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S u m m a r y

Infectious diseases remain a serious threat to human life and health as well as having 
important economical factor. One way of successful combating diseases is designing the 
most appropriate treatment plan following the correct diagnosis. Therefore, there is a 
need for a method combining reproducibility, precision and speed.

The aim of this work was to evaluate the potential of micro-Raman spectroscopy for 
identifying bacteria at different taxonomic levels, strains revealing different antibiotic 
resistance profiles, and for phylogenetic investigation.

The project was based on a selection of bacteria: Staphylococcus aureus (6571, 
Cowan 1), Staphylococcus epidermidis (1457, 9142), Escherichia coli including wild- 
types (strain B, K12, Top 10), transformants expressing ampicillin and kanamycin re­
sistance (ToplOAmp, ToplOKan) and clinical isolates expressing extended-spectrum beta- 
lactamases (ESBL).

Following a precise and detailed protocol, Raman spectra were recorded from bacterial 

colonies grown overnight on a Colombia Blood Agar. In order to remove background 
fluorescence, rolling-circle filter procedure was applied. The most critical peaks for dif­
ferentiation between organisms as well as for characterising each microorganism were 
determined. The spectral data were analyzed using principal component and cluster anal­
ysis techniques.

As expected, the degree of separation decreased in the order genus —>• species -A strain. 
It was determined that DNA/RNA, proteins and amino-acids are responsible for the dif­
ferentiation between strains on a lower level of similarity with more influence of the 

constituents of the bacterial envelope between more closely related organisms. Raman 

spectroscopy was capable of differentiating between susceptible and resistant strains as 

well as monitoring whether the organism has been grown under antibiotic pressure.

Based on triplex PCR, clinical isolates of ESBL strains were assigned to one of the 
phylogenetic group characterising Esherichia genus and it was revealed that within CTX- 

M TEM-1 there were two distinct clusters of D and B2 groups.
Overall we have demonstrated that the combination of micro-Raman spectroscopy, mi-



crobiology and bioinformatics has the potential for the successful discrimination of bac 
teria species and strains, for the determination of antibiotic resistance profiles and inves 

tigating phylogenetic grouping in a clinical environment.
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1. In t r o d u c t i o n



1. INTRODUCTION

1.1. Infectious Diseases
Bacterial infections remain a serious threat to human health causing morbidity and mor­

tality worldwide. The oldest evidence of infectious diseases include: Egyptian mummies 

carrying signs of smallpox, papyrus paintings depicting conditions such as poliomyeli­
tis (Brachman, 2003) and biblical passages mentioning leprosy and phraonic plague. In­

fectious diseases have been responsible for the extinction of whole civilisations for ex­
ample the Athens Plague which marked the end of Greece’s Golden Age or the spread of 
smallpox across Mexico during the geographical conquests in 16th century causing 10-15 
million deaths and therefore the end of Aztec civilisation (Morens et al., 2004).

Epidemics and pandemics have always been considered serious problems; three major 

outbreaks of plague, between 14th and I I th century were responsible for the death of 

more than 200 million people across the world (Tatem et al., 2006).
The Indian pandemics of cholera from 1817 onwards have since spread to seven ma­

jor subsequent outbreaks in China, Japan and Indonesia, reaching towards Russia, Ara­
bic countries and Americas. In the 1990s successive cholera epidemics in Africa and 
Latin America raised concerns that this disease was becoming endemic to these re­

gions (Code50, 2001).
Newly identified infections have also emerged in the last 100 years. Human immunod­

eficiency virus (HIV) causing acquired immune deficiency syndrome (AIDS) was identi­
fied in the 1970s which initiated a pandemic that remains and affects people on at least 
five continents (Tatem et al., 2006), Other newly recognised infectious diseases of the 
20th century include Legionnaire’s disease, toxic shock syndrome, Lyme disease, campy- 

lobacteriosis, infections by Escherichia coli 0157:H7, Vibrio vulnificus, Vibrio cholera 
0139, Helicobacter infections, Bartonella, Ebola, and Hantavirus infections and spongi­
form encephalopathies. Furthermore, in addition to emerging diseases, there is the se­
rious issues are re-emerging diseases, including epidemics of: diphtheria in early 1990s 

attacking many of the nations of former Soviet Union; Listeria affecting mainly pregnant 

women in early 1980s; and serogroup A Neisseria meningitidis causing 150,000 cases in 

1996 (Cohen, 1998).

Infectious diseases impact on human lives and cause disease resulting in significant 
morbidity and mortality however there are significant economic factors; the costs of treat­
ment therapies have been estimated to £6 billion per year in England itself (Troop, 2005).
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Figure 1.1.: Selected events in the history of infectious diseases, including the most adverse events and 
the most breakthrough discoveries and theories.

1.2. Antibiotics

In 1904 Paul Ehrlich, developed the idea o f a ‘m agic bullet' that w ould target pathogenic 

bacteria, w ithout influencing host m icrobes in his w ork to find a drug against syphilis, 

alm ost incurable at the time. In 1909 together w ith chem ist A lfred B ertheim  and bac te­

riologist, Sahachiro Hata, Ehrlich developed Salvarsan and later, its less toxic derivative: 

N eosalvarsan, w hich have been used successfully  until they were replaced by penicillin 

in the 1940s (A m inov, 2010).

The antim icrobial activity o f m ould has been appreciated since ancient times, how ­

ever the m ass production and distribution o f its active com ponents, for instance, pen i­

cillin began after its discovery by A lexander F lem m ing in 1928 (Flem ing & M aclean, 

1930) (A m inov, 2010). The vast num ber o f new antibiotics discovered in the golden age 

o f antibiotic production betw een 1950s and 1970s resulted in false perception o f co n ­

trolling infectious disease and in later decades to the present day the num ber o f novel 

antim icrobial agents released on the m arket has decreased considerably (Pelaez, 2006).
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1.3. Antibiotic resistance
Antibiotic resistance is the ability of microorganisms to become resistant to therapies used 

against them and results in larger doses of antibiotic needed to achieve the same effect or 
indeed that the effect is lost completely. It is now recognised as a major public concern 
due to higher mortality and morbidity among patients, as well as having an enormous 

economic impact (Smith & Coast, 2002). Antibiotic resistance was first observed through 

the action of bacterial penicillinase in 1940 by researchers working on the penicillin dis­
covery team, even before the newly-discovered penicillin was introduced as a successful 

therapeutic (Davies & Davies, 2010). Several factors cause antimicrobial resistance de­
velopment. One of the most common issue is the over-use and miss-use of antibiotics 
facilitated by: availability of over-the-counter antimicrobials distributed without proper 

supervision, medicines poorly manufactured causing low effectiveness and potency, ac­
cess to drugs sold on non-authorised permissions distributed by people with insufficient 
knowledge (Smith & Hinson-Smith, 2000).

1.4. Multi Drug Resistance
Multiple drug resistance (MDR) is the biggest problem facing medicine in the foreseeable 
future and is recognised as the biggest threat with respect to morbidity and mortality 
worldwide. Due to the MDR, the therapeutic options are reduced, extending the time of 
hospital care, adding to the costs of the treatment (Davies & Davies, 2010). Multiple 
drug resistance is caused when microorganisms exhibit multiple mutations, responsible 
for high levels of resistance to antibiotic classes, normally assigned for treating these 
microbes. In addition, bacteria possessing MDR often express increased virulence and 
transmissibility.

1.5. i-lactamases

The leading cause of resistance to /3-lactam antibiotics (e.g penicillin, cephalosporins, 

monobactams and carbapenems) is the action of antibiotic-inactivating enzymes, (3- 
lactamases, efficiently catalysing the irreversible hydrolysis of the amide bond of the 

/3-lactam ring resulting in deactivation of the drug (Essack, 2001). The genes for (3- 
lactamase enzyme are some of the most abundant, distributed worldwide, have ancient
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origin and have been detected in remote or desolate environments (Davies & Davies,

2010) Tem-1, also called type 1 /5-lactamase, is the most common /5-lactamase found in 

high copy number in naturally occurring plasmids (Yamamoto et al., 1982)

An important class of /5-lactamases are the extended-spectrum /5-lactamases (ESBLs) 

which are able to efficiently hydrolyse oximino-/5-lactams (Tzouvelekis et al., 2000). ES­

BLs are predominantly mutants of TEM and SVH enzymes, however CTX-M enzymes 

are gaining importance (Woodford et al., 2004) as a novel group of class-A plasmid- 

encoded enzymes (Tzouvelekis et al., 2000). Although CTX-M /5-lactamases have been 

claimed to constitute to one of the minor families of ESBLs (Gniadkowski et al., 1998), 

they gaining dominance over TEM and SHV groups in many European and Eastern Asian 
countries (Livermore et al., 2007).

CTX-M enzymes have been found in many bacteria, including species within Kleb­
siella, Citrobacter and Protus genera (Tzouvelekis et al., 2000) however most were re­
ported to be expressed by E. coli isolates (Canton & Coque, 2006).

1.6. Escherichia coli
Escherichia coli was discovered in the late 1800s by Theodore von Escherich in the gut 
and was originally named Bacterium coli commune (Rubino et al., 2011). This facultative, 
gram-negative bacterium belonging to the Enterobacteriaceae family is a normal inhabi­
tant of the intestines of most animals and is most prevalent in human faecal flora. Cer­
tain strains can be virulent and are responsible for a wide variety of intestinal and extra- 

intestinal diseases, including diarrhea, urinary tract infections, septicaemia and neonatal 
meningitis (Clermont et al., 2000; Johnson, 1991)

In the 1940, E. coli was the first species recognised to be expressing /5-lactamase ac­
tivity (Canton et al., 2008). E. coli clinical isolates have also been reported as the main 
organisms with CTX-M /5-lactamases activity (Canton & Coque, 2006; Tzouvelekis et al., 

2000)
Phylogenetic analysis showed that E. coli strains are distributed between four main 

phylogenetic groups: A, B l, B2 and D. The virulent, extra-intestinal strains fall predomi­

nantly into B2 group and less often to the group D, while most commensals can be found 

belonging to the group A (Clermont et al., 2000).

Within the B2 group, virulent, uropathogenic lineage ST131 can be found, of which 
most isolates in the United Kingdom produce ESBL CTX-M-15, However strains ex­
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pressing CTX-M-3 or AmpC were also reported.
Phylogroup D, with lineages including ST69, ST405 and 015:K52:H1 has shown to be 

able to produce TEM-, SHV- and CTX-M (Canton & Coque, 2006), namely CTX-M-15, 

CTX-M-14 ESBLs (Woodford et al., 2004) and to a smaller extent CTX-M-9 (Canton & 

Coque, 2006).
Phylogroups A and B 1 are mostly non-virulent, there have been reports claiming their 

capability of producing ESBLs with CTX-M-9 being predominant in group A and hyper­

expression of AmpC (Canton & Coque, 2006).

Within a widespread clone, single members may obtain and develop different resistance 

profiles resulting from various genes (Woodford et al., 2004).

1.7. Clinical Microbiology
The problem of emerging and re-emerging infectious diseases, coupled with the develop­
ment of antimicrobial resistance and lack of new advances or discoveries in the fields of 
vaccines or antibiotics is considered one of the most urgent and serious global threats.

The goals of cutting edge Microbiology are accurate identification and discrimination 

of microorganisms and furthermore the determination of antimicrobial susceptibility. In­
deed fast and effective identification of microbes has been proven as a method of limiting 
morbidity, mortality and time of hospitalization (Richardson & Small, 1998). Further­
more a delay in initiation of antimicrobial therapy, especially in severe cases, like the 

onset of a septic shock-related hypotension or meningitis, may contribute towards mor­

tality and morbidity among patients (Rivers et al., 2005; Tunkel et al., 2004). The rate 
of deaths can be significantly increased even by a 1 hour delay and therefore empirical, 
broad-spectrum antibiotic therapy is advised (Kumar et al., 2006). However, applying 
non-specific antibiotics can have adverse effects for the patients, like weakening the ben­
eficial microbial flora contributing towards fungal infections or increasing the risk of liver 

failure. Moreover, using an inappropriate antimicrobial agent can be a serious factor in 
the problem of raising antibiotic resistance among bacteria.

The experience gained from treating various other diseases, including cancer, allows for 

speculating that applying a correct and accurate diagnostic technique for fast and effective 

determination of the causative infectious agent might be the correct approach. This will 

allow for initiation of the most appropriate treatment reducing the effects of an infectious 
disease, and risks associated with misuse of broad-spectrum antibiotics (Bonomo, 2000).
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There are various diagnostic methods currently available involving detection of the 
infectious agent either directly, or indirectly and can be used in combination or indepen­

dently (Tallury et al., 2010).

1.7.1. Microscopy related methods

Simple visual examination through light microscopy involves microbiological stains, such 

as Gram and calcofluor white and is based on comparison of the observed results with a set 

of standard organisms described as controls. Several modifications are currently available, 

involving using fluorescent microscopy for sample stained with specific dyes of particular 

excitation.
The advantages include the fact that the sample can be derived straight from the pa­

tient in a form of sputum, blood, urine, stool, etc. (Tallury et al., 2010), therefore the 

identification if successful, could be achieved instantly, without any time delays. In re­
ality, microscopic examination is hardly ever fully conclusive on its own for diagnostic 

purposes.

1.7.2. Microbial culture-based methods

The most common approach allows the pathogen to grow in a specific growth medium and 
is characterised based on size, shape, colour of the colony formed and the changes brought 
by their growth (Tallury et al., 2010). There is a wide range of media available, including 
liquid and solid, which can be prepared or pre-made. Among the most commonly used 

agar plates are blood, chocolate, and MacConkey and chromometric plates. More recent 
innovation are chromometric plates changing colour upon the growth of the organism of 

interest.
Culturing methods can also offer susceptibility testing when the antimicrobial agent is 

added onto or into the medium.

One example is serial dilution method when series of tubes, or wells on microdi­

lution plates, containing different dilutions concentration of antibiotics in the liquid 

growth medium is prepared allowing for determination of minimal inhibitory concen­

tration (MIC), i.e. the concentration of antibiotic preventing the growth of bacteria. The 
advantage is obtaining a quantitative result however manual preparation of the assay is 
tedious, burdened by errors as well as time-consuming, requiring plenty of storage space 

and single-use reagents (Jorgensen & Ferraro, 2009; Stefaniuk et al., 2005)
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The antimicrobial gradient method is based on a gradient of antibiotic in an agar 

medium, which can be achieved by placing commercially available plastic strips impreg­

nated on the underside with a dried antibiotic concentration gradient and marked on the 
upper surface with a concentration scale. MIC is determined by the intersection of the 
lower part of elliptical growth inhibition area with the test strip placed for an overnight 
incubation on a previously inoculated plate. This method serves best when limited antibi­
otics are used, it is reasonably fast and very simple, nevertheless certain bacteria-antibiotic 

combinations prove difficult to work with in this assay.

Disk diffusion test requires inoculating bacteria on a Muller-Hinton plate and plac­
ing round, commercially prepared, fixed concentration, paper antibiotic discs. After an 
overnight incubation, the zones of growth incubation are measured to the nearest millime­
tre. This test is very cheap with no additional equipment required and has been standard­
ised for a few organisms. The disadvantages include lack of automatisation and problems 

with the fastidious or slow growing organisms (Jorgensen & Ferraro, 2009).

1.7.3. Biochemical tests

The identification of some organisms can be based on the detection of a metabolic or en­
zymatic products characteristic for that organism (Tallury et al., 2010). One of the most 
popular biochemical tests is a commercially available API® kit, subjecting microorgan­
ism to a series of biochemical identification tests and based on the results of the reactions 
the tested sample is compared against a database. Biochemical tests are regarded as reli­
able, however they may not provide full information at the species level, while decisions 

involving strains is not possible. The process is also time-consuming and introduces a 
requirement for cell culturing, in order to obtain sufficient biomass of around 106 - 108 
cells for subsequent tests (Carbonnelle et al., 2011).

1.7.4. Immunoassays

Immunodiagnostics is possible due to the fact that bacterial cell surfaces display a variety 
of antigenic molecules including protein and polysaccharides. The polyclonal antisera 

are designed as mixture of antibodies with multiple specificities to interact with various 
molecules expressed by the bacteria. Currently available assays using polyclonal antis­

era and monoclonal antibodies include: agglutination assays, enzyme linked immunosor- 
bant assays (ELISA), Western blots, immunoflourescence or immunoflourescence colony
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staining, and lateral flow devices. Many modifications and various applications allow for 
achieving high specificity in this field, however there is still possibility of cross-reactions 

with unrelated species (Alvarez, 2004) lowering therefore the sensitivity and negative pre­
dictive value. In addition they also include the culturing step a major disadvantage for an 
instant diagnosis (Richardson & Small, 1998).

1.7.5. Molecular diagnostic methods

Advances in the field of genetics lead to the involvement of monitoring the changes in 

genomic and proteomic structure for identification of the pathogen of interest (Davis et al., 
2010; Tang et al., 1997).

Nucleic acid testing can be divided into amplified and non-amplified methods. The 
latter group can either be based on DNA- or RNA-labelling with probes that generate a 
recognised signal upon specific base pair binding. The advantages of this method include 
no risk of contamination of the subsequent samples with amplified material.

The amplification based techniques can be subdivided into: signal amplification, focus­
ing on generating multiple copies of signalling molecules either through branched DNA 
or hybrid capture assays; and target amplification including polymerase chain reaction 

(PCR) and transcription-mediated amplification (TMA) (Muldrew, 2009; Pfaller & Her- 
waldt, 1997). In addition an important step in amplification-based molecular methods is 
post-amplification analysis, including sequencing (Muldrew, 2009).

DNA-amplification methods are prone to false-negative results, because of the pos­
sibility of introducing inhibitors; as well as false positive results due to contaminating 

sample with foreign DNA during sample collection or preparation. Furthermore, high 
costs, complexity, no peer-reviewed database and lack of clear, straightforward interpre­
tation of result, all make sequencing methods less than ideal for meeting novel diagnostic 

requirements (Carbonnelle et al., 2011).
In the clinical environment, molecular methods did not achieve the anticipated status 

and for the disadvantages listed above, are not commonly used. Mainly due to the fact 
that hospital testing, in order to avoid any inappropriate results, requires using a ‘3 room 
purity’ rule: Ist room serving as prep-room, 2nd - clean room where the original, whole 
sample is not allowed, so the space may be free from any amplicons and finally 3rd where 

the PCR is conducted.

All these negative points leave molecular diagnostics as the second line of diagnostic 

techniques playing a role in confirmation following initial microbial identification.
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1.7.6. Automated Systems

The advances of technology offered applications of automated and semi-automated 

tools, like matrix-assisted lased desorption ionisation-time of flight mass spectrometry 

(MALDI-TOF) (Ferreira et al., 2010) or several systems offering susceptibility testing; 

eg. Phoenix (Carroll et al., 2006b) (Horstkotte et al., 2004), VITEK1 (Hall & Fluit, 2002), 

VITEK 2 and MicroScan (Wiegand et al., 2007).

1.7.6.1. Phoenix system

The Phoenix system offers determination of both Gram-l- and - bacteria and assesses their 
antimicrobial minimal inhibitory concentrations (MICs) through an automated test and 
is used in many hospitals. Its main advantages, besides automation, are: relatively short 
incubation times, ability to test up to 100 identification and susceptibility test combina­
tion panels in a single measurement. In this method, identification of microorganisms is 
performed based on avariety of colorimetric and fluorometric bacterial indicators, while 
the susceptibility test uses optimised Mueller-Hinton broth base with a redox-indicator 
involving red, green, blue and fluorescence readings. Once all the data is collected, it 
is then comparatively analysed and compared with the Phoenix database (Reuben et al., 
1999). However many publications claim satisfying results obtained with this system, 
there are certain reports of poor performance when a combination of unusual and more 
clinically common organisms are tested (Carroll et al., 2006a).

One of the most significant drawbacks of this system is the fact that panels are relatively 
expensive. Taking into account, how many tests are done routinely in a hospital laboratory 
each day, it would not be plausible to test every sample using the Phoenix.

1.7.6.2. Vitek 2

The Vitek 2 System (bioMerieux), which is a modernised version of Vitek 1 (the dif­

ference in holding less samples for a single run and lack of Streptococcus pneumoniae 

test), is highly automated and uses microliter quantities of antibiotic and test media for 
turbidimetric monitoring of bacterial growth during shortened incubation period. The sys­
tem can be optimised for 30-240 simultaneous tests for common, rapidly growing, gram- 

positive and gram-negative aerobic bacteria, and S.pneumoniae in 4-10 hours (Jorgensen 

& Ferraro, 2009). Despite the speed and large sample size available, the system has been 
reported as burdened with certain inaccuracies, especially for S.epidermidis (Kim et al.,
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2008).

1.7.6.3. Matrix-assisted laser desorption/ionisation-time of flight 
(MALDI-TOF) m ass spectrom etry

MALDI-TOF-MS is based primarily on detection of the mass-to-charge ratio of the anal­

ysed sample, which is presented in a form of a spectrum serving as a unique fingerprint. 
It has been used for profiling proteins from cell extracts and has been proven functional 

on the grounds of differentiation between bacteria. This technique requires bacterial 

lysates to be converted from their normal condensed phase, into intact separated ion­

ized molecules in the gas phase. The molecules then migrate in an electric field and are 
described by: their molecular mass and charge, mass/charge ratio and relative intensity of 
the signal. (Carbonnelle et al., 2011). The results are then compared with the database. 

Laboratories using this technique can create their own library of organisms and thus ex­
pand the applications of this method (Eydmann et al., 2011). One of the most important 
features of this technique is the time of the procedure. The stainless steel plate can hold 

up to 96 organisms and the total time needed for sample of this size would take under 2 
hours (Eydmann et al., 2011). It is of a great importance to carefully control the growth 
conditions and standardise the sample preparation procedures, as the same species can 
give different mass spectra. MALDI-TOF-MS analyses phenotypic characteristics, which 
may vary with culture media and incubation times as well as with different chemical ex­
traction methods (Carbonnelle et al., 2011). Although the costs of the consumable matrix 
and extraction solutions are very low, the cost of purchasing an instrument and service 

costs, may still be out of reach for most clinical laboratories at present (Eydmann et al.,

2011).

Another drawback is the fact that this technique has not been officially confirmed to 
be effective in antimicrobial susceptibility testing to date. There are on-going research 

attempts to involve this factor in optimising MALDI-TOF-MS (Carbonnelle et al., 2011).

Generally, despite numerous advantages, there are several considerations arising from 

using automated systems for clinical testing. Among the most common and important 

obstacles are: 1) strains within one species may differ in terms of particular characteristic 

which may not be recognised 2) isolates that are not fresh, may fail to exhibit expected 

biochemical features 3) subjecting the host to a long antimicrobial therapy may affect 

the biochemical patterns of the isolates 4) there may be lack of reproducibility within 
the same strain 5) the limitations of number of species in the database 6) phenotypic
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variations may induce inaccuracy of identification on a species level 7) systems based 

on phenotypic identification often suggest 2 or more designations of similar probability 

levels (Kim et al., 2008).

1.7.7. The flow in the modern diagnostic laboratory

Medical microbiology assists physicians in caring for patients, by examining appropri­
ate specimens, directly relevant in the diagnostic process (Richardson & Small, 1998). 
For this reason, hospital diagnostic laboratories have standard operating procedures for 

processing biological specimens safely, efficiently and confidentially.

Following sample collection from a patient, key details are reported including personal 
details such as name, health care number/NHS number, date of birth, ward, GP name and 
number, type of specimen, time the sample was taken, tests required, and other relevant 
clinical data including any antibiotic treatment and possible risk status. Such information 
could influence the final diagnosis (Waghom, 1995). To ensure confidentiality, the details 
are saved into a computer and the sample is given a specific number instead of being 
marked with personal details.

Biological samples can be varied and complex therefore hospital laboratories are usu­
ally divided into departments processing different materials.

Modem clinical microbiology laboratories need to deliver rapid and robust decisions 
to physicians regarding the identity and antibiotic susceptibility of microorganisms iso­
lated from patients suspected of an infectious disease. Furthermore the need for rapid 
identification and determination of the potential consequences of the microorganism for 

the hospital population and the community (Isenberg & Berkman, 1962), together with 
the disadvantages of currently available techniques, require investment in testing further 

novel options for fast reproducible methods of diagnosis.
There are certain desirable qualities that a novel diagnostic method should possess in­

cluding but not limited to; i) rapid characterisation with the access to a stable database; 

ii) easy to use; iii) automated analysis of series samples; iv) low costs; v ) , reproducibil­
ity and accuracy vi) minimal sample preparation on a single cell level; vii) omitting the 

pre-culturing step while retaining the antimicrobial susceptibility testing; viii) tailoring 
personalised therapy in one single rapid measurement. Currently approved techniques, 

do not offer all these requirements however further methods require confirmation as to 

their potential role in the diagnostic process.
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1.8. Raman Spectroscopy - the novel approach to 

diagnosis

1.8.1. Introduction to the spectroscopic methods

Spectroscopy is a broad field that can be utilised in various different ways, in particular 

for studying m olecular com positions.

N uclear M agnetic R esonance (N M R ) is a spectroscopic technique that has been w idely 

used in m edical and biological studies, including diagnostics. The dow nside is the usu ­

ally too rich inform ation content, requiring tim e-consum ing post-analysis perform ed by 

highly specialised personnel, as well as the low cost-efficiency.

Vibrational spectroscopy provides m uch higher and w ell-defined spectral inform ation 

than electron-level spectroscopy but does not require specific labelling. A dditionally, the 

equipm ent is sim pler, cheaper and more m obile than required by NM R. The two m ain 

types o f vibrational spectroscopy are: infrared absorption spectroscopy (IR and Fourier 

transform ed infrared - FTIR) and Ram an Spectroscopy. IR represents very high intrinsic 

sensitivity and relatively low cost equipm ent and its qualities gained high interest in the 

field o f analytical chem istry (E frim a & Zeiri, 2009). Ram an Spectroscopy stem s from  the 

discovery o f the done in 1928 by C handrasekhara Venkata Ram an, aw arded w ith a Nobel 

prize only two years later.

Excited electronic 
state

Virtual energy 

levels

Ground electronic 
state

v

IR Rayleigh Raman Raman PreresonanceResonanceFluorescence 
Anti-Stokes Stokes Raman Raman

Figure 1.2.: Diagram comparing different types of spectroscopy
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Raman Spectroscopy is based on the fundamental principle of the exchange of en­
ergy between the light and matter. The Raman effect involves transfer scattered and 

not absorbed light, of the frequency equal to the vibrational frequency of the scattered 

molecules (Hanlon et al., 2000).
Raman Spectroscopy is often compared to infrared spectroscopy. However, while IR 

detects vibrational modes from asymmetrical vibrations, Raman spectroscopy bands arise 

from symmetrical vibration (Jarvis & Goodacre, 2008). Thus since water molecules are 

asymmetrical, they have very low Raman signal and therefore do not interfere with peaks 

from other molecules of interest within a sample. Effectively, Raman spectroscopy can 
be used to investigate aqueous solutions which is a quality particularly useful for biolog­
ical systems. Further advantages of Raman over IR include: improved spatial resolution, 
as infrared wavelengths (3-15/im) are insufficient for useful cells imaging (10/im diame­
ter) (Downes & Elfick, 2010). In addition Raman spectroscopy can be coupled to confo- 
cal microscopy systems employing shorter wavelengths of incident light to its diffraction 
limit. Furthermore Raman peaks are usually narrower than IR, and therefore detailed, 
so that chemical information from a wide range of excitation wavelengths can be eas­
ily generated. IR generally uses lower power sources and detectors producing complex 
background noise. Raman Spectroscopy benefits from applications enabling experimen­
tal measurements to be taken for prolonged periods without damaging samples such as 
bacterial specimens (Samek et al., 2010b,c). The sensitivity of this method also allows 
for shortening the time required for sample preparation, which benefits the speed of spec­
tral acquisition (Samek et al., 2010b,c). Raman Spectroscopy is therefore considered a 

non-invasive, label-independent technique.

Raman systems usually include four basic elements: light source, disperse element, 
detector and a computer. A monochromatic, polarised fight (laser beam) is focused on 
the sample. The fight scattered from the sample is focussed on the entrance slit of a 
monochromator and dispersed. The disperse element differentiates between stronger scat­

tered fight by elastic scattering (the Rayleigh scattering) of frequency matching the laser 

beam and much weaker inelastic scattered fight (the Raman scattering) of different fre­
quency and related to bond vibrations. The photoelectric system then detects the intensity 

of the scattered, frequency-shifted fight and the resulting signal of the detector is amplified 

and converted to be appropriate for plotting against frequency (Fabian & Anzenbacher, 

1993).
Raman Spectroscopy most often involves a laser wavelength of 523 nm (diode-pumped
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frequency doubled Nd:V) or 785 nm (AlGaAs diode), therefore a lateral resolution higher 

than half the wavelength (230-350 nm) can be achieved. This sub-cellular resolution is 

comparable to what fluorescence microscopy offers and is much higher than the minimum 

resolution (~0.1-10nm) available from current medical diagnostic tools involving ultra­

sound, Magnetic Resonance Imaging, Positron Emission Tomography or X-ray. After 

losing its energy through exciting a molecular vibration the laser light is then red-shifted 

to a lower energy and is passed through a spectrometer, which disperses the light into a 
spectrum, recorded with a cooled CCD camera.

The difference between the frequency of the incident laser light and the red-shifted 
light is equal to the frequency of the vibrational bond. Each molecule has a unique ‘fin­
gerprint’ of Raman peaks at precisely determined frequency. Biomolecules contain nu­

merous molecular bonds, which can be excited in the range of ~600-3,000cm-1. The 
spectrum then shows the properties of numerous bonds in the sample of interest rather 

than identifying molecules.
A single spectrum can be acquired from a small sub-cellular volume or averaged over a 

larger area. The time of spectral acquisition is usually between 1 and 10s, with the longer 
wavelengths giving a shorter time, while shorter wavelengths are absorbed more strongly, 
resulting in temperature rises during the exposure of sample to the laser light (Downes & 

Elfick, 2010).
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Figure 1.3.: Schematic representation of Raman System coupled with microscope.

1.8.2. Modifications and Types of Raman Spectroscopy

Several disadvantages associated w ith norm al Ram an spectroscopy and include; i) inher­

ent w eak intensity and; ii) corresponding low sensitivity; iii) problem s with selectivity 

in term s o f very high variability o f biological milieu. These problem s have resulted in 

m odifications and enhancem ents to the technique.

1.8.2.1. Micro-Raman Spectroscopy

An im portant advance in applying R am an spectroscopy for broad use was coupling the 

traditional system  setup with a m icroscope. This allow ed the region o f interest to be tar­

geted w ith the use o f objectives providing an appropriate num erical aperture. Further 

incorporation o f confocal m icroscopy allow ed for m uch higher spatial resolution o f the 

studied sam ples. B iological studies becam e sim plified and 3-dim ensional im age trans­

lation was finally possible. Indeed as the confocal pinhole im plem ents geom etry this 

results in only selected photons being collected after scattering before reaching the de­

tector and thus high precision is achieved and additional, spatio-tem poral inform ation is 

given for identification and quantification. W hen the laser is guided through an objective
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lens, a near-diffraction limited spatial resolution and increased collection efficacy can be 

achieved. Choosing the right wavelength and objective can provide a very good spatial 

resolution, but also remain non-invasive, maintaining sample integrity and allowing for 

direct measurements in either air or aqueous solution, which is especially important for 

biological samples. Micro-Raman spectroscopy has therefore enabled molecular structure 
and composition analysis on multiple focal plans (Mariani et al., 2010).

Micro-Raman spectroscopy can also benefit from fluorescent staining, however the 
technique is not as straightforward as using plain fluorescence microscopy, since the 

fluorescence effect can often mask the much weaker Raman process. This may enable 
differentiation between biotic and abiotic or living and dead cells, therefore Raman spec­

troscopy can be selectively used to only the relevant elements within the sample (Krause 
& Radt, 2007), especially when the laser excitation wavelength is chosen outside the flu- 
orophore adsorption band (Krause et al., 2008).

1.8.2.2. Fibre-optics

To record spectra from remotely situated samples another important Raman Spectroscopy 
enhancement was developed and is based on using fibre-optic probes. This modifica­
tion has found use for the monitoring of environmental pollutants in a range of aqueous 
solutions, solids and slurries in hostile environments (Gerrard, 1994).

