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Summary

This thesis looks at extending previous work in the field of accelerated life testing experi
ments. Hitherto, much investigation in this field has centred on a few standard statistical 
lifetime distributions, the Weibull being particularly popular. We consider a more flexible 
distribution, the Burr XII, and compare theoretical and simulated results; we also examine 
a number of examples. This comparison is interesting particularly since there is a limiting 
relationship between the two distributions, a property that is exploited in this thesis.

Having laid down the necessary groundwork, we then proceed to fit the Weibull and 
Burr XII models to completely failed, published data sets and compare results. In order to 
assess our ability to make small sample theoretical inspections, we then establish the ex
pected Fisher information matrices for the accelerated and non-accelerated Burr XII models, 
validating our results through simulations.

The limiting link between the two distributions is then investigated, where we see that 
we can determine whether the Burr XII distribution will provide a better fit to a given 
data set than the Weibull, by fitting the Weibull distribution and then calculating a simple 
discriminating function.

Type I censoring for the accelerated models is then considered. As for complete data, we 
formulate the expected Fisher information matrices. We then examine theoretical agreement 
between these results and those obtained for completely failed data. We also examine the 
agreement between Type I simulated and theoretical results.

Finally, we investigate the practical applications of our work, and consider in particular 
extrapolations to lower operating stresses and the expected lifetimes of items tested at those 
stresses. Our investigations, although based on limited parameter values, illustrate useful 
conclusions on the conduct of such experiments and, consequently, are of potential value to a 
practitioner who, prior to carrying out an experiment, would like to know what combination 
of stresses and sample sizes would return the most information about the running time of 
items at the normal operating stress.

After summarising our results and conclusions, some ideas for future research are de
tailed.

v
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Chapter 1

Introduction

1.1 Role Of Lifetime M odelling

Things fail! I t ’s a fact of life. Look around you and every day you see components expiring, 
light bulbs exploding, the washing machine breaking down and so on. Even at a more 
personal level, we see animals dying and our loved ones passing on due to some biological 
malfunction. Quite simply, as soon as something is created it is already on the slow journey 
towards death. How soon it reaches its destination will depend on a vast array of factors. 
For example, the rapidity of death for an organism will depend on its climate, diet, threat 
from predators and genetic makeup inherited from its parents to name but a few factors; a 
light bulb might fail because of a poorly made tungsten filament, a surge of electricity or 
overuse. The complexity and interaction of components in a washing machine makes one 
wonder how such a mechanism gets through a single day without something failing. But 
the fact of the m atter is, it does! Indeed, in a large majority of cases such appliances can 
last five, ten or even twenty years without failing.

The reason for this is quite simple: all the components th a t make up the appliance have 
been tested to breaking point. Having determined what caused the failure, improvements 
are then made in the manufacture of the component with the aim of increasing its longevity. 
However, in many cases the experimenter cannot easily simulate the normal operating con
ditions of the component. For example, a light bulb has an estimated lifetime of some 10000 
hours. When conducting the experiment, it is implausible simply to switch on a bulb and 
wait 10000 hours, or so, for it to fail. Besides, during the course of a bulb’s life it will 
be switched on and off and will remain in each of these states for varying lengths of time. 
Somehow, the normal ageing process of the bulb needs to be mimicked during testing, but 
at a faster rate.

This raises the following question: if we increase the rate at which the bulb is used, 
(switch it on and off more frequently, pass a greater current through it, et cetera), with the 
aim of inducing a quicker failure, how do we then ascertain the lifetime of the bulb under 
normal operating conditions?
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1.1.1 A ccelerated  Life T esting

Accelerated Life Testing, (hereafter abbreviated to ALT), is the name given to the process 
by which we exert a product - such as a light bulb - to one or more external stresses - such 
as temperature, current or humidity - above and beyond those found in normal operating 
conditions in an attempt to induce early failure. Although in reality a combination of factors 
tend to interact to have an overall effect on the product, ALT in practice usually examines 
the effect of external factors individually and independently of other factors. For example, 
the Coffin-Manson relationship, which concerns fatigue failure of metals, gives the number 
of cycles to failure as a function of the temperature range, Palmgren’s equation specifies life 
of roller ball bearings - in millions of revolutions - as a function of load, and Taylor’s model 
for lifetime of cutting tools is a function of the cutting velocity.

These, and other, examples are discussed by Nelson (1990,pp86-87), who links a number 
of life distributions with various life-stress relationships; see below. Nelson (1990) sum
marises work to that date, and may be regarded as a convenient starting point for our 
discussion; however, his approach is essentially a practical one - for instance, complete data 
is examined using least squares analysis - although the analysis of censored data (involving 
items tha t have not failed at the time of analysis) involves maximum likelihood methods. 
Even with this more theoretical approach, Nelson says ”/o r most models, the formulas for 
these variances and covariances [of model parameters] are too complex to express analyt
ically .” (p369). Nelson also considers experimental design and, briefly, the subject of step 
stress testing; see also the review by Meeker and Escobar (1993). We shall look to adopt this 
approach for other models, with the primary aim of developing the asymptotic expressions 
necessary for a detailed examination of maximum likelihood theory. We concern ourselves 
solely with constant stresses; the field of step-stress testing requiring a different discussion 
altogether.

Thus, we view a typical ALT experiment as a process in which we select a range of values 
for a single stress factor, £, and at each of k (> 2) specified stress levels, (X\,X 2 , • • • , £fc)> 
we test batches of identical components (n i,n 2, ■ ■ • ,nfc). For example, we might expect, 
under normal conditions, for a ball bearing to operate in oil at a temperature of 50°C; 
temperature is then the stress x  and 50°C  is the design stress, denoted by x<i- In setting 
up the ALT experiment, we might decide to immerse ten bearings each in three vats of 
oil at temperatures of x \ =  lOCFC, X2 = 150°C  and x$ — 200°C. In order to describe the 
lifetime - or, more usually, the 100pt/l percentile of life, typically denoted by Hioop (see, for 
example, Nelson, 1990,pp86-87) - under normal operating conditions, we need to be able 
to model the resultant lifetime data, using an appropriate statistical distribution and life- 
stress relationship. In the above scenario, these two stages will allow us to analyse the data 
obtained at temperatures of 100°Cf, 150°(7 and 200°C, and then to extrapolate results back 
to estimate performance at a temperature of 50°C.

Hitherto, work in this field has centred around the negative exponential and, more
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commonly, Weibull distributions; the latter is particularly popular in the field of actuarial

not simultaneously. More recently, investigations have been conducted using the Burr XII 
distribution; this has more parameters - and hence greater flexibility - than either the 
negative exponential or Weibull. We introduce these distributions in more detail in the 
next section.

1.2 Basic Reliability Distributions

There are many references which provide an introduction to the statistical analysis of quan
titative reliability data, and which present the fundamental results for basic reliability dis
tributions. For instance, Patel, Kapadia and Owen (1976) present a concise overview of 
properties, such as moment generating functions and order statistics, of many widely used 
statistical distributions, including Normal, Cauchy, Logistic and Weibull. The Burr XII 
distribution is mentioned briefly, but there is little discussion about its properties. Johnson 
and Kotz (1970) provide more details on key reliability distributions, including the Weibull, 
but only a brief outline of the Burr XII distribution, together with Burr’s other eleven 
distributions.

for d > 0, with associated probability density function (hereafter abbreviated to PDF)

in which the positive quantities B, <f> are shape and scale parameters respectively. Since

studies since it can model both ‘wear-out’ and ‘infant m ortality’ patterns of failure, albeit

1.2.1 W eibull and Burr X II D istributions

The cumulative distribution function (hereafter abbreviated to CDF) for a random variable 
D  following the two-parameter Weibull distribution is

( i . i)

(1.2)

has a standard negative exponential distribution, we can use

to write
£ [D S] = ^ T (1  +  B - Is ) ,



1.2. BASIC RELIABILITY DISTRIBUTIONS 4

where T (•) denotes the usual gamma function. This defines all moments of D  in terms of 
the gamma function; we summarise useful properties of this function below.

The basic two-parameter Burr XII distribution, introduced by Burr (1942) has param
eters a and r  with CDF

1 -  (1 +  cT)~a , (1.3)

for d > 0, with associated PDF

ard? - 1 (1 +  < r) - (o+1) (1.4)

for d > 0, where both a and r  are positive shape parameters. We can introduce a third
- scaling - parameter into (1.3) in several ways and Tadikamalla (1980) discusses various
options. The most natural seems to be to define

Y  = QD

where 6  > 0 is a natural scale parameter, and D  now follows (1.3). Then Y  has CDF

F ( y ; a , r , 0 )  = 1 -  { l +  ( J )  } (1.5)

for y  > 0. The moments of Y  are

J [ y . | . ' - r ( 1  +  » r ( - ; ) ; m

see, for example, Watkins (1997).

1.2 .2  Link betw een  W eibull and B urr X II R andom  V ariables

Adopting a parameterisation used by Hogg and Klugman (1984), we now write 0T = A, so 
th a t the CDF (1.5) becomes

+  (1.7)

note tha t both (1.5) and (1.7) reduce to (1.3) when 9 = A =  1. We can now write (1.7) as

so th a t on letting A —» oo with j  remaining finite, this CDF approaches
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on recognising the limiting form of exp (yr ). W ith A =  0T this can be written as

Hence, the shape parameter of this limiting Weibull distribution is t , while the scale pa
rameter is

We shall return to this very im portant fact later. Here, we see the Burr XII shape parameter 
r  corresponds to the Weibull shape parameter B , while a is effectively an extra shape 
parameter.

1.2.3 A lternative R eliab ility  D istributions

In addition to the Weibull and Burr XII models, there are many other lifetime distributions; 
see Richards and McDonald (1987) for a discussion on relationships between them. We 
briefly list some of these models, which are discussed in greater depth by Nelson (1990, 
Chapter 2);

for —oo < t  < oo, with location parameter e (—oo < e < oo) and scale parameter 8  ( 8  > 0) 
the extreme value distribution is useful in situations where a system consists of several 
components and fails when the weakest component fails.

Birnbaum-Saunders Distribution

Eponymously proposed (see Birnbaum and Saunders, 1969) to describe metal fatigue, and 
derived ‘from a model for crack propagation’, this distribution has CDF

for t > 0. Here, /3(P > 0) is the median of the distribution, and so is a location parameter, 
while a  (a  >  0) is a shape parameter; $  (•) is the standard Normal CDF.

Lognormal Distribution

In this distribution, the probability of failing by time t > 0 is given by the CDF

(1.8)

Extrem e Value Distribution

W ith CDF
F  (t) = 1 — exp {— exp [(t — e) / 8 ]}
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where p  (—oo < p  < oo) is the mean of the log of life, a (a > 0) is the standard deviation 
of the log of life and - as throughout our work - In is the natural logarithm. Alternative 
formulations use logarithms to base ten. This distribution is commonly used in solid state 
experiments (semiconductors, diodes, et cetera) and metal fatigue.

N o n p a ra m e tr ic  m odels

Although these are frequently used in the biosciences, they are less popular in engineer
ing circles. One problem is the relative inaccuracy of the nonparametric model compared 
to a correctly specified one; we cannot easily extrapolate to a lower design stress with a 
nonparametric model. The most commonly used nonparametric model is the proportional 
hazards model (also known as the Cox model) where, despite the use of a parametric equa
tion linking life and stress, no underlying lifetime distribution is assumed, see, for example, 
Kalbfleisch and Prentice (1980).

1.3 D ata Available and Censoring Regimes

Usually, the data available for analysis consists of the failures measured in units of time. 
Equally, however, failures can be satisfactorily measured in terms of some other aspect of 
life or usability, such as pressure or cycles per second, for example, as we shall see later. 
Similarly, the stress factor, which is often measured in units of temperature, can also be 
measured using other factors that affect lifetime or usability, such as humidity or length, 
for example. Now, frequently when carrying out an experiment to collect reliability data, 
time constraints may dictate tha t we cannot wait until all items have failed; that is to say, 
wait until we have a complete sample. Under these conditions we can adopt and adapt one 
of several well known approaches to obtaining observed life time data; particularly common 
is Type I censoring. We define the overall sample size to be N  with individual failure times 
in a complete sample then given by D i, Z>2, • • •, D ^.

1.3.1 T yp e I C ensoring

Under Type I censoring, the observation period ends at the pre-specified time c, and all 
those items which have not failed yield the censored time c; thus, the number of observed 
failures is a random variable, denoted by n, and, without loss of generality, we may denote 
the data  available for analysis by the n  times to failure D i , . . . ,  Dn < c, and m  censored 
values D n+i =  • • • =  Dn+m = c. Naturally then, N  = n  +  m. Clearly, c —> oo gives a 
complete sample, with n —» N .

Type II censoring is also used in the analysis of failure data. Here, we wait until a certain 
number of items have failed; the stopping time is then the random variable. However, 
we can imagine tha t in reality, an experiment is more likely to  be time-constrained, with 
results typically being required by the end of the day, or the end of the week, for example.
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Consequently, we shall focus our attention on Type I censoring, although we discuss some 
possible approaches to Type II censoring, when we come to look at Type I in more detail 
later.

1.4 Useful Functions

We now summarise some results used to develop the theory associated with accelerated 
lifetime experiments. Many are neatly presented by Abramowitz and Stegun (1972), another 
key reference in this discussion.

1.4.1 T he G am m a Function

We have already introduced

where 7 =  0.5772156 • • • is Euler’s constant, using (1.9) with u = 1,2, we also obtain

for u > 0. Some useful properties of the Gamma function include T (u +  1) = u \ for integer 
values of u, while, more generally, we have the recurrence relation

T (u +  1) =  uV (u );

differentiating this with respect to u , we obtain

T' (u +  1) =  uT' («) +  T (u) . (1.9)

Since

r '  (2) =  r / (i) +  r ( i )  =  i - 7

and
r '  ( 3 ) - 2 T '  (2)+  r  (2) =  3 — 27.

Extending this to second derivatives, we have

T" (u +  1) =  uT" (u) +  2T' ( u ) , (1.10)

and

r" (1) = y  + 72,
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so that, taking u — 1,2 in (1.10), we now have.

r "  (2) =  r "  (1) +  2 V  (1) =  ^  + 7 2 -  27
0

and

r "  (3) =  2r "  (2) +  2r '  (2) == y  +  2 (72 -  37 + 1) .

1.4.2 P si or D igam m a Function

The results on derivatives of the Gamma function can also be expressed in terms of the Psi 
or Digamma Function, defined as

d [ k r (u)] m
du r (u )

1.4.3 Incom plete G am m a Function

This is defined as
PX ' f- t )  dt7 (u, x) = f  tu 1 exp (—t)

Jo
for u, x  > 0; clearly, as x  —» 00, the incomplete Gamma function tends to the Gamma 
function.

1.4 .4  B eta  Function

This is defined as

B M ) =  = ^
Jo r (a

r ( a ) T ( 6)
+  &) ’

writing this in terms of the Gamma function.

1.4.5 Incom plete B eta  Function

The generalisation of the Beta function to an arbitrary upper limit gives us the incomplete 
Beta function, defined as.

B z (a, b) = I(0,6)= /‘V i (i-t)*-1
Jo

1.4.6 G eneralized H ypergeom etric  F unction

This is defined as

771 /  u , \ v ~ > ( a i ) k  • • • (ap )k  z ^
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where (a)k is Pochhammer’s Symbol, defined by

A specific case, frequently used, has p = 2, q =  1, which then gives us

F2,i (ai, G25 bi\z)  =

where we now write terms in the summation explicitly in terms of the Gamma function.

1.5 Kaplan-Meier P lots

The purpose of a Kaplan-Meier plot is to display estimates of the survival function for

breviated to ECDF) for a set of sample data, as illustrated by Newton (1991). The ECDF 
at time ti is defined as

where Sj denotes the number of survivors immediately before time U, Vi is the number of 
failures at ti, and hi the number of distinct failure times before U. We shall illustrate the 
use of this function later when we look at specific examples.

1.6 Links Between Stress And Scale

In order to use results from an accelerated lifetime experiment, we need to link the failures 
observed to an external stress level. Typically, this is done by defining the scale parameter, 
in our case <f> or to be a function of the stress variable. Ideally, we look for a function 
tha t is flexible enough both to deal with many different scenarios yet is also sufficiently 
tractable to allow for the development of supporting theory. Many such functions exist - for 
example, the Arrhenius, Eyring, Power Law and Exponential - and Nelson (1990, Chapter 
2) presents a detailed discussion on these. In summary, the Arrhenius model is very good 
at modelling the effect of temperature on product life, the Eyring model is similar to the 
Arrhenius and was developed for use in quantum mechanics, while the widely-used Power 
Law model presents the log of the scale of lifetimes as a function of the log of the accelerating 
stress. Finally, the Exponential relationship (or log-linear, as we will term  it) has been used 
to model the lifetimes of dielectrics and other such electronic components. The adaptability 
of this final model lends itself well to the current field of study, and we base our discussion 
on the function

survival data. It presents the Empirical Cumulative Distribution Function (hereafter ab-

( l . u )

scale parameter of lifetimes a t Xi = exp (a  +  (3xi) (1 .12)
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where a  and j3 are two new parameters.
To illustrate the effect of (1.12), we now recall the example above in which ball bearings 

were immersed in oil, and we wished to use three stress levels of 100°C, 150°C and 200°C. 
Fitting a Weibull ALT model to the observed data now requires tha t we first estimate three 
parameters, B, aw, from which we would then calculate three.separate scale parameters:

(j)x =  exp (aw +  Pwx i ) , 02 =  exp (aw +  Pwx 2) and 03 =  exp (aw +  Pwx 3) ,

and retain the estimate of the single shape parameter B. Similarly, fitting a Burr XII ALT 
model to the data we would now estimate four parameters, a, r ,  a @ bi which, in turn, would 
give us the three scale parameters

0i = exp (a b +  Pbx i ) , 02 = exp (ab +  /3bx 2) and 6 3  =  exp (a6 +  (3bx 3) ,

while retaining the two shape parameters a, r .  From this, it is clear that, if we are considering 
only k = 2 stress levels, then the replacement of <0>x, <0>2 or # i,#2 with a w,/3w or in
the Weibull or Burr XII models, respectively is simply a reparameterisation of the model. 
For k > 3 stress levels, there is a reduction of the number of model parameters.

As an alternative to these strictly parametric stress-scale relationships, Qiu and Tsokos 
(2000) presents a more generalised model. Effectively, it is a trade-off between the more 
rigorous parametric models and non-parametric ones, with the Eyring, Arrhenius and Power- 
Law being special cases. They propose relaxing the need to specify completely the function 
of the stress variable and this, in turn, provides a better interpolation to lower stress levels. 
However, since we have a strictly linear relationship between log of life and function of stress 
- which in (1.12) is simply the stress factor Xi and is consequently completely specified - we 
shall adopt (1.12) as the basis of our work.

1.7 Computational Issues

Algorithms for fitting models, which are outlined in later chapters and given explicitly in 
the appendix, were written using the statistical software package SAS, (and in particular 
the module IML, see, for example, SAS Inc., 1990) These algorithms usually involve nested 
procedures, requiring iteration within iteration. Consequently, to obtain 10000 replications 
to assess agreement with asymptotic results, each replication - using a single set of parameter 
values - took up to eight hours to run.

1.8 Outline of Future Chapters

In this chapter we illustrated the need for ALT modelling and the role it plays in our daily 
lives. We then reviewed the background theory necessary for analysing data arising from 
an accelerated lifetime experiment. Having determined the limiting relationship between
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the Burr XII and Weibull models, we made the distinction between Type I and Type II 
censoring. To develop further the theory in later chapters, we then defined all necessary 
functions and concluded by highlighting the link between the non-accelerated and the ac
celerated frameworks. In the next chapter we outline previous work and consider using the 
Burr XII distribution in an accelerated framework for complete data sets only. Chapter 
three establishes the expected Fisher information matrices for the models in Chapter two. 
Chapter four considers an accelerated extension to  a method for determining which of the 
Weibull or Burr XII models provides the better fit to a data set. All appropriate extensions 
to Type I censored data are the focus of Chapter five. Chapter six is then concerned with 
the design of experiments for both complete data and Type I censored data. Chapter seven 
presents summaries and conclusions.



Chapter 2

Fitting Reliability D istributions To 
Complete Data

Throughout, we are only concerned with estimating parameters by maximum likelihood 
methods; see Cox and Hinkley (1974) for a detailed discussion of this approach and of the 
main theoretical properties of these estimators (hereafter abbreviated to MLE.)

We begin this chapter by reviewing various aspects of fitting Weibull non-ALT and 
Weibull ALT models to complete data sets; thus, here we have n = IV, the number of 
items available for inspection. We then present details for fitting the three parameter Burr 
XII distribution, as in (1.5), to data, see Watkins (1998a). Finally, we present a further 
extension to this work, and fit an accelerated Burr XII model to data using an algorithm 
detailed by Watkins and Johnson (1999). In addition to theoretical results, we outline the 
associated computational algorithms and illustrate various stages with reference to published 
data sets. We conclude by comparing the fitted Weibull and Burr XII models, and consider 
the difference in the maximised log-likelihoods for given data sets.

2.1 Fitting Weibull Models To D ata

We first outline the procedures for fitting models based on the Weibull distribution.

2.1.1 W eibull N on-A LT

From (1.2), the likelihood of observing n  independent failures d i , . . .  ,dn is

Lw (B, cp) = Y [d(d i; B , <j>) =  Y [  ~ T b ~  exP
i=i *=l 0

from which the log-likelihood is

n n
lw (J5, <p) = n ln B  +  (B — 1) ^y^lndj — Bnlncp — (p (2.1)
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It is straightforward to show that the first order partial derivatives of lw are

=  n B ~ l -  n  In <j> +  In dj -  d f  In dj +  f ~ B In (f> d f
i —1 i= l  i= l

^  U .

and it is well known that the likelihood equations based on these derivatives have no an
alytical solution. However, we note that we can solve ^  =  0 for 4> in terms of B. This 
gives

n \  b

n • i 2= 1

as the estimator of f  for known B\ we can now substitute this in lw to obtain the profile 
log-likelihood

/  n \  n
l*w (B) = n ln B  -  rain ( ^ d f  I +  (B  -  1) ^ l n d j .

,2=1 /  2=1

We still need to find the estimate B  of B  numerically, and much evidence points to the 
Newton-Raphson iterative scheme as an effective method for convergence from a suitable 
starting value. Farnum and Booth (1997) propose a technique for finding suitable starting 
values for this iterative scheme. We can then find (f> by setting B  equal to B  in (2.2).

2.1.1.1 Example: Carbon Fibre Rod Data

We consider the complete data set presented in Table 2.1, consisting of failure stresses (in 
GPa) of single carbon fibre rods at four different lengths; see Crowder, Kimber, Smith and 
Sweeting (1991). So, for this example, our failures are measured in units of pressure (GPa), 
while the stress factor is measured in units of length (mm). Using the method of maximum 
likelihood to fit a Weibull distribution to each subset of data gives the results in Table 
2.2. Having established the separate scale estimates we may now ask ourselves whether 
the log-linear link is justifiable. It appears from Figure 2.1 th a t it may be difficult to pass 
a straight line through all points; note that inference may be problematical when based 
on only four data points. Figures 2.2 to 2.5 indicate the quality of fit of the fitted model 
for each subset of data. In each figure, the continuous line is based on the fitted Weibull 
CDF, given by (1.1), while that based on the ECDF, indicated by x, is obtained using
(1.11), using the failure times given in Table 2.1. The steps required in using the Kaplan- 
Meier function are presented in Table 2.3 for early failures of the 1mm rod data. We plot 
In [— In {1 — G (t)}] against In (t ) since, the form of (1.1) implies tha t the plot should result in 
a straight line with slope B  and intercept —B  In ( f)  on the In (t ) axis. The figures show that 
there is reasonable agreement between the observed lifetimes and the fitted distributions. 
For all but the lowest stress level, there is a tendency for observations to drift away from



2.1. FITTING WEIBULL MODELS TO DATA 14

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8
20 30 40 50 600 10

length

Figure 2.1: Log-linear plot illustrating relationship between log of scale estimates and stress 
for carbon fibre rod data.

their expected counterparts at earlier failure times. Taken together, in Figure 2.6, these 
plots illustrate a relatively constant shape parameter across fibre length, highlighted by 
reasonably consistent gradients. The results in Table 2.2 also indicate a decreasing scale 
parameter with increasing fibre length. This is perhaps not too surprising since a longer 
carbon fibre rod is likely to snap at a lower pressure.

2.1.1.2 Example: Aluminium Coupon Data

This example is taken from a data set presented in Owen and Padgett (2000) and represents 
the fatigue life (in cycles) to failure of coupons (rectangular strips) cut from aluminium 
sheeting. The data is presented in a scaled form and we based our analyses on this scaled 
version of the data set. The data set is presented in Table 2.4. Fitting a Weibull distribution 
to each subset in turn gives us the results in Table 2.5. Using the Kaplan-Meier function
(1.11) and fitted CDF from (1.1), shown in Figures 2.7 to 2.10, we observe rather good 
agreement between observed and theoretical results for each stress level; the only exceptions 
being the extreme end points in each case.

2.1.1.3 Example: Electrode Data

This example is based on data from Nelson (1990,p232), given in Table 2.6, and concerns 
disc electrodes immersed in an insulating oil. A voltage was passed across the electrodes 
at three different but constant rates, and the voltage at oil breakdown was recorded; it is 
these values, measured in volts, tha t are then presented in Table 2.6. Fitting a Weibull 
distribution to each subset of data for the 9 square inch electrodes, we obtain the results 
given in Table 2.7. Using the Kaplan-Meier function (1.11) and fitted CDF (1.1), shown
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1m m
2.248 2.640 2.842 2.908 3.099 3.126 3.245 3.328 3.355 3.383
3.572 3.581 3.681 3.726 3.727 3.728 3.783 3.785 3.786 3.896
3.912 3.964 4.050 4.063 4.082 4.111 4.118 4.141 4.216 4.251
4.262 4.326 4.402 4.457 4.466 4.519 4.542 4.555 4.614 4.632
4.634 4.636 4.678 4.698 4.738 4.835 4.924 5.043 5.099 5.134
5.359 5.473 5.571 5.684 5.721 5.998 6.060

10m m
1.901 2.132 2.203 2.228 2.257 2.35 2.361 2.396 2.397 2.445
2.454 2.454 2.474 2.581 2.522 2.525 2.532 2.575 2.614 2.616
2.618 2.624 2.659 2.675 2.738 2.74 2.856 2.917 2.928 2.937
2.937 2.977 2.996 3.030 3.125 3.139 3.145 3.22 3.223 3.235
3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493
3.501 3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.014
4.027 4.225 4.395 5.020

20m m
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.339 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

50m m
1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 1.764 1.807
1.812 1.840 1.852 1.852 1.862 1.864 1.931 1.952 1.974 2.019
2.051 2.055 2.058 2.088 2.125 2.162 2.171 2.172 2.180 2.194
2.211 2.270 2.272 2.280 2.299 2.308 2.335 2.349 2.356 2.386
2.390 2.410 2.430 2.431 2.458 2.471 2.497 2.514 2.558 2.577
2.593 2.601 2.604 2.620 2.633 2.670 2.682 2.699 2.705 2.735
2.785 2.785 3.020 3.042 3.116 3.174

Table 2.1: Failure stresses (in GPa) of single carbon fibre rods of varying lengths, taken 
from Crowder, Kimber, Smith and Sweeting (1991)

L e n g th /m m 1 10 20 50
n 57 64 70 66
B 5.59297 5.02663 5.52444 6.03828
<t> 4.57525 3.30519 2.64819 2.42443

lw (S ,  ^ -71.02396 -62.9666 -49.92875 -36.16505

Table 2.2: Summaries of the MLEs obtained for the Weibull distribution for the four carbon
fibre rod data subsets in Table 2.1
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U
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2.640
2.842
2.908
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3.328
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a
50

5x l l  =

x B  =  
1 -  s:
I .

x  57 —

| |  =  ^  =  0.0175 1 - 2 -

57 7a 57 Q-  | |  =  A =  0.0526
-  |4  =  A =  0.0702
-  I I  =  A =  0.0877
_  | i  =  A =  0.1055

~ E  = ^ =  °-1228
-  #  =  & =  0-1404

Table 2.3: An example of calculations in the Kaplan-Meier function (1.11) for early failures 
in the 1mm carbon fibre rod data subset

0.9

,-X

In(t)

Figure 2.2: Weibull plot for 1mm carbon fibre rods. The points marked x are based on the 
ECDF while the continuous line is based on the theoretical Weibull CDF.
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Figure 2.3: Weibull plot for 10mm carbon fibre rods.
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ln(t)

Figure 2.4: Weibull plot for 20mm carbon fibre rods.
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Figure 2.5: Weibull plot for 50mm carbon fibre rods.
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Figure 2.6: Combined Weibull plot for the four subsets of the carbon fibre rod data.
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2.1 p s i/c y c le
3.70 7.06 7.06 7.46 7.85 7.97 8.44 8.55 8.58
8.86 8.86 9.30 9.60 9.88 9.90 10.00 10.10 10.16
10.18 10.20 10.55 10.85 11.02 11.02 11.08 11.15 11.20
11.34 11.40 11.99 12.00 12.00 12.03 12.22 12.35 12.38
12.52 12.58 12.62 12.69 12.70 12.90 12.93 13.00 13.10
13.13 13.15 13.30 13.55 13.90 14.16 14.19 14.20 14.20
14.50 14.52 14.75 14.78 14.81 14.85 15.02 15.05 14.13
15.22 15.22 15.30 15.40 15.60 15.67 15.78 15.94 16.02
16.04 16.08 16.30 16.42 16,74 17.30 17.50 17.50 17.63
17.68 17.81 17.82 17.92 18.20 18.68 18.81 18.90 18.93
18.95 19.10 19.23 19.40 19.45 20.23 21.00 21.30 22.15
22.68 24.40

2.6 p s i/c y c le
2.33 2.58 2.68 2.76 2.90 3.10 3.12 3.15 3.18
3.21 3.21 3.29 3.35 3.36 3.38 3.38 3.42 3.42
3.42 3.44 3.49 3.50 3.50 3.51 3.51 3.52 3.52
3.56 3.58 3.58 3.60 3.62 3.63 3.66 3.67 3.70
3.70 3.72 3.72 3.74 3.75 3.76 3.79 3.79 3.80
3.82 3.89 3.89 3.95 3.96 4.00 4.00 4.00 4.03
4.04 4.06 4.08 4.08 4.10 4.12 4.14 4.16 4.16
4.16 4.20 4.22 4.23 4.26 4.28 4.32 4.32 4.33
4.33 4.37 4.38 4.39 4.39 4.43 4.45 4.45 4.52
4.56 4.56 4.60 4.64 4.66 4.68 4.70 4.70 4.73
4.74 4.76 4.76 4.86 4.88 4.89 4.901 4.91 5.03
5.17 5.40 5.60

3.1 p s i/c y c le
0.70 0.90 0.96 0.97 0.99 1.00 1.03 1.04 1.04
1.05 1.07 1.08 1.08 1.08 1.09 1.09 1.12 1.12
1.13 1.14 1.14 1.14 1.16 1.19 1.20 1.20 1.20
1.21 1.21 1.23 1.24 1.24 1.24 1.24 1.24 1.28
1.28 1.29 1.29 1.30 1.30 1.30 1.31 1.31 1.31
1.31 1.31 1.32 1.32 1.32 1.33 1.34 1.34 1.34
1.34 1.34 1.36 1.36 1.37 1.38 1.38 1.38 1.39
1.39 1.41 1.41 1.42 1.42 1.42 1.42 1.42 1.42
1.44 1.44 1.45 1.46 1.48 1.48 1.49 1.51 1.51
1.52 1.55 1.56 1.57 1.57 1.57 1.57 1.58 1.59
1.62 1.63 1.63 1.64 1.66 1.66 1.68 1.70 1.74
1.96 2.12

Table 2.4: Fatigue life of coupons cut from aluminium sheeting, from Owen and Padgett 
(2000).
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p si/c y c le 2.1 2.6 3.1
n
B%

lyj ^B , ^

101
4.0298862
15.426431
-279.4588

102
7.0075353
4.2437821
-98.07688

101
6.0734031
1.4316699
2.807636

Table 2.5: Summaries of the MLEs obtained for the Weibull distribution for the three 
aluminium coupon data subsets in Table 2.4

3
2
1
0

-1
-2
-3
-4
-5

-6
-7

ln (t)

Figure 2.7: Weibull plot for 2.1 psi/cycle subset from aluminium coupon data. The points 
marked x are based on the ECDF while the continuous line is based on the theoretical 
Weibull CDF

0.9

ln(t)

Figure 2.8: Weibull plot for 2.6 psi/cycle from aluminium coupon data.
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Figure 2.9: Weibull plot for 3.1 psi/cycle from aluminium coupon data.
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Figure 2.10: Combined Weibull plot for aluminium coupon data



2.1. FITTING WEIBULL MODELS TO DATA 22

10 v o lts /se co n d
33 37 38 38 38 37 27 42 39 38
42 32 42 40 32 38 36 42 20 37
43 40 38 43 39 41 35 41 40 32
38 40 37 29 31 41 38 36 35 40
37 41 36 39 43 42 43 43 41 44
37 43 38 40 40 38 33 40 35 41

100 v o lts /se co n d
43 42 45 48 38 44 37 44 43 42
43 49 44 45 50 44 44 45 41 48
45 48 43 49 50 45 45 46 47 42
47 48 47 48 39 49 44 47 34 41
45 48 44 47 45 50 40 47 47 43
49 45 45 45 47 39 44 37 47 48

1000 v o lts /se co n d
50 53 50 49 53 51 47 44 53 42
49 46 50 38 48 43 52 53 52 48
45 53 52 50 55 50 43 52 50 54
51 40 52 53 47 45 53 47 54 50
32 48 53 52 45 48 48 51 53 48
54 51 50 54 35 56 51 48 48 46

Table 2.6: Voltage (in volts) at oil breakdown data for disc electrodes immersed in oil, from 
Nelson (1990).

v o lts /se c o n d 10 100 1000
n
B
1>

lw ( b ,

60
12.220089
39.695289
-165.5837

60
16.450886
46.247051
-155.4434

60
14.681733
50.860083
-169.9556

Table 2.7: Summaries of the MLEs obtained for the Weibull distribution for the three 
electrode data subsets in Table 2.6

in Figures 2.11 to 2.14, we again observe a fairly good agreement for middle to late failure 
times at each of the three stress levels. However, in all cases there is a tendency for the 
theoretical Weibull model to underestimate the observed times to failure in the tails. This 
may indicate the need to include a non-zero location parameter in the model; this example 
is therefore used for illustrative purposes only.

These examples use the SAS IML program weibull, given in Appendix A. To indicate 
the rate of convergence to the maximum likelihood estimates (MLEs) of the parameters, we 
give details in Table 2.8 of intermediate values of B  for the electrode data example. The 
value of (f> was subsequently calculated using (2.2).
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3.2 3.4 3.8

-10 .

In(t)

Figure 2.11: Weibull plot for 10 volts/second subset from voltage data. The points marked 
x are based on the ECDF while the continuous line is based on the theoretical Weibull 
CDF.

x

3.6 3.7 3.9

x
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Figure 2.12: Weibull plot for 100 volts/second subset from electrode data.
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Figure 2.13: Weibull plot for 1000 volts/second subset from electrode data.

3.3

-10

ln(t)

Figure 2.14: Combined Weibull plot for electrode data.
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10 v o lts /se c o n d
I te ra tio n B 8B

Pit,a #
1 1 59.111533 -60.77302
2 1.9726608 28.85765 -16.03335
3 3.7725121 13.411621 -4.658881
4 6.6512339 5.4689624 -1.665878
5 9.9341654 1.6129986 -0.838521
6 11.85779 0.2211976 -0.625788
7 12.21126 0.0052628 -0.596401
8 12.220084 0.0000031 -0.595697
9 12.220089 1.052 x 10~12 -0.595696
10 12.220089 0 -0.595696

100 v o lts /se c o n d
Ite ra tio n B 8B

d'%
7>#

1 1 59.627328 -60.35685
2 1.9879132 29.471656 -15.51103
3 3.8879588 14.144786 -4.24992
4 7.2162066 6.2024477 -1.371043
5 11.740096 2.1422993 -0.59927
6 15.314944 0.4187068 -0.390203
7 16.387993 0.0219737 -0.350441
8 16.450696 0.0000663 -0.348328
9 16.450886 6.079 x 10“ 10 -0.348322
10 16.450886 -2 .84  x 10~14 -0.348322

1000 v o lts /se c o n d
I te ra tio n B dB

Pit,
T i#

1 1 59.395644 -60.55007
2 1.9809344 29.189233 -15.75314
3 3.8338494 13.808445 -4.429014
4 6.9515742 5.8980792 -1.479318
5 10.9386 1.9574428 -0.670272
6 13.858972 0.3544481 -0.451654
7 14.643751 0.0156449 -0.412773
8 14.681653 0.0000329 -0.41104
9 14.681733 1.458 x 10- 10 -0.411037
10 14.681733 0 -0.400137

Table 2.8: Convergence to B  for subsets of electrode data  in example 2.1.1.3. The derivatives 
of the profile log-likelihood for each subset show th a t B  is a local maximum;
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2.1 .2  W eibull ALT

Watkins (1994) summarises the techniques involved in fitting a Weibull ALT model to 
given data sets. There, the theory and examples accommodate censored items and the 
computational algorithm was implemented in FORTRAN. We shall summarise the salient issues 
below, noting that a subsequent implementation of the algorithm in SAS IML is included 
in Appendix A as weibulLalt. Using (1.12) to introduce the accelerating parameters a w and 
/3W and adapting (2.1), we can write the log-likelihood for complete data obtained at the ith 
stress level as

rii rii
rii In B  -f (B  — 1) ^ 2  ln dij ~  B ni ln 4>i ~ 4>TB ^ 2  dfj

j = i  j = i

=  riilnB  + (B -  l ) ^ l n  dkj -  Bn* In {exp (aw +  (3wXi)} -  exp (aw +  (3w X j ) ~ B  dg, 
j = i  j = i

where we now use the double subscript dkj to indicate the observed time to failure of the
j th item at the ith stress level, for i = 1, • • •, k. Then, the log-likelihood for the complete
data set is

lw  {B) a w,p w) = Sn In B  +  (B  -  1) Se -  (awSn +  0 WSX) B  -  exp (~ a wB) S0,o (2.3) 

where we find it convenient to write

k

Sn = ^   ̂Tli
i— 1 

k

Sx — ^   ̂'fT'iXj,
i=1
/? Tb<i

Se =  E E lnd«
t= l j = 1

and

S g,h ( B ,  0 W) = | a f  exp { - ( 3 w B x i )

Now, for fixed B  and /3W, the maximising value of a w in (2.3) is given by

B - M n ^ ) ,  (2.4)

and substituting this into (2.3) and ignoring terms independent of model parameters, gives 
the profile log-likelihood

lw  (B > Pw) = Sn \n B  + { B - l ) S e -  S n In S 0t0 (B , /? J  -  (3WB S X.

^>2 d? (In dij)}
i=i
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Watkins (1994) establishes two useful recurrence relations regarding derivatives of S9ih, 
leading to first and second order partial derivatives of The relations are

dS,
dB

9Sg,h

9,h _

dj3x

Sĝ h-|-1 $  yj S g )

— ~BSg+i)hJ

and hence we can obtain

dl*w  Sn , n S,
+  Se ~    (Sq,1 -  PwSlfl) — PWSX,

and

OB B  S0>0

& W  _  O 0 ^ 1 , 0  PC

-  S n B s ^ ~ BSx

1 W  =  +

& l*W Sn fo o  , c * DC ,
'2 
0,0

— = ^ ( B S 1,1 + S1, o - p wBS2, o ) - - ^ B ( S 0i l - P wSlfi)Sli0 - S x
OBopw £o,0 Oq o

d2lw  _  q d 2 ( _  £2,0^ 
dP l ~  b n B  \ S $ fl S o , o J -

Example 2.1.1.1 [Carbon Fibre Rod Data] revisited

We now summarise the fitting of this Weibull ALT model to the carbon fibre rod failure 
data  in Table 2.1; convergence to B  and (3W is given in Table 2.9. The initial starting values 
for B  and j3w were 5.0 and —0.01, respectively. The starting value for B  is based on the 
separate estimates of B  in Table 2.2; using the estimates of the separate 0 in Table 2.2, the 
starting value for j3w is established through (1.12) as

a exp s olw -}- i . »
y  = ------?--------^  f  =  exp { (x i -  x i)  \ = exp \B W (50 — 1)) ,
01 exp +  (3wx i  |

and then solving for j3w giving approximately —0.01. The final maximum likelihood esti
mates are then B  = 4.5646885,ctw = 1.3932556, and (3W = —0.011704, and hence <f>i =
3.9810743,02 =  3.5830576,03 =  3.1873105 and 04 =  2.2435517, with associated log- 
likelihood, lw  = —268.6926. For reassurance, we check the second derivatives. For the

r)2/* r>2l*
final iteration, they were observed to be -q̂ £- = —22.19443, = —389.9967 and
d2l* W=  —2453561, and for the parameter estimates to be maximums, we also require the

r̂ UJ
following conditions to be satisfied:

d2l'w
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I te ra tio n B dB
1 5.0 - 0.01 -11.80104 -5024.646
2 4.6188314 -0.011528 -1.282296 -462.0631
3 4.5651463 -0.011700 -0.011645 -9.470263
4 4.5646888 -0.011704 -0.000008 - 0.00121
5 4.5646885 -0.011704 2.913 x 10“ 13 - 2.0 x 10~10
6 4.5646885 -0.011704 1.6 x IQ" 14 - 2.1 x 10 -11

Table 2.9: Convergence of B  and (3W when fitting a Weibull ALT model to Carbon Fibre 
Rod data.

and
d2;iv x d2lw _  (  d2lw  ̂ >0- (2 6)
a s 2 d/32 1 ' >

see, for example, Weber (1982). Clearly, (2.5) is satisfied, while substituting results into 
(2.6), gives the positive value 5.4303 x 107, therefore confirming th a t the likelihood estimates 
correspond to a maximum of ZJp. Comparison between these MLEs and those in Table 2.2 
show similar values for the single B  here and the separate counterparts there. We see tha t 
the more parsimonious ALT model also provides good approximations to the separate scale 
parameters in Table 2.2.

Example 2.1.1.2 [Aluminium Coupon Data] revisited

Fitting a Weibull ALT model to the aluminium coupon data, in Table 2.4, using the starting 
values for B  and of 5.0 and —2.37495, we obtain the parameter estimates B  = 4.91691, 
a w = 7.795572 and (3W = —2.41544; and hence fa  = 15.227945, fa  =  4.5512789 and fa  =  
1.3602715, with associated log-likelihood based on (2.3), lw  — —415.5829. As in the previous 
example, we make the necessary checks on second derivatives. For the final iteration, they 
were observed to be ^  = -23.02807, -  -15.83327 and ^  =  -1454.296, and
so, with (2.5) and (2.6) satisfied, we conclude that these values maximise IJy. Convergence 
to B  and (3W is shown in Table 2.10. Comparison between these results and those seen for 
individual subsets, in Table 2.5, shows an ALT value of B  of the same order of magnitude 
as the separate estimates of B. We also note that the ALT estimates of the fa agree with 
the separate estimates of the fa.

Example 2.1.1.3 [Electrode Data] revisited

In fitting a Weibull ALT model to the 9 inch square electrode data, in Table 2.6, we obtain 
the parameter estimates B  = 11.280264, a w = 3.7627961 and j3w = 0.0001656, and hence 
fa  =  43.140079,02 =  43.787981 and fa  = 50.827037, with associated log-likelihood based 
on (2.3), lw  — —530.2297. For the final iteration, the second derivatives were seen to be 

=  —2.241696, frBQp - = —8380.925 and = —4.155 x 109; as in the previous two 
examples (2.5) is clearly satisfied, while substituting results into (2.6) returns the positive
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I te ra tio n B P w dB
&lw
d0m

1 5.0 -2.37495 -3.104938 -62.28286
2 4.93986 -2.41481 -0.537156 -1.293024
3 4.91685 -2.41543 0.0011966 -0.011898
4 4.91691 -2.41544 -1.051 x 10“ 8 3.1251 x 10- 7
5 4.91691 -2.41544 2.274 x 10- 13 1.364 x 10- 12
6 4.91691 -2.41544 -2 .27  x 10~13 -9 .09  x 10~13

Table 2.10: Convergence of B  and Pw.when fitting a Weibull ALT model to aluminium 
coupon data.

I te ra tio n B P w dB
&lw
d0w

1 11.28 0.0001 -2.587184 330221.72
2 12.064757 0.0001614 -1.633037 12699.373
3 11.239251 0.0001653 0.0946997 1607.3278
4 11.280169 0.0001656 0.0001917 -9.931507
5 11.280264 0.0001656 -2.69 x 10" 10 0.0002082
6 11.280264 0.0001656 2.487 x 10" 13 -3 .49  x 10~10
7 11.280264 0.0001656 -1 .3  x lO" 15 -4 .1  x 10" 11

Table 2.11: Convergence of B  and j3w when fitting a Weibull ALT model to electrode data.

value 9.2440 x 109, and as before, we conclude that these values maximise Z^. The rate of 
convergence of B  and j3w is shown in Table 2.11. Comparison with results in Table 2.7 shows 
tha t the single estimate of B  here is of the same order of magnitude as the three separate 
estimates there. We also observe the ALT (j)i here to be similar to the individual estimates 
in Table 2.7, although the degree of acceleration observed in this example is rather limited.

2.2 Three Parameter Burr XII M odel

In this section we consider the extension to the basic two parameter Burr XII distribution 
by way of introducing a scaling parameter 9. From (1.5), the likelihood for this model for 
complete data is given by

A  a r e - ^ r 1

ii{i+(*)T
for which the log-likelihood is

lb (a, t ,9 )  = n  In (ar) — n r  In 6 +  ( r  — 1) ^ T ln d i -  (a +  1) i> ( i+( f ) l  (2-7)
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Watkins (1999) presents the associated first and second order partial derivatives as 

dlb
= na 

da

In
—— =  n r  1 — nlnO  +  V ^lnd j — (a +  1)

T i=l i=l 1 +  (1?

xi n ( % Y
- i  =  -n r Q - 1 +  r  (a +  1) B~l ^  ^

and

d2l
da2

b -2=  —na

p i  = - Wr - a - ( o  +  l)f; W-Wt)} 
9T «  { ! + ( ♦ ) ’ }

0  +

a2;, =
^  1 +dadr

=  A *
<9 <2<9(9 ^  i x  ( d

1=1  1 r

^  = + (a+ 1) r 1 x ; h l L + T («+!) r 1J 1 f  1 log 1 ?

Q J

We note that we can solve =  0 for a in terms of 6 and r; this gives

n

E H ,  In { l +  ( £ ) " } '

From this, we then obtain the profile log likelihood as

(2.8)

^>(T>0) ~  n ln r  +  n ln <  -----------------------------  ̂ — n r  In 6 +  ( r  — 1) In dj
|k£ ? = i ln { 1 +  ( f  J j  J »=i

' d A T '
-  1 +

Er=iln{l+(t)T} ] 5 nl + Vs -
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Since the likelihood equations above have no analytical solution, Watkins (1998a) provides 
a numerical algorithm; the SAS IML code is given in Appendix A as burrS. The approach, 
which utilises the Newton-Raphson algorithm, converges on estimates of a and r  for each 
iterated value of 9. We now outline the key steps in the algorithm, illustrating them on 
the 50mm carbon fibre rod length data subset above (see Table 2.1.) As programmed, the 
algorithm terminates when the absolute values of all first derivatives ( ^ ,  ^  and ^ )  are 
less than 10-9 . This tolerance level is deemed sufficiently small to allow us to regard the 
current estimates as MLEs, and is used throughout. We note tha t alternative stopping 
criteria are available; for instance, we could use

/  dk \
Pin
dk
da
dli
dr
dk\  £ik I 

\  dd /

0
d2lh 
dadr  
d2lh 
dadd

d 2lh d2lh
dadr dadd
d2lh d2lh
d r 2 drdd
d2lh d2lp
drdd dd2

-1
' da  '

dli 
d r

\ dk / 
\  dd /

<  10-

S tep  1 Fit the two parameter Weibull model (1.1) to the data  set and obtain parameter 
estimates B, (j). Using the method outlined above, we see tha t B  is found iteratively, while 
(j> can be found using B  in (2.2).

S tep  2 Scale the original data set by dividing throughout by <f>\ thus re-fitting the 
Weibull model would then give the same value for B  and (f> = 1. More generally, the 
rescaled data values are now approximately equal to one.

S tep  3 Set Burr XII scaling parameter to 9\ = 1 and obtain initial estimates of shape 
parameters a i , r i  for the rescaled data. Here, t \ is found iteratively from a starting value 
of B , and we obtain a\ by using 9\ and t \ in (2.8).

S tep  4 Evaluate first and second derivatives, together with the log-likelihood, given 
by (2.7), at a i,T \ and 9\. This is effectively the first stage in the iterative procedure. Using 
ai and r i, fit a three parameter Burr XII model to the rescaled data, and obtain a new 
estimate of 0, #2, using the Newton-Raphson iterative scheme and the full matrix of second 
derivatives, as described in Watkins (1999). Scale the rescaled data set by 02 and obtain 
new estimates of a and r ,  denoted as <22, T2 - The starting value of r  here is t i ,  the final 
value of r  in the previous iteration.

S tep  5 Repeat step 4 until convergence to 0, a and r .  By convergence we mean
Ql Ql QJ

until the first derivatives - and - were zero to at least eight decimal places and
the principle minors of the matrix of second derivatives alternate in sign, starting with a 
negative; see, for example, Weber (1982).

S tep  6 Undo the effect of the scaling at step 2, by multiplying 0 by (p to obtain 9 for 
the original unsealed data.
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We see here the double nested nature of the algorithm, as mentioned in Chapter 1. For 
a given value of 0 we iterate on t ,  then obtain a new estimate of 0, iterate on r  again and 
so on.

