atoms constrained to lie in the same plane had heats o f formation similar to the fully optimised

structures, suggesting that these planar conformations are also valid. Torsion angles from crystal data
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(see Table 4.1) show that most donor-acceptor type azobenzenes are essentially planar, with twisting 

of either phenyl ring by between 0° and 10°. for The N6-N7 bond length was between 1.230A and 

1.235A while the N !-C2 bond was between 1.387A and 1.400A for fully optimised gas phase 

structures and between 1.372A and 1.391 A in constrained planar gas phase structures. These bond 

lengths are consistent with results of previous gas phase AMI calculations on 4-dimethylamino-4'- 

nitroazobenzene12. AMI/COSMO structures have N*-C2 bond lengths which are slightly shorter 

(1.379A-1.399A), for fully optimised structures and significantly shorter (1.358A-1.383A) in 

constrained structures, than in the gas phase. The Cn -N16 bond length is around 1.486A for gas phase 

structures and 1.475A in methanol. The N6-N7 bond length in all the crystal structures examined (see 

Table 4.1) was longer (1.254-1.294A) than in any of the AMI calculated structures. In all o f these 

structures, are longer than in calculated structures. The N ^C 2 and Cn -N16 bond lengths o f the crystal 

structures, are shorter than in calculated gas phase structures, but similar to bond lengths in methanol 

optimised structures at an average o f 1.370 and 1.462A respectively.

The major difference between the AMI and ab-initio geometries is the length o f the azo N^-N7 bond. 

It is predicted to be longer (1.244) by the 3-21G method than the AMI bond length (1.230-1.235), but 

is still shorter than the average bond length o f crystal structures. However, calculations at the 4-31G* 

and 6-31G level produce even shorter N ^N 7 bond (1.22A). The other major difference is the 

hybridisation of the amino group, which has sp3 character in semi-empirical structures, as the ethyl 

groups are pushed slightly out of the plane o f the molecule. In contrast ab initio and crystal structures 

have a planar sp2 hybridized amino group. There may also be a slight twisting o f one o f the phenyl 

rings, usually the acceptor ring, out of the plane resulting in a non-zero N6N7C8C9 torsional angle.

The structure of the blue dye 2-acetamido-4-diethylamino-2',6,-dicyano-4f-nitroazobenzene (4.5) has 

been calculated by Morley using the AMI method and also at the ab initio STO-3G level. The AMI 

structure was distorted in a similar way to the other azobenzenes, while the STO-3G structure was 

essentially planar and had both the amino and nitro groups coplanar with the attached phenyl rings. 

The acetamido group was also planar, with the amino hydrogen intra-molecularly bonded to the azo 

nitrogen, with a bond length o f 1.81 A. Structure (4.5) is very similar to 2-acetamido-4-diethylamino- 

2,-cyano-4'-nitro-6,-bromoazobenzene [XVTI] and the AMI structures o f these dyes are very 

similar. The crystal structure o f [XVII] CEMSPC103 , which is essentially planar and has an N6-N7 

azo bond length o f 1.281 A, which is very close to the 1.287A in the STO-3G structure o f (4.5).
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■NC>2

HjCOC

(4 .5 )

Unconstrained AMI optimisations of [XI] yield structures which are almost planar for the 

azobenzene moiety, but some of the unconstrained PM3 structures are slightly twisted. Both the 

amino groups have their alkyl groups and hydrogen atoms with torsion angles o f up to 24° to the 

plane. In unconstrained structures, the C -N ^FU O H fe bond length is slightly longer than the donor 

acceptor dyes, while the C-NH2 bond is similar in length to the C-NR2 bonds in other dyes. In 

constrained optimised structures, the C-N(C2H40H )2 bond length is again slightly longer than in the 

donor acceptor dyes while the C-NH2 bond is similar in length to the C-NH2 bond in [Vlllj. This 

implies that the NH2 substituent is a stronger electron donor group than the N ^F L iO H h group.

The bond angles in [XI] are similar to those o f [XIV]. Freely optimised structures have both the 

aminoalkyl groups and the hydrogen atoms of the amino group out o f the plane making torsional 

angles of 22° and 6° and 23.8° respectively in the gas phase. There is a difference o f 1.53 kcal mol'1 

in the heat of formation of the AMI free and constrained structures in the gas phase while in 

methanol, the difference is 1.95 kcal mol'1. The difference between heats o f formation between PM3 

gas phase free and constrained structures is 1.22 kcal mol'1 in the gas phase and 2.57 kcal mol*1 in 

methanol. These energy differences are larger than the corresponding differences for the donor- 

acceptor azo dyes. For both AMI and PM3 calculations, the freely optimized structure is lower in 

energy.

Dyes containing the 2'-nitro substituent

The second set of azo dyes calculated in the current work, consist o f 4-(N~P-hydroxyethyl, N- 

ethyl)amino-2'-nitroazobenzene [IV],4-(N-P-hydroxyethyl, N-ethyl)amino-2'-nitro-4'- 

chloroazobenzene [VI], 4-di(P-hydroxyethyl)amino-2'-nitro-4'-chloroazobenzene [VII], 2-chloro-4- 

di(P-hydroxyethyl)amino-2'-nitro-4'-chloroazobenzene [II], which contain the 2-nitro substituent. 

These dyes have been optimised by AMI and PM3 methods both in the gas phase and in solvent field 

COSMO calculations and the results o f these calculations for each dye are now discussed.
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The simplest structure considered is [IV] (Figure 4.6), which contains only the 2’nitro substituent and 

an p-hydroxyethyl and ethyl groups attached to the amino donor substituent. The 2-nitro group can 

either be attached to atom C13 as shown in Figure 4.6, or to atom C9. If  the nitro group is attached to 

the C9 atom, then it has a greater interaction with the lone pair electrons o f the azo nitrogen atom N6 

than the structure where the nitro group is attached to C13. This interaction is unfavourable and the 

C13-NC>2 structure (Figure 4.6) has a lower heat o f formation than the alternative C9-NC>2 

conformation. The bonding parameters for AMI (gas phase and methanol), PM3 (gas phase and 

methanol) and 3-21G (gas phase) optimised structures are given in Table 4.11, together with the final 

energy and dipole moment for each structure. There is a much greater variation in the bonding 

torsions for the [TV], than for the previous dyes. The C2-N1R2 and C13-NC>2 bonds in [TV] are slightly 

longer in [IV] than in the 4'-nitro substituted dyes, particularly in the freely optimised structures, 

while the bond is marginally shorter.

The most prominent differences are for the torsion angles o f the nitro substituent. In the constrained 

structures, the 2'-nitro group is rotated out o f the plane by 58°-60° for AMI structures and 90° in 

PM3 structures. This contrasts with the 4'-nitro substituted dyes in which the 4'-nitro group is 

coplanar to the acceptor phenyl ring.

For full optimisations, the NR2 group is twisted out o f the plane by approximately 10°-13° and the 

donor ring has a torsion angle o f 5°-10° with respect to the donor phenyl ring plane. The acceptor 

phenyl ring is twisted out of this plane by between 43° and 63°.

The crystal structure of 4-di-((3-ethoxyethyl)amino-2’-nitroazobenzene18 has a similar twist o f the 

nitrophenyl ring by 44.5°.Gas phase AMI calculations on this dye by Charlton et al.12 produced a 

structure in which both the donor and acceptor phenyl rings were twisted in different directions with 

an overall torsion of ca. 50°. The nitro group was also found to be twisted.

02 3  C20—C19 ? 3 c ?

\ n  C2 C5---- N6 C9— C10
/  \  /  \  /  \

02 4 C22—C21 15C—C14 N7-----08 011

\ c —C12̂
/

170"N1̂
018

Figure 4.6 Structure and atom numbering system for [IV]. The same numbering system is used for 

dyes [II], [Vj, [VI] and [VO].
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Table 4.11 Calculated structural data, heats o f formation and dipole moments and geometries for 

[IV] optimised by AMI and PM3 methods in the gas phase and solution (EPS=32.7) and at the 3-21G 

level. *

Parameter AMla AMI
/COSMOa

AMlb AMI
/COSMOb

PM3a PM3
/COSMOa

PM3b PM3
/COSMOb

3-21G

Bond length 
N’-C2 1.390 1.381 1.394 1.390 1.416 1.407 1.432 1.435 1.379
C^N6 1.426 1.422 1.428 1.426 1.436 1.433 1.438 1.439 1.410
N*-N7 1.233 1.234 1.230 1.230 1.233 1.234 1.233 1.231 1.243
n 7-c8 1.436 1.435 1.437 1.438 1.449 1.448 1.449 1.452 1.419
C13-N16 1.495 1.488 1.491 1.480 1.506 1.483 1.506 1.475 1.450
n ,6-o 17 1.198 1.202 1.199 1.204 1.213 1.219 1.213 1.220 1.236
n 16-o 18 1.202 1.206 1.203 1.207 1.213 1.219 1.213 1.222
n !-c 19 1.441 1.445 1.441 1.446 1.481 1.483 1.484 1.487
n '-c20 1.445 1.450 1.447 1.452 1.483 1.486 1.486 1.490
Bond Angle
c ’V c 2 121.80 121.94 121.29 121.00 121.45 121.45 118.75 118.11
e V c 2 120.71 120.84 119.95 119.73 121.09 121.13 118.06 117.66
n !c2c3 121.75 121.95 121.97 121.91 120.73 120.91 120.62 120.38
n ^ c 15 121.31 121.39 120.93 121.22 120.48 120.50 120.37 120.45
C ^ N 6 116.39 116.30 116.33 116.39 115.61 115.63 115.58 115.57
c ^ c 5̂ 6 125.67 125.80 125.62 125.50 124.56 124.56 124.54 124.27
C ^ N 7 120.27 120.47 120.20 120.72 120.45 120.53 120.41 120.85 115.9
n V c8 119.41 119.34 118.20 118.81 119.60 119.76 119.64 118.69 115.4
n 7c8c9 125.47 125.67 122.70 121.62 124.57 125.16 124.49 120.35
n 7c8c 13 116.92 117.01 118.98 119.87 115.77 115.24 115.89 119.22
C10CnN16 121.02 120.50 121.35 120.95 121.01 120.26 121.02 122.61
C12CnN16 117.85 117.84 117.87 118.05 118.97 119.42 118.97 118.29
c 13n 16o 17 119.52 120.39 119.83 120.64 118.88 120.36 118.89 121.44
c 13n 16o 18 118.05 119.10 118.02 119.23 118.89 120.36 118.85 120.24
Torsional Angle
c 19n 'c2c3 0 0 -1.7 10.2 0 0 18.7 22.2 -1.4
^ V c 2̂ 5 0 0 5.3 -13.2 0 0 -16.2 -15.7 -1.4
ChC5N6N7 0 0 -49.3 11.5 0 0 1.3 18.4 5.2
n V c8c9 0 0 -42.9 -63.2 0 0 5.8 60.0 -11.4
c 8c ,3n 16o 17 -59.6 -60.6 -40.8 -38.9 -91.4 90.3 88.6 41.8 -32.5
c 12c 13n 16o 18 -58.1 -59.7 -59.7 -37.8 -88.8 90.6 86.1 41.3 -32.5
c 5̂ 7̂ 180 180 180 178.5 180 180 180 -179.2 179.8

AH/ (kcal mol'1) 56.61 33.97 55.81 31.95 29.45 5.72 28.35 0.92 _

^(D) 3.65 5.21 4.40 5.88 3.50 4.76 3.27 6.57 -
*For key see Table 4.4

The next dye in the series is 4-(N-(3-hydroxy ethyl, N-ethyl)amino-2'-nitro-4'-chloroazobenzene [VI], 

which is the 4 -chloro substituted derivative o f [IV]. Once again, and as for all these dyes, there are 

two possibilities for the conformation of the ortho nitro group. It might be expected that where the 

ortho nitro group is attached to atom C13 is energetically more favourable than the alternative 

conformation and, this was found to be the case for all o f the 2'-nitro substituted dyes. A summary of
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the structural data, heats of formation and dipole moments o f the semi-empirical and ab-initio 

optimised structures is given in Table 4.12 to Table 4.15.

Table 4.12 Summary of calculated structural dataa, heats o f formation and dipole moments for fully 

optimised gas phase AMI structures of [II], [TV], [V], [YTj and [VII].

bond lengths (A) bond angles (°) AHf V-
Dye n !-c2 C5-N* N*-N7 n 7-c* c13-n 16 n 16-o 17 Cn -Cl C4-X C'N^N7 n V c8

m 1.389 1.427 1.231 1.436 1.493 1.199 1.701 1.696 120.01 118.83 1.33 4.53

m 1.394 1.428 1.230 1.437 1.491 1.202 - - 120.2 118.2 55.80 4.40

M 1.396 1.427 1.229 1.434 1.490 1.203 1.470 - 120.6 119.41 -31.62 4.89

[VI] 1.390 1.429 1.231 1.436 1.492 1.199 1.702 - 120.34 118.88 51.70 4.80

[Vni 1.396 1.429 1.231 1.437 1.492 1.199 1.702 - 119.84 118.84 6.19 6.63

torsion angles (°)

CiyN'C7CJ c W  C’c V ’N7 c14cV n7 cW c8 n 'nW  nW c13 c“cI3n I6o 17 c 12c13n 1(,o 18

m 10.9 17.3 11.9 -169.9 179.5 -43.2 143.1 -44.6 -42.5

[IV] -1.7 4.5 5.3 -49.3 180 137.6 -42.9 -40.8 -42.9

M 13.7 -13.4 0.3 -180 178.4 119.0 -69.5 -36.7 -34.7

[VI] 23.1 6.4 1.3 -179.2 178.7 135.9 -51.1 -43.0 -41.0

[v m -6.9 -17.5 16.9 -165.4 -179.8 -43.1 143.1- 43.6 -41.5

a Bond lengths in amstrongs and angles in degrees. bAHf is the heat of formation in kcal mol'1. V d is the dipole moment in 

Debyes.

Table 4.13 Summary of calculated structural data, heats o f formation and dipole moments for 

constrained AMI geometry optimisations (heavy atoms of the azobenzene moiety and atoms 19 and 

21 constrained to lie in the same plane) of structures [II], [IV], [V], [VI] and [VII] in the gas phase.*

bond lengths (A) bond angles (°) torsion angles (°)T AHf P
Dye Cs-N* hf-N7 Nv-C8 C13-N16 Nl6-Or/ CU-C1 C4-X c W ' NWC8 C C TNr O C12C13Nlb0 18

m 1.388 1.425 1.233 1.435 1.497 1.198 1.701 1.695 119.92 119.28 -60.1 -58.8 2.17 4.2C

[IV] 1.390 1.426 1.233 1.436 1.495 1.198 - - 120.27 119.41 -58.5 -60.0 56.61 3.65

M 1.386 1.422 1.234 1.435 1.496 1.198 1.471 - 120.24 119.23 -60.8 -59.5 -30.05 4.02

[VI] 1.389 1.424 1.233 1.435 1.497 1.198 1.471 - 120.05 119.88 -61.1 -59.8 52.79 4 .94

[vn ] 1.387 1.425 1.233 1.436 1.495 1.198 1.702 - 119.88 119.32 -59.3 -57.8 7.26 5 M

♦For key see Table 4.12. * Note that all other torsion angles are 0°or 180
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Table 4.14 Summary of calculated structural data8, heats o f formation and dipole moments for fully 

optimised AMI structures o f [II], [IV], [V], [VI] and [VII] in solvent (EPS=32.7).*

bond lengths (A) bond angles (°) AHf

Dye Nl-C2 C^N6 N^-N7 n 7-c* c 13-n 16 n 16-o 17 CU-C1 C4-X C W N 7 N'TM'C*

im 1.381 1.426 1.229 1.438 1.480 1.204 1.703 1.698 120.24 119.15 -26.75 7.52

[IV] 1.390 1.426 1.230 1.438 1.480 1.204 - - 120.72 118.81 31.95 5.88

M 1.396 1.427 1.229 1.434 1.490 1.203 - - 120.60 119.49 -31.63 4.89

[VI] 1.384 1.424 1.229 1.438 1.480 1.204 1.698 - 120.88 119.12 28.25 5.41

[VII] 1.390 1.426 1.229 1.439 1.479 1.205 1.703 - 120.50 118.85 -23.33 7.72

torsion angles (°)

c^ c^ c3 C^N^C0 C14C W C4C:>N*N7 c W c 8 N<’N/C8Cy N<>N/C8CU c r c ' W Cl2C,JNl60 lli

m 6.6 8.9 -22.7 -15.7 177.9 -81.7 177.9 33.0 -31.7

[IV] 10.2 -13.2 11.5 -169.2 178.5 -63.2 124.6 -38.9 -37.8

[V] 13.7 -13.4 0.3 -180.0 178.4 -69.5 119.0 -36.7 -34.7

m -0.5 19.2 -10.5 170.3 178.5 -84.6 103.7 -33.2 -31.9

[vn] 22.4 2.8 -13.2 168.7 177.8 -76.5 114.5 -34.4 -33.3

*For key see Table 4.12

Table 4.15 Summary of calculated structural data8, heats of formation and dipole moments calculated 

bond lengths for constrained AMI geometry optimisations (heavy atoms of the azobenzene moiety 

and atoms 19 and 21 constrained to lie in the same plane) o f structures [II], [IV], [V], [VI] and [VII] 

in solvent (EPS=32.7).*

Dye

bond lengths (A) bond angles (°) torsion angles (°)T AHf

N'-C2 Cs-N* N*-Nr N’-C* C1J-N16 N1(,-Oi7 C -̂Cl C4-X cV n ' isnsr'c* C17C1JN10O18