1.8.2.3. Surface Enhanced Raman Spectroscopy (SERS)

Since Raman Spectroscopy uses only very rare incidents of photon-matter interactions, 

the signal can be rather weak. Surface-enhanced Raman Spectroscopy gives rise to a sig­
nificant enhancement of the electromagnetic field which results in amplifying the power 

of the laser wavelength like an antenna and acts like a transmitter to enhance the Raman- 

shifted signal. Amplification can be achieved due to either adsorption or proximity of the 

sample to a metal substrate including: roughened metal surfaces, colloidal solutions or 

roughened electrodes. The enhancement can be from several orders of magnitude to as 

high as 1014 (Jarvis et al., 2004). The chemicals regularly used to form substrate colloids, 
are gold or silver nanoparticles. In order to avoid the molecules clumping they can be 

coated with a surfactant or encapsulated in a polymer which itself acts as an additional 
enhancement. Apart from significant signal strength enhancement, studies suggest that 

SERS can quench fluorescence (Jarvis et al., 2006) and therefore improve the signal to 

noise ratio during Raman measurements (Efrima & Zeiri, 2009).
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Limitations associated with this particular enhancement are related to the melting of 
particles, even below lmW laser power, in a diffraction-limited focal spot. Furthremore 

the non-uniform nature of nanoparticles can often present spot-to-spot variations. There­

fore in order to ensure their quality an additional step is required, which, together with the 
time required for preparation of the substrate suggest that this technique is less suitable 

for clinical diagnostic laboratory.

1.8.2.4. Tip-Enhanced Raman Spectroscopy (TERS)

This innovative technique is based on an enhancement effect produced at the apex of a 

sharp gold-coated atomic force microscope tip. The resolution reaches lOnm and has been 
used for scanning carbon nanotubes, which produce robust Raman scattering (Can£ado 
et al., 2009). When applied to biological molecules with weaker Raman scattering it is 

likely more time for spectral acquisition may be required (Stockle et al., 2000). However, 
heating of the gold tip by absorption, limits the usable power to < /iW because of boiling 

of the water film around the tip apex (Deckert, 2009).

1.8.2.5. Resonant Raman spectroscopy

Resonant Raman spectroscopy (RRS) is characterised by excitation at ~250nm and al­
lows for intense, almost fluorescence-free spectra. RRS produces a particularly intense 
effect for conjugated aromatic molecular moieties, suggesting the advantage of simplicity 
but this can also distort the ability of distinguishing based on the presence of nucleic acid 
bases in all organisms. In addition the high cost and complexity of the equipment required 

may limit the usefulness of this technique (Robert, 2009).

1.8.2.6. Ultra-Violet Resonance Raman Spectroscopy (UVRRS)

Resonance Raman spectroscopy enables choosing the excitation wavelength to match an 

absorption maximum, especially in the near ultra-violet range (~200-300 nm). UVRRS 

can serve as a tool for the determination of secondary structures of biologically relevant 
molecules (Jarvis & Goodacre, 2008). UV laser excitation however can have a very ad­

verse effect on live cells due to very strong absorption (Tang et al., 2007) (Manoharan 

et al., 1990).
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1.8.2.7. Coherent anti-Stokes Raman scattering (CARS)

CARS, instead of using high-frequency electromagnetic radiation for exciting a low fre­

quency molecular vibration, like it happens with the visible light, applies two different 

laser frequencies. The difference between those frequencies can be matched with the 

vibrational frequency of the scanned molecule. Enhancement of 5 orders of magnitude 
can be achieved and images of high quality can be generated in very short time. CARS 

uses wavelengths shorter than any of the pump wavelengths, hence it is unaffected by 

fluorescent background (Dudovich et al., 2002).

The drawbacks of this method are related to the high-intensity laser pulses which can 
promote two-photon fluorescence and even lead to cell damage. High levels of the CARS 
signal do not necessarily guarantee better signal-to-noise ratio because of laser fluctua­
tions and the presence of a strong non-resonant background (Petrov et al., 2007).

1.8.2.8. Laser Tweezers Raman Spectroscopy (LTRS)

Optical tweezers and confocal tweezers Raman Spectroscopy overcome the need for im­
mobilising motile samples (such as cells) which could have an effect on the final spectra 
focused laser beam. Instead, the particle is captured by a laser trap for sufficient time 

to generate a spectra. A large Raman signal from the trapped cell is generated since the 
cell is trapped in the focus of the excitation beam, which permits optimum excitation 
and collection for Raman scattering in confocal configuration. Meanwhile, stray light 
and fluorescence background from the cell culture plate can be effectively reduced since 
the cell can be manipulated well above the cover plate (Xie & Li, 2003). Therefore using 

optical tweezers has become a powerful tool which is able to capture and manipulate parti­
cles including single biological cells, spores, discrimination and sorting microorganisms, 
viruses, mitochondria, red blood cells, analysis of human lipoproteins and chromosomes 
as well as dynamic accumulation of recombinant proteins produced in a single living 
cell in a solution (Xie et al., 2007). There is however a possibility of damaging samples 

through optical trapping unless low power and appropriate wavelengths are used (Xie & 

Li, 2003).

1.8.3. Raman spectra processing

The interpretation of Raman spectroscopic results can be obstructed by many factors. The 

data can often be hindered by the broad background signal mostly due to fluorescence
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from organic molecules and contaminants. The intensity of fluorescent background is 

usually much higher than the weak Raman signal in biological samples, and therefore the 

subtraction of background is an essential process to extract reliable analytical information 

from biomedical Raman data (Hutsebaut et al., 2006; Kourkoumelis et al., 2012). In ad­
dition the information gained from Raman spectroscopy, especially when related to very 

complicated samples, including biological specimens, can result in very complex spectra. 
Comparing a high number of Raman peaks in multiple samples is therefore a significant 
process that is a critical step towards obtaining final results. Numerous methods exist 

for spectra analysis which need to be carefully chosen to avoid losing any information 
available, however it should also be straightforward and rapid.

One of the most widely used methods for analysing Raman spectra is Principal Com­
ponent Analysis (PCA) (Hutsebaut et al., 2006; Jarvis et al., 2004). The spectra are rep­
resented as data groupings of similar variability, allowing the identification and differen­

tiation of investigated samples. This approach is widely used to evaluate the possibility 
of discriminating different data sets using scatter plots. PCA as a method of multivari­
ate analysis which allows the reduction of the number of variables in a multidimensional 
dataset, while still retaining most of the variation within the dataset (Fan et al., 2011). 

The order of the principal components (PCs) denotes their importance to the dataset. PCI 
describes the highest amount of variation, PC2 the second highest, and so on. Generally, 
the first three PCs represent the highest variance present in the data sets, up to 99%, giv­
ing the best visualisation of the differentiation of the different clusters. (Bonnier & Byrne, 
2012)

Further processing of the results obtained from PCA can be done with several different 

techniques. One of them is based on applying an F-test to individual components to select 
the most significant PC’s (p<0:05) which then can be subjected to linear discriminant 
analysis (LDA) (Hutsebaut et al., 2006; Maquelin et al., 2000, 2002). These results may 
also be presented as dendrograms of a hierchical cluster analysis (Maquelin et al., 2000,

2002) where the level of relatedness between samples is shown.

1.8.4. Applications of Raman Spectroscopy in various fields

There are many applications for Raman Spectroscopy across numerous disci­
plines. (Kneipp et al., 1999).
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1.8.4.1. Sample purity and composition

1.8.4.1.1 Analytical chemistry

Raman spectroscopy was developed and used for chemical and analytical purposes. It 
enabled the examination of materials, for their lattice strain, particle size, and impurities 

inclusions. Hence it can be used as a qualitative technique for characterisation of samples 

like diamond (Haque et al., 1998) or various other crystals (Basiev et al., 1999).
Interestingly Raman spectroscopy can separate polymorphs through recognising dif­

ferences between symmetries within the crystals. In addition, when using high spatial 

resolution, crystallites, including single crystals can be analysed, making this technique 
a very valuable tool in mineralogy (Triebold et al., 2010). Furthermore, Raman spec­

troscopy can be used for analysis of chemical compounds, such as TiC>2 which is present 

in paint pigments, toothpaste and many rock formations (Triebold et al., 2010); or SiC 
used in extreme (high temperatures and power) semiconductor. Raman Spectroscopy 
may be a very valuable tool for investigating nanocrystalline and amorphous phases of 
materials that are subjected to highly localised stresses (Kailer et al., 1999).

1.8.4.1.2 Forensic Sciences

Raman spectroscopy has proved useful in forensic science as it does not require any sam­
ple preparation, is non-destructive, and can examine samples through plastic packaging 
or even in glass containers. In this application samples may be almost any size, and will 
often be aqueous solutions. Raman spectroscopy is therefore convenient for detection of 

drugs, explosives, fibres, paints, pigments, inks, gunshot residues, fibres, forgeries and 
fakes (Lepot et al., 2008). Another application is scanning pathology specimens for the 

differentiation of foreign materials in tissues (Samek et al., 2010b,c).

1.8.4.1.3 Pharmaceutical

There are many ways Raman spectroscopy can benefit pharmaceutical analysis (Fini, 

2004). Scanning for polymorphism is a very common use in this field, since unanticipated 

polymorphic changes of a drug substance can influence chemical and physical stability, 

solubility and bioavailability (Starbuck et al., 2002).
Raman spectroscopy can be applied for monitoring spatial distribution of drugs in solid 

dispersions and recognising possible changes like recrystalisation, which may seriously
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affect the effectiveness of a drug. Investigation may involve distinguishing between lay­
ers, areas and quality of mixing during the manufacturing procedure (Vankeirsbilck et al., 

2002).

Tablet coating is an essential process that is carefully monitored where Raman Spec­
troscopy has proven successful, non-invasive and rapid. Thus the Process Analytical 
Technology tool for in-line quantitative monitoring of tablet coating directly, rather than 
relying on indirect physical evidence, like the weight gain has been shown to be particu­

larly effective (De Beer et al., 2011; Hagrasy et al., 2006). Spectral data have even been 

obtained from drugs directly inside blister packs. Some very subtle differences have been 
identified between different crystal forms of a compound or crystalline and amorphous 

forms. It is possible that Raman spectroscopy, after several adjustments and normalisa­
tion, could also serve as a quantitative analysis of drugs (Vankeirsbilck et al., 2002).

1.8.4.1.4 Art and archeology

Raman spectroscopy can be used for identifying materials found within particular arte­
fact or a piece of art, this was used for instance to create pigment databases which are 
currently available online (Vandenabeele et al., 2007a,b). Such information can serve 
different purposes including dating, future restoration processes or act against forgeries 
(Chaplin et al., 2002). Raman spectroscopy can also give an insight into the mechanisms 
of atmospheric corrosion, as the structural imaging enables clear description of material 
micro-heterogeneity and organisation (Bellot-Gurlet et al., 2006).

1.8.4.2. Physical properties

1.8.4.2.1 Semiconductivity

Raman spectroscopy used at ambient pressure can be used as an alternative technique for 
thermoelectric measurements at high pressure for semiconductor microsamples. Its sen­

sitivity allows for performing ‘nano-identification’ of surfaces and for conducting simul­
taneous co-existence of different phases within the sample. These properties are useful 
for important testing, characterisation and quality control (Ovsyannikov et al., 2004).

Raman spectroscopy can serve for investigation of ‘strain’ in bent nanowires (Chen 
et al., 2010) while characterisation of crystalline nanostructures in silicon nanowires 

(SiNW) can show confinement signatures typical of quantum wires (Piscanec et al., 2003). 

Raman spectroscopy was also used to examine SiNWs grown on different materials to
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exhibit characteristic thermal conductivities (Lopez et al., 2011) (Khorasaninejad et al., 
2012).

1.8.4.3. Bio-Medicine

There are several characteristics qualifying Raman spectroscopy as particularly useful for 

biology and medicine. Apart from high precision and preservation of the sample it also 

offers significantly decreased time of measurement, as living cells and tissues sections 

are of high sensitivity. Additionally, when the excitation frequency chosen is near the 
frequency of electronic transition of the molecule, Raman intensities may be enhanced by 

several orders of magnitude, which allows for examining even relatively diluted samples.
The main disadvantage of using Raman for biological samples is fluorescence, which 

even in small amounts can significantly obscure the spectra (Petry et al., 2003). One way 

of overcoming this problem is longer irradiation of the sample with the laser, which does 
carry a risk of sample damage. If the problem is related to fluorescence causing impuri­
ties, those can be removed prior to the measurement, and if fluorescence is intrinsic to the 
sample, a background correction analysis may be of help. Raman spectroscopy can deter­
mine the content of a biological sample through measuring the ratio of protein, enzymes, 
lipids and nucleic acids. Such results inform on structure and dynamics of biological 

samples. Scanning essential life molecules can be used as a library and references for any 
further research (Fabian & Anzenbacher, 1993).

Micro-Raman, in particular, has provided a wide range of benefits for biological use due 
to its high level of technical flexibility. Using a microscope offers flexibility to change 

objective lenses and readily apply different wavelengths making this technique applicable 

to wide varieties of studies, while fully automated xy maps and line scans can maintain 
the spatial and temporal resolution. The results are Raman spectral images giving direct 
insight into the composition of the analyte with resolution on a molecular level, resulting 

in very objective view of pathology or even cell functionality. Single point and imaged 

samples can therefore provide a complete chemical snapshot of the sample, including the 
presence of DNA, RNA, protein, lipid and carbohydrate content. Quantitative and quali­

tative results are obtained when emission or adsorption patterns, distinct for all functional 

groups and organic compounds, are measured.
The ease of use and numerous applications of Raman spectroscopy permits for samples 

to be fixed, dried, analysed alive or even measured in vivo, reducing the need for biopsies. 
Minimum sample processing allows also for further sample analysis like IR spectroscopy,
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traditional histology and gene expression analysis for result comparison. This combi­
nation of methods, provides even more understanding of the measured sample (Mariani 

et al., 2010).
The study by Pereira et al. showed the use of Fourier-transform Raman spectroscopy 

for identification of phycocolloid produced by seaweed (Pereira et al., 2003), while Huang 

et al. and Samek et al. proved that Raman spectroscopy can be successfully used for char­

acterisation of lipid storage within algal cells (Huang et al., 2010; Samek et al., 2010b,c). 
Raman spectroscopy has proven useful especially in diagnosis and has given successful 

results in cancer research for intestinal, breast, uterine, laryngeal, skin and brain malig­
nancies as well as studies of skin, detection of malignant and pre-malignant lesions or in 
arteriosclerotic research through characterisation of atherosclerotic plaques by quantifi­

cation of cholesterol and cholesteryl esters (Choo-Smith et al., 2002).

1.8.4.4. Raman spectroscopy in the field of Infectious Diseases

1.8.4.4.1 Colonies and biomass

Studies suggest that Raman micro-spectroscopy possesses the ability for recognising spe­
cific structures within microbial organisms and can therefore discriminate between bacte­
ria at the genus and species levels.

Micro-Raman is particularly useful for monitoring bacterial samples in the form of 
colonies on agar plates. It was possible to distinguish between Micrococcus luteus, Bacil­
lus subtilis and Pseudosomonas fluorescens (Rsch et al., 2003) as well as between E. coli, 
S. aureus and between strains of S. epidermidis relevant to medical device-associated in­
fections (Samek et al., 2008). In addition, further differentiation between the properties 
of biofilm forming S. epidermidis 1457 and non-biofilm forming 1457-M10 mutant was 
also possible (Samek et al., 2010b,c).

An important quality offered by Raman spectroscopy is limiting the time of culturing 
to increase the speed of diagnosis. Thus instead of growing full size colonies, micro­

colonies can be scanned. This has proven successful through examination of E. coli, S. 
aureus, S. epidermidis and Enterococcus faecium  strains cultivated on solid media for 
only 6h (Maquelin et al., 2000) and also for the large collection of bacterial and fungal 
organisms collected from patients (Maquelin & Kirschner, 2003).

In contrast to using colonies or microcolonies sample preparation by smearing bacterial 

biomass, obtained after cultivation, on a chosen substrate, has been examined in several 

studies. Spectra taken from several different strains of Enterococci applied on a CaF2
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window from various sources, including isolates from food, patient material and strain 

collection (Kirschner et al., 2001). Using a similar approach differentiation of 68 strains, 

within 8 species of Bacillus genus was achieved and compared to a reference database 

resulting in over 80% success rate (Hutsebaut et al., 2006). Clinical isolates of urinary 

tract infections isolates in a form of biomass smeared onto the CaF2 window, have been 

scanned with the use of UVRRS (Jarvis & Goodacre, 2004b) and with SERS (Jarvis & 
Goodacre, 2004a). In order to achieve more thorough analysis of applying SERS for bac­
terial strains, SEM has been employed prior to scanning Bacillus subtilis and E. coli on a 

silver colloid substrate (Jarvis et al., 2004) and for detection of food and waterborne bacte­

ria, including E. coli 0157:H7, when additional monitoring of the silver-based substrate 
was performed using TEM (Fan et al., 2011). The need for analysing SERS substrates 

prior to bacterial measurement stimulated new methods of generating colloidal suspen­
sions for application to E. coli. (Kahraman et al., 2008) and further investigation of the 

SERS substrate for its qualities (Efrima & Zeiri, 2009).
SERS has proved effective when applying Fourier transformed Raman to overnight 

suspensions of Listeria monocytogenes, Salmonella typhimurium and E. coli where only 
small volumes of bacterial suspensions and short preparation time of bacteria-colloid mix­
ture was required prior to measurement (Y. Liu, et al., 2008). In addition a study using 
strains of the Bacillus group in the form of log stage cultures applied to either KBr plates 
or SERS using AU-nanoparticle-covered S i02 substrates (Patel & Premasiri, 2008).

Near infrared laser in a line mode has been applied to samples on SERS active substrate 
for identification and discrimination of bacterial organisms within bacterial and bacteria- 
yeast mixtures, including Shigella sonnei, Erwinia amylovara, Proteus vulgaris and the 

DH5a strain of E. coli Cam et al. (2009).
SERS has proven useful for quantitative and semi-quantitative analysis of bacterial 

organisms. A promising detection limit of ~103 has been achieved in a simple straight­

forward measurement free from any additional labels or antibodies but adding nanocol- 

loidal silver nanoparticles to aqueous suspension of E. coli and P. aeruginosa grown for 

17h (Sengupta et al., 2006) as well as prospective studies of quantifying waterborne bac­
teria (Escoriza et al., 2006). Another useful application allows for determination of mi­

croorganism ratios directly from the samples without being transferred onto a growth 

medium. These findings concluded that environmental samples had similar bacterial con­

tent to that of dental plaque including S. sangius, S. mutans, and S. gordonii strains. The 

relative populations of those bacteria were predicted with the accuracy of few percent
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using confocal Raman spectral analysis (Zhu et al., 2004) (Xie et al., 2007).
Comparison of single cells from bacterial smears with bulk samples (Harz et al., 2005) 

show that variability may arise from using different culturing methods (Rosch et al.,

2003). Studies performed on K. pneumonia, E. coli, P. aeruginosa, E. faecalis, and two 

strains of S. aureus, demonstrated that spectra of the same organism grown in different 
media exhibit the same vibrational spectral features (Premasiri et al., 2011).

Metabolic information about bacterial cells and their function as well as their interac­
tions with the environment can also be determined by Raman spectroscopy. SERS was 

used to monitor the hydrolysis of triglycerides in lipid mixtures of Propionibacterium ac- 
nes, including wax esters, squalene, triolein and triistostearin (Weldon et al., 1998). Ra­
man micro-spectroscopy was also used to evaluate ratios of C:N:P resource stoichiometry 
within macromolecular composition of Verrucomicrobium spinosum and Pectobacterium 

carotovorum grown in log and stationary growth phases (Hall et al., 2011). Further inves­

tigation of bacterial metabolism with the use of Raman spectroscopy, included the uptake 
and retention of xylitol in E. coli and viridians group streptococcus (Palchaudhuri et al.,
2011). Metabolic activity was also investigated in the Protochalmydia amoebophilia, a 
non-pathogenic, model organism for symbiotic Chlamydiae and was compared with host- 
free activity of the human pathogen C. trachomatis (Haider et al., 2010). Using optical 
fibres as SERS probes enabled the scanning of single molecules such as lysozyme and 
cytochrome c with the detection limit of 0.2/ug/ml and also detects Shewanella oneidensis 
at 106 cells/ml Yang et al. (2011). The abundance of cytochrome c within Geobacter sul- 
jurreducens allowed SERS to monitor redox reactions of silver and constrained nanopar­
ticles of gold inside the bacteria (Jarvis et al., 2008). Another possible improvement of 
the present SERS technology could involve construction of a portable system that could 

be useful for identification of pathogens, involving the food-borne harmful organisms 
including L. monocytogenes, E. coli 0157:H7 and S. typhiruim (Luo & Lin, 2008).

Combining Raman spectroscopy with Atomic Force microscopy can help to investi­

gate biomechanical, as well as biochemical properties of living cells under physiological 

conditions. Using this approach Pseudosomonas putida were scanned to achieve infor­

mation about molecular structure, cell architecture and biomechanical properties (Zhou 
et al., 2010).

Raman spectroscopy has also proved useful when investigating bacterial biofilms. Mul­
tispecies biofilm matrix could be characterised with microbial constituents and extracel­

lular polymeric substance. Raman microscopy was able to correlate different structural
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features of the biofilm to changes in its chemical composition and therefore deliver infor­

mation about particular components of the complex biofilm matrix (Ivleva et al., 2009). 

It was also possible to perform discrimination of different bacterial species in a biofilms. 
Samples of Streptococcus mutans and Streptococcus sanguinis were examined in isolation 
and in pseudo-mixed biofilms with very high validation and lateral resolution of ~2/zm, 

which could be sufficient for structural studies of intact, multispecies biofilms (Beier et al., 

2010). Raman micro-spectroscopy was applied for in vivo analysis of the first SO pm  of 

undisturbed biofilms in water as well as the bacterial distribution, tracking and identifi­

cation were taken into account on the level of single cells. The outer layer, containing 
microparticles was analysed when taking into account the mineral phase and surrounding 

bacterial microcolonies (Kniggendorf & Meinhardt-Wollweber, 2011). Further investiga­
tions scanning biofilms to determine their biochemistry and distribution within the biofilm 
in order to gain an insight on whether and how the water presence is affected by the na­
ture of the microbial strain or species forming the biofilm. The study was performed on 
Pseudosomonas aeruginosa and mucoid marine bacteria: Pseudoalteromonas sp. (Samek 
et al., 2010b,c). Further biochemistry of biofilms has been confirmed through the mapping 
of chromate, sulphate and nitrate using Shewanella oneidensis as a model (Ravindranath 
et al., 2012).

1.8.4.5. Single cells

Recent progress has allowed Raman spectroscopy to examine bacterial single cells. The 
organisms commonly responsible for gastroenteritis, namely E. coli, Salmonella choler- 
aesuis, and Shigella flexneri grown for lOh were used to prepare bacterial suspensions that 

gave 100% correct classification (Mello et al., 2005). Strains of Staphylococcus cohnii, 
S. epidermidis and S. xvarnei could be differentiated from both: bulk samples and single 

cells (Harz et al., 2005) of Streptococcus pneumoniae, Streptococcus agalactiae, Neisse­
ria meningitidis, S. epidermidis and hysteria monocytogenes following 18h growth in the 

form of suspensions spotted on fused silica plates, in order to identify pathogens causing 
meningitis. Furthermore S. epidermidis was chosen as a model organism in a cerebro­

spinal fluid (CSF) matrix using a similar experimental approach (Harz et al., 2009). Ra­
man microspectroscopy could be used for real-time monitoring of methacillin resistant 

and sensitive strains of Staphylococcus aureus grown for 20h and placed on a quartz 

slide (Willemse-Erix et al., 2010). In order to differentiate between live and dead sam­
ples, 2-days old suspensions of Bacillus and Staphylococcus strains were stained with
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Syto9 and Propidium iodide prior to subjecting them to Raman measurements in the form 

of drops on a fused-silica surface (Krause et al., 2008). When ZnO nanoparticles were 
used as an enhancement substrate for SERS, successful observation of single cells of E. 

coli was also possible (Dutta et al., 2009).
Investigating single cells for metabolic changes was performed in Cupravida metal- 

lidumas during five different stages of growth, focusing mainly on primary metabolites 
and their state during the life stages of the cell (De Gelder, 2007; De Gelder et al., 
2007a,b,c). Diagnostic properties of Raman spectroscopy for discrimination and in­

vestigation of bacterial biochemical content were also shown for Mycoplasma pneumo­
nia (Maquelin et al., 2009), while strains of Bacillus megaterium, Bacillus thuringiensis, 
Azohydromonas lata, and Cupriavidus necator were tested for the use of polyhydrox- 

yalkanoates (PHA) as carbon and energy storage materials (Ciobot et al., 2010).
Confocal resonance Raman spectroscopy was used to investigate the effects of fixa­

tion methods with different chemicals, including paraformaldehyde and ethanol as the 
most popular means and applied poly-L-lysine for coating slides. Raman microscopy was 
proven compatible with both fixing methods during short fixing exposure and when slides 
were uncoated (Kniggendorf et al., 2011).

Extending Raman spectroscopy applications further has incorporated optical tweezers. 
Optical trapping allows lifting a single living cell captured in a solution, so that the flu­
orescence interference from a substrate or plate can be effectively reduced. In the study 
conducted on E. coli, yeast cells, and red blood cells, fluorescence interference was re­
moved further by shifting the excitation Raman difference in the confocal mode (Xie & 
Li, 2003). This approach has been also used when studying possibilities to detect recom­
binant somatolactin (3 protein in single live E. coli and Pichia Pastoris yeast in aqueous 

solutions (Xie et al., 2007). Further advances include label-free SERS detection of mi­
croorganism in a microarray flow-through system including single-cell imaging of E. coli 
as a proof of concept and quantification of bacteria in a aqueous sample (Knauer et al.,

2012).

When Raman spectroscopy was applied for differentiating single cells in a complex 

mixture of Bacillus anthracis steme spores and vegetative cells of Bacillus cereus, both 
Raman chemical imaging microspectroscopy and SERS generated spectra from single 

bacterial cells and spores (Guicheteau et al., 2010). Separate research using spores of B. 
anthracis, Bacillus subtilis, Bacillus mycoides, Bacillus sphaericus, Bacillus thuringien­
sis, and B. thurin-giensis implied that Raman spectroscopy could be functional for real-
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world isolates after inactivation for on-site diagnosis (Stockel et al., 2010). Bacterial 
spores were also investigated for their composition through studying changes in Raman 

spectra during Bacillus licheniformis growth and sporulation (De Gelder et al., 2007c). It 

was shown spectra of Bacillus subtilis single endospores taken by CARS were in agree­

ment with traditional Raman spectroscopy however CARS proved to be at least two orders 

of magnitude more efficient. This suggested 100 times faster remote sensing and detection 

of possible biohazards (Petrov et al., 2007).

1.8.4.6. Preparation-free approach

One of the first studies performed with a culture-free approach was based on UVRRS for 
identification Brochothix thermosphacta and Pseudosomonas fluorescens. Those strains 
were used as model foodbome bacteria and the beef carcass was involved in the measure­

ment as well (Harhay & Siragusa, 1999).
A sample of CFS containing Neisseria meningitidis was obtained directly from the 

hospital patient and was successfully scanned on a fused silica slides (Harz et al., 2009).
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Aims and Objectives

Less is known in terms of a complete summary of application of Raman spectroscopy 
for a routine use for diagnosing bacterial caused diseases in hospital wards, especially 

when antibiotic screening is involved. Therefore this project solely focuses on the ap­

plication of Raman Spectroscopy for real, everyday testing that could be utilised with 

clinical samples.
In Chapter 3, strict methods of application of Raman spectroscopy were assessed, in­

cluding sample size, materials that are the most appropriate, system overview and spectra 
processing. This part of work sets up the procedure that was followed in the all the exper­

iments performed.
Hypothesis: it is possible to design an easy, cost and labour-efficient set of methods to 

obtain repeatable and accurate Raman spectra from microorganisms.

In Chapter 4, the ability of Raman Spectroscopy for distinguishing of bacterial organ­
ism was assessed and therefore the diagnostic potential of the technique was proved.

Hypothesis: Raman spectroscopy can differentiate between microorganisms belonging 
to various genera, species and groups exhibiting subtle sub-species characteristics

In Chapter 5, the possibility of Raman Spectroscopy to involve screening of different 
bacterial antibiotic susceptibility profiles is investigated. The chapter includes the com­
plete microbiological experiments performed to assess the functionality of the bacterial 
transformants that were created for the purpose of this project, as well as spectral analysis 
performed on those organisms extending the comparison abilities of Raman Spectroscopy 
to isogenic strains expressing different antibiotic resistance properties.

Hypothesis: Raman spectroscopy can be used for differentiation between microorgan­

isms with various susceptibility profiles.
In Chapter 6 clinical isolates selected for the expression of extended spectrum /3- 

lactamases are being investigated. Spectra are compared in terms of the resistance profiles 

the organisms express. Furthermore the clinical strains were also grouped according to 

the phylogenetic classification.
Hypothesis: Raman spectroscopy can be used for differentiation between microorgan­

isms expressing different extended spectrum /3-lactamases genes belonging to different 

phylogenetic classes.
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2. MATERIALS AND METHODS

2.1. Materials

2.1.1. Laboratory instruments and equipment

Table 2.1.: Laboratory instruments and equipment used in this study
Equipment Source
Incubator Genlab, Uk 

HT Inforse Minitron 
Satorius Certomat BS-1

Shaking incubator Lab Therm LT-X - shaker by Kuh- 
ner

Biological safe cabinet (category 2) Scanlaf
Bench-top autoclave Prestige Medical
Front load autoclave Priorclave
FLUOstar Optima plate reader BMG Labtech
Shandon Cytospin® 3 Thermo Electron Corporation
NanoDrop Spectrophotometer Labtech
Bio-Doc It UV Transilluminator system Bio-Rad
Laser Scanning Confocal Microscope (710) Zeiss
Bench spectrophotometer 7310 Jen way
Raman In Via System Renishaw
PCR Tetrad2 Thermal Cycler Bio-Rad
Gel electrophoresis PowerPac System Bio-Rad
pH meter 3310 Jen way

I.1.2. Miscellaneous materials

Table 2.2.: Miscellaneous materials used in this study.
Material Source
Petri plates (90x15mm) Greiner Bio-One, UK
96-well microtitre plate ThermoScientific
API E20® Biomerieux
Wizard® Plus SV Miniprep Promega
Plastic cuvettes FisherBrand
Electroporation cuvettes (2mm) Molecular BioProducts, USA
Clear microscopic glass slides FisherBrand
Frosted microscopic glass slides VWR
8-welled slides (Nunc® Lab-Tek®) ThermoScientific
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2.1.3. Membranes

Table 2.3.: Membranes used in this study
Membrane Source
Nitrocellulose Schleicher & Schuell
Immobylon Millipore
MCE Millipore
Nylon Millipore
PES Millipore
PTEF Millipore
PVDF S-Pak™ Millipore

I.1.4. Chemicals and reagents

Table 2.4.: Chemicals and reagents used in this study
Chemical Source
Agarose Melford
TSB powder Oxoid
Agar (number 3) Oxoid
EC powder Oxoid
Tryptone Formedium
Yeast Extract Formedium
NaCl FisherScientific
Glycerol FisherScientific
5X Green GoTaq® Flexi Buffer Promega
5X Colourless GoTaq® Flexi Buffer Promega
Magnesium Chloride Solution (25mM) Promega
Deoxynucleotide Triphosphates (dNTPs): Promega
dATP, dCTP, dGTP, dTTP (lOmM each)
Silver Nitrate Acros Organics
Trisodium citrate Fisher Scientific
Tris Base Fisher Scientific
Ethylenediaminetetraacetic acid (EDTA) Fisher Scientific
Glacial acetic acid Fisher Scientific
Buffer D Promega
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2.1.5. Common buffers and solutions

50x Tris-acetate-EDTA (TAE) buffer

Tris base 

EDTA

242g

22.6g
Glacial acetic acid 57ml 

Made up to 1L with dH20 , pH adjusted to 8.0

Tryptose Soy Broth (TSB)
TSB powder 30g/L
15g/L agar was used for TSB agar

Made up to 1L with dH20  and autoclaved for 45 minutes at 121°C and 1 bar pres­
sure.