E xam p le  2.1.1.1 rev is ited  (50m m  carb o n  fibre ro d  su b se t)

We illustrate the above algorithm using this data set; see Table 2.1.

S tep  1 From Table 2.2, we have B  = 6.03828, with <j> = 2.42443.

S tep  2 Scaling the original data set by 4> = 2.42443 gives the following re-scaled data 
(to three decimal places)

0.552 0.591 0.638 0.649 0.655 0.665 0.720 0.723 0.727 0.745
0.747 0.758 0.763 0.763 0.768 0.768 0.796 0.805 0.814 0.832
0.845 0.847 0.848 0.861 0.876 0.891 0.895 0.895 0.899 0.904
0.911 0.936 0.937 0.940 0.948 0.951 0.963 0.968 0.971 0.984
0.985 0.994 1.002 1.002 1.013 1.019 1.029 1.036 1.055 1.062
1.069 1.072 1.074 1.080 1.086 1.101 1.106 1.113 1.115 1.128
1.148 1.148 1.245 1.254 1.285 1.309

The rescaled data lies in the range [0.552,1.309], with mean 0.928 (~  1) and standard 
deviation 0.1723.

S tep  3 Initially - with 6\ = 1 - the intermediate values of n  (starting at B) and the 
corresponding first derivative were observed to be

T l 7.59147 8.03676 8.06345 8.06353 8.06353 8.06353
d l l
d r 4.11433 0.77411 0.04153 0.00013 1.443 x 10" 9 - 1.11 x 10~15

@1*Thus, these iterations converge to t \ =  8.0635, at which =  —1.11 x 10-15, (and so is
d2l*sufficiently close to zero); the final value of is —1.546109. Using 9\ =  1 , t i  =  8.0635 in 

(2.8) gives a.\ = 1.6449003.

S tep  4 ( I s ru n ) The relevant first and second derivatives of Z&, evaluated at a i , r i  
and 0i, are =  0, 0  =  -24.3929, fk  =  9.6653 and ^  =  -1941.563. The new value of 
9 is then found via the full matrix of second derivatives. So we evaluate

/  d %
I W

d2ih 
dadr  
d2lb

d2lh
Ifr*
d2lh
drdd

\ -1 /  §k \Ar. 1dli,
da
dl^
d r
dh\ 2ih I\  de /
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( 1.6449 \ / -24.392 \
- 1

8.0635 - -0.813 -1.573 X

V 1 / V 204.869 -6.674 -1941.56

( 0 \
-1.33 x 10~15 

 ̂ 9.665 /

and extract the third element, giving us 02 as the new estimate of 0. This turns out to be

02 =  1.0 -  (-0.0939025) =  1.0939025

Now, divide the ‘Weibull-scaled’ data set by 6 2  and determine <2,2, T2 - The intermediate 
values of r 2 (starting at T\ =  8.0635) and associated derivatives were observed to be

T2 7.3428 7.3945 7.3949 7.3949 7.3949

dr -1.3190 0.11123 0.00066 2.37 x 10“ 8 - 8.88 x 10"16

So, these iterations converge to T2 =  7.3949, at which ^  =  —8.88 x 10 16 (and is sufficiently 

close to zero); the final value of is —2.125441. Using 6 2  =  1.0939025, T2 =  7.3949 in (2.8) 
gives <22 =  2.6318855. The relevant first and second derivatives of lb, evaluated at <12, T2 and 
6 2  are ^  =  0, =  -9.52818, ^  =  3.17956 and =  —1718.541. This process is then
repeated, with the first ten iterations presented below.

Iteration O'i Ti 0i
1 1.6449 8.0635 1
2 2.6318 7.3949 1.0939
3 3.6975 7.0331 1.1683
4 4.5416 6.8569 1.2159
5 4.8978 6.7994 1.2338
6 4.9428 6.7927 1.2360
7 4.9434 6.7926 1.2360
8 4.9434 6.7926 1.2360
9 4.9434 6.7926 1.2360
10 4.9434 6.7926 1.2360

S tep  5 For the V)th iteration of step 4 - where 0n  was found to be 1.2360724 - the 
intermediate values of Tn and the associated derivatives were observed to be

T U 6.7926 6.79262 6.79262 6.79262 6.79262
dll
dr 5.329xl0-15 1.776xl0“ 15 -3.55xl0-15 1.776xl0-15 -3.55xl0" 15
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So, these iterations quickly converge to t h  =  6.79262, at which =  —3.55 x 10 15 (and 
so is sufficiently close to zero).

Using 0n  =  1.2360724, a n  -  4.9434832 in (2.8) gives a12 = 4.9434832, =  -1 .78  x
10“ 15 and ^  =  0, and, since all first derivatives are practically zero, the new value of 0 (012) 
will also be unchanged from the previous iteration. We therefore regard the iterative process 
as complete and take a = a n  =  4.9434832, r  -- r u  =  6.79262 and 0 — On — 1.2360724 to 
be the assumed MLEs of the ‘Weibull-scaled’ data. To ensure that these estimates are true 
maximums, we calculate the principal minors of the matrix of second derivatives

0  \  (  -2.70078
0  =  1.73364 -3.90630

I S  § /  V 61 02344 -47.69785 -1414.859

q2 I
The first principal minor is given by which is indeed negative. The second is given by 
the determinant,

d2h
~d$
d 2lh 8 %  
dadr dr*

= (-2.70078) x (-3.90630) -  (1.73364)2 

=  7.54427,

and is positive, while the third principal minor is given by the determinant of the full 3 x 3  
matrix, and is found to be —69.3623, and therefore negative. Since we have alternating 
signs for the principle minors (starting with a negative) we conclude that the assumed 
MLEs above, are indeed maximums. This method is, of course, the natural extension of the 
two-parameter case which was used above when fitting the Weibull ALT model.

S tep  6 Finally, we calculate 6 for the original unsealed data; this is given by the 
product of 4> (= 2.42443) and On in previous step (= 1.2360724). Therefore, we have

0 = 2.996771 

a = 4.943483 

? = 6.792626

as the MLEs for the original data. These results are included in Table 2.12, which also 
contains the value of the maximised log-likelihood for this subset.

E xam p le  2 .1.1.1 [C arbon  F ib re  R od  D ata] rev is ited

Fitting the Burr XII three parameter model to the individual subsets of the carbon fibre 
rod data in Table 2.1 produces the results given in Table 2.12, where we have also included 
the maximised Weibull log-likelihood for comparison. We see from this table that, on the 
basis of these maximised likelihoods, the Burr XII model is a better fit to each data subset
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L e n g th /m m 1 10 20 50
n 57 64 70 66
a 2.588745 0.9826893 3.3372807 4.943483
T 6.963570 8.6832448 6.6199838 6.792626
e 5.014342 2.972029 3.064437 2.996771
h -70.30808 -58.61848 -49.13677 -35.83991
lyj -71.02396 -62.9666 -49.92875 -36.16505

Table 2.12: Burr XII fit to carbon fibre rod data subsets

p s i/c y c le 2.1 2.6 3.1
n 101 102 101
a 19.235884 2.831573 1.5708883
T 4.1505101 8.615969 9.3872102
e 31.15297 4.632881 1.4174932
ib -279.4295 -96.59839 10.014003
lw -279.4588 -98.07688 2.807636

Table 2.13: Burr XII fit to aluminium coupon data subsets

than the Weibull model. We also note the relatively consistent value of r  across subsets and 
the expected decrease in 0 as fibre length increases. We consider these results in greater 
detail later in this chapter.

E x am p le  2.1.1.2 [A lum inium  C o u p o n  D ata] rev is ited

Fitting the Burr XII three parameter model to the individual subsets of the aluminium 
coupon data (Table 2.4) gives the parameter estimates shown in Table 2.13. The associated 
first derivatives - ’ f r  an<̂  lie '  were all below the tolerance level of —1.0 x 10~9 (stated
earlier) for the final iteration at each stress level. As in the previous example, we include the 
maximised Weibull log-likelihood for comparison, and observe tha t the Burr XII is preferred 
to the Weibull distribution at all stress levels. We shall return to these results in greater 
detail later.

E xam p le  2.1.1.3 [E lectrode D ata] rev is ited

Attempting to fit the Burr XII three parameter model to the electrode data  (Table 2.6) leads 
to the parameter values shown in Table 2.14. In this case, the method fails to converge; 
estimates of a for each subset steadily rose. This was also the case with <9; the values 
presented are the last values observed when the algorithm completed 500 iterations. Again, 
we include the maximised Weibull log-likelihood, and using this as a basis for comparison, 
conclude tha t the Weibull model is a better fit to each data subset than the Burr XII model.

We shall make further comments on this phenomenon and comparisons with correspond
ing Weibull results in section 2.4 below.
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v o lts /se c o n d 10 100 1000
n 60 60 60
a 253895932 1.31 x 1010 3.48 x 109
T 12.220089 16.450873 14.681725
6 193.47247 190.70582 227.82527
k -165.584 -155.4438 -170.0088
lw -165.5837 -155.4434 -169.9556

Table 2.14: Burr XII fit to electrode data subsets

2.3 Burr XII ALT Model

A popular choice of model in the field of accelerated testing has been the Weibull model, 
featuring a single shape parameter - B  - and two accelerating parameters - aWj (3w. We 
now consider the logical extension of fitting a Burr XII model to an accelerated data set, 
as outlined by Watkins and Johnson (1999). This will require specifying scale parameters 
9i in terms of the accelerating parameters ab and Pb using (1.12). We begin by considering 
the log-likelihood and its first and second order partial derivatives, and then present an 
algorithm to determine the maximum likelihood estimates of the parameters. Finally, we 
illustrate the approach through examples.

2.3 .1  T he M odel

Following our approach with the Weibull distribution, we now adopt the log-linear model
(1.12), together with (1.5) to give us the Burr XII ALT CDF as,

F  (d; a, t ,  a b, f t )  =  1 — { l  +  ^  +  ^  )  )  , (2.9)

from which the likelihood of observing a complete data  set at stress is then

j*  ar {exp (ab + /3bX i ) } ~ T d j f 1

,=1 n  +  /  in  \ T +11 +  \exp(otb+(3bXi) J

for which the log-likelihood is

n.
fl% Tli r / ^

In (nr) +  (r  -  1) ^  In d{j  -  rm  (ab +  /?6z») - ( a  +  l ) ^ l n | l  +  ( êxp +

It then follows that the complete log-likelihood, based on all k subsets of data, is

lB (a, t , ab, (3b) =  Sn In (ar) +  (r -  1) Se -  r  (a bSn +  (3bSx) -  (a +  1) SI (2.10)
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where Sn,S x and Se are as before, and

k rii* 'H r  r  j  •:

s d = Yl]E ln 1 + l — / ijt o n \. I exp (ab + PbX i) ji—i j= i

In considering the derivatives of Ib , we will also find it convenient to write

k

2—1

and
fc ni_/ __  ^ii___ [ i n / ____

c  _  V"  ̂ /  I  exP(a b+0bxi) J L I eXP(a b+Pbxi) )
b f g h l  —  2 _ u  2 ~ d  x i

1=1 *=*

At this stage we can give some useful definitions and recurrence relations. We have

dS.d
dr — S o i li

= - r S o i o io a b

dSi  _  Tc
Wt, -  1101 ’

while, more generally, we have

dSfghi n i o
Q t  ~  9  X  b f g ( h + l ) l  -  1 X  b f ( g  +  l ) ( h+l ) ( l  +  l )

QSfghl
da b

dSfghi

h X  gT X  Sfghl ^^f(g+l)h(l+l)

= —h x <S(/+i)5(h_i)/ — gT x S^+i^ghi +  It  x *Sf(/+i)(^+i)/i(z+i)
d(3b

2.3.1.1 First and Second Order Partial Derivatives of

These follow from (2.10) and the definitions above. We have

^ B - q n- i  _  o*
5(2 
d ls — SjiT 1 S e — a bSn — PbSx + Se — ( a 1 )  S q u i, 
ot

t ~ -  =  - 5 nr +  (a + 1) rS'oioi, aab

=  —SjT +  (a +  1) rS u o i,

(2 .11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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while the second derivatives are defined by

92h  a  _ _ 2

da2
d2lB
dadr
82Ib

dadab
d2lB

dadpb

= —Sna~ (2.17)

=  -S o iii (2-18)

=  t x 60101 (2.19)

=  T x 5'noi (2.20)

and

82Ib
d r2

d2lB
drdoLb
d2lB

d rd p b

and

=  —SnT 2 — (a +  1) (60121 — ^ 0222)

=  —Sn +  (a +  1) (<Soioi +  t  x ^oiii — r  x 60212)

=  —Sx +  (ffl +  1) (61101 +  T x 61111 — T X 61212)

=  (a +  1) t 2 (60202 -  3oioi)

82Ib  , , ^  .2

and, finally,

doibdfib

d2lB

= (o +  l ) r  (61202 ~  61101)

=  (a +  1) r 2 (62202 -  62101) •
dPi

2.3.2 A lgorithm  for fittin g  a Burr X II ALT m odel.

Watkins and Johnson (1999) extend previous work on the Burr XII non-ALT model, dis
cussed above, to cover the Burr XII ALT model. The algorithm proceeds in a similar vein to 
th a t for the non-accelerated Burr XII model, in that we first divide the data subsets by the 
corresponding Weibull ALT scale estimates, fa. The advantage of this step is tha t we can 
largely eliminate the effect of the stress factor, thereby introducing a degree of numerical 
stability into the procedure. Having converged on the maximum likelihood estimates of the 
model parameters for rescaled data, we can then reverse the effect of the scaling to obtain 
parameter estimates for the unsealed data set. We now give a more detailed explanation of 
the algorithm.

S tep  1 Fit a Weibull ALT model to the data set to obtain parameter estimates, 
B , cnWi Pw.



2.3. BURR XII ALT MODEL 39

S tep  2 Use a w,/3w to obtain separate estimates 0* of the scale for each data subset, 
and then re-scale the full data set by dividing the ith data subset by 0 .̂

S tep  3 Fit a three parameter Burr XII distribution, (as detailed above), to the rescaled
data. This is effectively fitting the full ALT model under the constraint (3b = 0, and leads
to parameter estimates a, t , #.

S tep  4 Fit the accelerated model using (1.12) and Burr XII distribution to re-scaled 
data. Here, we re-admit the information on the stress factor, Xi, but expect this covariate to 
have only a minor role due to the re-scaling. The Newton-Raphson technique is thus found 
to be fairly robust and to provide quick convergence on maximum likelihood estimates. 
Suitable starting values are a and r  from step 3, together with a b = log 0 and (3b =  0.

S tep  5 Finally, reverse the effect of the scaling at step 2; the estimates of the scale 
parameters in (1.12) are found by adding aw, (3W to a b,/3b respectively. The estimates of 
the two shape parameters, a, r , remain unchanged from step 4.

E x am p le  2 .1.1.1 [C arbon  F ib re  Rods] rev is ited

S tep  1 Recall from Table 2.9 that the final parameter estimates were

B  = 4.564688, a w = 1.39326, j3w =  -0.01170.

S tep  2 Using a w and j3w together with the stress levels - 1,10,20,50 - gives separate
Weibull scale estimates as

0 X =  3.9811,02 =  3.5832,03 =  3.1875,04 =  2.2440.

The data set resulting from dividing each original data subset by 0i is given below; entries 
are given to three decimal places. We also present some summary statistics to highlight the 
precise effect of the scaling on each data subset.

1m m 10m m 20m m 50m m
M ean
S tan d a rd  D ev ia tio n
M inim um
M axim um

1.063
0.209
0.564

.1.522

0.851
0.172
0.530
1.400

0.769
0.155
0.411
1.124

1.003
0.186
0.596
1.414
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1m m
0.564 0.663 0.713 0.730 0.778 0.785 0.815 0.835 0.842 0.849

0.897 0.899 0.924 0.935 0.936 0.936 0.950 0.950 0.950 0.978
0.982 0.995 1.017 1.020 1.025 1.032 1.034 1.040 1.059 1.067
1.070 1.086 1.105 1.119 1.121 1.135 1.140 1.144 1.158 1.163
1.163 1.164 1.175 1.180 1.190 1.214 1.236 1.266 1.280 1.289
1.346 1.374 1.399 1.427 1.437 1.506 1.522

10m m

0.530 0.594 0.614 0.621 0.629 0.655 0.658 0.668 0.668 0.682
0.684 0.684 0.690 0.720 0.703 0.704 0.706 0.718 0.729 0.730
0.730 0.732 0.742 0.746 0.764 0.764 0.797 0.814 0.817 0.819
0.819 0.830 0.836 0.845 0.872 0.876 0.877 0.898 0.899 0.902
0.905 0.910 0.913 0.919 0.929 0.933 0.942 0.951 0.958 0.974
0.977 0.987 0.991 0.994 1.012 1.070 1.080 1.084 1.093 1.120
1.123 1.176 1.226 1.400

20m m
0.411 0.412 0.464 0.486 0.533 0.565 0.583 0.585 0.609 0.614

0.616 0.626 0.629 0.634 0.635 0.644 0.647 0.658 0.671 0.683
0.697 0.702 0.706 0.712 0.712 0.713 0.721 0.733 0.740 0.747
0.747 0.761 0.763 0.763 0.777 0.781 0.787 0.788 0.795 0.801
0.805 0.806 0.811 0.824 0.826 0.828 0.830 0.842 0.846 0.855
0.962 0.967 0.969 0.971 0.981 1.014 1.077 1.124 1.124

50m m
0.596 0.639 0.690 0.701 0.708 0.718 0.778 0.780 0.786 0.805
0.807 0.819 0.825 0.825 0.829 0.830 0.860 0.869 0.879 0.899
0.913 0.915 0.917 0.930 0.946 0.963 0.967 0.967 0.971 0.977
0.985 1.011 1.012 1.016 1.024 1.028 1.040 1.046 1.049 1.063
1.065 1.073 1.082 1.083 1.095 1.101 1.112 1.120 1.139 1.148
1.241 1.241 1.345 1.355 1.388 1.414

S tep  3 Recall that this step involves fitting a three parameter Burr XII distribution 
and hence follows the procedure outlined above. W ith 9\ = 1, the intermediate values of T\ 
(starting at B) and the corresponding first derivatives were observed to be

T \ 5.87366 6.28297 6.31166 6.31179 6.31179 6.31179
..

dr 23.75528 4.73885 0.29229 0.00128 2.497xl0-8 -4 .44xl0" 15

Thus, t i  =  6.31179,^- =  —4.44 x 10 15, while we also have =  —10.09775. Hence, 
ai = 1.65616, =  o, 0  =  -93.6968, ^  =  6.5773 and 0  =  -4571.532. We then use
these to find 6 2  = 1.04153. After 10 iterations, 9\i was found to be 1.0534. The intermediate
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values of t u  and the corresponding first derivatives were observed to be

T i l 6.011827 6.011827 6.011827

dr -1 .97xl0-13 -4 .5x l0 -15 -4.5 xlO -15

dhThus t u  =  6.011827, =  -4 .5  x 10~15, while an  = 2.04742, =  0 and w  -
—3.24 x 10-13. We can then find = 1.0534. To ensure tha t these parameter estimates are 
maximums, we determine the principal minors of the full 3 x 3  matrix of second derivatives, 
as for the three-parameter Burr XII case above. The matrix is given by

0  
d2lb 
dadr  
d2lb 
dadO

0OT*
d2ih d 2ih
d6dr dfr

-61.3081 \
0.21596 -12.0506

481.26298 -61.7825 -4170.317 /

Clearly, the first principal minor is negative (—61.3081), while the second is found to be pos
itive (738.753) and the third principal minor is found to  be negative (—68569.6), confirming 
the parameter estimates to be maximums. Therefore, the Burr XII parameter estimates 
were found to be r  =  6.0118, a = 2.04742 and 6 = 1.0534

S tep  4 We now set a b =  In ^  =  In (1.0534) =  0.05202 and p b = 0. Using the final 
estimates of r  and a from the previous step as a starting point, we then converge on the 
final parameter estimates for the rescaled data. The table below shows the values obtained 
at the end of each iteration, and their corresponding first derivatives.

I te ra t io n 1 2 3 4 5 6
a 1.9221 1.8990 1.8993 1.8993 1.8993 1.8993
T 6.1130 6.1235 6.1234 6.1234 6.1234 6.1234

a b 0.0211 0.0177 0.0177 0.0177 0.0177 0.0177

h 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
61n
da -1.6x l 0-12 0.0592 0.0096 2 .9 x l0 -6 -1 .3x l0“ n 0

din
d r 2.01 xlO-13 -0.0775 0.0003 2 .7 x l0 -7 1.6 x l 0 " 12 -8 .4x l0~15

din
d a b 1.4xl0-11 -1.2147 -0.0697 -9 .1x l0 -6 -8.1x l 0“ n 0
d lB 

... W b
1268.1273 -11.782 -1.3843 -0.0001 -1.6x l 0-9 7.2 xlO-12

For the final iteration, the full 4 x 4  matrix of second derivatives is given by

\/ d2lp
da2
d2ln
dadr
d2lp

dadab
d 2lpI dadj3b

or*
d 2l£_drdab 
dHjh

d2ln 

d2h l d2h
drd(3b d a bd p b «9/3£ J
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(  -71.23
-1.17 

542.77 
y 11398.37

-11.33
-55.57

-1192.47
-4623.08
-100654.1 -3965323 /

Extending previous results for 3 x 3 matrices, we now determine the four principal minors of 
this matrix. Clearly, the first is negative (—71.23), while the second is found to be positive 
(805.667), the third negative (-96314.8) and the fourth positive (1.616 x 1011). Hence, 
for the re-scaled data, the parameter estimates are maximums and are a =  1.8993, r  =  
6.1234, a b = 0.0177 and fib = 0.0007.

We can see that the estimates of the shape parameters a and r  are similar to those in 
step 3, while the estimates of the two scale parameters a b and p b are close to their starting 
values of In (9 ) and zero respectively.

S tep  5 The shape parameters remain at r  =  6.1234 and a = 1.8993. Upon adding a w 
and Pw to a b and (3b respectively we then obtain parameter estimates for the unsealed data 
of a b = 1.41096 and %  = -0.011.

The SAS IML program that executes this algorithm can be found in Appendix A as 
burr-alt.

2 .3 .3  E xam ples

Example 2.1.1.1 [Carbon Fibre Rod Data] revisited

Summarising the results above, the maximum likelihood estimates of the parameters from 
the Burr XII ALT model are a = 1.8993, r  =  6.1234, a b — 1.41096 and (3b =  —0.011. Hence, 
91 = 4.05503, #2 =  3.67282,9s = 3.29023 and 9± = 2.36543, with associated log-likelihood 
lB =  -262.7479.

Example 2.1.1.2 [Aluminium Coupon Data] revisited

Fitting a Burr XII ALT model to the aluminium coupon data we obtain parameter estimates 
of a =  1.8200143, r  =  7.0197622, a b = 7.6785289 and fib = -2.361454. Hence, ? i -  15.1724, 
#2 =  4.65876 and 93 =  1.4305, with associated log-likelihood Is  = —393.5695.

Example 2.1.1.3 [Electrode Data] revisited

In attempting to establish the maximum likelihood estimates of the parameters in the above 
way, we observed similar behaviour to that found in fitting the three parameter Burr XII 
model to the entire data set; see section 2.2 above. Here, the iterative values for a did 
not converge on a finite maximum likelihood estimate for this parameter; the values of 
a, and also Is, steadily rose. Again, we discuss this phenomenon in greater detail in the 
next section. For completeness, we record the final values as a =  1000000, r  =  11.28027,
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a b  = 4.987465 and (3b — 0.0001656, and using these values we then find approximations 
to the scales # i,#2 and 6 3  as 146.8073,149.0117 and 172.9608 respectively, with associated 
log-likelihood Ib — —530.2298.

2.4 Contrast between Weibull and Burr XII

In this final section, we examine the maximum likelihood estimates of the parameters in 
each of the models outlined above. In addition, we shall compare the associated maximised 
log-likelihoods and present some graphs to illustrate our work.

Example 2.1.1.1 [Carbon Fibre Rod Data] revisited

In Table 2.15 we present an overview of the parameter estimates and maximised log- 
likelihoods from fitting the distributions to each subset of data. It is worth noting that 
r  is not too far removed from B  in each case, while 9 is also similar to 0 for each subset. In 
addition, 0 gradually decreases as the length of the fibre increases. We see that, across all 
subsets of data, the Burr XII model outperforms the Weibull model in terms of maximised 
log-likelihood; albeit occasionally only marginally.

Moving on to consider results from an accelerated framework, we obtained the maximum 
likelihood estimates detailed in Table 2.16. We see that, in both models, the scale estimates 
0 ,9  have a tendency to decrease with increasing fibre length, as expected, while the four 
values of 0 are numerically comparable to their 9 counterparts. We also note, that r  is 
similar in value to 5 , a facet tha t was noticed for the non-accelerated models in Table 
2.15. On the same theme, we see tha t scale estimates obtained from fitting the accelerated 
models (Weibull or Burr XII) are in-line with their non-accelerated counterparts. As in the 
non-accelerated case, the maximised log-likelihood for the Burr XII model is greater than 
that for the Weibull model. However, in both instances the maximised log-likelihoods axe 
less than the sum of those for the separate analyses under the non-ALT models; this is to 
be expected, since we are essentially using two parameters in the log-linear link (1.12) to 
determine four scale values, while in the non-ALT case we are estimating four individual 
scale values.

Example 2.1.1.2 [Aluminium Coupon Data] revisited

Table 2.17 presents the parameter estimates and maximised log-likelihoods when fitting 
the two distributions to each subset of the aluminium coupon data. As with the previous 
example, we note tha t r  is similar in magnitude to the B  for all stress levels. At the lowest 
stress level (x\  =  2.1) we see the value of a cited is actually quite large, perhaps larger than 
would be deemed normal in practice. Nevertheless, the value was converged upon by the 
algorithm and is a true maximum likelihood estimate. Comparing 9 and 0, we see that there 
is rather good agreement at the two highest stress levels, but there is some disparity at the
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L e n g th /m m 1 10 20 50
n 57 64 70 66

W eibull B 5.59297 5.02663 5.52444 6.03828
N on-A L T 0 4.57525 3.30519 2.64819 2.42443
B u rr  X II a 2.588745 0.9826893 3.3372807 4.943483
N on-A L T T 6.963570 8.6832448 6.6199838 6.792626

e 5.014342 2.972029 3.064437 2.996771
L ikelihoods lyj -71.02396 -62.9666 -49.92875 -36.16505

k -70.30808 -58.61848 -49.13677 -35.83991

Table 2.15: Comparison of Weibull and Burr XII three-parameter models for carbon fibre 
rod data

P a ra m e te r  E s tim a te s Scale E s tim a te s
W eibull B 4.5646 0! =  3.98107 02 -  3.58305
ALT OLw 1.3932 03 =  3.18731 04 =  2.24355

Pw - 0.011
B u rr  X II a 1.8993 01 -  4.05503 02 =  3.67282
ALT T 6.1234 03 =  3.29023 04 =  2.36543

ab 1.4109

f t - 0.011
Likelihoods lw -268.6926

h -262.7480

Table 2.16: Summaries of Weibull and Burr XII ALT models for carbon fibre rod data.



2.4. CONTRAST BETWEEN WEIBULL AND BURR XII 45

p si/cy c le 2.1 2.6 3.1
n 101 102 101

W eibull B 4.0298862 7.0075353 6.0734031
N on-A L T 0 15.426431 4.2437821 1.4316699
B u rr  X II a 19.235884 2.831573 1.5708883
N on-A L T T 4.1505101 8.615969 9.3872102

e 31.15297 4.632881 1.4174932
Likelihoods l>ui -279.4588 -98.07688 2.807636

lb -279.4295 -96.59839 10.014003

Table 2.17: Comparison of Weibull and Burr XII three-parameter models for aluminium 
coupon data

P a ra m e te r  E s tim a te s Scale E s tim a te s
W eibull B 4.91691 0 l =  15.227945
ALT Oiyj 7.795572 02 =  4.5512789

Pw -2.41544 03 =  1.3602715
B u rr  X II a 1.8200143 01 =  15.1724
ALT T 7.0197622 #2 =  4.65876

OLb 7.6785289 #3 =  1.4305
Pb -2.361454

L ikelihoods lw
Ib

—415.5829
-393.5695

Table 2.18: Summaries of Weibull and Burr XII ALT models for aluminium coupon data.

lowest level; the value of 0 for x \  =  2.1 is clearly influenced by the value of a. Nevertheless, 
we observe both 0 and 0 to decrease as the psi/cycle increases. In terms of log-likelihood, 
the Burr XII model is seen to outperform the Weibull model at all three stress levels.

Results for the corresponding accelerated models are given in Table 2.18. Here, we 
clearly see the Burr XII ALT model providing a superior fit to the data set than its Weibull 
counterpart. As for the non-accelerated case, we see r  is similar to B , while the Weibull 
scale estimates are close to their Burr XII counterparts. These scale estimates are also seen 
to be very similar in value to the separate scale estimates obtained for the non-ALT Weibull 
model.

E xam ple  2.1.1.3 [E lectrode D ata] rev is ited

Table 2.19 summarises our results for the electrode data, (Table 2.6); the carets over the 
parameters are omitted here since, in this case, we do not strictly speaking have maximum 
likelihood estimates. As with the previous example, we see r  taking approximately the 
same value as B  for each data subset. However, as noticed previously, the value of a 
does not correspond to convergence; rather, the value for this parameter continued to rise 
steadily until the algorithm was stopped after 500 iterations, and it is this final value that is 
presented. W ith regards to maximised log-likelihoods, the Weibull model provides a slightly
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v o lts /se c o n d
n

10
60

100
60

1000
60

W eibull B 12.220089 16.450886 14.681733
N on-A L T <P 39.695289 46.247051 50.860083
B u rr  X II a 253895932 1.31 x 1010 3.48 x 109
N on-A L T r 12.220089 16.450873 14.681725

9 193.47247 190.70582 227.82527
Likelihoods lw -165.5837 -155.4434 -169.9556

k -165.584 -155.4438 -170.0088

Table 2.19: Comparison of Weibull and Burr XII three-parameter models for electrode data,

better fit than the Burr XII three-parameter model in this case.
The results from the accelerated framework are shown in Table 2.20. Again, the log- 

likelihood for the Weibull model is marginally higher than that for the Burr XII model, with 
r  assuming a value very close to B. The value of a was pre-determined as a stopping point for 
the numerical procedure: with values for a failing to  converge on a finite value, but simply 
getting gradually larger, it was decided to force the algorithm to take a at progressively 
higher values and then to use the Newton-Raphson procedure to converge on the remaining 
three parameters. This is in contrast to the non-accelerated case, where we simply let the 
algorithm continue to try to home in on the MLEs. There (Table 2.19) we saw a and 9 get 
progressively larger, while r  tended to B. We also saw a gradually increasing log-likelihood 
tha t approached, but never attained, the value of its counterpart for the Weibull model. 
For the ALT case, we observe a similar behaviour for progressively larger, fixed values of 
a. In particular, we see r  is very close to B. We also see @b having a similar value to j3w 
and the log-likelihoods being very similar. The asymptotic properties of these parameters 
is illustrated in Figures 2.15 to 2.18, where a ranges from 5 to 1000000 and, for the sake of 
clarity, we present the natural logarithm of a on the horizontal axis. We see tha t Ib seems 
to attain its maximum value when In (a) —> oo, while, in the same limit, a b —> oo, r  —> B  
and (3b —► j3w. We shall return to these figures in Chapter four.

Consideration of this asymptotic behaviour has been undertaken previously by Crowder 
and Kimber (1997), and Watkins (2001) for a non-accelerated framework, and has links to 
the limiting behaviour outlined in (1.8). From there, we recall tha t

when 9 - and consequently a - tend to infinity. As a result, a and 9 could be unbounded as lb 
approaches its maximised value. However, Watkins’ approach to problems where MLEs were 
difficult to obtain (such as the electrode example above) differed from ours. While we chose 
to let the algorithm attem pt to determine MLEs for all three model parameters, Watkins 
chose to fix the scale parameter at progressively larger values and then determine estimates 
of the two shape parameters for each value of the scale. We employed a similar approach
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S h ap e  E stim ates Scale E s tim a te s
W eibull B 11.280264 <Pi = 43.140079
ALT Ot-w 3.7627961 02 —43.787981

Pw 0.0001656 03 ~ 50.827037
B u rr X II a 1000000 01 = 146.8073
ALT T 11.28027 02 = 149.0117

a b 4.987465 03 = 172.9608
A 0.0001656

L ikelihoods lw
Ib

-530.2297
-530.2298

Table 2.20: Summaries of Weibull and Burr XII ALT models for electrode data.

when making the extension to acceleration. However, here we fixed a at progressively larger 
values and let the algorithm determine parameter estimates for r ,  a b and /3b. Nevertheless, 
the asymptotic results we observe in the non-ALT case, as a and 6 are seen to increase, are 
consistent with those observed by Watkins for increasing, user-defined, values of the scale 
parameter, and are analogous when we extend our work to the accelerated framework.

2.5 Discussion

In this chapter we have examined three examples. Firstly, we had the situation whereby 
the Burr XII three parameter and Burr XII ALT models provided a better fit to the data 
set than the corresponding Weibull models. There, all parameter estimates were finite and 
easily converged upon by the algorithm. The second example exhibited the same properties, 
with the Burr XII models providing a better fit than their Weibull counterparts. Finally, 
we saw an example where the Weibull was a better fit than the Burr XII for each data 
subset and, similarly, the Weibull ALT was preferred to the Burr XII ALT model for the 
data  set as a whole. In this case, there were difficulties in converging on a value for a, 
and the log-likelihood for the Burr XII models was found to rise steadily with increasing 
values of a, eventually approaching, but never quite attaining, its Weibull counterpart. We 
shall consider this phenomenon in more detail in Chapter four, while in the next chapter we 
investigate the properties of the parameter estimates, and in particular, we are interested 
in determining the variance of the MLEs. This we do by formulating the expected Fisher 
information matrices for the array of models considered in this chapter.
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Figure 2.15: Burr XII ALT log-likelihood versus In (a) for electrode data.
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Figure 2.16: a & versus In (a) for electrode data.
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Figure 2.17: r  versus In (a) for electrode data.
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Figure 2.18: Pb versus In (a) for electrode data.



Chapter 3

The Expected Fisher Information  
M atrices for Burr XII M odels

In the previous chapter, we considered the maximum likelihood estimates of the parameters

to the variances of the MLEs of the parameters. In this chapter, we again only consider 
complete data sets. Cox and Hinkley (1974) discuss the theoretical properties of MLEs, 
with particular attention on asymptotic results. In general, the EFI matrix of second'order 
partial derivatives is symmetric about the main diagonal; see, for example, Nelson (1990). 
We exploit this symmetry by presenting only the lower triangle of such matrices.

Watkins (1998b) presents expectations of second derivatives for the two parameter 
Weibull model, while Watkins (1991) considers the extension to the accelerated Weibull 
framework; this paper also considers the asymptotic validity of formulae derived from the 
expressions for simulated data sets with varying sample sizes.

We begin by outlining previous work for the Burr XII two and three parameter models 
and then extend this to accomodate the accelerated Burr XII model. Finally we shall provide 
evidence of the agreement with theoretical results, using simulations.

3.1 EFI M atrix for Various Burr XII Distributions

3.1.1 T he B asic T w o Param eter D istr ib u tion

In a further paper, Watkins (1997) presents a series of compact expressions for expectations 
of second derivatives of Z&; these results will form a basis for the accelerated model later. 
The EFI matrix is given as:

in the various Weibull and Burr XII models. We now consider the expected Fisher informa
tion (hereafter abbreviated to EFI) matrices needed to make large sample approximations

na - 2

^  4- 72 -  27 +  2 (7 -  1) (a +  1) 
+  [ip (a +  l )]2 + (a + 1)
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3 .1 .2  N o n -A L T  T h r e e  P a r a m e te r  D is t r ib u t io n

The introduction of a scaling parameter into the Burr XII model is also accommodated by 
Watkins (1997). The resultant EFI matrix for the parameterisation (1.5) is

na - 2

n(i-7—0(q)> 
r(a+ l)

IT +  72 — V
n r  2 1 +  < 1 ^  a+2 +2 (7 — 1) ^  (a +  1) >

k +['i/j(a + l )]2 +  ■?// (a +  1) J_

0(a+l)
n a{l—7 —i/>(a+l)} 

~  6{a+2)
n r  a 

6'2 ( cl+ 2 )

(3.1)

q 2 j  q 2 ? q 2 j

where the expectations of and are as for the two parameter model above.

3 .1 .3  B u r r  X I I  A L T  D is t r ib u t io n

In order to consider the accelerated model for the Burr XII distribution in a more tractable 
form, we first note that the transformation

Yj _ D j j    D_
13 Oi exp (ab +  PbXi)

*3

produces variables which follow the basic two parameter Burr XII distribution, given by 
(1.3). This transformation will enable us to write down simplified expressions for expec
tations using results from Watkins (1997) For instance, if Y  follows (1.3), then 1 + Y T 
follows a Pareto distribution and consequently, log (1 +  Y T) follows a negative exponential 
distribution. Therefore, we immediately have

E  [In (1 +  Y T)\ = a -1 (3.2)

while we observed at (1.6) tha t

E  [Vs] - r  (1 + 1) r  (a - 1) 
r ( q )

(3.3)

defined for s < ar. The study of the first and second derivatives of (2.10), in Chapter 2 
above, shows that we only need to find the expectations of a few fundamental functions in 
order to write down the expectations of the more complicated expressions required. These 
fundamental functions are Y xr (In Y )3 for i , j  < 2. From (3.3), we have

E  [yT] =
r(2) r ( a - i )

T(q)
1

a — 1

and
p [y2r] = r(3)r(q-2) 2

1 J r(o) (a — 1) (a — 2) ’

(3.4)

(3.5)
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while differentiating (3.3) with respect to s gives,

i* ( i  +  ; ) r ( q - ; ) - r ( i  +  j ) r > ( a - ; )
E [ Y s biY] = 

which, for s — 0, gives

E[\nY] =

t F (a)

-  {7 + ip (a)}

while, for s = r, we have

E [ Y t \tiY} =
r  (2) r  (o - 1) -  r  (2) r  (a - 1) 1 -  7 -  ^  (a - 1)

rr(a) ( a - l ) r

(3.6)

(3.7)

Differentiating (3.3) a second time with respect to s gives,

E Y s (In * 7
r "  (1 + 1) r  (q -  ; )  -  2r '  ( i + j )  r '  (a -  ; )  +  r  (1 +  ; )  r "  (a -  ; )

r2r (a)

Setting s =  0, we obtain

E ( ln y ) : K- +  72 +  27V> (a) +  {*/> (a)}2 +  7  (a)_  6

while setting s =  r ,  we get 

E [ y r (ln T ): 

W ith s =  2r we have

t 2 (a — 1 )

£ V2r (ln F ) '
r 2 (a — 1) (a — 2)

{ t  +  'i2 ~  2^} +  2 “  X) ^  (a ”  X)
+  {V> ( a - l ) } 2 +  V>' ( a - 1)

2d +  2 (72 - 3 7 +  l) 
- 2  (3 -  27 ) i\> {a -  2)

(3.8)

+2 ( a - 2 ) } 2 +  7// (a — 2)
(3.9)

upon simplification. It is now straightforward to show tha t

k rii
E  [fiJ] =  E E E m ( 1 +  ^ )

i - 1 7=1
=  5 „ E [ln ( l +  y T)] = (3.10)

using (3.2), and 

E  [Se] = E

using (3.6) and (1.12)

k rii

E E lnd«
i=1 j'=l

k
= m  {In 0i + E  [In y ]} =  Sna b + Sx0 b -  17 +  V-M} _

1= 1

(3.11)
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3.1.3.1 E x p ec ta tio n s  o f D erived  E xpressions

In the following, we present expectations with the subscript a to emphasise the role of this 
shape parameter in the expectation. The following theorem covers many of the terms we 
consider below.

T h eo re m  3.1 Let Y  follow a two parameter Burr X I I  distribution with CDF given by 
(1.3). Then, for m >  0,

Ea
y i r ( in y )J 
(1 +  Y r )m

a
a + m

■E,a+ m Y iT (In Y ) j

Proof
By definition, we have, from (1.4),

Ea
Y iT (In Y )3
(i +  Y r y

f ° °  aryT ylT ( ln y ) J  ̂ _  F
Jo  (i +  yT)“+1 (i +  v r ) m  v  Jo

while

a + m  

which is just

■E.a + m

ary(l+1 T̂ 1 (In y)3
(1 +  y T) a+1  * (1 +  yT)may =  Jo  (1 +  yT)a+1+m

(a + m ) r y T~1

dy

y iT( in y ) j = — —  /
J a +  m  Jo

rJo

(1 +  yT)a+l+m 

ary^+1 T̂~1 (In yY

x ytT (In y)3 dy

(1 + yT)a+l+m ■dy ,

as above. This completes the proof.

3.1 .3 .1 .1  T erm s N o t Involv ing  L ogarithm s Now, by applying Theorem 3.1 with i = 
l , j  =  0, m =  1, we have,

Ea
Y 1

~ + r E a+1 \YT] =  - ± -  
a +  1 a +  11 + Y t

using (3.4); similarly, we have, with i = 2 , j  = 0, m  = 2,

y2r

(3.12)

Ea
L(i + y r)‘ a + 2 s a+2[y 2T] (a +  1) ( a +  2)> (3.13)

using (3.5).

3 .1 .3 .1 .2  T erm s Involving L o g arith m s The same manipulations can be applied to the 
following two expressions in this category, which are

Ea
Y T\n Y
l  +  Y'1 £ tt+1 [YT In y] =  1 ~ 7 ~ f (a) a + 1  1 (a + 1 )  r

(3.14)
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and

E a
' Y 2t In Y  

.(1 + Y Tf CL 2
E a+2 [ Y  In Y ]

3 — 27 — 2^ (a) 
t  (a +  1 )  ( a  +  2 )

(3.15)

which, we note, also make use of Theorem 3.1.

3 .1 .3 .1.3  Terms Involving Squares Of Logarithms We will need only one term in
volving a square of a logarithm, which is

Ea
y 2T( in y ) :

(1 +  y r )2 a +  2 E a+2 Y 2t { \ u Y )

using Theorem 3.1 and, replacing a  with a  + 2 in (3 .9), this is

1
r2 ( a  +  1) (a +  2)

j y  +  272 -  67 +  2 )  -  2 (3 -  27) ip (a) +  2 {V2 (a) +  ip' (a)} (3.16)

Now, to be able to write down the expectations of all first and second derivatives of I s ,  as 
given in section 2.3 .1, we need to establish expectations of the summations given therein. 
However, it is quite straightforward to link the expectations of the derived expressions above 
to the required summations. For instance, we see that

E  [£0101] = E

k rii yr
i jXX r + y t .i=1 j =1 ^  V

= S n E a
Y n

i  +  y r 7T T «h-i m  a + 1

a +  1 ’

from (3 .12). The introduction of the stress factor is also straightforward to accommodate; 
for example, we have

E  [$1202] =  E

k rii

XX
»=! 1=1 (1 +  i g )  _

2 S ,

{ cl + 1) (a +  2)

using (3.13). Other expectations can be found through recurrence relations: for instance, 
we have, after some routine algebra,

£0111 -  £0212 =  £0112

and

where

£0121 -  £0222 = £0122

E  [£0112] = SnEa
Y T l n Y

L ( i  +  y r r J
=  S n -— - E a+2 [ r i n 7 ]

Cb “1 A
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and

E  [S0122] = S n a

S n a { l  -  7 - ‘0(g  + l).} 
( a  +  1) (a +  2) t

—■ +  72 -  27 -  2 (1 -  7) if) ( a  +  1) +  { i p  (a +  l) } 2 +  i f j '  (a + 1) 
t 2 (a + 1) ( a  +  2)

(3 .17)

. (3 .18)

These examples illustrate a general procedure for writing down expectations for all required 
summations.

3 .1 .3 .2 Expectation Of The Score

Before proceeding to determining expectations of second derivatives, we first demonstrate 
that the expectations of score functions are zero, as we require. From (2 .13), we have

E
31b
d a

=  S n a ~ l  -  E  [S3] = S n a ' 1 -  S n a ~1 = 0 ,-1 -1

while, from (2.14), 

d ls
E

d r
— S n r  1 — a^ S n  — PfrSx +  E  [̂ e] — ( a  +  1) E  [£0111]

—  S n T  Q b S n  P b ^ x  " h  Oil,Sn  +  PfrSx  

=  0,

Sn{7 + ^ ( a)} S n {1 -  j  -  ip ( a ) }

and from (2.15)

E
31b
3a h — — S n r  +  (a +  1) t E  [Soioi] 

Sn
=  - S nT +  ( a + l ) r  

= 0
a  *1* 1

and, finally, from (2.16)

E
31b

P P b
- S xr  + ( a  + 1 )  t E  [ S i i o i ]  

S x
=  - S xt  +  (a  +  1) r  

=  0
a  1

Thus, the expectations of these first derivatives are zero for all values of n.
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3.1.3.3 Expectations Of Second Derivatives of lB

We now consider the expectations of second derivatives; note that these expressions then 
appear in formulae based on asymptotic theory, so that subsequent calculations derived from 
these expectations hold only for large sample sizes. Since at (2 .17) is deterministic, we 
now recall (2.18) to (2.20), and write

E

E

E

d 2h

d a 2
d 2lB

d a d r

d 2l B

=  - E [ 5 om] =  -
( a  +  1) r

dadctb =  r E  [Sbioi] —
r S n

0 + 1 ’

and
E

d 2h

d a d ( 3b

Next, employing (3.18), we also have

' d 2lB

— t E  [S n o i]  =
t S x

<2 + 1

E
d r 2

=  S n T - 2 -
SjiCL

t 2 (a +  2)

= - S nr  2 -  ( a  +  1) E  [$0121 “  *$0222]

=  S nr ~2 — (a + 1) E  [$0122]
^  +  72 -  27 -  2 (1 -  7) ^  (a +  1)

+  {t/> ( a + l ) } 2 +  </>' (a +  1)

^  +  72 -  27 +  1 -  2 (1 -  7) ^ ( a  + 1) 
+  {if) (a +  l)} 2 +  (a +  1)

T  +  (1 -  i f  ~  2 (1 -  7) (a +  1)
+  {^ (a +  l)}2 +  'ip' (a +  1)

t2 (a +  2)

$n

2 + a 

2 +  a
r2 (a +  2)

and, through the use of (3 .17), we have 

d 2lB
E

d r d a b

and

E
d 2h

d r d ( 3b

= —S n +  (a +  1) ( E  [$0101] + t E  [$0111 -  $0212])

=  ~ S n +  (a + 1) ^  + t E  [$0112]^

=  (a  +  1 ) t E [ $ o i i 2]

= S n a { l - j  - i p j a + l ) }

(a +  2)

— — S x +  (a +  1) (E  [$1101] + t E  [$ iih  — $1212]) 

=  — S x +  (a + 1) pY +  t E  [$1112]^

(3 .19)

(3.20)
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=  (a +  1) t E  [61112]
_  Sxa {1 -  7  -  (a +  1)} 

(a +  2)

Then, we have

similarly,

and, finally,

E d2h
da2 j = (a +  1)  t 2E  [1S0202 -  5 o i o i ]

= (a +  1) t a
2 Sn

= T Sn2 a J 2 -  (a +  2) 
(a +  2)

(a +  1) (a +  2) (a +  1) 

}
r 2aSn 
(a +  2) ’

E
d2lB

d a bdpb

E d2h
[ d P i i

= (a +  1) t 2E  [5 i202 -  5noi]

r 2aSx 
“ a +  2 ’

=  (a +  1) t 2E  [52202 — 52ioi]

T  Q i S x x

a +  2

We now have all the terms we need to form the EFI matrix for a Burr XII ALT model.

3.2 Simulation 1: Three Stress Levels 

3.2 .1  Background

It is now appropriate to reinforce the theoretical results above with some simulations. Ini
tially, we take k =  3, stress levels {x\,X 2 :xs) = (150,170,190), with equal sample sizes at 
those stress levels. The choice of parameter values is based on failure times for Class-B 
insulation data, given in Nelson (1990,pl58). Although the real life experiment featured 
censored items, we start with the assumption that the experiment is complete. We shall 
consider six variations on this experiment, each time making modifications to the values of 
the two shape parameters a and r ,  keeping all other parameter values constant. For each 
value of a (=  2 or 5) we choose a value for r  (=  3,5 or 7), with the intention of covering a 
suitable portion of the parameter space. We also take a b = 17.60139 and /3b = —0.056282, 
determined from (1.12) in which we take 6\ =  9500 and 0s =  1000. We shall perform 10000
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replications for m  =  30,100,1000 and 3000. Now, with the EFI m atrix being defined as

’d2hE

E

E

E

da2 
d2l̂ _
dadr
d2ln

dada. j, 
d2l̂ _

dad(3b

E

E

E E d2i
<9/3£

(3.21)

we can write the expectations of second derivatives for simulations and theory and then
compare results. Some simplification is now possible, partly because we have constant sub
sample sizes, and partly because the parameter values are now specified. For instance, we 
can now write

Sn = k x n i  = 3ni 

Sx = (150+ 170 +190) n i =  510rai

Sxx =  (1502 +  1702 +  1902) m  =  8750071!,

and then substituting these expressions into the expectations of second derivatives, given in 
section 3.2.4.3 above, we see (3.21) reduces to

3m
I F

3 n i{ l—7 —i/>(a)} 
(a + l)r

 3m r
ci—1 

510mr 
a+1

37?