[H] 1.381 1.422 1.234 1.435 1.489 1.201 1.703 1.697 120.30 119.21 -58.8 -57.7 -24.70 5.73
[IV] 1.381 1.422 1.234 1.435 1.488 1.202 NA NA 120.47 119.34 -60.6 -59.7 33.97 5.21

M 1.370 1.429 1.234 1.433 1.487 1.200 1.463 NA 120.21 118.39 -60.6 -59.3 -55.73 4.03

[VI] 1.379 1.420 1.234 1.435 1.488 1.202 1.704 NA 120.18 119.35 -60.4 -59.5 30.40 6.69
\vu \ 1.383 1.423 1.233 1.435 1.488 1.202 1.704 NA 120.18 119.35 59.4 -58.3 -21.13 5.73

♦For key see Table 4.12 t Note that all other torsion angles are 0°or 180

The bond lengths angles and torsions of [VI] are very similar to those o f [IV]. The four dyes, [VIf|, 

[II], [II] and [VO] have similar structures, with respect to their bond lengths, angles and torsions and 

can be grouped together. The 2-methyl-4-(N-p-hydroxyethyl, N-ethyl)amino-2'-nitroazobenzene-4'- 

ethanoate [V] is discussed with these dyes as it also contains the 2-nitro substituent.
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Dyes [II] and [VII], are structurally very similar to one another. Both dyes have 2-chloro substituted 

donor phenyl rings as well as 2'-nitro substituted acceptor phenyl rings. In addition, both dyes have a 

di-((3-hydroxyethyl)amino donor group. In fact the only difference between the dyes is the 4-chloro 

substituent present in [II], but absent in [VH|. Since the two groups attached to the amino nitrogen 

are identical, there are only the 2 possible conformations o f both above (or both below) or one above 

and one below the azobenzene plane. The conformation with the lowest energy is chosen for each 

dye. The presence of the 2-chloro substituent and the 2'-nitro substituent means that there are four 

possible conformations: a)where the chlorine atom is attached to C4 and the nitro group is attached to 

C9; b) where the chlorine atom is attached to C14 and the nitro group is attached to C13; c) where the 

chlorine atom is attached to C14 and the nitro group is attached to C9 and d) where the chlorine atom 

is attached to C4 and the nitro group is attached to C13. The final combination is in fact calculated to 

be the most stable conformation.

Not surprisingly, the same conformation of the 2-chloro and 2-nitro substituent in [II] produces the 

lowest heat of formation. The acceptor phenyl rings in the freely optimised AMI structures are 

twisted by 43° and the 2'-nitro group is twisted by 42.5° and 41.5° respectively for [II] and [VII] in 

the gas phase and 34° and 37° in methanol. The torsion angle o f  the donor phenyl ring with respect to 

the C5N6N7C8 plane is around 12° for [II] and 16° for [VII] which is greater than that in [IV] and 

[VI]

The results of gas phase calculations are again consistent with previous calculations on 4-dimethyl-2'- 

nitroazobenzene12 where the both phenyl rings were twisted in different directions with an overall 

torsion o f ca. 50°, and the nitro group is also twisted in the fully optimised structure. In a calculations 

where the heavy atoms were constrained to lie in the same plane, with the exception o f the nitro 

group12, the nitro group was twisted further out o f the plane by 52°, and the heat o f formation was 

slightly lower than for the unconstrained structure. In the 2-nitro substituted dyes examined in this 

work, the nitro groups are twisted by ca. 60° in constrained structures, and heats o f formation are 

lower in energy for some dyes but higher in energy for others than the fully optimised structures. 

Though structure [V] is grouped with the 2-nitro substituted dyes, it can also be compared with dye 

3, as these dyes both contain an ester group substituted at the 4-position o f the acceptor phenyl ring. 

The same combinations o f the two ortho substituents as for [II] are possible in [V], with the chlorine 

atom in [II] being replaced by a methyl group. The bond lengths o f [V] are similar to those o f the 

other 2'-nitro dyes, as are the bond angles and torsions.In the freely optimised dye 5 structures, the
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nitro group makes a torsional angle o f 36.7° to the acceptor phenyl ring, but in the constrained 

structures, the angle is 61° to the plane.

The 4 - (N- (3 -hydroxy ethyl, N-ethyl)aminoazobenzene-4'-ethanoate I 111], has the same basic structure 

as [V] but minus the 2-methyl and 2-nitro substituents. The differences between [111] and [V] are 

clear by comparison o f the torsional angles o f the dyes, which show that in contrast to [V], [111] is 

almost planar.

Table 4.16 Summary o f calculated bond lengths, angles and torsions for AMI geometry 

optimisations o f [Id ] in the gas phase and in solvent (EPS=32.7).*

Bond lengths Bond angles AHfc M-Dd

Structure n '-c 2 C'-N6 N*-N7 n 7-c* C-X NNCd NNCa

AM lb 1.399 1.429 1.232 1.438 1.469 119.99 119.42 -32.66 3.858

AMT 1.388 1.427 1.233 1.438 1.469 120.05 119.38 -31.16 4.287

AMl/COSMOd 1.396 1.429 1.230 1.440 1.467 120.33 118.96 -54.45 5.541

AMI/COSMO® 1.382 1.424 1.233 1.427 1.468 120.35 119.69 -53.40 6.074

Structure CiyNJC"CJ C21NlC2C15 c 4c V n 7 C^C^N^N7 c V n 7c s N6N7C8Cy N*N7C c

AM lb 14.5 -15.0 -0.1 -179.9 180 -178.6 1.6

AM1C 0 0 0 180 0 180 180

AMl/COSMOd -5.4 -31.6 -16.4 165.8 179.9 46.1 -138.3

AMI/COSMO® 0 0 0 180 0 180 180

♦For key see Table 4.12

As well as the donor acceptor azo dye that have been discussed so far, four donor acceptor 

azothiophene dyes have also been examined [XV],[XVI],[XVIII] and [XIX]. Calculations on the 

azothiophene dyes have followed the same format as for the azobenzene dyes, with calculations in 

the gas phase and in methanol on both free and constrained structures. There are two possibilities 

concerning the orientation o f the thiophene ring with respect to the rest o f the molecule and these two 

possible conformations are illustrated in Figure 4.7.
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Figure 4.7 The two possible orientations for the thiophene ring in azothiophenes.

The preferred conformation will depend on the position o f substituents on both the thiophene ring and 

the phenyl ring. Initial calculations on the dinitrothiophene dye [XV] showed that the energy for the 

alternative conformations of dye [XV] are -56.13 kcal m of1 and -54.93 kcal mol'1 for structures 

[XV]A and [XV]B respectively. The structures and atom numbering systems and the bonding 

parameters for the optimised structures of each o f the four azothiophenes are given below. For each 

dye, the conformation with the lowest heat of formation is displayed.

022

C24— 023-----C21-----020—0 1 9 ^  9 ^

N1 C2 C5----- N6 .0 1 4
/  \  /  \  / S12\  /  

0 3 0 — 0 2 9 - 0 2 7 ------C26-------C25 c }5  ^  \ 7— C6 C11-N13

II \  /  0 1 5
028 90 --------

 N16017'
/
41(
\018

Figure 4.8 The structure and atom numbering system for [XV]. Note that the same numbering system 

is used for dyes [XV],[XVI],[XVIII] and [XIX].

Structure [XV] contains two electron accepting nitro substituents on the thiophene ring, as well as 

large ester groups attached to the donor amino nitrogen. In [XV], the C-NR2 bond length is similar, 

the N=N bond length is slightly longer but both the C-NO2 bonds are shorter than in the azobenzene 

dyes.
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The thiophene ring is twisted by 46.7° out of the plane, whilst the 2-nitro group has a torsional angle 

of 33° to the thiophene ring. The 4’-nitro group is however planar with the thiophene ring.

The most important bond lengths, angles and torsions for AMI optimisations o f dyes [XV], [XVI] 

and [XVI] are reported in Table 4.17 to Table 4.20. Consideration of bond lengths shows that the C- 

NR2 bond is similar in length in gas phase structures and also in the freely optimised methanol 

structures. However methanol optimised structures where the amino group is constrained to lie in the 

plane have a much shorter C-NR2 bond length. [XV], [XVI], and [XIX]

Table 4.17 Summary of calculated structural data, heats of formation and dipole moments for fully 

optimised gas phase AMI structures o f [XV],and [XVI] and [XIX].*

bond lengths/ A bond angles (°) AHf p

Dye n ’-c2 Cs-N* N*-N' Nv-C“ Cy-Nle> N16-0 1V Ch-N13 n 16-o ^ C'l^N7 N^N'C8

[XV] 1.392 1.421 1.234 1.414 1.469 1.200 1.460 1.200 120.59 119.12 -51.77 6.77

[XVI] 1.381 1.402 1.241 1.410 1.471 1.200 122.39 118.46 70.69 7.04

[XIX] 1.397 1.422 1.232 1.416 1.458 1.201 122.27 119.27 -155.61 7.21

torsion angles (°)

c 19n 'c2c3 C25N'C2C15 CJ4C5N*NV C4C5N<7M/ C^N^'C8 N6N /C8Cy hrN C S c 12c !1n i:O15 C ^ C V 'O 18

[XV] -2.1 12.6 3.0 -178.0 -179.1 46.7 -138.7 33.4 32.8

[XVI] 13.3 14.6 -7.3 173.7 179.7 1.8 -177.1 56.1 53.5

[XIX] -14.3 3.7 -0.9 178.6 -179.4 46.4 -139.7 0.3 -

*For key see Table 4.12

Table 4.18 Summary of calculated structural data®, heats of formation and dipole moments for 

constrained15 AMI geometry optimisations (heavy atoms o f the azobenzene moiety and atoms 19 and 

25 constrained to lie in the same plane) o f structures [XV] and [XVI] and [XIX] in the gas phase.*

bond lengths/ X bond angles (°) torsion angles (°) AHf \x

~Dye W ^C 1 C'-N* N°-N7 Nv-C" Ĉ -Nlb N10-Olv CU-N1J Nlb- 0 1V C ¥ N ' N^N'C8 CT7CTW 3OTT_CT0C9NIW ?

[XV] 1.389 1.418 1.237 1.413 1.477 1.461 120.79 120.59 69.7 69.4 -51.25 6.3

[XVIJ 1.381 1.414 1.239 1.427 1.487 1.201 1.421 122.54 118.38 58.4 56.0 71.13 7.2

[XIX] 1.397 1.418 1.234 1.414 - - 1.459 1.201 122.91 119.36 0.2 - -155.85 7.0

*For key see Table 4.12
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Table 4.19 Summary of calculated structural data, heats of formation and dipole moments for fully 

optimised AMI structures of [XV] and [XVI] and [XIX] in solvent (EPS=32.7).*

bond lengths/ A bond angles O  AHf \x

Dye N1 -C2 C^N6 N*-N7 N7-C* Cy-N16 N16-0 1V Cu -N13 N16- 0 17 C5! ^ 7 N W

[XV] 1.395 1.425 1.233 1.421 1.452 1.205 1.442 1.207 120.53 118.56 -98.87 5.83

[XVI] 1.376 1.417 1.235 1.419 1.442 1.207 - - 121.05 118.96 37.67 7.691

[XIX] 1.392 1.437 1.227 1.425 1.439 1.208 - - 120.39 119.51 -194.99 9.28

torsion angles (°)

c ^ W c 1?  C'"N'C:|C15 c W n 7 c ^ c W  c W ?  n W c 5 n W s 11 CiaC“Nl3Ol5 c W

[XV] -14.7 6.8 -13.9 167.8 -178.5 46.2 -137.0 33.0 33.5

[XVII 10.6 12.4 -21.8 161.0 - 32.6 -149.3 -0.9 36.2

[XIX] -5.4 3.0 -57.4 - 178.9 59.7 -127.8 -0.5

♦For key see Table 4.12

Table 4.20 Summary of calculated structural dataa, heats of formation and dipole moments calculated 

bond lengths for constrained AMI geometry optimisations (heavy atoms o f the azobenzene moiety 

and atoms 19 and 25 constrained to lie in the same plane) o f structures [XV] and [XVI] and [XIX] in 

solvent (EPS=32.7).*

bond lengths/ A bond angles (°) torsion angles (°) AHf H
Dye N*-C2 c5-n* N*-N; C ^ 16 n I6-o 17 Cu-N13 n 16-o 17 cV n ; nV c* CJ2CuNuOi:> C CTn O

[XV] 1.387 1.421 1.235 1.416 1.466 1.202 1.442 1.207 120.6 119.44 -75.2 -75.7 -106.63 8.2

[XVI] 1.375 1.411 1.237 1.415 1.464 1.442 121.65 119.24 -0.3 68.8 39.03 9.3

[XIX] 1.389 1.411 1.231 1.414 - - 1.438 1.208 124.42 119.32 -0.3 - 188.84 10.

♦For key see Table 4.12

Geometry

The geometry of the azothiophene dye [XV] has been previously determined by Morley at the AMI 

and PM3 levels of theory and also at the ab-initio STO-3G level.14 The STO-3G structure o f [XVI] 

has also been previously calculated.19 Both the AMI and PM3 methods o f calculation produced a 

twisted structure of [XV] where the thiophene ring was approximately orthogonal to the phenylazo 

group. This compares to torsion angles o f 46° between the thiophene ring and the phenyl azo group in
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structures calculated in this work. The PM3 C-S, -N=N- and C-NC>2 bond lengths of 1.73, 1.25 and 

1.49 A respectively, were consistent with Morley’s results. The STO-3G structure was essentially 

planar as was the STO-3G structure of [XVT|.
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Rotation calculations

From the AMI calculated structures of these donor-acceptor dyes, it is clear that both planar and 

twisted geometries are energetically viable for some dyes, with energy differences between planar 

and twisted structures of around 0 to 1 kcal m of1 The visible spectra of azo dyes in solution contain 

broad absorption bands, suggesting the presence of several conformers. It is therefore possible that 

there are a number of conformations of the ground state molecules that have similar energies. The 

effect of modifying the torsion angle of one of the phenyl rings of the dye on the heat of formation 

should indicate the geometries of the more stable conformers. Starting from the optimised planar 

conformer of dyes [IX], [XIV], [IV] and [XV] in methanol, the donor or acceptor phenyl ring was 

rotated by 360° by modifying the torsion angle CI4-C5-N6-N7 or N6-N7-C8-C9 in steps of 2°. The 

heat of formation produced after each 2° rotation can then be plotted against the angle of rotation of 

the phenyl ring. The effect of rotating the donor ring or the acceptor ring for [IX] is shown in Figure 

4.9. The original flat structure is an energy minimum, and any rotation o f the donor phenyl ring, 

from this minimum energy conformation, results in an increase in the heat of formation. Rotations of 

the donor phenyl ring by up to 30° result in AH/ increases of less than 1 kcal mol'1, but rotations 

beyond 30° give a steep increase in AH/; with structures where donor phenyl ring is twisted by 

between 90° and 280° having the highest energies of just over 60 kcal mol'1.

—•— Acceptor ring 

—1—  Donor ring

60

o
E

58

0 50 100 150 200 250 300 350

Angle of rotation/ degrees

Figure 4.9 Changes in heat of formation with angle o f rotation of the donor and acceptor phenyl 

rings of [IX] in methanol.
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The changes in the heat of formation with rotation of the acceptor phenyl ring (Figure 4.9) are more 

gradual than for the donor phenyl ring. For rotations up to 30° in either direction, the heat of 

formation is essentially the same as for the minimum energy optimised structure. From 40° to 90° 

the energy rises approximately 2 kcal mol'1, and the highest energy conformation occurs at a ring 

rotation of 180°. This information suggests that the planar conformation of [IX] is the most stable 

geometry, but rotations of the acceptor phenyl ring, o f up to 30° are energetically feasible. Larger 

rotations and rotations of the donor phenyl ring are predicted to be unfavourable.

The variation in the heat o f formation with rotation o f the acceptor ring of the 4-di(p- 

hydroxyethyl)aminoazobenzene [XIV] which does not contain an electron withdrawing substituent, 

produces a similar shaped curve to that of the 4'-nitro substituted dye [IX], but the curve obtained 

from rotation of the donor ring is slightly different. The shapes of the curves for 4-di(P- 

hydroxyethyl)amino-4'-aminoazobenzene [XI] are almost identical to those of [XIV]

85

Q 65

50 "I-------------------1-------------------1------------------- 1------------------- 1------------------- 1------------------- 1-------------------1—
0 50 100 150 20) 250 300 350

Angle of rotation

Figure 4.10 Changes in the heat of formation of [IV] in methanol with rotation of the donor or 

acceptor phenyl rings

The change in the heat of formation with rotation of the donor ring of [IV] (Figure 4.10) is very 

similar to that for [IX], However, rotation of the acceptor ring produces a different shaped curve.