EC Broth/agar
EC powder 37g/L
lOg/L a was used for EC agar

Made up to 1L with dH20  and autoclaved for 45 minutes at 121°C and 1 bar pres­
sure.

Luria-Bertani (LB) Broth/agar 

Difco Bacto Tryptone 10g/L
Difco Bacto Yeast Extract 5g/L

NaCl lOg/L
lOg/L agar was used for LB agar

Made up to 1L with dH20 , pH adjusted to 7.4 and autoclaved for 45 minutes at 
121°C and 1 bar pressure.

EC and LB agar plates were prepared after cooling the autoclaved agar solution to ~56°C 
and aseptically pouring 25ml per single plastic Petri dish before leaving to solidify in a 
biological safe cabinet.

Columbia (horse) Blood Agar plates were purchased from E&O Lab Limited.

2.1.6. Agar plates
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Fresh agar plates were stored at 2 to 8°C in separate refrigerators or in the laboratory 

cold room.

2.1.7. Antibiotics used in this study

Table 2.5.: Antibiotics used in this study
Antibiotic (in the powder form) Source
Ampicillin Melford
Kanamycin Kanamycin

2.1.7.1. Antibiotics stocks:

Antibiotic stocks were prepared using powder diluted with dH20  to obtain the final 

concentration of:

Ampicillin lOOmg/ml
Kanamycin lOOmg/ml or 50mg/ml

All antibiotic stocks were kept in a -20°C freezer.

2.1.7.2. Antibiotic suspensions:

Antibiotic suspensions were prepared by using antibiotic stocks dissolved in appropriate 
broth (EC for K12 and LB for Top 10) to the final concentration of:

Ampicillin 100/zg/ml
Kanamycin 50//g/ml

2.1.7.3. Antibiotic containing agar plates

After bringing autoclaved EC or LB agar to the temperature of 56°C, antibiotics stocks 

were added mixed and 25ml was poured per single plastic Petri plate before leaving to 

solidify as previously described.
Antibiotic containing CBA plates were prepared by adding the desired antibiotic to the 

surface of the CBA agar, spreading it and allowing it to dry.

The final concentrations of antibiotics on all the plates were:
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Ampicillin containing plates: 100/zg/ml

Kanamycin containing plates: 50//g/ml

2.1.8. Stains and markers

Table 2.6.: Stains and markers used in this study
Stain Source
Propidium Iodide (1 mg/ml) Sigma-Aldrich
Syto®9 (5mM) Invitrogen
Sybr Safe® (10.000X) Invitrogen
6X loading dye Promega
1,000 bp molecular DNA marker Promega
100 bp molecular DNA marker Promega

2.1.9. Enzymes

Table 2.7.: Enzymes used in this study
Stain Source
GoTaq DNA Polymerase (5u//il) Promega
Xbal (10U//il) restriction enzyme Promega
Xhol (10U//zl) restriction enzyme Promega
BamHl (10U///1) restriction enzyme Promega

2.1.10. Primers

Table 2.8.: Primers used in this study
Primer Sequence (5’—>-3’) Source
ChuA.l GACGAACCAACGGTCAGGAT Eurofins
ChuA.2 TGCCGCCAGTACCAAAGACA Eurofins
YjaA.l TGAAGTGTCAGGAGACGCTG Eurofins
YjaA.2 ATGGAGAATGCGTTCCTCAAC Eurofins
TspE4C2.1 GAGTAATGTCGGGGCATTCA Eurofins
TspE4C2.2 CGCGCCAACAAAGTATTACG Eurofins
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2.1.11. Plasmids

BgU 245
/  ftpi 256

Bcgl 2215

Hgll 1 8 1 3 -  
Bpml 1784

Figure 2.1.: Map of pUC19 plasmid (Nari)
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B p u 1 1 02  l(80).
Sal 1(179) 
S ac 1(190) 
EcoR 1(192) 
BamH 1(198) 
Nco 1(220) 
M * C l(2 2 5 L _

1(4108)1
1(40749

pET-26b(+)
(536Obp)

Dra 111(5118)

Bsi l( 33881

B sp L U l 1 1(3215)
S a p  1(3099)
B s t1 1 0 7  1(2986)

T th 111 1(2960)
B sp G  1(2741)
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1(166) 
1(166) 

Hind 111(173)

B se R  1(260) 
1(268)

SgrA  1(433)
S p h  1(569)

A p aB  1(798)
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Pvu 1(4417) 
S g f 1(4417)

S m a  1(4291) Mlu 1(1114) 
B el 1(1128)

B stE  11(1295) 
B m g I(i323) 
A p a 1(1325)

11(1525) 

H pa 1(1620)

P sh A  1(1959)
P fl1 10 8  1(2001)

F sp  K2"96)
3s p 5  11(2221)

Figure 2.2.: Map for pET-26 plasmid (Novagen)

2.1.12. Bacterial Strains

Table 2.9.: Reference laboratory strains used in this study

Species Strain Source Reference
E.coli K12 Laboratory Kind gift from  

D .M ack
Prof.

Top 10 Invitrogen Purchased
Strain B L aboratory Kind gift from  

D .M ack
Prof.

S. epiderm idis 1457 L aboratory (M a c k e t al., 1992)
9142 L aboratory (M a ck e t al., 1992)

S. aureus C ow an 1 L aboratory (M ack et al., 1992)
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Table 2.10.: Reference hospital isolates used in this study
Species Strain Source
E.coli 10418 Singleton Hospital
S. aureus 6571 Singleton Hospital

Table 2.11.: Laboratory transformed strains expressing antibiotic resistance
Species Strain Antibiotic resistance Source
E.coli ToplOA (and ToplOAA) 

ToplOK (and ToplOKK)
Ampicillin
Kanamycin

This study 
This study

Table 2.12.: Archived E. coli hospital isolates of different antibiotic profiles
Antibiotic resistance profile Number of strains Reference
CTX-M15 IS26 positive 38 (Jones, 2012)
CTX-M-15 IS26 positive, TEM1 3 (Jones, 2012)
CTX-M-15 IS26 positive, TEM- 2 (Jones, 2012)
116
CTX-M-15 4 (Jones, 2012)
CTX-M-1 2 (Jones, 2012)
CTX-M-15, TEM1 8 (Jones, 2012)
CTX-M group 1 1 (Jones, 2012)
CTX-M-14b, TEM1 1 (Jones, 2012)
CTX-M-32, TEM1 2 (Jones, 2012)
CTX-M-14, TEM1 1 (Jones, 2012)
TEM-52 1 (Jones, 2012)
SHV-2 1 (Jones, 2012)
AmpC 1 (Jones, 2012)

Table 2.13.: Laboratory E.coli strains used as standard for phylogenetic classification
Name Phylogenetic group Reference
ECOR33 B1 (Meric et al., 2013)
ECOR59 B2 (Meric et al., 2013)
ECOR50 D (Meric et al., 2013)

2.1.13. Routine culture of bacterial strains

All strains were grown under aerobic conditions at 37°C.

Solid medium cultures were prepared by spreading: i) a portion of glycerol stock;

ii) several colonies; or iii) 100//1 of overnight culture onto an appropriate agar plate. For
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microbiological experiments S. epidermidis were grown on TSB plates, E. coli K12 strains 

were grown on EC plates, E. coli Top 10 were grown on LB plates. Antibiotic containing 

agar plates were used for the transformed strains expressing antibiotic resistance. Bac­
teria on plates were grown for 18-24h in a stationary incubator unless otherwise stated. 

Bacteria on agar plates were stored at 2-8°C for no longer than 3 months. For Raman spec­
troscopic measurements all strains were grown on CBA plates unless otherwise stated.

Bacterial suspensions were prepared by inoculating a single colony or a portion of 

bacterial glycerol stock in 5ml broth. S. epidermidis strains were grown in TSB broth, 
E. coli K12 strains were grown in EC broth and E. coli Top 10 strains were grown in 
LB broth. Bacteria in suspensions were grown for 18-24h in a shaking incubator unless 
otherwise stated.

2.1.14. Preparation and storage of bacterial stocks

All bacterial strains were preserved in glycerol stocks prepared by adding 500/zl of 80% 
glycerol solution to 500/d of an overnight bacterial suspension or mixing 250/d of 80% 
glycerol solution with 750/d of an overnight bacterial suspension. Working stocks were 
stored at -20°C for periods of no longer than 3 months and in a -80°C freezer for the entire 
period of this study.
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2.1.15. Software

Table 2.14.: Software used in this study
Program Use Version Source
WiRE InVia Raman

Spectrophotometer
v. 3.0 Renishaw

ASGRCF Spectra processing v. 1.0.0 G. Gonzlvez et al. 2012
(running on background removal
Lab View engine)
Applied Savitzky
Golay smoothing
Rolling Circle
Filter)
Matlab Code for spectra 

processing
7.10.0.499 The MathWorks

R Various codes 2.14.0 http://cran.r-project.org
Origin Various use 8.5.0 SRO 

8.6.0 OriginLab Corporation
PyChem Spectra processing - 

Principal Component 
Analysis

3.5.0g Beta Roger Jarvis

GraphPad Prism Statistical analysis 6 GraphPad Software
Confocal Confocal Microscope Carl Zeiss
Microscope
Software

Zen 2009 
Light 

Edition
Microimaging GmbH

ImageJ Processing confocal 
microscope images

1.47 Rasband, W.S., ImageJ, 
U. S. National Institutes 
of Health, Bethesda, 
Maryland, USA, 
http://imagej .nih.gov/ij/, 
1997-2012.

QuantifyOne Bio-Doc It UV
transilluminator
system

4.6.3 Bio-Rad

NanoDrop 1000 NanoDrop
Spectrophotometer

3.8.1 Labtech
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2.2. Methods

2.2.1. Determination of bacterial concentration

Bacterial concentration was assessed for experiments including E. coli, by determining 

the optical density (OD) at 600nm using a spectrophotometer. Sterile growth media was 

used as blank prior to testing bacterial suspensions. The estimated bacterial count at 

ODeoo = 1.0 was ~ lx l0 8 cfu/ml for E. coli.

2.2.2. Transformation

2.2.2.1. Preparing eiectrocompetent K12 cells

An overnight bacterial suspension (250ml) of K12 was decanted into five 50ml tubes and 

centrifuged for lOmin at 4000rpm at 4°C. Supernatants were discarded from all bottles 
and all five pellets combined and resuspended in 50ml of ice-cold glycerol. The sample 
obtained was centrifuged for lOmin at 4000rpm at 4°C, the supernatant discarded and the 
pellet resuspended in 50ml of ice-cold glycerol. This procedure was repeated twice more. 
The resulting pellet was finally resuspended in 1ml of ice-cold glycerol. Eiectrocompetent 
cells were stored in 50/xl aliquots at -80°C until use.

2.2.2.2. Transformation by electroporation

Fifty microlitres of eiectrocompetent cells were aliquoted to a pre-cooled (on ice) electro­

poration cuvette (0.2cm gap). Then 1/d. of Ifig/fil plasmid DNA (pUC19 or p-ET26) was 
added to the eiectrocompetent cells, mixed gently and incubated on ice for 5 minutes. The 
cuvette was then placed in the electroporator before using the ‘E. coli 2mm 250’ pre-set 
protocol. The cuvette was then placed on ice and the contents of the cuvettes transferred 

to 250/ri of recovery media (without antibiotics): EC for K12 and LB for Top 10; and 

placed in a vertical position in a shaking incubator at 37°C for 3h. After the recovery, 
50 fA of suspension was spread on a selective agar plate and incubated overnight at 37°C. 

The remaining suspension was stored in the fridge until growth was determined on the ini­
tial set of plates. Control transformations without added DNA were prepared in a similar 
manner.
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2.2.2.2.1 Calculating transformation efficiency

Transformation efficiency was calculated using the formula:

. , . . Number of colonies on a plate (cfu)
Efficiency (cfu//ig DNA) =   ----------- — — ----- —--------- -r------- ;---- -— -

Amount of DNA used for transformation (fig)

Routinely we found transformation efficiencies of 1 x 108 cfuI fig DNA for Top 10 and 

3 x 104 civJfig DNA for K12.

2.2.3. Determination of minimal inhibitory concentration (MIC) 
by limiting dilution

MIC was determined using the limiting dilution method. Overnight suspensions of K12 

and Top 10 including transformed strains, were corrected to OD60o = 0.1 (~107/ml) and 
100/d were added to each well of a 96-well. Antibiotic solutions were prepared at by serial 
dilution of stock solution with the appropriate broth (EC for K12 and LB for ToplO), in 
order to obtain 11 defined final concentrations (1024; 512; 256; 128; 64; 32; 16; 8; 4; 2; 

XfigJmX) and a negative control containing media alone. Then 100/d of antibiotic solution 
was transferred to onto the bacterial suspensions. After overnight incubation at 37°C in 
a stationary incubator, plates were assessed for growth by measurement of OD6oo in the 
plate reader. Growth was defined as OD6oo>0.15.

2.2.4. Temporal response to the action of antibiotics

An overnight bacterial culture (5ml) was adjusted to OD60o=l, and 100/d for each: ex­
perimental and control samples were aliquoted. The experimental sample was added with 
antibiotic to a final concentration of 100//g/ml for ampicillin and 50/ig/ml for kanamycin 

while the control samples did not include antibiotic. All samples were incubated at 37°C 

and then at defined time points (0, 60, 120 and 240min for Ampicillin and 0, 30, 60 and 
120min for Kanamycin) 100/d of bacterial suspension was transferred from each: exper­

imental and control solutions, adjusted to the required concentration by 1:10 serial dilu­

tions with growth medium and two selected dilutions plated onto agar plates. These plates 

were incubated at 37°C overnight and viable counts determined by counting colonies the 

following day. The concentration of bacteria in the original solution was determined from:
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Bacteria/ml =  Dilution x 10 x Colony count

The significance of the experiments was calculated by testing the CFU counts with 

one-way ANOVA with the P<0.05 using the option available from Prism GraphPad.

2.2.5. Isolation of Plasmid DNA

Preparation of plasmid DNA was performed according manufacturer’s instructions with 
slight modifications. All solutions used for the isolation of DNA were supplied with the 
Preparation Kit.

After overnight growth of bacterial suspension, 2.5ml was centrifuged for lOmin at 
14000rpm. Supernatant was decanted and excess drips were blotted on a paper towel. 
To produce a clear lysate, 250//1 of Cell Resuscitation Solution was added to the pellet, 
resuspended thoroughly and transferred to a microcentrifuge tube. Subsequently, 250/il 
of Cell Lysis Solution was added and tube was mixed by inverting four times. This so­
lution was then incubated for 1-5 minutes at room temperature until clear. Then, 10/di of 
Alkaline Protease Solution was added, mixed and incubated at room temperature for 5 
minutes followed by adding 350/ri of Neutralisation Solution. After being mixed, the re­
sulting suspension was centrifuged at 7°C for 10 minutes at 14000rpm. Then, 750/xl of the 
clear lysate, avoiding pellet, was transferred to a Spin Column inserted into a Collection 
Tube (both available with the Wizard® Plus SV Minipreps kit). The column and tubes 

were centrifuged for lmin at maximum speed. The flow-through was discarded from the 
Collection Tube, and the Spin Column replaced before adding 750/fl of Column Wash 
Solution containing 95% ethanol. Columns were centrifuged for 1 minute with maximum 
speed at room temperature. The flow was discarded from the Collection Tube, and the 
Spin Column replaced before 250/fl of the Column Wash Solution was added. Columns 

were centrifuged for 2 minutes with maximum speed at room temperature. The Spin Col­
umn was removed and placed in a 1.5ml tube. Plasmid DNA was eluted by adding 75/il 

of Nuclease-Free water to the Spin Column and centrifuging for 1 minute at maximum 
speed at room temperature.
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2.2.5.1. DNA quantification

The concentration of DNA was determined using the NanoDrop ND-1000 spectropho­

tometer. The instrument was calibrated using water before the OD at 260nm and 280nm 

of 2/d samples of isolated plasmid DNA was determined.

2.2.6. Polymerase Chain Reaction (PCR) according to 
Clermont et al. (Clermont et al., 2000)

A single colony was taken directly from the agar plate and placed in 1ml of nuclease-free 
water to be vortexed and 10/d was transferred to a PCR tube.

PCR master-mix was prepared using: 1.4/d of 25/dVl MgC12, 0.5/d of each of 10//M 

primer (ChuA.l, ChuA.2, YjaA.l, YjaA.2, YjaA.2, YjaA.2, TspE4C2.1, TspE4C2.2), 

0.2/d dNTP, 4/d of 5xTaq Buffer, 0.2/d of Taq Polymerase and 11.2 /d of nuclease-free 
water to make the volume up to 20/d per each sample that the master-mix was prepared 
for. After mixing thoroughly, 10/d was transferred to a PCR tube containing bacterial 
sample.

Samples were subjected to a multiplex PCR consisting of: i) initial incubation at 94°C 
for 3min; ii) 3 step-cycle including: 94°C for 30s, 57°C for 30s and 72°C for 30s repeated 
36 times; and iii) final extension at 72°C for 5min.

Amplified products were subjected to Agarose Gel Electrophoresis.

2.2.7. Agarose Gel Electrophoresis

Fifty millilitres of 1% agarose was prepared by adding 1 gram agarose to 50ml of lxTAE 
buffer before heating in a microwave. After cooling, 5/d of SybrSafe was added. Once 

mixed, the molten agarose with added stain was poured onto a casting tray system with 

comb inserted and left to solidify. Combs were removed from the gel, which was then 

transferred into the electrophoresis tank ensuring that the gel was covered with lxTAE 
buffer.

Loading dye (6X) was added to each sample, including molecular weight (MW) DNA 

markers, in 1:5 ratio. At least 8/d of each sample and 6/d of the MW DNA marker was 
added per well and the gel run for 30-45 minutes at 90V. Gels were visualised in the Gel 

Doc system under UV light.
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2.2.7.1. Preparation of Restriction Enzyme Digests

The reaction mixes for restriction digestion of DNA were prepared in a total volume of 

12/d per sample. This included 4.8/d water, 1.2/d 10X restriction buffer, 1/d restriction 
enzyme, and 5/d plasmid DNA, respectively, unless otherwise stated. Control samples 

contained equal volume of distilled water instead of restriction enzyme.

2.2.8. API 20E®

The identification of E. coli strains using API 20E® test was performed according to the 
manufacturers instructions. The API chamber was humidified with the addition of water 
to the honeycomb structure of the box prior to introducing the reaction strip. A single 
colony from an agar plate grown overnight was suspending in 4ml of API suspension 
medium and mixed thoroughly. The bacterial emulsion obtained was added to each mi­

crotubule on the reaction strip. CIT, VP and GEL tests were filled onto the cupule, while 

the ADH, LCD, ODC, H2S and URE tests were supplemented with the mineral oil to 
provide an anaerobic environment. Strips containing bacterial emulsion were placed in­
side the humidified chamber and incubated overnight at 37°C. Results were obtained by 
assigning the proper numerical value to the reaction depending on the colour change in 
the microtubule. Final numbers and identification was confirmed on the API database.

2.2.9. Raman Spectroscopy

All Raman measurements were performed on a Renishaw InVia system with a charge- 

coupled device (CCD) detector and a Leica DM2500 microscope. All Raman spec­
troscopy experiments are described in detail in Chapter 3, including the calibration 3.2.1, 
obtaining individual spectra 3.2.2, assessing the reproducibility of the sample 3.2.3, 
choosing the correct substrate 3.2.4, spectra processing 3.2.5 and investigating possible 
limitation of this technique 3.2.6
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3. DEVELOPMENT OF RAMAN SPECTROSCOPY PROCEDURES FOR
REPRODUCIBLE IDENTIFICATION OF BACTERIA

3.1. Introduction
Raman spectroscopy has proved to be a useful technique in microbiology (Downes & 

Elfick, 2010) (Kastanos et al., 2012).
Various different approaches have been used for studying microorganisms with Ra­

man spectroscopy, including study on fully grown colonies (Samek et al., 2008) (Rosch 

et al., 2003), microcolonies (Maquelin et al., 2000) (Maquelin et al., 2002) (Maquelin 

& Kirschner, 2003) (Goodwin, 2006), bacterial biomass (Kirschner et al., 2001) (Choo- 

Smith, 2001) (Hutsebaut et al., 2006) (De Gelder et al., 2007a) (Ivleva et al., 2009) (Hall 
et al., 2011) (Willemse-Erix et al., 2009) (Escoriza et al., 2006) or even single 
cells (Schuster et al., 2000) (Guicheteau et al., 2010) (Harz et al., 2009) (Rosch et al., 

2005) Above references can be found in an easier to read format in Table A.l in Ap­

pendix A.
Each of the previous studies studies has identified steps essential for generating Raman 

spectra of sufficient quality for discriminating organisms. The variation between the pre­
sented experimental arrangements is different not only in terms of the systems and Raman 
modification used but also in the spectral processing. Several authors, especially in the 
early stages of Raman spectroscopy investigation into bacteria, when taxonomically dis­
tant organisms were compared, studied only the visible differences between spectra result­
ing from clearly distinguishable peaks (Grow et al., 2003) (Jehlicka et al., 2012) (Rosch 
et al., 2003). Assigning peaks identified by Raman spectroscopy to specific molecules 
has become an important part of research related to biological applications (De Gelder, 

2007) (Maquelin et al., 2002) (Ivleva et al., 2009) (Samek et al., 2008). The more detailed 

and complicated the results, the higher the difficulty with extracting the information from 
unprocessed spectra.

Natural drawback of scanning biological samples is associated with high fluorescence 

related to sample and/or the substrate (Downes & Elfick, 2010). In order to avoid the 

crucial information being lost or neglected, various spectral processing methods have been 

suggested, including: Principal Component Analysis (Nicolaou et al., 2011), (Hutsebaut 

et al., 2006) (Patel & Premasiri, 2008), Hierarchical Cluster Analysis (Maquelin et al., 
2009) (Harz et al., 2009) (Buijtels et al., 2008) (Willemse-Erix et al., 2009) and Support 

Vector Machine (Rosch et al., 2005). However, these methods vary significantly and 

occasionally involve only single experiments or complicated procedures which could be 

difficult to repeat in the hospital environment.
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In order to assess the potential of Raman micro-spectroscopy for use as a new diagnos­
tic technique, its reproducibility has to be carefully examined. This chapter was structured 

into five sections containing the key aims for system optimisation and assessment of re­

producibility:

i) calibration of the system used for Raman experiments;

ii) obtaining individual Raman spectra controls;

iii) comparison and discrimination between spectra;

iv) assessment of the possible limitations of the technique;

v) determination of the optimal sample size.
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3.2. Methods and Results

3.2.1. Calibration

To confirm reproducibility and precision, the inVia Raman spectrophotometer was cal­
ibrated prior to each experiment using a silicon (Si) sample. The Raman spectroscopy 

measurement of Si produces a single distinctive peak at 520 cm-1 and therefore can be 

used as a standard to ensure system functionality.
The inVia Raman system is supplied with the internal built-in Si sample for instant 

calibration using default settings. For additional quality control, Raman spectra from an 
external sample of Si mounted on an aluminium slide was also determined, setting the 
exposure time for 10 seconds of 1 accumulation, using the 50x objective and with laser 

power of 5%, using the 785nm red laser.
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Figure 3.1.: A single spectrum from the internal silicon sample.
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Figure 3.2.: A single spectrum from the internal silicon sample.
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The expected results are in the range of 520.00 and 520.9 cm-1, and intensities of 8000 
and 15000 for the internal (Figure 3.1) and external Si samples (Figure 3.2) respectively. 

In cases when the results were not within the appropriate parameters, a ‘quick calibration’ 

operation, available from the WiRE 3.2 menu, was performed and Si measurements were 
repeated.

3.2.2. Individual spectra parameters

For all the experimental samples the inVia Raman system has been set to 10 seconds of 
1 accumulation, with laser power of 50%, using the 785nm red laser. The range cho­
sen for the experiments was 600-1600 cm-1. In the case of easily-recognisable cosmic 

rays (Takeuchi et al., 1993) appearing in the spectra, a ‘zap’ operation was selected from 

the WiRE menu and applied to the selected region before saving the spectrum.

3.2.3. Determination of sample repeats

3.2.3.1. Single sam ple repeats

In order to obtain reproducible results and assess natural variation for biological samples, 

up to 30 spectra were taken from the same sample, providing that the time of the entire 

experiment did not exceed 3 hours, which resulted in damaging the sample with exposure 
to the higher temperature caused by the microscope module light. Therefore up to 30 
spectra defined one single sample set (Figure 3.3).
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O ne spectrum  from 
each  of £ 30 co lon ies = 
up to  30 sing le  sam ple 
re p e a ts  = 1 single 
sam ple  se t

Figure 3.3.: Representation of single sample repeats preparation

3.2.3.2. Whole experimental repeats

To assess the day-to-day variation that can arise from  the natural properties o f  live organ­

isms, single sam ple repeats were done on consecutive days (up to 4 days) and com pared. 

W hole experim ent repeat sets could therefore contain as m uch as 120 single spectra (F ig­

ure 3.4).
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Up to  4 single 
sam ple sets each 
perform ed on a 
se p a ra te d a y  = 
whole experim ent 
rep ea t set

Figure 3.4.: Representation of whole experimental repeats preparation

3.2.4. Effect of the substrate

3.2.4.1. Quality control

To generate R am an spectra from  static m icroorganism s they must be attached to an un­

derly ing substrate. In order to choose the m ost appropriate substrate for the experim ents, 

a series o f m aterials w ere tested, including:

i) m icroscopic glass;

ii) m icroscopic glass covered w ith layer o f gold o f lO-lOOnm thick;

iii) frosted  m icroscopic glass covered with lO Onm gold;

iv) K larite;

v) bacterio logical agars including: Luria-B ertani agar and C olum bia (horse) B lood agar 

The results are show n in Figure 3.5 A-J.
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Figure 3.5.: Comparison of Raman substrates; (A) image and (B) spectrum from microscopic glass;
(C) image and (D) spectrum from microscopic glass covered with lOOnm layer of gold; 
(E) image and (F) spectrum from gold coated (70nm) frosted microscopic glass; (G) im ­
age and (H) spectrum from Klarite; (I) six consecutive spectra from LB agar; (J) six 
consecutive spectra from Columbia (horse) Blood agar. The Y scale was adjusted to the 
intensity of the highest peak within the experiment in order to visualise the features of 
spectra.
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Figure 3.5.: (cont.) Comparison of Raman substrates; (A) image and (B) spectrum from microscopic 
glass; (C) image and (D) spectrum from microscopic glass covered with lOOnm layer of 
gold; (E) image and (F) spectrum from gold coated (70nm) frosted microscopic glass; (G) 
image and (H) spectrum from Klarite; (I) six consecutive spectra from LB agar; (J) six 
consecutive spectra from Columbia (horse) Blood agar. The Y scale was adjusted to the 
intensity of the highest peak within the experiment in order to visualise the features of 
spectra.

W hen m icroscopic glass was tested on its own, it has presented a very intense fluores­

cence feature that covered m ost o f  the region o f interest (F igure 3.5.B).

It was found that changing the am ount o f gold had little effect on the quality o f spectra. 

Even w ith the thickest layer tested (lOOnm) there was still high intensity o f the fluores­

cence in the region o f 1300-1400 /cm -1 (Figure 3.5.D), w hich would interfere with the 

investigated region o f biological sam ples.

The im age o f the gold coated  frosted glass shows how rough the surface is (Fig­

ure 3.5.E), which can create difficulties with proper focusing. The signal was very strong 

with peak(s) located at 1100, 1300 and 1500 /c trU 1 (Figure 3.5.F)

Klarite presented a signal o f high background intensity with several strong peaks 

around 980, 1200, 1300, 1380 and 1 6 0 0 /cm -1 (Figure 3.5.H)

Spectra taken from  both LB and CB agars as controls (Figure 3.5.1 and J respectively) 

show ed reproducible signal w ith sm all num bers o f peaks, and with hardly any glass fluo-

55



3. DEVELOPMENT OF RAMAN SPECTROSCOPY PROCEDURES FOR
REPRODUCIBLE IDENTIFICATION OF BACTERIA

rescence visible, making it the favoured substrate for micro-Raman measurements.

3.2.4.2. Compatibility with microorganisms

In order to verify the compatibility of bacterial sample with the chosen substrate, experi­

ments involving microorganisms were performed in variety of different set ups including:

i) pellets obtained after centrifugation of an overnight suspension of S. epidermidis 
1457 and E. coli K12 liquid cultures grown in TSB, pipetted onto the gold coated 

microscopic glass 70nm;

ii) an overnight culture of S. epidermidis 1457 grown overnight in TSB, cytospun on the 
gold-coated (70nm) microscopic glass

iii) pellet obtained after centrifugation of an overnight suspension of each: S. epidermidis 

1457 and E. coli K12 liquid cultures, each grown in TSB and pipetted onto the gold 
coated (lOOnm) frosted microscopic glass;

iv) an overnight culture of S. epidermidis pippetted directly onto the gold-coated 
(lOOnm) frosted microscopic glass and cytospun;

v) pellet obtained after centrifugation of an overnight suspension of each: S. epidermidis 
1457 and E. coli K12 liquid cultures, each grown in TSB and pipetted onto Klarite;

vi) bacterial colonies grown directly on the agars

Neither the pellet nor the cytospun form of the sample allowed for successful single 
cell spectra collection from the gold coated microscopic glass. Bacterial cells have smaller 
diameters than the set up laser line, causing the signal to be collected from the surrounding 
area and obstructing the result. Smaller laser lines caused weaker signal. When bigger 

cell aggregates, resulting from higher concentration of bacterial suspension, were used, 

the image was too heterogeneous to allow for proper focussing and therefore resulting in 

poor signal.
Thick layers of gold applied on the microscopic glass, resulted in only small numbers 

of peaks from the bacteria visible. The most intense peak was at 1400 cm-1 therefore in 

the same position as observed when gold coated microscopic glass was scanned without 
the presence of any organism (Figure 3.6.B).
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Figure 3.6.: S. epidermidis 1457 on different substrates: (A) microscopic image and (B) single Raman 
spectrum of the sample pipetted on gold coated (70nm) microscopic glass; : (C) micro­
scopic image and (D) single Raman spectrum of the sample pipetted on Klarite; : (E) 
microscopic image and (F) single Raman spectrum of a bacterial colony (zoomed in).

The surface o f the frosted glass is very rough, so even when coated w ith gold and using 

very concentrated  bacterial sam ple, the organism s w ere not accessible and no spectra from 

cells or biom ass could be obtained.

The surface o f K larite consists o f a series o f groves with diam eter bigger than a single 

bacterial cell, causing the m icroorganism s to fall in betw een the groves or stick to the 

diagonal wall m aking it im possible to focus properly and therefore obtain reproducible
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results. The signal collected is almost identical to the spectrum collected from the Klarite 
without the sample, suggesting that the laser was focused on the substrate and not on 

enough bacteria to give satisfying sufficiently robust signal (Figure 3.6.C and D)
When bacterial colonies were grown on agar they proved to be easy to focus on and 

gave very strong spectra with distinguishable peaks, which seemed to quench the signal 
from the agar as the size of the colonies allowed for laser line and the reflected light to be 

limited to the areas of interest and not the surroundings (Figure 3.6.E and F).

3.2.5. Spectra processing

3.2.5.1. Optimum background correction

In order to reduce the influence of the background, it was necessary to select a single 
and unified method of background correction. Among various available techniques, three 
were chosen and compared: i) Background Correction built in the PyChem software;
ii) AirPLS code written in Matlab language; iii) Rolling Circle Filter (RCF) coupled with 
Savitzky-Golay smoothing developed into ASGRCF application written for the Lab View 
engine. The background correction built in the PyChem software uses the baseline cor­
rection class by setting the first bin to zero method in the pre-processing step. The AirPLS 
code, written for Matlab offers an instant correction by automatically applying partial least 
square technique to the uploaded files. The ASGRFC application allowed for correction 
using RCF method with Savitzky Golay smoothing and had adjustable circle radius and 
baseline level parameters. The radius was set for 100, while the other option was left at 0.