=  Til
3( 1- 7 —0(a)} 

(a + l)r

3 r  
a+1  
510r 
a+1

3m+2"

2 +  a (1 — 7)2 +  ip' (a +  1) 

-2 (1  (a +  1)

+  [ip ( a +  l ) ] 2 +  \
3ani (1—7 —7/>(a+l)) 

a+2
510an i{l—7 —̂ (a + l)}  

a+2

2 +  a (1 -  7)2 + 'ip' ( a  +  1) 

- 2  (1 -  7) i )  (a +  1)
+  [ i p ( a +  l)]2 + +

3 a (l—7 —0 (a + l))  
a+  2

 510a{l—7 —t/>(a+l)}
a+2

3aniT2
a+ 2

510anir2
a+ 2

510am t 2 
a+ 2  

87500amr2 
a+ 2

3ar2 510o.t2
a+ 2  

51Oar2 
a+ 2

a+ 2
87500ar2

a+ 2

Substituting a = 2 and r  =  3 into this expression, we then have the EFI matrix, in our first 
example as

Til
-3

-510

, J l - f  +  ( l - 7 ) 2 - 2 ( l - 7 ) ( ! - 7 )
U  + ( 1 -  +  +  ^

3
4

255
2

27
2

2295 393750
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-  ni

0.75
0 0.548311-•• 

- 3  0.75
-510 127.5

13.5
2295 393750

(3.22)

where the second diagonal element reduces to yg, and is presented to six decimal places 
and all others are exact. Taking the inverse of (3.22) and simplifying gives the approximate 
variance-covariance matrix as

_1_
n i

ni

36-48?r2 
27—4tt2 

144 
2 7 -4 tt2 
32tt2 

12tt2-8 1
0

35.0798
-11.5399

8.43663

72 
47r2—27 

36 
27—4?r2

0

7803—12527T2 
972-144tt2

 17.
360

5.76996 • 
-2.88498-

l
3600

10.1369 ■ •
0 0 -0.0472222 ■ • • 0.000277778

. (3.23)

With the diagonal elements representing approximations to the variances of the maximum 
likelihood estimates, we can see that increasing the sample size n\  reduces the variances, 
as expected. Naturally, taking the square roots of elements on the main diagonal of (3.23)
gives the approximate standard deviations, and we can write

y/ni x standard deviation (a) = \/35.0798 =  5.92282 • • •,

y/ni x standard deviation (r) =  a/ 5 .76996 =  2.40207 • • •,

-y/ni x standard deviation (S5) =  \/l0.1369 =  3.18385

and
x standard deviation j  =  \/0 .000277778 =  0.016666

It is also straightforward to find the approximate correlation matrix from (3.23) as

1
-0.811125-•• 1

0.447391-•• -0.377227-•• 1
0 0 -0.889906-•• 1

which is clearly independent of n\.
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3.2 .2  R esults

In Table 3.1, we present elements from the theoretical EFI matrix (3.22) divided by n i, 
together with simulated counterparts for our four values of n\.  Table 3.2 gives the corre
sponding correlations, approximations to the means and standard deviations of parameter 
estimates and the skewness of the parameter estimates. Now, in some cases, particularly 
for smaller sample sizes, the maximum likelihood estimates were not obtained; in these 
instances a and ab were usually seen to increase without limit. Consequently, these val
ues are not included in the sample, and we indicate the percentage of cases (out of 10000 
replications) th a t were included in the sample.

For the majority of cases, the terms in the EFI m atrix get closer to their theoretical 
counterparts with increasing sample size. Repeated experimental runs suggested that, for 
those terms whose simulated values do not get progressively closer to  their theoretical values, 
the cause was simulation variation: different runs with the same parameter values gave 
slightly different results each time. Since correlations and standard deviations in Table 3.2 
are based on the inverse of the EFI matrix, such variations will naturally propagate and 
consequently we occasionally observe fluctuations in simulated values as we increase the 
sample size.

It is worth noting the similarity between correlations observed here for the Burr XII ALT 
model and those illustrated by Watkins (1991) for the Weibull ALT model. There, Watkins 
noted that the theoretical correlation between maximum likelihood estimates of B  and (3W 
was zero, while there was a considerable negative correlation between the MLEs of a w and 
Pw (—0.8957). This is consistent with the Burr XII ALT model, where the asymptotic 
theoretical correlations between MLEs of shape parameters and (3b are zero, while between 
the MLEs of a b and Pb, the correlations are negative. Considering the zero correlations 
further, we now show tha t this is always true. Firstly, since the correlations are zero then 
the covariances are also zero. Now, with the EFI m atrix given as (3.21), it is sufficient to 
show tha t the two minors are zero. The first is given by the determinant of

E

E

E d a ;

which is,

—E d2h
dadr

x I E d2u
d rd a b

E d2h

+ E ' d2lB ' x |  E \d 2lB ~ E
dadab d r2

- E
' d2lB ’

x \dHB1E
dadpb_ d r 2

da bdpb 

d2lB
dahdpb 
d2lB

- E f d2lB E
\d 2iB ]

[drdpb .9 ° $ .

- E d2lB 1 E d2lB ]
drdPb dabd r

-  E r  d2iB i

Fr d2iB 1

d r d a b d a^dr_
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and, in full, is,

ffn (l — 7 — j)(a + 1)) f Sna ( l  -  7~V>(a +  l)) 
r (a +1) \  a + 2

(1 -  7 -  'ip (a +  1)) 1 5 xa (1 -  7 -  'ip (a + 1))

x -

T (a +  1)

f Sn

a +  2

Sxr 2a 
CL +  2

C ^2
X -

Snr 2a \  ] 
a + 2 J j

r 2 (a +  2)
2 +  a %- + ( 1 - 7) - 2 ( 1 - 7 ) V ’(o + 1) 

+ \i> (a + l)]2 + V>' (a + 1)
X -

Sxr 2a 
cl +  2

Sxa (1 -  7 -  -0 (a +  1)) (1 -  7 “  (a +  1))
X a +  2

a +  1
Sna (1 -  7 -  ijj (a +  1)) s na (1 

" ^ + 2  X

T  +  (1 -  i f  ~  2 (1 -  7) V> (0 +  1)
+  (a +  l )]2 +  (a +  1)

7 - '0 ( a  +  l))

x -
Snr 2a 
CL -(-2

ci -I- 2

Through inspection, we see tha t the first term cancels with the final term, the second term 
cancels with the fourth and the third term cancels with the fifth, giving the final result of 
zero, as required. The second minor is given by the determinant of

E

E

E

d 2i

da\

and is written as,

- E
d2lB

+ E

- E

da2

d2lB

E d2h

dadab
d2lB

dadfib

x I E

x < E

drdab  
d2lB
dadr
d2lB
dadr

E

E

E

r  d2iB 1 - E d2lB 1 E
d2lB ] )

_dabdfib_ drdfibJ
i

[ d2lB - E [ d2lB E [ d2h
d a bdpb d r  d fib. dadab
d2h

9 a l  j
-  E

drdab
E

d2lB

dadab

and, in full, is,

Sn Sna { l  -  7 — ^ ( a  +  l)) 
a2 a +  2
| Snr  Sn {l - 7  - -0 (a ))  

a +  1 r  (a +  1)
Sxr  Sn (1 -  7 -  -0 (a)) 

a +  1 t  (a +  1)

Sxr 2a \  Sn Sxa (1 -  7 -  ip (a +  1)) (  Snr 2a 
a +  2 

Sxr 2a
a +  2 
Snr 2a 
a +  2 +

a2 a +  2 V a +  2 J
Snr Sxa (i - 7 - <ip{a + D ) ,( Snr

a + 1 a + 2 1K a +  1.
Sxr Sna (1 - 7 ~ ■0 (a + D ) i (  Snr

a + 1 a +  2 a + 1

Again, by inspection we can see th a t the first term cancels the second, the third cancels the 
fifth and the fourth cancels the sixth, giving zero as the required final result. Therefore,
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Ti-̂ 1 x Average Simulated EFI Element Theoretical
Valueni  =  30 j ni = 100 ni = 1000 ni =  3000

—E d2lB 
da2 0.75 0.75 0.75 0.75 0.75

- E d2h
dadr 0.000115035 -0.000067 0.000072 0.000024 0

- E d2lB
dadab -3.00108 -3.00092 -3.00001 -3.00028 - 3

- E d2iB
dadfib -510.193 -510.173 -510 -510.04 -510

- E d r z 0.548153 0.548259 0.548309 0.548287 0.548311

- E d2lB
d r d a b 0.747823 0.749375 0.749934 0.74957 0.75

- E d2lB
drd(3h 127.129 127.378 127.486 127.436 127.5

- E d2lB
d a \ 13.502 13.5056 13.4993 13.5008 13.5

- E d 2lB
da bfib 2295.38 2296.06 2294.88 2295.13 2295

- E d2l B 393823 393950 393732 393772 393750

Table 3.1: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with 
shape parameters a =  2 and r  = 3.

since the determinants of these two 3 x 3  matrices are zero, the inverse of the full 4 x 4  
matrix will give zeros at positions (4,1) and (4,2).

It is perhaps intuitive tha t the correlations between a and (3b and between r  and fib will 
be zero, since we do not naturally expect the coefficient of the stress factor - effectively a 
scale parameter - to have any bearing on the shape of the distribution. Further discussion 
on interpretation of the correlations is omitted, since this investigation will require a more 
detailed examination of the theoretical matrices than is appropriate here.

3.2 .3  O ther R esu lts For a =  2

We now perform a similar analysis using the shape parameters a = 2 and t  — 5. Results 
are presented in Tables 3.3 and 3.4. As with the previous example, the extent to which 
the simulated values strictly approach their theoretical counterparts with increasing sample 
size, varies. Nevertheless, in all cases the simulated values are close to the theoretical 
values. Our next example considers the same experiment but with shape parameters a = 2 
and r  = 7. The results are presented in Tables 3.5 and 3.6. Both tables show rather 
good agreement between simulated and theoretical values, and provide further evidence 
supporting the expressions for the theoretical expectations established in section 3.2.4.3.

3.2 .4  R esu lts For a — 5

Our next example uses the same parameter values for k,rii,Xi and for a b and (3b as above 
but with a = 5 and r  =  3. The results are shown in Tables 3.7 and 3.8. Again, simulated 
and theoretical values match up rather well in all cases. Performing the same analysis
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Simulated Value Theoretical
Valuen  i =  30 n \  = 100 n \  = 1000 n i =  3000

% valid MLEs 92.71 99.97 100.00 100.00 100.00
mean (a) 3.93102 2.31662 2.01941 2.00779 2.0
mean(r) 3.04897 3.01106 3.00183 3.00013 3.0
mean(Sft) 17.70504 17.63806 17.60246 17.60169 17.60139
m e a n ^ f t b ' j -0.05625 -0.056288 -0.056272 -0.056276 -0.056282

y / n i x s . d . ( a ) 52.47341 12.13306 6.044758 6.033097 5.92282
y / u i x s . d . ( r ) 2.29877 2.47633 2.39734 2.39736 2.40207
^ / n i x s . d . ( a b ) 3.40227 3.33985 3.14820 3.15134 3.18385

V 'nTxs.d.^b) 0.016958 0.016827 0.016503 0.016549 0.0166667

skewness (a) 13.798 9.999 0.461 0.281 0
skewness (r) 0.523 0.379 0.111 0.099 0
skewness(Sb) 0.266 0.162 0.019 0.005 0

skewness (fib) -0.039 0.018 0.001 -0.018 0

corr (a, r) -0.766 -0.806 -0.799 -0.803 -0.811125
corr(a, ab) 0.446 0.461 0.430 0.426 0.447391
corr (a, p b) 0.020 -0.002 0.003 0.016 0
corr(r, ab) -0.366 -0.386 -0.362 -0.358 -0.377227
corr ( r , -0.012 -0.003 -0.005 -0.016 0

corr (a*,,#,) -0.846 -0.858 -0.879 -0.875 -0.889906

Table 3.2: Simulated and theoretical standard deviations and correlations of the MLEs from 
the Burr XII ALT model, with shape parameters a = 2 and r  = 3.

n 1 i x  Average Simulated EFI Element Theoretical
Valuen\ = 30 n i -- 100

oooIIe n i — 3000

- E d%
da? 0.75 0.75 0.75 0.75 0.75

- E d2b
dadr 0.0006301 0.0000519 0.0000519 0.000031 0

- E d2b
dadab -5.00847 -5.00053 -5.00089 -5.00027 - 5

- E d2iB
dad/3b -851.413 -850.114 -850.153 -850.06 -850

- E TT*drz 0.197346 0.197347 0.197381 0.197385 0.1973921

- E d2b
drdab 0.741897 0.748954 0.749423 0.749703 0.75

- E d%
drdpb 126.145 127.31 127.395 127.44 127.5

- E d2lg 
daJ 37.514 37.5006 37.5057 37.5 37.5

- E d2iB
doLbdb 6377.1 6375.21 6375.94 6375.1 6375

- E d2l§ 1094060 1093800 1093910 1093780 1093750

Table 3.3: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a =  2 and r  =  5.
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Simulated Value Theoretical
Valueni = 30 ni = 100 n\ = 1000 n i =  3000

% valid MLEs 94.20 99.91 100.00 100.00 100.00
mean (a) 4.28442 2.29158 2.021652 2.006107 2
m ean(r) 5.09002 5.02995 5.003214 5.001002 5
mean(ai&) 17.66571 17.61951 17.602796 17.60098 17.60139
mean^/?ft) -0.056262 -0.056277 -0.056279 -0.056276 -0.056282

y/n{xs.d.(a) 76.96717 11.33064 6.099483 5.83556 5.92282
v/n ix s .d .(r) 4.00383 4.11344 4.016026 3.90727 4.00346
y/n{x  s.d.(a&) 2.09438 1.98445 1.908771 1.89548 1.91031

^Jn[x s.d.(/?b) 0.010210 0.010013 0.009993 0.010011 0.01

skewness (a) 19.581 6.176 0.442 0.246 0
skewness (r) 0.535 0.292 0.088 0.084 0
skewness(ab) 0.310 0.158 0.059 0.024 0

skewness (Pb) -0.010 -0.052 -0.022 -0.041 0

corr (a, r) -0.785 -0.800 -0.799 -0.792 -0.811125
corr (a, S&) 0.474 0.458 0.429 0.407 0.447391
corr ̂ a, 3b) 0.006 0.006 0.004 0.016 0
corr(r, a^) -0.394 -0.398 -0.368 -0.338 -0.377227

corr ( t  , 3b) -0.004 0.007 0.004 -0.018 0

corr (Sb, 3b) -0.837 -0.854 -0.879 -0.885 -0.889906

Table 3.4: Simulated and theoretical standard deviations and correlations of the MLEs from 
the Burr XII ALT model, with shape parameters a = 2 and r  =  5.

n x 1 x  Average Simulated EFI Element Theoretical
Valueni — 30 Tl\ = 100 ni = 1000 n i =  3000

- E da2. 0.75 0.75 0.75 0.75 0.75

- E d 2b
dadr 0.00005 -0.00006 0.00001 0.00002 0

- E d 2lB
dadat, -7.00697 -6.99839 -7.00052 -7.004 - 7

- E d 2lB
dad(3b -1191.33 -1189.76 -1190.09 -1190.08 -1190

- E dT2 0.1007 0.10072 0.100714 0.10071 0.10071

- E SHb
drdaf, 0.74706 0.751014 0.749844 0.749697 0.75

- E d2ln
drdfib 126.922 127.644 127.47 127.441 127.5

- E dHn
. dci .

73.5637 73.4946 73.5025 73.499 73.5

- E ' d2ln 
d a b(3b 12506.7 12493.8 12495.5 12494.8 12495

- E d 2b
W b

2145920 2143490 2143840 2143730 2143750

Table 3.5: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a =  2 and r  =  7.
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Simulated Value Theoretical
Value77-1 =  30 n\ — 100 n i =  1000 ni = 3000

% valid MLEs 93.98 99.96 100.00 100.00 100.00
mean (a) 4.25586 2.31116 2.02143 2.00725 2
mean(r) 7.14507 7.03608 7.00207 7.00091 7
mean(St) 17.64848 17.61519 17.60268 17.60209 17.60139
mean^/?b) -0.056274 -0.056278 -0.056282 -0.056283 -0.056282

•y/nfx s.d.(a) 71.85744 13.66082 6.12376 6.05583 5.92282
Y/rTfxs.d.fr) 12.15888 5.822027 5.56507 5.66461 5.60484
y/n{x  s.d.(Sb) 1.48763 1.437580 1.36734 1.35997 1.36451
^ /n T x s .d .^ ) 0.0071848 0.0072137 0.0070804 0.0071132 0.00714286

skewness (a) 18.190 13.537 0.535 0.341 0
skewness (r) 67.527 0.370 0.116 0.038 0
skewness(ab) 0.318 0.165 0.045 0.013 0
skewness (/?b) 0.015 0.012 -0.014 0.000 0

corr (a, r) -0.783 -0.803 -0.793 -0.800 -0.811125
corr (a, at,) 0.484 0.474 0.445 0.430 0.447391
corr (a, 0 6) -0.010 -0.012 -0.011 0.007 0
corr ( t,  ab) -0.404 -0.394 -0.366 -0.358 -0.377227

corr f r , 0.017 0.001 0.002 -0.012 0

corr 3b) -0.841 -0.856 -0.878 -0.877 -0.889906

Table 3.6: Simulated and theoretical standard deviations and correlations of the MLEs from 
the Burr XII ALT model, with shape parameters a = 2 and r  =  7.
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n 11 x Average Simulated EFI Element Theoretical
Valuen\ = 30 Th\ = 100 n  1 =  1000 n i =  3000

—E da2 0.12 0.12 0.12 0.12 0.12

- E d2ln
dadr -0.18057 -0.180595 -0.180585 -0.180568 -0.180556

- E d2lB
dadai, -1.49814 -1.49976 -1.50018 -1.49986 -1 .5

- E d2lB
dad/3b -254.71 -254.937 -255.029 -254.978 -255

- E dr* 0.922473 0.922547 0.922165 0.922213 0.922191

- E d2ln
drdab 2.75391 2.75158 2.74993 2.7504 2.75

- E d2ln
drdpb 468.08 467.799 467.49 467.56 467.5

- E dHg
da 2 19.2683 19.2841 19.2886 19.2848 19.2857

- E d2ln
dabPb 3275.77 3278.04 3279.05 3278.43 3278.57

- E d2in 562050 562366 562580 562479 562500

Table 3.7: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with 
shape parameters a =  5 and r  =  3.

for a = 5 and r  =  5, we obtain the results shown in Tables 3.9 and 3.10. As with all 
previous examples, the agreement between simulated and theoretical results is good and 
seems to  improve as we increase sample size. Our final adjustment for this example has 
shape parameters of a = 5 and r  = 7. The results are presented in Tables 3.11 and 3.12. 
Yet again, we observe good agreement between simulated and theoretical results, which 
seems to improve with increasing sample size.

3.3 Simulation 2: Four Stress Levels

We now consider a second experiment, with a different number of stress levels and suitably 
large range of parameter values. The choice of the shape parameters is now a = 2 or 
5 and r  =  2,4 or 6; with j3b = —0.01 and a b = 5.5. This time, we have k = 4 stress 
levels, (a;i, X2 , £3, £4) =  (10,80,150,240), with equal sub-sample sizes, and n\  taken to 
be 25,100,1000 and 3000. The approximate scale parameters are then (#i, 6 2 , #3, #4) = 
(221,109,54,22). As with the previous simulation, we present the EFI matrix - analogous 
to (3.22) - and its inverse - analogous to (3.23) - for a = 2 and r  =  2 as

ni

1
0

-2.66667* •• 
-320

1.64493
1

120 960 173200
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Simulated Value Theoretical
Valuen\ — 30 n  1 =  100 ni  =  1000 77-1 =  3000

% valid MLEs 74.88 94.70 100.00 100.00 100.00
mean (a) 10.04393 9.35930 5.21678 5.06651 5
mean(r) 3.18404 3.02549 3.00003 3.000164 3
mean (Sb) 17.59748 17.67008 17.61153 17.60368 17.60139
mean(/?b) -0.056255 -0.056250 -0.056284 -0.056277 -0.056282

y ^ x s .d .p ) 135.7306 186.6651 33.62628 29.96307 28.4309
.y/nixs.d.fr) 2.2849 2.21533 2.26944 2.27526 2.25459
y/n{xs.d.(ab) 3.2309 3.89157 3.52540 3.46710 3.43394

^/nT xs.d .^b) 0.014193 0.014020 0.0138704 0.013937 0.0139443

skewness (a) 14.656 8.859 1.402 0.598 0
skewness (r) 0.865 0.445 0.079 0.055 0
skewness(St) 0.287 0.715 0.270 0.052 0
skewness (fibj 0.003 0.049 0.012 0.037 0

corr (a, r) -0.712 -0.762 -0.790 -0.784 -0.793006
corr (a, 05) 0.607 0.715 0.710 0.708 0.7818193
corr (a, 3 b) 0.001 0.008 0.001 0.001 0
corr(r, a^) -0.459 -0.568 -0.603 -0.594 -0.604278

corr ( r ,  ft,) -0.005 -0.026 0.006 0.000 0

corr (ab, 3b) -0.747 -0.637 -0.661 -0.665 -0.690325

Table 3.8: Simulated and theoretical standard deviations and correlations of the MLEs from 
the Burr XII ALT model, with shape parameters a = 5 and t  =  3.

n 1 1x  Average Simulated EFI Element Theoretical
Valueni =  30 ni = 100 n i =  1000 n\ = 3000

- E 8,2lB da? 0.12 0.12 0.12 0.12 0.12

- E d2lB
dadr -0.108347 -0.108277 -0.108338 -0.108325 -0.108333

- E efliB
dadoes -2.5014 -2.49945 -2.50018 -2.49998 -2 .5

- E d2lR
daddb -425.277 -424.908 -425.031 -424.994 -425

- E dr* 0.33183 0.331993 0.331955 0.331998 0.331989

- E ans
drdab 2.74753 2.74978 2.74969 2.74994 2.75

- E d2lB
dTdfo 466.993 467.452 467.444 467.491 467.5

- E d2lB
dal 53.5977 53.5528 53.5758 53.5693 53.5714

- E d2lB
doLbdb 9111.8 9103.89 9107.86 9106.75 9107.14

- E d2lB
oft

1563340 1561930 1562620 1562430 1562500

Table 3.9: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a =  5 and r = 5.
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Simulated Value Theoretical
Value3 I—* II CO o n\ = 100 n\ = 1000 n i =  3000

% valid MLEs 75.34 95.18 100.00 100.00 100.00
mean (a) 10.96528 9.99898 5.21488 5.05974 5
mean(r) 5.28461 5.04795 5.00167 5.00040 5
mean(a5) 17.61227 17.64996 17.60698 17.603012 17.60139
mean -0.056330 -0.056301 -0.056281 -0.056282 -0.056282

y/nixs.d.(a) 170.32033 252.8482 33.5082 29.57480 28.4309
y/nixs.d.(T) 3.97966 3.73813 3.81067 3.75346 3.75765
y fn ix  s.d.(ab) 1.98491 2.39457 2.11219 2.07430 2.06037
y /n l x s .d .^ ) 0.008584 0.0085505 0.0084108 0.008355 0.0083666

skewness (a) 12.302 12.120 1.636 0.640 0
skewness (r) 0.594 0.439 0.119 0.065 0
skewness(Sb) 0.350 0.799 0.236 0.099 0
skewness 0.031 0.019 0.034 0.024 0

corr (a, r ) -0.713 -0.762 -0.784 -0.779 -0.793006
corr (a, a &) 0.607 0.710 0.703 0.699 0.718193

corr (a, 3b) -0.003 0.002 0.006 -0.004 0
corr(r, a&) -0.466 -0.582 -0.588 -0.589 -0.604278

corr f r , f t ) 0.010 0.007 -0.011 0.014 0

corr (a b, f t ) -0.749 -0.647 -0.666 -0.678 -0.690325

Table 3.10: Simulated and theoretical standard deviations and correlations of the MLEs 
from the Burr XII ALT model, with shape parameters a = 5 and r  = 5.

1 x  Average Simulated EFI Element Theoretical
Valuen i =  30 . n\ = 100 n i =  1000 n  i — 3000

- E d%  
da2 0.12 0.12 0.12 0.12 0.12

- E d 2lB
dadr -0.0774859 -0.0773846 -0.0773706 -0.0773881 -0.077381

- E d 2lB
dadab -3.49935 -3.50237 -3.49992 -3.50012 -3 .5

- E d2lB
dad{3b -594.907 -595.39 -594.992 -595.029 -595

- E a ?d r2. 0.169362 0.169363 0.169363 0.169379 0.169382

- E d2lB
drdab 2.75252 2.74806 2.74989 2.75005 2.75

- E d2lB
drd/3b 467.943 467.185 467.473 467.5 467.5

- E d %
d a l 105.04 105.054 104.993 105.006 105

- E d 2lB
dabPb 17857.7 17858.9 17848.9 17851.3 17850

- E d2l§
Wh

3063960 3063980 3063980 3062760 3062500

Table 3.11: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a =  5 and r  =  7.
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Simulated Value Theoretical
Value

oC
OIIH£

T i l  =  1 0 0 n  i  =  1 0 0 0 Ti\ = 3000
% valid MLEs 75.43 95.16 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0

mean (a) 10.06161 9.73120 5.21719 5.06650 5
mean(r) • 7.43269 7.06477 6.99958 7.00037 7
mean(Sb) 17.600753 17.63377 17.60603 17.60279 17.60139
m e a n ^ 6̂ -0.056287 -0.056283 -0.056284 -0.056282 -0.056282

y/n{xs.d.(a) 145.95794 232.7660 33.55176 29.78438 28.4309
,fiv[xs.d.(T) 5.445185 5.25221 5.31631 5.23886 5.2607
y /n ix sA .{a b) 1.381558 1.70159 1.50634 1.47534 1.47169
y / n T x s .d .^ b) 0.006070 0.0060918 0.005953 0.0059689 0.00597614

skewness (a) 10.831 12.993 1.663 0.683 0

skewness (r) 0.894 0.439 0.092 0.040 0

skewness(Sb) 0.286 0.693 0.216 0 . 1 2 1 0

skewness ypbJ -0.024 0.031 0.028 0.027 0

corr (a, r) -0.716 -0.767 -0.783 -0.772 -0.793006
corr (a, ab) 0.612 0.722 0.708 0.703 0.718193

corr (a, /?{>) -0.006 - 0 . 0 1 1 -0.009 0.003 0

corr(r, a b) -0.461 -0.596 -0.589 -0.584 -0.604278

c o r r f r ,3 b) - 0 . 0 1 0 0.016 0.000 - 0 . 0 0 2 0

corr (oihifthj -0.749 -0.644 -0.671 -0.667 -0.690325

Table 3.12: Simulated and theoretical standard deviations and correlations of the MLEs 
from the Burr XII ALT model, with shape parameters a = 5 and r  =  7, for three stress 
levels.
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n 1 1x  Average Simulated EFI Element Theoretical
Valueni — 25 n\ = 100 77-1 =  1000 n i =  3000

— E d 2l R
d a * 1 1 1 1 1

- E
d 2i B
d a d r -0.0005759 0.0000372 0.0001039 0.0000029 0

- E
d 2l B

d a d a b -2.66629 -2.66667 -2.66668 -2.66655 -2.66667

- E
d 2l B

d a d 0 b -319.927 -319.959 -319.995 -319.976 -320

- E
d 2l R 
d r * 1.64468 1.64488 1.64496 1.64499 1.64493

- E
d 2l R

d r d a b 1.00037 0.999544 0.999924 1.00023 1

- E
d 2l R

d r d 0 b 120.095 120.047 119.998 120.065 120

- E d 2l n
d a l 8.0012 7.99962 7.99964 7.99963 8

- E
d 2l R

d a b0 b 960.192 959.997 959.92 959.98 960

- E d 2ln 173253 173190 173182 173197 173200

Table 3.13: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with 
shape parameters a = 2 and r  =  2, for four stress levels.

and

ni

26.3099
-5.76996

9.49121
1.92332

-2.16374
0 0

3.80748 • • • 
-0.00206 • • • 0.0000172

respectively. W ith regard to simulations, we perform 10000 replications and the results are 
presented in Tables 3.13 and 3.14. We can see that, with the exception of the standard 
deviation of a, there is rather good agreement between simulated and theoretical values, 
even for smaller sample sizes.

3 .3 .1  O th e r  R e s u l ts  F o r  a =  2

We now consider the same set of parameter values but with the minor alteration, r  — 4. 
The results are given in Tables 3.15 and 3.16, and, as before, we observe good agreement 
between simulated and theoretical results. We then consider the same set of parameter 
values but now with the minor change, r  = 6. The results are given in Tables 3.17 and 
3.18 and the good agreement between simulated and theoretical results further increases 
our confidence in the theoretical results established in section 3.2.4.3.

3 .3 .2  R e s u l t s  F o r a =  5.

Using the values a = 5 and r  = 2, keeping all other parameter values the same, we perform 
the same analysis; the results are presented in Tables 3.19 and 3.20. Again, we observe 
good agreement between simulated and theoretical results throughout both tables. The
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Simulated Value Theoretical
Valuem  =  25 n\ — 100 n\  =  1000 n i =  3000

% valid MLEs 94.63 100.00 100.00 100.00
mean (a) 3.66738 2.19165 2.01658 2.005133 2
mean(r) 2.01770 2.00973 2.00088 2.000259 2
mean(ah) 5.67372 5.42892 5.503561 5.501142 5.5
mean - 0.01001 -0.009997 - 0.0100001 - 0.0100001 - 0.01

y/nixs.d.(a) 36.34330 7.79892 5.279216 5.167248 5.12932
y /fiixs .d .(?) 1.32552 1.42297 1.37503 1.390346 1.38684
^/n^xs.d.(db) 2.45769 2.17297 1.96850 1.953105 1.95128

y /n ix  s.d.(/?b) 0.004227 0.004184 0.0040947 0.0041266 0.00415227

skewness (a) 13.790 3.844 0.432 0.203 0
skewness (r) 0.458 0.293 0.081 0.079 0
skewness (ab) 1.499 0.844 0.177 0.054 0
skewness f/3b) - 0.012 -0.019 0.015 - 0.020 0

corr (a, r) -0.772 -0.807 -0.795 -0.801 -0.811125
corr (a, ab) 0.938 0.945 0.947 0.946 . 0.948295
corr (a, j§6) 0.013 0.008 -0.007 - 0.001 0
corr(r, ab) -0 .767 -0.796 -0.785 -0.789 -0.799576

corr ( r ,  f t ) 0.006 - 0.002 0.009 - 0.002 0

corr 3b) -0.234 -0.230 -0.243 -0.239 -0.25537

Table 3.14: Simulated and theoretical standard deviations and correlations of the MLEs 
from the Burr XII ALT model, with shape parameters a =  2 and r  =  2.

n 1 Lx  Average Simulated EFI Element Theoretical
Valuen\ = 25 n\  =  100 n\ =  1000 ni =  3000

- E dHn 
da* 1 1 1 1 1

- E dHB
dadr 0.0007184 0.0000805 0.0000201 -0.0000237 0

- E enB
dadab -5.3344 -5.33411 -5.33349 -5.3333 -5.33333

- E d2lB
dadpb -640.028 -639.784 -640.045 -639.95 -640

- E TT*drz 0.411312 0.411174 0.411235 0.411237 0.411234

- E d2lB
drdab 0.999164 0.998617 0.999972 1.0001 1

- E d2ln
drdpb 119.954 120.167 119.989 120.053 120

- E d2ln 31.9866 32.0012 32.0006 32.0005 32

- E d2lB
dotbPb 3839.24 3838.63 3840.31 3839.97 3840

- E 692752 692438 692874 692797 692800

Table 3.15: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a =  2 and r  =  4.
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Simulated Value Theoretical
Valuem  =  25 Til = 100 n i =  1000 n\  =  3000

% valid MLEs 95.22 100.00 100.00 100.00
mean (a) 3.98581 2.18991 2.016092 2.004496 2
mean(r) 4.05985 4.02181 4.000866 4.001116 4
mean (ab) 5.58090 5.41198 5.501714 5.500339 5.5
mean^d6J -0.010006 -0.0099985 -0.0099997 -0.009999 - 0.01

•y/nixs.d^a) 55.06266 7.61164 5.311191 5.192484 5.12932
^/nTxs.d.fr) 2.76497 2.87793 2.776967 2.783386 2.77368
v'nTx s.d.(St) 1.30002 1.09047 0.984610 0.980858 0.975638
y/n{x s.d.(fib) 0.002131 0.0020762 0.0020804 0.0020791 0.00207614

skewness (a) 17.119 2.839 0.489 0.204 0
skewness (r) 0.505 0.322 0.113 0.099 0
skewness (S&) 1.606 0.709 0.222 0.064 0
skewness [fib) -0.004 -0.029 - 0.011 -0.005 0

corr (a, r) -0.789 -0.808 -0.796 -0.796 -0.811125
corr (a, a*,) 0.943 0.948 0.944 0.946 0.948295
corr (a, fib) - 0.010 - 0.001 0.015 0.004 0
corrfr, a:&) -0.783 -0.798 -0.782 -0.785 -0.799576

corr (V, f t ) 0.016 0.006 -0.023 -0.006 0

corr /?&) -0.245 -0.223 -0.229 -0.236 -0.255357

Table 3.16: Simulated and theoretical standard deviations and correlations of the MLEs 
from the Burr XII ALT model, with shape parameters a = 2 and r  =  4.

n1 1x  Average Simulated EFI Element Theoretical
Valuen  i = 2 5 77,1 =  100 n i =  1000 n i =  3000

- E d 2l n  
d a 2 1 1 1 1 1

- E d 2lB
d a d T 0.0002117 0.0000625 -0.0000158 0.0000424 0

- E d 2lp
d a d a b -8.00052 -8.00207 -8.00049 -8.00035 - 8

- E d 2iB
dadPb -960.012 -960.103 -960.124 -960.058 -960

- E Q td r * 0.182783 0.182753 0.182759 0.182774 0.18277

- E d 2l B
d r d a b 0.999404 0.998339 0.99973 0.999611 1

- E d 2lB
drdPb 119.971 119.925 119.912 119.961 120

- E d 2lB
d a l 71.9844 72.0099 72.007 71.9973 72

- E d 2lm
d&bPb 8637.08 8639.82 8641.23 8639.8 8640

- E d 2b 1558380 1558500 1559000 1558780 1558800

Table 3.17: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a =  2 and r = 6.



3.3. SIMULATION 2: FOUR STRESS LEVELS 73

Simulated Value Theoretical
Valueni =  25 n 1 — 100

000i"HIIe n i =  3000
% valid MLEs 95.21 99.98 100.00 100.00
mean(a) 4.05465 2.18172 2.014147 2.004573 2
m ean(r) 6.10230 6.02721 6.002621 6.000535 6
mean(Sfc) 5.55021 5.51121 5.500894 5.500382 5.5
mean -0.009988 -0.010003 - 0.0100001 - 0.0100001 -0.01

v/n ixs.d .(a) 74.29613 7.711701 5.253496 5.1538510 5.12932
y/ni xs.d.(r) 4.17629 4.290739 4.143423 4.136447 4.16052
v^nTx s.d.(Sfr) 0.871887 0.713529 0.656403 0.653009 0.650425
V ^T x s.d .(ft) 0.0014102 0.001365 0.0014022 0.0014021 0.00138409

skewness (a) 29.021 6.905 0.429 0.233 0
skewness (r) 0.466 0.296 0.084 0.046 0
skewness (a^) 1.652 0.752 0.175 0.108 0
skewness 0.008 -0.037 -0.035 -0.003 0

corr (a, r) -0.790 -0.804 -0.800 -0.798 -0.811125
corr (a, S5) 0.944 0.947 0.943 0.944 0.948295
corr (a, /?&) -0.016 0.007 -0.009 - 0.021 0
corr(r, -0.775 -0.797 -0.787 -0.784 -0.799576
co rrfr, 0.008 0.005 0.013 0.008 0

corr ( a b, -0.250 -0.226 -0.253 -0.264 -0.255357

Table 3.18: Simulated and theoretical standard deviations and correlations of the MLEs
from the Burr XII ALT model, with shape parameters a =  2 and r  =  6.
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n x 1 x Average Simulated EFI Element Theoretical
Valueni — 25

ooI—
1

IIS ni = 1000 n  i  =  3000

- E d2ln
da? 0.16 0.16 0.16 0.16 0.16

- E d %
dadr -0.361204 -0.361146 -0.361076 -0.361127 -0.361111

- E d2b
dadab -1.33286 -1.33333 -1.33347 -1.33337 -1.33333

- E d %
dadfib -160.061 -160.02 -160.052 -160.026 -160

- E dHn 
d r 5 2.76709 2.76684 2.76654 2.76654 2.76657

- E d2lp
drdab 3.669 3.6672 3.66605 3.66664 3.66667

- E d %
drdfib 440.088 440.043 439.796 439.936 440

- E d2ie
* 4

11.4266 11.4289 11.429 11.429 11.4286

- E d2lp
dOLbdb 1372.17 1371.73 1371.68 1371.61 1371.43

- E d2ln
m

247659 247520 247477 247464 247429

Table 3.19: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with 
shape parameters a — 5 and r  = 5.

next example takes the same parameter values as in the previous example, but now a — 5 
and r  = 4. The results are presented in Tables 3.21 and 3.22. As before, we observe good 
conformity between simulated and theoretical results, thereby increasing our confidence 
in the theoretical results established above. Our final example takes the same parameter 
values as in the previous example, but with a = 5 and r  =  6. The results are presented 
in Tables 3.23 and 3.24. In this final example, as with all previous examples, we observe 
good agreement between simulated and theoretical results, which improves as the sample 
size increases.

3.4 Discussion on Simulations

For both experiments above, and in every combination of shape parameter values considered, 
we observed larger means and standard deviations of a for smaller sample sizes. These 
became more consistent with their theoretical counterparts as the sample size increased. 
However, for the other three parameter estimates, r , a b and Pb, the means and standard 
deviations were quite close to their theoretical counterparts, even for the smallest sample 
size considered. It is also worth noting tha t as the sample size decreased, not only did the 
mean of a rise, but so did the mean of a b. We have observed something similar to this 
before. It is now appropriate to recall the electrode data  (example 2.1.1.3) from Chapter 
two, where the algorithm failed to converge on the maximum likelihood estimates of a and 
a b, rather the values rose without limit. This asymptotic behaviour of a and a b shall be 
examined in more detail in the next chapter. Also worthy of note at this stage, is the
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Simulated Value Theoretical
Value3 H-‘ II to cn n\ =  100

oooi-HIIe ni = 3000
% valid MLEs 80.93 97.82 100.00 100.00
mean (a) 8.89231 7.99056 5.153282 5.048465 5
mean(r) 2.10739 2.01124 2.000153 2.000187 2
mean (St) 5.50616 5.59573 5.510123 5.503365 5.5

m e a n ^ t ) -0.010009 -0.010001 -0.0100005 -0.010001 -0.01

^/nixs.d .(a) 78.91692 118.4836 28.22751 25.945914 24.6219
.yn ixs.d^?) 1.29510 1.28485 1.308019 1.318133 1.30169
^/nrxs.d.(3&) 2.79073 4.04626 3.412059 3.345328 3.25422

v 'n T x s.d .^b ) 0.003532 0.0035073 0.0034713 0.0034957 0.0034740

skewness (a) 6.320 8.056 1.203 0.567 0
skewness (r) 0.798 0.388 0.108 0.082 0
skewness(St) 0.941 1.357 0.453 0.238 0

skewness (Pb) -0.032 -0.057 0.012 -0.018 0

corr (a, r) -0.711 -0.774 -0.782 -0.780 -0.793006
corr (a, St) 0.971 0.983 0.983 0.983 0.984487

corr ̂ a, Pb) 0.013 0.010 0.002 -0.010 0
corr(r, St) -0.748 -0.809 -0.820 -0.817 -0.828333
corr (?, Pt) -0.021 -0.005 0.002 0.011 0

corr (S 6, Pb) -0.147 -0.110 -0.117 -0.132 -0.128106

Table 3.20: Simulated and theoretical standard deviations and correlations of the MLEs 
from the Burr XII ALT model, with shape parameters a = 5 and r  = 2.

n j 1 x  Average Simulated EFI Element Theoretical
Valuen \  = 25 77-1 =  100 Tii =  1000 n i =  3000

—E d2iB 
da5 0.16 0.16 0.16 0.16 0.16

- E d2lB
dadr -0.180554 -0.180583 -0.180545 -0.180555 -0.180556

- E d2lB
dadab -2.66797 -2.66812 -2.6662 -2.66644 -2.66667

- E d2lB
dad(3b -320.01 -320.275 -320.009 -319.958 -320

- E d2lB 
dr2 0.691542 0.691481 0.691642 0.691667 0.691643

- E d2lB
drdab 3.66478 3.66463 3.66713 3.66706 3.66667

- E d2lB
drdpb 439.831 439.515 439.94 440.054 440

- E d2l§
dal 45.7316 45.7364 45.7076 45.7113 45.7143

- E d2ln
dab(3b 5485 5489.24 5485.66 5485.09 5485.71

- E d2l§ 989383 990455 989748 989587 989714

Table 3.21: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a =  5 and r = 4.
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Simulated Value Theoretical
Value77,1 =  25 774 — 100 77,1 =  1000 n i =  3000

% valid MLEs 77.79 97.08 100 .00 100 .00
mean (a) 10.73362 8.47798 5.158571 5.051951 5
m ean(r) 4.22528 4.01973 4.000266 4.000248 4
mean(Sh) 5.50909 5.55052 5.505426 5.501820 5.5
mean ̂ /3b) -0.010004 -0.009996 - 0 .0 1 0 0 0 0 -0.009999 - 0 .0 1

y/jv[xs.d.(a) 138.10812 168.1969 27.55780 25.63805 24.6219
y/n ixs .d^T) 2.64845 2.60758 2.581774 2.612391 2.60337
^/n{xs.d.(ab) 1.49861 2.09453 1.673018 1.661179 1.62711

yjn{x  s.d. (3fc) 0.001785 0.0017520 0.0017287 0.001735 0.0017370

skewness (a) 9.208 13.316 1.091 0.481 0
skewness (r) 0.794 0.357 0.093 0.018 0
skewness (Sb) 1.097 1.490 0.460 0.189 0

skewness (Pb) 0 .0 2 0 0.039 0.014 0.011 0

corr (a, r) -0.726 -0.772 -0.773 -0.783 -0.793006
corr (a, 3b) 0.972 0.983 0.983 0.984 0.984487
corr (a, 3b) -0.009 - 0 .0 0 1 - 0 .0 0 2 -0.024 0

corr(r, 3b) -0.761 -0.807 -0.809 -0.819 -0.828333

corr f r ,  3b) 0.017 0.002 -0.003 0.019 0

corr (S 6,3b) -0.167 -0.118 -0.123 -0.143 -0.128106

Table 3.22: Simulated and theoretical standard deviations and correlations of the MLEs 
from the Burr XII ALT model, with shape parameters a = 5 and r  =  4.

72JL1 x Simulated EFI Element Theoretical
Value77,1 — 25 77,1 =  100 77-1 =  1000 72i =  3000

- E da* 0.16 0.16 0.16 0.16 0.16

- E d2lB
dadr -0.120358 -0.120333 -0.12036 -0.120367 -0.12037

- E Pig
dadab -4.00196 -4.00113 -4.00049 -3.99992 - 4

- E d 2b
dad(3b -479.714 -480.004 -480.072 -479.984 -480

- E d2b
d r 2 0.307369 0.307342 0.307386 0.307401 0.307397

- E 8HS
drdab 3.66542 3.66437 3.66587 3.66667 3.66667

- E d2b
dTdfo 440.549 439.929 439.855 440.009 440

- E d2ln
d a l 102.895 102.868 102.863 102.855 102.857

- E d 2lB
d a bPh

12339.4 12342.2 12343.6 12342.5 12342.9

- E d 2lnm 2225420 2226530 2226870 2226760 2226860

Table 3.23: Simulated and theoretical elements from the Burr XII ALT EFI matrix, with
shape parameters a = 5 and r  = 6.
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Simulated Value Theoretical
Valueni -  25 ni = 100 77-1 =  1000 n i =  3000

% valid MLEs 77.09 97.00 100.00 100.00
mean (a) 11.25251 9.13891 5.15754 5.041633 5
mean(r) 6.32542 6.03081 6.000474 6.000920 6
mean(ai>) 5.50751 5.53496 5.503609 5.500804 5.5
mean^/?&̂ -0.010004 -0.009999 -0.0099998 -0.0099998 -0.01

y ^ x s .d ^ a ) 162.40586 234.3730 27.49136 25.68123 24.6219
.yn ixs.d .fr) 3.94142 3.92945 3.92094 3.907596 3.90506
y /n ix  s.d.(ab) 1.00712 1.43324 1.12062 1.103259 1.80474
y /n lx  s.d.(]§6) 0.001176 0.001168 0.0011632 0.0011558 0.0011580

skewness (a) 11.210 13.811 0.990 0.587 0
skewness (r) 0.761 0.450 0.121 0.073 0
skewness (Sb) 1.160 1.627 0.373 0.261 0

skewness [Pb] -0.013 0.007 -0.013 0.037 0

corr (a ,r) -0.725 -0.773 -0.785 -0.783 -0.793006
corr (a, a^) 0.973 0.984 0.984 0.983 0.984487
corr (a, /?6) -0.005 0.014 0.007 -0.006 0
corr(r, 05) -0.762 -0.810 -0.820 -0.820 -0.828333
corr f r ,  j§b) 0.008 -0.003 -0.011 0.008 0

corr -0.160 -0.102 -0.110 -0.126 -0.128106

Table 3.24: Simulated and theoretical standard deviations and correlations of the MLEs
from the Burr XII ALT model, with shape parameters a = 5 and r = 6.
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relationship between the sample size and the percentage of valid MLEs. We see that as 
one decreases, so does the other. Furthermore, when the algorithm failed to converge, the 
estimates for a and rose without limit; in terms of maximised log-likelihood, the Weibull 
distribution is preferred to the Burr XII. We shall consider these results in greater detail 
in the next chapter. However, we may note this result is perhaps to be expected: when 
the sample size is small, it seems sensible to expect the Weibull distribution (with only one 
shape parameter) sometimes to be a better fit than the Burr XII distribution, with two 
shape parameters. Further, given the limiting relationship between the Weibull and Burr 
XII in mind, for some sets of data we can also expect values of a to be rather larger in 
smaller samples than with larger sample sizes; these large values of a help to explain the 
systematic bias seen in our simulations, particularly with small sample sizes.

W ith all simulations above, we observed a heavily right-skewed distribution for a, for 
small sample sizes; the distribution becoming more Normal with increasing sample size. 
The skewness in the distribution of the other parameter estimates was less marked, even for 
small sample sizes.

Similar theoretical correlations were observed for both simulations; for example, the two 
shape parameters had strong inverse correlation, as did the two scale parameters; while a*, 
was positively correlated with a and negatively correlated with r .

Clearly, the two experiments considered here - which in to tal constitute twelve separate 
examples - are just a small fraction of the possible combinations of stresses and parameter 
values tha t could be studied. For example, we could go further and examine the effect of five 
or more stress levels, unequal sample sizes across stress levels and a whole host of different 
values for the shape parameters. However, we regard the array of results presented here as 
sufficient to endorse the theoretical results obtained above.

In this chapter we have written down the EFI matrix for the Burr XII non-ALT model. 
We then extended the Burr XII model into an accelerated environment and presented theo
retical results. To validate these results we then presented a series of simulations for varying 
parameter values and sample sizes. Due to the improved agreement between simulated and 
theoretical results as the sample size increased, we concluded th a t the theory was sound.

In the next chapter, we investigate further the asymptotic behaviour occasionally exhib
ited by a and S&. We shall examine, in more detail, the link between this behaviour and our 
preference for the Weibull distribution over the Burr XII. Consequently, we derive a result 
tha t allows us to determine if the Burr XII will provide a superior fit than the Weibull, to 
a given data set, simply through fitting the Weibull distribution.



Chapter 4

W eibull or Burr XII?

In Chapter two we presented three examples: two where the Burr XII models (either ALT 
or non-ALT) provided a better fit, in terms of maximized log-likelihood, than their Weibull 
counterparts, (example 2.1.1.1: Carbon Fibre Rod D ata and example 2.1.1.2: Aluminium 
Coupon Data), and one where the Weibull models produced a better fit than the analogous 
Burr XII models, (example 2.1.1.3: Electrodes in Oil Data). In the final case, we saw 
tha t when attempting to fit a Burr XII model in the non-ALT (ALT) frameworks, the 
approximations to a and 9 (a and at,) gradually rose without limit, while the log-likelihood 
approached but never quite attained the Weibull equivalent.

In this chapter, we consider the circumstances under which a given ALT data set will 
exhibit the behaviour observed in example 2.1.1.3., as opposed to th a t observed in examples 
2.1.1.1. and 2.1.1.2. We shall show tha t we can determine which model will provide a better 
fit to a given data set through one simple expression, acting as a discriminating factor. This 
extends the work of Watkins (2001), which considers the non-ALT model.