Here, rotations of the ring by up to 130° in the positive direction and 100° in the negative direction
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and produce an increase o f less than 3 kcal mol'1. Between 120 and 195°, there is a sharp increase in 

the heat o f formation by almost 20 kcal mol'1.

From 195 to 260°, the heat of formation falls to around 60 kcal mol'1. This curve suggests that 

rotations o f the acceptor ring by 120° in the positive direction and by 100° in the negative direction 

are energetically feasible, but rotations beyond this produce a large increase in the heat of formation 

and are highly unfavourable.

Rotation of the 2’-nitro group

Dyes that contain the 2'-nitro substituent, usually have the nitro group rotated by anything between 

25° and 90° out of the plane. The effect of rotating the 2'-nitro group on the heat of formation of the 

dye can be calculated in a similar way to the rotation of the phenyl rings. The variation in the heat of 

formation with the rotation of the 2'-nitro group for [IV] is shown in Figure 4.11.

^  60

56 4 T T
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Figure 4.11 Changes in the heat o f formation of [IV] on rotation of the 2'-nitro substituent.

The minimum energy is produced at rotation (torsion) angles of 301.9° (-58 .1°) and 58.9° out of the 

plane and the most energetically unstable conformations are at 0 and 180, i.e. when the nitro group is 

in the plane.
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Rotation of the N-alkyl amino group produces very unfavourable energy changes and the most stable 

structure has a planar conformation of the N-alkyl amino group, which is not surprising as the lone 

pair electrons of the nitrogen atom of this group interacts with the k system of the rest o f the dye to a 

greater extent in a planar conformation.

The azothiophene [XV] has a similar curve for donor phenyl rotation to the donor acceptor azo dyes. 

The curve produced by rotation the acceptor thiophene ring (Figure 4.12) is however, completely 

different. The minimum energy conformer has an angle of rotation o f 46.45° out of the plane. The 

heat o f formation o f the conformation where the thiophene ring is planer with the rest of the 

molecule, is 9-10 kcal mol'1 higher in energy than the most stable structure.
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Figure 4.12 Change in heat of formation on rotation of the acceptor thiophene ring of [XV],

These calculations suggest that rotations of the donor phenyl ring by up to 30° and the acceptor ring 

by up to 60°, in donor-acceptor azobenzenes, are energetically feasible. The nitro group is twisted 

out of the plane in the 2'-nitro substituted dyes and conformations where the nitro group lies in the 

plane are energetically unfavourable. In contrast, the most favourable conformation of 4'-nitro 

substituted dyes the has the nitro group coplanar with the rest o f the molecule.
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Chapter 5
Cis-Trans Isomerisation and 

Electronic Transitions 
of Azo Dyes
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Cis-trans isomerisation and electronic transitions of azo dyes

In the discussion that follows, the electronic properties o f azo dyes are examined. Also discussed is 

the cis-trans isomerisation reaction, which may have some relationship with the lightfastness 

properties of the dyes.

Cis and Trans isomers

Cis-trans isomerisation may be a means for the dissipation o f energy from the excited states o f 

azobenzenes1, and it is possible that the relative ease o f the dissipation o f electronic energy (via 

isomerisation) may be related to the lightfastness o f azo dyes. Azobenzene isomerises quite slowly 

and its cis isomer has a lifetime o f milliseconds in glycerol2. Donor acceptor azobenzenes isomerise 

much more quickly and the lifetime o f their cis isomers is very short in comparison to azobenzene 

itself.

Azobenzene

Structures of cis and trans azobenzene calculated by Nandita and Umpathy3 at ab initio level using 

density functional theory (DFT) were found to be in good agreement with crystal structures of 

azobenzene. Crystal structures for trans azobenzene, available on the Cambridge Structural 

Database4, have both phenyl rings o f the azobenzene slightly twisted out o f the plane o f the molecule 

by equal amounts. The torsion angles o f each phenyl ring with respect to the C4N5N6C7 plane 

(Figure 5.1) which has a torsion angle o f 0°, are reported in Table 5.1.

2— 3
// \  _
\  /  X _ /  \

\  /

1' 'A----N5̂  8-----9
4 1 = 1 3  N°— 7 \  10

21 11

Figure 5.1 Numbering convention for azobenzene.
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Table 5.1 Structural dataa for crystallographic and calculated structures o f trans-azobenzeneb and 

cis-azobenzene°.

Bond lengths Bond angles Bond Torsions
Structure Azobenzene CTN5 N'-N6 c*c4n 5 C13C4N5 (PnV ’ c 13c 4n V c V n  6 c ; N'N6 C7CS

Structure

Transb CSDd

AZOBENOlb 1.433 1.243 115.50 124.10 113.58 18.2 0 -18.2

AMl/PM3b
AMP 1.436 1.231 115.36 125.33 119.73 0 180 0
AMl/COSMOf 1.440 1.228 117.24 123.10 119.29 -43.4 180 43.4

PM38 1.447 1.232 115.31 124.41 119.89 -0.6 180 0.6
PMS/COSMO*1 1.452 1.227 117.53 121.30 119.12 -63.5 180 -63.5

Cisc CSDd
AZBENC 1.494 1.170 114.60 125.62 122.82 -39.2 -27.1 136.8

AZBENC01 1.443 1.251 117.35 122.46 121.93 -57.0 -7.7 130.6

AMl/PM3b
AMP 1.442 1.204 118.05 122.53 129.23 -48.6 -2.3 137.0

AMI/COSMO5 1.439 1.206 118.06 122.28 129.44 -49.4 -2.3 135.6

PM38 1.453 1.216 119.75 119.25 126.65 96.6 0 -89.3

PM3/COSMOh
a n  J  1 -

1.453 1.219 120.27 118.42 126.66
j -  ' d

107.0 -0.2 -78.1

8 Bond lengths in amstrongs, bond angles and torsion angles in degrees. d Codenames of crystal structures taken from 

reference 4 .e Full AMI optimisation in the gas phase.f Full AMI optimisation in methanol.8 Full PM3 optimisation in 

the gas phase. h Full PM3 optimisation in methanol.

Trans azobenzene

Crystal structures o f trans azobenzene have both phenyl rings twisted out o f the plane by between 5° 

and 20°. In contrast to this, gas phase optimisations o f any o f these crystal structures by the AMI 

and PM3 methods yield completely flat and almost planar structures respectively. However, AMI 

and PM3 optimisations o f crystal structures in methanol gives a calculated azobenzene structure 

where each phenyl ring is twisted out o f the plane by 43.4° Torsion angles found in the crystal 

structures probably result from packing forces which are not present in solution or in the gas phase. 

Thus some differences between calculated structures and crystal data is not surprising.
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Cis-azobenzene

The crystal structure of cis azobenzene (AZBENC01)4, is shown along with the MOP AC AMI and 

PM3 optimised structures in Figure 5.2.

PM3 AMI

4 %

-I
- j

to

J — Z> *  %

CRYSTALLOGRAPHIC

STRUCTURE

Figure 5.2 A comparison of the crystallographic structure AZBENC01 with cis azobenzene gas 

phase structures calculated using the PM3 and AMI methods.

The AMI optimised geometry is quite similar to the crystal structures for cis azobenzene except it 

has both phenyl rings twisted by approximately 47° compared with 39.2° in the crystal structure 

AZOBENC and 57° for crystal structure AZOBENCOl/ The PM3 structure however, has both 

phenyl rings twisted by approximately 80° in the same direction. The structures of cis-azobenzene 

optimised in methanol are very similar to those optimised in the gas phase.

Angles refer to the torsion angle C^CTvfN6



Cis-trans isomers of Aminoazobenzene and a donor acceptor azobenzenes

The AMI calculated structures of 4-aminoazobenzene and the donor acceptor dye, diethylamino-4- 

nitroazobenzene [XJ, have similar bond lengths to those of cis azobenzene. However, the torsion 

angles of donor and donor-acceptor azobenzenes are significantly different to those of azobenzene 

itself (compare Figure 5.2 to Figure 5.3). In methanol and gas phase optimised structures, the donor 

phenyl ring is twisted out of the plane by 23-26°, whilst the acceptor ring has a much greater twist of 

between 78° and 90° in 4-aminoazobenzene and [X] respectively.

Cis 4-aminoazobenzene

Cis - [X]

Figure 5.3 Calculated AMI structures of the Cis isomers o f 4-aminoazobenzene and 4- 

dimethylamino-4'-nitroazobenzene [XJ.

The mechanism of cis-trans isomerisation of donor-acceptor azobenzenes has been examined by 

Shaabani and Zahedf using the AMI and PM3 methods. They calculated the energy barrier for the 

inversion and rotation o f the donor and the acceptor phenyl rings of 4-dimethylamino-4'- 

nitroazobenzene, and also the difference in energy between cis and trans isomers o f some substituted
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azobenzenes. The trans isomers were found to be more stable than the cis by between 0.5 and 5 kcal 

mol'1 by the PM3 method. However, the AMI method predicted the cis form to be 1.6-6.3 kcal mol'1 

more stable than the trans isomer. Shaabani and Zahedi calculated the energies in the gas phase only. 

In the current work, the heats of formation, AH/; o f some other cis and trans azobenzenes were 

calculated by the AMI and PM3 methods in the gas phase and in methanol, and the energy 

differences between the cis and trans isomers o f each molecule are compared in Table 5.2.

Table 5.2 Heats of formation of Cis and trans isomers o f azobenzene, 4-aminoazobenzene, 4-amino- 

4-nitroazobenzene [VllIJ, 4-diethylamino-4’-nitroazobenzene [X] and 4-(N-diethyl, N-J3- 

hydroxyethyl)amino-2-nitroazobenzene [TV].

AMI PM3

Gas phase structures5 Cis Trans AE(Cis-Trans) Cis Trans AE(Cis-Trans)

Azobenzene 95.28 99.89 -4.61 92.79 90.55 2.24

4-aminoazobenzene 92.82 97.42 -4.60 90.3 87.9 2.40

[VIII] 96.43 101.15 -4.72 81.74 79.45 2.29

[X] 96.52 99.97 -3.45 70.92 66.99 3.93

[IV]

Methanol structures0

54.16 55.81 -1.64 34.04 28.35 5.69

Azobenzene 85.29 91.75 -6.45 84.17 84.12 0.06

4-aminoazobenzene 77.32 84 -6.69 84.12 78.36 5.76

[VIII] 72.7 79.18 -6.48 52.11 51.81 0.3

[X] 74.21 81.48 -7.27 42.04 40.79 1.25

[IV] 26.13 31.95 -5.82 -3.16 0.92 -4.08

a AH/ is the heat of formation in kcal mol'1. b Full optimisations in the gas phase.0 Full optimisations in methanol. d 

AE(cis-Trans) is the heat of formation of the trans isomer subtracted from the cis isomer.

The heats o f formation for AMI optimised cis-azobenzene are lower than for trans-azobenzene, both 

in the gas phase and in methanol. For PM3 optimised structures, the trans isomer has a lower heat o f 

formation than the cis isomer in the gas phase, whilst in methanol, the heats o f formation o f both 

isomer are almost identical. The difference in the heat o f formation o f the cis and trans isomers o f 4- 

aminoazobenzene and 4-amino-4'-nitroazobenzene are similar to that o f azobenzene, for AMI 

calculations in the gas phase and in solvent and for PM3 gas phase calculations. The PM3 methanol
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optimised trans 4-aminoazobenzene structure is 5.76 kcal mol’1 more stable than the cis isomer, 

while for 4-amino-4'-nitroazobenzene and azobenzene, the energy difference between cis and trans 

isomers is very small (0.30 kcal mol'1 for the AMI method and 0.06 kcal mol'1 respectively). The 

energy differences are quite similar for dye 20, but for dye 4, the AMI method predicts a slightly 

smaller energy difference between its cis and trans isomers, whilst for the PM3 method the trans 

isomer is 5.7 kcal mol'1 in the gas phase, but in methanol, the cis isomer is more stable by 4.1 kcal 

mol'1. Results of these calculations in gas phase are consistent with those of Shaabini and Zahedi5, 

who reported good agreements between PM3 and experimental data, but AMI results that were 

contrary to all experimental evidence. However, results o f PM3 calculations in methanol do not 

show any apparent trend.

The small difference in the heats o f formation between cis and trans isomers, indicates that fast inter­

conversion between the cis and trans isomers o f the donor acceptor dye may be possible. The rate of 

inter-conversion will also depend on the barrier height between the cis and trans isomers. The 

activation energy for cis-trans isomerisation in n-heptane was reported to be much lower for 4- 

amino-4'-nitroazobenzene than for azobenzene6 and Shaabini and Zahedi5 calculated that a donor- 

acceptor azobenzene had a lower energy barrier to rotation than an aminoazobenzene which, in turn 

had a lower energy barrier than azobenzene. I f  the mechanism of cis-trans isomerisation involves 

rotation o f the acceptor phenyl ring then the lower energy barrier and similar energies o f the cis and 

trans isomers would suggest easier inter-conversion between isomers for 4-amino-4'- 

nitroazobenzene than for azobenzene or 4-aminoazobenzene. It has been suggested that there is a 

connection between the rate o f cis-trans isomerisation and lightfastness, with dyes that undergo rapid 

isomerisation having high lightfastness.7 Gas phase PM3 cis-trans energy differences were highest 

for [IV] which also had poor lightfastness relative to the other azo dyes. However, AE(cis-Trans) in 

methanol and AMI results in the gas phase and in methanol showed no apparent relationship with 

lightfasness. It may be the case that the energy barrier to rotation or inversion is the more important 

parameter in determining the rate o f isomerisation. The effect o f solvent on the rate o f isomerisation 

o f donor acceptor azobenzenes is to increase the rate in more polar solvents.8 In aprotic solvents, 

this is due to stabilisation o f a dipolar transition state via a non-specific dielectric effect, and in 

protic solvents, the transition state is also stabilised by a specific hydrogen bonding interaction 

between the solvent and the nitro group o f the dye. The effect of solvent on the mechanism o f cis- 

trans isomerisation has been examined at the ab initio STO-3G level by Kikuchi9 (see introduction).
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Calculated electronic spectra

Spectroscopic calculations on dyes [I]-[XIX] have been performed using the CNDOVS method.10 

The calculated visible absorption band and higher energy absorptions are assessed and compared to 

experimental data.

The geometry of azobenzenes has a significant effect on their electronic transitions. For 

example the electronic absorption spectrum for trans azobenzene is quite different to that of cis 

azobenzene. In the essentially planar trans azobenzene, there is a weak long wavelength absorption 

at 444 nm, attributed to a symmetry forbidden n-7i* transition by Griffiths11. A second absorption 

band at 316 nm is suggested to originate from an allowed tz- tz*  which is much more intense than the 

band at 444 nm. The extinction coefficient for the n-n* band at 444 nm is higher than would be 

normally expected for a symmetry forbidden transition and this is attributed by Griffiths to arise 

from coupling between the n-7t* and k-k* states which are close together in energy.

In cis-azobenzene the lone pair orbitals overlap in such a way that the n-rc* absorption is 

symmetry allowed, resulting in an n-7r* absorption o f much greater than in the trans isomer. Griffiths 

also ascribes the high intensity o f the n-7t*  band in cis-azobenzene to coupling between n-7c* and t z -  

t z *  states. Hartmann also concludes from PPP-type calculations that mixing between n orbitals and t z  

orbitals in the non planar cis-conformation o f azobenzene, results in the long wavelength n-7t*  

transition gaining intensity from allowed t z - t z *  transitions.12 The positions o f the high energy 

transitions in cis-azobenzene are also said to be affected by the mixing o f the n-7C* and t z - t z *  wave 

functions and this is the explanation given for the spectral differences mentioned above. This is an 

extreme example o f how different geometries cause differences in absorption spectra, as cis and 

trans azobenzene have very different geometries. The nature o f the transitions involved in the 

calculated electronic spectra o f donor-acceptor azobenzenes,13 have been investigated by an analysis 

o f molecular orbitals, similar to that performed by Akaba et al. on benzylideneanilines using the 

CNDO/S method.13

Spectroscopic calculations on azo dyes using the PPP methods have produced good agreement with 

experimental data.14,15 However, the PPP method is usually only applicable to planar structures and 

is therefore inappropriate for calculations on some o f the non-planar structures produced by AMI 

and PM3 geometry optimisations.

Single electron configuration interaction (C.I.)