In order to compare the effects of background correction (Figure 3.7), a typical spec­
tral set of repeats for E. coli Top 10 was subjected to each method and compared with 

the raw spectra. For validation (Figure 3.8) of the ability of RCF to enhance the separa­

tion between samples, a single spectrum from the S. epidermidis 1457 and E. coli Top 10 

subjected to RCF was compared to the unprocessed spectrum.
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Figure 3.7.: Set of 30 spectra from 30 colonies taken during a single measurement of Top 10 (A) unpro­
cessed; (B) subjected to Background Correction procedure built in the PyChem sotware; 
(C) subjected to AirPLS procedure written in Matlab; (D) subjected to Rolling Circle 
Filter developed into SCARF, coupled with Savitzkv-Golay smoothing through an appli­
cation written for the Lab View engine

U nprocessed  spectra (Figure 3 .7 .A) confirm ed that even single sets o f repeats taken 

during one experim ent can exhibit different background intensities. A fter applying the 

baseline correction  available from  PyChem , the background is not equally corrected over 

the w hole set o f data (Figure 3.7.B) showing high variation with increasing Ram an shifts. 

The A irPLS code (F igure 3.7.C) and the R C F (Figure 3.7.D ) had sim ilar efficiency, how ­

ever the latter allow s for the control o f several param eters like the radius o f the circle, 

giving increased  versatility  for future applications. For this reason, R C F was chosen for 

future experim ents.
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Figure 3.8.: Single spectra of ToplO (black) and 
subjected to RCF.
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(cyan): (A) not subjected to any processing; (B)

W hen the influence o f background subtraction on separation o f m icroorganism  was 

assessed (Figure 3.8), the advantage o f rem oving the background over using raw spec­

tra was uncovered. B ackground signals cause the spectra to have significantly different 

intensities (Figure 3.8 .A), m aking it difficult to com pare peak heights, In addition some 

m inor peaks may be neglected when the background is not rem oved.

3.2.5.2. Determination of the most characteristic peaks

A w hole set o f spectral repeats, w ith background intensities treated w ith RCF, taken dur­

ing one experim ent was used to calculate a m ean value for each w avelength. The m ean 

signal was plotted to determ inate the critical peak positions.

Peaks w ere selected using the ‘Q uick P eak s’ option available from  the ‘G adgets’ tab in 

O rigin 8.6. The baseline was set to ‘none’, peaks w ere found in both directions, m ethod 

was set to ‘W indow S earch’ and Percent o f  Raw D ata was set to 10% for both ‘H eigh t’ and 

‘W idth’. F iltering o f peaks was done by height w ith 10% threshold. The m ost significant 

peaks can be assigned to the biom olecules using signal databases like the one in Table A .3.

Peaks w ere identified based on ±  1 w avelength principle, since slight variations in the 

shifts have been observed. If  the w avelength belonged to a w ider group o f peaks, all the 

possible m olecules listed were assigned. If  there were no precisely identified peaks in the 

±  region, the identification was extended to m axim um  o f ±  10 and it was clearly stated, 

that these peaks w ere approxim ated identification (the closest identified peaks). In cases 

w hen the peak did not m atch any o f the above criterion, it was stated that the signal has 

not been identified in the literature.
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3.2.5.3. Spectra subtraction

The m ean result calcu lated  for one organism  was subtracted from  the corresponding  result 

ca lculated  for ano ther d istinct organism . T he subtracted spectrum  was plotted to dem on­

strate d ifferences betw een sets o f  spectra from  the two organism s and also to determ ine 

the critical d iscrim inatory  peak positions.

R ecognition o f the peaks was perform ed as described for single organism s in sec­

tion 3.2.5.2.

A

Subtraction

|

600 80C 1000 1200 1400 ’000

B

Raman Compound/molecule
Shift (cm ________________________________________________________
758 Phosphophenylopyruvate

780 C itid ine, U racil, C ytosine, Uracil ring stretching, P hospho­

phenylopyruvate, DNA Phosphodiester O -P-O  stretching 
903 A m ylose

1000 Palm itic acid. D -(+)-G alactosam ine

1100 Palm itic acid

1270 (not identified in literature)

1410 (not identified in literature)

Figure 3.9.: Subtraction of mean intensities (A) from a single whole experiment repeat (containing 30 
spectra for each organism) for ToplO vs. 1457 and (B) Table representing the most char­
acteristic peaks distinguishing between the two organisms, assigned to the life molecules 
according to the Table A.3.

3.2.5.4. Principal Component Analysis (PCA)

Follow ing background rem oval sets o f spectra w ere uploaded to PyChem , w hich offers 

the built-in  PCA  routine. The uploaded spectra w ere prepared for PCA through using 

the pre-processing protocols from  the PyC hem  softw are including ‘N orm alisation o f the
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m ost intense bin to + L  and ‘Scaling m inim um  to 0 and m axim um  to + 1 \

*T](56 50%.

Figure 3.10.: Principal component analysis results in a form of clusters, of one whole experimental 
repeat consisting of 30 single sample repeat for each ToplO (red square) and 1457 (blue 
circle)

The PC A  was conducted using the correlation  m atrix and NIPALS settings (Fig­

ure 3.10). The analysis was conducted up to the fourth principal com ponent, where the 

m ain differences are observed.

3.2.5.5. Hierarchical Cluster Analysis (HCA)

H ierarchical clustering was perform ed using the standard tool available from  PyChem  

software. Several options were available, how ever for the purpose o f this project, HCA 

was perform ed on PC scores using h ierarchical clustering  as a clustering m ethod with 

Euclidean distance m easure and m axim um  linkage.
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P ~ 1

Figure 3.11.: Hierarchical cluster analysis for PC scores from a single whole experimental repeat 
(containing 15 single sample repeats of each sample) for E. coli ToplO (black) and S. 
epidermidis 1457 (cyan).

The results are in agreem ent with PCA clustering  clearly separating two organism s into 

different groups, how ever H CA  can offer additional inform ation show ing the relationship  

betw een clusters instead o f ju s t revealing the graphical distance betw een them .

3.2.5.6. T-test on individual principal components

The scores from  PC A  w ere extracted and the Student t-test was used to calcu late a nu­

m erical value o f the difference betw een the sam ples subjected to the PCA.

C alculations w ere perform ed on the extracted  Principal C om ponent (PC) Scores for 

each o f the four PCs. The calculations were done based on standard t-test available from 

the R program m ing package. The norm ality o f  the sam ple was assum ed.

In o rder to classify  the results, they were divided into colour coded groups for easier 

com parison. The significance level was set to 0.05 therefore results h igher than this value 

are considered  to be not d ifferent and were not m arked w ith any colour. Values low er than 

0.05 but h igher than and including lx lO -9 w ere m arked w ith green colour, values within 

the range o f 1x10“ 10 and lx lO -19 were m arked with yellow  colour, values betw een the 

num bers o f  lx lO -20 and Ix lO -29 w ere m arked with red colour. Finally, any value equal 

to or low er than l x l O '30 was m arked with purple colour (Table 3.1). The t-tests values
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reflect the results obtained from  PCA  and HCA, however it offers a num erical value. Thus 

findings can be com pared in an unbiased way, and the ‘am ount’ o f difference quantified. 

Furtherm ore graphical representations alone may be interpreted subjectively.

Organism Experiment
number

T-test results value

PCI PC2 PC3 PC4
1 8.58E-24 1.63E-02 7.90E-01 5.73E-01

ToplO w t vs. 2 9.50E-34 1.53E-01 2.96E-01 6.57E-01
1457 3 2.95E-48 5.01E-01 6.71E-01 8.50E-01

4 1.88E-37 2.59E-01 3.01E-01 9.32E-01

Table 3.1.: Results for t-test based on PC scores from the first four principal components calculated 
for comparison of four whole experimental repeats, each containing thirty single sample 
repeats of each ToplO and 1457.

3.2.6. Variation within and between experiments

In order to assess the validity o f separation offered by PCA, the variation betw een single 

sam ple repeats sets taken on consecutive days (i.e. w hole experim ental repeats), were 

com pared to each other using t-test and the highest variation between them , was assessed 

to be the threshold for the error and set as a non-significant difference (Table 3.2).
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Table 3.2.: Comparison of the natural variation within the consecutive experimental sets of 30 spectra 
of ToplO (A) and 1457 (B).

A
Organism Experiment T-test results value

number
PCI PC2 PC3 PC4

1 vs.2 3.65E-01 2.23E-02 2.19E-01 5.61E -02

ToplO w t
1 vs.3 1.15E-04 1.69E-04 2.62E-03 7.28E-01
lvs.4 2.64E-03 2.90E-01 6.64E-01 1.72E-03
2 vs. 3 1.12E-04 6.78E-01 2.45E-12 1.90E-01
2vs.4 1.86E-07 9.93E-03 2.99E-02 8.57E-01
3vs.4 5.62E-10 6.01E-01 6.84E-01 1.80E-02

B
Organism Experiment T-test results value

number
PCI PC2 PC3 PC4

lvs.2 1.38E-05 4.80E-03 3.81E-01 4.25E-01

1457
1 vs.3 7.12E-01 6.12E-13 1.76E-03 6.73E-01
lvs.4 1.22E-24 6.70E-01 6.80E-02 9.40E-01
2vs.3 2.37E-04 2.17E-04 4.20E-01 2.29E-01
2vs.4 2.55E-07 7.47E-03 8.77E-01 4.43E-01
3vs.4 6.06E-19 6.68E-01 2.56E-01 4.48E-01

3.2.6.1. Rejection of single spectra within a single sample repeats set.

In order to conduct a reproducible experim ent, 30 repeats were alw ays attem pted. H ow ­

ever, som e spectra w ere rejected, based on the reasons described in Table 3.3.

In cases w hen errors, poor quality  or artefacts were noted during experim ent, such as a 

spectrum  being visibly different to the others taken during the experim ental procedure, it 

was discarded and replaced w ith another repeated  m easurem ent.

H ow ever in som e cases, rejection o f a single sam ple repeat m ay not be detected by 

sim ple exam ination o f spectra w ith the naked eye. These errors m ay only be detected 

later follow ing PCA . Such case will cause separation o f a single point from  the whole 

cluster and obstruct the com parison as w ell as the t-test result. The arbitrarily  chosen 

lim it o f  acceptance was from  -3 to +3 o f PC A  scale o f PyChem  softw are. T hese borders 

were based on m ajority  o f our data generated  in a reproducible m anner from  various 

organism s.

In order to m aintain equal num bers o f spectra w ithin single sam ple repeat set, betw een 

all the sam ples tested, additional repeats o f  the spectra were perform ed to serve as spare
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when the PCA shows the need for rejection of any of the repeats approved earlier in the 

analysis process.
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3.2.6.2. Rejection of the single sample repeats within whole experimental 

repeats set

Due to high natural variations present w ithin biological experim ents, it was occasionally  

necessary to reject a single sam ple repeats set, contain ing a full collection o f spectra done 

on one o f  the consecutive days. The decision was usually m ade after spectral analysis and 

com parison with the o ther m easurem ents o f the sam e sam ples. The possible reasons for 

the rejection o f the single sam ple repeats set were sum m arised in Table 3.4. The criterion 

used for rejection o f such inconsistent experim ents was based on the high variability o f 

spectra within the m easured sam ple. The chosen limit o f acceptance was from  -3 to +3 o f 

PCA  scale o f PyChem  software.

3.2.7. Synergistic effect of the agar signal

In order to m onitor the independence o f the bacterial spectra from the background, a set o f 

spectra taken from  agar alone was determ ined and a m ean value for each w avelength was 

calculated. These values were subtracted from  each bacterial spectrum . This operation 

was applied post-R C F in order to avoid fluctuations in fluorescence.

The influence o f the agar background was investigated to show how the subtraction 

o f the agar spectra in tensities results in the final clustering during the PCA. In order to 

achieve this, ToplO spectra obtained from experim ents repeated over 4 consecutive days, 

each containing 30 spectra from  30 different colonies were com pared before and after 

subtracting the agar background.

To investigate how the presence and absence o f agar signal in the bacterial spectra affect 

the separation o f organism s, ToplO  and 1457 spectra obtained on four consecutive days 

w ith and w ithout agar were com pared for m onitoring the differentiation.

■2▼3
▲j
•ool
Mno2
yno3
Ano*

Figure 3.12.: Comparison of clustering for four whole experimental repeats for pre- (blue) and post- 
(red) agar spectra removal on ToplO.

Thus with respect to effects on one strain Top 10 alone (Figure 3.12) clusters are tight

B1](27S«V
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and distinct, suggesting the subtraction o f agar background has no effect on the integrity 

o f either o f the spectra w ithin a single experim ent, as well as w ithin the clustering o f 

consecutive experim ental repeats. H ow ever the clusters are separate, w hich indicates that 

the presence o f agar signal does have an effect and is indeed recognised during R am an 

Spectroscopy. However, w hen distinction betw een organism s (Top 10 vs 1457) is assessed 

(Figure 3.13 and Table 3.5) rem oval o f agar background has no effect on the separation 

o f organism s (sim ilarity betw een Table 3.1 no rem oval and Table 3.5 including rem oval), 

therefore it was neglected in further experim ents w ithin this project.

B

%

• 1 - .
■  <-2
*1-3 iO 
▲1-4 1 £

%  %
™ t  J *

-3 0 -25 -2 0 -15 -10 4J5 0 0 0 5 1 0 1 5 2 0 2 5

IQ* M
-2 0 
-2 5

3 0 3 0 -2 5 -2 0 -1 5 -10 -0 5 0 0 0 5 1 0 IS  2C 2.5

Figure 3.13.: Comparison of clustering between two different organisms pre- (A) and post- agar (B) 
spectra removal on 4 experimental sets of ToplOwt (red) vs. 1457 (blue).

Table 3.4.: Comparison of results of t-tests performed on PCA scores of single experimental sets of
ToplO and 1457 post- agar intensities removal.

T-test results value Experiment
number

Organism

PCI PC2 PC3 PC4
6.59E-34 7.79E-02 8.50E-01 6.51E-01 1
2.67E-32 5.10E-02 4.51E-01 5.92E-01 2 ToplO w t vs.
1.43E-46 4.95E-01 5.19E-01 8.82E-01 3 1457
3.92E-29 1.33E-01 5.25E-01 9.16E-01 4
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3.2.8. Assessing the correct sample size.

In order to prepare a proper com parison o f the sam ples, the correct size o f the single 

sam ple repeats set needed to be correctly assessed. For initial experim ents, based on lab ­

oratory strains and transform ed strains, spectra were collected in a set o f 30 and repeated 

to obtain at least 3 w hole experim ental repeats.

It was im portant to verify w hether the num ber o f spectra in a single sam ple repeat set, 

as well as the num ber o f w hole experim ental repeats in a set, was correct. In order to 

achieve this ToplO  was com pared to 1457 as well as to K 12 to m onitor sam ples that are 

representing the highest and low est taxonom ic difference.

Two param eters have been taken into account: the integrity w ithin clusters and the 

quality o f separation betw een organism s.

C om parison o f two genera (Figure 3.14.A -I) show ed that the clusters rem ain distinct 

and reasonably tight and is relatively independent o f the num ber o f repeats. The separa­

tion is noticeable already w ithin the first 5 repeats (Figure 3 .14.A) and m aintained with 

increasing sam ple m easurem ent up to 30 single sam ple repeats. N oticeably increasing the 

num bers o f single sam ple repeats did not affect differentiation and close clustering was 

m aintained even follow ing 2, 3 and 4 experim ental repeats (F igure 3.14.G -I).

W hen strains w ere com pared: i.e. tw o E. coli strains (Figure 3.15), good distinction 

was m aintained through the single experim ents o f 30 repeats (Figure 3.15.A -F). H ow ­

ever, w hen experim ents perform ed over consecutive days were com pared, the separation 

betw een organism s becam e less distinct. (F igure 3.15.G -I)

A B
PCA Scores PCA Scores

0 -Qi CC IS
*1} 157 87%.

Figure 3.14.: Influence of sample size on separation and size and spatial distribution of clusters be­
tween ToplO(red) and 1457(blue) containing: (A) 5; (B) 10; (C) 15; (D) 20; (E) 25; (F) 30 
single samples repeats from a single experimental repeats and: (G) 2; (H) 3; (I) 4 whole 
experimental repeats for each organism containing 30 single sample repeats each.
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C D

<1](5« 13%

<11(53 99%
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• 1-1

▲1-3

Figure 3.14.: (cont.) Influence of sample size on separation and size and spatial distribution of clusters 
between ToplO(red) and 1457(blue) containing: (A) 5; (B) 10; (C) 15; (D) 20; (E) 25; 
(F) 30 single samples repeats from a single experimental repeats and: (G) 2; (H) 3; (I) 4 
whole experimental repeats for each organism containing 30 single sample repeats each.
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B

Figure 3.15.: Influence of sample size on separation, shape, and spatial distribution of clusters be­
tween ToplO(red) and K12(blue) containing: (A) 5; (B) 10; (C) 15; (D) 20; (E) 25; (F) 30 
single samples repeats from a single experimental repeats and: (G) 2; (H) 3; (I) 4 whole 
experimental repeats for each organism containing 30 single sample repeats each.
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3.2.9. Selection of the regions of differences.

Comparing a whole spectrum may distort results, as the total signal may be burdened 

with unimportant information and noise. These unnecessary peaks could possibly distract 

from the factors that influence the differences between samples. We investigated this 
possibility.

3.2.9.1. Differentiation spectral regions into 6 life molecules peaks

The publication by De Gelder et al. (De Gelder, 2007) suggests using the database of 
biological molecules to divide a complete Raman spectrum from a live organism into sets 
of peaks assigned to a specific biomolecule(s). This was aimed to allow for easier and 

more through discrimination between organisms even at the strain level.
The selection was performed for: amino-acids (813; 828; 850-900; 1004; 1009; 1351; 

1358; 1420-1500 cm-1), DNA-RNA-bases (600-800 cm-1), fats and fatty acids (800; 
891-909; 910-970; 1050-1150; 1265; 1296; 1301; 1400-1500 cm-1), primary metabolites 
(663-661; 723; 784; 787; 930-970; 973; 1034; 1395-1450 cm-1), and saccharides (800- 
1500 cm-1).

For each group of peaks, representing a particular ‘life molecule’ two instances have 
been taken into account: i) only the chosen peaks were selected for comparison and the 
rest of the spectrum was removed; ii) the peaks of interests have been removed and the 
remaining signal was compared.

Comparison of results performed for the ToplO vs. K12 (Figure 3.15.F vs. Fig­
ure 3.6.A-I), it was noted that excluding any part of the spectrum, whichever molecules 
it was related to, did not enhance the separation of clusters in a significant way. In fact, 
in most cases, removing certain peaks of the remaining signal caused a loss in the dis­

tinction between strains (amino-acids peaks; DNA and RNA bases peaks; fats and fatty 
acids peaks; and primary metabolites peaks) or the clusters became less tight (amino- 

acids peaks removed; and DNA and RNA bases peaks removed). The best results were 

the ones that had the greatest similarity to the whole-spectrum comparison i.e. contain­

ing the majority of the whole spectrum, since there is no better result represented by 

bigger separation or tighter clusters; those two examples are the selected peaks represent­

ing saccharides (Figure 3.6.H) and the whole spectrum with peaks representing primary 

metabolites removed (Figure 3.6.G).
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Figure 3.16.: Comparison of two single experiments of 30 repeats for each ToplO (red) and K12 
(blue); (A) peaks associated to amino acids; (B) whole spectrum with peaks associated 
with amino acids removed; (C) peaks associated to DNA and RNA bases; (D) whole 
spectrum with peaks associated with DNA and RNA bases removed; (E) peaks asso­
ciated to fats and fatty acids; (F) whole spectrum with peaks associated with fats and 
fatty acids removed; (G) peaks associated to primary metabolites; (H) peaks respon­
sible for primary metabolites removed; 1) whole spectrum with peaks associated with 
saccharides; J) peaks responsible for saccharides removed.

76



3. DEVELOPMENT OF RAMAN SPECTROSCOPY PROCEDURES FOR
REPRODUCIBLE IDENTIFICATION OF BACTERIA

3.2.9.2. Comparing differences between values for each wavelength based 

on the t-test values

Specific com parison o f peaks w ith significantly different intensities only, w hile the rest o f 

the spectrum , including sim ilar peaks and noise could be rejected was also investigated. 

The peaks intensities were com pared after background correction to avoid the influence 

o f possible fluorescence from  the substrate or the sam ple.

The num erical values for the intensities from  all 30 colonies, taken during a single 

experim ent, were subjected to the S tudent t-test. The significance level was set to 5%, 

therefore, values lower than this threshold are considered to be significantly different 

and higher than 5%  to be similar. This way the w hole spectrum  has been separated into 

intensities falling into two groups: significantly different and no different. Both were 

selected separately, subjected to PCA and clusters were prepared. W hen the Top 10 and 

K12 m easurem ents were com pared, as expected, peaks o f intensities calculated  to show 

sim ilarity > 5%  cluster together giving no separation betw een two organism s, w hile the 

intensities, selected for their significant differences show ed separation when the PC A  was 

applied (Figure 3.17). W hat is notew orthy is that this separation was not better than when 

the w hole spectrum  was taken into the analysis (Figure 3.17.B  vs Figure 3.15.F).

A B

^3  0 -25 TO 20 25 30

Figure 3.17.: Comparison of single whole experimental repeats containing 30 single sample repeats 
for each: ToplO (red) and K12 (blue) containing peaks of: (A) higher than 5%  scored 
in the t-test; (B) lower than 5%  scored in the t-test.
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3.3. Discussion
The main issues that have been addressed in this chapter focused on establishing a system 

of procedures to obtain reproducible Raman spectra from bacteria.

Selecting appropriate settings for spectral acquisition is a crucial factor, especially in 

the clinical environment, when the data obtained from the sample should be as clear and 

as information-rich as possible, without compromising on the non-destructive qualities of 

Raman spectroscopy. According to the literature and our results, despite various systems 
used (Rosch et al., 2005) (Sengupta et al., 2006), different objectives (Maquelin et al., 
2000), spectral ranges (Ciobot et al., 2010), and laser excitations (Goodwin, 2006) mak­
ing it difficult to compare our system settings to all publications, Raman spectra can be 
obtained from bacteria with a variety of different settings.

Choosing the substrate is one of the most significant issues in the Raman spectroscopy 
based approach, since the literature varies greatly on this subject. It is important to re­
member that substrates can emit strong fluorescence signals, interfering and even ob­
structing the spectra of interest. In addition, if Raman spectroscopy is to be used as a 
diagnostic tool, the substrate should be easy to prepare, store and be inexpensive.

This chapter showed that agar was the optimum substrate for Raman spectroscopy of 
bacteria

The set-up closest to ours, was the use of micro-colonies, offering advantages in both: 
time and standard laboratory substrate. We have started investigating this idea and it is 
likely that given more time, we would have explored the area more. There are several 

publications offering alternative solutions: Harz et al (Harz et al., 2009) describes pre­
liminary method of scanning single cells applied onto fused silica samples that was also 
tested for the patients cerebrospinal fluid. The results seem promising, however less is 
known specifically about the substrate and its influence on the sample.

Much of Raman spectroscopy-based bacterial research has focused on SERS, which 
offers significant signal enhancement, however, this approach inevitably relies on the use 

of specially prepared substrate, usually involving silver or gold nano-particles (Cam et al., 

2009) (Jarvis et al., 2006) (Guicheteau & Christesen, 2010) (Premasiri et al., 2011) (Sen­
gupta et al., 2006) (Jarvis & Goodacre, 2004b). Although authors claim the ease of SERS 

substrate preparation, it has also been stated that most of the time, the substrate has been 

monitored with either SEM or AFM for stability and reproducibility purposes. Such a 

step would not be welcome in the diagnostic laboratory. One way to avoid this could
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involve buying ready-made SERS substrate, nevertheless to our knowledge there are no 
such possibilities currently and this would add to the costs of the diagnostic step.

Non-SERS approaches have claimed to reduce the time of sample preparation by apply­

ing bacterial biomass onto the CaF2 windows (Kirschner et al., 2001) (Jarvis & Goodacre, 

2004a) (Hutsebaut et al., 2006) or fused silica plate (Rosch et al., 2005) (Gaus et al., 

2006) (Harz et al., 2005). Although these substrates seem easily available, it has not been 

clearly stated whether they can be re-used and therefore its cost efficiency can be ques­
tioned. In addition, most of the research involved preparation of the sample in laboratory 

conditions based on overnight growth and centrifuging bacterial suspension in order to 

obtain concentrated pellet. When we attempted to investigate such approaches with the 
use of gold coated slides, we experienced trouble focusing on concentrated pellet. In ad­
dition, growing a bacterial suspension concentrated enough to obtain sufficient amount 
of sample required additional incubation time, therefore this approach does not offer any 

time advantage over our methods. Furthermore there is also the requirement for purchas­
ing different substrates, while we have used agar, a substrate already widely used in the 
hospital laboratories and by others. (Rosch et al., 2003).

The necessity of removing inappropriate spectra was assessed. It is only natural that 
biological systems involve some natural variation, even within replicates. In addition there 
may be some natural fluctuation related to the power of laser and error with focussing, 
especially when the elevation of the colony is taken into account, as the line mode of 
laser will not focus as well on the highly elevated as it would on flat surface. Including 
an experiment burdened with a general error will affect the final analysis and will be 

represented by wide spread of points in PC cluster representing the repeats for a single 
organism. Moreover, it could also falsely separate from other experimental repeats from 

the same organism and overlap with a different cluster, representing a different organism. 
This could bring a gross error and completely change the perception of the separation of 
two organisms. Such details have not been investigated in the current literature.

The importance of removing background signal is more popular in the Raman spec­
troscopy literature. A publication by Kourkoumelis et al. (Kourkoumelis et al., 2012) re­

views the method based on the geometric definition of convex hull. The presented results 

are satisfying and authors inform that this method is semi-automated and requires input 

of only two variables. However promising the method is, it has not been applied to bac­

terial organisms and conclusions based only on paracetamol, prednisone acetate tablets 

and chondrocytes in cartilage cannot ensure it would be useful for diagnostic purposes.
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Another available research incorporating background correction method was conducted 

by Huang et al. (Huang et al., 2010) and used Rolling Circle Filter with success. This 

confirms our choice in the method of background subtraction.
Many different tools for Raman spectra processing have been described in 

microbiology-related publications, especially when closely related and difficult to dis­

tinguish samples were examined. K-means clustering analysis has been criticised for 
not identifying the biochemical differences between regions and had to be used in con­

junction with PCA (Bonnier & Byrne, 2012). Several other publications involving PCA 
have linked it with other techniques: Discriminant Function Analysis (DSF) (Nicolaou 
et al., 2011), cluster analysis (CA) (De Gelder et al., 2007c). PCA being an unsupervised 
method, similarly to factor analysis (FA) and CA does not require any previous knowl­
edge about the sample and still offers grouping of the results, while supervised methods 

including multiple linear regression (MLR), principal component regression (PCR), par­
tial least square regression (PLS) and linear discriminant analysis (LDA) require sets of 
well-characterised samples (Mobili & Londero, 2010), which may not be of desired qual­

ity for a diagnostic technique.
After investigating the most appropriate sample size, a conclusion can be drawn, that 

when comparing two organisms, one has to be very cautious with how many experimental 
repeats are included. When a high variation between experimental repeats is expressed, 
adding too many samples into the comparison may compromise the separation between 
distinct samples. This effect could possibly be investigated further in the future since the 
literature does not include any conclusive proof towards describing the most appropri­
ate number of samples and varies to a great degree; from single bacteria (Ravindranath 
et al., 2011), to similar numbers of repeats as described by Jarvis and Goodacre (Jarvis & 

Goodacre, 2004b).
Assessing the influence of agar spectra in the bacterial signal was necessary. Although 

it seems that the signal from agar remains the general shape of the bacterial spectrum, it 

was shown that there is no influence on the clustering: neither within the single sample 

repeats, nor when different organisms were compared. However, when the agar signal is 

present, there is a single spectrum within the experiment 1 (blue round point marked with 

1 - Figure 3.12) that does not belong with the cluster (and so was discarded), which is not 
visible when agar has been removed. In this project, such effects have minor implications 

and did not need to be investigated any further. These findings could not be compared 
with literature due to the lack of investigation in this field.
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Our hypotheses about investigating only selected regions of spectra were shown to be 
incorrect for the purpose of this project. During PCA parts of the spectrum, responsible 

for the highest differentiation are automatically selected. In this case it is most likely the 
signal from fats and fatty acids. Therefore for differentiating between bacterial organ­

isms, it is most appropriate when the whole spectrum is taken into account. It can be 

concluded that PCA focuses and prioritises only the regions of spectra that are responsi­

ble for significant differences and no selection of peaks is therefore necessary prior to the 
analysis.

In conclusion, this chapter assesses that inVia Raman system could serve as a novel 
analytical method for diagnosing bacterial diseases. The importance of optimising Raman 

procedures was presented in this chapter and has indicated the precision required when 
using this method. Its speed and ease of use may allow for important advancements in 

the diagnostic fields for patients that are in need of rapid care, while when combined with 

proper processing of the results, Raman micro-spectroscopy serves specificity and details 
in distinguishing between samples.

All the methods described in this chapter were applied in Chapters 4 - 6  (unless other­
wise specified) which explore the possibilities of Raman spectroscopy for comparing bac­
terial organisms on different level of similarity: including different genus, within genus, 
different species, within species and even isogenic strains and clinical isolates.
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4.1. Introduction

The literature offers wide variety of examples of comparison between genera and strains 
of bacteria, however, since various techniques and Raman enhancements are used it is 

difficult to compare results between different research groups.
Numerous studies have shown that diagnosing bacterial-caused infectious diseases in 

particular could profit from applying Raman spectroscopy with the examples being:

Esherichia coli, Klebsiella pneumonia, Proteus spp., Klebsiella oxytoca, Proteus 
mirabilis, Enterococcus faecium, Enterococcus spp., Citrobacter freundii, Staphylococ­
cus cohnii, Staphylococcus wameri, Staphylococcus epidermidis, Salmonella cholerae- 
suis, Shigella flexneri, Micrococcus luteus, Rhodotorula mucilaginosa, Bacillus spheri- 
cus, Pseudosomonas fluorescens, Helicobacter pylori, Staphylococcus aureus, Strepto­
coccus pneumonia, Streptococcus agalactiae, Neisseria meningitides, Listeria monocy­
togenes, Shigella sonnei, Erwinia amylovara, Proteus vulgaris , Bacillus megaterium, 
Bacillus thuringiensis, Azohydromonas lata, Cupravidus necator, Acidophilium cryp- 
tum (Ciobot et al., 2010). (Culha et al., 2010) (Hadjigeorgiou, 2009) (Jarvis et al., 
2006) (Jarvis & Goodacre, 2004a) (Jarvis & Goodacre, 2004b) (Maquelin et al., 

2000) (Mello et al., 2005) (Hadjigeorgiou, 2009) (Jarvis & Goodacre, 2004b) (Jarvis & 
Goodacre, 2004b) (Harz et al., 2005) (Harz et al., 2009) (Samek et al., 2008) (Mello et al., 
2005) (Rosch et al., 2003)(Rsch et al., 2003) (Lin et al., 2009) (Jarvis et al., 2006) (Harz 
et al., 2009) Above references can be found in an easier to read format in Table A.2 in 
Appendix A.

Less is known about the discrimination between microorganisms and the key Raman 
shifts associated with each organism. In the previous chapter we demonstrated that Raman 
spectra could be successfully obtained from microorganisms in a reproducible fashion. 
This work forms our basic standard operating procedure which will now be applied with 
only slight modifications.

In this chapter Raman spectroscopy is used to

• identify species/strain related and species/strain specific Raman shifts

• discriminate between bacteria on different taxonomic levels

-  genus

-  species

-  strain
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• generate a level of relatedness between strains

•  identify the effects of storage on discrimination
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4.2. Methods

4.2.1. Bacterial strains

This chapter describes experiments performed on the reference strains listed in Table 2.9.

4.2.2. Obtaining Raman spectra

Conditions for measuring and processing Raman spectra were described in Chapter 3

4.2.2.1. Comparing single sam ple repeats and whole experiment repeats

Reproducibility testing was performed for each of the strain used in this chapter according 

to Section 3.2.3.