We first derive the discriminating factor for complete data  from first principles and 
then apply it to the examples we studied in Chapter two. Our attention then turns to 
the theoretical properties of the discriminating factor; in particular we are interested in the 
probability of specifying the correct model, when the data comes from a Weibull distribution 
or alternatively from a Burr XII distribution. We are also interested in the probability 
of misspecifying the model; that is to say the probability of preferring to fit a Weibull 
distribution when the data is from a Burr XII distribution and, conversely, preferring to fit 
a Burr XII distribution when the data is from a Weibull distribution. This investigation is 
further motivated by observations made regarding simulations at the end of the last chapter. 
These suggest that there are instances, seemingly more common for smaller sample sizes, 
when we prefer to fit the Weibull distribution, even though the data  has been generated 
from a Burr XII distribution.
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4.1 Derivation Of The Discrim inating Factor: Non-ALT Case

In this section, we review the steps presented in Watkins (2001) to determine the discrim
inating factor for non-ALT models. The results come from firstly recalling, in (1.8), that 
as A (= 6 T) —> oo, the shape parameter of the limiting Weibull model was r  with scale 
parameter,

al/T
which tended to (p in the same limit. Consequently, we also have a —* oo in this limit; thus, 
two of the three parameters in the Burr XII CDF may be unbounded as lb approaches its 
maximum. In addition to this, the limiting behaviour of lb - as illustrated in Watkins (2001) 
- means that all derivatives will tend to zero in this limit, making it difficult to distinguish 
between the two types of behaviour on the basis of these derivatives. To overcome this, 
Watkins considered a reparameterisation of the Burr XII distribution, using

and

=  — In a;

iP = 0
a 1/ 1-’

6 V  /  —lnuAra = I —
so that

a = (  , ,
\

Consequently, as a, 0 —>• oo, we have w —> 0 and ip —*■ <p, and interest then centres on the 
behaviour of the associated score function at r  =  B, ip = <j> and as u  —> 0. For these first 
derivatives of the reparameterised likelihood, now a function of the parameters t , o j  and ip,  

it was shown that
mu

=  0
r=B,ip=4>

V dlb h m ^ -  
u>—>0 dip

and
r  dlb hm —  
w—>o or

To simplify the consideration of 1^-, it is convenient to write A =  (—lno;)r ; the behaviour
p\j

of is then determined by

Applying a Taylor series expansion to these summations, together with the result
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L e n g th /m m 1 10 20 50
n
D iscrim in a tin g  F acto r

57
4.2429678

64
17.06521

70
6.1955223

66
3.57413

Table 4.1: Discriminating factor for subsets of carbon fibre rod data

at (2.2), it can then be shown that the sign of

dlb
lim aoj->0 Oio T=B,lp=4>

is determined by

where

S b (2g )  {5 q ( b ) } 2

i=l

and, as before, B  is the maximum likelihood estimate of the shape parameter in the Weibull 
distribution. The expression (4.1) thus defines the discriminating factor, based on the 
criterion of greater maximised likelihood; a value greater than zero indicates a preference 
for fitting the Burr XII model over the Weibull, while a value less than zero indicates the 
Weibull model is preferred to the Burr XII. Note tha t any rescaling of the data set leaves 
the sign of (4.1) unchanged, but may introduce some numerical stability into the calculation 
of So and So Typically, one rescales the data  set using di —►

4.1.1 E xam ples R evisited

E x am p le  2.1.1.1 [C arbon  F ib re  R o d  D ata] rev is ited

We return to the complete data set consisting of failure stresses of single carbon fibre rods 
at four different lengths; see Table 2.1. We can now determine the value of (4.1), suitably 
rescaled, for each subset of data, and these are presented in Table 4.1. It appears tha t we 
favour the three parameter Burr XII model over the Weibull model for each of the four data 
subsets. This is consistent with results seen in Table 2.15 where we observed the maximised 
log-likelihoods for the Burr XII model exceeded those for the Weibull model.

E xam ple  2.1.1.2 [A lum inium  C oupon  D ata] rev is ited

Recall, this data set consisted of the fatigue life to failure of coupons cut from aluminium 
sheeting, see Table 2.4. The values of (4.1) for each subset of data are presented in Table
4.2. Again, this is consistent with results seen in Table 2.17, where we saw the Burr XII 
distribution providing a superior fit to the Weibull at all stress levels.



4.2. EXTENSION TO ALT MODELS 82

p si/cy c le 2.1 2.6 3.1
n
D iscrim inating  F ac to r

101
1.159937

102
11.16959

101
40.01791

Table 4.2: Discriminating factor for subsets of aluminium coupon data

vo lts /seco n d 10 100 1000
n
D iscrim inating  F ac to r

60
-7.804207

60
-3.739976

60
-7.660377

Table 4.3: Discriminating factor for subsets of electrode data for 9 sq in electrodes. 

E xam p le  2.1.1.3 [E lectrode D ata] rev is ited

We recall tha t this data set concerns disc electrodes immersed in an insulating oil; see Table 
2.6. The observed values of (4.1) are presented in Table 4.3. It seems the Weibull model is 
favoured over the Burr XII model. Again, this is consistent with results in Table 2.19 where 
the maximised log-likelihoods were greater for the Weibull model.

4.2 Extension to ALT Models

As in the non-ALT case discussed by Watkins (2001), we shall now consider a reparame- 
terisation of the Burr XII ALT model Our approach will be analogous to Watkins’ paper 
based on the behaviour seen in Chapter two, where, as a and a b tended to infinity, r  and fib 
remained bounded - in particular, r  appeared to tend to the Weibull ALT shape parameter, 
with (3b close to zero for the rescaled data. We begin by examining the behaviour of the 
log-likelihood, key partial derivatives and estimates of model parameters when we steadily 
increase the value of a. This we do for the carbon fibre rod data  and the electrode data; 
results for the aluminium coupon data are omitted for the sake of brevity. The graphs then 
assist us in determining a suitable reparameterisation for the Burr XII ALT model, which 
we then pursue through to the ultimate goal of determining a discriminating factor for an 
ALT data set.

4.2.1 E xam ples R evisited

E xam ple  2.1.1.1 [C arbon F ib re  R o d  D ata] rev is ited

In Figures 4.1 to 4.6, we choose values of a from 0.9 to 5000000, at gradually increasing 
increments. For instance, for a in the range 0.9 to 50, we take increments of 1, rising to 
50 until a reaches 1000, while for values of a over 100000, the incrementation is in steps of 
100000. For any particular value of a, we determine the maximum likelihood estimates of 
the remaining three parameters in the model - r ,  a b and (3b - together with the maximised 
log-likelihood. We then plot each MLE and maximised log-likelihood, independently, against 
the corresponding value of a. However, for clarity, we use the natural logarithm of a on the
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ln(3)

Figure 4.1: Maximised log-likelihood for Burr XII ALT (continuous line) and Weibull ALT 
(single point) for the carbon fibre rod data.
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Figure 4.2: The derivative ^  of the log-likelihood Is  maximised with respect to r ,  a b and 
/3b for a given a, against a , for the carbon fibre rod data.

horizontal axis. Figures 4.1 and 4.2 show that the Burr XII log-likelihood is maximised at 
finite a. In addition, as a —► oo we see r  —> B  (in Figure 4.3), /3b —> j3w (in Figure 4.4) 
and a b —► oo (in Figure 4.5). We also observe in Figure 4.6, exp (aw), which is
analogous to the limiting behaviour in the non-ALT case, since exp (ab) is the estimated 
base scale ignoring the effect of stress.

Example 2.1.1.3 [Electrode Data] revisited

In Figures 4.7 to 4.12, a was taken between 15 and 5000000. A similar incrementation 
was used here as in the previous example. For instance, for values of a up to 1000 we used 
incrementations of 20, while for values of a greater than 100000, we used steps of 100000. The 
figures are as before: we choose a value for a and then determine the maximum likelihood 
estimates of the other three model parameters, together with the maximised log-likelihood.
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Figure 4.3: r  (continuous line) against a, and B (single point), for the carbon fibre rod 
data.
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Figure 4.4: Pb (continuous line) against a, and (3W (single point), for the carbon fibre rod 
data.
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Figure 4.5: a b against a for the carbon fibre rod data.
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o
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Figure 4.6: (continuous line) against a, and exp(Su;) (single point), for the carbon
fibre rod data.
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Figure 4.7: Maximised log-likelihood for Burr XII ALT (continuous line) and Weibull ALT 
(single point) for the electrode data.

Again, a natural logarithm scale was chosen for clarity. Figures 4.7 and 4.8 clearly show 
tha t the Burr XII log-likelihood is maximised at infinite a, and indeed tends to the Weibull 
log-likelihood with increasing values of a. As with example 2.1.1.1, when a —» 00 we see 
t  —» B, (3b —► Pw and di& —> 00; we also observe —> exp ( a ^ ) ; see Figures 4.9 to 4.12.

4.2 .2  R eparam eterisations o f th e  Burr X II ALT D istr ib u tio n

For the non-accelerated case, Watkins (2001) observed two of the three model parameters 
tending to infinity - namely 4> and a - while r  remained finite. He initially chose to repa- 
rameterise the scale parameter 4> and, from this, to derive a suitable reparameterisation for 
a. An equally viable approach would be to begin by reparameterising the shape parameter 
a and from this, establish a suitable reparameterisation for the scale <fi.

However, this choice should have no bearing upon the final result. Similarly, the manner
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Figure 4.8: The derivative ^  of the log-likelihood Is maximised with respect to T ,a b and 
/3 b for a given a, against a, for the electrode data.

Figure 4.9: r  (continuous line) against a, and B  (single point), for the electrode data.
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Figure 4.10: j3b (continuous line) against a, and (3W (single point), for the electrode data.
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Figure 4.11: against a for the electrode data.
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Figure 4.12: (continuous line) against a, and exp (aw) (single point), for the electrode
data.
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in which we reparameterise in the ALT case should have no impact upon the outcome. To 
emphasise this point, we shall work through two reparameterisations: one which considers 
an initial reparamerisation of the shape parameter a and another, analogous to Watkins’ 
approach, which considers a reparameterisation of a b.

R ep ara m e te ris in g  th e  S h ap e  P a ra m e te r  a

If we define
a =  ln (—lnw ), (4.2)

then, as a —» oo, u  —> 0. Now, we observed that tended to a finite limit - seemingly
exp (Sto) - so we shall write

exp jab) 
al/T

= 0. (4.3)

We use a double logarithmic expression in (4.2) to compensate for the inclusion of the 
exponential function in (4.3). Substituting (4.2) into (4.3) and rewriting gives us

a b =  In (0) +  t - 1  In [In {— In (w)}].

Under this reparameterisation, Ib at (2.10) now becomes,

Ib  (^, 0 , r , (3̂ ) =  5n In r  +  Sn In (In (—In u>)) +  (r  — 1) S e (4.4)

- r S n [ln0  +  t -1 In (In (— In a;))] - r ( 3 bSx -  (1 +  In ( -  In a;)) tj[ (0>,w),

where we now define

k rii
exp{Pbxi)

i=1 j =1 ip [In (— In a;)]
(4.5)

We are interested in the behaviour of the score function for (4.4) at r  = B, ip = exp (a w), (3b = 
(3W and as u  —> 0. We make the following definitions, analogous to those in Watkins (2001),

4(*.A) = EE*f
i=1 j —\

di

and

k rii
4,w =

i=i j =i

exp (pbx

__
exP(Pbxi)

o) H s i f e } ) ’ - (4-6)

■0[ln(— In w)]1/ 7"
In

aij 
exp (PbXj)

>̂[]n(—lno>)]1/,T

1 + exp(Pbxi) 
i/’[ln(— lncj)]1/,T

(4.7)

Before proceeding to examine first derivatives of Is it is convenient to consider the Weibull 
ALT log-likelihood in terms of this new notation. Firstly, we note that we can rewrite (2.4)
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as
{exp {aw)}~^ So,o = Sn, (4.8)

while the log-likelihood (2.3) becomes

lw = Sn In B  +  (B -  1) sf)0 (0,0) -  a wB S n -  j3wB S x -  exp (~ a wB)  sq>0 (B , (3W) ,

which gives

rw = Sn \u B  + (B  -  1) (0,0) -  ~

as the profile log-likelihood. Differentiating I^  with respect to B  and equating to zero yields

H  =  SnB -1 +  Sdh0 (0,0) -  pws x -  Sn ( =  0,
\ S0,0 P WJ )

from which
( 4 , o ( b X ) \  ~  , .

Sn = S" B  +  SU  (° .°) -  A A .  (4.9)
\ 4 ,o [ B ^ v )  )

We shall see the importance of (4.8) and (4.9) below, where we examine the first derivatives 
of Ib -

First Derivatives Taking first derivatives of (4.4) with respect to all parameters gives 

^  =  - r S - n i p ' 1 +  (1 +  ln ( - ln o ; ) ) r^ _1^ )0(^,w),

SIb  r, - i  o r . 1 # / i n  i / i  I T- 1 ln ( ln ( - ln w ))  x |- s -  =  Snr  + Se — iS„ In — /3bSx — (1 +  l n(—lnu))  ̂ I,
o t  [ *o,oW’>“0 + *i,o(V’>") J
S h  a , / i  . i _  /  i „  A \  _ +d
d p b =  —r S x +  (1 +  In (— In a;)) rt01 (?/>, a;)

and

duj u) In w * ’ win a; In (— In a;)

We now make the substitution
A =  ipT [In (— lnw )],

so that, with i/j and r  finite, w —> 0 implies A —► oo. The first derivatives then become

^  = - rSn'il)_1 +  (1 +  At/Tt ) r^_1 ô,o M  i

= - t S x +  (1 +  A^“ T) r 4 yl (A),
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d ls
dr

=  s nr - ' + s e - s n ^ - 0 bs x - ( i + x ^ ) {  }
{  +*1,0  ( A ) J

and
dls
du) a; (—logo;)

where we now write the t ^ w and £* with a A notation, to indicate the role of the parameter 
in the summations. We now examine the behaviour of the first derivatives. Since our 
summations are in essence the same as those in Watkins (2001), we use some of the lemmas 
there, which we now present without proof.

L em m a 1. As A —> oo, we have

M  — so,o ( r > P b )  ~  2 A S o,o ( 2t , /?*,) +  O  (A ) .

R em ark  1. From Lemma 1, we have, as A —> oo

A^(A) =  4 o(t ,A )  +  0 ( A - 1) .

L em m a 2. As A —> oo, we have

^ i,o  M  =  sio  (T> P b )  ~  r “ 1 0 n *) 4,o  (r > P b )  +  O (A-1 ) .

R em ark  2. Adapting the argument in Lemma 2, we have, as A —> oo,

*1,0 ( A )  =  0  ( A - 1) -

L em m a 3. We have, as A —> oo,

^0,0 M  =  s0,0 (T’ P b )  — ^  14,0  i^ r ’ P b )  + 0  2 )  •

o i
B ehav iour o f ^  We write

^  =  Tip- 1  [a^~ T4 o  (A) +  to,0 (A) ~ S n \ 

adapting Lemma 3 gives

^o,o M  — 5o,o ( T ’ P b )  +  O  1 )  j (4 -11)

while

( A )  =  A- 1 E  E  =  o  ( A - 1) .
1 -1  -7 - 1  ^ exP(Bbxi)
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Now, employing (4.8), we have

^  =  rip 1 ip r 4 o  (t , Pb) - S n + 0 ( A x)

which gives

 ̂ r 4 f l { T >Pb) = {exp (Su,)} B S0,o -- Sn
t = B  ,ip=exp(aw) ,/3b=(3l

(4.12)

and hence we have

r  91blim —
A—+oo dip

dh

V  ® B= lim —-
r=B,i>=exp(aw),Pb= 0 w

=  0 .

T = B , i p = e x p { a w ) ,0b=Px 

dh

as

Ql Ql
B eh av io u r o f ^  A similar argument applies to since we can write this derivative

d ls
d p b

=  T W Tt i i (A) + < i  (A )-S *

Here,

< i W  =  £ X >
z=l j= l

exp(/3fa:

1 +
= o  r 1‘)

and

^ o ,i M  — so,i {T->Pb) +  O (A *) , 

by analogy with (4.11), while, adapting (4.12), and writing in full, we have

k rii

Vexp(/3(,xi)
a:,-   ^  ̂TljXi   /Sj;*

Z=1

Thus, we also have 

rlim -
A-+oo d/3b

di

= lim —
T = B rt= e x p {* w),Pb=P w u ~+° ° P b

=  0 .
T=B,'ip=exp(aw),/3b='(3l

B eh av io u r of ^  For this derivative we have

d ls =  Snr  1 - 5 n ln ^  +  s i>0(0,0) -  PbSx -  (1 +  A^ T) ( r  1 In A -  ln ^ )  (A)J 

-  ( l +  A ip T) t f  o (A)

: In +  5^0 (0, 0) -ftjS 'x  - i p ~ T ( r _1lnA - l n ^ )  {soj0 (t,/?6)

+ 0  (A-1 ) } -  ip~r | s ?)0 (r, p b) -  r _1 In As£ 0 (r, /?6) +  O (A-1) }

- r  In (AiP~T) O (A"1) +  O (A"1) ,



4.2. EXTENSION TO ALT MODELS 92

using Lemma2, Lemma 3 and Remark2. Simplification yields

^  =  S„T-1 +  s(fi ( 0 ,0 ) -  (3bSz -  (T,/Sb) + \nip {V’_TSo,o (T. 0 b )  -  s n }
+ 0  (A-1 )

=  Snr _1 +  (0,0) -  fibSz -  r Ts{a (r, f)b) +  O (A-1) (4.13)

using (4.12) for the term in brackets. In order to show tha t this expression is zero in the 
limit, we use the result at (4.9), together with the fact tha t we can write (4.12) as

t/r

Substituting into (4.13) gives

li/'=exp(alu),r=B

lim —
A—>oo O T T = B , i p = e x p ( a w ) ,j3b= f i v

y 91b = hm  —
u>—»0 O T

= 0.
T=B,ip=ex  p(Stu),/?b= 3 l

B eh av io u r o f Finally, we turn our attention to From (4.10), we see the 
behaviour of this derivative is determined by the expression

. . . .  i + Ar Tfd \r r{tim-(i+\rT)ti0{\)
* J  Mjrr  ° ' ° ----------------------------------------------------------------------------------A i>~T

=  A"1 [A { t d,  (A)} -  A { < „  (A)} -  (A)

as A —> oo. Using Lemma 1 to deal with t* (A) and Lemma 3 for the other terms, this 
expression becomes

A"1 

=  A"2

4,0 iT>Pb) -  i x4 ,o (2t , A )  +  O (A 2) -  { s l 0 (r ,P b) -  (2r , f t )

+ 0  (A- 2 ) } -  ^  { sq,o (t > f t )  +  ^  ( ^ ~ 1) }

5*0,0 (2 r>&) -  ^ T*o,o (u /56) +  O (A ) .

So, as A —> oo, the sign of
d ls
du

is determined by

A d

T=B,ip=exp(aw),f3b=/3w

*0,0 < 0  (* ,  A ,)

Sn
(4.14)

where, we recall, we have
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The function A& now acts as a test statistic for determining which of the Burr XII and 
Weibull ALT models provides the better fit - in terms of greater maximised log-likelihood 
- to a given data set; it is the natural extension to the discriminating factor derived by 
Watkins (2001). A positive A^ implies Ib  will increase with oj, and the maximum value of 
Ib  will be found at positive w, corresponding to finite a and the Burr XII ALT model. A 
negative A^ implies Ib  will decrease with increasing lj, and the maximum value of Ib  will be 
found at lj = 0, corresponding to infinite a and the Weibull ALT model. For convenience, 
we can rescale the value of A^ by dividing each d{j by exp (ctm), giving

as the reparameterised expression for a. Under this reparameterisation, Ib at (2.10) becomes 

Ib  (u, ' ip,T,pb) =  iS'n ln r  +  r 5 n ln ( - ln a ;)  - r 5 n ln ^  — r S n In (—lncu) +  ( r  — 1) Se

where we use S% (cj) to indicate the role of u  in the expression (2.11), which in full is

(4.15)

Reparameterising the scale parameter at,

This reparameterisation is based on that in Watkins (2001); we begin by letting

exp (ab) =  — In cj

so that
ab = In (— In a;) 

Thus, as ab —» oo, u  —» 0. Rewriting (4.3) gives us

S n Inr -  r S n In ̂  +  (r -  1) 5C -  T@bS x

(4.16)
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We also define

tt,w M  =
i=1 j =1

_exp^it)
- ] n w In

__exp^xj
— lnw

1 + exp(Pbxi) 
— lncj

which will prove convenient when we examine the score of Ib - Note the similarity be
tween this expression and tha t at (4.7), defined for the previous reparameterisation. The 
ip [In (— In a;)]1/7" there is now replaced by ( — lnu;).

F ir s t  D erivatives The first derivatives of (4.16) are

—  =  Tipdls
dip
dls
dr

- l InuA T
ip S i ^ - S r .

= SnT 1 -  S„ lni/i +  Se -  [JbSx -  S2 (u)
— In u) \  T, /  — In

In
.u

ip

d ls  _  r
du  c j(- ln o ;)

{1 +(Hr9  } 4 o H .

i ,  j
— In a;

and
d ls
W b

= - t Sx + T $ tl H { l +  ( — )

If we now make the substitution

then we have

A =  (— lnoj)r

In (— lnu) =  r  1 In A 

and all Lemmas and Remarks above remain valid here.

B ehav iou r o f ^  Using (4.17) we can write ^  as

=  rip - 1  [Ar TS l  M  -  5 „ ] .

(4.17)

Using Remark 1, with in place of gives us
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while substituting in the result (4.12) gives

d h
J im A IA—>oo d ip

=  0
t = B  ,ip—exp(aw) ,(3b= 0 v

as the required limiting result.

B eh av io u r of Using (4.17), we can write this derivative as

d h

w b
=  - t Sx -\-t  { l  +  A-0 T } t o ) 1 (u;)

- -  r W  T4,i  (^) +  ^o,i (^) ~

where we now write ^ w i t h  the A notation to  indicate the role of this parameter in the 
expression. We recognise this derivative as having the same form as in the previous repa
rameterisation and consequently the same arguments can be used to arrive at the same 
result; namely

,. d h  nlim —  = ° .
T—B ,tp= exp(aw ) ,0 b~ P w

B eh av io u r o f Using (4.17), we can write this derivative as

= SnT~l — Snkiip + Se — ftS* — S% (A) Xip~T { t_1 In A — In V1}

—̂1,0 M  { t + T} •

As with the previous reparameterisation, we use Remark 1, Remark 2 and Lemma 2 to write

—  = SnT~l -  Sn lru/j + Se -  f t f t  -  -ip~T {r-1 In A -  lru/>} S’0,0 (T,ft) + 0  (A-1) 

- r T [sf,o (T.ft) -  r - 1 In A5q 0 (r,ft) + O (A"1)] + O (A-1)

= Snr~l +  ft  -  f t f t  -  r TSi0 (r,ft) + In V- { r TSo.o (r, ft) -  f t }  +  O (A-1) ,

upon simplification. Using (4.12) for iP~t Sq 0 (r,/?b) -  Sn, together with (4.9) - upon recog
nising tha t s f)0 (0,0) is simply S e here - we have

r  d hlim —  
A—yoo OT

=  0
T = B ,ip = ex p (a w ),j3b=i3x

as the required limiting result.

B eh av io u r o f We can see tha t this derivative is effectively the same as for that 
derived by Watkins (2001) for the non-accelerated case. Examination of the terms involved 
shows that, in making the extension to the ALT framework, we need only replace the single
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sample size m  by the sum of the sub-samples Sn and the generic data value d by — a)
Since we can employ the same Remarks and Lemmas, as used by Watkins, we will inevitably 
end up with same result as for the non-ALT case, now adapted to accomodate acceleration.

for the raw data values. This is the same result as tha t obtained at (4.14).

4 .2 .3  Exam ples

E xam p le  2.1.1.1 [C arbon  F ib re  R o d  D ata] rev is ited

Through the SAS IML code burr^alt, (see Appendix A), we found the value of As to be

As =  30.283411, 

while the corresponding result for the raw data was

A d = 10121331.

This suggests that for the carbon fibre rod data the Burr XII ALT model is a superior fit 
than the Weibull ALT model. This is consistent with the respective likelihoods in Table

suggesting the Burr XII ALT model is preferred to the Weibull ALT model; a result tha t is 
consistent with the log-likelihoods observed in Table 2.18.

E xam ple  2.1.1.3 [E lec trode  D ata] rev is ited

For the electrode data, the value of As was

r\j
As such, the behaviour of is governed by

n

2.16.

E xam ple  2.1.1.2 [A lum in ium  C oupon  D ata] rev is ited

The value of As for the aluminium coupon data was

As =  55.769813,

while the corresponding result for the raw data was

A d = 8.3439 x 1035

As =  -9.412877,
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while the corresponding result for the raw data was

A d -  -6.939 x 1037,

suggesting the Weibull ALT model provides a better fit to the data set than the Burr XII 
ALT model. Again, this is consistent with the likelihoods in Table 2.20.

These examples are encouraging but only illustrate results which are expected. We 
observed for the carbon fibre rod data subsets that the discriminating factor was positive 
for all data subsets, see Table 4.1, while, in Table 4.3, the discriminating factor was negative 
for all electrode data subsets. As in the case of the carbon fibre rod data, for the aluminium 
coupon data, the discriminating factor was seen to be positive for all data subsets, see Table
4.2. It should therefore come as no surprise to observe tha t for the corresponding ALT 
models, A was positive for the carbon fibre rod data and the aluminium coupon data, while 
A was negative for the electrode data. Furthermore, it is possible to have a data set in which 
(4.1) is negative for each subset, while A is positive for the ALT model. We consider this 
scenario next, before moving on to look at an example whereby some data subsets exhibit 
a positive value for the discriminating factor and others a negative value.

Example 4.2.1.1 [Nelson (1990,p232)]

As with Example 2.1.1.3, the data  here concerns disc electrodes immersed in an insulating 
oil, at three different temperatures. The experiment is conducted in exactly the same way, 
except now the electrodes are 1 square inch in area. The maximum likelihood estimates of 
the Weibull ALT parameters are B  = 11.345806, a w =  3.8844387 and f3w =  0.000228. Con
sequently, the estimates of the scales are ( fa ^fa^fa^j =  (48.750648,49.761233,61.093996), 
with log-likelihood, based on (2.3), lw  =  —550.5821. Meanwhile, the maximum likeli
hood estimates of the Burr XII ALT parameters are a = 34.690467, r  =  11.533921, a b = 
4.1895109 and pb = 0.0002293, with scale estimates #2, $3) =  (66.14199,67.52115, 82.99753). 
The log-likelihood was Ib  = —550.5636. We see tha t the log-likelihood for the Burr XII 
model is slightly greater than th a t for the Weibull model, suggesting a preference for the 
former model. However, it should be noted that the Weibull shape parameter is quite high, 
suggesting that this data set may not follow a two parameter Weibull distribution, with the 
data suggesting a non-zero location parameter. Again, we include this example purely for 
illustrative purposes.

The values of the discriminating factor observed for the individual scaled data subsets 
are shown in Table 4.4 and are seen to be negative in each case, suggesting the Weibull 
distribution is preferred to the Burr XII distribution for each data  subset. The corresponding 
result for the ALT model is

As =  1.30661;
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v o lts /se c o n d 10 100 1000
n
D isc rim in a tin g  F ac to r

60
-2.46619

60
-4.76249

60
-0.36956

Table 4.4: Discriminating factor for subsets of voltage data, for 1 sq in electrodes, 

for the raw data we have
Ad =  2.4928 x 1038.

The positive values of A s and A^, on the other hand, indicate a preference for the Burr XII 
ALT model over the Weibull ALT model.

E xam ple  4.2.1.2 [S im ulated  D ata]

This example considers a data set, shown in Table 4.5, generated from a Weibull ALT 
distribution, with arbitrarily chosen parameter values, B  = 3 and /3w,atw chosen such that 
(f>i,(j>2 and (f>3 are approximately 100,60 and 30 respectively, (we use (3W = —0.012206 and 
a w = 4.621869.) Stress levels (x i,£ 2,£ 3) =  (10,50,100) and equal subset sample size 
n\ = 30 were also chosen arbitrarily. The resultant Weibull and Burr XII ALT parameter 
estimates, together with maximised log-likelihoods and values of the discriminating factor 
for the scaled data subsets are given in Table 4.6. The maximum likelihood estimates for 
the Weibull ALT parameters were B  =  3.0701136, a w = 4.6119034 and @w = —0.011191, 
with maximised log-likelihood lw  =  —384.2829. The estimates of the scales were then 

=  (90.016778,57.533703,32.879174). The maximum likelihood estimates for 

the Burr XII ALT parameters were a = 5.844251, r  =  3.42111, a b =  5.09533 and (3b = 
—0.011302, with maximised log-likelihood Ib = —383.2033. The estimates of the scales 
were then (di^0 2 , — (145.8108,92.7798,52.7271). The corresponding ALT value of As 
was then found to be

As = 6.20051

while for the raw data set, we have

Ad =  1.2326 x 1013.

We can see th a t even though two of the data subsets returned a negative value for the 
discriminating factor, the ALT values of A s and Ad are positive. The extent to which the 
magnitude and sign of the discriminating factor for data  subsets influence the ALT value of 
A, (and our ability to predict this value), is beyond the scope of the current discussion. We 
include this example simply to illustrate the possible outcomes of an experiment.
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x i = 1 0
21.16 88.95 84.47 90.18 76.79 43.38 86.25 71.30 59.73 79.14
52.18 89.79 89.06 82.73 89.48 49.58 131.66 141.01 89.51 95.89
33.93 108.76 72.80 109.91 93.71 29.00 114.71 39.30 136.08 98.94

X2 = 5 0
25.86 58.21 38.69 40.12 57.64 40.81 51.69 65.87 30.50 81.91
56.72 44.76 56.94 72.75 48.60 29.72 29.26 95.99 66.91 37.95
17.99 37.53 31.78 61.25 52.07 71.87 50.71 25.44 42.34 55.05

X3 ==100
18.38 43.61 41.45 23.52 37.35 27.22 60.28 34.70 18.41 28.14
32.70 20.77 29.38 27.76 26.28 31.25 21.87 13.51 25.55 18.99
16.78 40.95 32.11 24.47 37.77 26.84 37.63 31.42 36.70 40.32

stress
stress

S tre ss 10 50 100
n 30 30 30
B 3.0101439 2.974225 4.1709285
$ 91.441267 55.210235 32.211097
lw -144.5186 -128.4725 -104.5113
a 16.77744 3.307549 1.884797
T 3.119576 3.545053 4.55167
e 223.2216 72.28226 35.07435
k -144.6594 -128.1714 -109.5815

D isc rim in a tin g  F ac to r -2.235591 2.436463 -2.858899

Table 4.5: Data set simulated from Weibull ALT distribution. Param eter values, 
levels and subset sample size chosen arbitrarily. (5W and a w chosen to tie in with 
levels.

Table 4.6: Weibull and Burr XII parameter estimates, together with the discriminating 
factor for data subsets when data is simulated from a Weibull ALT distribution
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4.3 Behaviour of A

In most of the previous examples, the data were observed in real life experiments, and thus 
may not follow any underlying distribution. All we can do is fit models to the data and 
observe, through maximised log-likelihoods and the concept of model misspecification, which 
provides the best fit from a potentially infinite set of models. Moreover, in our study, we 
are only concerned with which of the Weibull and Burr XII models provides the better fit, 
and we have seen that we can make this determination using a single algebraic expression, 
labelled A.

In this section, we are interested in the general behaviour of A, in particular its distri
bution, expectation, standard deviation and skewness. Here, since our concern lies with the 
Burr XII and Weibull distributions, we shall focus on the properties of A when the data 
comes from each of these distributions in turn. Now, since we can write A as a summation, 
we would expect, by the Central Limit Theorem, th a t with increasing sample sizes, the 
distribution of A will be approximately Normal. As such, determining the expectation and 
variance of A would tell us everything about its distribution, at least for large sample sizes; 
although it is also possible that small sample approximations will be accurate enough to 
satisfy our needs.

To investigate this possibility further we consider two scenarios: one where the data is 
generated from a Weibull distribution and the other where the data  is generated from a 
Burr XII distribution. For both cases, we calculate the value of As for an array of possible 
parameter values and sample sizes and report the proportion of times A5 returned a posi
tive value. We perform 10000 replications and assess Normality through Q-Q plots and the 
Kolmogorov-Smirnov (K-S) Test Statistic, see for example Lawless (1982), which also sum
marises some critical values of the test. To assist in the interpretation of the tables below, 
we state here the 90th, 95th and 99th quantiles for the K-S test as 1.224,1.358 and 1.628 
respectively. With A5 offering more numerical stability than A^, we shall concentrate on 
this value throughout the investigations tha t follow. However, to maintain some consistency 
across each of the 10000 separate simulations, we use the known value of the parameter a w, 
rather than its MLE - aw - in the scaled version of As, when the da ta  come from a Weibull 
distribution, and the known value ab in place of a w when the data  comes from a Burr XII 
distribution.

4.3.1 W hen D ata  is From  a W eibull ALT D istr ib u tion

For our first example the parameter values were chosen to be k — 3, B  =  3, a w = 17.60139 
and Pw = —0.056282. The stress levels were chosen to be (xi, X2 , £3) =  (150,180,190) 
and, consequently, the scales are (# i,#2, #3) =  (9500,1755,1000). Six equally weighted 
sample sizes are considered, with values n \ = 30,50,100,500,1000 and 5000. The results 
are presented in Table 4.7.

Figures 4.13 to 4.18, together with summaries in Table 4.7, seem to  suggest tha t as the
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Summary Statistics for As
Til M ean S.D. Skew ness K -S T est P e rc e n t >  0
30 -6.6766 206.8953 -7.107 37.363 38.25
50 -4.0722 110.1310 -10.699 33.758 40.75
100 -2.5717 38.1255 -3.390 21.872 42.23
500 -1.2499 31.3618 0.210 6.681 46.55
1000 -0.2394 39.3449 0.171 4.374 49.31
5000 -1.9916 79.2920 0.091 1.361 48.05

Table 4.7: Example 1: Summary statistics for properties of As for varying sample sizes 
when data is from a Weibull ALT distribution.

©J2(0>
ozT3©O©CL

LU

•6000 2000 4000 6000-2000 0
Observed Value

Figure 4.13: Distribution of As for example one: n \ — 30. Here, as throughout, the theo
retical Normal quantiles are indicated by the broken line.
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z  0
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Figure 4.14: Distribution of As for example one: n\ =  50
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200

100

0

•100

>200
0 1000-2000 •1000

Observed Value

Figure 4.15: Distribution of A s for example one: n i =  100

200

100

0

■100

-200
100 200-300 -200 •100 0
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Figure 4.16: Distribution of As for example one: n i •= 500

200

100

0

•100

-200
-400 -300 •200 •100 0 200100 300

pbserved Value

Figure 4.17: Distribution of As for example one: n\ =  1000
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400
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200
100
0

-100

-200
-300

-400 •200 0 200 400

Figure 4.18: Distribution of A s for example one: n \ = 5000

sample size increases, the distribution of A s becomes more and more Normal - as indicated 
by the decreasing K-S statistic - and more centred around zero, as shown by the final column 
in the table, where we see the percentage of values greater than zero approach 50% as the 
sample size increases. However, for no sample size considered is the Normal distribution 
regarded as a suitable model for the distribution of A s, as indicated by the K-S test statistics. 
As such, it seems the best we can say is that half of the time we would prefer to fit the 
Weibull distribution and half the time we would prefer to fit the Burr XII distribution. We 
now consider some alternative experimental designs to  determine the extent to which this 
is true in general.

The next example is based on a data set from Nelson (1990, pl58), with parameter 
values B  = 2.5554, aw = 21.9087 and (3W =  —0.0563; these being the maximum likeli
hood estimates derived by, for example, Watkins (1994). The associated stress levels were 
(£1, 2:2, 23, £4,£ 5) =  (200,215,230,245,260). To ensure the same total sample size as in 
the previous example, we define n\ =  18,30,60,300,600 and 3000 and tabulate the same 
collection of summary statistics as before, see Table 4.8. From Figures 4.19 to 4.24, we 
tend to observe the same pattern as in the previous example, with disagreement between 
theoretical and observed results in the tails becoming less pronounced as the sample size 
increases; consequently, the distribution of A5 becomes more Normal in this limit. This is 
supported by the K-S test statistics; although the Normal distribution is not regarded as 
satisfactory for all bar the largest sample size considered. Also, the percentage of values 
that return a positive As steadily rises towards 50% as the sample size increases. As before, 
we conclude that we prefer to fit the Weibull distribution half the time and the Burr XII 
distribution half the time.

In our final example we consider parameter values based on the electrode data considered 
in example 2.1.1.3. For the purposes of illustration, we shall use the maximum likelihood es
timates of the parameters, given in section 2.1, as the true parameter values. Consequently,
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Summary Statistics for As
ni M ean S.D. Skew ness K -S T est P e rc e n t > 0
18 -27.2598 1153.0783 -15.245 43.119 39.15
30 -5.9759 157.0178 -3.882 35.387 40.40
60 -2.3821 46.3722 0.080 23.591 43.39
300 -0.6752 33.5111 0.641 8.526 47.48
600 -1.6654 40.4739 0.178 4.741 47.78
3000 -2.0531 79.0591 0.052 1.339 48.56

Table 4.8: Example 2: Summary statistics for properties of A s for varying sample sizes 
when data is from a Weibull ALT distribution.

6000

4000

2000

0

-2000

-4000

-6000
40000-60000 -40000 -20000 0 20000 60000

Observed Value

Figure 4.19: Distribution of As for example two: n \ = 18
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o
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-600

-6000 -4000 -2000 0 2000 4000
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Figure 4.20: Distribution of A s for example two: n\ =  30
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Figure 4.21: Distribution of As for example two: n \ = 60
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Figure 4.22: Distribution of As for example two: n \ = 300
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Figure 4.23: Distribution of As for example two: n\ — 600
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Figure 4.24: Distribution of As for example two: n \ =  3000

B  =  11.280264, a w = 3.7627961 and j3w =  0.0001656, with (aq,X2 , £3) =  (10,100,1000). 
As in the first example above, we take n\ =  30,50,100,500,1000 and 5000. The relevant 
summary statistics are presented in Table 4.9. Clearly, we can only draw the same conclu
sions as in the previous two examples, with the distribution of As becoming more Normal 
as the sample size increases. This is apparent from the Q-Q plots, (Figures 4.25 to 4.30), 
which are then re-enforced by the K-S statistics. We see the mean for each sample size 
at around —1 with associated standard deviation ranging from 5.6 to 76.9. As before, the 
percentage of values of As observed to be greater than  zero steadily rises to around 50%, 
with increasing sample size. Naturally we are drawn to the same conclusion as before: in 
order for the distribution of As to be Normal, we require a very large sample size; but for 
such a sample size, the chances of preferring to fit a Weibull distribution as opposed to a 
Burr XII are at best 50:50.

Now, our initial hope was tha t the distribution of As would be approximately Normal, 
even for relatively small sample sizes, thereby allowing us to  draw conclusions about the 
probability of obtaining a positive or negative value of A s, using only the mean and standard 
deviation. However, these three examples show that our ability to accurately predict the 
sign of As for a given set of parameter values is very limited. As such, there is limited 
benefit in finding the theoretical mean and variance of As, at least when the data comes 
from a Weibull ALT distribution. Granted, for any individual data  set we can say whether 
the Burr XII ALT distribution will provide a superior fit, simply by fitting a Weibull ALT 
distribution; but are in no position to say which distribution will, in probability, provide 
the better fit for a specific set of parameter values.

4.3 .2  W hen D ata  is From  a Burr X II ALT D istr ib u tion

We now perform a similar series of investigations, this time with data generated from a 
Burr XII ALT distribution. Our first example is similar to the first considered above,
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Summary Statistics for A s
ni M ean S.D . Skew ness K -S T est P e rc e n t > 0
30 -0.9781 5.6356 0.823 5.221 38.72
50 -0.9333 7.4024 0.583 4.059 41.34
100 -1.0416 10.6799 0.507 3.638 42.60
500 -0.9689 24.6386 0.283 2.375 46.20
1000 -0.7566 34.1049 0.193 1.437 47.99
5000 0.2013 76.9361 0.111 1.370 48.99

Table 4.9: Example 3 : Summary statistics for properties of A s for varying sample sizes 
when data  is from a Weibull ALT distribution.
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Figure 4.25: Distribution of A s for example three: n \ =  30
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Figure 4.26: Distribution of A s for example three: n\ =  50
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Figure 4.27: Distribution of As for example three: n \ =  100
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Figure 4.28: Distribution of As for example three: n \ =  500
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Figure 4.29: Distribution of A s for example three: ni = 1000
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Figure 4.30: Distribution of As for example three: n i =  5000

Summary Statistics for A s
n i M ean S.D . Skew ness K -S  T est P e rc e n t > 0
30 313.5905 3045.6818 24.067 44.942 95.09
50 178.6159 1012.1509 19.818 42.572 99.34
100 172.7275 570.7698 11.456 38.192 100.00
500 488.0724 691.1044 7.576 25.731 100.00
1000 889.3060 884.6590 8.057 20.605 100.00
5000 4299.1489 2126.3733 4.847 15.414 100.00

Table 4.10: Example 4: Summary of statistics for properties of As for varying sample sizes 
when data is from a Burr XII ALT distribution.

where the data came from a Weibull distribution, and takes the parameter values a = 2, 
r  =  5, otb = 17.60139 and (3b = —0.056282; with (x i,X 2 ,xs) = (150,180,190). We take 
n i =  30,50,100,500,1000 and 5000. The summary statistics of the results are presented 
in Table 4.10. We see from the K-S test statistics, th a t for any given sample size, the 
distribution is clearly non-Normal; a result which is then endorsed by the associated Q-Q 
plots, see Figures 4.31 to 4.36.

From this initial example, it appears tha t as the sample size increases we become more 
confident tha t we shall obtain a positive value of As, with the percentage of positive values 
observed rapidly reaching 100%, while, in the same limit, the distribution of As tends to 
become more Normal (on the basis of the K-S statistic) albeit never significantly for the 
sample sizes considered.

We now consider some alternative experimental designs to assess the extent to which 
these conclusions can be considered typical. Consider the randomly chosen shape parameters 
a = 3 and r  =  3.5, with k = 4 and stress levels (a?i, z2, x 3> x i)  = (100,150,200,250). In order 
to observe a suitable degree of acceleration, we determined the scale parameters to be a b = 
8.44285 and (3b = -0.015351, giving the scales (0i,02,03,04) =  (1000,464.14,215.43,100), 
to two decimal places. To ensure total sample sizes as close to those used in the previous



4.3. BEHAVIOUR OF A 110

20000

10000

0

■10000

-20000
20000 40000 60000 80000 100000 1200000-20000

Observed Value

Figure 4.31: Distribution of As for example four: n\ =  30
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Figure 4.32: Distribution of As for example four: ni — 50
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Figure 4.33: Distribution of A5 for example four: n\ =  100
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Figure 4.34: Distribution of A s for example four: n \ =  500
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Figure 4.35: Distribution of As for example four: n i =  1000

20000

10000

0

-10000
20000 300000 10000 40000-10000

Observed Value

Figure 4.36: Distribution of As for example four: ni = 5000
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Summary Statistics for A s
ni M ean S.D. Skew ness K -S T est P e rc e n t > 0
22 3.6085 6.5427 4.924 21.301 86.63
37 6.6389 10.0280 6.553 21.116 95.35
74 14.1011 15.9297 6.333 18.759 99.40
370 77.1711 42.9796 3.599 13.407 100.00
740 157.6681 66.4984 2.567 12.942 100.00
3700 815.1305 204.8269 3.393 12.145 100.00

Table 4.11: Example 5: Summary statistics for properties of As for varying sample sizes 
when data  is from a Burr XII ALT distribution.
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Figure 4.37: Distribution of As for example five: n \ = 22

example, we set n i =  22,37,74,370,740 and 3700. The resultant summary statistics are 
presented in Table 4.11, while the Q-Q plots are presented in Figures 4.37 to 4.42. As 
in the previous example, we see the distribution of A s becomes more Normal (but never 
significantly so) as the sample size increases. At the same time, we see the percentage of 
positive values of As rapidly increase to 100%. W ith both the mean and the standard 
deviation of As rising with increasing sample size - the standard deviation at a slower rate 
than the mean - we see that we are, at least, more likely to observe a positive value of As in 
this limit. However, as in the previous case, the consistent lack of Normality makes further 
inferential progress troublesome.

We now consider one final example. Somewhat arbitrarily, we define a =  5.4, r  =  2.1 
and ( x i} X2 , £3) =  (10,30,50). We define the scales 9i to be (1000,500,100), thereby giving 
us an suitable acceleration factor. Using (1.12), we determine (3b = —0.05756 and a b =  
7.9415. Substituting the values of a b and p b in (1.12) then gives us the scales explicitly 
as (1581,500,158). We use the equally weighted sample sizes m  = 30,50,100,500,1000 
and 5000. The summary statistics are presented in Table 4.12 with the Q-Q plots being 
presented in Figures 4.43 to 4.48. Yet again, we fail to observe Normality in the distribution 
of As for any sample size considered. However, the distributions become more Normal as
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Figure 4.38: Distribution of A s for example five: n i =  37
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Figure 4.39: Distribution of As for example five: n \ = 74
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Figure 4.40: Distribution of As for example five: n\ =  370
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Figure 4.41: Distribution of A s for example five: n\ =  740

1800

1600

1400

1200

E 1000

800

600

400

200

0._
-1000 1000 2000 3000 40000

Observed Value

Figure 4.42: Distribution of As for example five: n\ = 3700
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Summary Statistics for A s
n  i M ean S.D . Skewness K -S T est P e rc e n t >  0
30 0.3692 0.7620 4.021 16.545 71.11
50 0.6935 1.0304 3.687 14.040 81.30
100 1.5656 1.6254 3.065 12.434 93.27
500 8.7408 4.3681 2.180 9.277 99.97
1000 17.5020 6.1779 1.782 8.192 100.00
5000 88.7497 14.4137 1.077 5.244 100.00

Table 4.12: Example 6 : Summary statistics for properties of A s for varying sample sizes 
when data  is from a Burr XII ALT distribution.
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Figure 4.43: Distribution of A s for example six: n \ =  30

the sample size increases, while, in the same limit, the mean and standard deviation of As 
increases, along with the percentage of positive values of As observed. So, as the sample 
size increases, we are clearly more confident that the sign of As will be positive, but are 
unable to make any further inferential progress due to  the consistent lack of Normality in 
the distribution of A s.

4.3 .3  D iscussion  on R esu lts

In summary, our hope, when considering the behaviour of A s, was that with increasing 
sample size, its distribution would be more Normal. As such, we would only need to find 
its expectation and variance in order to make inferences about the probability of A s being 
positive or negative. However, we saw that, for practically every case considered, we failed 
to obtain Normality in the distribution of As, thereby inhibiting further inferences.

When the data was generated from a Weibull ALT distribution, we observed an approx
imately 50:50 split in the percentage of times we preferred to fit the Weibull distribution to 
the Burr XII, for larger sample sizes. It was also apparent tha t the standard deviation of 
As was considerably larger than its mean, for the whole range of sample sizes considered. 
Now, as the sample size increased, the approximate mean of A s was —1. Naturally, as the
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Figure 4.44: Distribution of As for example six: n \ =  50
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Figure 4.45: Distribution of As for example six: n \ =  100
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Figure 4.46: Distribution of As for example six: ni =  500
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Figure 4.47: Distribution of As for example six: n \ = 1000
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Figure 4.48: Distribution of As for example six: n\ = 5000
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sample size increases further we would expect to eventually obtain Normality in the dis
tribution of As , with mean of around —1 and large standard deviation. Consequently, we 
would expect around half the observations to be greater than —1 and half to be less than 
— 1, thereby re-enforcing the 50:50 split observed in the percentage of positive and negative 
values of A s.

To aid in the interpretation of the results when data was generated from a Burr XII 
distribution, we use the coefficient of variation, given by

_ standard deviation
Cv = ------------------------- x 100;

mean

see, for example, Anderson, Sweeney and Williams (1996). Clearly, this indicates the spread 
in the data relative to the mean, and, when the data is generated from a Burr XII distribu
tion, we can easily show that, for our examples, Cv decreases as the sample size increases, 
which, together with the fact that the mean of As increases in the same limit, suggests that 
we are more confident of obtaining a positive value of A s for larger sample sizes. This is 
endorsed by the final column in the tables, where we saw the percentage of cases observed 
to be positive, increase with sample size.

The observations made above, with regard to the percentage of positive and negative 
values of A s, are exemplified by taking 95% confidence intervals around the mean. We use 
Chebyshev’s Inequality for the mean of As, defined by

Pr ( |A ,  _  M J  < f c £ | )  >  1 -

for k > 1; it states that at least ( l — 1 /fc2) x 100% of the values of A s lie within k standard 
deviations of the mean see, for example, Anderson, Sweeney and Williams (1996). 
From this we can formulate the 95% confidence interval as

As ±  4 .4 7 ^ 4 .
y/n

We now consider the three examples where data originated from a Weibull distribution, 
and take 95% confidence intervals around the mean of As for the largest sample size con
sidered. They are (—4.8855,0.9023), (—4.9385,0.8323) and (—2.6066,3.0092) respectively. 
For the three examples where the data was generated from a Burr XII distribution, again 
for the largest sample size considered, the confidence intervals are (4221.5418,4376.7559), 
(807.6045,822.6564) and (88.2236,89.2757) respectively. Clearly, when the data comes from 
a Weibull distribution, we cannot rule out the possibility of obtaining a positive or negative 
value for the mean of As, while for data generated from a Burr XII distribution, the mean 
of As has a positive upper and lower confidence limit, in keeping with the observations we 
made above.

It seems, then, tha t there is limited practicality in finding the theoretical expectation
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and variance of As, whether the data was generated from a Weibull or Burr XII distribution. 
If the data came from a Weibull distribution then, for a sufficiently large sample size and 
a given set of parameter values, we have a 50:50 chance of preferring to fit the Weibull to 
the Burr XII. Conversely if the data came from a Burr XII then, for a sufficiently large 
sample size and set of parameter values, we preferred to fit the Burr XII to the Weibull 
100% of the time. That is not to say that As has limited practical use; as we remarked 
earlier, for a specific data  set we can say with certainty whether the Burr XII will provide 
a superior fit to the Weibull, simply by fitting the more tractable Weibull distribution and 
then calculating As. The problem lies with trying to draw general conclusions about our 
preference of models, based simply on a particular set of parameter values. In light of this 
result, this is an appropriate point to end our discussion on the behaviour of As; further 
theoretical investigations being considered beyond the scope of the current discussion.

4.4 Summary

In this chapter we began by considering an extension to the non-accelerated discriminating 
factor, by deriving As for an accelerated framework. In order to obtain this result, we looked 
at two reparameterisations of the Burr XII ALT distribution: the first reparameterised the 
shape parameter a, while the second considered a reparameterisation of We showed 
tha t both reparameterisations led to the same result. Some real life examples were then 
investigated. Finally, we sought theoretical results on the behaviour of As, hoping to decide 
which of the two models would provide a better fit for a given set of parameter values. 
Through simulations, we concluded tha t the lack of Normality in the distribution of As, 
failed to facilitate further theoretical advances; certainly to an extent deemed appropriate 
in the current context. Of course, it may be possible to find some alternative model for 
the distribution of A , although the extended nature of the investigation seemingly required 
- particularly in light of tha t needed to assess whether A follows a Normal distribution - 
renders this inquiry beyond the scope of the current discussion.