Transitions energies calculated by the CNDOVS method for the visible absorption band of

some donor-acceptor azobenzenes by Charlton et al. correlated well with experimental data.16 The
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CNDOVS method was therefore used to perform spectroscopic calculations on planar and non- 

planar geometries o f [I]-[XIX]. CNDOVS is a single C.I. all valence electron method parameterised 

for dyes and pigments and based on the CNDO/S method.17 While the default CNDOVS calculation 

produces the first 50 excited states from single electron transitions, it can be adjusted to give the first 

200 states. The method calculates energies for transitions from the ground state to each excited state, 

along with the oscillator strength of each transition. In these studies, only transitions with an 

oscillator strength above 0.05 have been considered, as transitions with smaller oscillator strengths 

than this are thought to be insignificant (these transitions have a low probability of taking place). An 

analysis of each excited state shows which molecular orbital transitions are involved in each excited 

state. For example, the first excited state may consist o f the HOMO —► LUMO plus a contribution 

from the HOMO —► LUMO+1 transition etc. There are usually small contributions from other orbital 

transitions, but in general the HOMO —► LUMO transition is the largest contribution. The general 

expression for an excited state Sn takes the form of Equation (5-1),

S n  = 3-1 M^HOMO—►LUMO &2U^HOMO—►LUMO+1 + <*3M^HOMO-1 —►LUMO + --------------- Equation (5-1)

were ai-a„ are the weighting coefficients.

The origin o f each electronic transition can be found by considering the molecular orbitals involved, 

which may have contributions from s, px, py, and pz atomic orbitals on individual atoms in the 

molecule. In general, the electronic spectra for conjugated systems arise mainly from the pz 

component, or n type orbital. If  however, there are contributions from s, px, and py, o f nitrogen 

atoms, then the orbital may originate from the lone pair electrons o f nitrogen atoms and thus have n- 

type character. Electronic transitions may therefore, be k-k* or n-rc*, but often the situation is more 

complicated than this, and transitions may be a mixture o f n-n* and n-n*. Only the first three excited 

states in each calculation, with significant oscillator strength, have been considered as the method is 

not reliable for short wavelength UV absorptions. Initial calculations were carried out on the 

simplest donor acceptor structure considered in the present studies, 4-amino-4'-nitroazobenzene, 

with two values o f the spectroscopic constant, at 0.65 or 0.58 as in previous studies.16 The 

spectroscopic constant distinguishes between the core Hamiltonians for a  and n orbitals (Equation 

(5-2) and Equation (5-3) respectively).

= h (jK + K  Equation (5-2)

H * = + P° Equation (5-3)
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Px and Pq are empirical bonding parameters on atoms A and B and S* is the overlap integral 

between orbitals (|)i on atom A and <J>k on atom B.

Electronic transitions of 4-amino-4’-nitroazobenzene [VlllJ optimised in the gas phase

Transition energies for optimised structures o f [VlllJ are given in Table 5.3.

Table 5.3 Calculated transition energies and oscillator strengths o f [VlllJ using the CNDOVS 

method.

Structure Ka Excited state X f
[VTlI]a 0.65 2 389.92 1.26

5 304.89 0.13
9 264.94 0.11

[vmja 0.58 2 425.3 1.14
5 332.1 0.09
8 289.5 0.07

[Vmjb 0.65 2 396.5 1.14
4 303.7 0.11
9 261.6 0.12

[vmjb 0.58 2 433.3 1.02
5 331.6 0.07
9 289.6 0.16

a K is the spectroscopic constant. b X is the wavelength in nm. c/ i s  the oscillator strength. [VIII]a is an AMI gas phase 

optimised structure with heavy atoms constrained to lie in the same plane. [VIII]b is constructed from the crystal 

structure HOMEW4.

The transitions of the constrained AMI gas phase structure [VlllJb are made up predominantly of 

the excitations given in Equation (5-4)-Equation (5-6).

S i ”  \\f2 =  0 .97 (1)45-46 Equation (5-4)

S 3 =  Vj/ 9  =  -0.83(|)43-46 -0.45<J)45_47

S2 V5 -0.23(1,40-46 >0.94(1)45-49 Equation (5-5)

Equation (5-6)

The first excited state Si arises from a HOMO to LUMO (45-46) excitation with S2 and S3 made up 

primarily excitations from molecular orbitals 45-49 and 43-46 respectively. An analysis o f the 

contributions to molecular orbitals from each atom showed that the HOMO and LUMO orbitals, 45 

and 46, are exclusively k  in character and therefore the 45-46 transition is k - k * .  The second and 

third transitions involve orbitals occupied orbitals 40, 43, 45 and unoccupied orbitals 47 and 49. All
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of these molecular orbitals contain only pz atomic orbital contributions and thus all transitions 

involved in states Si, S2 and S3 are k-k* in nature.

Electronic transitions in 4-(N-|3-hydroxyethyl, N-ethyl)amino-4'-nitroazobenzene [IX]

The transition energies and oscillator strengths are predicted by the CNDOVS program for the 

constrained planar AMI optimised structure o f [IX] as shown in Table 5.4.

Table 5.4 Calculated transition energies and oscillator strengths o f [IX] using the CNDOVS method

(£=0.65).

State X/nm /

2 418.8 1.22

3 326.4 0.12

9 277.3 0.22

11 258.9 0.14

The states Si, S2 and S3 are primarily made up o f the excitations given in Equation (5-7) to Equation 

(5-8).

Si = v(/2 = 0.97(J>6o-6i

S* V3 -0.97<j>6o-64 Equation (5-8)

Equation (5-7)

s 3 = m/9 = -0.89<|>58-61 +0.29(1)60-62 Equation (5-9)

S4= V11 = -0.81<|>55_6i -0 .4 3 ( |)6 o-63 +0.22(1)60-65 Equation (5-10)

An analysis of the atomic orbital coefficients of each molecular orbital involved in the electronic

transitions o f this planar conformation o f [IX] showed that coefficients involving px or py orbitals

were close to zero and molecular orbitals were made up from pz components. This implies that the

molecular orbitals have rc-type character and all the transitions are k-k* in nature.

The results for the planar structures o f 4-amino-4'-nitroazobenzene [VIII] and 4-(N-p-hydroxyethyl,

N-ethyl)amino-4'-nitroazobenzene [IX] indicate that only k -k * transitions are predicted to have

significant oscillator strength, with transitions involving the molecular orbital o f n-type character,

having a low oscillator strength and consequently low probability o f occurring. However, the

CNDOVS method predicts some probability o f n-71* transitions occurring in non-planar structures.

The greater the degree o f twisting o f the phenyl rings out o f the plane, the greater the involvement of
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n-7t* transitions. This can be explained in terms o f overlap between the phenyl ring 7t-systems and 

the lone pair electrons of the azo nitrogen atoms. In a planar molecule, the lone pairs are orthogonal 

to the 7c-system, but as the molecule is twisted, the lone pairs can partially overlap with the phenyl 

ring 7c-systems. Overlap with the azo n electrons is subsequently decreased. The electronic 

transitions of these donor acceptor dyes involve a HOMO-LUMO transition for the first excited state 

and a HOMO to LUMO+4 transition for the second excited state. The groups attached to the amino 

nitrogen have quite a significant effect on the calculated wavelength o f donor acceptor azobenzenes 

and replacement of the amino group in [VlllJ by the aminoalkyl group, as in 4-(N-J3-hydroxyethyl, 

N-ethyl)amino-4'-nitroazobenzene [IX] and 4-diethylamino-4'-nitroazobenzene [X] results in a 

bathochromic shift o f around 30nm.

Introducing an additional electron donating substituent into the donor phenyl ring has the effect o f 

shifting the transition energies o f dyes to longer wavelengths, as is exemplified by the thiomethyl 

substituted dye, [I], which has a calculated transition energy o f 450nm (X=0.65) compared to an 

experimental value of 471nm obtained in cyclohexane. The bathochromic shift produced by 

additional electron withdrawing substituents on the acceptor phenyl ring is also reproduced in 

calculated spectra.

Table 5.5 Calculated spectra (K= 0.65) for constrained AMI optimised and freely AMI optimised 

structures of [I].

Structure Constrained optimised Free optimised

State A7nm f A7nm f

2 = Si 450 0.81 433 0.71

3 = S2 372 0.30 366 0.22

4 = S3 351 0.52 349 0.63

5 = S4 308 0.11 308 0.10

The contributions o f specific electronic transitions to each state Si, S2 and S3 for the planar structure 

((Equation (5-11) to Equation (5-13)) showed that the visible absorption band, at 450nm, is 

comprised mainly of a HOMO—►LUMO transition whereas the bands at 372 and 351nm involve 

predominantly HOMO-1—>LUMO and HOMO—»LUMO+l transitions respectively.
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Si =  0 .96<j>63-64 +0.18(|)62-64 "0.12<J>62-65 -0.124>63-66 -0 .1 1<|)63-65 Equation (5-11)

S 2 =  -0.87<{)62-64 -0.32<{>63-65 +0.234)62-65 -0.174)63-64 -0 .16(|)63-66 Equation (5-12)

S 3 =  0.83(J)63-65 +0.29(J)63-66 -0.33(J)62-64 + 0 .12(J>63-64 Equation (5-13)

The same electronic transitions (see Equation (5-14) to Equation (5-16)) are involved in the 

absorption bands at 433, 366 and 349nm of the non-planar, freely optimised structure, where the 

acceptor phenyl ring is twisted by ca. 30° to the plane o f the phenylazo group

S i =  -0.944>63-64 +0.204>62-64 -0.144)63-65 +0.134)62-65 -0.114)63-66 Equation (5-14)

S2 = +0.874)62-64 +0.424)63-65 +0.264>63-66 +0.254)62-65 -0.164)63-64 Equation (5-15)

S3 =  0 .724)63-65 -0.454)62-64 - 0 .214)63-68 +0.154)63-64 "0 . 114)62-65 Equation (5-16)

An analysis o f the atomic orbital coefficients for molecular orbitals 62-66 showed that molecular 

orbitals are comprised essentially of pz components in both structures. There is a large pz component 

originating from the amino nitrogen atom and also from the sulphur atom. There is also a small 

contribution to  orbitals 63-66 from dz orbital coefficients o f sulphur. The non-planar structure has 

only very small contributions to molecular orbitals from px and px orbitals, which contrasts with the 

large components of these orbitals in molecular orbitals o f azobenzene, indicating n-type character. 

It must be noted however, that the CNDOVS method is not reliable for predicting n-7t* transitions.

Azothiophene systems

The effect of replacing the acceptor phenyl ring by a heterocyclic thiophene ring has a pronounced 

effect on the predicted electronic transitions, with a large bathochromic shift observed relative to 

the azobenzene type dyes. The calculated transition energies for the visible absorption band are 

compared to experimental wavelengths in cyclohexane in (Table 5.6). In general the correlation 

between experimental data and calculated transition energies o f the azo dyes examined in this work 

is very good (Figure 5.4), although the predicted transition energies o f dyes with experimental 

absorption maxima in the region o f 600nm is significantly underestimated. Excellent correlations 

have been found by Morley18,19 between experimental data and transition energies calculated using 

spectroscopic constant (AM).46) for a heavily substituted azobenzene similar to [XVII] and the 

azothiophene dye [XV].
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Table 5.6 Comparison of experimental data with calculated transition energies for the visible 

absorption maxima of planar AMI structures of [I]-[XIX], listed in order o f increasing AmaX in 

cyclohexane.

Dye •̂max order Wnma A/nmb Wnmc

[vnu 1 389.9 425.3 395

[XTV] 2 402.1 410.5 400

[XI] 3 411.6 449.2 409

[m] 4 411.2 443 420

[vn] 5 414.6 446.3 423

[IV] 6 414.2 446 424

[XIII 7 410.5 443.6 434

m
8 424.9 456.6 433

[VI] 9 427.0 458.9 435

[DC] 1 0 418.8 452.0 447

[X] 1 1 418.2 451.8 457

m 1 2 430.9 465.0 461

[xni] 13 430.81 463.0 471

[i] 14 450.3 482.4 470

[XV] 15 490.7 528.3 561

[XVIII] 17 477.7 514.9 564

[XVTI] 18 480.3 518.3 600

[XVI] 19 525.6 568.8 606

a Transition energies calculated using the CNDOVS method with the spectroscopic constant at 0.65. 

b Spectroscopic constant set at 0 .5 8 .c Experimentally determined ‘kmaii values, obtained in  cyclohexane.
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Figure 5.4 Experimental absorption energies (^, nm) obtained in cyclohexane versus absorption 

energies (nm) calculated using the CNDOVS method with the spectroscopic constant set at 0.65 and 

0.58.

The effect of geometry on transition energies

The calculated transition energies of planar AMI structures have a much better correlation with 

experimental spectroscopic data than the twisted AMI structures (see Table 5.7), which produce 

shorter wavelengths, suggesting that in solution the geometry o f the dyes are likely to be planar.

As well as the degree of twisting in dye structures, the length of the azo -N=N- bond is critical in the 

calculation of transition energies as was previously established by Charlton et al16. Crystal structures 

of donor acceptor type azobenzenes (see Table 4.1), have N=N bond lengths in the range of 1.25 to 

1.29A, whereas the bond length in semi-empirical structures calculated in this work and in previous 

work by Charlton and Morley et al., is between 1.23 and 1.24A16. Morley also calculated a bond 

length of 1.278 for 4-dimethyl-4'-nitroazobenzene at the ab initio STO-3G level, but calculations in 

this work using the 3-2 1 G and 6-3 1 G basis sets gave shorter bond lengths of 1 .244 A. Spectroscopic 

calculations on a planar AMI structure of [IXJ with a bond length of 1.233 A  gave a transition 

energy of 420.8 nm (454.1 nm; K = 0.58 ; 200 states) ,while a structure with a modified N=N bond
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length of 1.27 A, gave a transition energy of 437nm (470nm; K  = 0.58 ; 200 states) which is even 

closer to the experimental value of 447nm.

Table 5.7 Transition energies and oscillator strengths for planar and non-planar conformations o f 

dyes calculated using the CNDOVS method.

Dye Geometry X/nma / A7nmb ?

[XI] Planar 416.2 1.39 449.2 1.23

[XU twisted 405.7 1.34 438.1 1.19

[XIV] Planar 403.4 1.16 433.8 1.06

[XIV] twisted 395.4 1.16 426.6 1.06

[IV] Planar 416.0 1.57 446.0 1.03

[IV] twisted 386.0 1 . 0 1 - -

[vm ] Planar 391.4 1.27 425.3 1.14

{vm\ Twisted 379.7 1.26 415.0 1.14

[IX] Planar 420.8 1.23 452.0 1 . 1 2

[IX] twisted 409.6 1 . 2 1 442.7 1 . 1 1

[XV] Planar 493.5 1 . 0 2 528.3 0.98

[XV]

a  / - ^ _ l ____j ____________• _

twisted 453.8 0.753 485.6 0.67

a Calculated using K = 0.65.  ̂Calculated using K = 0.58
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Multi-electron configuration interaction (C.I.)

The excited states examined so far have used the single electron C.I. CNDOVS method to give the 

transition energies and oscillator strengths from the ground state to each excited state. Analysis o f 

each excited state has also revealed the molecular orbital transitions involved in each excited state 

and the atomic orbital contributions to each molecular orbital. The atomic orbital contributions were 

used to designate molecular orbitals as n-type or 7c-type in character.

The above information, with the exception of predicted oscillator strengths, can be generated also 

from AMI C.I. calculations. The multi electron configuration interaction or MECI calculations 

involve both single and double excitations o f electrons (single electronic excitations involve the 

excitation o f one electron only, whereas double electronic excitations involve the simultaneous 

excitation of two electrons). The inclusion o f these double excitations has a the effect o f lowering 

the heat o f formation o f the excited state. The level o f stabilisation can be ascertained by restricting 

the calculation to include only single excitations by including the keyword CIS. If  this keyword is 

omitted then the both single and double excitations are included by default. The energy penalty when 

using only single excitations is very high compared to single plus double excitations for the first 

excited state and for the second excited state, because only a very small number of orbitals are 

involved. Triplet states can also be calculated with the MECI treatment . The effects o f solvent on 

the ground and excited states of molecules can be simulated in these calculations using the COSMO 

method. It is not possible to simulate these effects using CNDOVS.

The MECI treatment o f 4-(N-hydroxyethyl, N-ethyl)amino-4'-nitroazobenzene [IX] predicts the 

energies o f excited singlet and triplet states relative to the ground state, So (see Table 5.8). The 

lowest energy excited state is a triplet (Ti) . The next lowest state is a singlet (Si) followed by two 

triplet states, T2 and T3> which are calculated to be lower in energy than the second excited singlet 

state S2. 4-(N-hydroxyethyl, N-ethyl)amino-4'-nitroazobenzene has 120 valence electrons and 

therefore has 60 doubly occupied molecular orbitals. Orbital 60 is thus the HOMO with orbital 59 

the HOMO-1 and orbital 58 the HOMO-2. The unoccupied molecular orbitals 61, 62 and 63 are 

assigned as the LUMO, LUMO+1 and LUMO+2 respectively. To examine how the level o f Cl may 

affect the results for these calculations, the results o f calculations on [IX] using C.I = 4 and C.I. = 6 

are compared.
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Table 5.8 The first six states produced by a MECI (C.I.= 4) calculation on [IX].