4.2.2.2. Describing bacterial species

All of the strains used in this chapter were described by determining their crucial peaks 
as specified in Section 3.2.5.2.

4.2.2.3. Comparing bacterial spectra

Bacterial organisms were compared at each taxonomic level. Results were presented in 
a form of subtracted mean intensities, a table of peaks with suggested assignment from 

Table A.3 (according to Section 3.2.5.3), an example of PCA analysis (according to Sec­

tion 3.2.5.4) based on one, randomly chosen whole experimental repeat and a table of 
t-test values calculated for all the whole experimental repeats performed for the first four 
principal components (according to Section 3.2.5.4).

4.2.3. Multiple strains comparison

All strains used in this chapter were compared together by calculating mean values of all 

the single spectral repeats within every whole experimental repeats and comparing the 

mean values by hierarchical cluster analysis according to the Section 3.2.5.5.
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4.2.4. Assessing the influence of storage conditions on 
Raman spectroscopy measurements

An overnight CBA plate containing colonies of ToplO or K12 was subjected to Raman 

spectroscopic measurements after: 0; 1; 2; 4; 8h. At least 15 spectra were taken from 15 

different colonies at each time points. Pieces of agar containing the appropriate number 

of colonies were cut out of the plate and placed on a glass microscopic slide, while the 

plate with remaining colonies was immediately returned to either 4°C (standard fridge) or 
25°C (room temperature) storage. After each time point a new fragment of agar was cut 

out of the original plate. The experiment was repeated on three consecutive days.
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4.3. Results

4.3.1. Identifying the most crucial peaks for each bacterial 
strain

To determine which biological molecules are recognised by Raman spectroscopy, each 
strain used in this chapter was described separately and most significant peaks were iden­

tified using Table A. 3.

A

6000

5000

3  4000

2000

C  1000

800 1000 1200 1400 1600600

Ram an shift ( c m 'h

Raman shift
(cm-1)

Compound/molecule

781 Citidine, Uracil, Cytosine, Uracil ring stretching, Phospho- 
phenylopyruvate, DNA Phosphodiester O-P-O stretching

900 Lactose

1000 Palmitic acid, D-(+)-Galactosamine

1100 Palmitic acid
1340 DNA/RNA(Guanine/Adenine), Proteins, Carbohydrates, Pro­

tein (Amide III)
1450 CH2 scissoring, DNA, C-H bindings in lipids, Proteins, Car­

bohydrates, Bands of fatty acids, Deformation vibration CH2 
scissoring

Figure 4.1.: Plot and a table of most significant peaks with assigned molecules and bonds based on the 
mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C) K12; (D) Strain 
B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1
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B

7000 

6000' 

^  5000

t 3000- 

2000-2£  1000-

Ram an shift (cm""')

Raman shift

( c m 1)
Compound/molecule

781 Citidine, Uracil, Cytosine, Uracil ring stretching, Phospho- 
phenylopyruvate, DNA Phosphodiester O-P-O stretching

900 Lactose
1000 Palmitic acid, D-(+)-Galactosamine

1100 Palmitic acid
1340 DNA/RNA(Guanine/Adenine), Proteins, Carbohydrates, Pro­

tein (Amide III)
1450 CH2 scissoring, DNA, C-H bindings in lipids, Proteins, Car­

bohydrates, Bands of fatty acids, Deformation vibration CH2 

scissoring
Figure 4.1.: (cont.) Plot and a table of most significant peaks with assigned molecules and bonds 

based on the mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C) 
K12; (D) Strain B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1
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C

5000
4000

3000

2000

1000

0
800 1000 1200 1400 1600600

Ram an shift (cm"1)

Raman shift
(cm-1)

Compound/molecule

781 Citidine, Uracil, Cytosine, Uracil ring stretching, Phospho- 
phenylopyruvate, DNA Phosphodiester O-P-O stretching

1000 Palmitic acid, D-(+)-Galactosamine
1100 Palmitic acid
1340 DNA/RNA(Guanine/Adenine), Proteins, Carbohydrates, Pro­

tein (Amide III)
1450 CH2 scissoring, DNA, C-H bindings in lipids, Proteins, Car­

bohydrates, Bands of fatty acids, Deformation vibration CH2 
scissoring

Figure 4.1.: (cont.) Plot and a table of most significant peaks with assigned molecules and bonds 
based on the mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C) 
K12; (D) Strain B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1
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D

7000

6000

5000

4000

3000'

2000

£  1000

O'
600 600 1000 1200 1400 1600

Ram an shift (cm-1)

Raman shift 

(cm-1)
Compound/molecule

663 (not identified in literature, the closes signal is: Guanine)

756 Phosphophenylopyruvate
1000 Palmitic acid, D-(+)-Galactosamine
1120 D-(+)-Galactosamine, Acetyl coenzyme A
1340 DNA/RNA(Guanine/Adenine), Proteins, Carbohydrates, Pro­

tein (Amide III)
1450 CH2 scissoring, DNA, C-H bindings in lipids, Proteins, Car­

bohydrates, Bands of fatty acids, Deformation vibration CH2 

scissoring
Figure 4.1.: (cont.) Plot and a table of most significant peaks with assigned molecules and bonds 

based on the mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C) 
K12; (D) Strain B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1
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E

3
•S’ 3000

800 1000 1200 1400 1600600

Ram an shift (cm*1)

Raman shift
(cm-1)

Compound/molecule

782 Citidine, Uracil, Cytosine, Uracil ring stretching, Phospho- 
phenylopyruvate, DNA Phosphodiester O-P-O stretching

1000 Palmitic acid, D-(+)-Galactosamine
1100 Palmitic acid
1340 DNA/RNA(Guanine/Adenine), Proteins, Carbohydrates, Pro­

tein (Amide III)
1450 CH2 scissoring, DNA, C-H bindings in lipids, Proteins, Car­

bohydrates, Bands of fatty acids, Deformation vibration CH2 
scissoring

Figure 4.1.: (cont.) Plot and a table of most significant peaks with assigned molecules and bonds 
based on the mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C) 
K12; (D) Strain B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1
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F

4000

3
CD

2000

4>C

Ram an shift (cm '1)

Raman shift 
(cm-1)

Compound/molecule

902 Amylose
1000 Palmitic acid, D-(+)-Galactosamine
1100 Palmitic acid
1340 DNA/RNA(Guanine/Adenine), Proteins, Carbohydrates, Pro­

tein (Amide III)
1420 CH2 scissoring, DNA, C-H bindings in lipids, Proteins, Car­

bohydrates, Bands of fatty acids, Deformation vibration CH2 

scissoring
Figure 4.1.: (cont.) Plot and a table of most significant peaks with assigned molecules and bonds 

based on the mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C) 
K12; (D) Strain B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1
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G

6000

5000

-7- 4000 3
S  3000 

20001£'g  1000

600 600 1000 1200 1400 1600

Ram an shift (cm*1)

Raman shift

(cm-1)
Compound/molecule

781 Citidine, Uracil, Cytosine, Uracil ring stretching, Phospho- 
phenylopyruvate, DNA Phosphodiester O-P-O stretching

1000 Palmitic acid, D-(+)-Galactosamine
1100 Palmitic acid

1340 DNA/RNA(Guanine/Adenine), Proteins, Carbohydrates, Pro­
tein (Amide III)

1450 CH2 scissoring , DNA, C-H bindings in lipids, Proteins, Car­
bohydrates, Bands of fatty acids, Deformation vibration CH2 
scissoring

Figure 4.1.: (cont.) Plot and a table of most significant peaks with assigned molecules and bonds 
based on the mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C) 
K12; (D) Strain B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1
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H

9000

•g* 6000

IB 5000

Ram an shift (cm'"*)

Raman shift Compound/molecule

(cm-1)_________________
782 Citidine, Uracil, Cytosine, Uracil ring stretching, Phospho-

phenylopyruvate, DNA Phosphodiester O-P-O stretching 
1000 Palmitic acid, D-(+)-Galactosamine

1100 Palmitic acid

1450 CH2 scissoring, DNA, C-H bindings in lipids, Proteins, Car­
bohydrates, Bands of fatty acids, Deformation vibration CH2

______________ scissoring____________________________________________
Figure 4.1.: (cont.) Plot and a table of most significant peaks with assigned molecules and bonds

based on the mean spectra from all Raman measurements for (A) 1457; (B) 9142; (C)
K12; (D) Strain B; (E) ToplO; (F) 10418; (G) 6571; (H) Cowan 1

Table 4.1.: The summary of the Raman signal from all the reference (antibiotic susceptible) strains 
used in the project and showed separately in Figure 4.1

Raman shift Organism

663
756
781
782 
900 
902 
1000 
1100 
1120 
1340 
1420 
1450

1457 9142 K12 Strain B 
x

ToplO 10418 6571 Cowan 1

The presence of peak at the listed shift number is indicated by ‘x \

95



4. DISCRIMINATION BETWEEN BACTERIAL SPECIES AND STRAINS USING
RAMAN SPECTROSCOPY

4.3.2. Similarity within experimental repeats

In order to investigate the ability o f Ram an spectroscopy to produce reproducible results, 

colonies o f  all the strains used in this chapter were subjected to Ram an spectroscopy on 

consecutive days and the spectra were subjected to PCA  (Figure 4.2). S. epiderm idis  

(1457, 9142) and E. coli (K12, Strain B and ToplO) strains show ed tight clustering over 

the 3 day period suggesting high reproducibility  and suggested the potential for sim ­

ple discrim ination  betw een these species and strains. Less frequently  used in laboratory 

strains of: S. aureus (6571 and Cowan 1) and E. coli (10418) showed less clustering on 

respective days but m aintained tight clusters on specific days. E. coli strain B had to 

be scanned 7 tim es to obtain 4 acceptable w hole experim ental repeats. This was due to 

reasons given in Table 3.5.

A B

C

20 25  30

D

0 25  30

Figure 4.2.: PCA of whole experimental repeats performed for single strains used in the project; a) 
1457; b)9142; c)K12; d) Strain B; e)Topl<); f)10418; g) 6571; h)Cowan 1
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G H
PCA Scores PCA Scores

Figure 4.2.: (cont.) PCA of whole experimental repeats performed for single strains used in the 
project; a) 1457; b)9142; c)K12; d) Strain B; e)ToplO; f)10418; g) 6571; h)Cowan 1

4.3.3. Comparison of organisms on different taxonomic levels

In order to determ ine w hether R am an spectroscopy could distinguish betw een organism s 

at different taxonom ic levels bacteria were com pared in pairs.

4.3.3.1. Comparing different genera

The reproducibility  experim ents (Figure 4.2) confirm ed our choice o f strains at the genus 

level. The pairw ise com parisons included the genera o f Esherichia  and Staphylococcus 

including S. epidennidis  1457 vs. E. coli ToplO (Figure 4.2), S. epiderm idis  9 142 vs. 

E. coli K12 (Figure 4.2) S. aureus 6571 vs. E. coli 10418 (Figure 4.2) and S. aureus 

Cowan 1 vs. E. coli strain B (Figure 4.2). C om parisons show ed m any distinctive differ­

ences betw een the genera, w hich were v isible upon subtraction o f m ean in tensities values 

(A panel; blue curve on spectra) and represented by m any R am an peaks (panel B; tables 

o f signal) w ith defined shifts. D istinct separate PCA  clusters (panel C; PCA plot) were 

confirm ed by the very low probability  values (high significance) follow ing t-tests on in­

dividual PC scores (panel D; tables o f t-test results). The signals identified are the result 

o f DNA/RNA, am ino acids and proteins. All o f the com parisons show the peaks falling 

into the 778 - 785 cm -1 , w hich are all related strictly to m olecules and bonds w ithin the 

DNA.

4.3.3.2. Comparing different species within the same genera

The pairw ise com parison o f different species was carried  out betw een S. epiderm idis 

(strains 1457 and 9142) and S. aureus (6571 and Cowan 1); specifically com parisons be­

tween S. epiderm idis 1457 vs. S. aureus 6571 (F igure 4.2) and S. epiderm idis 9142 vs.

S. aureus Cowan 1 (Figure 4.2). O verall, com parisons show ed m any distinctive differ­

ences betw een species, which w ere visible upon subtraction o f m ean in tensities values
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(A panel; blue curve on spectra) and represented by m any R am an peaks (panel B; tables 

o f signal) w ith defined shifts. D istinct separate PCA  clusters (panel C: PCA plot) were 

confirm ed by the low probability  values (high significance) follow ing t-tests on individual 

PC scores (panel D; tables o f t-test results). Interestingly t-test scores were h igher than 

for F igures 4.2 and 4.2 show ing differences betw een genera. The m ost significant peaks 

have been assigned to sim ilar signals as w hen different genera w ere com pared.

C

PCA Scores   ■   ’ • • T  tom
2

-3 0 -2 5 -20 -IS  -1 0 -05 00  OS 10 IS  20  25 30
<1] (47.66% •

Raman shill (an'*)

B

Raman sh ift Compound/molecule
(cm-1)
758 (not identified in literature, the closes signal is: Phosphopheny-

780
lopyruvate)
C itidine, U racil, C ytosine, Uracil ring stretching, Phospho-

830
phenylopyruvate, DNA P hosphodiester O -P-O  stretching 
Tyrosine (in proteins)

900 L -Proline, Lactose, A inylose

999 D -(+)-G alactosam ine

1000 D -(+)-G alactosam ine

1190 (not identified in literature)

1270 (not identified in literature, the closes signal is: Lactose. D-

1300
(+)-Trehalose, M alic Acid) 
(not identified in literature)

1410 (not identified in literature)
Figure 4.3.: The comparison of 1457 and ToplO.; (A) plot of the means of all four whole experimental 

repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) the list 
or Raman peaks showing the most significant differences between the two organisms; (C) 
PCA comparing two single experiments; (D) table of t-test results comparing PC scores 
for each whole experimental repeats

A

Subtraction

&
I

600 800 1000 1200 1400 ’GOO
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D

Organism Experiment
number

T-test results value

PCI PC2 PC3 PC4

1 8.58E-24 1.63E-02 7.90E-01 5.73E-01

ToplO w t vs. 2 9.50E-34 1.53E-01 2.96E-01 6.57E-01

1457 3 2.95E-48 5.01E-01 6.71E-01 8.50E-01

4 1.88E-37 2.59E-01 3.01E-01 9.32E-01
Figure 4.3.: (cont.) The comparison of 1457 and ToplO.; (A) plot of the means of all four whole 

experimental repeats (4 sets of 30 spectra) for each strain and a subtraction of these 
means; (B) the list or Raman peaks showing the most significant differences between the 
two organisms; (C) PCA comparing two single experiments; (D) table of t-test results 
comparing PC scores for each whole experimental repeats

A C

600 so-: 1000 1200 1400

Raman s*n (cm' )

20 2 5 30

Figure 4.4.: The comparison of K12 and 9142; (A) plot of the means of all four whole experimental 
repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) the list 
or Raman peaks showing the most significant differences between the two organisms; (C) 
PCA comparing two single experiments (D) table of t-test results comparing PC scores 
for each whole experimental repeats.
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B

Raman shift Compound/molecule
(cm-1)__________________________
781 C itidine, U racil, C ytosine, Uracil ring stretching, Phospho-

phenylopyruvate, DNA P hosphodiester O -P-O  stretching 
832 (not identified in literature, the closes signal is: Tyrosine (in

proteins) exposed, L-Tryptophan 
901 Am y lose, Lactose

999 D -(+)-G alactosam ine

1000 D -(+)-G alactosam ine

1190 (not identified in literature)

1270 A m ide III, D N A /RNA (Thym ine, A denine), P roteins (A m ide

III), L ipids
1450 C H 2 scissoring, DNA, C-H bindings in lipids. Proteins, C ar­

bohydrates, Bands o f fatty acids, D eform ation vibration C H 2 

scissoring
1550 (not identified in literature)

1600 (not identified in literature, the closes signal is: Tyrosine,

_______________ Phenylalanine)______________________________________________
D

Organism Experiment T-test results value

PCI PC2 PC3 PC4

1 1.63E-31 4.24E-01 2.22E-01 5.71E-01

K12 vs. 2 1.03E-57 8.83E-01 8.16E-01 5.71E-01

9142 3 8.28E-49 5.75E-01 7.39E-01 6.35E-01

4 5.70E-14 2.78E-04 8.47E-01 5.84E-01
Figure 4.4.: (cent.) The comparison of K12 and 9142; (A) plot of the means of all four whole experi­

mental repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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A

I

1000600 800 1200 1400 1600

10 -05 0 0 0 5
<11(63 87%;

5 20 25  30

Raman chi* (cm*’)

B

Raman shift Compound/molecule
(cm -1)__________________________
781

1010 
1100 

1180

1260

1340

1450

1570

C itidine, U racil, C ytosine, Uracil ring stretching, Phospho-

phenylopyruvate, DNA Phosphodiester O -P-O  stretching 
(not identified in literature, the closes signal is: Phenylalanine) 

Palm itic acid

(not identified in literature)

15-M ethylopalm itic acid, D -(-) A rabinose, Lactose, D -(+)- 

Trehalose, M alic Acid
D N A /R N A (G uanine/A denine), Proteins, C arbohydrates, P ro ­

tein (A m ide III)
C H 2 scissoring, DNA, C -H  bindings in lipids, Proteins, C ar­

bohydrates, B ands o f fatty acids, D eform ation vibration, C H 2 

scissoring
L -G lutam ate, L-H istidine

D

Organism Experiment
number

T-test results value

PCI PC2 PC3 PC4

10418 vs. 1 4.43E-07 3.45E-03 4.69E-01 7.78E-01

6571 2 5.43E-20 7.13E-01 5.87E-01 9.04E-01
Figure 4.5.: The comparison of 10418 and 6571; (A) plot of the means of all two whole experimental 

repeats (2 sets of 15 spectra) for each strain and a subtraction of these means; (B) the list 
or Raman peaks showing the most significant differences between the two organisms; (C) 
PCA comparing two single experiments (D) table of t-test results comparing PC scores 
for each whole experimental repeats.
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A

Subtraction

I

•>000 1200 

Raman sftft (o rf1)

B

Raman shift Compound/molecule
( c m 1)__________________________
662

782

850

999

1000 
1020 

1180 

1250

1340

1410

1530

(not identified in literature, the closest signal is: Guanine) 

C itidine, U racil, C ytosine, Uracil ring stretching, Phospho- 

phenylopyruvate, DNA, Phosphodiester O -P-O  stretching 
C -O -C  stretching vibration, 1,4-glycosidic link, Tyrosine (in

protein)
D -(+)-G alactosam ine 

D -(+)-G alactosam ine 

(not identified in literature)

(not identified in literature)

C ytosine, L -histidine, D -(+)-Fructose, N-H, C-N , Am ide III,

D N A /RN A  (Thym ine, A denine), Lipids 
D N A /R N A (G uanine/A denine), Proteins, C arbohydrates, P ro­

tein (A m ide III)
(not identified in literature)

(not identified in literature)

D

Organism Experiment T-test results value

PCI PC2 PC3 PC4

B vs. 1 9.28E-22 7.41E-01 6.27E-01 9.94E-01

Cowan 1 2 8.69E-14 1.10E-01 8 .10E-01 7.22E-01
Figure 4.6.: The comparison of Strain B and Cowan 1; (A) plot of the means of all two whole experi-

mental repeats (2 sets of 15 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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A C

Subtraction

 ̂ i

§

600 800 1000 1200 1400

Raman sftrfl (cm"')

I1)(43 4«%

B

Raman shift Compound/molecule
(cm -1)__________________________
777

783

898

1000
1090

1250

1300

1340

1410

1480

C itidine, U racil, C ytosine, Uracil ring stretching, Phospho-

phenylopyruvate, DNA P hosphodiester O -P-O  stretching 
C itidine, U racil, C ytosine, U racil ring stretching, Phospho- 

phenylopyruvate, DNA Phosphodiester O -P-O  stretching 
C-O -C  stretching , C -O -C  vibrations o f  the glycosidic bonds

and sugar rings, L -Proline 
D -(+)-G alactosam ine

DNA /RN A , Lipids, C arbohydrates, C-C stretching, C -N  

stretching, C-O  stretching
Am ide III, N -H , C-N, Cytosine, L -histidine, D -(+)-Fructose 

(not identified in literature)

D N A /R N A (G uanine/A denine), Proteins, C arbohydrates, P ro ­

tein (A m ide III)
(not identified in literature)

14-M ethylhexadecanoic acid, Palm itic acid, D -(+)-M annose

D

Organism Experiment T-test results value
number

PCI PC2 PC3 PC4

6571 vs. 1 2.09E-24 1.26E-02 7.80E-01 7.96E-01

1457 2 1.48E-20 4.13E-03 2.98E-01 5.22E-01
Figure 4.7.: The comparison of 1457 and 6571; (A) plot of the means of all two whole experimental 

repeats (2 sets of 15 spectra) for each strain and a subtraction of these means; (B) the list 
or Raman peaks showing the most significant differences between the two organisms; (C) 
PCA comparing two single experiments (D) table of t-test results comparing PC scores 
for each whole experimental repeats.
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C

2?
I

800 1000 1200 1400

Raman s f tt(  a n '1)

qlj i6c 75%

B

Raman shift Compound/molecule

(cm-1)__________________________
754

780

856

902

926

1000
1100
1180

1240

1400

1530

1600

L-Tryptophan

Citidine, U racil, C ytosine, Uracil ring stretching, Phospho-

phenylopyruvate, DNA Phosphodiester O -P-O  stretching 
Tyrosine buried. Tyrosine ring breathing

A m ylose

(not identified in literature, the closest signal is: C-CO O - , 

CO O - stretching. Phospholipids, C-C skeletal, C H 3 rocking) 
D -(+)-G alactosam ine 

Palm itic acid

(not identified in literature)

D-(+) Trehalose, D (+)-M annose 

(not identified in literature)

(not identified in literature)

(not identified in literature, the closest signal is: Tyrosine,

D

Organism Experiment

number
T-test results value

PCI PC2 PC3 PC4

C ow anl vs. 1 1.97E-20 7.98E-01 6.16E-01 8.94E-01

9142 2 9.12E-19 7.90E-01 7.40E-01 7.66E-01
Figure 4.8.: The comparison of 9142 and Cowanl.; (A) piot of the means of all two whole experimen­

tal repeats (2 sets of 15 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks show ing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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4.3.3.3. Comparing different strains within the sam e species

In order to fully explore the abilities of Raman spectroscopy for precise differentiation 

between bacterial organisms, subtle comparisons between bacteria representing different 

strains of the same species were investigated. Thus in S. epidermidis strains 1457 and 

9142 were compared (Figure 4.2). In S. aureus comparisons were made between strains 
6571 vs. Cowanl (Figure 4.2) was compared. In E. coli three further comparisons were 
made including K12 vs. ToplO (Figure 4.2), K12 vs. strain B (Figure 4.2) and ToplO vs. 

strain B (Figure 4.2).
Overall, comparisons showed many distinctive differences between species, which 

were visible upon subtraction of mean intensities values (A panel; blue curve on spec­

tra) and represented by many Raman peaks (panel B; tables) with defined shifts. Distinct 

separate PCA clusters (panel C; PCA plot) were confirmed by the low probability val­

ues (high significance) following t-tests on individual PC scores (panel D; tables of t-test 
results). Interestingly t-test scores, especially within E. coli strains comparisons were 
higher than those shown for differences between genera.

Two organisms: 1457 and 9142 representing S. epidermidis strain, show very discrete 
differences when the mean intensities were subtracted, however still maintain well sepa­
rated clusters and very low results of t-tests (Figure 4.2).

The comparison of two S. aureus species: 6571 and Cowanl (Figure 4.2) although 
also contain the variation between the same species show very high differences of the 
mean intensities subtraction that could be compared to the differences between 9142 and 

Cowanl or even Strain B and Cowan 1 and it is also supported by the results from t-tests. 
At this step of differentiation, there is a maintained trend of expressing DNA, proteins, 
carbohydrates, however there are more fatty acids and fats involved, therefore there is 

much higher variation in the assigned molecules and bonds.
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A

Subtraction

|

1000 1200 

Raman (a n '1)

H *  > • '

HI; .49 32%

B

Raman shift Compound/molecule
(cm-1)__________________________
782 C itidine, Uracil, C ytosine, Uracil ring stretching, Phospho-

phenylopyruvate, DNA  Phosphodiester O -P-O  stretching 
915 (not identified in literature, the closes signal is: M yristic acid)

959 (not identified in literature)

999 D -(+)-G alactosam ine

1370 (not identified in literature)

1450 C H 2 scissoring, DNA, C-H bindings in lipids, Proteins, C ar­

bohydrates, B ands o f fatty acids, D eform ation vibration C H 2 

_______________ scissoring___________________________________________________
D

Organism Experiment 
number

T-test results value

PCI PC2 PC3 PC4

1 1.12E-28 8.87E-01 7.30E-01 6.35E-02

1457 vs. 2 2.74E-03 1.75E-14 4.09E-03 7.19E-01

9142 3 2.97E-10 5.16E-07 4.14E-01 3.08E-01

4 1.54E-23 5.21E-01 2.93E-02 8.49E-01
Figure 4.9.: The comparison of 1457 and 9142.; (A) plot of the means of all four whole experimental 

repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) the list 
or Raman peaks showing the most significant differences between the two organisms; (C) 
PCA comparing two single experiments; (D) table of t-test results comparing PC scores 
for each whole experimental repeats.
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Subtraction

f

600 800 1000 16001200 1400 <1J<« 63%

Raman shill (cm' )

B

Raman shift Compound/molecule
(cm -1) __________________________
663

755

781

1000 
1180

1240

1400

1530

(not identified in literature, the closes signal is: G uanine) 

L -Tryptophan, Phosphophenylopyruvate 

C itidine, Uracil, C ytosine, Uracil ring stretching, Phospho­

phenylopyruvate, DNA P hosphodiester O -P-O  stretching 
D -(+)-G alactosam ine

(not identified in literature)

D (+)-M annose, D-(+) T rehalose 

(not identified in literature)

(not identified in literature)

D

Organism Experiment T-test results value
number

PCI PC2 PC3 PC4

6571 vs. 1 1.48E-27 9.55E-01 7.62E-01 9.22E-01

C ow anl 2 1.43E-22 6.98E-01 8.46E-01 7.59E-01
Figure 4.10.: The comparison of 6571 and Cowanl.; (A) plot of the means of all two whole experimen­

tal repeats (2 sets of 15 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments; (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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C
Subtraction

600 800 1000 1200 1400 1600

Raman sM  (on"')

20  2 5 30

B

Raman shift Compound/molecule
(c m '1)__________________________
662 (not identified in literature, the closest signal is: G uanine)

744 (not identified in literature)

781 C itidine, Uracil, C ytosine, Uracil ring stretching, Phospho-

phenylopyruvate, DNA, Phosphodiester O-P-O  stretching 
810 (not identified in literature)

829 Tyrosine (in protein) exposed

868 Triolein

918 (not identified in literature, the closes signal is: C -C O O - ,

C O O - stretching. Phospholipids, C-C  skeletal, CH^ rocking)
963 (not identified in literature, the closest signal is: L-serine)

1000 D -(+)-G alactosam ine

1090 D NA/RNA, Lipids, C arbohydrates, C-C, C-N, and C -0

stretching
1240 D (+)-M annose, D -(+) Trehalose, A m ide III, DNA/RNA

(Thym ine, Adenine), Proteins (A m ide III), L ipids 
1300 (not identified in literature)

1440 M ethylhexadecanoic acid, O leic acid, Triolein, Trilinolein.

G lycine, Stearic Acid, 12-M ethyl-tetradecanoic acid, Trili- 

nolenin, C H 2 scissoring, DNA, C-H bindings in lipids, P ro­

teins, C arbohydrates, B ands o f fatty acids, D eform ation vibra-

________________ tion, C H L> scissoring_________________________________________
Figure 4.11.: The comparison of K12 and ToplO; (A) plot of the means of all four w hole experimental 

repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) the list 
or Raman peaks showing the most significant differences between the two organisms; 
(C) PCA comparing two single experiments; (D) table of t-test results comparing PC 
scores for each whole experimental repeats.
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D

Organism Experiment
number

T-test results value

PCI PC2 PC3 PC4

K12 vs. 1 4.04E-13 2.01 E-03 1.1 IE-01 7.76E-02

ToplO 2 3.49E-46 8.84E-01 7.08E-01 5.32E-01

3 4.02E-01 4.38E-05 1.1 IE-07 7.66E-04

4 1.46E-12 2.20E-01 1.50E-01 1.94E-01
Figure 4.11.: (cont.) The comparison of K12 and ToplO; (A) plot of the means of all four whole 

experimental repeats (4 sets of 30 spectra) for each strain and a subtraction of these 
means; (B) the list or Raman peaks showing the most significant differences between the 
two organisms; (C) PCA comparing two single experiments; (D) table of t-test results 
comparing PC scores for each whole experimental repeats.

Subtraction

eoo 1200 1400 (111*6 24%*

Figure 4.12.: The comparison of K12 and Strain B; (A) plot of the means of all four whole experimen­
tal repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments; (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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B

Raman sh ift Compound/molecule

( c m 1)
663 (not identified in literature, the closes signal is; G uanine)

745 (not identified in literature)

811 (not identified in literature)

901 Lactose, A m ylose

975 (not identified in literature, the closes signal is: C-C, Stretching

1120
o f beta-sheet (proteins), C-H bending (lipids)) 
D -(+)-G alactosam ine, A cetyl coenzym e A

1190 (not identified in literature)

1250 C ytosine, L -histidine, D -(+)-Fructose, A m ide III, N-H , C-N. 

Am ide III, DN A /RNA (Thym ine, A denine), Proteins (Am ide

1400
III), Lipids
(not identified in literature)

1450 CHo scissoring, DNA, C-H bindings in lipids, Proteins, Car-

bohydrates, B ands o f fatty acids, D eform ation vibration C H 2 

scissoring___________________________________________________

D

Organism Experiment
number

T-test results value

PCI PC2 PC3 PC4

1 2.73E-30 7.66E-01 2.67E-02 8.99E-01

2 1.93E-01 7.20E-26 2.61E-02 4.59E-01
K12 vs. B

3 4.99E-13 4.93E-04 4.1 IE-02 2.63E-01

4 4.33E-08 3.19E-07 6.57E-03 5.43E-01
Figure 4.12.: (cont.) The comparison of K12 and Strain B; (A) plot of the means of all four whole 

experimental repeats (4 sets of 30 spectra) for each strain and a subtraction of these 
means; (B) the list or Raman peaks showing the most significant differences between the 
two organisms; (C) PCA comparing two single experiments; (D) table of t-test results 
comparing PC scores for each whole experimental repeats.
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Subtraction

I

t .

600 800 1000 1200 1400

Raman sfrt I on'*)

B

Raman shift Compound/molecule

( c m l1)_____________________________
663 

745 

812 

1120 
1170

1250

1400

1450

1480

1550

(not identified in literature, the closes signal is: G uanine)

(not identified in literature)

(not identified in literature)

D -(+)-G alactosam ine, A cetyl coenzym e A

D -Fructose-6-phosphate, D N A /RN A , Lipids, C arbohydrates,

C-C stretching, C -N  stretching. C -O  stretching
Cytosine, L-histidine, D -(+)-Fructose, A m ide III, N-H, C-N,

Am ide III, DNA /RNA  (Thym ine, A denine), Proteins (A m ide 

III), L ipids D (+)-M annose, D -(+) Trehalose 
M ethylhexadecanoic acid. O leic acid, Triolein, T rilinolein, 

G lycine, S tearic Acid, 12-M ethyl-tetradecanoic acid, Trili- 

nolenin, C H 2 scissoring, DNA, C -H  bindings in lipids, P ro ­

teins, C arbohydrates B ands o f fatty acids. D eform ation v ibra­

tion C H 2 scissoring
C H 2 scissoring , DNA, C-H  bindings in lipids, Proteins, C ar­

bohydrates, Bands o f fatty acids, D eform ation vibration, C H 2 

scissoring
14-M ethylhexadecanoic acid. Palm itic acid, D -(+)-M annose 

(not identified in literature)
Figure 4.13.: The comparison of ToplO and Strain B; (A) plot of the means of all four whole experi­

mental repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments; (D) table of t-test results comparing 
PC scores for each whole experimental repeats.