Hitherto, we have examined completely failed data sets only. In Chapter two we pre
sented the algorithm for fitting a Burr XII ALT model to complete data and proceeded 
to consider three published data sets, for which we presented summaries of parameter val
ues and log-likelihoods. In Chapter three, we established the expected Fisher information 
matrices for the Burr XII ALT model and referenced the corresponding matrices for other 
models under consideration. This would allow us to make large sample approximations to 
the standard deviations of parameter estimates in the models. Finally, in this chapter, we 
determined an expression for accelerated data, that would enable us to determine which of 
the Burr XII or Weibull models would provide the superior fit to given data sets, without 
having to trouble ourselves with actually fitting the Burr XII model. In the next chapter, 
we make the necessary extensions to Type I censored data: we seek to develop the expected 
Fisher information matrix for the Burr XII ALT model, extend A for Type I censoring, and
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give illustrative examples throughout. We also show tha t theoretical results agree with the 
complete results of Chapter three when the stopping time tends to infinity.



Chapter 5

Censoring

This chapter is concerned with the extension of previous results for complete data to the 
censored case. Our discussion shall focus on Type I censoring, although we briefly discuss 
the possible practical approaches to Type II censoring. We begin by outlining the principles 
involved in Type I censoring and proceed to extend our notation to accomodate accelerated 
lifetime models. A published data set shall be considered, which shall be examined later 
in this chapter. We develop theory - from the construction of the model and EFI matrix 
- for the Burr XII model, beginning with the two and three parameter, non-ALT models, 
before making the natural extension to acceleration. During the course of deriving the 
terms that form the EFI matrices, we assess theoretical agreement with simulated data. For 
completeness and comparison of results we then present the theory for the Weibull ALT 
model. Our analysis then moves on to consider some practical applications of the theory; 
we look at the effect upon the standard deviations of parameter values for changing values 
of c Finally, we present a detailed investigation into the asymptotic agreement between 
Type I censored results and complete results, as c —> oo.

Chapter one briefly outlines the principles of Type I censoring in a non-accelerated 
environment. There, the failure times were the n  items D\ , • • • , Dn < c and the m  =  N  — n  
censored values Dn+1 =  • • • =  = c. Now, the extension to accomodate acceleration will
require us to use a double subscripted notation, Dij, to indicate the j th failure at stress level 
Xi (1 < i < fc); while we now introduce the notation Cij to represent the j th censored item 
at the same stress level. Consequently, we now have rii times to  failure and rrii = Ni — rti 
censored items at stress level X{.

5.1 Type I Censoring in Practice and Theory

To illustrate the data we are now dealing with, we consider the data set in Table 5.1, 
taken from Nelson (1990, pl58). The data comprises the times to failure of electric motors 
with a certain class of insulation. Ten motors were tested at each of four temperatures: 
150,170,190 and 220 degrees Celsius. This example clearly shows the need for both censoring
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Xi

Ni
150
10

170
10

190
10

220
10

n i 0 8 9 10
d ij 1764,2772,

3444,3542,
3780,4860,
5196,6206

408,408,1344,
1344,1440,1920,
2256,2352,2596

408,408,504,504,
504,600,600,648,
648,696

rrii 10 2 1 0
Cij 9429.9429.9429,

9429.9429.9429,
9429.9429.9429, 
9429

6792,6792 3120

Table 5.1: Time to failure of electric motors with Class-B insulation; from Nelson (1990)

and acceleration: if we were to choose one stress level of 150 degrees Celsius and wait for all 
items to fail, we would be waiting in excess of 9000 hours. The additional stress levels have 
presented us with some earlier failure times and more information for our analysis, whereas 
censoring has ensured tha t we do not have to wait until all items have failed at lower stress 
levels before we can begin the analysis. Typically, an ALT experiment with Type I censoring 
will require us to choose the stress levels and the allocation of sample items to those stress 
levels, although the manner in which we stop the experiment is optional. We could choose 
to set some items to run at the lowest stress, and then at predetermined times in the future 
set a number of items to run at increased stress levels. We would then stop the experiment 
at some future point in time; this is what appears to have taken place in this example; 
see Table 5.1. Alternatively, we could set all items at all stress levels to run at the same 
time and then treat each stress level separately, giving us k stopping times. Another option 
would be to set all items, at all stress levels, to run at the same time, wait a predetermined 
time c and then stop the experiment and collect our results. So, we already have three 
ways of carrying out Type I censoring in practice. In terms of modelling the data, we 
can treat each resulting data set in the same way and proceed to run the algorithm and 
fit the distribution of interest. However, from a theoretical angle, we must be particular 
about which approach we are adopting, since each method carries its own assumptions with 
regard to starting and stopping times, which, in turn, have an im portant bearing on how 
we determine expectations of results. The final approach to Type I censoring discussed, is 
perhaps both practically and algebraically the simplest of the options mentioned, and shall 
be the manner in which we consider a Type I censoring regime.

5.2 Type II Censoring in Practice

It is clear tha t for any non-accelerated distribution, the practical application of Type II 
censoring is straightforward. Out of our total sample size TV, we terminate the experiment
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Figure 5.1: Visualisation of an accelerated life test, with failures represented by x. The 
experiment is stopped once the 6th item fails at the lowest stress level.

once the nth item has failed; the stopping time is then the random variable. Thus, we have 
a known number of failures n  and a known number of censored items N  — n. However, the 
extension to an accelerated framework is not immediately apparent. For instance, consider 
an experiment with, say, k = 3 stress levels. We could stop the experiment once a certain 
number of items have failed at the lowest stress level, tha t is, until n \ have failed out of 
N \ - this is illustrated in Figure 5.1 - or wait until a certain number of items have failed 
at the highest stress level, that is, until n$ have failed out of N$ - as illustrated in Figure 
5.2. Furthermore, we could even choose to stop the experiment once a certain number of 
items have failed out of N \ +  N 2 +  A3, irrespective of which stress level the failures came 
from; see Figure 5.3. For each approach outlined, we would need to determine the expected 
number of failures at every stress level and the expectations of various related summations; 
for the third approach, this is rather complicated: we would need to determine the expected 
value of the nth order statistic when, in turn, each of the previous n  — 1 failures could have 
occurred at any of the three stress levels. However, the other two approaches are perhaps, 
more likely to be adopted in practice. We see from this brief discussion tha t consideration of 
Type II censoring would require us to be very specific about the way in which we set up the 
experiment, and this, in turn, affects the way in which we consider theoretical expectations. 
Clearly, this requires a very detailed investigation, to be considered elsewhere.

5.3 Burr XII Two-Parameter M odel

Since many of the expectations required for the EFI matrix for the Burr XII ALT model, 
with Type I censoring, are based on expectations for the non-ALT three-parameter model, 
which is a subsequent extension of the two-parameter model, we begin by considering theory 
for the Burr XII two-parameter model. So, using (1.3) and (1.4), the likelihood for this
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Figure 5.2: The same experiment, now stopped once the 6th item fails at the highest stress 
level.
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Figure 5.3: The same experiment, now stopped once the 6th item out of all items on test 
fails.
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particular model, for failed data • • • dn and censored data ci, • • • Cm, is given by

n
ard]T—1

II (1 + 4 )-° w n i E . i < r 1
7-ia+l

*-=\  [i+d[]a+ij [“ '■ j Lns-i [i+<i
so tha t the log-likelihood is

I (a, r)  =  n  In (ar) +  (r  — 1) se — (a +  1) t* — at (5.1)

where we define

se =  J^lndj,
i = l

n

t t  = ^ l n ( l  +  d [),
i = l

and
N

t%= In (1 +  d[) = (N  -  n) In (1 +  cr ) ,
i = n + l

under Type I censoring. We also identify the probability an item fails in (0,c); from (1.3) 
this is

1
(1 +  f t  ~  ^  

say. Thus, the two first derivatives of (5.1) are

dl

and

where

dl . j
—  = n r  +  se -  (a +  1) t j n  -  at

d _  dj In di
-  z ^ T T d [

i = l  1

c
111

(5.2)

(5.3)

N

'111
dj In di (N  — n) cT In cE Uj 111 ai _  ,L) U
l  + d j ~  1 + cT

i = n + 1

while the second derivatives are

d2l
= —na -2

da2 
d2l
—  =  - n r - 2 -  (a +  1) tf22 -  atc122

(5.4)

(5.5)
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and

^ ;  =  - ( * m  + t i n ) .  (5-6)

where we now define

fd _  v ^ d [ ( ln d i )2
l 122 ~  2-^i

1̂22 — y !
^  AT A \ 2  (AT  ^  A\2d[(lndj)2 _  (N  — n) cT(lnc)'

i=n+l { 1 +  ^ > 2 (1 +  CT)2

5.3 .1  E xp ectation s In D erivatives

Firstly, since the number of failures n  is a Binomial random variable, with parameters 
N, qC}a, we have

E  [n] =  NqCA 

£ [ iV - n ]  =  JV (1 — gc,a) .

To consider the derivatives above, we will need the expectations of terms of the form 
in ( i  +  y r ) ,in y ,

y r in y  
1 +  UT

and
Y T (ln Y )2
(i + r r)2’

for Y  following the truncated Burr XII distribution

aTyT- 1 ( l + yT) - {a+1'>
Qc,a

for 0 < c < y. Thus, the expectation of In (1 +  Y T) is

E  [In (1  +  m  =  f  In  (1  +  f )  x  - S - '
Jo qc,a (1 +  y )

where we now let u =  a In (1 +  yT) , so th a t 0 < ? / < c ^ 0 < u < a , l n ( l  +  cr ) , and

iTyT~l
  dy ,
l  + vT

. aryT 1 
du =

from which

1 7 {2, a In (1 +  cT)}-l /*a in^i-|-c  )
E  [In (1 +  y r )J = ------ /  u exp (—it) du =

a Qc,a Jo &Qc,a
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Various equivalent forms of this result exist; for instance, we have

£ [ i n ( i + y - ) ]  =
1 _  In(l+cT)

—  a  ( ? c , a ( l + C T ) d

_  1 _  ln(l+cT)
— a (l+ cT)a- l ’

(5.7)

We now consider

and define

Qc,a Jo (1 +  y )

y
V =

l  + yT

so tha t 0 < y < c < 3 > 0 < v <  = c', say, and

,T — 1ry_
(i +  y T) ‘

du = — dy

(5.8)

and hence obtain

E r i  =  J L  f  (1 _  v r i - i dv  =  ( n . »■- m ) t
Qc,a Jo Qc,a

defining
t

n  =  -  +  i.
T

Two of the required expectations may now be found by differentiating (5.8) with respect to 
r, and then taking r = 0, r .  Again, various equivalent forms of (5.8) may be found, chiefly 
through linking the incomplete Beta function to hypergeometric functions; for instance, 
from paragraphs [6.6.8] and [15.3.4] in Abramowitz and Stegun (1972), we have

(c')ri cr+T
B d (ri, a - r 0) = --------F2}i ( r i , r i  - a ; r 2;c7) =  F2,i ( r i ,o  +  l ; r 2;-a > ), (5.9)

r\ r\

where u  = cT and the negative argument arises from an integral representation of the 
hypergeometric function on the complex plane cut along the real axis from 1 to oo. The 
final form is useful here, since substituting (5.9) in (5.8) allows us to write

T

E \Y r] = —  x — F2ji ( r i ,a  +  l ; r 2; - c r ) =  —  x A0>i / i  ( n ,  a +  1, - u ) , (5.10)
Qc,a n  qc>a

where

A o ,i  =  -
7*1

and we introduce the notation

fq (a, ft, z) =  Fq+1 ,q ( K  •••, a, b} ] {a  + 1,..., a +  1} ; z)
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to represent the generalised hypergeometric function with repeated and related arguments. 
Then, differentiating (5.10) with respect to r  yields

au
E [ Y r lnY]  =  x [Ai i / i  (ri, a +  1, —u)  +  Ai)2/ 2 (r 2,a +  2, —a;)],

Tqc,a

where

and

Ai,i =

Al,2 —

c — r  x)

-  (a +  1) cT+T
TXr\

on differentiating (5.10) a second time with respect to r  we also have 

Y r ( ln y )2E
ac'

r 2qc,a

A2,i/ i  ( r i ,a  +  1 ,-w ) 
+A2.2/2 (^2) o, +  2, —a;) 
+A2,3/3 (r 3> a +  3, —cj)

where

A2,2 =

A2,i =  ^3 | l  +  ( r r i l n c - l ) 2} ,

- 2  (a +  1) cr+r {r2 ( r r i  Inc — 1) — ri}

and

A2,3

r 2r 3 1' 2

2 (o +  1) (a +  2) cr+2r 
n r 2r |

Prom (5.11), we have (on letting r —> 0, so r< —►«),

S  [Iny] = ^  x [(Ino) -  1) / i  (1 ,a +  1, -u>) -

while setting r = r  (so ri = i -f- 1), we obtain

■2 r (21nu; — 1) / i  (2, a +  1, —a;) (a +  l ) a ; /2 (3, a +  2, - u )
E [ y Tin y] =

au
qCjCL

from (5.12), we have (again letting r —> 0) 

E  ( ln y )2
au

T2qc,a

| l  +  (lnw -  l ) 2} / i  (1, a +  1, - u )

(a +  1) w (21ncj -  3) / 2 (2,a +  2, -w ) 
(a +  1) (a +  2) u 2 fy  (3, a -f- 3, —cu)

(5.11)

(5.12)

(5.13)

(5.14)
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while setting r  =  r  (so ri = i +  1), we obtain

E Y T ( ln y ) :
au

T2qc,a
x

|  | l  +  (2 lno; — 1)2|  f i  (2, a +  1, —u) 

(a +  l)a> (61nw -  5) fa (3, a +  2, -w ) 

+  1̂ 2 (a +  1) (fl +  2) u 2 fo (4, a +  3, —a;)

(5.15)

5 .3 .2  D e r iv e d  E x p e c ta t io n s

We can use the above expectations to derive further expectations. In particular, we now 
consider

E
ryT in y i r y t  iny]
_i  + y t

— E a
1 +  y r _

(5.16)

To ensure tha t censoring is fully taken into account here, we write this expectation as an 
integral involving qCA. As such,

Ea
Y T l n y
i + y r = ( ^ £ °+ i[y T ln y I ;

(5.17)

or, equivalently,

Ea
Y T l n y

=  Ea [lny] -  TTTTTT—E a+\ [ ln y ] . 
(a +  1) qc,ai  +  r r

Using (5.14) in (5.17), we see tha t the expectation (5.16) is

(5.18)

E 'y t In y ' ___  CLUJ2 (2 In a;
1+ Y T ^TQc,a 2(21no~X)/ i  (2, o + 2, - u )  -  (3, o +  3, - w ) (5.19)

the second recurrence relation (5.18) produces

'yriny' au

. 1 +  YT

1E

Similarly, we have

„ |> ( i ny)2l = [y^iny);
(1 +  Y T)2 ° (1 + Y r )2 

this expectation can also be expressed as

^Qc,a+1 jji
7— —jT—— E a + 1 (In Y )(a +  1) qCja L

(In w -  1) { /i (1, a +  1, - u )  -  f i  (1, a +  2, -w)} 
t  {(<2 +  1) f i  (2, a +  2, — u)  — (a +  2) fa (2, a +  3, — w)}

  aqc,a+2
{a, -t- 2) 5c,o

E,a+2 y t (in y ) :

^Qc,a+1 
(u +  2) qc,a

E ta+2 [ ( ln y )2] .
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Using (5.15), we have

|  ^1 +  (2 In u  — / i  (2, a +  3, —cj)

X (a +  3) u  (6 In a; -  5) f i  (3, a +  4, —lj) (5.20)
■h 1̂ 2 (a +  3) (a +  4) u)2 fs  (4, a +  5, —a;)

So we now have all the expectations we require to enable us to establish expectations in 
first and second derivatives of the log-likelihood for a Burr XII 2-parameter model.

S im plifications

W ith the few expectations already considered, we have seen th a t we require an array of 
generalised hypergeometric functions, each taking a variety of arguments. As an aid to later 
work, where we consider limiting properties of hypergeometric functions with c tending 
to infinity, we now present a series of simplifications tha t will allow us to write down all 
expectations using just a few hypergeometric functions. We start with two useful recurrence 
relationships between ‘neighbouring’ hypergeometric functions; see Watkins and Johnson 
(2002) for proofs, which are also detailed in Appendix B.

(5.21)

f q {a,b + l ,z )  -  f q {a,b,z) =  ̂f q (a +  !,fr +  i, z) (5.22)

Using (5.21) and (5.22) we are able to express our expectations in terms of

(5.23)

and
« 2  =  / 2 ( l , 0  +  l , - w )  . (5.24)

We shall also find it useful to write

« 3  =  / 3 ( l , a  +  l , - w ) . (5.25)

We note tha t
(5.26)

while
(5.27)

and
/2 (3, a +  3, —u) — 9 [2«2 _  3«i +  ko\ 

(a +  1) (a 4- 2) u 2
(5.28)
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These simplifications and recurrence relations then yield

E  [In Y] =
au

Tqc,a
(In a; -  1) —  -  [«2 -  «i]

1 *i ^In a ; ------
L au r

We also have

/ i  ( l ,a  +  2, - a ;) — / i  ( l ,a  +  1, - u )  — - —f i  (2, a +  2, —u)  — ------ -■
2 +  U

from (5.22), so that

and

Furthermore,

■ f / i i o  n 1 r i dK\ +  «o/ i  (1, a +  2, - u )  = k i -  ■■ «i -  «o = ------— —
(a +  1) a +  1

(«i -  «o)«l -  / i  (1, a- +  2, -a/) = (a + 1 )

4a;

so tha t

/2 (2, a +  3, — u) — f 2 (2, a +  2, — a;) — — —  /2 (3, a +  3, — a;)

__ 4a; 9 [2/C2 — 3/ci +  /to]
9 (a +  1) (a +  2) u 2

__ 4 [2/62 — 3«i +  /co]
(a +  1) (a +  2) a;

/ 2 (2,a +  3 , - W) =  4[a(K2- Kl) +  CKl- Ko)1
(a +  l) (a +  2) a;

We now consider the two expressions for (5.16). The first becomes

r  (a +  1) qCia

while the second, on simplification, also reduces to

auj
[(/ci -  «q) (lnw) -  (/c2 ~  «i)] •

(5.29)

t  (a +  1 )  qc>a

5.3 .3  E xpectations o f th e  Score

We are now in a position to check tha t the expectations of the score functions are in fact 
zero. For (5.2), we have

E £ E[n] x E  [In (1 +  D T)\ = Nqĉa x

NqC}g _  JV ln(l +  u) 
a ( l - h u ) a

1 In (1 +  a;)
d qc,a( 1 +  ^ )a
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while

so that

E[tl\ = E [ N - n ]  x l n ( l  +  cj) =
iVln (1 +  co)

a + « )*

E +  £ K 1  =
N(Jc,c

Thus, taking expectations in (5.2), we have 

dl
E

da
= a~ E  [n] — E i f  +  tZ N  Qc,a N q c,a

a a = 0,

as required. For (5.3), we have, from (5.13)

N a u
E[se] = E [ n \  x E  [InD] = (In a; -  1) / i  (1, a +  1, - u )  -

(a +  1) u f 2 (2, a +  2,

so that

r  l E  [n] +  E  [se] =
N a c1

(Ina;) f i  ( l ,a  +  1 ,-ta ) -
(a +  1) ojf2 (2, a +  2, —u)

we also need

E d u = E[n] x E
'£>T InD ' N a u 2

1 +  D T 2 r
■(21n-T -1)- / i ( 2 ,a  +  2 ,-u ;)
- + + / 2 (3 ,a  +  3 ,-o ;)

and
E  [*fn ] = E [ N  - n ]  x 

Thus, from (5.3), we have

E

u; In c Nu) In c

‘ d f N au
<9r T

(Ina;) f \  ( l , a  +  1 ,-w ) 

N a  (a +  1) a;2

1 + w  (1 +  u ) a+1'

(a +  1) ca/2 (2, a +  2, —u)

S l2 |iz i l /1 (2,a +  2 , - 1v) 
(3 ,a  +  3, -w )

N a u  Inc 
( l+ w ) “+1

which becomes

E
dl
dr

N a  (a +  1) c2r 
4 r

+iVacT (In c)

/1 (2, a +  2, —a;) — f i  (2, a +  2, — u)  
+ 2 + ^ / 2  (3 , a + 3, -w)

/ l  (1? fl +  1, —w)
. S s ^ f l (2,a + 2 , - u , ) - Tri^ rT _

■w)'

(5.30)
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We now show tha t both terms in (5.30) reduce to zero. For the first bracket, we use (5.27) 
and (5.28) to write

2 (a +  2) u  
9

/2 (3, a +  3, — u) — f i  (2, a +  2, —u) —
au  (1 +  u) a 1 — qc>a

a (a +  1) u 2

given the form of / i  (2, a +  2, —u) at (5.26), we see that the first bracket reduces to zero, as 
we require. For the second bracket, we now use (5.23) and (5.26) to see tha t

f i  (1, a +  1, —u) — -— —- — f \  (2, a +  2, — u) =
( l + u ) a+1'

so that the second bracket reduces to zero, as we require; this completes our consideration 

< * * > [ £ ] ■

5.3.4 E xpectations o f Second D erivatives

We can now write the expectations of the second derivatives, (5.4), (5.5) and (5.6) - using 
the results (5.19) and (5.20) - as

E

E

d2l
da2
d2l
d r 2

= ~ N qc,aa 2,

2 a j V ( l - g C)a)cT (lnc)2 
=  - N q c, a J ------

a (a +  1)6+ 
T2qC,a

(1 +  CTf

g ^1 +  (2 In a; — 1 ) ^  f i  (2, a +  3, — uS)

(a +  3 )u  (6 In w -  5) f i  (3, a +  4, - u )  
+ 1^2 (a +  3) (a +  4) uj2 f z  (4, a  +  5, —u)

and

E
d2l

dadr
au

22” qc,a
(21nca — 1)

f i  (2, a +  2, —u)
(a +  2) u

f i  (3 ,a +  3, —u)

N  (1 -  qCja) cT In c 
1 +  cT

5.4 Burr XII Three-Parameter M odel

We considered the introduction of the scaling parameter in Chapter one, with the CDF 
at (1.5). If we let Y  = 6D and denote c/9 by C, then we can write down the modified 
log-likelihood and first and second derivatives as

n  n
lb(a,T,9) = n l n ( a r ) - n r l n 0  +  (r  -  l ) ^ l n j / i  - '(a + l ) J ^ l n | l  +  ^ ^  J 

- a  (IV — n) In (1 +  C T)
2=1 2=1
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and

dh
da

=  na  1 — y ^ ln { l  +  dj}  -  (N  — n) In (1 +  CT)
i=1

dh  - i  /Ar . Cr InC
<9t

— 1 X—  ̂_ _ ,  v v —\  (1- 111 CL* ,  \ O  i l l  L/

n r  + ^ lne!» - ( a +  1) E Y T d F _ a ( i V _ n ) i T ^ :'i—1 i=l

%  , - 1  , C
89

8 %  
da2 
8 %

-nrO  1 +  t  (a +  1) 0 1 ] T  y - ^ p  +  a (A  -  n) t9  1  ̂+  Qt
Z=1 1

—na 2

=  —nr -»  ( a | l ) f ^ {h,ii}2 a ( N  n ) ° T{lnC}2
0r* S { 1  +  ^ } 2 } {1 +  C -}2

8 %  ^ d T l n d i  x (7r lnC
1 +  di [ } 1 +  C

i = \

d %  A  cC     C
=  r r  1 E  l Y d r  +  ( ^  -  ») r r ' i T C ?  (5-31)4 — 1 *8a89

^  = - „ r 1 +  (a +  l ) r ' f : T̂ ? +  r (a  + l ) r 1X :
9 t99  t i 1 + d i S ' [ 1 +  dl f

/^r <̂rrln<0'
+ a  (A  -  ri) 0-1 ----- —  +  a ( N  -  n) 6~1t ----------

V ; 1 +  CT v '  [1 +  CT)

^  =  „ r r 2 - r ( a  +  l ) r 2V r % - r 2 ( a + l ) r 2 Y ' —
892 f r i 1 + <% ^ i i l  + di]

(5.32)

- r  (A  -  n) a0~2- -  r 2a (N  -  n) 9~2------------------------------ (5.33)
v ) 1 +  CT v '  [l +  C^]

We see tha t derivatives with respect to the shape parameters alone are essentially the 
same as for the two-parameter model previously considered; the only difference being the 
inclusion of the scale parameter 0. Consequently, when looking at expectations of the score

Q l

functions below, we can concentrate on the remaining first derivative,

5.4.1 E xp ectation s in D erivatives

We note that we now need to find expectations of the following functions to be able to write 
down expectations of all derivatives.

D T DT , DT In D
and

1 +  D t ’ (l+£>r)2 (1 + L”-)2 *
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Making the necessary adjustment to Theorem 3.2 to accomodate censoring, we have

D ir (In D)j
E a

Therefore, we have,

E
D1

E

E

1 + D T 
DT

(1 +  Dr y  
DT In D

,( i  +  Dr y

(i + D r y

=  Ea

=  E a  

=  Ea

_  a(lc,a+k jp
— / . 7 \ ■E'a+k(ia +  k) qc,a

D lT (In DY

D1
1 + Dr 

DT

  &5c,a+1
(a +  1) qĉa 

aqc,a+2
(1 +  £>T)' 
D T In z?

(ft -f~ 2) Qcta

E*+1 [Dr ] 

Ea+2 [£>1

L a + ^ r j (a +  2) qC}a

So,

E
Dr

1 +  D r
  ®9c,a+l p  rrvn
-  >' T  i~\ ~  'Ea+1 [E J(a +  1) qCia

a>qc,a+1 (a +  1) a; cT

using (5.10);

using (5.26). Secondly,

auj
^q^a

(a +  1) q^a 5c,a+1 2

f 9 c ,a ________ 1 _ _ _ 1

\a;a (l + u;)a+1J

/ l  (2, a +  2, —a>)

(a T 1) a?

£
IT

.(l + £ r ) .

  ^9c,a+2 jp r t~»ti
-  / , 0x E a-\-2 [E> J

(a +  2) ĉ,a
_  a5c,q+2 (a +  2) u  CT

(a +  2) qca 5c,o+2 2
/ i  (2, a +  3, —to)

using (5.10);
CLUJ 

2 5c,a
f 5c,a+l
( ca (a T  1(a +  2) a; |  uj (a +  1) ( l +  u;)a+2

using results from section 5.3.2; and finally 

DT\n D
E

.(1 +  D r ) \
= . T ' t 2 ga+2 p Tln£>]

(fl -T 2) 5c,a

5c,a I ( a  +  2) J
aw

2t 5c,a

(2 log w - l ) / i  (2 ,a + 3 ,-a > )  
2

(a + 3 )w /2  (3 ,a + 4 ,—a;) 
9

(5.34)

(5.35)

(5.36)

(5.37)
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from (5.14). It now remains to show tha t the expectation of ^  is zero. W ith C' =  Y+b" >

E Oh
09

—E  [n] t 6 1 +  r  (a +  1) 9 1E  [n] E

= - r Q - 1 ( n  -  N

D 1

{i +  c^ } a y + a  V (i +  ^ } a 

+T (a +  1) r  * ( n  -  Bo, (2, a)

(*  -  {T T W ) + T (a +1} r l  { N  -  { I T W )  l - ( l  + ̂ r

x l  ( C f F ( 2,1 -  0 ,3 .0 0

1 +  D T 
N

+  aE [N — n} rO-1 c -
\ + c

t 9- i
1 -f C7

=  rO~l [ N  -
N

{1 +  CT}a
_ x - 2  ( -1  +  (1 -  C')a +  a (1 -  C')a C')

2 (1 -  (1 +  CT)~a)

+a
N

t 9
- l C 1

.{i + c T}aj ' ' '  i  + c t

It can be shown that this then simplifies to

(1 +  CT)_1" “ {1 +  (1 +  a) CTj  { -1  +  (1 +  CT)~a (1 +  CT)a} N t

9

where we note that (1 +  CT)~a (1 +  CT)a is 1, giving zero in the third bracket in the nu
merator and so the expectation is zero. Hence,

E
01
09

=  0 .

5.4.2 E xp ectation s o f second derivatives

The remaining second derivatives, those with respect to the scale parameter 9 , namely (5.31), 
(5.32) and (5.33), axe considered here. Expectations of second derivatives with respect to 
shape parameters alone, were given for the two-parameter model

E

E

d2h
dad9
02lb

= t 9~1E tdHoi +  r9~1E  [IV -  n]

E

0r09

02k

1 +  CT

=  - n 0 _1 +  (a +  1) 9~lE  t fQ1 +  r  (a +  1) 9~XE

3— 1 t?  r a t  ^  i

'112

C T P T In C
+a9~1E  [IV -  n] -— —  +  a9~1r E  [N -  n] — ----- ^

L J 1 +  C* L J ( l +  C Tf

09-
=  nr9 2 — t  (a +  1) 9 2E  t f01 — t 2 (a +  1) 9 2E

ra9~2E [N -  n\
CT 

1 + C1
-  r 2a9~2E  [N -  n |

H02

CT
(i +  c r y
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It is now just a straightforward m atter of substituting in the appropriate expectations - 
(5.35), (5.36) and (5.37). Inevitably there will be several ways of expressing the expectations; 
some forms simpler than others. However, since we are interested in these expressions only 
in terms of the inverse of the EFI matrix, we do not write down the expectations explicitly.

5.5 Burr XII ALT M odel

Here, the dij are observations from a truncated Burr XII distribution with PDF

a-r{exp ( a b + 0 bX i ) }  T <T  1 ( l  +  ( exp(at% t3!<))  )

Qc,i,a

r \  —(o+l)

where

qc,i,a — 1 -  ( 1 + exp (ab +  (3bX i)

The likelihood for data obtained at the ith stress level is then given by

n a r6i X , 1
t 'i a+1 n M !)T.1=71* +1  ̂ \  /  J

T'i a+1n£i{i+(f)r}
so tha t the log-likelihood for the entire sample is

a M * n

Ib (a, r , a b, j3 b) = Sn In (ar) +  (r  -  1) Se -  r a bSn -  r p bSx -  (a +  1) S* -  aS$ (5.38)

where
k rrii

^ = E E H 1+
i= l  j = l

C{j

exp (a b +  p bXi)

and we extend the notation in (2.12) to include

s p =klmn /  j /  j 
i= l  j

l  rJzk /  m  I r [ in f  Pij I T
i \e x p ( a b + ( 3 b X i )  /  [ \  exp( a b + p b X j )  J J

^ (* +  { exp(a&+/?j)Xi) } )  J

where the upper limit of the summations of j  is rii for p = d and m* for p = c. All other 
functions are as defined in sections 2.1 and 2.3. The first derivatives of (5.38) are

01b
dr — SnT +  Se a bSn PbSx {a +  1) 'S'oin — ^^onis (5.39)
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B    n  n — 1  c d  q co — Ona D* o*,
da

— —r £n +  ^ (a +  1) SqIOI +  r a £§101)

■̂—  = —£®t +  (a + 1) t S i 101 +  aT5f101;

while second derivatives of (5.38) are given by, 

d2lB

and

da2
d2lB
d r 2
d2lB
dal
d2lB
dPl

— Sna ,

=  - S nr~ 2 -  (a +  1) 5 d cd
0121 — °0 2 2 2 a [ £ § 1 2 1  —  £ § 2 2 2 ]  j

=  ( a  +  1) t 2 

=  ( a  +  l ) r 2

c d  c
°0 2 0 2  — 0101

C d c  d^2202 ~  °2101

+  aT<1 [£§202 _  £§10ll )

+  a r 2 [S9902 — £-c2101J >

d2lB
dadr
d2lB

dadab
d2lB

dad(3b
d2lB

drdab

d2lB
drdfib

d2lB
d a bdpb

- S f0111 >0 1 1 1 )

r  £0101 +  T £§1015

-  T £1101 +  T £ f1 101 )

— ~ S n +  ( a  +  l ) £0101 +  r £oill “  t £q212

+ a [£§101 +  r £§m  ~ ^ £§212])
C d 
D 1101—Sx +  (a +  1)

+ a  [ ^ o i  +  t 5 i i h  -  £ 1212])

+  r £ ll l l  _  T£l212

=  (a +  1) t “ Cd c
°1202 ~ ^ 1101 +  a r 2 [£1202 ~  £ 1101]

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

To establish the maximum likelihood estimates of the parameters in our model we use the 
same basic algorithm as outlined for complete data in Chapter two. The SAS program 
burrcens - given in Appendix A - accounts for censoring.

E x p ec ta tio n s  in  D erivatives

Now, for the complete case, expectations for accelerated elements were based on expectations 
for non accelerated data. Similarly, we can define expectations for ALT Type I censored 
items in terms of the non ALT Type I terms.
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So, we require expectations of the following terms

c  o p  c P  q P  q P q P c P q P 
Oe, O*, O q u i, *->01015 1101’ °0121> 0222’ °0 2 1 2 ’

q P q P c P c P q P qP  
°1111’ °1212’ 0202’ 1202’ °2202’ °2101

(5.53)

where p = d or c. Now, recall for the non-accelerated case, the expected number of failed 
items was the total number of items in the sample multiplied by qCja, the probability an 
items fails in (0,c), (see section 5.3.1.) Similarly, here,

E  [72j] =  Ni X qc,i,a
k

E [ S n] = Njqc,i,a
i=1

E  \pii\ — E  [iV-j — Tlj\ =  N% (1 — qc,i,a)

On letting Ytj =  exp(a^ tX.) and = [ ex[l(ai%0iXi))  and adopting the techniques used 
in Abramowitz and Stegun (1972), together with terms derived in Watkins (1997), we can 
determine these expectations as detailed below. Figures 5.4 to 5.17 illustrate the agree
ment between simulated and theoretical results, giving the average of 10000 replications. 
We also remind the reader of the analogous complete results and the resulting asymptotic 
agreement. For illustration, we use the parameter values a = 2, r  =  5, on, = 17.60139, 
j3b = —0.056282, with the equally weighted sample size N \ = 1000 and stress levels 
(x i ,X 2 ,X3 ) = (150,170,190). This gives scale values (# i,02>03) ~  (9500,3082,1000). We 
also present a sample set of values for qĉ a for each stress level and various values of c, to 
illustrate the probability of an item failing by time c at each of the stress levels. They are,

c
Stress

150 170 190
4000
8000
12000
16000
20000

0.025945
0.506425
0.943716
0.995275
0.999442

0.954349
0.999929
0.999999

1
1

0.999999
1
1
1
1

from which we can see th a t we would expect practically all items to have failed at every 
stress level setting by time c = 16000.

E jy f] The complete case is given at (3.10), where we have
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14000 19000 24000

Figure 5.4: Theoretical and simulated values of E  [S'*] versus c. 

while for Type I,

k 77-t
E £ ln ( ! + * £ )
i=l j =1

£ S? =  E

E ? c ,v > iV i£ > ( i + y T)]

1 In (1 +  LJi)
i=1 
k

i=l a (1 T  ^ i )a ~  1.

using (5.7); Figure 5.4 presents a comparison of the Type I simulated expectation (x ), Type 
I theoretical expected result, (continuous line), and complete result, (•) as c —>• oo, for the 
chosen parameters.

E[Se] From (3.11), the complete result is

E  [iS'e] — Sn&b +  Sxfib ~  

while the Type I censored result is

Sn { l  + ^  (a)}

E [S e] = E
k riiEElnd*

i=1 j =1

{InBi + E  [InY )}
i=1

i= 1
i f i nW i_ M z ^ ± l i z 4
t \  /i(l,a + l,-a;i)
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23900

23400 -

22900 -

22400 -

21900 -

21400
190009000 14000 24000

Figure 5.5: Theoretical and simulated values of E  [5e] versus c.

using the full form of (5.29); the asymptotic behaviour of this function is presented in Figure 
5.5.

E  [5*0111] For the complete result, we have

E ’0111 (a +  1 ) t

from (3.14). The Type I censored result is given by

E s f0111 -  E
k ni Y-r In Y  •Li j  1111 %3

2 ^ 2 ^  1 +  yr
2=1 j = 1 13

— 'y  ̂S Qc,i,a,Ni
aujJ a i£^ / 1 (2 |a  +  2 ,-a ,<)

- + + i / 2 ( 3 , a  +  3 ,-a ii )i= l   ̂ ^ TQc,i,a

using (5.19); the asymptotic behaviour of this function is presented in Figure 5.6.

E [5 qioi] From (3.12) we have the result for complete data as

S-nE S f0101 a +  1 ’

while the result for Type I censoring is

E Ot0101 = E
Y T-13

k rii

X E i +  Y x
i= l  j = 1 ^  13
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19000 2400014000

Figure 5.6: Theoretical and simulated values of E  [5om] versus c.

1020

1000

980 -

960 -

940 -

920 ■

900 -

880 - 

860 -

840
240009000 14000 19000

Figure 5.7: Theoretical and simulated values of E  [-S'oioi] versus c.

<=l
— ^   ̂  ̂Qc,itaNi

OJLOi
^Qcjiya (a, +  1) Ui

f ^c,i,a______ 1 \  1
1 (1 + Wi)a+1 J J J J ’

from (5.35); the asymptotic behaviour of this function is presented in Figure 5.7.

E[S'oi2i] Here, the complete result is

od Sn { t  +  72 ~ 27} +  2 (7 -  1) ip (a)
°0 1 2 1

t 2 (a +  1) +  W  (a)}2 +  ^  (0)
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52 -

50 -

2  48 -

46 -

44 -

190009000 14000 24000

c

Figure 5.8: Theoretical and simulated values of E  [£0121] versus c.

using (3.8), while, by (5.15), the Type I result is

E S f0121 = E
(In Y j j )2

E E  1 +  yr  
i = l j = l  V

k
& v -''. Q c,i,a-\-l

=  r r r E  „ £ N « . + i
a + 1 “ ? Qc,i,a L -I

^   ̂Qc,i,aNi 
i=l

k

E*<
k 2atoj

aQc,i,a+ 1 t-,
(—  ^ a+l_ (d +  1) Qc,i,a

Y T (lnE):

i= l
1 oT

|  | l  + (2lnu;j — 1)2|  f i  (2, a  + 2, — a;*)
(a + 2) u i  (6Inu>i -  5) /2 (3 , a + 3 , - u j i )  

“̂ 1̂ 2 ( a  +  2) (a +  3) u)2 f s  (4 , a  +  4 , —Lof)

the asymptotic behaviour of this function is presented in Figure 5 .8 . 

E [60222] Ft°m (3-16), we have the complete result as

S n
E S f0222

| ^  +  272 -  67 +  2 |  -  2 (3 -  27) ' i p (a )  

+2 {'ijj2 ( a )  +?// ( a ) }t 2 (a +  1) (a +  2)

Using the result at (5.12) and simplifying, the Type I result is

E Sf0222 =  E E E
i—l j=l

~ ^   ̂Qc,i,a,E\

*=1J=1 |1 + Y5

i=1

& Qc,i,a+ 2 j-,
1 o ™ -Ea+2

CL T  2 Qc,i,a
Y 2t (In Y f
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27 y ~ -  
26 - 
25 - 
24 - 
23 - 
22 -

20 - 

19 - 
18 -

19000 240009000 14000

Figure 5.9: Theoretical and simulated values of E  [F0222] versus c.

=  X
aujiNi (q+3)hjf 

288

(0±3)l a+4)‘, J / 3 (5, a +  5, - ^ )

(—3 + 4 (—1 +  3 lna^i)) f 2 (4, a +  4, — a;*) \  ;
*=1 4- (“T 4" 3 lnu;j)2^ /1 (3, a +  3, —Ui) 

the asymptotic behaviour of this function is presented in Figure 5.9.

E  [S0212] The complete result is

Sn {3 - 2 7 - 2^  (a)}
E S f0212 t  (u +  1 ) (a  4 * 2 ) 

from (3.15), while the Type I result is given by

E S f0212 = E
k m y  2r l n y  •111 Jij

i=lj=l |1 +  15

. , IL -T 6 HC.l.a1=1

LJiaNi (

Z=1

u f  (3 In Ui — 1) . /n _ . (a +  3) u f  . . A . A
   f i  (3, a +  3, - u i ) -------- —— %- f 2 (4, a +  4, - u ^  j  ,

using (5.11) and simplifying; the asymptotic behaviour of this function is presented in Figure 
5.10.

E  [5*0202] The result at (3.13) gives us the expression for complete data as

2 Sn
E S f0202 (a +  1) (cl +  2)
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36

31

26
190009000 14000 24000

c

Figure 5.10: Theoretical and simulated values of E  [S0212] versus c.

510

490 -

470 ■
(VI
I  450 -■oin

430 -

410 -

390
9000 14000 19000 24000

c

Figure 5.11: Theoretical and simulated values of E  [*̂ 0202] versus c.

while the analogous result for Type I censored data is

E S f0202 =  E
k rii y 2 r

E E  y
i = U = l  II +  Y?j

= 1 il -t  & <Jc,z.a2=1 u ’

_  awf Ni .
— —o— /1 (3,o + 3, —a;*),

i=1

using (5.10); the asymptotic behaviour of this function is presented in Figure 5.11.
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-1000 -

£  -2000 -

T3 M
-3000 - 

•4000 - 

-5000 -
9000 14000 19000 24000

Figure 5.12: Theoretical and simulated values of E  [S n n ] versus c.

E [S fm ] We have the complete result as

E  [5iin]
5 a { l - 7 - ‘0 (a)}  

t  (a + 1 )

using the result at (3.14). Using the modified form of 5om  above, we have the Type I 
censored result as

E nd 
°1111

k ni In V- ■

2 ^ 2 ^  1 +  y  r
i=1 j =1 ^  V

Xi
i=1

W » f - D .f l ( 2, a  +  2, - u i ) 

- i 2 i f 2 ! i / 2 ( 3 , a  +  3 ,  -U i )

the asymptotic behaviour of this function is presented in Figure 5.12.

E  [£1212] Adapting the result for £0212 above, we have the complete result,

Sx {3 -  27 -  2ip (a)}
E  [51212] —

t (a +  1) (a +  2)

while, using the result <Sq212 above, we have the Type I censored result.

E S d1212 -  E
' ^ X j Y g h i Y ij 

i = i  j = i  [ l  +  y x

X ujaNjXi f  !d ^ p - J l / 1 (3,a + 3 , - u i) 

r  1 (4 ,a  +  4, —u>i)i=1



5.5. BURR XII ALT MODEL 147

8900

8400 -

7900 -

7400 -
CM
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190009000 14000 24000

c

Figure 5.13: Theoretical and simulated values of E  [61212] versus c.

the asymptotic behaviour of this function is presented in Figure 5.13.

E  [5 2̂02] Adapting 60202 above, we have the complete result.

2 Sx
E  [61202] = (fl 4- 1) (a +  2)

The Type I censored result is given by

E S dd 1 _
1202J — E

k ni „ V2r

E E  *
_i=u=i [l + Y?

_  ^  CLU^NiXi J. fo  , 0 N
—  o-----/1 (3, fl +  3, —cj*),

i=1

adapting the form of 6 ^ 2  above; the asymptotic behaviour of this function is presented in 
Figure 5.14.

E  [62202] Adapting 60202 above, we have the complete result

2 SXx
E  [62202] = (a +  1) (o, +  2)

while the Type I result is

E 6d2202 =  E
k Tij ™2y2r

E E
<=ij=i |1 +  YX
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9000 14000 19000 24000

Figure 5.14: Theoretical and simulated values of E  [61202] versus c.

14.5 -

13.5 -

13 -

12.5 -

9000 19000 2400014000

Figure 5.15: Theoretical and simulated values of E  [62202] versus c.

_ ^  a u fN ix f  x fo t 0 N 
—  o-----/ l  (3, a +  3, —cd*),

i= l

making the minor modification to Sq2q2 above; the asymptotic behaviour of this function is 
presented in Figure 5.15.

E  [62101] Adapting Sqioi we have the complete result
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28.5 -

19000 2400014000

Figure 5.16: Theoretical and simulated values of E  [S^ioi] versus c. 

Adapting the form of <So101 ab°ve> the Type I result is given by

E cd
*-52101 =  E

k

k rii „2xfY.Z
2_̂  2^ i + y r
»=i  j = i  ^  u

— |  Qc^aNiXi
i=1

aw-
^Qc,i,a (a + 1 )  (Ji

{ Qc,i,a 
cdid (1 +  UJi)C l+ 1

)}}}■■

the asymptotic behaviour of this function is presented in Figure 5.16. 

E[S?iod Adapting Soioi we have the complete result

Sx
E  [S1101] a +  1 ’

while the Type I censoring result is

k TU
E cd

‘-’1101 =  E
i = i  i -  +  YiE E T
2=1 j =

= \ Qc,i,a
2 = 1  ^

' ocj? 2 [ Qc,i,a 1 )

.2^2,0 _ (a +  1) Ui I w»a (l  + Wi)a+1j_

adapting the result for S'qiqi above; the asymptotic behaviour of this function is presented 
in Figure 5.17.For the censored data (superscript c) we would have, for example, in (5.53),

E [S:2101J -  E E
2= 1 1 +

2 f — Z— r Y2 \ e x p ( a b-h/3bxi) J

(  c V
\ e x p ( a b+ P bXi)  J .
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175
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160 -

155 -

150 -

145
9000 14000 19000 24000

xfbJi

Figure 5.17: Theoretical and simulated values of E  [Sf101] versus c.

where we recall U{ =  ^exp(ab+ /^x j)  ’ ^  ° ^ er expectations are similarly dealt with.

S u m m ary  We can see tha t in each case the simulated data, on the whole, agrees with 
expected results. The figures show that the Type I expectation tends to the complete 
expectation when c —> oo.

5 .5 .1  E x p e c ta t io n s  o f  th e  S co re

Let us first consider E 81b
da . We note:

E  K ]  =  Ni (1 -  qc,i,a) In (1 +  u>t)
i = 1

Hence, from (5.39), (5.40), (5.41) and (5.42):

'dlB 'E
da

= a~l E  [S„] -  E  [s?] -  E  [S3

=  n 'y  ̂̂ iqc,i,a ^  * Qc,i,aNi
2—1 2=1

k

q° ln (1 +

1 In (1 +  Ui)
a (1 +  Ui)a — 1

»=i

=  a

=  0,
i=  1 2 = 1

1 ln f l  +  u;*)
(1 +  0Ji)a — 1 +  (1 "  In (1 +  Wi)
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E dls
dab

— —tE  [iSVx] +  t  (a +  1) E  

k k

C d On- +  ra £ [S § 101]

=  - r  ^  Niqc>iA + r a J 2 Ni (1 ~  &,i,«) 7 [ + ,  \  
2=1 2=1 '

+T (a +  1) < qc,i,aNi
2 = 1  ^

k

=  E

' aw? 2 f 9c,2,a 1 1 '

.2^0,2,a (a + 1) Wj I (1  + Wj)a+1 J . .