State Spin Relative energy (eV)

1 Singlet 0 So

2 Triplet 2.71 Ti

3 Singlet 3.37 Si

4 Triplet 4.11 T2

5 Triplet 4.81 t 3

6 Singlet 4.85 s 2

The wave functions for each state, can be written in terms o f the electronic transitions that contribute 

to each state. These transitions are represented by xj/m, where m is the electronic configuration from 

each transition. The wave functions for the first five states are given in equations Equation (5-17) to 

Equation (5-22). The magnitude o f the coefficient in front o f each transition xj/m determines the 

contribution o f that transition state. For example, the first state So, is almost exclusively xj/i, whereas 

the second state Ti, has contributions from the transitions \j/2, xj/7, v|/3, V13, vj/4 and \|/i9. Only 

transitions which have coefficients larger than ±0 .1  are reported, as contributions from transitions 

with coefficients smaller than this are not of major significance to the state wavefunction and are too 

numerous to list as pointed out previously.

Equation (5-17) 

Equation (5-18)

Equation (5-19)

Equation (5-20)

Equation (5-21)

So = - 0.99V1/1

Ti = 

Si =

t 2 =

0.55\j/2 
+ 0.55\|/7 
- 0.61\)/2 

+ 0.61\j/7
- 0.41\|/3
- 0.41 vj/i3

+ 0.39xi/3 
+ 0.39xi/ i3 
- 0.29xi/3 
+ 0.29xj/ i3 
+ 0.56XJ/4 
+ 0.56x1/19

+ 0. 19xi/4 
+ 0.19x)/i9 
- 0. 15xj/4 
+ 0.15\j/ i9

- O.llxt/8

t 3 = 0.37\|/2 
+ 0.37\)/7

- 0.38\i/3
- 0.38xj/ i3

- 0.34x|/4
- 0.34xi/ i9

- 0.22xj/5
- 0.22xi/25

- 0.17xi/6
- 0.17x|/3i

s 2 = - 0.24v|/2 
+ 0.24\i/7

- 0.60xi/3 
+ 0.60xj/ i3

- 0.16xi/5 
+ 0.16xi/25

- 0.13xi/6 
-0 .1 3 xi/3i

+0.11x1/10
-0 .1 1 xi/20

A C.I. = 4 level calculation involves electronic transitions between two highest molecular orbitals 

and the two lowest unoccupied molecular orbitals, leading to 36 possible microstates or
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configurations. There are 20 singlets, 15 triplets and 1 quintet, produced by this evaluation. The 

electrons and orbitals involved in each transition vj/m in Equation (5-17) to Equation (5-22) are 

illustrated in Table 5.9. It is obvious from Table 5.9 that the transitions \j/2 and \j/7 involve the 

excitation of electron 1 and electron 2 respectively, o f the doubly occupied molecular orbital, but are 

otherwise identical as both involve a HOMO—►LUMO transition. As such these transitions are 

energetically equivalent. The configurations \j/3 and \\fu are similarly equivalent as are many o f the 

other configurations involved in each excited state wavefunction. Equivalent configurations are 

therefore grouped together. Note that the numbering system for electronic configurations was 

assigned arbitrarily by the MECI calculation and does not indicate the order o f energy for 

configurations. The representation o f the electronic configurations produced in the MOP AC output 

o f the MECI calculation20 (Table 5.9) gives no indication o f the spin multiplicity. It should be 

I pointed out therefore, that in the wavefunction o f triplet states, the coefficients in front o f

energetically equivalent configurations have the same sign, indicating that the spins o f the unpaired
I

electrons are the same, whereas in singlet states the coefficients have opposite signs, indicating that 

unpaired electrons have opposite spins.

|
[
; Table 5.9 Electronic configurations involved in the first six states produced by the MECI (C.I.=4)

treatment o f [IX] in order o f energy before configuration interaction.20

M .O Energy 59 60 61 62 Energy 59 60 61 62

W \ 0 1 1 0 0

1 1 0 0

¥ 2 4.07 1 1 0 0 V |/7 4.07 1 0 1 0

1 0 1 0 1 1 0 0

V3 4.54 1 1 0 0 V l3 4.54 1 0 0 1

1 0 0 1 1 1 0 0

4.75 1 1 0 0 V19 4.75 0 1 1 0

0 1 1 0 1 1 0 0

¥5 6.06 1 1 0 0 W25 6.06 0 1 0 1

0 1 0 1 1 1 0 0

W e 8.97 1 1 0 0 W31 8.97 0 0 1 1

0 0 1 1 1 1 0 0

W\o 10.48 1 0 1 0 W20 10.48 0 1 1 0

0 1 1 0 1 0 1 0

M'S 12.99 1 0 1 0

1 0 1 0
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The Ti triplet state is is predominantly comprised o f the states \j/2 and \j/7 involving orbitals 60 and 

61, that is a HOMO—►LUMO transition. The first excited singlet state Si is also made up largely 

from a HOMO—>LUMO transition, but also contains contributions from HOMO—>LUMO+l and 

LUMO-1 —►HOMO. The next state T2 is involves the HOMO—riLUMO+1 and LUMO-1—>HOMO 

transitions, while T3 also involves the HOMO—►LUMO, HOMO-1 —>LUMO+1 transitions and 

contributions from vj/6 and \|/3i, which are configurations involving double excitations. The second 

excited singlet state, S2, has a large HOMO—►LUMO+1 component and smaller components from 

both single and double excitations.

An analysis o f the atomic orbital coefficients o f these molecular orbitals showed that only the 

pz components were significant and all other components were close to zero, indicating that all four 

orbitals have n character and thus all electronic transitions may be assigned as 71-71*.

The C.I. =4 calculation only involves the two highest occupied and two lowest unoccupied 

orbitals, and may therefore be inadequate for the determination o f the second excited state, as this 

state may involve contributions from transitions involving other orbitals. Increasing the level o f Cl 

to C.I. = 6 to include the HOMO-2 and LUMO+2 orbitals increases the number o f microstates 

calculated to 400, and should give a more reliable prediction o f this state. The results for the C.I. = 6 

calculation on the AMI optimised structure of [IX] are now examined. The first six states and their 

energies relative to the ground state are given in Table 5.10.

Table 5.10 The first six states produced by a MECI (C.I = 6) calculation on [IX].

State Spin Relative energy (eV)

1 Singlet 0 So

2 Triplet 2.67 Ti

3 Singlet 3.32 Si

4 Triplet 3.94 t 2

5 Triplet 4.35 t 3

6 Singlet 4.60 t4

7 Singlet 4.72 s 2
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The C.I. = 6 calculation produces the following wavefunction for each excited state.

So = - 0.99vp, Equation (5-23)

Ti = - 0.55vi/2
- 0.55vj/2i

- 0.37x4/3
- 0.37vj/]3

- 0.21x4/5
- 0.21x4/81 Equation (5-24)

Si = + 0.61v|/2 
- 0.61v|/2]

+ 0.27x4/3 
- 0.27vy4,

+ 0.16x4/5 
- 0.16x1/8,

+0.11x|/22 Equation (5-25)

T2 = - 0.43v|/3
- 0.41V|/43

+ 0.51vf/5 
+ 0.51v|/gi

. 0.19x4/11 
- 0.19vy20i Equation (5-26)

T3 = 0.19vj/5 
+ 0.19v|/81 ■ 

1
0 

©

2 
* - 0.49x4/11

- 0.49x|/20,
- 0.42\j/,2
- 0A2\\/22i Equation (5-27)

T4 = - 0.47vj/4
- 0.47vj/61

- 0.48x4/7 
-0.48vj/12]

+ 0.19h/]3 
+ 0.19x|/24, Equation (5-28)

s2 = + 0.20vj/2 -0.59x4/3 -0.15xj/6 + 0.13v(/8 + 0.11v|/,2 - 0. 13x|/25 Equation ( 5-29)
- 0.20vj/2, - +0.59\|/4i +0.15v|/101 - 0.13xi/,41 - 0.11\j/22, + 0.13xj/82

The electronic configurations contributing to each state are displayed in Table 5.11.

Table 5.11 Electronic configurations involved in the first seven states produced by the MECI 

(C.I.=6) treatment o f [IX] in order of energy before configuration interaction.20

M .O  Energy (eV) 58 59 60 61 62 63 M .O Energy (eV) 58 59 60 61 62 63

Vi 0 . 0 0 1 1  1 0 0 0

1 1  1 0 0 0

V |/2 4.07 1 1  1 0 0 0 VK21 4.07 1 1 0 1 0 0

1 1  0 1 0 0 1 1 1 0 0 0

V j/3 4.54 1 1 1 0 0 0 M/41 4.54 1 1 0 0 1 0

1 1  0 0 1 0 1 1 1 0 0 0

M>5 4.75 1 1  1 0 0 0 M̂ i 4.75 1 1 1 0 0
1 0  1 1 0 0 1 1 1 0 0 0

M/ll 5.66 1 1  1 0 0 0 M/201 5.66 0 1 1 1 0 0

0 1  1 1 0 0 1 1 1 0 0 0

V 1 2 6 . 0 2 1 1  1 0 0 0 M/221 6 . 0 2  0 1 1 0 1 0

0 1  1 0 1 0 1 1 1 0 0 0

M>6 6.06 1 1  1 0 0 0 M̂ oi 6.06 1 1 0 1 0

1 0  1 0 1 0 1 1 1 0 0 0

y i/ 7 6.07 1 1  1 0 0 0 VK12 1 6.07 1 1 0 0 1

1 0  1 0 0 1 1 1 1 0 0 0

M/ 4 6.07 1 1  1 0 0 0 M/61 6.07 1 1 0 0 0 1

1 1  0 0 0 1 1 1 1 0 0 0

VK1 3 7.69 1 1  1 0 0 0 M/241 7.69 0 1 1 0 0 1

0 1  1 0 0 1 1 1 1 0 0 0

M/ 8 8.97 1 1  1 0 0 0 M̂mi 8.97 1 1 1 0 0 0

1 0  0 1 1 0 1 0 0 1 1 0

M/25 10.48 1 1  0 1 0 0 WS2 10.48 1 0 1 1 0 0

1 0  1 1 0 0 1 1 0 1 0 0

M ^ 2 2 12.99 1 1  0 1 0 0

1 1  0 1 0 0
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As in the C.I = 4 treatment of [IX], the lowest energy excited state was a triplet, followed by the first 

excited singlet Si. However, the C.I.=6 calculation predicted that the next three states were triplets 

T2, T3 and T4, all o f which were lower in energy than the second singlet S2. The Ti and Si states were 

predominantly comprised of HOMO-LUMO and HOMO—►LUMO+1 transitions, as before. The T2 

state arose mainly from a HOMO—>LUMO+l and HOMO-1 —►LUMO, T3 is composed o f HOMO- 

2—>LUMO and HOMO-2-^LUMO+l, and T4 has contributions from HOMO—►LUMO+2 and 

HOMO-1 —*LUMO+2 transitions. The S2 state is primarily composed o f a HOMO—>LUMO+1 

transition. There are obviously several differences in both the order o f the excited states and the 

transitions involved in these states using different levels o f C.I.

An analysis of the atomic orbital coefficients of the individual atoms involved in molecular orbitals 

58-63, showed that as before, only the pz component was significant, implying that all the transitions 

involved in these states were n-n* in nature.
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Chapter 6 Calculated dipole moments, transition energies and excited state properties 

of donor-acceptor azo dyes

The visible absorption maximum of a dye structure can be calculated, using the AMI method in the 

MOP AC package, from the energy difference between its ground and first excited singlet state. As 

was previously mentioned, the geometry of the dye has a large effect on its electronic properties and 

thus both the wavelength and the dipole moment will change significantly with changes in the 

geometry. The length of the azo bond, the torsion angles o f the phenyl rings, and the hybridisation o f 

the amino group are all critical, with in general, a shift to  longer wavelength for more planar dye 

structures. Slight torsional twisting o f the phenyl rings causes a slight hypsochromic shift o f Â ax- 

For example, the fully AMI optimised structure o f 4-(N-P-hydroxyethyl, N-ethyl)amino-4'- 

nitroazobenzene [IX], which has its acceptor phenyl ring twisted out o f the plane by 43° degrees has 

a calculated transition energy in methanol o f 487nm, compared to 507nm, for a planar structure 

where the heavy atoms were constrained to lie in the same plane. The difference in the heats o f 

formation between the twisted and planar ground state structures is quite small, with the freely 

optimised structure around lkcal mol'1 lower in energy than the planar structure. However, the 

planar constrained structure has a lower energy for the first excited state than the twisted structure, 

which results in a longer wavelength. These results are similar to those observed for transition 

energies o f twisted and planar structures calculated using the CNDOVS method. Crystal structures 

o f azobenzenes available on the Cambridge Structural Database1 are essentially planar and the 

transition energies, calculated using a MECI treatment on planar structures, are much closer to 

experimental values for the visible absorption maximum obtained in solution than transition energies 

calculated on twisted structure. This evidence suggests that in solution, the azo dyes are likely to 

adopt a planar conformation. Transition energies calculated for structures where the amino group is 

constrained to be completely planar are bathochromically shifted with respect to structures where the 

amino group is sp3 hybridised. Transition energies for dyes [I]-[XIX] in the gas phase, calculated 

using MECI (C.I.=4), (Table 6.1) occur at much shorter wavelengths, and show a poor correlation 

with experimental data obtained in cyclohexane.

The calculated dipole moments for ground state AMI structures show considerable variation with 

different substituents (Table 6.1). The dipole moments o f  the dyes are far higher than for all o f the 

other dyes examined in this work. Dipole moments o f 4-nitro substituted dyes are similar to the 

value o f 9.42 D calculated for the AMI structure o f 4-dimethylamino-4'-nitroazobenzene, optimised 

in the gas phase by Charlton et al, which overestimated the experimental value o f 8.1 D in dioxane.2

300



Table 6.1 Transition wavelengths and ground state dipole moments of [IJ-[XIX]

Dve n V\Mi/nma W n m ' Dye n ?iAM,/nma W n m 1'

(II 10.46 409.5 470 |XI] 2.17 36373 409

[HI 4.53 376.4 433 [XII] 8.21 379.6 434

[Oil 3.86 354.7 420 [XIII] 7.55 374.2 471

[IV] 4.40 390.1 424 JXIV] 3.03 365.4 400

[VI 4.89 407.9 461 [XV] 1 8.53 436.9 561

[VII 4.80 380.7 435 [XVI] 7.04 474.6 606

[VII] 6.63 390.4 423 |XVII |1 449.8 600

]V11I 8.40 384.7 395 1XVIII] 564

[IX] 8.20 378.4 447 [XIX] 561

1X 1 9.59 379.6 457

“ 2.  is the AM1/MEC1 calculated transition energy 1 Wh is the experimental visible absorption maximum obtained in 

cyclohexane.

The effect of solvent on the long wavelength absorption of the dyes

The inclusion of a solvent parameter in the calculation has a major effect on the predicted 

wavelength of the dyes. The calculated Amax values for some o f the dyes in different solvent fields are 

shown in Figure 6 .1 and can be compared with the corresponding experimental wavelengths (Figure 

6 .2 ).
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Figure 6.1 Visible absorption maxima, calculated using the AM 1/COSMO C.I. method, for |I] -[IX] 

at different dielectric constants.
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The calculated wavelengths of the dyes form a relatively smooth curve, with a large bathochromic 

shifts on increasing the dielectric constant through the range 2 to 24.6. Further increases in the 

dielectric constant produce a more gradual bathochromic shift. In contrast, the actual effect of 

solvents with increasing dielectric constants on the wavelengths o f the dyes results in a much more 

erratic curve The reason for this irregular curve is due to a dielectric effect and a separate hydrogen 

bonding interaction of protic solvents with the dyes (see Chapter 2). In initial theoretical calculations 

only the dielectric effect was explored.
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4 0 0
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Figure 6.2 Experimental visible absorption maxima of (I] -|IXJ obtained in solvents o f different 

dielectric constant.

From inspection of the experimental data (Figure 6.2), these azo dyes are positively solvatochromic, 

meaning that they undergo a bathochromic shift of the long wavelength absorption band in solvents 

of increasing polarity. The reason for this bathochromic shift is the differential stabilisation of the 

excited state over the ground state of the molecule, by polar solvent. For the azo dyes, the electronic 

excitation of the molecule on absorption of light involves a movement of charge in the molecule 

creating an excited state which is more polar in character than the ground state of the molecule. As a
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result, this polar excited state will be stabilised to a greater extent by polar solvents than non-polar 

solvents. The ground state is also slightly polar and will therefore be stabilised by polar solvent, but 

not to the same extent as the excited state. This explanation is illustrated by considering the change 

in heats o f  formation in o f  |IX] for the ground state and the excited state respectively, with 

increasing dielectric constant, shown in Figure 6.3.
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Figure 6.3 Changes in the calculated heats o f  formation (AH/) o f  the ground state So (see Figure 4.2), 

first excited singlet Si and second excited singlet S2 o f  [IX] with increasing dielectric constant.