4. DISCRIMINATION BETWEEN BACTERIAL SPECIES AND STRAINS USING
RAMAN SPECTROSCOPY

D

Organism Experiment
number

T-test results value

PCI PC2 PC3 PC4

1 1.62E-20 8.95E-04 1.55E-01 9.50E-01

ToplO vs. B
2 1.79E-41 7.04E-01 3.00E-01 9.48E-01

3 1.71E-23 1.24E-01 7.43E-02 1.27E-01

4 2.29E-16 1.35E-03
. .  .............................

1.86E-01 6.86E-01
Figure 4.13.: (cont.) The comparison of ToplO and Strain B; (A) plot of the means of all four whole 

experimental repeats (4 sets of 30 spectra) for each strain and a subtraction of these 
means; (B) the list or Raman peaks showing the most significant differences between the 
two organisms; (C) PCA comparing two single experiments; (D) table of t-test results 
comparing PC scores for each whole experimental repeats.

4.3.3.4. Multiple strains comparison

In order to verify w hether R am an can correctly assess the natural relationships betw een 

bacteria, a hierarchical cluster tree was designed (Figure 4.14).

It can be noted that m ajority o f  the strains cluster according to their taxonom ic re la­

tionships: E. coli stay on one branch, with K12 and ToplO being the m ost closely related 

and with less proxim ity to strain B and even further from  10418. A m ong Staphylococcus, 

two S. epiderm idis: 1457 and 9142 stay close together and the S. aureus strain 6571 on a 

separate branch. A nother S. aureus, C ow anl strain does not cluster w ith 6571 but stays 

com pletely separate from  all o ther organism s.
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FuF

i J s T

K12

Figure 4.14.: The hierarchical cluster analysis tree of mean values calculated for each single sample 
repeat within all whole experimental repeats for the strains used in this chapter includ­
ing: (A) Cowanl; (B) 9142; (C) 1457; (D) 6571; (E) Strain B; (F) K12; (G) ToplO; (H) 
10418.

4.3.3.5. Discrimination of E. coli following sam ple storage: effect of time 
and tem perature

Raman spectroscopy has the potential to be used as a diagnostic technique for identifi­
cation of causative agents during infectious disease. One challenge the technique would 

face in the clinical environment would be sample storage. Indeed, plated samples in a di­
agnostic laboratory may not be measured immediately and left overnight before analysis. 

Here, therefore metabolic changes/growth, that takes place during the storage time, were 
assessed for their influence on the discrimination of two E. coli strains (ToplO and K12) 

by Raman spectroscopy.

4.3.3.5.1 Maintaining the clustering within the repeats of the sample

In both cases of: ToplO and K12 (Figure 4.2 and 4.2 respectively) neither time nor tem­
perature had clear visible effect on clustering of the sample repeats. There are minor 

changes in the shape of clusters as well as clustering between the single sample repeats 

and whole experimental repeats.
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4.3.3.6. Influence of time and temperature on the ability to distinguish 

between two samples

T he ability to d istinguish betw een two organism s is an im portant factor for the d iagnos­

tic purposes. F igure 4.2 does not represent any noticeable d ifferences in the clustering 

betw een ToplO and K12 neither under the influence o f tim e, nor tem perature.

Oh
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2h

4°C 25°C

A

B

<11 (57 *4%

H

10 «£ 20 25 30

D

4h

Figure 4.15.: Comparison of the influence of the temperature of storage in time on the clustering of 
Raman spectra for ToplO in (A-E) 4°C and (F-J) 25°C after (A and F)0; (B and G) 1; 
(C and H) 2; (D and I) 4; (E and J) 8 hours, including three experimental repeats (blue 
dot, red square and green cross for n =l; 2; and 3 respectively)
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Figure 4.15.: (cont.) Comparison o f the influence of the temperature of storage in time on the 
ing of Raman spectra for ToplO in (A-E) 4°C and (F-J) 25°C after (A and F)0 
G) 1; (C and H) 2; (D and I) 4; (E and J) 8 hours, including three experimental 
(blue dot, red square and green cross for n = l; 2; and 3 respectively)
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Figure 4.16.: Comparison of the influence o f the temperature of storage in time on the clustering of 
Raman spectra for K12 in (A-E) 4°C and (F-J) 25°C after (A and F)0; (B and G) 1; (C 
and H) 2; (D and I) 4; (E and J) 8 hours, including three experimental repeats (blue dot, 
red square and green cross for n =l; 2; and 3 respectively)
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Figure 4.16.: (cont.) Comparison of the influence of the temperature of storage in time on the clus­
tering of Raman spectra for K12 in (A-E) 4°C and (F-J) 25°C after (A and F)0; (B and 
G) 1; (C and H) 2; (D and I) 4; (E and J) 8 hours, including three experimental repeats 
(blue dot, red square and green cross for n=l; 2; and 3 respectively)
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Figure 4.17.: Comparison of the influence of the temperature of storage in time on the differentiation 
between K12 (blue) and ToplO (red) spectra in (A-E) 4°C and (F-J) 25°C after (A and 
F)0; (B and G) 1; (C and H) 2; (D and I) 4; (E and J) 8 hours, including three experimen­
tal repeats for each organism (dot, square and triangle for n = l; 2; and 3 respectively)
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Figure 4.17.: (cont.) Comparison of the influence of the temperature of storage in time on the dif­
ferentiation between K12 (blue) and ToplO (red) spectra in (A-E) 4°C and (F-J) 25°C  
after (A and F)0; (B and G) 1; (C and H) 2; (D and I) 4; (E and J) 8 hours, including 
three experimental repeats for each organism (dot, square and triangle for n = l; 2; and 
3 respectively)
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4.4. Discussion
Raman spectroscopy has gained a wide interest as a useful technique for successful distin­
guishing between bacterial organisms (Mariani et al., 2010) (Petry et al., 2003) (Downes 

& Elfick, 2010). However, here a broad extent of its abilities has been investigated, in­

cluding various levels of taxonomic similarity, strains originating from two different en­
vironments: laboratory and clinical as well as the influence of possible metabolic changes 

dependant on the temperature and time of storage.
The ability of differentiation naturally follows the order of separation within: different 

genus >different species of the same genus >different strains of the same species.
An important effect can be seen between the comparisons involving ToplO, K12 and 

Strain B spectra all representing to E. coli species. However, ToplO stems directly from 

the K12 strain, differing by only subtle genetic alternations that make it more suitable for 
transformation. Strain B descends from a separate isolate and as expected, should be less 
similar than ToplO and K12 when compared together (Schneider et al., 2002). Indeed as 
the Figure 4.2 shows, the differences both from mean intensities subtraction as well as 
from the t-tests results show lower variation in case of ToplO vs. K12 than between K12 
and Strain B or ToplO and Strain B (Figure 4.2 and 4.2 respectively).

Other publications offer different but also very successful rate of differentiation be­
tween strains and species, including Sthaplococcus spp. (Rosch et al., 2005) (Harz et al., 
2005) and strains of E. coli (Jarvis & Goodacre, 2004b). The research that is the most sim­
ilar, in terms of sample preparation and organisms used has been published by Maquelin 

et al. (Maquelin et al., 2000). It was possible to distinguish successfully between different 
genera; however, the results do not include sub-species classification.

We have observed that differences lay mainly within DNA and proteins with raising 
importance of fats and fatty acids towards the smaller degree of differentiation. This 

may lead towards the conclusion that the finer changes are dependant more on the outer 

bacterial envelope rather than genetic material and metabolites. The comparison of peaks 

from other publications confirms our assignment of peaks: namely DNA/RNA elements, 

proteins (Harz et al., 2005) (Maquelin et al., 2000) (Jarvis et al., 2004), however with very 
poor information on fats and fatty acids.

It is also worth noticing that the ability of differentiation between organisms rely to a 

certain extent on how well those organisms are characterised and whether they have been 
cultured for a longer period of time, i.e. K12, ToplO, 1457 and 9142 showed much better
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growth and therefore PCA clustering than Cowanl and 10418. This fact was reflected 
both: when single sample repeats and whole experimental repeats were investigated.

Comparison of higher number of organisms contributed towards broader perspective 
analysis and investigation of relationships between all of the strains used in this chapter 

on one graph. The results from Figure 4.14 represent the naturally expected relationship 

between strains including the subtle relations between the ToplO, K12 and strain B of 

E. coli. One exception is Cowanl, which is not related to any other organism, including 

another S. aureus: 6571. No Raman spectroscopy-based experiments of Cowanl could be 
found and the only possible explanation could be that Cowanl strains were of very poor 

quality, which might have influenced the final outcome. Therefore a preliminary conclu­
sion could be drawn, that one has to be very rigorous when measuring the organisms and 

making sure the criterion of selection of the spectra should be very strictly determined.

Since this project evaluates the possibility of Raman spectroscopy to become a diag­

nostic technique, the fact that neither temperature, nor time of storage can influence the 
abilities of distinguishing between samples is of high importance. It would seem that this 
indicates that spectra do not reflect metabolic changes; however, this conclusion should 
not be drawn before more work is performed.

Despite the fact that there are several publications with regards to investigating bac­
terial biochemistry with Raman spectroscopy (Ciobot et al., 2010) (Palchaudhuri et al., 
2011) (Jehlicka et al., 2012), no information about the influence of storage of the biolog­
ical material on the power of discrimination, could be found up-to-date.

The results obtained in this chapter allowed verifying that Raman spectroscopy can 

be considered as a very useful and consistent method in comparing bacterial organisms. 
The success of above investigation lead to the conclusion that the possibilities offered by 
the Raman spectroscopy could be investigated even further and more subtle differences, 

including different antibiotic resistance profile could be another step forward.
Chapter 5 will therefore be based on the application of Raman spectroscopy for dis­

tinguishing between antibiotic susceptible strains and their antibiotic resistant isogenic 

transformants.
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5.1. Introduction
Antibiotic resistance is one of the major concerns associated with the treatment of infec­

tious diseases today (Costelloe et al., 2010). It is responsible for increased mortality and 
morbidity among hospitalised patients as well as an increased healthcare burden (Carmeli 

et al., 1999) Common causes of antibiotic resistance are; the inappropriate use of antibi­

otics by over prescribing (Costelloe et al., 2010), use of sub-therapeutic amounts of an­
tibiotics for growth promotion in animals, dusting of fruit for disease prophylaxis (Davies 

& Davies, 2010; Levy & Marshall, 2004).

Antibiotic resistance can be intrinsic (natural) (Yoneyama & Katsumata, 2006) or 
acquired through horizontal gene transfer (Stokes & Gillings, 2011) by mobile ge­

netic elements including bacteriophages, plasmids, naked DNA and transposons (Sid- 
jabat et al., 2006) or through sequential mutations in chromosomes (Levy & Marshall, 
2004) (Giedraitien et al., 2011).

Antimicrobial susceptibility testing is now an essential step in Clinical Microbiol­
ogy (Woodford & Sundsfjord, 2005). Currently several tests are routinely used in hospital 
laboratories, and include; i) broth dilution tests based on determining MIC for overnight 
bacterial suspension in the presence of different concentration of antibiotics; ii) M.I.C. 
Evaluator strips - based on placing a ready-made strip with dried antibiotic concentra­
tion gradient on an agar medium that has been inoculated with a standardised organism 
suspension; iii) disk diffusion test - based on placing antibiotic disks on an agar plate inoc­
ulated with bacterial suspension and measuring the growth inhibition zones around each 
of the disks; iv) automated instrumental systems, including: the MicroScan WalkAway 
that can analyse large numbers of microdilution trays in the set time, using photometric 
or fluorometric method for growth determination, the BD Phoenix Automated Microbiol­
ogy System based on turbidometric and colorimetric growth detection of manually inoc­

ulated antibiotic doubling dilutions, the Vitek 1/2 System using plastic reagent cards with 

microliter quantities of antibiotic and test media monitoring growth defined incubation 

periods, the Sensititre ARIS 2X including standard microdilution plates on which growth 
is determined overnight by fluorescence measurements. Each of these automated systems 
relies on computer software for processing results. The strengths and weaknesses of these 

methods have been discussed, however the key factors influencing the success of an an­

timicrobial susceptibility test include: speed, accuracy and money efficiency (Jorgensen 
& Ferraro, 2009) (Richardson & Small, 1998)
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To date relatively few studies have investigated the potential of Raman spectroscopy 
for antimicrobial susceptibility testing. They have used UVRR, portable Raman systems, 

micro-Raman and SERS approaches for screening responses to antibiotic treatment in P. 
aeruginosa, E. coli, Klebsiella pneumonia, Proteus spp., S. aureus, C .jejuni and Methi- 

cilin Resistant Coagulase Negative Staphylococci (Lopez-DIez et al., 2005) (Neugebauer 

& Schmid, 2006) (Kastanos et al., 2008) (Liu et al., 2009) (Hadjigeorgiou, 2009) (Moritz 

et al., 2010a) (Willemse-Erix et al., 2010)
This chapter has two major aims; 1) to compare isogenic strains of E. coli sensitive and 

resistant to antibiotics using Raman spectroscopy; 2) to describe real-time monitoring 
of bacterial responses to antibiotics using Raman spectroscopy. This chapter uses the 

techniques of the previous chapters and addresses aims by:

1. Generating and characterising isogenic strains of E. coli ToplO (wild-type) with de­

fined resistance (Top lO'4 and Top 10^)

2. Comparison of the Raman spectra of E. coli ToplO (wild-type) with transformed iso­
genic strains carrying resistance genes to ampicillin and kanamycin

3. Monitoring real-time responses of antibiotic through:

a. Flooding bacterial colonies with antibiotic solution

b. Transfer of bacterial colonies onto antibiotic containing plates
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5.2. Methods

5.2.1. Transformation with electroporation

E. coli Top 10 was transformed by electroporation with: a) pUC19 plasmid, carrying re­
sistance to ampicillin and b) pET-26 plasmid, carrying resistance to kanamycin. Trans­

formed bacteria grown and stored without antibiotics were referred to as Top 10^/^ (for 

ampicillin/kanamycin respectively) and those grown and stored with antibiotics referred 

to as To\*\0aa/k k  (for ampicillin/kanamycin respectively). The details of the method of 

generating antibiotic resistant strains are described in Section 2.2.3.

5.2.2. Gel electrophoresis with restriction enzymes

The plasmid DNA was extracted using the Pure Yield Miniprep kit from transformed 
strains according to Section 2.2.6 and was subjected to restriction digestion and gel elec­
trophoresis as described in Section 2.2.7 and 2.2.7.1 respectively.

5.2.3. Determination of Minimal Inhibitory Concentration (MIC)

MICs were determined using the limiting dilution method performed on a 96 well plate 
described in Section 2.2.4.

5.2.4. Temporal response to the action of antibiotics

Temporal responses of E. coli ToplO, Top 10A and Top 10K to ampicillin and kanamycin 
respectively were determined as described previously in Section 2.2.5.

5.2.5. API 20E®

K12, ToplO and ToplOA were subjected to the API 20E test described in Section 2.2.8.

5.2.6. Quantification of E. coli viability using fluorescent 
microscopy

E. coli K12 were subjected to two viability assays described in Section 2.2.2.1 and 2.2.2.2 
prior to examining them with confocal fluorescent microscopy.
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5.2.7. Raman spectroscopy measurement

Transformed strains were subjected to Raman spectroscopy according to the conditions 
introduced in Section 2.2.9 and detailed in Chapter 3. Resistant strains were examined 

under three conditions; 1) grown, stored and measured in the absence of antibiotics re­

ferred to as Top 10A or Top 10^ (for ampicillin or kanamycin resistant strains respectively) 

2) grown and stored in the presence of antibiotics but measured in the absence of an­

tibiotics and referred to as Top 1 0 ^  or ToplO7̂  (for ampicillin or kanamycin resistant 
strains respectively) and 3) grown, stored and measured in the presence of antibiotics and 

referred to as Top lO4̂ A m p  and ToplO ^+K an (for ampicillin or kanamycin resistant 

strains respectively). The colonies in conditions 1) and 2) were measured on regular CBA 

plates, while the samples assigned to be tested in condition 3) were plated and measured 
on CBA plates containing ampicillin (100/jg/ml) or kanamycin (50/ig/ml).

5.2.8. Modifications of the standard Raman spectroscopy 
procedures

5.2.8.1. Whole plate flooding

Prior to the Raman measurement, 2ml of ampicillin (100//g/ml) was added onto the sur­
face of agar plates containing E. coli ToplO colonies, and placed on a rocking platform 
until the solution absorbed or left for 3, 4, 6 hour treatment. The control sample was 
prepared using distilled water.

5.2.8.2. Single colony antibiotic flooding

Prior to the Raman measurement, 1/d of ampicillin (100/ig/ml or 1 mg/ml) was added 
directly onto the surface of single colonies of E. coli ToplO and then incubated at room 
temperature for 1, 3, or 17 hours.

5.2.8.3. Replica plating (Lederberg & Lederberg, 1952)

ToplO colonies were grown on two antibiotic-free plates (1 and 2) prior to transferring to 
the new plates using a sterile replica stamp. The colonies from plate 1 were transferred to 

a IRA plate - a replica plate containing Ampicillin in the medium, while colonies from 

plate 2 were transferred to plate 2RN - a replica plate that was antibiotic free and used
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as control (F igure 5.1). S tam ped replica plates were incubated for an additional 24 hours 

and then subjected to R am an spectroscopy procedures.

Antibiotic-free

Figure 5.1.: Schematic representation of the replica plating method

5.2.8.4. Use of semi-permeable membranes

In order to select the m ost appropriate m em brane, cellophane, im m obylon, M CE, n itro­

cellulose, nylon, PES and PTFE  were subjected to R am an spectroscopy alone, w ithout 

colonies. The m easurem ents (o f N =6 for each: im m obylon, M CE, n itrocellulose, nylon, 

PES and PTFE and N=9 for cellophane) were taken w ith standard settings directing the 

laser beam  onto the m em brane placed on a standard CBA plate. C olonies o f E. coli ToplO 

were grow n on sem i-perm eable m em branes for 24h, after w hich the m em brane was re­

m oved and cut in half. Then one part was transferred to a fresh plate containing antibiotic 

and other to a control plate w ith no antibiotic (Figure 5.2). Plates w ere incubated for 24 

hours at 37°C and then subjected to standard Ram an spectroscopy procedures.

Anti bio tic-free
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Figure 5.2.: Schematic representation of replication using membranes

antibiotic M  - antibiotic

127



5. DISCRIMINATION BETWEEN SUSCEPTIBLE STRAINS AND ISOGENIC
TRANSFORMANTS EXPRESSING ANTIBIOTIC RESISTANCE USING RAMAN
SPECTROSCOPY

5.3. Results

5.3.1. Generation of antibiotic resistant E. coli control strains

To characterise differences between antibiotic susceptible and resistant strains, positive 
controls expressing high levels of ampicillin (ToplOA) and kanamycin (ToplOx ) resis­

tance were generated. Gel electrophoresis of plasmid DNA isolated from the transformed 

ToplO cells and subjected to restriction enzymes revealed the presence of the band of the 

expected molecular weight: 2,686 bp for pUC-19 (Figure 5.3) and 5,360 bp for pET26 

(Figure 5.4).
MIC for ampicillin against ToplOwt was 32/ig/ml while it exceeded 1024//g/ml for 

both ToplOA and ToplOAA indicating that the strains transformed with pUC-19 were re­
sistant to the chosen antimicrobial agent (Table 5.1). The MIC for kanamycin against 
ToplOwt was 64//g/ml while it exceeded 1024/zg/ml for both ToplO^ and ToplOXK in­
dicating that the strains transformed with pET26 are resistant to the chosen antimicrobial 
agent whether it is present or not, suggesting that the plasmid is retained in the absence 

of antibiotic pressure (Table 5.2).
To further investigate the functional differences between susceptible and resistant 

strains, their temporal responses to antibiotics were studied (Figure 5.5). Decreased num­
bers of ToplOwt were observed at 20-30 minutes following ampicillin treatment reaching 
significance at 120min when counts decreased from 2.28 x 1010 to 3.66 x 109 CFU/ml, 
while for kanamycin the numbers remained constant after 1 hour and were rapidly re­
duced after 2 hours from a starting concentration of 2.58 x 1010 to 2.00 x 109 CFU/ml. In 

contrast, antibiotic exposure did not decrease Topl0A and ToplO75' viability. Furthermore, 
wild-type and isogenic mutants showed significant growth when antibiotic was not used.

128



5. DISCRIMINATION BETWEEN SUSCEPTIBLE STRAINS AND ISOGENIC
TRANSFORMANTS EXPRESSING ANTIBIOTIC RESISTANCE USING RAMAN

SPECTROSCOPY

1 2  3 4

3,000bp
l,500bp

3,000bp 
l,500bp -

Figure 5.3.: Gel electrophoresis of plasmid DNA containing ampicillin resistance. Top gel contain 
uncut samples; 1-lkb ladder, 2-wild-tvpe ToplO, 3-Top 10'4 kept with no ampicillin, 4- 
ToplO 4 4 stored with 100/ig/ml ampicillin. Bottom gel contains samples cut with the Xbal 
restriction enzyme; 1-lkb ladder, 2-wild-type ToplO, 3-ToplO4 kept with no ampicillin, 
4-ToplO4'4 stored with 100//g/ml ampicillin.
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1 2 3 4  5

- 6 ,000bp
10,000bp

4 ,00 0 b p

Figure 5.4.: Gel electrophoresis of plasmid DNA for three clones containing kanamycin resistance: 
l-ToplOA uncut sample, 2- ToplOA cut with Xhol, 3- ToplOA cut with BamHI and 4- 
Ikb ladder.

Table 5.1.: Comparison of OD readings for untransformed ToplO with ToplO 4 and ToplO 4 4 based
on the results obtained from the plate-reader.

Dose of Amp [//g/ml] Bacterial strain
ToplOwt (n= ll) ToplO4 (n=10) ToplO44(n=19)

1024 0.018 0.272 0.414
512 0.050 0.137 0.343
256 0.038 0.195 0.388
128 0.026 0.208 0.395
64 0.089 0.262 0.389
32 0.122 0.271 0.394
16 0.254 0.365 0.389
8 0.294 0.377 0.388
4 0.350 0.430 0.379
2 0.459 0.499 0.399
1 0.540 0.558 0.387
0 0.654 0.603 0.400

M IC indicated by the cyan line
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Table 5.2.: Comparison of OD readings for untransformed ToplO with ToplO* and ToplO** based
on the results obtained from the plate-reader.

Dose of Kan [/xg/ml] Bacterial strain
ToplOwt (n=12) ToplO* (n=8) ToplO** (n=12)

1024 0.062 0.520 0.554
512 0.097 0.616 0.532
256 0.070 0.294 0.557
128 0.120 0.520 0.381
64 0.109 0.598 0.520
32 0.218 0.561 0.512
16 0.271 0.588 0.520
8 0.371 0.309 0.505
4 0.445 0.602 0.528
2 0.481 0.615 0.549
1 0.530 0.638 0.549
0 0.642 0.687 0.636

MIC indicated by the cyan line
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Figure 5.5.: Graph comparing the growth of bacteria after adding ampicillin (top) and kanamycin 
(bottom) in transformed and wild-type strains. There is a significant difference at 0.05 
(*P=0.05) level between both transformants and wild type strains when subjected to an­
tibiotic at the final time point (t=240 and t=120 min for ampicillin and kanamycin resis­
tant transformants respectively). Both graphs are based on n=3 repeated experiments.
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5.3.2. API 20E®

Identification using API 20E® was performed in order to verify that the transformed 
isogenic strain was not contaminated.

The results obtained directly from the test strips were: K12 - 5044552; ToplO - 

4044550; ToplO'4 - 5044500 and after inserting them into the database, they all shared 

identity with E. coli of 99.8%; 51%; 97.3% respectively. Results for K12 and Topl0A 

were as expected, however the percentage for untransformed ToplO was considered low 
and warranted further investigation. After closer inspection the main reason for the dif­

ference was the first reaction: ONPG, which is catalysed by /3-glucosidase and produced 

by the bacterial lac Operon. This gene sequence is normally present in E. coli and there­

fore can be found in K12 strains. ToplO however is strain a commercially prepared for 

transformation and for easier monitoring of the success of genetic manipulation, the lac 
Operon has been knocked out. Topl0A has a positive indicator for ONPG reaction since 
the lac Operon is present on pUC-19 plasmid, therefore, this experiment proves that sim­
ilarity to E. coli is maintained and additionally exhibits that transformation with pUC-19 
was successful and that the plasmid is expressed in Topl0A.

5.3.3. Comparison of Raman spectra from resistant and 
susceptible control strains

Raman spectra from CBA and CBA with ampicillin (100/ig/ml) but without bacteria clus­
ter together and overlap, suggesting that background signals from the agar and ampi­
cillin are unlikely to contribute to discrimination between resistant and susceptible E. coli 

strains (Figure 5.6).
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Figure 5.6.: Principal component analysis plot representing 6 single sample repeats from each: CBA 
(blue square) and CBA containing ampicillin (red circle).

Figures 5.3- 5.3 - show the com parison betw een antibiotic resistant and w ild-type 

strains. The PCA analysis as well as the num ber o f peaks from  the signal subtractions 

confirm s that in both case: am picillin  resistant and kanam ycin resistant E. co li, there is a 

higher difference betw een the w ild type strain and the transform ant kept when the resis­

tant strain was kept under the antibiotic pressure.

The identification o f  peaks responsible for the differences betw een the isogenic pairs 

allow ed concluding what m olecules are related to the antibiotic resistance when m easured 

with R am an spectroscopy. The m ajority o f signal is related to DNA and RNA as well as 

protein and am ino acid com ponents. W ith the increasing difference betw een the strains, 

there is m ore signal related to fats and fatty acids present.
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Figure 5.7.: The comparison of ToplO and ToplO4 : (A) plot of the means of all four whole experi­
mental repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments; (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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B

Raman shift Compound/molecule
( c m 1)___________________________________________________________
755 Phosphophenylopyruvate, L-Tryptophan

780 C itidine, U racil, Cytosine, U racil ring stretching, Phospho-

phenylopym vate, DNA , Phosphodiester, O -P-O  stretching 
840 L-Tryptophan, 12-m ethyl-tetradecanoic acid

944 A m ylose

1260 15-M ethylopalm itic acid, D-(-) A rabinose, Lactose, D -(+)-

Trehalose, M alic Acid 
1440 M ethylhexadecanoic acid, O leic acid, Triolein, Trilinolein,

G lycine, Stearic Acid, 12-M ethyl-tetradecanoic acid, Trili- 

nolenin, C H 2scissoring, DNA, C-H  bindings in lipids, P ro ­

teins, C arbohydrates, B ands o f fatty acids, D eform ation vibra- 

________________ tion C H 2 scissoring__________________________________________
D

Organism Experiment T-test results value
number

PCI PC2 PC3 PC4

1 1.62E-06 5.30E-04 2.26E-01 4.03E-02
ToplO w t vs. 2 4.44E-11 4.36E-01 4.45E-01 6.73E-01

ToplO '4 3 9.74E-01 7.41E-01 6.56E-01 6.64E-02

4 5.54E -0I 1.50E-01 4.88E-01 2.49E-01
Figure 5.7.: (cont.) The comparison of ToplO and ToplO ' : (A) plot of the means of all four whole 

experimental repeats (4 sets o f 30 spectra) for each strain and a subtraction of these 
means; (B) the list or Raman peaks showing the most significant differences between the 
two organisms; (C) PCA comparing two single experiments; (D) table of t-test results 
comparing PC scores for each whole experimental repeats.
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G lycine, Stearic Acid, 12-M ethyl-tetradecanoic acid. M ethyl- 

hexadecanoic acid, O leic Acid, Triolein, Trilinolein, Trili- 

nolenin, C H 2 scissoring, DNA, C-H  bindings in lipids, Pro­

teins, C arbohydrates, B ands o f fatty acids, D eform ation vibra­

tion C H 2 scissoring 
L-G lutam ate, L -H istidine

D

Organism Experiment T-test results value

PCI PC2 PC3 PC4

1 8.61E-03 6.54E-02 2.32E-07 9.68E-06

ToplO w t vs. 2 1.69E-20 5.56E-01 1.15E-01 9.73E-01

T oplO 44 3 5.66E-03 3.41E-15 7.61E-02 9.57E-02

4 4.23E-15 2.38E-01 1.77E-01 1.94E-01

Figure 5.8.: The comparison of ToplO and ToplO 14 : (A) plot o f the means of all four whole experi­
mental repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments; (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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Figure 5.9.: The comparison of ToplO and ToplO 11 on ampicillin containing plate: (A) plot of the 

means of all four whole experimental repeats (4 sets of 30 spectra) for each strain and 
a subtraction of these means; (B) the list or Raman peaks showing the most significant 
differences between the two organisms; (C) PCA comparing two single experiments; (D) 
table of t-test results comparing PC scores for each whole experimental repeats.
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D

Organism Experiment T-test results value

PCI PC2 PC3 PC4

ToplOwt vs. 

ToplO '4'4 - 

C BA A m p

1 5.25E-05 4.34E-07 1.50E-01 3.23E-01

2 8.92E-05 1.44E-02 6.86E-01 1.38E-04
3 2.15E-01 3.18E-27 5.59E-01 5.93E-01

4 1.18E-17 4.59E-04 8.04E-01 4.01E-01
Figure 5.9.: (cont.) The comparison of ToplO and ToplO 1 1 on ampicillin containing plate: (A) plot of 

the means of all four whole experimental repeats (4 sets of 30 spectra) for each strain and 
a subtraction of these means; (B) the list or Raman peaks showing the most significant 
differences between the two organisms; (C) PCA comparing two single experiments; (D) 
table of t-test results comparing PC scores for each whole experimental repeats.
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hexadecanoic acid. O leic Acid, Triolein, T rilinolein, Trili-

nolenin
Palm itic acid, 14-M ethylhexadecanoic acid, D -(+)-M annose

Figure 5.10.: The comparison of ToplO and T op l0K : (A) plot of the means of all four whole experi­
mental repeats (4 sets o f 30 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments; (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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D

Organism Experiment T-test results value
number

PCI PC2 PC3 PC4

1 1.60E-13 5.24E-04 3.49E-03 2.44E-01

ToplOw t vs. 2 8.50E-19 1.18E-02 1.93E-02 7.35E-01

ToplO*' 3 2.59E-12 1.06E-04 1.20E-01 1.55E-01

4 6.60E-09 8.58E-01 3.16E-10 8.78E-01
Figure 5.10.: (cont.) The comparison of ToplO and ToplOA: (A) plot of the means of all four whole 

experimental repeats (4 sets of 30 spectra) for each strain and a subtraction of these 
means; (B) the list or Raman peaks showing the most significant differences between the 
two organisms; (C) PCA comparing two single experiments; (D) table of t-test results 
comparing PC scores for each whole experimental repeats.
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847 L-Tryptophan, 15-M ethylopalm itic acid
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1440 G lycine, Stearic Acid, 12-M ethyl-tetradecanoic acid, M ethyl-

hexadecanoic acid, O leic Acid, Triolein, T rilinolein, Trili- 

nolenin
1470 13-M ethylm yristic acid, D -(+)-T rehalose, D -(-)-Fructose

Figure 5.11.: The comparison of ToplO and ToplOA h : (A) plot of the means of all four whole experi­
mental repeats (4 sets of 30 spectra) for each strain and a subtraction of these means; (B) 
the list or Raman peaks showing the most significant differences between the two organ­
isms; (C) PCA comparing two single experiments; (D) table of t-test results comparing 
PC scores for each whole experimental repeats.
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D

Organism Experiment T-test results value

number
PCI PC2 PC3 PC4

1 3.17E-18 9.76E-04 4.90E-02 9.73E-01

ToplO w t vs. 2 1.65E-16 2.93E-01 1.70E-02 6.13E-01

T o p l0 AA 3 4.59E-28 2.73E-02 8.69E-01 8.10E-01

4 3.39E-19 7.64E-01 2.66E-03 3.98E-01
Figure 5.11.: (cont.) The comparison of ToplO and ToplOAAr: (A) plot of the means of all four whole 

experimental repeats (4 sets of 30 spectra) for each strain and a subtraction of these 
means; (B) the list or Raman peaks showing the most significant differences between the 
two organisms; (C) PCA comparing two single experiments; (D) table of t-test results 
comparing PC scores for each whole experimental repeats.
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1470 13-M ethylm yristic acid, D -(+)-T rehaloseD -(-)-Fructose
Figure 5.12.: The comparison of ToplO and T op l0A A on kanamycin containing plate: (A) plot of the 

means of all four whole experimental repeats (4 sets of 30 spectra) for each strain and 
a subtraction of these means; (B) the list or Raman peaks showing the most significant 
differences between the two organisms; (C) PCA comparing two single experiments; (D) 
table of t-test results comparing PC scores for each whole experimental repeats.
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D

Organism Experiment

number

T-test results value

PCI PC2 PC3 PC4

1 4.40E-03 1.20E-08 6.50E-08 7.98E-01
ToplO w t vs.