2 = 1

arNitj-i

k
{Qc,i,a 

auji a_l_l r TNiqcj^a Q'TNi (1 ?c,i,a)
W<

=  -a r  ̂ 2 Ni
Ui

i= i  (* +
As

(1 + Ui)c

{1 ~ (1 +  ui)a +  gC)j)0 (1 +  Wj)a}

1 +  Ui

=  - a r  ^ 2  N i
Ui

i= 1 ( 1 +W <)
{l — (1 +  Ui)a +  [l — (l +  LOi) °] (1 +  ^ i)0}

=  0;

similarly 

01bE
\_dpb\

— —t E  [*9x] +  (a +  1) t E  j^Snoi +  cltE  [5'i1oi]

k k
= ~ r  V ]  N iX iq^a  +  a r V i V i ( 1 -  qc^ a) ,

i=i 2=1 u  +
k ,

+  (a +  1) T ^ 2  \ Qc,i,aNiXi 
2=1 ^

= 0,

‘ aw? 2 f 9c,2,a 1 1 ■

.29c, i, a (a + 1) Wi [ U i d  ( 1  +  Wj) a+1 J _ .

by analogy with E  . Finally, we have

E dls
dr

= r ~ l E  [S„]+  £  [ S J - a » £ [ S n] - & £ & ] - ( a +  ! ) £  SJ?1U - a £ [ S g m ]

aui
— T ^   ̂Njqcj^g +  ^   ̂S (%bqc,i,aNi +  Pbqc,i,a-^i^i "h 9c,2,aA,

2 = 1  2 = 1  

(In Ui -  1) f i  (1, a +  1, -Ui) -  

k k

Tqc,i,a
Ui (a +  1) /2 (2, a +  2, —Ui)

Ui In uj-l /r
- a b NiqCiiia - P b Y l  NiXiQcii>a ~  a ̂ 2  Ni (1 -  9c,i,a) "Vy , { 

2 = 1  2 = 1  2= 1

aUj (21n 2 * - i )  f i  ( 2 , a  +  2 , - ^ i )  
2 r g C)i)a  [  - l £ i f ^ / 2 ( 3 , a  +  3 , - W i )

(a+1)  ^  ̂\ qc,i,a,Ni
2=1
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Now, using (5.21) and (5.23) we have

f i  ( 1 ) a  +  1 , —ui) —

f i  (2, a +  2, —uj) — f 2  (2, a +  2, —uj) 

(a +  1) CJ

—2o> (a +  2)

' / l  (2, a +  2, —a;) — 

a u f i  (1, a +  1, —uj) =

1
(1 + w)a+1

/2 (3, a +  3, —cj) (5.54)

(5.55)

(5.56)

and, through cancelling and grouping terms, we obtain 

k

E dls
dr

^ — ̂  (a +  1) tOif2 (2,a +  2, — a;*) +  f i  (1, a +  1, — u>i) (—1 +  lna;*)

— 5 (a +  2) cjif2 (3, a +  3, — UJi) 1 
+ ^ / i  (2, a +  2, — u)j) (—1 +  2 lna^) J

a (a +  1) uifNi f  — ̂  (a +  2) a>i/2 (3, a +  3, —caj) 
2r

2 = 1

k

- E
2 = 1

rC
OtUfA^lncJj (1 Qc,i,a) . V~"' A iQc,i,a

T (1 +OJi) + £
2=1

(5.57)

Using (5.54) we see that we can write:

— -  (a +  2) a;/2 (3, a +  3, —a;) +  - / i  (2, a +  2, —ui) (—1 +  2 In a;) 

=  — ̂ /2  (2, a +  2, — a;) +  f \ (2, a +  2, — ui) lna;

Substituting into (5.57) and collecting like terms we have: 

k

E dls
dr = £ { / a (2,a

2=1 ^
+  2, —UJi)

du^Ni ( a + 1) a (a +  1) (  1
4r 2 r

+ / i  ( I? a + 1 , — Ui) (—1 +  lncji)
auJiNi a (a +  1) uifNi

- J i  (2 ,a +  2, -uJi)lnui
2 r

au^lVdncaj (1  Qc,i,a) ^iiQc,i,a

T  (1 + (U i)
iQc,i,a 1

r  J

+ {2 = 1  k

acaiA,;
In UJi f i  (1? a +  1, — Ui) — ----- —-—- f i  (2, a +  2, — u;*)

r  (-> . -t \  a u J iN i  \f±u)i  . . N i q C}i jCL
—a u j i f i  ( 1 , a + 1 ,  —UJi) —  IT7TT77T U  — Qc,ifa )  H------------

2 = 1  ^

r  r  (1 +  Ui)

CLUJiNilllLJi NiQc,i,a In CJj (1 Qc,i,a) . -^iqc,i,a
1+ L r (1 + UJi)d~("l T (1 +  U>i)

+ ,i,a I

0

using (5.55) and (5.56). Having established that the expectations of the score functions are 
zero, we now move on to consider the second derivatives.
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5.5.2 E xpectations o f Second D erivatives

The expectations of individual functions detailed above use several hypergeometric func
tions. It would be helpful to be able to express them using as few hypergeometric functions

tha t we can write down all expectations using only marginally adapted forms of (5.23), 
(5.24) and (5.25). So, we now write

The expectations are clearly still cumbersome; to outline the logical steps required to arrive 
at these final forms would inevitably require many pages of rather long-winded algebra. 
Since, in essence, we are primarily interested in the inverse of the EFI matrix for a given 
set of parameter values, we include these theoretical results merely as information for the

between these theoretical results and simulated values, using the same parameter values as 
before: a = 2, r  =  5, a& =  17.60139, (3b = —0.056282, with the equally weighted sample 
size N i = 1000 and stress levels (x \ ,X 2 , x s ) = (150,170,190). We can clearly see from the 
results below, tha t in each case there is good agreement between simulated values and their 
theoretical counterparts. The limiting agreement with the corresponding complete result is 
also evident. An analogous consideration for elements of the inverse of the EFI matrix shall 
be considered later, where we make further enquiries into the practical applications of the 
theory with various sample sizes. So, taking the expectation of (5.43) we have,

the limiting behaviour of this function is presented in Figure 5.18. The expectation of 
(5.44) is,

as possible. Examination of these expectations in conjunction with (5.21) and (5.22) shows

K'O,z — (1 4  Wj) — P c,i ,a+ li

K 2 , i  ~  f l  ( 1 ,  CL +  1 ,  —  U J { )  ,

and
^3,i — /3 (lj O, +  1, — UJi) .

reader. As with the individual functions above, we also provide evidence of the agreement

k
^   ̂(1 +  UJi) ^ a  { — cl (a, +  l )  N i t u f  (21 5n

-1-2 (<2 +  1) [lncjj]^ — (1 +  cOi)a (—2a {a, +  1) (<2 +  2) x

( -1  +  qc,i,a) r 2u>i In +  (1 +  uji)2 {—2a (1 + a) Ui lno^x

(2 (-K0,i +  Ki,i -  aKiti +  CLK2,i) +  CL (« 0|i -  «!,») Inc*;*)
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dr2 versus c
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upon simplification; the limiting behaviour of this function is presented in Figure 5.19. The 
expectation of (5.45) is given by,

E
d2h

j
— (a +  2) ^  ' iViT  ̂(1 +  Wj) a {owi (2 -f- a +  uJi)

i= 1

— (1 +  LOi)a
Qc,i,a (2 +  a — (—4 +  a2) uj{ 4- (2 4- a) ca2)

+aa>j +  2 ^1 +  /co,i (1 4- ^ i )2 — ^i,j (1 4- tai)2^  J  j  ’ 

the limiting behaviour of this function is presented in Figure 5.20. The expectation of
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Figure 5.21: Theoretical and simulated values of E d l l versus c

(5.46) is similarly defined as,

E
d2lB
W

— (a +  2) ^   ̂x 2NiT 2 (1 +  u>i) < aoji (2 +  a +  cOi)
i= 1

— (1 +  LJi)a
Qc,i,a (2 +  <1 — (—4 +  a2) u)i +  (2 +  a) a;2)

-\-aoji ^a +  2 ^1 +  Ko,i (1 +  &i)2 — Ki,i (1 +  &i)2^  

the limiting behaviour of this function is presented in Figure 5.21. We also have

d2lBE
dadr

_  Ar I  q̂c’i>a ^ ln ( ^  ) a (« i,i ~  «2,» +  («i,< -  «o,*) lncjj)— 2_^ ------------------------------------
i=1 tOi +  1 r (a +  1)
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Figure 5.23: Theoretical and simulated values of E dadaf, versus c

upon taking the expectation of (5.47); the limiting behaviour of this function is presented 
in Figure 5.22. The expectation of (5.48) is

E d2h
dadab

(a +  I ) -1 V  NiT (1 +  Wj)-1-0 ( -awi  +  (1 +  Uif  (  9cM +
V \  T u c j j  (^qC}i tCLuJi»=i

the limiting behaviour of this function is presented in Figure 5.23. The expectation of (5.49) 
is

E d2h
dad(3h_

{a +  I)”1 V  XiNiT (1 + Wi)”1- 0 ( -aui  +  (1 + a ( QcAa + Ui
i= 1

the limiting behaviour of this function is presented in Figure 5.24. Also,
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E d2h
d rd a b

= (a + 2) 1 aNjUJj (1 +  cOj) 2 ° {—2 — a — 2ui — aui +  aui Torino;* In Ui
i=l

(1 +  Ui)

 ̂ —2 + K,\yi + 2qc,i,a + K \ j U i  — K o j  (1 + U i )  ^ \ \

_l a (  _1 + ^ 2 ,< + qC,i,a \  
y — K>l,i (1 + k’i) J

\  +a(/co,i -  «i,i) (1 + a;<)lna;i y
 ̂ +(1+Wi) 1 ( a  + 2) (—1 + qc,i,a) Tin Tj J>

with its limiting behaviour being presented in Figure 5.25, and 

d2iR 1 h
E

_drd(3b_
=  (a +  2) 1 '^T^aXiNiUi (1 +  Ui) 2 a {—2 — a — 2ui +  ui In a;* +  aui In a;*

»=l
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taking expectations of (5.50) and (5.51) respectively; the limiting behaviour of this function 
is presented in Figure 5.26. Finally, taking the expectation of (5.52) gives,

E
d 2h

d a bd p b
=  CLT X i N i U i

2 =  1

Qc,i,a I 

(1 +  U i )2
+  (d + 2)  ̂T

+ (1 +  U i )  2 a (2 +  a  +  Ui )

and the limiting behaviour of this final function is presented in Figure 5.27.
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5.6 Weibull ALT M odel

In section 2.1.2, we discussed an accelerated Weibull model for complete data sets. Watkins 
(1994) accounts for censored items in the model; although we ignored Type I censoring at 
the time. In this section we briefly highlight the necessary changes to the model that allow 
for the inclusion of censoring. The first point to note is

Pr jitem at i th stress level fails in (0, c ) | = G  (c; B, f a )  =  1 — exp |  — |

= 1 -  exp (-Ci)

where Q  = ( c / f a )5 ; so that rii - the number of failures at the i th stress level - follows a 
Binomial distribution with parameters N i  - the total sample size at the i th stress level - and 
qCji =  1 — exp (~Ci). Then, the observed times to failure d{ j  for the i th stress level are from 
a truncated Weibull distribution with PDF,

B ^ V e x p  { - ( £ ) * }

1 -  exp (-Ci)

f  dHence, are observations from a truncated negative exponential distribution
with PDF

exp ( - Z )

1 -  exp ( - C i )

for 0 < Z  <  C i .  The likelihood for data obtained at the i th stress level is then given by

Y [ g ( d i j ; B , f a )

j = i

ni

n i i - G f e s , * ) }
j =i

j =i & </>i) f lexp {-(!)*}
so that, on recalling that f a  =  exp ( a w  +  (3w Xi) ,  the log-likelihood for the entire data set is

k ni k rii

l w  (B, Oiw ,(3w ) =  ~  ^ 2  X ! i a w  +  P™Xi +  B  1 ln Z i i }  ~  Z i i
i=  1 j = 1 i= 1 j = 1

k rii k rrii

- \ -Sn In B +  E E lnZ « - E E Ci
i = 1 j = l  i= l j —1

I
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It is now straightforward to obtain the first and second derivatives as

2 = 1  j=l i=1 j= 1

k TTli
- r T E  Ci In Ci

i— 1 j=1

a i  fc 77. j  /c 777.t

^  = - s„b + b e E ^ + b E E c <
. . .  - . - -
1 = 1  J — l 1 = 1  J  =  1

k rii k rrii

= _ S;cb  +  b E E ^ «  +  b E E ^
0"w i=lj=1 i=1 j=l

and,

^21 77-t Al 771i
=  -S „ B -2 - B - 2 E E ^ ( l n 2 « )2 - B - 2 E E C'^lnC'i):

2=1 j=l 2=1 j=l
T A 77-i A 772̂

§ £  =  - b 2 e e ^ - b 2E E c *
2=1 J = 1 2=1 J = 1

/^ 2  7 A 77-j fc 77li

w = - s 2E E ^ - b2E E ^
2=1 J = 1 2=1 j = 1

q 2  t A 77-t A  777.*

=  - s „ + E E ^ + ^ ln^ > + E E { c,*+ c ''lnC‘>
W 2=1 J = 1 2=1 J = 1

* k rii k rrii
a  l w  

dBd(3, = - S . + E E  Xi {Zij + Zij In Zij} -T E E  Xi{Ci + Ci\nCi}
2=1 j=l 2=1 j = 1

j-jO * /c fc rrii
O

d a w d /3 l

i w
=  - B 2 E E X*'Z<-'-  •b2 E E x*<̂*'

The algorithm used to converge on the maximum likelihood estimates of the parameters is 
given in the SAS program w e i b u l L a l t , and is presented in Appendix A.

Example 5.1.1.1 [Electric Motor Data]

We first fit a two-parameter Weibull model to data subsets in Table 5.1, making the minor 
modification to both algebra and algorithm, outlined in section 2 .1 , to accomodate censoring. 
We also present maximum likelihood estimates of parameters coming from a three-parameter 
Burr XII model, for data subsets. The algorithm employed is the same as that discussed 
in section 2 .2 , but of course now adapted to accomodate censoring. The SAS IML code is 
given in Appendix A as w e i b u l L A L T .  The maximum likelihood estimates for both models, 
together with the maximised log-likelihoods are given in Table 5.2. Naturally, we must omit
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Temperaturej°C
170 190 2 2 0

B 2.45663 1.85823 6.76171
0 5389.8982 2004.8873 592.29927
a 0.60712 11.43485 16.25742
T 4.07215 1.92794 6.96966
e 3607.389 6912.7018 878.78057

lw -73.92301 -75.13367 -59.69894
k -73.52035 -75.16857 -59.7505

A , 0.58939 -0.35085 -0.83045

Table 5.2: Two-parameter Weibull and Burr XII fit to subsets of Electric Motor data, Nelson 
(1990)

results for stress ISO0*? since complete censoring observed there renders this subset unusable 
in the present context. We can see quite a variation in the parameter estimates across 
stress levels and whilst 6 for Xi =220°C and 170°C seem appropriate, the estimate of 0 for 
x i  =190°C may be considered to be a little high (purely on the basis of the observed failure 
times); values for 0 seem appropriate at all stress levels. Clearly, in terms of maximised 
log-likelihood, the Weibull model is a better fit than the Burr XII at the two highest stress 
settings, while the Burr XII is favoured to the Weibull at Xi =  170°C, and this is endorsed 
by the corresponding values of Aa, the censored form of which is given by Watkins (2001).

Moving on to fit a Weibull ALT model to the electric motor data, we obtain the 
parameter estimates B =  2.9930846, a w =  16.874116 and (3W =  —0.048093; and hence 
0 X = 15680.38,02 =  5992 .7 5 ,0 3  =  2290.31 and 04 =  541.12, with associated log-likelihood, 
l y /  =  —217.15. We see the estimates of the 0̂  are in keeping with the data values at 
each stress level, while the single estimate B here is in the vicinity of the separate esti
mates in Table 5.2. Fitting a Burr XII ALT model to the data set, we obtain the pa
rameter estimates a  =  40231077, r = 2.9930846, cc*, =  22.724406 and /3b =  —0.048093 
with associated log-likelihood Ib  =  —217.15. Hence, estimates of the scale parameters are 
(01, 02, 03 , 04) = (5446348.81,2081493.03,795507.85,187952.77). As with example 2.1.1.3 
(electrode data), the value of a  was not actually converged upon. There, I b  was seen to in
crease with a, while the scale parameters at each stress level tended to be overestimated..As 
such, the Burr XII ALT parameter values stated here are not maximum likelihood estimates; 
consequently we omit the carets over the letters. However, we see that the value of r is 
in keeping with the separate estimates observed in Table 5.2. We also note that the ALT 
estimate of r is the same as the ALT value of H, to seven decimal places, while (3b =  (3W, 
to six decimal places and l w  =  I b , to two decimal places. In Chapter four, we went on to 
obtain a negative value of As for the electrode data set, indicating that the Weibull ALT 
model was a superior fit than the Burr XII ALT model. Naturally, in light of this evidence 
we would expect to reach the same conclusion with the electric motor data set here. We 
shall consider this further below, when we accomodate censoring in our derivation of As.
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5.7 Practical Implications

In this section we shall consider elements of the inverse of the EFI matrix for the Burr XII 
ALT model. We look to compare simulated results with their theoretical counterparts for 
increasing censoring time c, and for varying sample sizes N \ .  Again, we shall take the param
eter values a  =  2, r =  3, cty, =  17.60139, (5& =  —0.056282 and (£1, 2 2 , £3) — (150,170,190). 
Our concern here lies solely with those elements lying on the diagonal of the inverse of 
the EFI matrix since, asymptotically, these are the variances of the maximum likelihood 
estimates of the model parameters. Now, we can obtain the theoretical approximations to 
the variances (or, more specifically in our case, the standard deviations) in much the same 
way as in section 3.2.1. That is, we can formulate the Type I EFI matrix, extracting the 
sample size, I\fi, as a factor. For instance, with the parameter values above, together with 
a stopping time of c  =  1500, we find the inverse of the EFI matrix as

N~i

131.619 
-33.4333 13.9033

44.5396 -22.2606 98.775
-0.0724 0.07442 -0.4708 0.0024

Setting N i  = 30, for example, and calculating the square root of the diagonal elements of 
this matrix, we have the first diagonal element (the approximation to the standard deviation 
of a) as 2.09459, which is plotted as the first figure on the continuous line in the Figure 5.28 
below.

We can see from the Figures 5.28 to 5.43 that for smaller sample sizes there is a con
siderable discrepancy between the simulated (x ) and theoretical (continuous line) standard 
deviations, while the percentages of valid cases (in the usual sense) are represented by the 
broken line. For comparison, we also present corresponding results for the complete case 
from Chapter three, see Table 3.2, where the theoretical complete result is represented by a 
single point (•), the percentage of valid cases is represented by a triangle (A)  and the sim
ulated standard deviation of the parameter estimate is represented by a diamond (♦). We 
see in Figure 5.28 that for the variable a, there is some disagreement between the simulated 
complete result from Chapter three, and the simulated results observed here for large c. 
However, this difference decreases as the sample size increases. Particularly marked for the 
variable a, is the difference between the simulated complete result (♦) and the theoretical 
complete result (•) for small sample sizes. We see this difference decreases as the sample size 
increases, to such an extent that for N \  >  1000, Figures 5.30 and 5.31, we find it difficult to 
distinguish between the two results. For the other three variables we see that the difference 
between these results is negligible, even for the smallest sample size considered, see, for 
example, Figures 5.32, 5.36 and 5.40. Note also, for N i  =  1000 and 3000, 100% of cases 
considered were valid, for all values of c considered. Consequently, percentages have been 
omitted from Figures 5.30 and 5.31. From an experimental point of view, it was observed
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that all items had failed for c  approximately equal to 13000. Therefore, with no further 
information being obtainable for higher values of c, we terminate the figures at this point. 
A characteristic feature of the figures, particularly noticeable for r  - Figures 5.32 to 5.35 - 
is a marked ‘kink’ for c  ^  3500. Since, for larger values of N \ y simulated values exhibit the 
same pattern, it seems that this ‘temporary-flattening-out’ of the standard deviations, is 
due to some combination of the choice of parameter values and failure time. Nevertheless, 
the overall shape, with standard deviations decreasing for increasing stopping time, is in 
keeping with intuition.

For a, we see a large disparity between simulated and theoretical standard deviations for 
N i  — 30, see Figure 5.28, although this difference diminishes as the sample size increases, 
such that, at N i  =  1000, Figure 5.30, the agreement between the two sets of results is 
actually quite good. For the other three model parameters, the disagreement between 
simulated and theoretical values is less pronounced than for a, at smaller sample sizes. At 
N i  =  1000, there is almost complete conformity between the two sets of results for r, see 
Figure 5.34, while for a b and (3b) the agreement is good even at the smallest sample size 
considered, see Figures 5.36 and 5.40. In each figure, we can clearly see the Type I theoretical 
results tending to their complete counterparts, as c  gets larger, as expected. In addition, 
as the sample size increases, the standard deviation of a given parameter estimate for a 
given c, decreases, also in keeping with intuition. Naturally, the longer the experiment has 
to run, the more failures are observed and more information is known about the parameter 
estimates, thereby reducing the standard deviation in those estimates.

Of course, this is only one example, the results of which extend to sixteen figures. 
Naturally, with the inclusion of the stopping time c as another parameter, to consider as 
many simulations as in Chapter three would require hundreds of figures. What we must 
bear in mind, however, is that with censoring, theoretical results tie-in asymptotically with 
theoretical results from the complete case; whereas with the original complete results, there 
is no way of making any further theoretical validations. Consequently, we feel that, while 
complete results need to be rigorously endorsed through simulations, censored results require 
fewer examples to illustrate the point. As such, we limit ourselves to consideration of this 
single example.

5.8 Limiting agreement with complete data

The previous section shows, for a particular example, good agreement between simulations 
and Type I expected results. The figures also suggested that, as c  —» oo, the Type I 
expected results tended to their complete counterparts. In this section we look to prove 
this limiting agreement from a theoretical standpoint. Firstly, we shall establish some 
groundwork necessary for our proofs. We then move on to consider our particular application 
and examine the fundamental expressions that are the basis for all further expectations. We 
observed above that we can write the expectations of all second derivatives of the Burr XII
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Figure 5.28: Theoretical and simulated standard deviation of a versus c, for N \  =  30.
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Figure 5.29: Theoretical and simulated standard deviation of a  versus c, for N \  =  100.
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Figure 5.30: Theoretical and simulated standard deviation of a versus c, for Ah =  1000.
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Figure 5.31: Theoretical and simulated standard deviation of a versus c, for N i  =  3000.
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Figure 5.32: Theoretical and simulated standard deviation of r versus c, for N \  =  30.
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Figure 5.33: Theoretical and simulated standard deviation of r versus c, for Ni = 100.
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Figure 5.34: Theoretical and simulated standard deviation of r  versus c, for N i  =  1000.
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Figure 5.35: Theoretical and simulated standard deviation of r versus c, for N i  =  3000.
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Figure 5.36: Theoretical and simulated standard deviation of versus c, for IVi = 30.
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Figure 5.37: Theoretical and simulated standard deviation of Sj, versus c, for N i  =  100.
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Figure 5.38: Theoretical and simulated standard deviation of Sj, versus c, for N ±  =  1000.
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Figure 5.39: Theoretical and simulated standard deviation of versus c, for Ni =  3000.
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Figure 5.40: Theoretical and simulated standard deviation of /3b versus c, for N i  =  30.
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Figure 5.41: Theoretical and simulated standard deviation of (3b versus c, for N \  =  100.
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Figure 5.42: Theoretical and simulated standard deviation of (3b versus c, for N\ =  1000.
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0.00095

0.00085 --

0.00075 --

0.00065 --

a  0.00055 --

5  0.00045 --

0.00035 --

0.00025
■a

c

Figure 5.43: Theoretical and simulated standard deviation of {3b versus c, for N \  = 3000. 

ALT model using only the terms

« o
Ki  

*>2

and
«3 =  / 3 ( l , a  +  l , ^ ) ,

where z  =  —a; = — cr, and the subscript i  - relating to the stress factor 
the sake of brevity. Therefore we shall examine the limiting properties 
Clearly, as c —> oo,

«o ->■ 0,
while, since qCja —> 1 in the same limit, we clearly have

1
UJK\ —>

a

Consideration of «2 and Ks will require results from complex analysis; in particular the 
consideration of poles, residues and contour integration.

Consideration of «2 Let us begin by examining =  F a #  ({1,1, cl +  1} , {2 , 2} , 2), a 
particular example of the form F ^2 ({t, tz} , { t  +  l , t  +  1} , z ). From paragraph 15.3.2 in 
Abramowitz and Stegun (1972), we can express

- is omitted here for 
of these terms first.

(5.58)

(5.59)

= (1 - * ) — 1.
= A (l,a  +  1, z) =

ZCL

r-(0 f f 3̂,2 ({t, t ,  U )  , {t +  1, t  +  1} , Z )
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as

i p°° r(t+s)r(t+s)r(tt+s)p / w  y \ s  j
2m J —too r ( t + l + s ) r ( t + l + s ) 1 V z ) a s

=  W i  H o o  ( t T ^ ) r  (-* ) ( -* ) ' d s  (5-60)
=  £ i f - * ( - « ) ( - * ) • *

Here, ^+X̂a has a poJe o/ order t w o , (double pole), at s .= —t, T (u +  s) has a pote o/ order 
one, (single pole), at s  =  —u,  —u  — 1, — u  — 2 , • • • and, if t  — u  is not an integer, then all 
poles are simple; see Bak and Newman (1982, p97). Bak and Newman (1982, pl07) also 
outlines the manner in which we can obtain the r e s i d u e  of a function, /  ( z )  say, with a pole 
of order k  at zq \ this residue is given by

fjk—l  r
{ z - z 0 ) k f ( z )

(k  — 1)! d z k- l
Z — Z Q

The merit of calculating the residue comes from the application of Cauchy’s Residue Theo
rem, which, in essence, states that for a function /  (2 ),

L f  ( z )  d z  =  2 ir i x sum of the residues of any poles within C,
c

where C  is a closed curve that fails to intersect any of the poles; see Bak and Newman 
(1982, pi 10) for further discussion. Our procedure is as follows:

1) Include the required integral as part of a contour integral.
2) Identify the poles inside the contour
3) Evaluate the residuals at the poles
4) Obtain the integral as the sum of residues.
We can best illustrate a suitable choice for a contour C  for (5.60), graphically. We first 

write (5.60) as

lim - h  r ^ ± 4 T ( - s ) ( - Zy d s
w -0027n j _ iw (t + s )2 v M '

and this is represented in the first part of Figure 5.44 and, slightly adjusted to avoid the 
origin, in the second part. The integral is part of the entire contour C  shown in Figure 5.45. 
So,

r —iw p p—iw—w —h piw—w —h piw

. = ~  ~  ~  .J iw  J C J  —iw J —iw —w —  ̂ J iw —w —^

For this particular function, the final three integrals disappear in the limit w  —> 00 , leaving
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Imaginary i Imaginary
Axis Axis

IW IW

I

Real r  Real
 ̂ Axis | Axis

-iw

—  1

-iw

Figure 5.44: Representation of a contour integral in the complex plane. In the second figure, 
we illustrate how the path of integration avoids the origin, thereby failing to intersect any 
of the poles.

Imaginary
Axis

jr IW

jk
t Real

-w-1/2 Axis

-iw

Figure 5.45: Contour integral in the complex plane.
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see Copson (1935, p254). However, our concern lies with an expression of the form

r (t + s) r (t + s) r (u + s) a
r(« + i + s)r(« + i + s) 1 n  ' ’

see (5.60), and we see the poles of this expression, within C, are at

t  “h S
u +  s } =  0, - 1, - 2 ,  • • •, 

t  +  1 +  s

from which,
r(t + s)r(i + s)r(u + s)w   ̂
r(t + i + s)r(t + i + s) 1 n  ’

has simple poles at s  =  —t  and s  =  —u,  —u  — 1, —u  — 2 , • • • and double poles at s  —

—t  — 1, — t — 2, • • • . Therefore,

/ioo
=  —27xi x sum of the residues at the poles within C .

-ioo

Having identified the poles in the contour we can now move on to evaluate the residues at 
the poles. Considering the final form of the integrand in (5.60), the residue at s  = - t  is 
given by

d_
ds

d_
ds

,2r (t + s ) 2 i >  +  s )  
F (t + 1 + 5)'

(4+ sf  ( - * )  ( - * ) '
S —  —  t

[T(U + a) r ( - S) ( - 2:)*],=_t

= r' (u + s )  r (-«) (-z)s + r (u + s) (-r ' ( - s ) )  ( ~ z ) s + r  (u +  s) r  ( - s )  (- z ) s in ( - z) 
= r' (u + s )  r ( - s )  (- z ) s -  r (u + s )  r' (-«) ( - z)s + r  (u + s )  r  ( - s )  ( - 2)s in (-z)

At the pole s  =  —t, this becomes,

r' {u  - 1) r  (t) ( - z ) _‘ -  r (« - 1) r' (t )  ( - z ) ~ ‘ +  r  (« - 1) r  (t) ( - z ) _t in (-z )

(_z)-‘r (u - 1) { r ((“ I * ) F (t) -  r' (t) + r (t) in ( -z ) j  

= (-z )- ‘ r (« - 1) {ip {u - t ) r  (t) -  r' («) + r  (t) in (-z)}  
= (-2)_t r (u -  t) r  (4) {tp (11 -  t) -  ip (t) + In ( -z ) } .

At the pole s = —u — w, the residue of T {u + s) is
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see Abramowitz and Stegun (1972,p255). Therefore, the residue at s  =  —u  — w  is given by

( - 1)" I >  + m)
( t  — u  — w )2

and it follows that the sum of all residues is then

(_*)-* r (u - 1) r (t) (t) +  In ( - * ) } + ( - * ) -  £  n l u  +  %  ( - 2)- ”1 ■
^  w\  ( t - u - w Y

In K2 , t  =  1 and u  =  a  + 1. Also, as z  —> — oo, the summation in this expression disappears. 
Therefore, we can write (5.60) as,

r(a + l)«2 = (-2)-1r(a)r(l)  { i p  ( a )  -  if> (I) + ln (-z)}
( - z ) a « 2 =  T  (1) { i p  (a) —-0 (1) +  In ( — 2 ) }

(-z ) a«2 -  In ( - 2 ) =  ^ W - 1/> (1) =  ip (a) + 7

and so, as z —> —00 , - and hence, as c —> co - we have

LuaK2 — Ino; —► ^  (a )  +  7  (5.61)

and we now have the result in a form involving terms that we recognise from the complete
case of Chapter three.

Consideration of K3 Finally, we have k$ =  2*4,3 ({1» 1,1, a 4-1}, {2,2,2} , z), which 
can be expressed as

r ( t f r w  
r(t + i)3 “

(r(t + s)}3r(u + s)
27ri J—ioQ {F (t + 1 + s)}'"

T { - s ) ( - z ) s d s (5.62)

_L f°
y_ic

r (it + s)
r, • 1 q'F (—s )  (—z ) s d s
2m j - i c o  { t  +  s f   ̂ M

Now, by analogy with ^2, we note that the sum of the residues at the poles s  =  —u  — w  will 
be zero in the limit 2: —► —00 . Therefore we shall concentrate on the poles of ( t  +  s) -3  and 
shall see that consideration of this term alone is sufficient to establish the required result. 
So, within C, ( t  +  s ) -3  has a triple pole at s  — —t.  The residue is then given by

l d P _  

2 ! d s 2
& ± 2 jr ( t . + . ) r  (-«)(-*)<

s = —t(s + t )

The first derivative from (5.63) is given by

r' {u  +  s )  r { - s )  (- z ) s -  r (u + s) r7 (-*) {-zy  + r  ( u  +  s )  r  ( - s )  ( - zy  in ( - z ) ,

(5.63)
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while the second derivative from (5.63) is

r" (u + s )  r  ( s )  { - z ) s -  r' (-a) r' (u  + a) ( - z ) s +  r 7 ( u  +  a) r  (-a) ( - z ) s in (-z )

-  [r7 (u +  s) r 7 ( s )  (- z ) s -  r  (u + a) r" (-*) ( - z )s +  r  (u +  a) r 7 (-a) ( - z ) s in (-*)]

r  (u + s )  r  (-a) ( - z ) s -  r  (u +  a) r  ( - 5) { - z y  

+ r  (u + s) r  (-a) ( - z ) s In ( - z )
+ ln (-z )

The residue then becomes,

- ( - z ) s T(u + s) T" (“ +  s) r  (_ s) _  r' ( - S) +  +  r ( "  +  s) r  ( s )  In { -z)
T (it +  a) r (u +  s) r (u +  s)

r' («+*) r, (_ s) + r« _ r/ (_ s) ln + ln r'(u + s)r  (_ s)
r (u +  s)

— In (—z) r7 (—s) +  ln (—z)2 T (—s)

r (u +  s)

=  - ( - z)s T{u + s) 'r7(ti + a)T (—s) -  T7 (—a) ip (u +  s) +  ip (u +  s) r  (—a) ln (-z )r (u + s)
—ip (u  +  s) T7 ( - a )  + T" (—a) -  T7 ( - a )  ln (—z) + ln (—z) ip ( u  +  s )  T ( - s )

-  ln (-z ) T7 ( - a )  +  ln ( - z )2 T ( - a )

= i  (-«)s r (« + s) (u +  s) t (-«) + r ( - s ) ( u  + s)2 - r ' ( - « ) ^(u + s)

+r ( - a )  i p ( u  + s )  ln ( —z) — ip (u  +  s) T7 ( —a) +  T" (—a) -  T7 ( —s) ln ( —z)

+ ln (—z) ip {1 1  + s) T (—a) -  ln (—z) T' ( —a) + In ( - z )2 T ( —a)

We wish to evaluate this at s  = — t and then sett = l ,u  = a + l. So, we have

i  (-* )-1 r (a) [ f  (a) r (1) + r (1) V (a)2 -  r' (1) V (a) + r  (1) V- (a) ln (-*) (5.64) 
-</> (a) r' (1) + r" (1) -  r' (l) In (-z) + In (-z) Ijj (a) T (1) - ln ( - z ) r ' ( l )
+ ln(-z)2r ( l ) ‘

Now, from section 1.4.1

7Tr (i ) = 1, r' (i) = -7, r" (i) = 72 + 7 .

Therefore, using (5.64) to represent the integral (5.62) in terms of the sum of residues 
evaluated at t =  1 and u =  a + 1 - we have

T (a + 1 ) =  -  ( -z )  1T (a) ip1 (a) + ip (a) 2 -f ip (a) 7  +  ip (a) ln (—z) +  7 ^ (a)

7T2
+ 7 2 +  — + In (-z) [7 + ip (a)] + ln (—z) 7  +  ln ( - z ) 2
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so that

(-z )  CLK3 -
ln ( - z ) :

ip' ( a )  +  ip ( a )2 +  7 ip ( a)  + ip ( a )  ln (—z) +  7 ip ( a )  +  7 2 +1 

2
+ 7  ln (-z )  4- In (—z) ip (a )  +  In (-z )  7 ] 
1 

2 
1 
2

7T

7T
ip' ( a )  +  ip ( a )  +  2~fip (a )  +  7  +  2 ln (—z) { 7  +  ip (a)} + —

21

ip' (a) +  { ip  (a) + 7 } 2 + y + ln (—z) { 7  +  ip (a)},

or, alternatively,

ljclks —
(lnu;)'

ip' ( a )  +  { ip  ( a)  +  7 } 2 + y +  lnw { 7  +  ip (a)} . (5.65)

We now have K3 in a manageable form; involving terms that we recognise from the complete 
case of Chapter three. We shall see in the discussion that follows, how we use these limiting 
results in the expectations particular to our work.

An examination of the terms at (5.53), in conjunction with (5.34), implies that we need 
to find the following results,

E a [In (1 + Y T)}, E a  [In 7 ] , E a+1 [ Y T ln Y ] , E a+1 { Y r} , E a+1 Y T (ln Y f  

E a+2 [y 2T(ln r )2l , E a+2 [ Y 2r l n Y ] , E a+2 [Y 2 t } .

We shall examine each of these terms in turn without the suffixes. The complete results, 
determined from expressions in Watkins (1997), are restated for ease of comparison.

E [ln (1 + Y T)] Prom (3.2), the complete result is given by,

£ [ln (l +  YT)] = i  
a

while, from (5.7), the Type I censored result is

E  [In (1 +  Y r )] =  - -  b  ^  +
a  (l + cT)“ - l

Clearly, as c —> oo, E  [ln (1 +  Tr)j —>

E [ln Y ]  The complete result is given by

E  [ln Y] = 7 +  ^ W
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see (3.6); while the corresponding Type I censored result is

E [ \ n Y ]  =  -
T

1
T

In a; — 

lna; —

/2  (1 ) Q +  1> —<u) 
f i  (1) a  + 1, —a;) 
/ 2 ( l , a  +  1 , - w )

Qc,a/

from (5.29). Now, as c —» oo, Therefore,

1

But, from (5.61), 

So,

as required.

E  [In Y] —> — [lncu — a w f 2 (1, a  + 1, — w)]
T

a u j f2 (1, a  + 1, —uj)  — lnu; —> ip (a) +  7  

'7  +  ij> (a)'
E  [ln Y ]

E [YT ln Y] From (3.7), we have the complete result as

'4) (a — 1) +  7  — 1
E  [YT ln Y] = -  (' r ( a -  1)

while the analogous result for Type I censored data, given by (5.14), is

E  [ Y T ln Y] =
aw

2TqC}Ct

(2 lnu; — 1) f i  (2 , a  +  1 , — uj) (a +  l)u;
f i  (3, a  4 - 2 , — uj)

Now, using (5.26) and (5.28) with a  replaced by a  — 1, we have the following expression, 
(where we use the notation ^ a_1  ̂ (0 < j  <  3) to indicate that the Kj  should be taken with 
a  replaced by a  — 1 .),

auj (2 lnu; -  1) 2 /  (a_i) (o-i)\  (fl +  1 )^
aw

0 K(a-i) Oj-C0-1) , J v - 1)An*2 1 "1 ruQ
a  ( a  +  1) uj2

using (5.58), (5.59) and (5.61), and simplifying, we have the limiting result

(2 lnu; —1 )2  (a +  l)u;^
E  [Yr ln Y] aw

qc}a

2 V’Ca—l)+7+lnu) _  3
u>(a—1) u)(a—1)

2awo) (a — 1) a (a + 1) uj 2

(1 +  uj)a ( - 1  +  7  +  *0 ( a  -  1)) 
(a — 1) r (—1 +  (1 +  uj)a )

'if; (a -  1) + 7  -  1 ' 
r ( a - l )
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as required.

E  [TT] From (3.4), we have the complete result as,

1
e  [yT] -

a - l ’

aco c  r „ .
 5"/i (2 ,a + 1, -w)
9c,a 2

while, from (5.10) and subsequently (5.26), we have the Type I censored result, 

E [ Y T]

\u2 f  2

;,a2 \  CLUJ 

bJ2 (  2 

;,a2

aw'
9c,,
aw'
9c,,

(a -l)  (a—1)

Qc,a-1 n  v
— f ------~r -  (1 +w)w (a — 1) }

and this approaches

a - l
as c —> oo.

E  \ Y 2 t ] The result (3.5) gives us the complete result as

r 2r] r(3) r ( o - 2)
1 -  r (o)

(a -  1) (a -  2) ’

with the Type I censored result, from (5.10), being represented by

aw ,2t

E [ Y 2t] =   f i  (3, a + 1, —w)
9c,a
aw3 

39c,a
/ i (3,a +  1, - w ) .

Now, using (5.22), we then have, 

,3
E  [ Y 2 t ] = ^  { / i  (2 , a +  1 , —w) — f i  (2 , a, —w)} 3

•^Qc,a ( - " ) 2

/  A  _  2 ( J ‘
3 qCla \  aw V 1 0 /  (a -  1)w V 1

(a—2) (a—2)

aw I _2_ /  <?c, a—l
39c,a 1 aw \w  (a -  1) “  Pc,a -

9c,a—2
(a — 1) w \^(a — 2) w Pc,a— 1

- 3
2w

)} f -\ 2w
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from (5.26). As c oo, we have

e [y 2t] a u , 3 / _ 3
3 \ 2u) J  \ a ( a  — 1 ) uj2 (a — 1) (a — 2 ) to2 

and, on simplification, this limit reduces to

2
(o -  1) ( a  -  2) ’

as required.

E [Y2r I n Y ]  Multiplying (3.15) by pp  and then replacing a  by a  — 2 gives the complete 
result as

p  f y 2t  In y ]  _  3 -  2 7  -  2V> (a -  2 )
ln y J -  r (o — 1) (a — 2 ) '

It is straightforward to show that

o — l o - l

from which

E a [ Y 2t ln Y ]  =  £ a- i  [Yr ln Y ]  E a [YT ln Y ) ,

E a [ Y 2t In Y ]  =  (B a_! [ Y r  ln Y ]  -  [Y T ln Y \  } .

We have seen earlier in this section that

E a [ Y T \ n Y ]
1 — ip (a — 1) — 7

r ( o - l )

as c —► 00 . Substituting in we have

o f i -  ^(o — 2) — 7  o — 1 1  — ip ( a  — 1) — 7 I 
o  — 1 \  r  ( o  — 2 ) o  r  ( o  — 1) J
3 — 2 7  — 2-0 (o — 2) 

r (o — 1) (o — 2)

on exploiting the recurrence relation

^ (0 + 1) = ^(a) +  i ,
a

see result 6.3.5 in Abramowitz and Stegun (1972); this is the required result.

E Y T (InY-)2 Prom (3.8), we have the result for complete data as 

1

(5.66)

E Y T (ln Y y
t 2 (o — 1)

{ t  + 7 2 -  27 } +  2 (7 -  1) i{> {a -  1) + {if) (a -  1)}S 
+'ip' (a -  1)
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Prom (5.15), the Type I censored result is 

Y T (lnP )2E
a u

T 2qc,a

|  | l  +  (21nw — 1)2|  f i  (2 , a  +  1 , —u )  

- T  ( a  +  1) w (61nw -  5) / 2 (3,a + 2 , - u )  

T i§2 (a + !)(& + 2) u 2f s  (4, a  +  3, —u )

Now, f i  (2, a + 1 ,— u )  can be obtained from (5.26) with a  +  2 replaced by a + 1, while 
/ 2 (3, a + 2, -a;) can be obtained from (5.28) with a  +  3 replaced by a  +  2. Prom (5.21),

h  (4, cl + 3, — w) — [/3 (3, a +  2 , — w) — / 2 (3, a + 2 , — w)]

/3 (3, a +  2 , — u )  =  [/3 (2 , a + 1, — u )  — / 2 (2 , a 4-1, — a;)] [ —

4 3

(—w) 32 (a +  2) y 5 

33
(-w ) 22 (a +  1) J  ’

/ 3 (2 ,a + l , - w )  = [ /3 (1, a ,-w ) - / 2 (1, a,-w)] ( - 23
(—a;) a

where, from (5.24), (5.25), (5.26), (5.27) and (5.28) respectively,

/ 2 (l,a ,-w ) = k {2 ~ 1\

/ 3 (l,a ,-w ) = 4 a_1)>

f i  (2 , a + 1, —w) —

/ 2 (2 , a + 1, — u )  —

/ 2 (3, a  +  2, — w) —

a u
(a - l )  (a—1)'run rvi

aw
9K(a *) _  ^ _L

a (a +  1) w2

Substituting in and simplifying, (in a routine sense),

E  Y T ( \ n Y ) 2 

We know that as u  —*■ oo,

cj j  ^ — 2 ^  ^ (1 +  lnw)
Qc,aT2 |  +lnw (2 +  lnw)^

Qc,a =  1 — (1  +  w) ° —► 1 .

We also have the other limiting results given by (5.58), (5.59), (5.61) and (5.65). Substituting 
these results in and cancelling terms, we obtain

E Y T (1 n Y f
t 2 { a  — 1) [ 6

7T
— +  7  -  2 7  4- ijj' (a -  1 ) +  [ip (a -  1 )] +  2  ( 7  -  1 ) ip (a -  1 ) L

as required.
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E Y 2t (In Y)2 From (3.9), we have the complete result 

Y 2t (ln Y)2E
t 2 (a — 1) (a — 2)

| ^ + 272 — 6 7  +  2 } - 2 ( 3 - 2 7 )i/> (a-2)

+2 1 (& — 2)]2 + (a — 2) j

Now, it is also straightforward to show that we can write

a  — 2 Y2t (ln Y)'
a  — 2 

a  — I
E a~: Y T (In Y)21 -  - — - E a W T (ln Y) 

J a  L

from which

E a Y 2t (InY)'
a  ( a  — 2

a  — 2 I a  — 1 

Now, we have already shown

E a- ] Y T (ln Y)' a  — 2
E a Y T (ln Y)'

E a Y T (ln Y):
r2 ( a  —

+ 7 2 -  27  + if /  ( a  -  1) + [ip ( a  -  l )]2 +  2 (7  -  1) 'ip ( a  -  1)

Therefore,

E a Y 2t (ln Y ) “
a  — 2

a—2 1 j  ^ - + y 2 ~ 2j  +  ^ ' ( a - 2 ) +  [ ' i p ( a -  2)]2
a - l  r » ( a - 2 )  I  + 2 ( 7 -  1 ) ^  ( O  - 2 )

f ^  +  7 2 ~  2 7  +  '̂ (a -  1) +  [“0 (« -  l ) ] 2a—2 1
a t2 (a—1) + 2  (7 - 1)^  ( a - l )

To get this expression into the correct form, we exploit (5.66) and result 6.4.6 in Abramowitz 
and Stegun (1972),

( a  +  1) = (a) + (—l)nn!a~"~l .

Making the appropriate substitutions and simplifying in a routine way we get the required 
result.

Since we have proven that all the above expressions tend to their complete counterparts 
when c —* 00 , it follows that all derived terms, see sections 5.4 and 5.5 above, also tend to 
their complete counterparts. This is because the only difference between the Type I and 
complete versions is the inclusion of a term of the form (for j  =  1 or 2 ), which clearly
tends to unity as c tends to infinity.

5.9 A for Censored D ata

In Chapter four we determined at (4.14) for an accelerated data set, when the data 
had completely failed. We now extend this result to accomodate censored data. Naturally, 
many of the expressions involved require only a minor adaptation of the complete case. 
Results here are based on the reparameterisation of a.  Under this reparameterisation, and
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analogous to (4.4), the Burr XII log-likelihood becomes

Ib  =  S n \ n r  + S n ln(ln (—In w)) + (r — 1) S e — r S n [ln ip -I- r  1 ln (ln (— lnu;))]

- r ( 3 bS x - ( l  +  ln (- ln  u ) ) t i { i p , u )  -  ln ( - lnw) t% {ip, w ), (5.67)

where t * { ip, to) is defined at (4.5) and we now define

k rrii Cij_

• ^ - s g - r l i s S H P ’.

As in Chapter four, we are interested in the behaviour of the score function for (5.67) at 
r  =  B , i p  =  exp ( a w ) , P b =  P w and as w —► 0. It is convenient to define

k rii

i= 1 j -  
k rrii

+ X X ^
1=1 j = l

Xi)

Cij

exp ( P bXi)
ln C{j

exp {(5bX i )

and we also make use of the notation s^ w (t ) at (4.6), and t „ w {ip,u>) at (4.7). Finally, we 
now also define

k rrii 

i = l  j —1

First Derivatives

Taking first derivatives of (5.67) we have, 

31 b

(=gfcg) VAJ
i/)[ln(— lnu;)]1/

1 +
- P - r )  \ r *p(pbxi) J I

•0[ln(— lnu;)]1/7

= —r S nip 1 +  (1 +  \ n { - l n u ) )  r i p  q (V>, w) +  ln ( - ln u ) r i p  1t Q ^ { i p , u j ) ,— 1Jc
dip

^  =  5nr -1 +  Se -  Sn -  Snlml> -  0bSx -  (1 +  In ( -  lnu,)) (  !  ^  ^ ( ^  *

— In (— ln w) { t -1 ln (ln(-lnw )) t§>0 (^,w) +  tf|0 {ip,u)} ,
F t l r ,  ,

= - tSx + (1 +  ln (-ln a ;))r t0>1 {ip,u) +  ln (-lnw jrtg,! W>,w),

and

3 1 b

du j

1 W m \ , . c ,  , {! + ln ( - In “ )} to,o ( V > ) , ln (-ln u ,)t§ 0 (V>,w)
ulnw I** + t * W’W)I + -------culnu,In f— lnu/)------ + u ,lnu ln f-lnu ,l ■win win (— lnw) w ln u  ln (— lnw)
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which are clear extensions of those first derivatives expressed in section 4.2. As before, we 
now make the substitution

\  =  tJjT [ln (— lnu;)],

so that, with 'ip and r  finite, uj —>■ 0 implies A —* oo. The first derivatives then become 

=  -rS 'n '0 -1  +  (1 +  A7p ~ T )  T T p - H ^ Q  (A) +  \ i )~ TTip-hl#  (A)
d'tp

1^- -  - tSx +  (1 +  Aip-T) ! (A) + A'i/j~Trt^1 (A),
°Pb

dlB -  <7 “I _i_ <7 _  C / _  R Q _ h jl \ol~r\ /  T~l ln (Â _T) *0,0 (A) 1o — Snr  +  Se Sn ln ip PbSx (1 4- Xip J < , >,
OT \ +h,o (A) )

-A ip~T { t -1 ln (A^~r) tgi0 (A) + t l fi (A)} ,

and

S = {4*(A)+(A) - 4 ^ (A) -^ (A)}; (5-68)
where we now write the 1%}W and t* with a A notation, simply to indicate the role of the
parameter in the summations. In order to consider the behaviour of the derivatives in the
appropriate limits, we now re-state remarks and lemmas from Chapter four, altered slightly 
to accomodate censoring.

Lemma 1. As A —► oo, we have

A {*? (A) + 1% (A)} = s0)o (t, Pb) -  -^so,o (2r , Pb) +  O (A-2) .

Remark 1. From Lemma 1, we have, as A —> oo

A (A) +£* (A)| = s0,o (t> Pb) +  O (A *) •

Lemma 2. As A —> oo, we have

A {*i,o (A) +  *i>0 (A)} = s i>0 (r, p b) -  r_1 (ln A) s0,o (t, Pb) +  O (A-1) .

Remark 2. Adapting the argument in Lemma 2, we have, as A —> oo,

t%  (A) = O (A"1) ,

for q = d,c.
Lemma 3. We have, as A —► oo,

A {*0,0 (A) +  *o,o (A) |  — so,o (T,Pb) ~ A 1so,o (2t,/?6) +  O (A 2) .

We shall also require results analogous to (4.8) and (4.9), now extended to the censored
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environment. The first, as given by Watkins (1994), for example, is

{exp(Slu)}_Bsoio ( § , P w ĵ - -  S n ,

while we also have

5i,o

5o,o
SnB  + 3 i >0 (0,0) ~ PWSX.

Behaviour of

^ = T 1p 1 Xlp T{io,o(A) + iO,o(A) } + iO,o(A) - * S,n 

adapting Lemma 3 gives

A |*o,o (A) +  *o,o (A) }  ~  5o,o ( t j P b )  +  O  (A ,

while
k n  i

*0,0 ( A) =  A_1 S  £
1=1 j = 1

(  dii X
\ea cp (0 hXi) J

1 + e*v{0bxi)

=  O  (A"1) .

Therefore,
d l s

d ip
=  T1p 1 [lp r s 0,0 ( t ,  Pb) -  Sn + O (A 1) ] .

Now, since

V’''T«0,o('T,A)|r=B,V.=exp(3„)A=3„ =  {exp(a„)}_BS0,0 ( b J v , )  =  Sn

we have the result

d l sv  91bhm —
A—>-oo uip

=  hm
T = B , iP = e x p ( a w ),(3b= 0 w u ~+°

=  0 .
r=B ,ip=exp(aw) ,/36=j+

Behaviour of

d l s

W b
=  T

Here,

and

AV> T {*o,i (A) +  *o,i (A)} +  *o,i (A) ~  Sx

+  (A) = O  (A-1)

A ( +  (A) + l (A)} — «o,i ( t ,  0t,) +  O (A *),

(5.69)

(5.70)
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adapting Lemma 3; while, adapting (5.70), and writing in full, we have

k TTli

Tp T 5 0)l  ( t ,  f t )  =  l\)

k rii

EE d{ j

j r l f r i  Vexp { P m )

=  ^  ̂TLjXj = SXi

Xi +EE Cij

W p ( 0 bXi)
Xi

i=l

in the limit r = R, ip =  exp (a w) and f t  = ft,. Thus, we also have the result

d l siim — 
A—k x » <9ft

=  lim
T = B , ‘ip = e x p (a w ),(3b- 0 t 0 dft 0 .