The ground state (discussed previously in Chapter 4) and first excited state heats o f  formation are 

increasingly stabilised in more polar solvent. The greatest increase in stability is seen at low  

dielectrics, after which, the increase in stability is relatively small. For the second excited singlet 

state, the stabilisation in more polar solvents is much less pronounced.

The correlation between experimental data and calculated transition energies is much better in 

solvents o f  high dielectric constant than in the gas phase, and the correlation between experimental 

and theoretical wavelengths in methanol is quite good (Figure 6.4).
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Figure 6.4 Experimental absorption energies versus calculated absorption energies for visible 

absorption maxima o f (I] -[IX] in methanol. Absorption energies were calculated using the 

AMI/COSMO method at C.I = 4.

Initial calculations using C.I. = 4, on a set of nine dyes, gave good correlations with experimental 

absorption maxima obtained in methanol with the exception o f [V lllj and [IX[ (see Table 6.2). 

Calculations on the full set of 19 dyes at C.I. levels 4(Figure 6.5), 6  and 8  (Figure 6 .6 ) gave good 

correlation for some dyes, but others had poor agreement with experimental data. Some o f the 

effects of substituents were reproduced quite well. For example, dyes containing the nitro group at 

the 2' position were correctly predicted at shorter wavelengths than dyes containing the 4'-nitro 

group.

As it was explained in the introduction (Chapter 1, Section 1.2), the 2' and 4' positions on the 

acceptor ring produce similar electronic effects when the substituent groups are small, for example 

the cyano group produces a wavelength of 466 nm when it is at the 4' position and 462 nm when at 

the 2' position. The larger nitro group however, produces a much greater difference in the 

wavelength of the dye when at the 2' and 4' positions respectively. This is exemplified by comparing 

the absorption maxima of [IV] and [IX] in methanol. [IX] which has the nitro group at the 4' 

position has ^ma.x at 482 nm while [IV], which has the same structure except the nitro group is at the 

2 '-position has A,max at 440 nm. The 2 '-nitro group is o f course twisted and cannot exert the same
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electron withdrawing effect as the planar 4'-nitro group. The CN substituent on the other hand is 

linear and can exert its full effect at the 2' and 4' positions.
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Figure 6.5 Experimental absorption energies (X, nm) versus calculated absorption energies (nm) of 

the visible absorption maxima of [I] -[XIX] in methanol at C.I. levels 4.
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Figure 6.6 Experimental absorption energies (X, nm) versus calculated absorption energies (nm) of 

the visible absorption maxima of [I] -[XIX] in methanol at C.I. levels 6  and 8 .
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Investigations into the predicted transition energies of 4-am ino-4'-nitroazobenzene [VIII] and 

4-(N~P-hydroxyethyl, N-ethyl)amino-4f-nitroazobenzene [IX]

The two notable deviations o f the calculated wavelengths from the experimental curve in Figure 6.4 

were found for [V ffl| and [IX], with the predicted transition energies in methanol, too low. These 

dyes have been examined in greater depth to try and ascertain factors which may influence the 

predicted wavelength.

The Franck-Condon transition energies were calculated for several geometries including structures 

where all the heavy atoms and the amino group were constrained to lie in the same plane, and freely 

optimised structures, which have the nitrophenyl ring twisted by ca 37° to the plane o f the phenylazo 

group; the results o f these calculations are summarised in Table 6.2.

Table 6.2 Wavelengths o f constrained and freely optimised structures o f [V lllj and [IX] in 

methanol calculated using C.I. = 4 , 6  and 8.

Dye Structure AEa4 AEci6 AEcis "KaA ĉi6 ĉi8 a™*

[VIII] Constrained

optimised®

55.10 54.65 58.05 518.8 523.1 492.4 439

[v n u Constrained

optimised13

60.15 59.74 65.05 475.3 478.6 439.5

[vnu Freely

optimised0

60.86 60.75 67.47 469.7 470.6 423.7

[IX] Constrained

optimised8

56.36 56.61 58.77 507.3 505.0 486.5 482

[IX] Freely

optimised0

58.67 58.65 64.68 487.7

i  b

487.4 441.9

same plane apart from the amino group.c Twisted structures have the nitro-phenyl ring twisted by ca. 37° to the amino- 

phenylazo group. d is the experimental visible absorption maximum in methanol.

Transition energies of [VIII] and [IX] are much too low at C.I. levels 4 and 6, but values at C.I.=8, 

were close to experimental data. In fact several o f the 4-nitro dyes had calculated transition energies 

that had much longer wavelengths than experimental values.
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Hydrogen bonding effects of the solvent

It has been reported that that the dielectric solvent field used to simulate solvent effects in 

AMI/COSMO (EPS=32.7) calculations is insufficient to predict the behaviour o f dyes which have 

the capacity for hydrogen bonding in protic solvents.3,4 However, attempts to model the hydrogen 

bonding interactions between the methanol molecule and the azo dyes [VlllJ and [IX], were not 

particularly successful.

Hydrogen bonding interactions were simulated at the amino and nitro groups by applying MOP AC 

charges to the dye and methanol solvent molecules and then, using the DOCKING option in Sybyl5, 

manoeuvring the solvent molecule in a steric and electrostatic force field system to find the most 

energetically favourable position. As the solvent molecule is positioned near the dye, a combination 

o f potential and steric energies gives a total energy for the position o f the solvent. The more negative 

this energy is, the more energetically favourable is the position o f  the solvent in relation to the dye. 

The whole system of dye and solvent molecules can then be optimised in methanol using the 

AMI/COSMO method.

Transition energies o f [VIJJJ and [IX] with specific hydrogen bonding interactions produced even 

longer wavelengths than in the absence of docked solvent molecules at C.I. levels 4 and 6, but values 

at C.I.=8, were similar. This probably results from unrealistic interactions between the methanol 

molecules and the hydrogen atoms o f the aromatic rings and an overestimation o f the stabilisation o f 

the nitro group, which was also seen in the dielectric field model, but is exaggerated using this 

approach.

An indication o f the effect o f solvation on the electronic properties o f the dye is given by the ground 

and excited state dipole moments o f [V1H] and [IX] (Table 6.3) calculated in the dielectric field o f 

the solvent only. The ground state dipole moments o f [V ill] and [IX] do not change that much 

between gas phase and methanol (EPS=32.7). However, there is a very large increase in the dipole 

moments o f the excited state for the dielectric field solvent model.

Table 6.3 Calculated dipole moments*1 for the ground state and Frank-Condon first excited states of 

[V lllj and [IX],

Dye AMI/gas phase AMI/COSMO fEPS = 32.73
Mo M-ex P g Me x

9.42 13.39 13.13 35.37

[IX] 9.00 14.10 10.99 34.96

a mg i s  the ground state and pEX the excited state dipole moments in  Debyes.
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Figure 6.7 Charge distribution plots for the ground state (So), first excited state (Si) and second 

excited state (S2 ) of (VIII] optimised in methanol. Charges are represented by red spheres 

(positive) and blue spheres (negative), with the diameter o f the sphere proportional to the 

magnitude of charge on each atom.

Significant changes were also seen for charge distributions in the ground and excited states of 4- 

amino-4'-nitroazobenzene (VIII] in methanol (see Figure 6.7). Charge distributions are displayed by 

red and blue spheres, indicating areas o f positive and negative charge respectively. Note that 

different levels of C.I may produce different charge distributions, though C.I = 4 and C.I. = 6 charge 

distributions were found to be similar. Charge distribution plots shown refer to C.I. = 6  calculations 

unless otherwise stated. In the COSMO dielectric field model o f the ground state, there is a large 

negative charge on the amino nitrogen and a small negative charge on the nitrogen atom attached to 

the nitro-phenyl ring, whereas in the Franck-Condon first excited state, the charge on the amino 

nitrogen is much smaller and there is a small negative charge on the azo nitrogen attached to the 

amino-phenyl ring. There is a clear movement o f charge from the donor amino phenyl group to the 

acceptor nitrophenyl group. In the Frank-Condon second excited state, charge has moved from the 

azo nitrogen atoms onto both the donor and acceptor aromatic rings.
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[IX] -  s ,

Figure 6.8 Charge distribution plots for the ground state (So) and the Frank-Condon first excited 

state (Si) of structures [IX) and [IV] at C.I. = 6 in methanol.

The solvation model clearly affects the charges and dipole moments of the Franck-Condon Si state, 

with charge moving from the amino nitrogen atom in the ground state on to the azo nitrogen atoms 

in the excited state. The first excited state is much more polar than the ground state in both cases and 

polar solvents therefore give greater stabilization of the excited state relative to the ground state. 

This results in decreased transition energies leading to a bathochromic shifts of absorption bands.
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Effect of dye structure on charge distribution

The position and nature of different substituents on the dye greatly affect the charge distribution in 

the molecule. The charge distributions in gas phase and in methanol of 4-(N-(3-hydroxyethyl, N- 

ethyl)amino-4'-nitroazobenzene [IX| and 4-(N-|3-hydroxyethyl, N-ethyl)amino-2'-nitroazobenzene 

[IV] were very similar to those of the corresponding structures of [VIII].for the ground state (Figure 

6.8). In the Frank-Condon first excited state of [IXJ though, there is a change in the charge 

distribution, with a smaller negative charge on the amino nitrogen and greater negative charge on the 

azo nitrogen atoms than in (VIII]. In contrast to the 4'-nitro substituted dyes [VIII] and [IXJ, the azo 

nitrogen atoms in first excited state of structure [IV| had a small positive charge, illustrating the 

marked effect on the electronic properties of the 2'-nitro group (see Figure 6.8).

[IX[ -  So



However, the solvent models seem to overestimate this stabilisation, and the predicted bathochromic 

shifts are far too large for structures [V lllj and [IX],

I
I Prediction of the Franck-Condon second excited state

Photo-degradation of azo dyes takes place with UV irradiation below 350nm and this work has 

shown that irradiation of the second absorption band is primarily responsible for the permanent 

photo fading o f the dye (see Chapter l)6 in line with Albini’s inference that some higher lying state 

is involved in photo-degradation reactions7. It is important therefore, to consider the second excited 

state in the attempt to find some method for the prediction o f the lightfastness o f these dyes.

The energy required for the transition from the ground state o f the dye to its second excited state can 

be calculated also in MOP AC by configuration interaction (Cl) calculations. As in the calculation o f 

the wavelength o f the first excited state of the dye, a Cl calculation on the ground state must be 

performed. Since electronic excitation to the second excited state is again a Franck-Condon type 

transition, with no rearrangement o f the geometry in the time o f the transition, the ground state 

structure is also used for the calculation of the second excited state. The second excited singlet state 

is calculated using the keyword ROOT = 3.

Gas phase predictions of transition energies to the second excited singlet S2

Figure 6.9 shows the correlation between the MOP AC/AMI and CNDOVS predicted wavelengths 

and experimental wavelengths o f the dyes in cyclohexane for the second excited state. The 

CNDOVS method does not accommodate any parameters for the inclusion o f solvent effects and 

therefore is compared to gas phase AMI calculations and experimental values in cyclohexane, which 

is the closest approximation to experimental gas phase values available. Both the CNDOVS and 

AMI values are quite erratic and are predicted at much longer wavelengths than the experimental 

values for the second absorption band. However, the third predicted CNDOVS absorption energy is 

predicted to have similar wavelengths to the second experimental absorption band. Note that this 

third excited state often has slightly higher oscillator strength than the second excited state.
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Figure 6.9 Experimental absorption energies (X nm) o f the second absorption band o f [I]-[IX| 

obtained in cyclohexane, versus absorption energies (nm) calculated using the AMI (C.I.=4) and 

CNDOVS methods. The AM1/MECI absorption energies were for the second excited singlet state 

relative to the ground state, while absorption energies for the second and third excited singlet states 

predicted by the CNDOVS method are also compared.

Predictions of transition energies to the second excited singlet S2 in methanol

The absorption energies of the second absorption band of dyes [I]-[IX] calculated by the 

AM 1/COSMO method in methanol are much closer to experimental values than gas phase 

predictions (see Figure 6.10).
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Experimental

Figure 6.10 Experimental absorption energies (A., nm) of the second absorption band of [I]-[IX| 

obtained in methanol, versus absorption energies (nm) calculated using the AMI/COSMO 

(EPS=32.7) method at C.I =4.

CNDOVS calculations on 4-amino-4'-nitroazobenzene give the predominant excitations in S2 as the 

HOMO—> LUMO+3 and in S3 as a mixture of HOMO-2->LUMO and HOMO->LUMO+l, which 

are all n-n* transitions. If these CNDOVS calculations are correct and the second excited state 

involves transitions from the HOMO-2, then the C.I. = 4 calculations used for the MOP AC 

prediction o f the 2nd excited state may be inadequate. The C.I.= 4 calculations only take into account 

the two highest occupied and two lowest unoccupied molecular orbitals and calculates 36 possible 

states from excitations involving electrons in these orbitals.

The suggestion is therefore, that more orbitals are required for the accurate prediction of the second 

excited state. This means that to consider the second excited state fully requires a higher level of Cl 

calculation. Unfortunately, the MOP AC package available was limited to a maximum of C.I. = 6/8. 

Using a greater level of C.I. increased the number of possible electronic transitions that can be 

calculated. The effect of increasing the level o f Cl from 4 to 6 to 8, on the second excited state, is to 

shift the transition energies from 288 to 354 to 358nm respectively.
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Solvent effects on the second excited state

The effect of solvent on wavelength o f the second absorption band o f the dyes examined was much 

smaller than the shifts encountered for the first absorption band. The experimental shifts o f the 

second absorption band in moving from cyclohexane to methanol were between 5 and 15nm 

compared to a shift o f around 60nm for the first band.

The reason for this may be attributed to the orbital origins o f the second excited state. The first 

! excited state involves a charge transfer transition from the HOMO-LUMO, where there is a 

movement o f electron density from the donor end o f the molecule to the acceptor end, which can be 

clearly identified in Figure 6.7. The excited state that results from this transition is more polar than 

the ground state and is thus stabilised by polar solvent. This stabilisation produces a bathochromic 

shift o f the long wavelength absorption band when moving from non-polar to polar solvents.

Figure 6.7 shows negative charges on both the donor and acceptor phenyl rings o f [V lllj in the 

Frank-Condon second excited state, and small positive charges on the azo nitrogen atoms. There is 

not such a obvious movement o f charge from the donor to the acceptor end o f the molecule in this 

state and thus the second excited may be less polar than the first excited state and may consequently 

be stabilised to a lesser degree by polar solvents. This would result in a smaller bathochromic shift 

for the second absorption band compared to the first absorption band.
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Excited state geometry optimisations

The excited state species thought most likely to be involved in the permanent photo-degradation of 

the azo dyes is a high lying triplet. This high lying triplet is reached by intersystem crossing from 

the singlet state energetically above it, which has been proved to be the second excited singlet 

(Chapter 2), reached by a Frank-Condon type transition. This excitation process and the possible 

transitions that occur following this are illustrated in Figure 6.11.

Figure 6.11 Possible relaxation processes following excitation to the second excited state singlet 

state. The definition of the term for each state is given in Figure 6.12.
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• So is the ground state.

• Si* is the first excited singlet state after a Franck-Condon transition, and has same geometry 

as the ground state.

•  SiR is the relaxed geometry of the first excited singlet.

•  S2* is the second excited singlet state formed after a Franck-Condon transition and has same 

geometry as the ground.

• S211 is the relaxed geometry of the second excited singlet.

•  Ti* is the energy o f the first excited triplet state at the SiR geometry.

• T jR is the relaxed geometry of the first excited triplet.

•  T2* is the energy o f the first excited triplet state at the S2R geometiy.

• T2R is the relaxed geometry of the second excited triplet.

Figure 6.12 Definition of terms for ground and excited state species.

The Frank-Condon transition results in an excited state species, S2* which has the geometry of the 

ground state but an excited electronic configuration. As a result this species is likely to be highly 

unstable and will vibrationaly relax very quickly to a more stable geometry, S2R The S2* state, 

though highly unstable, is unlikely to exist long enough to undergo any reactions and the relaxed 

single S2R is also probably too short lived to react. Following vibrational relaxation, the S2R state 

may decay by internal conversion to the first excited singlet state and subsequently to the ground 

state, So, or alternatively internal conversion directly to the ground state may occur. There is also a 

small probability of intersystem crossing to an excited triplet state T2*. Intersystem crossing is most 

likely to occur when the vibrational level of the singlet coincides with the vibrational level o f the 

triplet state. This may occur at a point when the geometry o f the singlet has relaxed and is the same 

as the geometry of the triplet state8. Following intersystem crossing, the triplet can vibrationaly relax 

into the lowest vibrational state of the triplet T2R, where it is trapped until it either relaxes to a lower 

triplet state or it can undergo intersystem crossing to an energetically lower singlet state (see Figure 

6 . 11).

The triplet state T2* may be unstable and this state may be involved in photo-degradation 

processes, depending on whether it persists long enough to react. It is more likely that the relaxed 

triplet T2R is the reactive species as it should have a lifetime long enough to undergo a reaction. The 

experimental quenching o f the photo-degradation reaction by oxygen also suggests that the reactive
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species is a triplet. In addition, high lying triplets are said to have some probability o f abstracting
n

hydrogen from the solvent.