2 3.37E-12 6 .10E-01 1.98E-07 7.17E-01
T o p 10 AA -

3 1.49E-14 1.02E-05 7.17E-01 3.78E-01
CBA -Kan

4 1.98E-43 5.07E-01 9.46E-01 6.49E-01
Figure 5.12.: (cont.) The comparison of ToplO and Topl()/v/' on kanamycin containing plate: (A) 

plot of the means of all four whole experimental repeats (4 sets of 30 spectra) for each 
strain and a subtraction of these means; (B) the list or Raman peaks showing the most 
significant differences between the two organisms; (C) PCA comparing two single ex­
periments; (D) table of t-test results comparing PC scores for each whole experimental 
repeats.

5.3.4. Multiple strains comparison

To further identify the relationship betw een the w ild type (ToplO), am picillin  resistant 

(T op lO 4, T opi O'4"4 and Top 1 0 ^  + Am p), kanam ycin resistant (ToplO A, T oplO AA and 

ToplO A A + Kan) strains the average spectra (4 experim ents) were subjected to h ierarchi­

cal cluster analysis with the results presented as a tree (Figure 5.13). Strain B and K12 

were included as controls and confirm ed the close relationship betw een ToplO  or K12. 

Strains transform ed with kanam ycin resistance cluster together, with T oplO A A grown on 

Kan plates, placed on a different branch as it expresses the highest level o f resistance to 

kanam ycin. Top 1 O'4'4 and Top 10 4 4 + A m p cluster together w ith K 12, while Top 1 0 4 clus­

ters with Top 10. N aturally Top 10 does not contain the lac  O peron, how ever transform ants 

express from  the plasm id, therefore isogenic strains becom e m ore sim ilar to K12 rather 

than K12 after electroporation. Those results confirm  conclusions drawn from  the API 

E20® identification test were am picillin  strains cluster m ore closely with K12.
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T*t

Figure 5.13.: Hierarchical analysis tree based on means from all the whole experiemental repeats 
performed for: (A) ToplO7' A grown on Kan plates (TKK-kan); (B) ToplO7' 7' (TKK);
(C) ToplO7' (TK); (D) ToplO4-4 grown on Amp plates (TAA-amp); (E) ToplO4 4 (TAA);
(F) K12 (K12); (G) ToplO 4 (TA); (H) ToplO (Twt); (1) strain B. ToplO* K grown on Kan 
plates (TKK-kan).

5.3.5. Real time monitoring of the bacterial response to 

antibiotics by Raman spectroscopy.

To extend the results o f the previous sections show ing that R am an spectroscopy can de­

term ine a resistant phenotype in strains o f E. co li, we investigated w hether the technique 

is also applicable to m easuring bacterial responses to antibiotic treatm ent in real-tim e on 

bacterial colonies. Two m ethods o f antibiotic exposure to bacterial colonies were investi­

gated, nam ely ‘antibiotic flooding’ and replica-plating.

5.3.5.1. Antibiotic flooding

5.3.5.1.1 Applying antibiotic solution onto the whole plate containing bacterial colonies

C om parison o f non-flooded, w ater flooded and antibiotic flooded colonies show ed distinct 

clustering  o f the three groups (Figure 5.14a). F looding colonies appeared to elongate 

clusters suggesting larger differences within treatm ent groups. R epeating the experim ent 

(F igure 5.14b) how ever did not confirm  these results and suggested that this m ethod may
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present inconsistencies. 
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Figure 5.14.: Principal component analysis scores of Raman spectra from ToplOwt colonies subjected  
to different solutions and repeated on two consecutive days: (A) day one; (B) day two; 
red circles: colonies flooded with 2ml of 100//g/ml ampicillin; blue squares: colonies 
flooded with 2ml distilled water; green triangles: not flooded sample.

N ext the tim e o f exposure to the action o f antibiotic was investigated (Figure 5.15). 

T here w as no distinct PCA  clustering betw een colonies exposed to antibiotic solution 

for 3h, 4h and 6h. suggesting that tim e has no influence on the rate o f dying o f the cells. 

T herefore a conclusion can be draw n than the portion o f the colony, that is being m easured 

by the R am an spectroscopy is affected by antibiotic in time less than 3h and additional 

tim e has no influence on it.

Figure 5.15.: Principal component analysis scores of Raman spectra from ToplO colonies subjected to 
2ml of 100/yg/ml ampicillin for different periods of time; cyan circle: 3 hours, magenta 
square: 4 hours, orange cross: 6 hours.

5.3.5.1.2 Applying antibiotic solution directly onto single bacterial colonies

Figure 5.16a. shows the initial experim ent. T here is a very distinct clustering separat­

ing the colonies w ith antibiotic solution from  these w ith ju st w ater applied onto and the 

non-flooded sam ples. However, w hen the results w ere repeated w ith the sam e dose and 

exactly the sam e tim e o f exposure, situation was sim ilar as w ith the w hole plate flooding 

experim ent - there was m uch low er difference, especially  betw een the antibiotic flooded 

sam ple and the non-flooded colonies (Figure 5.16b).
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Figure 5.16.: Raman spectra from ToplOwt colonies subjected for 3 hours to 1/d performed on two 
consecutive days: a)day one; b) day two. Red dot 100/ig/ml ampicillin, blue square: 
distilled water, green triangle: colonies not flooded.

Figure 5.17a shows the sam e experim ent perform ed with higher dose o f antibiotic: 

1000//g/m l in the sam e exposure time, i.e. 3 hours. The results, w hen com pared to the 

Figure 5.16, show no effect due to the increased dose, there is no separation betw een 

neither antibiotic and w ater Hooded sam ple, nor the non-flooded colonies. F igures 5.17b 

and 5.17c show the sam e dose o f antibiotic (1000/il/m l) but applied left on the surface 

o f bacterial colonies for 1 and 17 hours (respectively) prior to the R am an spectroscopy 

m easurem ent. In both cases, the colonies flooded with w ater show very little difference 

from  the ones flooded with antibiotic, w hile the non-flooded sam ple is separate. Only 

several spectra from  the w ater-affected sam ple in the F igure 5.17b are closer to the non- 

flooded sam ple, how ever this is not representative enough to draw any positive conclusion 

about the effectiveness o f this m ethod.
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Figure 5.17.: Principal component analysis scores of Raman spectra from ToplOwt colonies flooded 
with 1/d of 1000//g/ml of ampicillin for: (A)3 hours; (B)l hour; (C) 17 hours. Red circle: 
ampicillin; blue square: water; green triangle: not flooded sample.

5.3.5.2. Transfer of colonies onto antibiotic containing media

An alternative m ethod o f m onitoring the R am an signal from  bacterial colonies follow ing 

the application o f antibiotics was developed by m oving the live, fully grown colonies onto 

a substrate containing the antibiotic o f interest.

5.3.5.2.1 Transfer using replica plating

A fter the com parison, PCA results in F igure 5.18 show that transferred sam ples grown 

w ithout antibiotics clusters together w ith the colonies from  the original plate (even though 

sam ple 2RN was grown from  plate 2-not included in the PCA - and not plate 1), w hile the 

transferred sam ples grown on antibiotic contain ing plate m ake up a distant cluster. This 

dem onstrates again that R am an spectroscopy can show the difference betw een sam ples 

that express antibiotic resistance and those that do not.
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PCA Scores

Figure 5.18.: Principal component analysis scores of Raman spectra from ToplO-4 4 plated on an orig­
inal plate (green triangle) and moved to: IRA - new plate containing antibiotic(red 
square); 2RN-control plate without antibiotic (cyan circle).

5.3.5.2.2 Transfer using membranes

Several different m em brane types were tested (Table 2.3). M ost o f the m em branes exhibit 

very strong R am an peaks, how ever PV D F was rejected as the first one since it caused full 

saturation, w hich m ost likely w ould not be quenched even with very thick colonies.

Figure 5.19 show s the clustering o f the spectra from  all the m em branes placed on CBA 

(except for PV D F). All o f them  produce tight, distinct clusters, except for nylon and 

im m obylon, w hich cluster together.

The growth o f  colonies was poorer on the m em branes than w ithout in all cases. H ow ­

ever the two m em branes, M EC and nitrocellulose, show ed the best colonies and were 

investigated further.

PCA S c o w

nil <78

Figure 5.19.: Raman spectra (n=6) from the membranes on CBA plates: blue - cellophane; red - 
immobylon; green - MCE; cyan - nitrocellulose; purple - nylon; yellow - PES; grey - 
PTFE

The initial experim ent was perform ed using M C E m em brane in order to verify the in ­

fluence o f m em brane signal on the experim ental outcom e. Figure 5.20 show s clear differ­

ences betw een spectra taken from  colonies grow n w ithout m em brane and the initial plate 

containing colonies grown with m em brane. It is notew orthy that the spectra from  M C E 

on CBA w ithout bacteria are c loser to the clusters from  colonies on the m em brane that 

to the colonies w ithout m em brane. This can have strong im plications that the m em brane
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can obstruct the spectra in a m eaningful way since its signal is included in the bacterial 

spectra.

PCA Scores

-  - -
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0 2 
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Figure 5.20.: Principal component analysis scores of: ToplOwt plated on CBA plates containing MCE 
membrane (brown square); ToplOwt plated on a CBA without the membrane (green 
triangle); membrane itself (grey circle).

Further experim ent based on M C E m em brane included com paring the spectra from 

original plate contain ing  bacterial colonies grow n on the m em brane, w hich was then trans­

ferred onto an an tib io tic contain ing plate and a control plate (according to F igure 5.2). 

The results from  F igure 5.21 do not show any separation betw een the sam ples: spectra 

from the original plate cluster together w ith both transfer plates and none o f them  is tight, 

therefore exhibiting  high variation and poor reproducibility  o f single sam ple repeats.

PCA Scores

Figure 5.21.: Principal component analysis scores of ToplOwt plated on CBA plates containing MCE 
membrane: purple triangle - the initial plate; red circle - moved onto antibiotic con­
taining plate and measured after 24 hours; blue square - moved onto non-antibiotic 
containing plate and measured after 24 hours.

Figure 5.22 show  the antibiotic dose influence on the grow th o f colonies on a n itrocel­

lulose m em brane. The results show difference betw een colonies transferred onto m edium  

containing 500 or 1000//g/m l o f  am picillin  and those m oved onto antibiotic free agar 

serving as control for each o f the experim ents. C olonies transferred onto 100/zg/ml o f 

am picillin clustered closer to the colonies transferred  onto the antibiotic free plate then 

those transferred on m edia containing. This suggested  a clear dose response relationship.
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Figure 5.22.: Comparison of the influence of antibiotic dose on the CBA plates on the spectra of 
ToplOwt grown on nitrocellulose membrane and moved onto the new plates. Red dot 
-100jug/ml of ampicillin, blue dot- control for this experiment; pink square- 500/xg/ml 
ampicillin, cyan square - control for this experiment; orange triangle - l()00//g/ml ampi­
cillin, navy triangle - control for this experiment.
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5.4. Discussion
Antibiotic screening is an important stage of infectious-diseases diagnosis. In this chapter 

we have successfully created and described isogenic strains expressing resistance to two 

different antibiotics: ampicillin and kanamycin and compared them to the susceptible 

strains.

Our methods of preparation of isogenic transformants were similar to the protocol de­

scribed by Walter et al. (Walter et al., 2011), therefore we have carefully investigated the 

functionality of the resistant strains as well as the antibiotic.
For both: pUC19 and pET-26 we were able to determine their presence in the E. coli 

through the agarose gel electrophoresis. In both cases it was essential to use the restriction 

enzyme, as uncut fragments were of lower molecular weight than expected, indicating that 

the DNA fragment might have been in a supercoiled configuration.
In order to describe the functionality of the plasmid within the transformants, MICs 

were calculated. There was no difference in the level of resistance between the strains 
harvested with- and without antibiotic neither for ampicillin, nor for kanamycin resistant 
strains and both were higher than for the un-transformed strains.

Resistant strains behaved in a different way to the susceptible Top 10 when the temporal 
response to antibiotic was tested. No difference could be noticed in ToplOA upon addition 
of antibiotic and in control solution, whereas the susceptible strain counts dropped signif­

icantly. Top10^ on the other hand did show less resistance to the action of kanamycin in 
time, however it was not a significant decrease in numbers, while the susceptible Top 10 
lowered the CFU in a meaningful way. This clearly shows differences between the action 

of antibiotics, therefore it was significant to test at least the two different antimicrobials 

for Raman spectroscopic measurements.
We were able to determine that Raman spectroscopy recognises the differences be­

tween those controls and further analysis allowed to determine that these fluctuations in 

the signal come mainly from the DNA/RNA, proteins and lipids, therefore concluding 

that Raman spectroscopy recognises resistance profiles based on the genetic material and 

bacterial envelope.
The differences between the resistance to ampicillin and kanamycin were also noticed: 

there is more variation in terms of the amount of peaks, and value of PC scores results 

between the ToplCf4, Topi O'4'4 and ToplOAj4 measured on ampicillin medium than there 

is between respective strains transformed to express kanamycin resistance, which seem
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slightly more stable and uniform. This may be caused by the ability of E. coli to lose 
the pUC-19 plasmid unless the ampicillin pressure is maintained, while pET-26 may be 

more persistent. This effect could be the reason for characteristic grouping in Figure 5.3 
where strains exhibiting kanamycin resistance are set on one branch, separate from the 

susceptible strains. ToplOA however is very close to the untransformed strains while 

ToplOAA and Topi O'4'4 measured on ampicillin medium are separated. This effect, to 

some extent may resemble the API E20 test, where wild-type Top 10 was recognised as E. 
coli in much lower percentage than ToplOA. In case of the hierarchical tree it is possible 

that Top 10 and ToplOA are less related to K12, which clusters closer to ToplOAA and 
ToplOAA measured on ampicillin medium most likely because of the tendency of Topi0A 
to dropping the plasmid and acting like untransformed Top 10, i.e. not containing lac 

Operon, a fragment of DNA delivered in the plasmid, maintained in all other transformed 
strains as well as in K12. It is possible that Raman spectroscopy could recognise this 
subtle change.

Real-time monitoring of responses to antibiotic actions were performed including an­
tibiotic flooding and transfer of bacterial colonies onto the antibiotic-free and antibiotic- 
containing media. The reasoning behind this strategy was based on the fact that antibiotic 
flooding could serve as a simple way of the real-time monitoring of responses to antibac­
terial agent and could assist in differentiating between the resistant and susceptible strains. 
Unfortunately whole-plate flooding did effect in washing off a large portion of colonies, 
while the point-flooding was more tedious and time consuming, which would not be a 

welcome quality for a potential new diagnostic technique. In addition it was difficult to 
describe the most appropriate time of antibiotic exposure and dose; even though the time 
needed for ampicillin action against Top 10 was proven to be less than 30 minutes and 
MIC to be equal to 32/zg/ml, our standard procedure for Raman spectroscopy involved 
screening colonies, in which case the dose and time of antibiotic penetration were dif­
ficult to determine. Therefore; neither, the whole-flooding, nor the point-flooding were 

applicable, since they did not prove successful in determining the differences between the 
live and dead cells, or sufficient reproducibility.

Replica plating was used as a very simple method of transferring colonies onto a fresh 

petri plate with or without antibiotics. Transferred colonies serve as precursors for the 
new colonies that grow overnight enough to be able to give decent Raman spectra, how­

ever they cannot be viewed instantly due to insufficient thickness resulting in too much 

background signal from the underlying agar. Therefore additional time for growth was
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required. However, even after allowing 24h more, poorer quality colonies were grown 

resulting in a very limited number of spectra.

Semi-permeable membranes were investigated for their ability to transfer bacterial 

colonies to an antibiotic containing media. To be functional, the membrane should al­
low diffusion of the nutrients from the substrate, including the antibiotic, to the bacteria. 

Thus colonies were subjected to the action of the antimicrobial factor after moving to 

the new plate. The success of this technique involved correctly identified correlation of 

the response to the dose of antibiotic used and separation between affected and control 
strain, therefore this approach might potentially be used for monitoring of the real-time 

antibiotic action however; care should be taken to choose a correct membrane and dose 
of antibiotic. More time would be required to investigate this approach in full.

Techniques based on the need for bacterial replication raised many concerns and 
showed limited success while also exhibiting the disadvantage, of increasing the time 
necessary for the colonies to grow after transfer to a new plate. This would extend the 
time of diagnosis to at least 48 hours which would be undesirable for clinical application.

Work performed by other research teams and published in this subject to-date varies 

to a high degree. Most of the projects have focused mainly on monitoring the bacterial 
response to antibiotics in susceptible strains but without comparing them with the resis­
tant organisms (Hadjigeorgiou, 2009; Lin et al., 2012; Liu et al., 2009; Lopez-Diez et al., 
2005; Moritz et al., 2010a; Neugebauer & Schmid, 2006; Willemse-Erix et al., 2010) did 
test the resistant strains, however it has not been directly compared with the susceptible 
strains. The most comprehensive study was published by Walter et al. (Walter et al., 2011) 

presenting methods similar to ours in terms of generating resistant strains while compar­
ing them to untransformed bacteria. Despite using different strain of E. coli transformed 

with different plasmid than investigated by us, results discussed in the publications are in 

agreement with findings presented in this chapter also addressing the problem of lowering 

content of plasmid in ampicillin non-challenged cultures. There is also a similarity in the 

spectral peaks that were identified as responsible for the separation, which were assigned 

to DNA/RNA.
It was difficult to compare findings when different Raman ehancements (Lopez-Diez 

et al., 2005; Neugebauer & Schmid, 2006) than the ones used by us in this chapter and 

therefore consult the Raman shifts identified since the different wavelengths and excita­

tions were used.
To our best knowledge, there were no attempts for utilising neither antibiotic flooding
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nor replication techniques in the Raman spectroscopy based literature, which is still very 

limited in terms of antibiotic resistance studies.
We conclude that based on our findings and some of the suggestions from the research 

published to-date, the fastest and most efficient approach would be creating a univer­
sal library of microorganisms including all the possible antibiotic-resistant samples that 

could serve as reference for comparison with any hospital sample tested with Raman 

spectroscopy. With the use of properly designed software this step should be fast and 
easy delivering much needed result.

In Chapter 6 we applied our methods to a set of archived clinical samples of E. coli 
expressing extended-spectrum beta-lactamases. Raman spectroscopy was investigated for 
its ability to distinguish between the subtle differences exhibited by different antibiotic 

resistance profiles as well as for assigning the organisms to the determined phyogenetic 

groups.
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6. CHARACTERISATION OF CLINICAL ISOLATES OF ESCHERICHIA COLI
EXPRESSING EXTENDED SPECTRUM /3-LACTAMASES, USING RAMAN
SPECTROSCOPY

6.1. Introduction
Multiresistance in bacteria is becoming a key issue, influencing administration and limit­

ing the options of the correct treatment strategies.

Eshericha coli strains have been reported to emerge with the ability to produce extended 

spectrum /3-lactamases (ESBLs). Over 75 ESBLs present in gram negative bacteria are 

able to inactivate many currently available advanced-generation cephalosporins and peni­

cillins that were promised to be the safest and the most affective antibiotics.
TEM-1 and SHV-1 are the most common /3-lactamases found in enteric 

bacilli (Bonomo, 2000) and most ESBLs emerged from TEM and SHV enzymes (Wood­
ford et al., 2004) but CTX-M enzymes are becoming more important. Among the family 

of >110 ESBLs, CTX-M-15 and CTX-M-14 are the most common CTX-Ms (Woodford 

et al., 2011).
The occurrence of CTX-M producers can cause serious public health implications 

mainly related to designing an appropriate therapy (Woodford et al., 2004).
In the previous chapters it has been proven that Raman spectroscopy can identify be­

tween bacterial organisms and is able to successfully differentiate between isogenic mu­
tants obtained in our laboratory and wild type reference strains.

To assess the abilities of Raman spectroscopy to become a diagnostic technique useful 

in the hospital laboratories its capability of recognising hospital isolates has been included 
in this chapter. In addition, taking into account the growing problem of antibiotic resis­
tance and emergence of multiresistant strains, the organisms that were used in this part of 

the project were confirmed to express extended spectrum /3-lactamases.
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6.2. Methods

6.2.1. Polymerase Chain Reaction

PCR was performed according to Section 2.2.6 and the results were obtained from agarose 

gel electrophoresis described in Section 2.2.7.

6.2.2. Phylogenetic classification

Phylogenetic classification has been performed according to (Clermont et al., 2000) using 
the results from Polymerase Chain Reaction revealed after agarose gel electrophoresis. In 

cases where no strains were present, strains were marked as ‘NO’ and not classified as 
belonging to any of the phylogenetic groups. In cases when the results were inconclusive, 

the experiments were repeated.

6.2.3. Raman spectroscopy measurements

ESBL expressing clinical isolates were subjected to procedures described in Chapter 3. 
At least 15 single sample repeats were taken for each strain. The PCA was performed 
using the mean result for intensities from the single sample repeat for each strain and 
arranged according to the resistance group the strain belonged to (Table 2.12)
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6.3. Results

6.3.1. Polymerase Chain Reaction

In order to classify the clinical isolates into phylogenetic groups, each of them was 
subjected to the triplex PCR using ChuA.l, ChuA.2, YjaA.l, YjaA.2, YjaA.2, YjaA.2, 

TspE4C2.1, TspE4C2.2 primers.

Phylogenetic group A was confirmed by the presence of YjaA band at 21 lkbp; group 
B1 was confirmed by the presence of TspE4C2 band at 159kpb; group B2 was confirmed 

by the presence of either two bands for both: ChuA and YjaA at 279 and 21 lkpb or by 
all three bands representing each gene, while group D was confirmed by the presence of 

ChuA band at 279kpb alone or together with TspE4C2 at 152kpb.

The verification of the method was performed using standard strains for each phyloge­
netic group (Figure 6.1). The standards for group A were K12 and Top 10, for group B1 
was ECOR33, for group B2 was strain B and ECOR59, for group D was ECOR50. All 
these groups were recognised correctly.

The comparison off all the strains, including their resistance group and number of 
strains in every phylogenetic group can be seen in Figure 6.2.
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Figure 6.1.: The results of triplex PCR; a) 1: lOOkb molecular marker, 2: empty, 3: ToplO, 4: StrainB, 
5: K12, 6: ECOR50 (standard for phylogenetic group D), 7: ECOR33 (standard for 
phylogenetic group B l), 8: ECOR59 (standard for phylogenetic group B2); b) strains 
from different groups
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Figure 6.2.: The collection of clinical isolates expressing ESBLs with phylogenetic groups assigned to 
them.

6.3.2. Raman spectroscopy

All ESBL strains from the collection  o f clinical isolates have been tested w ith Ram an 

spectroscopy. F igures 6.3 and 6.4 represent the groups w ith the highest num ber o f strains:
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C TX -M  15, TEM -1 and C TX -M  15 IS 26 positive respectively.

F igure 6.3 clearly shows that spectra w ithin the C T X -M  15, TEM -1 cluster according to 

their phylogenetic groups. The phylogenetic tree confirm s the result presented that there 

is a closer relation betw een the strains from  B2 and A group than betw een group D.

Strains w ithin C TX -M  15 IS 26 positive are m ore diverse. There are two separate c lus­

ters present, both including m ixture o f strains for B2 and D group and each contains a 

single strain that did not show any bands after PCR.

A
PCA Scores

3 ^To ‘n  ^20 t i l  tTo te l  0 0 05 Vo T l  Vo 25 ĴO<1|i60 51%)

B

Figure 6.3.: Results based Raman spectra for the collection of clinical strains expressing CTX-M -15, 
TEM-1, A) PCA clusters, strains belonging to phylogenetic group A: blue circle; strains 
belonging to phylogenetic group B2: red square; strains belonging to phylogenetic group 
D: green triangle; B) hierarchical tree showing the relationship between the strains; two 
top branches: strains belonging to phylogenetic group D, bottom branch: strain belong­
ing to phylogenetic group A, five middle branches: strains belonging to phylogenetic 
group B2
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Figure 6.4.: PCA clusters based on Raman spectra for the collection of clinical strains expressing 
CTX-M-15IS26 positive; strains belonging to phylogenetic group B2: blue circle, strains 
belonging to phylogenetic group D: red square, strains that did not show any bands after 
PCR: green cross

160



6. CHARACTERISATION OF CLINICAL ISOLATES OF ESCHERICHIA C O U
EXPRESSING EXTENDED SPECTRUM /^-LACTAMASES, USING RAMAN

SPECTROSCOPY

6.4. Discussion

This chapter has proven that it was possible to assign organisms within groups expressing 

different extended spectrum ^-lactamases profiles to different phylogenetic groups as well 
as to classify strains within these groups using Raman spectroscopy.

To our knowledge this is the first study involving that broad number of ESBL strains 

measured with Raman spectroscopy. In addition, the phylogenetic classification was ver­

ified as well therefore Raman spectroscopy was used for assessing bacteria phenotypi- 
cally, genetically and phylogenetically. Our work could therefore be a pioneer attempt to 

broaden the uses of Raman spectroscopy for investigating multi-resistant strains concern­

ing the public health nowadays as well as for emidemiological studies of Enterobateri- 
aceae.

This work has based the phylogenetic classification on the methods presented by Cler­
mont et al. (Clermont et al., 2000) and the results are in agreement with the published 
findings. The article does not mention cases in which the bands were not present, which 

has happened in this project with 4 strains and the result was consistent in repeated ex­
periments. Yet another problematic issue was the difficulty in distinguishing between B2 
and D strains in several cases. This was caused by the fact that TspE4C2 band at 152pb 
was very faint and it was the decisive band differentiating between B2 and D groups. This 
may be the reason for the diversity in the two PCA clusters of CTX-M 15 IS 26 positive 
Raman spectra. Normally it would be expected to obtain separate clusters for B2 and D 
groups since these are the biggest phylogenetic groups within this ESBL collection. How­

ever, the lack of uniformity within those clusters may possibly be caused by the incorrect 

recognition between B2 and D groups.
A publication by Doumith et al. (Doumith et al., 2012) addresses the problem of poly­

morphic nucleotides revealed for the three original primers. In order to avoid the situation, 

it was suggested to use 281-, 216-, and 158- bp fragments instead of 279-, 211- and 152- 

bp respectively. The new set also contained a 373bp fragment for gadA.
In this project we did not have the opportunity to test this modification of the original 

method, however, according to the publication, strains that were considered to be in D 

group after using Clermont et al. method were recognised as B2 with the new approach. 

Trusting these results we did make an attempt to change the phylogenetic group of the 
strains which were inconclusive in at least one of the experimental repeats from D to 
B2 hoping that it would clarify the existence of two clusters within the CTX-M 15 IS 26
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positive group. Unfortunately the effect was not as expected.
It can be concluded that this chapter gave an important insight into the capabilities of 

Raman spectroscopy and proves that it can be used for many purposes including classifi­
cation of the multiresistant strains according to their antibiotic profile as well as to their 

phylogenetic group.
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Infectious diseases have influenced human lives for centuries, with examples of pan­

demics and epidemics able to destroy entire civilisations and cause death over broad re­

gions of the world (Brachman, 2003; Morens et al., 2004; Tatem et al., 2006). Infectious 
diseases remain major threats and are related to mortality, morbidity as well as an eco­

nomical burden (Gubler, 1998). Attempts to counteract infectious diseases and to prevent 

their spread have focused on i) basic science to further knowledge about the disease- 
causing vectors; ii) development of immunity against the infectious factors by produc­

ing vaccines (Stem & Markel, 2005); iii) discovery of therapeutic agents in the form of 

antibiotics (Aminov, 2010; Gensini et al., 2007; Longworth, 2008) and iv) advances in 

diagnosis, such as PCR.
Development of antibiotic resistance through exchanging genetic information has 

clearly decreased the effectiveness of progress to address infectious disease (Davies & 
Davies, 2010). Several factors have enhanced the spread of antibiotic resistance mech­

anisms such as overuse of antimicrobials, especially those with broad spectrum action 
(ampicillin), poorly designed treatment, inclusion of antibiotics in animal feed which al­
lows access to soil and groundwater, leading bacteria to develop mechanisms of defence 
against antimicrobials (Levy & Marshall, 2004; Yoshikawa et al.). Furthermore bacte­
rial organisms also gain resistance to multiple groups of antibiotics, termed multiple drug 
resistance, amplifying the problems for human health. Thus cutting edge clinical microbi­

ology now requires identification and determination of antimicrobial susceptibility before 
fully instigating a treatment regime.

There are a variety of diagnostic methods available currently, including traditional 
phenotype-based testing, metabolic activity investigation, automated systems including 

antibiotic profiling as well as techniques involving molecular biology (Kim et al., 2008; 
Woodford & Sundsfjord, 2005). However, many of these methods are still not cost ef­
fective and rarely used in hospital laboratories, resulting in them being dependent on 
culturing methods incorporating a cascade of steps usually lasting 8-24h each, extending 

time of diagnosis to several days (Petersen & McMillan, 1998). This can have serious ad­

verse effects on patients survival rate especially in severe cases like septicaemia or acute 
meningitis where the delay in the initiation of correct anti-microbial therapy is linked to 

mortality (Tunkel et al., 2004)(Tunkel et al., 2004). This thesis recognised the urgent need 

for a new, rapid, and cost effective diagnostic method which could be incorporated into 

the natural diagnostic process within hospital laboratories.

Raman spectroscopy has previously been used for analytical purposes in chemistry and
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physics (Gerrard, 1994) but gradually gained popularity in various different fields includ­

ing art, archaeology (Marcolli & Wiedemann, 2001) (Vandenabeele et al., 2007a), foren- 

sics (Salahioglu & Went, 2012) (Cho, 2007), pharmaceuticals (Fini, 2004) (Vankeirsbilck 

et al., 2002), as well as the bio-medical field (Downes & Elfick, 2010) (Petry et al., 2003). 

Raman spectroscopy possesses several important advantages that could make it a useful 

diagnostic tool, namely: it is non-destructive, able to investigate spectra in an aqueous 
environment, inexpensive, and the signal has the potential to be enhanced (Pappas et al.,
2000) (Fabian & Anzenbacher, 1993).

We have made the efforts of investigating previously suggested approaches with more 

focus on the diagnostic application, therefore: this project aims to determine whether 

Raman spectroscopy has the qualities including: the cost effectiveness, reproducibility 

and ease of use but does not compromise on the specificity and ability to distinguish 
between very similar organisms and bacteria of different antibiotic profile. Our work had 

a strict clinical oriented interest.
This thesis assesses the potential of Raman spectroscopy to address two major problems 

in clinical microbiology, namely bacterial identification and determination of antimicro­

bial susceptibility. The thesis results begin with a basic science approach to characterise 
the Raman system and assess reproducibility of Raman spectra of bacteria (Chapter 3). 
Then the thesis addresses the potential of Raman spectroscopy to discriminate between 
species and strains of bacteria (Chapter 4). In the next chapter the ability to detect lab­
oratory produced resistant strains of bacteria is assessed (Chapter 5). Then finally the 
potential of Raman spectroscopy to identifiy and characterise 65 strains of multidrug re­
sistant E. coli was assessed (Chapter 6).

In Chapter 3 we designed procedures for reproducible spectra collection and data pro­

cessing. For collecting spectra, all experiments were performed on the mVmRaman sys­

tem calibrated for silicon sample and set up to: 10 seconds of 1 accumulation, with laser 

power of 50%, using the 785nm red laser. The range chosen for the experiments was 

600-1600cm-1 and we have established that the best results can be obtained with 15-30 

spectra using the whole spectrum, not just its fragments, as also mentioned in our previous 
work. (Almarashi et al., 2012).