T=B,ip=ex p (a w),Pb= P v

Behaviour of ^  For we have

^  =  S „ r -1 -  S„ In V> +  <0 (0.0) -  foSx -  ( l  +  Xi>~T) t£0 (A) -  A-0-Ttf>o (A)

-  (1 +  At/TT) (r_1 In A -  In ip) |io,o (A) + *o,o (A)}

= S n T ' 1 -  S n In ip + sf o (0 , 0 ) -  P bS x -  i p~T ( t -1  In A -  In ip) {s0)0 (t, ft)

+ 0  (A-1) } -  i p~ T { s i)0 (r, P b) -  r _1 In As0,o ( r ,  P b) +  O  (A-1) }

- r  In (AiP~T) O  (A"1) +  O  (A-1) ,

using Remark 2, Lemma 2 and Lemma 3. Simplification yields

^  = ftT - 1 + sf)0 (0 , 0 ) - f t f t - f t ' Tsi)o (r ,ft) +  h i^{?/rrso ,o ('r ,ft)-S n}

+ 0  (A-1)

= f t r -1  +  sf)0 (0,0) -  P bS x - 1p - TS i f i ( T , p h) +  0 ( \ ~ l ) (5.71)

using (5.70) for the term in brackets. In order to show that this expression is zero in the 
limit, we use the result at (5.69), together with the fact that we can write (5.70) as

ip- S n
\ip=exp(aw) ,r = B  (  g  -3 \  '

50,0 (5, P w )

Substituting into (5.71) gives the result

r dlBlim —  
A->oo o r

= lim 01b

r=B,iJj=exp(aw),(3b=(3x 0 dr =  0.
r=B ,ip=exp(aw),Pb= 0 l
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Behaviour of ^  Finally, we turn our attention to From (5.68), we see the 
behaviour of this derivative is determined by the expression

t d,  (A) + t i  (A) -  W  -  *o,o W

\rT {tj (A)+n (a)} -  ( i+ a rT) 4,o w  -  ^ ~ T*6,0 w
AV>~T

=  A- 1 [a {ii  (A) +  tj (A)} -  A { 4 o  (A) + 1§,0 (A)} -  r 4 ,0 (A)'

as A —> oo. Using Lemma 1 to deal with {t* (A) +  £* (A)} and Lemma 3 for the other terms, 
this expression becomes

A" 1 

= A"2

50,0 (t, /?6) -  ^So.o (2r, P b) + O (A 2) -  {s0)0 (r, /?6) -  ^s0,o (2r, /?6) 
+ 0  (A-2) } -  {sjj|0 (r, P b) + O (A-1) }

^50)0 (2r, P b) — ^TSo,o (r>A>) + O (A~3) .

So, as A —► oo, the sign of
d l s

duj T=B,ip=exp(aVJ),Pb=(3l

is determined by

A dc
s0,0 ( 2 R, 50,0 (■§, i§w) S$,0 3^)

where we now have

so
k rii /

,0 (£?„) = EE div

^ i j = i  y e x p ^ x i )
/  \  r  /k rii /  , \  k mi I

* EEso,o(r>3„) = EE --7§—\
i= 1 j = 1 \exp J i=i j=i \ exp ( @ w x i )

As for the complete result of Chapter four, we can rescale the value of A dc by dividing each 
d i j  by exp(Su;), giving the censored extension of (4.15) as

k rii / 2 B

I +  ft \i= 1 j = 1 yexp + p w X i j

k rii

+EE
i = 1 j = 1 V exp



5.9. A FOR CENSORED DATA 186

B

*=i j = 1 V exp t a  +  P w Xi
(5.72)

Example 5.1.1.1 [Electric Motor Data] revisited

Section 5.6 showed that, for the electric motor data, in terms of maximised log-likelihoods,
the Weibull ALT model was preferred over the Burr XII ALT model. For this data set, the 
value of (5.72) was,

This confirms our belief that the Weibull ALT model is a better fit to the data set than the 
Burr XII ALT model. This completes our discussion of A for this chapter.

5.9 .1  Sum m ary

We began this chapter with a discussion on the general principles of censoring, establishing 
our notation. We then considered the Burr XII two-parameter and three-parameter models, 
determining the expected Fisher information matrices and checking, for each model, that 
the expectations of the score functions were zero. We proceeded to extend the Burr XII 
distribution to an accelerated framework, again checking that expectations of score functions 
were zero. For this final model, we also examined the asymptotic properties of expectations 
of the terms that contributed to the second derivatives, firstly from a numerical standpoint 
and then theoretically; we also showed that theoretical expectations matched with complete 
counterparts as the stopping time c tended to infinity. For completeness we then established 
the Weibull ALT model for Type I censoring, omitting its EFI matrix. We then proceeded 
to fit Weibull and Burr XII non-ALT and ALT models to a published data set and examine 
the MLEs. Finally, we determined an expression for A when the data set was censored.

Asc =  -2.233668,

while
A dc =  -1.651 x 1044.



Chapter 6

Some Aspects of The Design of 
ALT Experiments

6.1 Aims and Scope

Our work so fax has been primarily concerned with establishing and validating theoretical 
results. In this chapter, we shall consider some practical implications of our work, with 
the ultimate aim of providing some guidelines to practitioners. In a real life scenario, an 
engineer will typically wish to make inferences on the running time at design stress, or some 
percentile of life at the design stress; for instance, estimating the 10th percentile of failure 
time, Bio, of specimens at design stress. The aim then would be to minimise the mean 
square error - or, if the bias is sufficiently small, the standard deviation - of the estimate of 
Bio.

Nelson (1990) first considers this for complete data sets, using the principle of least 
squares analysis; a further extension to Type I censored data is based on maximum like
lihood methods. Kielpinski and Nelson (1975) consider this topic for data from Normal 
and Lognormal distributions, while Meeker and Nelson (1975) analyse data from Weibull 
and Extreme value distributions. Since we have obtained the Burr XII EFI matrices for 
complete and Type I censored data, we use maximum likelihood theory as the basis of our 
investigations.

The first part of this chapter develops the necessary theory when the data is correctly 
assumed to follow a Burr XII ALT distribution, and, additionally, the life-stress relationship 
is log-linear, see (1.12). We then consider Bio for the real-life examples previously consid
ered, and then assess the penalty for replacing true parameter values with their maximum 
likelihood counterparts; this will be particularly relevant when considering published data 
sets, where we do not know the true parameter values.

We then move on to consider real life applications. We begin by looking at complete 
data without design; all items are tested to failure at the design stress x d, corresponding to 
normal operating conditions. We then introduce censoring and examine the effect on the
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mean square error (or standard deviation) of Rio, by stopping the experiment at an earlier 
time. Consequently, we are interested in the relationship between c and the mean square 
error (or standard deviation) of Rio- Acceleration is then considered for completely failed 
data, and we are interested in the impact on the mean square error (or standard deviation) of 
Rio by altering the value, number and distribution of stress levels and the sample allocation 
to these stress levels. Finally, we examine censoring in the accelerated framework, for 
which we consider the same factors as in the complete case, but, of course, we are now 
concerned with the role of the stopping time c. For each of these four key areas, we present 
a series of simulations and highlight their degree of agreement with theoretical results. 
When the agreement is good, we can carry out a wide range of theoretical investigations 
and observe some immediate results. In particular, we can alter the stress level settings 
and examine the impact upon the mean square error (or standard deviation) of Rio- Some 
investigations will be purely theoretical; in these instances, time constraints mean that we 
do not assess agreement with simulated results or determine the bias in Rio- However, an 
array of simulations will be considered for a suitable portion of the parameter space, for 
which we discuss agreement with the theoretical mean square error (or standard deviation) 
of Rio, and comment on the observed bias in Rio-

6.2 Bio a Burr XII ALT

Suppose we wish to find the 100pth percentile of the distribution of lifetimes at the design 
stress x d say; throughout, we set p  = 0.1. The details and principles for other values of p 
are similar. From (2.9), we have

Rio (a, r , a b,Pb) = (1 -  p) * -  1 exp (ab +  (3bx d)

0.9 ® - 1 r exp (ab +  p bx d) (6 .1)

=  p r e x  p { a b + (3bx d),

where
p — 0.9 ® -  1.

Now, when running simulations, we know the true param eter values and can also obtain a 
set of maximum likelihood estimates for each of, say, 10000 replications. Consequently, in 
this case we can look at the average bias in Rio; we can also find the simulated standard 
deviation of Rio, and obtain a theoretical approximation to its true standard deviation, 
which we detail below. However, in most practical circumstances, we do not know the true 
parameter values, but estimate them from the data. Therefore, we use the approximation 
Rio, where we use the maximum likelihood estimates of the parameters in (6.1), and then 
determine an estimate of the theoretical standard deviation of Rio- In order to make suitable 
progress here, we first linearise the right hand side of (6.1), and then employ asymptotic



6.2. Bio FOR A BURR XII ALT 189

theory; see Cox and Hinkley (1974). We therefore expand Rio in a Taylor Series expansion; 
the first order approximation is given by

Bio -  Bio +  £1o,tt (zr -  tt) ; (6.2)

see, for example, Binmore (1983). In our case,

tt =  ( a , T , a b, P by

and

Since

we have

_ /  dBm dBio dBio dBio \ ' 
10,7r ”  \  da ’ dr  ’ d a b ’ dpb )  '

dp _  (p +  1) In 0.9 
da a2

dBio _  exp (oft +  Pbx d) p 1+t (p + l ) ln 0 .9  
da a2r

dBio _  -  exp (a b +  j3bXd) p * In p 
dr t 2 ’

dBio 
da b

(6.3)

(6.4)

and

=  exp ( a b + ( 3 bx d ) p r  (6.5)

=  exp (a b +  Pbx d) p r x d, (6.6)

and, so, upon simplifying (6.2), we see that the first order approximation is given by

+er ^ f  H  ( - 1+°-9“) ( - 1+^+̂  m
+ a  ^—1 +  0.9“  ̂ lnp +  l n 0 .9 | .

Classical theory now states tha t an MLE 9  asymptotically follows a Normal distribution 
with mean given by the true parameter value and variance given by the inverse of the EFI 
matrix, (Cox and Hinkley 1974), and much of our previous work supports this. Thus, we 
approximate the asymptotic distribution of Rio by th a t of the right hand side of (6.2), and 
the asymptotic distribution of this linear function is N  (Rio, Vio) ,where

Vio =  R Jo^/^R io .tt, (6.8)

and I  is the EFI matrix for 7r; all quantities are evaluated at the true parameter values. From
this, the bias in Rio is expected to be negligible, and its asymptotic theoretical standard
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deviation is \Aio- Naturally, the form of the EFI m atrix will change, depending on whether 
we are using complete, Type I, Type II or any other form of censored data, but, in general, 
we need to calculate Vio; this quantity can be evaluated at the true parameter values when 
considering simulations; while, in practice, we use the maximum likelihood estimates in 
place of the true values. The expression for Vio includes parameters we axe not in a position 
to change - a, r  and even a b and (3b directly - and quantities th a t we can change, such as 
k , xi ,  • • • Xk and ni, ■ • •, n^. We see - particularly from simulation experiments in Chapters 
three and five - tha t the inverse of the EFI matrix has a factor of n f 1. Consequently, there 
is little value in considering changing the overall sample size, since we know immediately 
what impact this will have upon the estimate of the variance of Bio-

6.2.1 Exam ples

Example 2.1.1.1 [Carbon Fibre Rod Data] revisited

Substituting the Burr XII ALT parameter estimates - see section 2.3.3 - into (6.1), and 
taking the design length to be xd =  0.5mm, we calculate

Rio ~
i 10.9 1-8993 — 1 6 1234 exp (1.41096 -  0.011 x 0.5) =  2.5542.

Therefore, we would expect 10% of items to have failed at a stress of 2.5542 GPa at the design 
length of 0.5mm. In order to find the theoretical variance of Rio, we need to substitute the 
true parameter values into the vector Rio.tt and the EFI matrix for complete data, given 
by (3.21). Substituting these into (6.8), would then give us a first order approximation to 
the theoretical variance of Rio- However, as mentioned previously, in practice we do not 
know the true parameter values. Consequently we use the next best thing, the maximum 
likelihood estimates. This gives us a first order approximation to the theoretical variance of 

Rio as
var (R io) =  0.006609,

and hence,
sd (R io) =  0.081301.

Naturally, we can then consider confidence intervals around the true value of Rio-

Example 2.1.1.2 [Aluminium Coupon Data] revisited

Using the Burr XII ALT parameter estimates - again, found in section 2.3.3 - in (6.1), and 
taking the assumed design stress to be Xd = 1.1 psi/cycle, we calculate

Rio =
- i0.91.8200143 — l exp (7.6785289 -  2.361454 x 1.1) =  107.683.
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So, we would expect 10% of items to have failed after 107.683 cycles at the design stress 
of 1.1 psi/cycle. Substituting the maximum likelihood estimates, stress levels and corre
sponding sample sizes into (6.3) to (6.6) and (3.21), and then into (6.8) gives the first order 
approximation to the theoretical variance of Rio as,

var (Rio) =  27.5917,

and hence
sd ( r 10) =  5.25278.

Of course, since we do not know the true parameter values, we have no way of telling 
whether this approximation to the standard deviation - which is based only on a first order 
Taylor series approximation - is close enough to that which would be obtained using the 
true parameter values. However, through simulations, where we know true values, we can 
compare the two. This should then give us some indication as to how appropriate it is to 
replace the true values with the maximum likelihood estimates.

S im ulation  1 This simulation is based on section 3.2, and uses the parameter values 
a =  2, r  =  5, a b = 17.60139, 0 b =  —0.056282, k =  3 with (a?i,®2>®3) — (150,170,190), 
n i = n 2 =  n 3 = 100 and x d  =  130. The value of Rio, using the true parameter values in (6.1) 
is 16339.1, while the average of the Rio, over the 10000 sets of simulations, is 16372.6. The 
standard deviation of the 10000 simulated Rio is 827.2358, while the first order Taylor series 
approximation to the theoretical standard deviation of Rio, found by evaluating (6.8) at the 
true parameter values, is 825.75. Consequently, the mean square error of Rio is estimated 

by
827.23582 +  (16372.6 -  16339.1)2 -  684319.068 +  1122.25 =  685441.318,

and the percentage difference between the estimated mean square error and the theoretical 
variance of Rio is 0.52%. Clearly, with such a small bias, relative to the variance, we could 
use the theoretical standard deviation of Rio as an alternative to  the mean square error. 
The skewness of Rio was found to be 0.148, while a Normal Q-Q plot of the 10000 simulated 
values of Rio is shown in Figure 6.1; the K-S test statistic is 1.151, with a significance level 
of 0.141; this confirms th a t we can regard Rio as Normally distributed for this choice of 
parameter values and sample size.

S im ulation  2 This simulation uses parameter values previously used in section 3.3, 
where we now choose a =  r  =  2; other parameter values are a b =  5.5, (3b =  —0.01, k =  4 
with (xi ,X 2 , £3, £4) =  (10,80,150,240) and 721=712 =  723 =  714 =  25; we also choose Xd = 5. 
The value of Rio, using the true parameter values in (6.1) is 54.1344, while the average 
of the 10000 estimates, Rio, from simulations, is 54.8008. The first order Taylor series 
approximation to the theoretical standard deviation of Rio was found to be 8.89687, while 
the standard deviation of the 10000 simulated Rio is 8.8272. Consequently, the mean square
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Figure 6.1: Simulation 1: Normal Q-Q plot of Rio, for a = 2, r  =  5, a 5 =  17.60139, 
/3b =  -0.056282, (x\ ,X 2 1xs) = (150,170,190), n i =  100 and Xd — 130.
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Figure 6.2: Simulation 2: Normal Q-Q plot of Rio, for a =  2, r  =  2, =  5.5, /3b = —0.01,
(xi ,X 2 , x z1X4c) = (10,80,150,240), n\ = 25 and Xd = 5.

error of Rio is estimated by

8.82722 +  (54.8008 -  54.1344)2 =  78.3635,

and the percentage difference between the theoretical variance of Rio and the estimated 
mean square error is 0.9%. The skewness of Rio is 0.354, while a Normal Q-Q plot of the 
10000 simulated values of Rio is shown in Figure 6.2; the K-S test statistic is 2.885, which 
corresponds to a significance level of < 0.001, indicating th a t we cannot regard Rio as being 
Normally distributed. This is possibly due to the small sample size; for comparison, we 
recall section 4.3, where we studied the behaviour of A s, th a t the smaller the sample size 
the less Normal the distribution of As.

Simulation 1 suggests that we can replace the true parameter values with their maximum
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likelihood estimates, at least for sample sizes as small as 300. Then, we observed the average 
Bio to be sufficiently close to the true value of Bio so th a t the resulting bias is negligible and 
we can study the standard deviation of Bio instead of its mean square error. We also see 
that the distribution of Bio is less Normal for smaller sample sizes, which is to be expected. 
Now, the total sample size in the first simulation was 300, and there we observed a very 
small bias, which, in turn, resulted in the theoretical variance of Bio being very close to its 
estimated mean square error; we also saw some evidence of Normality in the distribution 
of Bio- Consequently, we shall use this value as the to tal sample size when next discussing 
design optimisation.

6.3 Design Optimisation: Non-ALT Com plete

6.3.1 T heoretical C onsiderations

In this section, we consider completely failed data, where all items have been tested at the 
design stress. Since we do not have several stress levels, the design stress - tha t is, normal 
operating conditions - is effectively equivalent to the value of the scale parameter, 9. To 
determine the first order approximation to the theoretical standard deviation of Bio, we use 
the EFI matrix of the three-parameter Burr XII distribution, given by (3.1). By comparison 
with (6.1), it is clear that, for the three-parameter model, we have

Bio =
A
r 9 = pT0, (6.9)

so that, with 9 =  exp (a b +  /3bXd), we obtain the expression for the accelerated case in (6.1). 
From (6.9), and using (6.2), we obtain the first order Taylor series expansion of Bio as

j M l n M  (61Q)
azT 

^9pT Mnp 
2

+?pt_1
pT~l e {a  ( - 1  +  0.9a_1) lap  +  In0.9} 

ar  (— 1 +  0.9a_1) ’

upon simplifying. Using the true parameter values in the EFI matrix (3.1), we can then 
obtain a first order approximation to  the theoretical standard deviation of Bio from (6.8), 

where, in this case, the vector Bio)7r is > see (6-10). We choose the set of
parameter values, a =  2, r  =  4 ,9 = 29282.05 and N  = 300 and, for the sake of argument, 
we assume that failure data in this experiment, as with all experiments that follow in this 
chapter, are measured in hours. The value of 9, is to ensure consistency with results that 
follow later, for alternative experimental designs. We regard this value of 0 as appropriate
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to running items at a temperature of 130 degrees Celsius. This gives the experiment a more 
practical feel and should facilitate comparisons between the four design strategies considered 
in this chapter. However, the value of 9 is merely an indication of the average failure time of 
a single experimental item, not of the length of the experiment, which, of course, is governed 
by the longest time to failure of all items on test.

For this set of parameter values, we find the value of Rio, from (6.9), as 14121.663 
hours. So, we would expect 10% of items to have failed by this time at this operating 
temperature. Using (6.10), together with (3.1), we find the first order approximation to 
the theoretical standard deviation of Rio, as 545.248 hours, and this sets the benchmark 
for further investigations below. To validate this result we carry out a simulation using the 
parameter values above. As usual, our results are based on 10000 replications. We found the 
mean of Rio to be 14126.99, with associated standard deviation 547.9822. From this, we can 
easily show that the relative margin of error between the theoretical and simulated mean of 
Rio is 0.03%, while the corresponding result for the standard deviations is 0.5%. Finally, the 
relative margin of error between the mean square error of Rio and its theoretical variance 
is found to be 1.01%. W ith such small percentage errors, we are clearly more confident 
tha t the theoretical expressions obtained above are valid. However, as previously noted, the 
experiment is not complete until all items have failed and, from the same simulation, we 
observe the average of the longest failure times to be 63919.11 hours, or about 7\  years.

6.3 .2  Sim ulations

In this section, we validate some theoretical results with simulations. We consider various 
pairs for the shape parameters, and let a take the values 2,4 and 6, and t  take the values 
2 and 5; we also assume a single value of 9 = 100 and choose five to tal sample sizes, 
N  = 100,300,600,1500 and 3000. We first note that, for each combination of parameter 
values considered, the bias in Rio is less than 1%, and this decreased as the sample size 
increased, as expected. As with simulations at the end of Chapter three, we tabulate values 
of N x standard deviation of Rio- Simulated values are based on 10000 replications, and 
these results, together with their theoretical counterparts are presented in Table 6.1. We 
see the simulated values are close to their theoretical counterparts, even for the smallest 
sample size considered.

6.4 Design Optimisation: Non-ALT Type I Censoring

6.4.1 T heoretical C onsiderations

This section introduces the stopping time c, and we consider the same set of parameter values 
as in the complete case above, but now examine the impact on the theoretical standard 
deviation of Rio by varying the stopping time of the experiment. We use the EFI matrix for 
the three-parameter Burr XII distribution with Type I censoring - expectations contributing
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Simulated Value Theoretical
a T

ooT—1II ooCOII N  = 6 00 N =  1500 N  = 3000 Value
2 2 30.232 31.285 31.020 31.538 31.093 31.129
2 5 29.185 29.618 29.877 30.165 29.788 29.853
4 2 21.028 21.018 21.313 21.664 21.526 21.363
4 5 24.297 25.148 25.460 25.476 25.186 25.341
6 2 16.836 16.936 17.161 17.247 17.443 17.267
6 5 22.531 22.502 22.981 23.106 23.302 23.162

Table 6.1: Theoretical and simulated values of V N  x  standard deviations of Rio for various 
a, r  and sample size N.

to this matrix can be found in sections 5.3 and 5.4 - together with the coefficients of the 
MLEs in (6.10); both evaluated at the true parameter values. In this example, the vector 

Rio,7r is

( ^  \ oa
dffia

dr
dj?lQ 

dd

I  254 {29282.05 ( -1  +  0 .9-1/2)~ 1+1/4 0.9"1/2 ln0.9} ^

{29282.05 ( -1  +  0.9- 1/2) 174 In ( - 1  +  0 .9 -1/ 2) }

 ̂ (0.9-1/2 — l ) 1/4 j

(  -1812.11 \
2574.61 

V 0.482263 )

from (6.10), while the lower triangle of the non-ALT Type I censored EFI matrix is

1 =
( 5.5044 \

-8.8262 15.6549
V -0.001475 0.002373 3.9577 x lO” 7 /

evaluated at c =  13000. Calculating (6.8), then gives us the first order Taylor series ap
proximation to the theoretical standard deviation of Rio as 1009.35 hours, and this is the 
first point plotted on the continuous line in Figure 6.3. We can clearly see how quickly 
the standard deviation of Rio drops as the stopping time increases. For example, if we are 
prepared to accept a 5% increase in the standard deviation of Rio over the complete value of 
545.248 - indicated by the single point in Figure 6.3 - then Figure 6.3 implies tha t we could 
stop the experiment after 20000 hours, which amounts to a saving of some 44000 hours, 
or around five years. Consequently, our complete experiment, which would take over seven 
years to run, would be reduced by approximately five years.

6.4 .2  Sim ulations

In this section, we again validate some theoretical results with simulations. We use the 
same set of parameter values as in the complete case above. W ith a scale parameter value
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Figure 6.3: Theoretical standard deviation of Rio versus the stopping time c. The corre
sponding complete result is indicated by the point (•).

of 6 = 100, we let the stopping time c take the values 50,80 and 500, with this final value 
effectively representing the complete case, and hence enabling us to compare results with 
the complete case of the previous section. Results are presented in Table 6.2. We see there 
is consistently good agreement between simulated and theoretical results, for all sets of 
parameter values and sample sizes considered. We also see that, for a given a, r  and N , on 
the whole, the standard deviation of Rio decreases as c increases, with results for c = 500 
being very close to their counterparts for the complete case in Table 6.1, on allowing for 
minor differences due to simulation variation. We also noted tha t the relative bias in Rio 
was less than 2% for every combination of parameter values and sample size considered. 
As with the standard deviation of Rio, the bias was, on the whole, seen to decrease as the 
stopping time rose and, independently, as the sample size increased.

6.5 Design Optimisation: ALT Com plete

In this section we discuss complete data sets using an accelerated framework. We use the 
accelerated Burr XII EFI matrix for complete data, derived in section 3.1.3, while, in section
6.2 above, we determined R io.tt as the vector of coefficients of the MLEs for the accelerated 
model, appropriate here. We examine the impact upon the theoretical standard deviation of 
Rio by making modifications to some changeable quantities, as discussed above. We begin 
with a theoretical investigation into the standard deviation of Rio, and then present a series 
of simulations, assessing their agreement with theoretical counterparts.

6.5.1 T heoretical C onsiderations

In this section we consider the impact upon the theoretical standard deviation of Rio by 
changing the values of the stress levels. We use three stress levels, firstly looking at the
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a T c
Simulated Value Theoretical

Value

oor—HII II CO o o N  =  600 N  --- 1500 N  = 3000
2 2 50 29.550 33.326 32.376 31.721 32.890 32.495

80 30.993 31.687 31.513 31.787 31.781 31.686
500 30.310 31.416 30.916 31.245 31.134 31.129

2 5 50 81.368 86.237 89.151 87.346 90.565 89.476
80 . 30.037 30.352 30.541 30.806 30.801 30.708
500 29.016 29.416 29.567 29.997 29.614 29.859

4 2 50 19.937 22.485 21.844 20.489 20.488 21.925
80 21.374 22.411 21.733 21.594 21.508 21.852
500 21.164 21.214 21.165 21.546 21.427 21.363

4 5 50 26.071 26.921 27.233 27.678 27.766 29.713
80 25.045 24.963 24.985 25.850 25.686 26.000
500 24.165 25.246 25.374 25.469 25.274 25.341

6 2 50 16.153 17.557 17.404 16.546 17.979 17.763
80 15.979 16.871 17.018 17.628 17.295 17.572
500 16.724 16.843 17.210 17.267 17.389 17.267

6 5 50 24.452 24.324 26.425 25.677 26.496 26.969
80 22.123 22.064 23.038 23.517 23.423 23.797
500 22.498 22.516 22.847 22.998 23.216 23.162

Table 6.2: Theoretical and simulated values of y/N  x standard deviations of Bio for various 
a , r ,  sample sizes, and stopping times.

effect of changing the value of the middle stress and then changing the end stresses. We 
begin by considering the intuitive outcome of this experiment. In an ideal scenario we would 
test all items at the design stress and wait until all have failed; effectively a non-accelerated 
experiment, as discussed in section 6.3. Thus, intuition says tha t the best results will be 
obtained when the ALT case is as close to the non-ALT case as is possible.

C h ang ing  th e  m id d le  s tre ss  level

We first consider the scenario where k = 3, with the upper and lower stresses fixed, and with 
equal numbers of items tested at each of the three levels. To maintain consistency, we again 
set a = 2 and t  — 4, while x\  = 150,x% = 190 and and the sample sizes axe as
defined in Simulation 1 above. This ties in with results from section 6.3 above, where we saw 
the true value of Bio for the non-ALT complete case was 14121.663 • • •. Substituting the true 
parameter values here, into (6.1), we again determine B\o to be 14121.66, as anticipated.

We now consider what happens to the theoretical standard deviation of B\o when x<i 
ranges from 151 to 189, see Figure 6.4. We see the smallest standard deviation of Bio is 
obtained when the middle stress level is as small as possible; here the standard deviation 
is 754.1856, which is 38% larger than the value obtained for the non-ALT complete case; 
recall that this value was 545.248. This seems to be suggesting tha t we should take just two 
stress levels. We consider this scenario next.
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Figure 6.4: Theoretical standard deviation of Bio when changing the middle stress level. 

Tw o stress  levels

We have k = 2, with stress levels (21, 22) =  (150,190), and now consider a range of values 
for n i, with the remaining 300 — ni items being tested at 22. Now, in section 3.1.3.3, we 
derived all the terms necessary to formulate the EFI matrix for an ALT Burr XII model 
with completely failed data. In section 3.2, we then saw how it was possible to simplify 
this matrix for equal sample sizes across the stress levels. However, here, as in general, 
^1 7̂  ^2 5 so we must consider the terms Sx and Sxx in full. For example, when n\ = 130, 
n 2 = 300 -  130 =  170 and

k

Sx = Y^Xirii  = (150 x 130) +  (190 x 170) =  51800,
i= i

while
k

Sxx = J 2 x i n i = (15°2 x 130) +  (19°2 x 17°) =  9062000.
2 = 1

Of course, for the complete case, Sn is simply the sum of the number of items and will be 
N,  regardless of the allocation of these items over the stress levels. We can then proceed 
to formulate the EFI matrix for the ALT Burr XII model with completely failed data, by 
substituting these values for Sx , Sxx and Sn, together with the true parameter values above, 
into the expectations of second derivatives, determined in section 3.1.3.3. It is then just a 
case of evaluating (6.8), with the elements of Bio)7r, previously derived in section 6.2 above.

From Figure 6.5, the lowest theoretical standard deviation of F?io is 739.3053 which is 
obtained when n\  = 225. We see, that by varying the allocation of the sample size across 
the stresses, we can reduce the standard deviation of B\o from tha t which was observed for 
constant sample sizes above; there the figure was 754.1856. However, this figure of 739.3053 
is still significantly higher than our benchmark figure of 545.248, observed for the non-ALT,
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Figure 6.5: Theoretical standard deviation of Bio for sample size (ni,300 — ni). 

complete case.
So far we have seen that, to minimise the theoretical standard deviation of Bio, we 

should have no items on the middle of our three stress levels, effectively suggesting that we 
should consider only two stresses. For an overall sample size of 300 we saw that we should 
allocate our two stress levels (a?i,a?2) =  (150,190) with sample sizes (n i ,n 2) =  (225,75). 
T hat is, about |  of the total sample size should be placed at the lowest stress level. We now 
look to see to what extent this finding is true for other sample sizes; the results are presented 
in Table 6.3. It certainly seems the case tha t we should place |  of the total sample size at 
the first stress level and the remaining \  at the final stress level; irrespective of the sample 
size. Of course, to validate such a result in a general and theoretical sense requires a more 
detailed study of the full algebraic form of (6.8). Although this result is readily obtainable 
through the use of appropriate computer software, its simplified form is by no means easily 
manipulated. Consequently, it is felt tha t a full investigation is beyond the scope of the 
current discussion.

C h an g in g  th e  en d  s tre ss  level We next assume tha t we have an overall sample size of 
300, which we shall allocate as (225,75). We look to see the effect on the theoretical standard 
deviation of Bio of varying the second stress level. Firstly, consider the scenario where the 
first stress level varies between the design stress Xd = 130 and 150, tha t is, (£1, 0:2) =  
(£i,190), where 131 <  £1 < 150; see Figure 6.6. Here, the smallest standard deviation of 
Bio is 573.4771, which occurs when £1 =  131 and this corresponds to only a 5% increase over 
the non-ALT complete figure of 545.248. So, we can reduce the standard deviation further 
by letting x i  get smaller and smaller. Conversely, we next consider (£1, £2) =  (131, £2), 
where 151 < £2 < 190; see Figure 6.7. Here, the smallest standard deviation of Bio is 
573.4771, which occurs when £2 =  190. It seems then, tha t for this allocation of items, the 
minimum standard deviation of Bio is achieved when £1 is as small as possible and £2 is as
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N Most Effective (711, 712) Standard Deviation of B\o illN
10 (7,3) 4063.97 0.7
20 (15,5) 2863.62 0.75
30 (22,8) 2338.9 0.73
40 (30,10) 2024.67 0.75
50 (37,13) 1811.21 0.74
60 (45,15) 1653.14 0.75
100 (75,25) 1280.51 0.75
200 (150,50) 905.46 0.75
300 (225,75) 739.305 0.75
500 (375,125) 572.663 0.75
1000 (750,250) 404.934 0.75

Table 6.3: Distribution of sample sizes that results in the minimum standard deviation of 
Bio for various total sample sizes.
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Figure 6.6: Theoretical standard deviation of B \ q for (ari, 190).

large as possible. Let us now return to the study of the allocation of the sample items; we 
thus take (£1, 2:2) =  (130,190) and let (711, 712) =  (711,300 — Tii), where 1 < 711 < 299, with 
results being shown in Figure 6.8. Here, the smallest standard deviation of B\o is 545.5030 
which occurs when ni = 299, and, since this experiment is essentially testing practically all 
items at the lower stress of 130, the resulting standard deviation is correspondingly close to 
our benchmark figure of 545.248. We see we have reduced the standard deviation of Bio even 
further by having as large a sample size as possible on stress level x\ .  It appears then, that 
the proportionate allocations observed above - where we concluded tha t three quarters of 
the items should be tested at the lower stress level - were influenced by the distance between 
the stress levels and the design stress. For example, a similar chart for (£1, 2:2) =  (140,190) 
is shown in Figure 6.9. Here, the smallest theoretical standard deviation of B\o is 614.0558 
which occurs when n\ = 257, and this constitutes a 12% increase over the minimum figure 
of 545.248.
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Figure 6.9: Theoretical standard deviation of Bio for sample sizes (ni, 300 — n{) and stresses 
(140,190).

In summary then, our theoretical results appear to suggest th a t we should use one 
stress level, which should be as close to the design stress as possible, which concurs with 
the intuitive argument given at the beginning of this section. Of course, these theoretical 
investigations are only concerned with the standard deviation of Bio, ignoring the timing 
element. In an ideal world, we would test all items at the design stress; however, in practice, 
we are often restricted by time, and, as noted at the outset of this discussion, are obliged 
to consider and analyse censored and/or accelerated data.

6.5 .2  Sim ulations

The work above is from a theoretical viewpoint only, and we should seek some reassurance 
tha t this theory is in agreement with practice, as represented by simulations. We there
fore consider a wide range of possible values for parameters, stress levels and their sample 
allocations. As before, we consider the following parameter values

a b = 17.60139, (5b = -0.056282, x d =  130.

Table 6.4 presents simulated - s{-)~ and theoretical - £ ( • ) -  standard deviations of Bio for 
various sample sizes and the allocation of those sample sizes across stresses, for a = 2,4 ,6 
and r  = 4,7. Here, we have three stress levels, (zi, £2, £3) =  (150,160,190). We see tha t for 
a given overall sample size, the standard deviation of Bio is reduced by placing more items 
at lower stress levels. Additionally, the standard deviation is reduced for a larger overall 
sample size, as expected.

The same pattern is observed in Tables 6.5 and 6.6, for four stress levels. Contrasting 
corresponding points in the two tables, we see that the standard deviations are lower in the 
first than in the second. This ties in with the theory above where we observed tha t the
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a 2 4 6
T 4 7 4 7 4 7
s (100,100,400) 
t (100,100,400)

712.05
703.27

557.67
549.31

535.71
531.09

447.75
447.44

468.36
460.45

487.04
405.34

s (200,200,200) 
£ (200,200,200)

580.27
584.81

455.45
456.78

588.65
449.07

381.11
378.34

401.23
392.17

377.19
345.23

s (500,500,500) 
£ (500,500,500)

373.11
369.86

291.05
288.89

286.09
284.01

239.12
239.28

248.95
248.03

217.21
218.34

s (1000,1000,1000) 
£(1000,1000,1000)

265.52
261.53

205.67
204.27

200.13
200.83

168.32
169.19

173.05
175.38

154.87
154.39

s (500,500,2000) 
£(500,500,2000)

310.88
214.51

246.41
245.66

239.33
237.51

199.94
200.10

206.29
205.92

180.88
181.27

Table 6.4: Simulated (s) and theoretical (t) standard deviations of Rio for various sample 
sizes and parameter values, for {x\,x<2 ,xz)  = (150,160,190).

higher the values of the stress levels - and therefore the further we are from the design stress 
- the higher the standard deviation of Rio- We also note tha t the relative bias in Rio was 
less than 0.5% for every combination of parameter values and sample sizes considered.

Clearly, our investigations so far have centred on one fundamental experiment, and, 
particularly from the theoretical angle, only three - and subsequently two - stress levels. 
Naturally, we could extend this work to accommodate four, five or even more stress levels 
and all permutations of sample sizes. However, we have already seen th a t for best results - 
tha t is a small as possible standard deviation of Rio - the values of the stress levels should 
be as close to the design stress as possible. The extension to include additional stress levels 
would naturally present us with the same conclusions. The obvious, and seemingly most 
fruitful, area of investigation is when we employ censoring, and are therefore in a position 
to examine potential trade-offs between stopping time and standard deviation. We look at 
this next.

6.6 Design Optimisation: ALT Type I Censoring

Naturally, a censored data set will provide us with less information regarding Rio than a 
completely failed one. The issue we deal with here is the extent to which we are penalised 
statistically by introducing censoring So, as with the non-ALT case in section 6.4 above, we 
are interested in finding a trade-off between the stopping time and the theoretical standard 
deviation of Rio- We would imagine, for instance, tha t for a given stopping time, we could 
reduce the standard deviation of Rio by increasing the values of the stress levels - thereby 
inducing earlier failure - or increasing the sample size in order to give a better representation 
of the underlying population. However, we may also, for example, expect to see a favouring 
of lower stress levels as the stopping time increases: with more information being obtained 
from the data set, we would be happy to set lower values for the stress levels, expecting
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150.150, 
600,600
150.150, 
600,600
300.300, 

1200,1200
300.300, 

1200,1200
375.375,
375.375
375.375,
375.375
750.750,
750.750
750.750,
750.750

490.27 381.76

491.28 383.73

349.65 271.10

347.39 271.34

406.06 324.66

407.78 318.51

287.64 225.48

288.35 225.22

371.44 307.69

368.44 310.41

260.27 217.19

260.53 219.49

313.95 260.21

310.16 261.31

217.94 182.53

219.32 184.77

6
4 7

334.05 281.45

318.45 280.34

227.29 198.21

225.18 198.23

269.21 313.95

269.76 237.47

190.26 168.00

190.75 167.92

Table 6.5: Simulated (s) and theoretical (t) standard deviations of Rio for various sample 
sizes and parameter values, for (x\ ,X 2 , x z }x±) =  (150,160,170,190).

150.150, 
600,600
150.150, 
600,600

592.67 469.48

596.83 466.18

444.94 374.75

443.01 373.23

386.30 334.55

381.09 335.48

300.300, 
1200,1200
300.300, 

1200,1200

423.42 331.22

422.02 329.64

313.24 263.28

313.25 263.91

269.56 238.87

269.47 237.22

375.375,
375.375

375.375,
375.375

442.84 342.23

443.48 346.40

334.33 283.78

334.98 282.22

293.49 255.71

290.45 255.69

750.750,
750.750

750.750,
750.750

311.16 246.32

313.59 244.94

238.35 199.28

236.86 199.56

202.92 179.46

205.38 180.80

Table 6.6: Simulated (s) and theoretical (t) standard deviations of Rio for various sample 
sizes and parameter values, for (xi, £2, £3, £4) =  (150,170,180,190).



6.6. DESIGN OPTIMISATION: ALT TYPE I CENSORING 205

these conditions to be more indicative of those seen at the design stress.
As with complete data, we begin with a theoretical exploration, considering a single 

example in which we vary the allocation of the overall sample size, N , and change the 
values of the stress levels, examining their impact upon the theoretical standard deviation 
of Rio- We then consider a range of compromises: we look to see what sort of percentage 
increase can be obtained between the theoretical standard deviation of Rio f°r a certain 
stopping time c and tha t obtained for the equivalent completely failed data set. We then 
present a series of simulations for three and four stress levels, and various values of the 
shape parameters a and t .  As before, the aim of these simulations is to provide us with 
increased confidence tha t the theoretical expressions we use are sound and are providing us 
with correct results.

Of course, the scope of these practical investigations is rather narrow; real life exper
iments are many and varied, and we cannot hope to cover the wide range of possible pa
rameter combinations tha t are used in the real world. Rather, the principle followed here 
is to give guidance to a practitioner on how to formulate useful results for a given set of 
parameter values, prior to running an experiment.

6.6 .1  T heoretical C onsiderations

Here, we use the same vector Rio)7r of parameter coefficients as for the ALT complete case 
above, with elements given by (6.3) to (6.6). Expectations of second derivatives for the 
ALT Burr XII Type I censored model are presented in section 5.5; from these, we can then 
formulate the corresponding EFI matrix, and from (6.8), the theoretical standard deviation 

of Rio-
As before, we start by considering the parameter values a = 2, r  =  4, cc& =  17.60139, 

/3b =  —0.056282 and N  = 300, equally allocated across the three stress levels {xi ,X2 ,X3 ) =
(150,160,190). Again, the design stress is Xd = 130 hours, and we let the stopping time 
c range from 1000 to 12000 hours; see Figure 6.10. This also shows the corresponding 
theoretical standard deviation of Rio for completely failed data, and this is 827.039 (see 
Figure 6.4 at X2 = 160), which, we note, is 51% larger than non-ALT complete result of 
545.248. The upper limit of c was chosen to be practically equivalent to a completely failed 
data set.

From Figure 6.10, it is apparent that we should be in a position to make a compromise 
between the stopping time and the theoretical standard deviation of Rio- We see that from 
around c = 6000 onwards, there is very little change in the theoretical standard deviation 
of Rio- In fact, it transpires that there is only an 9% difference between the standard 
deviation observed at c — 6000 (where this quantity is equal to  904.642) compared to that 
observed at c = 12000 (=  829.565); this difference drops to 4% at c =  7000. Since these 
values are based on a real experiment which was measured in hours, this corresponds to a 
reduction in running time of around 5000 hours (or about 7 months), from the complete 
experiment of 12000 hours. Put into a more practical context, if this experiment was to run
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Figure 6.10: Theoretical standard deviation of B 10 for increasing values of the stopping 
time, c and with stresses (150,160,190). The corresponding complete result is given by the 
single point (•).

to completion it would take, around 16 months (approximately 12000 hours.) If, instead, 
we ran the experiment for about 9 months (7000 hours), there would be an increase of only 
4% in the standard deviation of B iq.

Trade-O ffs

We next consider the case where we have the same parameter values as in the previous 
example, but with the minor modification to the stress levels, {xi ,X 2 ,xs)  = (150,170,190); 
see Figure 6.11.

As in the previous example, we see how the theoretical standard deviations for the 
censored model tend to the corresponding complete result as c increases. Now, the standard 
deviation at c =  8000 is 923.467, which is only a 3.5% increase over the complete figure of 
892.104 (represented by the single point), which, in turn, is 63% larger than the benchmark 
figure of 545.248 hours obtained for the non-ALT complete case, in section 6.3. We now look 
to see the extent to which we can obtain a similar theoretical standard deviation to that 
obtained at c = 8000, by shortening the running time of the experiment and by changing 
the values of the stress levels and the allocation of the sample across stress levels, while 
maintaining an overall sample size of N  = 300. A sample of results is presented in Table 
6.7.

These examples illustrate how we can get approximately equivalent standard deviations, 
by making minor adjustments to the values of the stress levels and the allocation of the 
sample sizes at those levels. As a further illustration, we use the same parameter values, 
with stress levels (150,170,190) and an equally distributed, total sample size of N  = 300, 
and show how the percentage error between the censored result and the complete result
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Figure 6.11: Theoretical standard deviation of Rio for increasing values of the stopping 
time, c and with stresses (150,170,190).

{xUX2,X3) (n i,n 2,n 3) c Standard Deviation (-^10)
(155,157,190) (150,50,100) 5000 925.826
(155,157,190) (200,40,60) 5000 926.617
(155,160,190) (110,60,130) 6000 929.223
(155,160,190) (150,20,130) 5500 927.191
(155,160,210) (140,10,150) 4500 923.848

Table 6.7: Variations in stopping time, values of stress levels and the allocation of the total 
sample size across those levels, with similar theoretical standard deviations of Rio-
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decreases for increasing values of c; we have

c 5000 7000 9000 11000 13000 15000 17000 19000 21000
% error 35.69 7.69 1.77 0.56 0.22 0.09 0.04 0.02 0.01

So, depending on the acceptable tolerance level, we can then choose the appropriate stopping 
time for the experiment.

These results also show, as with the results for complete data  sets, tha t the ideal scenario 
- from a statistical perspective - is to test as many items as possible at one stress level, and 
tha t this stress level should be as close to the design stress as possible. Thus, if an engineer 
says, ”1 have 100 items, how should I distribute them to minimize the theoretical standard 
deviation of Rio?”, then one answer is to, ’’Pick the stress level tha t equates to a time that 
is as long as you can wait, and test all items at tha t level.” Of course, the practical difficulty 
with this particular scenario arises when we need to interpolate back to the design stress, 
as we are faced with fitting a scale-stress relationship on the basis of information obtained 
at one stress level. For (1.12), we need at least two stresses; in practice, we might use three 
to provide some evidence th a t this relationship is a sensible one.

From the above, we can see that when c is small, we should place as many test items 
as possible at the highest stress setting, since these items are most likely to fail first and 
therefore the data will contain a greater proportion of failures. As c increases, it seems sen
sible to assume that more items should be placed at lower stresses, since we can now expect 
to  observe more failures a t a stress closer to the optimum or design stress. To illustrate 
this point, consider Figure 6.12, which shows how the theoretical standard deviation of Rio 
varies for the two separate sample allocations (200,50,50) and (50,50,200); a, r ,  0:5/? ,̂ Xd 
and p  are unchanged from the previous example and (mi, m2, ^ 3) =  (150,170,190).

Note, up to a stopping time of about 2100 hours we prefer the sample allocation 
(50,50,200), whereas after this time we prefer the alternative sample allocation, which 
agrees with the assumptions we made in the previous paragraph. The interesting point to 
note is that we can obtain more information about Rio using the allocation (200,50,50) 
as opposed to (50,50,200), when the stopping time is still relatively small; indeed still less 
than the average failure time at the middle stress level, determined as

exp (17.60139 -  0.056282 x 170) =  3082.

Now, for example, consider alternative values for the middle stress level, with sample allo
cation (50,200,50); see Figure 6.13.Yet again, we see trade-offs as c increases. For small c, 
we should choose a large value for the middle stress level; as we obtain more and more infor
mation from the data, so we can reduce the value of the stress level nearer to the desirable 
design stress.

To asses the theoretical validity of these results, we now consider the usual set of param
eter values together with a sample allocation of (774, 77,2 , 713) =  (200,50,50), and stress levels
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Figure 6.12: Theoretical standard deviation of Bio for increasing values of c, under two 
sample distributions, (m , ^ 2,^ 3): (200,50,50) is represented by the broken line while 
(50,50,200) is represented by the continuous line.
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Figure 6.13: Theoretical standard deviation of Bio for increasing values of c, when xi  =  
150,23 =  190 and 22 takes on the four values, 155 (continuous line), 160 (broken line), 170 
(x) and 180 (•).
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Figure 6.14: Theoretical and observed standard deviations of B i o  for increasing stopping 
time c. Simulated values are represented by x , while the correpsonding theoretical values 
are indicated by the continuous line. The broken line shows the percentage of valid cases 
(out of 10000) that contributed to the simulated result.

{xi)x 2ix s) = (150,170,190); we let c vary from 1540 to 3300 and see where the simulated 
and theoretical standard deviations of B i o  begin to disagree. The results are presented in 
Figure 6.14. We see, tha t for small c, there is a marked discrepancy between the simulated 
and theoretical standard deviations. It seems that, while the theory is endeavouring to 
accomodate for the fact that the standard deviation of B i o  will increase with the amount of 
censoring, due to the nature of the algorithm - which is a minor adaptation of that outlined 
in Chapter three for complete data sets - its ability to converge on a is limited for small c. 
Consequently, the theory and simulations do not always match up well for small values of c. 
Nevertheless, depending on the nature of the experiment, at the crucial points - where we 
are interested in potential trade-offs between censoring time and standard deviation of B i o  

- there is some agreement between the simulated values and their theoretical counterparts. 
For example, consider the experiment illustrated by Figure 6.12, where the intersection of 
the two lines occurs at approximately c =  2100. From Figure 6.14, we see th a t the agree
ment between simulated and theoretical values is actually rather good at c =  2100. As such, 
there is clearly considerable value behind the detailed theoretical investigations summarised 
here.

As a further consideration, we can also compare the Type I censored ALT case with the 
Type I censored non-ALT case. For example, consider the usual set of parameter values 
(a =  2, r  =  4, a b = 17.60139 and (3b =  —0.056282) with three stress levels ( x i , X 2 , x s )  =

(150,170,190), and a sample allocation (711, 712,713) =  (150,50,100). When c = 4900, the 
theoretical standard deviation of B i o  is found to be 1008.24. However, we saw in section 
6.4, that for the comparable non-ALT case, we obtained a theoretical standard deviation
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of 1009.35 when c = 13000, N  — 300 and all items were tested at the design temperature 
of 130°C. We see that, through the introduction of acceleration, we are able to obtain 
the same information about Rio in almost a third of the time. Further, alternative sample 
allocations and stress level settings, in conjunction with the stopping time, can also result in 
a theoretical standard deviation of around 1008.24, as we have seen in a similar experiment 
in Table 6.7.

6 .6 .2  Sim ulations

As with complete data, we now provide some validation of the theoretical results through 
simulation experiments. Using parameter values a =  2 ,r  =  4, = 17.60139, (3b =  —0.056282,
and with c taking the four values 1015,2570,5800 and 30000, we obtain Figures 6.15 and 
6.16. The conclusions reached for complete data are endorsed here: when the sample size 
on the lower stresses increases, the standard deviation of Rio decreases. As expected, we 
also see the standard deviation of Rio decrease for larger values of c. Note, for the sample 
allocation (n i,712, 713) =  (100,100,400), we have no observed values for c =  1015 in Figure 
6.15. This is due to difficulties in converging on estimates for parameter values in what 
are heavily censored data sets. Two reference points have been included in each figure - in 
the scale of the original data - to confirm that lower standard deviations are observed for 
stress levels (xi, X2, £3) — (150,160,190) than for (xi, £2, £3) =  (150,180,190), as suggested 
by the theory above. Charts for four stress levels, at three different stress level settings, 
with (711, 712, 713, 714) =  (375,375,375,375), are also presented in Figures 6.17, 6.18 and 6.19. 
Again, we have omitted results for c = 1015, due to the disparity between simulated and the
oretical results: inclusion would result in uninterpretable charts. On the whole, we observe 
good agreement between simulated and theoretical results, thereby providing considerable 
support for the theoretical investigations summarised above. We also note that, for all plot
ted points, the relative bias in Rio is at most 5%, with, perhaps unsurprisingly, the larger 
biases observed with small c. On average, over all plotted points, the relative bias was less 
than  1%. Consequently, the theoretical standard deviation of Rio - or, more specifically, 
the first order Taylor series approximation to the theoretical standard deviation of Rio - 
was seen to be very close to the mean square error of Rio, thereby allowing us to use the 
theoretical standard deviation in place of the mean square error.