Relative energies of excited states

The rate o f photo-fading for each dye, may depend on one or more processes following excitation to 

S2*, including the lifetimes o f the S2* and S211 states, the rate o f intersystem crossing from S211 to T2* 

and the lifetimes o f the T2* and T2R states. The energy differences between either S2* and T2*, S2* 

and T2R, S2R and T2* or S2R and T2R may determine the rate of intersystem crossing.

The energies o f the S2*, S2R, T2* and T2R states have been calculated to explore possible mechanisms 

for photofading. The energy o f S2* was calculated from a single point, second excited state, MECI 

calculation on the ground state structure, while the structure and energy o f S2R was obtained from a 

| full geometry optimisation o f this state. A single point triplet calculation at the S2R geometry gave

} T2* and a further full geometry optimisation gave the relaxed structure, T2R. The energy gap between

I T211 and Ti may also have some bearing on the lifetime o f T2R, as it may determine rate of decay of
!

: T2R to Ti. The energy differences between these states are reported and a correlation with
I
| experimental data has been attempted. The effect of the size of the configuration interaction was also

explored using 4 to 8 frontier orbitals to ascertain whether the simple Cl used would be adequate for 

this study.

A detailed analysis o f the results of calculations performed on three dyes; 4-amino-4'- 

nitroazobenzene [VlllJ (the simplest example donor-acceptor azobenzene), 4-(N-p-hydroxyethyl, N 

ethyl)amino-4'-nitroazobenzene [IX], (an N-alkyl substituted dye containing the 4'-nitro group) and 

4-(N-p-hydroxyethyl, N ethyl)amino-2'-nitroazobenzene, [TV] (an example o f a 2-nitro substituted 

dye), is reported in the following discussion.

The heats o f formation o f the excited singlet states o f [VlllJ are given in Table 6-4 with triplet state 

energies given in Table 6-5. Energies for structures in the gas phase and in methanol are compared 

for C.I. levels 4, 6 and 8.
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| Table 6-4 Calculated heats o f formation, AH/, o f excited singlet states structures o f [VlJLi] 

optimised in the gas phaseb and in methanol0 by the AMI method at different levels o f C.I.

Cl level So Si* s 7 ~ s 7 s 2k

Gas Phaseb

4 100.26 174.57 144.34 184.69 162.96

6 99.99 170.27 143.43 111 29 162.92

8 91.92 166.66 135.91 171.93 156.42

Methanol0

4 79.98 135.08 123.79 176.41 142.07

6 79.92 134.57 120.63 157.54 142.02

8 73.10 131.16 112.39 152.73 135.78

aAH/ is the heat o f  formation in kcal mol'1.

Table 6-5 Calculated heats o f formation, AH/, o f excited triplet states structures o f [VlllJ 

optimised in the gas phaseb and in methanol0 by the AMI method at different levels o f C.I.

C.I level Ti* T ? ^-7 T2r

(Gas Phase)

c.i.=4 136.77 133.62 212.52 156.24

c.i.=6 135.81 133.62 212.45 153.16

c.i.=8 127.63 125.19 186.89 147.42

(Methanol)

c.i.=4 117.37 110.65 190.95 140.74

c.i.=6 114.21 107.84 190.93 137.30

c.i.=8 105.08 107.80 186.89 132.49

aAHf is the heat o f formation in kcal mol'1.

The energy o f each excited state relative to the ground state in the gas phase (Table 6-5) and in 

methanol (Table 6-6) showed significant differences between energies calculated at different levels 

o f C.I. Differences o f up to 18 kcal m of1 were seen for the same state calculated at different levels o f 

C.I. However, the energies o f some states differ by under 1 kcal mol'1 (see Figure 6.13 and Figure 

6.14).
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Treatment of the second excited using C.I. = 4 is limited to transitions between 4 frontier orbitals. 

Higher levels of C.I. take in to account an increased number o f transitions, which provides a more 

refined description of the second excited state. Therefore, only calculations using C.I = 6 or 8 are 

discussed further.
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Figure 6.13 Jablonski type diagram for heats of formation (kcal mol'1) of gas phase excited states of 

[VIII|in the gas phase relative to the ground state.
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Figure 6.14 Jablonski type diagram for heats of formation (kcal mol'1) of excited states o f [VIII] in 

the methanol relative to the ground state.
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The energies of S2*, S2R, T2\  T2R, Ti* and S2R relative to the ground state, given in Table 6-6, showed 

no correlation with experimentally determined half-lives of the dyes in methanol under degassed or 

oxygenated conditions.

Table 6-6 Comparison between calculated heats of formation AH/, relative to the ground state, for

the excited states of [iH X v m ] using C.I. level 6, and half-lives31

Structure s 2* s2r t 2* T2k Ti* rp R
M Tl/2

[VI] 75.74 60.30 94.95 59.84 41.91 31.56 0.65

[vn] 76.30 61.50 95.56 58.42 39.89 31.80 0.86

PV] 76.44 63.08 106.76 59.31 38.03 29.12 0.87

[v n q 77.62 62.10 111.01 57.38 34.29 27.92 1.06

[IX] 82.70 61.81 95.96 57.46 32.38 35.96 1.12

[XIV] 87.57 68.70 101.47 68.64 52.00 49.10 1.38

[V] 74.36 64.49 109.14 68.25 38.29 34.38 1.44

[X] 80.22 62.34 109.91 80.22 35.52 28.52 1.48

[m i 82.80 64.34 96.28 68.59 31.84 32.16 1.8

[XI] 81.06 60.72 88.70 62.85 30.04 30.07 1.96

aT]/2 is the half-life in methanol under anaerobic conditions.

The lifetimes of excited states and rates of intersystem crossing may be dependent on their relative 

energies. In general, the closer the singlet and triplet states are in energy, the greater the probability 

of intersystem crossing occurring.8 It is more likely therefore, that there will be a correlation 

between the experimental data and the energy gaps between excited states participating in the photo 

reaction. The rate of intersystem crossing from S2 to T2 may be related to the energy gaps between 

these states. Energy gaps between all possible S2 and T2 states involved in intersystem crossing are 

compared to the half-lives of dyes in Table 6-7.
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Table 6-7 Comparison of energy gaps between all possible S2 and T2 states, and half-lives.

Dve S:‘-S2R s 2*-t 2 S2’-T2r s 2r-t 2* S2r-T ? T2R-T ,’ Order btl/2 CXl/2

[VII 15.45 -19.21 15.91 -34.66 0.46 17.93 28.28 1 0.65 4.77

[VIII 14.80 -19.26 17.89 -34.06 3.09 18.52 26.61 2 0.86 3.84

[IV] 13.36 -30.32 17.13 -43.68 3.77 21.28 30.19 3 0.87 3.52

[VIII] 15.51 -33.39 20.24 -48.90 4.73 23.08 29.46 4 1.06 10.52

[IX] 20.89 -13.25 25.25 -34.15 4.35 25.08 21.50 5 1.12 12.71

[XIV] 18.87 -13.90 18.93 -32.77 0.06 16.64 19.54 6 1.38 8.33

[V] 9.87 -34.78 6.11 -44.65 -3.76 29.96 33.87 7 1.44 4.77

IX] 17.87 -29.69 0.00 -47.57 -17.87 44.69 51.70 8 1.48

[III] 18.46 -13.48 14.21 -31.94 -4.25 36.75 36.43 9 1.8 12.42

[XI] 20.33 -7.64 18.20 -27.97 -2.13 32.81 32.79 10 1.96 15.46

“Energy gaps in kcal m o l1 . bxi/2 and cti/2 are half-lives in hours o f dyes in methanol, irradiated under

anaerobic and oxygenated conditions respectiv ely and listed in order o f increasing b* l /2 -

Attempts were made to correlate the above energy differences and half-lives o f dyes under anaerobic 

conditions by plotting S2-T2 energy gaps against the half-lives o f dyes (Figure 6.15 and Figure 6.16). 

These plots showed that there was no apparent correlation between half-lives and calculated energy 

differences. In fact none of the energy differences in Table 6-7 showed any recognizable trend. 

Similarly, plots of energy gaps against the half-lives of dyes in oxygenated solution showed no 

apparent trend.
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Figure 6.15 Energy difference S2*-T2* versus half of dyes
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Figure 6.16 The energy difference S2*-T2R versus half-life of dyes

If T2 is the reactive species then the lifetime of this state may be critical, as a longer lifetime 

increases the chance it reacting. Decay of T2 to Ti is suggested to be the overwhelming process9, and 

the rate o f this decay may be related to the energy gap between these states. Energy differences for 

dyes are compared to their half-lives in Table 6-8, but a plot o f T2R-TiR against the half-lives o f dyes 

(Figure 6.17) again showed no apparent trend.

Table 6-8 Comparison of energy gaps T2R-Ti* and T2R-TiR states, and half-lives.

Dye Order T2R-T,' T ? -T ?
-  ■ -

^1/2 °'cl/2

(VI) 1 17.93 28.28 0.65 4.77

[VIII 2 18.52 26.61 0.86 3.84

[IV] 3 21.28 30.19 0.87 3.52

[VIII] 4 23.08 29.46 1.06 10.52

[IX] 5 25.08 21.50 1.12 12.71

[XIV] 6 16.64 19.54 1.38 8.33

[V] 7 29.96 33.87 1.44 4.77

[X] 8 44.69 51.70 1.48 -

[III] 9 36.75 36.43 1.8 12.42

[XI] 10 32.81 32.79 1.96 15.46

aEnergy gaps in kcal m o l1 . bx V2 and ct 1/2 are half-lives in hours o f  dyes in methanol, irradiated 

under anaerobic and oxygenated conditions respectively and listed in order o f increasing
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It is of course possible, that not all the dyes photo-degrade by the same mechanisms. It is also 

possible that the high lying triplet species involved in photo-degradation is not the second triplet T2, 

but some higher triplet state Tn, which may also be lower in energy than S2 .

E xcited  sta te  structures and properties

As well as the relative energies of excited states, the lightfastness of a dye may also be dependent on 

the geometry and electronic properties of its excited states. The geometry of the excited state 

structure may be important to the reactivity of the species, for example, a twisted species may be 

more likely to react than a planar structure. Alternatively, if the S2 and T2 states have similar 

geometry, there may be an increased probability of intersystem crossing between the singlet and 

triplet states. If the reactive species in the photo-degradation reaction is a triplet, an increased 

probability o f intersystem crossing to this triplet state, will result in an increased probability of 

photo-degradation.

The distribution of the unpaired electrons in the reactive triplet may also be critical, as the site of 

reactivity is likely to be located in the vicinity of these unpaired spins. For example, if the unpaired 

spins are centred on the azo nitrogen, then the dye my react at this site. Alternatively, if the spins are 

distributed throughout the molecule, then molecule may be relatively unreactive. The distributions of
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the unpaired electrons in each dye have therefore been assessed from the previous calculations 

(described above).

The first excited states

Experimental evidence has proved conclusively that photo-degradation of the azo dyes examined in 

this work, proceeds via some high lying state reached by irradiation of the second absorption band in 

the region of 280 to 310nm. Although the first excited singlet and triplet states are said to undergo 

only photo-isomerisation.7, the properties of these states have been assessed for the purpose of 

comparison with the second excited singlet and triplet states. Even though the majority of photo­

degradation reactions were conducted in methanol, it is interesting to note the changes in geometry 

that occur when the dielectric field effect is included in the calculations to imitate the effect o f the 

solvent. Structures optimised in the gas phase are therefore compared to structures optimised in 

methanol.

The calculated structures for SiR, S2R, Ti(si) (first triplet state at the geometry of the optimised SiR 

state), T2(S2) (second triplet state at the geometry of the optimised S2R sta te ), T2R, and T iR in the gas 

phase and in methanol have been analysed. The same convention for labelling atoms, bond angles 

and torsion angles (Figure 6.18) is used for all the excited state structures reported. Calculated 

structural data for the first excited singlet and triplet states is compared to data for ground state 

structures in Table 6-9.

' 20 .

,22

>19
\

r
/

>21

/ ~ \ . 9 ---------- 10 ,17

,16

J16 '

\

Figure 6.18 Labeling convention for azo dyes structures. Note that in structure (VIII] the alkyl 

groups attached to N 1 are replaced by hydrogen atoms and that structures [VIII] and [IX] both
11 13contain the nitro group attached at C only, while in structure [IV] the nitro is attached only at C .
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The first excited singlet state

The structure of first excited singlet Si (Figure 6.19) like the ground state structure of [VIII], is 

essentially planar in the gas phase and in methanol. The bond lengths of the Si structures however, 

differ significantly from ground state structures, as they have longer C-NR2 bonds and shorter 

N=N- bonds (refer to Table 6-9). The bond angles of the Si states are also much larger than in So.

Figure 6.19 Structure and charges of the relaxed SjR excited singlet state o f [VIII] in methanol. 

(Red spheres represent positive charge and blue spheres negative charge, with the diameter o f the 

sphere proportional to the magnitude o f the charge on each atom.)

The structure o f first excited singlet SiR of [IX] (Figure 6.20) is also essentially planar in the gas 

phase and in methanol. The bond lengths, of the SiR gas phase structure are again significantly 

different from the ground state So, with the excited singlet structures having longer N '-C 2 bonds and 

shorter N6-N7 bonds (refer to Table 6-9). The bond angles of the SiR states are also much larger than

in S0.
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Figure 6.20 Structure of the relaxed first excited singlet SiR of [IX) in the gas phase.

Even the structure of the 4-(N-P-hydroxyethyl, N-ethyl)amino-2'-nitroazobenzene [IVJ is planar 

(Figure 6.21) and has similar bond lengths and bond angles to the Si structures of the two other dyes.

Figure 6.21: Structure and charges o f the relaxed SiR excited singlet state o f [IV] in methanol
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The charges on SiR in the gas phase and in methanol are very similar, but they differ from the 

ground state, as the azo nitrogen atoms are essentially neutral, whereas in the ground state, they have 

a small negative charge.

Optimised structures of the relaxed first triplet state (TjR)

The relaxed first excited triplet state of [VTII] in the gas phase (Figure 6.22) is a slightly bent 

structure. The effect of solvent on the geometry of the excited triplet structures is quite dramatic with 

calculated structural data for the relaxed first triplet state T jR, in the gas phase (Figure 6.23) and in 

methanol quite different, with respect to torsion angles. In the optimised gas phase structure o f the 

first triplet state o f [VTII] (Figure 6.24) the donor phenyl ring is twisted by 67° to the azo bridge, 

which itself has a torsion angle of 73°. The nitrophenyl ring is twisted by 11° with respect to the 

phenyl azo bridge. However, in the structure o f TjR in methanol, the azo group and the nitrophenyl 

ring are coplanar and are twisted by 95° to the plane of the donor phenyl ring (Figure 6 .25).

i

Figure 6.22 Structure and spin densities of the first triplet state TjR of [VTII] in the gas phase. Spin 

densities (see text) are represented by green spheres, with the diameter of the sphere proportional to 

the magnitude of the spin density.
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Figure 6.23 Structure of the first triplet TiR of [VIII] optimised in methanol. . Spin densities (see 

text) are represented by green spheres, with the diameter of the sphere proportional to the magnitude 

of the spin density.

Spin densities

Triplet states have two electrons with unpaired spins. The probability of finding one o f these 

unpaired electrons at each atom in the molecule, is given by the spin density. Spin densities may be 

localised predominantly on a few atoms or spread over several atoms in the molecule. The sum of 

the spin density functions for the whole molecule will equal the number o f unpaired electrons i.e. 2. 

Spin densities are calculated using the keywords TRIPLET and ESR in addition to the keywords 

used for other C.I calculations. In this work spin densities have been represented as green spheres on 

each atom in the molecule, with the size of each sphere reflecting the magnitude on each atom.

The spin densities o f the optimised triplet state T iR in the gas phase (see Figure 6.22) are spread 

throughout the molecule with the majority of the spin centred on the donor amino nitrogen, the C5 

carbon and the donor azo nitrogen atom, with much smaller proportions at carbon atoms 2, 4 and 6 

in both the donor and acceptor phenyl rings (Figure 6.24). In methanol, the spin densities at the azo 

nitrogen atoms are have a very similar arrangement (Figure 6.23).

The first triplet state of [IX] (Figure 6.24) is quite different from that o f [VUI] in the gas phase, with 

respect to torsion angles. The spin densities of these structures are also noticeably different with 

most o f the spin density localised on the azo nitrogen atoms o f [IX], compared to the more diffuse 

arrangement in the T jR structure of [VTII].

The effect o f solvent on the geometry o f the excited triplet structure o f [IX] is quite dramatic as the 

structure o f the first triplet state of [IX] in methanol (Figure 6.25) had the nitrophenyl ring twisted 

by 90° to the plane of the phenyl azo group, similar to the geometry of the T iR state of [VTII] in 

methanol.
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Figure 6.24 Structure of the first triplet state TiK of [IX] in the gas phase. Green spheres represent 

spin densities.