Experiments were performed on fully grown bacterial colonies on solid growth medium 

(Columbia Blood Agar) as the substrate of choice. Agar had no influence on the quality 

of the spectra and being commonly used in the clinical environment, is an advantage 

for its future use alongside current procedures in the hospital laboratory. Additionally,
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our approach does not extend the time suggested by most other publications using al­

ternative substrates, including CaF2, They were based on bacterial suspensions grown 
ovemight/24h or on solid medium, but involved scraping part of a colony and moving 
it onto a different substrate (Jarvis et al., 2006) (Rosch et al., 2005) (Kirschner et al.,
2001) (Maquelin et al., 2000). Therefore our method, involving scanning colonies di­

rectly on the agar growth medium, allows one step to be omitted in the procedure (no 
extra transfer). Moreover, it has been suggested (Maquelin & Kirschner, 2003) (Maque­

lin & Choo-Smith, 2002) that it may be possible to decrease the time of bacterial growth 

to 6-8h using microcolonies before Raman measurement. This has met with some success 

by other members of our group (Almarashi et al., 2012) and in this way the procedure here 
could be enhanced even further by reducing the time to an ‘identification’ decision.

Processing of the spectra was an important step. The initial step included background 
removal which was an essential practice and should not be omitted due to the natural 

fluorescence observed in biological samples, as well as many common substrates, when 
subjected to Raman spectroscopy (Fabian & Anzenbacher, 1993) (Huang et al., 2010) (Es- 
coriza et al., 2006). There are several methods of background correction suggested in the 
literature, including geometric approaches (Kourkoumelis et al., 2012) and polynomial 
regression model baseline correction De Wael et al. (2008). However, after investigating 
three further methods which included background subtraction available from PyChem, 
AirPLS, and Rolling Circle Filter we confirmed that the RCF delivered the most reli­
able results. This is supported by others using the method for analysis of Raman-based 
research (Huang et al., 2010) (Samek et al., 2010a,b,c).

For the most efficient differentiation between bacterial organisms it was also essen­

tial to chose an appropriate method for spectral comparison. This is applicable for both 

closely related samples (Wagner, 2009) (Jehlicka et al., 2012) with more complex com­
parisons, involving samples exhibiting more subtle differences, requiring more advanced 

spectral processing methods. Among many techniques covered in the literature (Zhu et al., 

2004) (Rosch et al., 2005) this work focused on Principal Component Analysis (Jarvis 

& Goodacre, 2004b) (Ciobot et al., 2010) (Jarvis et al., 2006) with Hierarchical Clus­

tering (Kirschner et al., 2001). In addition selecting the most significant peaks when 

comparing samples to each other (Maquelin et al., 2003) and assigning the identified val­
ues to the library of Raman signals of biological molecules was a useful addition of our 

analysis (Ivleva et al., 2008) (Samek et al., 2008) (Maquelin et al., 2002) (De Gelder, 

2007) (Schuster et al., 2000) (Samek et al., 2010a,b,c). Such procedures tested and de­
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scribed in Chapter 3 allowed the development of a standard operating procedure (SOP) 
that was applied in all following chapters.

In Chapter 4 the Raman SOP was applied to distinguish between bacterial samples in 

order to verify possible applications of the technique to the clinical field. Collections of 
strains including E. coli (ToplO, K12, Strain B), S. epidermidis (1457 and 9142) and S. 

aureus (10418 and 6571) were tested. The results allowed us to conclude that distinction 
between bacteria using Raman spectroscopy is associated with taxonomic differences, 

Thus the differences detected between organisms decrease in the order genus >  strain > 

sub-strain. Similar findings confirming our conclusions can be found in other publications 

including the comparison of different organisms and even the same species (Rossi et al., 

2012) (Kahraman et al., 2009).

Our method was also able to identify and discriminate very fine differences. For ex­
ample the comparison between E. coli strains ToplO, K12 and Strain B. Here the system 
could identify that ToplO and K12 are more closely related than strain B-indeed ToplO 
was derived from K12. Raman spectra exhibited close relations between the E. coli strain 
which are following the natural trend (Andreishcheva & Vann, 2006) (Schneider et al., 
2002).

The approach of identifying significant Raman peaks when comparing samples enabled 
us to identify the biological molecules responsible for the separation of the organisms and 

was also used successfully to monitor the composition of single bacterial cells (Schuster 
et al., 2000). We identified that DNA and RNA bases, as well as protein and amino-acids 
were the main discriminatory signals when comparing at the genus level, while more 
closely related bacteria are differentiated by additional peaks associated with sugars, fats 

and fatty acids. These findings lead to the conclusion that Raman spectroscopy recognises 

major taxonomic differences based on genes and the expressed proteins. However, when 
investigating between more subtle relationships; the outer bacterial envelope has more 

influence on the differentiation.

Another important factor, especially for the clinical setting, was the investigation of the 

influence of both temperature and storage time on the quality of spectra and on the ability 
of Raman spectroscopy to differentiate between samples. Based on our findings we man­

aged to draw conclusions that neither the temperature nor the time of the storage, up to 
8 hours, can have a visible influence on the quality of separation between the strains, nor 

on the shape of the clusters. This experiment adds to the qualities of Raman spectroscopy 

as a potential diagnostic technique, since, due to the working hours of the hospital labo­
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ratories, samples sometimes have to be stored before testing. This would not affect the 
diagnosis. To our knowledge and surprise this has not been investigated in the literature 

to date.

In Chapter 5 we focused on determining the abilities of Raman spectroscopy to iden­

tify antibiotic resistance mechanisms. In order to examine this premise we generated 

and characterised isogenic strains of E. coli ToplO resistant to ampicillin (ToplOAA and 

ToplOA) and kanamycin (ToplOAA and ToplOA). Growth curves and MIC determination 

confirmed the sensitive and resistant phenotypes. Characterised strains, were subjected to 

Raman spectroscopy and compared to the susceptible wild-type strain. Results suggested 

that there were differences in antibiotic resistance based on the presence of antibiotic i.e. 
resistant strains kept under the antibiotic pressure and tested on agar containing the an­
tibiotic showed the most distant PCA clusters when compared to untransformed strains. 
The differences between transformants and the wild-type strains were gradually decreas­

ing with the level of antibiotic exposure; therefore they were the lowest for ToplOA and 
ToplOA respectively. However, even in those instances, samples were easy to distinguish. 
Interestingly comparable findings using a similar transformation strategy (but different 
plasmid, pDrive) were described by Walter et al. (Walter et al., 2011), who identified the 
major differences to be dependent on the DNA/RNA and cytochrome content.

Additionally, it was also noticed that ampicillin resistant strains were more prone to 
losing the plasmid expression than strains transformed with pET-26 plasmid. This con­
clusion was drawn upon building the hierarchical tree clustering, which grouped all the 

kanamycin resistant strains together but the pUC19 bearing bacteria were divided; ToplOA 

grouped closer to the ToplO but away from the K12, while ToplOAA and ToplOAA+Amp 

are situated near K12 and in close proximity to all kanamycin resistant Transformants.
We have concluded that the reason may be due to the fact that ToplO, unlike K12, does 

not contain functioning lac Operon, however, this gene cluster’s function can be gained 
due to transformation with plasmid containing lac Operon genes and therefore become 

more similar to K12 than to the untransformed ToplO. ToplOA maintains on a branch 

close to ToplO wild-type, which may indicate that the plasmid containing lac Operon 

could be lost, due to the lack of ampicillin pressure. Therefore Raman spectroscopy may 

be able to distinguish the persistence of resistance factors within bacterial cells.
Chapter 6 was devoted entirely to the clinical applications for Raman spectroscopy. A 

collection of hospital isolates of E. coli expressing extended spectrum beta lactamases 

(ESBLS) characterised previously for their detailed antibiotic profiles was used for this
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section. Additionally we tested a novel approach of confronting Raman spectroscopy with 

phylogenetic classification. Using the triplex PCR methods involving 3 sets of primers: 

ChuA.l, ChuA.2, YjaA.l, YjaA.2, YjaA.2, YjaA.2, TspE4C2.1, TspE4C2.2 we assigned 

each of the 65 strains in the collection to one of 4 major phylogenetic groups: A, B l, B2 

and D, based on the approach introduced by Clermont et al. (Clermont et al., 2000).

The results varied in a high degree with majority of the strains falling into B2 or D 

group with three strains of different antibiotic profiles, which could not be assigned to 
any of the phylogenetic group. No direct link between the antibiotic resistance profile and 

the phylogenetic groups could be identified.
After subjecting strains from two most numerous ESBL groups: CTX-M-15, TEM-1 

and CTX-M-15IS26 positive, to Raman spectroscopy, it could be noticed that there were 

separate, phylogenetic group dependant clusters within the first ESBL group. The latter 
one did divide into two clusters, however they both contained B2 and D strains. There 

were chances that our phylogenetic classification might have had some flaws and the 
results from the CTX-M-15IS26 positive group may confirm this assumption. Our suspi­
cions are confirmed Doumith et al. (Doumith et al., 2012) criticizing the effectiveness of 

Clermont’s premise and suggesting an alternative solution. Unfortunately due to the lack 
of time we were not able to perform the experiments as suggested there.

This project has raised numerous important points that warrant further investigation 

and could benefit from future modifications and improvements.
One of the main limitations, that could prevent Raman spectroscopy from being used as 

the ultimate diagnostic tool in infectious diseases, would be the inability to scan patients 

sample directly.

Possible approach could involve single-cell analysis excluding completely the incuba­

tion period. We made initial attempts towards this idea when testing the best possible 
substrate. We did not manage to obtain any valuable signal from bacterial suspension, 
which was burdened by the fluorescence.

Another technique attempted was SERS for which we prepared silver nanoparticles as 

described in the literature (Jarvis et al., 2008, 2004, 2006). Preparing the substrate was 

indeed rapid, inexpensive and easy, however the authors recommend testing the substrate 

with Atomic Force Microscopy, which we did not manage to obtain. Additionally the 

SERS papers cited here, use the bacterial samples grown overnight, therefore it would 

not decrease the time of diagnosis, that our project offers, but add at least one step to the 

procedure.
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An interesting effect was obtained when using optical tweezers and this could possibly 

be the next step worth exploring (Moritz et al., 2010a,b; Wagner, 2009).

Other problematic factor was the variation within the samples involving hospital iso­

lates, especially the Extended Spectrum /^-lactamases E. coli. The colonies often ex­
hibited poorer growth resulting in lower quality spectra. Presence of such errors could 

seriously obstruct the correct diagnosis. Within the literature records, most authors seem 
rather positive about their results when using Raman spectroscopy for identifying hos­

pital strains, therefore more practice on our side and possible collaborations with other 

laboratories could decrease the issue.
Another improvement to our project could be delivered by using more sophisticated 

methods of spectra processing. There are various different techniques used and to test 
them, could possibly profit in obtaining even better, more detailed information from Ra­
man spectra serving the diagnostic purposes. T-tests used for determining the significance 

of difference between corresponding Principal Components have raised some questions 
over the course of this project. Sadly, no alternative has been suggested to-date. Liter­
ature mentioned before dictates using certain techniques serving as post-analysis proce­
dures, however the limited time and access to professional statisticians’ advice made it 
impossible to explore include more elaborate results within this thesis.

Using Raman spectroscopy for phylogenetic investigations offered so far only limited 
results. This fact was related again: to the poor repetitiveness of ESBLs as well as to 
limited time. This attempt was a very novel approach within our laboratory and could 
possibly allow for other project based on the principle to follow if more time and funds 
were allocated.

This thesis has produced a comprehensive body of work on the potential use of Ra­

man spectroscopy for diagnosing bacterial-associated infectious disease. The work has 
focused on taxonomic identification and discrimination between bacteria. Furthermore 

work has suggested the possible use of Raman for identifying antibiotic resistant phe­

notypes. Our original hypothesis outlining the potential of Raman spectroscopy for di­

agnosis of infectious disease has been confirmed in the basic science laboratory and has 

yielded promising results. The major goal is the steps needed for application in hospital 

laboratories. At this stage it may seem that there is a very long way to go for Raman 
spectroscopy before it could be commonly used for medical purposes, however experi­

ence on Phoenix systems or even Mass spectroscopy confirm that there could be profit in 

developing phenotypic assays and Raman spectroscopy has the potential to complement
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7. FINAL DISCUSSION AND FUTURE PERSPECTIVES

them.

For Raman spectroscopy to become a method commonly used in clinical laboratories, 

more effort should be done, especially in terms of unifying the variety of methods and 

integrating them for clinical use. One major advance should definitely be the development 

of an easily accessible Raman signal database for both: single molecules, as well as for the 

whole bacterial organisms. Therefore any spectra received by the laboratory technician 

or through an automated procedure, could instantly be compared to the standard and a 
diagnosis could be delivered.
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A . S u p p l e m e n t a r y  I n f o r m a t i o n



A. SUPPLEMENTARY INFORMATION

Table A.I.: Approaches have been used for studying microorganisms with Raman spectroscopy
Method References
Fully grown colonies (Samek et al., 2008) (Rosch et al., 2003)
microcolonies (Maquelin et al., 2000) (Maquelin et al.,

2002) (Maquelin & Kirschner, 2003) (Goodwin, 
2006)

bacterial biomass (Kirschner et al., 2001) (Choo-Smith,
2001) (Hutsebaut et al., 2006) (De Gelder et al., 
2007a) (Ivleva et al., 2009) (Hall et al.,
2011) (Willemse-Erix et al., 2009) (Escoriza et al., 
2006)

single cells (Schuster et al., 2000) (Guicheteau et al., 
2010) (Harz et al., 2009) (Rosch et al., 2005)
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A. SUPPLEMENTARY INFORMATION

Table A.2.: Different microorganisms studied using Raman spectroscopy.
microorganism References

Esherichia coli (Culha et al., 2010) (Hadjigeorgiou, 2009) (Jarvis 
et al., 2006) (Jarvis & Goodacre, 2004a) (Jarvis & 
Goodacre, 2004b) (Maquelin et al., 2000) (Mello 
et al., 2005)

Klebsiella pneumonia 
Klebsiella oxytoca 
Proteus spp

(Jarvis & Goodacre, 2004a) (Hadjigeorgiou, 
2009) (Jarvis & Goodacre, 2004b)

Enterococcus spp. (Maquelin et al., 2000) (Jarvis & Goodacre, 
2004a) (Jarvis & Goodacre, 2004b)

Citrobacterfreundii (Jarvis & Goodacre, 2004b)
Staphylococcus cohnii 
Staphylococcus wameri (Harz et al., 2005) (Harz et al., 2009)

Staphylococcus epidermidis (Maquelin et al., 2000) (Harz et al., 2005) (Harz 
et al., 2009) (Samek et al., 2008)

Salmonella choleraesuis 
Shigella flexneri (Mello et al., 2005)

Micrococcus luteus 
Rhodotorula mucilaginosa 
Bacillus sphericus 
Pseudosomonas fluorescens

(Rosch et al., 2003)

Helicobacter pylori (Lin et al., 2009)
Staphylococcus aureus (Jarvis et al., 2006) (Maquelin et al., 2000)
Streptococcus pneumonia 
Streptococcus agalactiae 
Neisseria meningitides 
Listeria monocytogenes

(Harz et al., 2009)

Shigella sonnei 
Erwinia amylovara 
Proteus vulgaris

(Culha et al., 2010)

Bacillus megaterium 
Acidophilium cryptum 
Cupravidus necator 
Azohydromonas lata 
Bacillus thuringiensis

(Ciobot et al., 2010)
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A. SUPPLEMENTARY INFORMATION

Table A.3.: Characteristic peaks obtained from Raman spectroscopy of biological samples according 
to: (De Gelder, 2007; Ivleva et al., 2008; Maquelin et al., 2002; Samek et al., 2008,2010b; 
Schuster et al., 2000)

Raman Shift (cm x) Bond/Molecule
561 C-O-C glycosidic ring deformation 

Polysaccharide 

COO- wagging 

C-C skeletal
620 Phenylalanine
640-643 Tyrosine

665 Guanine
720-723 Adenine
734 Glycosidic ring 

Polysaccharide
c h 2

755 L-tryptophan
756 Phosphophenylopyruvate

778-785 Citidine

Uracil
Cytosine

Uracil ring stretching
Phosphophenylopyruvate

DNA

Phosphodiester 

O-P-O stretching
829-830 Tyrosine (in protein) exposed
840 L-Tryptophan

12-methyl-tetradecanoic acid

841 Beta-D-Glucose,

Alpha-D-Glucose
846 15-Methylopalmitic acid
848 L-tryptophan
850 C-O-C stretching vibration 

1,4-glycosidic link
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A. SUPPLEMENTARY INFORMATION

Table A.3.: (cont.) Characteristic peaks obtained from Raman spectroscopy of biological samples 
according to: (De Gelder, 2007; Ivleva et al., 2008; Maquelin et al., 2002; Samek et al., 
2008,2010b; Schuster et al., 2000)

Raman Shift(cm Bond/Molecule
Tyrosine (in protein)

852-855 Tyrosine buried
Tyrosine ring breathing

858 C-C stretching

C-O-C
1,4 glycosidic link

869 Triolein
897 C-O-C stretching , C-O-C vibrations of the glycosidic

bonds and sugar rings
899 L-Proline
900 Lactose
901 Amylose
906 14-Methylhexadecanoic acid
907 13-Methylmyristic acid
908 Myristic acid
923 c-coo-

COO- stretching
Phospholipids
C-C skeletal
CH3 rocking

932 C-C
Stretching of alpha helix

C-O-H glycosides (carbohydrates)
937 C-O-C stretching vibration

Glycosidic link
944 Amylose

968 L-serine

980 C-C
Stretching of beta-sheet (proteins)

C-H bending (lipids)

999 D-(+)-Galactosamine
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A. SUPPLEMENTARY INFORMATION

Table A.3.: (cont.) Characteristic peaks obtained from Raman spectroscopy of biological samples 
according to: (De Gelder, 2007; Ivleva et al., 2008; Maquelin et al., 2002; Samek et al., 
2008,2010b; Schuster et al., 2000)

Raman Shift(cm x) Bond/Molecule
1002 Phenylalanine
1003 Phenylalanine

c -c h 3
Carotenoids

1004 Phenylalanine

1030 Phenylalanine 

C-H in plane 
Carbohydrates

1060-1096 DNA/RNA
Lipids

Carbohydrates 
C-C stretching 

C-N stretching 
C-O stretching

1071 D-Fructose-6-phosphate
1088 C-C stretching 

C-O-C
Glycosidic ring 
Polysaccharide

1098 C-O-C stretching vibrations 
Glycosidic link 

C-C skeletal
1099 Palmitic acid

1110 Glycerol

1111 L-Histidine
1121 D-(+)-Galactosamine 

Acetyl coenzyme A
1127 C-C stretching 

C-O-C

Glycosidic ring breathing 

Symmetrical polycacharides
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A. SUPPLEMENTARY INFORMATION

Table A.3.: (cont.) Characteristic peaks obtained from Raman spectroscopy of biological samples 
according to: (De Gelder, 2007; Ivleva et al., 2008; Maquelin et al., 2002; Samek et al., 

_________ 2008,2010b; Schuster et al., 2000)

Raman Shift(cm x) Bond/Molecule

1129

C-N amino acids 

CH2 deformation

1130 =C-C= in unsaturated fatty acids in lipids

1140 L-Histidine

1145
14-Methylhexadecanoic acid 

C-C

1152

C-0 breath asymmetric polysaccharide 
NH2 twist amino acids 

C-C stretching

1158
Carotenoids
Proteins

1220-1295 Amide III

1233-1237

DNA/RNA (Thymine, Adenine) 
Proteins (Amide III)
Lipids 
Amide III

1239 D(+)-Mannose

1240 D-(+) Trehalose

1249 Amide III

1250

N-H

C-N
Cytosine

1258

L-histidine

D-(+)-Fructose

Amidein

1259 15-Methylopalmitic acid

1261

D-(-) Arabinose 

Lactose

1320-1340

D-(+)-Trehalose 

Malic Acid
DNA/RNA(Guanine/Adenine)
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A. SUPPLEMENTARY INFORMATION

Table A.3.: (cont.) Characteristic peaks obtained from Raman spectroscopy of biological samples 
according to: (De Gelder, 2007; Ivleva et al., 2008; Maquelin et al., 2002; Samek et al., 
2008,2010b; Schuster et al., 2000)

Raman Shift(cm 2) Bond/Molecule
Proteins 

Carbohydrates 

Protein (Amide III)

1336 Amide III 

O-H 
C-O-H 

H-C-O
H-C-C deformation polysaccharide 
C-H deformation

1350 L-Proline

1351 Malic acid 
L-Valine

1382 COO- stretching symmetric
1440 Methylhexadecanoic acid

Oleic acid
Triolein
Trilinolein

1441 Glycine 
Stearic Acid

12-Methyl-tetradecanoic acid, 
Trilinolenin

1440-1460 CH2 scissoring 
DNA

C-H bindings in lipids
Proteins

Carbohydrates

Bands of fatty acids

Deformation vibration CH2 scissoring
1448 CH2 deformation

1469 13-Methylmyristic acid 

D-(+)-Trehalose
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A. SUPPLEMENTARY INFORMATION

Table A.3.: (cont.) Characteristic peaks obtained from Raman spectroscopy of biological samples 
according to: (De Gelder, 2007; Ivleva et al., 2008; Maquelin et al., 2002; Samek et al., 
2008,2010b; Schuster et al., 2000)

Raman Shift(cm T) Bond/Molecule
1471 D-(-)-Fructose

1479 14-Methylhexadecanoic acid

1481 Palmitic acid
D-(+)-Mannose

1501 15-Methylpalmitic acid
1502 C=C stretching carotenoids
1512 C=C stretching carotenoids

Amide III
1570 L-Glutamate
1571 L-Histidine
1573 C=C
1575 Guanine and adenine ring stretching
1581 A, G ring stretching
1585 COO- stretching asymmetric
1605-1615 Tyrosine

Phenylalanine

1640-1680 Amide I

Lipids
1655 Amide I
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B. R-C ode



B. R-CODE

B.1. Subtracting agar
$ int = read.table(file.choose())
$ sample = read.table(file.choose())
$ sub=array()
$ for (i in 1:30) {sub[i]= (sample[,i]-int)}
$ write.table(sub, file = "noAgar.txt", quote=FALSE, 
sep = "\t", row.names = FALSE, col.names=FALSE)

B.2. Calculating t-tests from PCA scores
$ PCA = read.table(file.choose())
$ A = PCA[1:30,]
$ B = PCA[31:60,]
$ PCA2 = cbind(A,B)
$ mat=matrix(ncol = l, nrow=4)
$ for(i in 1:4) {mat[i]= (t.test(PCA2[,i],PCA2[,i+4])
[["p.value"]])}
$ print(mat)
$ for (i in (mat)) {if (i < 0.05)print
("significant difference") else print ("not different")}
$ matl=function(mat){for (i in (mat)) {if(i<0.05) 
print("significant difference") 
else print("not different")}}
$ matl(mat)
$ write(mat,file = "PCA_t-test.txt", ncol=l)
$ #PCA2t=t.test (PCA2[,1],PCA2[,5]))

B.3. Subtracting mean spectra intensities in a form 
of a graph

$ merlnt = read.table(file.choose())
$ A = merlnt[,1:120]
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B. R-CODE

$ B = merlnt[,121:240]
$ meanA = rowMeans(A)
$ meanB = rowMeans(B)
$ newSpec = meanA-meanB 
$ wave = read.table(file.choose ())
$ wavel = wave[,1]
$ g_range = range(0, newSpec, meanA, meanB)
$ g_range
$ plot_colours = c ("blue","red", "forestgreen")
$ p n g (filename="C:/Users/mack2/Desktop/Natalia-Raman 
/subtract.png", height=600, width=600, bg="white")
$ plot (wavel, newSpec, type="l", col=plot_colours [ 1 ] , 
ylim = g_range, ann=FALSE, cex.axis=2, lwd=2)
$ lines(wavel, meanA, type="l", pch=28, 
col=plot_colours [2], lwd=2)
$ lines (wavel, meanB, type=l,l", pch=28, 
col=plot_colours[3], lwd=2)
$ title(main="Subtraction", col.main="red", cex.main=3)
$ title(xlab= expression("Raman shift" ~ (cm~{-l})),
col.lab=rgb(0,0.1,0), cex.lab=2)
$ title(ylab= "Intensity (a.u.)", col.lab=rgb(0,0.1,0), 
cex.lab=2)
$ legend(600,5000, c ("Subtracted","ToplO","B"), cex=l, 
col=plot_colors, lty=l)
$ final=cbind(meanA,meanB,newSpec)
$ write.table (final, file = "subtract.txt", col.names=NA, 
sep="\t")
$ dev.off()
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Abstract Rapid and reproducible discrimination between bacterial pathogens is a clear goal in microbiological laboratories 
when processing infected clinical samples. In this study Raman spectra were taken from at least 30 colonies of four strains of 
bacteria including Staphylococcus epidermidis (1457 and 9142) and Escherichia coli (K12 and Top 10) using the Renishaw 
in Via Raman microscope system. Analysis based on principal components suggests that even strain differentiation (e.g., 1457 
versus 9142 or K12 versus ToplO) is possible.

Keywords: Raman spectroscopy, bacterial identification, principal component analysis

1. Introduction

Reproducible and robust bacterial identification is the key to cutting-edge clinical microbiology. 
Current methodologies for determining the identity of unknown bacteria in a clinical specimen include 
traditional methods based on biochemistry (e.g., API test), specific activities (e.g., agglutination), or 
growth requirements (e.g., high NaCl concentration). More modem approaches have now automated 
biochemical tests (Phoenix) and developed specific assaying methodologies that identify bacteria from 
their DNA (Polymerase chain reaction) or protein (MALDI-TOF); see, for example, [1,2].

During the last 10 years or so, Raman spectroscopy has gained a wider acceptance as a method for 
bacterial identification. Studies have demonstrated that Raman spectra generated from bacterial colonies 
give sufficient information to identify and differentiate medically relevant microorganisms, including 
Staphylococcus spp., Candida spp. and Escherichia coli (see e.g., [3, 4]). We have also used Raman 
spectroscopy to identify bacterial species and have suggested, specifically, that in some instances it 
may be a useful technique to detect biofilm formation [5]. Others have demonstrated that, provided 
that the Raman signal can be enhanced, through surface-enhanced (SERS) or tip-enhanced (TERS)
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Raman spectroscopy, spectra can also be generated from single bacteria (see e.g., [6]); this leads to the 
possibility that microorganisms may be traced and identified directly in biological fluids.

Thus, previous work has confirmed the potential o f Raman spectroscopy to identify bacteria. 
Less work has focused on the limits and reproducibility of this method— the true measure of clinical 
usefulness. We have analysed numerous colonies resulting from the same bacterial specimen so that 
clear limitations and sensitivities can be determined and the potential o f Raman spectroscopy in routine 
clinic diagnostics can be gauged.

2. Instrumentation and Methodology

The instrument used in our experiments is the Renishaw in Via system with a charge-coupled device 
(CCD) detector and a Leica DM2500 microscope. The microscope is supplied with a motorised sample 
stage. The microscope is equipped with 5x, 20x, 50x, and lOOx objective lenses, and Windows-based 
Raman Environment software (WiRE3.2) is used for controlling the system for data acquisition. Two 
laser devices are coupled to the in Via Raman system, operating at excitation wavelengths of 532 nm 
and 785 nm; for the work reported here we exclusively used the NIR laser excitation source at 785 nm.

A number of bacterial specimen, namely, S. epidemiidis 1457 and 9142, and E. coli ToplO and 
K12 were cultivated separately for 24 hours in an incubator at 37°C, from frozen stock supplies spread 
onto Petri dishes o f Columbia blood (Horse) agar (CBA). After 24 hours, pieces of Agar containing 
bacterial colonies were cut from the Petri dish and placed on a microscope slide.

Samples were positioned directly under the 50x microscope objective and the laser spot focused 
sequentially on the (central) top of each individual bacterial colony. The acquisition parameters used for 
each single measurement included a laser power on the target o f ~ 1 10 mW and a (static) exposure time 
of 10 s (72 s for a complete single-spectrum scan). The spectral range was extended to 600—1600 cm -1 
to cover the most relevant bacterial Raman features using the system’s SynchroScan mode for single 
spectrum accumulation; the total time of measurement for a series o f 30 individual colonies normally 
was less than two hours (this includes the time for homing in individual colonies and exchanging 
samples).

The Raman spectra were treated with a Savitzky-Golay coupled advanced rolling filter-SCARF- 
background removal routine (see, e.g., [7]), and then analysed using a standard multivariate principle- 
component program PyChem [8]; further, discriminant analysis steps are not included here.

3. Results

To assess the reproducibility of Raman spectroscopy, we inoculated Columbia blood agar plates with
S. epidermidis 1457, 9142 or E. coli ToplO, K12, and collected data from a minimum of 30 colonies 
using the Renishaw in Via Raman system. Typical (raw) spectra are shown in Figure 1(a). Chemo- 
metric principal component analysis o f these spectra generated clusters of data points, from which the 
reproducibility of the measurement could be analysed. This type o f data could be used to compare 
bacteria at both the species and strain level and allowed us to investigate the influence o f successive 
principal components on the ability to differentiate between bacteria and their strains.
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Figure 1: Analysis of repeat measurements of different colonies of the same bacteria, cultured for 24 
hours, exemplified for two S. epidermidis (1457 and 9142) and one E. coli (ToplOWT) strains. Typical 
Raman spectra from individual bacterial colonies are shown in (a); the related 3D plots of principle 
component relations for 30 repeat measurements compare (b) two bacteria types (c) two bacteria strains 
and (d) bacteria types and strains.

In order to investigate the reproducibility to differentiate between bacterial species, we compared 
the first five principal components (PCs) generated from Raman spectra taken from 30 colonies of S. 
epidermidis 1457 and E. coli ToplO. respectively (see Figure 1(b)). In Figure 1 PCI to PC3 are displayed 
in a 3D-plot; evidently, these three components seem to be sufficient to define and contain all of the 
variability in two clear clusters. Equally, a PC-plot, generated from 30 colonies of S. epidermidis 1457 
and 9142, respectively, demonstrates that one also is able to differentiate between bacterial strains (see 
Figure 1(c)). We like to mention that a similarly defined distinction resulted from the comparison of the 
two E. coli strains ToplOWT and K12 although these data are not included in the figure for brevity.
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Finally, in Figure 1(d) all bacteria and strains shown in Figures 1(b) and 1(c) are included; the 
distinctive clustering is maintained although the relative cluster orientation is altered. This is a typical 
behaviour o f principle component analysis when additional data sets are added to the evaluation. While 
the three PCs shown here are sufficient to provide clear distinction in this specific case, additional 
PCs may be necessary to achieve unique cluster association. Notably this is required when additional, 
closely-related strains of a bacteria species are included in the overall comparison. Specifically further 
bacteria strains— requires that additional PCs may be necessary to result in unique cluster association.

4. Conclusion

Our results from replicate measurements show that colonies o f the same bacterial species and/or strains 
cluster together rather well; the exact nature of clustering is now under investigation. The most likely 
cause for cluster scatter is associated with the difficulty o f measuring colonies at the same central 
location each time; but in addition there is evidence that the subtle phenotype differences in colonies 
on an agar plate contribute as well. Thus, the spread in clustering is associated with the variability in the 
measurement of a biological sample and carries the requirement for multiple measurements to define 
a bacterial population within a species or strain. Variability away from the cluster’s centre will aid in 
defining the false positive rate, which is a parameter we are currently investigating. These findings are 
consistent with the research of Choo-Smith and coworkers who observed heterogeneity in microcolony 
analysis [9].

This study also underlines the importance of pinpointing the contributions made by individual 
principal component in the analysis. Understanding the key bacterial structures responsible for the 
Raman shifts (for a first library collection, see, e.g., [10])— defined within the first few, significant 
principal components— looks to be essential to assess the strengths and limitations of using this 
technique for routine discrimination of bacteria.

The exact understanding o f the origin of individual spectral contributions is still in its infancy, 
but further comparisons of spectra from other sample specimen are now under way, with the hope that 
this should aid in the quest for full strain discrimination.

We also commenced to apply the methodology described in this study to other problems in 
clinical microbiology, such as antibiotic susceptibility testing, analysis o f microcolonies and single cells, 
and the understanding of bacterial metabolism.
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