6.7 Summary

We have seen how making adjustments to the values of the stress levels and the sample 
allocation can reduce the standard deviation of Rio- We have also seen how, for a given set 
of parameter values, we can determine the shortest stopping time, c, for a given tolerance 
level; that is, the relative difference between the theoretical standard deviation of Rio for the 
(non-) ALT censored data set and tha t which would be observed for a (non-) ALT completely 
failed data set. In addition, when considering acceleration, we observed, for smaller c,
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Figure 6.15: Theoretical and observed standard deviations of Rio for increasing values of 
c, with stress levels (2:1, 0:252:3) =  (150,160,190). For sample size distributions, theoretical 
results are represented by lines, while simulated results are indicated by: +  (100,100,400), 
• (500,500,500), * (500,500,2000), o (1000,1000,1000).
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Figure 6.16: Theoretical and observed standard deviations of Rio for increasing values of 
c, with stress levels (2:1, 2:2 , 2:3 ) =  (150,180,190). For sample size distributions, theoretical 
results are represented by lines, while simulated results are indicated by: +  (100,100,400), 
• (500,500,500), * (500,500,2000), o (1000,1000,1000).
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Figure 6.17: Theoretical and obsreved standard deviations of B\q for various a, t ,  with stress 
levels (xi ,X 2 ,X3 ,xa) =  (150,160,170,190). For differing values of c, theoretical results are 
represented by lines, while simulated results are indicated by: x (c =  2570), * (c =  5800), 
o (c =  30000).
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Figure 6.18: Theoretical and obsreved standard deviations of B io for various a, r ,  with stress 
levels (£1, 0:2, £3,£4) = (150,160,180,190). For differing values of c, theoretical results are 
represented by lines, while simulated results axe indicated by: x (c =  2570), * (c =  5800), 
o (c — 30000).
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Figure 6.19: Theoretical and observed standard deviations of Rio for various a , r , with stress 
levels (xi ,X 2 ,xz,X4 ) = (150,170,180,190). For differing values of c, theoretical results are 
represented by lines, while simulated results are indicated by: x (c =  2570), * (c =  5800), 
o (c =  30000).

a desire to allocate more items to the highest stress levels, gradually favouring a higher 
sample allocation on the lowest level as c increased. When looking to endorse our theoretical 
results through simulations, we observe good agreement between the corresponding standard 
deviations of Rio for practically all scenarios considered. However, as c decreased, the large 
degree of censoring in the data set often made it difficult for the algorithm - see Appendix A 
- to converge on a sensible value of a. Consequently, a large disparity was observed between 
simulated and theoretical results for small c.

The principal aim of this chapter is to formulate the theory necessary to draw conclusions 
about some percentile of the estimated running time of an experiment at its design stress; in 
particular, we were interested in the standard deviation of Rio- Consideration of completely 
failed, non-accelerated data is clearly of limited practical value; it does, however, provide 
a useful benchmark, in terms of minimum standard deviation of Rio, both for any given 
experimental design, and for comparing alternative design scenarios. The introduction of 
Type I censoring illustrated potential compromises between the stopping time, c, and the 
standard deviation of Rio, and this sets the scene for a more rigorous investigation when 
we introduced acceleration.

As with the non-accelerated case, consideration of a complete ALT experiment may seem 
to be of limited practical use. However, with the introduction of acceleration, and a suitable 
choice of stress levels, a completely failed data set will offer itself for analysis sooner than 
without acceleration. Naturally, the theory consistently favours a design where there is no 
acceleration, placing all items at the design stress and waiting for complete failure. However,
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in practice, we know that we cannot always wait for all items to fail, either at the design 
stress or at some higher stress level, and, so, we consider censoring. At the same time, to 
fit the log-linear scale-stress relationship, (1.12), we need at least two stress levels; practical 
considerations mean that three levels are often used, see, for example, the carbon fibre rod 
data (example 2.1.1.1), the aluminium coupon data (example 2.1.1.2) and the electrode data 
(example 2.1.1.3). The most fruitful area of investigation, therefore, concerns acceleration 
and Type I censoring. In particular, we observe several instances of trade-offs between the 
stopping time and the theoretical standard deviation of Rio, and between competing design 
scenarios; that is, combinations of stress level settings, sample allocations and stopping 
times. In particular, we present an example in which a number of different design scenarios 
returned approximately the same theoretical standard deviation of Rio- We also witnessed 
the great advantage of coupling acceleration with Type I censoring, with one particular 
ALT experiment offering the same information on Rio, in less than  a third of the time of 
its non-ALT Type I counterpart.

However, we must always bear in mind that these conclusions are based on a relatively 
small number of sets of parameter values and, as such, cannot be claimed to cover every 
eventuality. Nevertheless, the theory behind the results and the method of approach is 
general, and can be easily and effectively adapted and employed by practitioners wishing 
to  carry out experiments pertaining to their own circumstances. In addition, we stress this 
chapter only provides an overview of some of the investigations th a t are possible and is, 
therefore, by no means an exhaustive account on the subject. Rather, it is offered as a basis 
for future discussion and research.



Chapter 7

Summary and Conclusions

In this final chapter, we provide an overview of our work and present our conclusions. We 
begin by summarising each chapter in turn and then move on to discuss the aims of our 
work and the extent to which these were met. We then present an overall conclusion and 
finish by considering further areas of investigation.

7.1 Chapter Summary

Chapter One

In Chapter one we outlined the basic reliability distributions tha t would be the focus of 
our work, namely the Weibull and Burr XII, and discussed the link between them. We 
also gave brief details of additional lifetime distributions and non-parametric approaches 
to accelerated lifetime modelling. Censoring was then discussed from a Type I viewpoint. 
Having detailed any standard mathematical functions tha t would be necessary in our work, 
we then considered the various ways in which we could link the scale parameters in our 
models to the stress factor. Due, in large, to its versatility, we opted for the log-linear 
link. Finally, some computational issues were considered, paying particular attention to the 
lengthy time taken to run simulations.

Chapter Two

Chapter two was concerned with fitting the relevant reliability distributions to data sets. 
Throughout the chapter, three distinct data sets were considered: carbon fibre rods, consist
ing of four stress levels, aluminium coupons, consisting of three stress levels and electrodes 
in oil, also consisting of three stress levels. We began by fitting the Weibull distribution 
to subsets of the three data sets and then moved on to fit an accelerated Weibull model 
to the each complete data set. Next, the three-parameter Burr XII distribution was fit
ted to each data subset and comparisons were made between these results - in particular 
between maximised log-likelihoods - and those obtained for the Weibull distribution. We
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then presented a new area of research by fitting an accelerated Burr XII model to each of 
three data sets, and, as with the non-ALT case, made comparisons between these results 
and those obtained using the accelerated Weibull model. When fitting the Burr XII models 
- both non-ALT and ALT - to some data (sub)sets, we witnessed one of the shape and scale 
parameters tending to increase without limit. In these circumstances, the Weibull model 
was seen to provide a superior fit - in terms of maximised log-likelihood - than the Burr XII 
model. This prompted further investigations, described in Chapter four.

Chapter Three

The primary aim of Chapter three was to establish the complete-data, expected Fisher 
information matrices (EFI matrices) for the lifetime models considered in Chapter two. 
The non-ALT and ALT Weibull distributions were first referenced, before moving on to the 
two and three-parameter Burr XII distributions. We then derived previously unobtained 
results for the EFI matrix for the Burr XII ALT model. Being new research, we sought to 
validate the results for this final model through extensive simulations, where we saw the 
agreement between simulated and theoretical results improve with increasing sample size, 
as expected.

Chapter Four

Chapter four essentially carried on where Chapter two left off. Having seen tha t occasionally 
the Weibull is preferred to the Burr XII, we wished to find the conditions tha t dictate 
which model would provide the superior fit. We began by furthering previous work on non
accelerated models, deriving a form of ‘discriminating function’ (termed A) tha t enabled us 
to  determine which of the Weibull ALT or Burr XII ALT models would provide the superior 
fit to a given data set based solely on the Weibull ALT parameter estimates. A positive 
A implied a preference for the Burr XII model, while a negative A implied a preference 
for the Weibull model. The values of A found for each of the three data sets studied in 
Chapter two, concurred with the log-likelihoods observed in that chapter. We then sought 
the general circumstances under which one model would be preferred to the other. That 
is, whether a given set of parameter values would dictate which model would provide the 
superior fit. We found tha t when the data set originated from a Weibull distribution, the 
distribution of As - a scaled form of A - became more Normal with increasing sample size 
(in agreement with the Central Limit Theorem), but also more centred around zero, with 
a sizeable standard deviation, thus limiting our ability to choose between the models. On 
the other hand, when the data came from a Burr XII distribution, the distribution of As, 
although becoming more Normal with increasing sample size, was never actually observed 
to be significantly Normal for any of the sample sizes considered. Even so, we saw the 
mean of As increase and the standard deviation (as a percentage of the mean) decrease in 
the same limit. Consequently, as the sample size rose, we could be more confident that we
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would observe a positive As, but due to the consistent lack of Normality - even for sample 
sizes as large as 15000 - further inferential progress was severely limited. At this point, we 
drew a line under our theoretical investigation into the behaviour of A.

Chapter Five

The extension of previous work to a Type I censored environment was the focus of Chapter 
five. We began by looking at results for a two-parameter Burr XII distribution, deriving 
the terms that contributed to the EFI matrix. We then went on to formulate the EFI 
matrix for the three-parameter Burr XII distribution and the accelerated Burr XII model. 
Throughout, we ensured the expectations of the score functions were zero. Our attention 
then turned to the practical implications: the extent to which the standard deviations of 
the parameter estimates in the Burr XII ALT model were affected by the sample size. For 
all four parameters, we saw the simulated values decreasing in agreement with theoretical 
values as the sample size increased. We then proved tha t the theoretical expectations for 
the Burr XII ALT model tended to their complete counterparts when the stopping time 
tended to infinity. This required a brief foray into the subject of complex analysis, and in 
particular, contour integration, poles and residues. Finally, we derived A for censored data.

Chapter Six

In this chapter, we presented an exploration of some of the practical applications of our work. 
In particular, we focussed on a quantity called Bio, the estimate of the 10</l percentile of 
life at the design stress. We were interested in finding a combination of stress levels and 
sample allocations that minimised the approximation to the theoretical standard deviation 
of Bio, when the underlying life distribution was Burr XII. We began by looking at complete 
data without acceleration. From a purely statistical perspective, this is the ideal scenario, 
where all items are tested at their normal operating conditions until they all fail. We then 
introduced Type I censoring for non-accelerated data sets, thereby enabling us to assess 
the trade-off between the stopping time and the theoretical standard deviation of Bio- We 
then considered completely failed accelerated data, concluding tha t the most effective set-up 
required us to place all test items on one stress level as close to the design stress as possible 
- effectively an experiment without acceleration. This situation is clearly idealistic, having 
the inevitable drawback of having to wait until all items have failed, and is therefore of 
limited use in a world often dictated by severe time constraints. Consequently, we turned 
our attention to the Type I censored case. Using a theoretical approach, we selected a single 
experimental set-up, and examined potential compromises between the stopping time c and 
the theoretical standard deviation of Bio- We were able to assess points at which we started 
to prefer one sample allocation or stress level setting over another. We were also able to draw 
conclusions as to what time we should stop the experiment, depending on what was deemed 
to be an acceptable tolerance level, tha t is the difference between the theoretical standard
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deviation of B\o at the stopping time and tha t observed for an analogous completely failed 
ALT experiment. For both the complete and Type I investigations, a series of simulations 
were presented to ensure that the theoretical conclusions reached were valid. Naturally, for 
small c, there was some disparity between simulated and theoretical results; a consequence 
of the algorithm used. It is possible that there are alternative algorithms and methods 
of converging on parameter estimates tha t may provide better agreement at these early 
stopping times, but we found tha t in the large majority of cases, and for moderate to 
large c, agreement between simulations and theory was good. In a similar vein, we remark 
here that the algorithm used to obtain MLE of parameters in the ALT Burr XII model, 
was less robust for values of a less than two. Again, alternative algorithms, particularly 
those adopting a more rigorous numerical approach to finding MLE, may prove to be more 
satisfactory. However, we found our algorithm to be effective in the majority of cases 
considered.

Since investigations in Chapter six were largely based on one experimental design, to 
discuss numerical conclusions would be of limited use. However, the intrinsic value of the 
chapter comes from providing a practitioner with a guide to carrying out detailed theoretical 
explorations, before embarking on the time consuming business of running the experiment.

7.2 Conclusions

W ith the Weibull model being particularly popular in the field of accelerated lifetime mod
elling, the principle aim of this thesis was to consider a lifetime distribution more parameter 
rich than the Weibull, and make an assessment on its ability to provide a superior fit than 
the Weibull, for given failure data and a given censoring regime. Due to  the limiting rela
tionship that exists between the Weibull and Burr XII distributions, and the well established 
asymptotic results for maximum likelihood estimates, this model and approach seemed a 
sensible choice. Ultimately, we wanted to establish the variation - or some estimate of it 
- in the expected time to failure of some percentile of life at some specified design stress 
using the Burr XII model, and this became the focus of Chapter six. In order to investigate 
this, we were required to formulate the expected Fisher information matrices for the Burr 
XII model with complete (Chapter three) and Type I (Chapter five) censoring; the inverses 
of the matrices providing us with asymptotic estimates of the standard deviations of the 
maximum likelihood estimates of the model parameters. Having previously observed a use
ful discriminating function that enables one to determine whether the Burr XII distribution 
will provide a better fit to a given data set than the Weibull, without actually going to 
the trouble of fitting the Burr XII - see Watkins (2001) - we were interested in extending 
this result to an accelerated framework. Chapter four discussed this and also explored the 
extent to which a given data set generated from the Weibull, or alternatively the Burr XII, 
distribution determined which of the two models would ultimately provide the better fit.

Throughout, it was our intention to assess the extent to which asymptotic results held
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for small sample sizes, when considering the inverses of the expected Fisher information 
matrices and the role of censoring. In order to go some way towards discussing this problem, 
numerous simulations were carried out and, in addition, theoretical results were obtained. 
For various sample sizes, we were then able to observe how close to the true, asymptotic 
results, simulated values were.

Since accelerated life testing is widely applicable in the real-world, an important aim 
of this thesis was to apply the theoretical results to circumstances th a t could well exist in 
real-life. By considering a wide range of possible scenarios and illustrating how to employ 
the theory, we have provided not only a guide to practitioners wishing to consider their own 
particular experimental circumstances, but also a useful basis for further investigation.

7.3 Areas For Future Research

Naturally, one of the first things to consider, is a variation in the life-stress relationship. We 
chose a log-linear approach for its adaptability and ease of use. As discussed in Chapter one, 
the Arrhenius model is also very popular in the field, and an investigation into the relative 
merits of an array of models could prove very constructive. In the same vein, we opted for 
the Burr XII as an extension to the popularly used Weibull distribution; alternative lifetime 
distributions could well prove to be even more fruitful in terms of quality of fit to data sets, 
robustness and widespread applicability. Step-stress testing could also be examined. In this 
case, items are placed at a certain stress level and, after some specified time, if there are any 
items still running, the stress level is increased. Clearly, this process would introduce many 
more variables, for example, the size and number of steps, the time between steps and the 
extent to which these values are kept constant across stress levels. We could also investigate 
the extent to which the log-likelihoods observed for the Burr XII models are regarded as 
significantly different from the log-likelihoods observed for the equivalent Weibull model.

The application of censoring also has much room for further investigation. We observed 
in Chapter five, that there are several ways of carrying out Type I and Type II censoring, 
each of which will have an impact on the manner in which we develop the theory. While we 
chose to consider the case where we have a common starting time and a common stopping 
time for all test items, it is also feasible to have unique starting and stopping times for every 
stress level. Equivalently, for Type II censoring, we could choose to stop the experiment once, 
say, ten items have failed at a specified stress level, or wait until ten items have failed from 
all items on test, although this final option is perhaps not as practically viable as others 
mentioned in Chapter five. Naturally, to derive theoretical results for Type II censoring 
would require the consideration of order statistics, and even conditional expectations of 
order statistics.

From the design perspective, we could investigate the standard deviation of Rio, using 
the Weibull distribution as a model for life. We could then see how this compares to the 
Burr XII distribution, and what circumstances, if any, result in the Weibull being the better
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choice of model. In Chapter six, we saw that, theoretically, we should place all items to 
run at the design stress and wait for complete failure, an unsurprising result. However, we 
also noted that, due to time constraints in the real world, we need to employ censoring and 
use at least three stress levels to make interpolations from higher stress levels to the design 
stress, more accurate. Since true parameter values are rarely known in the real world, more 
extensive simulations could be carried out to determine the extent to which we can make a 
trade off between having as few stress levels as possible - and as close to the design stress as 
possible - while at the same time having enough stress levels - and enough failures at those 
stress levels - to maximise the information on the scale parameters a & and /3b; this in turn, 
through interpolation, would then serve to further reduce the standard deviation of Rio- 

From a programming perspective, we could investigate alternative algorithms for con
verging on parameter estimates. In particular, we would be interested in both the robustness 
of the algorithm, and also in the extent to which convergence depends on starting values.
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Appendix A : Algorithms

In this appendix we give details of the SAS IML algorithms used to determine the maxi
mum likelihood estimates of parameters from the various life models considered. Within the 
code, modules are defined by ‘start <module_name> • • • finish <module_name>’; the mod
ule then being called from elsewhere by the command ‘run <module_name>’. Throughout, 
comments shall be inserted and italicised.

Weibull

This algorithm determines the maximum likelihood estimates of parameters in a non
accelerated Weibull distribution, see section 2.1.1.

proc iml;

s ta r t  weibrale2; 
n = nrow(wdata); 
m = n-sum (ind); 
lnx = log (w d ata ); 
se  = su m (ln x # ( l - in d ) ) ;

The starting value of the shape parameter b is set to 1

b = 1 .0;

We iterate on b to obtain its M LE

do i t e r  = 1 to  15; 
sO = sum (exp(b*lnx)); 
s i  = sum(lnx#exp(b*lnx));  

s2 = sum(lnx#lnx#exp(b*lnx));  
r a t io  = s l/sO ;
p i  = m *log(b)+(b-l)*se-m *log(sO ); 
plb = m/b +se -  m*ratio; 

plbb = -  m/(b**2) -  m * (s2 /s0 -r a t io * * 2 ) ; 
b = b -  p lb/plbb;
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p r in t  b; 
end;

We can now find the MLE of the scale phi and the maximised log-likelihood.

phi = exp (log (sO /m )/b ); 
lw = m*log(m*b/sO)+(b-T)*se-m; 

p r in t  b phi lw; 
f i n i s h  weibmle2;

Main Program. Here we consider the first subset o f the aluminium coupon data, 
that is where stress = 2.1 psi/cycle.

do;
data= {3 .7 ,  7 .4 6 ,  8 .4 4 ,  8 .8 6 ,  9 .6 ,  10 .00 , 10 .18 , 10 .85 , 11 .08 , 11 .34 ,
1 2 .0 0 .1 2 .2 2 .1 2 .5 2 .1 2 .6 9 .1 2 .9 3 .1 3 .1 3 .1 3 .5 5 .1 4 .1 9 .1 4 .5 0 .1 4 .7 8 ,
1 5 .0 2 ,1 5 .2 2 ,1 5 .4 ,1 5 .7 8 ,1 6 .0 4 ,1 6 .4 2 ,1 7 .5 ,1 7 .6 8 ,1 7 .9 2 ,1 8 .8 1 ,
1 8 .9 5 .1 9 .4 .2 1 .0 .2 2 .6 8 } ;

The indexing is established to flag failed items.

in d = {0};
in d = r e p e a t( in d ,3 4 ,1); 

wdata = data; 
run weibmle2; 

end; 
q u i t ;

WeibulLALT

Here, we determine the maximum likelihood estimates for parameters from a Weibull 
ALT model; see section 2.1.2.

proc iml;

s ta x t  weib;
do i= l  to  20;
sn=sum(n);
sx=sum(n#x) ;
se=sum (log(fm at)# indf);
fm atl= indf#exp(b* log(fm at));
cm atl=indc#exp(b*log(cm at));
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s00=sum( (fm atl [ ,+] + cmatl [,+] )#exp(-beta*b*x)); 
fm at2=fm atl# log(fm at); 
cmat2=cmatl#log(cmat);
s01=suin( (fmat2 [,+] + cmat2[ ,+ ] )#exp(-beta*b*x)); 
fm at3=fm at2#log(fm at); 
cmat3=cmat2#log(cmat);
s02=sum( (fmat3 [ ,+] + cmat3[,+] )#exp (-b e ta*b *x)) ; 
s lO =sum ((fm atl[,+] + cm atl[ ,+ ] )#exp (-beta*b *x)#x); 

s l l= su m ((fm at2 [,+] + cmat2 [ ,+ ] )#exp (-beta*b *x)#x); 
s20=sum( (fm atl [ ,+ ] + cmatl [,+] )#exp(-beta*b*x)#(x##2)) ; 
lb=sn/b  + se  -  sn*(s01 -  b e ta * s l0 ) /s 0 0  -  besta*sx; 
Ib eta= sn *b *s l0 /s00  -  b*sx;
lbb=-sn /(b**2) -  sn*(s02 -  2 * b e ta * s l l  + (be:ta**2)*s20)/s00  

+ sn*((sO l -  b e t a * s l0 ) * * 2 ) / ( ( s 0 0 )* * 2 ) ; 
lb b e ta = sn * (b * s l l  + slO -  beta*b*s20)/s00

-  sn*b*(s01 -  b e ta * s l0 )* s l0 / ( ( s 0 0 )* * 2 )  — sx; 

lb e tb e t= sn * (b **2 )* ( ( (s lO )* * 2 ) / ( (sOO)**2) -  :s20/sOO); 
m=j(2);
m [l , l ]= lb b ;  m [l ,2 ]= lb b eta ;  m[2,1 ] =lbbeta; m[2i 2]= lb© tbet; 
m=-m; m=inv(m);
vec={0,0>; v e c [ l ]= lb ;  vec [2 ]=lbeta;
data={0,0>; d a ta [l]= b ;  data[2]=beta;
res=data + m*vec;
b=res [1];  b e ta = r e s [2];
p r in t  b beta;
p r in t  lb  lb e ta ;
end;
f i n i s h  weib;

Main program. The aluminium coupon data is included explicitly.

d o;

fm at={3.7  7 .46  8 .44  8 .86  9 .6  10.00 10.18 10.85 11-08 11.34
12.00 12.22 12.52 12.69 12.93 13.13 13.55 14.19 14-50 14.78
15.02 15.22 15 .4  15.78 16.04 16.42 17.5 17.68 17.92 18.81  
18.95 19 .4  21 .0  22 .68 ,
2 .3 3  2 .7 6  3 .12  3 .21  3 .35  3 .38  3 .42 3 .5  3.51 3.56
3 .6  3 .6 6  3 .7  3 .7 4  3 .79  3 .82  3 .95  4 .0  4 .04  4.08  
4 .1 4  4 .1 6  4 .23  4 .32  4 .33  4 .39  4 .45  4 .56  4 .64  4 .7
4 .7 4  4 .8 6  4 .9  5 .1 7 ,
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0 .7  0 .97  1.03 1.05 1.08 1.09 1.13 1.14 1 .2  1.21  

1 .24  1.24 1.28 1 .3  1.31 1.31 1.32 1.34 1.34 1.36  

1 .38  1.39 1.42 1.42 1.44 1.46 1.49 1.52 1.57 1.57  
1 .62  1 .64 1.68 1 .96};

Indexing is set up, with 1 indicating a failure

in d f= {1 1 1 1 1 1 1 1 1 1

n=
>;

3 4 ,3 4 ,3 4 } ;

The program was written to accomodate potential censoring. A s such we include a 
customary sample of censored items, which, through the indexing, we then ignore for the 
purposes of this example. Nevertheless, sample allocations on these ’censored items ’ still

need to be specified.

c m a t= { l ,1 ,1};  

indc=-C0,0,0}; 
m = {l ,1 ,1 } ;

Define stress levels.

x = { 2 .1 ,2 .6 ,3 .1 } ;  

x f= r e p e a t (x ,1 ,3 4 ) ;  
xc=x;

Set starting values for shape parameter b and scale parameter beta.

b=5.0;
b e t a = -2 .37495;

Run module ‘weib ’ to determine MLEs of b and beta.

run weib;
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Finally determine the M LE of the scale parameter alpha and the maximised log-likelihood. 

alpha=log(sOO/sn)/b;
l= sn * lo g (b )+ (b - l )* se - (a lp h a * sn + b e ta * sx )* b -e x p (-a lp h a * b )* s0 0 ;

The estimates of the scales at each stress level are then found.

theta=exp(alpha + b e t a * x ) ; 
p r in t  b beta  alpha th e ta ;  

p r in t  1; 
end; 
q u i t ;

Burr3

Determines the maximum likelihood estimates of parameters from a Burr XII non-ALT 
distribution for complete /  censored data; see section 2.2.

proc iml;

Fit the usual two parameter Weibull distribution

s t a r t  weibmle2; 
n = nrow(wdata); 
m = n -sum (ind); 
lnx = lo g (w d a ta ) ; 
se  = su m (ln x # ( l - in d ) );

Starting value of shape parameter is 1

beta  = 1.0;  
do i t e r  = 1 to  15;

sO = su m (exp (b e ta* ln x )) ; 
s i  = sum (lnx#exp(beta* lnx));  
s2 = sum (lnx#lnx#exp(beta*lnx));  

r a t io  = s l /sO ;
p i  = m *log(beta) + (b e ta - l )* s e -m * lo g (s O ); 

plb  = m/beta +se -  m*ratio;  
plbb = -  m /(beta**2) -  m * (s 2 /s 0 -r a t io * * 2 ) ; 

b eta  = beta  -  p lb /p lb b ;  
p r in t  beta;  

end;
th e ta  = e x p ( lo g (s O /m ) /b e ta ) ;
lw = m *log(m*beta/sO)+(beta-1)*se-m;
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Print shape, scale and log-likelihood

p r in t  beta  th e ta  lw; 
f i n i s h  weibmle2;

Fit a two parameter Burr X II  distribution 
shapel is the shape parameter tau, shape2 is the shape parameter a

s t a r t  b2mle;
n = nrow(bdata);
m = n-sum (ind);
lnx = lo g (b d a ta ) ;
se  = s u m (ln x # ( l - in d ) ) ;

Iterate on tau

do i t e r  = 1 to  15;
term = exp( shape1* ln x ) ;
s f s t a r  = su m (lo g (te r m + l)# ( l - in d ) ) ;

s f l l l  = su m (term #ln x /( term + l)# ( l- in d )) ;
s f l2 2  = su m (te rm # ln x # ln x /( ( te r m + l)# ( te r m + l) )# ( l- in d ) ) ;
s c s ta r  = su m (log (ten n + l)# in d );
s c l l l  = sum (term #lnx/(term +l)#ind);
s c l2 2  = sum (term #lnx#lnx /((tenn+l)#(term +l))# ind) ;
s s ta r  = s f s t a r  + scstar ;
s i l l  = s f l l l  + s c l l l ;
s l2 2  = s f l2 2  + sc l22;
p i  = m*log(shapel) + ( s h a p e l - l )* s e  -  s f s t a r  -  m * lo g ( s s t a r ) ; 
p l l  = m/shapel + se -  s f l l l  -  m * s l l l / s s t a r ;

p i l l  = -m/(shapel**2) -  s f l 2 2  -  m * ( s l 2 2 / s s t a r - ( s l l l / s s t a r ) * * 2 ) ; 
shapel = shapel -  p l l / p l l l ;  

p r in t  shapel p l l  p i l l ;  

end;
shape2 = m /sstar;
lb  = m*log(shapel*shape2) + ( s h a p e l - l )* s e - ( s h a p e 2 + l)* s f  s ta r - sh a p e 2 * sc s ta r ;

Print tau, a and maximised log-likelihood

p r in t  shapel shape2 lb; 

f i n i s h  b2mle;
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Fit a three parameter Burr X I I  distribution

s t a r t  b3eval;
n = nrow(bdata);
m = n-sum(iiid) ;
lnx  = lo g (b d a ta /p h i ) ;
se  = su m (lo g (b d a ta )# ( l - in d ) );
term = exp(shape1* l n x ) ;
termpl = term + 1;
t d s ta r  = s u m ( lo g ( t e r m + l)# ( l - in d ) ) ;
td lO l = sn m (te rm /te r m p l# ( l- in d )) ;
td l0 2  = s im ( te r a /( t e r m p l# te r m p l)# ( l - in d ) );
t d l l l  = su m (term #ln x /(tern H T )# (l- in d ));
t d l l 2  = su m (term #ln x /(term p l#term p l)# (l- in d ));
td l2 2  = s u m (te rm # ln x # ln x /( ( te r m + l)# ( te r m + l) )# ( l- in d ) );
t c s t a r  = sum (log(term +l)#ind) ;
t c lO l  = sum (term /term pl#ind);
t c l 0 2  = sum (term /(term pl#term pl)#ind);
t c l l l  = sum (term #lnx/(term +l)# ind);
t c l l 2  = sum (term #lnx/(term pl#term pl)# ind);
t c l2 2  = su m (term #ln x# ln x /( ( term + l)# (term + l))# in d );
lb  = m*log(shapel*shape2) -  m *shapel*log(phi)

+ ( s h a p e l - l )* s e  -  (sh a p e2 + l)* td sta r -sh a p e2 * tcs ta r ;  

p r in t  shapel shape2 phi lb ;
l b l  = m/shapel -  m*log(phi) + se  -  ( s h a p e 2 + l ) * td l l l  -  s h a p e 2 * tc l l l ;  

lb2 = m/shape2 -  ( t d s t a r + t c s t a r ) ;
lbp = sh a p e l* ( (shape2+ l)*td l01+shape2*tc l01-m )/ph i;  

p r in t  l b l  lb2 lbp;
l b l l  = -m /(shapel**2) -  (sh ape2+ l)* td l22  -  shape2*tcl22;
l b l2  = - ( t d l l l + t c l l l ) ;
lb lp  = ( (sh a p e 2 + l)* ( td l0 1 + sh a p e l* td ll2 )

+ sh a p e 2 * (tc l0 1 + sh a p e l* tc l l2 )  -  m )/phi;  

lb22 = -m /(shape2**2); 
lb2p = s h a p e l* (td lO l+ tc lO l) /p h i;  

lbpp = shapel* (m -(shape2+ l)* td l01-shap e2*tc l01
-  sh a p e l* ( (sh ap e2+ l)* td l02+ sh ap e2* tc l02 )) / (p h i* * 2 ) ; 

rmat = { 0 .0  0 .0  0 .0 ,  0 .0  0 .0  0 .0 ,  0 .0  0 .0  0 .0 } ;

Set up the full matrix of second derivatives

231

rmat[1 ,1 ]  = lb22; rmat[1 ,2 ]  = lb l2 ;  rmat[1 ,3 ]  = lb2p;
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rmat[2 ,1]  = lb l2 ;  rmat[2 ,2]  = l b l l ;  rmat[2 ,3 ]  = lb lp ;  
rmat[3 ,1]  = lb2p; rmat[3 ,2]  = lb lp ;  rmat[3 ,3]  = lbpp;

rmat = in v (rm at); 
rvec = { 0 .0 ,  0 .0 ,  0 .0 } ;
r v e c [ l ]  = lb2; rvec [2] = lb l ;  r v e c [3] = lbp; 

r e s u l t  = rmat*rvec;

Print first and second derivatives to check we have MLEs

p r in t  l b l  lb2 lbp; 
p r in t  l b l l  lb22 lbpp; 

f i n i s h  b3eval;

Main Program - Carbon Fibre Rod Data for stress=lm m  included

do;

Flag failed items with a zero

ind={0>;
ind=repeat( in d ,5 7 ,1 ) ;  

data= { 2 .2 4 7 ,2 .6 4 0 ,2 .8 4 2 ,2 .9 0 8 ,3 .0 9 9 ,3 .1 2 6 ,3 .2 4 5 ,3 .3 2 8 ,3 .3 5 5 ,3 .3 8 3 ,3 .5 7 2 ,  
3 .5 8 1 ,3 .6 8 1 ,3 .7 2 6 ,3 .7 2 7 ,3 .7 2 8 ,3 .7 8 3 ,3 .7 8 5 ,3 .7 8 6 ,3 .8 9 6 ,3 .9 1 2 ,3 .9 6 4 ,  
4 .0 5 0 ,4 .0 6 3 ,4 .0 8 2 ,4 .1 1 1 ,4 .1 1 8 ,4 .1 4 1 ,4 .2 1 6 ,4 .2 5 1 ,4 .2 6 2 ,4 .3 2 6 ,4 .4 0 2 ,  
4 .4 5 7 ,4 .4 6 6 ,4 .5 1 9 ,4 .5 4 2 ,4 .5 5 5 ,4 .6 1 4 ,4 .6 3 2 ,4 .6 3 4 ,4 .6 3 6 ,4 .6 7 8 ,4 .6 9 8 ,  
4 .7 3 8 ,4 .8 3 2 ,4 .9 2 4 ,5 .0 4 3 ,5 .0 9 9 ,5 .1 3 4 ,5 .3 5 9 ,5 .4 7 3 ,5 .5 7 1 ,5 .6 8 4 ,5 .7 2 1 ,  

5 .9 9 8 ,6 .0 6 0 } ;  
wdata = data;

Fit a two parameter Weibull distribution

run weibmle2; 

thetah  = th e ta ;

Scale the data by the MLE of theta

wdata = d ata /thetah;  
run weibmle2;

Set starting value of phi and tau to be 1 and beta respectively
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p h i= l .0; 
shapel=beta; 

do i t = l  to  50;

Scale the ’Weibull-scaled’ data by phi

bdata = wdata/phi;

Fit a two parameter Burr X II  distribution

run b2mle;

Take the original ’Weibull-scaled’ data and fit a three parameter Burr X II  distribution

bdata = wdata; 
run b3eval;

Iterate once on phi

p h i= p h i-resu lt  [3];  
p r in t  phi; 

end;

Find phi for raw data set

phi = phi*thetah;  

p r in t  phi;

As a check, fit a three parameter Burr X II  model to the raw data set

bdata = data; 

run b3eval;  

end; 
quit;

Burr_A LT/Burrcens

Algorithm to find MLEs for parameters in a Burr XII ALT model for complete /  censored 
data; see sections 2.3.2 and 5.5 respectively.

proc iml;

s ta r t  buraccel;  
s ta r t  weibmle2;
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See code for Weibull above for details of this module.

f i n i s h  weibmle2;

The following module fits a Weibull A L T  model.

s t a r t  weibmlec; 
n = nrow(wdata); 
m = n -su m (in d ); 

ln x  = lo g (w d a ta ) ; 
se  = s u m ( ln x # ( l - in d ) ) ; 
sx  = s u m (s t r e s s # ( l - in d ) );  

do i t e r  = 1 to  15; 
term = e x p (b * ln x )# e x p (-b * b e ta * s tr e s s ) ; 
sOO = sum(term); 
sOl = sum (lnx#term ); 
s02 = sum (lnx#lnx#term ); 
slO = sum (stress# term ); 
s l l  = sum (stress# ln x#term ); 
s l 2  = sum (stress# ln x# lnx#term ); 
s20 = s u m (s tre s s# s tr e s s# te r m ); 
s21 = su m (s tre ss# s tr e ss# ln x # te rm ); 
s22 = su m (s tre ss# s tr e ss# ln x # ln x # te rm ); 
p i  = m*log(b)+(b-T)*se-m*log(sOO)-b*beta*sx;  

p r in t  p i;
p l l  = m/b + se  -  m *(s0 1 -b e ta * s l0 ) /s0 0  -  beta*sx;  

p l2  = m *b*sl0/s00 -  b*sx;
p l l l =  -m/(b**2) -  m *(s02-2*beta*sll+ s20*beta**2)/s00  + 
m * (s01 -b e ta*s l0 )**2 /s00**2 ; 
p l l 2  = m * (b * s l l+ s l0 -b *b eta*s20 ) /s00  -  
m *b*(s01 -b eta*s l0 )* s l0 /s00**2  -  sx; 

p l22  = m * (b * * 2 )* (s l0 * * 2 /s0 0 * * 2 -s2 0 /s0 0 ); 
det  = p l l l* p l2 2 -p l l2 * * 2 ;  

corsh  = ( p l l 2 * p l 2 - p l2 2 * p l l ) / d e t ; 
c o r s l  = ( p l l 2 * p l l - p l l l * p l 2 ) / d e t ; 
b = b + corsh; 
b e ta  = b eta  + c o r s l;  
p r in t  b beta;  

end;
alpha = log (s00 /m )/b ;  

p r in t  alpha;
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f i n i s h  weibmlec; 

s t a r t  b2mle;

See code for BurrS above for details of this module.

f i n i s h  b2mle; 

s ta r t  b3eval;

See code for BurrS above for details of this module.

f i n i s h  b3eval;

The next module fits the full Burr X II  A L T  model.

s ta r t  burr3acc; 
n = nrow(wdata); 
sn = n-snm(ind);  
lnx  = log(w data);  
se = s u m (ln x # ( l - in d ) ) ; 
sx = s u m ( s t r e s s # ( l - in d ) ) ;

Define the starting values for alpha and beta

alpha = lo g (p h i) ;  

b eta  = 0;

Iterate on a, tau, alpha and beta.

do i t e r  = 1 to  50; 
work = lnx  -  alpha -  b e ta*stress ;  
termf = exp(t*work); 

term fpl = termf+1; 
s f s t a r  = su m (( l - in d )# lo g ( te r m fp l) ) ; 
s c s t a r  = sm n (ind#log(term fpl));

sfOlOl = sn m (term f/term fp l# ( l- in d )) ;
s f O l l l  = sum (term f#w ork/term fpl#(l- ind));
sf0121 = snm(termf#work#work/termfpl#(l-ind));
sf0202 = sum(termf#termf/ ( te r m fp l# te r m fp i)# ( l - in d ) );
sf0212 = sum (term f#term f#work/(term fpl#term fpi)#(l-ind) ) ;
sf0222 = siim(termf#termf#work#work/(termfpl#termfpl)#(l-ind)) ;
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s f l l O l  = s u m (s tre s s# ter m f/te r m fp l# ( l- in d ) );
s f l l l l  = su m (stress# term f#w ork /term fp l# ( l- ind ));
s f l2 0 2  = su m (stress#term f#term f/(term fp l#term fp i)# ( 1 - in d ) );
s f l2 1 2  = su m (stress# ten n f# term f#w ork /(term fp l# ter in fp l)# ( l- in d )) ;

sf2101 = su m (s tre s s# s tr e s s# te r m f/te r m fp i# (1 - in d ));
sf2202 = su m (s tre s s# s tr e s s# te r m f# te r m f/( te r m fp l# te r m fp l)# ( l- in d ) );

scOlOl = sum (term f/term fpl# ind);
s c O l l l  = sum(termf#work/termfpl#ind);
sc0121 = sum(termf#work#work/termfpl#ind);
sc0202 = sum (te im f#term f/(term fpl#term fpl)# ind) ;
sc0212 = sum (term f#term f#work/(term fpl#term fpl)#ind);
sc0222 = sum(termf#termf#work#work/(termfpl#termfpl)#ind);

s c l lO l  = su m (stress# term f/term fp l# in d );
s c l l l l  = sum (stress#term f#w ork/term fpl# ind);
sc l202  = su m (stress# term f# term f/(term fp l# term fp l)# in d );
sc l212  = sum (stress#term f#term f#w ork/(term fpl#term fpi)# ind);

sc2101 = su m (s tre ss# s tr e ss# te r m f/te r m fp l# in d );
sc2202 = su m (s tress# s tress# term f# term f/(term fp l# term fp l)# in d );
1 = sn * lo g (a * t )  -  alpha*t*sn -  b e ta*t*sx  + ( t - l ) * s e  -  ( a + l ) * s f s t a r  

-  a* scsta r ;  
p r in t  1;

Define the vector of first derivatives. 

d e r iv [ l ]  = s n /a  -  ( s f s t a r  + s c s t a r ) ;

d er iv [2 ]  = s n / t  -  alpha*sn -  beta*sx  + se -  (a+ l)*sf0111  -  a*sc0111;  

d er iv [3 ]  = - sn * t  + ( a + l ) * t* s f 0101 + t*a*sc0101;  
d er iv [4 ]  = - s x * t  + ( a + l ) * t * s f 1101 + t* a * s c l l0 1 ;

Define the matrix of second derivatives.

h e s s [ l , l ]  = - s n / ( a * a ) ;  

h ess  [1 ,2] = - ( s f O l l l  + s c O l l l ) ; 
b e s s [ l , 3 ]  = t* (s f0 1 0 1  + scO lO l); 
bess  [1 ,4] = t * ( s f 1101 + s c l l O l ) ;

h e s s [2 ,2] = - s n / ( t * t )  -  (a + l)* (s f0 1 2 1 -s f0 2 2 2 )  -  a * (sc 0 1 2 1 -sc0 2 2 2 );
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h e s s [2 ,3 ]  = - sn  + (a + l)* (s f0 1 0 1 + t* (s f0 1 1 1 -s f0 2 1 2 ) )  + a*(sc0101  
+ t* (s c 0 1 1 1 -s c 0 2 1 2 ) ) ; 

h e s s [2 ,4 ]  = - s x  + (a + l)* ( s f1 1 0 1 + t* ( s f1 1 1 1 - s f1212)) + a * ( s c l l0 1  
+ t * ( s c l l l l - s c l 2 1 2 ) );

h e s s [3 ,3 ]  = (a + l)* t* t* (s f0 2 0 2 -s f0 1 0 1 )  + t* t* a * ( s c 0 2 0 2 -s c 0 1 0 1 ) ;
h e s s [3 ,4 ]  = (a + l ) * t * t * ( s f 1 2 0 2 - s f 1101) + t * t * a * ( s c l 2 0 2 - s c l l 0 1 ) ;

h e s s [4 ,4 ]  = (a + l)* t* t* (s f2 2 0 2 -s f2 1 0 1 )  + t* t* a * ( s c 2 2 0 2 -s c 2 1 0 1 ) ;

h ess  [2 ,1]  
hess  [3 ,1]  
hess  [4 ,1]  
h e s s [3 ,2]  

hess  [4 ,2]  
hess  [4 ,3]

= h e s s [1,2]  

= h e s s [1 ,3]  
= h e s s [1 ,4]  
= h e s s [2 ,3]  
= h e s s [2 ,4]  
= h e s s [3 ,4]

corr = in v (h ess )* d e r iv ;

Update the values of a, tau, alpha and beta.

a = a -  corr [1] ; 
t  = t  -  corr [2];  
alpha = alpha -  corr [3];  
b eta  = beta  -  c o r r [4];  

p r in t  a t  alpha beta  deriv;  
end;

f i n i s h  burr3acc;

do;

wdata = data;

Fit a Weibull A L T  model to the data set

run weibmlec; 

p r in t  b beta;  
xl=  s l e v e l ;
th e l= e x p (a lp h a + b e ta * x l) ; 
alpha l=a lph a; beta l=beta;  

par={1 ,1 ,1 } ;
h e s s = { l  1 1, 1 1 1, 1 1 1}; 
d er iv  = par;
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corr = par;

Rescale the raw data by Weibull scale MLEs

d ata l  = d a ta # e x p (-a lp h a -b e ta * s tr e s s ) ; 
wdata=datal; 
run weibmle2;

Iterative scaling of ‘Weibull-scaled’ data, by phi, and fit a Burr X II  model to entire data set
Set starting value for phi to be 1

p h i = l .0;

Fit a Burr X II  three parameter model to the entire data set

do i t = l  to  15; 
bdata = wdata/phi;  
run b2mle; 
bdata = wdata; 
rim b3eval;  

hess  [1 ,1 ]  = l b l l ;
h e s s [1 ,2 ]  = lb l2 ;  h e s s [2 ,1]  = h e s s [1 ,2 ] ;  
h e s s [1 ,3 ]  = lb lp ;  h e s s [3 ,1]  = h e s s [1 ,3 ] ;  
hess  [2 ,2 ]  = lb22;
h e s s [2 ,3 ]  = lb2p; h e s s [3 ,2]  = h e s s [2 ,3 ] ;  
h e s s [3 ,3 ]  = lbpp; 
d e r iv [1] = l b l ;  
d e r iv [2] = lb2;  

d er iv  [3] = lbp; 
corr = in v (h ess )* d e r iv ;  
phi = phi -  corr [3]; 

end;

par = { 1 ,  1, 1, 1>;
h ess  = {1 1 1 1, 1 1 1 1, 1 1 1 1, 1 1 1 1}; 

d er iv  = par; 
corr = par;

run burr3acc;  
the2=exp (a lpha+beta*x l); 
f  in th e = th e l# th e 2 ;

Determine alpha and beta for raw data set



A PPE N D IX  A : ALGORITHMS 239

f in a lp = a lp lia+ a lp h a l; f in b e t= b e ta + b e ta l; 
alpha=f i n a lp ; beta=f in b e t ; 
wdata=data;

Finally, we determine the Burr X II  A L T  maximised log-likelihood for the raw data set

n = nrow(wdata);
sn = n -su m (in d );
lnx  = lo g (w d a ta ) ;
se  = s u m (ln x # (1 - in d )) ;
sx = s u m (s tr e s s # (1 - in d ) );
work = lnx  -  alpha -  b e ta * s tr e ss ;
termf = exp(t*work);
term fpi = term f+1;
s f s t a r  = sum( ( 1 - in d )# lo g ( te r m fp i) );
s c s t a r  = sum (ind#log(term fpl) ) ;
1 = s n * lo g (a * t )  -  alpha*t*sn — beta*t*sx  + ( t - l ) * s e  -  ( a + l ) * s f s t a r  

-  a * scsta r ;  
p r in t  1;
p r in t  a t  f in a lp  f in b e t  f in t h e  x l;  

end;
f i n i s h  buraccel;

Main Program. Aluminium coupon data included.

do;

s l e v e l = { 2 . 1 , 2 . 6 , 3 . 1 } ;
d a ta= {3 .7 ,  7 .4 6 ,  8 .4 4 ,  8 .8 6 ,  9 .6 ,  10 .00 , 10 .18 , 10 .85 , 11 .08 , 11 .34 ,

1 2 .0 0 ,1 2 .2 2 ,1 2 .5 2 ,1 2 .6 9 ,1 2 .9 3 ,1 3 .1 3 ,1 3 .5 5 ,1 4 .1 9 ,1 4 .5 0 ,1 4 .7 8 ,
1 5 .0 2 ,1 5 .2 2 ,1 5 .4 ,1 5 .7 8 ,1 6 .0 4 ,1 6 .4 2 ,1 7 .5 ,1 7 .6 8 ,1 7 .9 2 ,1 8 .8 1 ,
1 8 .9 5 ,1 9 .4 ,2 1 .0 ,2 2 .6 8 ,
2 .33  ,2 .7 6 ,  3 .1 2 ,  3 .2 1 ,  3 .3 5 ,  3 .3 8 ,  3 .4 2 ,  3 .5 ,  3 .5 1 ,  3 .5 6 ,
3 .6 ,  3 .6 6 ,  3 .7 ,  3 .7 4 ,  3 .7 9 ,  3 .8 2 ,  3 .9 5 ,  4 .0 ,  4 .0 4 ,  4 .0 8 ,
4 .1 4 ,  4 .1 6 ,  4 .2 3 ,  4 .3 2 ,  4 .3 3 ,  4 .3 9 ,  4 .4 5 ,  4 .5 6 ,  4 .6 4 ,  4 .7 ,
4 .7 4 ,  4 .8 6 ,  4 .9 ,  5 .1 7 ,
0 .7 ,  0 .9 7 ,  1 .0 3 ,  1 .05 , 1 .08 , 1 .09 , 1 .13 , 1 .1 4 ,  1 .2 ,  1 .2 1 ,
1 .24 , 1 .2 4 ,  1 .2 8 ,  1 .3 ,  1 .31 , 1 .31 , 1 .32 , 1 .3 4 ,  1 .34 , 1 .3 6 ,
1 .38 , 1 .39 , 1 .4 2 ,  1 .42 , 1 .44 , 1 .46 , 1 .49 , 1 .5 2 ,  1 .5 7 ,  1 .5 7 ,
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1 .6 2 ,  1 .6 4 ,  1 .68 , 1 .96};  

to t= n row (d ata ); 
in d = r e p e a t ( 0 , t o t ) ;
s t r e s s = { 2 .1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 ,
2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 ,

2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 ,

2 . 1 , 2 . 1 , 2 . 1 , 2 . 1 ,

2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6,
2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 ,

2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 , 2 . 6 ,

2 .6 , 2 .6 , 2 .6 , 2 .6,
3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 ,
3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 ,
3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 . 3 . 1 ,
3 . 1 , 3 . 1 , 3 . 1 , 3 . 1 } ;

Set starting values for the Weibull A L T  module. 

b=5.0; bet a = -2 .3; alpha=7.8;

Fit a Burr X II A L T  model

run buraccel;  

end; 
q u i t ;



Appendix B : Neighbouring  
Hypergeom etric Functions

Here, we seek to prove the recurrence relations between ‘neighbouring’ generalised hy
pergeometric functions. These functions were seen to be necessary when looking at censored 
data sets; see section 5.3.2.

Firstly, we have,
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as required. For the second recurrence relation, we have
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as required.