Figure 6.25 Structure of the first triplet TiR of [IX] optimised in methanol. Green spheres represent 

spin densities.



As mentioned in the paragraph above, the spin densities o f the optimised triplet state T iR in the gas 

phase are centered principally on the azo nitrogen atoms, with much smaller proportions at atoms C2, 

C4 and C6 in the donor phenyl ring and C8 and C11 in the acceptor phenyl ring (Figure 6.24). In 

methanol, the spin densities at the azo nitrogen atoms are greatly reduced (Figure 6.25) and there 

was also an increase in the spin densities at the donor amino nitrogen and at atom C2 of the donor 

phenyl ring and at C8 and C 11 of the acceptor phenyl ring. The position o f the spin densities in this 

state is similar to that seen for the TiR state of [VII] in methanol.

The first excited triplet state of [IV] in the gas phase Figure 6.26 has a slightly bent structure with a 

similar structure in methanol. The spin densities of the optimised triplet state T jR are predominantly 

localised at the azo nitrogen atoms in both the gas phase and in methanol. (Figure 6.27). This 

distribution o f spin densities is different from that in [VIII] and [IX].

Figure 6.26 Structure of the first triplet state T R of [IV] in the gas phase. Green spheres represent 

spin densities.
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Figure 6.27 Structure of the first triplet T iR of [IV] optimised in methanol. Green spheres represent 

spin densities.

Electron spin resonance studies by Remi et al.10 on azo dyed cellulosic systems after exposure to 

light showed stable free radicals at one of the carbon atoms in the chromophore.

Second excited singlet and triplet states 

The relaxed second excited singlet state (S2K)

In contrast to either the So or SiR states, the second excited singlet state S2R has a non planar 

geometry and has both phenyl rings of the molecule twisted out o f the plane as well as the azo bridge 

being twisted in both the gas phase and in methanol. The azo bond lengths in the S2R structures are 

much shorter than in the ground state. There seems to be little difference between the geometry of 

S2R in the gas phase (Figure 6.28) and in methanol (Figure 6.29) though the charges on the azo 

nitrogen atoms are slightly different and the nitrogen of the nitro group has a slightly greater positive 

charge in methanol than in the gas phase.
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Figure 6.28 Structure and charges of the relaxed S2R excited singlet state of [VIII] in the gas phase. 

(Red spheres represent positive charge and blue spheres negative charge, with the diameter of the 

sphere proportional to the magnitude of the charge on each atom.)

Figure 6.29 Structure and charges of the relaxed S2R excited singlet state o f [VIII] in methanol.

As for [VIII] the second excited singlet state S2R of [IX] (Figure 6.30) has a non planar geometry 

and has both phenyl rings o f the molecule twisted out o f the plane as well as the azo bridge being 

twisted in both the gas phase and in methanol. The azo bond lengths is again much shorter than in 

ground state structures and other bond lengths an bond angles are very similar to those o f the S2 

structure o f [Vin] The torsion angles were also very similar between the S2R states o f both dyes in 

the gas phase and in methanol.
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Figure 6.30 The second excited singlet state, S2 1* structure o f [IX] in methanol.

The structure of the S2R state of [IV] in methanol (Figure 6.30) is similar to that o f the gas phase S2R 

structure and both structures had similar bond lengths, bond angles and torsion angles to the S2R 

states of dyes [VIII] and [IX]. The charge distribution in the S2R of [IV] in the gas phase and in 

methanol are very similar.

Figure 6.31 Structure and charges of the relaxed S2R excited singlet state o f [IV] in the gas phase.
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The relaxed second excited triplet state (T2R)

The relaxed second excited triplet state of [VIII] has an almost planar structure (Figure 6.34) in the 

gas phase, with the donor ring twisted slightly to the nitrophenylazo plane. The spin densities are 

localised almost entirely at the azo nitrogen atoms with the density slightly greater at acceptor azo 

nitrogen. There is also some spin density at carbon atom C2 and low values at some other carbon 

atoms and at the amino nitrogen atom.

Figure 6.32 Structure and spin densities for the second excited triplet state T2R of [VIII] in the gas 

phase.

In contrast to the essentially planar gas phase structure, the relaxed second triplet T2R (Figure 6.33) is 

highly twisted in methanol, with a cis arrangement of the phenyl rings about the azo bond. The spin 

density o f [VIII] is affected significantly by the solvent and there is a major difference between the 

spin density distributions in the second triplet in the gas phase and in methanol, with spin density not 

localised on the azo nitrogen atoms, as in the gas phase structures of T2R, but distributed over several 

atoms including the amino nitrogen, carbon atoms C2 and C5, the acceptor azo nitrogen and the nitro 

group.
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Figure 6.33 Structure and spin densities for the second excited triplet state T2R of [VIII] in 

methanol.

The second excited triplet state of [IX] has an almost flat structure (Figure 6.34) in the gas phase, 

with the donor ring twisted slightly to the nitrophenylazo plane. The spin densities are localised 

almost entirely at the azo nitrogen atoms with the density about 1.5 times greater at donor azo 

nitrogen. There is also some spin density at carbon atom C and low values at some other carbon 

atoms and at the amino nitrogen atom.

A

Figure 6.34 Structure and spin densities for the second excited triplet state T2R of [IX] in the gas



The spin density is affected significantly by the solvent and there is also a noticeable difference 

between the spin densities of the T2R in the gas phase and also in methanol. Much o f the spin density 

of [IX] in methanol is localised on the azo nitrogens, as in the gas phase structures of T2R However, 

the magnitude of spin density at the second azo nitrogen was considerably smaller than in the gas 

phase while atom C8 had a larger spin density.

Figure 6.35 Structure and spin densities for the second excited triplet state T2R of [IX] in methanol.

The second excited triplet state of [IV] has slightly bent structure (Figure 6.34) in the gas phase, 

with the donor ring twisted slightly to the nitrophenylazo plane. The spin densities are localised 

mainly at the azo nitrogen atoms, with the density slightly greater at acceptor azo nitrogen, and at the 

amino nitrogen atom. The geometry of T2R in methanol is slightly more twisted than in the gas 

phase.
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Figure 6.36 Structure and spin densities for the second excited triplet state T2R of (IV] in the gas 

phase.

The geometry of the relaxed T2R state in methanol (Figure 6.37) was practically planar and was very 

similar to the gad phases structure However, in methanol the distribution o f spin density is largely 

centred on the azo nitrogen atoms, with a small amount o f spin density located at the nitro group. 

The spin density on carbon atom C1 much less significant than in the gas phase structure.

Figure 6.37: Structure and spin densities for the second excited triplet state T2 of [IV] in methanol.
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The positions of the spin density in the molecule may be significant in predicting the reactive site of 

the molecule and the spin densities for atoms N 1, C2, C5, N6, N7, and the nitro group are compared 

for each dye in Table 6-11.

Table 6-11 Spin densities distribution in dyes.a

Dye N1 C2 c 5 N7 C8 c 11 N 14 0 o ' 7 Tl/2 _ OXl/2

[IV] 0.12 - 0.16 0.36 0.34 0.13 - - - - 0.87 3.52

m 0.15 - 0.16 0.53 0.33 0.12 - - - - 1.44 4.77

[VI] 0.12 - 0.13 0.33 0.36 0.17 - - - - 0.65 4.77

[VII] 0.18 0.14 0.24 0.44 0.36 0.11 - - - - 0.86 3.84

[vni] 0.11 - 0.10 0.23 0.10 0.25 - 0.15 0.07 0.07 1.06 10.52

[IX] 0.16 0.18 0.07 0.23 0.14 0.10 0.10 0.13 0.07 0.07 1.12 12.71

[XI] 0.16 0.19 0.19 0.16 0.15 0.19 0.18 0.15 - - 1.96 15.46

[XIV] 0.13 - - 0.38 0.42 - - - - - 1.38 8.33

[XV] 0.16 0.10 0.20 0.42 0.28 0.11 - - - - 0.7 1.82

a Spin densities are greater than 0.05 are reported. x1/2 is the half-life in methanol under anaerobic conditions and t1/2° is 

the half-life in oxygenated methanol.

The spin densities at the azo nitrogen atoms of the 2-nitro substituted azo dyes,[IV]-[Vm are much 

larger than for [Vlll] and [XI]; two dyes which have higher lightfastness than the 2'-nitro substituted 

dyes. The 2'-nitro dyes also have significant spin densities located at the carbon atoms attached to 

the azo group. Note also the greater spin density on the nitro group of [V lll] compared to the other 

dyes, which have almost no spin density at this group. The location of the spin density in the relaxed
n

T2 state does seem to have some correlation with the rates of photo-degradation, and also the site of 

reactivity. For example, dyes containing the 2-nitro group, which almost certainly cleave at the azo 

bridge (possibly at one of the carbon nitrogen bonds) and have relatively poor lightfastness, have 

major components of the spin density located at atoms C5, N6, N7 and C8. In contrast, the 4-nitro 

substituted dyes, which have higher lightfastness, have lower spin densities at atoms C5, N6, N7 and 

C8. These dyes seemed to undergo reduction of the nitro group and not cleavage at the azo bridge, 

and the component of spin density at the nitro group of these dyes was much higher than in the other 

dyes.
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It is concluded that neither the energy levels between the various excited states considered nor the 

location of the spin density in the second excited triplet state have a clear correlation with the 

observed rates of photo-degradation. Further calculations are required to explain the energies and 

electronic properties of the excited states. These more detailed studies however, fell outside the remit 

originally proposed by Zeneca for this project and will be addressed in a future study.
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Conclusions

The photo-degradation of series of donor acceptor azo dyes have been investigated It has been 

confirmed that irradiation of the second absorption band is responsible for permanent photo­

degradation. Under anaerobic conditions, the 2'-nitro substituted azobenzene and azothiophene 

dyes are the least lightfast, with half-lives of under one hour, whilst 4'-nitro substituted dyes had 

half-lives of between 1 and 1.5 hours. However, the time for complete loss of colour takes up to 

six hours in the case of 4-diethylamino-4'-nitroazobenzene.

Photo-degradation is retarded in the presence of oxygen by between 4 and 16 times relative to 

fading under anaerobic conditions. The photo reaction o f 4'-nitro dyes is initially quenched by 

oxygen, but proceeds at a slow rate thereafter. In contrast, the 2'-nitro substituted dyes fade at a 

slow but constant rate. The heavily substituted azobenzene and azothiophene dyes also have 

relatively poor lightfastness under anaerobic and oxygenated conditions. This may be due to 

increased rates of singlet oxygen sensitisation by these dyes. The order of reaction under 

anaerobic and under oxygenated conditions depends on the substituents of the dye and only some 

dyes fade with zero order kinetics. Rates of fading are an order of magnitude faster in propan-2- 

01 but slower in t-butanol suggesting that the rate of photo-degradation of the dyes is related to 

the ease of hydrogen abstraction from the solvent.

Analysis o f UV/vis spectra shows that 2'-nitro substituted dyes undergo complete loss of 

intensity o f the visible absorption peak and a corresponding increase in the absorption in the UV 

region of the spectrum when irradiated under anaerobic conditions, indicating cleavage at the azo 

bridge and subsequent formation o f mono-phenyl derivatives. In contrast, under oxygenated 

conditions, there is a gradual loss o f intensity at the visible absorption maximum, but no notable 

newly formed peaks are detected in the UV region suggesting that cleavage at the azo bridge is 

less significant.

Chromatography o f the photo-degradation products formed under oxygenated conditions 

shows around 8 peaks and over 12 peaks under anaerobic conditions, which have been assigned 

as photo-products. Some peaks with similar retention times were detected under both sets of 

conditions but other peaks were exclusive to anaerobic or oxygenated fading. Most o f these 

peaks eluted before the dye itself and products are therefore likely to be smaller in size or more 

polar than the original dye. Mass spectrometry o f the photo-product solutions gave mass/charge 

ratios for some o f the products detected by HPLC. From fragmentation patterns and accurate 

mass spectra, it has been concluded that under anaerobic conditions one of the main products of 

4_(N-(3-hydroxyethyl, N-ethyl)amino-4-nitroazobenzene was the reduced form o f this dye, 4-(N-



P-hydroxyethyl, N-ethyl)ammo-4-aminoazobenzene. This conclusion was supported by UV/vis 

spectra. Fragmentation patterns of photo-products also suggested dealkylation reactions at the 

alkyl amino group. The expected anilines were not detected by mass spectrometry, and UV/Vis 

spectra of suspected nitro aniline products were different to those of photo-products. However, 

the retention times of a solution of photo-degraded nitroaniline were similar to those of peaks 

detected in a photofaded solution of 4-(N-P-hydroxyethyl, N-ethyl)amino-2'-nitro-4'- 

chloroazobenzene. This suggests that either the anilines may be formed initially and 

consequently degraded themselves or the photo-degradation products of the dye are not the 

anilines, but some derivative of the anilines.

Theoretical geometry optimisations using the semi-empirical AMI and PM3 methods and at ab 

initio level using the 3-21G, 4-31G and 6-31G* basis sets produce reasonable structures when 

compared with crystal data. The azo bond length is predicted to be shorter in semi-empirical 

structures than ab initio ones, but all methods underestimate the length of this bond, with respect 

to crystal data. Ab initio structures are essentially planar, but AMI and PM3 structures have the 

acceptor phenyl ring twisted by approximately 35°. The nitro group of 2'-nitro dyes is twisted by 

between 30° and 90° depending on the planarity o f the phenyl rings. Heats of formation for 

structures that were constrained to be planar are around 1 kcal less stable than freely optimised 

twisted structures. Conformational analysis predicts that the acceptor ring can be rotated by up to 

60° degrees and the donor ring rotated by around 30° before there is a significant increase in the 

heat o f formation. Rotation o f the nitro group out of the plane is energetically favourable in 2'- 

nitro substituted dyes, but not in 4-nitro substituted dyes.

Heats o f formation o f cis and trans isomers of azo dyes calculated using the AMI and 

PM3 methods does not produce any apparent trend between the energy difference between the 

cis and trans isomers and the rate o f fading of dyes. The rate o f cis-trans isomerisation may 

depend more critically on the energy barrier between cis and trans isomers than the difference in 

energy between them.

Calculated transition energies o f the visible absorption maximum by the CNDOVS method for

twisted structures occur at shorter wavelengths than the experimental absorption maxima

obtained in hexane, but planar structures produce good agreements with experimental data.

Adjustment o f the spectroscopic constant from 0.65 to 0.58 produces even better correlations.

Transition energies o f the second absorption band are predicted to be at longer wavelengths than

experimental results. Analyses of excited states showed that the visible absorption arises from a

HOMO-LUMO transition and is mainly 7r-7t* in character, and higher energy absorptions of
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planar structures of donor-acceptor dyes were also 7t-7t* in nature. In contrast non-planar 

structures show some contributions from n-7t* transitions for these higher energy bands.

A configuration interaction (C.I.) treatment of gas phase A M I structures shows poor correlations 

with experiment, but improvements are produced by the A M I/C O S M O  dielectric field solvent 

model. However, transition energies of 4-nitro dyes in methanol are predicted to be at longer 

wavelengths than those experimentally observed.

Increasing the level o f C.I. from 4 to 8, had little overall effect on the transition energies of 

visible absorption maxima.

The second excited state resulting from a Frank-Condon transition has also been calculated using 

the C.I. treatment. Calculations at C.I. level 4 gave transition energies in the region of 300nm, 

which is close to the wavelength of the second absorption band experimentally. However, higher 

levels o f C.I. led to the prediction o f longer wavelength transition energies.

The relaxed first and second excited singlet and triplet states have also been calculated in the gas 

phase and in methanol. The first singlet state is essentially planar in both phases, while the first 

triplet adopts a twisted structure, where the acceptor nitro-phenylazo group is orthogonal to the 

donor amino-phenyl ring. The relaxed second excited singlet state is slightly bent in the gas 

phase and had similar geometries in methanol. The relaxed second excited triplet has a similar 

bond and torsion angles to the relaxed second excited singlet, but the -N=N- bond lengths are 

longer in the triplet state structures. Attempts at correlating the energies of relaxed states, Frank- 

Condon states and the ground states of dyes with half-lives in methanol under anaerobic and 

oxygenated conditions were unsuccessful and no recognizable trends were produced. The 

distribution o f the two unpaired electrons in the triplet states o f each dye molecule has been 

calculated, and there appears to be some correlation between the magnitude o f spin density 

located at the azo bridge C-N=N-C and rates o f photofading. Dyes that have relatively low 

lightfastness had a greater component of spin density located at these atoms. A tentative 

relationship between sites o f reactivity and spin density is also proposed, as the dyes which have 

relatively low lightfastness are thought to undergo photo-cleavage at the azo bridge, while 4 - 

nitro substituted dyes react at the nitro group, which has a greater component o f spin density at 

the nitro group than for the 2-nitro substituted dyes.

It may be the case, that some other transition state, or a higher triplet state is responsible for the 

photo-degradation process. It must also be noted that even predictions of the first excited state 

produced erroneous results for several dyes and it is possible that the level of theory explored 

may be inadequate for calculating these type of excited states.
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